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Abstract

In a broad class of spacetimes including de Sitter space, the Faddeev-Popov ghost propagator
is infrared-divergent in both BRST-quantised Yang-Mills theory and BRST-quantised perturbative
gravity. Introducing a mass term for infrared regularisation, one may delete an infrared-divergent
term from the propagator before taking the massless limit. This obtains an effective zero-mode sector
Feynman propagator that is infrared-convergent and exhibits appropriate spacetime symmetries,
such as de Sitter invariance in de Sitter space and time translation invariance on a flat static torus.
This prescription, which dates to 2008, relies on free integration by parts (a term explained on
page 11), so its generality to a broad class of spacetimes is limited. A further difficulty is that this
prescription introduces a mass term in the action that breaks the theory’s Becchi-Rouet-Stora—Tyutin

invariance and anti-Becchi-Rouet-Stora-Tyutin invariance.

This thesis presents an alternative prescription in which it is shown that the modes responsible for
the Faddeev-Popov ghost propagator’s infrared divergence are cyclic in the Lagrangian formalism.
These modes can then be obviated from the Lagrangian, Hamiltonian and Schrodinger wave func-
tional formalisms. Neither of the aforementioned difficulties with the old prescription apply to the
newer one discussed herein, which manifestly preserves both internal symmetries throughout. The
prescriptions have equivalent perturbation theories in spacetimes in which free integration by parts
is possible. The new prescription can then be regarded as a generalisation of the 2008 prescription to

a broader class of spacetimes.
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PartI Motivations



Chapter1 A problem in scalar field
theory

1.1 Overview of this thesis

In Sec. 1.1.1, I motivate the research described in this thesis. In Sec. 1.1.2, I summarise the content of
the rest of this thesis. In Sec. 1.1.3, I conclude this section with a note on conventions I have adopted

in this thesis for readability.

1.1.1 Infrared problems

This thesis is concerned with several related problems in quantum field theories in curved space-
times, herein called zero mode problems. These are problems of infrared divergences, which afflict
(for example) minimally coupled massless scalar fields in spacetimes specified below in Sec. 1.2. If
the relevant fields are initially allowed an arbitrary mass, then associated quantities called propagat-
ors depend on those fields” masses. Further, depending on the field normalisation, the propagators
either diverge in the massless limit or lose desirable spacetime symmetries. However, these fields are
in fact massless. Therefore the infrared (IR) behaviour of the propagators causes the quantum field
theory to lose one or more desirable symmetries. Addressing this is the motivation of the present
thesis and a number of earlier works.

This thesis contrasts two different prescriptions for addressing these problems. These prescriptions
are not equally recent. The less recent of the two prescriptions for addressing zero mode problems
is attributable to Mir Faizal and Atsushi Higuchi in 2008 [2]. At this time, Atsushi Higuchi was
supervising Mir Faizal’s doctoral studies. I am Atsushi Higuchi’s current PhD student and, like Mir
Faizal, I have collaborated with Atsushi Higuchi on research considering the zero mode problems
in BRST-quantised Yang-Mills theory and BRST-quantised perturbative gravity. The first published
discussion of the younger of the two prescriptions for addressing zero mode problems is in a paper
Atsushi Higuchi and I co-authored [1] in 2014. This paper presented the more recent prescription’s
treatment of the zero mode problem in BRST-quantised Yang-Mills theory. In this thesis, I present
this prescription in more detail, and do not limit its scope to BRST-quantised Yang-Mills theory’s
zero mode problem.?

I discuss three zero mode problems. The first zero mode problem is not of historical interest, but is

presented to illustrate several key concepts of my later arguments. It occurs in a toy model, namely

2Dr Higuchi and I are still drafting two further co-authored papers. One will provide a treatment of perturbative gravity
analogous to Ref. [1]. The other will be a comment paper, covering the same material I discuss below in Sec. 2.6.4.
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1.1. OVERVIEW OF THIS THESIS

the theory of a minimally coupled scalar field. The field admits a decomposition into modes, and
the IR divergence of the propagator is due to the field’s spatially uniform mode, which is called its
zero mode (hence the name “zero mode problem”). In this chapter, I will explain the toy model’s
zero mode problem and how each prescription addresses that problem. The less recent of the two
prescriptions begins by giving the scalar field a mass. The prescription then deletes an IR-divergent
term from the propagator, and takes the massless limit of the remaining terms to obtain an effective
zero-mode sector propagator. I will therefore call this prescription the fictitious mass prescription
or FMP. The more recent prescription verifies that, in the massless case, the zero mode is also cyclic
(i.e. it does not appear undifferentiated in the theory’s Lagrangian). This fact is integral to the more
recent prescription’s treatment of the zero mode problem that I discuss in this chapter. I therefore
call this prescription the cyclic modes prescription or CMP.

The first zero mode problem and its treatment are presented in this chapter, serving as a preliminary
for my later account of the other two zero mode problems. These problems occur in BRST-quantised
Yang-Mills theory and BRST-quantised perturbative gravity, theories that are integral to modern
physics. These theories and their zero mode problems will be discussed in Chapter 2 in the context
of a literature review. As with the toy model’s zero mode problem, the two prescriptions I present
are an FMP and a CMP.

The reader may wonder why, if the FMP addressed these zero mode problems in 2008, it was
nonetheless necessary to treat them with the CMP. The reason is that the FMP suffers from two
difficulties that are absent in the CMP’s treatment of zero mode problems. One difficulty is that,
although the FMP’s modification of propagators preserves spacetime symmetries, it adds a mass
term to the Lagrangian that breaks internal symmetries. By contrast, the CMP manifestly preserves
these internal symmetries throughout. The other is that, unlike the CMP, the FMP requires free
integration by parts®; the CMP may be used in a broader class of spacetimes (see Sec. 1.2).* These
difficulties are irrelevant to the zero mode problem considered in this chapter, but will be discussed
in more detail later.

The main purposes of this thesis are to present the CMP, to clarify its advantages over the FMP
(which were briefly summarised in the above paragraph), and show that the two prescriptions have
equivalent perturbation-theoretic descriptions in spacetimes for which free integration by parts is

possible. The CMP can therefore be seen as a generalisation of the FMP.

1.1.2 Structure of the rest of this thesis

Historically, maximally symmetric spacetimes have been of particular interest as toy spacetimes in
both cosmology and quantum field theory. Examples include conformally Minkowski space, global
de Sitter space and global anti de Sitter space. Global de Sitter space is notable for its accelerating

expansion. The early cosmological inflation of spacetime is therefore an example of approximate

3Throughout this thesis, surface terms are assumed to vanish in integration by parts. The conditions for this depend on the
integrands involved in the calculation, but also on the spacetime’s geometry. The FMP’s requirements are slightly stronger
than those of the CMP, because its use of integration by parts is more extensive. In particular, multiple expressions for
the perturbation theory’s interaction Lagrangians must be equal despite surface terms. A review in Sec. 3.7 of the FMP’s
perturbation theory in Yang-Mills theory makes use of these requirements in Egs. (3.7.18), (3.7.21) and (3.7.22). This definition
of free integration by parts is repeated on page 164. By contrast, the CMP’s only use of integration by parts is in non-
perturbatively deriving equations of motion and conservation laws in the Lagrangian and /or Hamiltonian formalism.

4This concern is less pressing than the symmetries issue, however, as quantum field theory is more problematic, and of less
interest, in spacetimes for which free integration by parts is unavailable.
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CHAPTER 1. A PROBLEM IN SCALAR FIELD THEORY

de Sitter behaviour. Today, the universe’s expansion is accelerating; a de Sitter approximation is
applicable here too. While de Sitter space suffers from all three of the zero mode problems discussed
in this thesis, it is but one example of a broad class of spacetimes to which all three zero mode
problems are applicable. This class of spacetimes is specified in Sec. 1.2°, and includes many
Friedmann-Lemaitre-Robertson-Walker metrics (see Sec. 1.2.1 below) in cosmology: specifically,
those which are globally hyperbolic and have closed spatial sections. However, de Sitter space
remains an example of especial interest, and at times this special case will warrant a discussion in
detail. In Sec. 1.2.2, I motivate an especial interest in de Sitter space and discuss evidence for some
of its applications, such as early cosmological inflation.

In Sec. 1.3, I review some of the theory on which the FMP and CMP rely. The infrared problems
discussed in this thesis are a consequence of the behaviour of solutions of equations of motion. I
must therefore give a brief overview of Lagrangian and Hamiltonian mechanics. Familiar results
will be expressed in a non-standard notation that will be useful throughout this thesis.

The next step in explaining the first zero mode problem I discuss is reviewing a normalisation
condition that is imposed on scalar fields, called Klein-Gordon normalisation. I explain the details of
Klein—-Gordon normalisation in Sec. 1.4. Klein-Gordon normalisation is integral to the IR behaviour
of the scalar field’s propagator. The IR behaviour of the propagator for a flat static torus is discussed
in Sec. 1.5, while the analogous calculation for more general spacetimes is discussed in Sec. 1.6. Sec.
1.5 also contrasts two uses of the term “zero mode” to clarify the terminology of this thesis.

In Sec. 1.7, 1 discuss the FMP and CMP in more detail.

In Sec. 1.8, I discuss two spacetimes in more detail: the flat static torus and de Sitter space. Interest
in the flat static torus originates from the fact that it simplifies statements of the zero mode problems
and both prescriptions discussed herein for addressing them.

In Chapter 2, I explain the zero mode problems that concern the rest of this thesis. The primary
purposes of Part I (Chapters 1 and 2) are to specify the problems of interest later in this thesis and to
briefly introduce the motivation of the CMP.

Applying the CMP to BRST-quantised Yang-Mills theory and BRST-quantised perturbative gravity
requires a lot of detail. These treatments are respectively provided in Chapters 3 and 4, which
comprise Part II of this thesis. Each of these chapters show that the field modes responsible for a
propagator’s IR-divergence are cyclic and hence dynamically irrelevant. Next each chapter shows
that the CMP adds new terms to the Lagrangian and Hamiltonian, and that these can be shown
to imply that the CMP and FMP have equivalent perturbation-theoretic formulations in spacetimes
for which free integration by parts is possible. My account of the gravity case closely parallels my
account of the Yang-Mills case.

Part III contains my conclusions (in Chapter 5), appendices and other back matter. The appendices’
functions are summarised in Chapter 5, although each appendix’s function is also specified where

appropriate in Chapters 1-4.

5The first number refers to the chapter; the second number refers to the section. I use the abbreviation Sec. whenever I refer
to a section or subsection.

12



1.2. SPACETIMES OF INTEREST

1.1.3 Writing conventions

I work throughout in units such that ¢ = g = h = 1.5 The “mass” of a field of rest mass My may

then be taken as M := ¢ which has the units of inverse length.
I use Greek spacetime indices; for exclusively spatial indices, I use lower case Roman letters begin-
ning at i. Another common convention is to use abstract indices, denoted with lower case Roman
letters beginning at a. I use such letters for Lie algebra indices (except for the Lie algebra of Killing

vector fields, for which I capitalise the Roman indices).

There are times when text that is inappropriate for footnotes or appendices must nonetheless be
distinguished from the text body, to indicate that the text following it follows on from the text before
it. Ref. [3] indicates this by using small text. I have instead chosen to use a different text colour.
Heretofore I have used black text. By contrast, the text in this sentence is grey. It is my hope that this
writing style will allow the reader to follow the structure’, and crux, of my argument more closely.
I have also taken one other measure to help this. Sections typically open with summaries of the
sequence of their narratives. The stages of such narratives each occupy a subsection. The reader can
satisfy themselves that this section of the chapter relies on this technique. A similar explanation of

the roles of sections in a chapter will also be typical.

1.2 Spacetimes of interest

In Sec. 1.2.1, I specify the spacetimes that are considered in this thesis. One example is de Sitter space,
but this case admits a number of generalisations that are straightforward throughout my analysis.
This permits a rich class of spacetime metrics to be considered hereafter. I motivate an interest in de
Sitter space in Sec. 1.2.2, which concludes with a one-sentence summary of the conditions demanded
of spacetimes of interest in Sec. 1.2.1.

Throughout this section I make use of various results, definitions and notational conventions for

general relativity, viz. Ref. [4].

1.2.1 Global hyperbolicity and compact spatial sections

Let n denote the dimension of the spacetime manifold. This thesis hereafter assumes one time
dimension and at least one space dimension, so n > 2 and the dimension of spatial sections is n — 1.
In a given coordinate system, the time coordinate may be written as z° or ¢, while space coordinates
are denoted z* and collected into a vector x € R"~!. An event in the manifold may be written as

r=(t,x) wherer € R", t c R, x ¢ R" 1 and 2" = ¢.

6However, occasionally SI units will be used. I also normalise G' so that the Einstein-Hilbert Lagrangian density is

V19| (R — 2A); for example, in a spacetime of 1 time dimension and 3 space dimensions, the normalisation convention
is 16mG = 1. I discuss this in more detail in Sec. 2.6.1.

"The first example of my using grey text in this way will be a discussion of one of the assumptions of
Friedmann-Lemaitre-Robertson-Walker (FLRW) metrics.

One difference between grey text environments and footnotes is seen in their relation to grammar. If my grey text were
rendered black, the only information that would be lost would be information regarding the relation between the information
contents of black and grey regions of text. The grammatical structures of black and grey text are therefore identical and
unrelated. By contrast, this footnote exemplifies a typical peculiarity of the relation between the grammar of a sentence and
the positioning of a footnote within it. Indeed, a reader who read the sentence in which this footnote appeared, with the
footnote interrupting it, would not correctly follow the grammar of said sentence.

13



CHAPTER 1. A PROBLEM IN SCALAR FIELD THEORY

Each spacetime considered is globally hyperbolic®, i.e. each has a Cauchy surface that can be time-
translated to generate the entire spacetime. I work hereafter in the timelike (+ —- - -) convention. The

line element of such spacetimes may then be written as
ds® = N?dt* — v;; (dz’ + N*dt) (dz? + N/dt) (1.2.1)

where:

e 7;; (z) is a positive-definite invertible (n — 1) x (n — 1) real matrix-valued function;

e N (z) > 01is the lapse function;

e and N'(z)is (n — 1)~dimensional and is called the shift vector.
The spacetimes of interest are differentiable manifolds, so v;;, N, N* are differentiable.
The choice of coordinates for a given globally hyperbolic metric fixes N, N, but a physically irrelev-
ant change in the choice of coordinates can obtain arbitrary N, N*. The simplest possible result for
N, N'is the synchronous gauge

N=1,N'=0. (1.2.2)

However, the treatment of more general gauges is also of mathematical interest, and will be included
herein.

The Friedmann-Lemaitre-Robertson—Walker (FLRW) metrics of cosmology are an important special
case. If these are considered in the synchronous gauge, they also impose two further conditions. The

first such condition is

Vi (x) = a® (t) nij (x) (1.2.3)

where a > 0 is called the scale factor. Note that v;; is invariant under the transformation
a 2
a — ;, Nij — agnij (124:)
0

for any ag € R;. We say a spacetime satisfying Eq. (1.2.3) is expanding if & > 0 and accelerating

(decelerating) if @ is positive (negative). Eq. (1.2.3) implies a more general condition, of the form

v (x) = a1 (t) V/n (%) (1.2.5)

where a > 0 as before, v := det~;;, and in the special case of Eq. (1.2.3) n = detn;;. Herein I will
consider arbitrary spacetimes satisfying Eq. (1.2.5), thereby generalising Eq. (1.2.3).
The second condition which FLRW metrics impose is not assumed hereafter, since it is irrelevant to

the statement and treatment of zero mode problems. For completeness, this condition is

2

ni;(x)dz'da! = + r2d0?, (1.2.6)

1— kr?

where dQ? is the line element of the (n — 2)~dimensional unit sphere S"~2 and k is a constant for

which kr? is dimensionless. For example, for n = 4 we may write

d0? = d6? + sin? 6d o> (1.2.7)

8Globally hyperbolic spacetimes are of interest because they have a well-defined initial value formalism [4, 5]. Such
spacetimes include conformally Minkowski space and de Sitter space, but not anti de Sitter space.

14



1.2. SPACETIMES OF INTEREST

where (r, 6, ¢) are spherical polar coordinates. An analogous condition exists in some other im-
portant spacetimes, with a different value of 7;;dz’dz?. One example, which lacks the homogeneity
in space of the FLRW metric, is the Schwarzschild metric. The Schwarzschild metric near a non-
rotating, neutrally charged black hole of mass m satisfies
2Gm i1 dr?
N =4/1- .]\f’:(),azl,mjdrd:zzjzm

re2 — n
rc rc2

+ r2d02. (1.2.8)

However, v;; () will for my purposes be any matrix for which det ;; is of the form given in Eq.
(1.2.5). Even if y;; had the form in Eq. (1.2.3), the choice of 7);; would still be much more general than
that used in the FLRW metric condition Eq. (1.2.6).

One last constraint on the spacetimes of interest in this thesis is that the spatial integral
V()= [ & 'xy/Jg(t %)]g® (¢, x) (1.29)

(where g := det g,,.), hereafter called the spacetime’s volume factor, is finite in a suitable choice

of coordinates. Throughout this thesis it will be convenient to use the succinct integral operator

/x - ,/dnrilx\/m / = /df/;:/d”-f 9] (1.2.10)

so that V = [ ¢". (Ref. [6] has a similar shorthand, defining dV, := \/|g|[d""'x so [dV, = [ .)
Defining v := det ;j, it is well-known that \/|g| = N\/yand ¢°° = N=%,s0V = [ d"’lxg. All

notations

spacetimes with compact spatial sections’ have finite volume factors!?. An important example is de

Sitter space, for which in global coordinates the line element may be written as
ds? = dt? — H~? cosh? HtdO?, (1.2.11)

where d©? is the dimensionless line element of the (n — 1)-dimensional unit sphere S"~! and the

H 2 coefficient ensures that ds? has the correct units.

1.2.2 Why de Sitter space?

The case of de Sitter space may be written as a o« cosh Ht,!! where H > 0 is a constant for which
Ht is dimensionless. This is the maximally symmetric accelerating choice'?, and we expect theories
in de Sitter space and their vacua to exhibit a symmetry called de Sitter invariance. Empirically, the
modern universe is expanding and accelerating [8, 9]. Further, a primordial period of exponential

expansion known as cosmological inflation [10, 11, 12, 13, 14] explains the modern universe’s flat-

9The spatial sections of a spacetime are topological spaces. A topological space is called compact if each of its open covers has
a finite subcover. However, the only property of spacetimes with compact spatial sections that concerns us herein is that they
have finite volume factors. The integration process in Eq. (1.2.9) requires coordinate patches, but a compact spatial section
requires only finitely many of these. On each patch, the integral is finite because the integrand is continuous and hence
bounded. A finite subcover of a compact spatial section is also obtainable, since a union of open balls covering the spatial
section’s points provides an open cover. Any finite subcover thereof imposes a finite upper bound on the volume factor.

10While this integral I have called the volume factor is convenient to name herein, the more usual definition of volume for a
spacetime with compact spatial sections is [ d"~!x,/7.

1T hereafter simply write a = cosh Ht, using the invariance of v;; stated in Eq. (1.2.4). This removes the H~2 factor in Eq.
(1.2.11); H, t have been nondimensionalised.

12More precisely, de Sitter space is the maximally symmetric vacuum solution of Einstein’s field equations with positive
cosmological constant [7]. I define maximally symmetric spacetimes in Sec. 2.6.2.
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CHAPTER 1. A PROBLEM IN SCALAR FIELD THEORY

ness, the unobservably low modern concentration of magnetic monopoles, and the modern pattern
of CMB anisotropy. (There is also recent tentative empirical evidence for such cosmological inflation.
Primordial cosmological inflation’s predicted spectrum of perturbations in the universe’s primordial
density is consistent with WMAP data [15, 16]. Another prediction of primordial cosmological in-
flation is primordial gravitational radiation. Unfortunately, apparent evidence [17] of this radiation
has since been undermined [18].) The primordial and contemporary accelerating periods can both
be treated with de Sitter space, if only as a toy model. A further motivation for its study is the
proposed dS/CFT correspondence [19], which has much the same use for string theories in de Sitter
space as the AdS/CFT correspondence does for string theories in anti de Sitter space.

A lot is known about quantum field theories in de Sitter space. Of critical importance in this thesis is
the fact, which I discuss in Sec. 2.5.1, that minimally coupled massless free scalar fields in de Sitter
space prevent the occurrence of a de Sitter-invariant Hadamard vacuum state [20]. However, I will
usually be able to speak about zero mode problems in a much more general class of spacetimes. In
summary, I hereafter assume a globally hyperbolic spacetime with one time dimension and at least

one space dimension, which in appropriate coordinates satisfies Eq. (1.2.5) and has finite V' (¢).

1.3 An overview of Lagrangian and Hamiltonian mechanics

A few facts about the Lagrangian and Hamiltonian formulations of classical field theory'® need to
be reviewed to explain the CMP in Sec. 1.7.2. In particular, I must introduce several non-standard
notational conventions that ease the subsequent discussion of every zero mode problem considered
in this thesis. (The aim is to avoid a need to calculate with a mixture of tensors and tensor densities.)
The example of deriving the Klein-Gordon equation from a Lagrangian density will provide some
familiarity. Other zero mode problems introduced in Chapter 2 include fermionic fields, which
introduce a subtlety unaddressed in this section concerning the distinction between left and right
derivatives. The partial derivatives in the Lagrangian (Hamiltonian) sector should in general be left
(right) derivatives. I discuss this in more detail in Sec. (2.4.2) (Sec. (3.1)).

The notations [, [ defined in Eq. (1.2.10) will be used throughout for succinctness. The action S,
Lagrangian L, Lagrangian density £ and scalar Lagrangian density'* — which I will denote £, — are

related by

=V lg/Lo, L:/d”’lxﬁz/ﬁo, /dtL /Lo (1.3.1)

I will write the scalar £y in terms of tensors. In particular, if 7' (z) is an arbitrary tensor-valued field
(or mode thereof), I write tensors (including L) as a function of T' and its covariant, not partial,

derivatives. For example, VT will be considered T-independent for any T'. Then

8[:0 a£O
a7~ VI aT 8VT v aVT (132)

13Just as quantum mechanics is a quantisation of classical mechanics, quantum field theory is a quantisation of classical field
theory. Throughout this thesis, I will call fields classical if they are not quantised.

14Tn the treatment of curved spacetime, there are multiple conventions regarding the term “Lagrangian density”. One applies
this term to a scalar quantity. Another convention calls this scalar the scalar Lagrangian density (see, e.g. Chapter 6 of
Ref. [6]), and defines the Lagrangian density as /|g| times the scalar Lagrangian density. (The 1/|g] factor in the Lagrangian
density is derived in Sec. 6.3 of Ref. [21].) I will use this second convention herein. Then the Lagrangian is the space integral
of the Lagrangian density. However, the description of Lg as a “scalar Lagrangian density” is at risk of being confused with
the fact that the Lagrangian density L is a scalar density, as noted in Chapter 2 of Ref. [6], whereas L is a scalar.
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1.3. AN OVERVIEW OF LAGRANGIAN AND HAMILTONIAN MECHANICS

A transformation of fields may be written as ' — T' + 6T. Suppose such a transformation satisfies
05 = 0. Then a stationary action principle is obtained by a process referred to as varying T'. Working
throughout to first order in 67" and covariant derivatives thereof, this stationary action principle can

be written as

o Lo 0Ly 9Ly
0=46S ~/ (5T a7 T Va 6T8V T + VsV, 5T8V5VaT + > ; (1.3.3)
where even higher-order derivatives of T appear in the ellipsis - - - . However, none of the Lagrangian

densities considered in this thesis depend on third- or higher-order covariant derivatives of any
tensor, so this ellipsis can be dispensed with hereafter. (I will only need to include second-order
covariant derivatives in discussions in Secs. 4.4 and 4.6.)

Dropping boundary terms, integration by parts gives
0= /d"xaa (\/|g|va) :/vava (1.3.4)

for any tensorial vector field V¢, since the identity \/[g|I'q 5 = 03+/|g| in Christoffel symbols implies
V0IgIVa Ve =9, <\/|g\V‘)‘) (see Sec. 3.4 of Ref. [4]). Thus

aﬁo 8[:0 6£0
(9[:0 8£0 ac0
T — . 1.3.
/5 (aT Va (avaT vBanVaT>) (13.5)

This is an example of a result of the form

08 = /d"acéTﬁ

T (1.3.6)

where 22 is called a functional derivative.’® By the fundamental lemma of the calculus of variations,

the stationary action principle 23 = 0 may be equivalently stated as the Euler-Lagrange equation

obtained by varying 7T'. This equation may be rearranged as

9o _ g, o, o= 2L 0%

or — N VP OVsVal' (13.7)

A system is said to be on-shell if and only if all Euler-Lagrange equations are satisfied; results that
do not require any Euler-Lagrange equations are said to hold off-shell.

As an example of Eq. (1.3.7), the choice
T =¢*, Lo=V,up*V'o— (M>+ER) ¢* 0, (1.3.8)

with R the Ricci scalar and ¢ is a spacetime-constant dimensionless coupling parameter, gives the
Klein-Gordon equation

O¢ =— (M*+¢R) ¢ (1.3.9)

151f the calculatlon were done to all orders in T', the integrand would include additional terms, which by definition do not
contribute to 6T This is analogous to the fact that, in a Taylor series of a function, only one term is relevant to defining each
of the function’s derivatives at the point at which the Taylor series is expanded. Similarly, the aim of the above calculations
is to compute % in terms of specific choices for the tensor fields.
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CHAPTER 1. A PROBLEM IN SCALAR FIELD THEORY

(O := V,V* is the d’Alembert operator), with £ = 0 in the minimally coupled case'®, viz
O¢ = —M?¢. (1.3.10)

The momentum density 7r of T' can now be defined as

oL

which in the above example gives
7o =/ |g|V0*. (1.3.12)
Next I introduce what I will call reduced momentum densities, viz.
T 1 oL
wrp = = (1.3.13)
Vil /gl 90T

(The symbol w is called by \varpi in IXIEX, and is a variant of 7 obtained by bending 7’s legs inward

and bringing their feet into contact.) In many cases of interest!”

oL 0Ly

= = . 1.3.14
= 980T T T 98,T (1.3.14)

If this is true and, furthermore, second-order derivatives of T" are absent from Ly, then
S e N U R—) (13.15)

ovV,T ovVT

In this case the reduced momentum densities are true tensors, unlike the usual momentum densities

mr. Further, the Euler-Lagrange equation may then be written as

% = Vowr + Vi Jt. (1.3.16)
Next I define
r (t) = / d" 'xmr (z / wr ( (1.3.17)

Since S = [ dtL, the stationary action principle can be expressed another way, viz.

oL oL oL oL
_ N VAN | | A 3.
0 /dt <5Ta +V 6T6V”T) /dt <6T (aT Yo T) ; 8V7;T> (1.3.18)

(again, assuming the absence of second-order covariant derivatives). If a variation 67 is spatially

uniform and scalar-valued, V;67 = 0 so 2% = T on-shell. For arbitrary 7', the Euler-Lagrange
equation Eq. (1.3.7) gives a conserved current if £ is not explicitly T-dependent, in which case T is
said to be cyclic. If §T is a spatially uniform scalar function (which can be taken as a variation only of

spatially uniform scalar modes of T'), 6L is independent of the undifferentiated 47" if and only if I

16Some spacetimes have constant R (including two spacetimes I comment on in this thesis, the flat static torus and de Sitter
space). For these, a mass-M solution of (D + M2+ {R) ¢ = 0is a mass—/M?2 + £R solution of (D + M2) ¢ = 0. Thus
the results I will describe for M = 0 solutions of the minimally coupled Klein-Gordon equation, viz. ¢ = 0, apply in such
spacetimes’ coupled Klein-Gordon equation whenever M = ++/—¢R. Indeed, if R is a nonzero constant, as is the case for
de Sitter space (but not the flat static torus), any choice of M yields such problems for £ = — MRQ.

170ne exception is discussed in Sec. (3.4). It results from a change of field variables in a Lagrangian, which makes use of a
nonlocal field defined in Eq. (3.4.1).
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1.4. NORMALISING AND QUANTISING KLEIN-GORDON FIELDS

is conserved; and, in a slight abuse of terminology for brevity, I will call such 61" cyclic zero modes.

In the case of the Klein—-Gordon field

Mg = [ V', (1.3.19)

My = / V. Vi =—-M?* | ¢, (1.3.20)

so0 I14- is conserved when M = 0.

The Hamiltonian density is defined as
Hi=—L+> (0T)(rr), (1.3.21)
T

where the sum runs over all canonical tensor fields which appear, differentiated and/or undiffer-
entiated, in L. This construction of # in terms of L is a Legendre transform. A number of careful
observations concerning its properties will be made at appropriate times throughout this thesis. One
may write H = /|g[Ho with
Ho:=—Lo+ Y (00T) (wr), (1.3.22)
T

in analogy with the factorisation £ = \/H Ly. (However, unlike £y, Ho is not in general a scalar.) The
Euler-Lagrange equation may instead be obtained by writing H in terms of T's, 0;T's (if necessary)
and 7ps, which requires the definitions of 7 to be rearranged to make 0yT's their subjects. This
results in lower time derivatives disappearing from 7. The equations of motion are obtained as
Hamilton’s equations, viz.

0H 0H

T:7,7TT:767T.

1.3.2
F (1.3.23)

Thus the conservation of the canonical momentum of a cyclic 7" can also be proven in the Hamiltonian

formalism.

1.4 Normalising and quantising Klein—-Gordon fields

I do not present original material in this section, whose purpose is to review the results of scalar field
theory that are key to my discussion of its zero mode problem later in this chapter. A good general
reference is Chapter 2 of Parker and Toms’s Ref. [6]. For example, their Eq. (2.48) introduces the
same quantity as my Eq. (1.4.3) below, and their Eq. (1.47) is my Eq. (1.4.15).

In Sec. 1.4.1, I introduce a normalisation condition on classical Klein—-Gordon fields that will be used
throughout my analysis of the zero mode problem. In Sec. 1.4.2, I discuss enough of the quantum
field theory of quantised Klein-Gordon fields to motivate this normalisation (one calculation is

postponed to Appendix A). Sec. 1.4.2 also explains the concept of “modes” of scalar fields.

1.4.1 Classical fields

Minimally coupled scalar fields are of interest in this thesis. For the moment, I consider classical

fields (later quantum fields will be indicated by circumflexes, viz. ¢ vs. ¢). The Klein-Gordon
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CHAPTER 1. A PROBLEM IN SCALAR FIELD THEORY

equation may be rewritten, viz.

v o 1 v
[0 = Vi (9"900) = —=0, (Visly 2.9). (14.1)
0 (V1glg"0,6) = \/1gl06 = —M*V/lglo. (1.42)

By homogeneity and linearity, the set of solutions of Eq. (1.3.10) for fixed M forms a vector space.

One important example of a pseudo-inner product on this space is the Klein-Gordon inner product,

(61, ba)yg =i / (61 — (V°57) 6) (143)

(The factor of i ensures (¢1, ¢2>I*<G = (¢2, $1)kg-) This product is well-motivated; the Klein-Gordon
inner product of two solutions of mass M is conserved. A conserved current is a vector V* with

V,.,V#=0,s0

0=]¢gIV,.V* =0, (M V") : (1.4.4)

0= /d“flxaﬂ (MV“) — 8 </x VU) +/d"*lx&j ( |g|V"’>. (1.4.5)

If \/|g|V" contributes no boundary term, integration by parts implies the last integral vanishes, so

[, VY is a conserved charge. Indeed, i [, V? is simply the Klein-Gordon inner product if we choose
VHE = ¢7VFEPy — (VFO]) do (1.4.6)

so that
V. VH = ¢i0¢ — (O67) ¢ = (—M? + M?) ¢j¢2 = 0. (1.4.7)

So this choice of V' is conserved, and so is the Klein-Gordon inner product. In particular, the Klein—
Gordon norm (¢, ¢) is conserved for any solution ¢.

By inspection (¢, ¢*)xs = 0 and (¢*, ¢*)xg = — (¢, ¢)kg- This last equation is important, because
the solution set of the Klein-Gordon equation is closed under ¢ — ¢*, so (¢, ¢)x is indefinite.
Quantisation obtains quantised Klein—Gordon fields expressible in terms of functions solving Eq.
(1.3.10) called modes. One may (non-uniquely; see Sec. 1.4.2 for a fuller discussion) choose a basis
of the space of solutions such that the basis elements are closed under ¢ — ¢*, and each basis
element has non-zero Klein-Gordon norm. This allows us to draw a distinction between positive-
frequency and negative-frequency modes of Klein—-Gordon fields, which respectively have positive
and negative Klein-Gordon norms. One popular normalisation of positive-frequency modes ¢ is to

then set

(¢, Pk = 1. (1.4.8)

(I motivate this normalisation in Sec. 1.4.2 and Appendix A.) With such a convention, if ¢ is purely of
positive (negative) frequency then ¢* is purely of negative (positive) frequency. (We say a solution ¢
is of purely positive (negative) frequency if it is a linear combination of modes of positive (negative)

frequency only. A general solution is a superposition of both mode types.)
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1.4.2 Quantisation

Let ¢ (x) denote a canonical bosonic scalar field solving a linear equation of motion such as the Klein—-
Gordon equation. Let ¢ () denote a quantised canonical bosonic scalar field, and let 7 () denote the
conjugate momentum density of ¢ (). Then 7 (y) admits a quantisation 7 (y), which is the conjugate

momentum density of ¢ (). Quantum theories are replete with commutators
[X, Y} — XV - VX. (1.4.9)

One axiom of the quantum field theory of ¢ is the equal-time canonical commutation relations
(CCRs). These are expressible in terms of the Dirac delta function (a measure) on spatial sections,

Viz.

[fr (t, x), $(t, y)} — i5(x, y), (1.4.10)
{95 (t, x), o (t, y)} =0, (1.4.11)
[ (t, x), 7 (t, y)] = 0. (1.4.12)

Note that the CCRs are written in a specific coordinate system. However, Eq. (1.4.10) has implications
that can be stated in a coordinate-independent form. For example, {fr (), ¢ (y)} = 0 when z, y
are causally disconnected, as occurs in spacetimes for which is  — y is well-defined but spacelike
(equivalently, when a coordinate system exists in which 2z = y°). This motivates the axiom; the
fields commute in this case because of causality. (The other CCRs are even simpler; again spacelike
separations require vanishing commutators, but an operator must also commute with itself at the
same point in spacetime.) The CCR axioms can also be seen as generalisations of the Poisson brackets
of classical mechanics.

The reason quantised fields do not in general commute is that they are operators on the Hilbert space
other than multiples of the identity operator. To relate all this to classical field theory, we observe that
the Klein—-Gordon equation has operator-valued solutions. Indeed, given a basis of the vector space
of ordinary function-valued solutions, the general operator-valued solution is a linear combination
of said basis functions with spacetime-constant operator-valued coefficients. (The previous sentence
was deliberately devoid of algebra that would have specified notation for these spacetime-constant
operators. I present the details below, after some exposition, in Eq. (1.4.15).) It follows that the
commutators of such coefficients should be consistent with the axiom Eq. (1.4.10).

Let ¢ be a Hermitian quantised field associated with a particle species, and let |0) denote a zero-
particle ¢-sector vacuum state.'® The most general one-particle state for that species is then a linear
combination over labels o of the kets @/, |0), where a is the creation operator for a particle of state
labelled by o. (This is in fact a label of the ordinary function-valued solutions of the Klein-Gordon
equation.) Then

a, 10y =0, (0]al =o0. (1.4.13)

18Such a vacuum need not exist; if it does, it is not in general unique; and such vacua, if they exist, may violate symmetries of
interest. These are all common problems in quantum field theories in general spacetimes. I discuss such problems applicable
to this thesis in more detail later as appropriate.
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Another important equation is

4o, G,] = 0. (1.4.14)

I assume hereafter that the o labelling the states are discrete rather than continuous (this applies to
the example of the flat static torus that will be discussed later), but the continuous case is analogous;

sums over o are then promoted to integrals. Explicitly

Ot x) = (acto (t, X) + ales (t, %)), (1.4.15)

o
where the solution subspace spanned by the ¢, (the ¢?) is called a subspace of positive-frequency
solutions (subspace of negative-frequency solutions). The choice of these subspaces is not unique,
but we can fix one choice to define positive- and negative-frequency modes. If (¢5, ¢,/ ) c = 0,0’

and

(‘1‘90' = Z (ao_o/ QO’ + /8(70_/ ():_) 5 (1.4.16)

’
g

then (¢,, ¢,/ )k = 0, Provided the complex matrices o, 3 satisfy

(a*a® —p*B") =46, (1.4.17)

oo [exen

(The transformation to the ¢, subject to Eq. (1.4.17), partnered with the use of revised annihilation

operators

b i= > (o iy — Bl ). (1.4.18)
is called a Bogoliubov transformation. It satisfies

Ot x) = (ao0o (t, x) +ales (t, %) = (80% (t, x) + bl s (t, x)) : (1.4.19)

o a

and, if [a,, a,/] = 0 and [&0, &/1,} = 0,,/, then {f){,, IA)U/} = 0and {i)ﬂ, 52/} = 0,,/. A new vacuum

2% 70

state is also required, e.g. [, exp < & &TZ) 0) € N, kerby if o, s, B, o 6,,.) However, in
Minkowski space one convenient choice of the positive-frequency modes ¢, are proportional to the

familiar plane-wave functions expi (k - x — wxt) with
wi =V -k + M2, (1.4.20)

Then complex conjugation yields negative-frequency modes proportional to expi (k - x 4+ wt). (These
superpositions integrate over k-space.)

The ordinary functions ¢,, ¢}, span the space of solutions of Eq. (1.3.10) obtained with a fixed M.

With the aforementioned procedure, ¢, ¢ also span the space of quantised Klein-Gordon fields. In

the quantum theory we refer to these functions as modes of the quantised field ¢. All vacuum-state

p-point correlation functions of ¢ with p € N, viz. <O| I, b () |0>, can be computed from the

x-space representations of these modes. In particular, the zero mode problem I describe later is due

to specific ¢,s.
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The momentum density is readily quantised, viz.
#(ty) = V09IV (L, y). (1.4.21)

The trivial equal-time CCRs are then

d(t, x), d(t, y)} - [v%(t, x), Vo (¢, y)} —0. (1.4.22)

The Klein-Gordon orthonormality condition

500/ = <¢U7 ¢0/>KG’ 0= <¢‘7’ ¢:—’>KG (1423)

(note the use of the Kronecker delta) manifestly generalises the requirement that
<¢07 ¢U>KG = ]-7 <¢(*r7 ¢:>KG = _]-7 [dcra do'/] =0, (1424)
It can be shown that imposing the Klein—-Gordon orthonormality condition also implies the equival-
ence of two pairs of equations. The first pair comprises Eq. (1.4.14) and the equation®
(a0, a1, ] = 0,0 (1.4.25)

the second comprises Eq. (1.4.22) and the equation

id (x, y)

Vg (&, )]

Egs. (1.4.25) and (1.4.26) are both crucial to theory. Eq. (1.4.25) is integral to the quantum description

[43 (t, x), V6 (¢, y)} - (1.4.26)

of particle numbers; for example, it can be used to show that p!~1/2 (a];)p |0) is a p-particle state.
Appendix A presents a proof that Eq. (1.4.23) implies that Eqgs. (1.4.14) and (1.4.25) are equivalent to
Egs. (1.4.22) and (1.4.26). I will hereafter impose the orthonormality condition in Eq. (1.4.23).

In the next section, the zero mode problem in minimally coupled scalar theory is explained in the

context of a flat static torus.

9For continuous labels o, all sums over o become integrals, and the right-hand side of Eq. (1.4.25) becomes a o-space Dirac
delta, § (o, J/),
The right-hand side of Eq. (1.4.25) may be rescaled as a matter of convention. This is achieved by rescaling the G, operators.
However, in this thesis I will always use the scaling in Eq. (1.4.25).
In one important example in Minkowski space, the labels are wavevectors of a particle, i.e. a one-particle state of wavevector
kis &L |0). It is then customary to take [&k, &L] = (2m)"12E(k)§ (k, kl>, where £ = E (k) is the dispersion relation
between k and the particle’s energy E. The (27)" ! 2E (k) factor is included to obtain a Lorentz-invariant measure (see

Sec. 3-1-2 of Ref. [3]). In this convention, the operator [ d”~1k should be replaced with | #};‘E(k).
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1.5 An infrared problem in scalar field theory on a flat static torus

In Sec. 1.5.1, I derive a Klein-Gordon normalisation of massive solutions of Eq. (1.3.10) on a flat
static torus. In Sec. 1.5.2, I contrast the behaviour of this normalisation, for spatially uniform
solutions, in the massless and massive cases. In Sec. 1.5.3, I introduce the propagator of a Hermitian
quantised Klein—-Gordon field, and discuss its behaviour in the massless limit. It is this behaviour
that constitutes the zero mode problem. Note that this section’s discussion is limited to the case of the
flat static torus, but in Sec. 1.6 I discuss the zero mode problem in an arbitrary spacetime of interest

(viz. The summary concluding Sec. 1.2.2).

1.5.1 Klein—-Gordon normalisation

Minkowski space may be considered in Cartesian coordinates satisfying
N=1,N'=0, v, = 6. (1.5.1)

For a flat static torus, we also periodically identify each of the coordinates z?, say with z* having
period L' > 0. (We are concerned with spacetimes for which fx g% is finite, so flat static tori are

)("=D*(=1 genote the diagonal matrix

relevant whereas Minkowski space is not. ) Let L € (0, oo
diag (Li). A spacetime event that can be described with the coordinates ¢t = ¢y, x = x¢ may also be
described with the coordinates t = ¢, x = x¢ + Ln for any n € Z" 1.

Note that the spacetime satisfies 0, gs, = 0. It is flat because of the case « = i; it is static because of
the case o = 0.

Minimally coupled classical Klein—-Gordon fields on this flat static torus satisfy
(08 — V> + M?) ¢ =0. (1.5.2)

The M # 0 plane-wave positive-frequency Klein-Gordon modes

vk = expi(k - x — wyt) (1.5.3)
satisfy Eq. (1.4.20) and
ox = —iwkpx, (1.5.4)
0o = +Hwpk, (1.5.5)
(Pxs Pa)xg = i/ Prpq (—2iwk) = 2wk / expi(q — k) - x. (1.5.6)

The wavevector is discretised for the flat static torus, viz.

k=2rL"'n, nezZ" ! (1.5.7)
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Working in the coordinates chosen in Eq. (1.5.1),

(P2rL-1nys <P27rL—1n2>KG = 2WarL—1n, /dn_lX exp 2miL ™! (ng —my)-x

= 2w27rL*1n1Ln_16n1n2a (1.5.8)

1

where I have introduced the geometric mean L := (H?;ll Li) " of the L so that

n—1
L' =[] L' =det L. (1.5.9)
=1

(It is common to use the symbol for a matrix to also denote its determinant, e.g. ¢ = detg,, is a
determinant of the tensor g,,,, interpreted as a matrix. The determinant of the matrix L is not a spatial
length but a product of n — 1 spatial lengths, so it is more sensible to denote the determinant as L"~1.)

From Eq. (1.5.8), the Klein—-Gordon normalisation for positive-frequency modes is

¢ L PorL—1n eXpi (27TL_1n~X—w27TL,1nt)
n =

V 2WQTrL*lnLn_1 B V 2"*)27rL*1nLn_1

(1.5.10)

1.5.2 The massless limit of spatially uniform solutions

The case n = 0 is spatially uniform; and, by Eq, (1.4.20), for M = 0 it is time-independent since it
satisfies w = 0 (i.e. this case has zero energy, which in the Schrodinger operator formalism w = 9,
is equivalent to time-independence). This zero-energy mode is called a zero mode, and this term is
typically used in general for zero-energy states of time-independent wavefunction.

In this subsection, I show that the massless limit of n = 0 creates a zero mode problem for scalar
field theory in the flat static torus. This is a special case of an infrared problem that occurs in scalar
field theory in curved spacetimes. It is convenient for the purposes of this thesis to define the zero
mode of a scalar field in a non-standard way. In my terminology, zero modes of scalar fields are
spatially uniform modes, so the variations 67" € [, ker V; considered in Sec. 1.3 are zero-mode-sector
variations. (A number of further details will need to be clarified in due course to define the zero mode
of arbitrary scalar-valued functions, vector fields and conjugate momentum densities thereof.) Zero

modes simplify the Klein-Gordon equation to an ordinary differential equation in time, viz.
OB = —M?¢. (1.5.11)

For M # 0 there is one positive-frequency zero mode, viz.

_exp (—iMt)
o = Novir=3 (1.5.12)

The conjugate ¢§ is a negative-frequency zero mode, so there are two zero modes overall. Notice
that both zero modes diverge in the M — 0" right-hand limit, which I will call the IR limit for
brevity. Indeed, when M = 0 the Klein—-Gordon equation’s solutions take a different form, because
the eigenvalues of 9, for which 93 + M? vanishes are no longer distinct. The most general massless
solution is in fact ¢ = A+ Bt for spacetime-constant coefficients A, B. It follows that, for small M > 0,

the approximate behaviour of ¢g is of the form A (M) + B (M)t for some functions A (M), B (M).
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An explicit calculation obtains the M-dependences of A, B, viz.

