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Abstract

In a broad class of spacetimes including de Sitter space, the Faddeev–Popov ghost propagator

is infrared-divergent in both BRST-quantised Yang–Mills theory and BRST-quantised perturbative

gravity. Introducing a mass term for infrared regularisation, one may delete an infrared-divergent

term from the propagator before taking the massless limit. This obtains an effective zero-mode sector

Feynman propagator that is infrared-convergent and exhibits appropriate spacetime symmetries,

such as de Sitter invariance in de Sitter space and time translation invariance on a flat static torus.

This prescription, which dates to 2008, relies on free integration by parts (a term explained on

page 11), so its generality to a broad class of spacetimes is limited. A further difficulty is that this

prescription introduces a mass term in the action that breaks the theory’s Becchi–Rouet–Stora–Tyutin

invariance and anti-Becchi–Rouet–Stora–Tyutin invariance.

This thesis presents an alternative prescription in which it is shown that the modes responsible for

the Faddeev–Popov ghost propagator’s infrared divergence are cyclic in the Lagrangian formalism.

These modes can then be obviated from the Lagrangian, Hamiltonian and Schrödinger wave func-

tional formalisms. Neither of the aforementioned difficulties with the old prescription apply to the

newer one discussed herein, which manifestly preserves both internal symmetries throughout. The

prescriptions have equivalent perturbation theories in spacetimes in which free integration by parts

is possible. The new prescription can then be regarded as a generalisation of the 2008 prescription to

a broader class of spacetimes.
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Chapter 1 A problem in scalar field

theory

1.1 Overview of this thesis

In Sec. 1.1.1, I motivate the research described in this thesis. In Sec. 1.1.2, I summarise the content of

the rest of this thesis. In Sec. 1.1.3, I conclude this section with a note on conventions I have adopted

in this thesis for readability.

1.1.1 Infrared problems

This thesis is concerned with several related problems in quantum field theories in curved space-

times, herein called zero mode problems. These are problems of infrared divergences, which afflict

(for example) minimally coupled massless scalar fields in spacetimes specified below in Sec. 1.2. If

the relevant fields are initially allowed an arbitrary mass, then associated quantities called propagat-

ors depend on those fields’ masses. Further, depending on the field normalisation, the propagators

either diverge in the massless limit or lose desirable spacetime symmetries. However, these fields are

in fact massless. Therefore the infrared (IR) behaviour of the propagators causes the quantum field

theory to lose one or more desirable symmetries. Addressing this is the motivation of the present

thesis and a number of earlier works.

This thesis contrasts two different prescriptions for addressing these problems. These prescriptions

are not equally recent. The less recent of the two prescriptions for addressing zero mode problems

is attributable to Mir Faizal and Atsushi Higuchi in 2008 [2]. At this time, Atsushi Higuchi was

supervising Mir Faizal’s doctoral studies. I am Atsushi Higuchi’s current PhD student and, like Mir

Faizal, I have collaborated with Atsushi Higuchi on research considering the zero mode problems

in BRST-quantised Yang–Mills theory and BRST-quantised perturbative gravity. The first published

discussion of the younger of the two prescriptions for addressing zero mode problems is in a paper

Atsushi Higuchi and I co-authored [1] in 2014. This paper presented the more recent prescription’s

treatment of the zero mode problem in BRST-quantised Yang–Mills theory. In this thesis, I present

this prescription in more detail, and do not limit its scope to BRST-quantised Yang–Mills theory’s

zero mode problem.2

I discuss three zero mode problems. The first zero mode problem is not of historical interest, but is

presented to illustrate several key concepts of my later arguments. It occurs in a toy model, namely

2Dr Higuchi and I are still drafting two further co-authored papers. One will provide a treatment of perturbative gravity
analogous to Ref. [1]. The other will be a comment paper, covering the same material I discuss below in Sec. 2.6.4.
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1.1. OVERVIEW OF THIS THESIS

the theory of a minimally coupled scalar field. The field admits a decomposition into modes, and

the IR divergence of the propagator is due to the field’s spatially uniform mode, which is called its

zero mode (hence the name “zero mode problem”). In this chapter, I will explain the toy model’s

zero mode problem and how each prescription addresses that problem. The less recent of the two

prescriptions begins by giving the scalar field a mass. The prescription then deletes an IR-divergent

term from the propagator, and takes the massless limit of the remaining terms to obtain an effective

zero-mode sector propagator. I will therefore call this prescription the fictitious mass prescription

or FMP. The more recent prescription verifies that, in the massless case, the zero mode is also cyclic

(i.e. it does not appear undifferentiated in the theory’s Lagrangian). This fact is integral to the more

recent prescription’s treatment of the zero mode problem that I discuss in this chapter. I therefore

call this prescription the cyclic modes prescription or CMP.

The first zero mode problem and its treatment are presented in this chapter, serving as a preliminary

for my later account of the other two zero mode problems. These problems occur in BRST-quantised

Yang–Mills theory and BRST-quantised perturbative gravity, theories that are integral to modern

physics. These theories and their zero mode problems will be discussed in Chapter 2 in the context

of a literature review. As with the toy model’s zero mode problem, the two prescriptions I present

are an FMP and a CMP.

The reader may wonder why, if the FMP addressed these zero mode problems in 2008, it was

nonetheless necessary to treat them with the CMP. The reason is that the FMP suffers from two

difficulties that are absent in the CMP’s treatment of zero mode problems. One difficulty is that,

although the FMP’s modification of propagators preserves spacetime symmetries, it adds a mass

term to the Lagrangian that breaks internal symmetries. By contrast, the CMP manifestly preserves

these internal symmetries throughout. The other is that, unlike the CMP, the FMP requires free

integration by parts3; the CMP may be used in a broader class of spacetimes (see Sec. 1.2).4 These

difficulties are irrelevant to the zero mode problem considered in this chapter, but will be discussed

in more detail later.

The main purposes of this thesis are to present the CMP, to clarify its advantages over the FMP

(which were briefly summarised in the above paragraph), and show that the two prescriptions have

equivalent perturbation-theoretic descriptions in spacetimes for which free integration by parts is

possible. The CMP can therefore be seen as a generalisation of the FMP.

1.1.2 Structure of the rest of this thesis

Historically, maximally symmetric spacetimes have been of particular interest as toy spacetimes in

both cosmology and quantum field theory. Examples include conformally Minkowski space, global

de Sitter space and global anti de Sitter space. Global de Sitter space is notable for its accelerating

expansion. The early cosmological inflation of spacetime is therefore an example of approximate

3Throughout this thesis, surface terms are assumed to vanish in integration by parts. The conditions for this depend on the
integrands involved in the calculation, but also on the spacetime’s geometry. The FMP’s requirements are slightly stronger
than those of the CMP, because its use of integration by parts is more extensive. In particular, multiple expressions for
the perturbation theory’s interaction Lagrangians must be equal despite surface terms. A review in Sec. 3.7 of the FMP’s
perturbation theory in Yang–Mills theory makes use of these requirements in Eqs. (3.7.18), (3.7.21) and (3.7.22). This definition
of free integration by parts is repeated on page 164. By contrast, the CMP’s only use of integration by parts is in non-
perturbatively deriving equations of motion and conservation laws in the Lagrangian and/or Hamiltonian formalism.

4This concern is less pressing than the symmetries issue, however, as quantum field theory is more problematic, and of less
interest, in spacetimes for which free integration by parts is unavailable.
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CHAPTER 1. A PROBLEM IN SCALAR FIELD THEORY

de Sitter behaviour. Today, the universe’s expansion is accelerating; a de Sitter approximation is

applicable here too. While de Sitter space suffers from all three of the zero mode problems discussed

in this thesis, it is but one example of a broad class of spacetimes to which all three zero mode

problems are applicable. This class of spacetimes is specified in Sec. 1.25, and includes many

Friedmann–Lemaître–Robertson–Walker metrics (see Sec. 1.2.1 below) in cosmology: specifically,

those which are globally hyperbolic and have closed spatial sections. However, de Sitter space

remains an example of especial interest, and at times this special case will warrant a discussion in

detail. In Sec. 1.2.2, I motivate an especial interest in de Sitter space and discuss evidence for some

of its applications, such as early cosmological inflation.

In Sec. 1.3, I review some of the theory on which the FMP and CMP rely. The infrared problems

discussed in this thesis are a consequence of the behaviour of solutions of equations of motion. I

must therefore give a brief overview of Lagrangian and Hamiltonian mechanics. Familiar results

will be expressed in a non-standard notation that will be useful throughout this thesis.

The next step in explaining the first zero mode problem I discuss is reviewing a normalisation

condition that is imposed on scalar fields, called Klein–Gordon normalisation. I explain the details of

Klein–Gordon normalisation in Sec. 1.4. Klein–Gordon normalisation is integral to the IR behaviour

of the scalar field’s propagator. The IR behaviour of the propagator for a flat static torus is discussed

in Sec. 1.5, while the analogous calculation for more general spacetimes is discussed in Sec. 1.6. Sec.

1.5 also contrasts two uses of the term “zero mode” to clarify the terminology of this thesis.

In Sec. 1.7, I discuss the FMP and CMP in more detail.

In Sec. 1.8, I discuss two spacetimes in more detail: the flat static torus and de Sitter space. Interest

in the flat static torus originates from the fact that it simplifies statements of the zero mode problems

and both prescriptions discussed herein for addressing them.

In Chapter 2, I explain the zero mode problems that concern the rest of this thesis. The primary

purposes of Part I (Chapters 1 and 2) are to specify the problems of interest later in this thesis and to

briefly introduce the motivation of the CMP.

Applying the CMP to BRST-quantised Yang–Mills theory and BRST-quantised perturbative gravity

requires a lot of detail. These treatments are respectively provided in Chapters 3 and 4, which

comprise Part II of this thesis. Each of these chapters show that the field modes responsible for a

propagator’s IR-divergence are cyclic and hence dynamically irrelevant. Next each chapter shows

that the CMP adds new terms to the Lagrangian and Hamiltonian, and that these can be shown

to imply that the CMP and FMP have equivalent perturbation-theoretic formulations in spacetimes

for which free integration by parts is possible. My account of the gravity case closely parallels my

account of the Yang–Mills case.

Part III contains my conclusions (in Chapter 5), appendices and other back matter. The appendices’

functions are summarised in Chapter 5, although each appendix’s function is also specified where

appropriate in Chapters 1–4.

5The first number refers to the chapter; the second number refers to the section. I use the abbreviation Sec. whenever I refer
to a section or subsection.
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1.2. SPACETIMES OF INTEREST

1.1.3 Writing conventions

I work throughout in units such that c = µ0 = ~ = 1.6 The “mass” of a field of rest mass M0 may

then be taken as M := M0c
~ , which has the units of inverse length.

I use Greek spacetime indices; for exclusively spatial indices, I use lower case Roman letters begin-

ning at i. Another common convention is to use abstract indices, denoted with lower case Roman

letters beginning at a. I use such letters for Lie algebra indices (except for the Lie algebra of Killing

vector fields, for which I capitalise the Roman indices).

There are times when text that is inappropriate for footnotes or appendices must nonetheless be

distinguished from the text body, to indicate that the text following it follows on from the text before

it. Ref. [3] indicates this by using small text. I have instead chosen to use a different text colour.

Heretofore I have used black text. By contrast, the text in this sentence is grey. It is my hope that this

writing style will allow the reader to follow the structure7, and crux, of my argument more closely.

I have also taken one other measure to help this. Sections typically open with summaries of the

sequence of their narratives. The stages of such narratives each occupy a subsection. The reader can

satisfy themselves that this section of the chapter relies on this technique. A similar explanation of

the roles of sections in a chapter will also be typical.

1.2 Spacetimes of interest

In Sec. 1.2.1, I specify the spacetimes that are considered in this thesis. One example is de Sitter space,

but this case admits a number of generalisations that are straightforward throughout my analysis.

This permits a rich class of spacetime metrics to be considered hereafter. I motivate an interest in de

Sitter space in Sec. 1.2.2, which concludes with a one-sentence summary of the conditions demanded

of spacetimes of interest in Sec. 1.2.1.

Throughout this section I make use of various results, definitions and notational conventions for

general relativity, viz. Ref. [4].

1.2.1 Global hyperbolicity and compact spatial sections

Let n denote the dimension of the spacetime manifold. This thesis hereafter assumes one time

dimension and at least one space dimension, so n ≥ 2 and the dimension of spatial sections is n− 1.

In a given coordinate system, the time coordinate may be written as x0 or t, while space coordinates

are denoted xi and collected into a vector x ∈ Rn−1. An event in the manifold may be written as

x = (t, x) where x ∈ Rn, t ∈ R, x ∈ Rn−1 and x0 = t.

6However, occasionally SI units will be used. I also normalise G so that the Einstein–Hilbert Lagrangian density is√
|g| (R− 2Λ); for example, in a spacetime of 1 time dimension and 3 space dimensions, the normalisation convention

is 16πG = 1. I discuss this in more detail in Sec. 2.6.1.

7The first example of my using grey text in this way will be a discussion of one of the assumptions of
Friedmann–Lemaître–Robertson–Walker (FLRW) metrics.

One difference between grey text environments and footnotes is seen in their relation to grammar. If my grey text were
rendered black, the only information that would be lost would be information regarding the relation between the information
contents of black and grey regions of text. The grammatical structures of black and grey text are therefore identical and
unrelated. By contrast, this footnote exemplifies a typical peculiarity of the relation between the grammar of a sentence and
the positioning of a footnote within it. Indeed, a reader who read the sentence in which this footnote appeared, with the
footnote interrupting it, would not correctly follow the grammar of said sentence.
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CHAPTER 1. A PROBLEM IN SCALAR FIELD THEORY

Each spacetime considered is globally hyperbolic8, i.e. each has a Cauchy surface that can be time-

translated to generate the entire spacetime. I work hereafter in the timelike (+−· · · ) convention. The

line element of such spacetimes may then be written as

ds2 = N2dt2 − γij
(
dxi +N idt

) (
dxj +N jdt

)
(1.2.1)

where:

• γij (x) is a positive-definite invertible (n− 1)× (n− 1) real matrix-valued function;

• N (x) > 0 is the lapse function ;

• and N i (x) is (n− 1)–dimensional and is called the shift vector.

The spacetimes of interest are differentiable manifolds, so γij , N, N i are differentiable.

The choice of coordinates for a given globally hyperbolic metric fixes N, N i, but a physically irrelev-

ant change in the choice of coordinates can obtain arbitrary N, N i. The simplest possible result for

N, N i is the synchronous gauge

N = 1, N i = 0. (1.2.2)

However, the treatment of more general gauges is also of mathematical interest, and will be included

herein.

The Friedmann–Lemaître–Robertson–Walker (FLRW) metrics of cosmology are an important special

case. If these are considered in the synchronous gauge, they also impose two further conditions. The

first such condition is

γij (x) = a2 (t) ηij (x) , (1.2.3)

where a > 0 is called the scale factor. Note that γij is invariant under the transformation

a→ a

a0
, ηij → a2

0ηij (1.2.4)

for any a0 ∈ R+. We say a spacetime satisfying Eq. (1.2.3) is expanding if ȧ > 0 and accelerating

(decelerating) if ä is positive (negative). Eq. (1.2.3) implies a more general condition, of the form

√
γ (x) = an−1 (t)

√
η (x) (1.2.5)

where a > 0 as before, γ := det γij , and in the special case of Eq. (1.2.3) η = det ηij . Herein I will

consider arbitrary spacetimes satisfying Eq. (1.2.5), thereby generalising Eq. (1.2.3).

The second condition which FLRW metrics impose is not assumed hereafter, since it is irrelevant to

the statement and treatment of zero mode problems. For completeness, this condition is

ηij(x)dxidxj =
dr2

1− kr2
+ r2dΩ2, (1.2.6)

where dΩ2 is the line element of the (n− 2)–dimensional unit sphere Sn−2 and k is a constant for

which kr2 is dimensionless. For example, for n = 4 we may write

dΩ2 = dθ2 + sin2 θdφ2 (1.2.7)
8Globally hyperbolic spacetimes are of interest because they have a well-defined initial value formalism [4, 5]. Such
spacetimes include conformally Minkowski space and de Sitter space, but not anti de Sitter space.
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where (r, θ, φ) are spherical polar coordinates. An analogous condition exists in some other im-

portant spacetimes, with a different value of ηijdxidxj . One example, which lacks the homogeneity

in space of the FLRW metric, is the Schwarzschild metric. The Schwarzschild metric near a non-

rotating, neutrally charged black hole of mass m satisfies

N =

√
1− 2Gm

rc2
, N i = 0, a = 1, ηijdx

idxj =
dr2

1− 2Gm
rc2

+ r2dΩ2. (1.2.8)

However, γij (x) will for my purposes be any matrix for which det γij is of the form given in Eq.

(1.2.5). Even if γij had the form in Eq. (1.2.3), the choice of ηij would still be much more general than

that used in the FLRW metric condition Eq. (1.2.6).

One last constraint on the spacetimes of interest in this thesis is that the spatial integral

V (t) :=

ˆ
dn−1x

√
|g (t, x)|g00 (t, x) (1.2.9)

(where g := det gµν), hereafter called the spacetime’s volume factor, is finite in a suitable choice

of coordinates. Throughout this thesis it will be convenient to use the succinct integral operator

notations ˆ
x

:=

ˆ
dn−1x

√
|g|,
ˆ
x

:=

ˆ
dt
ˆ
x

=

ˆ
dnx

√
|g| (1.2.10)

so that V =
´
x
g00. (Ref. [6] has a similar shorthand, defining dVx :=

√
|g|dn−1x so

´
dVx =

´
x

.)

Defining γ := det γij , it is well-known that
√
|g| = N

√
γ and g00 = N−2, so V =

´
dn−1x

√
γ

N . All

spacetimes with compact spatial sections9 have finite volume factors10. An important example is de

Sitter space, for which in global coordinates the line element may be written as

ds2 = dt2 −H−2 cosh2HtdΩ2, (1.2.11)

where dΩ2 is the dimensionless line element of the (n− 1)–dimensional unit sphere Sn−1 and the

H−2 coefficient ensures that ds2 has the correct units.

1.2.2 Why de Sitter space?

The case of de Sitter space may be written as a ∝ coshHt,11 where H > 0 is a constant for which

Ht is dimensionless. This is the maximally symmetric accelerating choice12, and we expect theories

in de Sitter space and their vacua to exhibit a symmetry called de Sitter invariance. Empirically, the

modern universe is expanding and accelerating [8, 9]. Further, a primordial period of exponential

expansion known as cosmological inflation [10, 11, 12, 13, 14] explains the modern universe’s flat-

9The spatial sections of a spacetime are topological spaces. A topological space is called compact if each of its open covers has
a finite subcover. However, the only property of spacetimes with compact spatial sections that concerns us herein is that they
have finite volume factors. The integration process in Eq. (1.2.9) requires coordinate patches, but a compact spatial section
requires only finitely many of these. On each patch, the integral is finite because the integrand is continuous and hence
bounded. A finite subcover of a compact spatial section is also obtainable, since a union of open balls covering the spatial
section’s points provides an open cover. Any finite subcover thereof imposes a finite upper bound on the volume factor.

10While this integral I have called the volume factor is convenient to name herein, the more usual definition of volume for a
spacetime with compact spatial sections is

´
dn−1x

√
γ.

11I hereafter simply write a = coshHt, using the invariance of γij stated in Eq. (1.2.4). This removes the H−2 factor in Eq.
(1.2.11); H, t have been nondimensionalised.

12More precisely, de Sitter space is the maximally symmetric vacuum solution of Einstein’s field equations with positive
cosmological constant [7]. I define maximally symmetric spacetimes in Sec. 2.6.2.
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ness, the unobservably low modern concentration of magnetic monopoles, and the modern pattern

of CMB anisotropy. (There is also recent tentative empirical evidence for such cosmological inflation.

Primordial cosmological inflation’s predicted spectrum of perturbations in the universe’s primordial

density is consistent with WMAP data [15, 16]. Another prediction of primordial cosmological in-

flation is primordial gravitational radiation. Unfortunately, apparent evidence [17] of this radiation

has since been undermined [18].) The primordial and contemporary accelerating periods can both

be treated with de Sitter space, if only as a toy model. A further motivation for its study is the

proposed dS/CFT correspondence [19], which has much the same use for string theories in de Sitter

space as the AdS/CFT correspondence does for string theories in anti de Sitter space.

A lot is known about quantum field theories in de Sitter space. Of critical importance in this thesis is

the fact, which I discuss in Sec. 2.5.1, that minimally coupled massless free scalar fields in de Sitter

space prevent the occurrence of a de Sitter-invariant Hadamard vacuum state [20]. However, I will

usually be able to speak about zero mode problems in a much more general class of spacetimes. In

summary, I hereafter assume a globally hyperbolic spacetime with one time dimension and at least

one space dimension, which in appropriate coordinates satisfies Eq. (1.2.5) and has finite V (t).

1.3 An overview of Lagrangian and Hamiltonian mechanics

A few facts about the Lagrangian and Hamiltonian formulations of classical field theory13 need to

be reviewed to explain the CMP in Sec. 1.7.2. In particular, I must introduce several non-standard

notational conventions that ease the subsequent discussion of every zero mode problem considered

in this thesis. (The aim is to avoid a need to calculate with a mixture of tensors and tensor densities.)

The example of deriving the Klein–Gordon equation from a Lagrangian density will provide some

familiarity. Other zero mode problems introduced in Chapter 2 include fermionic fields, which

introduce a subtlety unaddressed in this section concerning the distinction between left and right

derivatives. The partial derivatives in the Lagrangian (Hamiltonian) sector should in general be left

(right) derivatives. I discuss this in more detail in Sec. (2.4.2) (Sec. (3.1)).

The notations
´
x
,
´
x

defined in Eq. (1.2.10) will be used throughout for succinctness. The action S,

Lagrangian L, Lagrangian density L and scalar Lagrangian density14 – which I will denote L0 – are

related by

L =
√
|g|L0, L =

ˆ
dn−1xL =

ˆ
x

L0, S =

ˆ
dtL =

ˆ
x

L0. (1.3.1)

I will write the scalar L0 in terms of tensors. In particular, if T (x) is an arbitrary tensor-valued field

(or mode thereof), I write tensors (including L0) as a function of T and its covariant, not partial,

derivatives. For example,∇µT will be considered T -independent for any T . Then

∂L
∂T

=
√
|g|∂L0

∂T
,

∂L
∂∇µT

=
√
|g| ∂L0

∂∇µT
, · · · . (1.3.2)

13Just as quantum mechanics is a quantisation of classical mechanics, quantum field theory is a quantisation of classical field
theory. Throughout this thesis, I will call fields classical if they are not quantised.

14In the treatment of curved spacetime, there are multiple conventions regarding the term “Lagrangian density”. One applies
this term to a scalar quantity. Another convention calls this scalar the scalar Lagrangian density (see, e.g. Chapter 6 of
Ref. [6]), and defines the Lagrangian density as

√
|g| times the scalar Lagrangian density. (The

√
|g| factor in the Lagrangian

density is derived in Sec. 6.3 of Ref. [21].) I will use this second convention herein. Then the Lagrangian is the space integral
of the Lagrangian density. However, the description of L0 as a “scalar Lagrangian density” is at risk of being confused with
the fact that the Lagrangian density L is a scalar density, as noted in Chapter 2 of Ref. [6], whereas L0 is a scalar.
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A transformation of fields may be written as T → T + δT . Suppose such a transformation satisfies

δS = 0. Then a stationary action principle is obtained by a process referred to as varying T . Working

throughout to first order in δT and covariant derivatives thereof, this stationary action principle can

be written as

0 = δS ≈
ˆ
x

(
δT

∂L0

∂T
+∇αδT

∂L0

∂∇αT
+∇β∇αδT

∂L0

∂∇β∇αT
+ · · ·

)
, (1.3.3)

where even higher-order derivatives of T appear in the ellipsis · · · . However, none of the Lagrangian

densities considered in this thesis depend on third- or higher-order covariant derivatives of any

tensor, so this ellipsis can be dispensed with hereafter. (I will only need to include second-order

covariant derivatives in discussions in Secs. 4.4 and 4.6.)

Dropping boundary terms, integration by parts gives

0 =

ˆ
dnx∂α

(√
|g|V α

)
=

ˆ
x

∇αV α (1.3.4)

for any tensorial vector field V α, since the identity
√
|g|Γααβ = ∂β

√
|g| in Christoffel symbols implies√

|g|∇αV α = ∂α

(√
|g|V α

)
(see Sec. 3.4 of Ref. [4]). Thus

δS =

ˆ
x

(
δT

∂L0

∂T
+∇αδT

∂L0

∂∇αT
+∇β∇αδT

∂L0

∂∇β∇αT

)
=

ˆ
x

δT

(
∂L0

∂T
−∇α

(
∂L0

∂∇αT
−∇β

∂L0

∂∇β∇αT

))
. (1.3.5)

This is an example of a result of the form

δS =

ˆ
dnxδT

δS

δT
, (1.3.6)

where δS
δT is called a functional derivative.15 By the fundamental lemma of the calculus of variations,

the stationary action principle δS
δT = 0 may be equivalently stated as the Euler–Lagrange equation

obtained by varying T . This equation may be rearranged as

∂L0

∂T
= ∇αJα, Jα :=

∂L0

∂∇αT
−∇β

∂L0

∂∇β∇αT
. (1.3.7)

A system is said to be on-shell if and only if all Euler–Lagrange equations are satisfied; results that

do not require any Euler–Lagrange equations are said to hold off-shell.

As an example of Eq. (1.3.7), the choice

T = φ∗, L0 = ∇µφ∗∇µφ−
(
M2 + ξR

)
φ∗φ, (1.3.8)

with R the Ricci scalar and ξ is a spacetime-constant dimensionless coupling parameter, gives the

Klein–Gordon equation

�φ = −
(
M2 + ξR

)
φ (1.3.9)

15If the calculation were done to all orders in T , the integrand would include additional terms, which by definition do not
contribute to δS

δT
. This is analogous to the fact that, in a Taylor series of a function, only one term is relevant to defining each

of the function’s derivatives at the point at which the Taylor series is expanded. Similarly, the aim of the above calculations
is to compute δS

δT
in terms of specific choices for the tensor fields.
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CHAPTER 1. A PROBLEM IN SCALAR FIELD THEORY

(� := ∇µ∇µ is the d’Alembert operator), with ξ = 0 in the minimally coupled case16, viz.

�φ = −M2φ. (1.3.10)

The momentum density πT of T can now be defined as

πT (x) :=
δL

δ∂0T
, (1.3.11)

which in the above example gives

πφ =
√
|g|∇0φ∗. (1.3.12)

Next I introduce what I will call reduced momentum densities, viz.

$T :=
πT√
|g|

=
1√
|g|

δL

δ∂0T
. (1.3.13)

(The symbol$ is called by \varpi in LATEX, and is a variant of π obtained by bending π’s legs inward

and bringing their feet into contact.) In many cases of interest17

πT =
∂L
∂∂0T

, $T =
∂L0

∂∂0T
. (1.3.14)

If this is true and, furthermore, second-order derivatives of T are absent from L0, then

πT =
∂L

∂∇0T
=
√
|g| ∂L0

∂∇0T
=
√
|g|J0, $T = J0. (1.3.15)

In this case the reduced momentum densities are true tensors, unlike the usual momentum densities

πT . Further, the Euler–Lagrange equation may then be written as

∂L0

∂T
= ∇0$T +∇iJ i. (1.3.16)

Next I define

ΠT (t) :=

ˆ
dn−1xπT (x) =

ˆ
x

$T (x) . (1.3.17)

Since S =
´

dtL, the stationary action principle can be expressed another way, viz.

0 =

ˆ
dt
(
δT

∂L

∂T
+∇µδT

∂L

∂∇µT

)
=

ˆ
dt

(
δT

(
∂L

∂T
−∇0ΠT

)
+∇iδT

∂L

∂∇iT

)
(1.3.18)

(again, assuming the absence of second-order covariant derivatives). If a variation δT is spatially

uniform and scalar-valued, ∇iδT = 0 so ∂L
∂T = Π̇T on-shell. For arbitrary T , the Euler–Lagrange

equation Eq. (1.3.7) gives a conserved current if L0 is not explicitly T -dependent, in which case T is

said to be cyclic. If δT is a spatially uniform scalar function (which can be taken as a variation only of

spatially uniform scalar modes of T ), δL is independent of the undifferentiated δT if and only if ΠT

16Some spacetimes have constant R (including two spacetimes I comment on in this thesis, the flat static torus and de Sitter
space). For these, a mass–M solution of

(
� +M2 + ξR

)
φ = 0 is a mass–

√
M2 + ξR solution of

(
� +M2

)
φ = 0. Thus

the results I will describe for M = 0 solutions of the minimally coupled Klein–Gordon equation, viz. �φ = 0, apply in such
spacetimes’ coupled Klein–Gordon equation whenever M = ±

√
−ξR. Indeed, if R is a nonzero constant, as is the case for

de Sitter space (but not the flat static torus), any choice of M yields such problems for ξ = −M
2

R
.

17One exception is discussed in Sec. (3.4). It results from a change of field variables in a Lagrangian, which makes use of a
nonlocal field defined in Eq. (3.4.1).
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is conserved; and, in a slight abuse of terminology for brevity, I will call such δT cyclic zero modes.

In the case of the Klein–Gordon field

Πφ∗ =

ˆ
x

∇0φ, (1.3.19)

Π̇φ∗ =

ˆ
x

∇µ∇µφ = −M2

ˆ
x

φ, (1.3.20)

so Πφ∗ is conserved when M = 0.

The Hamiltonian density is defined as

H := −L+
∑
T

(∂0T ) (πT ) , (1.3.21)

where the sum runs over all canonical tensor fields which appear, differentiated and/or undiffer-

entiated, in L. This construction of H in terms of L is a Legendre transform. A number of careful

observations concerning its properties will be made at appropriate times throughout this thesis. One

may writeH =
√
|g|H0 with

H0 := −L0 +
∑
T

(∂0T ) ($T ) , (1.3.22)

in analogy with the factorisation L =
√
|g|L0. (However, unlike L0,H0 is not in general a scalar.) The

Euler–Lagrange equation may instead be obtained by writing H in terms of T s, ∂iT s (if necessary)

and πT s, which requires the definitions of πT to be rearranged to make ∂0T s their subjects. This

results in lower time derivatives disappearing from H0. The equations of motion are obtained as

Hamilton’s equations, viz.

Ṫ =
δH

δπT
, π̇T = −δH

δT
. (1.3.23)

Thus the conservation of the canonical momentum of a cyclic T can also be proven in the Hamiltonian

formalism.

1.4 Normalising and quantising Klein–Gordon fields

I do not present original material in this section, whose purpose is to review the results of scalar field

theory that are key to my discussion of its zero mode problem later in this chapter. A good general

reference is Chapter 2 of Parker and Toms’s Ref. [6]. For example, their Eq. (2.48) introduces the

same quantity as my Eq. (1.4.3) below, and their Eq. (1.47) is my Eq. (1.4.15).

In Sec. 1.4.1, I introduce a normalisation condition on classical Klein–Gordon fields that will be used

throughout my analysis of the zero mode problem. In Sec. 1.4.2, I discuss enough of the quantum

field theory of quantised Klein–Gordon fields to motivate this normalisation (one calculation is

postponed to Appendix A). Sec. 1.4.2 also explains the concept of “modes” of scalar fields.

1.4.1 Classical fields

Minimally coupled scalar fields are of interest in this thesis. For the moment, I consider classical

fields (later quantum fields will be indicated by circumflexes, viz. φ vs. φ̂). The Klein–Gordon
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equation may be rewritten, viz.

�φ = ∇µ (gµν∇νφ) =
1√
|g|
∂µ

(√
|g|gµν∂νφ

)
, (1.4.1)

∂µ

(√
|g|gµν∂νφ

)
=
√
|g|�φ = −M2

√
|g|φ. (1.4.2)

By homogeneity and linearity, the set of solutions of Eq. (1.3.10) for fixed M forms a vector space.

One important example of a pseudo-inner product on this space is the Klein–Gordon inner product,

〈φ1, φ2〉KG := i
ˆ
x

(
φ∗1∇0φ2 −

(
∇0φ∗1

)
φ2

)
. (1.4.3)

(The factor of i ensures 〈φ1, φ2〉∗KG = 〈φ2, φ1〉KG.) This product is well-motivated; the Klein–Gordon

inner product of two solutions of mass M is conserved. A conserved current is a vector V µ with

∇µV µ = 0, so

0 =
√
|g|∇µV µ = ∂µ

(√
|g|V µ

)
, (1.4.4)

0 =

ˆ
dn−1x∂µ

(√
|g|V µ

)
= ∂0

(ˆ
x

V 0

)
+

ˆ
dn−1x∂i

(√
|g|V i

)
. (1.4.5)

If
√
|g|V i contributes no boundary term, integration by parts implies the last integral vanishes, so´

x
V 0 is a conserved charge. Indeed, i

´
x
V 0 is simply the Klein–Gordon inner product if we choose

V µ := φ∗1∇µφ2 − (∇µφ∗1)φ2 (1.4.6)

so that

∇µV µ = φ∗1�φ2 − (�φ∗1)φ2 =
(
−M2 +M2

)
φ∗1φ2 = 0. (1.4.7)

So this choice of V µ is conserved, and so is the Klein–Gordon inner product. In particular, the Klein–

Gordon norm 〈φ, φ〉KG is conserved for any solution φ.

By inspection 〈φ, φ∗〉KG = 0 and 〈φ∗, φ∗〉KG = −〈φ, φ〉KG. This last equation is important, because

the solution set of the Klein–Gordon equation is closed under φ 7→ φ∗, so 〈φ, φ〉KG is indefinite.

Quantisation obtains quantised Klein–Gordon fields expressible in terms of functions solving Eq.

(1.3.10) called modes. One may (non-uniquely; see Sec. 1.4.2 for a fuller discussion) choose a basis

of the space of solutions such that the basis elements are closed under φ 7→ φ∗, and each basis

element has non-zero Klein–Gordon norm. This allows us to draw a distinction between positive-

frequency and negative-frequency modes of Klein–Gordon fields, which respectively have positive

and negative Klein–Gordon norms. One popular normalisation of positive-frequency modes φ is to

then set

〈φ, φ〉KG = 1. (1.4.8)

(I motivate this normalisation in Sec. 1.4.2 and Appendix A.) With such a convention, if φ is purely of

positive (negative) frequency then φ∗ is purely of negative (positive) frequency. (We say a solution φ

is of purely positive (negative) frequency if it is a linear combination of modes of positive (negative)

frequency only. A general solution is a superposition of both mode types.)
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1.4.2 Quantisation

Let φ (x) denote a canonical bosonic scalar field solving a linear equation of motion such as the Klein–

Gordon equation. Let φ̂ (x) denote a quantised canonical bosonic scalar field, and let π (y) denote the

conjugate momentum density of φ (x). Then π (y) admits a quantisation π̂ (y), which is the conjugate

momentum density of φ̂ (x). Quantum theories are replete with commutators

[
X̂, Ŷ

]
:= X̂Ŷ − Ŷ X̂. (1.4.9)

One axiom of the quantum field theory of φ̂ is the equal-time canonical commutation relations

(CCRs). These are expressible in terms of the Dirac delta function (a measure) on spatial sections,

viz.

[
π̂ (t, x) , φ̂ (t, y)

]
= −iδ (x, y) , (1.4.10)[

φ̂ (t, x) , φ̂ (t, y)
]

= 0, (1.4.11)

[π̂ (t, x) , π̂ (t, y)] = 0. (1.4.12)

Note that the CCRs are written in a specific coordinate system. However, Eq. (1.4.10) has implications

that can be stated in a coordinate-independent form. For example,
[
π̂ (x) , φ̂ (y)

]
= 0 when x, y

are causally disconnected, as occurs in spacetimes for which is x − y is well-defined but spacelike

(equivalently, when a coordinate system exists in which x0 = y0). This motivates the axiom; the

fields commute in this case because of causality. (The other CCRs are even simpler; again spacelike

separations require vanishing commutators, but an operator must also commute with itself at the

same point in spacetime.) The CCR axioms can also be seen as generalisations of the Poisson brackets

of classical mechanics.

The reason quantised fields do not in general commute is that they are operators on the Hilbert space

other than multiples of the identity operator. To relate all this to classical field theory, we observe that

the Klein–Gordon equation has operator-valued solutions. Indeed, given a basis of the vector space

of ordinary function-valued solutions, the general operator-valued solution is a linear combination

of said basis functions with spacetime-constant operator-valued coefficients. (The previous sentence

was deliberately devoid of algebra that would have specified notation for these spacetime-constant

operators. I present the details below, after some exposition, in Eq. (1.4.15).) It follows that the

commutators of such coefficients should be consistent with the axiom Eq. (1.4.10).

Let φ̂ be a Hermitian quantised field associated with a particle species, and let |0〉 denote a zero-

particle φ̂-sector vacuum state.18 The most general one-particle state for that species is then a linear

combination over labels σ of the kets â†σ |0〉, where â†σ is the creation operator for a particle of state

labelled by σ. (This is in fact a label of the ordinary function-valued solutions of the Klein–Gordon

equation.) Then

âσ |0〉 = 0, 〈0| â†σ = 0. (1.4.13)

18Such a vacuum need not exist; if it does, it is not in general unique; and such vacua, if they exist, may violate symmetries of
interest. These are all common problems in quantum field theories in general spacetimes. I discuss such problems applicable
to this thesis in more detail later as appropriate.
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Another important equation is

[âσ, âσ′ ] = 0. (1.4.14)

I assume hereafter that the σ labelling the states are discrete rather than continuous (this applies to

the example of the flat static torus that will be discussed later), but the continuous case is analogous;

sums over σ are then promoted to integrals. Explicitly

φ̂ (t, x) =
∑
σ

(
âσφσ (t, x) + â†σφ

∗
σ (t, x)

)
, (1.4.15)

where the solution subspace spanned by the φσ (the φ∗σ) is called a subspace of positive-frequency

solutions (subspace of negative-frequency solutions). The choice of these subspaces is not unique,

but we can fix one choice to define positive- and negative-frequency modes. If 〈φσ, φσ′ 〉KG = δσσ′

and

ϕσ :=
∑
σ′

(ασσ′φσ + βσσ′φ
∗
σ) , (1.4.16)

then 〈ϕσ, ϕσ′ 〉KG = δσσ′ provided the complex matrices α, β satisfy

(
α∗αT − β∗βT

)
σσ′

= δσσ′ . (1.4.17)

(The transformation to the ϕσ subject to Eq. (1.4.17), partnered with the use of revised annihilation

operators

b̂σ :=
∑
σ′

(
α∗
σσ′

âσ′ − β
∗
σσ′

â†
σ′

)
, (1.4.18)

is called a Bogoliubov transformation. It satisfies

φ̂ (t, x) =
∑
σ

(
âσφσ (t, x) + â†σφ

∗
σ (t, x)

)
=
∑
σ

(
b̂σϕσ (t, x) + b̂†σϕ

∗
σ (t, x)

)
; (1.4.19)

and, if [âσ, âσ′ ] = 0 and
[
âσ, â

†
σ′

]
= δσσ′ , then

[
b̂σ, b̂σ′

]
= 0 and

[
b̂σ, b̂

†
σ′

]
= δσσ′ . A new vacuum

state is also required, e.g.
∏
σ exp

(
β∗

2α∗ â
†2
σ

)
|0〉 ∈

⋂
σ ker b̂σ if ασσ′ , βσσ′ ∝ δσσ′ .) However, in

Minkowski space one convenient choice of the positive-frequency modes φσ are proportional to the

familiar plane-wave functions exp i (k · x− ωkt) with

ωk =
√

k · k +M2. (1.4.20)

Then complex conjugation yields negative-frequency modes proportional to exp i (k · x + ωkt). (These

superpositions integrate over k-space.)

The ordinary functions φσ, φ∗σ span the space of solutions of Eq. (1.3.10) obtained with a fixed M .

With the aforementioned procedure, φσ, φ∗σ also span the space of quantised Klein–Gordon fields. In

the quantum theory we refer to these functions as modes of the quantised field φ̂. All vacuum-state

p-point correlation functions of φ̂ with p ∈ N, viz.
〈

0|
∏p
i=1 φ̂ (xi) |0

〉
, can be computed from the

x-space representations of these modes. In particular, the zero mode problem I describe later is due

to specific φσs.
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The momentum density is readily quantised, viz.

π̂ (t, y) =
√
|g|∇0φ̂ (t, y) . (1.4.21)

The trivial equal-time CCRs are then

[
φ̂ (t, x) , φ̂ (t, y)

]
=
[
∇0φ̂ (t, x) , ∇0φ̂ (t, y)

]
= 0. (1.4.22)

The Klein–Gordon orthonormality condition

δσσ′ = 〈φσ, φσ′ 〉KG , 0 =
〈
φσ, φ

∗
σ′
〉

KG (1.4.23)

(note the use of the Kronecker delta) manifestly generalises the requirement that

〈φσ, φσ〉KG = 1, 〈φ∗σ, φ∗σ〉KG = −1, [âσ, âσ′ ] = 0, (1.4.24)

It can be shown that imposing the Klein–Gordon orthonormality condition also implies the equival-

ence of two pairs of equations. The first pair comprises Eq. (1.4.14) and the equation19

[
âσ, â

†
σ′

]
= δσσ′ ; (1.4.25)

the second comprises Eq. (1.4.22) and the equation

[
φ̂ (t, x) , ∇0φ̂ (t, y)

]
=

iδ (x, y)√
|g (t, x)|

. (1.4.26)

Eqs. (1.4.25) and (1.4.26) are both crucial to theory. Eq. (1.4.25) is integral to the quantum description

of particle numbers; for example, it can be used to show that p!−1/2
(
a†σ
)p |0〉 is a p-particle state.

Appendix A presents a proof that Eq. (1.4.23) implies that Eqs. (1.4.14) and (1.4.25) are equivalent to

Eqs. (1.4.22) and (1.4.26). I will hereafter impose the orthonormality condition in Eq. (1.4.23).

In the next section, the zero mode problem in minimally coupled scalar theory is explained in the

context of a flat static torus.
19For continuous labels σ, all sums over σ become integrals, and the right-hand side of Eq. (1.4.25) becomes a σ-space Dirac

delta, δ
(
σ, σ

′
)

.

The right-hand side of Eq. (1.4.25) may be rescaled as a matter of convention. This is achieved by rescaling the âσ operators.
However, in this thesis I will always use the scaling in Eq. (1.4.25).

In one important example in Minkowski space, the labels are wavevectors of a particle, i.e. a one-particle state of wavevector

k is â†k |0〉. It is then customary to take
[
âk, â

†
k

]
= (2π)n−1 2E (k) δ

(
k, k

′
)

, where E = E (k) is the dispersion relation

between k and the particle’s energy E. The (2π)n−1 2E (k) factor is included to obtain a Lorentz-invariant measure (see

Sec. 3-1-2 of Ref. [3]). In this convention, the operator
´

dn−1k should be replaced with
´

dn−1k
(2π)n−12E(k)

.
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1.5 An infrared problem in scalar field theory on a flat static torus

In Sec. 1.5.1, I derive a Klein–Gordon normalisation of massive solutions of Eq. (1.3.10) on a flat

static torus. In Sec. 1.5.2, I contrast the behaviour of this normalisation, for spatially uniform

solutions, in the massless and massive cases. In Sec. 1.5.3, I introduce the propagator of a Hermitian

quantised Klein–Gordon field, and discuss its behaviour in the massless limit. It is this behaviour

that constitutes the zero mode problem. Note that this section’s discussion is limited to the case of the

flat static torus, but in Sec. 1.6 I discuss the zero mode problem in an arbitrary spacetime of interest

(viz. The summary concluding Sec. 1.2.2).

1.5.1 Klein–Gordon normalisation

Minkowski space may be considered in Cartesian coordinates satisfying

N = 1, N i = 0, γij = δij . (1.5.1)

For a flat static torus, we also periodically identify each of the coordinates xi, say with xi having

period Li > 0. (We are concerned with spacetimes for which
´
x
g00 is finite, so flat static tori are

relevant whereas Minkowski space is not. ) Let L ∈ (0, ∞)
(n−1)×(n−1) denote the diagonal matrix

diag
(
Li
)
. A spacetime event that can be described with the coordinates t = t0, x = x0 may also be

described with the coordinates t = t0, x = x0 + Ln for any n ∈ Zn−1.

Note that the spacetime satisfies ∂αgβγ = 0. It is flat because of the case α = i; it is static because of

the case α = 0.

Minimally coupled classical Klein–Gordon fields on this flat static torus satisfy

(
∂2

0 −∇2 +M2
)
φ = 0. (1.5.2)

The M 6= 0 plane-wave positive-frequency Klein–Gordon modes

ϕk := exp i (k · x− ωkt) (1.5.3)

satisfy Eq. (1.4.20) and

∂0ϕk = −iωkϕk, (1.5.4)

∂0ϕ∗k = +iωkϕ
∗
k, (1.5.5)

〈ϕk, ϕq〉KG = i
ˆ
x

ϕ∗kϕq (−2iωk) = 2ωk

ˆ
x

exp i (q− k) · x. (1.5.6)

The wavevector is discretised for the flat static torus, viz.

k = 2πL−1n, n ∈ Zn−1. (1.5.7)
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Working in the coordinates chosen in Eq. (1.5.1),

〈ϕ2πL−1n1
, ϕ2πL−1n2

〉KG = 2ω2πL−1n1

ˆ
dn−1x exp 2πiL−1 (n2 − n1) · x

= 2ω2πL−1n1
Ln−1δn1n2

, (1.5.8)

where I have introduced the geometric mean L :=
(∏n−1

i=1 L
i
) 1
n−1

of the Li so that

Ln−1 =

n−1∏
i=1

Li = detL. (1.5.9)

(It is common to use the symbol for a matrix to also denote its determinant, e.g. g = det gµν is a

determinant of the tensor gµν interpreted as a matrix. The determinant of the matrix L is not a spatial

length but a product of n−1 spatial lengths, so it is more sensible to denote the determinant as Ln−1.)

From Eq. (1.5.8), the Klein–Gordon normalisation for positive-frequency modes is

φn :=
ϕ2πL−1n√

2ω2πL−1nLn−1
=

exp i
(
2πL−1n · x− ω2πL−1nt

)√
2ω2πL−1nLn−1

. (1.5.10)

1.5.2 The massless limit of spatially uniform solutions

The case n = 0 is spatially uniform; and, by Eq, (1.4.20), for M = 0 it is time-independent since it

satisfies ω = 0 (i.e. this case has zero energy, which in the Schrödinger operator formalism ω = i∂0

is equivalent to time-independence). This zero-energy mode is called a zero mode, and this term is

typically used in general for zero-energy states of time-independent wavefunction.

In this subsection, I show that the massless limit of n = 0 creates a zero mode problem for scalar

field theory in the flat static torus. This is a special case of an infrared problem that occurs in scalar

field theory in curved spacetimes. It is convenient for the purposes of this thesis to define the zero

mode of a scalar field in a non-standard way. In my terminology, zero modes of scalar fields are

spatially uniform modes, so the variations δT ∈
⋂
i ker∇i considered in Sec. 1.3 are zero-mode-sector

variations. (A number of further details will need to be clarified in due course to define the zero mode

of arbitrary scalar-valued functions, vector fields and conjugate momentum densities thereof.) Zero

modes simplify the Klein–Gordon equation to an ordinary differential equation in time, viz.

∂2
0φ = −M2φ. (1.5.11)

For M 6= 0 there is one positive-frequency zero mode, viz.

φ0 =
exp (−iMt)√

2MLn−1
. (1.5.12)

The conjugate φ∗0 is a negative-frequency zero mode, so there are two zero modes overall. Notice

that both zero modes diverge in the M → 0+ right-hand limit, which I will call the IR limit for

brevity. Indeed, when M = 0 the Klein–Gordon equation’s solutions take a different form, because

the eigenvalues of ∂0 for which ∂2
0 + M2 vanishes are no longer distinct. The most general massless

solution is in fact φ = A+Bt for spacetime-constant coefficientsA, B. It follows that, for smallM > 0,

the approximate behaviour of φ0 is of the form A (M) + B (M) t for some functions A (M) , B (M).
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An explicit calculation obtains the M -dependences of A, B, viz.

A+Bt =
1− iMt√
2MLn−1

≈ exp (−iMt)√
2MLn−1

, (1.5.13)

A =
1√

2MLn−1
∝ 1√

M
, (1.5.14)

B = −iMA ∝
√
M. (1.5.15)

1.5.3 The Feynman propagator

The Feynman propagator of a Hermitian quantised Klein–Gordon field φ̂ is defined as

T
〈

0|φ̂ (x) φ̂
(
x
′
)
|0
〉
, (1.5.16)

where T denotes time ordering.20 Since
〈

0|φ̂ (x) φ̂
(
x
′
)
|0
〉

is a function of x, x
′
, and hence in partic-

ular of the time coordinates t := x0, t := x
′0, its time ordering is defined as thus: the φ̂ with the least

time coordinate is placed rightmost in the product. More generally, for any function of the form21

K
(
t, t
′
)

=
〈

0|Â (t) Â
(
t
′
)
|0
〉
, Â† = Â, (1.5.17)

we have the time ordering

TK
(
t, t
′
)

:= K
(

max
{
t, t
′
}
, min

{
t, t
′
})

, (1.5.18)

which is symmetric by definition. An equivalent expression for this time ordering may be provided

in terms of the Heaviside step function. We have

TK
(
t, t
′
)

= K
(

max
{
t, t
′
}
, min

{
t, t
′
})

=


K
(
t, t
′
)

t > t
′

K (t, t) t = t
′

K
(
t
′
, t
)

t < t
′

=


0 t > t

′

1
2K (t, t) t = t

′

K
(
t
′
, t
)

t < t
′

+


K
(
t, t
′
)

t > t
′

1
2K (t, t) t = t

′

0 t < t
′

, (1.5.19)

so in terms of the Heaviside step function

20The interest in
〈

0|φ̂ (x) φ̂
(
x
′
)
|0
〉

is as a covariance of φ̂ at two spacetime events. Eqs. (1.4.15) and (1.4.25) imply〈
0|φ̂ (x) |0

〉
= 0, i.e. φ̂ (x) has zero vacuum expectation value (VEV). The quantised Higgs field has nonzero VEV

because it does not admit a decomposition analogous to Eq. (1.4.15). This is because the classical Higgs field solves
a non-linear equation of motion. Indeed, an analogous treatment of a minimally coupled scalar Higgs field ρ takes
L0 = ∇µρ∗∇µρ − V (ρ), with Mexican-hat potential V (ρ) := M2ρ∗ρ + λ

2
(ρ∗ρ)2. Here M2 < 0 and λ > 0. Varying

ρ∗ gives �ρ = −
(
M2 + λρ∗ρ

)
ρ. The VEV is a spacetime-constant global minimum of V (ρ), so �ρ = 0. Since V (0) = 0

but V
(√
−M2

λ

)
= −M4

2λ
< 0, the solution ρ∗ρ = −M

2

λ
is the VEV. A brief discussion of this is provided in Sec. 12-6 of

Ref. [22].

21In this grey text environment, dependences on variables other than time coordinates is possible but not displayed.
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θ (τ) :=


0 τ < 0

1
2 τ = 0

1 τ > 0

=

ˆ τ

−∞
δ
(
τ
′
)

dτ
′

(1.5.20)

we have

TK
(
t, t
′
)

= K
(

max
{
t, t
′
}
, min

{
t, t
′
})

=


K
(
t, t
′
)

t > t
′

K (t, t) t = t
′

K
(
t
′
, t
)

t < t
′

=


0 t > t

′

1
2K (t, t) t = t

′

K
(
t
′
, t
)

t < t
′

+


K
(
t, t
′
)

t > t
′

1
2K (t, t) t = t

′

0 t < t
′

= K
(
t, t
′
)
θ
(
t− t

′
)

+K
(
t
′
, t
)
θ
(
t
′
− t
)

= K
(
t, t
′
)
θ
(
t− t

′
)

+K
(
t
′
, t
)(

1− θ
(
t− t

′
))

. (1.5.21)

In this thesis, important examples of Eq. (1.5.17) that are also expressible in the form

K
(
t, t
′
)

= K0 (t)−K0

(
t
′
)

(1.5.22)

for some K0 satisfying K̇0 (τ) > 0 for all τ thereby additionally satisfy

TK
(
t, t
′
)

=
∣∣∣K0 (t)−K0

(
t
′
)∣∣∣ . (1.5.23)

But φ̂ has a mode decomposition, viz. Eq. (1.4.15). Thus

φ̂
(
x
′
)
|0〉 =

∑
σ′

φ∗
σ′

(
x
′
)
â†
σ′
|0〉 , (1.5.24)

〈
0|φ̂ (x) φ̂

(
x
′
)
|0
〉

=
∑
σσ′

φσ (x)φ∗
σ′

(
x
′
)〈

0|âσâ†σ′ |0
〉

=
∑
σσ′

φσ (x)φ∗
σ′

(
x
′
)
δσσ′ =

∑
σ

φσ (x)φ∗σ

(
x
′
)
. (1.5.25)

In terms of the decompositions

x = (t, x) , x
′

=
(
t
′
, x
′
)
, (1.5.26)

all contributions to
∑
σ φσ (x)φ∗σ

(
x
′
)

due to n 6= 0 solutions are of the form

exp i
(

2πL−1n ·
(
x− x

′
)
− ω2πL−1n

(
t− t′

))
2ω2πL−1nLn−1

. (1.5.27)
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These terms are invariant under spacetime translations and, in particular, the case x = x
′

simplifies

for n 6= 0 to the spatially uniform, time-translation invariant result

exp iω2πL−1n

(
t
′ − t

)
2ω2πL−1nLn−1

. (1.5.28)

Note that these results are true for arbitrary M , including M = 0, and apply also in the n = 0 case

provided that M 6= 0. However, the n = 0 case with a small mass instead has an approximate

contribution

(A (M) +B (M) t)
(
A∗ (M) +B∗ (M) t

′
)

= (A+Bt)
(
A−Bt

′
)
, (1.5.29)

using the fact that Eqs. (1.5.14) and (1.5.15) imply A ∈ R, B ∈ iR.

These equations have a few further implications, resulting in an infrared problem for the theory. The

spacetime-constant term AA∗ is IR-divergent; the BB∗tt
′

term vanishes in the IR limit (which is for-

tunate given the effect it would otherwise have on spacetime symmetries); and the M -independent

contribution is AB
(
t− t′

)
, which is time-translation invariant. The IR limit of the massive Feyn-

man propagator is therefore the sum of an IR-convergent time-translation invariant term and an

IR-divergent spacetime-constant term. Indeed, if the term A2 were instead infrared-convergent

and the tt
′

term vanished to preserve time-translation invariance, we would have B = 0 and the

Klein–Gordon norm’s massless limit would be 0. There is thus a conflict between time-translation

invariance, infrared convergence and Klein–Gordon normalisation.

1.6 Generalisation to spacetimes with compact spatial sections

1.6.1 Low-mass behaviour of scalar “zero modes”

Working in the synchronous gauge for the background spacetime (viz. Eq. (1.2.2)), spatially uniform

massless solutions of the Klein–Gordon equation satisfy

∂0

(
an−1 (t)

√
η (x)φ̇ (t)

)
= 0. (1.6.1)

(Note that I have assumed Eq. (1.2.5), not the less general Eq. (1.2.3). One of my contributions to our

research was the realisation that this allowed all the results that follow to apply to a more general

class of spacetimes.) This simplifies to

φ̇ ∝ a1−n. (1.6.2)

Defining

f (t) :=

ˆ t

0

a1−n (τ) dτ, (1.6.3)

the general massless zero mode is of the form

φ = A+Bf (1.6.4)

for spacetime-constant coefficients A, B. (The approximate low-mass behaviour of a massive zero

mode may behave differently; see, e.g. Eq. (1.8.3) for additional terms in the de Sitter case.) Two
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other important results are

√
|g| = √γ = an−1√η, (1.6.5)

V = an−1

ˆ
dn−1x

√
η =

´
dn−1x

√
η

ḟ
. (1.6.6)

It is sufficient to choose a coordinate system for which the coordinate volume Vc :=
´

dn−1x
√
η is

finite. One further important observation is that, since ḟ = a1−n > 0, f is an example of a function

K0 of the form described in Eq. (1.5.22).

As in the case of the flat static torus, the IR limit of a massive solution satisfying 〈φ, φ〉KG = 1 is a

massless solution satisfying 〈φ, φ〉KG = 1. Thus A, B each have some appropriate M -dependence,

and the normalisation condition is

1 = i
ˆ
x

(
φ∗φ̇− φ̇∗φ

)
= i
ˆ
x

(
(A∗ +B∗f)Ba1−n −B∗a1−n (A+Bf)

)
= i (A∗B −AB∗)Vc, (1.6.7)

A∗B −AB∗ =
−i
Vc
. (1.6.8)

It suffices to impose A > 0, B = −i
2AVc

. This constrains, but does not determine, the M -dependences

of A, B. Curiously, the M -dependence is a-sensitive in a manner Dr Higuchi and I still do not know

for general a. In particular, a = 1 (the flat static torus) gives B ∝
√
M , while a = coshHt (de Sitter

space) gives B ∝ M . This is one of the results I discuss in Sec. 1.8. In the IR limit, A diverges while

B vanishes.

1.6.2 Analysis of Feynman propagator terms by spacetime symmetries and

infrared behaviour

The general case modifies theM -dependence ofA, B, and replaces the zero modeA+BtwithA+Bf .

However, much of what can be said about the Feynman propagator in the case of the flat static torus

remains true because AB is M -independent and A ∈ R, B ∈ iR. The zero mode problem is entirely

due to

(A+Bf (t))
(
A∗ +B∗f

(
t
′
))

= (A+Bf (t))
(
A−Bf

(
t
′
))

. (1.6.9)

As in Sec. 1.5.3, there is a spacetime-constant IR-divergent term, a term that vanishes in the IR

limit, and an M -independent term that is proportional to f (t) − f
(
t
′
)

and hence invariant under

f -translation. The IR limit of the Feynman propagator therefore consists of a spacetime-constant

IR-divergent term and an IR-convergent term that preserves a desirable spacetime symmetry.

1.7 Two prescriptions addressing the zero mode problem

Sec. 1.7.1 provides a brief summary of how the FMP addresses the zero mode problem discussed in

Secs. 1.5 and 1.6. Sec. 1.7.2 discusses the CMP for the same purpose. However, discussion of the

CMP is necessarily much more detailed.
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1.7.1 The fictional mass prescription (FMP)

The only IR-divergent term in the massive Feynman propagator is a spacetime-constant contribution

in the zero-mode sector, so its subtraction from the Feynman propagator does not modify which

spacetime transformations preserve the result. The FMP subtracts the IR-divergent term and then

takes the IR limit to obtain an effective zero-mode sector Feynman propagator, which is

T
{
AB

(
f (t)− f

(
t
′
))}

=
−i
2Vc

T
{
f (t)− f

(
t
′
)}

=
−i
2Vc

∣∣∣f (t)− f
(
t
′
)∣∣∣ . (1.7.1)

The theory has several spacetimes symmetries and a global internal symmetry, an invariance under

φ → eiθφ for spacetime-constant θ ∈ R. The other zero mode problems I discuss in this thesis occur

in theories with local internal symmetries. The FMP’s treatment of such theories adds a mass term

that violates these symmetries. However, no such terms are introduced in the CMP.

1.7.2 The cyclic mode prescription (CMP)

The contents of this subsection are original.

In the Schrödinger picture of quantum field theory, the state has a formal wave functional Ψ (T, · · · )

satisfying

Π̂TΨ = −i
δΨ

δT
, (1.7.2)

where δ
δT denotes a functional derivative. Suppose T is a spatially uniform scalar mode in a scalar

Lagrangian density L0, no derivatives of T higher than Ṫ appear in L0, and the undifferentiated T

also does not appear therein. Then ΠT is a conserved charge, and one may impose ΠT = 0.

This fact takes some explaining. Consider first a 1-particle quantum-mechanical system of con-

served linear kinetic momentum p ∈ Rn−1. In a state with p = p0, the x-space wave function’s

x-dependence is realised as an exp (ip0 · x) factor (provided we set ~ = 1). Of interest are inner

products on the theory’s wave functions; in particular, norms have a probabilistic interpretation. But

all unitary transformations of the wave functions preserve these inner products, and this includes

multiplication by exp (−ip1 · x) for any constant with units of wavenumber (or equivalently, since we

set ~ = 1, units of linear kinetic momentum). The x-dependence of our wave function is now realised

as an exp (i (p0 − p1) · x) factor. The effect of this unitary transformation is a p-space translation of

the conserved linear kinetic momentum, from p0 to p0 − p1. Indeed, in terms of an interpretation

in terms of classical physics, this is simply a frame shift. The choice of p1 is arbitrary. We can

therefore choose p1 = p0, which sets the vector-valued conserved linear kinetic momentum to

0 ∈ Rn−1. Again, an interpretation in terms of classical physics is readily available; the frame shift

used here is to the zero momentum frame or centre of mass frame. The outcome is an x-independent

wavefunction.

This result can be extensively generalised. The original exp (ip0 · x) factor exists because of the

operator identification p̂ = −i∇ (i.e. p = −i ∂∂x ), where again the choice of units is such that ~ = 1.

Thus the multiples of exp (ip0 · x) are simply the mutual eigenfunctions of the p̂i with respective

eigenvalues (p0)i. The crux of this is that the Schrödinger picture’s operator formalism implies a
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canonical commutator [p̂i, x̂j ] = −iδij , in analogy with Eq. (1.4.10). We say p̂i, x̂j are conjugate

variables. And given any conserved quantity which has a conjugate variable, the method described

in the previous paragraph obtains a wavefunction that is independent of this second conjugate

variable, because the first conserved variable now vanishes.

The inner product of two quantum-mechanical wavefunctions φ, ψ is an ordinary integral, whose

integrand is an ordinary function φ∗ψ. The Schrödinger wave functional formalism promotes φ, ψ

to Schrödinger wave functionals Φ, Ψ (say), and also promotes the inner product to a functional

integral of Φ∗Ψ. A quantum-mechanical q̂ conjugate to some p̂ satisfies

p̂Ψ ∝ δ

δq
Ψ, (1.7.3)

a functional derivative. If p̂ depends on neither space (e.g. due to being a definite integral over space)

nor time (i.e. p̂ is conserved), one can set p̂ = 0, in analogy with the classical case. This includes the

ΠT discussed herein for which T is cyclic. Setting such a p̂ to zero implies Ψ is q̂-dependent, so q, p

are obviated from the Schrödinger wave functional formalism.

Note that the existence of a variable conjugate to conserved charges is crucial to these inferences. We

cannot, for example, use this line of reasoning to show that Klein–Gordon inner products may be set

to 0.

In the above grey note, I explained the circumstances in which conditions of the form ΠT = 0 may

be imposed. Indeed, the CMP simultaneously imposes all such conditions, one for each such T .22 If

one does this, several consequences result:

• Ψ is T -independent,

• L0 is Ṫ -independent, and

• Hamilton’s equations are applicable to an expression for H0 that contains neither T nor its

derivatives.

The Lagrangian, Hamiltonian and Schrödinger wave functional formalisms therefore lose all explicit

dependence on T and its derivatives. Thus T is dynamically irrelevant and has been obviated

from all three formalisms, resulting in a theory whose fields and propagators no longer contain any

contributions from T .

This is how the CMP resolves all zero mode problems discussed in this thesis. The crux of the CMP’s

usage is to argue that, when conserved charges are set to zero on all physical states, the effective

Hamiltonian is obtainable as a Legendre transform of the effective Lagrangian. The difficult step

is always verifying that zero modes are “cyclic”, in the aforementioned sense that the Lagrangian

does not explicitly depend on it undifferentiated. The Klein–Gordon example is instructive. For an

arbitrary scalar field χ define

22It might be objected that the canonical (anti)commutation relation between a field φ and its conjugate momentum density
π for physical states of non-zero norm is inconsistent with their having π̂–eigenvalue 0. However, there is in fact no
such inconsistency. The usual relation between φ and π holds for a specific pseudo-inner product on the Hilbert space.
Deleting the

´
dφ(0) integration operator from the pseudo-inner product’s definition obtains a new pseudo-inner product

with respect to which these physical states might have nonzero norm. (This
´

dφ(0) deletion is legitimate because Ψ is
φ(0)-independent for the subspace of physical states considered in the CMP.) This detail is discussed in more detail in Sec.
3.9 and Appendix B.

The canonical (anti)commutation relations are an attempt to quantise the Poisson brackets in classical field theory. Theories
I consider in later chapters introduce a further complication requiring Dirac brackets. I mention this again in Sec. 3.9, and
address it in Appendix C.
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χ(0) (t) :=

ˆ
x

g00χ

V
, χ(+) (x) := χ− χ(0) (t) . (1.7.4)

Thus χ(0) is a spatially uniform contribution to χ, and all spatially uniform χ are fixed points of the

map χ(0). Thus

(
χ(0)

)
(0)

= χ(0),
(
χ(+)

)
(0)

=
(
χ− χ(0)

)
(0)

= χ(0) −
(
χ(0)

)
(0)

= 0. (1.7.5)

An alternative notation for χ(0) is

χ(0) (t) =

ˆ
dn−1xΥ (x)χ (x) , Υ :=

√
|g|g00

V
=
an−1√η
NV

. (1.7.6)

Note that
´

dn−1xΥ = 1. For any choice ofN which is a product of a function of space and a function

of time, so is Υ, and

ˆ
dn−1xΥ̇χ(+) =

Υ̇

Υ

(
χ(+)

)
(0)

= 0, (1.7.7)

∂0

(
χ(0)

)
− (χ̇)(0) =

ˆ
dn−1xΥ̇χ =

ˆ
dn−1xΥ̇χ(0)

= χ(0)∂0

ˆ
dn−1xΥ = 0. (1.7.8)

Thus for spacetimes of interest one can consider gauge choices for which χ̇(0) is unambiguous.

For M = 0 the zero mode φ(0) is cyclic. A massless Klein–Gordon field of manifestly real scalar

Lagrangian density

L0 = gµν∇µφ∗∇νφ (1.7.9)

provides the conserved charge Πφ∗ , which for N i = 0 is given by

Πφ∗ =

ˆ
x

g00φ̇ = V φ̇(0), (1.7.10)

so that φ̇(0) ∝ V −1. This corollary of the definition of χ(0) in Eq. (1.7.4) is consistent with the spatially

uniform Klein–Gordon modes found in Eq. (1.6.4), provided Ṅ = 0 so

V = an−1

ˆ
dn−1x

√
η

N
∝ an−1 = ḟ−1. (1.7.11)

Thus χ(0) can be taken as the definition of the zero mode of χ, so that χ(+) contains any “other”

modes of χ.

To obviate zero modes from the Hamiltonian, we first need to write

H0 = φ̇$φ + φ̇∗$φ∗ −∇µφ∗∇µφ (1.7.12)

in terms of $φ = ∇0φ∗, $φ∗ = ∇0φ, ∇iφ and ∇iφ∗ to use Hamilton’s equations. We thus need to

express∇0, ∇i in terms of ∇0, ∇j . Since ds2 = gµνdxµdxν , Eq. (1.2.1) gives gµν as

g00 = N2 − γijN iN j , g0i = −γijN j , gij = −γij . (1.7.13)
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It is well-known [4] that gµν has an inverse gµν given by

g00 = N−2, g0i = −N−2N i, gij = N−2N iN j − γij , (1.7.14)

where γij be the inverse of γij as a matrix, i.e. γijγjk = δik. However this result was first realised, it

is obvious once stated because Eqs. (1.7.13) and (1.7.14) together imply gµρgρν = δνµ. Hence

∇0 = N2
(
N−2∇0 −N−2N i∇i

)
+N i∇i

= N2∇0 +N i∇i, (1.7.15)

∇i = −N−2N i∇0 +
(
N−2N iN j − γij

)
∇j

= N i
(
N−2N j∇j −N−2∇0

)
− γij∇j

= −N i∇0 − γij∇j , (1.7.16)

φ̇ = N2$φ∗ +N i∇iφ, (1.7.17)

∇iφ = −N i$φ∗ + γij∇jφ. (1.7.18)

Eqs. (1.7.15)-(1.7.18) imply

H0 = φ̇$φ + φ̇∗$φ∗ −
1

2
(L∗0 + L0)

= φ̇$φ −
1

2
∇0φ∇0φ∗ − 1

2
∇iφ∇iφ∗

+ φ̇∗$φ∗ −
1

2
∇0φ

∗∇0φ− 1

2
∇iφ∗∇iφ

=
1

2

(
N2$φ∗ +N i∇iφ

)
$φ +

1

2
∇iφ

(
N i$φ + γij∇jφ∗

)
+

1

2

(
N2$φ +N i∇iφ∗

)
$φ∗ +

1

2
∇iφ∗

(
N i$φ∗ + γij∇jφ

)
= N2$φ∗$φ +N i (∇iφ$φ +∇iφ∗$φ∗) + γij∇iφ∇jφ∗. (1.7.19)

Since ∇iφ(0) = 0, φ(0) and its derivatives have been obviated, as have φ∗(0) and its derivatives.

Momentum densities can be split into “zero” and “other” modes too, viz. Sec. 3.2. When the CMP

sets conserved momenta to 0, it reduces $φ, $φ∗ to $φ(+)
, $φ∗

(+)
. The end result is of the form

H0 = H0

(
φ(+), ∇iφ(+), $φ(+)

, φ∗(+), ∇iφ
∗
(+), $φ∗

(+)

)
. (1.7.20)

Thus zero modes have been obviated, including from the momentum sector.

This strategy removes φ(0) fromH0. In Sec. 3.1, I will discuss removal of zero modes from Hamiltoni-

ans and Lagrangians, and show that the two are equivalent. Indeed, we can switch to the Lagrangian

formalism now, which in this case gives a shorter treatment. Setting Πφ∗ = 0 in the CMP gives

φ̇(0) = 0, so∇µφ(0) = 0 and

L0 = ∇µφ∗(+)∇
µφ(+). (1.7.21)

Thus φ(0) is obviated in this formalism.
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1.8 Comments on the flat static torus and de Sitter space

Throughout this section I consider minimally coupled solutions of the Klein–Gordon equation. Both

the flat static torus and de Sitter space can be considered in Cartesian coordinates satisfying

N = 1, N i = 0, γij = a2 (t) δij , ḟ = a1−n. (1.8.1)

The Klein–Gordon equation for zero modes then simplifies to

∂0

(
φ̇

ḟ

)
= −M

2φ

ḟ
. (1.8.2)

Thus A+Bf is a solution if and only if M = 0. In particular, massless solutions are of this form and

massive ones are not. However, the flat static torus obtains f = t, and approximation of a massive

mode at sufficiently low order in M is of the form A + Bf . In particular, 1−iMt√
2MLn−1

is Klein–Gordon

normalised.

In Sec. 1.8.1 I show how to compute f (t) for de Sitter space. I write f = In−1, where the functions

Ik are defined in Eq. (1.8.8); I obtain I1, I2, and an expression for Ik+2 in terms of Ik. In Sec. 1.8.2

I discuss Ref. [1]’s computation of the Klein–Gordon normalised de Sitter-invariant massive zero

modes in de Sitter space at orderM . Ref. [1] discusses this in its Sec. II and Appendices A and F. The

paper’s Sec. II normalises massive spatially uniform Klein–Gordon fields in de Sitter space, although

some details of this are postponed to the paper’s Appendix A. The most important finding is that, in

the de Sitter–invariant case, such modes are of the form

1√
2b0

{
1

M
−M [f2 (t) + b1 + ib0f (t)]

}
+ o (M) (1.8.3)

where

f2 :=

ˆ t

0

[
ḟ
(
t
′
)ˆ t

′

0

dτ
ḟ (τ)

]
dt
′
, (1.8.4)

b0 :=
π(n+1)/2

Γ
(
n+1

2

)
Hn

, (1.8.5)

b1 :=
ψ (n− 1)− ψ

(
n
2

)
− ψ (1) + ψ

(
1
2

)
2 (n− 1)H2

(1.8.6)

(with ψ (z) := Γ
′
(z)

Γ(z) the digamma function, viz. Chapter 6 of Ref. [23]). This approximation is not of

the form A (M) + B (M) f , because the O (M) contribution is not proportional to f . I make further

comments on this in Sec. 1.8.3.

Ref. [1] also discusses the case of the flat static torus in more detail in its Appendix E. I will discuss

this material herein in Sec. 3.8. In particular, Ref. [1]’s Eq. (F8) will warrant a more detailed proof

than in Ref. [1]. This proof must distinguish the cases n = 2, n = 3 and n ≥ 4, but only the n ≥ 4

case is considered in Ref. [1].
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1.8.1 Massless zero modes in de Sitter space

For any n, an analytic expression exists for f (t) in the case of de Sitter space. For the purposes of this

calculation I nondimensionalise time by setting H = 1, viz.

a = cosh t, f (t) =

ˆ t

0

sechn−1 udu. (1.8.7)

(I will preserve this nondimensionalisation throughout Sec. 1.8. As a result, a ratio M
H in a discus-

sion of massive solutions of the Klein–Gordon equation is simplified to M. This has the effect of

nondimensionalising mass too.) Thus f (t) = In−1 (t), where

Ik (t) :=

ˆ t

0

sechk udu. (1.8.8)

The method for computing the Ik is standard. By inspection I0 = t and I2 = tanh t, and I1 is the

famous Gudermannian function [24], viz.

I1 = gd (t) :=

ˆ t

0

sechudu =

ˆ t

0

2eu

1 + e2u
du =

ˆ et

1

2dy
1 + y2

= [2 arctan y]
et

1 = 2 arctan et − π

2
. (1.8.9)

For greater values of k a recursion is needed. Write

Ik+2 =

ˆ t

0

g (u)
dh

du
du (1.8.10)

where g (u) := sechkt, h (u) := tanh t. Integrating by parts, and using tanh2 t = 1− sech2 t, gives

Ik+2 (t) = sechk t tanh t+

ˆ t

0

k sechk t
(

1− sech2t
)

dt

= sechk t tanh t+ kIk (t)− kIk+2 (t) , (1.8.11)

Ik+2 (t) =
kIk (t) + sechk t tanh t

k + 1
. (1.8.12)

(Note that this recursion would break down if we attempted to use it to obtain I1 from I−1 = sinh t.)

For example, for n = 4 de Sitter spacetime

f (t) = I3 (t) =
I1 (t) + sech t tanh t

2
=

gd (t) + sech t tanh t

2
. (1.8.13)

1.8.2 Massive zero modes

Eq. (1.8.2) is a second-order ordinary differential equation, so its solution space is 2-dimensional. For

i ∈ {0, 1} and fixed M define the functions

a
(i,M)
0 (t) := f i, (1.8.14)

a
(i,M)
k+1 (t) :=

ˆ t

0

[
ḟ
(
t
′
)ˆ t

′

0

a
(i,M)
k (τ) dτ
ḟ (τ)

]
dt
′
, (1.8.15)

a(i,M) (t) :=

∞∑
k=0

(
−M2

)k
a

(i,M)
k (t) . (1.8.16)
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Then ∂0

(
ḟ−1ȧ

(i,M)
0

)
= 0, so

∂0

(
ȧ(i,M)

ḟ

)
=

∞∑
k=1

(
−M2

)k a(i,M)
k (t)

f (t)
= −M

2a(i,M)

f
, (1.8.17)

i.e. a(i,M) solves Eq. (1.8.2). Thus a(M) := a(0,M), b(M) := a(1,M) form a basis of the solution space,

with

lim
M2→0

a(M) = 1, lim
M2→0

b(M) = f. (1.8.18)

In practice, however, there is a problem with attempting to associate a massless solutionA+Bf with

the mass–M solution Aa(M) +Bb(M). Doing so would be inconsistent with the implications of com-

monly required spacetime symmetries for the M -dependence if A, B are assumed M -independent.

For example, we previously saw that, for the flat static torus, we require B = −iMA if we seek

time translation invariance, and normalisation requires AB∗ 6= 0. More generally, a Klein–Gordon

normalised solution Aa(M) +Bb(M) satisfies

1 =
2Vc Im (AB∗)

ḟ
a(M)←→∂0 b

(M), a(M)←→∂0 b
(M) =

ḟ

2Vc Im (AB∗)
. (1.8.19)

If A, iB > 0 as in the massless case in Sec. (1.6), AB∗ = −AB ∈ iR and Im (AB∗) = iAB > 0. For

example, the solution in Eqs. (1.8.4)–(1.8.6) satisfies

A ≈ M−1 − b1M√
2b0

, B ≈ −iM

√
b0
2
. (1.8.20)

The o (M) term in Eq. (1.8.3) explains why these results are only approximate. Due to higher-order

terms, A, B are infinite power series in M (with A = O
(
M−1

)
, B = O (M)) and iAB = 1

2 , so

a(M)←→∂0 b
(M) = ḟ .

It remains to be verified that the conditions in Eq. (1.8.20) are applicable up to a phase to the de

Sitter-invariant solution. Note that these conditions are equivalent to Eqs. (1.8.4)–(1.8.6). It is for this

that we turn to some technical details previously published in Appendix A of Ref. [1]. I will assume

the reader’s familiarity with the hypergeometric function

2F1 (α, β; γ; z) :=

∞∑
k=0

(α)k (β)k
(γ)k

zk

k!
, (1.8.21)

where (α)k := Γ(α+k)
Γ(α) is the Pochhammer symbol. (A good discussion of this function is given in

Chapter 15 of Ref. [23].) The mass-M zero modes are spanned by the functions [1, 25]

f` (t) =
N` (cosh t)

`

2`+
n−2

2
2F1

(
b`+, b`−; `+

n

2
,

1− i sinh t

2

)
, (1.8.22)

with ` a non-negative integer and

λ :=

√(
n− 1

2

)2

−M2, b`± := `+
n− 1

2
± λ, N` :=

√
Γ (b`+) Γ (b`−)

2
. (1.8.23)

36



1.8. COMMENTS ON THE FLAT STATIC TORUS AND DE SITTER SPACE

The de Sitter-invariant Bunch–Davies vacuum state is obtained from ` = 0. Note that

b`+ + b`− = 2`+ n− 1, b`+b`− = ` (`+ n− 1) +M2, (1.8.24)

so for small M we have the approximations

b0+ ≈ n− 1− M2

n− 1
, b0− ≈

M2

n− 1
, N0 ≈

√
Γ (n)

2
M−1. (1.8.25)

Formula 9.136.1 in Ref. [26] is the identity

2F1

(
2α, 2β; α+ β +

1

2
;

1−
√
z

2

)
=

Γ
(
α+ β + 1

2
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(1.8.26)

For small ε,
Γ (z)

Γ (z ± ε)
= exp {ln Γ (z)− ln Γ (z ± ε)} ≈ e∓εψ(z). (1.8.27)

Taking α = b0+

2 , β = b0−
2 ,
√
z = i sinh t in Eq. (1.8.26) gives
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2
=
n

2
, (1.8.28)
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and
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. (1.8.31)

The right-hand side of Eq. (1.8.31) reduces f0 (t) to Eq. (1.8.3) (since N0 ≈
√

Γ(n)
2 M−1).

1.8.3 Discussion of de Sitter-invariant Klein–Gordon normalised massive zero

modes in de Sitter space

In the low-mass limit M±1 terms appear. This differs from the M±1/2 factors obtained for the flat

static torus.

When Klein–Gordon normalised massive zero modes are written as power series in M , they have

infinitely many terms. With time translation-invariant zero modes on the flat static torus, the f term

is the only term ∈ O
(√

M
)

. In de Sitter space, the f and f2 terms are both ∈ O (M) in a de Sitter-

invariant zero mode.

However, the only relevant terms are those which are leading order in Re f or Im f . For Re f ,

only the O
(
M−1

)
term is relevant; for Im f , only the O (M) term is relevant. Since f2 ∈ O (M)

is real-valued, it is irrelevant to the comparison of Klein–Gordon normalised massless solutions of

the Klein–Gordon equation with Klein–Gordon normalised massive solutions of the Klein–Gordon

equation.
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Chapter 2 A review of literature on

two theories and their zero

mode problems

This chapter has three main purposes. The first purpose is to present the background required to

understand the zero mode problems I address in Part II and associated appendices. The second

purpose is to explain these zero mode problems. The third purpose is to review the literature relevant

to the aforementioned zero mode problems. Our research forms a small part of that literature review,

and will not be discussed until the later stages of this chapter. I will also discuss flaws I have

identified in some of the discussion of perturbative gravity’s internal symmetries.

In Sec. 2.1, I explain the construction of Yang–Mills theory as a generalisation of classical electro-

magnetism. Yang–Mills theory provides a description of all known non-gravitational fundamental

interactions. In Sec. 2.2, I discuss and motivate a modification of Yang–Mills theory, due to Faddeev

and Popov [27, 28], that is required in the path integral formalism. Following Ref. [27], I call this the

Faddeev–Popov method ; the result is called BRST quantisation, since it motivates the BRST and anti-

BRST transformations discussed in Sec. 2.3. The gauge invariance of Yang–Mills theory is broken

when the theory is BRST-quantised. In Sec. 2.3, I discuss two symmetries of BRST-quantised Yang–

Mills theory. The BRST quantisation of Yang–Mills theory introduces three new scalar fields. In

Sec. 2.4, I describe a zero mode problem concerning these new fields. This zero mode problem is

analogous to the one discussed in Chapter 1.

A number of researchers have considered the zero mode problem in BRST-quantised Yang–Mills

theory. In Sec. 2.5, I review the history of such research. The FMP is one prescription for addressing

this zero mode problem. However, the FMP is not manifestly consistent with the preservation of the

symmetries described in Sec. 2.3. I discuss this difficulty in more detail in Sec. 2.5.2 to motivate the

use of the CMP. This treatment will require the entirety of Chapter 3 to be properly developed.

Perturbative gravity has a number of important similarities with Yang–Mills theory. Both theories

can be BRST-quantised; in both cases, BRST quantisation presents certain symmetries and a zero

mode problem; and the benefits of the CMP compared with the FMP are similar in the two theories.

In Sec. 2.6, I discuss the case of perturbative gravity as concisely as possible, making use of its

various similarities with the case of Yang–Mills theory. My discussion of perturbative gravity will

include a criticism of an occasional mistake by researchers regarding perturbative gravity’s internal

symmetries. My treatment of the zero mode problem in BRST-quantised perturbative gravity with
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the CMP is provided in Chapter 4.

2.1 From electromagnetism to Yang–Mills theory

In Sec. 2.1.1, I introduce the manifestly Lorentz-covariant formalism of classical electromagnetism.

In Sec. 2.1.2, I discuss classical electromagnetism’s conservation laws. In Sec. 2.1.3, I discuss

a generalisation of classical electromagnetism called Yang–Mills theory, which was developed in

Ref. [29]. Any use of Yang–Mills theory as a physical model requires the specification of a Lie group

called the gauge group of the model. For example, electromagnetism is the special case of Yang–

Mills theory obtained when the gauge group chosen is denoted U (1). I discuss the relevant theory

and notation in more detail in Sec. 2.1.3. In Sec. 2.1.4, I discuss the gauge groups that are relevant to

uses of Yang–Mills theory in the Standard Model.

2.1.1 An overview of classical electromagnetism

The scalar field theory considered in Chapter 1 admits a global internal symmetry, φ (x) → eiθφ (x)

for constant θ ∈ R. To promote this to a local internal symmetry φ (x) → eiθ(x)φ (x) requires an

amendment to the choice of L0, viz.

L0 = Dµφ
∗Dµφ−M2φ∗φ, Dµφ := ∇µφ+ iqAµφ. (2.1.1)

Here a vector field Aµ has been introduced, as has a coupling constant q called a charge. The internal

transformation φ (x) → eiθ(x)φ (x) must also be accompanied with an appropriate transformation of

Aµ, say Aµ → A
′µ, so that Dµφ transforms to eiθ

(
∇µφ+ qA

′µφ
)

. (Explicitly, A
′

µ = Aµ + i
q∂µθ.)

Classical electromagnetism can be explained in terms of the behaviour of Aµ and its associated

charges. The scalar Lagrangian density of classical electromagnetism with an external current jµ

may be written as23

L0 = −1

4
FµνF

µν −Aµjµ, Fµν := ∇µAν −∇νAµ. (2.1.2)

Since (∇µ − ∂µ)Aν = −ΓρµνAρ is µ↔ ν–symmetric, we could alternatively write Fµν = ∂µAν−∂νAµ
even for curved spacetimes, and indeed this expression is used ubiquitously. The main advantage of

the ∇-based definition in Eq. (2.1.2) is that all terms that appear are tensors (∇µAν is a tensor in any

spacetime, while ∂µAν is not). In Sec. 1.3 I described a Lagrangian formalism that never missed an

opportunity to use true tensors. This approach provides an easy derivation of the Euler–Lagrange

equation due to varying Aµ; repeatedly using the fact that Fµν is antisymmetric,

jν = − ∂L0

∂Aν
= −∇µ

∂

∂∇µAν

(
−1

2
∇ρAσF ρσ

)
= ∇µFµν . (2.1.3)

Note that δS
δjµ

= −Aµ is not set to zero as part of the “stationary action principle”; jµ is not dynamical.

23Eq. (2.1.2) does not include contributions due to matter fields, for two key reasons. The first is that such terms are irrelevant
to all subsequent calculations in this thesis, except for the use of Eq. (2.1.9) below to motivate Yang–Mills theory. In
particular, the Euler–Lagrange equations of interest are not contingent on matter fields. The second is that such matter
terms depend on the matter theorised. The Dirac spinor term ψ (iγµDµ −m)ψ for a Dirac spinor ψ of mass m and gamma
matrices γµ is just one form such a term could take. The scalar theory in Eq. (2.1.9), which generalises that of Chapter 1, is
another possible form for a matter term.
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2.1.2 Conservation laws in electromagnetism

Any antisymmetric tensor Xµν , such as Fµν , satisfies

∇µXµν = ∂µX
µν + ΓµµρX

ρν + ΓνµρX
µρ = ∂ρX

ρν +Xρν∂ρ ln
√
|g| = 1√

|g|
∂ρ

(√
|g|Xρν

)
(2.1.4)

(the term ΓνµρX
µρ vanishes because Γνµρ is µ ↔ ρ–antisymmetric). If Vν is a vector field for which

∇µVν is symmetric (e.g. Vν = ∂νχ for some scalar field χ),

∂0

ˆ
x

ViX
0i = ∂0

ˆ
x

VνX
0ν =

ˆ
dn−1x∂0

(√
|g|VνX0ν

)
=

ˆ
dn−1x∂µ

(√
|g|VνXµν

)
=

ˆ
x

∇µ (VνX
µν)

=

ˆ
x

(Vν∇µXµν) =

ˆ
dn−1x

(
Vν∂µ

(√
|g|Xµν

))
. (2.1.5)

Like vector fields, antisymmetric rank-two tensors provide a natural source of conservation laws;´
x
ViX

0i is conserved if ∇µXµν = 0. This condition reduces on-shell to jν = 0 for the special case

Xµν = Fµν . (The condition jν = 0, which may be restated as the absence of electric charges or motion

thereof, is valid in a vacuum. In that case the field equation is homogeneous, viz. ∇µFµν = 0. Thus

the quantised field Âµ has a mode decomposition analogous to Eq. (1.4.15) that can be used to show

the VEV is 0.)

There is also an important example of a spatial integral that vanishes off-shell for any antisymmetric

Xµν . Since X00 = 0,

ˆ
x

∇iXi0 =

ˆ
x

∇µXµ0 =

ˆ
dn−1x∂µ

(√
|g|Xµ0

)
=

ˆ
dn−1x∂i

(√
|g|Xi0

)
= 0. (2.1.6)

(Conserved charges that “differ” by a quantity of this form are therefore equal; this is integral to

a treatment of Noether charges that will be discussed in Sec. 4.3 and Appendix E.) In the special

case Xµν = Fµν , this vanishing integral is proportional to the electric charge
´
x
j0 by Gauss’s law.24

Related to this is the fact that

∇µ∇νXµν =
1√
|g|
∂µ

(√
|g|∇νXµν

)
=

1√
|g|
∂µ∂ν

(√
|g|Xµν

)
= 0 (2.1.7)

(since ∂µ∂ν , Xµν are respectively symmetric and antisymmetric), so on-shell

∇µjµ = −∇µ∇νFµν = 0. (2.1.8)

This provides an alternative proof that
´
x
j0 is conserved on-shell, a considerably weaker result than

the fact that
´
x
j0 = 0. However, the on-shell result ∇µjµ = 0 is interesting in its own right. It is

typical to call conserved spatial integrals charges, and to call a solution of ∇µWµ = 0 a conserved

current.

SymmetricXµν satisfying∇µXµν = 0 provide an analogous source of conservation laws that become

relevant in Sec. 2.6.2.
24The boundary terms of integration by parts are herein assumed to vanish throughout; for example, the universe’s total

electric charge
´
x j

0 vanishes. Indeed, we would not expect the universe’s electric charge to have a nonzero conserved
value that has persisted since the Big Bang.
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2.1.3 Yang–Mills theory

Classical electromagnetism for flat spacetime dates to the nineteenth century. When the strong

and weak nuclear interactions were discovered, physicists considered whether a generalisation of

the electromagnetic formalism could be used to describe nuclear interactions. It was eventually

realised [29] that this was indeed the case, with a few key modifications. The result is Yang–Mills

theory, a brief overview of which is given in Chapter IV.5 of Ref. [30].

Not only does the vector field Aµ of electromagnetism have counterparts for nuclear interactions; all

of these vector fields could be explained in terms of the promotion of a scalar field theory’s global

internal symmetry to a local one. Explicitly, consider a theory with a scalar Lagrangian density of the

form

L0 = ∇µφ†∇µφ−M2φ†φ, (2.1.9)

where φ is a multiplet of n scalar fields25 and † denotes a Hermitian adjoint. For any n, the scalar

Lagrangian density is invariant under the global transformation φ→ Uφ for constant U ∈ Cn×n with

U†U = In, (2.1.10)

the n × n identity matrix, and we seek a modification of the theory that is invariant under a local

generalisation of the transformation, so that U can be spacetime-dependent. This requires n fields

analogous to the electromagnetic Aµ.

A matrix U solving Eq. (2.1.10), which may not be constant, is called a unitary matrix, and the group

of such matrices is denoted U (n).26 Note that

∀U ∈ U (n) |detU | = 1. (2.1.11)

Electromagnetism is an example of the case n = 1; we say that the theory has gauge group U (1). A

general element of U (n) may be written in the form U = eiϑV where

V ∈ U (n) , detV = 1, ϑ ∈ R (2.1.12)

(i.e.
∣∣eiϑ
∣∣ = 1).27 Such V are called special unitary matrices, and the group of these is denoted SU (n).

Thus there is a group factorisation, viz.

U (n) = SU (n)⊗U (1) . (2.1.13)

While U (1) is an Abelian group (i.e. its elements commute), the groups U (n) , SU (n) are Abelian if

and only if n = 1.

25The symbols n or N are more commonly used, but in this thesis these symbols each have another meaning. To avoid
ambiguity, I have decided to use mathfrak for this variable. I will soon discuss special unitary groups, for which the
symbols SU, su are commonly used. This motivates my use of mathfrak.

26Whenever sets of square matrices are referred to herein as groups, the group operation of interest is matrix multiplication, so
that the identity element of the group is the identity matrix conformable with the matrices of interest. The matrix elements
used throughout are complex-valued, so the associativity required for a group is obtained.

27The symbol ϑ is a θ variant called in LATEX by \vartheta.
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These groups characterise continuous symmetries; they are examples of Lie groups. The infinitesimal

elements of these groups are those matrices that differ infinitesimally from the identity matrix. These

admit the first-order approximation

eiM ≈ In + iM, M† = M. (2.1.14)

When multiplying infinitesimal elements, second-order terms may be neglected so that

(In + iM1) (In + iM2) = In + i (M1 +M2) . (2.1.15)

The Hermitian Ms form a vector space called a Lie algebra that is closed under commutators. While

a Lie algebra admits a matrix representation for which the definition of commutators is immediate,

it can be considered more abstractly, so that a “commutator” need only be an antisymmetric binary

operator under which the Lie algebra is closed. Since a Lie algebra is a vector space, a basis {T a} of

a matrix representation of the Lie algebra may be considered, so that real coefficients fabc exist with

[
T a, T b

]
= i
∑
c

fabcT c, fabc = −f bac. (2.1.16)

These are called structure constants, and they all vanish if and only if the Lie group is Abelian.

Hereafter indices that appear twice will be subjected to implicit summation, so that the above result

can be written as [
T a, T b

]
= ifabcT c. (2.1.17)

The T as are Hermitian matrix representations of the so-called generators of the Lie algebra. For n > 1

the Lie algebra of SU (n) has n2 − 1 generators. Since U (1) is Abelian, the additional generator of

U (n) commutes with those of SU (n). Indeed, this generator is represented by the identity matrix,

since eiθ ≈ 1 + iθ for small real θ. So the structure constants of an Abelian group vanish, and U (n)

admits a generator index a for which T a = In and each fabc vanishes.

Yang–Mills theory generalises classical electromagnetism by replacing Aµ with a multiplet Aaµ.28 The

scalar Lagrangian density is [29]

L0 = −1

4
F aµνF

aµν −Aaµjaµ, F aµν := ∇µAaν −∇νAaµ + qfabcAbµA
c
ν . (2.1.18)

As before, F aµν is µ↔ ν–antisymmetric. It is now natural to introduce dot and cross products

V ·W := V aW a, (V ×W )
a

:= fabcV bW c (2.1.19)

on multiplets, and to define V 2 := V · V . Thus

L0 = −1

4
Fµν · Fµν −Aµ · jµ, Fµν = ∇µAν −∇νAµ + qAµ ×Aν . (2.1.20)

The Euler–Lagrange equation is DµF
µν = jν where Dµ := ∇µ + qAµ× [31], so that replacing the

∇µφ†∇µφ term in Eq. (2.1.9) with Dµφ
†Dµφ achieves an invariance under a local transformation of

28This multiplet must transform appropriately so that, under an L0-preserving transformation φ → Uφ, Dµφ transforms to
UD

′
µφ = Dµ (Uφ) where D

′
µ = ∇µ + qA

′
µ. Thus D

′
µφ = U†Dµ (Uφ) and A

′
µ = q−1U†DµU .
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the multiplet φ. The special case of electromagnetism has only one value for each “multiplet index”

and vanishing structure constants, so the cross products are lost andDµ reduces to∇µ. This recovers

the scalar Lagrangian density of Eq. (2.1.2). Furthermore, Yang–Mills theory is invariant under the

gauge transformation Aµ → Aµ +Dµχ for arbitrary scalar multiplet χa. The electromagnetic special

case of this result is an invariance under the gauge transformation Aµ → Aµ + ∇µχ, with χ an

arbitrary differentiable scalar field. Indeed, this is a familiar symmetry of classical electromagnetism.

2.1.4 The gauge groups of the Standard Model

The electroweak interaction was obtained as a unification of earlier U (1) , SU (2) approximations of

the electromagnetic and weak nuclear interactions. A brief overview of the electroweak unification

is given in Chapter VII.2 of Ref. [30]. A U (n) interaction would differ from an otherwise identical

SU (n) interaction in the number of gauge bosons. The SU (n) interaction has n2 − 1 gauge bosons

that have a charge type associated with the interaction. In the U (n) case there is an additional gauge

boson, for a total of n2. Such a gauge boson (e.g. a gluon colour singlet) would be analogous to

a photon, and in fact the photon is an example of this. At low energies, electromagnetism and the

weak nuclear interaction appear unrelated, and their respective gauge groups are approximately

U (1) , SU (2). These interactions are in fact different aspects of an electroweak interaction observable

at higher energies. However, the gauge group is not simply obtained from the product

SU (2)⊗U (1) = U (2) , (2.1.21)

for two key reasons:

• The Standard Model’s SU (2) doublets have different U (1) charges29;

• The weak and electromagnetic parts of the electroweak interaction for one SU (2) doublet

have respective gauge groups SUL (2) , UY (1), giving an electroweak gauge group factorisation

SUL (2)⊗UY (1).30 Indeed, the electromagnetic U (1) is a mixture of the U (1) factor in SU (2)⊗

U (1) and a U (1) subgroup of SU (2). This is due toQ = T3 + Y
2 , whereQ is the electromagnetic

charge, T3 is an electroweak isospin component and Y is the weak hypercharge.

This interaction’s gauge bosons are the photon (which has an electroweak charge but zero electric

charge) and three other bosons (W±, Z0) that have electroweak charges due to the non-zero structure

constants of the electroweak gauge group.

The strong nuclear interaction is a little different. The empirical interaction between hadrons is

a residual interaction, an emergent consequence of the interactions between elementary quarks,

antiquarks and gluons. The three “colour charges” of quarks and antiquarks that bind them in

hadrons suggest that gluons carry a “colour interaction” of gauge group U (3) or SU (3). Each option

results in 8 species of gluon, but in the U (3) case there would also be a colour-neutral “colour singlet”

analogous to the photon. This colour singlet’s would easily be detected if it existed, as it would not

be subject to colour confinement. Since the singlet does not exist empirically, the gauge group of the

colour interaction is SU (3) [35].

29For example, in convenient units the U (1) charges of the left-handed quark doublet uL, dL is 1
3

, while the U (1) charges of
the left-handed electron neutrino-electron doublet νL, eL is −1.

30The electroweak theory of Sheldon Glashow [32], Abdus Salam [33] and Steven Weinberg [34] provides the Standard
Model’s description of the gauge group.
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It follows that Yang–Mills theory is sufficient to describe the strong and electroweak interactions of

the Standard Model of particle physics, i.e. all fundamental interactions other than gravity (for which

general relativity is currently our best description). A Yang–Mills description of the Standard Model

requires only that appropriate gauge groups be used, as described above. The Lie groups of interest

are semisimple [29], so without loss of generality the structure constants may be chosen to be fully

antisymmetric [36], i.e.

fabc = −f bac = −facb = f cab. (2.1.22)

This choice will be used hereafter, and implies that

V · (W ×X) = V afabcW bXc = f cabV aW bXc = (V ×W ) ·X. (2.1.23)

I call this the triple product on multiplets. The scalar triple product on C3 has this form.31 The usual

dot and cross products on C3 are respectively symmetric and antisymmetric. However, fermion-

valued multiplets anticommute in the dot product; their classical description is in terms of Grass-

mann numbers. Thus if the classical multiplets b1, b2 (f1, f2) are bosonic (fermionic) fields

b1 · b2 = b2 · b1, (2.1.24)

b1 × b2 = −b2 × b1, (2.1.25)

f1 · f2 = −f2 · f1, (2.1.26)

f1 × f2 = f2 × f1, (2.1.27)

b1 · f1 = f1 · b1, (2.1.28)

b1 × f1 = −f1 × b1, (2.1.29)

and by Eq. (2.1.23) an exchange of adjacent fields in a triple product may or may not cause a sign

change, as can be deduced by placing a cross product between these fields. In particular:

• the triple product of three fields, of which at most one is a fermionic field, changes sign under

the exchange of adjacent fields, so changes sign under an odd permutation of the three fields;

• the triple product of three fermionic fields is unchanged under the exchange of adjacent fields,

and hence under any permutation of the three fields; and

• a triple product of a bosonic field and two fermionic fields changes sign under the exchange

of adjacent fields if and only if one is a bosonic field, and so changes sign precisely when the

boson moves into or out of the central position.

The last of these results allows the rearrangement of a number of triple products throughout this

thesis, and will be used without comment hereafter.

2.2 The BRST quantisation of Yang–Mills theory

In Sec. 2.2.1, I discuss the path integral method that is used to BRST-quantise Yang–Mills theory.

The derivation from the path integral method is not worth presenting herein in great detail because

there are still questions surrounding the rigour of the path integral method. The motivation of this

31The special case of the scalar triple product on C3 takes fabc = εabc, the Levi–Civita symbol. The gauge group with these
structure constants is SU (2).
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section is to justify, in a level of detail sufficient for present purposes, a choice of scalar Lagrangian

density [37, 38] summarised in Eq. (2.2.11). A good discussion of BRST quantisation is given in Secs.

9.4 and 16.2 of Ref. [27].

In Sec. 2.2.2, I discuss various choices of the Faddeev–Popov Lagrangian density, and specify the

choice that will be used thereafter. The result introduces three new massless scalar-valued multiplets

in Yang–Mills theory. These fields are denoted B, c, c. The zero mode problem I discuss in Sec. 2.4 is

due to the fact that c, c are massless. In Sec. 2.2.3, I discuss reasons why this cannot be resolved by

giving c, c mass.

2.2.1 The motivation for the Faddeev–Popov method

Let Ô denote an operator-valued quantisation of an empirical quantity O in a theory whose action

S is expressible as a functional of quantities hereafter written as A. A general overview of the path

integral formulation of quantum field theory, and the behaviour of Grassmann variables, is given in

Sec. 9-1 of Ref. [3].32 In this formalism, the vacuum-state mean
〈
Ô
〉

of O may be expressed as a

ratio of functional integrals, viz. 〈
Ô
〉

=

´
DAO [A] eiS[A]´
DA eiS[A]

(2.2.1)

where A is a collection of functions (such as the vector field Aµ),
´
DA denotes a functional integ-

ration over the function space of A, O [A] is a functional of A whose quantum-mechanical operator

promotion is Ô [A], and the action S [A] is a scalar-valued functional of A.

If S, O are each invariant under some gauge transformation of A, then choices of A related by a

gauge transformation form equivalence classes. Functional integration over such an equivalence

class provides an infinite factor in each of the functional integrals in Eq. (2.2.1). This motivates the

addition to L0 of appropriate terms ∆L0 that are not gauge-invariant. These terms multiply eiS by

some functional ei
´
x

∆L0 and, if new fields are also introduced,
´
DA by some integration operator.

For suitable new terms ∆L0 in L0, this inserts an identity operator into
´
DA eiS[A],

´
DA Ô [A] eiS[A].

Identifying such terms makes use of functional-integral generalisations of the results

1 =

ˆ
duδ (g (u))

∣∣∣g′ (g−1 (0)
)∣∣∣ , (2.2.2)

detR =

ˆ
eη

TRηdηdη (2.2.3)

for functions g with a unique root g−1 (0) and a square matrixR conformable with Grassmann-valued

vectors η, η satisfying the normalisation

ˆ
ηidηj =

ˆ
ηidηj = δij ,

ˆ
ηidηj =

ˆ
ηidηj = 0. (2.2.4)

2.2.2 The Nakanishi–Lautrup and Faddeev–Popov fields

One appropriate choice of ∆L0 is [27]

∆L0 = Lα0

GF + L(2)
FP , L

α0

GF := − (∇µAµ)
2

2α0
, L(2)

FP = ic · ∇µDµc (2.2.5)

32The action is therein denoted I , not S.
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where α0 is a real-valued gauge parameter33 and ca, ca are Hermitian34 multiplet-valued spin-0

fermionic fields which, by the spin-statistics theorem, cannot be physical. These fermionic fields

are respectively called the Faddeev–Popov ghost and Faddeev–Popov antighost.35 The prefix anti-

is not a reference to antimatter; the ghost and antighost are each their own “antiparticle species”,

insofar as that concept is applicable to unphysical fields. The use of an overline in c also does not

indicate either complex conjugation or an adjoint; the fields c, c are each Hermitian, and hence are

each their own adjoint.

The choice of ∆L0 in Eq. (2.2.5) can be modified in several ways. For example, a total derivative may

be added. Indeed, since L(2)
FP as defined above contains a second-order derivative, which complicates

use of the Lagrangian formalism in Sec. 1.3, L(2)
FP is typically replaced with

LFP := L(2)
FP − i∇µ (c ·Dµc) = −i∇µc ·Dµc. (2.2.6)

Alternatives to Lα0

GF may also be obtained; they are of interest because they allow an extension to the

case α0 = 0, which would otherwise yield a divergence. We begin by introducing a scalar boson

multiplet B
′

and adding a term α0

2 B
′2 to the scalar Lagrangian density. This process is legitimate

because, by inspection, this B
′2 term decouples from all others. Introducing the Nakanishi–Lautrup

auxiliary field B := B
′ − ∇µA

µ

α0
implies

Lα0

GF +
α0

2
B
′2 =

α0

2
B2 +B · ∇µAµ. (2.2.7)

This allows the choice ∆L0 = LBGF +∇µ (B ·Aµ) + LFP with

LBGF :=
α0

2
B2 −∇µB ·Aµ = Lα0

GF −∇µ (B ·Aµ) . (2.2.8)

Note that

∇µAµ + α0B = 0 (2.2.9)

(equivalently, B
′

= 0) is an Euler–Lagrange equation of both LBGF + LFP and Lα0

GF + α0

2 B
2, so that

on-shell we may equivalently define B as −∇µA
µ

α0
. Thus Eq. (2.2.9) is an Euler–Lagrange equation if

LBGF replaces Lα0

GF in ∆L0. Such a replacement can then be used, including in the gauge choice α0 = 0,

which is called the Landau gauge [41]. This observation motivates both the introduction of the field

B and the use of a B-dependent scalar Lagrangian density, viz.

∆L0 =
α0

2
B2 + LGF + LFP, LGF := −∇µB ·Aµ. (2.2.10)

The quantity α0

2 B
2 + LGF is called the gauge-fixing term, and LGF is this term’s value in the Landau

gauge. The choice of α0 in the gauge-fixing term fixes a gauge. In the Landau gauge, varyingB gives

the Euler–Lagrange equation ∇µAµ = 0. Without BRST quantisation, this constraint on Aµ may

33I follow Ref. [39] in using the symbol α0; the alternative ξ has also been used, but is avoided herein (despite our use of it in
Ref. [1]) because ξ is typically used for Killing vectors, which I discuss extensively in Chapter 4. Another alternative [40] is
α. I use α0 to avoid confusion with any other uses of α.

34The first elucidation of a theory in which these fields were Hermitian was the landmark paper Ref. [39], which established
the unitarity of BRST-quantised Yang–Mills theory. The i factor in LFP is required for the Hermiticity of the action S.

35Hereafter Faddeev–Popov is abbreviated as FP, and any use of the latter in subsequently defined technical terms is implied
to abbreviate the former.
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instead be imposed as a gauge choice. This gauge choice is familiar in classical electromagnetism as

the Lorenz gauge.36 The quantity LFP is called the FP-ghost term, and is analogous to the ∇µφ∗∇µφ

term in the scalar field theory of Chapter 1. Its inclusion in ∆L0 is actually optional for an Abelian

interaction such as electromagnetism, but is otherwise necessary.

2.2.3 On the masslessness of the FP-sector fields

In summary, the scalar Lagrangian density of BRST-quantised Yang–Mills theory may be chosen as

L0 = −1

4
Fµν · Fµν −Aµ · (jµ +∇µB) +

α0

2
B2 − i∇µc ·Dµc, (2.2.11)

and α0 may be taken to be any real number, including 0. The fields c, c could each be granted a mass

M by including a mass term iM2c · c in L0. Indeed, the FMP introduces such a term in its analysis,

before taking the right-hand limit M → 0+. However, the above path integral method does not

justify a mass term, because
´
DcDc exp

{´
x

(
∇µc ·Dµc−M2c · c

)}
is non-trivially M -dependent.

An additional problem with attempting to include a mass term is discussed in Sec. 2.3.3.

2.3 The BRST and anti-BRST transformations in BRST-quantised

Yang–Mills theory

While BRST-quantising Yang–Mills theory breaks its invariance under the transformation

Aµ → Aµ +Dµχ, (2.3.1)

the transformations Aµ → Aµ + ηc, Aµ → Aµ + ηc with η a constant Grassmann number are

action-preserving gauge transformations provided c, c are also appropriately transformed. These

gauge transformations are respectively called the BRST and anti-BRST transformations. The purpose

of this section is to elucidate these transformations, which are of interest because they show that

BRST-quantised Yang–Mills theory still exhibits some useful symmetries with associated conserved

currents. Since each of these transformations preserves the classical terms in the scalar Lagrangian

density of Yang–Mills theory, only the terms added in its BRST quantisation are of interest. In Sec.