1 —iMt _ exp(—iMt)

A+ Bt = ~ , 1.5.13
V2MLr—t o V2MLt ( )
1 1
A= x , 1.5.14
V2MLt VM (1519
B=—iMA x VM. (1.5.15)
1.5.3 The Feynman propagator

The Feynman propagator of a Hermitian quantised Klein-Gordon field ¢ is defined as

T<0|q§(x)q3(x’) |o>, (1.5.16)

where T denotes time ordering.? Since <0\(;§ (z) d <17/> |O> is a function of z, #, and hence in partic-
ular of the time coordinates ¢ := 20, ¢ := z'°, its time ordering is defined as thus: the & with the least

time coordinate is placed rightmost in the product. More generally, for any function of the form?!
K (t, t’) - <0\2(t) A <t> |0> AT = A, (15.17)
we have the time ordering

TK <t, t/> =K (max {t, t/} , min {t, t/}> ; (1.5.18)

which is symmetric by definition. An equivalent expression for this time ordering may be provided

in terms of the Heaviside step function. We have

TK <t7 t/> =K <1nax {t, t/} , min {t7 t/}>

K(t,t') t>t
=9 Kt t) t=t
K(t’,t) t<t
0 t>t K(t, t’) t>t
=S LKt t) t=t +{ LK(tt) t=t , (1.5.19)
K(ff) t<t 0 t<t

so in terms of the Heaviside step function

2The interest in <0\¢3(z) é (x/) \0> is as a covariance of ¢ at two spacetime events. Eqs. (1.4.15) and (1.4.25) imply

<0\¢3(z) |O> = 0, ie. ¢(z) has zero vacuum expectation value (VEV). The quantised Higgs field has nonzero VEV

because it does not admit a decomposition analogous to Eq. (1.4.15). This is because the classical Higgs field solves
a non-linear equation of motion. Indeed, an analogous treatment of a minimally coupled scalar Higgs field p takes
Lo = Vup*VFp — V (p), with Mexican-hat potential V (p) := M?p*p + % (p*p)%. Here M2 < 0and A > 0. Varying
p* gives Op = — (M2 + Xp*p) p. The VEV is a spacetime-constant global minimum of V (p), so Op = 0. Since V (0) = 0

but V' 7MT2 = 721\;{ ! < 0, the solution p*p = — MTz is the VEV. A brief discussion of this is provided in Sec. 12-6 of
Ref. [22].

2lIn this grey text environment, dependences on variables other than time coordinates is possible but not displayed.
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1.5. AN INFRARED PROBLEM IN SCALAR FIELD THEORY ON A FLAT
STATIC TORUS

we have

TK (t, t/> =K (max {t., t/} , min {t, t/}>

K(t,t/) t>t
=< K(tt) t=t

K(t/.t) t<t
(t, t)

: {K L) |

L ( +9 LK (tt) t=t
K(t1) ' 0 i<t

=K (6 )0 (e=¢)+ K (F.e)o (¢ 1)

=K (6 )0 (e=¢)+ K (¢.e) (1-0(t-1)).

=
[N

1.
7L
t

/\H\/

t
7L
t

In this thesis, important examples of Eq. (1.5.17) that are also expressible in the form

K (t, t/> = K, (t) — K (t)

for some K| satisfying Ky (7) > 0 for all 7 thereby additionally satisfy

TK (z‘ t’) = ‘Ko (t) — Ko (f)‘

But ¢ has a mode decomposition, viz. Eq. (1.4.15). Thus

JIEDILACHLA
(0166 (+')10) = 3w (0) 63, (&) (ol o)

=2 ¢ @)} (') 6,0 = 3 0 (@) 05 ().

o

In terms of the decompositions

x = (t, x), T = (tl, x/>,

all contributions to ) _ ¢, () ¢} (ml> due to n # 0 solutions are of the form

expi (27rL*1n . (x — x/) — WorL-1n (t — t/)>

2‘*‘)27rL—1nLn_1

27
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. . . . . . / . .o
These terms are invariant under spacetime translations and, in particular, the case x = x simplifies

for n # 0 to the spatially uniform, time-translation invariant result

exXpiWorr—1n (t/ — t)

—r (1.5.28)

Note that these results are true for arbitrary M, including M = 0, and apply also in the n = 0 case
provided that M # 0. However, the n = 0 case with a small mass instead has an approximate
contribution

(A(M)+ B(M)t) (A* (M) + B* (M) t’) = (A+ Bt) (A - Bt’) : (1.5.29)

using the fact that Egs. (1.5.14) and (1.5.15) imply A € R, B € iR.

These equations have a few further implications, resulting in an infrared problem for the theory. The
spacetime-constant term AA* is IR-divergent; the BB*#t  term vanishes in the IR limit (which is for-
tunate given the effect it would otherwise have on spacetime symmetries); and the A/-independent
contribution is AB (t - t/), which is time-translation invariant. The IR limit of the massive Feyn-
man propagator is therefore the sum of an IR-convergent time-translation invariant term and an
IR-divergent spacetime-constant term. Indeed, if the term A? were instead infrared-convergent
and the tt' term vanished to preserve time-translation invariance, we would have B = 0 and the
Klein-Gordon norm’s massless limit would be 0. There is thus a conflict between time-translation

invariance, infrared convergence and Klein—-Gordon normalisation.

1.6 Generalisation to spacetimes with compact spatial sections

1.6.1 Low-mass behaviour of scalar “zero modes”

Working in the synchronous gauge for the background spacetime (viz. Eq. (1.2.2)), spatially uniform

massless solutions of the Klein-Gordon equation satisfy

oy (a”71 () /1 ()¢ (t)) —0. (1.6.1)

(Note that I have assumed Eq. (1.2.5), not the less general Eq. (1.2.3). One of my contributions to our
research was the realisation that this allowed all the results that follow to apply to a more general
class of spacetimes.) This simplifies to

bocal™m (1.6.2)

Defining
£(t) = / a'=" (1) dr, (1.6.3)
0

the general massless zero mode is of the form
¢p=A+Bf (1.6.4)

for spacetime-constant coefficients A, B. (The approximate low-mass behaviour of a massive zero

mode may behave differently; see, e.g. Eq. (1.8.3) for additional terms in the de Sitter case.) Two
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other important results are

Vgl = vA = a" "', (1.6.5)

V=a""! /d"—lxm = fdn_flx\/ﬁ. (1.6.6)
It is sufficient to choose a coordinate system for which the coordinate volume V. := [d" 'x,/7 is
finite. One further important observation is that, since f =qa™™ >0, fisan example of a function
K of the form described in Eq. (1.5.22).

As in the case of the flat static torus, the IR limit of a massive solution satisfying (¢, ¢); = lisa
massless solution satisfying (¢, ¢)xc = 1. Thus A, B each have some appropriate //-dependence,

and the normalisation condition is

1=i/x (66— d"0)

i/ ((A*+ B*f)Ba'™" — B*a'™" (A + Bf))

—i(A*B - AB")V,, (1.6.7)

A*B — AB* = (1.6.8)

!
Ve

It suffices to impose A > 0, B = QA;\i/c' This constrains, but does not determine, the //-dependences
of A, B. Curiously, the M-dependence is a-sensitive in a manner Dr Higuchi and I still do not know
for general a. In particular, a = 1 (the flat static torus) gives B o« v/M, while a = cosh Ht (de Sitter
space) gives B oc M. This is one of the results I discuss in Sec. 1.8. In the IR limit, A diverges while

B vanishes.

1.6.2 Analysis of Feynman propagator terms by spacetime symmetries and

infrared behaviour

The general case modifies the M-dependence of A, B, and replaces the zero mode A+ Bt with A+ B f.
However, much of what can be said about the Feynman propagator in the case of the flat static torus
remains true because AB is M-independent and A € R, B € iR. The zero mode problem is entirely

due to

(A+ Bf (¥) (A* +Bf (t)) = (A+ Bf (1) (A —Bf (t)) . (1.6.9)

As in Sec. 1.5.3, there is a spacetime-constant IR-divergent term, a term that vanishes in the IR
limit, and an M-independent term that is proportional to f (t) — f (t/> and hence invariant under
f-translation. The IR limit of the Feynman propagator therefore consists of a spacetime-constant

IR-divergent term and an IR-convergent term that preserves a desirable spacetime symmetry.

1.7 Two prescriptions addressing the zero mode problem

Sec. 1.7.1 provides a brief summary of how the FMP addresses the zero mode problem discussed in
Secs. 1.5 and 1.6. Sec. 1.7.2 discusses the CMP for the same purpose. However, discussion of the

CMP is necessarily much more detailed.
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1.7.1 The fictional mass prescription (FMP)

The only IR-divergent term in the massive Feynman propagator is a spacetime-constant contribution
in the zero-mode sector, so its subtraction from the Feynman propagator does not modify which
spacetime transformations preserve the result. The FMP subtracts the IR-divergent term and then

takes the IR limit to obtain an effective zero-mode sector Feynman propagator, which is

fan (101 ()} - {01 (0)} - 5

The theory has several spacetimes symmetries and a global internal symmetry, an invariance under

F)—f (t)‘ . (1.7.1)

¢ — ¢%¢ for spacetime-constant 6 € R. The other zero mode problems I discuss in this thesis occur
in theories with local internal symmetries. The FMP’s treatment of such theories adds a mass term

that violates these symmetries. However, no such terms are introduced in the CMP.

1.7.2 The cyclic mode prescription (CMP)

The contents of this subsection are original.

In the Schrodinger picture of quantum field theory, the state has a formal wave functional ¥ (7, - -)

satisfying
o

M0 = —i—
T 15T’

(1.7.2)

where -2 denotes a functional derivative. Suppose T is a spatially uniform scalar mode in a scalar
Lagrangian density Lo, no derivatives of T higher than 7' appear in £, and the undifferentiated T

also does not appear therein. Then Il is a conserved charge, and one may impose Il = 0.

This fact takes some explaining. Consider first a 1-particle quantum-mechanical system of con-
served linear kinetic momentum p € R"~!. In a state with p = py, the x-space wave function’s
x-dependence is realised as an exp (ipo - x) factor (provided we set i = 1). Of interest are inner
products on the theory’s wave functions; in particular, norms have a probabilistic interpretation. But
all unitary transformations of the wave functions preserve these inner products, and this includes
multiplication by exp (—ip; - x) for any constant with units of wavenumber (or equivalently, since we
set i = 1, units of linear kinetic momentum). The x-dependence of our wave function is now realised
as an exp (i(po — p1) - x) factor. The effect of this unitary transformation is a p-space translation of
the conserved linear kinetic momentum, from py to pp — p1. Indeed, in terms of an interpretation
in terms of classical physics, this is simply a frame shift. The choice of p; is arbitrary. We can
therefore choose p; = po, which sets the vector-valued conserved linear kinetic momentum to
0 € R"~!. Again, an interpretation in terms of classical physics is readily available; the frame shift
used here is to the zero momentum frame or centre of mass frame. The outcome is an x-independent
wavefunction.

This result can be extensively generalised. The original exp (ipg - x) factor exists because of the
operator identification p = —iV (i.e. p = —i%), where again the choice of units is such that & = 1.
Thus the multiples of exp (ip - x) are simply the mutual eigenfunctions of the p; with respective

eigenvalues (py),. The crux of this is that the Schrodinger picture’s operator formalism implies a
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canonical commutator [p;, Z;] = —id;;, in analogy with Eq. (1.4.10). We say p;, &, are conjugate
variables. And given any conserved quantity which has a conjugate variable, the method described
in the previous paragraph obtains a wavefunction that is independent of this second conjugate
variable, because the first conserved variable now vanishes.

The inner product of two quantum-mechanical wavefunctions ¢, ¢ is an ordinary integral, whose
integrand is an ordinary function ¢*1. The Schrodinger wave functional formalism promotes ¢, ¢
to Schrodinger wave functionals ®, ¥ (say), and also promotes the inner product to a functional

integral of ®*W. A quantum-mechanical § conjugate to some p satisfies

p¥ o %\I}, (1.7.3)
a functional derivative. If p depends on neither space (e.g. due to being a definite integral over space)
nor time (i.e. p is conserved), one can set p = 0, in analogy with the classical case. This includes the
17 discussed herein for which T is cyclic. Setting such a p to zero implies V¥ is g-dependent, so ¢, p
are obviated from the Schrodinger wave functional formalism.
Note that the existence of a variable conjugate to conserved charges is crucial to these inferences. We
cannot, for example, use this line of reasoning to show that Klein—-Gordon inner products may be set

to 0.

In the above grey note, I explained the circumstances in which conditions of the form IIr = 0 may
be imposed. Indeed, the CMP simultaneously imposes all such conditions, one for each such 7.2 If
one does this, several consequences result:

e V¥ is T-independent,

e Lyis T—independent, and

e Hamilton’s equations are applicable to an expression for H, that contains neither 7" nor its

derivatives.

The Lagrangian, Hamiltonian and Schrodinger wave functional formalisms therefore lose all explicit
dependence on 7" and its derivatives. Thus 7' is dynamically irrelevant and has been obviated
from all three formalisms, resulting in a theory whose fields and propagators no longer contain any
contributions from 7.
This is how the CMP resolves all zero mode problems discussed in this thesis. The crux of the CMP’s
usage is to argue that, when conserved charges are set to zero on all physical states, the effective
Hamiltonian is obtainable as a Legendre transform of the effective Lagrangian. The difficult step
is always verifying that zero modes are “cyclic”, in the aforementioned sense that the Lagrangian
does not explicitly depend on it undifferentiated. The Klein-Gordon example is instructive. For an

arbitrary scalar field x define

221t might be objected that the canonical (anti)commutation relation between a field ¢ and its conjugate momentum density
m for physical states of non-zero norm is inconsistent with their having #—eigenvalue 0. However, there is in fact no
such inconsistency. The usual relation between ¢ and 7 holds for a specific pseudo-inner product on the Hilbert space.
Deleting the [ dé(gy integration operator from the pseudo-inner product’s definition obtains a new pseudo-inner product
with respect to which these physical states might have nonzero norm. (This [ d¢) deletion is legitimate because ¥ is
¢(0y-independent for the subspace of physical states considered in the CMP) This detail is discussed in more detail in Sec.
3.9 and Appendix B.

The canonical (anti)commutation relations are an attempt to quantise the Poisson brackets in classical field theory. Theories
I consider in later chapters introduce a further complication requiring Dirac brackets. I mention this again in Sec. 3.9, and
address it in Appendix C.
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00
x0 @)= [ LX x @)= x = xo O, (174

Thus x o) is a spatially uniform contribution to x, and all spatially uniform x are fixed points of the

map Xx(o)- Thus

(X(O))(o) = X(0)> (X(+))(O) = (X - X(O))(O) = X(0) — (X(O))(O) =0. (1.7.5)

An alternative notation for x o) is

00 n—1
X(o) (t) = /d”fle () x (), T := \/@g ¢ N&/ﬁ' (1.7.6)

Note that [ d"~'xY = 1. For any choice of N which is a product of a function of space and a function

of time, sois T, and

in T
/ A" X Ty (4 = T (X(+)) o) =0 (1.7.7)
o (X(O)) - (5()(0) = /dn_1XTX = /dn_lx'fx(o)
= X(O)ao /dn_1XT =0. (178)

Thus for spacetimes of interest one can consider gauge choices for which x g is unambiguous.
For M = 0 the zero mode ¢ is cyclic. A massless Klein-Gordon field of manifestly real scalar
Lagrangian density

Lo = g""V,.0"V, 0 (1.7.9)

provides the conserved charge I1,-, which for N* = 0 is given by
My = / 9% = Vo), (1.7.10)

so that q'b(o) oc V1. This corollary of the definition of X(0) in Eq. (1.7.4) is consistent with the spatially
uniform Klein-Gordon modes found in Eq. (1.6.4), provided N = 0 so

V=a""! /d"_lxg xa = fL (1.7.11)

Thus x (o) can be taken as the definition of the zero mode of x, so that x ) contains any “other”
modes of .

To obviate zero modes from the Hamiltonian, we first need to write
Ho = ¢y + " wy- — V6" VHo 1.7.12)

in terms of wy = V¢*, wy- = VY, V¢ and V,¢* to use Hamilton’s equations. We thus need to

express Vo, V' in terms of V°, V. Since ds? = g, dzdz?, Eq. (1.2.1) gives g, as

goo = N? —v;; N'N7 | go; = —i; N7, gij = —vij. (1.7.13)
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It is well-known [4] that g,,, has an inverse g" given by
g0 =N"2 g% = NN ¢ = N"2N'NJ — ~i (1.7.14)

where ~/ be the inverse of ~;; as a matrix, i.e. Y+, = §i. However this result was first realised, it

is obvious once stated because Eqs. (1.7.13) and (1.7.14) together imply g,,,9” = 6;,. Hence

Vo=N?(N"?Vo—N3N'V,) + NV,
= N?V? + N'v,, (1.7.15)
Vi=—-N"2N'Vo+ (N2N'N7 —47) v,

=N'(N2N/V; — N"2Vg) =47V,

— _Niyo — ’Yijvj, (1.7.16)
¢ = N?wy. + NiV,¢, (1.7.17)
Vip = —Niwg + 79V ;6. (1.7.18)

Egs. (1.7.15)-(1.7.18) imply

Ho = dug + §"wge = 3 (L5 + Lo)
= by — S VopV'P ~ LVioVie"
F g — SV0d VO~ Vi Vi
= % (N?wye + N'V,) wy + %vm (N'wy +~7V;¢%)
+ % (N?wy + N'V;¢*) wy- + %Vm* (N'wy- +77V,;0)
= N?wyemy + N' (Vigwg + Vid wg+) + 77 VgV, 6" (1.7.19)
Since V;¢y = 0, ¢ and its derivatives have been obviated, as have gbz‘o) and its derivatives.

Momentum densities can be split into “zero” and “other” modes too, viz. Sec. 3.2. When the CMP

sets conserved momenta to 0, it reduces wy, @y to @y, Do, The end result is of the form

Ho = Ho (¢(+), Vid), Topys @1y Vid(yy w¢(*+)) : (1.7.20)

Thus zero modes have been obviated, including from the momentum sector.
This strategy removes ¢ gy from Hy. In Sec. 3.1, [ will discuss removal of zero modes from Hamiltoni-
ans and Lagrangians, and show that the two are equivalent. Indeed, we can switch to the Lagrangian
formalism now, which in this case gives a shorter treatment. Setting II4- = 0 in the CMP gives
qz'ﬁ(o) = 0,50 V,¢() = 0and

Lo =V, Vid(y). (1.7.21)

Thus ¢ ) is obviated in this formalism.
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1.8 Comments on the flat static torus and de Sitter space

Throughout this section I consider minimally coupled solutions of the Klein—-Gordon equation. Both

the flat static torus and de Sitter space can be considered in Cartesian coordinates satisfying
N=1,N'=0, y;; =a? (t) &, f = a' ™™ (1.8.1)

The Klein—-Gordon equation for zero modes then simplifies to

o <¢> _ Mg (1.8.2)

Thus A + Bf is a solution if and only if M = 0. In particular, massless solutions are of this form and

massive ones are not. However, the flat static torus obtains f = ¢, and approximation of a massive

1—-iMt

Zanr— is Klein-Gordon

mode at sufficiently low order in M is of the form A + Bf. In particular,
normalised.

In Sec. 1.8.1 I show how to compute f () for de Sitter space. I write f = I,,_;, where the functions
I, are defined in Eq. (1.8.8); I obtain Iy, I5, and an expression for ;5 in terms of I. In Sec. 1.8.2
I discuss Ref. [1]’s computation of the Klein-Gordon normalised de Sitter-invariant massive zero
modes in de Sitter space at order M. Ref. [1] discusses this in its Sec. Il and Appendices A and F. The
paper’s Sec. Il normalises massive spatially uniform Klein—-Gordon fields in de Sitter space, although
some details of this are postponed to the paper’s Appendix A. The most important finding is that, in

the de Sitter—invariant case, such modes are of the form

\/;To {;4 — M [fo (t) + by +ibo f (t)]} +o(M) (1.8.3)

where

fo = /Ot [f' (t) /Ot f.d(:)] ar, (1.8.4)

(n+1)/2

bO = W, (185)
—1)— ny _ 1

A ) 1”(2_) AORAC) (1.86)

2(n— 1) H?

/

(with ¢ (2) := FF ((;)) the digamma function, viz. Chapter 6 of Ref. [23]). This approximation is not of

the form A (M) + B (M) f, because the O (M) contribution is not proportional to f. I make further
comments on this in Sec. 1.8.3.

Ref. [1] also discusses the case of the flat static torus in more detail in its Appendix E. I will discuss
this material herein in Sec. 3.8. In particular, Ref. [1]'s Eq. (F8) will warrant a more detailed proof
than in Ref. [1]. This proof must distinguish the cases n = 2, n = 3 and n > 4, but only the n > 4

case is considered in Ref. [1].
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1.8.1 Massless zero modes in de Sitter space

For any n, an analytic expression exists for f (¢) in the case of de Sitter space. For the purposes of this

calculation I nondimensionalise time by setting H = 1, viz.

t
a = cosht, f(t) = / sech” ' udu. (1.8.7)
0

(I will preserve this nondimensionalisation throughout Sec. 1.8. As a result, a ratio 27 in a discus-

sion of massive solutions of the Klein-Gordon equation is simplified to M. This has the effect of

nondimensionalising mass too.) Thus f (t) = I,,_1 (), where
t
I (t) :== / sech” udu. (1.8.8)
0

The method for computing the I, is standard. By inspection Iy = t and I, = tanht, and [; is the

famous Gudermannian function [24], viz.

t t e’
2e" 2dy ot T
I =gd (1) ::/0 sech udu :/0 1_|_Wdu :/1 1542 = [2arctany]] = 2arctane’ — 5 (1.8.9)

For greater values of k a recursion is needed. Write

k dh
Ipyo = /0 g (u) @du (1.8.10)

where g (u) := sech®t, h (u) := tanh t. Integrating by parts, and using tanh? ¢ = 1 — sech? t, gives

t
Ijyo (t) = sech” t tanh ¢ + / k sech® ¢ (1 - SECth) dt
0

= sech® ttanh ¢ + kIj, (t) — ks (), (1.8.11)

kI, (t) + sech” t tanh ¢
Tnio (t) = —=F ®) P . (1.8.12)

(Note that this recursion would break down if we attempted to use it to obtain /; from I_; = sinht.)

For example, for n = 4 de Sitter spacetime

I (t) +sechttanht  gd(t) +sechttanht
2 B 2 '

fO)=5@) = (1.8.13)

1.8.2 Massive zero modes

Eq. (1.8.2) is a second-order ordinary differential equation, so its solution space is 2-dimensional. For

i € {0, 1} and fixed M define the functions

aéi,M) (t) == f, (1.8.14)
a6 () oo /t f(t') /t/ o (dr]| (1.8.15)
s 0 0 f(T) 7 -
a0 (1) = 3 (—ar2) M (1), (18.16)
k=0
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Then 9 (f~taf*") = 0,50

- (i, M) o (i, M) t) M2aqE M)
o ) N ) , 1.8.17
°( 7o) =2 M) TG 7 (18.17)

i.e. al»M) solves Eq. (1.8.2). Thus a™) := a(%M) (M) .= (1. M) form a basis of the solution space,
with

lim a™) =1, lim b = . (1.8.18)
M2—0 M2—0

In practice, however, there is a problem with attempting to associate a massless solution A+ B f with
the mass—M solution Aa™) + Bb). Doing so would be inconsistent with the implications of com-
monly required spacetime symmetries for the M -dependence if A, B are assumed M-independent.
For example, we previously saw that, for the flat static torus, we require B = —iM A if we seek
time translation invariance, and normalisation requires AB* # 0. More generally, a Klein-Gordon

normalised solution Aa™) + Bb(M) gatisfies

| = WeIm(ABY) angron qongryon - (1.8.19)

7 " 2V.Im (AB*)’

If A, iB > 0 as in the massless case in Sec. (1.6), AB* = —AB € iR and Im (AB*) = iAB > 0. For
example, the solution in Eqgs. (1.8.4)—(1.8.6) satisfies

-1 _
A%u,Bz—iMﬂb—o. (1.8.20)
v2bg 2

The o (M) term in Eq. (1.8.3) explains why these results are only approximate. Due to higher-order
terms, A, B are infinite power series in M (with A = O (Mfl) ,B=0(M))and iAB = %, SO
A Hrp) — .

It remains to be verified that the conditions in Eq. (1.8.20) are applicable up to a phase to the de
Sitter-invariant solution. Note that these conditions are equivalent to Eqs. (1.8.4)—(1.8.6). It is for this
that we turn to some technical details previously published in Appendix A of Ref. [1]. I will assume

the reader’s familiarity with the hypergeometric function

- (@) (B)y 2"

F («, B 7; 2) := —r ek 1.8.21
2F ( v)kziomkk! (1.8.21)
where (o), = F(F‘?:)k ) is the Pochhammer symbol. (A good discussion of this function is given in

Chapter 15 of Ref. [23].) The mass-M zero modes are spanned by the functions [1, 25]

N (cosht)” ) n 1—isinht
fe(t) = Wﬂ:l bet, be—; £+ 55 ) (1.8.22)
with ¢ a non-negative integer and
-1\? ~1 T (b ) T (be—

A= \/("2 ) — M2, byy ::e+”2 + A, N = % (1.8.23)
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The de Sitter-invariant Bunch-Davies vacuum state is obtained from ¢ = 0. Note that
boy +bp- =204+n—1,byyby. =Ll +n—1)+ M? (1.8.24)
so for small M we have the approximations

M2 M?2 T
bor ~n—1— Lboo ~ , No ~ ﬂM—l. (1.8.25)
n—1 n—1 2

Formula 9.136.1 in Ref. [26] is the identity

. 1 1-yz\  T(a+B+3)Vm 1
2F1<2a,2ﬁ70[+5+27 9 >_F<a+é)r(26+é)2Fl<a7ﬁ723’Z>

I'(a+8+3)2ym 1 13
- F(O{)F?ﬂ) 2F1(Oé+2,5+272,2).
(1.8.26)
For small ¢,
F(Fz(i)e) —exp{InT (z) —InT (2 + €)} m TV, (1.8.27)
Taking a = %+, 8 = %= \/z = isinht in Eq. (1.8.26) gives
at+B+s = % (1.8.28)
F(a+B+35)VrT L(5) VT
Tt DTG+D) T (3- )T (3+ 22)
_I(3) I (3)
r (% o 2(2{21)) r (% + 2(71\1{21)>
M? n 1
S DYy [d) (5) —v (2)]}
L v (3) —v ()]
~14+ 22 — 12) , (1.8.29)
I'(a+ 8+ 3)2y7 T (%2)2ym
P@UE) (e ()
D(H)2vE T (3) /A’ )
~ = 8.30
T ngl) 2(]7\L/[—1) o (%) ) ( )
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and

o ) _ g (1V] 222
2 F1 <b0+, bo—; g, 11251nht> ~ <1+ [d}(% ¥ (3)] )

I (2) yaM? n M2 3 )
2V R 14+ ————: 2, —sinh?¢
2 1<2a +2(n_1)727 S )

T2
_ L(2)ym n o3
~1— M? {m o Fy (2, 1; X —51nh2t)
vE) (@) o (nml 1
— 22(n_1)2 2F1( 5 ,0; 2,—s1nh2t>
n) _ (L
~1— M2 { 2 (1) — W —ibof (t)} : (1.8.31)

The right-hand side of Eq. (1.8.31) reduces fy (¢) to Eq. (1.8.3) (since Ny ~ @M“).

1.8.3 Discussion of de Sitter-invariant Klein—-Gordon normalised massive zero

modes in de Sitter space

In the low-mass limit M *! terms appear. This differs from the M*!/2 factors obtained for the flat
static torus.

When Klein-Gordon normalised massive zero modes are written as power series in M, they have
infinitely many terms. With time translation-invariant zero modes on the flat static torus, the f term
is the only term € O (\/M ) In de Sitter space, the f and f> terms are both € O (M) in a de Sitter-
invariant zero mode.

However, the only relevant terms are those which are leading order in Re f or Im f. For Re f,
only the O (M~') term is relevant; for Im f, only the O (M) term is relevant. Since f, € O (M)
is real-valued, it is irrelevant to the comparison of Klein-Gordon normalised massless solutions of
the Klein-Gordon equation with Klein-Gordon normalised massive solutions of the Klein-Gordon

equation.
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Chapter 2 A review of literature on
two theories and their zero

mode problems

This chapter has three main purposes. The first purpose is to present the background required to
understand the zero mode problems I address in Part II and associated appendices. The second
purpose is to explain these zero mode problems. The third purpose is to review the literature relevant
to the aforementioned zero mode problems. Our research forms a small part of that literature review,
and will not be discussed until the later stages of this chapter. I will also discuss flaws I have
identified in some of the discussion of perturbative gravity’s internal symmetries.

In Sec. 2.1, I explain the construction of Yang-Mills theory as a generalisation of classical electro-
magnetism. Yang-Mills theory provides a description of all known non-gravitational fundamental
interactions. In Sec. 2.2, I discuss and motivate a modification of Yang—Mills theory, due to Faddeev
and Popov [27, 28], that is required in the path integral formalism. Following Ref. [27], I call this the
Faddeev-Popov method; the result is called BRST quantisation, since it motivates the BRST and anti-
BRST transformations discussed in Sec. 2.3. The gauge invariance of Yang-Mills theory is broken
when the theory is BRST-quantised. In Sec. 2.3, I discuss two symmetries of BRST-quantised Yang—
Mills theory. The BRST quantisation of Yang-Mills theory introduces three new scalar fields. In
Sec. 2.4, I describe a zero mode problem concerning these new fields. This zero mode problem is
analogous to the one discussed in Chapter 1.

A number of researchers have considered the zero mode problem in BRST-quantised Yang-Mills
theory. In Sec. 2.5, I review the history of such research. The FMP is one prescription for addressing
this zero mode problem. However, the FMP is not manifestly consistent with the preservation of the
symmetries described in Sec. 2.3. I discuss this difficulty in more detail in Sec. 2.5.2 to motivate the
use of the CMP. This treatment will require the entirety of Chapter 3 to be properly developed.
Perturbative gravity has a number of important similarities with Yang-Mills theory. Both theories
can be BRST-quantised; in both cases, BRST quantisation presents certain symmetries and a zero
mode problem; and the benefits of the CMP compared with the FMP are similar in the two theories.
In Sec. 2.6, I discuss the case of perturbative gravity as concisely as possible, making use of its
various similarities with the case of Yang-Mills theory. My discussion of perturbative gravity will
include a criticism of an occasional mistake by researchers regarding perturbative gravity’s internal

symmetries. My treatment of the zero mode problem in BRST-quantised perturbative gravity with

39
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the CMP is provided in Chapter 4.

2.1 From electromagnetism to Yang—Mills theory

In Sec. 2.1.1, I introduce the manifestly Lorentz-covariant formalism of classical electromagnetism.
In Sec. 2.1.2, I discuss classical electromagnetism’s conservation laws. In Sec. 2.1.3, I discuss
a generalisation of classical electromagnetism called Yang—Mills theory, which was developed in
Ref. [29]. Any use of Yang-Mills theory as a physical model requires the specification of a Lie group
called the gauge group of the model. For example, electromagnetism is the special case of Yang—
Mills theory obtained when the gauge group chosen is denoted U (1). I discuss the relevant theory
and notation in more detail in Sec. 2.1.3. In Sec. 2.1.4, I discuss the gauge groups that are relevant to

uses of Yang-Mills theory in the Standard Model.

21.1 An overview of classical electromagnetism

The scalar field theory considered in Chapter 1 admits a global internal symmetry, ¢ () — €%¢ (z)
for constant # € R. To promote this to a local internal symmetry ¢ (z) — €%®)¢ () requires an

amendment to the choice of £y, viz.
Lo = D,¢*D"¢ — M*¢*¢, D' := V"¢ +ig A" . (2.1.1)

Here a vector field A* has been introduced, as has a coupling constant ¢ called a charge. The internal
transformation ¢ () — €(*) ¢ (x) must also be accompanied with an appropriate transformation of
AF, say A* — A'M, so that D*¢ transforms to e (V"d) + qu“qS). (Explicitly, A; = A, + i;au@.)
Classical electromagnetism can be explained in terms of the behaviour of A* and its associated
charges. The scalar Lagrangian density of classical electromagnetism with an external current j,
may be written as®

1 .
Lo= 3 FuF™ = Ay, B = Yy — VoA, 212)

Since (V,, — d,) Ay, = —T'f A, is p <> v—symmetric, we could alternatively write F,, = 0,4, — 9,4,
even for curved spacetimes, and indeed this expression is used ubiquitously. The main advantage of
the V-based definition in Eq. (2.1.2) is that all terms that appear are tensors (V A, is a tensor in any
spacetime, while 0,4, is not). In Sec. 1.3 I described a Lagrangian formalism that never missed an
opportunity to use true tensors. This approach provides an easy derivation of the Euler-Lagrange

equation due to varying A*; repeatedly using the fact that F),, is antisymmetric,

0Ly 0 1
V= — = —Vizes— | 5V, AFP7 ) =V, F'. 2.1.3
J A, ”avﬂA,,( 2V ) e @13)
Note that % = —A* isnot set to zero as part of the “stationary action principle”; j,, is not dynamical.

2Eq. (2.1.2) does not include contributions due to matter fields, for two key reasons. The first is that such terms are irrelevant
to all subsequent calculations in this thesis, except for the use of Eq. (2.1.9) below to motivate Yang-Mills theory. In
particular, the Euler-Lagrange equations of interest are not contingent on matter fields. The second is that such matter
terms depend on the matter theorised. The Dirac spinor term ¢ (iy#D,, — m) ) for a Dirac spinor 9 of mass m and gamma
matrices y* is just one form such a term could take. The scalar theory in Eq. (2.1.9), which generalises that of Chapter 1, is
another possible form for a matter term.

40
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2.1.2 Conservation laws in electromagnetism

Any antisymmetric tensor X*¥, such as F*¥, satisfies

1
VXM = 9, XM 4 TH X0 4T XM = 9, X" + X7, In+/|g] = T (Vighlx™) @14
(the term I';, | X*# vanishes because I'},, is u <> p-antisymmetric). If V,, is a vector field for which

V.V, is symmetric (e.g. V,, = 0, x for some scalar field x),

30/XVZ-X°Z‘ :8OLVUX0V :/dnflxao (\/EVVXOV)
:/d”_lxaﬂ (Viglvx*) =/XV,L (V, X)
=/X(VVWX””) =/d"‘1x (v (Viglx*)). (2.1.5)

Like vector fields, antisymmetric rank-two tensors provide a natural source of conservation laws;
[, ViX% is conserved if V, X" = 0. This condition reduces on-shell to j* = 0 for the special case
X# = F* . (The condition j¥ = 0, which may be restated as the absence of electric charges or motion
thereof, is valid in a vacuum. In that case the field equation is homogeneous, viz. V ,F*” = 0. Thus
the quantised field A* has a mode decomposition analogous to Eq. (1.4.15) that can be used to show
the VEV is 0.)

There is also an important example of a spatial integral that vanishes off-shell for any antisymmetric

X Since X% =0,

/ViXiO :/VuX“O - /d”—lxaﬂ (\/@XW) - /d”‘lxai (\/EX“J) =0. (2.1.6)

(Conserved charges that “differ” by a quantity of this form are therefore equal; this is integral to
a treatment of Noether charges that will be discussed in Sec. 4.3 and Appendix E.) In the special
case X = F*, this vanishing integral is proportional to the electric charge [ j° by Gauss’s law.*

Related to this is the fact that

V.V XM = g, (VIglv,x) = L 5.0, (VIghx™) =0 2.17)

Vgl Vgl

(since 0,,0,,, X*" are respectively symmetric and antisymmetric), so on-shell
v“j,u - 7v,u,qul“/ =0. (218)

This provides an alternative proof that jx 40 is conserved on-shell, a considerably weaker result than
the fact that [ j 0 = 0. However, the on-shell result V,,j* = 0 is interesting in its own right. It is
typical to call conserved spatial integrals charges, and to call a solution of V,W# = 0 a conserved
current.

Symmetric X** satisfying V,, X*” = 0 provide an analogous source of conservation laws that become

relevant in Sec. 2.6.2.

24The boundary terms of integration by parts are herein assumed to vanish throughout; for example, the universe’s total
electric charge [_j° vanishes. Indeed, we would not expect the universe’s electric charge to have a nonzero conserved
value that has persisted since the Big Bang.
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2.1.3 Yang-Mills theory

Classical electromagnetism for flat spacetime dates to the nineteenth century. When the strong
and weak nuclear interactions were discovered, physicists considered whether a generalisation of
the electromagnetic formalism could be used to describe nuclear interactions. It was eventually
realised [29] that this was indeed the case, with a few key modifications. The result is Yang-Mills
theory, a brief overview of which is given in Chapter IV.5 of Ref. [30].

Not only does the vector field A* of electromagnetism have counterparts for nuclear interactions; all
of these vector fields could be explained in terms of the promotion of a scalar field theory’s global
internal symmetry to a local one. Explicitly, consider a theory with a scalar Lagrangian density of the
form

Lo=V,0'VFe— M>¢'o, (2.1.9)

where ¢ is a multiplet of n scalar fields®® and T denotes a Hermitian adjoint. For any n, the scalar

Lagrangian density is invariant under the global transformation ¢ — U¢ for constant U € C"*" with
UtU =1, (2.1.10)

the n x n identity matrix, and we seek a modification of the theory that is invariant under a local
generalisation of the transformation, so that U can be spacetime-dependent. This requires n fields
analogous to the electromagnetic A*.

A matrix U solving Eq. (2.1.10), which may not be constant, is called a unitary matrix, and the group

of such matrices is denoted U (n).2° Note that
VU € U () |det U] = 1. 2.1.11)

Electromagnetism is an example of the case n = 1; we say that the theory has gauge group U (1). A

general element of U (n) may be written in the form U = V'V where
VeUMm),detV=19€eR (2.1.12)

(i.e. [¢”| = 1).” Such V are called special unitary matrices, and the group of these is denoted SU (n).

Thus there is a group factorisation, viz.
Um)=SUm) e U(1). (2.1.13)

While U (1) is an Abelian group (i.e. its elements commute), the groups U (n) , SU (n) are Abelian if

and only if n = 1.

2The symbols n or N are more commonly used, but in this thesis these symbols each have another meaning. To avoid
ambiguity, I have decided to use mathfrak for this variable. I will soon discuss special unitary groups, for which the
symbols SU, su are commonly used. This motivates my use of mathfrak.

26Whenever sets of square matrices are referred to herein as groups, the group operation of interest is matrix multiplication, so
that the identity element of the group is the identity matrix conformable with the matrices of interest. The matrix elements

used throughout are complex-valued, so the associativity required for a group is obtained.

27The symbol ¥ is a § variant called in ISTgX by \vartheta.
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These groups characterise continuous symmetries; they are examples of Lie groups. The infinitesimal
elements of these groups are those matrices that differ infinitesimally from the identity matrix. These

admit the first-order approximation
M ~ T, 4+iM, MT = M. (2.1.14)
When multiplying infinitesimal elements, second-order terms may be neglected so that
(In +1iM7) (I +iMo) =T, + i (Mq + Ms). (2.1.15)

The Hermitian M's form a vector space called a Lie algebra that is closed under commutators. While
a Lie algebra admits a matrix representation for which the definition of commutators is immediate,
it can be considered more abstractly, so that a “commutator” need only be an antisymmetric binary
operator under which the Lie algebra is closed. Since a Lie algebra is a vector space, a basis {T*} of

a matrix representation of the Lie algebra may be considered, so that real coefficients f2°¢ exist with
[r]va7 Tb} _ IZ Jcabcrlvc7 fabc _ 7fbac. (2116)

These are called structure constants, and they all vanish if and only if the Lie group is Abelian.
Hereafter indices that appear twice will be subjected to implicit summation, so that the above result
can be written as

[T, T°] =if*°T". (2.1.17)

The T'*s are Hermitian matrix representations of the so-called generators of the Lie algebra. Forn > 1
the Lie algebra of SU (n) has n? — 1 generators. Since U (1) is Abelian, the additional generator of
U (n) commutes with those of SU (n). Indeed, this generator is represented by the identity matrix,
since ¢! ~ 1 + if for small real #. So the structure constants of an Abelian group vanish, and U (n)
admits a generator index a for which 7% = I, and each f%*° vanishes.

Yang-Mills theory generalises classical electromagnetism by replacing A,, with a multiplet A% *® The

scalar Lagrangian density is [29]

]' a apuv ap ~a a a a aobc c
Lo == Fi, F" — A% i, Fi, o=V, AL = VAL + g f*" AL AT (2.1.18)

As before, F}, is p > v—antisymmetric. It is now natural to introduce dot and cross products
VW = Vewe, (V x W)* = febeybwe (2.1.19)

on multiplets, and to define V2 := V - V. Thus

1
Lo = _ZF’“’ CFM— AF G, F =V, A — VAL 4 qAL X Ay, (2.1.20)

The Euler-Lagrange equation is D, ['*” = j” where D,, := V, + qA, x [31], so that replacing the

\% ung VH#¢ term in Eq. (2.1.9) with D,, ¢ D" ¢ achieves an invariance under a local transformation of

28This multiplet must transform appropriately so that, under an Lo-preserving transformation ¢ — U¢, D, ¢ transforms to
UD, ¢ = Dy, (Ug) where D, = V,, + qA,,. Thus D¢ = UTD,, (U¢) and A, = ¢~ U D,U.
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the multiplet ¢. The special case of electromagnetism has only one value for each “multiplet index”
and vanishing structure constants, so the cross products are lost and D,, reduces to V,. This recovers
the scalar Lagrangian density of Eq. (2.1.2). Furthermore, Yang-Mills theory is invariant under the
gauge transformation A4, — A, + D, x for arbitrary scalar multiplet x“. The electromagnetic special
case of this result is an invariance under the gauge transformation 4, — A, + V,x, with x an

arbitrary differentiable scalar field. Indeed, this is a familiar symmetry of classical electromagnetism.

2.1.4 The gauge groups of the Standard Model

The electroweak interaction was obtained as a unification of earlier U (1), SU (2) approximations of
the electromagnetic and weak nuclear interactions. A brief overview of the electroweak unification
is given in Chapter VIL.2 of Ref. [30]. A U (n) interaction would differ from an otherwise identical
SU (n) interaction in the number of gauge bosons. The SU (n) interaction has n? — 1 gauge bosons
that have a charge type associated with the interaction. In the U (n) case there is an additional gauge
boson, for a total of n?. Such a gauge boson (e.g. a gluon colour singlet) would be analogous to
a photon, and in fact the photon is an example of this. At low energies, electromagnetism and the
weak nuclear interaction appear unrelated, and their respective gauge groups are approximately
U (1), SU (2). These interactions are in fact different aspects of an electroweak interaction observable

at higher energies. However, the gauge group is not simply obtained from the product
SU(2)eU(1)=U(2), (2.1.21)

for two key reasons:
e The Standard Model’s SU (2) doublets have different U (1) charges®’;
e The weak and electromagnetic parts of the electroweak interaction for one SU (2) doublet
have respective gauge groups SUy, (2) , Uy (1), giving an electroweak gauge group factorisation
SUL (2) ® Uy (1).%° Indeed, the electromagnetic U (1) is a mixture of the U (1) factor in SU (2) ®
U (1) and a U (1) subgroup of SU (2). This is due to @ = T3+ &, where Q is the electromagnetic
charge, T3 is an electroweak isospin component and Y is the weak hypercharge.
This interaction’s gauge bosons are the photon (which has an electroweak charge but zero electric
charge) and three other bosons (W, Z°) that have electroweak charges due to the non-zero structure
constants of the electroweak gauge group.
The strong nuclear interaction is a little different. The empirical interaction between hadrons is
a residual interaction, an emergent consequence of the interactions between elementary quarks,
antiquarks and gluons. The three “colour charges” of quarks and antiquarks that bind them in
hadrons suggest that gluons carry a “colour interaction” of gauge group U (3) or SU (3). Each option
results in 8 species of gluon, but in the U (3) case there would also be a colour-neutral “colour singlet”
analogous to the photon. This colour singlet’s would easily be detected if it existed, as it would not
be subject to colour confinement. Since the singlet does not exist empirically, the gauge group of the

colour interaction is SU (3) [35].

2For example, in convenient units the U (1) charges of the left-handed quark doublet up,, dy, is %, while the U (1) charges of
the left-handed electron neutrino-electron doublet vy, ey, is —1.

30The electroweak theory of Sheldon Glashow [32], Abdus Salam [33] and Steven Weinberg [34] provides the Standard
Model’s description of the gauge group.
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It follows that Yang-Mills theory is sufficient to describe the strong and electroweak interactions of
the Standard Model of particle physics, i.e. all fundamental interactions other than gravity (for which
general relativity is currently our best description). A Yang-Mills description of the Standard Model
requires only that appropriate gauge groups be used, as described above. The Lie groups of interest
are semisimple [29], so without loss of generality the structure constants may be chosen to be fully
antisymmetric [36], i.e.

fabc _ _fbac _ _facb _ fcab. (2122)

This choice will be used hereafter, and implies that
V(W x X) =Vafabeppbxe = feabyapybxe — (v x W) - X. (2.1.23)

I call this the triple product on multiplets. The scalar triple product on C? has this form.*! The usual
dot and cross products on C? are respectively symmetric and antisymmetric. However, fermion-
valued multiplets anticommute in the dot product; their classical description is in terms of Grass-

mann numbers. Thus if the classical multiplets by, b2 (fi, f2) are bosonic (fermionic) fields

by -by = by - by, (2.1.24)
by X by = —by X by, (2.1.25)
Ji-fa=—fa fu, (2.1.26)
Jix fa= fa x fi, (2.1.27)
by - f1=f1-b1, (2.1.28)
by X f1 = —f1 X by, (2.1.29)

and by Eq. (2.1.23) an exchange of adjacent fields in a triple product may or may not cause a sign
change, as can be deduced by placing a cross product between these fields. In particular:
o the triple product of three fields, of which at most one is a fermionic field, changes sign under
the exchange of adjacent fields, so changes sign under an odd permutation of the three fields;
o the triple product of three fermionic fields is unchanged under the exchange of adjacent fields,
and hence under any permutation of the three fields; and
e a triple product of a bosonic field and two fermionic fields changes sign under the exchange
of adjacent fields if and only if one is a bosonic field, and so changes sign precisely when the
boson moves into or out of the central position.
The last of these results allows the rearrangement of a number of triple products throughout this

thesis, and will be used without comment hereafter.

2.2 The BRST quantisation of Yang—-Mills theory

In Sec. 2.2.1, I discuss the path integral method that is used to BRST-quantise Yang—Mills theory.
The derivation from the path integral method is not worth presenting herein in great detail because

there are still questions surrounding the rigour of the path integral method. The motivation of this

31 The special case of the scalar triple product on C3 takes f20¢ = ¢%%¢, the Levi-Civita symbol. The gauge group with these
structure constants is SU (2).
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section is to justify, in a level of detail sufficient for present purposes, a choice of scalar Lagrangian
density [37, 38] summarised in Eq. (2.2.11). A good discussion of BRST quantisation is given in Secs.
9.4 and 16.2 of Ref. [27].