2.3.1, I discuss several important general properties of the BRST and anti-BRST transformations. I

completely specify these transformations in Sec. 2.3.2, wherein I use some of the results of Sec. 2.3.1

to show that the scalar Lagrangian density of Eq. (2.2.11) is invariant under both transformations if

the external current jµ vanishes. On the other hand, a mass term would violate these symmetries,

viz. Sec. 2.3.3. My discussions of the BRST and anti-BRST transformations are respectively based on

Refs. [39] and [40].37

36This gauge is named for Ludvig Lorenz, who should not be confused with Hendrik Lorentz, for whom Lorentz invariance is
named. Such confusion is, however, occasionally observed. For example, the gauge may be restated as ∇ ·A+ c−1∂tΦ = 0
in SI units, and this is often called the Lorentz condition. A historical overview may be found in Ref. [42].

37Ref. [39]’s treatment of Yang–Mills theory is limited to Minkowski space, but the generalisation herein to curved spacetimes
is trivial.
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2.3.1 An overview of two transformations

The BRST38 transformation may be written as X → X + δX , where X is an arbitrary bosonic or

fermionic field and the dimensionless bosonic operator δ is called the BRST operator. In particular

we may write

δb = θ [Q, b] , δf = θ {Q, f} , (2.3.2)

where Q is a fermionic operator called the BRST charge, θ is an arbitrary constant Grassmann num-

ber, and b (f ) is an arbitrary bosonic (fermionic) field. Notice the use of commutators and anticom-

mutators {X, Y } = XY + Y X , which may be collectively denoted by

[X, Y ]± := XY ± Y X. (2.3.3)

The BRST transformation satisfies the usual Leibniz rule

δ (XY ) = (δX)Y +XδY (2.3.4)

whenever X, Y are each either a bosonic field or a fermionic field. For arbitrary bosonic fields b1, b2

and fermionic fields f1, f2 we obtain

δ (b1b2) = θ [Q, b1b2] = θ [Q, b1] b2 + θb1 [Q, b2]

= θ [Q, b1] b2 + b1θ [Q, b2] = (δb1) b2 + b1δb2, (2.3.5)

δ (b1f1) = θ {Q, b1f1} = θ [Q, b1] f1 + θb1 {Q, f1}

= θ [Q, b1] f1 + b1θ {Q, f1} = (δb1) f1 + b1δf1, (2.3.6)

δ (f1f2) = θ [Q, f1f2] = θ {Q, f1} f2 − θf1 {Q, f2}

= θ {Q, f1} f2 + f1θ {Q, f2} = (δf1) f2 + f1δf2. (2.3.7)

Another important identity, which follows trivially from ∂µQ = 0, is

δ∂µX = ∂µδX. (2.3.8)

A solution of δX = 0 is called BRST-invariant (this is both an adjective and a noun), and BRST-

invariants include gαβ , gαβ and hence Christoffel symbols. Thus

δ∇µX = ∇µδX, (2.3.9)

and [Q, Aµ] , [Q, B] , {Q, c} , {Q, c} completely specify the BRST transformation of fields other than

matter fields.39

38This abbreviation refers to Carlo Becchi, Alain Rouet, Raymond Stora [43] and Igor Tyutin [44], four physicists who co-
discovered the BRST transformation. At one time the name BRS transformation was common in the literature [39, 45],
as Tyutin’s contributions were not fully appreciated. This was still true when what is now known as the anti-BRST
transformation was discovered [40, 46, 47]. While the prefix anti- refers to the fact that the roles of the ghost and
antighost are approximately exchanged in a comparison of the transformations, Ojima settled for the name “another
BRS transformation”, consistently placing this name in quotation marks. During the early 1980s the name “dual BRS
transformation” was also used [48]. In modern terminology, the two transformations and related concepts are referred
to with the terms BRST and anti-BRST. So at last Tyutin shares credit for the BRST transformation.

39The matter fields not discussed herein, such as Dirac spinors, contribute BRST-invariant terms to the scalar Lagrangian
density, although the fields are not in general BRST-invariant themselves.
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The above facts about the BRST transformation apply also to the anti-BRST transformation δ and

anti-BRST charge Q [46, 47], viz.

δb = θ
[
Q, b

]
, δf = θ

{
Q, f

}
. (2.3.10)

A further important result is the fact that Q, Q anticommute and are nilpotent [46, 47], viz.

Q2 = Q
2

=
{
Q, Q

}
= 0. (2.3.11)

Thus any BRST transformation is a BRST-invariant, and similarly for anti-BRST. Further important

results are
[
Q, [Q, X]±

]
∓ = −

[
Q,
[
Q, X

]
±

]
∓

and δ2 = δ
2

=
[
δ, δ
]

= 0, i.e. δ, δ commute and are

nilpotent. Indeed

[
Q,
[
Q, X

]
±

]
∓

= QQX ±QXQ∓QXQ−XQQ, (2.3.12)[
Q, [Q, X]±

]
∓ = QQX ±QXQ∓QXQ−XQQ = −QQX ∓QXQ±QXQ+XQQ

= −
[
Q,
[
Q, X

]
±

]
∓
. (2.3.13)

Since any operator Q, including Q or Q, satisfies

[
Q, [Q, X]±

]
∓ = Q2X ±QXQ∓QXQ−XQ2 =

[
Q2, X

]
, (2.3.14)

it follows that δ2X = δ
2
X = 0. Similarly, if X is a bosonic or fermionic field then

δδX = θ
[
Q, θ

[
Q, X

]
±

]
±
, (2.3.15)

where commutators (anticommutators) are used if X is a boson (fermion), so

δδX = θQθ
[
Q, X

]
± ± θθ

[
Q, X

]
±Q = −θθ

(
Q
[
Q, X

]
± ∓

[
Q, X

]
±Q

)
= −θθ

[
Q,
[
Q, X

]
±

]
∓

(2.3.16)

(note the use of
{
θ, Q

}
= 0) and

δδX = −θθ
[
Q, [Q, X]±

]
∓ = θθ

[
Q, [Q, X]±

]
∓ , (2.3.17)[

δ, δ
]
X = −θθ

([
Q,
[
Q, X

]
±

]
∓

+
[
Q, [Q, X]±

]
∓

)
= 0. (2.3.18)

Applying one or more BRST or anti-BRST transformations obtains a nonzero result only if each

transformation type is used at most once, providing an at most fourfold extension of the dimension

of vector spaces closed under one or both transformations, viz.

X → X, δX, δX, δδX = −δδX. (2.3.19)

50



2.3. THE BRST AND ANTI-BRST TRANSFORMATIONS IN BRST-QUANTISED
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2.3.2 Explicit BRST and anti-BRST transformations

It remains to specify that [43, 44]

[Q, Aµ] = Dµc, [Q, B] = 0, {Q, c} = −q
2
c× c, {Q, c} = iB (2.3.20)

and that [40, 46, 47]

[
Q, Aµ

]
= Dµc,

[
Q, B

]
= 0,

{
Q, c

}
= −q

2
c× c,

{
Q, c

}
= iB (2.3.21)

where

B := iqc× c−B. (2.3.22)

Since
{
Q, f1 × f2

}
=
{
Q, f1

}
× f2 − f1 ×

{
Q, f2

}
we have

[
Q, B

]
= iq

[
Q, c× c

]
= − iq2

2
(c× c)× c+ qc×B

= qc×
(
B − iqc× c

)
= −qc×B, (2.3.23)[

Q, B2
]

= 2B ·
[
Q, B

]
= 0. (2.3.24)

The multiplet-valued external current jµ is hereafter set to 0. Excluding classical terms, the scalar

Lagrangian density is

L0 =
α0

2
B2 −∇µB ·Aµ − i∇µc ·Dµc

=

{
Q, − iα0

2
B · c+ i∇µc ·Aµ

}
(2.3.25)

=
α0

2
B2 +∇µB ·Aµ + i∇µc ·Dµc

=
α0

2
B2 +

{
Q, −i∇µc ·Aµ

}
, (2.3.26)

so is BRST-invariant by Eq. (2.3.25) and anti-BRST-invariant by Eq. (2.3.26). Note the use of the

identity

{Q, f1b1} = {Q, f1} b1 − f1 [Q, b1] (2.3.27)

to establish results such as {Q, i∇µc ·Aµ} = −∇µB · Aµ − i∇µc ·Dµc. I have also used the fact that

Eq. (2.3.22) implies

∇µ
(
B +B

)
·Aµ + i (∇µc ·Dµc+ c↔ c) = ∇µ (iqc× c) ·Aµ

+ i (∇µc · ∇µc+∇µc · ∇µc)

+ iq (∇µc ·Aµ × c+∇µc ·Aµ × c)

= iq {∇µ (c× c)−∇µc× c− c×∇µc} ·Aµ

= 0. (2.3.28)
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The set of Euler–Lagrange equations must then be closed under both BRST and anti-BRST transform-

ations. So are the conserved currents; if∇µWµ = 0 then

∇µ [Q, Wµ]± = [Q, ∇µWµ]± = 0, (2.3.29)

i.e. if Wµ is conserved so is [Q, Wµ]± (and, similarly, so is
[
Q, Wµ

]
±). I discuss these closure rules

in more detail in Sec. 3.3.

2.3.3 A mass term would violate both symmetries

One last observation is that c·c is neither BRST-invariant nor anti-BRST invariant. Indeed, the identity

[Q, f1f2] = {Q, f1} f2 − f1 {Q, f2} implies

[Q, c · c] = {Q, c} · c− c · {Q, c} = iB · c+
q

2
c · (c× c) , (2.3.30)[

Q, c · c
]

=
{
Q, c

}
· c− c ·

{
Q, c

}
= −q

2
c× c · c− ic ·B. (2.3.31)

The fact that a c · c term would break the BRST and anti-BRST invariances of BRST-quantised Yang–

Mills theory has implications for the relative merits of the FMP and CMP, as will be discussed in Sec.

2.5.2.

2.4 The zero mode problem of the FP-ghost propagator in

Yang–Mills theory

Since all cross products in Eq. (2.2.11) are q-weighted, the case q = 0 is non-interacting. In Sec. 2.4.1,

I show that the non-interacting case has an infrared problem very similar to the one considered in

Chapter 1. I use discrete mode labels throughout; a zero mode problem does not occur where there

are continuous mode labels in Minkowski space. In Sec. 2.4.2, I discuss the outcome for more general

q, which obtains a zero mode problem that is harder to explicitly describe.

2.4.1 The non-interacting case

In the non-interacting case the FP-ghost term is −i∇µc · ∇µc, and the fields c, c are each cyclic, so

varying either fermionic field provides a conserved current. Varying c gives the Euler–Lagrange

equation ∇µ∇µc = 0; varying c gives the Euler–Lagrange equation ∇µ∇µc = 0. Note that the

Euler–Lagrange equation obtained by varying either of these fields is a differential equation in the

other field. This is analogous to the fact that Eq. (1.3.9) is a differential equation in φ and an Euler–

Lagrange equation obtained by varying φ∗. Note also that c, c are massless Klein–Gordon fields, so

for q = 0 their quantisation on the flat static torus is of the form

ĉ (x) =
∑
σ

{
ĉσφσ (x) + ĉ†σφ

∗
σ (x)

}
, ĉ (x) =

∑
σ

{
ĉσφσ (x) + ĉ

†
σφ
∗
σ (x)

}
. (2.4.1)

Sec. 3.7.1 will observe that, for q = 0, the fermionic operators are spacetime-constant and satisfy

{
ĉσ, ĉ

†
σ′

}
= −iδσσ′ , {ĉσ, ĉσ′} =

{
ĉσ, ĉ

†
σ′

}
=
{
ĉσ, ĉσ′

}
=
{
ĉσ, ĉ

†
σ′

}
= 0, (2.4.2)
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in analogy with Eqs. (1.4.14) and (1.4.25). The FP-ghost propagator is defined as T
〈

0|ĉ (x) ĉ (y) |0
〉

.

Since

〈
0|ĉ (x) ĉ (y) |0

〉
=

(∑
σ

〈0| ĉσφσ (x)

)∑
σ′

φσ′ (y) ĉ
†
σ′ |0〉


=
∑
σσ′

φσ (x)φσ′ (y)
〈

0|
{
ĉσ, ĉ

†
σ′

}
|0
〉

= −i
∑
σ

φσ (x)φ∗σ (y) , (2.4.3)

it is natural to linearly extend Sec. 1.5.3’s definition of time ordering so that

T
〈

0|ĉ (x) ĉ (y) |0
〉

= −iT
∑
σ

φσ (x)φ∗σ (y) . (2.4.4)

In the non-interacting case, this propagator results in the same problematic infrared behaviour dis-

cussed in Sec. 1.6.

2.4.2 Comments on the interacting case

For any q, c is cyclic in LFP. Varying c gives∇µDµc = 0. Varying c gives

0 =

(
∂

∂c
−∇µ

∂

∂∇µc

)
(∇µc · ∇µc+ q∇µc ·Aµ × c) . (2.4.5)

Because classical fermionic fields anticommute, Euler–Lagrange equations are obtained with a con-

vention known as left-differentiation. Any fermionic field with respect to which differentiation is

sought is placed to the left of any other factors in a term. Thus

0 =

(
∂

∂c
−∇µ

∂

∂∇µc

)
(−∇µc · ∇µc+ qc ·Aµ ×∇µc) = qAµ ×∇µc+∇µ∇µc = ∇µDµc− q∇µAµ × c.

(2.4.6)

On-shell the result∇µAµ = −α0B gives

∇µDµc = −qα0B × c. (2.4.7)

In the Landau gauge ∇µDµc = 0, so c, c solve the same interacting generalisation of the massless

Klein–Gordon equation. Indeed, the conserved charges are
´
x
D0c,

´
x
D0c. The FP-(anti)ghost fields

are in general q-dependent (the modes are modified and ĉσ, ĉσ are in general spacetime-dependent

operators), and it is natural to ask:

• whether the FP-ghost propagator has an infrared problem for q 6= 0;

• and whether the infrared-divergent contributions to the massive propagator in the FMP respect

the spacetime symmetries desired for the full propagator in the IR limit (e.g. time translation

invariance on a flat static torus or de Sitter invariance in de Sitter space).

If both these things are true, the non-interacting case admits an infrared problem that the FMP can

address while preserving the propagator’s spacetime symmetries. In Chapter 3, I show that any

such infrared problem may be solved in the CMP. I will not prove that an infrared problem results

for arbitrary q; for the present purposes it matters only that the CMP works when such an infrared
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problem results. The q = 0 infrared problem justifies constructing a BRST-invariant perturbation

theory that does not encounter an infrared problem.

2.5 The history of the zero mode problem

The zero mode problem in BRST-quantised Yang–Mills theory has been considered for several dec-

ades, as have its implications and possible prescriptions for addressing it. In this section, I review

the history of this analysis. In Sec. 2.5.1, I relate the zero mode problem to Hadamard states, which

are a well-motivated concept of a physically acceptable state [5].

In 2008, Atsushi Higuchi and Mir Faizal introduced a prescription for addressing the zero mode

problem [2]. I have called this prescription the fictitious mass prescription (FMP). In Sec. 2.5.2, I

discuss problems with the FMP that have motivated the development of the CMP in my collaboration

with Atsushi Higuchi [1].

2.5.1 On minimally coupled massless scalar fields

A vacuum state is denoted |0〉, and should respect whatever symmetries are imposed on the classical

field theory. For example, suppose a de Sitter-invariant classical field theory is sought in de Sitter

space; then a de Sitter-invariant vacuum state would also be desired. Therefore, the non-existence

of any de Sitter-invariant Hadamard state would be problematic. In fact, it is known [20] that the

theory of the minimally coupled massless scalar field discussed in Chapter 1 does not have a de

Sitter-invariant Hadamard state in de Sitter space.40

This is (not immediately obviously) a consequence of de Sitter space’s special case of the zero mode

problem I discussed in Chapter 1. In my discussion of the flat static torus in Sec. 1.5, I showed that

in such a spacetime Klein–Gordon normalisation resulted in an infrared problem for the propagator

of a minimally coupled massless scalar field. I also showed that, if this normalisation condition

were relaxed to prevent this infrared problem, the propagator would no longer be time-translation

invariant. One could equivalently say that, if time-translation invariance is required, then Klein–

Gordon normalisation is imposed and the infrared problem is obtained. The analogous result for de

Sitter space [49] is that the propagator must lose its de Sitter invariance (if the infrared problem is

to be prevented, which is necessary to safeguard the quantum field the theory’s consistency). This

symmetry breaking can be restated as the non-existence of a de Sitter-invariant Hadamard state to

describe the state of the scalar field. In Sec. 1.6, I discussed this problem in the language of the

symmetries and infrared behaviour of the propagator instead. I showed that this problem survives

in the spacetimes of interest in this thesis.

The scalar field discussed in Chapter 1 is bosonic. In Sec. 2.4, I explained that this problem has

a fermionic analogue in the FP-ghost sector of BRST-quantised Yang–Mills theory. It is therefore

natural to suspect that the FP-ghost sector would, for example, lack de Sitter invariance in de Sitter

space. If this is so, the implication would be that the FP-(anti)ghosts lack a de Sitter-invariant

perturbative vacuum state in the theory’s Hilbert space. However, the FMP and CMP both aim

to show that the theory can be constructed in spacetimes of interest so as to preserve appropriate

40A theoretical interest in de Sitter space is far from new, for reasons discussed in Sec. 1.2.2. Historical interest in de Sitter space
has led to much being discovered about quantum field theories in de Sitter space. The aforementioned result concerning de
Sitter-invariant Hadamard states has analogues for other spacetimes.
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spacetime symmetries. In particular, de Sitter invariance is sought in de Sitter space. I discuss how

the FMP and CMP achieve this in Sec. 2.5.2.

Incidentally, the situation for vector fields is quite different. A de Sitter-invariant Hadamard state

exists for the theory of a massless vector field in maximally symmetric spacetimes, including de

Sitter space [50]. For example, the multiplets Aaµ (x) of Yang–Mills theory have a propagator

T
〈
0|Aaµ (x)Abν (y) |0

〉
(2.5.1)

that lacks the aforementioned symmetry and infrared problems of the FP-ghost propagator.

2.5.2 Motivating a shift from the FMP to the CMP

The formalism considered thus far contains a spatially uniform φσ , say φ0, with q-dependent gener-

alisation ϕ0 . Any formalism containing such a φ0 requires infrared regularisation. The FMP makes

use of one method of infrared regularisation, namely that of deleting an infrared-divergent term from

the massive FP-ghost propagator [2].

One issue with this approach is that an FP-sector mass term is added to the Lagrangian before the

massless limit is taken. Since such a mass term is not BRST-invariant, it is not obvious that the

BRST and anti-BRST symmetries of the theory are preserved. In particular we hope for an FP-

sector perturbative vacuum state that respects the BRST and anti-BRST symmetries in addition to

appropriate spacetime symmetries. The outcome of this would be that Q, Q each annihilate all

physical states (including vacua). The physical states comprise a Fock space that the operator-valued

charges Q, Q annihilate, just as Q2, Q
2

annihilate the full Hilbert space.

The CMP allows for a formalism in which ϕ0 never appears [1], resulting in a different FP-ghost

propagator. In Chapter 3, I discuss the CMP’s treatment of the zero mode problem in BRST-quantised

Yang–Mills theory. I show therein that manifest BRST- and anti-BRST-invariance are preserved

throughout. The desirable spacetime symmetries and internal symmetries are then preserved, and

the theory’s propagator is infrared-convergent.

A further advantage of the CMP is that, unlike the FMP, it does not assume free integration by

parts is possible. This fact broadens the class of spacetimes this thesis is able to consider. I show

in Sec. 3.7 that, in spacetimes that allow free integration by parts, the FMP and CMP have equivalent

perturbation theories. The CMP is in this sense a generalisation of the FMP.

2.6 The story for perturbative gravity

In Sec. 2.6.1, I discuss the formalism with which general relativity describes perturbations of a

background metric. In Sec. 2.6.2, I list a few standard properties of Lie derivatives and Killing

vector fields. This is a necessary preamble for my discussion of the BRST quantisation in Sec. 2.6.3.

Like Yang–Mills theory, BRST and anti-BRST transformations can be defined for general relativity41,

41The formalism of BRST-quantised Yang–Mills theory and of its (anti-)BRST transformations, respectively summarised in
Secs. 2.2 and 2.3, is known as the BRST formalism. All phase space constraints in the Hamiltonian formulation of Yang–
Mills theory are related to the Lie algebra, even after BRST quantisation. The same is not true of general relativity. This
motivated the development of a generalisation of the BRST formalism, the Batalin–Vilkovisky formalism or BV formalism.
This formalism can incorporate all phase space constraints in the Hamiltonian formulation of general relativity. However,
I have concluded that the BV formalism is unnecessary for my treatment herein of the zero mode problem of perturbative
gravity. An explanation of this conclusion requires a review of the BV formalism, so I can highlight what motivates it in
other contexts. I present the explanation in Appendix F.
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and these transformations preserve the BRST-quantised action. Explicit expressions for these trans-

formations, in analogy with Eqs. (2.3.20)–(2.3.22), are dependent on a parameter κ introduced below

in Eq. (2.6.1). Unlike the case of Yang–Mills theory, there are two radically different popular versions

of the BRST quantisation, which differ in their expressions for the (anti-)BRST transformations and

whether they make use of the vielbein formalism.42 In Sec. 2.6.4, I discuss perturbative gravity’s

BRST and anti-BRST transformations, and the history of the understanding and description of these

transformations. I show in particular that some of the discussion of the anti-BRST transformation in

the literature is mistaken on key issues.

In Sec. 2.6.5, I explain the zero mode problem for perturbative gravity, and briefly comment on

the FMP’s solution to it. I only explicitly verify infrared divergence in the case of de Sitter space, for

which an analytic treatment is feasible. For the purposes of Sec. 2.6.5, the FP-ghost sector need not be

explicitly considered. Indeed, just as Chapter 1 discussed a bosonic analogue of the Yang–Mills zero

mode problem, the formalism of Sec. 2.6.5 is applicable to an FP-ghost sector problem in perturbative

gravity.

In Sec. 2.6.6, I discuss qualitative similarities between an infrared problem in the FP-ghost sector

of BRST-quantised Yang–Mills theory, an infrared problem in the FP-ghost sector of BRST-quantised

perturbative gravity, and controversies regarding the graviton sector of BRST-quantised perturbative

gravity (the last is discussed only in the context of de Sitter space).

2.6.1 Some conventions for notation and terminology

General relativity describes gravity. The analogue of the electromagnetic tensor Aµ might be as-

sumed to be the metric tensor gµν . In the case of perturbative gravity, the full metric tensor gfµν

differs from a background metric tensor gµν , viz.

gfµν (x) = gµν (x) + κhµν (x) , (2.6.1)

where κhµν is a perturbation metric for some small constant κ. Perturbation-dependent results can

be described as κ-dependent, and perturbative results can be expressed as power series in κ. It will

sometimes be beneficial to compare qAµ with κhµν , and to identify both of these as measures of an

“interaction” in their respective theories. Indeed, gravity is referred to as interacting only when κhµν

does not vanish, so interacting gravity and perturbative gravity are taken herein as synonymous.43

A treatment of perturbative gravity should work with covariant derivatives that commute with (and

hence annihilate) both the index-lowering metric and its inverse as a matrix, which is the index-

raising metric. Which of gµν , gfµν should be the index-lowering metric? One can, in fact, use either,

and hereafter I will use gµν . This choice is known as linearised gravity , a fact that merits some

explanation. The index-raising metric tensor is gµν , so

gfνµ = δνµ + κhνµ. (2.6.2)

42This is not a spelling error; vierbein (in German, “four legs”) is the n = 4 special case of vielbein (in German, “many legs”).
Alternative names include tetrad (again only advisable for n = 4, since this word is derived from the Greek for four) and
frame field.

43There is one subtlety here I should briefly mention. Perturbative is usually taken to imply the use of perturbative techniques
to approximately express results as perturbative corrections to the properties of a simpler system. However, a non-
perturbative treatment of interacting gravity is also possible (although this remains speculative).
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The trace of a tensor of the form xµν is then x := xµνg
µν , so gµν has trace n and gfµν has trace n+ κh.

Throughout my analysis it will be important to consider the map

xµν → Xµν := xµν − kxgµν , (2.6.3)

where k ∈ R is a spacetime-constant parameter. (I will discuss this map in more detail in Sec. 2.6.3.

One especially important example is hµν → Hµν). Thus

X = (1− kn)x, (2.6.4)

and for k 6= n−1 we have the inverse relation

x =
X

1− kn
. (2.6.5)

The relation between h and H is therefore linear. But the situation is quite different if gfµν is chosen

as the index-lowering metric and replaces gµν in Eq. (2.6.3), viz.

Xµν = xµν − kxρσgfρσgfµν , (2.6.6)

Hµν = hµν − khρσgfρσ (gµν + κhµν) . (2.6.7)

Eq. (2.6.4) obtains a linear relation between hµν and Hµν , whereas for nonzero k Eq. (2.6.7) instead

obtains a non-linear equation. It is therefore natural to describe the use of gµν as an index-lowering

metric that obtains this result as linearised, and to describe the alternative use of gfµν as an index-

lowering metric as non-linearised.

Prior to BRST quantisation, the Lagrangian density of general relativity may be taken as the Einstein–

Hilbert Lagrangian density. For any n, the scalar Lagrangian density is proportional to R − 2Λ (see,

e.g. Ref. [51]), whereR is the Ricci scalar and Λ is the cosmological constant. For example, in SI units

the case n = 4 gives44

L0 =
R− 2Λ

16πGc−4
. (2.6.8)

Hereafter I impose an n-dependent nondimensionalised choice of G so that in general we may write

L0 = R− 2Λ. (2.6.9)

This result is very different from the − 1
4Fµν · F

µν term in Yang–Mills theory, so the terms that the

Faddeev–Popov method adds are also quite dissimilar, as I show explicitly in Sec. 2.6.3. However,

the effect of the Faddeev–Popov method is still to add a gauge-fixing term (expressible in terms of

a Nakanishi–Lautrup auxiliary field) and an FP-ghost term (expressible in terms of FP-ghosts and

FP-antighosts). As with Yang–Mills theory, the fields that the Faddeev–Popov method introduces

are all massless, and an FP-ghost propagator can be defined. The zero mode problem of perturbative

gravity is, again, a matter of an infrared-divergent propagator.

44Feynman’s definition in Ref. [21] of the Λ = 0 special case of the Einstein–Hilbert action includes a − sign relative to mine
(viz., my Eq. (2.6.8)). The 1

16π
factor in Feynman’s result follows from Ref. [21]’s Eqs. (4.1.1) and (10.1.2). He does not

make the power of c explicit. However, the result will always be ∝ c4G−1. The dimension of
´

dnx (R− 2Λ) c4G−1 is
Ln−1TL−2L4T−4L1−nMT2 = L2MT−1, where L, M, T respectively denote dimensions of length, mass and time in SI units.
This is the correct dimension for an action.
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2.6.2 A preamble on Lie derivatives and Killing vectors

The Lie derivative of a tensor Tα1···αp
β1···βq with respect to a vector V γ may be defined as

£V T
α1···αp
β1···βq := V γ∇γT

α1···αp
β1···βq −

p∑
j=1

∇γV αkT
α1···αj−1γαj+1···αp
β1···βq +

q∑
i=1

∇βiV γT
α1···αp
β1···βi−1γβi+1···βq ,

(2.6.10)

or equivalently as

£V T
α1···αp
β1···βq := V γ∂γT

α1···αp
β1···βq −

p∑
j=1

∂γV
αkT

α1···αj−1γαj+1···αp
β1···βq +

q∑
i=1

∂βiV
γT

α1···αp
β1···βi−1γβi+1···βq ,

(2.6.11)

viz. Ref. [52]. Important implications of Eq. (2.6.10) include the Leibniz law

£V (T1T2) = T1£V T2 + (£V T1)T2, (2.6.12)

the results

£V φ = V γ∇γφ = V γ∂γφ, (2.6.13)

£αVW = α£VW − V £Wα (2.6.14)

for φ (W ) a scalar (vector) field, and

£V gαβ = ∇αVβ +∇βVα. (2.6.15)

The statement that this vanishes is the Killing equation [52],

£V gαβ = ∇αVβ +∇βVα = 0. (2.6.16)

A vector field V γ that solves this is called a Killing vector field or Killing vector [52]. It is customary

to denote a Killing vector field as ξγ , and I will only ever use ξγ for this purpose.

Vector fields admit a commutator [V, W ]
µ

:= £VWµ, which is antisymmetric if components of V, W

are c-number valued. Killing vectors are closed under this commutator, so they form a Lie algebra.

Any basis {ξµA} of the space of Killing vectors therefore satisfies a result of the form

£ξAξ
µ
B = f C

AB ξµC . (2.6.17)

For the flat static torus, one choice of basis of the Killing vectors is ξµA = δµA, where A runs over

spacetime indices. Thus the Lie algebra of Killing vectors is Abelian for flat static tori.

Since ∇αξβ is antisymmetric, ξα is conserved:

∇αξα = gαβ∇αξβ = 0. (2.6.18)
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If Xµν is symmetric and ∇µXµν = 0, then ∇µ (ξνX
µν) = ∇µξνXµν = 0 and ξνX

µν (
´
x
ξνX

0ν) is

a conserved current (conserved charge). Since Killing vectors generate symmetries in this way, a

spacetime with more linearly independent Killing vectors than another of the same manifold dimen-

sion may be regarded as “more symmetric”. The Killing vector fields of an n–dimensional manifold

form a vector space of dimension ≤ 1
2n (n+ 1), and some spacetimes achieve this maximum. These

are therefore called maximally symmetric spacetimes. Examples include Minkowski space, de Sitter

space and anti de Sitter space

Since ξ is conserved, £ξφ = ∇α (ξαφ). If the behaviour of φ at infinity does not result in a boundary

term when integration by parts is used, corollaries include

ˆ
x

£ξφ = ∂0

ˆ
x

ξ0φ, (2.6.19)
ˆ
x

£ξφ = 0. (2.6.20)

Thus terms of the form £ξφ in a scalar Lagrangian density make no contribution to the associated

action.

One last relation between Killing vectors and Lie derivatives is that any tensor T satisfies

∇α£ξT = £ξ∇αT (2.6.21)

(see, e.g. Ref. [53]).

2.6.3 The BRST-quantised Einstein–Hilbert Lagrangian density

The Lagrangian density may be written as

√
|g| (R− 2Λ) +

√
|g| (LGF + LFP) , (2.6.22)

where LGF is a gauge-fixing term dependent on a real-valued gauge parameter α0 and LFP is a FP-

ghost term. As with Yang–Mills theory, the term “gauge-fixing term” is used because varying the

Nakanishi–Lautrup auziliary field obtains a common gauge choice as an Euler–Lagrange equation.

Introducing an auxiliary field as appropriate, two formalisms are possible.

• In the vielbein formalism [40] a mixture of Lie algebra indices and Greek indices are used, viz.

LGF = hgµνΓabµ ∇νsab + α0hs
absab, (2.6.23)

LFP = −ih∇µtab
(
tacΓcbν − tbcΓcaν +∇νtab

)
. (2.6.24)

As with Yang–Mills theory, I use lower-case Roman upper Lie algebra indices.

In Eqs. (2.6.23) and (2.6.24):

– h a
µ is a vielbein component;

– h denotes the trace of h a
µ , not of the term hµν discussed in Sec. 2.6.1;

– Γabµ =
(
∇µh a

ν − Γλµνh
a

λ

)
hνb is called the spin-affine connection ;

– the Lie algebra indices are those of the spin affine connection’s Lie algebra;
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– and the fields sab, tab, tab are respectively analogous to the fieldsB, c, c in BRST-quantised

Yang–Mills theory. While sab is a spin-0 bosonic field, tab, tab are unphysical spin-0 fermi-

onic fields. The FP-ghost propagator is then
〈

0|tab (x) t
cd

(y) |0
〉

.

• A second formalism45 is used, for example, in Sec. 4.3 of Ref. [39].46

The mapping in Eq. (2.6.3) can be rewritten as Xµν := γρσµνxρσ where, to simplify Ref. [39]’s

notation, I have introduced the tensor

γρσµν := δρµδ
σ
ν − kgµνgρσ. (2.6.25)

The constant k ∈ R is a gauge choice. It is often written as k = 1 + β−1 where β := (k − 1)
−1.

The de Donder gauge is the choice k = 1
2 (equivalently, β = −2). Appendix H.3 provides a

motivation for the de Donder gauge.

The BRST quantisation of perturbative gravity may be written as

LGF = −γρσµν∇µBνκhρσ +
α0

2
BµBµ, (2.6.26)

LFP = −γρσµν∇µcν i£cgfρσ, (2.6.27)

where Bµ, cµ, cµ are spin-1 promotions of the fields B, c, c of Yang–Mills theory. The FP-

ghost propagator is then 〈0|cµ (x) cν (y) |0〉. As in the Yang–Mills case, the Nakanishi–Lautrup

auxiliary field is bosonic, while the FP-(anti)ghosts are unphysical fermionic fields. While

Yang–Mills theory is a theory of an interaction carried by spin-1 bosonic fields Aµa, general

relativity is a theory of an interaction carried by a spin-2 bosonic field gµν . In both cases,

the Nakanishi–Lautrup and FP-(anti)ghost fields have a spin that is one less than that of the

interaction.

I will work hereafter with this second formalism instead of the vielbein formalism, for several reas-

ons:

• The use of vielbeins and spin affine connections would unnecessarily complicate the use of

general relativity in this thesis;

• The vielbein formalism places two multiplet indices on the fields introduced in the Faddeev–

Popov method, while the formalism I favour requires only one index on each field (this is of

particular convenience in Sec. 3.2);

• While the vielbein formalism requires both multiplet and Greek indices, the alternative I use

requires only one index type, a virtue not even enjoyed by BRST-quantised Yang–Mills theory

(viz. Aaµ).

I will also work in the Landau gauge so that α0 = 0. This removes the BµBµ term from L0.

The modes of cµ (cµ) that cause the infrared problem, the so-called zero modes, are of the form

θA (t) ξµA (θ
A

(t) ξµA), where θA (t) , θ
A

(t) are spatially uniform unphysical Grassmann-valued scalar

fields. Off-shell (on-shell), the θA, θ
A

are arbitrary (constrained by equations of motion in the scalars

θA, θ
A

).
45By my order of discussion; this formalism is actually the less recent of the two, although its application to the question of

anti-BRST transformation is more recent (see Sec. 2.6.4).

46Again Ref. [39] is formative, but does not consider general curved spacetimes. Thus my Eqs. (2.6.26) and (2.6.27) below are
slight generalisations of equations in Ref. [39] that use partial rather than covariant derivatives.
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2.6.4 History of the BRST and anti-BRST transformations, with and without

the vielbein formalism

Eqs. (2.3.2) and (2.3.10) respectively relate the BRST operator to the BRST charge and the anti-

BRST operator to the anti-BRST charge. Both of the formulations of BRST-quantised perturbative

gravity described in Sec. 2.6.3 admit BRST and anti-BRST transformations of this form. The vielbein

formalism was first formulated in 1979 in Ref. [54], which also specified the BRST transformation in

this formalism. The first source that defined the anti-BRST transformation [40] did so for both Yang–

Mills theory and general relativity, and relied for the latter on the vielbein formalism. I will only

define the BRST and anti-BRST transformations in my preferred formalism. One source for these

formulations is Ref. [48].47 Explicitly

[Q, Bµ] = 0,
[
Q, gfµν

]
= £cgfµν , {Q, cµ} = cν∇νcµ, {Q, cµ} = iBµ, (2.6.28)

and similarly

[
Q, B

µ
]

= 0,
[
Q, gfµν

]
= £cgfµν ,

{
Q, cµ

}
= cν∇νcµ,

{
Q, cµ

}
= iB

µ
(2.6.29)

where

B
µ

:= −i£ccµ −Bµ. (2.6.30)

Note that

£ccµ = cν∇νcµ −∇νcµcν = cν∇νcµ + cν∇νcµ (2.6.31)

is symmetric, because each argument is fermionic. Note also that the covariant derivatives may be

replaced throughout with partial derivatives. Since gµν is (anti-)BRST-invariant,

[Q, κhµν ] =
[
Q, gfµν

]
= £cgfµν = ∇µcν +∇νcµ + £cκhµν , (2.6.32)[

Q, κhµν
]

= ∇µcν +∇νcµ + £cκhµν . (2.6.33)

The terms
√
|g| (R− 2Λ) that exist in the Lagrangian density before it is BRST-quantised vary by a

total derivative under any transformation of the form

δgfµν = £V gfµν , (2.6.34)

and the BRST and anti-BRST transformations are examples of this that take V ∈
{
θc, θc

}
. Other terms

in the scalar Lagrangian density are BRST-invariant, since γρσµν is BRST- and anti-BRST-invariant and

so

{
Q, i∇µcνγρσµνκhρσ

}
= −∇µBνγρσµνκhρσ − i∇µcνγρσµν£cgfµν = LGF|α0=0 + LFP =: LBcc0 . (2.6.35)

It can be shown that the anti-BRST invariance of these terms is equivalent to the gauge choice k = 1
2 .

This gauge choice is assumed throughout Ref. [48] (although it does not acknowledge that there is a

47This 1983 paper does not claim originality for the results I summarise in Eqs. (2.6.28)–(2.6.30). Kuusk traces the BRST case to
two papers [55, 56] published in 1976 and 1977. The anti-BRST case is of course more recent, as no discussion of anti-BRST
can predate Ref. [46]. Kuusk traces the anti-BRST case to two papers [57, 58] published in 1981 and 1982.
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gauge choice), which correctly claims
[
Q, LBcc0

]
= 0 in this case. The FP-ghost contribution to LBcc0

is

LFP := −i∇µcν
(
∇µcν +∇νcµ − 2kgµν∇λcλ

)
− i∇µcνκ£chµν + ik∇αcαgβγκ£chβγ . (2.6.36)

Exchanging c with c and multiplying by −1 by exchanging fermionic ghost and antighost factors,

define

LFP := −i
(
∇µcν +∇νcµ − 2kgµν∇λcλ

)
∇µcν − iκ£chµν∇µcν + ikgβγκ£chβγ∇αcα. (2.6.37)

Anti-BRST invariance, with the anti-BRST transformation defined by Eqs. (2.6.29) and (2.6.30), is

equivalent to the condition LFP−∇µBνκHµν ≈ ∇µB
ν
κHµν −LFP (where ≈ denotes equality up to a

total derivative), i.e.

LFP + LFP ≈ ∇
µ
(
Bν +B

ν
)
κHµν = i∇µ (£ccν)κHµν . (2.6.38)

The only terms in LFP +LFP are those which appear in LFP or LFP and are not cµ ↔ cµ–antisymmetric.

Let∼ indicate equality up to such antisymmetric terms and total derivatives, so a replacement hµν →

hgµν in the second and third terms renders them cµ ↔ cµ–antisymmetric, viz.

i∇µ (£ccν)κhgµν = iκh∇ν (£ccν) = iκh∇ν (cρ∇ρcν + cρ∇ρcν) . (2.6.39)

Thus

LFP ∼ −i∇µcνκcα∇αHµν − i∇µcν∇νcακHαµ + 2ik∇λcλ∇µcνκHµν

∼ i∇α∇µcνκcαHµν + i∇µcν∇αcακHµν

− i∇µcα∇αcνκHµν + 2ik∇λcλ∇µcνκHµν . (2.6.40)

Since [∇α, ∇µ] cν = Rνβαµc
β , which when multiplied by cα is cµ ↔ cµ–antisymmetric,

LFP ∼ i∇µ∇αcνκcαHµν + i∇µcν∇αcακHµν − i∇µcα∇αcνκHµν + 2ik∇αcα∇µcνκHµν . (2.6.41)

Thus LFP + LFP ≈ KµνκH
µν , where

Kµν := i (∇µ∇αcν) cα − i∇µcα∇αcν + i∇µcν∇αcα + 2ik∇αcα∇µcν

− icα∇µ∇αcν + i∇αcν∇µcα − i∇αcα∇µcν − 2ik∇µcν∇αcα. (2.6.42)

Thus anti-BRST invariance is equivalent to

Kµν ≈ ∇µ (£ccν) . (2.6.43)
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But

Kµν = i [(∇µ∇αcν) cα +∇αcν∇µcα − cα∇µ∇αcν −∇µcα∇αcν ]

+ i∇µ [(∇αcν) cα − cα∇αcν ] + i (1− 2k) [∇µcν∇αcα −∇αcα∇µcν ] . (2.6.44)

The desired result therefore occurs if and only if 1− 2k = 0, as claimed.

A number of authors [59, 60] mistakenly claim that the action
´
x
L0 is anti-BRST invariant for all k,

where L0 := R− 2Λ +LBcc0 + α0

2 B
µBµ. However, the above calculation shows that [S, L0] ∝ 2k − 1.

Also, Upadhyay defines the anti-BRST transformation incorrectly [60]. He replaces my Eq. (2.6.29)

with [
Q, Bµ

]
= 0,

[
Q, gfµν

]
= £cgfµν ,

{
Q, cµ

}
= cν∇νcµ,

{
Q, cµ

}
= −iBµ, (2.6.45)

i.e. he modifies Eq. (2.6.30) by instead taking B
µ

= −Bµ. (Note that this alternative to Eq. (2.6.30)

is implausible, given the form of Eq. (2.3.22).) Unfortunately, this definition of the anti-BRST trans-

formation is invalid; I now show its Q does not anticommute with Q, and does not commute with S

for any k. I will abbreviate “[X, x] is a total derivative” as “x isX-invariant”. For example, LBcc0 isQ-

invariant (i.e. BRST-invariant). The “anti-BRST transformation” of Refs. [59] and [60] is obtainable

from the BRST transformation by the replacement

Q, Bµ, cµ, cµ → Q, −Bµ, cµ, cµ, (2.6.46)

so the well-known fact that Q2 = 0 implies that Q
2

= 0. Since

[{
Q, Q

}
, cµ
]

=
[
Q,
{
Q, cµ

}]
+
[
Q, {Q, cµ}

]
=
[
Q, cν∇νcµ

]
= −i (Bν∇νcµ − cν∇νBµ) , (2.6.47)

which is nonzero because the derivative contracts with the B-field in one term but the c-field in the

other, Q does not anticommute with Q. Also, since LBcc0 is Q-invariant,

L∗∗0 := ∇µBνκHµν − i∇µcνγρσµν£cgfρσ (2.6.48)

is Q-invariant, so for LBcc0 to be Q-invariant would require the following to also be Q-invariant:

LBcc0 + L∗∗0 ∝ γρσµν
(
∇µcν£cgfρσ +∇µcν£cgfρσ

)
= A (c, c) + κ∇γHµν ((∇µcν) cγ + c↔ c) (2.6.49)

with

A = κ∇µcν
(
γρσµν∇ρcγhγσ + ρ↔ σ

)
+ c↔ c = 2κ ((∇ρcσ − kgρσ∇νcν)∇ρcγhγσ) + c↔ c (2.6.50)

so

LBcc0 + L∗∗0 = κ
(
∇γHµν (∇µcν) cγ − 2khργ∇νcν∇ρcγ

)
+ c↔ c (2.6.51)
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(the term 2κhγσ (∇ρcσ∇ρcγ + c↔ c) has been dropped because it vanishes). Thus

[
Q, LBcc0 + L∗∗0

]
∝ B1 (c, c) +B2 (h, B, c, c) +B3 (h, B, c, c) +B4 (c, c) (2.6.52)

with

B1 = γρσµν∇γ
(
£cgfρσ

)
((∇µcν) cγ + c↔ c) , (2.6.53)

B2 = κ∇γHµν (∇µ (cρ∇ρcν) cγ + i∇µcνBγ − i (∇µBν) cγ −∇µcν (cρ∇ρcγ)) , (2.6.54)

B3 = −2kκhργ (∇ν (cσ∇σcν)∇ρcγ + i∇νcν∇ρBγ − i∇νBν∇ρcγ −∇νcν∇ρ (cσ∇σcγ)) , (2.6.55)

B4 = −2k
(
gρσ£cgfγσ

)
(∇νcν∇ρcγ + c↔ c) . (2.6.56)

But
∑4
p=1Bp is not zero even up to a total derivative. For example, the terms dependent on a

(possibly differentiated) Nakanishi–Lautrup auxiliary field are

iκ∇γHµν (Bγ∇µcν −∇µBνcγ)− 2ikκhργ (∇ρBγ∇νcν −∇νBν∇ρcγ) . (2.6.57)

In light of this, I will hereafter always define the anti-BRST transformation by Eqs. (2.6.29) and

(2.6.30) instead of Eq. (2.6.45).

2.6.5 The zero mode problem in de Sitter space

As with Yang–Mills theory, the non-interacting theory’s zero mode problem is easier to demon-

strate with explicit calculations. The FMP adds an effective mass, so that the Faddeev–Popov sector

without a metric perturbation is

− i
(
∇µcνZµν −M2cνcν

)
, Zµν = ∇µcν +∇νcµ − 2kgµν∇ρcρ. (2.6.58)

The field equation obtained by varying the antighost is

0 = ∇µ (∇µcν +∇νcµ − 2kgµν∇ρcρ) +M2cν

=
(
δσν� +∇σ∇ν − 2k∇ν∇σ +M2δσν

)
cσ. (2.6.59)

Note the right-hand side of Eq. (2.6.59) includes
(
� +M2

)
cν , in analogy with the minimally coupled

Klein–Gordon equation
(
� +M2

)
φ = 0.

Next I do two things to rewrite Eq. (2.6.59). One is to write k = 1 + β−1, where β := 1
k−1 was

defined previously in the discussion of an alternative to the vielbein formalism. The other is to use

the identity [∇σ, ∇ν ]Vσ = RντV
τ , where Rντ is the Riemann tensor. Thus

0 =

(
δσν� + 2Rντg

στ −∇σ∇ν −
2

β
∇ν∇σ +M2δσν

)
cσ. (2.6.60)

For the rest of my discussion of the zero mode problem, I specialise to de Sitter space with the

nondimensionalisation H = 1, so that mass is also nondimensionalised and Rντ = (n− 1) gντ . The
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equation of motion is therefore

Lσν
(
−M2 − 2 (n− 1)

)
cσ = 0, Lσν

(
−µ2

)
:= δσν�−∇σ∇ν −

2

β
∇ν∇σ + µ2δσν . (2.6.61)

Note that, if the nondimensionalisation H = 1 had not been taken, instead of taking

µ2 = M2 + 2 (n− 1) (2.6.62)

we would have

µ2 = M2 + 2 (n− 1)H2. (2.6.63)

From Eq. (1.2.11), the spatial part of ds2 in de Sitter space is the Euclidean ds2 of Sn multiplied by a

function of time. It is therefore unsurprising that the FP-ghost propagator in de Sitter space can be

expressed in terms of Sn-specific eigenfunctions of certain differential operators. Indeed, let Y Lσ (x)

denote the scalar spherical harmonic functions on Sn; these functions satisfy

�Y Lσ = L (L+ n− 1)Y Lσ. (2.6.64)

Then any smooth vector field on Sn is a linear combination of the vectors

WLσ
µ := (L (L+ n− 1))

− 1
2 ∇µY Lσ (2.6.65)

and the vector spherical harmonics ALσµ that satisfy

∇µALσµ = 0, (2.6.66)

�ALσµ =
(
L2 + (n− 1)L− 1

)
ALσµ , (2.6.67)ˆ

x

gµνALσµ AL
′
σ
′

ν = −δLL
′

δσσ
′

. (2.6.68)

Let Gµν′
(
x, x

′
)

denote the Green’s function of Lνµ
(
−M2 − 2 (n− 1)

)
on Sn (note that this notation

suppresses the Green’s function’s M -dependence). This Green’s function admits a decomposition

into ALσµ (x)A∗Lσ
ν′

(
x
′
)

terms and WLσ
µ (x)W ∗Lσ

ν′

(
x
′
)

terms. These contributions to Gµν′
(
x, x

′
)

respectively comprise a “vector part” GV
µν′

(
x, x

′
)

and “scalar part” GS
µν′

(
x, x

′
)

(terminology bor-

rowed from Sec. 5 of Ref. [61]), viz.

Gµν′
(
x, x

′
)

= GV
µν′

(
x, x

′
)

+GS
µν′

(
x, x

′
)
, (2.6.69)

GV
µν′

(
x, x

′
)

=
∑
Lσ

kLσ1 (M)ALσµ (x)A∗Lσ
ν′

(
x
′
)
, (2.6.70)

GS
µν′

(
x, x

′
)

=
∑
Lσ

k2 (M)WLσ
µ (x)W ∗Lσ

ν′

(
x
′
)
. (2.6.71)

The terminology’s motivation is immediate; the “scalar part” is expressed in terms of covariant

derivatives of the scalar spherical harmonic functions, while the “vector part” is expressed in terms
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of the vector spherical harmonics instead. Solving

Lµρ
(
−M2 − 2 (n− 1)

)
Gµν′

(
x, x

′
)

=
gρν′√
|g (x)|

δ
(
x, x

′
)

(2.6.72)

for kLσ1 gives

kLσ1 (M) =
1

(L+ 1) (L+ n− 2)−M2 − 2 (n− 1)
. (2.6.73)

Since kLσ1 (M) diverges at L = 1 when M2 = 0, the FP-ghost Feynman propagator is infrared-

divergent. For general M , the L = 1 term in GV
µν′

(
x, x

′
)

is

ALσµ (x)A∗Lσ
ν′

(
x
′
)

(1 + 1) (1 + n− 2)−M2 − 2 (n− 1)
= −

A1σ
µ (x)A∗1σ

ν′

(
x
′
)

M2
. (2.6.74)

The FMP subtracts out this term to effect an infrared regularisation ofGV
µν′

(
x, x

′
)

, leaving the L ≥ 2

terms ∑
L≥2, σ

ALσµ (x)A∗Lσ
ν′

(
x
′
)

(L+ 1) (L+ n− 2)−M2 − 2 (n− 1)
. (2.6.75)

Note that the infrared divergence in the M → 0+ right-hand limit is entirely due to the L = 1 mode,

so the M → 0+ right-hand limit of the L ≥ 2 series is an effective zero-mode sector propagator. It is

customary to write the full propagator as

GV
µν′

(
x, x

′
)

= Q
(M2)
µν′

(
x, x

′
)

+
1

2 (n− 1) +M2
∇µ∇ν′D

eff
0

(
x, x

′
)
, (2.6.76)

where Q(M2)
µν′

(
x, x

′
)

is a solution of

Lµρ
(
−M2 − 2 (n− 1)

)
Q

(M2)
µν′

(
x, x

′
)

=
gρν′√
|g (x)|

δ
(
x, x

′
)

(2.6.77)

(viz. Sec. 3 of Ref. [50]) and Deff
0

(
x, x

′
)

is the FMP’s effective zero-mode sector propagator in scalar

field theory.

2.6.6 A comparison of zero-mode problems

The discussion in this subsection is an expanded version of Sec. VI of Ref. [1]. Although that paper

was primarily concerned with the Yang–Mills infrared problem I discussed in Sec. 2.4, and the CMP

treatment thereof that I discuss in Chapter 3, Sec. VI of Ref. [1] discussed analogous concerns in per-

turbative gravity. The infrared limit of the FP-ghost propagator’s behaviour in perturbative quantum

gravity with massive FP-(anti)ghosts has not been discussed much in the literature. However, an

analogous concern regarding the graviton’s propagator has attracted much more interest. This has

resulted in some controversy for the case of de Sitter space, as I will now discuss.

There are two approaches to gauge fixing the graviton two-point function. One approach includes

a gauge-fixing term in the linearised theory, and obtains the propagator κ2
〈

0|hµν (x)hµ′ν′
(
x
′
)
|0
〉

.

The other obtains a graviton correlator after complete gauge fixing. The graviton two-point function
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obtained by the latter method, hereafter the gauge-invariant graviton two point function, is physical

in the sense that its gauge degrees of freedom are completely fixed. This two-point function is

infrared-divergent in the Poincaré patch of de Sitter space [62].

This discovery began the debate of gravity’s infrared issues, and this controversy has some simil-

arities with an issue in the FP-ghost sector. One subtlety was that the infrared divergences of the

two-point function may be expressed in a pure-gauge form [63, 64, 65], and the infrared diver-

gences may be removed entirely with a suitable choice of mode functions [66]. In this sense, these

infrared divergences are gauge-artefact. Indeed, the two-point function has been given an infrared-

finite construction in de Sitter space in some other coordinate patches [67, 68, 69] and covariant

gauges [70, 71, 72].

After Faizal and Higuchi introduced the FMP in Ref. [2] to address the FP-ghost sector implications

in 2008, they provided a treatment of the graviton sector in the global patch in 2012, which also

relied on temporarily endowing a field (in this case the graviton) with a fictitious mass [73]. The

resulting gauge-invariant graviton two-point function is known to be equivalent to the linearised

Weyl tensor [74], which is both de Sitter invariant and infrared-convergent in a vacuum state of the

theory that is like a Euclidean Bunch–Davies vacuum [75, 76, 77]. Higuchi and I have previously

observed [1] that, since Ref. [2] obtains the Weyl tensor as its gauge-invariant graviton two-point

function, non-interacting linearised gravity has no infrared problem in de Sitter space.

However, what is contentious is whether interacting linearised gravity retains an infrared problem

for the graviton propagator. Some say it does [78], while others say it does not [79]. One could

similarly ask whether interacting linearised gravity retains an infrared problem for the FP-ghost

propagator. The debate between sources such as Refs. [78] and [79] regarding the graviton two-

point function is analogous to the FP-ghost sector issues I consider in this thesis. However, I will

consider the FP-ghost sector issues in all the spacetimes of interest identified in Sec. 1.2.