In Sec. 2.2.2, I discuss various choices of the Faddeev-Popov Lagrangian density, and specify the
choice that will be used thereafter. The result introduces three new massless scalar-valued multiplets
in Yang-Mills theory. These fields are denoted B, ¢, ¢. The zero mode problem I discuss in Sec. 2.4 is
due to the fact that ¢, € are massless. In Sec. 2.2.3, I discuss reasons why this cannot be resolved by

giving c, ¢ mass.

221 The motivation for the Faddeev-Popov method

Let O denote an operator-valued quantisation of an empirical quantity O in a theory whose action
S is expressible as a functional of quantities hereafter written as A. A general overview of the path
integral formulation of quantum field theory, and the behaviour of Grassmann variables, is given in
Sec. 9-1 of Ref. [3].3? In this formalism, the vacuum-state mean <(’3> of O may be expressed as a

ratio of functional integrals, viz.

<@> _J/DPAO4] oSl

DA (2.2.1)

where A is a collection of functions (such as the vector field A*), [ DA denotes a functional integ-
ration over the function space of 4, O [4] is a functional of A whose quantum-mechanical operator
promotion is O [A], and the action S [A] is a scalar-valued functional of A.

If S, O are each invariant under some gauge transformation of A, then choices of A related by a
gauge transformation form equivalence classes. Functional integration over such an equivalence
class provides an infinite factor in each of the functional integrals in Eq. (2.2.1). This motivates the
addition to £, of appropriate terms ALy that are not gauge-invariant. These terms multiply e'* by
some functional el /= 2£0 and, if new fields are also introduced, f DA by some integration operator.
For suitable new terms ALy in Ly, this inserts an identity operator into [ DA€l [DA O [A] eS14],

Identifying such terms makes use of functional-integral generalisations of the results

1= [dusg)|s (s ©)]. (222)

det R = / ' B dpdn (2.2.3)

for functions g with a unique root ¢! (0) and a square matrix R conformable with Grassmann-valued

vectors 7, 7] satisfying the normalisation

[mn; = [mam, = o [ nan, = [ —o. (22.4)

2.2.2 The Nakanishi-Lautrup and Faddeev-Popov fields

One appropriate choice of ALy is [27]

vV, AR)? .
ALy = L2+ L), L& = —%, L¥) =iz V,D\e (2.2.5)

32The action is therein denoted I, not S.
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where o is a real-valued gauge parameter® and c¢?, ¢* are Hermitian®* multiplet-valued spin-0
fermionic fields which, by the spin-statistics theorem, cannot be physical. These fermionic fields
are respectively called the Faddeev—Popov ghost and Faddeev—-Popov antighost.®*® The prefix anti-
is not a reference to antimatter; the ghost and antighost are each their own “antiparticle species”,
insofar as that concept is applicable to unphysical fields. The use of an overline in ¢ also does not
indicate either complex conjugation or an adjoint; the fields c, ¢ are each Hermitian, and hence are
each their own adjoint.

The choice of ALy in Eq. (2.2.5) can be modified in several ways. For example, a total derivative may
be added. Indeed, since El(:?,) as defined above contains a second-order derivative, which complicates

use of the Lagrangian formalism in Sec. 1.3, 51(:%) is typically replaced with
Lep = L) — iV, (¢ D¥Fc) = —iV,e- D e. (2.2.6)

Alternatives to L3p may also be obtained; they are of interest because they allow an extension to the
case oy = 0, which would otherwise yield a divergence. We begin by introducing a scalar boson
multiplet B’ and adding a term %Blz to the scalar Lagrangian density. This process is legitimate

because, by inspection, this B2 term decouples from all others. Introducing the Nakanishi-Lautrup

VA"
@o

auxiliary field B := B — implies

a0 4 %3’2 = %32 + BV, A", (227)

This allows the choice ALy = LE; + V. (B - A*) + Lpp with

(6% o
L8 = 7032 —V,B-AF =L2% —V, (B-A"). (2.2.8)

Note that
VA" +aoB =0 (2.2.9)

(equivalently, B* = 0) is an Euler-Lagrange equation of both £Z; + Lrp and £ + %2 B2, so that
. . v, AH : L
on-shell we may equivalently define B as ——%=. Thus Eq. (2.2.9) is an Euler-Lagrange equation if
L& replaces L&Y in ALy. Such a replacement can then be used, including in the gauge choice o = 0,
which is called the Landau gauge [41]. This observation motivates both the introduction of the field

B and the use of a B-dependent scalar Lagrangian density, viz.
ALy = %BQ + Lap + Lrp, Lop == —V,B - A (2.2.10)

The quantity % B? + L is called the gauge-fixing term, and Lgr is this term’s value in the Landau
gauge. The choice of oy in the gauge-fixing term fixes a gauge. In the Landau gauge, varying B gives

the Euler-Lagrange equation V,A* = 0. Without BRST quantisation, this constraint on A* may

331 follow Ref. [39] in using the symbol ayp; the alternative £ has also been used, but is avoided herein (despite our use of it in
Ref. [1]) because € is typically used for Killing vectors, which I discuss extensively in Chapter 4. Another alternative [40] is
a. T use o to avoid confusion with any other uses of a.

34The first elucidation of a theory in which these fields were Hermitian was the landmark paper Ref. [39], which established
the unitarity of BRST-quantised Yang-Mills theory. The i factor in Lgp is required for the Hermiticity of the action S.

%5Hereafter Faddeev-Popov is abbreviated as FP, and any use of the latter in subsequently defined technical terms is implied
to abbreviate the former.
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instead be imposed as a gauge choice. This gauge choice is familiar in classical electromagnetism as
the Lorenz gauge.3® The quantity Lpp is called the FP-ghost term, and is analogous to the V,¢*V*¢
term in the scalar field theory of Chapter 1. Its inclusion in ALy is actually optional for an Abelian

interaction such as electromagnetism, but is otherwise necessary.

2.2.3 On the masslessness of the FP-sector fields

In summary, the scalar Lagrangian density of BRST-quantised Yang—Mills theory may be chosen as
Lo = —EFMV -Fr— AR, +V,B) + %32 —iV,c- Dc, (2.2.11)

and ap may be taken to be any real number, including 0. The fields ¢, ¢ could each be granted a mass
M by including a mass term iM?¢ - ¢ in £y. Indeed, the FMP introduces such a term in its analysis,
before taking the right-hand limit M — 0*. However, the above path integral method does not
justify a mass term, because [ DcDéexp { [, (V,c-D"c— M?¢-c)} is non-trivially M-dependent.

An additional problem with attempting to include a mass term is discussed in Sec. 2.3.3.

2.3 The BRST and anti-BRST transformations in BRST-quantised
Yang-Mills theory

While BRST-quantising Yang—Mills theory breaks its invariance under the transformation
A/L — A/l, + D/LX? (231)

the transformations A, — A, + nc, A, — A, + n¢ with ) a constant Grassmann number are
action-preserving gauge transformations provided c, ¢ are also appropriately transformed. These
gauge transformations are respectively called the BRST and anti-BRST transformations. The purpose
of this section is to elucidate these transformations, which are of interest because they show that
BRST-quantised Yang-Mills theory still exhibits some useful symmetries with associated conserved
currents. Since each of these transformations preserves the classical terms in the scalar Lagrangian
density of Yang-Mills theory, only the terms added in its BRST quantisation are of interest. In Sec.
2.3.1, I discuss several important general properties of the BRST and anti-BRST transformations. I
completely specify these transformations in Sec. 2.3.2, wherein I use some of the results of Sec. 2.3.1
to show that the scalar Lagrangian density of Eq. (2.2.11) is invariant under both transformations if
the external current j,, vanishes. On the other hand, a mass term would violate these symmetries,
viz. Sec. 2.3.3. My discussions of the BRST and anti-BRST transformations are respectively based on

Refs. [39] and [40].%”

36This gauge is named for Ludvig Lorenz, who should not be confused with Hendrik Lorentz, for whom Lorentz invariance is
named. Such confusion is, however, occasionally observed. For example, the gauge may be restated as V- A +c¢719;® = 0
in SI units, and this is often called the Lorentz condition. A historical overview may be found in Ref. [42].

37Ref. [39]'s treatment of Yang-Mills theory is limited to Minkowski space, but the generalisation herein to curved spacetimes
is trivial.
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2.3.1 An overview of two transformations

The BRST® transformation may be written as X — X + §X, where X is an arbitrary bosonic or
fermionic field and the dimensionless bosonic operator ¢ is called the BRST operator. In particular

we may write

ob=01[Q,b], of =0{Q, f}, (2.3.2)

where () is a fermionic operator called the BRST charge, 0 is an arbitrary constant Grassmann num-
ber, and b (f) is an arbitrary bosonic (fermionic) field. Notice the use of commutators and anticom-

mutators {X, Y} = XY + Y X, which may be collectively denoted by
(X, Y], = XY +VX. (2.3.3)
The BRST transformation satisfies the usual Leibniz rule
§(XY) = (6X)Y + XY (2.3.4)

whenever X, Y are each either a bosonic field or a fermionic field. For arbitrary bosonic fields b, by

and fermionic fields fi, fo we obtain

1) (blbg) =40 [Q‘ blbg} =40 [Q‘ Z)d bg + 9[’)1 [Q bg]

= 0[Q, b1] by + b10[Q, bs] = (6b1) by + by by, (2.3.5)
§(b1f1) =0{Q, brfi} =0[Q, b1] fr + 01 {Q, f1}

=0[Q, b1] f1 + 110{Q, i} = (6by) f1 + b5 fr, (2.3.6)
6 (frfe) =01Q, frfo] = 04Q, f1} f2 = 0/1{Q, f2}

=0{Q, fi} fo+ f10{Q, f2} = (6f1) f2 + f1d . (2.37)

Another important identity, which follows trivially from 9,,Q = 0, is
00,X = 0,6X. (2.3.8)

A solution of X = 0 is called BRST-invariant (this is both an adjective and a noun), and BRST-

invariants include g, s, g*° and hence Christoffel symbols. Thus
OV, X =V, 0X, (2.3.9)

and [@Q, A*], [Q, B], {Q, ¢}, {Q, ¢} completely specify the BRST transformation of fields other than

matter fields.?®

38This abbreviation refers to Carlo Becchi, Alain Rouet, Raymond Stora [43] and Igor Tyutin [44], four physicists who co-
discovered the BRST transformation. At one time the name BRS transformation was common in the literature [39, 45],
as Tyutin’s contributions were not fully appreciated. This was still true when what is now known as the anti-BRST
transformation was discovered [40, 46, 47]. While the prefix anti- refers to the fact that the roles of the ghost and
antighost are approximately exchanged in a comparison of the transformations, Ojima settled for the name “another
BRS transformation”, consistently placing this name in quotation marks. During the early 1980s the name “dual BRS
transformation” was also used [48]. In modern terminology, the two transformations and related concepts are referred
to with the terms BRST and anti-BRST. So at last Tyutin shares credit for the BRST transformation.

39The matter fields not discussed herein, such as Dirac spinors, contribute BRST-invariant terms to the scalar Lagrangian
density, although the fields are not in general BRST-invariant themselves.
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The above facts about the BRST transformation apply also to the anti-BRST transformation § and
anti-BRST charge Q) [46, 47], viz.

5=0[Q.5,5/=06{Q. f}. (2.3.10)
A further important result is the fact that ), Q anticommute and are nilpotent [46, 47], viz.
*=0"={Q,Q}=o. (2.3.11)

Thus any BRST transformation is a BRST-invariant, and similarly for anti-BRST. Further important

results are [Q, [Q, X]i]I = — [Q, @, X]iLF and 62 = 3% = [6, 6] =0, 1e. 6, 0 commute and are

nilpotent. Indeed

{Q, [Q, X] J .= QQX +QXQFQXQ - XQQ, (2.3.12)

Q. [Q. X]1], = QQX £ QXQ FQXQ - XQQ = —QOQX FQXQ £ QXQ + XQQ
- {Q [@, X] iL' (2.3.13)

Since any operator Q, including Q or @, satisfies
[Q.[Q, X].], = @*X £ QXQF QXQ - XQ* = [Q°, X], (2.3.14)
it follows that 52X = SQX = 0. Similarly, if X is a bosonic or fermionic field then
66X =01Q,0[0Q, X . 2.3.15
Q9@ x].], . (2:3.15)
where commutators (anticommutators) are used if X is a boson (fermion), so

65X =0Q0[Q, X, +00[Q. X], Q=09 (Q[Q, X], 7 [@, X], Q) = 00 |Q, [@, X].|

:F
(2.3.16)
(note the use of {#, Q} = 0) and
56X =00 Q. [Q, X]j[}$ =00(Q, [Q, X]i]? (2.3.17)
[6,3] X = —60 <[Q [ X]iL +[@ (@, X]ih) —0. (2.3.18)

Applying one or more BRST or anti-BRST transformations obtains a nonzero result only if each
transformation type is used at most once, providing an at most fourfold extension of the dimension

of vector spaces closed under one or both transformations, viz.

X = X, 6X, 30X, 60X = —66X. (2.3.19)
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2.3.2 Explicit BRST and anti-BRST transformations

It remains to specify that [43, 44]

Q. A*) = De, [Q, B] =0,{Q. ¢} = ~Jex ¢, {Q. 7 = iB

and that [40, 46, 47]
[@. 4" = D%, [Q, B =0,{Q, 2} = —J %@ {Q. ¢} =iB

where

B :=igc x c— B.

Since {Q, f1 x f2} ={Q, f1} x f2 — f1 x {Q, f2} we have

Q.5 =ig[@ % =L (ex ) xet o xB

:qu(E—inxc):—qEXB,
(Q, B*] =2B-[Q, B] =0.

(2.3.20)

(2.3.21)

(2.3.22)

(2.3.23)
(2.3.24)

The multiplet-valued external current j,, is hereafter set to 0. Excluding classical terms, the scalar

Lagrangian density is

Lo= %BQ ~V,B- A" —iV,z- D'c
iOéO

= {Q, 77B 'C+iqu‘Aﬂ}

= %BQ +V,B- A" +iV,c- D'e

- %BQ +{Q, —iV,c- A"},

(2.3.25)

(2.3.26)

so is BRST-invariant by Eq. (2.3.25) and anti-BRST-invariant by Eq. (2.3.26). Note the use of the

identity
19, fibi} =1{Q, fi} b1 — f1[Q, b1]

(2.3.27)

to establish results such as {Q, iV ,¢- A"} = -V, B - A* —iV ¢ - D"c. I have also used the fact that

Eq. (2.3.22) implies

V. (B+B)-A*+i(V,c-Dtc+c+r¢) =V, (igc x c) - A*
+i(V,e-VFe+ V- V)

+ig (V- A¥ x ¢+ V,c- A* x©)

=ig{V,(exc)—=V, exc—¢xV,c} A"

=0.
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The set of Euler-Lagrange equations must then be closed under both BRST and anti-BRST transform-

ations. So are the conserved currents; if V,W* = 0 then
Vi@ WL =1[Q, V, W' _ =0, (2.3.29)

i.e. if W is conserved so is [Q, W*], (and, similarly, so is @, W“] i). I discuss these closure rules

in more detail in Sec. 3.3.

2.3.3 A mass term would violate both symmetries

One last observation is that ¢-c is neither BRST-invariant nor anti-BRST invariant. Indeed, the identity

(9, fif2] ={Q, fi} fa — f1{Q, f2} implies

Q,¢-d=1{Q.¢) c—z-{Q, c}:iB~c+%E-(c><c), (2.3.30)

@] ={Qe}-c—2-{Q ¢} = —Jexz-c—ic-B. (2.3.31)

The fact that a ¢ - ¢ term would break the BRST and anti-BRST invariances of BRST-quantised Yang—
Mills theory has implications for the relative merits of the FMP and CMP, as will be discussed in Sec.
2.5.2.

2.4 The zero mode problem of the FP-ghost propagator in
Yang-Mills theory

Since all cross products in Eq. (2.2.11) are g-weighted, the case ¢ = 0 is non-interacting. In Sec. 2.4.1,
I show that the non-interacting case has an infrared problem very similar to the one considered in
Chapter 1. I use discrete mode labels throughout; a zero mode problem does not occur where there
are continuous mode labels in Minkowski space. In Sec. 2.4.2, I discuss the outcome for more general

g, which obtains a zero mode problem that is harder to explicitly describe.

2.4.1 The non-interacting case

In the non-interacting case the FP-ghost term is —iV ¢ - V¥¢, and the fields ¢, ¢ are each cyclic, so
varying either fermionic field provides a conserved current. Varying c gives the Euler-Lagrange
equation V,V*#¢ = 0; varying ¢ gives the Euler-Lagrange equation V,V¥#c = 0. Note that the
Euler-Lagrange equation obtained by varying either of these fields is a differential equation in the
other field. This is analogous to the fact that Eq. (1.3.9) is a differential equation in ¢ and an Euler—
Lagrange equation obtained by varying ¢*. Note also that ¢, ¢ are massless Klein-Gordon fields, so

for ¢ = 0 their quantisation on the flat static torus is of the form

C(@) = > {eoto (@) + ey (@)} 2 (2) = D {Eos (@) + T (@)} (2.4.)

(o2 o

Sec. 3.7.1 will observe that, for ¢ = 0, the fermionic operators are spacetime-constant and satisfy

~ o~

{er iy} ==id, et ={ e } = {650 = {52 } =0 (2.4.2)
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in analogy with Eqgs. (1.4.14) and (1.4.25). The FP-ghost propagator is defined as T <O\E(z)§(y) |O>

Since

AL (01{2,. e} 10)

=—i Z Po (‘r) ¢; (y) ) (243)

(0 (@)% (y) o) = (Z (0125, (a:)) (Z b0 (1) |o>)

it is natural to linearly extend Sec. 1.5.3’s definition of time ordering so that
T(0R(@)Z()[0) = =T 6s () 0 (). (244)

In the non-interacting case, this propagator results in the same problematic infrared behaviour dis-

cussed in Sec. 1.6.

2.4.2 Comments on the interacting case

For any ¢, ¢is cyclic in Lgp. Varying ¢ gives V,, D#*¢ = 0. Varying c gives

0 0 _ _
0 = (ac — vum> (VNC . V#C + qvuc . AH X C) . (245)
Because classical fermionic fields anticommute, Euler-Lagrange equations are obtained with a con-
vention known as left-differentiation. Any fermionic field with respect to which differentiation is
sought is placed to the left of any other factors in a term. Thus

0 0
0= <8c - V”8Vr> (=Vte-V,e+qc- A" x V,©) = qA" x V,c+V,V'e=V,D'e— ¢V A" xC.
uC
(2.4.6)

On-shell the result V, A* = —ay B gives
VD't = —qaoB x ¢ (2.4.7)

In the Landau gauge V,D*¢ = 0, so ¢, ¢ solve the same interacting generalisation of the massless
Klein-Gordon equation. Indeed, the conserved charges are fx DO, fx DY. The FP-(anti)ghost fields
are in general ¢-dependent (the modes are modified and ¢,, ¢, are in general spacetime-dependent
operators), and it is natural to ask:

o whether the FP-ghost propagator has an infrared problem for ¢ # 0;

o and whether the infrared-divergent contributions to the massive propagator in the FMP respect
the spacetime symmetries desired for the full propagator in the IR limit (e.g. time translation
invariance on a flat static torus or de Sitter invariance in de Sitter space).

If both these things are true, the non-interacting case admits an infrared problem that the FMP can
address while preserving the propagator’s spacetime symmetries. In Chapter 3, I show that any
such infrared problem may be solved in the CMP. I will not prove that an infrared problem results

for arbitrary ¢; for the present purposes it matters only that the CMP works when such an infrared
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problem results. The ¢ = 0 infrared problem justifies constructing a BRST-invariant perturbation

theory that does not encounter an infrared problem.

2.5 The history of the zero mode problem

The zero mode problem in BRST-quantised Yang-Mills theory has been considered for several dec-
ades, as have its implications and possible prescriptions for addressing it. In this section, I review
the history of this analysis. In Sec. 2.5.1, I relate the zero mode problem to Hadamard states, which
are a well-motivated concept of a physically acceptable state [5].

In 2008, Atsushi Higuchi and Mir Faizal introduced a prescription for addressing the zero mode
problem [2]. I have called this prescription the fictitious mass prescription (FMP). In Sec. 2.5.2, I
discuss problems with the FMP that have motivated the development of the CMP in my collaboration
with Atsushi Higuchi [1].

2.5.1 On minimally coupled massless scalar fields

A vacuum state is denoted |0), and should respect whatever symmetries are imposed on the classical
field theory. For example, suppose a de Sitter-invariant classical field theory is sought in de Sitter
space; then a de Sitter-invariant vacuum state would also be desired. Therefore, the non-existence
of any de Sitter-invariant Hadamard state would be problematic. In fact, it is known [20] that the
theory of the minimally coupled massless scalar field discussed in Chapter 1 does not have a de
Sitter-invariant Hadamard state in de Sitter space.*’

This is (not immediately obviously) a consequence of de Sitter space’s special case of the zero mode
problem I discussed in Chapter 1. In my discussion of the flat static torus in Sec. 1.5, I showed that
in such a spacetime Klein-Gordon normalisation resulted in an infrared problem for the propagator
of a minimally coupled massless scalar field. I also showed that, if this normalisation condition
were relaxed to prevent this infrared problem, the propagator would no longer be time-translation
invariant. One could equivalently say that, if time-translation invariance is required, then Klein—
Gordon normalisation is imposed and the infrared problem is obtained. The analogous result for de
Sitter space [49] is that the propagator must lose its de Sitter invariance (if the infrared problem is
to be prevented, which is necessary to safeguard the quantum field the theory’s consistency). This
symmetry breaking can be restated as the non-existence of a de Sitter-invariant Hadamard state to
describe the state of the scalar field. In Sec. 1.6, I discussed this problem in the language of the
symmetries and infrared behaviour of the propagator instead. I showed that this problem survives
in the spacetimes of interest in this thesis.

The scalar field discussed in Chapter 1 is bosonic. In Sec. 2.4, I explained that this problem has
a fermionic analogue in the FP-ghost sector of BRST-quantised Yang-Mills theory. It is therefore
natural to suspect that the FP-ghost sector would, for example, lack de Sitter invariance in de Sitter
space. If this is so, the implication would be that the FP-(anti)ghosts lack a de Sitter-invariant
perturbative vacuum state in the theory’s Hilbert space. However, the FMP and CMP both aim

to show that the theory can be constructed in spacetimes of interest so as to preserve appropriate

40 A theoretical interest in de Sitter space is far from new, for reasons discussed in Sec. 1.2.2. Historical interest in de Sitter space
has led to much being discovered about quantum field theories in de Sitter space. The aforementioned result concerning de
Sitter-invariant Hadamard states has analogues for other spacetimes.
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spacetime symmetries. In particular, de Sitter invariance is sought in de Sitter space. I discuss how
the FMP and CMP achieve this in Sec. 2.5.2.

Incidentally, the situation for vector fields is quite different. A de Sitter-invariant Hadamard state
exists for the theory of a massless vector field in maximally symmetric spacetimes, including de

Sitter space [50]. For example, the multiplets Af, () of Yang-Mills theory have a propagator
T (0] A (z) A (y) |0) (2.5.1)
that lacks the aforementioned symmetry and infrared problems of the FP-ghost propagator.

2.5.2 Motivating a shift from the FMP to the CMP

The formalism considered thus far contains a spatially uniform ¢, say ¢o, with ¢-dependent gener-
alisation ¢y . Any formalism containing such a ¢( requires infrared regularisation. The FMP makes
use of one method of infrared regularisation, namely that of deleting an infrared-divergent term from
the massive FP-ghost propagator [2].

One issue with this approach is that an FP-sector mass term is added to the Lagrangian before the
massless limit is taken. Since such a mass term is not BRST-invariant, it is not obvious that the
BRST and anti-BRST symmetries of the theory are preserved. In particular we hope for an FP-
sector perturbative vacuum state that respects the BRST and anti-BRST symmetries in addition to
appropriate spacetime symmetries. The outcome of this would be that @, Q each annihilate all
physical states (including vacua). The physical states comprise a Fock space that the operator-valued
charges Q, Q annihilate, just as Q?, @2 annihilate the full Hilbert space.

The CMP allows for a formalism in which ¢, never appears [1], resulting in a different FP-ghost
propagator. In Chapter 3, I discuss the CMP’s treatment of the zero mode problem in BRST-quantised
Yang-Mills theory. I show therein that manifest BRST- and anti-BRST-invariance are preserved
throughout. The desirable spacetime symmetries and internal symmetries are then preserved, and
the theory’s propagator is infrared-convergent.

A further advantage of the CMP is that, unlike the FMP, it does not assume free integration by
parts is possible. This fact broadens the class of spacetimes this thesis is able to consider. I show
in Sec. 3.7 that, in spacetimes that allow free integration by parts, the FMP and CMP have equivalent

perturbation theories. The CMP is in this sense a generalisation of the FMP.

2.6 The story for perturbative gravity

In Sec. 2.6.1, I discuss the formalism with which general relativity describes perturbations of a
background metric. In Sec. 2.6.2, I list a few standard properties of Lie derivatives and Killing
vector fields. This is a necessary preamble for my discussion of the BRST quantisation in Sec. 2.6.3.

Like Yang-Mills theory, BRST and anti-BRST transformations can be defined for general relativity*!,

#1The formalism of BRST-quantised Yang-Mills theory and of its (anti-)BRST transformations, respectively summarised in
Secs. 2.2 and 2.3, is known as the BRST formalism. All phase space constraints in the Hamiltonian formulation of Yang—
Mills theory are related to the Lie algebra, even after BRST quantisation. The same is not true of general relativity. This
motivated the development of a generalisation of the BRST formalism, the Batalin-Vilkovisky formalism or BV formalism.
This formalism can incorporate all phase space constraints in the Hamiltonian formulation of general relativity. However,
I have concluded that the BV formalism is unnecessary for my treatment herein of the zero mode problem of perturbative
gravity. An explanation of this conclusion requires a review of the BV formalism, so I can highlight what motivates it in
other contexts. I present the explanation in Appendix F.
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and these transformations preserve the BRST-quantised action. Explicit expressions for these trans-
formations, in analogy with Egs. (2.3.20)—(2.3.22), are dependent on a parameter « introduced below
in Eq. (2.6.1). Unlike the case of Yang-Mills theory, there are two radically different popular versions
of the BRST quantisation, which differ in their expressions for the (anti-)BRST transformations and
whether they make use of the vielbein formalism.*? In Sec. 2.6.4, I discuss perturbative gravity’s
BRST and anti-BRST transformations, and the history of the understanding and description of these
transformations. I show in particular that some of the discussion of the anti-BRST transformation in
the literature is mistaken on key issues.

In Sec. 2.6.5, I explain the zero mode problem for perturbative gravity, and briefly comment on
the FMP’s solution to it. I only explicitly verify infrared divergence in the case of de Sitter space, for
which an analytic treatment is feasible. For the purposes of Sec. 2.6.5, the FP-ghost sector need not be
explicitly considered. Indeed, just as Chapter 1 discussed a bosonic analogue of the Yang-Mills zero
mode problem, the formalism of Sec. 2.6.5 is applicable to an FP-ghost sector problem in perturbative
gravity.

In Sec. 2.6.6, I discuss qualitative similarities between an infrared problem in the FP-ghost sector
of BRST-quantised Yang-Mills theory, an infrared problem in the FP-ghost sector of BRST-quantised
perturbative gravity, and controversies regarding the graviton sector of BRST-quantised perturbative

gravity (the last is discussed only in the context of de Sitter space).

2.6.1 Some conventions for notation and terminology

General relativity describes gravity. The analogue of the electromagnetic tensor A, might be as-
sumed to be the metric tensor g,,,. In the case of perturbative gravity, the full metric tensor g/,

differs from a background metric tensor g,,,, viz.

g;fu/ (z) = Juv (z) + Ky (), (2.6.1)

where kh,, is a perturbation metric for some small constant . Perturbation-dependent results can
be described as x-dependent, and perturbative results can be expressed as power series in . It will
sometimes be beneficial to compare ¢A,, with xh,,, and to identify both of these as measures of an
“interaction” in their respective theories. Indeed, gravity is referred to as interacting only when xh,,,,
does not vanish, so interacting gravity and perturbative gravity are taken herein as synonymous.*

A treatment of perturbative gravity should work with covariant derivatives that commute with (and
hence annihilate) both the index-lowering metric and its inverse as a matrix, which is the index-
raising metric. Which of g, gﬁy should be the index-lowering metric? One can, in fact, use either,
and hereafter I will use g,,,. This choice is known as linearised gravity, a fact that merits some

explanation. The index-raising metric tensor is g"*, so

gll =61+ khl,. (2.6.2)

“2This is not a spelling error; vierbein (in German, “four legs”) is the n = 4 special case of vielbein (in German, “many legs”).
Alternative names include tetrad (again only advisable for n = 4, since this word is derived from the Greek for four) and
frame field.

#3There is one subtlety here I should briefly mention. Perturbative is usually taken to imply the use of perturbative techniques

to approximately express results as perturbative corrections to the properties of a simpler system. However, a non-
perturbative treatment of interacting gravity is also possible (although this remains speculative).
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The trace of a tensor of the form x,,,, is then = := z,,¢g"", so g,,, has trace n and gﬁ,/ has trace n + xh.

Throughout my analysis it will be important to consider the map
Tpy — X;ul = Tuy — kwguu: (263)

where k£ € R is a spacetime-constant parameter. (I will discuss this map in more detail in Sec. 2.6.3.

One especially important example is h,,, — H,,). Thus
X=0-kn)x, (2.6.4)

and for k # n~! we have the inverse relation

X

(2.6.5)

The relation between h and H is therefore linear. But the situation is quite different if gI{V is chosen

as the index-lowering metric and replaces g,,, in Eq. (2.6.3), viz.

X;U/ = Tpv — kibpnglfpggijuv (266)

Hyw = hyw — kb g’ (g + Khy) - (2.6.7)

Eq. (2.6.4) obtains a linear relation between %, and H,,, whereas for nonzero k Eq. (2.6.7) instead
obtains a non-linear equation. It is therefore natural to describe the use of g,,,, as an index-lowering
metric that obtains this result as linearised, and to describe the alternative use of g}fl, as an index-
lowering metric as non-linearised.

Prior to BRST quantisation, the Lagrangian density of general relativity may be taken as the Einstein—
Hilbert Lagrangian density. For any n, the scalar Lagrangian density is proportional to R — 2A (see,
e.g. Ref. [51]), where R is the Ricci scalar and A is the cosmological constant. For example, in SI units

the case n = 4 gives*
R—2A

Lo = 16mGe—4"

(2.6.8)

Hereafter I impose an n-dependent nondimensionalised choice of G so that in general we may write
Lo=R—2A. (2.6.9)

This result is very different from the —1F,, - F* term in Yang-Mills theory, so the terms that the
Faddeev-Popov method adds are also quite dissimilar, as I show explicitly in Sec. 2.6.3. However,
the effect of the Faddeev—Popov method is still to add a gauge-fixing term (expressible in terms of
a Nakanishi-Lautrup auxiliary field) and an FP-ghost term (expressible in terms of FP-ghosts and
FP-antighosts). As with Yang-Mills theory, the fields that the Faddeev-Popov method introduces
are all massless, and an FP-ghost propagator can be defined. The zero mode problem of perturbative

gravity is, again, a matter of an infrared-divergent propagator.

#Feynman’s definition in Ref. [21] of the A = 0 special case of the Einstein—Hilbert action includes a — sign relative to mine
(viz., my Eq. (2.6.8)). The ﬁ factor in Feynman'’s result follows from Ref. [21]’s Eqs. (4.1.1) and (10.1.2). He does not
make the power of c explicit. However, the result will always be oc ¢*G~1. The dimension of [d"z (R — 2A)c*G~! is
L IMTL2L4T4L1-"MT? = L2MT !, where L, M, T respectively denote dimensions of length, mass and time in SI units.

This is the correct dimension for an action.
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2.6.2 A preamble on Lie derivatives and Killing vectors

Qp o Qp

The Lie derivative of a tensor T} .. 5 " with respect to a vector V' may be defined as

q
aq e ¥ [0S At « Q- 1Y [0S RaRYeY
BT = VR - VT S

(2.6.10)
or equivalently as
p q
BT or = VIOLT S =S g Ve e L N g yapeen
J=1 i=1
(2.6.11)
viz. Ref. [52]. Important implications of Eq. (2.6.10) include the Leibniz law
£y (TiTy) = TiEvTs + (EyTh) T, (2.6.12)
the results
Evp=VIV,0=V"0,0, (2.6.13)
EavW = afy W — VEwa (2.6.14)
for ¢ (W) a scalar (vector) field, and
£vgag = VaVp + VaVi,. (2.6.15)
The statement that this vanishes is the Killing equation [52],
£vgas = VaVg + VgV, = 0. (2.6.16)

A vector field V7 that solves this is called a Killing vector field or Killing vector [52]. Itis customary
to denote a Killing vector field as £7, and I will only ever use £” for this purpose.

Vector fields admit a commutator [V, W]" := £, W*, which is antisymmetric if components of V, W
are c-number valued. Killing vectors are closed under this commutator, so they form a Lie algebra.

Any basis {¢/} of the space of Killing vectors therefore satisfies a result of the form

£eally = fap b (2.6.17)

For the flat static torus, one choice of basis of the Killing vectors is !} = ¢’;, where A runs over
spacetime indices. Thus the Lie algebra of Killing vectors is Abelian for flat static tori.

Since V&3 is antisymmetric, £% is conserved:
B

Vaob® = g°PV, &5 = 0. (2.6.18)
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If X*¥ is symmetric and V, X" = 0, then V,, ({, X*) = V,X* = 0 and §, X" (fx £,X%) is
a conserved current (conserved charge). Since Killing vectors generate symmetries in this way, a
spacetime with more linearly independent Killing vectors than another of the same manifold dimen-
sion may be regarded as “more symmetric”. The Killing vector fields of an n-dimensional manifold
form a vector space of dimension < in (n + 1), and some spacetimes achieve this maximum. These
are therefore called maximally symmetric spacetimes. Examples include Minkowski space, de Sitter
space and anti de Sitter space

Since ¢ is conserved, £:¢ = V. (£%¢). If the behaviour of ¢ at infinity does not result in a boundary

term when integration by parts is used, corollaries include

/x £e¢¢ = 0o /x &%, (2.6.19)
/m £e6 = 0. (2.6.20)

Thus terms of the form £¢¢ in a scalar Lagrangian density make no contribution to the associated
action.

One last relation between Killing vectors and Lie derivatives is that any tensor T satisfies
VT = £:VT (2.6.21)
(see, e.g. Ref. [53]).

2.6.3 The BRST-quantised Einstein—Hilbert Lagrangian density

The Lagrangian density may be written as

Vgl (R =2A) + /|g| (Lar + Lrp) , (2.6.22)

where Lcr is a gauge-fixing term dependent on a real-valued gauge parameter « and Lgp is a FP-
ghost term. As with Yang-Mills theory, the term “gauge-fixing term” is used because varying the
Nakanishi-Lautrup auziliary field obtains a common gauge choice as an Euler-Lagrange equation.
Introducing an auxiliary field as appropriate, two formalisms are possible.

o In the vielbein formalism [40] a mixture of Lie algebra indices and Greek indices are used, viz.

L = hg"' T4V, 5% + aghs™s®, (2.6.23)

Lrp = —ih V™ (197> — 2T 4 7,40) . (2.6.24)

As with Yang-Mills theory, I use lower-case Roman upper Lie algebra indices.
In Egs. (2.6.23) and (2.6.24):

- h,*is a vielbein component;

— h denotes the trace of h,“, not of the term h,,,, discussed in Sec. 2.6.1;

- T = (V,h,* =T, h,®) h*? is called the spin-affine connection;

— the Lie algebra indices are those of the spin affine connection’s Lie algebra;
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- and the fields s%°, 1, 7" are respectively analogous to the fields B, ¢, ¢in BRST-quantised
Yang-Mills theory. While s, is a spin-0 bosonic field, %, 7 are unphysical spin-0 fermi-
onic fields. The FP-ghost propagator is then <0|tab (x) [ (y) |O>

e A second formalism® is used, for example, in Sec. 4.3 of Ref. [39].%¢
The mapping in Eq. (2.6.3) can be rewritten as X, := v/Jz,, where, to simplify Ref. [39]'s

notation, I have introduced the tensor

~PT . SP SO
lpy = OHOZ/

—kgug”. (2.6.25)
The constant k& € R is a gauge choice. It is often written as k = 1 4+ 5! where 3 := (k —1)"".

The de Donder gauge is the choice k¥ = ;5 (equivalently, 5 = —2). Appendix H.3 provides a

1
2
motivation for the de Donder gauge.

The BRST quantisation of perturbative gravity may be written as

Ler = —7EoVH B Khpo + %B“BH, (2.6.26)

Lrp = —700 Ve iLegl,, (2.6.27)

where B#, ¢#, ¢* are spin-1 promotions of the fields B, ¢, ¢ of Yang-Mills theory. The FP-
ghost propagator is then (0|c, (), (y) |0). As in the Yang-Mills case, the Nakanishi-Lautrup
auxiliary field is bosonic, while the FP-(anti)ghosts are unphysical fermionic fields. While
Yang-Mills theory is a theory of an interaction carried by spin-1 bosonic fields A#¢, general
relativity is a theory of an interaction carried by a spin-2 bosonic field g,,,. In both cases,
the Nakanishi-Lautrup and FP-(anti)ghost fields have a spin that is one less than that of the
interaction.

I will work hereafter with this second formalism instead of the vielbein formalism, for several reas-

ons:

e The use of vielbeins and spin affine connections would unnecessarily complicate the use of
general relativity in this thesis;

o The vielbein formalism places two multiplet indices on the fields introduced in the Faddeev-
Popov method, while the formalism I favour requires only one index on each field (this is of
particular convenience in Sec. 3.2);

e While the vielbein formalism requires both multiplet and Greek indices, the alternative I use
requires only one index type, a virtue not even enjoyed by BRST-quantised Yang-Mills theory
(viz. Aj).

I'will also work in the Landau gauge so that ag = 0. This removes the B*B,, term from Ly.

The modes of ¢ (¢*) that cause the infrared problem, the so-called zero modes, are of the form
04 (t) &4 (?A (t) €4), where 64 (1), 7" (t) are spatially uniform unphysical Grassmann-valued scalar
fields. Off-shell (on-shell), the 64, 9" are arbitrary (constrained by equations of motion in the scalars

94, 7).

458y my order of discussion; this formalism is actually the less recent of the two, although its application to the question of
anti-BRST transformation is more recent (see Sec. 2.6.4).

46Again Ref. [39] is formative, but does not consider general curved spacetimes. Thus my Egs. (2.6.26) and (2.6.27) below are
slight generalisations of equations in Ref. [39] that use partial rather than covariant derivatives.
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2.6.4 History of the BRST and anti-BRST transformations, with and without

the vielbein formalism

(2.3.2) and (2.3.10) respectively relate the BRST operator to the BRST charge and the anti-
BRST operator to the anti-BRST charge. Both of the formulations of BRST-quantised perturbative
gravity described in Sec. 2.6.3 admit BRST and anti-BRST transformations of this form. The vielbein
formalism was first formulated in 1979 in Ref. [54], which also specified the BRST transformation in
this formalism. The first source that defined the anti-BRST transformation [40] did so for both Yang—
Mills theory and general relativity, and relied for the latter on the vielbein formalism. I will only
define the BRST and anti-BRST transformations in my preferred formalism. One source for these

formulations is Ref. [48]. Explicitly

[Q7 BH] = 07 [Qa g/{u] - ('g/luv {Q? CM} = CVV CH {Q? C#} iB#’ (2628)
and similarly
@B =0, [@ gl.] = £ag,. (@, &} =2V, {Q, o} =B (2629)
where
B" = —if-c" — B*. (2.6.30)
Note that
£7(A/l — El/vyclu . /1 Vo (l/v (/1 + (I/v (}1 (2.6.31)

is symmetric, because each argument is fermionic. Note also that the covariant derivatives may be

replaced throughout with partial derivatives. Since g,,,, is (anti-)BRST-invariant,

[Qa Hfh;u/] - [Qy guy] - (,g;,uj = V}Lcl/ + Vucu + ECHhull) (2632)

(Q, khyy| = V.6 + V,E, + £zkhy. (2.6.33)

The terms /|g| (R — 2A) that exist in the Lagrangian density before it is BRST-quantised vary by a

total derivative under any transformation of the form
Sgh, = Evgl,, (2.6.34)

and the BRST and anti-BRST transformations are examples of this that take V € {fc, fc}. Other terms
in the scalar Lagrangian density are BRST-invariant, since /7 is BRST- and anti-BRST-invariant and

SO
{Q, V'V khye } = —V"B Y07 Kkhpe — IVFE Y0 Eegh, = Lap|y, o + L = L. (2.6.35)

It can be shown that the anti-BRST invariance of these terms is equivalent to the gauge choice k = 3.

This gauge choice is assumed throughout Ref. [48] (although it does not acknowledge that there is a

4This 1983 paper does not claim originality for the results I summarise in Egs. (2.6.28)-(2.6.30). Kuusk traces the BRST case to
two papers [55, 56] published in 1976 and 1977. The anti-BRST case is of course more recent, as no discussion of anti-BRST
can predate Ref. [46]. Kuusk traces the anti-BRST case to two papers [57, 58] published in 1981 and 1982.
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gauge choice), which correctly claims [@, £F] = 0 in this case. The FP-ghost contribution to £5

is
Lrp = —iVFe (Ve + Vicy — 2kgu, Vac™) — VP kEchyy +1kV 0297 kEchg,. (2.6.36)

Exchanging ¢ with ¢ and multiplying by —1 by exchanging fermionic ghost and antighost factors,

define
Lip = —1(Vuy + ViCu — 2kg,u, VATY) V¥ — ikfshy,, Vi e” +ikg” kEzhgy Vac®. (2.6.37)

Anti-BRST invariance, with the anti-BRST transformation defined by Eqgs. (2.6.29) and (2.6.30), is
equivalent to the condition Lrp — V#BYkH,, ~ VHB'kH w — Lyp (Where ~ denotes equality up to a

total derivative), i.e.
Lip + Lyp ~ VP (BY + B") kHyy = iV* (Ec”) . (2.6.38)

The only terms in Lgp + L5 are those which appear in Lrp or L5 and are not ¢ <+ ¢'—antisymmetric.
Let ~ indicate equality up to such antisymmetric terms and total derivatives, so a replacement h,,,, —

hg,. in the second and third terms renders them ¢* + ¢*—antisymmetric, viz.
iVH (£.8”) khguy = ikhV, (E.€”) = 1khV, (¢’V , & + TV ,c”). (2.6.39)
Thus

Lep ~ —1VFEkc*V o Hy,y —iVFE'V ¢k Hy,y, + 2ik‘V’\E>\V”EV/<;HW
~ iV VG ke H" +1V 6,V ok H"

—iVFEV ok H,yy + 20KV C\V 6 kHM . (2.6.40)
Since [Vq, V.)€ = Ryga HEQ , which when multiplied by ¢* is ¢* «» ¢"—antisymmetric,
Lpp ~ iV, Vo C ke H" +iV €,V ok H" — iV, 8V qe, kHM"Y + 2ikV eV e, s H' . (2.6.41)
Thus Lep + Lip = K, kH", where

K, =i(V,Vat,)c® =iV, Ve, +1V 6, Vac® +2ikV o2V 00

—ic*V, Vac, +iVa6, V,e® =iV, Ve, — 2ikV 6, Vac®. (2.6.42)
Thus anti-BRST invariance is equivalent to

KM ~ VM (£,2"). (2.6.43)
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But

K, =i[(V,Vat) e + Ve, Ve — ¢V, Vae, — V,2%Vac,]
AV, [(Va) € — 8Vae] +i(1 = 2k) [V,ey Vac® — VeV 6. (2.6.44)

The desired result therefore occurs if and only if 1 — 2k = 0, as claimed.
A number of authors [59, 60] mistakenly claim that the action fx Ly is anti-BRST invariant for all k,
where Lo := R — 2A + LB + % B" B,,. However, the above calculation shows that [S, £o] oc 2k — 1.
Also, Upadhyay defines the anti-BRST transformation incorrectly [60]. He replaces my Eq. (2.6.29)
with

(@, B*] =0, [Q, gl,] =£zg],, {Q, e} =2V, e, {Q, "} = —iB", (2.6.45)
i.e. he modifies Eq. (2.6.30) by instead taking B" = —B". (Note that this alternative to Eq. (2.6.30)
is implausible, given the form of Eq. (2.3.22).) Unfortunately, this definition of the anti-BRST trans-
formation is invalid; I now show its Q does not anticommute with @, and does not commute with S
for any k. [ will abbreviate “[X, z] is a total derivative” as “z is X -invariant”. For example, LF¢ is Q-
invariant (i.e. BRST-invariant). The “anti-BRST transformation” of Refs. [59] and [60] is obtainable

from the BRST transformation by the replacement
Q7 BN7 CI‘L; E# — @a _Bu7 EH) C#’ (2646)
so the well-known fact that Q* = 0 implies that @2 = 0. Since

{@ @}, '] =0, {Q "} + [@ {Q }]
=[Q, "V,
= —i(B"V,c' —c"V,B"), (2.6.47)

which is nonzero because the derivative contracts with the B-field in one term but the c-field in the

other,  does not anticommute with Q. Also, since LF is Q-invariant,
Ly = V'BYkH,, —iVF 'y Eag) (2.6.48)
is Q-invariant, so for LF to be Q-invariant would require the following to also be Q-invariant:
LEBC 4Ly o Voo (V“E”ECQ};J + V“c"E;g,{U) =A(c, )+ KV, Hy,, (VFE") " +c+2) (2.649)
with

A=KV (YN phaye +p 3 0) + ¢ € =26 (V7 — kg V, @)V, hy) +c T (2.6.50)

SO

LEC+ Ly =k (VyHpu (V') & = 2kh0NV eV ,¢0) + c 6> © (2.6.51)
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(the term 2kh., (VPE7V ,c7 + ¢ <+ €) has been dropped because it vanishes). Thus

(Q, £+ L£§*] < Bi (¢, ¢) + B2 (h, B, ¢, ¢) + B3 (h, B, ¢, €) + Ba (c, ©) (2.6.52)

with
B1 =707V, (£z9l,) (V'e) " +c 4> T), (2.6.53)
By = kY, H,, (V* (@"V,¢) " +iVFIe"BY —i(VFBY) & — Vi (2°V 7)), (2.6.54)

By = —2kkh? (V, (¢7V )V, +iV,@V,B7 —iV,B'V, & — V'V, (°V,c")),  (2.6.55)

By = =2k (9" £z9],) (V&' V, + ¢+ ©). (2.6.56)

But 22:1 B, is not zero even up to a total derivative. For example, the terms dependent on a

(possibly differentiated) Nakanishi-Lautrup auxiliary field are
ikV,H,, (B"VFe" — VEBYeY) — 2ikkht (V,B"V,¢” —V,B"V c"). (2.6.57)

In light of this, I will hereafter always define the anti-BRST transformation by Eqs. (2.6.29) and
(2.6.30) instead of Eq. (2.6.45).