In Sec. 2.5.1, I observed that the behaviour of minimally coupled massless scalar fields raised the

question of whether the FP-ghost sector’s infrared problem breaks de Sitter invariance in de Sitter

space. Indeed, one could ask this question of BRST-quantised Yang–Mills theory and BRST-quantised

perturbative gravity. One similarity between the FP-ghost sector’s infrared problems in Yang–Mills

theory and perturbative gravity is that they are both amenable to the FMP [2]. In Ref. [1], Higuchi

and I showed that the CMP can also address the Yang–Mills case, and we suggested it could address

the gravity case too. I prove that this is so in Chapter 4.
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Chapter 3 Applying the CMP to

Yang–Mills theory

The CMP obtains an effective theory in which conserved momenta are set to 0. Should these zero-

momentum conditions be imposed first in the Lagrangian or Hamiltonian? Since the Lagrangian

and Hamiltonian formalisms are equivalent, it would be concerning if it mattered. In Sec. 3.1, I show

the two approaches are equivalent for any Hamiltonian with canonical coordinates and conjugate

momenta thereof.

In Sec. 3.2, I define “zero” and “other” modes for any canonical scalar or vector field and for

their conjugate momentum densities. This furthers the work of Sec. 1.7.2, and allows the explicit

calculations that will obviate the zero mode problems introduced in Chapter 248.

The CMP’s treatment of Yang–Mills theory will be considered entirely in the Landau gauge. This

treatment begins in Sec. 3.3, where a problem is encountered. I show in Sec. 3.3 that, while the fields

B, c are cyclic (and hence so are their zero modes), c(0) is not cyclic. This appears to prevent the CMP

from successfully treating the infrared problem in BRST-quantised Yang–Mills theory. However, this

is in fact not the case. In Sec. 3.4 I show how the issue of the non-cyclic c(0) can be addressed.

This requires a change in the choice of fields in terms of which BRST-quantised Yang–Mills theory

is expressed. In Sec. 3.5, I show that this choice results in all zero modes being cyclic. In Sec. 3.6, I

show that the Lagrangian and Hamiltonian each gain an extra term as a result of this choice. I do not

impose the synchronous gauge in Secs. 3.5 and 3.6.

In Sec. 3.7 I show that, in spacetimes for which free integration by parts is possible (so that the FMP

may be used), the FMP is perturbatively equivalent to the CMP.

In Sec. 3.8, I complete the discussion of the flat static torus and de Sitter space that I began in Sec. 1.8.

In Sec. 3.9, I discuss several issues that this chapter leaves unaddressed. My treatment of these issues

will occur in appropriate appendices.

3.1 A note on the CMP

Suppose H is a Hamiltonian with conserved conjugate momenta πζI of cyclic canonical coordinates

ζI and non-conserved conjugate momenta πωi of non-cyclic canonical coordinates ωi. We may write

H = H
(
πωi , π

ζ
I , ω

i, ζI
)
, (3.1.1)

48One exception is the infrared behaviour of the graviton two-point function, which was discussed in Sec. 2.6.6 but is not a
concern hereafter.
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and the CMP sets each πζI to 0, obtaining an effective Hamiltonian

Heff := H
(
πωi , 0, ω

i, ζI
)
. (3.1.2)

The Lagrangian and effective Lagrangian are respectively

L = ω̇iΠω
i

(
ω̇, ζ̇

)
+ ζ̇IΠζ

I

(
ω̇, ζ̇

)
−H

(
πωi , π

ζ
I , ω

i, ζI
)
, (3.1.3)

Leff := ω̇iPωi

(
ω̇, ζ̇

)
−H

(
πωi , 0, ω

i, ζI
)

(3.1.4)

(with implicit summation over i, I), where Πω
i , Πζ

I , P
ω
i express conjugate momenta as functions of

canonical coordinates’ time derivatives (and, possibly, other variables not shown herein). These

functions are obtainable implicitly from the Hamilton’s equations

ω̇i =
∂RH

∂Rπωi

∣∣∣∣
πωi =Pωi , π

ζ
I=0

, (3.1.5)

ω̇i =
∂RH

∂Rπωi

∣∣∣∣
πωi =Πωi , π

ζ
I=ΠζI

, (3.1.6)

ζ̇I =
∂RH

∂Rπ
ζ
I

∣∣∣∣∣
πωi =Πωi , π

ζ
I=ΠζI

, (3.1.7)

where ∂R denotes right-derivatives. A consistent use of right-derivatives avoids a need for sign

changes for fermionic fields. For example,

∂L

∂Lπ
ζ
I

= (−1)
f(ζI) ∂R

∂Rπ
ζ
I

, (3.1.8)

where f
(
ζI
)

is the fermion number of ζI . Thus

∂RL

∂Rζ̇I
= (−1)

f(ζI) Πζ
I + ω̇i

∂RΠω
i

∂Rζ̇I
+ ζ̇J

∂RΠζ
J

∂Rζ̇I

− ∂RH

∂Rπωi

∣∣∣∣
πωi =Πωi , π

ζ
I=ΠζI

∂RΠω
i

∂Rζ̇I
− ∂RH

∂Rπ
ζ
J

∣∣∣∣∣
πωi =Πωi , π

ζ
I=ΠζI

∂RΠζ
J

∂Rζ̇I

= (−1)
f(ζI) Πζ

I

+

[
ω̇i − ∂RH

∂Rπωi

∣∣∣∣
πωi =Πωi , π

ζ
I=ΠζI

]
∂RΠω

i

∂Rζ̇I
+

ζ̇J − ∂RH

∂Rπ
ζ
J

∣∣∣∣∣
πωi =Πωi , π

ζ
I=ΠζI

 ∂RΠζ
J

∂Rζ̇I

= (−1)
f(ζI) Πζ

I , (3.1.9)

∂LL

∂Lζ̇I
= Πζ

I . (3.1.10)

Hence L is ζ̇I -independent if and only if Πζ
I = 0, which is the condition the CMP imposes. However,

such vanishing conjugate momenta are then also conserved, so the ζI are cyclic in L. The CMP’s

effect can therefore be equivalently stated as either the replacement of H with Heff or as all canonical

coordinates with conserved conjugate momenta in H’s Hamilton’s equations being obviated from L.
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We may solve the equation Πζ
I = 0, say as ζ̇I = ŻI (ω̇) so that Πζ

I

(
ω̇, Ż (ω̇)

)
= 0. Substituting

ζ̇I = ŻI (ω̇) in L gives

L = ω̇iΠω
i

(
ω̇, Ż (ω̇)

)
−H

(
Πω
i

(
ω̇, Ż (ω̇)

)
, 0, ωi, ζI

)
. (3.1.11)

Eq. (3.1.6) implies

ω̇i =
∂RH

∂Rπωi

∣∣∣∣
πωi =ΠζI(ω̇, Ż(ω̇)), πζI=0

, (3.1.12)

so Πω
i

(
ω̇, Ż (ω̇)

)
= Pωi

(
ω̇, ζ̇

)
and L = Leff. Imposing the CMP’s conditions Πζ

I = 0 in the

Lagrangian formalism is therefore equivalent to instead doing so in the Hamiltonian formalism. This

is not trivial; it is in general invalid to use equations of motion to identify conserved charges and then

set these to specific values in the Lagrangian formalism. For example, the classical simple harmonic

oscillator of Lagrangian L = 1
2mẋ

2 − 1
2kx

2, which has Euler–Lagrange equation mẍ = −kx, should

not be rewritten using the conserved Hamiltonian H = 1
2mẋ

2 + 1
2kx

2. This approach could achieve

L = H − kx2 (which would have a spurious Euler–Lagrange equation kx = 0) or L = mẋ2 − H

(which would have a spurious Euler–Lagrange equation mẍ = 0).

Eq. (3.1.4) may be restated as

Heff = ω̇iπωi

(
ω̇, ζ̇

)
− Leff. (3.1.13)

Since we may begin by obviating zero modes from either the Lagrangian or Hamiltonian, we can

think of Leff as the Lagrangian that results from beginning in the Lagrangian formalism. Then Eq.

(3.1.13) obtains a “Hamiltonian” from a Legendre transform that runs only over non-cyclic canonical

coordinates. In other words, Heff is a Routhian of Leff that excludes cyclic coordinates’ q̇p terms from

the Legendre transform. (This is equivalent to imposing the conditions πζI = 0.) The advantages

in classical mechanics of using a Routhian formalism that separately treats cyclic and non-cyclic

canonical coordinates are well-known. A brief overview thereof is provided in §41 of Chapter VII of

Ref. [80].

The above calculations concern the Lagrangian and Hamiltonian of a theory with canonical coordin-

ates and their conjugate momenta. For Yang–Mills theory and perturbative gravity, a respective

promotion ωi, ζI to quantities of the form φ(+), φ(0) for fields φ is necessary. Note that the momenta

are still not momentum densities, since it is momenta, not momentum densities, that can be con-

served. For example, if φ is a non-interacting massless Klein–Gordon field
´
x
∇0φ is its conserved

conjugate momentum.

The promotion to classical fields is trivial. However, if the fields are quantised there is an additional

subtlety. For each conserved momentum Πζ
I set to 0 in the CMP, we demand any physical state |ψ〉

satisfies π̂ζI |ψ〉 = 0, where the operator π̂ζI is the quantisation of πζI . The formal wave functional

Ψ
(
ζI , πζI , · · ·

)
then satisfies

δΨ

δζI
= 0. (3.1.14)

Thus ζI , πζI are also obviated from the Schrödinger wave functional formalism, viz.

Ψ
(
ζI , πζI

)
→ Ψ

(
πζI = 0

)
. (3.1.15)
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3.2 Defining zero modes of several types of field

In Sec. 1.7.2, I presented an explicit definition of the zero mode of a canonical scalar field, which

I denoted χ. This was an improvement over the weaker statement that the zero mode should be a

spatially uniform contribution to the field49, viz.

χ = χ(0) + χ(+), ∂iχ(0) = 0. (3.2.1)

In Sec. 2.6.3, I made an analogous statement about vector fields. If a decomposition of these fields

into their “zero” and “other” modes is sought, it will be of the form

χµ = χµ(0) + χµ(+), χ
µ
(0) ∈

{
XAξµA|∂iX

A = 0
}
. (3.2.2)

This raises the question of how to choose the XA (such as the θA for φµ = cµ, or θ
A

for φµ = cµ),

which are named for the upper-case χ. While XA constructions need not concern us until Chapter

450, I will mostly (see the discussion of Eq. (3.2.25) below) answer the question now for a reason

that requires some explanation. Another issue I have left unaddressed heretofore is the conjugate

momentum densities of quantities such as φ(0), φ(+). In the construction I present below, it is shown

that the conjugate momentum density of a tensor field T admits an analogous decomposition of its

own. This decomposition is expressible in terms of the conjugate momentum densities of T(0), T(+).

Although I have no general zero mode decomposition of arbitrary tensor fields, I can provide a

relation between the zero/other mode decompositions of canonical tensor fields and their conjugate

momentum densities.

The (anti)commutators of quantised canonical fields and their quantised conjugate momentum dens-

ities are axiomatic in any quantum field theory, providing a generalisation of Eq. (1.4.10). Herein I do

not place hats on these quantised fields, because this would unnecessarily clutter the notation, and

would not emphasise that the mode decompositions I will present are intended for both quantised

and classical fields. With that said, a general formalism for quantum field theories may be given.

Consider fields φb (t, y)51, either all bosonic or all fermionic (these two special cases can be analysed

separately.) Let πa (t, x) denote the conjugate momentum density of φb (t, y); then

[
πa (t, x) , φb (t, y)

]
± = −iδbaδ (x, y) (3.2.3)

(where the commutator or anticommutator’s sign is determined by whether the fields are bosonic or

fermionic). Next I need two sets of indices, which I denote by lower and upper case Roman letters

49In Sec. 1.5, I discuss a mode decomposition of a quantised scalar field on a flat static torus. This mode decomposition
features one spatially uniform scalar field. However, before Sec. 1.7.2 it was not obvious what value this mode should have
for a given field. Note in particular that a result of the form χ (x) = χ(0) (t) + χ(+) (x) is not unique, as the transformation
χ(0), χ(+) → χ(0) + F (t) , χ(+) − F (t) preserves this form of χ.

50The existence of a vector field multipletAaµ in Yang–Mills theory will, it turns out, not require the zero modes of vector fields
to be treated herein.

51My choice in Sec. 2.6.3 to avoid the vielbein formalism ensures that all tensor-valued canonical fields considered in this
thesis have exactly one index. Had I chosen to work in the vielbein formalism, the “index” of φb would be interpreted as
having multiple components in general.

72



3.2. DEFINING ZERO MODES OF SEVERAL TYPES OF FIELD

beginning at a, A.52 Throughout I implicitly sum over repeated indices, be they both lower case or

both upper case. I now consider quantities of the form

πa(0) (t, x) := FAa (t, x)

ˆ
dn−1wGcA (t, w)πc (t, w) , (3.2.4)

φb(0) (t, y) := GbB (t, y)

ˆ
dn−1zFBd (t, z)φd (t, z) , (3.2.5)

πa(+) (t, x) := πa (t, x)− πa(0) (t, x) , (3.2.6)

φb(+) (t, y) := φb (t, y)− φb(0) (t, y) , (3.2.7)

with functions FAa , GaB satisfying

ˆ
dn−1zFAa (t, z)GaB (t, z) = δAB . (3.2.8)

I will call quantities with (+) subscripts other modes.

By inspection,

[
πa(0) (t, x) , φb (t, y)

]
± = −iFAa (t, x)

ˆ
dn−1wGcA (t, w) δbcδ (w, y)

= −iFAa (t, x)GbA (t, y) , (3.2.9)[
πa (t, x) , φb(0) (t, y)

]
±

= −iGbA (t, y)

ˆ
dn−1zFAd (t, z) δdaδ (x, z)

= −iFAa (t, x)GbA (t, y) , (3.2.10)[
πa(0) (t, x) , φb(0) (t, y)

]
±

= −iFBa (t, x)

ˆ
dn−1wGcB (t, w)FAc (t, w)GbA (t, y)

= −iδBAF
B
a (t, x)GbA (t, y) = −iFAa (t, x)GbA (t, y) . (3.2.11)

In summary

[
πa(0) (t, x) , φb (t, y)

]
± =

[
πa (t, x) , φb(0) (t, y)

]
±

=
[
πa(0) (t, x) , φb(0) (t, y)

]
±

= −iFAa (t, x)GbA (t, y) , (3.2.12)

so [
πa(0) (t, x) , φb(+) (t, y)

]
±

=
[
πa(+) (t, x) , φb(0) (t, y)

]
±

= 0. (3.2.13)

The above construction obtains

πa (t, x) = πa(0) (t, x) + πa(+) (t, x) , (3.2.14)

φb (t, y) = φb(0) (t, y) + φb(+) (t, y) , (3.2.15)

52All previous associations of specific types of index with specific meanings, such as the use of a to denote Lie algebra indices,
is hereafter dropped. In this context, indices may denote Lie algebra indices or spacetime indices. I will discuss specific
possibilities towards the end of this section.
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and the canonical momentum densities of φb(0), φ
b
(+) are respectively proportional to πb(0), πb(+). The

crucial implication for the CMP is this: if φb(0) is cyclic, then its conjugate momentum is conserved

and may be chosen to be 0, so that the proportional quantity πb(0) also vanishes.

The special cases relevant to this thesis can now be discussed; I recall the volume factor defined in

Eq. (1.2.9).

• The previous result for φ(0) in scalar field theory (viz. Eq. (1.7.4)) is a special case of Eq. (3.2.5).

Consider a single field φ, so the indices a, · · · each have only one value, and such indices can

be dropped. The indices A, · · · may also be dropped from FAa , G
a
A, by choosing

F (t, x) =
g00 (t, x)

√
|g (t, x)|

V (t)
, G (t, x) = 1. (3.2.16)

A few key results are worth noting. Zero modes of canonical scalar fields are spatially uni-

form, so may always be moved outside spatial integrals, including those which appear in the

definitions of such zero modes. Hence

(
X(0)

)
(0)

= X(0), (3.2.17)(
X(+)

)
(0)

=
(
X −X(0)

)
(0)

= 0, (3.2.18)(
X(0)Y(+)

)
(0)

= X(0)

(
Y(+)

)
(0)

= 0. (3.2.19)

The dot and cross products for multiplet-valued canonical scalar fields therefore satisfy

(
X(0) · Y(+)

)
(0)

= 0, (3.2.20)(
X(0) × Y(+)

)
(0)

= 0, (3.2.21)

(X · Y )(0) = X(0) · Y(0) +
(
X(+) · Y(+)

)
(0)
, (3.2.22)

(X × Y )(0) = X(0) × Y(0) +
(
X(+) × Y(+)

)
(0)
. (3.2.23)

• Another case of interest is a vector field φµ, so the indices a, · · · are simply spacetime indices.

This time both indices of FAa , GaA are preserved, with upper case indices denoting the Lie

algebra indices of Killing vector fields. Explicitly

FAµ (t, x) =
g00 (t, x)

√
|g (t, x)|ηAµ (t, x)

V (t)
, GνA (t, x) = ξνA (t, x) , (3.2.24)

where the ξνA are a basis of the Killing vectors and the ηAµ are chosen so that

ˆ
dn−1x

{
g00 (t, x)

√
|g (t, x)|

V (t)
ξµB (t, x) ηAµ (t, x)

}
= δAB . (3.2.25)

Finding ηAµ that satisfy Eq. (3.2.25) is a task I leave for Sec. 4.2.
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3.3. RELATION BETWEEN CONSERVED CURRENTS AND THE BRST AND
ANTI-BRST TRANSFORMATIONS

3.3 Relation between conserved currents and the BRST and

anti-BRST transformations

The Euler–Lagrange equation obtained by varying Aµ requires the inclusion in the Lagrangian dens-

ity of those terms that predate BRST quantisation. However, this Euler–Lagrange equation is of no

concern herein, and all other Euler–Lagrange equations are deducible entirely from the other terms.

The scalar Lagrangian density may then be taken as53

L0 = −∇µB ·Aµ − i∇µc ·Dµc (3.3.1)

in the Landau gauge. Attempting to obtain an Euler–Lagrange equation by varying Aµ now would

be illegitimate; Aµ no longer generates a stationary action principle.

One Euler–Lagrange equation is∇µAµ = 0. This is a conservation law; the Noether charge is

QA :=

ˆ
x

A0 = V (t)
(
N2A0

)
(0)
. (3.3.2)

Setting QA = 0 (the grey note in Sec. 1.7.2 explains why this is possible) gives

(
N2A0

)
(0)

= 0, A0 = N−2
(
N2A0

)
(+)

. (3.3.3)

Similarly, ∇µDµc = 0 gives the Noether charge

QDc :=

ˆ
x

D0c =
(
N2D0c

)
(0)
, (3.3.4)

which I also set to 0. The fact that B (c), and hence B(0) (c(0)), is cyclic implies their conjugate

momenta are proportional to these vanishing Noether charges, and so B(0), c(0) may be obviated.

Unfortunately, the same is not true of c(0) unless q = 0. It appears undifferentiated in L because of

the term

ˆ
x

(
−iq∇µc ·Aµ × c(0)

)
= −iqc(0) ·

ˆ
x

Aµ ×∇µc = −iqc(0) ·
(
N2Aµ ×∇µc

)
(0)

= −iqc(0) ·
{(
N2A0 ×∇0c

)
(0)

+
(
N2Ai ×∇ic

)
(0)

}
= −iqc(0) ·

{(
N2A0

)
(+)
× ∂0c(+) +

(
N2Ai

)
(+)
× ∂ic(+)

}
(0)
. (3.3.5)

Here the results
(
N2A0

)
(0)

= 0, ∂ic(0) = 0 have afforded some simplifications. However, the result

is still clearly non-trivial for nonzero q. This is unsurprising, since

∂L0

∂ca(0)

=
∂

∂ca(0)

(−iq∇µc ·Aµ × c) =
∂

∂ca(0)

(−iqc ·Aµ ×∇µc) = −iq (Aµ ×∇µc)a = −iq∇µ (Aµ × c)a .

(3.3.6)

Although∇µ (Aµ × c) is a total derivative, c · ∇µ (Aµ × c) is not, so adding a total derivative to L0 to

choose a different Lagrangian density that describes the same action will not suffice to obviate c(0).
53This dropping of “classical” terms (i.e. those which appear even without BRST quantisation) minimises clutter in my

equations. An alternative approach is to use the subscript cl for such “classical” terms, e.g. the right-hand side of Eq.
(3.3.1) can instead be thought of as L0−L0cl, where L0 is the full BRST-quantised Yang–Mills Lagrangian density. Similarly,
the HamiltonianH that I use in Sec. 3.5 could instead be written asH−Hcl. The Legendre transform provides an expression
for H + L, which in a fuller treatment should also include a term ∂0AµπAµ .
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An alternative way to think about this issue is by comparing conserved charges to momenta. The

reduced momentum densities of Ba, ca are respectively

$B = −A0, $c = −iqD0c. (3.3.7)

Thus

QA = −
ˆ
x

$B = −
ˆ

dn−1xπB , QDC =
i
q

ˆ
x

$c =
i
q

ˆ
dn−1xπc. (3.3.8)

In Sec. 2.4.2 I showed that in the Landau gauge∇µDµc = 0, providing a further Noether charge I set

to 0, viz.

QDc :=

ˆ
x

D0c =
(
N2D0c

)
(0)
. (3.3.9)

Indeed, the three Noether charges set to 0 are

QA, QDc = [Q, QA] , QDc =
[
Q, QA

]
, (3.3.10)

so imposing the conditions Q |ψ〉 = 0, Q |ψ〉 = 0, QA |ψ〉 = 0 on all physical states |ψ〉 automatically

obtains QDc |ψ〉 = 0, QDc |ψ〉 = 0 for all physical states |ψ〉. However, in the interacting case QDc is

not proportional to
´

dn−1xπc, since

$c =
∂

∂∇0c
(−i∇µc · ∇µc) = i∇0c, (3.3.11)

which differs from iD0c, i.e.
´

dn−1xπc is not conserved, unless q = 0. So not only is the zero mode

problem harder to explicitly describe in the interacting case; it is also harder to treat. The entire

strategy of the CMP hinges on identifying fields conjugate to conserved charges so the latter may be

set to zero, as is possible (for example) in the relation between B and QA. Our problem is that QDc

does not seem susceptible to this line of attack.

Yet another way to think about this is in terms of which transformations preserve L0. Spacetime-

constant shifts in either B or c do this, because these fields are cyclic. But a spacetime-constant shift

δc in c yields

δDµc = qAµ × δc, (3.3.12)

δ (−i∇µc ·Dµc) = −iq∇µc ·Aµ × δc = iq∇µ (c× δc) ·Aµ. (3.3.13)

It follows that L0 is preserved if we also make the transformation

δB = iqc× δc. (3.3.14)

The simultaneous transformation of B, c in this way yields

δ
(
c(0)

)
= (δc)(0) = δc, δ

(
B − iqc× c(0)

)
= 0. (3.3.15)
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3.4. REDEFINITION OF THE NAKANISHI–LAUTRUP AUXILIARY FIELD

3.4 Redefinition of the Nakanishi–Lautrup auxiliary field

To say that c(0) is not cyclic is a comment on partial derivatives of L0. However, partial derivatives

are defined, and computed, by adopting appropriate conventions concerning which other quantities

are held fixed. If these conventions are changed, a new family of partial derivatives result. That is

the motivation for the calculations in this section.

I now define a non-local field54

B̃ := B − iqc× c(0), (3.4.1)

so that a spacetime-constant shift in any one of B̃, c, c preserves L0 if the other two fields are held

fixed. This motivates the view that these fields are, in a sense, a more natural basis for the Yang–Mills

formalism. To rewrite L0 in terms of B̃, one need only note that

Ba = B̃a + iqfabccbcc(0). (3.4.2)

Holding B, c fixed is not equivalent to holding B̃, c fixed, since varying c(0) while holding c fixed

varies B − B̃. The partial derivatives with respect to fields in Yang–Mills theory are therefore not

the same if the theory is written in terms of B̃, c, c as they are if it is written in terms of B, c, c. This

change in the choice of fields changes one of the three fields, and two of the three momenta. One

way to show this is by rewriting L0 in terms of B̃, c, c, viz.

L0 = −∇µ
(
B̃ + iqc× c(0)

)
·Aµ − i∇µc · (∂µc+ qAµ × c)

= −∇µB̃ ·Aµ − iq∇µ
(
c× c(0)

)
·Aµ − i∇µc · ∇µc− iq∇µc ·Aµ × c

= −∇µB̃ ·Aµ − iq
(
∇µ
(
c× c(0)

)
−∇µc× c

)
·Aµ − i∇µc · ∇µc

= −∇µB̃ ·Aµ − iq
(
c×∇µc(0) −∇µc× c(+)

)
·Aµ − i∇µc · ∇µc. (3.4.3)

In Sec. 3.3, the original formalism obtained the reduced momentum densities

$B = −A0, $old
c = −iD0c, $new

c = i∇0c. (3.4.4)

However, the attempt to obtain reduced momentum densities from Eq. (3.4.3) yields

$B̃ = −A0 = −N−2
(
N2A0

)
(+)

, (3.4.5)

$new
c = −i∇0c− iqA0 × c(+)

= $new
c + iqN−2

(
N2A0

)
(+)
× c(0), (3.4.6)

$new
c = i∇0c+ iq

δ

δ∇0c

ˆ
x

∇0c(0) ·A0 × c. (3.4.7)

54Since c(0) is non-local by construction, so is the field defined in Eq. (3.4.1). An analogous construction of a non-local field
occurs for perturbative gravity. I will provide this in Eq. (4.4.8).
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The second and third results show momentum shifts, and in the third result’s case a further calcula-

tion is required. Since

δ

δċ

ˆ
x

∂0c(0) ·A0 × c =
δ

δċ

ˆ
x

∂0

(ˆ
dn−1yΥ (t, y) c (t, y)

)
·A0 (t, x)× c (t, x)

=
δ

δċ

ˆ
dn−1yΥ (t, y) c (t, y) ·

ˆ
x

A0 (t, x)× c (t, x)

= Υ (t, y) ·
ˆ
x

A0 (t, x)× c (t, x)

=

√
|g (t, y)|
N2 (t, y)

(
N2A0 × c

)
(0)

(t) , (3.4.8)

the final reduced momentum density is

$new
c (t, y) = i∇0c (t, y) +

iq
(
N2A0 × c

)
(0)

(t)

N2 (t, y)
= $old

c (t, y) +
iq
(
N2A0 × c

)
(0)

(t)

N2 (t, y)
. (3.4.9)

Since
(
N2A0

)
(0)

= 0,

$new
c i∇0c+ iqN−2

((
N2A0

)
(+)
× c(+)

)
(0)

= $old
c + iqN−2

((
N2A0

)
(+)
× c(+)

)
(0)
. (3.4.10)

I previously observed that a spacetime-constant shift in any of B̃, c, c preserves L0. Such shifts

are absorbed into zero modes, but a more general shift in a zero mode is possible; specifically, the

shift may have any time-dependence. In Eq. (3.4.3), any undifferentiated B̃(0), c(0), c(0) need to be

considered carefully. In fact B̃(0) never appears undifferentiated, and neither does c(0) (although c(+)

does). The term in L0 proportional to c(0) is

− iqc(0) ×∇µc(0) ·Aµ. (3.4.11)

In L, this becomes

iqc(0) ·
(ˆ

x

A0

)
× ∂0c(0) = iqV c(0) ·

(
N2A0

)
(0)
× ∂0c(0) = 0. (3.4.12)

So the zero modes
(
N2A0

)
(0)
, B̃(0), c(0), c(0) are completely lost from the B̃, c, c-based Lagrangian

formalism in the Landau gauge when the conditions

Q |ψ〉 = 0, Q |ψ〉 = 0, QA |ψ〉 = 0 (3.4.13)

are imposed for all physical states |ψ〉, which also obtains

QDc |ψ〉 = 0, QDc |ψ〉 = 0 (3.4.14)

for all such states.

A verification that the same is possible in the Hamiltonian formalism may seem unnecessary at

this point. However, I do this in the following section, because it facilitates a treatment of the
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perturbation-theoretic comparison of the FMP and CMP for BRST-quantised Yang–Mills theory.

3.5 The Hamiltonian density without zero modes

In Sec. 3.5.1, I show that the field transformation B, c, c → B̃, c, c preserves the BRST-quantised

Yang–Mills Hamiltonian. What is more, I show that a broad class of field transformations (including

B, c, c → B̃, c, c) of a broad class of Lagrangians (which includes the BRST-quantised Yang–Mills

Lagrangian) preserves the numerical value of the Hamiltonian obtained from the resulting Legendre

transform. This implies the B, c, c-based BRST-quantised Yang–Mills Hamiltonian can be rewritten

in terms of B, c, c by using Eq. (3.4.2).

However, the fact that the reduced momentum densities are different in the two formalisms intro-

duces an important subtlety. One valid way to obtain H0 in terms of phase space fields is to write it

explicitly in terms of elements of

⋃
T∈{B̃, c, c}

{
T(0), ∂0T(0), T(+), ∂µT(+)

}
, (3.5.1)

and to then use expressions for “new” reduced momentum densities to remove all lower time deriv-

atives. I use this method to obtain H0 in Sec. 3.5.2, where I show that setting conserved charges to 0

obviates zero modes fromH0.

3.5.1 The response of the Legendre transform to a field transformation in the

Lagrangian

Suppose a Lagrangian L depends only on fields and their time derivatives, with ∂L/∂t = 0. The

BRST-quantised Yang–Mills Lagrangian is of this form. Consider a field transformation satisfying

qi = qi (Qj) , (3.5.2)

L = Lq (qi, q̇i) (3.5.3)

= LQ

(
Qj , Q̇j

)
. (3.5.4)

The definition of B̃ in terms of B is of this form. Define a matrix

Mij :=
∂qi
∂Qj

=
∂q̇i

∂Q̇j
(3.5.5)

so

q̇i = MijQ̇j , (3.5.6)

∂L

∂q̇i
=

∂L

∂Q̇j

(
M−1

)
ji
, (3.5.7)

q̇ · ∂L
∂q̇

= Q̇jMij

(
M−1

)
ki

∂L

∂Q̇k
= Q̇jδkj

∂L

∂Q̇k
= Q̇ · ∂L

∂Q̇
. (3.5.8)

Since Lq = LQ = L, the expressions Lq, LQ for L have the same values of the associated Hamiltonian
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H = q̇ · ∂L
∂q̇
− L = Q̇ · ∂L

∂Q̇
− L. (3.5.9)

3.5.2 The BRST-quantised Yang–Mills Hamiltonian

Without the field transformation we get

$B = −A0, (3.5.10)

$c = i∂0c, (3.5.11)

$c = −i∂0c− iqA0 × c, (3.5.12)

H =

ˆ
x

(∂µB ·Aµ + i∂µc · ∇µc+ iq∂µc ·Aµ × c

−Ḃ ·A0 + ċ ·
(
−i∇0c− iqA0 × c

)
− i∇0c · ċ

)
. (3.5.13)

The first and second lines of the parentheses’ contents in Eq. (3.5.13) are respectively the contribu-

tions from the Lagrangian and Ḃ · πB + ċ · πc − πc · ċ. Eq. (3.5.13) simplifies to

H =

ˆ
x

(
∂iB(+) ·Ai + i∂ic(+) · ∇ic+ iq∂ic(+) ·Ai × c− i∇0c · ċ

)
. (3.5.14)

The result B = B̃ + iqc× c(0) implies

B(0) = B̃(0) + iqc(0) × c(0), (3.5.15)

B(+) = B̃(+) + iqc(+) × c(0), (3.5.16)

∂iB(+) = ∂iB̃(+) + iq∂ic(+) × c(0). (3.5.17)

Thus

H =

ˆ
x

(
∂iB̃(+) ·Ai + i∂ic(+) · ∇ic+ iq∂ic(+) ·Ai × c(+) − i∇0c · ċ

)
. (3.5.18)

Hereafter all reduced momentum densities that appear are “new”, e.g. $c denotes $new
c instead of

$old
c . These quantities must be used to remove quantities of the form ∂0T from H, but Hamilton’s

equations may still be deployed if expressions of the form ∂jT survive. Since each $T ′ is expressible

in terms of some∇0T , the crux of the matter is rewriting∇0, ∇i in terms of∇0, ∇j . Indeed, one may

derive

ċ = N2
(
i$c + q$B̃ × c(+)

)
+N i∂ic(+), (3.5.19)

∇ic = −N i
(
i$c + q$B̃ × c(+)

)
− γij∂jc(+), (3.5.20)

ċ = N2
(
−i$c + q

(
$B̃ × c

)
(0)

)
+N i∂ic(+), (3.5.21)

∇ic = −N i
(
−i$c + q

(
$B̃ × c

)
(0)

)
− γij∂jc(+). (3.5.22)

The reduced momentum densities are
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$B̃ = −A0, (3.5.23)

$c = i
(
∇0c+ qN−2

(
N2A0 × c

)
(0)

)
, (3.5.24)

$c = −i
(
∇0c+ qA0 × c(+)

)
. (3.5.25)

Eqs. (3.5.24) and (3.5.25) may be rearranged to obtain

∇0c = i$c + q$B̃ × c(+), (3.5.26)

∇0c = −i$c + q
(
$B̃ × c

)
(0)
. (3.5.27)

Eqs. (1.7.15), (1.7.16), (3.5.26) and (3.5.27) then imply Eqs. (3.5.19)–(3.5.22).

Eqs. (3.5.18)–(3.5.21) and (3.5.27) imply

H =

ˆ
x

(
i∂ic(+) ·

(
−N i

(
i$c + q$B̃ × c(+)

)
− γij∂jc(+)

)
+ ∂iB̃(+) ·Ai + iq∂ic(+) ·Ai × c(+)

−i
(
−i$c + q

(
$B̃ × c

)
(0)

)
·
(
N2
(
i$c + q$B̃ × c(+)

)
+N i∂ic(+)

))
. (3.5.28)

This result has no explicit dependence on B̃(0), c(0) and satisfies the Hamilton’s equation

π̇c(0)
= − ∂H

∂c(0)

= iq
∂

∂c(0)

ˆ
x

(
$B̃ × c

)
(0)
·
(
N2
(
i$c + q$B̃ × c(+)

)
+N i∂ic(+)

)
= iq

∂

∂c(0)

ˆ
x

(
$B̃(0)

× c(0) +$B̃(+)
× c(+)

)
· ∂0c

= −iq
∂

∂c(0)

{
c(0) ·$B̃(0)

×
ˆ
x

∂0c

}
= −iqV $B̃(0)

×
(
N2∂0c

)
(0)
. (3.5.29)

Since π̇c(0)
is proportional to a conserved quantity that may be set to 0 on all physical states, πc(0)

can

be chosen as conserved, and hence also as 0, on all physical states.

3.6 Extra terms in the Hamiltonian and Lagrangian

The Hamiltonian and Lagrangian may be written in the form

H = H0 (B, c, c) , L = L0 (B, c, c) , (3.6.1)
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as linear operators that are not ordinary functions because the fieldsB, c, c are differentiated in some

cases. The CMP’s zero mode obviation obtains results of the form

H = H0

(
B̃(+), c(+), c(+)

)
+Hextra

(
B̃(+), c(+), c(+)

)
, (3.6.2)

L = L0

(
B̃(+), c(+), c(+)

)
+ Lextra

(
B̃(+), c(+), c(+)

)
. (3.6.3)

In particular, none of the terms on the right-hand sides of Eqs. (3.6.2) and (3.6.3) depend on any zero

modes. The purpose of this section is to compute Hextra, Lextra.

By inspection of Eq. (3.5.28),

Hextra =

ˆ
x

−iq
(
$B̃ × c

)
(0)
·
(
N2q$B̃ × c(+) +N i∂ic(+)

)
. (3.6.4)

Imposing the condition

$B̃(0)
(t) :=

ˆ
dn−1xΥ (x)$B̃ (x) = −

(
N2A0

)
(0)

(t) = 0 (3.6.5)

throughout affords the replacement

$B̃ → $B̃(+)
:= $B̃ −$B̃(0)

= −N−2
(
N2A0

)
(+)

, (3.6.6)

so that

Hextra = −iq
(
$B̃(+)

× c(+)

)
(0)
·
ˆ
x

(
qN2$B̃(+)

× c(+) +N i∂ic(+)

)
, (3.6.7)

a result that contains no zero modes of B, B̃, c, c or their derivatives.

A further result, which is unsurprising given the nature of the Legendre transform, is that

Lextra = −Hextra. (3.6.8)

To verify this, I begin by definingL(0+)
FP := −i

´
x
∇µc(0)·Dµc(+) and similarly withL(00)

FP , L
(+0)
FP , L

(++)
FP ,

so that

LFP = L
(00)
FP + L

(0+)
FP + L

(+0)
FP + L

(++)
FP . (3.6.9)

The condition QDc = 0 implies

L
(00)
FP + L

(0+)
FP = −i∂0c(0) ·QDc = 0, (3.6.10)

LFP = L
(+0)
FP + L

(++)
FP . (3.6.11)
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The condition QDc = QDc = 0 may be rearranged to obtain

∂0c(0) = (ċ)(0) = − q
V

ˆ
x

A0 × c = q
(
$B̃(+)

× c(+)

)
(0)
, (3.6.12)

ˆ
x

D0c(+) = −qV
(
N2A0 × c(+)

)
(0)
, (3.6.13)

∂0c(0) = q
(
$B̃(+)

× c(+)

)
(0)
, (3.6.14)

ˆ
x

D0c(+) = −qV
(
N2A0 × c(+)

)
(0)
. (3.6.15)

The term L
(++)
FP is present whether L0 is written in terms of B, c, c or B̃, c, c, so

−Lextra = L
(+0)
FP + LGF +

ˆ
x

∇µB̃ ·Aµ

= −i
ˆ
x

(
∇µc(+) ·Dµc(0) + q∇µ

(
c× c(0)

)
·Aµ

)
= −i

ˆ
x

(
∇0c(+) · ∂0c(0) + q

{
∇µ
(
c× c(0)

)
−∇µc(+) × c(0)

}
·Aµ

)
= −i

ˆ
x

(
∇0c(+) · ∂0c(0) + q

{
∂0

(
c(0) × c(0)

)
+ c(+) × ∂0c(0)

}
·A0

)
= −i

ˆ
x

(
∇0c(+) · ∂0c(0) + qc(+) × ∂0c(0) ·A0

)
= i∂0c(0) ·

ˆ
x

(
∇0c(+) + qA0 × c(+)

)
= i∂0c(0) ·

ˆ
x

D0c(+)

= −iq
ˆ
x

(
qN2$B̃(+)

× c(+) +N i∂ic(+)

)
·
(
N2A0 × c(+)

)
(0)

= iq
(
N2A0 × c(+)

)
(0)
·
ˆ
x

(
qN2$B̃(+)

× c(+) +N i∂ic(+)

)
= −iq

(
$B̃(+)

× c(+)

)
(0)
·
ˆ
x

(
qN2$B̃(+)

× c(+) +N i∂ic(+)

)
= Hextra. (3.6.16)

3.7 Comparison with the FMP in perturbation theory

The aim of this section is to obtain the effective action associated with the contribution of zero

modes to the FMP’s modified propagator, and then verify that this effective action is identical to

one obtainable from the CMP. I obtain an effective action in the FMP (CMP) in Sec. 3.7.1 (3.7.2).

3.7.1 The perturbation theory of the FMP

The Feynman propagator is a perturbation-theoretic tool constructed from the non-interacting theory.

In this case (q = 0), the FMP begins by granting c, c a common small mass, say M > 0, and then

decompose c, c into field modes, viz.

ĉ (x) =
∑
σ

[
cσϕσ (x) + c†σϕ

∗
σ (x)

]
, ĉ (x) =

∑
σ

[
cσϕσ (x) + c†σϕ

∗
σ (x)

]
(3.7.1)

where cσ, cσ are spacetime-constant annihilation operators, and the modes ϕσ are complex-valued

functions of spacetime. The above decompositions sum over all modes, including zero modes, which

in the M → 0+ right-hand limit become modes of zero frequency. The label σ = 0 is used for the
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zero mode, which is then ϕ0 (t). (Note that the argument of ϕ0 may be taken as t rather than x, by

definition.) The σ 6= 0 modes are of positive frequency even for M = 0, and are hereafter called

positive-frequency modes. These operators cσ, cσ are normalised by Eq. (2.4.2), provided that the

canonical conjugate momentum density is defined using the left functional derivative, viz.

πY :=
δLL

δLẎ
, π̇Y = −δLH

δLY
(3.7.2)

(the first equation is a definition while the second equation is a Hamilton’s equation.)

The time-ordered FP-ghost propagator is a Green’s function:

GF

(
x, x

′
)

:= T
〈

0|c (x) c
(
x
′
)
|0
〉

= −iθ
(
t− t

′
)∑

σ

ϕσ (x)ϕ∗σ

(
x
′
)

− iθ
(
t
′
− t
)∑

σ

ϕσ

(
x
′
)
ϕ∗σ (x) . (3.7.3)

This can be decomposed into a “zero mode” part and an additional term, viz.

GF

(
x, x

′
)

= GF (0)

(
t, t
′
)

+GF (+)

(
x, x

′
)
, (3.7.4)

GF (0)

(
t, t
′
)

:= −iθ
(
t− t

′
)
ϕ0 (t)ϕ∗0

(
t
′
)

− iθ
(
t
′
− t
)
ϕ0

(
t
′
)
ϕ∗0 (t) , (3.7.5)

GF (+)

(
x, x

′
)

:= −iθ
(
t− t

′
)∑
σ 6=0

ϕσ (x)ϕ∗σ

(
x
′
)

− iθ
(
t
′
− t
)∑
σ 6=0

ϕσ

(
x
′
)
ϕ∗σ (x) . (3.7.6)

Hereafter we impose the synchronous gauge, so the zero mode of a minimally coupled massless

Klein–Gordon field is of the form A+Bf . One important result, if M > 0 and appropriate spacetime

symmetries are imposed, is that ϕ0 (t) takes approximately this form with

A =
c1
M
, B = −ic2M, c1, c2 ∈ R. (3.7.7)

(For example, if de Sitter invariance is demanded in de Sitter space, the massive result is A +

B
(
f − i

b0
(b1 + f2)

)
+ o (M) .) The Klein–Gordon inner product of a complex-valued spatially uni-

form h (t) with itself is

〈h, h〉KG = i
ˆ
x

(
h∗∇0h− h∇0h∗

)
= iV (t)

(
h∗∇0h− h∇0h∗

)
. (3.7.8)

The Klein–Gordon normalisation of ϕ0 (t) is the condition
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1 =
〈 c1
M
− ic2Mf,

c1
M
− ic2Mf

〉
KG

=
(( c1

M
+ ic2Mf

) (
−ic2M∂0f

)
−
( c1
M
− ic2Mf

) (
ic2M∂0f

))
× ian−1

ˆ
dn−1x

√
η (x)

= 2an−1c1c2∇0f

ˆ
dn−1x

√
η (x) = 2c1c2

ˆ
dn−1x

√
η (x), (3.7.9)

since∇0 = ∇0. Equivalently, c1c2 = 1
2Vc

. Thus

ϕ0 (t)ϕ∗0

(
t
′
)

=
( c1
M
− ic2Mf (t)

)( c1
M

+ ic2Mf
(
t
′
))

=
c21
M2

+ c22M
2f (t) f

(
t
′
)

+ ic1c2
(
f
(
t
′
)
− f (t)

)
=

c21
M2

+
M2

4c21
f (t) f

(
t
′
)

+
i

2Vc

(
f
(
t
′
)
− f (t)

)
,

(3.7.10)

−iθ
(
t− t

′
)
ϕ0 (t)ϕ∗0

(
t
′
)

= θ
(
t− t

′
)

×

f
(
t
′
)
− f (t)

2Vc
− i
(
c21
M2

+
M2

4c21
f (t) f

(
t
′
)) ,

(3.7.11)

−iθ
(
t
′
− t
)
ϕ0

(
t
′
)
ϕ∗0 (t) =

{
1− θ

(
t− t

′
)}

×

f (t)− f
(
t
′
)

2Vc
− i
(
c21
M2

+
M2

4c21
f (t) f

(
t
′
)) , (3.7.12)

GF (0)

(
t, t
′
)

:= θ
(
t− t

′
)f

(
t
′
)
− f (t)

2Vc
− i
(
c21
M2

+
M2

4c21
f (t) f

(
t
′
))

+
{

1− θ
(
t− t

′
)}f (t)− f

(
t
′
)

2Vc
− i
(
c21
M2

+
M2

4c21
f (t) f

(
t
′
))

=
f
(
t
′
)
− f (t)

2Vc

{
2θ
(
t− t

′
)
− 1
}
− i
(
c21
M2

+
M2

4c21
f (t) f

(
t
′
))

=
f
(
t
′
)
− f (t)

2Vc

{
θ
(
t− t

′
)
− θ

(
t
′
− t
)}

− i
(
c21
M2

+
M2

4c21
f (t) f

(
t
′
))

. (3.7.13)

Note that c21
M2 + M2

4c21
f (t) f

(
t
′
)

is the sum of two terms. One of these terms does not depend on t or

t
′
; the other term vanishes when M = 0. Therefore, c21

M2 + M2

4c21
f (t) f

(
t
′
)

does not contribute to time

derivatives of GF (0)

(
t, t
′
)

in the M → 0+ right-hand limit. Thus
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∂tGF (0)

(
t, t
′
)

=
−f ′ (t)

2Vc

{
θ
(
t− t

′
)
− θ

(
t
′
− t
)}

=
θ
(
t
′ − t

)
− θ

(
t− t′

)
2Vcan−1 (t)

, (3.7.14)

∂t′∂tGF (0)

(
t, t
′
)

=
−δ
(
t− t′

)
I

Vcan−1 (t)
, (3.7.15)

where I is the unit matrix in the group’s adjoint representation.

For Y ∈ {c, c} let L(Y )
int denote the contribution to L0 involving Y(0) due to the term −iq∂µc · Aµ × c.

Suppose also that free integration by parts is legitimate in the spacetime considered. Using∇µAµ = 0

and
´
x
A0 = 0, and denoting equivalence up to a total derivative by ∼, we obtain

ˆ
x

(
−iq∇µc(0) ·

(
Aµ × c(0)

))
= −iq

ˆ
x

(
∂0c(0) ·

(
A0 × c(0)

))
= −iq∂0c(0) ·

(ˆ
x

A0

)
× c(0) = 0, (3.7.16)

ˆ
x

(
−iq∇µc(0) · (Aµ × c)

)
=

ˆ
x

(
−iq∂0c(0) ·

(
A0 × c(+)

))
, (3.7.17)

−iq∇µc ·Aµ × c ∼ iqc ·Aµ ×∇µc, (3.7.18)ˆ
x

(
iqc(0) ·Aµ ×∇µc(0)

)
= iqc(0) ·

(ˆ
x

A0

)
× ∂0c(0) = 0, (3.7.19)

ˆ
x

(
iqc ·Aµ ×∇µc(0)

)
=

ˆ
x

(
−iqA0 × c(0) · ∂0c(0)

)
. (3.7.20)

We may therefore take the interaction Lagrangians as

L(c)
int = iq∂0c(0) ·

(
A0 × c(+)

)
= −iq

(
A0 × c(+)

)
· ∂0c(0), L

(c)
int = −iq

(
A0 × c(+)

)
· ∂0c(0). (3.7.21)

The next step is to integrate out the zero-mode contribution to the effective zero-mode sector propag-

ator obtained in the FMP. The effective action thereby obtained has gained the extra term

Sextra = −iq2

ˆ
dtdn−1xan−1 (t)

√
η (x)

ˆ
dt
′
dn−1x

′
an−1

(
t
′
)√

η (x′)

×
(
Aµ (x)× c(+) (x)

)
· ∂µ∂ν′GF (0)

(
t, t
′
)
I
(
Aν
′ (
x
′
)
× c(+)

(
x
′
))

= −iq2

ˆ
dtdn−1xan−1 (t)

√
η (x)

ˆ
dt
′
dn−1x

′
an−1

(
t
′
)√

η (x′)

×
(
A0 (x)× c(+) (x)

)
· ∂t∂t′GF (0)

(
t, t
′
)
I
(
A0
(
x
′
)
× c(+)

(
x
′
))

=
iq2

Vc

ˆ
dtdn−1xan−1 (t)

√
η (x)

ˆ
dt
′
dn−1x

′
an−1

(
t
′
)√

η (x′)

×
(
A0 (x)× c(+) (x)

)
·
δ
(
t− t′

)
I

T (t)

(
A0
(
x
′
)
× c(+)

(
x
′
))

=
iq2

Vc

ˆ
dtdn−1xan−1 (t)

√
η (x)

ˆ
dn−1x

′
√
η (x′)

×
(
A0 (x)× c(+) (x)

)
·
(
A0
(
x
′
)
× c(+)

(
x
′
))

I. (3.7.22)
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This construction of an effective action term is encapsulated in the figure below, which shows a

transformation of a Feynman diagram.

Figure 3.1 – This figure was previously published in Ref. [1]. The wavy, dashed and dotted lines respectively
represent the gauge field, the nonzero-mode part of the FP-ghost propagator and its zero-mode part. The
zero-mode contribution to the FP-ghost propagator is integrated out using QA = 0.

3.7.2 The perturbation theory of the CMP

I now obtain this effective action from the CMP, showing it is perturbatively equivalent to the FMP.

The effective action is obtainable from the extra term which appears in the Lagrangian as a result of

the coordinate transformation from B, c, c to B̃, c, c. This term is expressible as thus:

Lextra =
iq2

Vc
an−1 (t)F · F, (3.7.23)

F :=

ˆ
dn−1x

√
η (x)A0 (x)× c(+) (x) , (3.7.24)

F :=

ˆ
dn−1x

√
η (x)A0 (x)× c(+) (x) . (3.7.25)

The associated contribution to the action is therefore

ˆ
dtLextraI =

iq2

Vc

ˆ
dtan−1 (t) dn−1x

√
η (x)A0 (x)× c(+) (x) ·

dn−1x
′
√
η (x′)A0

(
x
′
)
× c(+)

(
x
′
)
I

= Sextra. (3.7.26)

It is worth discussing another way to obtain the effective action in the CMP, because of the thereby

“obvious” perturbation-theoretic interpretation. The Lagrangian’s interaction term is

− iq
ˆ

dn−1x
√
γ∂µc ·Aµ × c. (3.7.27)

Imposing QA = 0, if ∂ic = ∂ic = 0 then the left-hand integral is

− iq
(ˆ

dn−1x
√
γ∂0c×A0

(+)

)
· c = 0. (3.7.28)

So the interaction term survives only if c and/or c is space-dependent, i.e. if and only if at least one

of c, c is not identical with its zero mode. Thus Lextra is attributable to the perturbation the theory’s

FP-(anti)ghost sector. The interaction term in perturbation theory may be written as −iHint, so the

factor in the ghost loop due to GF (0)

(
t, t
′
)

is
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q2

ˆ
dtdn−1xan−1 (t)

√
η (x)

ˆ
dt
′
dn−1x

′
an−1

(
t
′
)√

η (x′)×(
Aµ (x)× c(+) (x)

)
· ∂µ∂ν′GF (0)

(
t, t
′
)
I
(
Aν
′ (
x
′
)
× c(+)

(
x
′
))

. (3.7.29)

Substituting Eq. (3.7.15) in Eq. (3.7.29) simplifies the latter to i times the right-hand side of Eq.

(3.7.22). This expression is equal to both −i
´

dtHint = i
´

dtLint (by the above argument) and iSextra

(by inspection of Eq. (3.7.22)), where Sextra is as in the FMP. Thus

Sextra =

ˆ
dtLint, (3.7.30)

establishing perturbative equivalence.

3.8 The flat static torus and de Sitter space revisited

Ref. [1]’s Appendices E and F work in the synchronous gauge, and denote the perturbative vacuum

state by |0〉. These appendices respectively consider the flat static torus and de Sitter space, and

are concerned with the behaviours of
[
A0(0) (t) , Ȧ0(0)

(
t
′
)]
,
〈

0|
[
A0(0) (t)

]2 |0〉 . (In particular, Ap-

pendix F uses the CMP to obtain
〈

0|
[
A0(0) (t)

]2 |0〉, and is concerned with verifying that known

two-point functions compute the same value [50, 82, 83, 84].) Since Aµ has no analogue in scalar

field theory, it was not possible to discuss this material in Chapter 1.

Time-translation invariance requires A0(0) (t) |0〉 = 0 for all t. In Sec. 3.8.1, I summarise a finding in

Ref. [1] that this result is obtainable in the flat static torus, provided one works in the Landau gauge.

In Sec. 3.8.2, I discuss the analogous case of de Sitter space. In Ref. [1], for brevity Dr Higuchi and

I only considered the n ≥ 4 case. The n = 2 and n = 3 cases require separate calculations. I present

these, respectively, in Secs. 3.8.3 and 3.8.4. I also present the n ≥ 4 case in Sec. 3.8.5.

3.8.1 Comments on the flat static torus

On the flat static torus, the equation of motion of A0 forces the usual zero mode form of a scalar field.