2.6.5 The zero mode problem in de Sitter space

As with Yang-Mills theory, the non-interacting theory’s zero mode problem is easier to demon-
strate with explicit calculations. The FMP adds an effective mass, so that the Faddeev—Popov sector

without a metric perturbation is
—i(VHe" Zy — M?T¢,) , Zy = Ve + Ve — 2kgu V. (2.6.58)
The field equation obtained by varying the antighost is

0=VH*(Vyue, + Ve, —2kguVoc’) + M2e,
= (600+ V7V, — 2kV, V7 + M?67) co. (2.6.59)

Note the right-hand side of Eq. (2.6.59) includes (O + M?) ¢,, in analogy with the minimally coupled
Klein-Gordon equation (O + M?) ¢ = 0.

Next I do two things to rewrite Eq. (2.6.59). One is to write k = 1 + B!, where 3 := ;%1 was
defined previously in the discussion of an alternative to the vielbein formalism. The other is to use
the identity [V, V, ]V, = R, V", where R, . is the Riemann tensor. Thus

2

0= (555 + 2Ry = VIV, =

V.,V7 + M25§> Co- (2.6.60)

For the rest of my discussion of the zero mode problem, I specialise to de Sitter space with the

nondimensionalisation H = 1, so that mass is also nondimensionalised and R,, = (n — 1) g,~. The
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equation of motion is therefore

2
SV, V7 4 4269, (2.6.61)

Ly (-M? —=2(n—1))c, =0, LY (—p®) :==650-VV, — 3

v

Note that, if the nondimensionalisation H = 1 had not been taken, instead of taking
pr=M?>+2(n-1) (2.6.62)

we would have

p? = M?+2(n—1)H> (2.6.63)

From Eq. (1.2.11), the spatial part of ds? in de Sitter space is the Euclidean ds? of S™ multiplied by a
function of time. It is therefore unsurprising that the FP-ghost propagator in de Sitter space can be
expressed in terms of S™-specific eigenfunctions of certain differential operators. Indeed, let Y27 (z)

denote the scalar spherical harmonic functions on S™; these functions satisfy
oyl =L(L+n-1)Y", (2.6.64)
Then any smooth vector field on S™ is a linear combination of the vectors
W = (L(L+n—1)"2V, Y (2.6.65)

and the vector spherical harmonics A% that satisfy

VHALT =0, (2.6.66)
O0AL = (L2 + (n — 1) L — 1) AL, (2.6.67)
/g;wAﬁo-Al%/U, _ _5LLI 500'/. (2668)

LetG,, (x, :cl> denote the Green'’s function of L}, (—M? —2(n—1)) on S™ (note that this notation
suppresses the Green’s function’s M -dependence). This Green’s function admits a decomposition
into A7 (x) A*}7 (.73/) terms and W7 (x) Wl (x/) terms. These contributions to G,/ (:r:, x/)
respectively comprise a “vector part” GL/V, (az, xl> and “scalar part” Giy, (Jc, x/) (terminology bor-

rowed from Sec. 5 of Ref. [61]), viz.

G (m z) =GV, (:c x) +G5, (:g x) , (2.6.69)
Y (va') = ZkL” M) AL (@) A3 () (2.6.70)

(m, z ) Z ko (M () Wk (g; ) : 2.6.71)

The terminology’s motivation is immediate; the “scalar part” is expressed in terms of covariant

derivatives of the scalar spherical harmonic functions, while the “vector part” is expressed in terms
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of the vector spherical harmonics instead. Solving

LE(~-M?=2(n—1))G,, (x m) - ) (x x) (2.6.72)

p

for ki gives

1

k7 (M) = (L+1)(L+n—2—M2—2(n—1)

(2.6.73)

Since k{“ (M) diverges at L = 1 when M? = 0, the FP-ghost Feynman propagator is infrared-
divergent. For general M, the L = 1 term in GL/D/ (x, x/) is

AL (3) A*ko (m) AT @A (:c) | e
A+0)(1+n—2 —M2—2(n—1) M2

The FMP subtracts out this term to effect an infrared regularisation of GL/V/ (x, z ) ,leaving the L > 2
terms
Lo *Lo !
ke (@) Azke (o)

L;:,U(L+1)(L+n—2)_M2_2(n_1).

(2.6.75)

Note that the infrared divergence in the M — 07 right-hand limit is entirely due to the L = 1 mode,
so the M — 07 right-hand limit of the L > 2 series is an effective zero-mode sector propagator. It is

customary to write the full propagator as

GL/V/ (a:, a:/> = Qiﬁ{z) (ac, x/) + mvﬂvyl Dgff (x, x,) , (2.6.76)
where Ql(f,Z) (:c, xl) is a solution of
LF (~M? —2(n—1) fof) (.2) = ‘T;”('xﬂa (a.2) (2.6.77)

(viz. Sec. 3 of Ref. [50]) and Dgff (x, l’/) is the FMP’s effective zero-mode sector propagator in scalar

field theory.

2.6.6 A comparison of zero-mode problems

The discussion in this subsection is an expanded version of Sec. VI of Ref. [1]. Although that paper
was primarily concerned with the Yang-Mills infrared problem I discussed in Sec. 2.4, and the CMP
treatment thereof that I discuss in Chapter 3, Sec. VI of Ref. [1] discussed analogous concerns in per-
turbative gravity. The infrared limit of the FP-ghost propagator’s behaviour in perturbative quantum
gravity with massive FP-(anti)ghosts has not been discussed much in the literature. However, an
analogous concern regarding the graviton’s propagator has attracted much more interest. This has

resulted in some controversy for the case of de Sitter space, as I will now discuss.

There are two approaches to gauge fixing the graviton two-point function. One approach includes
a gauge-fixing term in the linearised theory, and obtains the propagator > <O|hw (@) h,, (a:/) |O>
The other obtains a graviton correlator after complete gauge fixing. The graviton two-point function
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obtained by the latter method, hereafter the gauge-invariant graviton two point function, is physical
in the sense that its gauge degrees of freedom are completely fixed. This two-point function is
infrared-divergent in the Poincaré patch of de Sitter space [62].

This discovery began the debate of gravity’s infrared issues, and this controversy has some simil-
arities with an issue in the FP-ghost sector. One subtlety was that the infrared divergences of the
two-point function may be expressed in a pure-gauge form [63, 64, 65], and the infrared diver-
gences may be removed entirely with a suitable choice of mode functions [66]. In this sense, these
infrared divergences are gauge-artefact. Indeed, the two-point function has been given an infrared-
finite construction in de Sitter space in some other coordinate patches [67, 68, 69] and covariant
gauges [70,71, 72].

After Faizal and Higuchi introduced the FMP in Ref. [2] to address the FP-ghost sector implications
in 2008, they provided a treatment of the graviton sector in the global patch in 2012, which also
relied on temporarily endowing a field (in this case the graviton) with a fictitious mass [73]. The
resulting gauge-invariant graviton two-point function is known to be equivalent to the linearised
Weyl tensor [74], which is both de Sitter invariant and infrared-convergent in a vacuum state of the
theory that is like a Euclidean Bunch-Davies vacuum [75, 76, 77]. Higuchi and I have previously
observed [1] that, since Ref. [2] obtains the Weyl tensor as its gauge-invariant graviton two-point
function, non-interacting linearised gravity has no infrared problem in de Sitter space.

However, what is contentious is whether interacting linearised gravity retains an infrared problem
for the graviton propagator. Some say it does [78], while others say it does not [79]. One could
similarly ask whether interacting linearised gravity retains an infrared problem for the FP-ghost
propagator. The debate between sources such as Refs. [78] and [79] regarding the graviton two-
point function is analogous to the FP-ghost sector issues I consider in this thesis. However, I will

consider the FP-ghost sector issues in all the spacetimes of interest identified in Sec. 1.2.

In Sec. 2.5.1, I observed that the behaviour of minimally coupled massless scalar fields raised the
question of whether the FP-ghost sector’s infrared problem breaks de Sitter invariance in de Sitter
space. Indeed, one could ask this question of BRST-quantised Yang-Mills theory and BRST-quantised
perturbative gravity. One similarity between the FP-ghost sector’s infrared problems in Yang-Mills
theory and perturbative gravity is that they are both amenable to the FMP [2]. In Ref. [1], Higuchi
and I showed that the CMP can also address the Yang-Mills case, and we suggested it could address
the gravity case too. I prove that this is so in Chapter 4.
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Chapter 3 Applying the CMP to
Yang-Mills theory

The CMP obtains an effective theory in which conserved momenta are set to 0. Should these zero-
momentum conditions be imposed first in the Lagrangian or Hamiltonian? Since the Lagrangian
and Hamiltonian formalisms are equivalent, it would be concerning if it mattered. In Sec. 3.1, I show
the two approaches are equivalent for any Hamiltonian with canonical coordinates and conjugate
momenta thereof.

In Sec. 3.2, I define “zero” and “other” modes for any canonical scalar or vector field and for
their conjugate momentum densities. This furthers the work of Sec. 1.7.2, and allows the explicit
calculations that will obviate the zero mode problems introduced in Chapter 2%.

The CMP’s treatment of Yang-Mills theory will be considered entirely in the Landau gauge. This
treatment begins in Sec. 3.3, where a problem is encountered. I show in Sec. 3.3 that, while the fields
B, ¢are cyclic (and hence so are their zero modes), c(q) is not cyclic. This appears to prevent the CMP
from successfully treating the infrared problem in BRST-quantised Yang-Mills theory. However, this
is in fact not the case. In Sec. 3.4 I show how the issue of the non-cyclic ¢y can be addressed.
This requires a change in the choice of fields in terms of which BRST-quantised Yang-Mills theory
is expressed. In Sec. 3.5, I show that this choice results in all zero modes being cyclic. In Sec. 3.6, I
show that the Lagrangian and Hamiltonian each gain an extra term as a result of this choice. I do not
impose the synchronous gauge in Secs. 3.5 and 3.6.

In Sec. 3.7 I show that, in spacetimes for which free integration by parts is possible (so that the FMP
may be used), the FMP is perturbatively equivalent to the CMP.

In Sec. 3.8, I complete the discussion of the flat static torus and de Sitter space that I began in Sec. 1.8.
In Sec. 3.9, I discuss several issues that this chapter leaves unaddressed. My treatment of these issues

will occur in appropriate appendices.

3.1 A note on the CMP

Suppose H is a Hamiltonian with conserved conjugate momenta 7r§ of cyclic canonical coordinates

¢! and non-conserved conjugate momenta 7 of non-cyclic canonical coordinates w’. We may write

H=H (7r§-*’7 s, W, gf) , (3.1.1)

#80One exception is the infrared behaviour of the graviton two-point function, which was discussed in Sec. 2.6.6 but is not a
concern hereafter.
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and the CMP sets each $ to 0, obtaining an effective Hamiltonian
He:=H (7%, 0, w', ¢'). (3.1.2)
The Lagrangian and effective Lagrangian are respectively

L= (w ¢) + ¢S (w ¢> —H (W;J, 5, W, g’) : (3.1.3)
Lett = & P¥ (w 4”) —H(x%, 0,0, () (3.1.4)
(with implicit summation over i, I), where II¥, H?, P express conjugate momenta as functions of

canonical coordinates’ time derivatives (and, possibly, other variables not shown herein). These

functions are obtainable implicitly from the Hamilton’s equations

i = Orll : (3.1.5)
Orm’ =P, 15=0

i = rll , (3.1.6)
aRTrff wf:Hf,ﬂ?:Hﬁ

: H

= Or , (3.1.7)
OpTs
RO e =my, nf =1

where Jr denotes right-derivatives. A consistent use of right-derivatives avoids a need for sign

changes for fermionic fields. For example,

C?LC _(c1)fe) Or (3.1.8)
8L7T] 8R7T[

where f (( I ) is the fermion number of (. Thus

OrL LORIY . RIS
e GV UCRA R R R
IrC IrC IrC
 ogH Oplly  OH Orlly
Opmy re=t1e, ré=n1$ Op(’ 3R7T§ RO =T1% 7S =TT Ir¢!
= (-1
4l - OrH OrlLY - OrH OrITy
Orm? mp=tty, ms=n1$ | OrC’ aRWcC/ T =TI, w$ =TT$ Or¢!
= (-1 s, (3.1.9)
opL
8L<'1 _ § (3.1.10)
L

Hence L is ¢!-independent if and only if TI§ = 0, which is the condition the CMP imposes. However,
such vanishing conjugate momenta are then also conserved, so the ¢/ are cyclic in L. The CMP’s
effect can therefore be equivalently stated as either the replacement of H with H or as all canonical

coordinates with conserved conjugate momenta in H’s Hamilton’s equations being obviated from L.
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We may solve the equation TI§ = 0, say as (! = Z! () so that TI§ (w, Z (w)) = 0. Substituting
¢! = 7' (W) in L gives

L =o' (w Z (w)) iy (H7 <w Z (w)) L0, W, gf) . (3.1.11)
Eq. (3.1.6) implies
Wt = 8Rbi , (3.1.12)
Or; me =15 (&, Z(w)), =0

so II¥ (w, Z (w)) = Py (w, ¢ ) and L = L. Imposing the CMP’s conditions 15 = 0 in the
Lagrangian formalism is therefore equivalent to instead doing so in the Hamiltonian formalism. This
is not trivial; it is in general invalid to use equations of motion to identify conserved charges and then

set these to specific values in the Lagrangian formalism. For example, the classical simple harmonic

oscillator of Lagrangian L = $mi? — 1kz?, which has Euler-Lagrange equation m# = —kz, should
not be rewritten using the conserved Hamiltonian H = 1mi? + 1ka?. This approach could achieve
L = H — ka* (which would have a spurious Euler-Lagrange equation kx = 0) or L = mi? — H
(which would have a spurious Euler-Lagrange equation m# = 0).

Eq. (3.1.4) may be restated as

Hes = &' (w é) ~ L. (3.1.13)

Since we may begin by obviating zero modes from either the Lagrangian or Hamiltonian, we can
think of L as the Lagrangian that results from beginning in the Lagrangian formalism. Then Eq.
(3.1.13) obtains a “Hamiltonian” from a Legendre transform that runs only over non-cyclic canonical
coordinates. In other words, H is a Routhian of L that excludes cyclic coordinates’ ¢p terms from
the Legendre transform. (This is equivalent to imposing the conditions 77% = 0.) The advantages
in classical mechanics of using a Routhian formalism that separately treats cyclic and non-cyclic
canonical coordinates are well-known. A brief overview thereof is provided in §41 of Chapter VII of
Ref. [80].
The above calculations concern the Lagrangian and Hamiltonian of a theory with canonical coordin-
ates and their conjugate momenta. For Yang-Mills theory and perturbative gravity, a respective
promotion w’, ¢! to quantities of the form B4y, (o) for fields ¢ is necessary. Note that the momenta
are still not momentum densities, since it is momenta, not momentum densities, that can be con-
served. For example, if ¢ is a non-interacting massless Klein-Gordon field [, V%4 is its conserved
conjugate momentum.
The promotion to classical fields is trivial. However, if the fields are quantised there is an additional
subtlety. For each conserved momentum IT§ set to 0 in the CMP, we demand any physical state |¢))
satisfies fr§ [) = 0, where the operator fr§ is the quantisation of 77?. The formal wave functional
U (C I ns, ) then satisfies

v

s =" (3.1.14)

Thus ¢/, 7§ are also obviated from the Schrodinger wave functional formalism, viz.

(¢ nf) > w(nf=0). (3.1.15)
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3.2 Defining zero modes of several types of field

In Sec. 1.7.2, I presented an explicit definition of the zero mode of a canonical scalar field, which
I denoted x. This was an improvement over the weaker statement that the zero mode should be a

spatially uniform contribution to the field*, viz.

X = X(0) + X(+)» 9iX(0) = 0. (3.2.1)

In Sec. 2.6.3, I made an analogous statement about vector fields. If a decomposition of these fields

into their “zero” and “other” modes is sought, it will be of the form
A A
X" = X{o) + X(4y X(oy € {X ghloiX? = 0}. (3.2.2)

This raises the question of how to choose the X (such as the 64 for ¢* = ¢*, or 7" for ot =),
which are named for the upper-case x. While X** constructions need not concern us until Chapter
4%, T will mostly (see the discussion of Eq. (3.2.25) below) answer the question now for a reason
that requires some explanation. Another issue I have left unaddressed heretofore is the conjugate
momentum densities of quantities such as ¢y, ¢(). In the construction I present below, it is shown
that the conjugate momentum density of a tensor field 7" admits an analogous decomposition of its
own. This decomposition is expressible in terms of the conjugate momentum densities of T ¢, T{).
Although I have no general zero mode decomposition of arbitrary tensor fields, I can provide a
relation between the zero/other mode decompositions of canonical tensor fields and their conjugate
momentum densities.

The (anti)commutators of quantised canonical fields and their quantised conjugate momentum dens-
ities are axiomatic in any quantum field theory, providing a generalisation of Eq. (1.4.10). Herein I do
not place hats on these quantised fields, because this would unnecessarily clutter the notation, and
would not emphasise that the mode decompositions I will present are intended for both quantised
and classical fields. With that said, a general formalism for quantum field theories may be given.
Consider fields ¢ (¢, y)°!, either all bosonic or all fermionic (these two special cases can be analysed

separately.) Let 7, (, x) denote the conjugate momentum density of ¢° (¢, y); then

[ﬂ'a (t7 x)a ¢b (ta Y)]i = _iCSZ(S (X, Y) (323)

(where the commutator or anticommutator’s sign is determined by whether the fields are bosonic or

fermionic). Next I need two sets of indices, which I denote by lower and upper case Roman letters

#In Sec. 1.5, I discuss a mode decomposition of a quantised scalar field on a flat static torus. This mode decomposition
features one spatially uniform scalar field. However, before Sec. 1.7.2 it was not obvious what value this mode should have
for a given field. Note in particular that a result of the form x (x) = X (o) (t) + X () () is not unique, as the transformation
X(0)s X(+) = X(0) + F (1), x(4) — F (t) preserves this form of x.

50The existence of a vector field multiplet AZ in Yang-Mills theory will, it turns out, not require the zero modes of vector fields
to be treated herein.

51My choice in Sec. 2.6.3 to avoid the vielbein formalism ensures that all tensor-valued canonical fields considered in this

thesis have exactly one index. Had I chosen to work in the vielbein formalism, the “index” of ¢® would be interpreted as
having multiple components in general.
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beginning at a, A.>* Throughout I implicitly sum over repeated indices, be they both lower case or

both upper case. I now consider quantities of the form

mmwm:ﬂfww/hWWGMumm@mm
¢&ﬂuy>ﬁ:G%<ayy/d"*zEfu,n¢da,m,
Ta(4) (t, X) == 74 (t, X) — Ta(0) (¢, X),

(bl()-{-) (ta Y) = ¢b (ta y) - (rbl()()) (tv y) )

with functions F!, G satisfying

/d"flef (t, 2) G% (t, z) = 0.

I'will call quantities with () subscripts other modes.

By inspection,

m@mx»&wwhz—mﬂum/M*Mﬁwww%mm>
= 7iFaA (tv X) G{)A (ta Y) s
[wa (t, x), ¢y (t, y)} , = —iGa(ty) / d"'zFg (t, 2) 696 (x, 2)

= _IFLf (ta X) GZ (ta y) ;

{%(o) (t, %), ¢y (¢, Y)} LT —iFP (t, X)/d”_le% (t, w) FA(t, w)GY (L, y)

= _16§Ff (ta X)GZ\ (t7 Y) - —IF;‘ (ta X)GZ\ (ta Y)

In summary

[7711(0) (t’ X) ’ ¢b (ta Y)Lt = [71-@ (tv X) ’ ¢l()o) (ta Y)]:t = [ﬂ-a(o) (t7 X)a (Z)l(}o) (t7 Y) L

= _iF;‘ (t7 X) Gil (t7 y) ;

SO

Ta(0) (t7 X) y ¢l()+) (ta Y):| 4 = I:Tra(Jr) (ta X)a (bl()o) (tv Y):| I =0.

The above construction obtains

Ta (ta X) = Ta(0) (ta X) + Ta(+) (ta X) y

¢b (ta y) = ¢I()O) (tu Y) + ¢l()+) (t7 y) 3

(3.2.4)
(3.2.5)

(3.2.6)
(3.2.7)

(3.2.8)

(3.2.9)

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.14)
(3.2.15)

52 Al1 previous associations of specific types of index with specific meanings, such as the use of a to denote Lie algebra indices,
is hereafter dropped. In this context, indices may denote Lie algebra indices or spacetime indices. I will discuss specific

possibilities towards the end of this section.
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and the canonical momentum densities of gbl(jo), ¢l(’ ) are respectively proportional to 7g), my(+). The
crucial implication for the CMP is this: if ¢z(;0) is cyclic, then its conjugate momentum is conserved
and may be chosen to be 0, so that the proportional quantity () also vanishes.

The special cases relevant to this thesis can now be discussed; I recall the volume factor defined in
Eq. (1.2.9).

e The previous result for ¢ in scalar field theory (viz. Eq. (1.7.4)) is a special case of Eq. (3.2.5).
Consider a single field ¢, so the indices a, - - - each have only one value, and such indices can
be dropped. The indices 4, - - - may also be dropped from F, G4, by choosing

9% (¢, %) VIg (¢, x)|

F(t,x)= a0 , G(t,x)=1. (3.2.16)

A few key results are worth noting. Zero modes of canonical scalar fields are spatially uni-
form, so may always be moved outside spatial integrals, including those which appear in the

definitions of such zero modes. Hence

(X0) (9 = X (3.2.17)
(X)) = (X = X)) =0, (3.2.18)
(X(O)Y(Jr))(()) = X <Y(+))(0) =0. (32.19)

The dot and cross products for multiplet-valued canonical scalar fields therefore satisfy

(X0 ~Y(+))(0) =0, (3.2.20)

(X(0) x Y()) () =0, (3.2.21)

(X -Y) ) = X0 - Yoy + (Xe) - Yie) (g (32.22)

(X x Y)(O) = X(O) X Y(O) + (X(+) X Y("‘))(O) . (3.2.23)

o Another case of interest is a vector field ¢*, so the indices a, - - - are simply spacetime indices.

This time both indices of F, G¢ are preserved, with upper case indices denoting the Lie

algebra indices of Killing vector fields. Explicitly

FA (t X) _ 900 (t7 X) \% |g (t7 X)|77,’:‘ (tv X)

20 , G (t, x) = &4 (¢, x), (3.2.24)

where the ¢ are a basis of the Killing vectors and the 7} are chosen so that

0 (4 x -
/d”_lx{g t, ‘)/(t)g (t, ¥)| s (t, x) 77;‘ (, x)} =05, (3.2.25)

Finding 7/} that satisfy Eq. (3.2.25) is a task I leave for Sec. 4.2.
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3.3. RELATION BETWEEN CONSERVED CURRENTS AND THE BRST AND
ANTI-BRST TRANSFORMATIONS

3.3 Relation between conserved currents and the BRST and
anti-BRST transformations

The Euler-Lagrange equation obtained by varying A* requires the inclusion in the Lagrangian dens-
ity of those terms that predate BRST quantisation. However, this Euler-Lagrange equation is of no
concern herein, and all other Euler-Lagrange equations are deducible entirely from the other terms.

The scalar Lagrangian density may then be taken as®
Ly =-V,B-A"—iV,c- DFc (3.3.1)

in the Landau gauge. Attempting to obtain an Euler-Lagrange equation by varying A* now would
be illegitimate; A* no longer generates a stationary action principle.

One Euler-Lagrange equation is V,, A* = 0. This is a conservation law; the Noether charge is

Qa = /x A" =V (1) (N?A°) - (33.2)

Setting Q) 4 = 0 (the grey note in Sec. 1.7.2 explains why this is possible) gives

(N2A?) ) =0, A% = N2 (N?47) . (3.3.3)
Similarly, V,,D#c = 0 gives the Noether charge
Qpc = / DO = (NQDOC) ) (3.3.4)

which T also set to 0. The fact that B (¢), and hence B(g) (¢(0)), is cyclic implies their conjugate
momenta are proportional to these vanishing Noether charges, and so B(g), ¢ may be obviated.
Unfortunately, the same is not true of ¢(g) unless ¢ = 0. It appears undifferentiated in L because of

the term

/ (—quHE- A x C(O)) = —iQC(O) : / AP x V,c= —iQC(Q) : (N2AH X Vué) 0)

= —igeq) - { (N24° x Vo2) ) + (V24" x V2) |
— —ige) - { (N24°) ) x Bots) + (N2A) ) x 02y } (3.3.5)

0

Here the results (N24°) . = 0, 8;¢¢) = 0 have afforded some simplifications. However, the result

(0)
is still clearly non-trivial for nonzero ¢. This is unsurprising, since

0Ly 0

a4 9.a (
86(0) 60(0)

—igV,c- A* x ¢) = 3ia (—ige- A* x V,e) = —ig (A* x V,©)" = —igV,, (A" x©)*.
c
(0)

(3.3.6)
Although V, (A* x ¢) is a total derivative, c- V,, (A" x €) is not, so adding a total derivative to £, to

choose a different Lagrangian density that describes the same action will not suffice to obviate c(g).

53This dropping of “classical” terms (i.e. those which appear even without BRST quantisation) minimises clutter in my
equations. An alternative approach is to use the subscript  for such “classical” terms, e.g. the right-hand side of Eq.
(3.3.1) can instead be thought of as Lo — L1, where Lq is the full BRST-quantised Yang-Mills Lagrangian density. Similarly,
the Hamiltonian H that I use in Sec. 3.5 could instead be written as H — H. The Legendre transform provides an expression
for H + L, which in a fuller treatment should also include a term g A, 74 T
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An alternative way to think about this issue is by comparing conserved charges to momenta. The

reduced momentum densities of B%, ¢ are respectively

0

wp = —A%, we = —igD’. (3.3.7)

Thus
QA = —/wB e —\/dnilxﬂ'B’ QDC = é/wzz é/dnilxﬂ'g. (3.3.8)

In Sec. 2.4.2 I showed that in the Landau gauge V, D*¢ = 0, providing a further Noether charge I set

to 0, viz.

Qpz == /x D% = (N*DV) 0 (3.3.9)

Indeed, the three Noether charges set to 0 are

QA7 QDC = [Qv QA} 5 QDE - @1 QA] 5 (3310)

so imposing the conditions Q [¢)) = 0, Q |[¢)) = 0, Q4 [¥)) = 0 on all physical states |¢/) automatically
obtains Qp. [¢) = 0, Qpz [¢) = 0 for all physical states |¢»). However, in the interacting case Q pz is

not proportional to [ d"~'xm., since

We

= v (—iV,e- VHe) =iVYe, (3.3.11)

which differs from iD%, i.e. [ d"~!'xm. is not conserved, unless ¢ = 0. So not only is the zero mode
problem harder to explicitly describe in the interacting case; it is also harder to treat. The entire
strategy of the CMP hinges on identifying fields conjugate to conserved charges so the latter may be
set to zero, as is possible (for example) in the relation between B and ) 4. Our problem is that Q) pz
does not seem susceptible to this line of attack.

Yet another way to think about this is in terms of which transformations preserve Ly. Spacetime-
constant shifts in either B or ¢ do this, because these fields are cyclic. But a spacetime-constant shift

dcin c yields

0DFe = qA* X dc, (3.3.12)

§ (—iVyc- D'e) = —igV ,c- A" x 6c =1iqV, (¢ x dc) - AM. (3.3.13)
It follows that Ly is preserved if we also make the transformation
8B = iqe x dc. (3.3.14)
The simultaneous transformation of B, c in this way yields

3 (cq)) = (8¢) () = de, 6 (B —ige x c(g)) = 0. (3.3.15)
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3.4 Redefinition of the Nakanishi-Lautrup auxiliary field

To say that c(g) is not cyclic is a comment on partial derivatives of £y. However, partial derivatives
are defined, and computed, by adopting appropriate conventions concerning which other quantities
are held fixed. If these conventions are changed, a new family of partial derivatives result. That is
the motivation for the calculations in this section.

I now define a non-local field>*

B:=B-— iqc X ¢(g), (34.1)

so that a spacetime-constant shift in any one of B, ¢, ¢ preserves L if the other two fields are held
fixed. This motivates the view that these fields are, in a sense, a more natural basis for the Yang-Mills

formalism. To rewrite L in terms of E, one need only note that
B® = B* +iqf e cfy,. (3.4.2)

Holding B, ¢ fixed is not equivalent to holding B, € fixed, since varying c(0) while holding ¢ fixed
varies B — B. The partial derivatives with respect to fields in Yang-Mills theory are therefore not
the same if the theory is written in terms of E, ¢, ¢ as they are if it is written in terms of B, ¢, ¢. This
change in the choice of fields changes one of the three fields, and two of the three momenta. One

way to show this is by rewriting £, in terms of B, ¢, ¢, viz.

Lo ==V, (B+ige x ) ) - A* = iV,0- (9c + gA¥ x o)
= -V,B-A" gV, (€ x c(p)) - A, —iV,E- VFe—igV,c- A" x ¢
= -V,B- A" —iq(V, (€ x ) — Ve xc)- A, —iV,z- Vie
= —V,B- A" —iq (¢ x V,c) — VT % cy)) - A —iV,E- Vie. (3.4.3)
In Sec. 3.3, the original formalism obtained the reduced momentum densities
wp = A", @I = —iD%, =" = iV'e. (3.4.4)

C

However, the attempt to obtain reduced momentum densities from Eq. (3.4.3) yields

wp=-A"=-N"2(N?A%) _,, (3.4.5)
w2 = —iV%c —igA° x ¢(4)
= wp™ +igN 72 (N?A°) ) ¥ c(o), (3.4.6)
5
wrgew =iVl +iq SVoc / V()C(O) A x e (34.7)

54Since ¢(0) is non-local by construction, so is the field defined in Eq. (3.4.1). An analogous construction of a non-local field
occurs for perturbative gravity. I will provide this in Eq. (4.4.8).
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The second and third results show momentum shifts, and in the third result’s case a further calcula-

tion is required. Since

%/x(')ocm) AV x = %/x@o (/d"_lyT (t,y)c(t, Y)) A% (t, x) x 2 (t, x)
= %/d”‘lyT (t,y)c(t,y)- /XAO (t, x) x e(t, x)
T y)~/xA0(t, X) X 2 (t, %)

_4EEQQHN%NXamNﬂ, (3.4.8)

- N (ty)
the final reduced momentum density is

iq (N24° % 9) (1) iq (N24° % 9) (1)

new 70— old
= = t 4.
we (L y) =iVie(t, y) + NZ(y) weC (t, y) + NZ (L y) (34.9)
Since (NZAO)(O) =0,
new:v70— | — — old . — _
ViV + igN 2 ((N2A0)(+) x c(+))(0) = 4 igN~? ((NQAO)(+) X c(+))(0) ) (3.4.10)

I previously observed that a spacetime-constant shift in any of B, ¢, ¢ preserves Ly. Such shifts
are absorbed into zero modes, but a more general shift in a zero mode is possible; specifically, the
shift may have any time-dependence. In Eq. (3.4.3), any undifferentiated E(o), ¢(0)> C(0) need to be
considered carefully. In fact E(O) never appears undifferentiated, and neither does c() (although ¢,

does). The term in £, proportional to ¢(g) is
—igc(o) % Ve - A*. (3.4.11)
In L, this becomes
igc(g) - ( /x A°> x doc(o) = iqVe(o) - (N?A?) ) X Doc(o) = 0. (3.4.12)

So the zero modes (N 2AO) E(O), €(0), C(0) are completely lost from the E, ¢, ¢-based Lagrangian

(0)’
formalism in the Landau gauge when the conditions

Q) =0,Q ) =0,Qaltp) =0 (3.4.13)
are imposed for all physical states |1/), which also obtains
Qpe[¥) =0, Qpz[¥)) =0 (3.4.14)

for all such states.

A verification that the same is possible in the Hamiltonian formalism may seem unnecessary at

this point. However, I do this in the following section, because it facilitates a treatment of the
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perturbation-theoretic comparison of the FMP and CMP for BRST-quantised Yang-Mills theory.

3.5 The Hamiltonian density without zero modes

In Sec. 3.5.1, I show that the field transformation B, ¢, ¢ — B , ¢, € preserves the BRST-quantised
Yang-Mills Hamiltonian. What is more, I show that a broad class of field transformations (including
B, ¢, — B, ¢, ©) of a broad class of Lagrangians (which includes the BRST-quantised Yang-Mills
Lagrangian) preserves the numerical value of the Hamiltonian obtained from the resulting Legendre
transform. This implies the B, ¢, ¢-based BRST-quantised Yang-Mills Hamiltonian can be rewritten
in terms of B, ¢, ¢ by using Eq. (3.4.2).

However, the fact that the reduced momentum densities are different in the two formalisms intro-
duces an important subtlety. One valid way to obtain #, in terms of phase space fields is to write it

explicitly in terms of elements of
U {Tw: 0T, Ty, T} (3.5.1)
Te{B,c,c}

and to then use expressions for “new” reduced momentum densities to remove all lower time deriv-
atives. I use this method to obtain #, in Sec. 3.5.2, where I show that setting conserved charges to 0

obviates zero modes from H,.

3.5.1 The response of the Legendre transform to a field transformation in the
Lagrangian

Suppose a Lagrangian L depends only on fields and their time derivatives, with L/0t = 0. The

BRST-quantised Yang-Mills Lagrangian is of this form. Consider a field transformation satisfying

¢ = q: (Qj), (3.5.2)
L= Lq(ai 4i) (3.5.3)
=Lg (Qj7 Q]) . (3.5.4)

The definition of B in terms of B is of this form. Define a matrix

0q; 04¢;
= = 355
SO
4 = M;;Q;, (3.5.6)
oL oL

—=—— (M), 3.5.7
5 = a5 M (357)

oL . oL . oL . 0L
- — =Q;M;; (M™Y), —— =Q.0i— =Q - —. 3.5.8
q 99 Qj J( )k‘z 20, Qj k]an 2Q ( )

Since L, = Lg = L, the expressions L, Lq for L have the same values of the associated Hamiltonian
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H:q-—q—L:Q-—.—L. (3.5.9)

3.5.2 The BRST-quantised Yang-Mills Hamiltonian

Without the field transformation we get

wp = —A°, (3.5.10)
w, = id"¢, (3.5.11)
we = —i0% —igA° x ¢, (3.5.12)

H:/(@LB-A”+18#E-V”c+iq6#E-A“><c

“B-A° 4 & (~iV0% —igA® x ¢) — iV’ - é) . (3.5.13)

The first and second lines of the parentheses’ contents in Eq. (3.5.13) are respectively the contribu-

tions from the Lagrangian and B - 75 + ¢ - mz — 7. - ¢. Eq. (3.5.13) simplifies to

H= / (0;B(s) - A" +10;¢(4) - Ve +iqdic(yy - A" x ¢ —iV e ¢) . (3.5.14)

The result B = B + igc x c(p) implies

By = Byo) +i4%(0) X c(o), (3.5.15)
By = §(+) +1gC(4) X ¢(0), (3.5.16)
aZ'B(_,_) = 5i§(+) + iqai@(+) X €(0)- (3.5.17)
Thus
H= / (aié(ﬂ AT 41084 - Vie+1ig0iT4) - A’ x cqy —iVE- e) . (3.5.18)

Hereafter all reduced momentum densities that appear are “new”, e.g. w. denotes w?*" instead of
w94, These quantities must be used to remove quantities of the form 9,7 from H, but Hamilton’s
equations may still be deployed if expressions of the form 9,7 survive. Since each @~ is expressible
in terms of some VT, the crux of the matter is rewriting Vo, V? in terms of V°, V ;- Indeed, one may

derive

¢ = N? (iwz + qwg X c(4)) + N'Oici4), (3.5.19)
Vie=—N"(iwz + qwg x c(4)) — 77 9jc(1), (3.5.20)
&= N (~iwe +q (w5 % 9) ) ) + N'Oiece), (3.5.21)
Vic= —N (—iwc +q(wg x©) (0)) — A T0;E . (3.5.22)

The reduced momentum densities are
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wg = — A, (3.5.23)
— (VOE 4 gN2 (N2A° % F)(o)) : (3.5.24)
we = —i (VU(: +qA° x C(H) . (3.5.25)

Egs. (3.5.24) and (3.5.25) may be rearranged to obtain

VO =iws + qWg X C(4), (3.5.26)

V% = —iw, + ¢ (wg x ©) © (3.5.27)

Egs. (1.7.15), (1.7.16), (3.5.26) and (3.5.27) then imply Egs. (3.5.19)—(3.5.22).
Egs. (3.5.18)—(3.5.21) and (3.5.27) imply

H= / (i@iE(_,_) . (—Ni (iwz—k quwg X C(+)) — ’yij({)jCH_)) + 8i§(+) CAT 4 iq3¢E(+) CAY X C(+)

—i (~iwe +a (5 % ©) ) - (N (iwe + a % 1)) + N'diey)) ) - (3.5.28)

This result has no explicit dependence on E(O), c(0) and satisfies the Hamilton’s equation

oH
(95(0)

ey = —

=g / (@5 %) ) (N? (iwz + g % (1)) + N'icqs))

85(0)
0 _ _
d¢(o) /x <w§(o> XG0 T Thy, X C(+)> doc

= 7iq878 {C(O) cwg X /800}
) @ Jx

= —quwE(O) X (Nzﬁoc)

=iq

o (3.5.29)

Since 7z, is proportional to a conserved quantity that may be set to 0 on all physical states, 7z, can

be chosen as conserved, and hence also as 0, on all physical states.

3.6 Extra terms in the Hamiltonian and Lagrangian

The Hamiltonian and Lagrangian may be written in the form

H=Hy(B,c,¢),L=Ly(B,c7), (3.6.1)
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as linear operators that are not ordinary functions because the fields B, ¢, ¢ are differentiated in some

cases. The CMP’s zero mode obviation obtains results of the form

H = H, (B(Jr)’ C(4); E(+)) + e (B(Jr), C(4)> E(+)> , (3.6.2)

L=1L (B(+), C(4)s 5(+)> + [t (B(+), C(+4)s E(+)) . (3.6.3)

In particular, none of the terms on the right-hand sides of Egs. (3.6.2) and (3.6.3) depend on any zero
modes. The purpose of this section is to compute HXr, [extra,

By inspection of Eq. (3.5.28),

Hera — / —iq (wé X E) 0" (NQQZUE X Cyy + NiaiC(Jr)) . (3.6.4)
Imposing the condition

Dh, ()= / d"7IxY () wp (2) = = (N?A°) () =0 (3.6.5)

throughout affords the replacement

WG = TR, TP T Th, = —-N—2 (NQAO)H) , (3.6.6)
so that
He — g (wém X 6(+))(0) . /x (qN2wE(+) X ¢4y + Niﬁic(ﬂ) , (3.6.7)
a result that contains no zero modes of B, E, ¢, ¢ or their derivatives.
A further result, which is unsurprising given the nature of the Legendre transform, is that
Lo = — gexta, (3.6.8)

To verify this, I begin by defining Ll(:(;”) = —i [V, -D"c(4) and similarly with Ll(:(l),o)7 Lgo), Ll(:;fr),

so that
__ 7 (00) (0+) (+0) (++)
Lep = L9 + LOP 4 1G04 LG4, (3.69)
The condition Q) p. = 0 implies
LY + LY = ~iduz) - Qe = 0, (3.6.10)
Lip = LSY + LGP (3.6.11)
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The condition Q) p. = () pz = 0 may be rearranged to obtain

Bocio) = (E)0) = — & /x A xe=q(wp,, xew), - (36.12)

/x Dlc(yy = —qV (N?A% x c(4)) ) (3.6.13)
B0y = q (w B, X z(+)) o’ (3.6.14)

/ Dy = —qV (N?A° xe(y)) o - (3.6.15)

The term LSSH is present whether £ is written in terms of B, ¢, ¢ or é, ¢, G, SO
o = L0 4 Lo+ / VB A"

- _i/x (Vi) - Dreqo) + 4V (€ % ¢0)) - A¥)

= /x (V1) - doco) + 4 { Vi (¢ X c0)) = Vilrs) X o)} - AY)

= /x (V1) - doco) +a {00 (Fr0) X €(0)) + ) % Doco) } - A7)

- _i/x (V72(4) - Docqo) + () * Doco) - A”)

— i00c(o) - /x (Vs + gA x 2(p))

=1i0oc(0) - /x D%,

= 7iq/x (quwém X ¢4y + Niaic(ﬂ) - (N2A° x é(+))(o)

=1igq (N?A" x EH—))(O) . /x (qNQzﬂém X ¢4y + Ni8i0(+))

=l (w§<+) x E(J“))(o) . /x (qN2w§(+) Xt Niaic(“)

= Ho, (3.6.16)

3.7 Comparison with the FMP in perturbation theory

The aim of this section is to obtain the effective action associated with the contribution of zero
modes to the FMP’s modified propagator, and then verify that this effective action is identical to

one obtainable from the CMP. I obtain an effective action in the FMP (CMP) in Sec. 3.7.1 (3.7.2).

3.7.1 The perturbation theory of the FMP

The Feynman propagator is a perturbation-theoretic tool constructed from the non-interacting theory.
In this case (¢ = 0), the FMP begins by granting c, ¢ a common small mass, say M/ > 0, and then

decompose ¢, ¢ into field modes, viz.

¢(@) =3 [copn (@) + ol ()], (2) = 3 [Fopo (2) + 2o} ()] (3.7.1)

[ea g
where ¢,, ¢, are spacetime-constant annihilation operators, and the modes ¢, are complex-valued
functions of spacetime. The above decompositions sum over all modes, including zero modes, which

in the M — 0" right-hand limit become modes of zero frequency. The label o = 0 is used for the
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zero mode, which is then ¢ (t). (Note that the argument of ¢y may be taken as ¢ rather than z, by
definition.) The o # 0 modes are of positive frequency even for M = 0, and are hereafter called
positive-frequency modes. These operators c,, ¢, are normalised by Eq. (2.4.2), provided that the
canonical conjugate momentum density is defined using the left functional derivative, viz.

orL . orH

= Gy = — 3.7.2
Ty 5.7 Ty 5% (3.7.2)

(the first equation is a definition while the second equation is a Hamilton’s equation.)

The time-ordered FP-ghost propagator is a Green’s function:
Gr (3:, x/) =T <O|c (x)e (a:/> \O>
= —if (t — t/) Z(pa () ok (x/)
—if (t —t) Z%( ) o (2). (3.7.3)

This can be decomposed into a “zero mode” part and an additional term, viz.

Gr (2,2") = Gru (6.4) + Gre (2.2'), (3.7.4)
Gr) (t, t') = —if (t — t') vo (t) (t)
—if (t’ . t) o (t) oi (1), (3.7.5)
Gr) (:c, :c/> = —if (t —t ) %;gog o ( )
o#£0
—if (t - t) 3 e ( ) o (2). (3.7.6)
40

Hereafter we impose the synchronous gauge, so the zero mode of a minimally coupled massless
Klein—Gordon field is of the form A+ B f. One important result, if A/ > 0 and appropriate spacetime

symmetries are imposed, is that ¢ () takes approximately this form with

A= Cﬁl B = —icoM, ¢, ¢5 € R. (3.7.7)

(For example, if de Sitter invariance is demanded in de Sitter space, the massive result is A +
B ( f- i (0 + f2)) + o (M) .) The Klein—-Gordon inner product of a complex-valued spatially uni-
form h (t) with itself is

(h, hygg =1 / (h*V°h — hV°R*) =iV (t) (R*V°h — hVOh*). (3.7.8)

The Klein—-Gordon normalisation of ¢y (t) is the condition
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(&1 . C1 .
1= <7 M M >
i 1Co f — 1Co f G

((7 + ICQMf) (<ie2Mf) = (57 —ieaM[) (ie2M0°F))
A" 'xy/n (x)
= 2a"_1clcgvof/d”_1xm: ZClcg/d”_lxm, (3.7.9)

since V° = V. Equivalently, cicy = i Thus

po(t) 05 (1) = (55 —ieads () (55 +ieadt s (V)
7 (¢

L dMr @ f (1) +iees (£(¢) - £ )
F A0 () s (06) 1)
(3.7.10)
—19(t—t)<po(t)g0f§(t>:0 t—t)
y {f(tzx;f(t) —1<J\Zi+i\4jf(t)f(t)>}
(3.7.11)

x {f(t) QVJ: () —i<]j2+i§f(t)f(t’)>}, (3.7.12)

f<t)2‘;cf(t){20(t—t) 1}—i<z\ci+2§f(t)f<t)>
F(E)=r@) / ,

IO G ey

1<ACE2 Tif()f(’)). (3.7.13)

2 /
Note that 17z + % ) f (t ) is the sum of two terms. One of these terms does not depend on ¢ or
1
’ 2 ’
t ; the other term vanishes when M = 0. Therefore, 1z + % f@f (t ) does not contribute to time
1
derivatives of G (o) (t, t/) in the M — 0% right-hand limit. Thus
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oG (11) = L0 Lo (o) o (¥ 1)}

O(t —t)—0(t—t
_ (t QQan_l ((Z) t), (3.7.14)
0, 0:Gr (o) (t, t') - m, (3.7.15)

where [ is the unit matrix in the group’s adjoint representation.
ForY € {c, ¢} let Lmt denote the contribution to £y involving Y(o) due to the term —igd, ¢ - A* x c.
Suppose also that free integration by parts is legitimate in the spacetime considered. Using V, A* = 0

and [, A° = 0, and denoting equivalence up to a total derivative by ~, we obtain

/ (—1gV T - (A" x ¢())) = —ig / (90¢(0) - (A” X ¢(0)))

X

= —igdoC(o) - ( / A”) X ¢y =0, (3.7.16)

/ (—iqV,e0) - (4" x ¢)) = /x (—iguze) - (A% x ¢1))) (3.7.17)
—igV,c- A" x c~ige- A" x Ve, (3.7.18)

/ (ig€(0) - A" x V(o)) = igC(o) - ( / A°> x Joc(o) = 0, (3.7.19)
/ igc - A" x V) = / (—igA® x %) - Doc(o)) - (3.7.20)

We may therefore take the interaction Lagrangians as

L) = igdye(e) - (A% x ¢(y) = —iq (A° X ery)) - ooy, L) = —ig (A° x 2(4)) - Boc).  (37.21)

The next step is to integrate out the zero-mode contribution to the effective zero-mode sector propag-

ator obtained in the FMP. The effective action thereby obtained has gained the extra term

Sextra = —ig? / dtd™ 'xa" " (t) /1 (x) / dt' d"'x ! (t) n(x)
x (A" (2) x ) () - 040, Grio) (tv t,) I (A”/ (fﬂ> X C(+) (Cﬂ))
= fiq?/dtdnflxa”*1 (t) Jym/dt’d”*lx'a”*1 (t) n(x')
X (A (@) x Ty (@) - 00y Gy (1 1) T(A° (2) x ey (o) )

15 dtd"'x t)wm/dt'd”*lx'a’“1 (t) n(x)

x (A° (2) x T4 (2)) - 6<tT_(tt))H (4 («") x ey (=)

15 dtd"'x, t)\/@/d"_lx/\/n(x')

[

x (A% (@) x Ty (@) - (4 (27) x ey (7)) 1 (3.7.22)
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This construction of an effective action term is encapsulated in the figure below, which shows a
transformation of a Feynman diagram.

. L4 . L4

~?-( A Mt aA
P‘J} ’ I:L‘_L '.'J}L‘—L
Figure 3.1 - This figure was previously published in Ref. [1]. The wavy, dashed and dotted lines respectively

represent the gauge field, the nonzero-mode part of the FP-ghost propagator and its zero-mode part. The
zero-mode contribution to the FP-ghost propagator is integrated out using Q 4 = 0.

3.7.2 The perturbation theory of the CMP

I now obtain this effective action from the CMP, showing it is perturbatively equivalent to the FMP.
The effective action is obtainable from the extra term which appears in the Lagrangian as a result of

the coordinate transformation from B, ¢, ¢ to R ¢, ¢. This term is expressible as thus:

12

Lot — %a"‘l ) F - F, (3.7.23)
F:= /d"flxx/n (x)A° (z) x 24 (2), (3.7.24)
Fi= [ d" 'xyn(x)A° (2) x ¢4 (2). (3.7.25)

The associated contribution to the action is therefore

.2
/dtLEXtra]I = 1% /dta"‘1 () d"'xy/n (x)A° (z) % T(4) (2) -

a4" %'y /n (x')A° (a:/) X () (x/) I

extra- (3726)

It is worth discussing another way to obtain the effective action in the CMP, because of the thereby

“obvious” perturbation-theoretic interpretation. The Lagrangian’s interaction term is

—iq / d"'x,/70,c- A" x c. (3.7.27)

Imposing Q4 = 0, if 9;¢ = 0;c = 0 then the left-hand integral is

—ig ( / d"'x\/A80E x A{ +)> cc=0. (3.7.28)

So the interaction term survives only if ¢ and/or ¢ is space-dependent, i.e. if and only if at least one
of ¢, ¢ is not identical with its zero mode. Thus L®" is attributable to the perturbation the theory’s
FP-(anti)ghost sector. The interaction term in perturbation theory may be written as —iHin, so the

factor in the ghost loop due to G'r(g) (t, t') is
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q2/dtd”_1xa”_1 (1) \/@/dt/dn_lxlan_1 (t/> n(x')x

(A" (z) x E4) () - 0,0, G p(o) (t, t/) I (A”/ (a:/) X () (J,‘,)) . (3.7.29)

Substituting Eq. (3.7.15) in Eq. (3.7.29) simplifies the latter to i times the right-hand side of Eq.
(3.7.22). This expression is equal to both —i [ dtHin = i [ dtLin; (by the above argument) and iSexira
(by inspection of Eq. (3.7.22)), where Sexira is as in the FMP. Thus

Sextra :/dtLir\ta (3730)

establishing perturbative equivalence.

3.8 The flat static torus and de Sitter space revisited

Ref. [1]'s Appendices E and F work in the synchronous gauge, and denote the perturbative vacuum
state by |0). These appendices respectively consider the flat static torus and de Sitter space, and
are concerned with the behaviours of [Ao(o) (t), Ao (t,)} , <0| [Ao(0) (t)]2 |O> . (In particular, Ap-
pendix F uses the CMP to obtain <0| [Ao(0) (t)]2 |O>, and is concerned with verifying that known
two-point functions compute the same value [50, 82, 83, 84].) Since A, has no analogue in scalar
field theory, it was not possible to discuss this material in Chapter 1.

Time-translation invariance requires Ag ) () [0) = 0 for all . In Sec. 3.8.1, I summarise a finding in
Ref. [1] that this result is obtainable in the flat static torus, provided one works in the Landau gauge.
In Sec. 3.8.2, I discuss the analogous case of de Sitter space. In Ref. [1], for brevity Dr Higuchi and
I only considered the n > 4 case. The n = 2 and n = 3 cases require separate calculations. I present

these, respectively, in Secs. 3.8.3 and 3.8.4. I also present the n > 4 case in Sec. 3.8.5.

3.8.1 Comments on the flat static torus

On the flat static torus, the equation of motion of Ay forces the usual zero mode form of a scalar field.

Quantising gives
Q+tP
vV

for spacetime-constant operators P, Q (V is also constant, since @ = 0 on the flat static torus). Hence

Aoy (t) =

(3.8.1)

|0) is time-translation invariant if and only if P =0, in which case Ao(o) (t/) = 0. But it is shown that

Ag(o) (), Ao(o) (t/” = _io¢707 (3.8.2)

so outside the Landau gauge either |0) loses its time-translation invariance or the equal-time propag-

ator <O| [Ao(o) ()] ? |0> diverges. However, in the Landau gauge

[Q, 15] , (3.8.3)

which is consistent with P = 0 and the requirement that Ao(oy (t) |0) = 0 for all ¢.

88



3.8. THE FLAT STATIC TORUS AND DE SITTER SPACE REVISITED

3.8.2 Analogous comments on de Sitter space

The treatment in Appendix F of Ref. [1] observes that in de Sitter space

. iO[()
[Ao(o) (t), Ao (t)} = 7 @)’ (3.8.4)
where )
27"/2 cosh™ ' H
U ()= L L v (3.8.5)
rg)
(bo was defined in Eq. (1.8.5)). The equivalent of Eq. (3.8.1) is
ibo + [ U () dr
Aoy (1) = @ (¢ * (t)al, ®(t) = ——0 —~~ 3.8.6
o(0) (t) (ta+@*(t)a', @(t) U (t) v2ho ( )
with af a spacetime-constant operator satisfying [a, a'] = —a and @ |0) = 0. This last condition is
equivalent, for any ag # 0, to the ap-independent condition
U Ao (o) }
D 9y (UA - 0) =0. 3.8.7
{ o [UAoo)] b 0) (3.8.7)

It is therefore natural to demand Eq. (3.8.7) when oy = 0. Appendix F of Ref. [1] proves that this

requirement is equivalent to
obo

S0 O (3.8.8)

<0| [Ao) (1)) |0> = —

(which is proportional to H"~2). Eq. (3.8.8) was verified in the Appendix for n > 4 only. The
cases n € {2, 3} follow by a calculation that was not made explicit, but the necessary method was
described. The rest of this section is concerned with presenting the details of this method for these

cases. To be precise, I must show that

<0| [Aoo) ()] |0> - { Tin n=2 (3.8.9)

_Hao _
e n=3

I check the cases n = 2, n = 3, n > 4 separately in the next three subsections. Throughout I make
use of numbered equations and previously unused notation that, unless stated otherwise, are taken

from Ref. [84].

3.8.3 Thecasen =2

Forn =2,

9 1 2 In (1 - cos® X)
(3.8.10)
This result can be written as
<0| [Aoo) (0)]° \o> — A+ B(1+ap) =A+ B+ Bag, (3.8.11)
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with constants

1 1 [*  In(1-cos?%)
A:=— B:=— —_— 2/ 8.12
47’ 82 /0 dx 2cos? § (38.12)
This result is proportional to oy if and only if A + B = 0 i.e. if and only if B = — L, in which case

the result is simply —>* as required. So the entire problem reduces to proving that

/Q’Td In(1—cos®%) ) (3.8.13)
, X 2cos2% i o
Substituting 6 = %, this becomes
1 — €08 9)
/ de = —27. (3.8.14)
cos? 6

Let u = Insin® §, v = tan 6; integrating by parts, the desired integral is

lim { [tan 6 In sin® 0]2_6 — / 2d9} = lim {tan (7 —¢)Insin® (7 —¢)
0

e—0t e—0t

— tan ¢ In sin? s} — 27

t 2
=27 —2 lim tamslnLE2
e—0+ 1+tan“e
2
=27 —2 lim §1
™2 fim o g

=27 —4 lim dInd
§—0t

= 2r.0 (3.8.15)
3.84 Thecasen =3
From Ref. [84], forn =3
H H
(0] 140 (0)]*0) = A D = A ), (3.8.16)
where from Egs. (C4a) and (C5)
VrsinfA(Z) = édi ((m* —6%)Ocot ) + (o +2)0, (3.8.17)

with cos? § = Z = — cos . Thus

(0l [0 (0)]10) = / T | assing (0 Lo )" 1)
= / dfsin0A (2)

167?3/2
Ry L (a +2)9++fi((7r2—02)9c0t9) (3.8.18)
1672 J, 0 3d6 ' "
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To evaluate [(72 — 6%) 6 cot 4] g, one may use the fact that limy_,o # cot = 1 and

lim (7 — 6%) cot = lim (7 — 6) (7 + 0) cot @ = 27 lim (7 — 0) cot § = -2 lim
00— 00— 00— Y:=mr—0—0
SO
(7% = 6%) cot 0] = —377,
T 1d o
/0 de {361& (7% — 6%) 6 cot §) + (o +2)9} =— 2,
2 N _HOéO
(0] [Ao0) 0] [0) = ==,
as required.
3.8.5 Thecasen >4
For n > 4 the two-point function is
’ n—2 _
AMV’ (Z‘, X ) = " — SH 2DmH (Z) 8/181/Z
H? 0D jz—p (2)
+ — 97 0,20, Z
n—1 .
+ (CMO — n— 3) Qﬁyl IL}EI(I)+ 8%4 [DM (Z) — D]W (—1)] .
Whent =t = 0 we have 02 =0,00,7Z=—-H 2. The normalised zero mode is
Gy (t) = 1;([;{/_((?)) sech® ! Ht P;?Q (isinh Ht)
(note the use of an associated Legendre function), and
2 n—2 2 n—1 . . 2
(01 [uoy 0] 10) =~ 2=3 160 O)F = (a0 =~ 2= ) lim_0usa |G 0]
The identities
_ 271/ 2221 ( 1>
PH = ,I'(22) = F'z)r't z+ ¢
rEE ey TR T
imply
n—1)b ) . 2 b
Go ) = — 2% i 9,0 e O] =2
2(n—=2)[V(0)]7 M—o0* [V (0)]

This can be used to obtain Eq. (3.8.8).

3.9 Related appendices

¥ cot ¥ = —2m,

(3.8.19)

(3.8.20)

(3.8.21)

(3.8.22)

(3.8.23)

(3.8.24)

(3.8.25)

(3.8.26)

(3.8.27)

The calculations in Sec. 3.5 show that the Hamiltonian formalism may be revised to contain no zero

modes. New expressions for the Hamiltonian and Lagrangian are obtained. These are not simply

due to a replacement B, ¢, ¢ — E(O), ¢(0), ¢(0); the Lagrangian and Hamiltonian each also contain a
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new term, viz. Sec. 3.6. I discuss the perturbation-theoretic implications of this in Sec. 3.7. The FMP
and CMP are equivalent in perturbation theory.

Let T be a Hermitian canonical field for which H does not depend on Tg). A Hamilton’s equation
implies 77, 5Y;;(0> is conserved, and setting this conserved charge to 0 on all physical states implies
their Schrodinger wave functionals are Y{g)-independent. These states then respect the symmetries
which these conservation laws generate. Denote the wave functional ¥; [ dT(o)UTW is then infinite
(unless ¥ = 0) for bosonic 7|y and zero for fermionic 7{g), since Grassmann variables satisfy the nor-
malisation condition f df = 0. Physical states therefore do not have a finite positive norm. Indeed,
<\I/| (7710 T0)) . |\I/> is a linear combination of the vanishing or infinite quantity (¥|T(o) 7z, |¥) and
its complex conjugate, and hence is zero or infinite. Thus (¥|¥) is proportional to this, and is zero or
infinite because [77,,,, T(0)] . is anonzero multiple of the identity operator.

However, there is a resolution to this. Because ¥ is Y(g)-independent, the [ dY{) integration oper-
ator may be deleted from the pseudo-inner product. Such deletions revise the product, potentially
allowing for a finitely positive-norm physical state. Matrix representations of pseudo-inner products
can be used to find which pseudo-norms could allow physical states to have a finite positive norm

(see Appendix B), but it remains to be shown that the revised pseudo-norms take the required forms.

The treatment in this Chapter does not use Dirac brackets, but it eventually must [81] because of two

constraints on the phase space, viz.

Ta, =0, 75 +/]g]A° =0 (3.9.1)

(deriving the first of these requires inclusion of the —1F,,, F*” = —1V,A,F" term in the scalar

Lagrangian density). I address this in Appendix C.

If Q1, Q2 are Noether charges, [Q1, Q2] should also be conserved. If the CMP sets Q;|¢) = 0 for
i € {1, 2} and any physical state |¢), then [Q1, Q2], |¢)) = 0 should also hold for all physical
states |¢) for consistency. This implies the anticommutators of pairs of conserved fermionic charges,
and the commutators of conserved bosonic charges with conserved charges, should all be linear
combinations of elements of a basis of the vector space of conserved charges. In other words, taking
(anti)commutators should not generate “new” Noether charges linearly independent of pre-existing

ones. In Appendix D, I verify this result for Yang-Mills theory and perturbative gravity.
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Chapter4 Applying the CMP to

perturbative gravity

4.1 Comparison of Chapters 3 and 4

The procedure of this chapter is very similar to that of Chapter 3, because the zero mode problems
these two chapters consider have many features in common:
e The infrared problem requires relevant modes of the FP-(anti)ghost fields to be obviated from
the formalism;
o These modes and their conjugate momenta can be expressed in the forms discussed in Sec. 3.2;
e The zero modes of B*, c#, ¢ are not all simultaneously cyclic in the usual Lagrangian form-
alism, but this can be remedied by appropriately redefining the Nakanishi-Lautrup auxiliary
field;
o This redefinition of the Nakanishi-Lautrup auxiliary field causes new terms to appear in the
Hamiltonian and Lagrangian;
o These terms can be used to prove that the FMP and CMP are perturbatively equivalent.
These facts motivate a structure for this chapter that is analogous to that of Chapter 3.
In Sec. 4.2, which is analogous to Sec. 3.2, I complete the construction of zero modes for perturbative
gravity by obtaining 77;‘ that satisfy Eq. (3.2.25). In Sec. 4.3, which is analogous to Sec. 3.3, I
review conservation laws to motivate a redefinition of the Nakanishi-Lautrup auxiliary field. In
Sec. 4.4, which is analogous to Sec. 3.4, I obtain an appropriate redefinition of the Nakanishi—-
Lautrup auxiliary field. There is a complication compared with the Yang-Mills case; the shift in the
Nakanishi-Lautrup auxiliary field is dependent on the first-order derivatives of the FP-(anti)ghost
fields.
In Sec. 4.5, which is analogous to Secs. 3.5, I compute the Lagrangian density in a revised formalism
that uses E“, c*, ¢ instead of B*, ¢, ¢*. (Sec. 4.5 also computes an extra term in the Lagrangian,
in analogy with a result in Sec. 3.6.) Unlike the B*, ¢, ¢*-based formalism, the E“, ct, ¢*-based
formalism obtains a Lagrangian density which features second-order derivatives. The Legendre
transform can be modified so that it is still possible to define a Hamiltonian formalism, whose
Hamilton’s equations are equivalent to the Euler-Lagrange equations of a Lagrangian formalism
containing second-order derivatives. This will be discussed in Sec. 4.6.
In Sec. 4.7, which is analogous to Sec. 3.7, I show that the FMP and CMP are perturbatively

equivalent. To do this, I must review some standard facts about perturbation theory. Although
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CHAPTER 4. APPLYING THE CMP TO PERTURBATIVE GRAVITY

this treatment is general, there is also much that is worth saying about the flat static torus as a special
case. I postpone this treatment to Appendix H.

The treatment of the previous chapter requires an analysis of Dirac brackets to be truly rigorous.
Such an analysis is offered in Appendix C. I have also analysed the Dirac brackets of perturbative

gravity, in Appendix C.3.

4.2 The n/f}

This section considers the zero mode decomposition of a vector field ¢* and its conjugate momentum

density. In Sec. 3.2, I defined these as thus:

T (8 ) = FA (0 %) [ @7 WG (6 w) o (8 ) @2.1)
oy (t.3) =Gl (. y) [ & 2BP (1. 2) 9" (1, 2). (422)
Ty (+) (t7 X) =Ty (ta X) — Tw(0) (t7 X) ) (423)
Py ([t y) =" (8, y) — bl (1, ) (4.2.4)

with o0 N
FA (1 x) = B2y '5((1) W6 2) (1, 3) = €4 (1, %) (425)

so that

/ d""'zFA (t, 2) G4 (t, 2) = 0 (4.2.6)

provided that the vectors 77;‘ satisfy Eq. (3.2.25). A simple calculation obtains an explicit example
of such 7/!. In Chapter 3, I simplified the Yang-Mills Lagrangian density to only include terms
attributable to the Faddeev—Popov method, and I do the same for perturbative gravity hereafter. The

resulting scalar Lagrangian density may be written as

Lo = %BVBV — VHBYKH,,, — iV 2, (4.2.7)

where™
Zpo = Engo' = [Qa g;]:a'] = [Qv tho]a (428)
Zyw =200 = [Qy KH (4.2.9)

%51 have introduced Z,,, as a convenient abbreviation for subsequent formalism. Similar approaches have occurred before.
Ref. [39] writes \/m Zyy as DM ,cP, where D"” , is a differential operator. Since Ref. [39] asumes the unperturbed metric
guv is that of Minkowski space, it writes D*” p in terms of partial derivatives instead of covariant ones. Also, Ref. [39]
defines D*”, for the de Donder gauge only; like Ref. [48], the existence of other gauges is not noted. The generalisation to
curved spacetimes and other gauges is trivial.

Ref. [59] has a similar approach, which is applicable in arbitrary spacetimes and for any k. Since a total derivative may
be added to Lo, one may replace —iV¥et Z,, with ic#V¥Z,,. Ref. [59] then writes iV¥Z,,, as My, c”, with My, a
second-order differential operator expressed in terms of covariant derivatives. (If D", is appropriately generalised with

. L . -1 . L .
covariant derivatives, we have M,,, =iV < lg| D« W) .) I'have avoided such second-order derivatives herein, as they

unnecessarily complicate the Legendre transform that obtains the Hamiltonian.

However, the redefinition of the Nakanishi-Lautrup auxiliary field will ultimately introduce such complications elsewhere.
I show how to remedy this in Sec. 4.6.
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Thus Z,,, is symmetric, and the equation V#Z,,,, = 0 is both the Euler-Lagrange equation obtained
by varying ¢” and the BRST-transform of the Euler-Lagrange equation kV*H,, = 0 obtained by
varying B”. Thus &,Z"" is a conserved current for any Killing vector field, and each fx €4, 2% isa
conserved charge. These are analogous to the conserved charges [, D% for Yang-Mills theory; note

that in both cases there is a vector space of charges bearing one Lie algebra index. By inspection

Zpo = KC*Vahpo + V™ (6091, +65g1,) (4.2.10)
SO
Zl = KPRV e + iV HY ) KPF o= g™a87 (60 gL, + 05gl,) - (4.2.11)
Define also
KDl = g™ (82 gao + 05290a) , (4.2.12)

the non-interacting value of K. Note that
Ko = 9980 gao + 9180000 = 9% gua + (1 — 2k) 50, (4.213)

is v ¢+ a—symmetric, and especially simple in the de Donder gauge. I now introduce two matrices

Mpc (t / ELK0ES, Mpc (t / ELRe (4.2.14)

The motivation for an interest in the matrix Mp¢ is given by its role in removing zero modes from
the Lagrangian density of BRST-quantised perturbative gravity, viz. Sec. 4.5. The motivation for an
interest in Mpc, however, concerns the choice of the 77/;4 in this section. The existence of inverses is

crucial, viz.

AB

(M—l)AB (t) Mpe (t) = (M~Y)"7 (t) Mpe (t) = 68. (4.2.15)

Since each entry of Mpc is a polynomial in « of degree < 1, det Mpc¢ is a polynomial in x, which
vanishes at x = 0 if and only if Mpc is not invertible. However, in Appendix G I show that Mpo
is in fact invertible, at least for the flat static torus and de Sitter spac:e.56 In these cases, det Mpc is a
non-constant polynomial, so Mpc is invertible for all but finitely many «.

If Mpc is invertible, Eq. (3.2.25) may be rewritten as

A
n.éc N 00
NV / €KL
:/(M—l) (t) €5 KOer, (4.2.16)
and so it suffices to take
. NAB
= N2V (M—l) K. (4.2.17)
Thus
~ NAB
B = VIl (V) RS ofy = 4 (317) [ gt (4218)

%Strictly speaking, I show this is so if appropriate choices are made. For example, for the flat static torus I set €4 = 6% and
k<1
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The zero modes of B*, ¢/, ¢* may then be written as
Bly = pheh. ) = 07¢h, oy =7"¢h (4.2.19)
where
BA = (M—l)AB /x €4K0Be, A = (M—l)AB /x K0, 7 = (M-l)AB /xggffggap. (4.2.20)

If the hats were dropped from these equations, the resulting definition of zero modes would be
very different, involving a mixing of the zero modes and the perturbation metric. There are several
reasons this would be an undesirable definition of zero modes:
e The decoupling of fields inherent in the treatment in Sec. 3.2 would not work, since we would
have {é"‘, frnhw} # 0 (these hats denote a promotion to operators);

e The mixing would complicate the perturbation theory.

4.3 Conserved currents and symmetries

Each symmetric divergenceless tensor X** provides a vector space of conserved currents &, X*”.
Examples of such X" include kH"" and its BRST transform Z*”. The gauge choice k = 1 ob-
tains anti-BRST invariance, so &, [Q, kH""], & {Q, [Q, kH""]} should also be conserved currents.
Since other gauge choices violate anti-BRST invariance, conserved currents should be obtained by a
method that does not rely on a consideration of anti-BRST transformations. There is more than one
standard method of obtaining Noether currents; I will borrow the machinery of Egs. (9.93)—(9.96)
of Peskin and Schroeder’s Ref. [27]. Let T, denote an arbitrary canonical field (no assumptions
are made about the meaning of the index a). Its spacetime indices are dropped herein, as in the

discussion of Sec. 1.3. If a transformation of the form
0T, () = aAT, (x) (4.3.1)

is action-preserving for a spacetime-constant scalar ¢, this transformation generates a global sym-

metry for which the scalar Lagrangian density £, satisfies

Lo = aV,J". (4.3.2)
For local « () this result generalises to
0Ly
= # AT, ———, 4.3.
0Ly =aV,T*"+ () Vo) oV, T, (4.3.3)
where summation over a indices is implicit throughout. Hence
0Ly
= b ATy ———
5£0 onH <j 8VHTQ>
0Ly
ATy, ——— | . 4.3.4
+ 9, (0T, 5o ) 434
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Since the total derivative on the last line makes no contribution to the action, the stationary action
principle gives

1 68 o oL
= ga ~ V= T = AT (4.35)

0 )
“ov,T,
Thus j# is a conserved current, and it can be obtained as the « coefficient in terms in § £y in which «

appears undifferentiated. This method can be used to obtain the global gauge current of Yang—Mills
theory, a conserved current in the Landau gauge provided there isno A,, - j# term. The global gauge

transformation may be written as
1

AA,=—D,a, AB=ax B, Ac=a x¢, A¢ =« X7, (4.3.6)
q

where a has become a multiplet-valued field. (The alternative choice A4, = a x A, may seem more

natural, but is avoided here because A4, = —éD,,a preserves \/|g/ | (R — 2A).) Thus

oL 1
A, - ¢ — ——V,a-F"" — A, xa-F"" — A" -ax B—ila x¢-DHe+ia x ¢- VHE
OV 1pa q
1
=a-Jy, —=-V,a- F"M, (4.3.7)
99 "
Jhy = A, x FF' 4+ A < B —i¢ x D"c +iVFe x c. (4.3.8)

Thus J¥ is the conserved current associated with the global gauge transformation. Unsurprisingly,
it is proportional to {Q, [Q, A*]} [40].
I return now to perturbative gravity. I show in Sec. 4.4 that one example of an action-preserving

transformation is

Act = o0&, AB" = —iffecH, (4.3.9)
with
ALEC =0V, (1'V P rHag) . (4.3.10)
The resulting Noether current is
0Ly _o 0L epoaf
a _ a _ o Ha
£ OV e i£eC v, B° iV’ kHup
= EKIPV e + ifec® kHY — iE"VOTP kHop. (4.3.11)

(This is, in the anti-BRST invariant gauge choice k = 1, analogous to D"¢.) Another action-preserving

transformation is the spacetime isometry transformation. It may be written as>

Arihy = £aggly, AB" = E£ag B, Acl = £aecl', AT = Eqeth. (4.3.12)
Thus
8£0 . ap -6 f v . iy . 8Zaﬂ =8 v
AT g = =0 (V') cErgly — KHEEABY +iZ0EnC Siggp VTR (4313)

(I have placed the ATy, factors on the right of terms on the right-hand side, which causes sign changes

5The reason Akhy, = £a§gf:l, is used instead of Axhyy = KEqehuy is to ensure that R — 2A is subject to a gauge

transformation, and hence is invariant. In fact, this is true for any transformation of the form Axh,, = £y g{;, for some
vector field V°.
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when T, is a fermionic field.) The contribution proportional to undifferentiated o may be written as

aC* (&) where

074
O (€) 1= —in2f (V) M Eerihas — kHIEeBY +iZ!ec” + iﬁfyvaéﬁﬂgc"
nw

aZ(x
= —i (V&) EerkHys — kHILBY +iZ1 e — iﬁv%ﬁﬁgc% (4.3.14)
I

Thus the C* (£) are conserved currents. The conserved charges these generate ought to be obtain-
able by BRST-transforming the conserved charges generated by the Noether current obtained in Eq.
(4.3.11). Indeed, this is verified in Appendix E. Further calculations show that anticommutators of
pairs of fermionic conserved charges and commutators of bosonic conserved charges with conserved
charges introduce no new conserved charges. These calculations are presented in Appendix D. Its
placement reflects the fact that it is the only appendix which contains calculations for both Yang-
Mills theory and perturbative gravity, which are respectively otherwise considered in earlier and

later appendices.

4.4 Redefinition of the Nakanishi-Lautrup auxiliary field

In Sec. 4.4.1, 1 define a field B analogous to B. As in the Yang-Mills case, the shift in the Nakanishi-
Lautrup auxiliary field is linear in the FP-ghosts’ zero modes rather than the full FP-ghost. In
Yang-Mills theory, the zero modes are the non-local spatially uniform scalar functions cfy, (¢). In

perturbative gravity, the zero modes are the non-local spatially uniform scalar functions 64 (¢).

4.4.1 Three action-preserving transformations

The transformations 6 BV = B¢¥, d¢” = 0" (for spacetime-constant 3, § with § Grassmann-valued)
both preserve L, since V#£¥ is antisymmetric so V#(YH,,, = 0, V#¢”Z,,,, = 0. These transform-
ations generate the respective conserved currents &, xH"", £, Z*”. However, as with Yang-Mills
theory, an analogous shift of the FP-ghost requires a more detailed discussion. The transformation

dc¥ = 0¢&¥ for Grassmann-valued spacetime-constant 0 effects

dcly) = 0€”, (4.4.1)

6£e9)y = £oeg)y = OEchpo, (4.4.2)

0Zy = O (EcHyw — (EeVf) hpo) = OkEeHyu, (44.3)
O(—AVIE" Zy) = —AVIC O H (4.4.4)

The next step is to simultaneously transform B* in an appropriate manner. The action will be
preserved if this is done properly; £, might not be, but it can vary by up to a total derivative. To
preserve Ly, which would be a more ambitious aim, would require § (V*BYH,,,,) = —iV#t"0£:H,,,
(I have cancelled a —« factor in the gauge-fixing term from both sides). This result is not simply
proportional to H,,,, so preserving L, will not be possible. But £¢ (V#¢"H,,,,) = V, (§YVFe"H,, ) is a

total derivative, so to preserve the action requires only that

§(VPBYH,,) =i(EeVFe") 0H,, = —iV* (£4¢¢") Hu,, (4.4.5)
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which is equivalent to §£F = i0£¢ (V#¢"rH,,). It therefore suffices to choose
OB = —ifgec” = —ifse,, ¢ (4.4.6)
Indeed, since
6V, (—ictVeePkHop) =V, (—i0¢" VO kHag) = —i0£¢ (VO kHog) (4.4.7)

there is an invariant choice for the scalar Lagrangian density, namely £, := LF€—iV,, (c*Ve’kH,p).
Note that c*V*c’kH,s is preserved by §B* = B¢+ and §¢ = 0+ if 3, § are spacetime-constant,

because V*¢” is antisymmetric. In terms of the 64 (¢) introduced in Eq. (4.2.20) I now define

BY := B +19A( t)£e, 7, (4.4.8)
BA = / LK B, (4.4.9)
B“) = 51“5 (4.4.10)
B(“+) = B" - B, (4.4.11)

so 6B” = 0. Thus a shift, by a spacetime-constant multiple of £, in any of B*, ¢*, ¢ is action-
preserving.

The term i0£¢ ,¢” is analogous to —igc(g) x € = B—Bin Yang-Mills theory®®, and in principle one
can write £, ¢’ (o)F »C° for appropriate operators I, analogous to the spacetime-constant
structure constants f** introduced in Sec. 2.1.3. (Explicitly F*,, := 5” - 6"V ) The fact that
these expressions are first-order differential operators results in second-order derivatives appearing

in Ly, since

VABY =V (B =04, @ ) = VI (BY — 064V, +i070V ¢4 )
= VB —iVFALLV @ +iVH04ePV ¢4
— 104 (VHEORV 2 — VIEPV &4 + EAVIV 8 — EPVHV 64 . (4.4.12)

44.2 General zero modes

Consider the more general transformations

0B" = Bit (1) &4, (4.4.13)
Sc =03 (t) €4, (4.4.14)
st =0, () €, (4.4.15)

%8The reason there is a factor of ¢ in the Yang-Mills result but no factor of « in the analogous result for perturbative gravity
is a result of a subtle difference in the ways the Nakanishi-Lautrup auxiliary fields have been defined. The —V*B*xH .,
term in the scalar Lagrangian density of perturbative gravity is analogous to the Yang-Mills term —V#B - A,,. Note that,
unlike the FP-ghost term —iV#¢ - (V¢ + gA, X ¢), this term has no g-dependence in the term proportional to A,. This
could have been remedied if the definition of B had been divided by g, viz. B := — (apq) ™" V, A#. This would result in a
—qV#B - A, term, which would be more properly analogous to —V# B¥xH,,,. However, because B would be divided by
q in this approach, so would Band B — B, and the latter would then be the g-independent quantity —ic X ¢(q).
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with spatially uniform scalar functions 564, 03, 5OA. The transformation in Eq. (4.4.13) may be restated

as 0B" = [ (t) €4, so that

~ A
5 (VHBY) = BVHEY, + g™ By €4, (4.4.16)
A
§(=V*B"kH,,) = —By E1xHY, (4.4.17)
A
) / (-V*BYkH,,) = —B, / E4RHYD. (4.4.18)

The CMP sets [ 4xH) = 0, so the Lagrangian is unchanged. A similar argument establishes the
same for the transformation in Eq. (4.4.15). The transformation in Eq. (4.4.14) may be restated in

terms of B¥, ¢, ¢* as

SBF = —i08 () £¢ ¢, (4.4.19)

St =03 (t) €. (4.4.20)
Hence

(SE(?CE == 5 (7VMBVK/H/LV - ivl/au (Kﬁuvﬁca + CaHVO‘HZ))

nao

=iV" (6 (t) £e\e”) kH, — iV, 8" (KLY 5 (05 () €X) + 03 (t) €4V HY,) . (4.4.21)
This expression was already established above to reduce to a total derivative if each 64 is spacetime-
constant, so the only important terms are multiples of §4.

Not including the Einstein—-Hilbert terms, the scalar Lagrangian density may be taken as
— b7 [vu (EV - 19A£§Az”) Khpo +1VFEEg] | (4.4.22)

although a total derivative may still be added. The aforementioned choice of £, includes second-
order derivatives of the FP-antighost, due to the term i#4£¢, (V#¢")kH,,. This presents a few
complications:
e the proof in Sec. 3.1 that the CMP’s analysis can be equivalently performed in either the
Hamiltonian or Lagrangian formalism assumes the absence of second-order derivatives in Lo;
o the absence of second-order derivatives is also assumed in the usual proof that fields and modes
are cyclic if and only if their momenta are conserved;
o and the usual formulation of the Legendre transform and the Hamiltonian formalism requires
a modification, which will be discussed in Sec. 4.6.

Adding a total derivative addresses all these concerns, viz.
Lo = —V"B'kH,, — ikb" (£¢,¢) VI H,, — VI Z,,. (4.4.23)

However, adding V, K* to L for some vector field K* adds [ K° to L, so can be expected to shift
the numerical value of the Hamiltonian. Therefore, herein I will not make use of such a modification

of Ly. Sec. 4.5 verifies the obviation of 34, 64, 8" from the action by using

Lo=—V*" (E” - 19A£5Az”) KH,y — iV Z,,, (4.4.24)
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4.5. THE LAGRANGIAN DENSITY WITHOUT ZERO MODES

which implies the same obviation is also achievable with an alternative choice of £, that has the same

action [ Lo, viz. Eq. (4.4.23).

4.5 The Lagrangian density without zero modes

The infrared problem for the FP-ghost propagator is due to a zero-mode contribution, viz.
4 ~B AALB
T(0]4¢46 €410) =T((0]648 |0) ¢4e%) 45.)

(note that 64, 9" have been promoted to operators). The problem can therefore be thought of in
terms of the scalar fields 64, 53, rather than vector-valued fields. These scalar fields are spatially
uniform, so #4 may only appear as ¢4, §4, §4, and similarly for §". The challenge is to verify that
these scalar fields are cyclic, i.e. that they do not appear undifferentiated.

In Sec. 4.5.1, I verify zero mode obviation from the Lagrangian is possible, providing we work in
terms of E‘ﬂ ¢, ¢ instead of B*, ¢, ¢*. Using the Hamiltonian instead would be a difficult first
step. The very definition of the Hamiltonian requires care, because of the second-order derivatives
introduced in L when it is written in terms of E“, c*, ¢*. I obtain the Hamiltonian in Sec. 4.6.

As with Yang-Mills theory, redefining the Nakanishi-Lautrup auxiliary field introduces an extra
term in L. I compute this in Sec. 4.5.2. In fact, the method I use would appear at first to allow two
expressions for this extra term, provided a matrix that I introduce in Eq. (4.5.23) below is invertible.
In Sec. 4.5.3, I show that these expressions would not agree for the flat static torus, so this invertibility

hypothesis is wrong in general.

4.5.1 Proof zero modes can be obviated

The Lagrangian is
Rv RA v . —v =B v » - B
L= / {—Vﬂ (B(+) +BA€A —ipA <£§AC(+) +0 £:,85 +£46950 )) kH,,
. _ —A
" () +07€R) 2w} (4.5.2)
Using
/&HHB =0 /&Z’? =0, Vibay = —Vilau, HY = H"", ZM = 7" [E¢,, V] =0, (4.5.3)
and the factor that £¢, £/, is a Killing vector, to simplify L gives
BY y — —B 5 L 0B
L= / {—V”B(+):‘€Hp,y - 19A (£§|AC(+) +0 £5A£B + 635%6 ) HHB
-B B
- (E“V“C(V+>“Hw + &5 (Wf%‘) KHpu + €50 HHB>>
—1i (V”Ea_)) yzgx

(i (ct) +0°€8) Vahpo + (Vacls) + Vb +04V465 ) (9598, + 059%) ) } -

(4.5.4)
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The 8" term is
ig” g4 / {(£e, &%) kHO} =0, (4.5.5)

as required. For the # term we return to the Lagrangian. Since 7, is symmetric, we may rewrite

the FP-ghost term as
— v — v re Ve
—i / "7, C" = w. (4.5.6)

Note that C"" is symmetric. Thus

L= / {—vv (Eu +19A£5A6“) rkH,, —iC,, (Kﬁgvﬁ (0?0) n gAgi) n (C?O) L 9‘452{) KVQHL’)} .

(4.5.7)
The 64 term is then
—i07 [ {ee, Vet - (KVags + €3xH;) L)
=ig4 / {—£e, (kHY) + (KJ0V 565 +£j/<aHZ)}5’j
= ip4 / {-£e, (KHY) + Z2 (> =€)} T, (4.5.8)

where in a slight abuse of notation the function Z; (c*) is extended to boson-valued . Indeed
Zyw (¢ = €8) = K4V + V(T V5€5 (97905 + 079)0) = KEGVaHu, (459)
so the #4 term in L is
ik64 / {—£e H! + €5V HL} O, = irb? / {HSV &4 — HIVEa,} O,
= ikf4 /x {Va (HSES) =V (HLEA)} O
= irhA / Vo (HSEa, — HSE4,) T =0, (4.5.10)

as required. (The last line uses the fact that H{4, — H;'4, is antisymmetric.)

It is unsurprising that the above calculations explicitly obviate BA, 04, ", If undifferentiated pA
could not be obviated, a spacetime-constant shift in B4 would preserve ﬁA butnot S = [ L,. But
such a transformation would add a Killing vector to B, which preserves V# BYkH uv- Similarly, 7"

can be trivially removed. For Eq. (4.4.23)’s choice of £y, 564 = 6! gives

6Ly = —ikb} ((Ee, @) VFH,, — Ve Ee, Hy)
= ik (e, (E"VF H,,) — V* (@ L, Ho)), (4.5.11)
68 =0. (4.5.12)

<A
The treatment of differentiated zero modes is not much harder, since in the CMP j,, fx &L IiHS =0

-A :
and 0, [, €479 = 0. The 6 dependence of L is due to the term

) A, 4 =1 " YV, M. D.
0104, 11 KN, e (4.5.13)
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Setting the conserved momentum to zero to complete the obviation is equivalent, in the de Donder

gauge, to setting [ €370 = 0.

4.5.2 An extra term in the Lagrangian due to the E“, c*, @ formalism

The change from B*, ¢*, ¢ to B, ¢, ¢ introduces a new term in the Lagrangian of perturbative

gravity. Let L&, Lgp respectively denote this extra term and the FP-ghost term. Define
Lpt =i / V oy VoTEe sy Do (4.5.14)
and define LI(;?,O), L}(:;O), Lgﬁ) similarly. Thus Lgp has been split into four parts, with

Ll(:(l)’O) + Ll(:(l)’+) = _1/ vME(O /Y/LVECng'
. 7‘4 v 0 =A 1 po
S / TR AR TS
A
— i / Sha el =0 [ 520, (45.15)

which vanishes when appropriate conserved charges are set to 0 in the CMP. Since both the B*, ¢*, ¢/
and B*, ¢#, ¢ formalisms retain LFP (which is independent of zero modes and their derivatives),
only one of the four parts of Lgp contributes to L2, namely LFP . Next I compute an expression

for L& that contains no zero modes or derivatives thereof. Since c{;) = 04¢h,

vchbo) = 67¢h + 6"V, Vicélo) =04V, (4.5.16)
and
iLg” = / Vel (KiV s (04€3) + r0AEGV o H,) = Aab™ + Ba0” (4.5.17)
where
Ap = /xv,,ég)l(gggg,, Ba ::/vaz'(g) (KPYV 565 + KESV L HY) (4.5.18)

are fermionic fields. We can obtain iL®" from 1L +0) by taking account of B# — B*, which effects

the replacement

K04 / Vel €4Vl — k6% / V.o, (EiVaH, —£c,H])

= kA /x Vel (Vi Hy — V,.EQHY) . (4.5.19)
SO
iD= 4,64 + B,64 (4.5.20)
with
B, = / Vel (KReVas + r (Hp Vol — HIV,.E5)) (4.5.21)
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also a fermionic field. Setting conserved charges to 0 as usual,
0 [ ez
y
- / € (KO Vo + Ko Vi + J0,) (07¢3 + )
y

= [ {57 (stteies) + € (07 (RE0V5 + ) €5+ Thucti) }
y

= Mapb® + Napb® + Py (4.5.22)
where
Nani= | € (K/AVagh + n€VaHD). (45.23)
Y
Py = / & (kYo H) + KOV 5s) .- (4.5.24)
Yy

Note that M4, Nap are c-number valued and independent of the FP-ghost fields, while P, is ghost-
dependent and fermionic. It can be shown that M4 g is invertible, at least for the flat static torus and

de Sitter space; see Appendix G. Hence

6° = (M) Mapb® = — (M) (Napb® + Pa), (4.5.25)
Lo = — Ao (M) (Nap0® + Pa) + Byt®
= (B — A0 (M) Nap) 07 — Ac (M) Py, (4.5.26)

Since 6% is cyclic, the # term vanishes. (Indeed, varying 64 in Eq. (4.5.26) obtains an Euler-Lagrange

equation that is equivalent to the fact that thef” coefficient vanishes.) Thus

(4.5.27)

extra _ (Mfl)CA AcPy =i (Mil)CA/ K%Vﬁﬁ)f%/fi (KV’YHS + Klé’()’)vﬁ) CEY"')’
x y

a result that is expressed entirely in terms of ;) modes.

4.5.3 A discussion of N,z

That 6p is cyclic guarantees it is removable from the Lagrangian formalism. The above calculation
removed 6, thus entirely obviating 65 from the effective field theory. The next thing to note is
that there is not an analogous result in terms of Nap. If Nap were also invertible, 0B could also be

removed from L using Eq. (4.5.22), viz.

0¢ = (N1 Napt? = = (V) (Maph® + Pa), (4.5.28)
i = B (N7 (Mapb® + Pa) + 450"

1 p,. (4.5.29)

— (4= Bo (V1) Mag) 07 — Be. (N
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By inspection, 67 is cyclic in Eq. (4.5.29)’s expression for L as required. Indeed, the above removal
of 68 implies

BT=¢"M'N,-B™N"'P=—0"M"'P, BTN "M =¢", (4.5.30)

so either expression for L&t is independent of both #” and #%, and the two expressions are then
equal, viz. iAc (M *1)CA Py =iBg (N7 “4 P,. The fact that the CMP already removes 07 from L
should lead us to be suspicious of this alternative approach that makes use of Eq. (4.5.22) to remove
6B. Indeed, the invertibility of N4z would imply that there are two alternative, numerically equal

expressions for Leyira: One in terms of M4 g, the other in terms of N4p, viz.

Lo = (N1 / Vel (KEV €8 + 1 (Vo HY — V,,E8HY)) / €4 (KVHS + KJ0V5) .
x Y

(4.5.31)

However, this result is not valid in general. In the flat static torus the basis of the Killing vector fields
may be chosen as £ = 09 € ker Vg, so the [ _integral on the right-hand side of Eq. (4.5.31) would
vanish. By contrast, the right-hand side of Eq. (4.5.27) is instead equal to the non-vanishing quantity

ap v —
/ Ko v,el,, / (WY, Hy + K70V 5) - (4.5.32)

This contradiction establishes that N 4 is not, in fact, invertible for a flat static torus. Thus the correct

general expression for L™ is given by Eq. (4.5.27) instead of Eq. (4.5.31).

4.6 The Ostrogradski method’s Hamiltonian

Theories in which second- or higher-order derivatives of canonical fields appear in the Lagrangian
formalism still admit a Hamiltonian formalism. In classical mechanics, the conjugate momenta used
in the appropriate Legendre formalism are defined by a method due to Mikhail Ostrogradski [85].
This method has been adapted to classical field theory; the notation used herein is adapted from
Ref. [86]. I will only consider theories lacking third- and higher-order derivatives, since no theories
in which such derivatives appear are relevant to this thesis.