Quantising gives

A0(0) (t) =
Q̂+ tP̂√

V
(3.8.1)

for spacetime-constant operators P̂ , Q̂ (V is also constant, since ȧ = 0 on the flat static torus). Hence

|0〉 is time-translation invariant if and only if P̂ = 0, in which case Ȧ0(0)

(
t
′
)

= 0. But it is shown that

[
A0(0) (t) , Ȧ0(0)

(
t
′
)]

= − iα0

V
, (3.8.2)

so outside the Landau gauge either |0〉 loses its time-translation invariance or the equal-time propag-

ator
〈

0|
[
A0(0) (t)

]2 |0〉 diverges. However, in the Landau gauge

0 =
1

V

[
Q̂+ tP̂ , P̂

]
=

1

V

[
Q̂, P̂

]
, (3.8.3)

which is consistent with P̂ = 0 and the requirement that A0(0) (t) |0〉 = 0 for all t.
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3.8.2 Analogous comments on de Sitter space

The treatment in Appendix F of Ref. [1] observes that in de Sitter space

[
A0(0) (t) , Ȧ0(0) (t)

]
= − iα0

U (t)
, (3.8.4)

where

U (t) :=
2πn/2 coshn−1Ht

Γ
(
n
2

)
Hn−1

∝ V (t) (3.8.5)

(b0 was defined in Eq. (1.8.5)). The equivalent of Eq. (3.8.1) is

A0(0) (t) = Φ (t) a+ Φ∗ (t) a†, Φ (t) :=
ib0 +

´ t
0
U (τ) dτ

U (t)
√

2b0
, (3.8.6)

with a† a spacetime-constant operator satisfying
[
a, a†

]
= −α0 and a |0〉 = 0. This last condition is

equivalent, for any α0 6= 0, to the α0-independent condition

{
Φ∗∂0

[
UA0(0)

]
−
UA0(0)√

2b0

}
|0〉 = 0. (3.8.7)

It is therefore natural to demand Eq. (3.8.7) when α0 = 0. Appendix F of Ref. [1] proves that this

requirement is equivalent to 〈
0|
[
A0(0) (t)

]2 |0〉 = − α0b0

2 [U (0)]
2 (3.8.8)

(which is proportional to Hn−2). Eq. (3.8.8) was verified in the Appendix for n ≥ 4 only. The

cases n ∈ {2, 3} follow by a calculation that was not made explicit, but the necessary method was

described. The rest of this section is concerned with presenting the details of this method for these

cases. To be precise, I must show that

〈
0|
[
A0(0) (t)

]2 |0〉 =

 −α0

4π n = 2

−Hα0

32 n = 3
. (3.8.9)

I check the cases n = 2, n = 3, n ≥ 4 separately in the next three subsections. Throughout I make

use of numbered equations and previously unused notation that, unless stated otherwise, are taken

from Ref. [84].

3.8.3 The case n = 2

For n = 2,

〈
0|
[
A0(0) (0)

]2 |0〉 =
1

8π2

ˆ 2π

0

dχ

[
1 + (1 + α0)

ln
(
1− cos2 χ

2

)
2 cos2 χ

2

]
.

(3.8.10)

This result can be written as

〈
0|
[
A0(0) (0)

]2 |0〉 = A+B (1 + α0) = A+B +Bα0, (3.8.11)

89



CHAPTER 3. APPLYING THE CMP TO YANG–MILLS THEORY

with constants

A :=
1

4π
, B :=

1

8π2

ˆ 2π

0

dχ
ln
(
1− cos2 χ

2

)
2 cos2 χ

2

. (3.8.12)

This result is proportional to α0 if and only if A + B = 0 i.e. if and only if B = − 1
4π , in which case

the result is simply −α0

4π as required. So the entire problem reduces to proving that

ˆ 2π

0

dχ
ln
(
1− cos2 χ

2

)
2 cos2 χ

2

= −2π. (3.8.13)

Substituting θ = χ
2 , this becomes

ˆ π

0

dθ
ln
(
1− cos2 θ

)
cos2 θ

= −2π. (3.8.14)

Let u = ln sin2 θ, v = tan θ; integrating by parts, the desired integral is

lim
ε→0+

{[
tan θ ln sin2 θ

]π−ε
ε
−
ˆ π−ε

0

2dθ
}

= lim
ε→0+

{
tan (π − ε) ln sin2 (π − ε)

− tan ε ln sin2 ε
}
− 2π

= −2π − 2 lim
ε→0+

tan ε ln
tan2 ε

1 + tan2 ε

= −2π − 2 lim
δ→0+

δ ln
δ2

1 + δ2

= −2π − 4 lim
δ→0+

δ ln δ

= −2π.� (3.8.15)

3.8.4 The case n = 3

From Ref. [84], for n = 3〈
0| [A0 (0)]

2 |0
〉

= − H

(4π)
3/2

A (Z) = − H

8π3/2
A (Z) , (3.8.16)

where from Eqs. (C4a) and (C5)

√
π sin θA (Z) =

1

3

d
dθ
((
π2 − θ2

)
θ cot θ

)
+ (α0 + 2) θ, (3.8.17)

with cos2 χ
2 = Z = − cos θ. Thus

〈
0|
[
A0(0) (0)

]2 |0〉 =
1

4π

ˆ 2π

0

dφ
ˆ π

0

dθ sin θ
〈

0| [A0 (0)]
2 |0
〉

= − H

16π3/2

ˆ π

0

dθ sin θA (Z)

= − H

16π2

ˆ π

0

dθ
{

(α0 + 2) θ + +
1

3

d
dθ
((
π2 − θ2

)
θ cot θ

)}
. (3.8.18)
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To evaluate
[(
π2 − θ2

)
θ cot θ

]π
0

, one may use the fact that limθ→0 θ cot θ = 1 and

lim
θ→π

(
π2 − θ2

)
cot θ = lim

θ→π
(π − θ) (π + θ) cot θ = 2π lim

θ→π
(π − θ) cot θ = −2π lim

ϑ:=π−θ→0
ϑ cotϑ = −2π,

(3.8.19)

so

[(
π2 − θ2

)
θ cot θ

]π
0

= −3π2, (3.8.20)ˆ π

0

dθ
{

1

3

d
dθ
((
π2 − θ2

)
θ cot θ

)
+ (α0 + 2) θ

}
=
π2α0

2
, (3.8.21)〈

0|
[
A0(0) (0)

]2 |0〉 = −Hα0

32
, (3.8.22)

as required.

3.8.5 The case n ≥ 4

For n ≥ 4 the two-point function is

∆µν′

(
x, x

′
)

=
n− 2

n− 3
H−2D√n−2H (Z) ∂µ∂ν′Z

+
H−2

n− 3

∂D√n−2H (Z)

∂Z
∂µZ∂ν′Z

+

(
α0 −

n− 1

n− 3

)
∂µ∂ν′ lim

M→0+
∂2
M [DM (Z)−DM (−1)] . (3.8.23)

When t = t
′

= 0 we have ∂tZ = 0, ∂t∂t′Z = −H2. The normalised zero mode is

G0 (t) =

√
Γ (n− 2)

2HV (0)
sech

n
2−1HtP−

n−2
2

n−4
2

(i sinhHt) (3.8.24)

(note the use of an associated Legendre function), and

〈
0|
[
A0(0) (0)

]2 |0〉 = −n− 2

n− 3
|G0 (0)|2 −

(
α0 −

n− 1

n− 3

)
lim

M→0+
∂M2

∣∣∣Ġ0 (0)
∣∣∣2 . (3.8.25)

The identities

P−µν =
2−µ
√
π

Γ
(
µ+ν

2 + 1
)

Γ
(
µ−ν+1

2

) , Γ (2z) =
22z−1

√
π

Γ (z) Γ

(
z +

1

2

)
(3.8.26)

imply

|G0 (0)|2 =
(n− 1) b0

2 (n− 2) [V (0)]
2 , lim

M→0+
∂M2

∣∣∣Ġ0 (0)
∣∣∣2 =

b0

[V (0)]
2 . (3.8.27)

This can be used to obtain Eq. (3.8.8).

3.9 Related appendices

The calculations in Sec. 3.5 show that the Hamiltonian formalism may be revised to contain no zero

modes. New expressions for the Hamiltonian and Lagrangian are obtained. These are not simply

due to a replacement B, c, c → B̃(0), c(0), c(0); the Lagrangian and Hamiltonian each also contain a
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new term, viz. Sec. 3.6. I discuss the perturbation-theoretic implications of this in Sec. 3.7. The FMP

and CMP are equivalent in perturbation theory.

Let T be a Hermitian canonical field for which H does not depend on T(0). A Hamilton’s equation

implies πT(0)
∝ δ

δY(0)
is conserved, and setting this conserved charge to 0 on all physical states implies

their Schrödinger wave functionals are Y(0)-independent. These states then respect the symmetries

which these conservation laws generate. Denote the wave functional Ψ;
´

dT(0)Ψ
†Ψ is then infinite

(unless Ψ = 0) for bosonic T(0) and zero for fermionic T(0), since Grassmann variables satisfy the nor-

malisation condition
´

dθ = 0. Physical states therefore do not have a finite positive norm. Indeed,〈
Ψ|
[
πT(0)

, T(0)

]
± |Ψ

〉
is a linear combination of the vanishing or infinite quantity

〈
Ψ|T(0)πT(0)

|Ψ
〉

and

its complex conjugate, and hence is zero or infinite. Thus 〈Ψ|Ψ〉 is proportional to this, and is zero or

infinite because
[
πT(0)

, T(0)

]
± is a nonzero multiple of the identity operator.

However, there is a resolution to this. Because Ψ is Y(0)-independent, the
´

dY(0) integration oper-

ator may be deleted from the pseudo-inner product. Such deletions revise the product, potentially

allowing for a finitely positive-norm physical state. Matrix representations of pseudo-inner products

can be used to find which pseudo-norms could allow physical states to have a finite positive norm

(see Appendix B), but it remains to be shown that the revised pseudo-norms take the required forms.

The treatment in this Chapter does not use Dirac brackets, but it eventually must [81] because of two

constraints on the phase space, viz.

πA0
= 0, πB +

√
|g|A0 = 0 (3.9.1)

(deriving the first of these requires inclusion of the − 1
4FµνF

µν = − 1
2∇µAνF

µν term in the scalar

Lagrangian density). I address this in Appendix C.

If Q1, Q2 are Noether charges, [Q1, Q2] should also be conserved. If the CMP sets Qi |ψ〉 = 0 for

i ∈ {1, 2} and any physical state |ψ〉, then [Q1, Q2]± |ψ〉 = 0 should also hold for all physical

states |ψ〉 for consistency. This implies the anticommutators of pairs of conserved fermionic charges,

and the commutators of conserved bosonic charges with conserved charges, should all be linear

combinations of elements of a basis of the vector space of conserved charges. In other words, taking

(anti)commutators should not generate “new” Noether charges linearly independent of pre-existing

ones. In Appendix D, I verify this result for Yang–Mills theory and perturbative gravity.
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Chapter 4 Applying the CMP to

perturbative gravity

4.1 Comparison of Chapters 3 and 4

The procedure of this chapter is very similar to that of Chapter 3, because the zero mode problems

these two chapters consider have many features in common:

• The infrared problem requires relevant modes of the FP-(anti)ghost fields to be obviated from

the formalism;

• These modes and their conjugate momenta can be expressed in the forms discussed in Sec. 3.2;

• The zero modes of Bµ, cµ, cµ are not all simultaneously cyclic in the usual Lagrangian form-

alism, but this can be remedied by appropriately redefining the Nakanishi–Lautrup auxiliary

field;

• This redefinition of the Nakanishi–Lautrup auxiliary field causes new terms to appear in the

Hamiltonian and Lagrangian;

• These terms can be used to prove that the FMP and CMP are perturbatively equivalent.

These facts motivate a structure for this chapter that is analogous to that of Chapter 3.

In Sec. 4.2, which is analogous to Sec. 3.2, I complete the construction of zero modes for perturbative

gravity by obtaining ηAµ that satisfy Eq. (3.2.25). In Sec. 4.3, which is analogous to Sec. 3.3, I

review conservation laws to motivate a redefinition of the Nakanishi–Lautrup auxiliary field. In

Sec. 4.4, which is analogous to Sec. 3.4, I obtain an appropriate redefinition of the Nakanishi–

Lautrup auxiliary field. There is a complication compared with the Yang–Mills case; the shift in the

Nakanishi–Lautrup auxiliary field is dependent on the first-order derivatives of the FP-(anti)ghost

fields.

In Sec. 4.5, which is analogous to Secs. 3.5 , I compute the Lagrangian density in a revised formalism

that uses B̃µ, cµ, cµ instead of Bµ, cµ, cµ. (Sec. 4.5 also computes an extra term in the Lagrangian,

in analogy with a result in Sec. 3.6.) Unlike the Bµ, cµ, cµ-based formalism, the B̃µ, cµ, cµ-based

formalism obtains a Lagrangian density which features second-order derivatives. The Legendre

transform can be modified so that it is still possible to define a Hamiltonian formalism, whose

Hamilton’s equations are equivalent to the Euler–Lagrange equations of a Lagrangian formalism

containing second-order derivatives. This will be discussed in Sec. 4.6.

In Sec. 4.7, which is analogous to Sec. 3.7, I show that the FMP and CMP are perturbatively

equivalent. To do this, I must review some standard facts about perturbation theory. Although
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this treatment is general, there is also much that is worth saying about the flat static torus as a special

case. I postpone this treatment to Appendix H.

The treatment of the previous chapter requires an analysis of Dirac brackets to be truly rigorous.

Such an analysis is offered in Appendix C. I have also analysed the Dirac brackets of perturbative

gravity, in Appendix C.3.

4.2 The ηAµ

This section considers the zero mode decomposition of a vector field φµ and its conjugate momentum

density. In Sec. 3.2, I defined these as thus:

πν(0) (t, x) := FAν (t, x)

ˆ
dn−1wGσA (t, w)πσ (t, w) , (4.2.1)

φµ(0) (t, y) := GµB (t, y)

ˆ
dn−1zFBρ (t, z)φρ (t, z) , (4.2.2)

πν(+) (t, x) := πν (t, x)− πν(0) (t, x) , (4.2.3)

φµ(+) (t, y) := φµ (t, y)− φµ(0) (t, y) (4.2.4)

with

FAµ (t, x) :=
g00 (t, x)

√
|g (t, x)|ηAµ (t, x)

V (t)
, GνA (t, x) := ξνA (t, x) (4.2.5)

so that ˆ
dn−1zFAa (t, z)GaB (t, z) = δAB (4.2.6)

provided that the vectors ηAµ satisfy Eq. (3.2.25). A simple calculation obtains an explicit example

of such ηAµ . In Chapter 3, I simplified the Yang–Mills Lagrangian density to only include terms

attributable to the Faddeev–Popov method, and I do the same for perturbative gravity hereafter. The

resulting scalar Lagrangian density may be written as

L0 :=
α0

2
BνBν −∇µBνκHµν − i∇µcνZµν (4.2.7)

where55

zρσ := £cgfρσ =
[
Q, gfρσ

]
= [Q, κhρσ] , (4.2.8)

Zµν := γρσµνzρσ = [Q, κHµν ] . (4.2.9)

55I have introduced Zµν as a convenient abbreviation for subsequent formalism. Similar approaches have occurred before.
Ref. [39] writes

√
|g|Zµν as Dµνρcρ, where Dµνρ is a differential operator. Since Ref. [39] asumes the unperturbed metric

gµν is that of Minkowski space, it writes Dµνρ in terms of partial derivatives instead of covariant ones. Also, Ref. [39]
defines Dµνρ for the de Donder gauge only; like Ref. [48], the existence of other gauges is not noted. The generalisation to
curved spacetimes and other gauges is trivial.

Ref. [59] has a similar approach, which is applicable in arbitrary spacetimes and for any k. Since a total derivative may
be added to L0, one may replace −i∇νcµZµν with icµ∇νZµν . Ref. [59] then writes i∇νZµν as Mµνcν , with Mµν a
second-order differential operator expressed in terms of covariant derivatives. (If Dµνρ is appropriately generalised with

covariant derivatives, we have Mµν = i∇α
(√
|g|−1

Dαµν

)
.) I have avoided such second-order derivatives herein, as they

unnecessarily complicate the Legendre transform that obtains the Hamiltonian.

However, the redefinition of the Nakanishi–Lautrup auxiliary field will ultimately introduce such complications elsewhere.
I show how to remedy this in Sec. 4.6.
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Thus Zµν is symmetric, and the equation ∇µZµν = 0 is both the Euler–Lagrange equation obtained

by varying cν and the BRST-transform of the Euler–Lagrange equation κ∇µHµν = 0 obtained by

varying Bν . Thus ξνZµν is a conserved current for any Killing vector field, and each
´
x
ξAνZ

0ν is a

conserved charge. These are analogous to the conserved charges
´
x
D0ca for Yang–Mills theory; note

that in both cases there is a vector space of charges bearing one Lie algebra index. By inspection

zρσ = κcα∇αhρσ +∇βcα
(
δβρ g

f
ασ + δβσg

f
ρα

)
(4.2.10)

so

Zµν = Kβµ
να∇βcα + κcα∇αHµ

ν , K
βµ
να := gλµγρσλν

(
δβρ g

f
ασ + δβσg

f
ρα

)
. (4.2.11)

Define also

K̂βµ
να := gλµγρσλν

(
δβρ gασ + δβσgρα

)
, (4.2.12)

the non-interacting value of Kβµ
να . Note that

K̂00
να = gλ0γ0σ

λνgασ + gλ0γρ0λνgρα = g00gνα + (1− 2k) δ0
νδ

0
α (4.2.13)

is ν ↔ α–symmetric, and especially simple in the de Donder gauge. I now introduce two matrices

MBC (t) :=

ˆ
x

ξνBK
00
ναξ

α
C , M̂BC (t) :=

ˆ
x

ξνBK̂
00
ναξ

α
C . (4.2.14)

The motivation for an interest in the matrix MBC is given by its role in removing zero modes from

the Lagrangian density of BRST-quantised perturbative gravity, viz. Sec. 4.5. The motivation for an

interest in M̂BC , however, concerns the choice of the ηAµ in this section. The existence of inverses is

crucial, viz. (
M̂−1

)AB
(t) M̂BC (t) =

(
M−1

)AB
(t)MBC (t) = δAC . (4.2.15)

Since each entry of MBC is a polynomial in κ of degree ≤ 1, detMBC is a polynomial in κ, which

vanishes at κ = 0 if and only if M̂BC is not invertible. However, in Appendix G I show that M̂BC

is in fact invertible, at least for the flat static torus and de Sitter space.56 In these cases, detMBC is a

non-constant polynomial, so MBC is invertible for all but finitely many κ.

If M̂BC is invertible, Eq. (3.2.25) may be rewritten as

ˆ
x

ηAµ ξ
µ
C

N2V
=
(
M̂−1

)AB
(t)

ˆ
x

ξνBK̂
00
νµξ

µ
C

=

ˆ
x

(
M̂−1

)AB
(t) ξνBK̂

00
νµξ

µ
C , (4.2.16)

and so it suffices to take

ηAµ := N2V
(
M̂−1

)AB
ξνBK̂

00
νµ. (4.2.17)

Thus

FAµ =
√
|g|
(
M̂−1

)AB
ξνBK̂

00
νµ, φ

µ
(0) = ξµA

(
M̂−1

)AB ˆ
x

ξνBK̂
00
νρφ

ρ. (4.2.18)

56Strictly speaking, I show this is so if appropriate choices are made. For example, for the flat static torus I set ξµA = δµA and
k < 1.

95
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The zero modes of Bµ, cµ, cµ may then be written as

Bµ(0) = βAξµA, c
µ
(0) = θAξµA, c

µ
(0) = θ

A
ξµA (4.2.19)

where

βA :=
(
M̂−1

)AB ˆ
x

ξνBK̂
00
νρB

ρ, θA :=
(
M̂−1

)AB ˆ
x

ξνBK̂
00
νρc

ρ, θ
A

:=
(
M̂−1

)AB ˆ
x

ξνBK̂
00
νρc

ρ. (4.2.20)

If the hats were dropped from these equations, the resulting definition of zero modes would be

very different, involving a mixing of the zero modes and the perturbation metric. There are several

reasons this would be an undesirable definition of zero modes:

• The decoupling of fields inherent in the treatment in Sec. 3.2 would not work, since we would

have
[
θ̂A, π̂κhµν

]
6= 0 (these hats denote a promotion to operators);

• The mixing would complicate the perturbation theory.

4.3 Conserved currents and symmetries

Each symmetric divergenceless tensor Xµν provides a vector space of conserved currents ξνXµν .

Examples of such Xµν include κHµν and its BRST transform Zµν . The gauge choice k = 1
2 ob-

tains anti-BRST invariance, so ξν
[
Q, κHµν

]
, ξν

{
Q,
[
Q, κHµν

]}
should also be conserved currents.

Since other gauge choices violate anti-BRST invariance, conserved currents should be obtained by a

method that does not rely on a consideration of anti-BRST transformations. There is more than one

standard method of obtaining Noether currents; I will borrow the machinery of Eqs. (9.93)–(9.96)

of Peskin and Schroeder’s Ref. [27]. Let Ta denote an arbitrary canonical field (no assumptions

are made about the meaning of the index a). Its spacetime indices are dropped herein, as in the

discussion of Sec. 1.3. If a transformation of the form

δTa (x) = α∆Ta (x) (4.3.1)

is action-preserving for a spacetime-constant scalar α, this transformation generates a global sym-

metry for which the scalar Lagrangian density L0 satisfies

δL0 = α∇µJ µ. (4.3.2)

For local α (x) this result generalises to

δL0 = α∇µJ µ + (()∇µα) ∆Ta
∂L0

∂∇µTa
, (4.3.3)

where summation over a indices is implicit throughout. Hence

δL0 = α∇µ
(
J µ −∆Ta

∂L0

∂∇µTa

)
+∇µ

(
α∆Ta

∂L0

∂∇µTa

)
. (4.3.4)
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Since the total derivative on the last line makes no contribution to the action, the stationary action

principle gives

0 =
1√
|g|

δS

δα
= ∇µjµ, jµ := J µ −∆Ta

∂L0

∂∇µTa
. (4.3.5)

Thus jµ is a conserved current, and it can be obtained as the α coefficient in terms in δL0 in which α

appears undifferentiated. This method can be used to obtain the global gauge current of Yang–Mills

theory, a conserved current in the Landau gauge provided there is no Aµ · jµ term. The global gauge

transformation may be written as

∆Aν = −1

q
Dνα, ∆B = α×B, ∆c = α× c, ∆c = α× c, (4.3.6)

where α has become a multiplet-valued field. (The alternative choice ∆Aν = α×Aν may seem more

natural, but is avoided here because ∆Aν = − 1
qDνα preserves

√
|gf | (R− 2Λ).) Thus

∆ϕa
∂L0

∂∇µϕa
= −1

q
∇να · F νµ −Aν × α · F νµ −Aµ · α×B − iα× c ·Dµc+ iα× c · ∇µc

= α · Jµgg −
1

q
∇να · F νµ, (4.3.7)

Jµgg := Aν × F νµ +Aµ ×B − ic×Dµc+ i∇µc× c. (4.3.8)

Thus Jµgg is the conserved current associated with the global gauge transformation. Unsurprisingly,

it is proportional to
{
Q, [Q, Aµ]

}
[40].

I return now to perturbative gravity. I show in Sec. 4.4 that one example of an action-preserving

transformation is

∆cµ = θξµ, ∆Bµ = −iθ£ξcµ, (4.3.9)

with

∆LBcc0 = θ∇µ
(
iξµ∇αcβκHαβ

)
. (4.3.10)

The resulting Noether current is

ξα
∂L0

∂∇µcα
− i£ξcα

∂L0

∂∇µBα
− iξµ∇αcβκHαβ

= ξαiKµβ
να∇βcν + i£ξcακHµ

α − iξµ∇αcβκHαβ . (4.3.11)

(This is, in the anti-BRST invariant gauge choice k = 1
2 , analogous toDµc.) Another action-preserving

transformation is the spacetime isometry transformation. It may be written as57

∆κhµν = £αξgfµν , ∆Bµ = £αξBµ, ∆cµ = £αξcµ, ∆cµ = £αξcµ. (4.3.12)

Thus

∆Ta
∂L0

∂∇µTa
= −iγαβγδ

(
∇γcδ

)
cµ£Λg

f
αβ − κH

µ
ν £ΛB

ν + iZµν £Λc
ν − i

∂Zαβ
∂∇µcν

∇αcβ£Λc
ν . (4.3.13)

(I have placed the ∆Ta factors on the right of terms on the right-hand side, which causes sign changes

57The reason ∆κhµν = £αξg
f
µν is used instead of ∆κhµν = κ£αξhµν is to ensure that R − 2Λ is subject to a gauge

transformation, and hence is invariant. In fact, this is true for any transformation of the form ∆κhµν = £V g
f
µν for some

vector field V ρ.
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when Ta is a fermionic field.) The contribution proportional to undifferentiated α may be written as

αCµ (ξ) where

Cµ (ξ) := −iγαβγδ
(
∇γcδ

)
cµ£ξκhαβ − κHµ

ν £ξBν + iZµν £ξcν + i
∂Zαβ
∂∇µcν

∇αcβ£ξcν

= −i
(
∇γcδ

)
cµ£ξκHγδ − κHµ

ν £ξBν + iZµν £ξcν − i
∂Zαβ
∂∇µcν

∇αcβ£ξcν . (4.3.14)

Thus the Cµ (ξ) are conserved currents. The conserved charges these generate ought to be obtain-

able by BRST-transforming the conserved charges generated by the Noether current obtained in Eq.

(4.3.11). Indeed, this is verified in Appendix E. Further calculations show that anticommutators of

pairs of fermionic conserved charges and commutators of bosonic conserved charges with conserved

charges introduce no new conserved charges. These calculations are presented in Appendix D. Its

placement reflects the fact that it is the only appendix which contains calculations for both Yang–

Mills theory and perturbative gravity, which are respectively otherwise considered in earlier and

later appendices.

4.4 Redefinition of the Nakanishi–Lautrup auxiliary field

In Sec. 4.4.1, I define a field B̃µ analogous to B̃. As in the Yang–Mills case, the shift in the Nakanishi–

Lautrup auxiliary field is linear in the FP-ghosts’ zero modes rather than the full FP-ghost. In

Yang–Mills theory, the zero modes are the non-local spatially uniform scalar functions ca(0) (t). In

perturbative gravity, the zero modes are the non-local spatially uniform scalar functions θA (t).

4.4.1 Three action-preserving transformations

The transformations δBν = βξν , δcν = θξν (for spacetime-constant β, θ with θ Grassmann-valued)

both preserve L0, since ∇µξν is antisymmetric so ∇µξνHµν = 0, ∇µξνZµν = 0. These transform-

ations generate the respective conserved currents ξνκHµν , ξνZ
µν . However, as with Yang–Mills

theory, an analogous shift of the FP-ghost requires a more detailed discussion. The transformation

δcν = θξν for Grassmann-valued spacetime-constant θ effects

δcν(0) = θξν , (4.4.1)

δ£cgfρσ = £θξgfρσ = θκ£ξhρσ, (4.4.2)

δZµν = θκ
(
£ξHµν −

(
£ξγρσµν

)
hρσ
)

= θκ£ξHµν , (4.4.3)

δ (−i∇µcνZµν) = −i∇µcνθκ£ξHµν . (4.4.4)

The next step is to simultaneously transform Bµ in an appropriate manner. The action will be

preserved if this is done properly; L0 might not be, but it can vary by up to a total derivative. To

preserve L0, which would be a more ambitious aim, would require δ (∇µBνHµν) = −i∇µcνθ£ξHµν

(I have cancelled a −κ factor in the gauge-fixing term from both sides). This result is not simply

proportional to Hµν , so preserving L0 will not be possible. But £ξ (∇µcνHµν) = ∇γ (ξγ∇µcνHµν) is a

total derivative, so to preserve the action requires only that

δ (∇µBνHµν) = i (£ξ∇µcν) θHµν = −i∇µ (£θξcν)Hµν , (4.4.5)
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which is equivalent to δLBcc0 = iθ£ξ (∇µcνκHµν). It therefore suffices to choose

δBν = −i£θξcν = −i£δc(0)
cν . (4.4.6)

Indeed, since

δ∇µ
(
−icµ∇αcβκHαβ

)
= ∇µ

(
−iθξµ∇αcβκHαβ

)
= −iθ£ξ

(
∇αcβκHαβ

)
, (4.4.7)

there is an invariant choice for the scalar Lagrangian density, namelyL1 := LBcc0 −i∇µ
(
cµ∇αcβκHαβ

)
.

Note that cµ∇αcβκHαβ is preserved by δBµ = βξµ and δcµ = θξµ if β, θ are spacetime-constant,

because∇αξβ is antisymmetric. In terms of the θA (t) introduced in Eq. (4.2.20) I now define

B̃ν := Bν + iθA (t) £ξAc
ν , (4.4.8)

β̃A :=
(
M̂−1

)AB ˆ
x

ξνBK̂
00
νρB̃

ρ, (4.4.9)

B̃µ(0) := β̃AξµA, (4.4.10)

B̃µ(+) := B̃µ − B̃µ(+), (4.4.11)

so δB̃ν = 0. Thus a shift, by a spacetime-constant multiple of ξµ, in any of B̃µ, cµ, cµ is action-

preserving.

The term iθA£ξAc
ν is analogous to −iqc(0) × c = B̃ − B in Yang–Mills theory58, and in principle one

can write £c(0)
cν = cρ(0)F

ν
ρσc

σ for appropriate operators F νρσ analogous to the spacetime-constant

structure constants fabc introduced in Sec. 2.1.3. (Explicitly F νρσ := δνσ
−→
∇ρ − δνρ

←−
∇σ .) The fact that

these expressions are first-order differential operators results in second-order derivatives appearing

in L0, since

∇µBν = ∇µ
(
B̃ν − iθA£ξAc

ν
)

= ∇µ
(
B̃ν − iθAξρA∇ρc

ν + iθAcρ∇ρξνA
)

= ∇µB̃ν − i∇µθAξρA∇ρc
ν + i∇µθAcρ∇ρξνA

− iθA (∇µξρA∇ρc
ν −∇µcρ∇ρξνA + ξρA∇

µ∇ρcν − cρ∇µ∇ρξνA) . (4.4.12)

4.4.2 General zero modes

Consider the more general transformations

δB̃µ = β̃A0 (t) ξµA, (4.4.13)

δcµ = θA0 (t) ξµA, (4.4.14)

δcµ = θ
A

0 (t) ξµA, (4.4.15)

58The reason there is a factor of q in the Yang–Mills result but no factor of κ in the analogous result for perturbative gravity
is a result of a subtle difference in the ways the Nakanishi–Lautrup auxiliary fields have been defined. The −∇µBνκHµν
term in the scalar Lagrangian density of perturbative gravity is analogous to the Yang–Mills term −∇µB · Aµ. Note that,
unlike the FP-ghost term −i∇µc · (∇µc+ qAµ × c), this term has no q-dependence in the term proportional to Aµ. This
could have been remedied if the definition of B had been divided by q, viz. B := − (α0q)

−1∇µAµ. This would result in a
−q∇µB · Aµ term, which would be more properly analogous to −∇µBνκHµν . However, because B would be divided by
q in this approach, so would B̃ and B̃ −B, and the latter would then be the q-independent quantity −ic× c(0).
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with spatially uniform scalar functions β̃A0 , θA0 , θ
A

0 . The transformation in Eq. (4.4.13) may be restated

as δBµ = β̃A0 (t) ξµA, so that

δ (∇µBν) = β̃A0 ∇µξνA + g0µ ˙̃
β0

A

ξνA, (4.4.16)

δ (−∇µBνκHµν) = − ˙̃
β
A

0 ξ
ν
AκH

0
ν , (4.4.17)

δ

ˆ
x

(−∇µBνκHµν) = − ˙̃
β
A

0

ˆ
x

ξνAκH
0
ν . (4.4.18)

The CMP sets
´
x
ξνAκH

0
ν = 0, so the Lagrangian is unchanged. A similar argument establishes the

same for the transformation in Eq. (4.4.15). The transformation in Eq. (4.4.14) may be restated in

terms of Bµ, cµ, cµ as

δBµ = −iθA0 (t) £ξAc
ν , (4.4.19)

δcµ = θA0 (t) ξµA. (4.4.20)

Hence

δLBcc0 = δ
(
−∇µBνκHµν − i∇νcµ

(
Kβν
µα∇βcα + cακ∇αHν

µ

))
= i∇µ

(
θA0 (t) £ξAc

ν
)
κHµν − i∇νcµ

(
Kβν
µα∇β

(
θA0 (t) ξαA

)
+ θA0 (t) ξµAκ∇αH

ν
µ

)
. (4.4.21)

This expression was already established above to reduce to a total derivative if each θA is spacetime-

constant, so the only important terms are multiples of θ̇A.

Not including the Einstein–Hilbert terms, the scalar Lagrangian density may be taken as

− γρσµν
[
∇µ
(
B̃ν − iθA£ξAc

ν
)
κhρσ + i∇µcν£cgfρσ

]
, (4.4.22)

although a total derivative may still be added. The aforementioned choice of L0 includes second-

order derivatives of the FP-antighost, due to the term iθA£ξA (∇µcν)κHµν . This presents a few

complications:

• the proof in Sec. 3.1 that the CMP’s analysis can be equivalently performed in either the

Hamiltonian or Lagrangian formalism assumes the absence of second-order derivatives in L0;

• the absence of second-order derivatives is also assumed in the usual proof that fields and modes

are cyclic if and only if their momenta are conserved;

• and the usual formulation of the Legendre transform and the Hamiltonian formalism requires

a modification, which will be discussed in Sec. 4.6.

Adding a total derivative addresses all these concerns, viz.

L0 = −∇µB̃νκHµν − iκθA (£ξAc
ν)∇µHµν − i∇µcνZµν . (4.4.23)

However, adding ∇µKµ to L0 for some vector field Kµ adds
´
x
K0 to L, so can be expected to shift

the numerical value of the Hamiltonian. Therefore, herein I will not make use of such a modification

of L0. Sec. 4.5 verifies the obviation of β̃A, θA, θ
A

from the action by using

L0 = −∇µ
(
B̃ν − iθA£ξAc

ν
)
κHµν − i∇µcνZµν , (4.4.24)
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which implies the same obviation is also achievable with an alternative choice ofL0 that has the same

action
´
x
L0, viz. Eq. (4.4.23).

4.5 The Lagrangian density without zero modes

The infrared problem for the FP-ghost propagator is due to a zero-mode contribution, viz.

T 〈0| θ̂AξµAθ̂
B

ξνB |0〉 = T
(
〈0| θ̂Aθ̂

B

|0〉 ξµAξ
ν
B

)
(4.5.1)

(note that θA, θ
B

have been promoted to operators). The problem can therefore be thought of in

terms of the scalar fields θA, θ
B

, rather than vector-valued fields. These scalar fields are spatially

uniform, so θA may only appear as θA, θ̇A, θ̈A, and similarly for θ
A

. The challenge is to verify that

these scalar fields are cyclic, i.e. that they do not appear undifferentiated.

In Sec. 4.5.1, I verify zero mode obviation from the Lagrangian is possible, providing we work in

terms of B̃µ, cµ, cµ instead of Bµ, cµ, cµ. Using the Hamiltonian instead would be a difficult first

step. The very definition of the Hamiltonian requires care, because of the second-order derivatives

introduced in L when it is written in terms of B̃µ, cµ, cµ. I obtain the Hamiltonian in Sec. 4.6.

As with Yang–Mills theory, redefining the Nakanishi–Lautrup auxiliary field introduces an extra

term in L. I compute this in Sec. 4.5.2. In fact, the method I use would appear at first to allow two

expressions for this extra term, provided a matrix that I introduce in Eq. (4.5.23) below is invertible.

In Sec. 4.5.3, I show that these expressions would not agree for the flat static torus, so this invertibility

hypothesis is wrong in general.

4.5.1 Proof zero modes can be obviated

The Lagrangian is

L =

ˆ
x

{
−∇µ

(
B̃ν(+) + β̃AξνA − iθA

(
£ξ|Ac

ν
(+) + θ

B
£ξAξ

ν
B + ξνBξ

0
Aθ̇

B
))

κHµν

−i∇µ
(
cν(+) + θ

A
ξνA

)
Zµν

}
. (4.5.2)

Using

ˆ
x

ξνAκH
0
ν = 0,

ˆ
x

ξνAZ
0
ν = 0, ∇µξAν = −∇νξAµ, Hµν = Hνµ, Zµν = Zνµ, [£ξA , ∇β ] = 0, (4.5.3)

and the factor that £ξAξ
µ
B is a Killing vector, to simplify L gives

L =

ˆ
x

{
−∇µB̃ν(+)κHµν − iθ̇A

(
£ξ|Ac

ν
(+) + θ

B
£ξAξ

ν
B + ξνBξ

0
Aθ̇

B
)
κH0

ν

− iθA
(

£ξ|A∇
µcν(+)κHµν + ξνB

(
∇µξ0

Aθ̇
B

κHµν + ξ0
Aθ̈

B

κH0
ν

))
− i
(
∇µcν(+)

)
γρσµν×(

κ
(
cα(+) + θAξαA

)
∇αhρσ +

(
∇βcα(+) +∇βθAξαA + θA∇βξαA

) (
δβρ g

f
ασ + δβσg

f
ρα

))}
.

(4.5.4)
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The θ
B

term is

iθ
B
θ̇A
ˆ
x

{
(£ξAξ

ν
B)κH0

ν

}
= 0, (4.5.5)

as required. For the θA term we return to the Lagrangian. Since Zµν is symmetric, we may rewrite

the FP-ghost term as

− i
ˆ
x

C
µν
Zµν , C

µν
:=
∇µcν +∇νcµ

2
. (4.5.6)

Note that C
µν

is symmetric. Thus

L =

ˆ
x

{
−∇ν

(
B̃µ + iθA£ξAc

µ
)
κHµν − iC

µ

ν

(
Kβν
µα∇β

(
cα(0) + θAξαA

)
+
(
cα(0) + θAξαA

)
κ∇αHν

µ

)}
.

(4.5.7)

The θA term is then

− iθA
ˆ
x

{
£ξA∇νcµκHµν −

(
Kβν
µα∇βξαA + ξαAκH

ν
µ

)
C
µ

ν

}
= iθA

ˆ
x

{
−£ξA

(
κHν

µ

)
+
(
Kβν
µα∇βξαA + ξαAκH

ν
µ

)}
C
µ

ν

= iθA
ˆ
x

{
-£ξA

(
κHν

µ

)
+ Zνµ (cα = ξαA)

}
C
µ

ν , (4.5.8)

where in a slight abuse of notation the function Zνµ (cα) is extended to boson-valued cα. Indeed

Zµν (cα = ξαA) = κξαA∇αHµν + γρσµν∇βξαA
(
δβρ g

f
ασ + δβσg

f
ρα

)
= κξαA∇αHµν , (4.5.9)

so the θA term in L is

iκθA
ˆ
x

{
−£ξAH

ν
µ + ξαA∇αHν

µ

}
C
µ

ν = iκθA
ˆ
x

{
Hα
µ∇αξνA −Hν

α∇αξAµ
}
C
µ

ν

= iκθA
ˆ
x

{
∇α
(
Hα
µ ξ

ν
A

)
−∇α (Hν

αξAµ)
}
C
µ

ν

= iκθA
ˆ
x

∇α
(
Hα
µ ξAν −Hα

ν ξAµ
)
C
µν

= 0, (4.5.10)

as required. (The last line uses the fact that Hα
µ ξAν −Hα

ν ξAµ is antisymmetric.)

It is unsurprising that the above calculations explicitly obviate β̃A, θA, θ
A

. If undifferentiated β̃A

could not be obviated, a spacetime-constant shift in β̃A would preserve ˙̃
β
A

but not S =
´
x
L0. But

such a transformation would add a Killing vector to B̃ν , which preserves ∇µB̃νκHµν . Similarly, θ
A

can be trivially removed. For Eq. (4.4.23)’s choice of L0, δθA = θA0 gives

δL0 = −iκθA0 ((£ξAc
ν)∇µHµν −∇µcν£ξAHµν)

= −iκθA0 (£ξA (cν∇µHµν)−∇µ (cν£ξAHµν)) , (4.5.11)

δS = 0. (4.5.12)

The treatment of differentiated zero modes is not much harder, since in the CMP ˙̃
β
A

0

´
x
ξµAκH

0
µ = 0

and θ̇
A

0

´
x
ξµAZ

0
µ = 0. The θ̇A dependence of L is due to the term

θ̇AΠA, ΠA := i
ˆ
x

ξαAK
0ν
µα∇νcµ. (4.5.13)
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Setting the conserved momentum to zero to complete the obviation is equivalent, in the de Donder

gauge, to setting
´
x
ξαAZ

0

α = 0.

4.5.2 An extra term in the Lagrangian due to the B̃µ, cµ, cµ formalism

The change from Bµ, cµ, cµ to B̃µ, cµ, cµ introduces a new term in the Lagrangian of perturbative

gravity. Let Lextra, LFP respectively denote this extra term and the FP-ghost term. Define

L
(0+)
FP := −i

ˆ
x

∇µcν(0)γ
ρσ
µν£c(+)

gfρσ, (4.5.14)

and define L(00)
FP , L

(+0)
FP , L

(++)
FP similarly. Thus LFP has been split into four parts, with

L
(00)
FP + L

(0+)
FP = −i

ˆ
x

∇µcν(0)γ
ρσ
µν£cgfρσ

= −i
ˆ
x

(
θ
A∇µξνA + g0µθ̇

A

ξνA

)
γρσµν£cgfρσ

= −iθ̇
A
ˆ
x

ξνAg
0µγρσµν£cgfρσ = −iθ̇

A
ˆ
x

ξνAZ
0
ν , (4.5.15)

which vanishes when appropriate conserved charges are set to 0 in the CMP. Since both theBµ, cµ, cµ

and B̃µ, cµ, cµ formalisms retain L(++)
FP (which is independent of zero modes and their derivatives),

only one of the four parts of LFP contributes to Lextra, namely L(+0)
FP . Next I compute an expression

for Lextra that contains no zero modes or derivatives thereof. Since cµ(0) = θAξµA,

∇0c
µ
(0) = θ̇AξµA + θA∇0ξ

µ
A, ∇ic

µ
(0) = θA∇iξµA, (4.5.16)

and

iL(+0)
FP =

ˆ
x

∇νcµ(+)

(
Kβν
µα∇β

(
θAξαA

)
+ κθAξαA∇αHν

µ

)
= AAθ̇

A +BAθ
A (4.5.17)

where

AA :=

ˆ
x

∇νcµ(+)K
0ν
µαξ

α
A, , BA :=

ˆ
x

∇νcµ(+)

(
Kβν
µα∇βξαA + κξαA∇αHν

µ

)
(4.5.18)

are fermionic fields. We can obtain iLextra from iL(+0)
FP by taking account of B̃µ − Bµ, which effects

the replacement

κθA
ˆ
x

∇νcµ(+)ξ
α
A∇αHν

µ → κθA
ˆ
x

∇νcµ(+)

(
ξαA∇αHν

µ − £ξAH
ν
µ

)
= κθA

ˆ
x

∇νcµ(+)

(
∇αξνAHα

µ −∇µξαAHν
α

)
. (4.5.19)

so

iLextra = AAθ̇
A +B

′

Aθ
A (4.5.20)

with

B
′

A =

ˆ
x

∇νcµ(+)

(
Kβν
µα∇βξαA + κ

(
Hα
µ∇αξνA −Hν

α∇µξαA
))

(4.5.21)
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also a fermionic field. Setting conserved charges to 0 as usual,

0 =

ˆ
y

ξµAZ
0
µ

=

ˆ
y

ξµA
(
K00
µα∇0 +Ki0

µα∇i + J0
µα

) (
θBξαB + cα(+)

)
=

ˆ
y

{
θ̇B
(
K00
µαξ

µ
Aξ

α
B

)
+ ξµA

(
θB
(
Kβ0
µα∇β + J0

µα

)
ξαB + J0

µαc
α
(+)

)}
= MAB θ̇

B +NABθ
B + PA (4.5.22)

where

NAB :=

ˆ
y

ξµA
(
Kβ0
µα∇βξαB + κξαB∇αH0

µ

)
, (4.5.23)

PA :=

ˆ
y

ξµA
(
κ∇αH0

µ +Kβ0
µα∇β

)
cα(+). (4.5.24)

Note thatMAB , NAB are c-number valued and independent of the FP-ghost fields, while PA is ghost-

dependent and fermionic. It can be shown that MAB is invertible, at least for the flat static torus and

de Sitter space; see Appendix G. Hence

θ̇C =
(
M−1

)CA
MAB θ̇

B = −
(
M−1

)CA (
NABθ

B + PA
)
, (4.5.25)

iLextra = −AC
(
M−1

)CA (
NABθ

B + PA
)

+B
′

Bθ
B

=
(
B
′

B −AC
(
M−1

)CA
NAB

)
θB −AC

(
M−1

)CA
PA. (4.5.26)

Since θB is cyclic, the θB term vanishes. (Indeed, varying θA in Eq. (4.5.26) obtains an Euler–Lagrange

equation that is equivalent to the fact that theθB coefficient vanishes.) Thus

Lextra = i
(
M−1

)CA
ACPA = i

(
M−1

)CA ˆ
x

K0ν
µα∇νc

µ
(+)ξ

α
C

ˆ
y

ξρA
(
κ∇γH0

ρ +Kβ0
ργ∇β

)
cγ(+), (4.5.27)

a result that is expressed entirely in terms of (+) modes.

4.5.3 A discussion of NAB

That θB is cyclic guarantees it is removable from the Lagrangian formalism. The above calculation

removed θ̇B , thus entirely obviating θB from the effective field theory. The next thing to note is

that there is not an analogous result in terms of NAB . If NAB were also invertible, θB could also be

removed from Lextra using Eq. (4.5.22), viz.

θC =
(
N−1

)CA
NABθ

B = −
(
N−1

)CA (
MAB θ̇

B + PA

)
, (4.5.28)

iLextra = −B
′

C

(
N−1

)CA (
MAB θ̇

B + PA

)
+ABθ

B

=
(
AB −B

′

C

(
N−1

)CA
MAB

)
θ̇B −B

′

C

(
N−1

)CA
PA. (4.5.29)

104



4.6. THE OSTROGRADSKI METHOD’S HAMILTONIAN

By inspection, θB is cyclic in Eq. (4.5.29)’s expression forLextra as required. Indeed, the above removal

of θB implies

B
′T = θTM−1N, −B

′TN−1P = −θTM−1P, B
′TN−1M = θT, (4.5.30)

so either expression for Lextra is independent of both θB and θ̇B , and the two expressions are then

equal, viz. iAC
(
M−1

)CA
PA = iB

′

C

(
N−1

)CA
PA. The fact that the CMP already removes θB from L

should lead us to be suspicious of this alternative approach that makes use of Eq. (4.5.22) to remove

θB . Indeed, the invertibility of NAB would imply that there are two alternative, numerically equal

expressions for Lextra: one in terms of MAB , the other in terms of NAB , viz.

Lextra = i
(
N−1

)CA ˆ
x

∇νcµ(+)

(
Kβν
µα∇βξαC + κ

(
∇αξνCHα

µ −∇µξαCHν
α

)) ˆ
y

ξρA
(
κ∇βH0

ρ +Kγ0
ρα∇γ

)
cβ(+).

(4.5.31)

However, this result is not valid in general. In the flat static torus the basis of the Killing vector fields

may be chosen as ξαA = δαA ∈ ker∇β , so the
´
x

integral on the right-hand side of Eq. (4.5.31) would

vanish. By contrast, the right-hand side of Eq. (4.5.27) is instead equal to the non-vanishing quantity

i
(
M−1

)αρ ˆ
x

K0ν
µα∇νc

µ
(+)

ˆ
y

(
κ∇γH0

ρ +Kβ0
ργ∇β

)
cγ(+). (4.5.32)

This contradiction establishes thatNAB is not, in fact, invertible for a flat static torus. Thus the correct

general expression for Lextra is given by Eq. (4.5.27) instead of Eq. (4.5.31).

4.6 The Ostrogradski method’s Hamiltonian

Theories in which second- or higher-order derivatives of canonical fields appear in the Lagrangian

formalism still admit a Hamiltonian formalism. In classical mechanics, the conjugate momenta used

in the appropriate Legendre formalism are defined by a method due to Mikhail Ostrogradski [85].

This method has been adapted to classical field theory; the notation used herein is adapted from

Ref. [86]. I will only consider theories lacking third- and higher-order derivatives, since no theories

in which such derivatives appear are relevant to this thesis.

In classical mechanics, outside of field theory, the Euler–Lagrange equation is of the form

0 =
∂L

∂q
− d

dt

∂L

∂q̇
+

d2

dt2
∂L

∂q̈
. (4.6.1)

Define q1 := q, q2 := q̇, and treat q1, q2 as independent variables, and define

p1 =
∂L

∂q̇1
− ṗ2, p2 :=

∂L

∂q̇2
. (4.6.2)

The Euler–Lagrange equation is then
∂L

∂q1
= ṗ1. (4.6.3)

Finally, define the Hamiltonian as

H := −L+ q̇1p1 + q̇2p2 = −L+ q̇

(
∂L

∂q̇
− d

dt

∂L

∂q̈

)
+ q̈

∂L

∂q̈1
. (4.6.4)
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Hence

∂H

∂q1
= −∂L

∂q
+

d2

dt2

(
∂L

∂q̈

)
− d

dt

∂L

∂q̇
= −ṗ1, (4.6.5)

∂H

∂q2
= −∂L

∂q̇
+ p1 = − d

dt

∂L

∂q̈
= −ṗ2, (4.6.6)

∂RH

∂Rpi
= q̇i (4.6.7)

(note the use of a right-derivative in the final result; this disambiguation is necessary for fermionic

qi, pi, as noted in Sec. 3.1). The rest of this section is concerned with how to adapt this approach to a

field theory in curved spacetime, so that spatial derivatives also occur and covariant derivatives may

be used instead of partial ones. Throughout a product of covariant derivatives will have the indices

running along the left, viz.
∏2
l=1∇α1

= ∇α1
∇α2

. Consider a scalar Lagrangian density of the form

L0 = L0 (φ, ∇α1
φ, ∇α1

∇α2
φ) (4.6.8)

for some tensor-valued canonical field φ (whose spacetime indices are suppressed herein, as is any

possible dependence of L0 on other canonical fields and their derivatives). The stationary action

principle is

0 = δS =

ˆ
dt
ˆ
x

2∑
k=0

δ
(

k∏
l=1

∇αl

)
φ

∂L0

∂
(∏k

l=1∇αl
)
φ


=

ˆ
dt
ˆ
x

δφ

2∑
k=0

(−1)
k

(
k∏
l=1

∇αk+1−i

)
∂L0

∂
(∏k

l=1∇αl
)
φ

 . (4.6.9)

The Euler–Lagrange equation is therefore

m∑
k=0

(−1)
k

(
k∏
l=1

∇αk+1−i

)
∂L0

∂
(∏k

l=1∇αl
)
φ

 = 0. (4.6.10)

The Ostrogradski method’s coordinates are φ1 := φ, φ2α := ∇αφ. Reduced momentum densities

may be defined as

$1 :=
∂L0

∂∇0φ
−∇α

∂L0

∂∇α∇0φ
, $α

2 :=
∂L0

∂∇α∇0φ
. (4.6.11)

The Euler–Lagrange equation is

0 =
∂L0

∂φ
−∇α

∂L0

∂∇αφ
+∇β∇α

∂L0

∂∇α∇βφ
, (4.6.12)

while the Hamiltonian density is
√
|g|H0 with

H0 := −L0 +∇0φ1$1 +∇0φ2α$
α
2 = −L0 +∇0φ

(
∂L0

∂∇0φ
−∇α

∂L0

∂∇α∇0φ

)
+∇0∇αφ

∂L0

∂∇α∇0φ
,

(4.6.13)
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and the Hamilton’s equations are59

∂RH0

∂R$k
= ∇0φk, (4.6.14)

∂H0

∂φ1
= −∂L0

∂φ
= −∇i

(
∂L0

∂∇iφ
−∇β

∂L0

∂∇β∇iφ

)
−∇0$1, (4.6.15)

∂H0

∂φ2α
= − ∂L0

∂∇αφ
+ δα0

(
∂L0

∂∇0φ
−∇β

∂L0

∂∇β∇0φ

)
, (4.6.16)

∂H0

∂φ20
= −∇β

∂L0

∂∇β∇0φ
= −∇β$β

2 , (4.6.17)

∂H0

∂φ2i
= − ∂L0

∂∇iφ
. (4.6.18)

If φ is a spatially uniform scalar field, such as θA, then the coordinates are φ1, φ20. Hence

$1 =
∂L0

∂φ̇
− d

dt

∂L0

∂φ̈
, (4.6.19)

$2 =
∂L0

∂φ̈
, (4.6.20)

∂RH0

∂R$k
=

dk+1φ

dtk+1
, (4.6.21)

∂H0

∂φ1
= −$̇1, (4.6.22)

∂H0

∂φ20
= −$̇2. (4.6.23)

Therefore, verifying that a spatially uniform scalar field is cyclic, in the Lagrangian or Hamiltonian

formalism, is the same calculation up to a sign change.

The scalar Lagrangian density L0 may be written as

L0 =
(
−∇νB̃µ − i∇νξρA∇ρc

µθA − iξρA∇ν∇ρc
µθA + i∇νcρ∇ρξµAθ

A + icρ∇ν∇ρξµAθ
A
)
κHν

µ

− i∇νcµ
(
cα(+)∇ακH

ν
µ +Kβν

µα∇βcα(+) + θA
(
ξαA∇ακHν

µ +Kβν
µα∇βξαA

)
+ θ̇AK0ν

µαξ
α
A

)
, (4.6.24)

so the only field which is differentiated twice is the antighost, viz. ∂L0

∂∇α∇βcµ = −iκθAξβAH
α
µ . Hence

H0 = −L0 +∇0B̃
µ ∂L0

∂∇0B̃µ
+∇0c

µ ∂L0

∂∇0cµ
+∇0c

µ

(
∂L0

∂∇0c
µ −∇α

∂L0

∂∇α∇0c
µ

)
+∇0∇αcµ

∂L0

∂∇α∇0c
µ .

(4.6.25)

Since previous calculations have verified that β̃A, θA, θ
A

are cyclic,

H0 = −L0 +∇0B̃
µ
(+)

∂L0

∂∇0B̃
µ
(+)

+∇0c
µ
(+)

∂L0

∂∇0c
µ
(+)

∇0c
µ
(+)

(
∂L0

∂∇0c
µ
(+)

−∇α
∂L0

∂∇α∇0c
µ
(+)

)
+∇0∇αcµ(+)

∂L0

∂∇α∇0c
µ
(+)

. (4.6.26)

But
∂L0

∂∇0B̃
µ
(+)

= −κH0
µ,

∂L0

∂∇0c
µ
(+)

= iK0ν
ρµ∇νcρ, (4.6.27)

59If other fields appear in L0, the expression forH0 in Eq. (??) should be amended to include additional terms in the Legendre
transform. However, these terms are in any case irrelevant to this calculation. Of course, we can make φ a multiplet to make
the expression forH0 in Eq. (??) general, provided products are interpreted as contracting over all indices.
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and

∂L0

∂∇α∇0c
µ
(+)

= −iκθAξ0
AH

α
µ ,

∂L0

∂∇0c
µ
(+)

−∇α
∂L0

∂∇α∇0c
µ
(+)

= −iκθ̇Aξ0
AH

0
µ − iZ0

µ, (4.6.28)

so

H0 = −L0 −∇0B̃
µ
(+)κH

0
µ + i∇0c

µ
(+)K

0ν
ρµ∇νcρ +∇0c

µ
(+)

(
−iκθ̇Aξ0

AH
0
µ − iZ0

µ

)
− iκ∇0∇αcµ(+)θ

Aξ0
AH

α
µ .