In classical mechanics, outside of field theory, the Euler-Lagrange equation is of the form

oL d oL d? oL
0= 5 - 597t E T (4.6.1)

Define ¢ := ¢, ¢2 := ¢, and treat ¢, ¢2 as independent variables, and define

oL . oL
p1= 8q — D2, P2 8(}2 . (4.6.2)

The Euler-Lagrange equation is then
— =p1. (4.6.3)
Finally, define the Hamiltonian as

oL d 8L) . OL

H:=—-L+qp1+gp=—-L+q (3(] at 9§ qaiql (4.6.4)
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Hence
OH OL d% [OL d OL .
o = a0 i (3) g = o
oH oL d OL )
ZRH — (4.6.7)
RDi

(note the use of a right-derivative in the final result; this disambiguation is necessary for fermionic
gi, pi, as noted in Sec. 3.1). The rest of this section is concerned with how to adapt this approach to a
field theory in curved spacetime, so that spatial derivatives also occur and covariant derivatives may
be used instead of partial ones. Throughout a product of covariant derivatives will have the indices

running along the left, viz. Hz2:1 Va; = Va, Va,. Consider a scalar Lagrangian density of the form
Lo = Lo (¢, Va, ¢, Va,Va,0) (4.6.8)

for some tensor-valued canonical field ¢ (whose spacetime indices are suppressed herein, as is any
possible dependence of £y on other canonical fields and their derivatives). The stationary action

principle is

o o) )

2 k
= /dt/xégbl;){(_l)k (Evaﬂl'i) m}. (4.6.9)

The Euler-Lagrange equation is therefore

m k oL
2 { 1l o (11 Vi) 0

The Ostrogradski method’s coordinates are ¢; = ¢, 20 = Vqo¢. Reduced momentum densities
may be defined as
aﬁ() aﬁo a£O
= —Vare——, @5 1= =——. 4.6.11
FLT OVe0 OVaVod' 27T OVaVos (6.11)
The Euler-Lagrange equation is
dLo 0Lg OLo
0=— —-Vor—m—+VsVore——, 4.6.12
9 A SR N (46.12)
while the Hamiltonian density is 1/|g|Ho with
8/:0 &Co a‘C'O
=L @ 5y =—L T Va @ ’
Ho 0+ Vogrmwi + Vopaa s o+ Voo <8V0¢ \Y 3Vavo¢) + VoV ¢8VQVO¢
(4.6.13)
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and the Hamilton’s equations are™

OrHo

Opwn Vodr, (4.6.14)
% B _% ="V <86V£Z.0¢ — Vs 8V8:VOZ¢) — Vown, (4.6.15)
SZZ B _% % (aavco()¢ ~ Vs ava ;VOO¢> : (4.6.16)
g;{zz =~Ve i?V(i;CVO(@ et (4.6.17)
glfi B _aaéoa;' (4.6.18)

If ¢ is a spatially uniform scalar field, such as 64, then the coordinates are ¢+, ¢2o. Hence

oy = 2o _ 4950 (4.6.19)
o dt 9¢
— (4.6.20)
09
8RHO 7 dk+1¢
0Ho )
—_— = 4.6.22
96, w1, (4.6.22)
0Ho )
= — oo 4.6.23
020 2 ( )

Therefore, verifying that a spatially uniform scalar field is cyclic, in the Lagrangian or Hamiltonian
formalism, is the same calculation up to a sign change.

The scalar Lagrangian density £, may be written as

Loy = (—VVEN — ivyﬁivaNGA — ifzvyvpéﬂﬁfl + ivyépvp@’f‘@A + izpvyvp§x9A> H

—iv, e (C?HVQF;HZ + KBV el + 00 (€4VanHY + KLUV 565) + éAKgggg) . (46249

so the only field which is differentiated twice is the antighost, viz. % = —ikfA¢ f‘ H}. Hence
~, 0Ly 0Ly _ 0Ly 0Ly _.  0OLg
- _ B~ 0 n 1 -V, o .
Ho Lo+ Vo oV B + Voc OV o + Ve <8VOC“ \Y% ENRE + VoV,@ XA
(4.6.25)
Since previous calculations have verified that EA, 64, §A are cyclic,
~ 0Ly 0Ly
Ho=—Lo+ VoBl' \——— + Vo' |\ s——
®oveBl,, ) aVel,
_ 0Ly 0Ly _ 0Ly
Voe! ( —— — Va — ) + VoVl |\ e (4.6.26)
) 6VOC€+) 8VQVOC'EL+) () 3Vavocf+)
But
0o _ .o, 9% _ A (4.6.27)

—=— = —K s
6VOB€+) a av06?+)

591f other fields appear in Lo, the expression for Hg in Eq. (??) should be amended to include additional terms in the Legendre
transform. However, these terms are in any case irrelevant to this calculation. Of course, we can make ¢ a multiplet to make
the expression for Hg in Eq. (??) general, provided products are interpreted as contracting over all indices.
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and

0Ly

oo i
8VQVOC(+)

. 0Ly 0Lg
= —II{QAf%Ha, = —u_ va —I
A OV Vot

= ik HY —iZ), (4.6.28)
SO

Ho = —Lo — VBl kHY +iVoc], KoV, e + Vol (—méf“ggﬂg - 123) — ikVoVac(, 040 Hy .

(4.6.29)

Note that the result of Sec. 3.5.1, together with the fact that variables ¢; = ¢, g2 = ¢ are treated
as independent variables in Ostrogradski’s method, implies that the H, obtained in the Bk, ¢k, et

formalism has the same numerical value as the B*, ¢*, ¢*-formalism’s H,, i.e. the usual H,.

4.7 Comparison with the FMP in perturbation theory

Tsung-Dao Lee and Chen-Ning Yang discovered [87, 88] that, in some contexts, a formulation of
perturbation theory in terms of Feynman diagrams admits terms proportional to § (0), where § is
the Dirac delta so that § (0) is divergent. (The argument 0 of ¢ (0) is a difference between time
coordinates.) However, they found also that such terms cancel in pairs. I will call such terms Lee-
Yang terms, and will call the cancellation of them in pairs Lee-Yang cancellation.

For perturbative gravity, one difference between the perturbation theories of the CMP and the FMP
is that the FMP exhibits the Lee-Yang cancellation of Lee—Yang terms that never arise in the CMP.
In Sec. 4.7.1, I compute the effective zero-mode sector Lagrangian in the CMP of a broad class of
Lagrangians that includes the zero mode sector of perturbative gravity.

To prove the FMP and CMP are equivalent in perturbation theory, I must verify the FMP’s Lee—
Yang cancellation, and then check the equivalence of other terms. The trick to verifying Lee-Yang
cancellation is to compare what I will call Lee-Yang determinants. In Sec. 4.7.2, I explain the
relevant theory and summarise the structure of the FMP calculations that will then conclude this
section. These calculations will be divided into Secs. 4.7.3-4.7.5. For now, the following summary is
appropriate. Sec. 4.7.3 computes a matrix determinant; Sec. 4.7.4 factorises that determinant; and
Sec. 4.7.5 shows this factorisation implies that the CMP and FMP are perturbatively equivalent.
Throughout I impose the gauge choice in Eq. (1.2.2), and use N to denote non-negative integer

dummy indices.

4.7.1 The perturbation-theoretic implications of the CMP

Let X ~ Y abbreviate the condition that X — Y is independent of the time derivatives of spatially
. iy . TA . . . . .
uniform Hermitian canonical scalar modes b, b", ¢'. This section considers an arbitrary Lagrangian

of the form

A . _ .. A . 1 . .
L~ —ib Maph® —iK;4¢'b* —ib L’ + ngij(f (4.7.1)
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with matrices K, L, N ~ 0.°0 The previously defined matrix M4p and its inverse M“5 can be
respectively denoted M, M~!. The FP-(anti)ghost zero mode sector of perturbative gravity has a
Lagrangian of the form in Eq. (4.7.1), provided that:
e the b4 are the spatially uniform scalar-valued mode coefficients of the field c*, such as the 04
o thed” are the spatially uniform scalar-valued mode coefficients of the field ¢, such as the 7 ;
e the ¢’ are the spatially uniform scalar-valued mode coefficients of all fields outside the FP—ghost
sector, such as the 4.
Note that the lower case Roman indices no longer imply bijection with the n — 1 space dimensions
of the spacetime manifold.
The —iZAM ApbP term in L is worthy of special attention. In perturbative gravity’s scalar Lagrangian
density’s FP-sector term —iV, " K74V 3¢®, the 9 6P coefficient is —igh KD0L%. The g'gm coefficient
in the Lagrangian is therefore —i [, €4 K00£% = —iMap. (The term —i [, V, e K ﬁ”Vgco‘ is analogous
to the Yang-Mills term —i f doC(o) - 00600 = —iVé(O) ¢(0)-) The full Lagranglan may then be

written as Loy + L(4), where L g contains terms dependent on 4s and/or 9 s. Explicitly we have
-A . .
Ly =0 (iVa - iMapb®) +iX 04 (4.7.2)

— A - A —
for some X 4, Y4, and 64, 6, #4, 6 are absent from L4y, X, Ya. Note that no terms dependent

on 64s and/or 7' appear in L because 64, 9" are cyclic.

This formalism affords a comparison of the zero mode problems of perturbative gravity and Yang—

1

Mills theory, if only for non-interacting gravity on a flat static torus. If c*, ¢ are each given an

IR-regularising mass M > 0 then Ly = —iV’ (9 04 — M?G 9A> where the Kronecker delta lowers
upper case indices. The non-interacting case’s result M4z = V (t) 045 generalises in the interacting

case to Map =V (t) (64 — Hap) for some matrix H 4. For the non-interacting case,

0= ( o do()l) (i) = ~M2Vo* — 3y (V1) (4.7.3)
90 a0

.. .1 7A .. . . . .
and similarly with ¢ . This is the same field equation as for scalar zero modes in earlier chapters, so

the resulting zero-mode sector of the propagator is the same as before, and so are its time derivatives.

With that grey note concluded, I return attention from the flat static torus to the more general case
cpe - A .. . . . .
specified in Sec. 1.2.2. That 94, 6 are cyclic in L also implies their conjugate momenta are conserved

and may be set to 0 in the CMP. Setting the conjugate momentum of 7" to0 gives

oL
0— (0)

IYA — IMA39 (4.7.4)
89

so 64 = ( M *1)’43 Y. Therefore L) has numerical value

NPy, (4.7.5)

L(O) = iYAéA = IYA (M7

SA . . . . . . 1 .
®Note that b4, b, ¢* need not be cyclic in L, since the equivalence relation ~ is consistent with differences proportional to
undifferentiated modes. However, Eq. (4.7.1) is sufficient to determine momenta.
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Adding L4 gives an effective zero-mode sector Lagrangian in the CMP,
~ _1\AB
Legt =iXa (M™1)"7 Y + L4, (4.7.6)

4.7.2 An overview of Lee-Yang terms

The motivation of the entirety of Sec. 4.7 is to show that the FMP obtains the same result as Eq. (4.7.6).
It can be shown [87] by the path integral method that, if the FMP’s infrared regularisation method is

used, Lagrangians of the form in Eq. (4.7.5) warrant an additional Lee-Yang term of value®!
LLY = 1) (0) Indet MAB =1id (0) trln MAB~ (477)

. 7A . .
The proof is as follows. Let b, b~ have respective momenta 74, 74 in

-A . .

Loy =b (iVa —iMaph?) +iX % (4.7.8)

Define
114 := 7TA+iYA,ﬁA =Ty —iYa (479)

SO
=B _

TA = iAJBAb - iXA, (4710)
Ta =iYy —iMapb®, (4.7.11)

Ly = 685 75 + (X A640C
= (M~ M e X (M=) Mpei© (4.7.12)
— (M) (X4 —ima) 7p +iX 4 (iFp + Y5))
= i (M) (T, (TTp — 1Y) — iX ATIp)
— i (M) (ATl + i (YaTTa — X aTIg)) . (4.7.13)
The path integral formalism obtains the transition amplitude (say .4), up to a multiplicative factor
that is important because it is independent of dynamical variables. First we discretise a finite time

period. This gives the approximate proportionality relation

m—1

A / TT TT av* () d6” (1) dma () a7 (1)

tAB k=0

exp [HC (ty) (M1 (tk‘))cD Ip (tk)} exp <i /ttj LH)dt) , (4.7.14)

where:
e {;, s are initial and final times, so ¢; < {y;
ot =t;+ kA, ke {0, -, m—1} with A := % > 0 for some large m € N.

(The (M~1) A (YpIl4 — X 4Ilp) term makes no contribution to the result, because of the identities

[ dfdn6 = 0 [ d6dnn = 0 for Grassmann variables 6, 7.) The first exponential factor could in principle

61Replacing M with —M or | M| may add a multiple of § (0) to L, but this addition is non-dynamical so can be neglected. We
therefore need not insist, for example, on writing In |det M 4 p| instead of Indet M 4 .
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have instead been written with a 7¢ (Mf *1) D p term, which can be removed in the CMP because
ma, T4 are the conserved momenta of cyclic modes. However, the FMP does not make use of this
tactic, which is what ultimately yields the term Lyy.

Since Eq. (4.7.9) shifts momenta by non-momentum Grassmann numbers,

/dHAﬁB = /d?TAfB (4.7.15)
(this is an equation in integral operators). A discrete analogue is as follows: for a bosonic field B,
0y := 0o + at)y —> / d6,d6, B6, 6, = / d6,d6, B6,6, = / dfod6, BO, 6. (4.7.16)

Thus

m—1

as [ T[T ab* () d5” ()it (1) dTTa (1)

tAB k=0

P [Hc (ty) (M1 (tk))CD Ip (tk)] exp (i /t tf L(+)dt’> . (4.7.17)

Eq. (2.2.3) simplifies this result in terms of det M~ = (det M )t Writing this determinant as the

exponential of its logarithm, we have

m—

Z ndet Mag (tg) A
k=

ty ,
exp <i / Lisdt ) (4.7.18)
ti

i

x / H dv™ (t) as”° t) exp

tAB

The seemingly superfluous A*! factors now play an important role, as we make time continuous

again. For any set S of times define

1s (1) ;{ bres 4.7.19)
0 1¢S5

Since the measure ¢ (t — tp) may be approximated by the nascent delta function il[ to— 2 10+2] (t)
where we take the A — 0T right-hand limit, setting ¢ = 0 identifies X with § (0). Similarly, summing
over terms with a A factor is equivalent to a time integration, since A can be thought of as d¢. The

continuous-time analogue of Eq. (4.7.18) is therefore

Ax / dt / [T av" () db” (¢) exp {—5(0) / Indet Mg () dt} exp (i / L(+)dt’)
AB

- / dt / T dv” t)d5” () exp <i / (Lsy + Liy) dt'), (4.7.20)
AB

where the time limits have been taken as ¢; = —oco, ty = co. Note the addition of Lyy to L, verifying
Eq. (4.7.7).

Although the appearance of this term o 6 (0) seems troubling, it simply cancels with the loop
Feynman diagrams’ contribution to the Lagrangian. Once this cancellation is verified, the chain
Feynman diagrams recover the effective zero-mode sector Lagrangian obtained from the CMP. The

truth of the two previous sentences implies the CMP’s perturbative equivalence to the FMP. They are
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proven in Sec. 4.7.5, the final subsection of Sec. 4.7’s discussion of perturbation theory.

The determinant det M4 p is known as a Lee-Yang determinant. In Sec. 4.7.3, I compute the Lee—
Yang determinant of the Lagrangian in Eq. (4.7.1) in terms of the matrices K, L, M, N. In Sec. 4.7.4,
I show that this Lee-Yang determinant is expressible as the product of two Lee—Yang determinants.
The first of these is the Lee-Yang determinant of Eq. (4.7.5). The second is the Lee—Yang determinant
of an effective zero-mode sector Lagrangian obtained by setting the momenta of cyclic modes to zero.
This effective zero-mode sector Lagrangian contains no zero modes, and appears in the Lagrangian
of both the CMP and FMP. It is therefore irrelevant to the question of whether the prescriptions are
perturbatively equivalent. The fact that Lee—Yang determinants multiply in the way shown in Sec.
4.7 4 implies that the determinants’ logarithms add, as do the resulting Lee-Yang terms. Two Lee—
Yang terms are thereby decoupled, and only one of these terms needs to be considered to verify that
the CMP and FMP are perturbatively equivalent. In Sec. 4.7.5, I analyse the relevant Lee-Yang term

to verify this perturbative equivalence.

4.7.3 A Lee-Yang determinant

In Eq. (4.7.1), the conjugate momenta are

oL . _
Ppi= —5 ~ —iMapb® —iLaid’, (4.7.21)
ob
Paim 2L i My + iR ag (4.7.22)
A - 86‘4 BA iAqQ S
oL . A .
Pii= 5m —iK;ab® —ib La; + Nij¢’. (4.7.23)

so the Hamiltonian H obtained by Legendre-transforming L satisfies

-A — a4 i
H+L=0b Py—Pab” +i'p;
-A . LA . _ . X .
~ —2ib Mapb® —2ib Laig" — 20K ;4'b* + ¢° Nij¢’
~ 2L, (4.7.24)

H~ L. (4.7.25)
Inverting relations between canonical fields and momenta gives

A~ (MY (iPg — Lpid) (4.7.26)
A — — .

b~ (—iPp — Kipd') (M~)"", (4.7.27)
pi~ Kia (Mfl)AB (P +iLg;d’)

— (Pa—iK;ad) (Mfl)AB Lpi + Ny

=Kia (M) Py =Py (M) L + Ny, (4.7.28)

Nij¢’ ~pi— Kia (M_l)AB Pp+ Pa (M_l)AB Lpi
=: Di, (4.7.29)
gt~ (N7 5. (4.7.30)

Thus
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A . . — — iJ ~
b Pa—Pab® +d'pi ~ (-iPp — Kip (V)7 5;) (M) Py

~Pa (M) (iPs — Lei (N7)7 )

+ (V)5 (Bt Kaa ()7 Py = Pa (M) L)
~ —2iP4 (M~ Py + 5, (Ns;;)” 5, (4.7.31)
A . .
o AL P2AbA +4'pi
~—iPy (M) Py + (Ns;}n)” B, (4.7.32)
where N
—1 —1
N:=N+2KM~'L, Ny, = w (4.7.33)

—1 . .
%, but in the subsection below I
det N,

sym

provide an alternative expression for this, viz. Eq. (4.7.37). The aim is to show that the full Lee-Yang

Eq. (4.7.32) implies the full theory’s Lee-Yang determinant is —
determinant is the product of the Lee—Yang determinant of the zero-mode sector and the Lee-Yang
determinant of the effective theory with its zero-mode contribution removed. (I obtain these two
Lee-Yang determinants respectively in Eqs. (4.7.48) and (4.7.51).) If this is true — indeed, it is —
we may separate out the Lee-Yang determinant for the zero-mode sector. However, proving this
requires a block matrix decomposition of M 4p, because the required expressions for the Lee—Yang

determinants are in terms of determinants of the blocks.

4.7.4 Lee-Yang determinants of the zero-mode sector and effective theory

One may split the b* into cyclic #4 and non-cyclic ¢!, and similarly with the 5" Note that there are
now two types of upper case Roman indices, those beginning at A and those beginning at I. The

matrix M 4p now admits a natural block matrix decomposition of the form

Ay, B
M= " TP (4.7.34)

Ca; Dap

Hereafter Os denote appropriate not-necessarily-square zero matrices, and I define
Apy = A1y — A1aD45Cpy (4.7.35)

so that
(4+BD'C)  Byc
JK ) (4.7.36)
Uk Dpc
The strategy is to first show det M = det A det D so that

det M~1 1
Vet Nogh det D det A, /det Nighy

and then show that 1 is the Lee-Yang determinant of the zero mode sector while

(4.7.37)

1

——F——1is
det Ay/det Ny

the Lee—Yang determinant of the effective theory without the zero-mode sector.
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Since adding a multiple of one row (column) to another row (column) preserves the determinant of

a square matrix,

det M = det
Oag Dap 045 Das

Ay — BiaD;5Cs; O A;; O _
f7 o PIATApE B LB ):da( rr s ):detAdetD. (4.7.38)

By inspection the inverse of M is

W e,

M= _ _
_ (D—ch—1>AJ (D—l (11+ CA—lBD—l))

AB
(4.7.39)

since this claim implies

MM = (A_IA HE- E) 1K (F = FD™D) ¢ = o Orc (4.7.40)
(=G +G) ax (-J+D'D+JD'D) .

as required, where the matrices

E:=A"'BD'C, (4.7.41)
F:=A'B, (4.7.42)
G:=D'CA! (Z+ BD*lc) - (D*1 + D*lcﬁleD*) c, (4.7.43)
J:=D"'CA'B (4.7.44)

have been defined for succinctness.
I have split the b* into cyclic 6 and non-cyclic ¢/, and similarly with the 5" This also splits certain

terms in the Lagrangian, viz.

A . A . . .
L~ —if AspbB —if Casé’ —ic Bipb® —ie Dyye’

T i T e A A i 1 . i
—iK;4¢0* —iK,;1¢'¢! —i0 La;¢* —ic L' + 54 Nij;g?, (4.7.45)

and the #4 may be eliminated by setting

oL _; (éAA +&@Bis+ K > (4.7.46)
= —_—— = C ; o
893 AB IB iAq
SO
A g o.d T T eied A g .l .4 1 .3 g
L~ —if CAJC —1C D[.]C — lKi[q ¢ —1i6 LAiq —1c Lh-q + 5(] Nijqj. (4747)

T . . . .
Due to the —i¢ Djs¢” term, the associated Lee-Yang determinant is

1
det D’

(4.7.48)
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Other conserved quantities are also set to 0 in the CMP, viz.

oL

0= —x ~—i (DABG'B +¢ Bra+ qui) : (4.7.49)

06
LA )
Egs. (4.7.46) and (4.7.49) respectively give expressions for § and 64, so that
L~ iR —i{& (A + (L—BD'L), ) + (K~ KD-'C) , dic! 4.7.50
~ 54 Vg —I{C(UC + (L - )Ijq)+( - )“qc}. (4.7.50)
Due to the 3¢’ V;j¢’ and &' A 17¢7 terms, the associated Lee-Yang determinant is

1

det Ay/det Noy, 7 7ol
where
Ni=N+2(ED'L+ (K -KD'C) A (L-BD'L)), (4.7.52)
Nk = % (1\7—1 n (N—l)T> . (4.7.53)
Lowering all indices,
NUQ_INU = KiaDapLpj+ (Kir = KiaD3pC1) A} (Lyj — ByaDypLs;)
= KitA7jLyj — KiaDipCp1 A7 Ly — KitAyjLyj + Dy
+ Kia (DZ%;OCI/LJBJDD;B) Lp;
= KiaD,LLp; = Nle (4.7.54)
Nij = Aija (4.7.55)

in accordance with Eq. (4.7.33).
The product of the Lee-Yang determinants in Eqs. (4.7.48) and (4.7.51) is therefore the Lee—Yang
determinant in Eq. (4.7.37), as required.

4.7.5 Perturbative equivalence

This subsection verifies that the FMP’s chain Feynman diagrams reproduce Eq. (4.7.6), a contribution
to the Lagrangian that is also present in the CMP. It verifies also that the FMP’s loop Feynman
diagrams cancel the FMP’s Lee-Yang term, which has no CMP counterpart.

We may write Map = Mag + Hap, so Hap contains the contributions to M 45 attributable to the
interaction xh,,, . Similarly, we may write X4 = ? A+ % A, Y4 = Y+ ?A, where the hats denote the

non-interacting value and the tildes denote contributions due to the interaction.

The first task is to verify that the FMP’s chain Feynman diagrams recover Eq. (4.7.6). Recall that

. . A o
b~ ot — (MY gt b ~at — R (M) (4.7.56)
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where o :=1 (M *1)AB Pg,at .= —iPg (M™Y) %4 We then have the non-perturbative a@ propag-
) N /o NAB
ator <aA (t)a® (t )> =-4 (t —t ) (M *1) (t). The right-hand side is a matrix, which perturbat-

ively generalises to a power series

AB

(%s) k
— (t)kz:=0 E/dtjé(tj_l—tj) (—HM )(tj) 6(tk—t) (4.7.57)

where t; := t. Including 4Z indices, the full a@ propagator is

o0

~(sfs (_HM—l)’“u)})AB (5(=¢)) =5 (t-¢) (—r (1 1)) 0
=4 (t - t') <(M+H)_1)AB (t)

— 5 (t _ t’) (M) (). (4.7.58)

. A
These expressions for b, b may be substituted into the Lagrangian, which may be decomposed as
L = Lo + Ly where Lj is an interaction Lagrangian, i.e. Ly is independent of xh,, and derivatives

thereof. Explicitly

5 (et AB ¢ _7 N\AB = = [ _\AB
Ly~ —iX4 (M *HM Y +ixXa (M Vg +iXa (M Vs

N B . ~ ~ ~ A~
+igh <(HM1>A Vi — YA) +i (XA (M*lH)B - XB) of —i@gAHpab. (4.7.59)

Several of the terms in Eq. (4.7.59) have counterparts elsewhere in the FMP’s perturbation theory.

For example, the perturbation theory obtains a further YAYB term, using an aa propagator to
o N A R B

connect —X 4 (M 1H )B af to —a4 (H M _1>A Yp. Since the term in the Lagrangian is obtained

by including a —i factor, the X Y5 coefficient due to interaction terms is the 48 component of
CiMYHNC 4 MOYHIM T HM T = (M—l - M—l) : (4.7.60)
since

~ ~ N N -1 ~
M~l=pMt (Mz\rl . HM*) — Mt - (\[ n H) HN
=Mt (1= (MET 1) HMT N

=M ' M 'HM '+ M 'HM 'HM™. (4.7.61)
. JES AB .. = AB &
However, L, also provides aniX 4 (M _1) Yp term, giving a total of iX 4 (M~1)"" V3.
Further terms are as follows, and contain no contributions from L:
e Connecting X qa® to a?Y, gives iX 4 M~ 1Vp;

= ~ A ~ I ~ AB
e Connecting —X 4 (M -1H ) aB to @Y, and also including the iX 4 (M _1)
B

Y 5 term gives

= -1 1 ~ g AB _'; _1\AB =
X4 (=N HM™ + M Vi =iX 4 (M~ v (4.7.62)
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since

~MT*HM '+ M - M =M (I-HM ) - M
=M 'M-HM'—M?

=M MM — M =0; (4.7.63)

e Similarly, an ixX a (M *1)AB Y5 term is obtained.

Summing gives iX 4 (M *1)AB Y, as required.

Next I show the loop Feynman diagrams cancel Lyy. The loop contribution is

1 N N . Apsa
/dtiLlOOP (t) = —tr Z N/ (H dtk> (H (M—1H>A (tr) O (t — tk-‘rl)) . (4.7.64)
k=1 k

N2>1 k=1

where t; < --- < ty are N successive values for a time coordinate, and ¢, := t;. Note the N !

symmetry factors and a —1 factor due to the loops being fermionic. Thus

N A
) 1 . Akt . 1 . N
Lioop =18(0) Y~ ~ ] (M 1H)A (1) =16(0) Y + ((M 1H) )
N>1" k=1 k N>1 A
A

s -1 _ ~1 r
— —i§(0)In (11 M H)A 6 (0) trn (M (M H))AB
— 6 (0) In det (M—lM)AB = —i0 (0) Indet Map +16 (0) Indet Mup
= —Liy +i6 (0)Indet Map. (4.7.65)

But —id (0) Indet M4 p contains no dynamical variables, so may be freely added to the Lagrangian.

Doing so cancels Lioop + L1y, as required.
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Chapter 5 Conclusions

5.1 Overview of Part II1

In this chapter, I summarise the work of this thesis: its problem context, its findings and the outlook
for future research. In Sec. 5.2, I discuss the problem context that motivated my research with Atsushi
Higuchi. This requires me to discuss the findings of the CMP in some detail as well, in a grey
note. The fictitious mass prescription (FMP) is an infrared regularisation of zero mode problems
introduced in Ref. [2]. Difficulties with the FMP motivated an alternative treatment of zero mode
problems. This is the cyclic modes prescription (CMP), described in this thesis and by myself and Dr
Higuchi in Ref. [1].

In Sec. 5.3, I provide several examples of issues that are not addressed, or not fully addressed, in my
and Dr. Higuchi’s research. I recommend that such issues be investigated in future research.

This chapter begins Part III of this thesis. The rest of Part III is structured as follows. After this
chapter, I present my Appendices. I have stated their purposes in earlier chapters, but here is a
summary:

o Appendix A defends Klein-Gordon orthonormality in more detail;

o Appendix B addresses how the CMP can amend the pseudo-inner product of the theory;

e Appendix C verifies that the naive Poisson brackets of Yang-Mills theory and perturbative
gravity may be used;

e Appendix D shows that the (anti)commutators of Noether charges provide no new conserved
charges for Yang-Mills theory or perturbative gravity;

o Appendix E shows that the spacetime-isometry Noether charges of perturbative gravity are
obtained by BRST-transforming other Noether charges, and also by anti-BRST-transforming
other Noether charges in the anti-BRST-invariant case (the de Donder gauge);

o Appendix F discusses the Batalin—Vilkovisky formalism in sufficient detail to defend my avoid-
ing its use in Chapter 4;

e Appendix G verifies the matrix M4 introduced in Chapter 4 is invertible on the flat static
torus and in de Sitter space, if appropriate choices are made (e.g. & < 1 for the flat static torus);

e Appendix H provides further details of the perturbation theory of the CMP and FMP for
perturbative gravity on a flat static torus.

Note that:
e Appendix A pertains to Chapter 1;
e no appendices pertain to Chapter 2;

e Appendix B pertains to Chapter 3;
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e Appendices C and D pertain to Chapters 3 and 4;

o Appendices E-H pertain to Chapter 4.
I then provide Definitions and a Glossary, respectively beginning on pages 164 and 165. These
resources differ in that, while Definitions defines terms I have introduced (or defined unusually)
in this thesis, Glossary summarises the definitions of more standard terms. For example, I define the
CMP in Definitions, whereas I define scale factor in the Glossary.

I conclude with my Bibliography, beginning on page 168.

5.2 Why this work was necessary

Two-point functions of interest in theoretical physics include the propagator of a scalar field, the FP-
ghost propagator and the graviton two-point function. The infrared behaviours of these functions
are determined by the normalisations of quantised fields” modes, which are classical solutions of
field equations. No normalisation obtains two-point functions that simultaneously converge in the
infrared limit and preserve desirable spacetime symmetries, such as time translation invariance on a
flat static torus and de Sitter invariance in de Sitter space. One important normalisation convention
is the Klein-Gordon normalisation of scalar modes, which is motivated by its rendering canonical
(anti)commutation relations equivalent to the (anti)commutators of annihilation and creation oper-
ators. This convention, which is also applicable to the fields 34, 5‘4, 64, 7" introduced in Chapter
4, yields two-point functions that preserve appropriate spacetime symmetries but diverge in the in-
frared limit. These problematic behaviours of two-point functions are attributable to a limited subset
of the modes of the quantised fields, and these have been called zero modes. The Faddeev-Popov
method requires massless FP-(anti)ghost fields, so the FP-ghost propagator’s problematic infrared
behaviours in Yang-Mills theory and perturbative gravity cannot be remedied by postulating that
FP-(anti)ghosts are massive.

In 2008, Mir Faizal and Atsushi Higuchi proposed a method for the infrared regularisation of these
FP-ghost propagators [2]. This method assumes the FP-ghost and FP-antighost share a common
positive mass, say M, and imposes Klein-Gordon normalisation to obtain M-dependent FP-ghost
propagators in Yang—Mills theory and perturbative gravity. In each case, the result is expressed as
the sum of three terms. Two of these terms respect the sought spacetime symmetries; the other
term vanishes when M = 0. Of the two terms that respect spacetime symmetries, only one is
infrared-convergent. The other term is spacetime-constant in Yang-Mills theory, and is a spacetime-
constant multiple of the product of two Killing vector fields in perturbative gravity. In each case,
the absence of this infrared-divergent term would not damage the FP-ghost propagator’s spacetime
symmetries. The method concludes by deleting the infrared-divergent term before taking the A/ —
07 right-hand limit, which also results in the infrared-convergent term’s deletion. Thus only one term
survives, an M-independent (and hence infrared-finite) term that respects the intended spacetime
symmetries. This is an effective zero-mode sector propagator. I have called this method the fictitious
mass prescription (FMP), and explicitly discussed scalar field the theory’s analogues of the three
aforementioned terms in the FP-ghost propagator in Secs. 1.5.3, 1.6.2 and 1.7.1.

The fictitious masses temporarily granted to the FP-(anti)ghosts in the FMP requires a mass term in

the Lagrangian. For M # 0, this term violates internal symmetries. I have discussed two important
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examples of such damaged symmetries, which are BRST invariance and (for Yang-Mills theory
and the k = 1 gauge choice in perturbative gravity) anti-BRST invariance. These symmetries are
reinstated when M = 0, but they are not manifestly preserved before this condition is imposed
to recover the usual massless BRST quantisation. If the FMP is used to obviate the effects of zero
modes from two-point functions, are the (anti)-BRST internal symmetries preserved? Even if there is
no doubt that they are, it would be desirable®® to have a formalism that manifestly preserves these
symmetries throughout. This fact motivated the development of such a formalism for the Lagrangian
and Hamiltonian formulations of the field theory, and its formal Schrodinger wave functionals for
physical states.

The result was the cyclic modes prescription (CMP), which aimed to obviate troublesome modes
from the Lagrangian and Hamiltonian formalisms. It is always sufficient to obviate appropriate
spatially uniform scalar modes; even in the gravity case, for which the FP-(anti)ghosts are vector
fields, the “zero mode” of these fields is a linear combination of Killing vectors, and these Killing
vectors’ scalar coefficients are spatially uniform. The obviation of undifferentiated examples of these
modes, i.e. their non-appearance in the formalism (so that these modes are cyclic), is equivalent to the
conservation of the zero modes’ conjugate momentum densities. In the Lagrangian (Hamiltonian)
formalism, this follows from the Euler-Lagrange equations (Hamilton’s equations). Before the CMP
can be implemented, it must be shown that, in fact, the modes are cyclic.

Suppose these modes are indeed cyclic; they then do not appear undifferentiated. Similarly, the
obviation of the modes’ time derivatives is equivalent to the conserved momenta vanishing, and this
may always be imposed from the aforementioned conservation laws. Space derivatives are in any
case irrelevant, since these vanish for spatially uniform scalar fields. And the conjugate momenta
have been set to 0, and therefore also no longer appear in an expression for the Hamiltonian in terms
of phase space variables.

The Schrodinger picture implies that, when these conserved momenta vanish, physical states” formal
Schrodinger wave functionals are independent of these scalar modes. Although this is also a desired
outcome, an important technical issue now occurs. The classical field theory’s naive Poisson brackets
can be promoted to the canonical (anti)commutation relations of the quantised field theory, provided
the behaviour of the Dirac brackets is such as to allow this (which it is; see Appendix C). For
Minkowski space, the resulting canonical (anti)commutation relations are true for the physical states
of some Fock space, for an appropriate associated choice of pseudo-inner product on the Hilbert
space.?® All conserved charges set to 0 in the CMP then annihilate physical states, so it is fortunate
that the set of them is closed under appropriate symmetries, and that any two of them commute
or anticommute. However, the requirement in particular that some momenta be conserved implies
that, in the aforementioned pseudo-inner product, physical states are zero-norm. This prevents a
manifestly unitary formulation of the theory, unless a different pseudo-inner product is used.

An alternative choice of pseudo-inner product (see also Appendix B) must therefore be used, but it

must also be motivated. Its motivation is found in the observation that formal Schrodinger wave

©2There is at least one convenient analogy. The wave equations that follow from Maxwell’s equations in free space are
Lorentz-invariant, but it is worth asking whether Maxwell’s equations are Lorentz-invariant for an arbitrary charge n-
current. Even once it is known that this is the case, it is desirable to obtain a manifestly Lorentz-covariant formulation of
classical electromagnetism. This makes use of tensors, viz. Sec. 2.1.1.

63The Fock space of one quantised field is the Hilbert space completion of the direct sum of the symmetric or antisymmetric
tensors in the tensor powers of a single-particle Hilbert space, and the Fock space of multiple quantised fields is the tensor
product of the fields’ respective Fock spaces.
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functionals are independent of the scalar modes that the CMP obviates from the Lagrangian and
Hamiltonian formalisms. This implies that, in the case of such a scalar mode that is bosonic (fermi-
onic), the integration over these modes in the functional integral representation of the usual pseudo-
inner product on physical states causes the result to diverge (vanish). This observation can be
thought of as an alternative characterisation of the aforementioned issue with the norm of physical
states. However, the fact that the integrand is independent of these scalar modes motivates a modi-
fied definition of the functional integral, in which no integration over these scalar modes occurs. The
usual canonical (anti)commutation relations for these scalar modes and their conjugate momentum
densities are no longer true in this modified pseudo-inner product. Indeed, this modified pseudo-
inner product has completely obviated the zero modes and their conjugate momentum densities
from the Schrodinger wave functional formalism, just as they are obviated by conservation laws
from the Hamiltonian and Lagrangian formalisms. Therefore, the potentially problematic canonical
(anti)commutation relations cannot even be stated. Similarly, the mode decomposition of quantised
fields, and the resulting computation of two-point functions, no longer features the scalar modes the
CMP sought to obviate.

The CMP has one more advantage over the FMP. The FMP manually deletes a term from massive
two-point functions before taking the infrared limit, thereby obtaining modified effective zero-mode
sector propagators. For the FP-ghost sectors considered herein, the Hamiltonian and Lagrangian
are then also modified in the FMP, by the addition to each of a new term (no such terms exist for
the zero mode problem discussed in Chapter 1%*). These terms in turn modify the formalism’s
perturbation theory. The FMP and CMP are each “true” in some sense. It is true that the terms
the FMP deletes from two-point functions are irrelevant to spacetime symmetries. And it is true
that, if the scalar modes responsible for an infrared problem which the CMP aims to address are
indeed cyclic, conserved charges may be set to 0, thereby obviating these modes and their conjugate
momenta from the theory. The prescriptions ought to be equivalent: specifically, in the sense of
perturbation theory. When the FMP’s perturbation theory is considered, free integration by parts
is required, and not all of the spacetimes described in Sec. 1.2.2 allow this. The CMP, however,
does not require this same use of free integration by parts. However, perturbative equivalence
implies that the CMP also adds new terms to the Hamiltonian and Lagrangian, and this would not
happen if all the scalar modes whose obviation is sought are cyclic in the usual formalism in terms
of Nakanishi-Lautrup auxiliary field and FP-(anti)ghosts. Therefore, such obviation must require an
alternative formalism. And indeed it does, which is why Dr Higuchi and I introduced the field B
(B") for Yang-Mills theory (perturbative gravity). Each time I treated an FP-ghost sector infrared
problem in this thesis, I demonstrated the need for such a change in field variables before I provided
details of the perturbation theories of the FMP and CMP. Indeed, Dr Higuchi and I realised the need
for field variable change for Yang-Mills theory before comparing the perturbation theories of the

prescriptions; and, when we subsequently considered the CMP for perturbative gravity, we defined

%4The key difference is that, while the V,¢V*¢ term is analogous to —iV,¢ - V¥¢, the theory discussed in Chapter 1 has no
analogue of the interaction term —igV ¢ - A* x c. Indeed, if this term is deleted from Yang-Mills theory with the choice
q = 0, the new terms in H, L vanish, as does B — B. Note that all cross products contain a ¢ factor, and a replacement of
the form g, x — ¢gq, ("1 x for ¢ € R\ {0} would preserve such terms while redefining the structure constants. By contrast,
setting ¢ = 0 deletes all terms containing cross products, which has the same effect as using an Abelian gauge group.
Indeed, the Abelian case of electromagnetism does not obtain these “new terms” either. It is unsurprising, therefore, that
general expressions for them in Yang-Mills theory are proportional to cross products, and therefore vanish in the Abelian
case.
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B before considering the perturbative implications. However, in hindsight the perturbation theory
of the FMP, which has been understood since Ref. [2], can be seen by the above argument to imply
the need for B, B".

The CMP has two consequences that, while not prohibitive, are such that researchers should bear
them in mind. One is that B, B* are non-local. The other is specific to the case of perturbative
gravity. It is a complication in zero-mode sector Feynman diagram analysis. I discussed this briefly

at the end of Sec. 4.2.

5.3 Open questions

I will discuss two key respects in which our treatment with the CMP, of zero mode problems in
globally hyperbolic compact spacetimes, is incomplete. I discuss each in a separate subsection below.
There also remains the question of whether zero mode problems may be analogously addressed in

other spacetimes of theoretical interest, such as anti de Sitter space.

5.3.1 Pseudo-inner product issues

I have noted that the calculation showing physical states are zero-norm in the CMP uses the usual
pseudo-inner product that preserves the usual canonical (anti)commutation relations for quantised
fields, and that the CMP uses a different pseudo-inner product. This does not prove the revised
pseudo-norms of physical states are nonzero. In Appendix B, I introduce a notation for pseudo-
inner products that distinguishes the usual pseudo-inner product from alternatives that would allow
physical states that respect all desired spacetime and internal symmetries to have nonzero norms.
This treatment only considers the case of Yang-Mills theory, and Dr Higuchi and I have not shown
that the CMP’s modified pseudo-inner product coincides with those which Appendix B shows are

desirable. It is our expectation that it does, and that the case of perturbative gravity is analogous.

5.3.2 Theories beyond the Standard Model and General Relativity

The Standard Model and General Relativity are two theories which, between them, currently provide
our best description of all known fundamental interactions in nature. The zero mode problems
of scalar field theory, BRST-quantised Yang-Mills theory and BRST-quantised perturbative gravity
are the zero mode problems that occur in these theories. However, theoretical physics has found
reason to consider countless other theories that also have zero mode problems. Therefore, zero mode
problems not considered in this thesis will surely be present in any comprehensive physics of the
future.
What is more, the findings of this thesis do not immediately signal the details of the FMP or CMP for
any such alternative theories. The details of FMP and CMP calculations in treatments 1, 3 and 4 are
all idiosyncratically characteristic of the zero mode problem being considered therein. When these
zero mode problems were considered case by case, many differences between them were identified.
These include:

o the definition of zero modes;

o the terms that they introduce into infrared-divergent two-point functions;

e whether or not local internal symmetries worthy of preservation are also a consideration;
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¢ how the Nakanishi-Lautrup auxiliary field should be shifted for the CMP;

e how the prescriptions’ perturbation theories look; and

e which results of perturbation theory are required to demonstrate this.
The work on a zero mode problem discussed in Chapter 1 (Chapter 3) provides insights into the
techniques that are useful when treating a zero mode problem in Chapter 3 (Chapter 4). However,
the dissimilarities are sufficient to indicate that the work discussed in this thesis and Refs. [1] and
[2] provides, at best, a roadmap for the treatment of other zero mode problems.
However, a number of things will clearly be true of such other zero mode problems. The FMP
will modify any two-point function of concern. This may add new terms to the Hamiltonian and
Lagrangian, and hence affect the perturbation theory. Suppose, for instance, that this is so. The CMP
will, hopefully, be perturbatively equivalent to the FMP in a broad class of spacetimes. Suppose that
this is also true. However, these assumptions together imply a change in the choice of field variables,
analogous to B, ¢, ¢ — B, ¢, ¢, will be necessary to render all zero modes cyclic. This shows that a
broad class of zero mode problems will require a result analogous to Egs. (3.4.1) and (4.4.8). Indeed,
it seems reasonable to suppose all the BRST quantisations of field theories will be examples of this,
provided they feature FP-(anti)ghosts and an interaction term containing them. A further expectation
is that the CMP’s implications for the formulation of a manifestly unitary formalism will require
analysis.
Each zero mode problem I have discussed in this thesis was derived from a specific choice of Lag-
rangian density of the form £ = /|g|Lo, with £, scalar-valued. I have spoken in this subsection
of “other” zero mode problems, under the implicit assumption that these would occur in theories
with different choices of £y,. However, even a familiar choice of quantised fields, appearing in a
familiar choice of £y, could have implications not explored in this thesis. I will close this chapter
by discussing one subtle example. In Chapter 2, I showed that k # | is necessary for 77 to be
invertible. In Chapter 4, I showed that k = 1 is necessary for an anti-BRST invariant formulation of
BRST-quantised perturbative gravity. These requirements for k are inconsistent if and only if n = 2.
Empirically n = 4, and most discussion of the possible applicability of n # 4 spacetimes to our
universe focus on n > 4 cases, such as superstring theories. However, n = 2 spacetimes have been of
some interest [89, 90, 91], and it is dissatisfying if a proposed treatment of infrared problems cannot
be made anti-BRST invariant in these cases. There are also efforts to describe Planck-scale spacetime
in terms of n = 2 simplices (a good overview [92] is included in Ref. [93]). There are therefore
at least some contexts in which the case n = 2 is of interest. For these, our treatment of BRST-
quantised perturbative gravity’s FP-ghost infrared problem does not provide anti-BRST invariance.

Fortunately, no such invariance is required for the theory’s consistency.
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A On Klein—-Gordon normalisation

This appendix proves Klein-Gordon normalisation implies Eqgs. (1.4.14) and (1.4.25) are equivalent

to Egs. (1.4.22) and (1.4.26). First I compute operator-valued Klein—-Gordon inner products, viz.

(0o =1 [ F0F (807 +038L) =3 (0 60t =0 (A
(b 0m)g =1 [ 3 (bt 030l ) 000 = 3 10 0hgtl =l (A

where X VﬁY = XV —(V°X) Y. Note that generalising the Klein-Gordon inner product to accept
operator-valued arguments requires </1, B >KG =i /AU%B. Hence

oo ] = (008}, ),

_ /x /y (05 (1, %) V05 (& %) = (765 (£ %)) 6 (¢, ).

bt y) V6, (t,3) = (V6 (1 ¥) 6, (8, )] (A3)
o, o] = [<¢U’ ¢§>KG’ <¢"l’ ¢3>KG}

= [ ] [ 03099030 = (9°%; 4:29) 60, ).