(4.6.29)

Note that the result of Sec. 3.5.1, together with the fact that variables q1 = q, q2 = q̇ are treated

as independent variables in Ostrogradski’s method, implies that the H0 obtained in the B̃µ, cµ, cµ

formalism has the same numerical value as the Bµ, cµ, cµ-formalism’sH0, i.e. the usualH0.

4.7 Comparison with the FMP in perturbation theory

Tsung-Dao Lee and Chen-Ning Yang discovered [87, 88] that, in some contexts, a formulation of

perturbation theory in terms of Feynman diagrams admits terms proportional to δ (0), where δ is

the Dirac delta so that δ (0) is divergent. (The argument 0 of δ (0) is a difference between time

coordinates.) However, they found also that such terms cancel in pairs. I will call such terms Lee–

Yang terms, and will call the cancellation of them in pairs Lee–Yang cancellation.

For perturbative gravity, one difference between the perturbation theories of the CMP and the FMP

is that the FMP exhibits the Lee–Yang cancellation of Lee–Yang terms that never arise in the CMP.

In Sec. 4.7.1, I compute the effective zero-mode sector Lagrangian in the CMP of a broad class of

Lagrangians that includes the zero mode sector of perturbative gravity.

To prove the FMP and CMP are equivalent in perturbation theory, I must verify the FMP’s Lee–

Yang cancellation, and then check the equivalence of other terms. The trick to verifying Lee–Yang

cancellation is to compare what I will call Lee–Yang determinants. In Sec. 4.7.2, I explain the

relevant theory and summarise the structure of the FMP calculations that will then conclude this

section. These calculations will be divided into Secs. 4.7.3-4.7.5. For now, the following summary is

appropriate. Sec. 4.7.3 computes a matrix determinant; Sec. 4.7.4 factorises that determinant; and

Sec. 4.7.5 shows this factorisation implies that the CMP and FMP are perturbatively equivalent.

Throughout I impose the gauge choice in Eq. (1.2.2), and use N to denote non-negative integer

dummy indices.

4.7.1 The perturbation-theoretic implications of the CMP

Let X ∼ Y abbreviate the condition that X − Y is independent of the time derivatives of spatially

uniform Hermitian canonical scalar modes bA, b
A
, qi. This section considers an arbitrary Lagrangian

of the form

L ∼ −iḃ
A

MAB ḃ
B − iKiAq̇

iḃA − iḃ
A

LAiq̇
i +

1

2
q̇iNij q̇

j (4.7.1)
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with matrices K, L, N ∼ 0.60 The previously defined matrix MAB and its inverse MAB can be

respectively denoted M, M−1. The FP-(anti)ghost zero mode sector of perturbative gravity has a

Lagrangian of the form in Eq. (4.7.1), provided that:

• the bA are the spatially uniform scalar-valued mode coefficients of the field cµ, such as the θA;

• the b
A

are the spatially uniform scalar-valued mode coefficients of the field cµ, such as the θ
A

;

• the qi are the spatially uniform scalar-valued mode coefficients of all fields outside the FP–ghost

sector, such as the βA.

Note that the lower case Roman indices no longer imply bijection with the n − 1 space dimensions

of the spacetime manifold.

The−iḃ
A

MAB ḃ
B term in L is worthy of special attention. In perturbative gravity’s scalar Lagrangian

density’s FP-sector term −i∇νcµKβν
µα∇βcα, the θ̇

A

θ̇B coefficient is −iξµAK
00
µαξ

α
B . The θ̇

A

θ̇B coefficient

in the Lagrangian is therefore−i
´
x
ξµAK

00
µαξ

α
B = −iMAB . (The term−i

´
x
∇νcµKβν

µα∇βcα is analogous

to the Yang–Mills term −i
´
x
∂0c(0) · g00∂0c(0) = −iV ċ(0) · ċ(0).) The full Lagrangian may then be

written as L(0) + L(+), where L(0) contains terms dependent on θ̇As and/or θ̇
A

s. Explicitly we have

L(0) = θ̇
A (

iYA − iMAB θ̇
B
)

+ iXAθ̇
A (4.7.2)

for some XA, YA, and θA, θ
A
, ˙θA, θ̇

A

are absent from L(+), XA, YA. Note that no terms dependent

on θAs and/or θ
A

s appear in L because θA, θ
A

are cyclic.

This formalism affords a comparison of the zero mode problems of perturbative gravity and Yang–

Mills theory, if only for non-interacting gravity on a flat static torus. If cµ, cµ are each given an

IR-regularising mass M > 0 then L(0) = −iV
(
θ̇
A

θ̇A −M2θ
A
θA

)
, where the Kronecker delta lowers

upper case indices. The non-interacting case’s result M̂AB = V (t) δAB generalises in the interacting

case to MAB = V (t) (δAB −HAB) for some matrix HAB . For the non-interacting case,

0 =

(
∂

∂θ
A
− ∂0

∂

∂θ̇
A

)(
iL(0)

)
= −M2V θA − ∂0

(
V θ̇A

)
, (4.7.3)

and similarly with θ
A

. This is the same field equation as for scalar zero modes in earlier chapters, so

the resulting zero-mode sector of the propagator is the same as before, and so are its time derivatives.

With that grey note concluded, I return attention from the flat static torus to the more general case

specified in Sec. 1.2.2. That θA, θ
A

are cyclic in L also implies their conjugate momenta are conserved

and may be set to 0 in the CMP. Setting the conjugate momentum of θ
A

to 0 gives

0 =
∂L(0)

∂θ̇
A

= iYA − iMAB θ̇
B , (4.7.4)

so θ̇A =
(
M−1

)AB
YB . Therefore L(0) has numerical value

L(0) = iXAθ̇
A = iXA

(
M−1

)AB
YB . (4.7.5)

60Note that bA, bA, qi need not be cyclic in L, since the equivalence relation ∼ is consistent with differences proportional to
undifferentiated modes. However, Eq. (4.7.1) is sufficient to determine momenta.
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Adding L(+) gives an effective zero-mode sector Lagrangian in the CMP,

Leff = iXA

(
M−1

)AB
YB + L(+). (4.7.6)

4.7.2 An overview of Lee–Yang terms

The motivation of the entirety of Sec. 4.7 is to show that the FMP obtains the same result as Eq. (4.7.6).

It can be shown [87] by the path integral method that, if the FMP’s infrared regularisation method is

used, Lagrangians of the form in Eq. (4.7.5) warrant an additional Lee–Yang term of value61

LLY := iδ (0) ln detMAB = iδ (0) tr lnMAB . (4.7.7)

The proof is as follows. Let bA, b
A

have respective momenta πA, πA in

L(0) = ḃ
A (

iYA − iMAB ḃ
B
)

+ iXAḃ
A. (4.7.8)

Define

ΠA := πA + iXA, ΠA := πA − iYA (4.7.9)

so

πA = iMBAḃ
B

− iXA, (4.7.10)

πA = iYA − iMAB ḃ
B , (4.7.11)

L(0) = δBC ḃ
C

πB + iXAδ
A
C ḃ

C

=
(
M−1

)AB
MCAḃ

C

πB + iXA

(
M−1

)AB
MBC ḃ

C (4.7.12)

=
(
M−1

)AB ((
XA − iπA

)
πB + iXA (iπB + YB)

)
= −i

(
M−1

)AB (
ΠA

(
ΠB − iYB

)
− iXAΠB

)
= −i

(
M−1

)AB (
ΠAΠB + i

(
YBΠA −XAΠB

))
. (4.7.13)

The path integral formalism obtains the transition amplitude (say A), up to a multiplicative factor

that is important because it is independent of dynamical variables. First we discretise a finite time

period. This gives the approximate proportionality relation

A ∝
ˆ ∏

tAB

m−1∏
k=0

dbA (t) db
B

(t) dπA (t) dπB (t)×

exp
[
ΠC (tk)

(
M−1 (tk)

)CD
ΠD (tk)

]
exp

(
i
ˆ tf

ti

L(+)dt

)
, (4.7.14)

where:

• ti, tf are initial and final times, so ti < tf ;

• tk := ti + k∆, k ∈ {0, · · · , m− 1}with ∆ :=
tf−ti
m > 0 for some large m ∈ N.

(The
(
M−1

)AB (
YBΠA −XAΠB

)
term makes no contribution to the result, because of the identities´

dθdηθ = 0
´

dθdηη = 0 for Grassmann variables θ, η.) The first exponential factor could in principle

61Replacing M with−M or |M |may add a multiple of δ (0) to L, but this addition is non-dynamical so can be neglected. We
therefore need not insist, for example, on writing ln |detMAB | instead of ln detMAB .
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have instead been written with a πC
(
M−1

)CD
πD term, which can be removed in the CMP because

πA, πA are the conserved momenta of cyclic modes. However, the FMP does not make use of this

tactic, which is what ultimately yields the term LLY.

Since Eq. (4.7.9) shifts momenta by non-momentum Grassmann numbers,

ˆ
dΠAΠB =

ˆ
dπAπB (4.7.15)

(this is an equation in integral operators). A discrete analogue is as follows: for a bosonic field B,

θ
′

0 := θ0 + aθ1 =⇒
ˆ

dθ
′

0dθ1Bθ1θ0 =

ˆ
dθ
′

0dθ1Bθ1θ
′

0 =

ˆ
dθ0dθ1Bθ1θ0. (4.7.16)

Thus

A ∝
ˆ ∏

tAB

m−1∏
k=0

dbA (t) db
B

(t) dΠA (t) dΠB (t)×

exp
[
ΠC (tk)

(
M−1 (tk)

)CD
ΠD (tk)

]
exp

(
i
ˆ tf

ti

L(+)dt
′
)
. (4.7.17)

Eq. (2.2.3) simplifies this result in terms of detM−1 = (detM)
−1. Writing this determinant as the

exponential of its logarithm, we have

A ∝
ˆ ∏

tAB

dbA (t) db
B

(t) exp

[
− 1

∆

m−1∑
k=0

ln detMAB (tk) ∆

]
exp

(
i
ˆ tf

ti

L(+)dt
′
)
. (4.7.18)

The seemingly superfluous ∆±1 factors now play an important role, as we make time continuous

again. For any set S of times define

1S (t) :=

 1 t ∈ S

0 t /∈ S
. (4.7.19)

Since the measure δ (t− t0) may be approximated by the nascent delta function 1
∆1[t0−∆

2 , t0+ ∆
2 ] (t)

where we take the ∆→ 0+right-hand limit, setting t = 0 identifies 1
∆ with δ (0). Similarly, summing

over terms with a ∆ factor is equivalent to a time integration, since ∆ can be thought of as dt. The

continuous-time analogue of Eq. (4.7.18) is therefore

A ∝
ˆ

dt

ˆ ∏
AB

dbA (t) db
B

(t) exp

[
−δ (0)

ˆ
ln detMAB (t) dt

]
exp

(
i
ˆ
L(+)dt

′
)

=

ˆ
dt

ˆ ∏
AB

dbA (t) db
B

(t) exp

(
i
ˆ (

L(+) + LLY
)

dt
′
)
, (4.7.20)

where the time limits have been taken as ti = −∞, tf = ∞. Note the addition of LLY to L, verifying

Eq. (4.7.7).

Although the appearance of this term ∝ δ (0) seems troubling, it simply cancels with the loop

Feynman diagrams’ contribution to the Lagrangian. Once this cancellation is verified, the chain

Feynman diagrams recover the effective zero-mode sector Lagrangian obtained from the CMP. The

truth of the two previous sentences implies the CMP’s perturbative equivalence to the FMP. They are
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proven in Sec. 4.7.5, the final subsection of Sec. 4.7’s discussion of perturbation theory.

The determinant detMAB is known as a Lee–Yang determinant. In Sec. 4.7.3, I compute the Lee–

Yang determinant of the Lagrangian in Eq. (4.7.1) in terms of the matrices K, L, M, N . In Sec. 4.7.4,

I show that this Lee–Yang determinant is expressible as the product of two Lee–Yang determinants.

The first of these is the Lee–Yang determinant of Eq. (4.7.5). The second is the Lee–Yang determinant

of an effective zero-mode sector Lagrangian obtained by setting the momenta of cyclic modes to zero.

This effective zero-mode sector Lagrangian contains no zero modes, and appears in the Lagrangian

of both the CMP and FMP. It is therefore irrelevant to the question of whether the prescriptions are

perturbatively equivalent. The fact that Lee–Yang determinants multiply in the way shown in Sec.

4.7.4 implies that the determinants’ logarithms add, as do the resulting Lee–Yang terms. Two Lee–

Yang terms are thereby decoupled, and only one of these terms needs to be considered to verify that

the CMP and FMP are perturbatively equivalent. In Sec. 4.7.5, I analyse the relevant Lee–Yang term

to verify this perturbative equivalence.

4.7.3 A Lee–Yang determinant

In Eq. (4.7.1), the conjugate momenta are

PA :=
∂L

∂ḃ
A
∼ −iMAB ḃ

B − iLAiq̇i, (4.7.21)

PA :=
∂L

∂ḃA
∼ iḃ

B

MBA + iKiAq̇
i, (4.7.22)

pi :=
∂L

∂q̇i
∼ −iKiAḃ

A − iḃ
A

LAi +Nij q̇
j . (4.7.23)

so the Hamiltonian H obtained by Legendre-transforming L satisfies

H + L = ḃ
A

PA − PAḃA + q̇ipi

∼ −2iḃ
A

MAB ḃ
B − 2iḃ

A

LAiq̇
i − 2iKiAq̇

iḃA + q̇iNij q̇
j

∼ 2L, (4.7.24)

H ∼ L. (4.7.25)

Inverting relations between canonical fields and momenta gives

ḃA ∼
(
M−1

)AB (
iPB − LBiq̇i

)
, (4.7.26)

ḃ
A

∼
(
−iPB −KiB q̇

i
) (
M−1

)BA
, (4.7.27)

pi ∼ KiA

(
M−1

)AB (
PB + iLBj q̇j

)
−
(
PA − iKjAq̇

j
) (
M−1

)AB
LBi +Nij q̇

j

= KiA

(
M−1

)AB
PB − PA

(
M−1

)AB
LBi +Nij q̇

j , (4.7.28)

Nij q̇
j ∼ pi −KiA

(
M−1

)AB
PB + PA

(
M−1

)AB
LBi

=: p̃i, (4.7.29)

q̇i ∼
(
N−1

)ij
p̃j . (4.7.30)

Thus
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ḃ
A

PA − PAḃA + q̇ipi ∼
(
−iPB −KiB

(
N−1

)ij
p̃j

) (
M−1

)BA
PA

− PA
(
M−1

)AB (
iPB − LBi

(
N−1

)ij
p̃j

)
+
(
N−1

)ij
p̃j

(
p̃i +KiA

(
M−1

)AB
PB − PA

(
M−1

)AB
LBi

)
∼ −2iPA

(
M−1

)AB
PB + p̃i

(
N̂−1

sym

)ij
p̃j , (4.7.31)

H, L ∼ ḃ
A

PA − PAḃA + q̇ipi
2

∼ −iPA
(
M−1

)AB
PB + p̃i

(
N−1

sym

)ij
p̃j , (4.7.32)

where

N̂ := N + 2iKM−1L, N−1
sym :=

N−1 +
(
N−1

)T

2
. (4.7.33)

Eq. (4.7.32) implies the full theory’s Lee–Yang determinant is detM−1√
det N̂−1

sym

, but in the subsection below I

provide an alternative expression for this, viz. Eq. (4.7.37). The aim is to show that the full Lee–Yang

determinant is the product of the Lee–Yang determinant of the zero-mode sector and the Lee–Yang

determinant of the effective theory with its zero-mode contribution removed. (I obtain these two

Lee–Yang determinants respectively in Eqs. (4.7.48) and (4.7.51).) If this is true – indeed, it is –

we may separate out the Lee-Yang determinant for the zero-mode sector. However, proving this

requires a block matrix decomposition of MAB , because the required expressions for the Lee–Yang

determinants are in terms of determinants of the blocks.

4.7.4 Lee–Yang determinants of the zero-mode sector and effective theory

One may split the bA into cyclic θA and non-cyclic cI , and similarly with the b
A

. Note that there are

now two types of upper case Roman indices, those beginning at A and those beginning at I . The

matrix MAB now admits a natural block matrix decomposition of the form

M =

 AIJ BIB

CAJ DAB

 . (4.7.34)

Hereafter Os denote appropriate not-necessarily-square zero matrices, and I define

ÃIJ := AIJ −AIAD−1
ABCBJ (4.7.35)

so that

M =

 (
Ã+BD−1C

)
JK

BJC

CBK DBC

 . (4.7.36)

The strategy is to first show detM = det Ã detD so that

detM−1√
det N̂−1

sym

=
1

detD det Ã
√

det N̂−1
sym

, (4.7.37)

and then show that 1
detD is the Lee–Yang determinant of the zero mode sector while 1

det Ã
√

det N̂−1
sym

is

the Lee–Yang determinant of the effective theory without the zero-mode sector.

113



CHAPTER 4. APPLYING THE CMP TO PERTURBATIVE GRAVITY

Since adding a multiple of one row (column) to another row (column) preserves the determinant of

a square matrix,

detM = det

 AIJ −BIAD−1
ABCBJ OIB

OAJ DAB

 = det

 ÃIJ OIB
OAJ DAB

 = det Ã detD. (4.7.38)

By inspection the inverse of M is

M−1 =

 Ã−1
IJ −

(
Ã−1BD−1

)
IB

−
(
D−1CÃ−1

)
AJ

(
D−1

(
I + CÃ−1BD−1

))
AB

 ,

(4.7.39)

since this claim implies

M−1M =

 (
Ã−1Ã+ E − E

)
IK

(
F − FD−1D

)
IC

(−G+G)AK
(
−J +D−1D + JD−1D

)
AC

 =

 δIK OIC
OAK δAC

 (4.7.40)

as required, where the matrices

E := Ã−1BD−1C, (4.7.41)

F := Ã−1B, (4.7.42)

G := D−1CÃ−1
(
Ã+BD−1C

)
=
(
D−1 +D−1CÃ−1BD−1

)
C, (4.7.43)

J := D−1CÃ−1B (4.7.44)

have been defined for succinctness.

I have split the bA into cyclic θA and non-cyclic cI , and similarly with the b
A

. This also splits certain

terms in the Lagrangian, viz.

L ∼ −iθ̇
A

AAB θ̇
B − iθ̇

A

CAJ ċ
J − iċ

I
BIB θ̇

B − iċ
I
DIJ ċ

J

− iKiAq̇
iθ̇A − iKiI q̇

iċI − iθ̇
A

LAiq̇
i − iċ

I
LIiq̇

i +
1

2
q̇iNij q̇

j , (4.7.45)

and the θ̇A may be eliminated by setting

0 =
∂L

∂θ̇B
= i
(
θ̇
A

AAB + ċ
I
BIB +KiAq̇

i

)
(4.7.46)

so

L ∼ −iθ̇
A

CAJ ċ
J − iċ

I
DIJ ċ

J − iKiI q̇
iċI − iθ̇

A

LAiq̇
i − iċ

I
LIiq̇

i +
1

2
q̇iNij q̇

j . (4.7.47)

Due to the −iċ
I
DIJ ċ

J term, the associated Lee–Yang determinant is

1

detD
. (4.7.48)
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Other conserved quantities are also set to 0 in the CMP, viz.

0 =
∂L

∂θ̇
A
∼ −i

(
DAB θ̇

B + ċ
I
BIA +KIAq̇

i
)
. (4.7.49)

Eqs. (4.7.46) and (4.7.49) respectively give expressions for θ̇
A

and θ̇A, so that

L ∼ 1

2
q̇iN̂ij q̇

j − i
{
ċ
I
(
ÃIJ ċ

J +
(
L−BD−1L

)
Ij
q̇j
)

+
(
K −KD−1C

)
iI
q̇iċI

}
. (4.7.50)

Due to the 1
2 q̇
iN̂ij q̇

j and −iċ
I
ÃIJ ċ

J terms, the associated Lee–Yang determinant is

1

det Ã
√

det Ñ−1
sym

, (4.7.51)

where

Ñ := N + 2i
(
KD−1L+

(
K −KD−1C

)
Ã−1

(
L−BD−1L

))
, (4.7.52)

Ñ−1
sym :=

1

2

(
Ñ−1 +

(
Ñ−1

)T
)
. (4.7.53)

Lowering all indices,

Ñij −Nij
2i

= KiAD
−1
ABLBj +

(
KiI −KiAD

−1
ABCBI

)
Ã−1
IJ

(
LJj −BJAD−1

ABLBj
)

= KiIÃ
−1
IJ LJj −KiAD

−1
ABCBIÃ

−1
IJ LJj −KiIÃ

−1
IJ LJj +D−1

AB

+KiA

(
D−1
ACCCIÃIJBJDD

−1
DB

)
LBj

= KiAD
−1
ABLBj =

N̂ij −Nij
2i

, (4.7.54)

Ñij = N̂ij , (4.7.55)

in accordance with Eq. (4.7.33).

The product of the Lee–Yang determinants in Eqs. (4.7.48) and (4.7.51) is therefore the Lee–Yang

determinant in Eq. (4.7.37), as required.

4.7.5 Perturbative equivalence

This subsection verifies that the FMP’s chain Feynman diagrams reproduce Eq. (4.7.6), a contribution

to the Lagrangian that is also present in the CMP. It verifies also that the FMP’s loop Feynman

diagrams cancel the FMP’s Lee–Yang term, which has no CMP counterpart.

We may write MAB = M̂AB + HAB , so HAB contains the contributions to MAB attributable to the

interaction κhµν . Similarly, we may write XA = X̂A + X̃A, YA = ŶA + ỸA, where the hats denote the

non-interacting value and the tildes denote contributions due to the interaction.

The first task is to verify that the FMP’s chain Feynman diagrams recover Eq. (4.7.6). Recall that

ḃA ∼ αA −
(
M−1

)AB
LBiq̇

i, ḃ
A

∼ αA − q̇iKiB

(
M−1

)BA
, (4.7.56)
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where αA := i
(
M−1

)AB
PB , α

A := −iPB
(
M−1

)BA. We then have the non-perturbative αα propag-

ator
〈
αA (t)αB

(
t
′
)〉

= −δ
(
t− t′

)(
M̂−1

)AB
(t). The right-hand side is a matrix, which perturbat-

ively generalises to a power series

−

M̂−1 (t)

∞∑
k=0


k∏
j=1

ˆ
dtjδ (tj−1 − tj)

(
−HM̂−1

)
(tj)

 δ
(
tk − t

′
)AB

(4.7.57)

where t0 := t. Including AB indices, the full αα propagator is

−

(
M̂−1 (t)

{ ∞∑
k=0

(
−HM̂−1

)k
(t)

})AB (
δ
(
t− t

′
))

= δ
(
t− t

′
)(
−M̂−1

(
I +HM̂−1

))AB
(t)

= −δ
(
t− t

′
)((

M̂ +H
)−1

)AB
(t)

= −δ
(
t− t

′
) (
M−1

)AB
(t) . (4.7.58)

These expressions for ḃA, ḃ
A

may be substituted into the Lagrangian, which may be decomposed as

L = L0 + LI where LI is an interaction Lagrangian, i.e. L0 is independent of κhµν and derivatives

thereof. Explicitly

LI ∼ −iX̂A

(
M̂−1HM̂−1

)AB
ŶB + iXA

(
M̂−1

)AB ˜̂
Y B + iX̃A

(
M̂−1

)AB
ŶB

+ iαA
((

HM̂−1
)B
A
ŶB − ỸA

)
+ i
(
X̂A

(
M̂−1H

)A
B
− X̃B

)
αB − iαAHABα

B . (4.7.59)

Several of the terms in Eq. (4.7.59) have counterparts elsewhere in the FMP’s perturbation theory.

For example, the perturbation theory obtains a further X̂AŶB term, using an αα propagator to

connect −X̂A

(
M̂−1H

)A
B
αB to −αA

(
HM̂−1

)B
A
ŶB . Since the term in the Lagrangian is obtained

by including a −i factor, the X̂AŶB coefficient due to interaction terms is the AB component of

− iM̂−1HM̂−1 + M̂−1HiM−1HM̂−1 = i
(
M−1 − M̂−1

)
, (4.7.60)

since

M−1 = M−1
(
MM̂−1 −HM̂−1

)
= M̂−1 −

(
M̂ +H

)−1

HM̂−1

= M̂−1
(
I−

(
MH−1 − I

)
HM−1HM̂−1

)
= M̂−1 − M̂−1HM̂−1 + M̂−1HM−1HM̂−1. (4.7.61)

However, L0 also provides an iX̂A

(
M̂−1

)AB
ŶB term, giving a total of iX̂A

(
M−1

)AB
ŶB .

Further terms are as follows, and contain no contributions from L0:

• Connecting X̃Aα
A to αAỸA gives iX̃AM

−1ỸB ;

• Connecting −X̂A

(
M̂−1H

)A
B
αB to αAỸA and also including the iX̂A

(
M̂−1

)AB ˜̂
Y B term gives

iX̂A

(
−M̂−1HM−1 + M̂−1

)AB
ỸB = iX̂A

(
M−1

)AB
ỸB (4.7.62)
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since

−M̂−1HM−1 + M̂−1 −M−1 = M̂−1
(
I−HM−1

)
−M−1

= M̂−1 (M −H)M−1 −M−1

= M̂−1M̂M−1 −M−1 = 0; (4.7.63)

• Similarly, an iX̃A

(
M−1

)AB
ŶB term is obtained.

Summing gives iXA

(
M−1

)AB
YB , as required.

Next I show the loop Feynman diagrams cancel LLY. The loop contribution is

ˆ
dtiLloop (t) = − tr

∑
N≥1

1

N

ˆ ( N∏
k=1

dtk

)(
N∏
k=1

(
M̂−1H

)Ak+1

Ak
(tk) δ (tk − tk+1)

)
, (4.7.64)

where t1 < · · · < tN are N successive values for a time coordinate, and tN+1 := t1. Note the N−1

symmetry factors and a −1 factor due to the loops being fermionic. Thus

Lloop = iδ (0)
∑
N≥1

1

N

N∏
k=1

(
M̂−1H

)Ak+1

Ak
(tk) = iδ (0)

∑
N≥1

1

N

((
M̂−1H

)N)A
A

= −iδ (0) ln
(
I− M̂−1H

)A
A

= −iδ (0) tr ln
(
M̂−1

(
M̂ −H

))
AB

= −iδ (0) ln det
(
M̂−1M

)
AB

= −iδ (0) ln detMAB + iδ (0) ln det M̂AB

≡ −LLY + iδ (0) ln det M̂AB . (4.7.65)

But −iδ (0) ln det M̂AB contains no dynamical variables, so may be freely added to the Lagrangian.

Doing so cancels Lloop + LLY, as required.
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Chapter 5 Conclusions

5.1 Overview of Part III

In this chapter, I summarise the work of this thesis: its problem context, its findings and the outlook

for future research. In Sec. 5.2, I discuss the problem context that motivated my research with Atsushi

Higuchi. This requires me to discuss the findings of the CMP in some detail as well, in a grey

note. The fictitious mass prescription (FMP) is an infrared regularisation of zero mode problems

introduced in Ref. [2]. Difficulties with the FMP motivated an alternative treatment of zero mode

problems. This is the cyclic modes prescription (CMP), described in this thesis and by myself and Dr

Higuchi in Ref. [1].

In Sec. 5.3, I provide several examples of issues that are not addressed, or not fully addressed, in my

and Dr. Higuchi’s research. I recommend that such issues be investigated in future research.

This chapter begins Part III of this thesis. The rest of Part III is structured as follows. After this

chapter, I present my Appendices. I have stated their purposes in earlier chapters, but here is a

summary:

• Appendix A defends Klein–Gordon orthonormality in more detail;

• Appendix B addresses how the CMP can amend the pseudo-inner product of the theory;

• Appendix C verifies that the naïve Poisson brackets of Yang–Mills theory and perturbative

gravity may be used;

• Appendix D shows that the (anti)commutators of Noether charges provide no new conserved

charges for Yang–Mills theory or perturbative gravity;

• Appendix E shows that the spacetime-isometry Noether charges of perturbative gravity are

obtained by BRST-transforming other Noether charges, and also by anti-BRST-transforming

other Noether charges in the anti-BRST-invariant case (the de Donder gauge);

• Appendix F discusses the Batalin–Vilkovisky formalism in sufficient detail to defend my avoid-

ing its use in Chapter 4;

• Appendix G verifies the matrix M̂AB introduced in Chapter 4 is invertible on the flat static

torus and in de Sitter space, if appropriate choices are made (e.g. k < 1 for the flat static torus);

• Appendix H provides further details of the perturbation theory of the CMP and FMP for

perturbative gravity on a flat static torus.

Note that:

• Appendix A pertains to Chapter 1;

• no appendices pertain to Chapter 2;

• Appendix B pertains to Chapter 3;
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• Appendices C and D pertain to Chapters 3 and 4;

• Appendices E-H pertain to Chapter 4.

I then provide Definitions and a Glossary, respectively beginning on pages 164 and 165. These

resources differ in that, while Definitions defines terms I have introduced (or defined unusually)

in this thesis, Glossary summarises the definitions of more standard terms. For example, I define the

CMP in Definitions, whereas I define scale factor in the Glossary.

I conclude with my Bibliography, beginning on page 168.

5.2 Why this work was necessary

Two-point functions of interest in theoretical physics include the propagator of a scalar field, the FP-

ghost propagator and the graviton two-point function. The infrared behaviours of these functions

are determined by the normalisations of quantised fields’ modes, which are classical solutions of

field equations. No normalisation obtains two-point functions that simultaneously converge in the

infrared limit and preserve desirable spacetime symmetries, such as time translation invariance on a

flat static torus and de Sitter invariance in de Sitter space. One important normalisation convention

is the Klein–Gordon normalisation of scalar modes, which is motivated by its rendering canonical

(anti)commutation relations equivalent to the (anti)commutators of annihilation and creation oper-

ators. This convention, which is also applicable to the fields βA, β̃A, θA, θ
A

introduced in Chapter

4, yields two-point functions that preserve appropriate spacetime symmetries but diverge in the in-

frared limit. These problematic behaviours of two-point functions are attributable to a limited subset

of the modes of the quantised fields, and these have been called zero modes. The Faddeev–Popov

method requires massless FP-(anti)ghost fields, so the FP-ghost propagator’s problematic infrared

behaviours in Yang–Mills theory and perturbative gravity cannot be remedied by postulating that

FP-(anti)ghosts are massive.

In 2008, Mir Faizal and Atsushi Higuchi proposed a method for the infrared regularisation of these

FP-ghost propagators [2]. This method assumes the FP-ghost and FP-antighost share a common

positive mass, say M , and imposes Klein–Gordon normalisation to obtain M -dependent FP-ghost

propagators in Yang–Mills theory and perturbative gravity. In each case, the result is expressed as

the sum of three terms. Two of these terms respect the sought spacetime symmetries; the other

term vanishes when M = 0. Of the two terms that respect spacetime symmetries, only one is

infrared-convergent. The other term is spacetime-constant in Yang–Mills theory, and is a spacetime-

constant multiple of the product of two Killing vector fields in perturbative gravity. In each case,

the absence of this infrared-divergent term would not damage the FP-ghost propagator’s spacetime

symmetries. The method concludes by deleting the infrared-divergent term before taking the M →

0+ right-hand limit, which also results in the infrared-convergent term’s deletion. Thus only one term

survives, an M -independent (and hence infrared-finite) term that respects the intended spacetime

symmetries. This is an effective zero-mode sector propagator. I have called this method the fictitious

mass prescription (FMP), and explicitly discussed scalar field the theory’s analogues of the three

aforementioned terms in the FP-ghost propagator in Secs. 1.5.3, 1.6.2 and 1.7.1.

The fictitious masses temporarily granted to the FP-(anti)ghosts in the FMP requires a mass term in

the Lagrangian. For M 6= 0, this term violates internal symmetries. I have discussed two important
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examples of such damaged symmetries, which are BRST invariance and (for Yang–Mills theory

and the k = 1
2 gauge choice in perturbative gravity) anti-BRST invariance. These symmetries are

reinstated when M = 0, but they are not manifestly preserved before this condition is imposed

to recover the usual massless BRST quantisation. If the FMP is used to obviate the effects of zero

modes from two-point functions, are the (anti)-BRST internal symmetries preserved? Even if there is

no doubt that they are, it would be desirable62 to have a formalism that manifestly preserves these

symmetries throughout. This fact motivated the development of such a formalism for the Lagrangian

and Hamiltonian formulations of the field theory, and its formal Schrödinger wave functionals for

physical states.

The result was the cyclic modes prescription (CMP), which aimed to obviate troublesome modes

from the Lagrangian and Hamiltonian formalisms. It is always sufficient to obviate appropriate

spatially uniform scalar modes; even in the gravity case, for which the FP-(anti)ghosts are vector

fields, the “zero mode” of these fields is a linear combination of Killing vectors, and these Killing

vectors’ scalar coefficients are spatially uniform. The obviation of undifferentiated examples of these

modes, i.e. their non-appearance in the formalism (so that these modes are cyclic), is equivalent to the

conservation of the zero modes’ conjugate momentum densities. In the Lagrangian (Hamiltonian)

formalism, this follows from the Euler–Lagrange equations (Hamilton’s equations). Before the CMP

can be implemented, it must be shown that, in fact, the modes are cyclic.

Suppose these modes are indeed cyclic; they then do not appear undifferentiated. Similarly, the

obviation of the modes’ time derivatives is equivalent to the conserved momenta vanishing, and this

may always be imposed from the aforementioned conservation laws. Space derivatives are in any

case irrelevant, since these vanish for spatially uniform scalar fields. And the conjugate momenta

have been set to 0, and therefore also no longer appear in an expression for the Hamiltonian in terms

of phase space variables.

The Schrödinger picture implies that, when these conserved momenta vanish, physical states’ formal

Schrödinger wave functionals are independent of these scalar modes. Although this is also a desired

outcome, an important technical issue now occurs. The classical field theory’s naïve Poisson brackets

can be promoted to the canonical (anti)commutation relations of the quantised field theory, provided

the behaviour of the Dirac brackets is such as to allow this (which it is; see Appendix C). For

Minkowski space, the resulting canonical (anti)commutation relations are true for the physical states

of some Fock space, for an appropriate associated choice of pseudo-inner product on the Hilbert

space.63 All conserved charges set to 0 in the CMP then annihilate physical states, so it is fortunate

that the set of them is closed under appropriate symmetries, and that any two of them commute

or anticommute. However, the requirement in particular that some momenta be conserved implies

that, in the aforementioned pseudo-inner product, physical states are zero-norm. This prevents a

manifestly unitary formulation of the theory, unless a different pseudo-inner product is used.

An alternative choice of pseudo-inner product (see also Appendix B) must therefore be used, but it

must also be motivated. Its motivation is found in the observation that formal Schrödinger wave
62There is at least one convenient analogy. The wave equations that follow from Maxwell’s equations in free space are

Lorentz-invariant, but it is worth asking whether Maxwell’s equations are Lorentz-invariant for an arbitrary charge n-
current. Even once it is known that this is the case, it is desirable to obtain a manifestly Lorentz-covariant formulation of
classical electromagnetism. This makes use of tensors, viz. Sec. 2.1.1.

63The Fock space of one quantised field is the Hilbert space completion of the direct sum of the symmetric or antisymmetric
tensors in the tensor powers of a single-particle Hilbert space, and the Fock space of multiple quantised fields is the tensor
product of the fields’ respective Fock spaces.
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functionals are independent of the scalar modes that the CMP obviates from the Lagrangian and

Hamiltonian formalisms. This implies that, in the case of such a scalar mode that is bosonic (fermi-

onic), the integration over these modes in the functional integral representation of the usual pseudo-

inner product on physical states causes the result to diverge (vanish). This observation can be

thought of as an alternative characterisation of the aforementioned issue with the norm of physical

states. However, the fact that the integrand is independent of these scalar modes motivates a modi-

fied definition of the functional integral, in which no integration over these scalar modes occurs. The

usual canonical (anti)commutation relations for these scalar modes and their conjugate momentum

densities are no longer true in this modified pseudo-inner product. Indeed, this modified pseudo-

inner product has completely obviated the zero modes and their conjugate momentum densities

from the Schrödinger wave functional formalism, just as they are obviated by conservation laws

from the Hamiltonian and Lagrangian formalisms. Therefore, the potentially problematic canonical

(anti)commutation relations cannot even be stated. Similarly, the mode decomposition of quantised

fields, and the resulting computation of two-point functions, no longer features the scalar modes the

CMP sought to obviate.

The CMP has one more advantage over the FMP. The FMP manually deletes a term from massive

two-point functions before taking the infrared limit, thereby obtaining modified effective zero-mode

sector propagators. For the FP-ghost sectors considered herein, the Hamiltonian and Lagrangian

are then also modified in the FMP, by the addition to each of a new term (no such terms exist for

the zero mode problem discussed in Chapter 164). These terms in turn modify the formalism’s

perturbation theory. The FMP and CMP are each “true” in some sense. It is true that the terms

the FMP deletes from two-point functions are irrelevant to spacetime symmetries. And it is true

that, if the scalar modes responsible for an infrared problem which the CMP aims to address are

indeed cyclic, conserved charges may be set to 0, thereby obviating these modes and their conjugate

momenta from the theory. The prescriptions ought to be equivalent: specifically, in the sense of

perturbation theory. When the FMP’s perturbation theory is considered, free integration by parts

is required, and not all of the spacetimes described in Sec. 1.2.2 allow this. The CMP, however,

does not require this same use of free integration by parts. However, perturbative equivalence

implies that the CMP also adds new terms to the Hamiltonian and Lagrangian, and this would not

happen if all the scalar modes whose obviation is sought are cyclic in the usual formalism in terms

of Nakanishi–Lautrup auxiliary field and FP-(anti)ghosts. Therefore, such obviation must require an

alternative formalism. And indeed it does, which is why Dr Higuchi and I introduced the field B̃

(B̃µ) for Yang–Mills theory (perturbative gravity). Each time I treated an FP-ghost sector infrared

problem in this thesis, I demonstrated the need for such a change in field variables before I provided

details of the perturbation theories of the FMP and CMP. Indeed, Dr Higuchi and I realised the need

for field variable change for Yang–Mills theory before comparing the perturbation theories of the

prescriptions; and, when we subsequently considered the CMP for perturbative gravity, we defined

64The key difference is that, while the∇µφ∇µφ term is analogous to −i∇µc · ∇µc, the theory discussed in Chapter 1 has no
analogue of the interaction term −iq∇µc · Aµ × c. Indeed, if this term is deleted from Yang–Mills theory with the choice
q = 0, the new terms in H, L vanish, as does B̃ − B. Note that all cross products contain a q factor, and a replacement of
the form q, × → ζq, ζ−1× for ζ ∈ R\ {0}would preserve such terms while redefining the structure constants. By contrast,
setting q = 0 deletes all terms containing cross products, which has the same effect as using an Abelian gauge group.
Indeed, the Abelian case of electromagnetism does not obtain these “new terms” either. It is unsurprising, therefore, that
general expressions for them in Yang–Mills theory are proportional to cross products, and therefore vanish in the Abelian
case.
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B̃µ before considering the perturbative implications. However, in hindsight the perturbation theory

of the FMP, which has been understood since Ref. [2], can be seen by the above argument to imply

the need for B̃, B̃µ.

The CMP has two consequences that, while not prohibitive, are such that researchers should bear

them in mind. One is that B̃, B̃µ are non-local. The other is specific to the case of perturbative

gravity. It is a complication in zero-mode sector Feynman diagram analysis. I discussed this briefly

at the end of Sec. 4.2.

5.3 Open questions

I will discuss two key respects in which our treatment with the CMP, of zero mode problems in

globally hyperbolic compact spacetimes, is incomplete. I discuss each in a separate subsection below.

There also remains the question of whether zero mode problems may be analogously addressed in

other spacetimes of theoretical interest, such as anti de Sitter space.

5.3.1 Pseudo-inner product issues

I have noted that the calculation showing physical states are zero-norm in the CMP uses the usual

pseudo-inner product that preserves the usual canonical (anti)commutation relations for quantised

fields, and that the CMP uses a different pseudo-inner product. This does not prove the revised

pseudo-norms of physical states are nonzero. In Appendix B, I introduce a notation for pseudo-

inner products that distinguishes the usual pseudo-inner product from alternatives that would allow

physical states that respect all desired spacetime and internal symmetries to have nonzero norms.

This treatment only considers the case of Yang–Mills theory, and Dr Higuchi and I have not shown

that the CMP’s modified pseudo-inner product coincides with those which Appendix B shows are

desirable. It is our expectation that it does, and that the case of perturbative gravity is analogous.

5.3.2 Theories beyond the Standard Model and General Relativity

The Standard Model and General Relativity are two theories which, between them, currently provide

our best description of all known fundamental interactions in nature. The zero mode problems

of scalar field theory, BRST-quantised Yang–Mills theory and BRST-quantised perturbative gravity

are the zero mode problems that occur in these theories. However, theoretical physics has found

reason to consider countless other theories that also have zero mode problems. Therefore, zero mode

problems not considered in this thesis will surely be present in any comprehensive physics of the

future.

What is more, the findings of this thesis do not immediately signal the details of the FMP or CMP for

any such alternative theories. The details of FMP and CMP calculations in treatments 1, 3 and 4 are

all idiosyncratically characteristic of the zero mode problem being considered therein. When these

zero mode problems were considered case by case, many differences between them were identified.

These include:

• the definition of zero modes;

• the terms that they introduce into infrared-divergent two-point functions;

• whether or not local internal symmetries worthy of preservation are also a consideration;
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• how the Nakanishi–Lautrup auxiliary field should be shifted for the CMP;

• how the prescriptions’ perturbation theories look; and

• which results of perturbation theory are required to demonstrate this.

The work on a zero mode problem discussed in Chapter 1 (Chapter 3) provides insights into the

techniques that are useful when treating a zero mode problem in Chapter 3 (Chapter 4). However,

the dissimilarities are sufficient to indicate that the work discussed in this thesis and Refs. [1] and

[2] provides, at best, a roadmap for the treatment of other zero mode problems.

However, a number of things will clearly be true of such other zero mode problems. The FMP

will modify any two-point function of concern. This may add new terms to the Hamiltonian and

Lagrangian, and hence affect the perturbation theory. Suppose, for instance, that this is so. The CMP

will, hopefully, be perturbatively equivalent to the FMP in a broad class of spacetimes. Suppose that

this is also true. However, these assumptions together imply a change in the choice of field variables,

analogous to B, c, c → B̃, c, c, will be necessary to render all zero modes cyclic. This shows that a

broad class of zero mode problems will require a result analogous to Eqs. (3.4.1) and (4.4.8). Indeed,

it seems reasonable to suppose all the BRST quantisations of field theories will be examples of this,

provided they feature FP-(anti)ghosts and an interaction term containing them. A further expectation

is that the CMP’s implications for the formulation of a manifestly unitary formalism will require

analysis.

Each zero mode problem I have discussed in this thesis was derived from a specific choice of Lag-

rangian density of the form L =
√
|g|L0, with L0 scalar-valued. I have spoken in this subsection

of “other” zero mode problems, under the implicit assumption that these would occur in theories

with different choices of L0. However, even a familiar choice of quantised fields, appearing in a

familiar choice of L0, could have implications not explored in this thesis. I will close this chapter

by discussing one subtle example. In Chapter 2, I showed that k 6= 1
n is necessary for γρσµν to be

invertible. In Chapter 4, I showed that k = 1
2 is necessary for an anti-BRST invariant formulation of

BRST-quantised perturbative gravity. These requirements for k are inconsistent if and only if n = 2.

Empirically n = 4, and most discussion of the possible applicability of n 6= 4 spacetimes to our

universe focus on n > 4 cases, such as superstring theories. However, n = 2 spacetimes have been of

some interest [89, 90, 91], and it is dissatisfying if a proposed treatment of infrared problems cannot

be made anti-BRST invariant in these cases. There are also efforts to describe Planck-scale spacetime

in terms of n = 2 simplices (a good overview [92] is included in Ref. [93]). There are therefore

at least some contexts in which the case n = 2 is of interest. For these, our treatment of BRST-

quantised perturbative gravity’s FP-ghost infrared problem does not provide anti-BRST invariance.

Fortunately, no such invariance is required for the theory’s consistency.
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A On Klein–Gordon normalisation

This appendix proves Klein–Gordon normalisation implies Eqs. (1.4.14) and (1.4.25) are equivalent

to Eqs. (1.4.22) and (1.4.26). First I compute operator-valued Klein–Gordon inner products, viz.

〈
φσ, φ̂

〉
KG

= i
ˆ
x

φ∗σ
←→
∇0
∑
σ′

(
φσ′ âσ′ + φ∗

σ′
â†
σ′

)
=
∑
σ′

〈φσ, φσ′ 〉KG âσ′ = âσ, (A.1)

〈
φ̂, φσ

〉
KG

= i
ˆ
x

∑
σ′

(
φσ′ âσ′ + φ∗

σ′
â†
σ′

)←→
∇0φσ =

∑
σ′

〈φσ′ , φσ〉KG â
†
σ′

= â†σ, (A.2)

whereX
←→
∇0Y := X∇0Y −

(
∇0X

)
Y . Note that generalising the Klein–Gordon inner product to accept

operator-valued arguments requires
〈
Â, B̂

〉
KG

:= i
´
x
Â†
←→
∇0B. Hence

[
âσ, â

†
σ′

]
=
[〈
φσ, φ̂

〉
KG
,
〈
φ̂, φσ′

〉
KG

]
= −

ˆ
x

ˆ
y

[
φ∗σ (t, x)∇0φ̂ (t, x)−

(
∇0φ∗σ (t, x)

)
φ̂ (t, x) ,

φ̂ (t, y)∇0φσ′ (t, y)−
(
∇0φ̂ (t, y)

)
φσ′ (t, y)

]
, (A.3)

[âσ, âσ′ ] =
[〈
φσ, φ̂

〉
KG
,
〈
φσ′ , φ̂

〉
KG

]
= −

ˆ
x

ˆ
y

[
φ∗σ (t, x)∇0φ̂ (t, x)−

(
∇0φ∗σ (t, x)

)
φ̂ (t, x) ,

φ∗
σ′

(t, x)∇0φ̂ (t, x)−
(
∇0φ∗

σ′
(t, x)

)
φ̂ (t, x)

]
. (A.4)

One direction of the equivalence (deriving Eqs. (1.4.14) and (1.4.25) from Eqs. (1.4.22) and (1.4.26))

then follows easily:

[
âσ, â

†
σ′

]
=

ˆ
x

ˆ
y

iδ (x, y)√
|g (t, x)|

(
φ∗σ (t, x)∇0φσ′ (t, y)−∇0φ∗σ (t, x)φσ′ (t, y)

)
= i
ˆ
x

(
φ∗σ (t, x)∇0φσ′ (t, x)−∇0φ∗σ (t, x)φσ′ (t, x)

)
= 〈φσ, φσ′ 〉KG = δσσ′ , (A.5)

[âσ, âσ′ ] = 0. (A.6)

For the other direction (deriving Eqs. (1.4.22) and (1.4.26) from Eqs. (1.4.14) and (1.4.25)), simply

contrast Eq. (A.3) with the calculation
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[
âσ, â

†
σ′

]
= δσσ′ = 〈φσ, φσ′ 〉KG

= i
ˆ
x

(
φ∗σ (t, x)∇0φσ′ (t, x)− φσ′ (t, x)∇0φ∗σ (t, x)

)
= −

ˆ
x

ˆ
y

iδ (x, y)√
|g (t, x)|

(
∇0φ∗σ (t, x)φσ′ (t, y)−∇0φσ′ (t, y)φ∗σ (t, x)

)
. (A.7)

Thus

0 =

ˆ
x

ˆ
y

{[
φ∗σ (t, x)∇0φ̂ (t, x)−∇0φ∗σ (t, x) φ̂ (t, x) ,

φ̂ (t, y)∇0φσ′ (t, y)−∇0φ̂ (t, y)φσ′ (t, y)
]

− iδ (x, y)√
|g (t, x)|

(
∇0φ∗σ (t, x)φσ′ (t, y)−∇0φσ′ (t, y)φ∗σ (t, x)

)}

=

ˆ
x

{ˆ
y

[
φ∗σ (t, x)∇0φ̂ (t, x)−

(
∇0φ∗σ (t, x)

)
φ̂ (t, x) ,

φ̂ (t, y)∇0φσ′ (t, y)−∇0φ̂ (t, y)φσ′ (t, y)
]

−i
(
∇0φ∗σ (t, x)φσ′ (t, x)−∇0φσ′ (t, x)φ∗σ (t, x)

)}
=

ˆ
x

{
−i
(
∇0φ∗σ (t, x)φσ′ (t, x)−∇0φσ′ (t, x)φ∗σ (t, x)

)
+

ˆ
y

{[
φ̂ (t, x) , ∇0φ̂ (t, y)

]
∇0φ∗σ (t, x)φσ′ (t, y)

−
[
φ̂ (t, y) , ∇0φ̂ (t, x)

]
φ∗σ (t, x)∇0φσ′ (t, y)

−
[
φ̂ (t, x) , φ̂ (t, y)

]
∇0φ∗σ (t, x)∇0φσ′ (t, y)

−
[
∇0φ̂ (t, x) , ∇0φ̂ (t, y)

]
φ∗σ (t, x)∇0φσ′ (t, y)

}}
.

(A.8)

Hence

i∇0φ∗σ (t, x)φσ′ (t, x)− i∇0φσ′ (t, x)φ∗σ (t, x) =

ˆ
y

{[
φ̂ (t, x) , ∇0φ̂ (t, y)

]
∇0φ∗σ (t, x)φσ′ (t, y)

−
[
φ̂ (t, y) , ∇0φ̂ (t, x)

]
φ∗σ (t, x)∇0φσ′ (t, y)

−
[
φ̂ (t, x) , φ̂ (t, y)

]
∇0φ∗σ (t, x)∇0φσ′ (t, y)

−
[
∇0φ̂ (t, x) , ∇0φ̂ (t, y)

]
φ∗σ (t, x)∇0φσ′ (t, y)

}
,

(A.9)[
φ̂ (t, x) , ∇0φ̂ (t, y)

]
=

iδ (x, y)√
|g (t, x)|

, (A.10)[
φ̂ (t, x) , φ̂ (t, y)

]
= 0, (A.11)[

∇0φ̂ (t, x) , ∇0φ̂ (t, y)
]

= 0. (A.12)
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B Pseudo-norm revision

The BRST and spacetime symmetries of the theory raise similar issues, which are compared and

analysed herein. For this purpose, it is sufficient to identify each of the fields N2A0, B, c, c with its

own zero mode. For brevity I define pseudo-norms as self-pseudo-inner products rather than square

roots thereof. For example, a solution of 〈Φ|Φ〉 < 0 is called negative-norm.

In Sec. B.1, I provide a normalisation convention for several FP-sector anticommutators. In Sec. B.2,

I provide a matrix representation of solutions for these anticommutator conditions. In Secs. B.3 and

B.4, I present explicit pseudo-inner products that obtain positive-norm states respectively preserving

the internal and spacetime symmetries of BRST-quantised Yang–Mills theory. These sections use

CMP methods for Yang–Mills theory. (An analogous treatment for perturbative gravity has not yet

been produced.)

B.1 Anticommutators of the ki, and required pseudo-inner product repairs by

integration variable eliminations

For the non-interacting (q = 0) theory

c = k0 + k1f, , c = k2 + k3f (B.1)

for fermionic spacetime constants k0, k1, k2, k3. Zero-modes give L(0)
FP = −iċ · ċ and

$c(0)
= iċ(0) = ik3ḟ , $c(0)

= −iċ(0) = −ik1ḟ , (B.2)

so canonical quantisation gives

i
{
k0 + k1f, k3ḟ

}
=
{
c(0), $c(0)

}
=

i
V (t)

=
{
c(0), $c(0)

}
= −i

{
k2 + k3f, k1ḟ

}
. (B.3)

Since V = an−1Vc = ḟ−1
´

dn−1x
√
η (x) and

√
η (x) > 0, some spacetime-constant r > 0 satisfies´

dn−1x
√
η = r−2. Then r is a spacetime constant, which can be set to 1 by rescaling a (t). Thus

V −1 = r2ḟ and
{
k0 + k1f, k3ḟ

}
= r2ḟ = −

{
k2 + k3f, k1ḟ

}
. Equating coefficients of ḟ , f ḟ gives the

anticommutation relations

{ki, kj} = r2 (δ0iδ3j − δ1iδ2j) . (B.4)

Obtaining such anticommutators is the motivation for considering the non-interacting special case,

and Eq. (B.4) implies the t = 0 Schrödinger representation has k1 = −r2 ∂
∂k2

. If a k1-annihilated wave-

function’s normalization included integration over the Grassmann variable k2, said wavefunction

would be k2-independent and hence of zero pseudo-norm. Thus k2-integration must be excluded

from our pseudo-inner product, and this trivially works at all orders, since δc = constant is a

symmetry of the full theory with Noether current −iDµc and Noether charge Q(0) := −i
´
x
D0c.