6% (t, %) VO (£, x) — (V067 (t, %)) b (¢, x)} . (A.4)

One direction of the equivalence (deriving Eqs. (1.4.14) and (1.4.25) from Egs. (1.4.22) and (1.4.26))

then follows easily:

o] = [ [ R 6030 90, (43) = V05 (%) 0 (,9)

=i 0500 V06, (1%~ V005 (%) 6, (0, )

= (¢o, ¢UI>KG = 5gg’a (A.5)
[daa a '} =0. (A6)

For the other direction (deriving Eqs. (1.4.22) and (1.4.26) from Eqs. (1.4.14) and (1.4.25)), simply

contrast Eq. (A.3) with the calculation
125



Appendices

Thus

o= [ [{[ez 070 -0 (0 bt %),
¢

—~

ta y) V0¢g' (ta y) - VO(ZAS (ta y) ¢g/ (ta y)]

i (x, y)
lg (¢, x)|

= {090 - (9 e x) b0,
bt y) V00,0 () =V 3 (t,y) 6,0 (1, y)]
—1 (V07 (t, x) ¢y (1. %) = VO0,0 (t, %) &5 (t, %)) }

= [0 X 6 (130~ V6, ()65 (0 )

(VO¢; (ta X) ¢o' (t7 y) - v0¢o' (t’ Y) d); (t7 X))}

+ o2, 96y Vot 000 8 3)
bt y), V04t %)] 05 (1, X) V06,0 (¢, )
6t %), 6t y)| V003 (1 %) V00,0 (1, ¥)
— V96 (8. %), VOO (t,¥)] €5 (1 %) Vo, (£, 3) } }-
(A.8)

Hence

V067 (1 %) @ (£, %) =iV, (1 %) 85 (1, %) = | {[d(6,%), V05 (1. ¥)] V003 (1 %) 6,0 (2, ¥)
bt y), V0 (t, %)] 03 (t: ) V06,0 (1. ¥)
bt %), (1 ¥)] V75 (1, %) V06,0 (¢, )

V0 (t, %), V0 (1, y)| 5 (1, %) V00,0 (1)}

(A.9)
n _ i0 (X7 y)
9t Vot y)| = T (A10)
{(5 (t, X) ) é(t’ Y)} =0, (A.11)
V06 (¢, %), V06 (¢, y)| =0. (A12)
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B Pseudo-norm revision

The BRST and spacetime symmetries of the theory raise similar issues, which are compared and
analysed herein. For this purpose, it is sufficient to identify each of the fields N2A4°, B, ¢, ¢ with its
own zero mode. For brevity I define pseudo-norms as self-pseudo-inner products rather than square
roots thereof. For example, a solution of (®|®) < 0 is called negative-norm.

In Sec. B.1, I provide a normalisation convention for several FP-sector anticommutators. In Sec. B.2,
I provide a matrix representation of solutions for these anticommutator conditions. In Secs. B.3 and
B.4, I present explicit pseudo-inner products that obtain positive-norm states respectively preserving
the internal and spacetime symmetries of BRST-quantised Yang-Mills theory. These sections use
CMP methods for Yang-Mills theory. (An analogous treatment for perturbative gravity has not yet
been produced.)

B.1 Anticommutators of the k;, and required pseudo-inner product repairs by

integration variable eliminations

For the non-interacting (¢ = 0) theory

c=ko+kif,,c=ky+ksf (B.1)
for fermionic spacetime constants ko, k1, k2, k3. Zero-modes give El(:%) = —i¢-¢and
ey, = i) = iksf, wa,, = —ié@) = —ik1f, (B.2)
so canonical quantisation gives
. : i _ . :
i{ko +kaf, ksf } = {c@) Tew } = V@~ e T} = - {kotkaf laf}. (B3)

Since V.= a"" 'V, = f~! [d" 'x\/5(x) and /5 (x) > 0, some spacetime-constant > 0 satisfies
[d" *x,/m = r~2. Then r is a spacetime constant, which can be set to 1 by rescaling a (t). Thus
V-1 =r2fand {ko + ki f, k'gf} =r2f=— {kz + ks f, klf} Equating coefficients of f, f f gives the

anticommutation relations

{ki, k‘J} = 7"2 (501‘53]‘ - 511'52]') . (B4)

Obtaining such anticommutators is the motivation for considering the non-interacting special case,

0
Oko

and Eq. (B.4) implies the ¢t = 0 Schrodinger representation has k1 = —r? 5o If a ky-annihilated wave-
function’s normalization included integration over the Grassmann variable k3, said wavefunction
would be ks-independent and hence of zero pseudo-norm. Thus ks-integration must be excluded
from our pseudo-inner product, and this trivially works at all orders, since dc = constant is a
symmetry of the full theory with Noether current —iD*c and Noether charge Q¥ := —i [, D%.

It is important to prove that dgrsy (D*¢) = 0 implies {Q, Q(O)} = 0, and to obtain Q¥ in the form
O (k1). These results, if obtained, establish that we can impose one Q) |¢)) = 0 condition for each
Lie group generator, e.g. N? — 1 such conditions in SU (V). Doing this ensures a vacuum state |t

with k4 |¢) = 0 at zeroth-order satisfies the BRST invariance condition @ |1)) = 0. Indeed, the proof is
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simple. The BRST invariance of the fermionic field D*c is the statement {Q, D*c} = 0. A —i [d""'x
integration then implies that {Q, Q®} = 0. Finally, D% = k; f implies Q®) = —i [ d"~'x k1 f.

B.2 Matrix representations of the ks

One matrix representation of the ks (placed together on lines in pairs which do not anticommute) is

A 02 B 02
ki=r y ko= —r , (B.5)
0O, A O, B
_ c C c -C
hg = — ko= - (B.6)
2\ —¢ -c 2\ ¢ -c

1 1 1 1 1 -1 0 i
A= - , B:=— , C = . (B.7)
2(—1 —1) 2(1—1) (io)

1
) , AB =1, — BA, AC = iA. (B.8)

where

These satisfy
1 1
A?:B?:Oz,02=—12,BA:5 (
1

Note the factors of 27! in the matrix representations of kg, k3 are required for their anticommutator
P q

to be —1, instead of —4I,. Define

10 n2  Oq
T2 = , = . (B9)
0 -1 02 —12

One can show Afny = 12 A (and similarly with B, C), and similarly r’lkg n = nr—1k; for each i. For

example,

t —r [ CT —Ct n2  Oq
kyn = —
2\ ot —cf Oy -1
- Clny  Clnp _ [ mC mC (B.10)
2 Cny Chnp 2 mC nC 7
_ O C C — C C
ks = — [ R - 77" R (B.11)
2 Oy —mo - -C 2C  n2C

72 O,

One can similarly show that, had we attempted a metric n = ( ) , the result k;n = nks

Oz 72
would fail, so the — sign in the definition of 7 in terms of 7, is vital.

In the above matrix representation we have

128



B. PSEUDO-NORM REVISION

10?4+ AB LC?
koks + ki1ke = —r? 2 2
Lot 1074 AB

1,—BA -1
:_rz( 272 272 ) (B.12)

-3 1L, -BA

2 [ Ac AC 2 iA A
ks = —— —— . (B.13)
2 _AC —AC 2 _iA  —iA

Let a ket |1) satisfying (¢|k1ks|v) = (¢|koks + k1kz2|¢) = 0 have a column vector representation
U b )
= ,a,b,c,deC, U, LeC (B.14)

so (¢|k1ks|y) = 0 implies

= (U'+ L") A (U+L)

|
—~

1 a+b+c+d
a+b+c+d
1
:§(a*+b*+c*+d*)(a+b+c+d), (B.15)
0O=a+b+c+d. (B.16)

Here I have used the result

1(1 1
A = = , (B.17)
2\ 11

from which I can obtain a further result:

1 1 1
neBA=mn(lo — AB) =2 — (2A) B = 3 ( _ ) : (B.18)

This result is of immediate use. Introduce complex numbers w := a + d, z := b+ csow = —z and

wz* € R. Then (Y|koks + k1k2|1p) = 0 implies
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@) s, — BA —=I U
OZ(UT L#) I 202 ol
02 —12 —%12 %IQ — BA L
1
5 (U-L)-BAU
o ( Uln, L ) 1
1(L-U) - BAL
1 t f t
=5 (U+L)"; (U~L) ~ (U, BAU — LT, BAL)
1
=@+ ) (a—c) = (0" +d") (b—d) — (a” = b") (a+b) + (" — d") (c +d)}
= % {—=a"c+ac" +b"d —bd* + ab* —a*b+ c*d — cd*}
1 1
=3 {lla+d) (0" +c")]+cc}= 3 {wz* + cc.} = wz™. (B.19)
Thus wz* =0, w =z = 0,50 b = —a, d = —¢, and the most general representation of |1) is

) = : (B.20)

By inspection, this is precisely the solution to k; 1)) = 0, so is a null state in 7’s pseudo-inner product.

B.3 Repairing the pseudo-inner product

To specify a pseudo-inner product it is sufficient to obtain its pseudo-norms. Deleting two integration
variables has the effect of removing two of the four terms in the pseudo-norm |a|* — [b|* — |¢|? + |d]*.
Clearly, we need the result to be neither positive-definite (since then non-trivial nilpotent Hermitian
operators no longer exist) nor negative-definite (as this has the same problem and also violates
unitarity). In particular, the surviving terms do not both depend on either a or d, but neither do
both of them depend on b or c. Taking one term from each pair gives either
@) lal* = [b]* or — |¢[* + |d|* or
(i) Jal® — el or — [bf? + |d*.
A desirable pseudo-norm is of type (ii) rather than type (i), since type (i) choices imply (¢)|¢)) = 0
whenever Eq. (B.20) holds. One thus anticipates obtaining either |a|* — |¢|* or —[b]> + |d|*. For
solutions of Eq. (B.20), we simply have — b]*+d|* = — (|a|2 — |c\2) . With the pseudo-norm la|® —|c|?
the general solution to (¢|¢) = 11is

el cosh ¢

wy=| " asver, (B.21)
' sinh 9
—elf sinh 9

whereas with the pseudo-norm — b]> 4 |d|? the functions sinh ¢, cosh ¢ must be exchanged.
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B.4 The spacetime symmetry

So far this appendix has considered internal symmetries, but a similar treatment is also possible for
spacetime symmetries. With k1 |¢) = 0 imposed, the zero-point modes’ contribution to the FP-ghost

propagator is
(0l ko + kuf (1)) (ke + ko (1)) ) = (lkokali) + (wlkokalw) £ () (B22)

The spacetime symmetry condition is then (y|koks|i) = 0. If this inner product is in the full metric

then only a zero-pseudo-norm state is consistent with this condition, because then

(W) =72 (W[ {ko, ks} [¥) = 2r > Re (¢|koks|y) = 0. (B.23)

The elimination of integration variables is again necessary. Working throughout in the Landau
gauge, one field equation may be rewritten as V,, D#¢* = 0. (The operators are transposed in general,
but in the Landau gauge V*A’ = 0 and the two versions of the field equation are equivalent.)
The Noether charge is then @(O) =i/ D". We will identify an associated Noether symmetry. We
now have @(0) |) = 0, instead of k3 |¢) = 0. To anticipate the new pseudo-inner product, observe

ks |¢) = 0 has solution

i) = , (B.24)

s0 |a|®> — |b]? or — |¢|* + |d|* will serve as an appropriate pseudo-norm. (These were previously called

type (i) pseudo-norms.) Again, unitarity is easily satisfied.

C Dirac brackets for Yang-Mills theory and perturbative gravity

In Sec. C.1, I summarise the general theory of Poisson and Dirac brackets, viz. Ref. [81]. The
notation and terminology I use when doing so will be used in my treatments of Yang-Mills theory

and perturbative gravity. The former is the subject of Sec. C.2. The latter is the subject of Sec. C.3.

C.1 The theory of Dirac brackets

If f = g holds on-shell, write f ~ g and say f, g are weakly equal. If f = g holds off-shell, say f, g
are strongly equal. If the equation specifying the value of a canonical momentum is not invertible
to obtain time derivatives, it gives a constraint on phase space expressible in the form ¢; (¢, m) ~
0. (The label j is an index over all such constraints, which are called primary constraints.) Here
¢ collectively denotes all canonical coordinates and 7 collectively denotes all canonical momenta.
Then ), c; (¢, ) ¢ (¢, m) ~ 0 for any functions c¢;. The usual Hamiltonian, defined by a Legendre
transform, is hereafter called the naive Hamiltonian and denoted HN3ve, The Hamiltonian then
admits the generalisation HP"™ := HNVe 4 37 ¢; (¢, 7) ¢; (¢, 7), where the functions ¢; remain to
be determined. The Poisson bracket {-, -}, then satisfies

Fr L By (N S e, ondp (C.1)
k
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for any function f. In particular ¢; ~ {¢;, HNve} + 37 ¢ {0}, ¢k }p. But we require ¢; ~ 0, so
{¢;, ANV} + Z ck{pj, Yr}p = 0. (C2)
k

This fact may introduce ci-independent constraints other than primary constraints. Such further
constraints are called secondary constraints. Let ® (¢, ) =~ 0 be a secondary constraint. A term of the
form C (¢, 7) ® (¢, 7) can then be added to H™*, thereby demoting ® = 0 to a primary constraint,
and we can then attempt to find further secondary constraints. We continue until no new secondary
constraints result, and thereafter do not distinguish between primary and secondary constraints.
The final form of Eq. (C.2) after such iterations may also allow us to solve for the ¢;. Gauge degrees
of freedom result in the c; not being unique, which further complicates the form of HP'rac,

Call a function f (¢, ) satisfying {f, ¢;}, ~ 0 for all primary and secondary constraints ¢; a first
class function. If {¢;, or}p is not weakly equal to zero call ¢;, ¢, second class constraints. Label

these constraints ¢, and define the matrix
Mab = {(:50,7 (Toib}P . (C3)

This matrix is always invertible. The Dirac bracket {-, -}, is then defined as
~ _1\ab ~
{f, 9o ={f, 9}p = D_{f: Batp (M) {30, g}p - (C4)
ab

Note in particular that any weakly vanishing quantity, e.g. a primary constraint, has vanishing

Poisson brackets and hence vanishing Dirac brackets.

C.2 Results for Yang-Mills theory

Let us consider an example relevant to us, namely that of Yang-Mills theory. We take all fields at
equal time, say ¢. Our first class constraints are 1 (x) = mp (x) + /|g|A° (X), ¥2 (x/) = Ta, (x/).
Note the /|g| factor and the distinction between A° and Ag. Thus

{160, 2 (x)} = Viglg™s (x.x). (€5)

The primary constraints are thus both also second class constraints, and we define

Thus
00 ! 0 1
Map = /|9lg™ Japd (X7 X ) s Jab = = 0q10p2 — 0q20p1. (C.7)
-1 0
Since § (x, x/> is the identity on the function space, it is self-inverse, whereas J~! = —J. Thus
—1\ab 1 asb asb !
(1) = = (630 — 5708) 8 (x, %) (C8)

Dirac brackets integrate over positions, viz.
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{f (x), 9 (X/> }D = {f (%), 9 (X/> }P — /d"_lxnd"_lxm %; (0a20p1 — dq10p2)

0 x, x , y /
S g (o () ),
~ {1, 9(x) }P ¥ M /dn-leldn_le//x

lg (2)|g°° ()

({10 () it (<)}, fou () o ()},
() o () VB ()0 (6)),)- e

The Dirac brackets { f, g} with f, g € {AO, B, wa,, 7TB} must be calculated. Since 74, is a primary

constraint, the result is always zero if 74, € {f, g}, soonly f, g € { A B, 773} need be considered.

By antisymmetry, it suffices to calculate three Dirac brackets, viz.

, . , o (x, x nety
{Ao(x),B(x)}D:{A (x),B(x)} n |g(<)goo)(x)/d x"d"1x"

= {AO (x), B (X'>}P+ 5(){,){0)900 (z)

’ <X’ XI) : (C.10)

o
—
8
=
Q
=
—
8
N

Therefore the naive commutation relations used in this thesis are justified. Notice in particular that

0= {B (x), 7B (x/) }D - \/E{AO (x/> , B (x)}D = {B (%), @1 (x/)}D. (C.13)

C.3 Results for perturbative gravity

We take all fields at equal time, say time ¢. I will use two references, Ref. [94] and Appendix E.2 of
Ref. [4].
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There are four primary constraints. They may be succinctly written by first defining [4, 94] the

Hamiltonian constraint
1

1] 1 n—
Hi o (Wing _ 27r2> _) Ry (C.14)
and the momentum constraint

H; := —2D;x} (C.15)

i

where:
e ("D R is the Ricci scalar on a Cauchy surface;
e 7'l is the conjugate momentum densities of v;;;
e 7;; lowers the indices of 7%/; and
e D; is the gauge covariant derivative.
The shift vector N* € R"~! may also be denoted N.
The primary constraints [4, 94] are shown below in Egs. (C.16)-(C.19) (N is denoted N in Eq.
(C17)):

o1 =Hy = / d"'xN (x) H (x), (C.16)
w9 = Hy = / d"'xN* (x) H; (%), (C.17)
@g = THop» (C.18)
Y4y =Tpe ++/ |g|H2. (C.19)

(The constraint in Eq. (C.18) is due to the Ricci scalar in the Einstein-Hilbert action.) All of these

constraints are also secondary.

The next task is to find the matrix M, defined in Eq. (C.3), and the inverse matrix thereof. Taking
N, N (M, M) in the first (second) argument of a Poisson bracket (hereafter PB) obtains M,, when
a, b € {1, 2}, viz. Ref. [94]. This result is antisymmetric when N = M, N = M, but not more

generally. The matrix M,, may be written as a block matrix

A O
Mgy, = 2, (C.20)
0O, B

where A, B are 2 x 2 matrices and Qs is the 2 x 2 zero matrix. Explicitly

H.ij M — i —H,
Ao Y (NV; M=MYV;N) EnM ’ (C.21)

Heym Hin My
! O 71
B = \/lglg"3ts (x. x ) . (€22)
1 0

Note that, unlike 4, the matrix B lacks any dependence on N, N, M, M, so is antisymmetric.
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The inverse matrix of M, is obtainable from the identity

—1
A Oy A1 (O
- . (C.23)
0O, B (O B!

Using also the fact that the Dirac delta and Kronecker delta are both self-inverse, we have

H He
e aer 0 0
) _iliiTM Ha,'ij(NvéZivajN) 0 0
M— = N N |, (€29
0 0 0 N (x.x)
1 v !
0 0 = Traa® 6y (x, X ) 0

where det := H. i vy, m—mv,; N)HN, vy + Heg v Hey - The Dirac bracket (hereafter DB) is then

(F, G}p = 26: Tr, (C.25)
T=0
where the terms T are

Ty == {F, G}p, (C.26)
T, = {F, Hybp 20 (11y, Gy, 27
Ty 1=~ {F, Hy}p "2 (Hy, Gy, (C28)
Ty := {F, Hx}p Hg:tM {Hy, G}y, (C.29)
Ty i= — (F, Hy)p TSN gy, (€30)
Ty = {F B + \/HHB}P e . (C.31)
Ty = — {F, 7., bp {WBV +/[glHS, G}P. (C.32)

Computing DBs requires a few Poisson brackets. Some are straightforward:

{B“, S MHS}P _— (x, x/) : (C.33)
{H,), Tro, }p = 9700 (x, x') : (C.34)
{ﬂ'HOM, TRv + \/@HS}P = —/]g|g% 6% (X, x/) . (C.35)

Others require some calculation:
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N ki L,
'Vi'aHN :/dn 1X7 {’W',ﬂ' Tl — =T
{ J }P ﬁ J 9 b

N 1
= /dnilxi <’Ykm’yln - 71@177)7,11) (5:€6§7Tmn + 5;77,5;17_[_]6[)

NG 2
= /d"—lxﬁ (2735 — ™i;) (C.36)

\/7}/ (¥} 13/ °
{7ij, Hn}p = —2/d"*1xNk {~ij rgmw;”}P = —Q/d"’lxle“fi. (C.37)

It is now possible to obtain the DBs {F, G}, with
F,GeS8:={vy, B", H), 7, 7pu, g, }, F#G, (C.38)

by beginning with the nonzero PBs of Hy, HN, TH,,, TBr + 1/ |g\H2 with the elements of S.
For a DB to differ from a PB we need some T, T > 1 to be nonzero. The table below summarises

those T which can be nonzero (provided the G-dependent PB is also nonzero) for a given choice of

F.

F Yij B# H/(l] T TR 7THB

l1to4 5 6 None | None 5

A similar table for G is shown below.

0 0j
G Yij B# HH T TR 7TH2

T | 1to4 6 5 None | None 6

Thus a choice of F' # G for which some T # 0 for some T' > 1 requires
(F,G) e {(B", H)), (7m,,, H), (H), B"), (H)), 7r,,) } (C.39)

(Eq. (C.39) uses round brackets to denote ordered pairs, not to denote antibrackets). In each of these

cases, T' € {5, 6}. This simplifies the nonzero DBs distinct from PBs to

{F, Gl = {F, Ghp+ {F. mpe + VIGIH} (e, Gl — {F, g Yo {mme + VIGIHY, G} . (C40)
Such DBs are as follows:

{B", H}, = g™000 (% %), (C.41)
{H)), 7ho}, = 0. (C.42)
In particular, all DBs with the primary constraints vanish as required.
Further, the following Dirac bracket is identical with its usual Poisson bracket, which was also

required:

{wBu +/]glH?, WHOV}D = /]glg*°5%5 (x, x/) . (C.43)
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D There are no “new” Noether charges

Let ¢# denote an arbitrary Killing vector (if multiple Killing vectors need to be considered I write
1, -++). Let Qoo denote a bosonic conserved charge that is neither BRST-invariant nor anti-BRST-
invariant. In the Landau gauge, Yang-Mills theory and perturbative gravity in the de Donder gauge

provide respective examples

Examplel 0 Example2 0
e = [ Qhe = [ oy, (D.1)
X X

Define

Qo1 = [Q, Qoo], Q10 = [Q, Qoo , Q11 = {Q, Qo1} ={Q, [Q, Qoo } - (D.2)

Thus Q;; is fermionic if and only if i+ j is odd. The results V,Q = V,,Q = 0imply that Qo1, Q10, Q11
are also conserved.

Each of the four conserved charges has a 2-bit label that could instead be written as one base-4 digit.
Of interest are the values of Q;jx = [Qij, Q] With 2i + j < 2k 4, where + is a + sign if and only
if Q;5, Qi are both fermionic. Since each @);; is conserved, so is each Q;;x;. The aim is to show that,
for the cases in Eq. (D.1), the Q;;x; are linear combinations of terms of the form @);;, so that there are
no “new” conservation laws. (Trivial conserved charges may also appear in expressions for Q; ;.
Examples include [, V° where V,,V# = 0 and integrals of the form [ ¢*A) where A*% = AP and
Vo A% = 0 for some tensor A*#))

For brevity we may use a single hexadecimal digit® to label the (anti)commutator, viz.

Qsitaj+2k+i = Qijkl- (D.3)

(Since conserved charges are labelled with two bits, this creates no ambiguity.) Note that Qoo has a
lower case Roman index in the Yang-Mills case, and for perturbative gravity there is one Qg for each
Killing vector, so that the vector spaces of charges Qo is spanned by the QZ}, (say) that ¢, generates.
Hereafter upper Roman indices will be used for both cases, so (anti)commutators have two indices,
viz. Q5 = [Qf), Qiy] .- The “diagonal terms” are Q3'”, Q#'%, QA" Q¢'P. They are called diagonal
because they satisfy 2i + j = 2k + [. They trivially vanish in the case A = B. The “non-diagonal”
(anti)commutators of interest are Q1, Q2, Q3, Qg, @7, Qp. (If decimal labels were used instead of
hexadecimal ones, the labels 10, 11 would have been used for Qa, @, creating an ambiguity with
the previously defined charges @19, Q11.)
Some cases are trivial. For the cases in Eq. (D.1) Q1 = 0, since Qgo, Qo1 are proportional to momen-
tum zero modes. Indeed Qo9 x 7p completely decouples from the FP-ghost sector, so Q2 = 0. I
discuss the other Q;;x: below as follows:

e I discuss Q3 in Sec. D.1;

e I discuss Qg in Sec. D.2;

e I discuss “diagonal” terms in Sec. D.3;

e I discuss Q7, Qp in Sec. D 4.

%The hexadecimal digits A-F will be deitalicised throughout.
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D.1 The case of ()3

A Nakanishi-Lautrup-sector term in the global gauge current is the only contribution to (3 in Yang—

Mills theory that requires a detailed treatment. Dropping irrelevant factors and explicit ¢-dependence,

Qs o< 1B (x), T (y) x B(y)]

::t/'<wB<x>-wB<y>x.B<y>—<wB<y>x.B<y>>-wB<x»

=/ #%@@wywHw%wwawwwa (D)

where in the last line [ use f*¢ = f*¢, Using the identity ABC — BCA = [A, B]C + B|A, C], the
fa% coefficient in the integrand of Eq. (D.4) is proportional to

(7% (x), 7% (y)] B (y) + 75 (y) [t (%), B (y)] o< 6°°. (D.5)

But fe*¢6%¢ = 0,50 Q3 = 0.

In perturbative gravity, 7p. = —rH}). There are no terms in . ,SB) that contain both an H,,,, tensor and
an undifferentiated B?, so the only terms in J, ,SB) that could contribute to ()3 are those proportional
to an undifferentiated B.

The only important term in Q1 is fy JB)O where J,(LB) is the B#-dependent vector field you defined.
However, hereafter the Killing vector to which it is proportional will be denoted &4 instead of &*.
Thus Q3 fxy {5{‘ (x) 7 (x), JBO (y)}, where j,SB) is obtained by deleting terms from J,SB) that

depend only on derivatives of B*. Define the integral operators

/xy :z/d”lx/y, /y = [ay [ (D6)

Explicitly J\”) = —€57£9x BV h,y 50

%m/~$®$whmwime@Wﬂ

m/n$®$WW®wVﬁ%w:/%ﬁAﬁ%) (D7)
xy

y

Since the ¢ factor ultimately allows all arguments to be set to y, @3 is &1 <+ {&2—symmetric, so
Qo ox [ K[E5V, (LHY) + 1V, (£ HD)). (D)
y

Define ® := H%"¢;,, so fy ® is a conserved charge. Up to total derivatives
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&V, (E1HY) = — (Vo) (E1H)

= (V&) (1H™) = (Vi) (§TH™)

~ =6,V (ST HM) = — (£, V,.47) H*

= (&2, V&) H

= (&, VY€ +£,6) H),

= (£e,&1 — &L V') H),

= H)Ee, &' — &1, V" (&5 H)) (D.9)
&V (S HY) + &V, (& HY) ~ Hpe,&f — £0,V" (& H) — €2, H™)

= H) (Ee,&) — €1, V7€) + &1,60, VHHY

=&, Ve =V, (E5) = 0. (D.10)
There is therefore no independent Noether charge.

D.2 The case of ()

For Yang-Mills theory, mc = —iy/[g[D% and 7. = i/]g[Ves0 Qs o [, [m=(x), A°(y) x c(y)],

which is a linear combination of the fy AV (y). For gravity define

Q. (61) = / 4" 'x (gma +iy/JglkHOLe 7 — iﬂg?V%%Haﬁ) : (D.11)
Qe (62) = —i / 4"y me = — / 4"y 70, (D.12)

Then
{&07ca, &G} =0, (D.13)

{HEe e, &mer } = {£e,0, mer } & HY

= 10 (x, y) 05£¢, & Hy

= 16 (x, y) £, Hy, (D.14)

{9V Hop, &3 } = 0, (D.15)
(Qu(6). Qo)) =i [ xa" 1y (il (38 (x. y) w86, 5)

— i [ o6 (D.16)

D.3 The “diagonal” cases

Since Qf}, Q& are proportional to momenta, Q{'Z =0, Q#F = 0.
We may write Q1} in the form 7{}) + ¢{}, where 7}, is proportional to a momentum and ¢}, has no

dependence on the field to which said momentum is conjugate. For example, for Yang-Mills theory

Q10 :/DOE, 10 :/Voéoc/wc, qu0 = q/AO X €. (D.17)
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Thus Q4% = {qf}, ¢ff}. For Yang-Mills theory Q%" = q2f“bcf“,b/ ¢ S Jy {AOZ’EC, A0 e }, which
simplifies to 0 by the usual equal-time CARs and CCRs and the identity

{b1f1, bafa} = by [f1, ba] fo + [b1, ba] f1fo + baby {f1, f2} — b2 [b1, fo] fi, (D.18)

where by, by (f1, f2) are bosonic (fermionic) fields. (Taking by = A§, fi = ¢° etc. gives [f1, ba] = 0

etc.) The analogous calculation for perturbative gravity obtains

O( {Qc (SA Qr €B)}
/d” 1 /d” by Q€5 +iV/|glkHOEe . — i/ [g|€4 Ve kH g

ELmer +1V 9] RHOE@BCW —iy/]g|ER Ve KH,Y(;} (D.19)

where underlined terms are y-dependent. By inspection Q42 = 0.

To address Q{'? is trickier. For Yang-Mills theory

[A5 (%), B* ()] = [-wh (x), B* ()] = 75“b5(x Y) (D.20)

Vldl

Ql{l _ fbcd/ (AI/CFVOd + AOch _ iECDOCd +i (Voéc) Cd)
y

= bed/ (A”CFyOd + A% pBd 4 ¢ w + wccd) (D.21)
y
Q%b — faeffbcd//
xJy
X {Aoer —|—Eew£ + @, A%B? 4 twd + wccd} . (D.22)

From the identity [b1b2, b3b4] = b1b3 [bg, b4] + by [bz, bg] by + b3 [bh b4] by + [bl, bg] b4bs, the Nakanishi-

Lautrup contribution is proportional to
(facefbcd —as b) / WeBBd _ (facefbcd —d e) / 7TBBd facefbcd/ (,n_eBBd o ,R_%Be) . (D23)

The first of these three expressions verifies an a++ b—antisymmetry. The third shows thata d < e
exchange combines an a <+ b exchange with a further sign change, i.e. there is a d <> e-symmetry.
In the second expression, the factor f*°°f*°d — d « e is d <+ e—antisymmetric, but [, 7% B% is neither
d < e-symmetric nor d > e-antisymmetric. To prevent a contradiction, the Nakanishi-Lautrup
contribution is therefore zero. The same argument also vanishes the contributions from the ghost

and antighost sectors, using the identity

(f1fo, [afa]l = =frfs{fo, fa} + fu {fo, f3} fa = fsd{ 1, fa} fo +{f1, f3} fafo. (D.24)

Since all nonzero commutators in CCRs and nonzero anticommutators in CARs are proportional
to & (x, y), for perturbative gravity a tensor F,,, exists for which Q#'? = [ ¢4¢4F,,,, which is an

A < B-antisymmetric pseudo-inner product on the Killing vector fields. We require this product

%The F is deitalicised because it is a hexadecimal digit, in reference to Q4 7. This notational convention will be used again in
Sec. D.4 with the digits 7, B.
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to be identically zero. It is completely specified by its pseudo-norms, so we need only verify these
vanish. Since the pseudo-norms Q## vanish, and the pseudo-norm of a Killing vector field £# may
be expressed in this form by choosing a basis of the Killing vector fields for which some A satisfies

& = ¢!}, the pseudo-inner product’s pseudo-norms all vanish as required.

D.4 The cases of ()7, Qg

Since Q48, Q4P are fermionic, they should be expressible in terms of the QS;, Q1) charges. Indeed,
this is verified below.
The next few calculations make repeated use of the identity [fi1, fofs] = {f1, fo} fs — fo {f1, f3} for

classical fermionic fields fi, f2, f3. For Yang-Mills theory
ab o pbed / 4" 1xd" 1y [m ¢ m] o fabd / dnxnd, (D.25)
Qab — fbcd// 1w +qfaefAOe f AOch 4 rou wd _'_wccd}
xJy

[-
fbcd//< o, wle } + qfoct [AOC Bd] AV 4 g fact A0 {7 chgD
xJy
(5

_ fbcd// z 1qfadeOc —f +1qfaefAOe5df ) 6(X7 Y>
x - g (¢, x)|
_ fbcd/ (5adz§+iqfadeOcEf +iqfaedAOeEc)
y
— fbcd/ (6adwg+iqfadf (AOCEf —AOfEC))
_ / (fabcwg + iqfadffbcd (AOCEf _ A()féc)) ) (D26)

The result for Q4° is expressible in terms of the Qg;. The result for Q2 is expressible in terms of Q{,

terms, since

fdaffdbc/ (AOCEf o AO'fEC) — (fdaffdbc ERPAPEN f) / (AOCE‘f) — (fdaffdbc —a b) / (AOCEf)

(D.27)
vanishes by the same argument used in the above analysis of Eq. (D.23).
For perturbative gravity there exist tensors 7,,,,, B,., analogous to F,,,,, viz.
— [ g5 @4” = [ heiB. (D25)

Since a fermionic field f satisfies [f, {Q, f}] = [f, Qf + fQ] = fQf + f?Q — Qf? — fQf = 0 and

similarly with @, the results Q44 = Q4“4 = 0 are trivial. The properties of pseudo-inner products

used to show that Q48 = 0 imply Q4F =0, Q4P = 0.

E The equivalence of “two Noether charges” in perturbative
gravity

In Sec. E.1, I present a proof two conserved expressions are the same Noether charge. The rest of this

appendix provides details that Sec. E.1 leaves unaddressed. There are two types of term that must
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be considered, and these are collected in Eq. (E.3) below. The terms differ in whether they depend
on the Nakanishi-Lautrup auxiliary field. Those which do are considered in Sec. E.2; those which do

not are considered in Sec. E.3.

E.1 Overview

The field equation obtained by varying ¢ is V,, T#” = 0 where
Tow =T + (2k — 1) VP (guhsy — gaylhyw) s Tuw =700 (Vo + Kchpe) = [Q, Hyy] . (E1)

Similarly, varying ¢* gives V,Z"" = 0. Since Z,,,, T, are symmetric elements of ker V¥, for any
Killing vector field £ the currents®” Sy = Zpar Jeyu = §Tua are conserved.

Of interest is a comparison of {Q, J (%} and {Q, J (“c )} to the spacetime-isometry current. In fact

{@ a0} +{@ 7t} =€ (@ Spa} +{Q Tuad)
= £ ({Q, Spa} +{Q: Tua}) +€°4Q. Tpo — T}
= ({@ (@ Huol} +{Q, [Q Hua] })
+(2k = D) RE{Q, VIO (gunhpy — gprhyuw) }

= (2k — 1) k€ {Q, V7 (guwhsy — gy lu) } (E.2)

which vanishes if and only if k = ;. What is shown hereafter is that [, {Q, iJ(OE)} is the spacetime-
isometry charge, so that in the anti-BRST-invariant case k& = 3 this charge is [ {@, iJ(OC)}. The
spacetime-isometry charge may therefore be represented as the transformation of some Noether
charge under whichever of the BRST and anti-BRST transformations is action-preserving in the

chosen gauge.

We first write

{Q7 iJ(“a} — B i), (E.3)

where J,SB) contains terms that depend on a (possibly differentiated) Nakanishi-Lautrup auxiliary
field because of the BRST transformation of the FP-ghost, while J,SEC) contains other terms that result

from the BRST transformation of the metric perturbation xh,,, . The expressions

JB) =~ [¥07 (V. By + KEphys) + (2k — 1) KV BY (guwhpy — gavhu)] (E.4)
I = £ [V s Zya + V8 Zpa + Va?® Zgy — 90, V72 Spy

+ (1= 2k) V5e® Zya + kT o (2Vac® + £V gh + 26V7 Vg, ) | (E.5)

7Each Noether current has a subscript that refers to the fermionic field appearing in that current’s definition. This is not the
same fermionic field which is varied to obtain the Euler-Lagrange equation that implies a conservation law.
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E. THE EQUIVALENCE OF “TWO NOETHER CHARGES” IN PERTURBATIVE
GRAVITY

may be compared to the spacetime-isometry transformations

Sstkhy =V, (@€) + YV (a€y) + £ (@€ Vil + V,u (a€?) hay + YV, (€Y) By ), (E.6)
0stB" = afeB" = a (E¥V B* — (Va&H) BY) (E.7)
dsect = afec! = a (E¥Vaek — (Vagh) ). (E.8)

The fact that V#*B" 6 H,,, — V"0 B¥ H,,,, is of the form aX + (V&) Y* accounts for a contribution
Y* + k€*VPBYHpg., to J,SB) (since VP B Hg., is the Nakanishi-Lautrup part of —£#Lo). When this

contribution and 64 B* are subtracted, what remains is
JBrest = ¢ (BPV s Hyo + Vo B Hg, — H,'V By + H,oVB’) . (E9)
The spacetime-isometry current obtained by varying B* is
JE B = 15 (B* (Vo) Hu — (§£*VoB?) Hg,) . (E.10)
The difference between Egs. (E.9) and (E.10) is
IV = —k€* (B°V3H,q — H'V By + H,oVB® — B* (Vo) Hyu) - (E.11)

Since H,, = 0and V,H* =0, J,(Ll) is a total derivative, viz. Jl(f) = —kVq (B¥HM — BrEgHP).

An analogous quantity in the treatment of Jl(fc) is

JP = (Vs Zua — 2./V T + ZuaVpe” — ¢ (Vab”) Zu) = Va (gﬁaazﬂﬂ — gﬁaﬂzaﬂ) . (E12)

Next we consider J;(LX) + JELY) + Jl(LZ), where:

. J,SX) is obtained by varying c/;

o J;SY) is obtained by varying h,,, in h,,-independent terms;
o Jﬁz) is obtained by varying h,,, in V,h,, -dependent terms.
Explicitly
) =T (E9Vac” — Val’c®) + kT hg, Vac — KV T, hayc?, (E.13)
JY) =€ (TH Vet + TPV geo + KTPIV g hay + KTV P hag) (E.14)
1
JE) = Vo (T"c) (& + KkEPhgy) + 5/-eT%ﬂgav(,hﬁv. (E.15)

Equivalence up to total derivatives may be denoted ~ so that

7THV (VO/SV) '~ EVVO& (Tﬂuca - Taucﬂ) ) (E16)
V€™ (TP et — T cP) hyy m €5 { V5 (TP hay) ¢ — TP ho V gt

+V5 (T ) hay + T PV ghay } . (E.17)

Using Egs. (E.16) and (E.17) in Egs. (E.13)—(E.15), the only non-vanishing terms containing deriva-
tives of Tog in J) + I + IS are =V 5 (TP + TP 1)) enge.
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The next step is to verify the equations

Vs (T°* +T%h%) = Ve’V Hg,, (E.18)
1
iTﬁvvahM = Ve’V Hp,. (E.19)

These imply that eliminating the contributions of spacetime-isometry and Jff) from JI(LEC) leaves

exactly J;(LX) + JP(LY) + J,(LZ). Then |, {Q, iJ&)} is the spacetime-isometry Noether charge.

To prove Eq. (E.18), observe that V577 = 0 implies

VTP = (1 - 2k) KV (V" (6™ hyor — grrh®?))
= (1=2k) K (V™ (haaV7EY) — V5 (h*PV,2Y)) | (E.20)
Vi (TP"1h%) = kN TP + TPV gh,
= (1= 2k) kh®%, (V" (haa V) — Vg (P V)
+ (VP& + v’ + k(6779”7 — kg"" g*7) £chpo ) Vshe,

= Ve’ (Vg — kgp, Vh) = Ve’V Hp,. (E.21)
To prove Eq. (E.19), observe that the definition of T},,, implies

1 1
iTﬁyv“hﬁv = 57% (Vpéo + “thpcf) Vo ht*

1
5 (Volo + Kfshpg) Vo H'” = VeV o Hp,. (E.22)

E2 OnJ”

We start from the conserved current

Joyu =& [V (Ve + Kfchpy) + (2k — 1) 6V (guahipy — huagsy)] - (E.23)

The contribution coming from ¢ — B, which is —i times the effect of the BRST transformation, is

£ [V (VsBy + kEphgy) + (2k — 1) VP BY (guahpy — huagsy)] (E.24)

which has x-dependent (“non-linear”) part

KE® [BPV ghya + VB hga + VB’ hgy — kgua B°Vgh — gua VP B hgy + (1 — 2k) hua Vs B?] .

(E.25)
The “spacetime current” from —rh,»7/5, V#B” has B-dependence
€ vap (VB + wEphgy) . (E.26)

Multiplying the perturbation-independent term of Eq. (E.26) by V, (a&,) gives an expression in
which the V¥« coefficient is %757V s B,. Similarly, the V#*« coefficient in V,, (a&,) khg,vix V* B is
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KE ha”vﬁ,f‘VKB . Subtracting this from Eq. (E.25) gives

k€ [BPV g H o + Vo B hgy — hYVuBy + huoVB? — g, VP B hg, |

= K€" [B°VgHyo + VoB Hg, — HYV, By, + Hu,o Vs BP — g,V B Hg, | (E.27)

(note the addition of the trivially zero quantity —khxé® (VoB, — VaBy, + 9uaVsB? — 9,V BP)).
Including the conserved current’s —¢“ L, term deletes the term —x¢, VP BYHg,. The remaining
terms, which by inspection equal —JﬁB)reSt, are simply the terms obtained by varying B*. Indeed,

the V¥« coefficient in KV, (a£e Bg) H*? is k (£2V o B? — B®V ,¢P) H,,3, and

—kBV &g H"Y = —kV o (B¢ HM) + kég (H'PV o B + B*V , H"P)
~ —kV, (B HP) + k€5 (H*PV ,B* + BV, H"'P)

= —k€gH PV o B" + k&g (H"PV o B* + B*V o H") | (E.28)

as required. (Note that a total derivative has been added, by replacing one term of the form VK¢

with another.) Similarly, the Lie derivative term in Eq. (E.26) is

KEYEphgy = KE* [BPVghyua + hpaVuB? + hgu Vo B® — kgua (BPVgh + 2h3, VP BY)]

= K€" [B°VsHyo + hpaVuB® + hg, Vo BP — 2kguahs, VP BY]. (E.29)

E3 OnJ\

Next we consider the BRST transformation of the perturbation instead of the antighost, viz.

T = R (12 Echay + (2k = 1) VO (guahsy — huagsy)]
= K€ ["VsHya + hpa Vi@ + hpu Vo’
—2kRp 9ua VI E + (2k — 1) VP (guahpy — hua9pn)]
= k€™ ["VsHya + H3a Vi@ + Hp, Vo’ + kh (V8o + Vaty)
—VIE (2khsy Gua + (1 = 2K) Guahsy + (2k = 1) hyuags, )]
= k€ [P VsHya + HpaV @ + HguVo@® + kh (V80 + Vaty)
VI (hpyGua + (2k = 1) huagsy)]
= K€ [’V sH o + H3a Vi@ + Hg, Vo’ + kh (V8o + Vaty)
—VP (HpyGua + (2k — 1) HuaGpy + khgpyGua + (2k — 1) khguags,)]
= k€ ["VsHya + Hpa Vi@ + Hp, Vo’ + kh (V8o + Vaty)

VP& (Hprgpa + (2k — 1) Huagsy + 2k°hgs9ua)] - (E.30)
Since g"£zg1, = Ve’ + k (€°Vgh + 2hs,VFeY),

{Q, Jfﬁ)} = € (Y s Zpa + VT Zge + Vi Zgy — 9oV Zgy + (1 — 26) V578 Z0

+kT o (Vg° + k (E°Vgh + 2hp,VPEY))) (E.31)
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where TW = Wﬁbvn@. The ¢ - B and—¢£"L, contributions to the spacetime-isometry Noether

current total

— &7 (Vo) 2% - £'VPT Zg,,  (E32)

since (V&%) @S vanishes by Sas = Sga. A comparison with Eq. (E.31) benefits from changing

the order of terms, viz.

{Q; Jfbh)} = fa (vﬁ (658W) + Vaéﬁzﬁu - Quavﬁévzﬁv
+ V& Zg0 — 2kV 58 Z 0
kT o (V2° + k (?Vgh + 20, VPE))), (E.33)
(Eec”) 21, — enVPE Zy, ~ €9V, (zazﬂﬁ) + €OV, 2H, — EVIT 7,
— &P (Vo) Z%. (E.34)

In particular, the first lines of the right-hand sides of Egs. (E.33) and (E.34) are equal (save for the
height of the spacetime index ). The difference is

5, = {Q, ijﬂ} — (EeT”) S, + €"VPE Z,
=& [V, Zgo — 2kV 587 Z,y0 + (Vi) Z,°

+kT o (V2® + k (°Vgh + 20, VPE))] . (E.35)
The aim is to show that this is obtained from the transformation of

—uv (1
KVHE Y Echgy = KT <2canhW + hayv#ca) : (E.36)

Some variations are irrelevant, such as that of ¢* in V,h,, (because V ,« is absent from a£¢c”). The
variation of V,c® gives T ha,£ec® = T”ﬁhﬁ,yfavaﬂ — T" how V€. The first of these terms

provides a contribution equal to the V ,« coefficient in
T'Vsc® [Va (08,) + V, (0€a) + sy Vo (a€?) + khasV, (a€?)] (E.37)

which is £* (Tﬁavﬁcu + TB“VQCQ + nhMTﬁﬁ/Vgc” + /shaﬁfwvvcﬁ). The contribution from V,h,,,

is the V,a coefficient in

Vo [V (08) + Vo (08) + 0k Fghy, + KV EDhg, + 1 (V1) by - (E.38)

146



E. THE EQUIVALENCE OF “TWO NOETHER CHARGES” IN PERTURBATIVE
GRAVITY

Using V&, + V€, = 0, Eq. (E.38) simplifies to
2V, (Vo (& + 6EPhg,)) + (kY o) (€°V ghy + hp, V,,67) . (E.39)

The first of these terms is a total derivative that may be dropped by integration by parts. The

contribution of interest is now
— v 1 — _
-~ V. (T“ c(’) (& + KEhp,) + 5;&#’”&5@‘%@7 4 6T P, V5%, (E.40)

but each of the terms —V, (TWCQ> £, —kVq (TWCQ) €Phg, is cancelled elsewhere. Indeed, the

contribution from varying ¢* in the perturbation-independent (“linear”) term is
T (E9V " — ¥V o), (E.41)
and the second term therein is

_Tﬂycavagu — ¢y, (Tuyco‘) v (THUCO‘{”)
a (Tal,c“f”)

N (Tauc”) ¢, (E.42)

e (1)

)=V
=&V (The) - v

—m

giving a term ¥V, (T*¢%) that cancels —V,, (T ca> &,. Next observe that

Vs [ga (Tﬁ”cﬂhcw . T"”cﬁhw)]

Q

0, (E.43)
Vg™ (Tﬁwc“hoW - Twcﬁhan,) =—£"Vg (Tﬁvcﬂhw - Twcﬁhcw>
= ¢ (—Vﬂ (Tﬂvhw) et — Tﬁvhwv,gc“

+V5 (1) by + TV ghar ), (E.44)
and the penultimate term cancels —xV, (TWC"‘> EPhg,.