It is important to prove that δBRST (Dµc) = 0 implies
{
Q, Q(0)

}
= 0, and to obtain Q(0) in the form

O (k1). These results, if obtained, establish that we can impose one Q(0) |ψ〉 = 0 condition for each

Lie group generator, e.g. N2 − 1 such conditions in SU (N). Doing this ensures a vacuum state |ψ〉

with k1 |ψ〉 = 0 at zeroth-order satisfies the BRST invariance conditionQ |ψ〉 = 0. Indeed, the proof is
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simple. The BRST invariance of the fermionic field Dµc is the statement {Q, Dµc} = 0. A −i
´

dn−1x

integration then implies that
{
Q, Q(0)

}
= 0. Finally, D0c = k1ḟ implies Q(0) = −i

´
dn−1x k1ḟ .

B.2 Matrix representations of the ks

One matrix representation of the ks (placed together on lines in pairs which do not anticommute) is

k1 = r

 A O2

O2 A

 , k2 = −r

 B O2

O2 B

 , (B.5)

k3 =
−r
2

 C C

−C −C

 , k0 =
r

2

 C −C

C −C

 (B.6)

where

A :=
1

2

 1 1

−1 −1

 , B :=
1

2

 1 −1

1 −1

 , C :=

 0 i

i 0

 . (B.7)

These satisfy

A2 = B2 = O2, C
2 = −I2, BA =

1

2

 1 1

1 1

 , AB = I2 −BA, AC = iA. (B.8)

Note the factors of 2−1 in the matrix representations of k0, k3 are required for their anticommutator

to be −I4 instead of −4I4. Define

η2 =

 1 0

0 −1

 , η =

 η2 O2

O2 −η2

 . (B.9)

One can show A†η2 = η2A (and similarly with B, C), and similarly r−1k†i η = ηr−1ki for each i. For

example,

k†3η =
−r
2

 C† −C†

C† −C†

 η2 O2

O2 −η2


=
−r
2

 C†η2 C†η2

C†η2 C†η2

 =
−r
2

 η2C η2C

η2C η2C

 , (B.10)

ηk3 =
−r
2

 η2 O2

O2 −η2

 C C

−C −C

 =
−r
2

 η2C η2C

η2C η2C

 . (B.11)

One can similarly show that, had we attempted a metric η =

 η2 O2

O2 η2

, the result k†3η = ηk3

would fail, so the − sign in the definition of η in terms of η2 is vital.

In the above matrix representation we have
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k0k3 + k1k2 = −r2

 1
2C

2 +AB 1
2C

2

1
2C

2 1
2C

2 +AB


= −r2

 1
2 I2 −BA − 1

2 I2

− 1
2 I2 1

2 I2 −BA

 , (B.12)

k1k3 =
−r2

2

 AC AC

−AC −AC

 =
−r2

2

 iA iA

−iA −iA

 . (B.13)

Let a ket |ψ〉 satisfying 〈ψ|k1k3|ψ〉 = 〈ψ|k0k3 + k1k2|ψ〉 = 0 have a column vector representation

 U

L

 =


a

b

c

d

 , a, b, c, d ∈ C, U, L ∈ C2 (B.14)

so 〈ψ|k1k3|ψ〉 = 0 implies

0 =
(

U† L†
) η2 O2

O2 −η2

 A A

−A −A

 U

L


=
(

U†η2 −L†η2

) A (U + L)

−A (U + L)


=
(
U† + L†

)
η2A (U + L)

=
1

2

(
a∗ + c∗ b∗ + d∗

) a+ b+ c+ d

a+ b+ c+ d


=

1

2
(a∗ + b∗ + c∗ + d∗) (a+ b+ c+ d) , (B.15)

0 = a+ b+ c+ d. (B.16)

Here I have used the result

η2A =
1

2

 1 1

1 1

 , (B.17)

from which I can obtain a further result:

η2BA = η2 (I2 −AB) = η2 − (η2A)B =
1

2

 1 1

−1 −1

 . (B.18)

This result is of immediate use. Introduce complex numbers w := a + d, z := b + c so w = −z and

wz∗ ∈ R. Then 〈ψ|k0k3 + k1k2|ψ〉 = 0 implies
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0 =
(

U† L†
) η2 O2

O2 −η2

 1
2 I2 −BA − 1

2 I2

− 1
2 I2 1

2 I2 −BA

 U

L


=
(

U†η2 −L†η2

) 1
2 (U− L)−BAU
1
2 (L−U)−BAL


=

1

2
(U + L)

†
η2 (U− L)−

(
U†η2BAU− L†η2BAL

)
=

1

2
{(a∗ + c∗) (a− c)− (b∗ + d∗) (b− d)− (a∗ − b∗) (a+ b) + (c∗ − d∗) (c+ d)}

=
1

2
{−a∗c+ ac∗ + b∗d− bd∗ + ab∗ − a∗b+ c∗d− cd∗}

=
1

2
{[(a+ d) (b∗ + c∗)] + c.c.} =

1

2
{wz∗ + c.c.} = wz∗. (B.19)

Thus wz∗ = 0, w = z = 0, so b = −a, d = −c, and the most general representation of |ψ〉 is

|ψ〉 =


a

−a

c

−c

 . (B.20)

By inspection, this is precisely the solution to k1 |ψ〉 = 0, so is a null state in η’s pseudo-inner product.

B.3 Repairing the pseudo-inner product

To specify a pseudo-inner product it is sufficient to obtain its pseudo-norms. Deleting two integration

variables has the effect of removing two of the four terms in the pseudo-norm |a|2 − |b|2 − |c|2 + |d|2.

Clearly, we need the result to be neither positive-definite (since then non-trivial nilpotent Hermitian

operators no longer exist) nor negative-definite (as this has the same problem and also violates

unitarity). In particular, the surviving terms do not both depend on either a or d, but neither do

both of them depend on b or c. Taking one term from each pair gives either

(i) |a|2 − |b|2 or − |c|2 + |d|2 or

(ii) |a|2 − |c|2 or − |b|2 + |d|2.

A desirable pseudo-norm is of type (ii) rather than type (i), since type (i) choices imply 〈ψ|ψ〉 = 0

whenever Eq. (B.20) holds. One thus anticipates obtaining either |a|2 − |c|2 or − |b|2 + |d|2. For

solutions of Eq. (B.20), we simply have− |b|2+|d|2 = −
(
|a|2 − |c|2

)
. With the pseudo-norm |a|2−|c|2

the general solution to 〈ψ|ψ〉 = 1 is

|ψ〉 =


eiα coshϑ

−eiα coshϑ

eiβ sinhϑ

−eiβ sinhϑ

 , α, β, ϑ ∈ R, (B.21)

whereas with the pseudo-norm − |b|2 + |d|2 the functions sinhϑ, coshϑ must be exchanged.
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B.4 The spacetime symmetry

So far this appendix has considered internal symmetries, but a similar treatment is also possible for

spacetime symmetries. With k1 |ψ〉 = 0 imposed, the zero-point modes’ contribution to the FP-ghost

propagator is

〈
ψ| (k0 + k1f (t))

(
k2 + k3f

(
t
′
))
|ψ
〉

= 〈ψ|k0k2|ψ〉+ 〈ψ|k0k3|ψ〉 f
(
t
′
)
. (B.22)

The spacetime symmetry condition is then 〈ψ|k0k3|ψ〉 = 0. If this inner product is in the full metric

then only a zero-pseudo-norm state is consistent with this condition, because then

〈ψ|ψ〉 = r−2 〈ψ| {k0, k3} |ψ〉 = 2r−2 Re 〈ψ|k0k3|ψ〉 = 0. (B.23)

The elimination of integration variables is again necessary. Working throughout in the Landau

gauge, one field equation may be rewritten as∇µDµca = 0. (The operators are transposed in general,

but in the Landau gauge ∇µAbµ = 0 and the two versions of the field equation are equivalent.)

The Noether charge is then Q
(0)

= i
´
x
D0c. We will identify an associated Noether symmetry. We

now have Q
(0) |ψ〉 = 0, instead of k3 |ψ〉 = 0. To anticipate the new pseudo-inner product, observe

k3 |ψ〉 = 0 has solution

|ψ〉 =


a

b

−a

−b

 , (B.24)

so |a|2− |b|2 or − |c|2 + |d|2 will serve as an appropriate pseudo-norm. (These were previously called

type (i) pseudo-norms.) Again, unitarity is easily satisfied.

C Dirac brackets for Yang–Mills theory and perturbative gravity

In Sec. C.1, I summarise the general theory of Poisson and Dirac brackets, viz. Ref. [81]. The

notation and terminology I use when doing so will be used in my treatments of Yang–Mills theory

and perturbative gravity. The former is the subject of Sec. C.2. The latter is the subject of Sec. C.3.

C.1 The theory of Dirac brackets

If f = g holds on-shell, write f ≈ g and say f, g are weakly equal. If f = g holds off-shell, say f, g

are strongly equal. If the equation specifying the value of a canonical momentum is not invertible

to obtain time derivatives, it gives a constraint on phase space expressible in the form ϕj (φ, π) ≈

0. (The label j is an index over all such constraints, which are called primary constraints.) Here

φ collectively denotes all canonical coordinates and π collectively denotes all canonical momenta.

Then
∑
j cj (φ, π)ϕj (φ, π) ≈ 0 for any functions cj . The usual Hamiltonian, defined by a Legendre

transform, is hereafter called the naïve Hamiltonian and denoted HNaïve. The Hamiltonian then

admits the generalisation HDirac := HNaïve +
∑
j cj (φ, π)ϕj (φ, π), where the functions cj remain to

be determined. The Poisson bracket {·, ·}P then satisfies

ḟ ≈
{
f, HDirac}

P ≈
{
f, HNaïve}

P +
∑
k

ck {f, ϕk}P (C.1)
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for any function f . In particular ϕ̇j ≈
{
ϕj , H

Naïve
}

P +
∑
k ck {ϕj , ϕk}P. But we require ϕ̇j ≈ 0, so{

ϕj , H
Naïve}

P +
∑
k

ck {ϕj , ϕk}P ≈ 0. (C.2)

This fact may introduce ck-independent constraints other than primary constraints. Such further

constraints are called secondary constraints. Let Φ (φ, π) ≈ 0 be a secondary constraint. A term of the

form C (φ, π) Φ (φ, π) can then be added to HDirac, thereby demoting Φ ≈ 0 to a primary constraint,

and we can then attempt to find further secondary constraints. We continue until no new secondary

constraints result, and thereafter do not distinguish between primary and secondary constraints.

The final form of Eq. (C.2) after such iterations may also allow us to solve for the ck. Gauge degrees

of freedom result in the ck not being unique, which further complicates the form of HDirac.

Call a function f (φ, π) satisfying {f, ϕj}P ≈ 0 for all primary and secondary constraints ϕj a first

class function. If {ϕj , ϕk}P is not weakly equal to zero call ϕj , ϕk second class constraints. Label

these constraints ϕ̃a and define the matrix

Mab := {ϕ̃a, ϕ̃b}P . (C.3)

This matrix is always invertible. The Dirac bracket {·, ·}D is then defined as

{f, g}D := {f, g}P −
∑
ab

{f, ϕ̃a}P

(
M−1

)ab {ϕ̃b, g}P . (C.4)

Note in particular that any weakly vanishing quantity, e.g. a primary constraint, has vanishing

Poisson brackets and hence vanishing Dirac brackets.

C.2 Results for Yang–Mills theory

Let us consider an example relevant to us, namely that of Yang–Mills theory. We take all fields at

equal time, say t. Our first class constraints are ϕ1 (x) = πB (x) +
√
|g|A0 (x) , ϕ2

(
x
′
)

= πA0

(
x
′
)

.

Note the
√
|g| factor and the distinction between A0 and A0. Thus

{
ϕ1 (x) , ϕ2

(
x
′
)}

P
=
√
|g|g00δ

(
x, x

′
)
. (C.5)

The primary constraints are thus both also second class constraints, and we define

ϕ̃i := ϕi, i ∈ {1, 2} . (C.6)

Thus

Mab =
√
|g|g00Jabδ

(
x, x

′
)
, Jab :=

 0 1

−1 0

 = δa1δb2 − δa2δb1. (C.7)

Since δ
(
x, x

′
)

is the identity on the function space, it is self-inverse, whereas J−1 = −J . Thus(
M−1

)ab
=

1√
|g|g00

(
δa2δ

b
1 − δa1δb2

)
δ
(
x, x

′
)
. (C.8)

Dirac brackets integrate over positions, viz.
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{
f (x) , g

(
x
′
)}

D
=
{
f (x) , g

(
x
′
)}

P
−
ˆ

dn−1x
′′
dn−1x

′′′∑
ab

(δa2δb1 − δa1δb2)

×
δ
(
x, x

′
)

√
|g (x)|g00 (x)

{
f (x) , ϕa

(
x
′′
)}

P

{
ϕ3−a

(
x
′′′
)
, g
(
x
′
)}

P

=
{
f (x) , g

(
x
′
)}

P
+

δ
(
x, x

′
)

√
|g (x)|g00 (x)

ˆ
dn−1x

′′
dn−1x

′′′
×({

f (x) , πB

(
x
′′
)

+
√
|g|A0

(
x
′′
)}

P

{
πA0

(
x
′′′
)
, g
(
x
′
)}

P

−
{
f (x) , πA0

(
x
′′
)}

P

{
πB

(
x
′′′
)

+
√
|g|A0

(
x
′′′
)
, g
(
x
′
)}

P

)
. (C.9)

The Dirac brackets {f, g}D with f, g ∈
{
A0, B, πA0

, πB
}

must be calculated. Since πA0
is a primary

constraint, the result is always zero if πA0 ∈ {f, g}, so only f, g ∈
{
A0, B, πB

}
need be considered.

By antisymmetry, it suffices to calculate three Dirac brackets, viz.

{
A0 (x) , B

(
x
′
)}

D
=
{
A0 (x) , B

(
x
′
)}

P
+

δ
(
x, x

′
)

√
|g (x)|g00 (x)

ˆ
dn−1x

′′
dn−1x

′′′
×({

A0 (x) , πB

(
x
′′
)

+
√
|g|A0

(
x
′′
)}

P

{
πA0

(
x
′′′
)
, B

(
x
′
)}

P

−
{
A0 (x) , πA0

(
x
′′
)}

P

{
πB

(
x
′′′
)

+
√
|g|A0

(
x
′′′
)
, B

(
x
′
)}

P

)
=
{
A0 (x) , B

(
x
′
)}

P
+

δ
(
x, x

′
)

√
|g (x)|g00 (x)

g00 (x)

=
δ
(
x, x

′
)

√
|g (x)|

, (C.10)

{
A0 (x) , πB

(
x
′
)}

D
=
{
A0 (x) , πB

(
x
′
)}

P
+

δ
(
x, x

′
)

√
|g (x)|g00 (x)

ˆ
dn−1x

′′
dn−1x

′′′
×({

A0 (x) , πB

(
x
′′
)

+
√
|g|A0

(
x
′′
)}

P

{
πA0

(
x
′′′
)
, πB

(
x
′
)}

P

−
{
A0 (x) , πA0

(
x
′′
)}

P

{
πB

(
x
′′′
)

+
√
|g|A0

(
x
′′′
)
, πB

(
x
′
)}

P

)
=
{
A0 (x) , πB

(
x
′
)}

P
= 0, (C.11)

{
B (x) , πB

(
x
′
)}

D
=
{
B (x) , πB

(
x
′
)}

P
+

δ
(
x, x

′
)

√
|g (x)|g00 (x)

ˆ
dn−1x

′′
dn−1x

′′′
×({

B (x) , πB

(
x
′′
)

+
√
|g|A0

(
x
′′
)}

P

{
πA0

(
x
′′′
)
, πB

(
x
′
)}

P

−
{
B (x) , πA0

(
x
′′
)}

P

{
πB

(
x
′′′
)

+
√
|g|A0

(
x
′′′
)
, πB

(
x
′
)}

P

)
=
{
B (x) , πB

(
x
′
)}

P
= δ

(
x, x

′
)
. (C.12)

Therefore the naïve commutation relations used in this thesis are justified. Notice in particular that

0 =
{
B (x) , πB

(
x
′
)}

D
−
√
|g|
{
A0
(
x
′
)
, B (x)

}
D

=
{
B (x) , ϕ̃1

(
x
′
)}

D
. (C.13)

C.3 Results for perturbative gravity

We take all fields at equal time, say time t. I will use two references, Ref. [94] and Appendix E.2 of

Ref. [4].
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There are four primary constraints. They may be succinctly written by first defining [4, 94] the

Hamiltonian constraint

H :=
1
√
γ

(
πijπ

ij − 1

2
π2

)
−(n−1) R

√
γ (C.14)

and the momentum constraint

Hi := −2Djπ
j
i (C.15)

where:

• (n−1)R is the Ricci scalar on a Cauchy surface;

• πij is the conjugate momentum densities of γij ;

• γij lowers the indices of πij ; and

• Dj is the gauge covariant derivative.

The shift vector N i ∈ Rn−1 may also be denoted N.

The primary constraints [4, 94] are shown below in Eqs. (C.16)–(C.19) (N i is denoted N in Eq.

(C.17)):

ϕ1 = HN :=

ˆ
dn−1xN (x)H (x) , (C.16)

ϕ2 = HN :=

ˆ
dn−1xN i (x)Hi (x) , (C.17)

ϕµ3 = πH0µ
, (C.18)

ϕ4µ = πBµ +
√
|g|H0

µ. (C.19)

(The constraint in Eq. (C.18) is due to the Ricci scalar in the Einstein–Hilbert action.) All of these

constraints are also secondary.

The next task is to find the matrix Mab defined in Eq. (C.3), and the inverse matrix thereof. Taking

N, N (M, M) in the first (second) argument of a Poisson bracket (hereafter PB) obtains Mab when

a, b ∈ {1, 2}, viz. Ref. [94]. This result is antisymmetric when N = M, N = M, but not more

generally. The matrix Mab may be written as a block matrix

Mab =

 A O2

O2 B

 , (C.20)

where A, B are 2× 2 matrices and O2 is the 2× 2 zero matrix. Explicitly

A =

 Hγij(N∇jM−M∇jN) −H£NM

H£NM H[N,M]

 , (C.21)

B =
√
|g|g00δµν δ

(
x, x

′
) 0 −1

1 0

 . (C.22)

Note that, unlike A, the matrix B lacks any dependence on N, N, M, M, so is antisymmetric.
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The inverse matrix of Mab is obtainable from the identity

 A O2

O2 B

−1

=

 A−1 O2

O2 B−1

 . (C.23)

Using also the fact that the Dirac delta and Kronecker delta are both self-inverse, we have

M−1 =



H[N,M]

det

H£MN

det 0 0
−H£NM

det

Hγij(N∇jM−M∇jN)
det 0 0

0 0 0 1√
|g|g00

δνρδ
(
x, x

′
)

0 0 − 1√
|g|g00

δνρδ
(
x, x

′
)

0


, (C.24)

where det := Hγij(N∇jM−M∇jN)H[N,M] +H£NMH£MN . The Dirac bracket (hereafter DB) is then

{F, G}D =

6∑
T=0

TT , (C.25)

where the terms TT are

T0 := {F, G}P , (C.26)

T1 := −{F, HN}P
H[N,M]

det
{HM , G}P , (C.27)

T2 := −{F, HN}P
H£MN

det
{HM, G}P , (C.28)

T3 := {F, HN}P
H£NM

det
{HM , G}P , (C.29)

T4 := −{F, HN}P

Hγij(N∇jM−M∇jN)

det
{HM, G}P , (C.30)

T5 :=
{
F, πBν +

√
|g|H0

ν

}
P
{πH0ν

, G}P , (C.31)

T6 := −{F, πH0ν}P

{
πBν +

√
|g|H0

ν , G
}

P
. (C.32)

Computing DBs requires a few Poisson brackets. Some are straightforward:

{
Bµ, πBν +

√
|g|H0

ν

}
P

= δµν δ
(
x, x

′
)
, (C.33){

H0
µ, πH0ν

}
P

= g00δνµδ
(
x, x

′
)
, (C.34){

πH0µ , πBν +
√
|g|H0

ν

}
P

= −
√
|g|g00δµν δ

(
x, x

′
)
. (C.35)

Others require some calculation:
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{γij , HN}P =

ˆ
dn−1x

N
√
γ

{
γij , π

klπkl −
1

2
π2

}
P

=

ˆ
dn−1x

N
√
γ

(
γkmγln −

1

2
γklγmn

)(
δki δ

l
jπ
mn + δmi δ

n
j π

kl
)

=

ˆ
dn−1x

N
√
γ

(2πij − πγij) , (C.36)

{γij , HN}P = −2

ˆ
dn−1xNk

{
γij , Γllmπ

m
k

}
P = −2

ˆ
dn−1xNjΓ

l
li. (C.37)

It is now possible to obtain the DBs {F, G}D with

F, G ∈ S :=
{
γij , B

µ, H0
µ, π

ij , πBµ , πH0µ

}
, F 6= G, (C.38)

by beginning with the nonzero PBs of HN , HN, πH0µ , πBµ +
√
|g|H0

µ with the elements of S.

For a DB to differ from a PB we need some TT , T ≥ 1 to be nonzero. The table below summarises

those TT which can be nonzero (provided the G-dependent PB is also nonzero) for a given choice of

F .

F γij Bµ H0
µ πij πBµ πH0

µ

T 1 to 4 5 6 None None 5

A similar table for G is shown below.

G γij Bµ H0
µ πij πBµ πH0

µ

T 1 to 4 6 5 None None 6

Thus a choice of F 6= G for which some TT 6= 0 for some T ≥ 1 requires

(F, G) ∈
{(
Bµ, H0

ν

)
,
(
πH0µ

, H0
ν

)
,
(
H0
µ, B

ν
)
,
(
H0
µ, πH0ν

)}
(C.39)

(Eq. (C.39) uses round brackets to denote ordered pairs, not to denote antibrackets). In each of these

cases, T ∈ {5, 6}. This simplifies the nonzero DBs distinct from PBs to

{F, G}D = {F, G}P +
{
F, πBν +

√
|g|H0

ν

}
P
{πH0ν

, G}P−{F, πH0ν
}P

{
πBν +

√
|g|H0

ν , G
}

P
. (C.40)

Such DBs are as follows:

{
Bµ, H0

ν

}
D = g00δµν δ

(
x, x

′
)
, (C.41){

H0
µ, πH0

ν

}
D

= 0. (C.42)

In particular, all DBs with the primary constraints vanish as required.

Further, the following Dirac bracket is identical with its usual Poisson bracket, which was also

required: {
πBµ +

√
|g|H0

µ, πH0ν

}
D

=
√
|g|g00δνµδ

(
x, x

′
)
. (C.43)
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D There are no “new” Noether charges

Let ξµ denote an arbitrary Killing vector (if multiple Killing vectors need to be considered I write

ξµ1 , · · · ). Let Q00 denote a bosonic conserved charge that is neither BRST-invariant nor anti-BRST-

invariant. In the Landau gauge, Yang–Mills theory and perturbative gravity in the de Donder gauge

provide respective examples

Q
Example 1
00 =

ˆ
x

A0, Q
Example 2
00 =

ˆ
x

ξµκH0
µ. (D.1)

Define

Q01 = [Q, Q00] , Q10 =
[
Q, Q00

]
, Q11 =

{
Q, Q01

}
=
{
Q, [Q, Q00]

}
. (D.2)

ThusQij is fermionic if and only if i+j is odd. The results∇µQ = ∇µQ = 0 imply thatQ01, Q10, Q11

are also conserved.

Each of the four conserved charges has a 2-bit label that could instead be written as one base-4 digit.

Of interest are the values of Qijkl := [Qij , Qkl]± with 2i+ j ≤ 2k + l, where ± is a + sign if and only

if Qij , Qkl are both fermionic. Since each Qij is conserved, so is each Qijkl. The aim is to show that,

for the cases in Eq. (D.1), the Qijkl are linear combinations of terms of the form Qij , so that there are

no “new” conservation laws. (Trivial conserved charges may also appear in expressions for Qijkl.

Examples include
´
x
V 0 where ∇µV µ = 0 and integrals of the form

´
x
ξµA0

µ where Aαβ = Aβα and

∇αAαβ = 0 for some tensor Aαβ .)

For brevity we may use a single hexadecimal digit65 to label the (anti)commutator, viz.

Q8i+4j+2k+l := Qijkl. (D.3)

(Since conserved charges are labelled with two bits, this creates no ambiguity.) Note that Q00 has a

lower case Roman index in the Yang–Mills case, and for perturbative gravity there is oneQ00 for each

Killing vector, so that the vector spaces of charges Q00 is spanned by the QA00 (say) that ξµA generates.

Hereafter upper Roman indices will be used for both cases, so (anti)commutators have two indices,

viz. QABijkl =
[
QAij , Q

B
kl

]
±. The “diagonal terms” are QAB0 , QAB5 , QABA , QABF . They are called diagonal

because they satisfy 2i + j = 2k + l. They trivially vanish in the case A = B. The “non-diagonal”

(anti)commutators of interest are Q1, Q2, Q3, Q6, Q7, QB. (If decimal labels were used instead of

hexadecimal ones, the labels 10, 11 would have been used for QA, QB, creating an ambiguity with

the previously defined charges Q10, Q11.)

Some cases are trivial. For the cases in Eq. (D.1) Q1 = 0, since Q00, Q01 are proportional to momen-

tum zero modes. Indeed Q00 ∝ πB completely decouples from the FP-ghost sector, so Q2 = 0. I

discuss the other Qijkl below as follows:

• I discuss Q3 in Sec. D.1;

• I discuss Q6 in Sec. D.2;

• I discuss “diagonal” terms in Sec. D.3;

• I discuss Q7, QB in Sec. D.4.
65The hexadecimal digits A-F will be deitalicised throughout.
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D.1 The case of Q3

A Nakanishi–Lautrup-sector term in the global gauge current is the only contribution to Q3 in Yang–

Mills theory that requires a detailed treatment. Dropping irrelevant factors and explicit t-dependence,

Q3 ∝ [πB (x) , πB (y)×B (y)]

:=

ˆ
xy

(πB (x) · πB (y)×B (y)− (πB (y)×B (y)) · πB (x))

=

ˆ
xy

fabc
(
πaB (x)πbB (y)Bc (y)− πbB (y)Bc (y)πaB (y)

)
, (D.4)

where in the last line I use fabc = f bca. Using the identity ABC − BCA = [A, B]C + B [A, C], the

fabc coefficient in the integrand of Eq. (D.4) is proportional to

[
πaB (x) , πbB (y)

]
Bc (y) + πbB (y) [πaB (x) , Bc (y)] ∝ δac. (D.5)

But fabcδac = 0, so Q3 = 0.

In perturbative gravity, πBµ = −κH0
µ. There are no terms in J (B)

µ that contain both anHµν tensor and

an undifferentiated Bρ, so the only terms in J (B)
µ that could contribute to Q3 are those proportional

to an undifferentiated B.

The only important term inQ11 is
´
y
J (B)0, where J (B)

µ is theBµ-dependent vector field you defined.

However, hereafter the Killing vector to which it is proportional will be denoted ξµ2 instead of ξµ.

Thus Q3 ∝
´
xy

[
ξµ1 (x)πBµ (x) , J̃ (B)0 (y)

]
, where J̃ (B)

µ is obtained by deleting terms from J
(B)
µ that

depend only on derivatives of Bµ. Define the integral operators

ˆ
xy

:=

ˆ
dn−1x

ˆ
y

,

ˆ
yx

:=

ˆ
dn−1y

ˆ
x

. (D.6)

Explicitly J̃ (B)
µ = −ξν2γρσµνκBγ∇γhρσ so

Q3 ∝
ˆ
xy

κξµ1 (x) ξν2 (y)
[
πBµ (x) , Bγ (y)∇γH0

ν (y)
]

∝
ˆ
xy

κξµ1 (x) ξν2 (y) δ (x, y)∇µH0
ν (y) =

ˆ
y

κξν2∇µ
(
ξµ1H

0
ν

)
. (D.7)

Since the δ factor ultimately allows all arguments to be set to y, Q3 is ξ1 ↔ ξ2–symmetric, so

Q3 ∝
ˆ
y

κ
[
ξν2∇µ

(
ξµ1H

0
ν

)
+ ξν1∇µ

(
ξµ2H

0
ν

)]
. (D.8)

Define Φ := H0νξ1ν , so
´
y

Φ is a conserved charge. Up to total derivatives
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ξν2∇µ
(
ξµ1H

0
ν

)
≈ − (∇µξ2ν)

(
ξµ1H

0ν
)

= (∇νξ2µ)
(
ξµ1H

0ν
)

= (∇µξ2ν)
(
ξν1H

0µ
)

≈ −ξ2ν∇µ
(
ξν1H

0µ
)

= − (ξ2ν∇µξν1 )H0µ

= (ξ2ν∇νξ1µ)H0µ

= (ξ1ν∇νξµ2 + £ξ2ξ
µ
1 )H0

µ

= (£ξ2ξ
µ
1 − ξ1ν∇µξν2 )H0

µ

= H0
µ£ξ2ξ

µ
1 − ξ1ν∇µ

(
ξν2H

0
µ

)
, (D.9)

ξν2∇µ
(
ξµ1H

0
ν

)
+ ξν1∇µ

(
ξµ2H

0
ν

)
≈ H0

µ£ξ2ξ
µ
1 − ξ1ν∇µ

(
ξν2H

0
µ − ξ2µH0ν

)
= H0

µ (£ξ2ξ
µ
1 − ξ1ν∇µξν2 ) + ξ1νξ2µ∇µH0ν

= ξ2µ∇µΦ = ∇µ (ξµ2 Φ) ≈ 0. (D.10)

There is therefore no independent Noether charge.

D.2 The case of Q6

For Yang–Mills theory, πc = −i
√
|g|D0c and πc = i

√
|g|∇0c so Q6 ∝

´
yx

[
πc (x) , A0 (y)× c (y)

]
,

which is a linear combination of the
´
y
A0a (y). For gravity define

Qc (ξ1) =

ˆ
dn−1x

(
ξα1 πcα + i

√
|g|κH0

α£ξ1c
α − i

√
|g|ξ0

1∇αcβκHαβ

)
, (D.11)

Qc (ξ2) = −i
ˆ

dn−1yξγ2πcγ = −
ˆ

dn−1yξγ2Z
0
γ . (D.12)

Then

{ξα1 πcα , ξ
γ
2πcγ} = 0, (D.13){

H0
α£ξ1c

α, ξγ2πcγ
}

= {£ξ1cα, πcγ} ξ
γ
2H

0
α

= −iδ (x, y) δαγ £ξ1ξ
γ
2H

0
α

= −iδ (x, y) £ξ1ξ
α
2H

0
α, (D.14){

ξ0
1∇αcβHαβ , ξ

γ
2πcγ

}
= 0, (D.15)

{Qc (ξ1) , Qc (ξ2)} = −i
ˆ

dn−1xdn−1y
(

i
√
|g|
) (
−iδ (x, y)κH0

α£ξ1ξ
α
2

)
= −iκ

ˆ
x

£ξ1ξ
α
2H

0
α. (D.16)

D.3 The “diagonal” cases

Since QA00, Q
B
01 are proportional to momenta, QAB0 = 0, QAB5 = 0.

We may write QA10 in the form πA10 + qA10, where πA10 is proportional to a momentum and qA10 has no

dependence on the field to which said momentum is conjugate. For example, for Yang–Mills theory

Q10 =

ˆ
x

D0c, π10 =

ˆ
x

∇0c ∝
ˆ
x

πc, q10 = q

ˆ
x

A0 × c. (D.17)
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Thus QABA =
{
qA10, q

B
10

}
. For Yang–Mills theory QabA = q2fabcfa

′
b
′
c
′ ´

x

´
y

{
A0bcc, A0b

′

cc
′}

, which

simplifies to 0 by the usual equal-time CARs and CCRs and the identity

{b1f1, b2f2} = b1 [f1, b2] f2 + [b1, b2] f1f2 + b2b1 {f1, f2} − b2 [b1, f2] f1, (D.18)

where b1, b2 (f1, f2) are bosonic (fermionic) fields. (Taking b1 = Ab0, f1 = cc etc. gives [f1, b2] = 0

etc.) The analogous calculation for perturbative gravity obtains

QABA ∝ {Qc (ξµA) , Qc (ξµB)}

=

ˆ
dn−1x

ˆ
dn−1y

{
ξαAπcα + i

√
|g|κH0

α£ξAc
α − i

√
|g|ξ0

A∇αcβκHαβ ,

ξγBπcγ + i
√
|g|κH0

γ£ξBc
γ − i

√
|g|ξ0

B∇γcδκHγδ

}
, (D.19)

where underlined terms are y-dependent. By inspection QABA = 0.

To address QABF is trickier. For Yang–Mills theory

[
Aa0 (x) , Bb (y)

]
=
[
−$a

B (x) , Bb (y)
]

=
i√
|g|
δabδ (x, y) , (D.20)

Qb11 = f bcd
ˆ
y

(
AνcF 0d

ν +A0cBd − iccD0cd + i
(
∇0cc

)
cd
)

= f bcd
ˆ
y

(
AνcF 0d

ν +A0cBd + cc$d
c +$c

cc
d
)
, (D.21)

QabF = faeff bcd
ˆ
x

ˆ
y

×
[
A0eBf + ce$f

c +$e
cc
f , A0cBd + cc$d

c +$c
cc
d
]
. (D.22)

From the identity [b1b2, b3b4] = b1b3 [b2, b4] + b1 [b2, b3] b4 + b3 [b1, b4] b2 + [b1, b3] b4b2, the Nakanishi–

Lautrup contribution is proportional to

(
facef bcd − a↔ b

) ˆ
x

πe
BB

d =
(
facef bcd − d↔ e

)ˆ
x

πe
BB

d = facef bcd
ˆ
x

(
πe
BB

d − πdBBe
)
. (D.23)

The first of these three expressions verifies an a↔ b–antisymmetry. The third shows that a d ↔ e

exchange combines an a ↔ b exchange with a further sign change, i.e. there is a d ↔ e–symmetry.

In the second expression, the factor facef bcd − d↔ e is d↔ e–antisymmetric, but
´
x
πe
BB

d is neither

d ↔ e–symmetric nor d ↔ e–antisymmetric. To prevent a contradiction, the Nakanishi–Lautrup

contribution is therefore zero. The same argument also vanishes the contributions from the ghost

and antighost sectors, using the identity

[f1f2, f3f4] = −f1f3 {f2, f4}+ f1 {f2, f3} f4 − f3 {f1, f4} f2 + {f1, f3} f4f2. (D.24)

Since all nonzero commutators in CCRs and nonzero anticommutators in CARs are proportional

to δ (x, y), for perturbative gravity a tensor Fµν66 exists for which QABF =
´
x
ξµAξ

ν
BFµν , which is an

A ↔ B–antisymmetric pseudo-inner product on the Killing vector fields. We require this product

66The F is deitalicised because it is a hexadecimal digit, in reference to QABF . This notational convention will be used again in
Sec. D.4 with the digits 7, B.
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to be identically zero. It is completely specified by its pseudo-norms, so we need only verify these

vanish. Since the pseudo-norms QAAF vanish, and the pseudo-norm of a Killing vector field ξµ may

be expressed in this form by choosing a basis of the Killing vector fields for which some A satisfies

ξµ = ξµA, the pseudo-inner product’s pseudo-norms all vanish as required.

D.4 The cases of Q7, QB

Since QAB7 , QABB are fermionic, they should be expressible in terms of the QC01, Q
D
10 charges. Indeed,

this is verified below.

The next few calculations make repeated use of the identity [f1, f2f3] = {f1, f2} f3 − f2 {f1, f3} for

classical fermionic fields f1, f2, f3. For Yang–Mills theory

Qab7 ∝ f bcd
ˆ

dn−1xdn−1y
[
πac , c

cπdc

]
∝ fabd

ˆ
dn−1xπdc , (D.25)

QabB = f bcd
ˆ
x

ˆ
y

[
−i$a

c + qfaefA0ecf , A0cBd + cc$d
c +$c

cc
d
]

= f bcd
ˆ
x

ˆ
y

(
−i
[
$a
c , $

c
cc
d
]

+ qfaef
[
A0e, Bd

]
A0ccf + qfaefA0e

[
cf , cc$d

c

])
= f bcd

ˆ
x

ˆ
y

(
δad$c

c + iqfadfA0ccf + iqfaefA0eδdfcc
) δ (x, y)√
|g (t, x)|

= f bcd
ˆ
y

(
δad$c

c + iqfadfA0ccf + iqfaedA0ecc
)

= f bcd
ˆ
x

(
δad$c

c + iqfadf
(
A0ccf −A0fcc

))
=

ˆ
x

(
fabc$c

c + iqfadff bcd
(
A0ccf −A0fcc

))
. (D.26)

The result for Qab7 is expressible in terms of the Qd01. The result for Qab7 is expressible in terms of Qd10

terms, since

fdaffdbc
ˆ
x

(
A0ccf −A0fcc

)
=
(
fdaffdbc − c↔ f

) ˆ
x

(
A0ccf

)
=
(
fdaffdbc − a↔ b

)ˆ
x

(
A0ccf

)
(D.27)

vanishes by the same argument used in the above analysis of Eq. (D.23).

For perturbative gravity there exist tensors 7µν , Bµν analogous to Fµν , viz.

QAB7 =

ˆ
x

ξµAξ
ν
B7µν , QABB =

ˆ
x

ξµAξ
ν
BBµν . (D.28)

Since a fermionic field f satisfies [f, {Q, f}] = [f, Qf + fQ] = fQf + f2Q − Qf2 − fQf = 0 and

similarly with Q, the results QAA7 = QAAB = 0 are trivial. The properties of pseudo-inner products

used to show that QABF = 0 imply QAB7 = 0, QABB = 0.

E The equivalence of “two Noether charges” in perturbative

gravity

In Sec. E.1, I present a proof two conserved expressions are the same Noether charge. The rest of this

appendix provides details that Sec. E.1 leaves unaddressed. There are two types of term that must
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be considered, and these are collected in Eq. (E.3) below. The terms differ in whether they depend

on the Nakanishi–Lautrup auxiliary field. Those which do are considered in Sec. E.2; those which do

not are considered in Sec. E.3.

E.1 Overview

The field equation obtained by varying cµ is∇νT µν = 0 where

Tµν := Tµν + (2k − 1)κ∇βcγ (gµνhβγ − gβγhµν) , Tµν := γρσµν (∇ρcσ + κ£chρσ) =
[
Q, Hµν

]
. (E.1)

Similarly, varying cµ gives ∇νZµν = 0. Since Zµν , Tµν are symmetric elements of ker∇ν , for any

Killing vector field ξα the currents67 J(c)µ := ξαZµα, J(c)µ := ξαTµα are conserved.

Of interest is a comparison of
{
Q, Jµ(c)

}
and

{
Q, Jµ(c)

}
to the spacetime-isometry current. In fact

{
Q, Jµ(c)

}
+
{
Q, Jµ(c)

}
= ξα

({
Q, Sµα

}
+ {Q, Tµα}

)
= ξα

({
Q, Sµα

}
+ {Q, Tµα}

)
+ ξα {Q, Tµα − Tµα}

= ξα
({
Q, [Q, Hµα]

}
+
{
Q,
[
Q, Hµα

]})
+ (2k − 1)κξα

{
Q, ∇βcγ (gµνhβγ − gβγhµν)

}
= (2k − 1)κξα

{
Q, ∇βcγ (gµνhβγ − gβγhµν)

}
, (E.2)

which vanishes if and only if k = 1
2 . What is shown hereafter is that

´
x

{
Q, iJ0

(c)

}
is the spacetime-

isometry charge, so that in the anti-BRST-invariant case k = 1
2 this charge is

´
x

{
Q, iJ0

(c)

}
. The

spacetime-isometry charge may therefore be represented as the transformation of some Noether

charge under whichever of the BRST and anti-BRST transformations is action-preserving in the

chosen gauge.

We first write {
Q, iJµ(c)

}
= J (B)

µ + iJ (cc)
µ , (E.3)

where J (B)
µ contains terms that depend on a (possibly differentiated) Nakanishi–Lautrup auxiliary

field because of the BRST transformation of the FP-ghost, while J (cc)
µ contains other terms that result

from the BRST transformation of the metric perturbation κhµν . The expressions

J (B)
µ = −ξν

[
γρσµν (∇ρBσ + κ£Bhρσ) + (2k − 1)κ∇βBγ (gµνhβγ − gβγhµν)

]
, (E.4)

J (cc)
µ = ξα

[
cβ∇βZµα +∇µcβZβα +∇αcβZβµ − gαµ∇βcγSβγ

+ (1− 2k)∇βcβZµα + kTµα
(
2∇λcλ + κcβ∇βh+ 2κ∇βcγhβγ

)]
(E.5)

67Each Noether current has a subscript that refers to the fermionic field appearing in that current’s definition. This is not the
same fermionic field which is varied to obtain the Euler–Lagrange equation that implies a conservation law.
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may be compared to the spacetime-isometry transformations

δstκhµν = ∇µ (αξν) +∇ν (αξµ) + κ
(
αξλ∇λhµν +∇µ

(
αξλ

)
hλν +∇ν

(
αξλ

)
hµλ

)
, (E.6)

δstB
µ = α£ξBµ = α

(
ξλ∇λBµ − (∇λξµ)Bλ

)
, (E.7)

δstc
µ = α£ξcµ = α

(
ξλ∇λcµ − (∇λξµ) cλ

)
. (E.8)

The fact that ∇µBνδstHµν − ∇µδstB
νHµν is of the form αX + (∇µα)Y µ accounts for a contribution

Y µ + κξµ∇βBγHβγ to J (B)
µ (since ξµ∇βBγHβγ is the Nakanishi–Lautrup part of −ξµL0). When this

contribution and δstB
µ are subtracted, what remains is

J (B)rest
µ := −κξα

(
Bβ∇βHµα +∇αBβHβµ −H ν

α ∇νBµ +Hµα∇βBβ
)
. (E.9)

The spacetime-isometry current obtained by varying Bµ is

J (B, st, B)
µ := κ

(
Bα (∇αξν)Hµν −

(
ξα∇αBβ

)
Hβµ

)
. (E.10)

The difference between Eqs. (E.9) and (E.10) is

J (1)
µ := −κξα

(
Bβ∇βHµα −H ν

α ∇νBµ +Hµα∇βBβ −Bα (∇αξν)Hµν

)
. (E.11)

Since Hµα = 0 and ∇αHαβ = 0, J (1)
µ is a total derivative, viz. J (1)

µ = −κ∇α
(
BαξβH

µβ −BµξβHαβ
)
.

An analogous quantity in the treatment of J (cc)
µ is

J (2)
µ := ξα

(
cβ∇βZµα − Z ν

α ∇νcµ + Zµα∇βcβ − cα (∇αξν)Zµν
)

= ∇α
(
ξβcαZµβ − ξ

βcµZαβ

)
. (E.12)

Next we consider J (X)
µ + J

(Y )
µ + J

(Z)
µ , where:

• J (X)
µ is obtained by varying cµ;

• J (Y )
µ is obtained by varying hµν in hµν-independent terms;

• J (Z)
µ is obtained by varying hµν in ∇αhµν-dependent terms.

Explicitly

J (X)
µ := Tµν (ξα∇αcν −∇αξνcα) + κξαTµβhβγ∇αcγ − κ∇βξαT ν

µ hανc
β , (E.13)

J (Y )
µ := ξα

(
T βα∇βcµ + T βµ∇βcα + κT βγ∇βcµhαγ + κT γµ∇γcβhαβ

)
, (E.14)

J (Z)
µ := −∇α (Tµνcα)

(
ξν + κξβhβν

)
+

1

2
κT βγcµξα∇αhβγ . (E.15)

Equivalence up to total derivatives may be denoted ≈ so that

−Tµν (∇αξν) cα ≈ ξν∇α (Tµνc
α − Tανcµ) , (E.16)

∇βξα
(
T βνcµ − Tµνcβ

)
hαν ≈ ξα

{
−∇β

(
T βνhαν

)
cµ − T βνhαν∇βcµ

+∇β
(
Tµνcβ

)
hαν + Tµνcβ∇βhαν

}
. (E.17)

Using Eqs. (E.16) and (E.17) in Eqs. (E.13)–(E.15), the only non-vanishing terms containing deriva-

tives of Tαβ in J (X)
µ + J

(Y )
µ + J

(Z)
µ are −∇β

(
T βα + T βνhαν

)
cµξα.
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The next step is to verify the equations

∇β
(
T βα + T βνhαν

)
= ∇νcβ∇αHβν , (E.18)

1

2
T βγ∇αhβγ = ∇νcβ∇αHβν . (E.19)

These imply that eliminating the contributions of spacetime-isometry and J
(2)
µ from J

(cc)
µ leaves

exactly J (X)
µ + J

(Y )
µ + J

(Z)
µ . Then

´
x

{
Q, iJ0

(c)

}
is the spacetime-isometry Noether charge.

To prove Eq. (E.18), observe that∇βT βα = 0 implies

∇βT βα = (1− 2k)κ∇β
(
∇κcλ

(
gαβhκλ − gκλhαβ

))
= (1− 2k)κ

(
∇α
(
hκλ∇κcλ

)
−∇β

(
hαβ∇λcλ

))
, (E.20)

∇β
(
T βνhαν

)
= hαν∇βT βν + T βν∇βhαν

= (1− 2k)κhαν
(
∇ν
(
hκλ∇κcλ

)
−∇β

(
hνβ∇λcλ

))
+
(
∇βcν +∇νcβ + κ

(
gβρgνσ − kgβνgρσ

)
£chρσ

)
∇βhαν

= ∇νcβ
(
∇αhβν − kgβν∇αhγγ

)
= ∇νcβ∇αHβν . (E.21)

To prove Eq. (E.19), observe that the definition of Tµν implies

1

2
T βγ∇αhβγ =

1

2
γρσµν (∇ρcσ + κ£chρσ)∇αhµν

=
1

2
(∇ρcσ + κ£chρσ)∇αHρσ = ∇νcβ∇αHβν . (E.22)

E.2 On J
(B)
µ

We start from the conserved current

J(c)µ = ξα
[
γβγαµ (∇βcγ + κ£chβγ) + (2k − 1)κ∇βcγ (gµαhβγ − hµαgβγ)

]
. (E.23)

The contribution coming from c→ B, which is −i times the effect of the BRST transformation, is

ξα
[
γβγαµ (∇βBγ + κ£Bhβγ) + (2k − 1)κ∇βBγ (gµαhβγ − hµαgβγ)

]
, (E.24)

which has κ-dependent (“non-linear”) part

κξα
[
Bβ∇βhµα +∇µBβhβα +∇αBβhβµ − kgµαBβ∇βh− gµα∇βBγhβγ + (1− 2k)hµα∇βBβ

]
.

(E.25)

The “spacetime current” from −κhκλγκλµν∇µBν has B-dependence

ξαγβγαµ (∇βBγ + κ£Bhβγ) . (E.26)

Multiplying the perturbation-independent term of Eq. (E.26) by ∇µ (αξν) gives an expression in

which the ∇µα coefficient is ξαγβγαµ∇βBγ . Similarly, the ∇µα coefficient in ∇µ (αξν)κhβνγ
µν
κλ∇κBλ is
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κξαh ν
α γ

κλ
µν∇κBλ. Subtracting this from Eq. (E.25) gives

κξα
[
Bβ∇βHµα +∇αBβhβµ − h ν

α ∇νBµ + hµα∇βBβ − gµα∇βBγhβγ
]

= κξα
[
Bβ∇βHµα +∇αBβHβµ −H ν

α ∇νBµ +Hµα∇βBβ − gµα∇βBγHβγ

]
(E.27)

(note the addition of the trivially zero quantity −khκξα
(
∇αBµ −∇αBµ + gµα∇βBβ − gµα∇βBβ

)
).

Including the conserved current’s −ξµL0 term deletes the term −κξµ∇βBγHβγ . The remaining

terms, which by inspection equal −J (B)rest
µ , are simply the terms obtained by varying Bµ. Indeed,

the ∇µα coefficient in κ∇µ (α£ξBβ)Hµβ is κ
(
ξα∇αBβ −Bα∇αξβ

)
Hµβ , and

−κBα∇αξβHµβ = −κ∇α
(
BαξβH

µβ
)

+ κξβ
(
Hµβ∇αBα +Bα∇αHµβ

)
≈ −κ∇α

(
BµξβH

αβ
)

+ κξβ
(
Hµβ∇αBα +Bα∇αHµβ

)
= −κξβHαβ∇αBµ + κξβ

(
Hµβ∇αBα +Bα∇αHµβ

)
, (E.28)

as required. (Note that a total derivative has been added, by replacing one term of the form ∇αKα

with another.) Similarly, the Lie derivative term in Eq. (E.26) is

κξαγβγαµ£Bhβγ = κξα
[
Bβ∇βhµα + hβα∇µBβ + hβµ∇αBβ − kgµα

(
Bβ∇βh+ 2hβγ∇βBγ

)]
= κξα

[
Bβ∇βHµα + hβα∇µBβ + hβµ∇αBβ − 2kgµαhβγ∇βBγ

]
. (E.29)

E.3 On J
(cc)
µ

Next we consider the BRST transformation of the perturbation instead of the antighost, viz.

J (h)
µ := κξα

[
γβγµα£chβγ + (2k − 1)∇βcγ (gµαhβγ − hµαgβγ)

]
= κξα

[
cβ∇βHµα + hβα∇µcβ + hβµ∇αcβ

−2khβγgµα∇βcγ + (2k − 1)∇βcγ (gµαhβγ − hµαgβγ)
]

= κξα
[
cβ∇βHµα +Hβα∇µcβ +Hβµ∇αcβ + kh (∇µcα +∇αcµ)

−∇βcγ (2khβγgµα + (1− 2k) gµαhβγ + (2k − 1)hµαgβγ)
]

= κξα
[
cβ∇βHµα +Hβα∇µcβ +Hβµ∇αcβ + kh (∇µcα +∇αcµ)

−∇βcγ (hβγgµα + (2k − 1)hµαgβγ)
]

= κξα
[
cβ∇βHµα +Hβα∇µcβ +Hβµ∇αcβ + kh (∇µcα +∇αcµ)

−∇βcγ (Hβγgµα + (2k − 1)Hµαgβγ + khgβγgµα + (2k − 1) khgµαgβγ)
]

= κξα
[
cβ∇βHµα +Hβα∇µcβ +Hβµ∇αcβ + kh (∇µcα +∇αcµ)

−∇βcγ
(
Hβγgµα + (2k − 1)Hµαgβγ + 2k2hgβγgµα

)]
. (E.30)

Since gµν£cgfµν = ∇βcβ + κ
(
cβ∇βh+ 2hβγ∇βcγ

)
,

{
Q, J (h)

µ

}
= ξα

(
cβ∇βZµα +∇µcβZβα +∇αcβZβµ − gµα∇βcγZβγ + (1− 2k)∇βcβZµα

+kTµα
(
∇βcβ + κ

(
cβ∇βh+ 2hβγ∇βcγ

)))
(E.31)
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where Tµν := γκλµν∇κcλ. The c → B and−ξµL0 contributions to the spacetime-isometry Noether

current total

(£ξcν)Zµν − ξµ∇βcγZβγ = ξα∇αcβZµβ −
(
∇αξβ

)
cαZµβ − ξ

µ∇βcγZβγ

= ξα∇αcβZµβ + ξβ∇α
(
cαZµβ

)
−∇α

(
ξβcαZµβ

)
− ξµ∇βcγZβγ

≈ ξα∇αcβZµβ + ξβ∇α
(
cαZµβ

)
−∇α

(
ξβcµZαβ

)
− ξµ∇βcγZβγ

= ξα∇αcβZµβ + ξβ∇α
(
cαZµβ

)
− ξβ (∇αcµ)Zαβ − ξµ∇βcγZβγ , (E.32)

since
(
∇αξβ

)
cµSαβ vanishes by Sαβ = Sβα. A comparison with Eq. (E.31) benefits from changing

the order of terms, viz.

{
Q, J (h)

µ

}
= ξα

(
∇β
(
cβSµα

)
+∇αcβZβµ − gµα∇βcγZβγ

+∇µcβZβα − 2k∇βcβZµα

+kTµα
(
∇βcβ + κ

(
cβ∇βh+ 2hβγ∇βcγ

)))
, (E.33)

(£ξcν)Zµν − ξµ∇βcγZβγ ≈ ξβ∇α
(
cαZµβ

)
+ ξα∇αcβZµβ − ξ

µ∇βcγZβγ

− ξβ (∇αcµ)Zαβ . (E.34)

In particular, the first lines of the right-hand sides of Eqs. (E.33) and (E.34) are equal (save for the

height of the spacetime index µ). The difference is

δµ :=
{
Q, J (h)

µ

}
− (£ξcν)Sµν + ξµ∇βcγZβγ

= ξα
[
∇µcβZβα − 2k∇βcβZµα + (∇βcµ)Z β

α

+kTµα
(
∇βcβ + κ

(
cβ∇βh+ 2hβγ∇βcγ

))]
. (E.35)

The aim is to show that this is obtained from the transformation of

κ∇µcνγβγµν £chβγ = κT
µν
(

1

2
cα∇αhµν + hαν∇µcα

)
. (E.36)

Some variations are irrelevant, such as that of cα in ∇αhµν (because ∇µα is absent from α£ξcν). The

variation of ∇µcα gives T
µν
hαν£ξcα = T

µβ
hβγξ

α∇αcγ − T
µν
hανc

β∇βξα. The first of these terms

provides a contribution equal to the∇µα coefficient in

T
δν∇δcα

[
∇α (αξν) +∇ν (αξα) + κhβν∇α

(
αξβ

)
+ κhαβ∇ν

(
αξβ

)]
, (E.37)

which is ξα
(
T
β

α∇βcµ + T
βµ∇βcα + κhαγT

βγ∇βcµ + κhαβT
γµ∇γcβ

)
. The contribution from∇αhµν

is the∇µα coefficient in

∇α
[
∇µ (αξν) +∇ν (αξµ) + ακξβ∇βhµν + κ∇(α ξ β)hβν + κ

(
∇νξβ

)
hβµ

]
. (E.38)
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GRAVITY

Using∇µξν +∇νξµ = 0, Eq. (E.38) simplifies to

2∇α
(
∇µα

(
ξν + κξβhβν

))
+ (κ∇αα)

(
ξβ∇βhµν + hβν∇µξβ

)
. (E.39)

The first of these terms is a total derivative that may be dropped by integration by parts. The

contribution of interest is now

−∇α
(
T
µν
cα
) (
ξν + κξβhβν

)
+

1

2
κT

βγ
cµξα∇αhβγ + κT

βγ
cµhαγ∇βξα, (E.40)

but each of the terms −∇α
(
T
µν
cα
)
ξν , −κ∇α

(
T
µν
cα
)
ξβhβν is cancelled elsewhere. Indeed, the

contribution from varying cµ in the perturbation-independent (“linear”) term is

Tµν (ξα∇αcν − cα∇αξν) , (E.41)

and the second term therein is

−Tµνcα∇αξν = ξν∇α
(
T
µ

νc
α
)
−∇α

(
T
µ

νc
αξν
)

≈ ξν∇α
(
T
µ

νc
α
)
−∇α

(
T
α

νc
µξν
)

= ξν∇α
(
T
µ

νc
α
)
−∇α

(
T
α

νc
µ
)
ξν , (E.42)

giving a term ξν∇α (Tµνc
α) that cancels −∇α

(
T
µν
cα
)
ξν . Next observe that

∇β
[
ξα
(
T
βγ
cµhαγ − T

µγ
cβhαγ

)]
≈ 0, (E.43)

∇βξα
(
T
βγ
cµhαγ − T

µγ
cβhαγ

)
= −ξα∇β

(
T
βγ
cµhαγ − T

µγ
cβhαγ

)
= ξα

(
−∇β

(
T
βγ
hαγ

)
cµ − T βγhαγ∇βcµ

+∇β
(
T
µγ
cβ
)
hαγ + T

µγ
cβ∇βhαγ

)
, (E.44)

and the penultimate term cancels −κ∇α
(
T
µν
cα
)
ξβhβν .