The contribution still includes T',,, £V o¢” — (VgTﬁa) e —T° ¥V, . Indeed, Eq. (E.18) allows

all surviving terms in the contribution to be combined. The x{* coefficient becomes

_ _ _ _ 1—
T hoy Vo +T 5 %5t + TB”V,@CaM +T " hagVae’ + §Tﬁvcu€avah57
TV TSN — (V76 Vo Hay —T by Vac + T ¥V ghey,  (E45)

where cancelling pairs have been indicated. Of what survives, the linear terms are

T Vo + T Vac =T (Vacs + Vaca) | (E.46)
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and we require these to match®®

(V7 + Vi) 125V = 20 (Va2Y) 128V 05 + 20T Va2 =T, (115765 + 2k, V")

— T, (Vacs + Vaca) (E.47)
as indeed they do. Now for the non-linear terms: the spacetime-isometry result is
KETP (VVyhap + hysVac” + hyaVsc) . (E.48)
A comparison of this with Eq. (E.45) shows that the only remaining terms are
%Tf%ﬂvafw7 — (v¥e®) (Vo Hpgy) ¢, (E.49)

which cancel by Eq. (E.19).

F Comments on the Batalin—Vilkovisky (BV) formalism

This discussion is primarily based on Sec. 15.9 of Weinberg’s Ref. [95]. Weinberg denotes the BRST
transformation s; I will maintain this notation because the BV formalism affords a generalisation
of the BRST transformations I have hitherto denoted §. The BV formalism add terms to the action.
Before these terms are added, he denotes the action as I. After new terms are added, he denotes the
action S. I will also use this notation.
The BV formalism is used to address the following issues:

o There is a need to address Hamiltonian constraints whose origins are not in the Lie algebra.

(This is a concern for BRST-quantised perturbative gravity.)

5‘% (here x4

e If a theory’s algebra is open, s? is a linear combination of functional derivatives
is a field) rather than 0.
e A very early version of the formalism [96] was used to renormalise gauge theories. The sum
of all 1-particle-irreducible diagrams in a background field does not obey the original action’s
BRST symmetries, but it does obey the master equation (see Sec. F.1).
e The BV formalism conveniently analyses possible violations of an action’s symmetries by quantum
effects.
The aim of this appendix is to show that the BV formalism need not be used in my treatment of
perturbative gravity’s FP-sector zero mode problem.
My treatment is classical in Secs. F1-F4. I introduce the formalism’s classical machinery in Sec.
F.1. Initially this serves only to provide an unusually complicated description of the ordinary BRST
formalism. However, doing so also allows a subsequent explanation of how to generalise BRST.
Next I summarise Ref. [95]’s proofs of a number of important consequences of the so-called master

equation in Secs. F.2-F.4. These include a constructive definition in Sec. F.3 of a generalization of the

BRST transformation.

68Note that it has been convenient to lower i, due to the 'yl‘; formalism.

69Although the discussion of s in Weinberg’s Secs. 15.8 and 15.9 makes clear it denotes the BRST transformation, he also calls
it the Slavnov operator between his discussion of his Eqs. (15.8.8) and (15.8.9).
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I quantise the theory in Sec. F.5 to discuss S—-matrix computation. This results in a quantum master
equation, which in at least some theories reduces to the ordinary master equation together with an
additional condition abbreviated as AS = 0 (the operator A will be defined in Eq. (E21) in Sec. E.5).
This will complete the account of how the BV formalism extends the BRST formalism. The extension
can be understood in terms of which terms are added to the action. These terms depend only on
new fields that the BV formalism introduces, so have no implications for the zero mode problems
considered in this thesis. This cause of the BV formalism’s irrelevance is similar to there being no

need to include terms such as —F?, R — 2A in the scalar Lagrangian density.

E1 Introduction to the formalism

Let gh T' denote the ghost number of a field T'. The first step is to introduce field partners for some
fields x4, say Xiv satisfying gh x4 + gh XIA = ghyxa + ghx*! = —1. The partner field x* is called
the antifield of x”°, which should not be confused with other concepts whose names include the
prefix anti-. Indeed, since Eq. (F.1) implies x, x* are a bosonic field and a fermionic field in some
order, a matter field’s antifield is not associated with antimatter, nor is the ghost’s antifield simply
the antighost.
Until the antifields’ numerical values are specified, they are external and the S—-matrix is incalculable.
(Until S—matrix calculation is considered, all discussion herein is classical, not quantised.) One way
to provide such numerical values is as follows: for an arbitrary fermionic functional V¥ [z] satisfying
gh¥ = —1so0ghs¥ = 0, we define

= %7 A= % (F.1)
The action gains a term (which of course must be bosonic and of ghost number 0), which for quantum
gravity and Yang-Mills theories (i.e. theories of interest to us) may be chosen as

o
Z sxAxi‘ = Z SXA(S—A = sV. (E2)
A A X

(Sums such as these are over fields with lower as well as upper labels A, and labels will be assumed
to be upper except where explicit lower labels are necessary.) This choice obtains an action which is

a linear functional of the antifields. One of the Euler-Lagrange equations is the master equation, viz.

5S 0L _ | OnS 1S _ -
S oA oA oxa '

where ¢;, (0r) denotes left-differentiation (right-differentiation). The resulting action is numerically
identical with the gauge—fixed action, so physical matrix elements are unaffected by small variations

in W.

The BV formalism begins to accomplish something new if ¥ is chosen as a non-linear functional of
the antifields. (For reducible theories, ghosts among the x* gain not only antifields but also ghosts

of their own. Weinberg’s Sec. 15.8 discusses in detail the reasons ghosts of ghosts, ghosts of ghosts of

7OThe field x usually has its antifield denoted x* but, since in this context * does not denote complex conjugation, Weinberg
prefers ¥. I will have to follow his minority convention since some symbols require both a complex conjugation label and an
antifield label.
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ghosts etc. can be necessary.) Since w*4, h 4 have linear BRST transformations, their antifields appear
linearly in S, which therefore is of the form S = Spin [¢, w, ¢F, W] — hAwZi, where Spin is bosonic
and gh Spin = 0, gh¢* = —1, ghw? = —2, ghw*} = 0. By inspection Smin also satisfies the master
equation. Its arguments are called minimal variables, and the fields w** and h 4 and their antifields

are called trivial pairs. (These antifields appear bilinearly in S.)

FE2 Helpful corollaries of the master equation

By its ghost number, Smin has an antifield expansion of the form

Sin = 1[6] + & 15 [6] 6} + 2P 15 6] b + 30 i [6] 610

1
+wﬁwﬁ&m¢%+f% wCw® fifop (9l whwh + - (F4)

From terms of zeroth order in antifields (and hence first order in w),

51
fis =0 (E5)

This is I-invariance under the transformation ¢” — ¢" + € f7; for arbitrary infinitesimals ¢. The

term using one ¢* on the right and two ws on the left gives

T 5.]("5 S 61 rs
fA5¢E—AHB+f§ch+5¢T aB =0, (F.6)
which given gé = 0 becomes the commutation relation with structure constant f§ for the above

transformation. The master equation has one more term in the antifields, which has three ws on the

left and one w* on the right. This term gives

5fgc] E 4D oI
oor fiasfes +fABc(5¢T = 0. (E7)

This is a consistency condition for Eq. (E.5). Combining this with the field equations gives the Jacobi

Ta

identity.

A further outcome of the master equation is that terms in the master equation of at least order p
in antifields involve terms in Smin of at least order p + 1 in antifields. This provides consistency
conditions for Egs. (F.6) and (F7), as well as consistency conditions for those consistency conditions

and so ad infinitum.

All this is achieved from the master equation alone, which in fact may be interpreted as an invariance

of S under a generalised BRST transformation. To prove this requires a new concept discussed below.

E3 A generalised BRST transformation

The antibracket of two functionals F [x, x|, G [x, x*] is defined as

0rF' 6,G OpF 5LG
oxA (SX 5XA oxA

(F, G) := (F.8)
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Reversing the order of the derivatives in the second term multiplies each factor by either 1 or —1 if
its functional differentiation is with respect to a fermionic or bosonic field, and each occurs exactly

once so

_ O0rF LG 6LF ORG  6RpF LG
XA axt o axd oxAt oxA oy,

(F, G) +F G,

where the rules determining whether + sign is 4 or — are trivial. Hence

(G, F) F, G both bosonic
(F, @)= , (E9)
— (G, F) otherwise
so (F, F') = 0 for fermionic F'. This condition does not suffice to prove
(S, 8) =0, (F.10)

but this non-trivial condition in fact follows from (indeed, is a restatement of) the master equation.
A generalised BRST transformation can now be defined in terms of a fermionic infinitesimal constant

0:

R 5RS A (5RS 1
Sox? = 02 = —0 (S, X)), doxt = =025 = —0 (S, ). (F11
0 (5}(%4 ( ) 0XA 6XA ( A) )

When the term added to S is of the form given in Eq. (F2), this reduces to the ordinary BRST

transformation.

The antibracket is a derivation because it satisfies the Leibniz rule (F, GH) = (F, G)H + G (F, H),
where the + sign is —1 if and only if F" is bosonic and G is fermionic. Thus
690G =—0(S,G), 0pH = —0 (S, H) — 6GH = —0(S, GH). (F12)

The solution set of 6 F' = —6 (S, F) therefore contains the closure of fields and antifields under mul-
tiplication, as required for a generalization of the BRST transformation. In particular, S is invariant
under this transformation as required because of Eq. (F.10).

The antibracket also shares the ordinary BRST transformation’s nilpotence, i.e. (S, (S, H)) = 0. This

follows from its Jacobi identity, viz.

+ (F, (G, H)) + cyclic permutations = 0, (F13)

where the + sign of each of the three terms is — if and only if the two outermost fields (e.g. F, H in

the leftmost of the three terms) are both bosonic. Taking F' = G = S gives

(S. (S. H)) = 1 (H, (5, §)) = 0. (F14)
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E4 Anticanonical transformations

However, this finding also implies the master equation’s solution is not unique; rather, its solution

set is closed under the transformation (of arbitrary functionals G, including 5)

G—G =G+ (6F, G), (E15)

where §F is an arbitrary infinitesimal fermionic functional of x, x* having ghost number —1. (This
is one example of a canonical transformation. Since antifields are involved, Weinberg calls it an
anticanonical transformation.) Such transformations may also require a shift in the definitions of

antifields. For example, if § F = €V [x] with € an infinitesimal bosonic constant,

, o
S [X7 Xi] =5 [x, % +€5X:| . (F.16)

Following integration, satisfying the master equation also requires the shift

, ov
R e (E17)
X
Note that these shifted antifields vanish if and only if Eq. (F.1) holds.
Anticanonical transformations are most generally definable as those which preserve the fundamental

antibracket relations, viz. (XA, ng) = o8, (X1 XP) = (Xi, xiB) = 0. Weinberg presents a proof,
omitted here for brevity, that these follow from Eq. (F.15).

E5 Comments on the S—-matrix

The next task is the quantisation of the above classical treatment. We adopt Eq. (F.15) and use the

gauge—fixed action Iy, which is invariant under a BRST transformation acting only on fields, viz.

5RS [X7 Xi]

i (F.18)

dgx = Osx, sx =

xi=5%
(Indeed, sly is then the sum of a term which the master equation sets to 0 and a term which vanishes
by an antisymmetry argument.) While the transformation is the ordinary BRST transformation for
closed algebras, more generally it is a transformation that is only nilpotent on-shell.

The vacuum-vacuum amplitude Zy and its shift §Z under a shift §¥ [x] in U [] are respectively

Zy = / Ly expitu . (F19)
. . OrRS [, X 50w
6Z:1/ Ildx expily ———— —
[ } ! 5X,¢4 xi=5% ox*
- [ . OrS oLty . t

where I have used integration by parts and introduced the second-order functional differential oper-
ator A defined as
or L

A= B L F21
Sy oxA (20
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G. PROVING M 4 IS INVERTIBLE FOR TWO IMPORTANT SPACETIMES

The condition for Zy to be ¥-independent is then the quantum master equation, which is one of the
few equations in this discussion in which an explicit power of # is worthwhile. The quantum master
equation may be written as

(S, S) = 2ihAS atx} = %I: (F22)
The classical limit recovers the previous master equation because it takes the i — 0*right-handed
limit. Unless there are anomalies, an action may be constructed that satisfies the ordinary master
equation, so that (S, S) = 0, AS = 0. Assuming the quantum master equation, variations in

operators’ expectations are obtainable, viz.

5(0) = o+ [ [TTe] evita 55 oS [x, x'] (F23)

T Zy oxA 6XIA

_ 8T
XI—W

In terms of the Slavnov operator of the generalised BRST transformation, this may be restated as

5(0) = Z_—; / [de} expilysO. (F24)

Thus expectation values of operators that are invariant under the generalised BRST transformation

(i.e. satisfy sO = 0) are unaffected by a change in the choice of V.

G Proving M 4 is invertible for two important spacetimes

The aim is to show det M4 # 0. This is equivalent to the existence of an inverse M#P satisfying
det MAB = 0. The purpose of this appendix is to verify that this result is obtainable, with appropriate

choices of the §Z, for a flat static torus and de Sitter space. In the non-interacting case

Niap — / E1E8RD = / €462 ((1— 2k) 8958 + g5,

- / (1 — 2k) €969 + g™enep,) = / (1 2k) €99 1 g4) g

X

= / {2¢° (1 — k) %m0 + ((1 — 2k) E0g™ + 9%°€%) €Bi } - G.1)

In the synchronous gauge, this simplifies to Map = [ [2(1 = k) €%€B0 + £4€p:]. This result can be

considered further for each of the spacetimes of interest.

G.1 The flat static torus

On a flat static torus, the choice £ > 1 is undesirable because its FP-sector zero modes with h,, =0
include tachyons. I instead impose k < 150 2 —2k > 0, and choose the ¢/, and 2 as follows. Let npc
be the n-dimensional Lorentzian metric of signature 1, —1, ---, —1. A unique non-singular M45

that serves my purposes is then easily obtained for k£ < 1:
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& =94, ©2
npcdy =nf = N*VMPOL KD,
= N2V MPCe (1 - 2k) 8585 + g,u.)

= N2V MBC (1 - 2k) £26" + €49,

R Bv
= N?V ((1 — 2k) M P00 4 (M—l) ) Guws (G.3)
Bv
1— MBO Oov MBV _ g '
(1—2k) 9"+ NV (G4)
. 1
700 — .
N2V (2 — 2k)’ (G5)
MO = N0 — g, (G.6)
L gh
(¥} —
MY = <5 (G.7)
~ AB  det gAB 1
—1 _ _
det (M ) = T asn P (G.8)

G.2 de Sitter space

We show we may choose the fﬁ‘ so that there are no terms of the form Map # 0 with A # B. We
call such hypothetical terms off-diagonal terms. We split the Killing vectors in to two sets, those
corresponding to space rotations and de Sitter boosts. (This decomposition is possible because de
Sitter space has the topology R x S"~1.) We show off-diagonal terms are found neither within one
set nor between them (i.e. when A, B are chosen from different sets). Then Magisa diagonal matrix,
and we can choose k so that the M 44, which are linear in k, are each nonzero. Indeed, from Eq.

(4.2.13) we simply need to ensure

. o 1 fx googggA#
A k= <1 + A ) : (G.9)

The inverse M ! of M is then trivial to compute.

The usual basis of Killing vectors for SO(n — 1) space rotations comprises Killing vectors that have
vanishing time components, and space components that are linear combinations of the vector spher-
ical harmonics A%?. By the orthonormality condition Eq. (2.6.68), these Killing vectors provide no

off-diagonal terms if we impose Eq. (1.2.2). Indeed

Nap = / (006" Ep, + (1 — 2k) €969,) = / 08 = Sar / €4 E s (G.10)

X X

Not only have we found no off-diagonal terms; for rotational £/, we have Mya = I %84 &a; # 0,80

the choice of k is so far irrelevant.

The usual basis of Killing vectors for de Sitter boosts have time components that are linear combina-

tions of the Y%7 (say Y ), and space components that are linear combinations of the W27 (say W4,.).
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Again we have an orthonormality condition. By parts, scalar harmonics ¢1, ¢- satisfy

/dn_lxvi¢1vi¢2 = —/dn_lx¢1vivi¢2 =(n— 2)/dn_1x¢1¢2 (G.11)

(these spherical harmonics have angular-momentum eigenvalue 1, so their —V,; V" eigenvalue is 1 -

(14+n—3)=n—2). Thus

Map = / (9" WhEWp, + (1 —2k)YaYp) = 5AB/ (9 WhEWa, + (1 —2k)YS), (G.12)

X

again giving no off-diagonal terms. However, for almost all £ we have M a4 # 0.

With the above conventions, there is also no off-diagonal term connecting a rotation Killing vector

and a boost Killing vector because a rotational Killing vector £ satisfies
Vit = -V =0 — / d"Ix&Vie = — / d"xVigp =0 (G.13)
for any scalar harmonic ¢, so for rotational £/ and boosting &%, we have
A (G14)

(We need not check the case where &/ is boosting and ¢/; rotational, since Mg = Mp A)

H L% and L.« on the flat static torus

The purpose of this appendix is to compare the perturbation theories of the CMP and FMP for
perturbative gravity on a flat static torus. Although a general proof of the prescriptions’ perturbative
equivalence has already been presented in Sec. 4.7, this discussion is formative for several reasons.
In Sec. H.1, I compute L in the CMP. In Sec. H.2, I deduce the Feynman diagrams that appear
in the perturbation theory. These include chain diagrams and loop diagrams. In Sec. H.3, I discuss
chain diagrams to compute important coefficients. In Sec. H.4, I use these coefficients to sum the

amplitudes of chain diagrams. In Sec. H.5, I discuss loop diagrams.

H.1 The CMP

Consider a flat torus of spacetime dimension n and finite volume V with goo = 1, go; = 0, ¢i5 = —0;;
so that \/|[g| = 1and V = [d" 'x is a spacetime constant. The simplest choice for a basis of the

Killing vectors is the ¢’}, with A any fixed spacetime index. The conserved charges then include
Qy = /dn_lXZOm (H.1)

with Zo, = ey + Ouco — 2kgouac® + K (caaaHoV 4 6w + By hay — 2kgol,8acﬁhg). The CMP
sets Q, = 0 to obtain ¢). The operator + [ d""'x obtains all zero modes, which are spatially
uniform and can be moved outside space integrals. Throughout we take Hy, o) = HS(O) = 0; since
hap and Hag = hag — khgap are both symmetric, this choice implies £ ;) = kd5h (o). In the CMP,
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0= Q= /d”_lx (21 = k) doco — 2hdrels +
(C?%)aaHoo(Jr) +200¢(y) hoa(+) + 2kOoc(o)ho) — 2k0a C B+ zkzaoc?())h(o)))
=2V (1—-k) (1 + th(o)) 80(3?0)

tk / a1x (c(+)0 Hoo(s) + 2003,y hoa(r) — 2kdacl, 13 )) (H.2)

Co(0) = K[Qv(lﬂ_l)]l/d”1 (c OaHoo(+) + 200c(yhoa(+) — 2kDoc? \h ) (H.3)
1+ th(O) ()%« « (+)"°B(+)

Similarly

0= Qi = /d”—lx {aoci(o) + ﬁcaaaHOi + aocl,(Jr i(+) + 800] O)h + (9 C(Jr hOa(+)} (H4:)

This result may be rearranged as

VG%o)iéj(O) = —m/d”_lx (Co‘aaHm‘ + aoCu(Jr)h;/(Jr) + 31'C?+)h0a(+)) (H.5)

where Gio) =& + Hh - In terms of an inverse matrix, viz. (G(_(S) Gko)z = 5;‘?, Eq. (H.5) becomes
. F;/ — n— (03 (o3

Cj(O) = V (G((ﬁ) /d 1 ( aaHOi + aOC,/(_;’_) i(+) + 8¢C(+)h0a(+)) . (H6)

Define V# := (8 ¢4y +0” c(+) Qkégagé‘(ﬂr)) (0K + kht); then

ZIW|CO<:0E¥0) = auc,j(o) + &/C“(o) — ngm,aac?‘o)

1 €y D Hiaw + Oy oo + Doy hap = Zhgudacipyhy) . (H)
orely ZW|CQ:C(0 = V¥¢u0) + KO“C(1)c(0)u0" Ha- (H.8)

Thus

LG = / " { V%0 + Vicio) + KOs 0 HawCu(o) |

—1
_ n—1, n—1 ok [2V (k — 1)]
= /d xd y{V —1+k/@h(0) X

a « B «
(C(+)aaH00(+ + 200¢(y )y hoa(+) — 2k8&c(+)h6(+))
_r

\%4
+ROVE (o) 0" Ha} (H.9)

v (G@) (€0 Hoj + Bucuiy i) + 0iely hoa)

The underlined quantities depend on y; others depend on x.
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Denoting equality up to total derivatives by ~,

— KO BY Hyy — k0" 00 Hyy = —i60 T ¢ O Hyuy — 160" ¢y Do Hyuy

— KB Hyy — 0" (02" c{y) ) Hyw

~ iR OME € Do Hyy — 1607C €y O H iy — KO BY Hyy,

— k0" 00" ¢y Hyu + 160" O o) H i
~ =ik ) 0oy — KO BV H,)
+ iH@“é"@ac?‘O)Huy — imaaéya“c‘()‘o)Huy

~ —iﬁ@“é”c‘(ﬂr)aaHW — k0"B"H,,

+ kO ) Hyy — 1506 ¢y How - (H.10)
Therefore, the transformation
Haaéa_)C(o)M@#H(w — /-@80‘52;) (éa(O)HOV - C'O(O)Hay) e I{aiél(’_,’_) (C'i(o)Ho,, — éo(O)Hiy) (H.ll)
effects Ll(:;ro) — L&' Thus
iLextra — /dn71X {Voéo(o) + Viéi(o) + naaEL(’Jr)@“chM(o)}
-1
o n—1 n—1 K [QV (k B 1)] 0 i—v .
= /d xd" "y {1 T (V KO c(+)Hw> X
(07 (07 ﬁ (o7
(C(+)aaHoo(+) + 2800(+)h0a(+) - 2k5ac(+)hﬁ(+)>
K Y i i—v
— V (G(O))z <V + kO C(_,’_)HOV) X
(CaﬁaHoj + 3061,(_;,_)}11;(_,'_) + 3jc‘("+)h0a(+)) } . (H.12)
Rearranging gives
J2v -k , _
Lextra:[ /dnlAt /dnlBt
1 1 +k/§}h(0) X ( Y X) y ( i y)
i -1 J n—1 i n—1
+ 7 (G(O))i / A" 1x Al (¢, x) / A"y B; (¢, y) (H.13)
where
.— iV O0—v v—=0 va —o 0
A = _Ha C(+)Hil,(+) + (a C(+) + a C(+) — 2]{/’60 8UC(+)) K/h,y(+), (H14:)
._ ; B
B = i ()0 Hoos) + 26y hoacs) — 2k0acl h(h)) (H.15)
. =V O0—v v—=0 v =0 i
A = /@({) C(+)H0V(+) + (8 C(+) + 8 C(Jr) — 2]{(50 ao-C(Jr)) Iﬂ}hl’(+)7 (H16)
(Quantities such as A, --- , B; can always be replaced with their own () mode, which effects such

simplifications as 45, ) = 0.)
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H.2 Feynman diagrams of interaction terms

The interaction terms in the Lagrangian density are

L= —ikd"e (c*O0Hpup + 0, hay + 0y hay — 2kgm0acsh®?) . (H.18)

The next task is to obtain the zero-mode part Ly of £. This involves setting both fields to their zero
modes, and deleting any term which vanishes upon space integration (i.e. does not contribute to the

Lagrangian) when setting H?é’) = 0 so that h%) = 0. Using hgo(o) = hg(o) = ké§h(o) = kh(o),

Loo = —iKc( (C'?o)hau(o) + 8¢5y hoo(o) — 2k90vé()(())h(()8))
. R =0 .
= —1K (C(O)Céo)h”(o) + 2 (1 — k') C(O)C?O) hOO(O))

-0 .
loyhiso) + 2k (1= k) o)y o) ) - (H.19)

Perturbation theory attaches iL factors to vertices. The factor iLqg gives rise to a number of Feynman
diagrams. These include loop diagrams (which vanish under Lee-Yang cancellation) and two series
of chain diagrams (one scalar-valued and summing, say, to F’; the other is matrix-valued and sums,

say, to F;;). From Eq. (H.18), with terms that spatial integration deletes dropped,

£(0+) = —iK (6(”0) {C?_Ha(,HOV(_,_) + C?+)hay(+) + ayc?+)h0a(+)} — 2k60(0)aa0ﬂ(+) h?f))

= —ikC() X, (+) = 16X, (1)E(0); (H.20)
o« Yo a af
Xo(1) =y OaHou(+) + 4y hav(+) T O0vcyyhoa(+) = 2kgovOacs1)hiy), (H.21)

0B

£(+0) = —iK (8#6(”+)C?0)8(XHMV(+) — 2kayézl+)6ﬁ(0)h(+)

+ (E’(/+)hay(+) + 8”E?+)hau(+)) C(ao)) . (H22)
Let X ~ Y denote 37" : X —Y = 0,Z*. Using 0" H,,,, = 0 in Eq. (H.22), we can show that

v« ~ —a a=B v
aMc(Jr)C(O)aozI{;w(+) ~ (auC(Jr)Hpa(.H -0 C(+)Haﬁ(+)g#l,> 8“6(0)7 (H.23)

since the difference between the two sides is

=V (0% a*B 14 = v
ey oy Oat () + 0%y Hap(+) 00 (o) — ety Hya(1)9" ¢()
= aHE’(/+)3a (C?O)HMV(+)) - 3a51(/+)3u (wa(+)0?0))
~ 0 0a (o Huw() ) + 7y 900 (Hpuin )

= 0" (24 0a (cfoyHyuwi)) ) = 0. (H.24)
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Hence

Loy = —ik ((5uE“H/La(+) - 5a5(ﬁ+>Ha5<+>9w) 9" clo)

+ (él(j+)hOzV(+) + aHE?HhomH)) oy ~ 2k3u5<”+)éﬁ<o>h?f))

= —ikY, () &0y, (H.25)
Yy(4) 1= 0,2 Hoa(s) — 07Ty Hap( g0u

(0%

+ C ) hav(+) + 0" b4 — 2k0atl B4y (H.26)

(Note that, despite what the notation may suggest, X, (), Y, () are not definitionally the plus modes
of any quantities.) By inspection Xo;) = £, X, = %, Yorr) = 2, Y4y = “i. Extending the
(n — 1)-vectors A;, B; to n-vectors with Ay := A, By := B at the vertices of Feynman diagrams we

can putilioy) ~ ¢ By, iL(40) & Ayl We have

iSoxtra = % / dtd" 'xdt' d"ys (t - t’) {F;A'BI + FAB} (H.27)

1Leff = % {F/dn_le/d"_lyB—FFij/dn_lei/dn_lyBj}. (H.28)

Thus prescription equivalence (Less = L") occurs if and only if

—2(1-k)" 1
p=_2UZW p . H.2
1+ kkhgy Y (G(O))ij (H.29)

These equations are verified in Sec. (H.4).

H.3 The chain diagrams: a, and a;

For the flat static torus K09 = (1 — 2k) 6569 + ¢”gz,, so
X 2 . X X
K3 =2—-2k= 5 Ky, = Ky =0, K = =65, (H.30)

where (3 := ﬁ (These results will be needed soon.) The FMP grants ¢, ¢* a common mass M > 0,
so that the FP-ghost term in the Lagrangian density is —i (9,¢*Z}, — M*¢*c,,). The Euler-Lagrange

equation obtained by varying ¢* is

— M?c, = 9,7, (H.31)

Replacing ¢* with ¢* in the definition of Z,, we may similarly write the other equation of motion as

~ M%, =0,Z,, Z, = K"V 5c* + kt®V , HI. (H.32)
In the non-interacting case, i, = 0 and £, is ¢ «» ¢-antisymmetric (antisymmetric because classical
fermionic fields anticommute). Next I obtain the ghost’s zero mode by imposing 0;c,, = 0, and the
antighost case is analogous. Eq. (H.31) reduces to —M?c, = (1 —2k)?d)d5co + d5c,. This result
concerning massive zero modes can be rewritten in terms of 3, viz.

2

5 €0(0)> 8801'(0) = —MQCi(o)~ (H.33)

03 Co(0) = D)
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The general Hermitian solution is of the form

Ane—iMit +ATeiM1t Aiefth +ATeth
o) = e Ci(o) = A (H.34)
1 VMV

where My := M,/ %B The FP-ghost part of the Lagrangian density without a metric perturbation
is —iK 5;8,,@“8[300‘, so the general form of antighost zero modes is analogous, with constants Zu-
The constants A, 4,, are annihilation operators, whose anticommutators follow from CARs and

determine the FP-ghost propagator. Explicitly

Ten = iK240,2, (H.35)

mon = —iK 005", (H.36)

—ig,, = {wg(o), c,,(o)} — iK% {80620), cy(o)} : (H.37)
2 —0

-1= ~3 {aOC(O)a Co(o)} ) (H.38)

0= {806?0), Ci(O)} s (H39)

0= {3051‘(0)7 Co(o)} ) (H.40)

—0ij = {8051'(0)7 Cj(O)}~ (H.41)

The only non-trivial anticommutators of ladder operators are {Ao, Zg} = #, {Ai, Zj} = %67;]‘.
Positive-frequency parts of a zero mode should annihilate physical kets, so the ghost-antighost vac-

uum |0) satisfies A, |0) = 0. Thus

(Oleoy O (¥) 10) = e_z;(tv_f (014°2""0)., (H.42)
<0|c;'0) OEM (t) \o> = _t\;;t <0|Ai2“|o>. (H.43)

Replacing t — ¢ throughout with ’t - t/‘ gives time-ordered results. Taking the massless limit (after

an IR-divergent term is dropped) gives

—i‘t—t’

<0|AOZ°*\0> LGl = <o|AiZ”|o> . (H.44)

Applying 0,0,/ replaces each —i ’t —t ’ factor with 2i§ (t - t'). This implies

0,6 =21V (o] {4’ AT} o) = ~4Y, (H.45)
as = —1, (H.46)
o1 0 —0F N —1
ap = 2V <0| {A A } |0> ST (H.47)
Note that the value of 3 for which as = a; (8 = —2) is the same one for which the masses of ¢, ¢; are

equal. This condition is equivalent to the gauge choice k = 1, i.e. the de Donder gauge.
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H.4 The chain diagrams: F' and F};

The matrix- (scalar-) valued series of Feynman diagrams is called the space- (time-) part. Before

integration the Nth term (N > 1) of the space part is of the form

N—1
Fynij = 8t61G31 t, t1) H Jk]k+1 (0) (tx) 6;@8“167”””“2 (tg, tk+1)) (H.48)
k=1
where ty :=t and 9, := 0Oy, . Thus
N-1 o
Fonij = asd" J15 t—1t1) H Jk]k+1(0) tr) a7F LI § () — tk+1))
k=1
N—-1
t— t1) H Kh”(o tk )6 (tk — tk+1)) , (H.49)
k=1
N—-1 _ N_1
(H /dtk> Funij = — H /dtk {6(15—151) 1T (—rhiso) (tx) 6 (tn —tk+1))}
k=1 k=1 k=1
N—1 Nod
=-11 /d’fk (=rhijo) (tr)) = = (—=Khijo) (1) - (H.50)
k=1

Summing gives F; := 3y, (H,f 1 fdtk> wvij = — (I+ Kho) (t));l =— (G(_(ﬁ)ij, where [ is the
identity matrix conformable with the matrix £q);;.

Similarly, the time part is obtainable as follows:

N—
N = 0:01G™° (¢, t1) H {KQk (1- h(o) (tx) 8k8k+1G00 (tx, tk+1)}
k=1

-1 N-1
B 2(17_ H —rkho) (tk) 6 (tk — trta) (H.51)
N—-1 1 o
II / dty | Fiv = m (—rkh) (1), (H.52)
k=1
—R2A-k] (1fk)] '

as required.

H.5 Loop diagrams

The loop diagrams of interest also split into "space part” and "time part" series. The space part is
ENEI LQTN where Loy = —fdt HkN:1 {8k8k+1iGij (tr—1, tk)hij(o) (tk—l)}/ with tg := t. (The %

coefficient is a symmetry factor.) Thus

N

LsN = /dt H {1a 5 tk 1 — tk) HV/’L”(O) (tk 1)}

k=1

N
=—(=r)" /dthN t) [T 6 (th-r — t) —(=r)N6(0 )/dth”(o) (t), (H.54)
k=1

> Ly _ 5 (0) / dtIn (I+ kho) (1)), - (H.55)
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Lin
+ where

The time partis )y,

N
LtN = —/dt H {8k8k+1iG00 (tkfl, tk) 2rk (1 - ]f) h(O) (tkfl)}
k=1

= —5(0) / dt (—kkhy (1), (H.56)

> Ly _ 5(0) / dtln (1 + kkh () . (H.57)

These sums of amplitudes are contributions to iSextra; contributions to the action are obtained by
multiplying by —i. The contribution to the Lagrangian due to  (0) terms, which is subject to a

successful Lee-Yang cancellation, is
Ls := —i6 (0) (In (I+ rh(g) (t)),, + In (1 + krh) (1)) - (H.58)

These logarithms” arguments are coefficients of —idyc*Jyc” in the Lagrangian density. We may write

KI(:%O) = L; + L5 where L, L, are "time" and "space” parts. We have a result of the form

. -0 . =0 _ .
Ly = —iK (t) c(o)c(()()) + o) f (1) c+)) + 9 (h(s), E+)) c((jo) (H.59)

for some first-order differential operators f, g, and similarly with £,. Let C?O), 6'(30) have respective
conjugate momenta W?O), f?o) and let £;, £, have respective Legendre transforms ., H, so that

.70 — s T -0 1 . 1/
71'?0) =1iK¢) — g, 71'?0) = —1Kc?0) + [, ¢o) = % (7‘('?0) + g) , C?O) =% (77?0) - f) . (H.60)
Hence

_~if o o B O ) 0 _ 1 0 —0

[.:t = f {77(0)77(0) 4+ gf} s Ht =+ Lt = f {gﬂ'(o) — W(O)f} , Ht = ? {(77(0) — g) (7'('(0) + f) + QQf} .
(H.61)
The standard choice of functional integral used in the path integral formalism integrates over ”?0)
and ﬁ(()o) , but we can amend the measure to integrate instead over II := 77‘()0) —g,11:= f?o) + f. (This

measure invariance is analogous to Eq. (4.7.15).) In terms of I1, IT we have
He = 1 {III + 2¢f} fi/d"’lx”;’-[t = KHﬁ +2 Kgf (H.62)

K ’ K K7 ) o)

and the path integral is 7 = [ dIT (¢) dII (t) dc{y, (t) dc{y, () exp {%Hﬁ +2 (%gf)(o) } We may dis-

cretise time with step period A, then take a continuous-time limit that identifies A~! with § (0):

N
14 _
I x k]:[l/dn (1) dII (t%) K(tk)H(tk)H(tk)
N Ve N v
= kl;[l K ) expkz_;ln K ) — exp 6(0)/dtan(t), (H.63)
LLYt =1id (0) In K (t) . (H64)
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The space part is similar. In terms of K;; := (H — Vaskh) (t));1 the logarithmic term we wish to
cancel is —id (0) trln (6;; — Vaskhyjo) (t)) = —id (0) trIn K. Let space be (n — 1)-dimensional. We

have a result of the form

L. = 1Ky (1) €\l +Eoy fi (o), ccn) + 95 (o), Ben) gy (H.65)
Ho =i (K1) {(mj00) = 95) (Fio) + F3) + 20,3} (H.66)
I := mj(0) — 95> (H.67)
I0; :==7i0) + fir (H.68)

N .

H H /deh tk) dth (tk> exp (V (K_l)” Hj (tk)ﬁl (tk))

N

H H / dILy, (t) dTL, (t) (K1) ™" 11, (6) T, (t0) (HL69)

a product which gives factors of

N N
Ioc [[det Kj;' (t) = exp > Indet K ;' () — expd (0) / dttrln ;' (t) , (H.70)
k=1 K=1
Liys =10 (0) trln K (t) . (H.71)

Eq. (H.71) is very similar to Eq. (H.64), and these results exactly cancel the § (0) terms obtained above
in Eq. (H.58).
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The coordinate volume is defined as V, := [ d"flx\/ﬁ, in the notation introduced in Sec. 1.2.1.

The cyclic modes prescription (CMP) is the prescription defended in this thesis for addressing the
infrared problems I describe in Part I. The prescription sets conserved charges to zero (which, in
some cases, begets further conserved charges that are then also set to zero). The result is a formalism
which does not contain the field modes responsible for said infrared problems.

Dot and cross products of muliplet fields are defined in Eq. (2.1.19), and are analogous to their
famous counterparts on C3.

The fictitious mass prescription (FMP) has the same motivation as the CMP. In the FMP, infrared-
divergent terms are deleted from massive propagators, before a massless limit is taken to obtain an
effective massless propagator. Several shortcomings with the FMP motivated the CMP’s develop-
ment.

The flat static torus is a finite-volume analogue of Minkowski space. In particular, the flat static torus
admits Cartesian coordinates for which d,g,,, = 0 and the spatial volume is finite.

Free integration by parts is a treatment of two putative interaction Lagrangians as equivalent if their
difference is a surface term.

Reduced momentum densities are obtained by dividing conjugate momentum densities by /[g|, as
explained in Sec. (1.3).

The triple product on multiplets is defined in Eq. (2.1.23). It is analogous to the scalar triple product
on C3.

The volume factor is defined in Eq. (1.2.9).

For the purposes of this thesis, zero modes are defined as in Sec. 3.2.
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Annihilation and creation operators are, respectively, non-normal operators’! that annihilate va-
cuum kets, and their adjoints (which therefore annihilate vacuum bras). If p creation operators act
on a vacuum ket, the result is (up to a multiplicative constant) a p-particle state. Annihilation and
creation operators therefore owe their names to their roles in shifting the particle numbers of physical
states

Quantising a classical canonical field satisfying a linear equation of motion obtains a linear combina-
tion, with function-valued coefficients, of annihilation and creation operators (viz. Secs. 1.5 and 2.4).
The (anti)commutators of annihilation and creation operators are equivalent, with an appropriate
normalisation of field modes, to the canonical (anti)commutation relations on quantised canonical
fields and their conjugate momentum densities.

The Batalin—Vilkovisky formalism is discussed in Appendix F. This formalism is an extension of
the BRST formalism for physical theories whose Lie algebras do not explain all of the Hamiltonian
formulation’s phase space constraints.

The BRST and anti-BRST transformations are defined for the BRST-quantised theories described
in Chapter 2. These transformations are action-preserving, except for one complication discussed in
Sec. 2.6.3. They are nilpotent and commute (their associated fermionic charges anticommute).
Canonical (anti)commutation relations are (anti)commutators, equal to a multiple of the identity
operator, between quantised conjugate momentum densities and quantised canonical fields.

A Cauchy surface of a spacetime is a hypersurface that intersects every inextendible past-directed
causal curve exactly once. A spacetime which has Cauchy surfaces is globally hyperbolic. It is
known that, if ¥ is topologically equivalent to some Cauchy surface of a spacetime, said spacetime is
topologically equivalent to ¥ x R. Each event in the spacetime belongs to exactly one Cauchy surface.
A coordinate system exists for which two events belong to the same Cauchy surface if and only if
they are simultaneous. The R-topology is due to that coordinate system’s time coordinate. Globally
hyperbolic spacetimes may then be equivalently defined as those which may be obtained from a
Cauchy surface by time translation. Note the physical interpretation: the Cauchy surfaces are simply
timeslices, and spatial sections, of the spacetime.

A topological space is compact if each of its open covers has a finite subcover. Physical space is
described as closed in spacetimes whose spatial sections are compact topological spaces. The only
property of such spacetimes of interest in this thesis is the fact that they have finite volume factor.
de Sitter invariance is invariance under de Sitter transformations. These are spacetime transforma-

tions in de Sitter space that are analogous to the Poincaré transformations on Minkowski space.

71 An operator A is called normal if and only if AAT = ATA. Important examples include Hermitian and anti-Hermitian
operators. It is a famous result that A is normal if and only if A is diagonalisable.
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de Sitter space may be defined in any of several equivalent ways. For my purposes in this thesis, the
definition of importance is that given in Eq. (1.2.11).

The Dirac bracket is a modified Poisson bracket required in a Hamiltonian formulation that admits
phase space constraints. In particular, several important results on Poisson brackets in the absence
of such constraints are applicable generally to Dirac brackets.

The electroweak interaction is a unified description of the empirical electromagnetic and weak
interactions. The Higgs mechanism explains the fact that, unlike the photon, the weak interaction’s
gauge bosons are massive.

Faddeev-Popov ghosts and antighosts are integer-spin, and hence unphysical, fermionic fields in-
troduced by the Faddeev-Popov method. Yang-Mills theory (perturbative gravity) introduces FP
fields of spin 0 (1).

The Faddeev—Popov method is a modification of physical theories discussed in Chapter 2; it intro-
duces a BRST quantisation of the Lagrangian. The resulting Lagrangian density loses its gauge
invariance, and this fact facilitates the calculation of gauge-invariant quantities’ means in the path
integral formalism. A good account is found in Ref. [27].

A Fock space is most narrowly defined as the Hilbert space completion of the direct sum of the
symmetric or antisymmetric tensors in the tensor powers of a single-particle Hilbert space. An
extension to multiple-particle theories is trivial.

The Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is an approximation, in cosmology, of

ds? for the large-scale structure of the universe. It is of the form ds? = dt? — a? (¢) (ﬁfﬂ + r2d(22>.
Given a definite integral of the form § = f dPusS, the functional derivatives % of S are defined by
68 = [dPu {6955 + 0(69)}, where 6X is the change in an arbitrary field X due to the transformation
¥ — 9 + 69. Note that the dimensions of 5 are those of 2.

A gauge transformation in fields is action-preserving. BRST quantisation breaks this symmetry of
an action. However, BRST-quantised actions still exhibit some symmetries, such as BRST invariance.
The Gudermannian function [24]is defined in Sec. 1.8, and is required to calculate spatially uniform
massless Klein—Gordon fields in de Sitter space. It is named for Christoph Gudermann.

Primary constraints in perturbative gravity’s phase space are expressible in terms of the Hamiltonian
and momentum constraints [94]. The constraints are defined by Egs. (C.14) and (C.15).

An infrared divergence is a divergence in an M — 0% right-hand limit, where the parameter M is a
rest mass.

A Killing vector field, or more succinctly Killing vector, solves V&3 + Vg€, = 0, the Killing
equation.

The Klein-Gordon inner product on solutions of the Klein-Gordon equation is defined in Eq. (1.4.3).
Despite its name, it is not a true inner product, although it is a pseudo-inner product. Klein-Gordon
normalisation is a normalisation convention definable in terms of this pseudo-inner product.

The Landau gauge is a gauge choice in the BRST quantisation. This gauge choice causes a diver-
gent term, unless the formalism is rewritten with the Nakanishi-Lautrup auxiliary field. A term
proportional to the square of this field appears in all other gauges.

The lapse function and shift vector are N, N', viz. Eq. (1.2.1).

Lee-Yang cancellation, Lee-Yang determinants and Lee—Yang terms are all defined in Sec. 4.7.2.
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Left- and right-differentiation are conventions regarding the definition of derivatives with respect to
a fermionic variable. In left-differentiation, any product containing the fermionic variable are written
with the fermionic variable as the leftmost factor. Right-differentiation instead places the factor at
the right.

The Lie algebra (defined in Sec. 2.1.3) is mostly unrelated to the Lie derivative (defined in Sec.
2.6.2). However, since Killing vectors are closed under the Lie derivative, they form an associated
Lie algebra.

Linearised gravity is defined in Sec. 2.6.1.

The master equation and quantum master equation are respectively given in Egs. (E.3) and (F22).
The naive Hamiltonian is a Legendre transform of the Lagrangian that admits phase space con-
straints. The use of Dirac brackets addresses the implications of these constraints for Poisson brack-
ets. However, additional terms must also be added to the naive Hamiltonian. This ensures that the
Hamilton’s equations are equivalent to the Euler-Lagrange equations.

The Nakanishi-Lautrup auxiliary field is a bosonic field, of the same spin as the FP-ghost, which
may be used to rewrite a Faddeev—Popov Lagrangian density. The motivation is to ensure that the
Landau gauge does not result in a divergent term.

The Ostrogradski method modifies the Legendre transform for theories in which the Lagrangian
density contains second- and/or higher-order derivatives. It is discussed in Sec. 4.6.

Propagators are defined in Sec. 1.5.3.

A pseudo-inner product is a sesquilinear function (i, 1) on a Hilbert space % > {¢, ¢} satisfying
(o, ) = (Y, ¢)". A “true” inner product also has (p, ¢) > 0, with equality if and only if p = 0. A
pseudo-norm (often abbreviated to norm) may be defined as either (¢, ¢) or \/(p, ¢), depending on
convenience. For example, if (p, ¢) < 0 it is customary to describe ¢ as negative-norm, using the
first definition of pseudo-norms.

The Hamiltonian density and Lagrangian density may respectively be written as # = +/|g|H and
L = +/|g|Lo, where Ly is a scalar called the scalar Lagrangian density.

The scale factor a (t) in an FLRW metric admits a generalisation for my purposes, as discussed in
Sec. 1.2.1.

Structure constants are defined in Eq. (2.1.16).

The synchronous gaugeis N =1, N’ = 0.

The vielbein formalism is a formalism in general relativity. It provides one of two popular notations
for BRST-quantised perturbative gravity. I decided not to use the vielbein formalism in my treatment
of perturbative gravity (which is predominantly confined to Chapter 4). I defend this decision in Sec.
2.6.3.

Yang-Mills theory is an in general non-Abelian generalisation of electromagnetism, viz. Sec. 2.1.3.
Yang-Mills theory is used in the Standard model to describe the electroweak unification of electro-
magnetism and the weak nuclear interaction, as well as the fundamental “colour” interaction. The
strong nuclear interaction includes both this colour interaction and an emergent consequence thereof,
the residual strong force. These interactions are respectively exchanged by virtual gluons and virtual

mesons.
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