The contribution still includes Tµνξα∇αcν −
(
∇βT

β

α

)
cµξα − Tανξν∇αcµ. Indeed, Eq. (E.18) allows

all surviving terms in the contribution to be combined. The κξα coefficient becomes

T
µβ
hβγ∇αcγ

XXXXX+T
β

α∇βcµ + T
βµ∇βcα���

���
�

+T
βγ
hαγ∇βcµ + T

γµ
hαβ∇γcβ +

1

2
T
βγ
cµξα∇αhβγ

+T
µ

ν∇αcν
XXXXX−T να∇νcµ −

(
∇νcβ

)
cµ∇αHβν���

���
�

−T βνhαν∇βcµ + T
µν
cβ∇βhαν , (E.45)

where cancelling pairs have been indicated. Of what survives, the linear terms are

T
βµ∇βcα + T

µ

ν∇αcν = T
µβ

(∇αcβ +∇βcα) , (E.46)
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and we require these to match68

(
∇βcµ +∇µcβ

)
γγδαβ∇γcδ − 2k

(
∇λcλ

)
γγδαµ∇γcδ + 2kTµα∇λcλ = T

β

µ

(
γγδαβ∇γcδ + 2kgµα∇λcλ

)
= T

β

µ (∇αcβ +∇βcα) , (E.47)

as indeed they do. Now for the non-linear terms: the spacetime-isometry result is

κξαT β
µ (cγ∇γhαβ + hγβ∇αcγ + hγα∇βcγ) . (E.48)

A comparison of this with Eq. (E.45) shows that the only remaining terms are

1

2
T βγcµ∇αhβγ −

(
∇νcβ

)
(∇αHβν) cµ, (E.49)

which cancel by Eq. (E.19).

F Comments on the Batalin–Vilkovisky (BV) formalism

This discussion is primarily based on Sec. 15.9 of Weinberg’s Ref. [95]. Weinberg denotes the BRST

transformation s69; I will maintain this notation because the BV formalism affords a generalisation

of the BRST transformations I have hitherto denoted δ. The BV formalism add terms to the action.

Before these terms are added, he denotes the action as I . After new terms are added, he denotes the

action S. I will also use this notation.

The BV formalism is used to address the following issues:

• There is a need to address Hamiltonian constraints whose origins are not in the Lie algebra.

(This is a concern for BRST-quantised perturbative gravity.)

• If a theory’s algebra is open, s2 is a linear combination of functional derivatives δI
δχA

(here χA

is a field) rather than 0.

• A very early version of the formalism [96] was used to renormalise gauge theories. The sum

of all 1-particle-irreducible diagrams in a background field does not obey the original action’s

BRST symmetries, but it does obey the master equation (see Sec. F.1).

• The BV formalism conveniently analyses possible violations of an action’s symmetries by quantum

effects.

The aim of this appendix is to show that the BV formalism need not be used in my treatment of

perturbative gravity’s FP–sector zero mode problem.

My treatment is classical in Secs. F.1–F.4. I introduce the formalism’s classical machinery in Sec.

F.1. Initially this serves only to provide an unusually complicated description of the ordinary BRST

formalism. However, doing so also allows a subsequent explanation of how to generalise BRST.

Next I summarise Ref. [95]’s proofs of a number of important consequences of the so-called master

equation in Secs. F.2–F.4. These include a constructive definition in Sec. F.3 of a generalization of the

BRST transformation.
68Note that it has been convenient to lower µ, due to the γγδαβ formalism.

69Although the discussion of s in Weinberg’s Secs. 15.8 and 15.9 makes clear it denotes the BRST transformation, he also calls
it the Slavnov operator between his discussion of his Eqs. (15.8.8) and (15.8.9).
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I quantise the theory in Sec. F.5 to discuss S–matrix computation. This results in a quantum master

equation, which in at least some theories reduces to the ordinary master equation together with an

additional condition abbreviated as ∆S = 0 (the operator ∆ will be defined in Eq. (F.21) in Sec. F.5).

This will complete the account of how the BV formalism extends the BRST formalism. The extension

can be understood in terms of which terms are added to the action. These terms depend only on

new fields that the BV formalism introduces, so have no implications for the zero mode problems

considered in this thesis. This cause of the BV formalism’s irrelevance is similar to there being no

need to include terms such as − 1
4F

2, R− 2Λ in the scalar Lagrangian density.

F.1 Introduction to the formalism

Let ghT denote the ghost number of a field T . The first step is to introduce field partners for some

fields χA, say χ‡A, satisfying ghχA + ghχ‡A = ghχA + ghχ‡A = −1. The partner field χ‡ is called

the antifield of χ70, which should not be confused with other concepts whose names include the

prefix anti-. Indeed, since Eq. (F.1) implies χ, χ‡ are a bosonic field and a fermionic field in some

order, a matter field’s antifield is not associated with antimatter, nor is the ghost’s antifield simply

the antighost.

Until the antifields’ numerical values are specified, they are external and the S–matrix is incalculable.

(Until S–matrix calculation is considered, all discussion herein is classical, not quantised.) One way

to provide such numerical values is as follows: for an arbitrary fermionic functional Ψ [x] satisfying

gh Ψ = −1 so gh sΨ = 0, we define

χ‡A :=
δΨ

δχA
, χ‡A :=

δΨ

δχA
(F.1)

The action gains a term (which of course must be bosonic and of ghost number 0), which for quantum

gravity and Yang–Mills theories (i.e. theories of interest to us) may be chosen as

∑
A

sχAχ‡A =
∑
A

sχA
δΨ

δχA
= sΨ. (F.2)

(Sums such as these are over fields with lower as well as upper labels A, and labels will be assumed

to be upper except where explicit lower labels are necessary.) This choice obtains an action which is

a linear functional of the antifields. One of the Euler–Lagrange equations is the master equation, viz.

δRS

δχ‡A

δLS

δχA
= 0,

δRS

δχ‡A
δLS

δχA
= 0, (F.3)

where δL (δR) denotes left-differentiation (right-differentiation). The resulting action is numerically

identical with the gauge–fixed action, so physical matrix elements are unaffected by small variations

in Ψ.

The BV formalism begins to accomplish something new if Ψ is chosen as a non-linear functional of

the antifields. (For reducible theories, ghosts among the χA gain not only antifields but also ghosts

of their own. Weinberg’s Sec. 15.8 discusses in detail the reasons ghosts of ghosts, ghosts of ghosts of

70The field χ usually has its antifield denoted χ∗ but, since in this context ∗ does not denote complex conjugation, Weinberg
prefers ‡. I will have to follow his minority convention since some symbols require both a complex conjugation label and an
antifield label.
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ghosts etc. can be necessary.) Since ω∗A, hA have linear BRST transformations, their antifields appear

linearly in S, which therefore is of the form S = Smin
[
φ, ω, φ‡, ω‡

]
− hAω∗‡A , where Smin is bosonic

and ghSmin = 0, ghφ‡ = −1, ghω‡ = −2, ghω∗‡ = 0. By inspection Smin also satisfies the master

equation. Its arguments are called minimal variables, and the fields ω∗A and hA and their antifields

are called trivial pairs. (These antifields appear bilinearly in S.)

F.2 Helpful corollaries of the master equation

By its ghost number, Smin has an antifield expansion of the form

Smin = I [φ] + ωAfrA [φ]φ‡r +
1

2
ωAωBfCAB [φ]ω‡C +

1

2
ωAωBfrsAB [φ]φ‡rφ

‡
s

+ ωAωBωCfrDABC [φ]φ‡rω
‡
D +

1

2
ωAωBωCωDfEFABCD [φ]ω‡Eω

‡
F + · · · . (F.4)

From terms of zeroth order in antifields (and hence first order in ω),

frA
δI

δφr
= 0. (F.5)

This is I-invariance under the transformation φr → φr + εAfrA for arbitrary infinitesimals εA. The

term using one φ‡ on the right and two ωs on the left gives

frA
δfsB
δφr
−A↔ B + fCABf

s
C +

δI

δφr
frsAB = 0, (F.6)

which given δI
δφ = 0 becomes the commutation relation with structure constant fCAB for the above

transformation. The master equation has one more term in the antifields, which has three ωs on the

left and one ω‡ on the right. This term gives

fr[A
δfDBC]

δφr
− fE[ABf

D
C]E + frDABC

δI

δφr
= 0. (F.7)

This is a consistency condition for Eq. (F.5). Combining this with the field equations gives the Jacobi

identity.

A further outcome of the master equation is that terms in the master equation of at least order p

in antifields involve terms in Smin of at least order p + 1 in antifields. This provides consistency

conditions for Eqs. (F.6) and (F.7), as well as consistency conditions for those consistency conditions

and so ad infinitum.

All this is achieved from the master equation alone, which in fact may be interpreted as an invariance

of S under a generalised BRST transformation. To prove this requires a new concept discussed below.

F.3 A generalised BRST transformation

The antibracket of two functionals F
[
χ, χ‡

]
, G
[
χ, χ‡

]
is defined as

(F, G) :=
δRF

δχA
δLG

δχ‡A
− δRF

δχ‡A

δLG

δχA
. (F.8)
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Reversing the order of the derivatives in the second term multiplies each factor by either 1 or −1 if

its functional differentiation is with respect to a fermionic or bosonic field, and each occurs exactly

once so

(F, G) =
δRF

δχA
δLG

δχ‡A
+
δLF

δχ‡A

δRG

δχA
=
δRF

δχA
δLG

δχ‡A
± F ↔ G,

where the rules determining whether ± sign is + or − are trivial. Hence

(F, G) =

 (G, F ) F, G both bosonic

− (G, F ) otherwise
, (F.9)

so (F, F ) = 0 for fermionic F . This condition does not suffice to prove

(S, S) = 0, (F.10)

but this non-trivial condition in fact follows from (indeed, is a restatement of) the master equation.

A generalised BRST transformation can now be defined in terms of a fermionic infinitesimal constant

θ:

δ̂θχ
A := θ

δRS

δχ‡A
= −θ

(
S, χA

)
, δ̂θχ

‡
A := −θ δRS

δχA
= −θ

(
S, χ‡A

)
. (F.11)

When the term added to S is of the form given in Eq. (F.2), this reduces to the ordinary BRST

transformation.

The antibracket is a derivation because it satisfies the Leibniz rule (F, GH) = (F, G)H ± G (F, H),

where the ± sign is −1 if and only if F is bosonic and G is fermionic. Thus

δ̂θG = −θ (S, G) , δ̂θH = −θ (S, H) =⇒ δ̂θGH = −θ (S, GH) . (F.12)

The solution set of δ̂θF = −θ (S, F ) therefore contains the closure of fields and antifields under mul-

tiplication, as required for a generalization of the BRST transformation. In particular, S is invariant

under this transformation as required because of Eq. (F.10).

The antibracket also shares the ordinary BRST transformation’s nilpotence, i.e. (S, (S, H)) = 0. This

follows from its Jacobi identity, viz.

± (F, (G, H)) + cyclic permutations = 0, (F.13)

where the ± sign of each of the three terms is − if and only if the two outermost fields (e.g. F, H in

the leftmost of the three terms) are both bosonic. Taking F = G = S gives

(S, (S, H)) = − 1
2 (H, (S, S)) = 0. (F.14)
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F.4 Anticanonical transformations

However, this finding also implies the master equation’s solution is not unique; rather, its solution

set is closed under the transformation (of arbitrary functionals G, including S)

G→ G
′

:= G+ (δF, G) , (F.15)

where δF is an arbitrary infinitesimal fermionic functional of χ, χ‡ having ghost number −1. (This

is one example of a canonical transformation. Since antifields are involved, Weinberg calls it an

anticanonical transformation.) Such transformations may also require a shift in the definitions of

antifields. For example, if δF = εΨ [χ] with ε an infinitesimal bosonic constant,

S
′ [
χ, χ‡

]
= S

[
χ, χ‡ + ε

δΨ

δχ

]
. (F.16)

Following integration, satisfying the master equation also requires the shift

χ‡ → χ‡
′

:= χ‡ − δΨ

δχ
. (F.17)

Note that these shifted antifields vanish if and only if Eq. (F.1) holds.

Anticanonical transformations are most generally definable as those which preserve the fundamental

antibracket relations, viz.
(
χA, χ‡B

)
= δAB ,

(
χA, χB

)
=
(
χ‡A, χ

‡
B

)
= 0. Weinberg presents a proof,

omitted here for brevity, that these follow from Eq. (F.15).

F.5 Comments on the S–matrix

The next task is the quantisation of the above classical treatment. We adopt Eq. (F.15) and use the

gauge–fixed action IΨ, which is invariant under a BRST transformation acting only on fields, viz.

δθχ = θsχ, sχ :=
δRS

[
χ, χ‡

]
δχ‡

∣∣∣∣∣
χ‡= δΨ

δχ

. (F.18)

(Indeed, sIΨ is then the sum of a term which the master equation sets to 0 and a term which vanishes

by an antisymmetry argument.) While the transformation is the ordinary BRST transformation for

closed algebras, more generally it is a transformation that is only nilpotent on-shell.

The vacuum–vacuum amplitude ZΨ and its shift δZ under a shift δΨ [χ] in Ψ [χ] are respectively

ZΨ =

ˆ [∏
dχ
]

exp iIΨ [χ] , (F.19)

δZ = i
ˆ [∏

dχ
]

exp iIΨ
δRS

[
χ, χ‡

]
δχ‡A

∣∣∣∣∣
χ‡= δΨ

δχ

δδΨ

δχA

=

ˆ [∏
dχ
]

exp iIΨ

{
δRS

δχ‡A

δLIΨ
δχA

− i∆S
[
χ, χ‡

]}
δΨ, (F.20)

where I have used integration by parts and introduced the second-order functional differential oper-

ator ∆ defined as

∆ :=
δR

δχ‡A

δL
δχA

. (F.21)
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The condition for ZΨ to be Ψ-independent is then the quantum master equation, which is one of the

few equations in this discussion in which an explicit power of ~ is worthwhile. The quantum master

equation may be written as

(S, S) = 2i~∆S atχ‡ =
δΨ

δχ
. (F.22)

The classical limit recovers the previous master equation because it takes the ~ → 0+right-handed

limit. Unless there are anomalies, an action may be constructed that satisfies the ordinary master

equation, so that (S, S) = 0, ∆S = 0. Assuming the quantum master equation, variations in

operators’ expectations are obtainable, viz.

δ 〈O〉 =
−i
ZΨ

ˆ [∏
dχ
]

exp iIΨ
δRO
δχA

δRS
[
χ, χ‡

]
δχ‡A

∣∣∣∣∣
χ‡= δΨ

δχ

. (F.23)

In terms of the Slavnov operator of the generalised BRST transformation, this may be restated as

δ 〈O〉 =
−i
ZΨ

ˆ [∏
dχ
]

exp iIΨsO. (F.24)

Thus expectation values of operators that are invariant under the generalised BRST transformation

(i.e. satisfy sO = 0) are unaffected by a change in the choice of Ψ.

G Proving M̂AB is invertible for two important spacetimes

The aim is to show det M̂AB 6= 0. This is equivalent to the existence of an inverse M̂AB satisfying

det M̂AB 6= 0. The purpose of this appendix is to verify that this result is obtainable, with appropriate

choices of the ξµA, for a flat static torus and de Sitter space. In the non-interacting case

M̂AB =

ˆ
x

ξνAξ
β
BK̂

00
νβ =

ˆ
x

ξνAξ
β
B

(
(1− 2k) δ0

νδ
0
β + g00gβν

)
=

ˆ
x

(
(1− 2k) ξ0

Aξ
0
B + g00ξνAξBν

)
=

ˆ
x

(
(1− 2k) ξ0

Ag
0ν + g00ξνA

)
ξBν

=

ˆ
x

{
2g00 (1− k) ξ0

AξB0 +
(
(1− 2k) ξ0

Ag
0i + g00ξiA

)
ξBi
}
. (G.1)

In the synchronous gauge, this simplifies to M̂AB =
´
x

[
2 (1− k) ξ0

AξB0 + ξiAξBi
]
. This result can be

considered further for each of the spacetimes of interest.

G.1 The flat static torus

On a flat static torus, the choice k > 1 is undesirable because its FP-sector zero modes with hµν = 0

include tachyons. I instead impose k < 1 so 2−2k > 0, and choose the ξµA and ηBν as follows. Let ηBC

be the n–dimensional Lorentzian metric of signature 1, −1, · · · , −1. A unique non-singular M̂AB

that serves my purposes is then easily obtained for k < 1:
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ξµA = δµA, (G.2)

ηBCδ
C
µ = ηBµ = N2V M̂BCξνCK

00
νµ

= N2V M̂BCξνC
(
(1− 2k) δ0

νδ
0
µ + gµν

)
= N2V M̂BC

(
(1− 2k) ξ0

Cδ
0
µ + ξνCgµν

)
= N2V

(
(1− 2k)MB0g0ν +

(
M̂−1

)Bν)
gµν , (G.3)

(1− 2k) M̂B0g0ν + M̂Bν =
gBν

N2V
, (G.4)

M̂00 =
1

N2V (2− 2k)
, (G.5)

M̂0i = M̂ i0 = 0, (G.6)

M̂ ij =
gij

N2V
, (G.7)

det
(
M̂−1

)AB
=

det gAB

2− 2k
=

1

2g (1− k)
6= 0. (G.8)

G.2 de Sitter space

We show we may choose the ξAµ so that there are no terms of the form M̂AB 6= 0 with A 6= B. We

call such hypothetical terms off-diagonal terms. We split the Killing vectors in to two sets, those

corresponding to space rotations and de Sitter boosts. (This decomposition is possible because de

Sitter space has the topology R × Sn−1.) We show off-diagonal terms are found neither within one

set nor between them (i.e. whenA,B are chosen from different sets). Then M̂AB is a diagonal matrix,

and we can choose k so that the M̂AA, which are linear in k, are each nonzero. Indeed, from Eq.

(4.2.13) we simply need to ensure

@A : k =
1

2

(
1 +

´
x
g00ξµAξAµ´
x

(ξ0
A)

2

)
. (G.9)

The inverse M̂−1 of M̂ is then trivial to compute.

The usual basis of Killing vectors for SO(n − 1) space rotations comprises Killing vectors that have

vanishing time components, and space components that are linear combinations of the vector spher-

ical harmonics ALσµ . By the orthonormality condition Eq. (2.6.68), these Killing vectors provide no

off-diagonal terms if we impose Eq. (1.2.2). Indeed

M̂AB =

ˆ
x

(
g00ξµAξBµ + (1− 2k) ξ0

Aξ
0
B

)
=

ˆ
x

g00ξiAξBi = δAB

ˆ
x

g00ξiAξAi. (G.10)

Not only have we found no off-diagonal terms; for rotational ξµA we have M̂AA =
´
x
g00ξiAξAi 6= 0, so

the choice of k is so far irrelevant.

The usual basis of Killing vectors for de Sitter boosts have time components that are linear combina-

tions of the Y Lσ (say YA), and space components that are linear combinations of the WLσ
µ (say WAµ).
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Again we have an orthonormality condition. By parts, scalar harmonics φ1, φ2 satisfy

ˆ
dn−1x∇iφ1∇iφ2 = −

ˆ
dn−1xφ1∇i∇iφ2 = (n− 2)

ˆ
dn−1xφ1φ2 (G.11)

(these spherical harmonics have angular-momentum eigenvalue 1, so their −∇i∇i eigenvalue is 1 ·

(1 + n− 3) = n− 2). Thus

M̂AB =

ˆ
x

(
g00Wµ

AWBµ + (1− 2k)YAYB
)

= δAB

ˆ
x

(
g00Wµ

AWAµ + (1− 2k)Y 2
A

)
, (G.12)

again giving no off-diagonal terms. However, for almost all k we have M̂AA 6= 0.

With the above conventions, there is also no off-diagonal term connecting a rotation Killing vector

and a boost Killing vector because a rotational Killing vector ξ satisfies

∇iξi = −∇0ξ
0 = 0→

ˆ
dn−1xξi∇iφ = −

ˆ
dn−1x∇iξiφ = 0 (G.13)

for any scalar harmonic φ, so for rotational ξµA and boosting ξµB we have

M̂AB =

ˆ
x

g00ξiAξBi = 0. (G.14)

(We need not check the case where ξµA is boosting and ξµB rotational, since M̂AB = M̂BA.)

H Lextra and Leff on the flat static torus

The purpose of this appendix is to compare the perturbation theories of the CMP and FMP for

perturbative gravity on a flat static torus. Although a general proof of the prescriptions’ perturbative

equivalence has already been presented in Sec. 4.7, this discussion is formative for several reasons.

In Sec. H.1, I compute Lextra in the CMP. In Sec. H.2, I deduce the Feynman diagrams that appear

in the perturbation theory. These include chain diagrams and loop diagrams. In Sec. H.3, I discuss

chain diagrams to compute important coefficients. In Sec. H.4, I use these coefficients to sum the

amplitudes of chain diagrams. In Sec. H.5, I discuss loop diagrams.

H.1 The CMP

Consider a flat torus of spacetime dimension n and finite volume V with g00 = 1, g0i = 0, gij = −δij
so that

√
|g| = 1 and V =

´
dn−1x is a spacetime constant. The simplest choice for a basis of the

Killing vectors is the δµA, with A any fixed spacetime index. The conserved charges then include

Qν :=

ˆ
dn−1xZ0ν , (H.1)

with Z0ν = ∂0cν + ∂νc0 − 2kg0ν∂αc
α + κ

(
cα∂αH0ν + ∂0c

αhαν + ∂νc
αhα0 − 2kg0ν∂αc

βhαβ

)
. The CMP

sets Qν = 0 to obtain ċα(0). The operator 1
V

´
dn−1x obtains all zero modes, which are spatially

uniform and can be moved outside space integrals. Throughout we take H0γ(0) = H0
γ(0) = 0; since

hαβ and Hαβ = hαβ − khgαβ are both symmetric, this choice implies h0
γ(0) = kδ0

γh(0). In the CMP,
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0 = Q0 =

ˆ
dn−1x

(
2 (1− k) ∂0c0 − 2k∂ic

i
(+) + κ×(

cα(+)∂αH00(+) + 2∂0c
α
(+)h0α(+) + 2k∂0c

0
(0)h(0) − 2k∂αc

β
(+)h

α
β(+) − 2k2∂0c

0
(0)h(0)

))
= 2V (1− k)

(
1 + kκh(0)

)
∂0c

0
(0)

+ κ

ˆ
dn−1x

(
cα(+)∂αH00(+) + 2∂0c

α
(+)h0α(+) − 2k∂αc

β
(+)h

α
β(+)

)
, (H.2)

ċ0(0) =
κ [2V (k − 1)]

−1

1 + kκh(0)

ˆ
dn−1x

(
cα(+)∂αH00(+) + 2∂0c

α
(+)h0α(+) − 2k∂αc

β
(+)h

α
β(+)

)
. (H.3)

Similarly

0 = Qi =

ˆ
dn−1x

{
∂0ci(0) + κcα∂αH0i + ∂0cν(+)h

ν
i(+) + ∂0cj(0)h

j
i(0) + ∂ic

α
(+)h0α(+)

}
. (H.4)

This result may be rearranged as

V Gj(0)iċj(0) = −κ
ˆ

dn−1x
(
cα∂αH0i + ∂0cν(+)h

ν
i(+) + ∂ic

α
(+)h0α(+)

)
(H.5)

where Gj(0)i := δji + κhji(0). In terms of an inverse matrix, viz.
(
G−1

(0)

)i
j
Gk(0)i = δkj , Eq. (H.5) becomes

ċj(0) = − κ
V

(
G−1

(0)

)i
j

ˆ
dn−1x

(
cα∂αH0i + ∂0cν(+)h

ν
i(+) + ∂ic

α
(+)h0α(+)

)
. (H.6)

Define V µ :=
(
∂0cν(+) + ∂νc0(+) − 2kδν0∂σc

σ
(+)

)
(δµν + κhµν ); then

Zµν |cα=cα
(0)

= ∂µcν(0) + ∂νcµ(0) − 2kgµν∂αc
α
(0)

+ κ
(
cα(0)∂αHµν + ∂µc

α
(0)hαν + ∂νc

α
(0)hαµ − 2kgµν∂αc

β
(0)h

α
β

)
, (H.7)

∂µcν(+) Zµν |cα=cα
(0)

= V µċµ(0) + κ∂αcν(+)c(0)µ∂
µHαν . (H.8)

Thus

iL(+0)
FP =

ˆ
dn−1x

{
V 0ċ0(0) + V iċi(0) + κ∂αcν(+)∂

µHανcµ(0)

}
=

ˆ
dn−1xdn−1y

{
V 0κ [2V (k − 1)]

−1

1 + kκh(0)
×(

cα(+)∂αH00(+) + 2∂0c
α
(+)h0α(+) − 2k∂αc

β
(+)h

α
β(+)

)
− κ

V
V i
(
G−1

(0)

)j
i

(
cα∂αH0j + ∂0cν(+)h

ν
j(+) + ∂jc

α
(+)h0α(+)

)
+κ∂αcν(+)c(0)µ∂

µHαν

}
. (H.9)

The underlined quantities depend on y; others depend on x.
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Denoting equality up to total derivatives by ∼,

−κ∂µBνHµν − iκ∂µcνcα∂αHµν = −iκ∂µcνcα(+)∂αHµν − iκ∂µcνcα(0)∂αHµν

− κ∂µB̃νHµν − iκ∂µ
(
∂αc

νcα(0)

)
Hµν

∼ −iκ∂µcνcα(+)∂αHµν − iκ∂µcνcα(0)∂αHµν − κ∂µB̃νHµν

− iκ∂µ∂αcνcα(0)Hµν + iκ∂µcν∂αcα(0)Hµν

∼ −iκ∂µcνcα(+)∂αHµν − κ∂µB̃νHµν

+ iκ∂µcν∂αcα(0)Hµν − iκ∂αcν∂µcα(0)Hµν

∼ −iκ∂µcνcα(+)∂αHµν − κ∂µB̃νHµν

+ iκ∂µcν ċ0(0)Hµν − iκ∂αcν ċα(0)H0ν . (H.10)

Therefore, the transformation

κ∂αcν(+)c(0)µ∂
µHαν → κ∂αcν(+)

(
ċα(0)H0ν − ċ0(0)Hαν

)
= κ∂icν(+)

(
ċi(0)H0ν − ċ0(0)Hiν

)
(H.11)

effects L(+0)
FP → Lextra. Thus

iLextra =

ˆ
dn−1x

{
V 0ċ0(0) + V iċi(0) + κ∂αcν(+)∂

µHανcµ(0)

}
=

ˆ
dn−1xdn−1y

{
κ [2V (k − 1)]

−1

1 + kκh(0)

(
V 0 − κ∂icν(+)Hiν

)
×(

cα(+)∂αH00(+) + 2∂0c
α
(+)h0α(+) − 2k∂αc

β
(+)h

α
β(+)

)
− κ

V

(
G−1

(0)

)j
i

(
V i + κ∂icν(+)H0ν

)
×(

cα∂αH0j + ∂0cν(+)h
ν
j(+) + ∂jc

α
(+)h0α(+)

)}
. (H.12)

Rearranging gives

Lextra = i
[2V (1− k)]

−1

1 + kκh(0)

ˆ
dn−1xA (t, x)

ˆ
dn−1yB (t, y)

+
i
V

(
G−1

(0)

)j
i

ˆ
dn−1xAi (t, x)

ˆ
dn−1yBj (t, y) (H.13)

where

A := −κ∂icν(+)Hiν(+) +
(
∂0cν(+) + ∂νc0(+) − 2kδν0∂σc

σ
(+)

)
κh0

ν(+), (H.14)

B := κ
(
cα(+)∂αH00(+) + 2ċα(+)h0α(+) − 2k∂αc

β
(+)h

α
β(+)

)
, (H.15)

Ai := κ∂icν(+)H0ν(+) +
(
∂0cν(+) + ∂νc0(+) − 2kδν0∂σc

σ
(+)

)
κhiν(+), (H.16)

Bj := κ
(
cα(+)∂αH0j(+) + ċν(+)h

ν
j(+) + ∂jc

α
(+)h0α(+)

)
. (H.17)

(Quantities such as A, · · · , Bj can always be replaced with their own (+) mode, which effects such

simplifications as δαβ(+) = 0.)
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H.2 Feynman diagrams of interaction terms

The interaction terms in the Lagrangian density are

L = −iκ∂µcν
(
cα∂αHµν + ∂µc

αhαν + ∂νc
αhαµ − 2kgµν∂αcβh

αβ
)
. (H.18)

The next task is to obtain the zero-mode part L00 of L. This involves setting both fields to their zero

modes, and deleting any term which vanishes upon space integration (i.e. does not contribute to the

Lagrangian) when setting H0ν
(0) = 0 so that h0i

(0) = 0. Using h00(0) = h0
0(0) = kδ0

0h(0) = kh(0),

L00 = −iκċ
ν
(0)

(
ċα(0)hαν(0) + ∂νc

0
(0)h00(0) − 2kg0ν ċ0(0)h

00
(0)

)
= −iκ

(
ċ
i
(0)ċ

j
(0)hij(0) + 2 (1− k) ċ

0
(0)ċ

0
(0)h00(0)

)
= −iκ

(
ċ
i
(0)ċ

j
(0)hij(0) + 2k (1− k) ċ

0
(0)ċ

0
(0)h(0)

)
. (H.19)

Perturbation theory attaches iL factors to vertices. The factor iL00 gives rise to a number of Feynman

diagrams. These include loop diagrams (which vanish under Lee–Yang cancellation) and two series

of chain diagrams (one scalar-valued and summing, say, to F ; the other is matrix-valued and sums,

say, to Fij). From Eq. (H.18), with terms that spatial integration deletes dropped,

L(0+) = −iκ
(
ċ
ν
(0)

{
cα(+)∂αH0ν(+) + ċα(+)hαν(+) + ∂νc

α
(+)h0α(+)

}
− 2kċ0(0)∂αcβ(+)h

αβ
(+)

)
= −iκċ

ν
(0)Xν(+) = iκXν(+)ċ

ν
(0), (H.20)

Xν(+) := cα(+)∂αH0ν(+) + ċα(+)hαν(+) + ∂νc
α
(+)h0α(+) − 2kg0ν∂αcβ(+)h

αβ
(+), (H.21)

L(+0) = −iκ
(
∂µcν(+)c

α
(0)∂αHµν(+) − 2k∂νc

ν
(+)ċβ(0)h

0β
(+)

+
(
ċ
ν
(+)hαν(+) + ∂µc0(+)hαµ(+)

)
ċα(0)

)
. (H.22)

Let X ≈ Y denote ∃Zµ : X − Y = ∂µZ
µ. Using ∂µHµν = 0 in Eq. (H.22), we can show that

∂µcν(+)c
α
(0)∂αHµν(+) ≈

(
∂νc

α
(+)Hµα(+) − ∂αcβ(+)Hαβ(+)gµν

)
∂µcν(0), (H.23)

since the difference between the two sides is

∂µcν(+)c
α
(0)∂αHµν(+) + ∂αcβ(+)Hαβ(+)∂νc

ν
(0) − ∂νc

α
(+)Hµα(+)∂

µcν(0)

= ∂µcν(+)∂α

(
cα(0)Hµν(+)

)
− ∂αcν(+)∂

µ
(
Hµν(+)c

α
(0)

)
≈ ∂µcν(+)∂α

(
cα(0)Hµν(+)

)
+ cν(+)∂

µ∂α

(
Hµν(+)c

α
(0)

)
= ∂µ

(
cν(+)∂α

(
cα(0)Hµν(+)

))
≈ 0. (H.24)
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Hence

L(+0) ≈ −iκ
((
∂νc

αHµα(+) − ∂αcβ(+)Hαβ(+)gµν

)
∂µcν(0)

+
(
ċ
ν
(+)hαν(+) + ∂µc0(+)hαµ(+)

)
ċα(0) − 2k∂νc

ν
(+)ċβ(0)h

0β
(+)

)
= −iκYν(+)ċ

ν
(0), (H.25)

Yν(+) := ∂νc
αH0α(+) − ∂αcβ(+)Hαβ(+)g0ν

+ ċ
α
(+)hαν(+) + ∂µc0(+)hµν(+) − 2k∂αc

α
(+)h

0
ν(+). (H.26)

(Note that, despite what the notation may suggest,Xν(+), Yν(+) are not definitionally the plus modes

of any quantities.) By inspection X0(+) = B
κ , Xj(+) =

Bj
κ , Y0(+) = A

κ , Yi(+) = Ai
κ . Extending the

(n − 1)-vectors Ai, Bi to n-vectors with A0 := A, B0 := B at the vertices of Feynman diagrams we

can put iL(0+) ≈ ċ
ν
(0)Bν , iL(+0) ≈ Aν ċν(0). We have

iSextra =
1

V

ˆ
dtdn−1xdt

′
dn−1yδ

(
t− t

′
){

FijA
iBj + FAB

}
, (H.27)

iLeff =
1

V

{
F

ˆ
dn−1xA

ˆ
dn−1yB + Fij

ˆ
dn−1xAi

ˆ
dn−1yBj

}
. (H.28)

Thus prescription equivalence (Leff = Lextra) occurs if and only if

F =
− [2 (1− k)]

−1

1 + kκh(0)
, Fij = −

(
G−1

(0)

)
ij
. (H.29)

These equations are verified in Sec. (H.4).

H.3 The chain diagrams: as and at

For the flat static torus K̂00
νβ = (1− 2k) δ0

νδ
0
β + g00gβν , so

K̂00
00 = 2− 2k = − 2

β
, K̂00

0i = K̂00
i0 = 0, K̂00

ij = −δij , (H.30)

where β := 1
k−1 . (These results will be needed soon.) The FMP grants cµ, cµ a common mass M > 0,

so that the FP-ghost term in the Lagrangian density is −i
(
∂νc

µZνµ −M2cµcµ
)
. The Euler–Lagrange

equation obtained by varying cµ is

−M2cµ = ∂νZ
ν
µ. (H.31)

Replacing cα with cα in the definition of Zνµ , we may similarly write the other equation of motion as

−M2cµ = ∂νZ
ν

µ, Z
ν

µ := Kβν
µα∇βcα + κcα∇αHµ

ν . (H.32)

In the non-interacting case, hνµ = 0 and L0 is c ↔ c-antisymmetric (antisymmetric because classical

fermionic fields anticommute). Next I obtain the ghost’s zero mode by imposing ∂icµ = 0, and the

antighost case is analogous. Eq. (H.31) reduces to −M2cµ = (1− 2k) δ0
µ∂

2
0c0 + ∂2

0cµ. This result

concerning massive zero modes can be rewritten in terms of β, viz.

∂2
0c0(0) =

βM2

2
c0(0), ∂

2
0ci(0) = −M2ci(0). (H.33)
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The general Hermitian solution is of the form

c0(0) =
A0e−iM1t +A†0eiM1t

√
M1V

, ci(0) =
Aie
−iMt +A†i e

iMt

√
MV

, (H.34)

where M1 := M
√
−β
2 . The FP-ghost part of the Lagrangian density without a metric perturbation

is −iKβν
µα∂νc

µ∂βc
α, so the general form of antighost zero modes is analogous, with constants Aµ.

The constants Aµ, Aµ are annihilation operators, whose anticommutators follow from CARs and

determine the FP-ghost propagator. Explicitly

πcµ = iK0ν
γµ∂νc

γ , (H.35)

πcµ = −iKβ0
µα∂βc

α, (H.36)

−igµν =
{
πµc(0)

, cν(0)

}
= iK̂00

γµ

{
∂0c

γ
(0), cν(0)

}
, (H.37)

−1 = − 2

β

{
∂0c

0
(0), c0(0)

}
, (H.38)

0 =
{
∂0c

0
(0), ci(0)

}
, (H.39)

0 =
{
∂0ci(0), c0(0)

}
, (H.40)

−δij =
{
∂0ci(0), cj(0)

}
. (H.41)

The only non-trivial anticommutators of ladder operators are
{
A0, A

†
0

}
= −iβV

4 ,
{
Ai, A

†
j

}
= iV

2 δij .

Positive-frequency parts of a zero mode should annihilate physical kets, so the ghost-antighost vac-

uum |0〉 satisfies Aµ |0〉 = 0. Thus

〈
0|c0(0) (t) c0(0)

(
t
′
)
|0
〉

=
e
−iM1

(
t−t
′)

M1V

〈
0|A0A

0†|0
〉
, (H.42)

〈
0|ci(0) (t) cj(0)

(
t
′
)
|0
〉

=
e
−iM

(
t−t
′)

MV

〈
0|AiAj†|0

〉
. (H.43)

Replacing t − t′ throughout with
∣∣∣t− t′ ∣∣∣ gives time-ordered results. Taking the massless limit (after

an IR-divergent term is dropped) gives

G00 =
−i
∣∣∣t− t′ ∣∣∣
V

〈
0|A0A

0†|0
〉
, Gij =

−i
∣∣∣t− t′ ∣∣∣
V

〈
0|AiAj†|0

〉
. (H.44)

Applying ∂t∂t′ replaces each −i
∣∣∣t− t′ ∣∣∣ factor with 2iδ

(
t− t′

)
. This implies

asδ
ij = 2iV −1

〈
0|
{
Ai, A

j†} |0〉 = −δij , (H.45)

as = −1, (H.46)

at = 2iV −1
〈

0|
{
A0, A

0†} |0〉 =
−1

2 (1− k)
. (H.47)

Note that the value of β for which as = at (β = −2) is the same one for which the masses of c0, ci are

equal. This condition is equivalent to the gauge choice k = 1
2 , i.e. the de Donder gauge.
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H.4 The chain diagrams: F and Fij

The matrix- (scalar-) valued series of Feynman diagrams is called the space- (time-) part. Before

integration the N th term (N ≥ 1) of the space part is of the form

FsNij := ∂t∂1G
ij1 (t, t1)

N−1∏
k=1

(
κhjkjk+1(0) (tk) ∂k∂k+1G

jk+1jk+2 (tk, tk+1)
)
, (H.48)

where tN := t
′

and ∂l := ∂tl . Thus

FsNij = asδ
ij1δ (t− t1)

N−1∏
k=1

(
κhjkjk+1(0) (tk) asδ

jk+1jk+2δ (tk − tk+1)
)

= −δ (t− t1)

N−1∏
k=1

(
−κhij(0) (tk) δ (tk − tk+1)

)
, (H.49)(

N−1∏
k=1

ˆ
dtk

)
FsNij = −

N−1∏
k=1

ˆ
dtk

{
δ (t− t1)

N−1∏
k=1

(
−κhij(0) (tk) δ (tk − tk+1)

)}

= −
N−1∏
k=1

ˆ
dtk

(
−κhij(0) (tk)

)
= −

(
−κhij(0) (t)

)N−1
. (H.50)

Summing gives Fij :=
∑
N≥1

(∏N−1
k=1

´
dtk
)
FsNij = −

(
I + κh(0) (t)

)−1

ij
= −

(
G−1

(0)

)
ij

, where I is the

identity matrix conformable with the matrix h(0)ij .

Similarly, the time part is obtainable as follows:

FtN := ∂t∂1G
00 (t, t1)

N−1∏
k=1

{
κ2k (1− k)h(0) (tk) ∂k∂k+1G

00 (tk, tk+1)
}

=
−1

2 (1− k)
δ (t− t1)

N−1∏
k=1

−κkh(0) (tk) δ (tk − tk+1) , (H.51)(
N−1∏
k=1

ˆ
dtk

)
FtN =

−1

2 (1− k)

(
−κkh(0) (t)

)N−1
, (H.52)

F :=
∑
N≥1

(
N−1∏
k=1

ˆ
dtk

)
FtN =

− [2 (1− k)]
−1

1 + κkh(0) (t)
, (H.53)

as required.

H.5 Loop diagrams

The loop diagrams of interest also split into "space part" and "time part" series. The space part is∑
N≥1

LsN
N where LsN := −

´
dt
∏N
k=1

{
∂k∂k+1iGij (tk−1, tk)hij(0) (tk−1)

}
, with t0 := t. (The 1

N

coefficient is a symmetry factor.) Thus

LsN = −
ˆ

dt

N∏
k=1

{
iasδ (tk−1 − tk)κV hii(0) (tk−1)

}
= − (−κ)

N
ˆ

dthNii(0) (t)

N∏
k=1

δ (tk−1 − tk) = − (−κ)
N
δ (0)

ˆ
dthNii(0) (t) , (H.54)

∑
N≥1

LsN
N

= δ (0)

ˆ
dt ln

(
I + κh(0) (t)

)
ii
. (H.55)
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The time part is
∑
N≥1

LtN
N where

LtN := −
ˆ

dt
N∏
k=1

{
∂k∂k+1iG00 (tk−1, tk) 2κk (1− k)h(0) (tk−1)

}
= −δ (0)

ˆ
dt
(
−κkh(0) (t)

)N
, (H.56)∑

N≥1

LtN
N

= δ (0)

ˆ
dt ln

(
1 + κkh(0) (t)

)
. (H.57)

These sums of amplitudes are contributions to iSextra; contributions to the action are obtained by

multiplying by −i. The contribution to the Lagrangian due to δ (0) terms, which is subject to a

successful Lee–Yang cancellation, is

Lδ := −iδ (0)
(
ln
(
I + κh(0) (t)

)
ii

+ ln
(
1 + kκh(0) (t)

))
. (H.58)

These logarithms’ arguments are coefficients of −i∂0c
µ∂0c

ν in the Lagrangian density. We may write

L(00)
FP = Lt + Ls where Lt, Ls are "time" and "space" parts. We have a result of the form

Lt = −iK (t) ċ
0
(0)ċ

0
(0) + ċ

0
(0)f

(
h(+), c(+)

)
+ g

(
h(+), c(+)

)
ċ0(0) (H.59)

for some first-order differential operators f, g, and similarly with Ls. Let c0(0), c
0
(0) have respective

conjugate momenta π0
(0), π

0
(0) and let Lt, Ls have respective Legendre transformsHt, Hs so that

π0
(0) = iKċ

0
(0) − g, π0

(0) = −iKċ0(0) + f, ċ
0
(0) =

−i
K

(
π0

(0) + g
)
, ċ0(0) =

i
K

(
π0

(0) − f
)
. (H.60)

Hence

Lt =
−i
K

{
π0

(0)π
0
(0) + gf

}
, Ht + Lt =

−i
K

{
gπ0

(0) − π
0
(0)f

}
, Ht =

i
K

{(
π0

(0) − g
)(

π0
(0) + f

)
+ 2gf

}
.

(H.61)

The standard choice of functional integral used in the path integral formalism integrates over π0
(0)

and π0
(0) , but we can amend the measure to integrate instead over Π := π0

(0)− g, Π := π0
(0) + f . (This

measure invariance is analogous to Eq. (4.7.15).) In terms of Π, Π we have

Ht =
i
K

{
ΠΠ + 2gf

}
, −i
ˆ

dn−1xHt =
V

K
ΠΠ + 2

(
V

K
gf

)
(0)

, (H.62)

and the path integral is I =
´

dΠ (t) dΠ (t) dc0(0) (t) dc0(0) (t) exp
{
V
KΠΠ + 2

(
V
K gf

)
(0)

}
. We may dis-

cretise time with step period ∆, then take a continuous-time limit that identifies ∆−1 with δ (0):

I ∝
N∏
k=1

ˆ
dΠ (tk) dΠ (tk)

V

K (tk)
Π (tk) Π (tk)

=

N∏
k=1

−V
K (tk)

= exp

N∑
k=1

ln
−V
K (tk)

→ exp−δ (0)

ˆ
dt lnK (t) , (H.63)

LLYt = iδ (0) lnK (t) . (H.64)
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The space part is similar. In terms of Kij :=
(
I− V asκh(0) (t)

)−1

ij
the logarithmic term we wish to

cancel is −iδ (0) tr ln
(
δij − V asκhij(0) (t)

)
= −iδ (0) tr lnK−1. Let space be (n− 1)–dimensional. We

have a result of the form

Ls = −iKij (t) ċ
i
(0)ċ

j
(0) + ċ

i
(0)fi

(
h(+), c(+)

)
+ gj

(
h(+), c(+)

)
ċj(0), (H.65)

Hs = i
(
K−1

)ij {(
πj(0) − gj

) (
πi(0) + fi

)
+ 2gjfi

}
, (H.66)

Πj := πj(0) − gj , (H.67)

Πi := πi(0) + fi, (H.68)

I ∝
N∏
k=1

n−1∏
h=1

ˆ
dΠkh (tk) dΠlh (tk) exp

(
V
(
K−1

)ij
Πj (tk) Πi (tk)

)
∝

N∏
k=1

n−1∏
h=1

ˆ
dΠkh (tk) dΠlh (tk)

(
K−1

)ihjh
Πjh (tk) Πih (tk) , (H.69)

a product which gives factors of

I ∝
N∏
k=1

detK−1
ij (t) = exp

N∑
K=1

ln detK−1
ij (t)→ exp δ (0)

ˆ
dttr lnK−1

ij (t) , (H.70)

LLYs = iδ (0) tr lnKij (t) . (H.71)

Eq. (H.71) is very similar to Eq. (H.64), and these results exactly cancel the δ (0) terms obtained above

in Eq. (H.58).
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The coordinate volume is defined as Vc :=
´

dn−1x
√
η, in the notation introduced in Sec. 1.2.1.

The cyclic modes prescription (CMP) is the prescription defended in this thesis for addressing the

infrared problems I describe in Part I. The prescription sets conserved charges to zero (which, in

some cases, begets further conserved charges that are then also set to zero). The result is a formalism

which does not contain the field modes responsible for said infrared problems.

Dot and cross products of muliplet fields are defined in Eq. (2.1.19), and are analogous to their

famous counterparts on C3.

The fictitious mass prescription (FMP) has the same motivation as the CMP. In the FMP, infrared-

divergent terms are deleted from massive propagators, before a massless limit is taken to obtain an

effective massless propagator. Several shortcomings with the FMP motivated the CMP’s develop-

ment.

The flat static torus is a finite-volume analogue of Minkowski space. In particular, the flat static torus

admits Cartesian coordinates for which ∂ρgµν = 0 and the spatial volume is finite.

Free integration by parts is a treatment of two putative interaction Lagrangians as equivalent if their

difference is a surface term.

Reduced momentum densities are obtained by dividing conjugate momentum densities by
√
|g|, as

explained in Sec. (1.3).

The triple product on multiplets is defined in Eq. (2.1.23). It is analogous to the scalar triple product

on C3.

The volume factor is defined in Eq. (1.2.9).

For the purposes of this thesis, zero modes are defined as in Sec. 3.2.
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Annihilation and creation operators are, respectively, non-normal operators71 that annihilate va-

cuum kets, and their adjoints (which therefore annihilate vacuum bras). If p creation operators act

on a vacuum ket, the result is (up to a multiplicative constant) a p-particle state. Annihilation and

creation operators therefore owe their names to their roles in shifting the particle numbers of physical

states

Quantising a classical canonical field satisfying a linear equation of motion obtains a linear combina-

tion, with function-valued coefficients, of annihilation and creation operators (viz. Secs. 1.5 and 2.4).

The (anti)commutators of annihilation and creation operators are equivalent, with an appropriate

normalisation of field modes, to the canonical (anti)commutation relations on quantised canonical

fields and their conjugate momentum densities.

The Batalin–Vilkovisky formalism is discussed in Appendix F. This formalism is an extension of

the BRST formalism for physical theories whose Lie algebras do not explain all of the Hamiltonian

formulation’s phase space constraints.

The BRST and anti-BRST transformations are defined for the BRST-quantised theories described

in Chapter 2. These transformations are action-preserving, except for one complication discussed in

Sec. 2.6.3. They are nilpotent and commute (their associated fermionic charges anticommute).

Canonical (anti)commutation relations are (anti)commutators, equal to a multiple of the identity

operator, between quantised conjugate momentum densities and quantised canonical fields.

A Cauchy surface of a spacetime is a hypersurface that intersects every inextendible past-directed

causal curve exactly once. A spacetime which has Cauchy surfaces is globally hyperbolic. It is

known that, if Σ is topologically equivalent to some Cauchy surface of a spacetime, said spacetime is

topologically equivalent to Σ×R. Each event in the spacetime belongs to exactly one Cauchy surface.

A coordinate system exists for which two events belong to the same Cauchy surface if and only if

they are simultaneous. The R-topology is due to that coordinate system’s time coordinate. Globally

hyperbolic spacetimes may then be equivalently defined as those which may be obtained from a

Cauchy surface by time translation. Note the physical interpretation: the Cauchy surfaces are simply

timeslices, and spatial sections, of the spacetime.

A topological space is compact if each of its open covers has a finite subcover. Physical space is

described as closed in spacetimes whose spatial sections are compact topological spaces. The only

property of such spacetimes of interest in this thesis is the fact that they have finite volume factor.

de Sitter invariance is invariance under de Sitter transformations. These are spacetime transforma-

tions in de Sitter space that are analogous to the Poincaré transformations on Minkowski space.

71An operator A is called normal if and only if AA† = A†A. Important examples include Hermitian and anti-Hermitian
operators. It is a famous result that A is normal if and only if A is diagonalisable.
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de Sitter space may be defined in any of several equivalent ways. For my purposes in this thesis, the

definition of importance is that given in Eq. (1.2.11).

The Dirac bracket is a modified Poisson bracket required in a Hamiltonian formulation that admits

phase space constraints. In particular, several important results on Poisson brackets in the absence

of such constraints are applicable generally to Dirac brackets.

The electroweak interaction is a unified description of the empirical electromagnetic and weak

interactions. The Higgs mechanism explains the fact that, unlike the photon, the weak interaction’s

gauge bosons are massive.

Faddeev–Popov ghosts and antighosts are integer-spin, and hence unphysical, fermionic fields in-

troduced by the Faddeev–Popov method. Yang–Mills theory (perturbative gravity) introduces FP

fields of spin 0 (1).

The Faddeev–Popov method is a modification of physical theories discussed in Chapter 2; it intro-

duces a BRST quantisation of the Lagrangian. The resulting Lagrangian density loses its gauge

invariance, and this fact facilitates the calculation of gauge-invariant quantities’ means in the path

integral formalism. A good account is found in Ref. [27].

A Fock space is most narrowly defined as the Hilbert space completion of the direct sum of the

symmetric or antisymmetric tensors in the tensor powers of a single-particle Hilbert space. An

extension to multiple-particle theories is trivial.

The Friedmann–Lemaître–Robertson–Walker (FLRW) metric is an approximation, in cosmology, of

ds2 for the large-scale structure of the universe. It is of the form ds2 = dt2 − a2 (t)
(

dr2

1−kr2 + r2dΩ2
)

.

Given a definite integral of the form S =
´

dpuS, the functional derivatives δS
δϑ of S are defined by

δS =
´

dpu
{
δϑ δSδϑ + o (δϑ)

}
, where δX is the change in an arbitrary fieldX due to the transformation

ϑ→ ϑ+ δϑ. Note that the dimensions of δSδϑ are those of S
upϑ .

A gauge transformation in fields is action-preserving. BRST quantisation breaks this symmetry of

an action. However, BRST-quantised actions still exhibit some symmetries, such as BRST invariance.

The Gudermannian function [24] is defined in Sec. 1.8, and is required to calculate spatially uniform

massless Klein–Gordon fields in de Sitter space. It is named for Christoph Gudermann.

Primary constraints in perturbative gravity’s phase space are expressible in terms of the Hamiltonian

and momentum constraints [94]. The constraints are defined by Eqs. (C.14) and (C.15).

An infrared divergence is a divergence in an M → 0+ right-hand limit, where the parameter M is a

rest mass.

A Killing vector field, or more succinctly Killing vector, solves ∇αξβ + ∇βξα = 0, the Killing

equation.

The Klein–Gordon inner product on solutions of the Klein–Gordon equation is defined in Eq. (1.4.3).

Despite its name, it is not a true inner product, although it is a pseudo-inner product. Klein–Gordon

normalisation is a normalisation convention definable in terms of this pseudo-inner product.

The Landau gauge is a gauge choice in the BRST quantisation. This gauge choice causes a diver-

gent term, unless the formalism is rewritten with the Nakanishi–Lautrup auxiliary field. A term

proportional to the square of this field appears in all other gauges.

The lapse function and shift vector are N, N i, viz. Eq. (1.2.1).

Lee–Yang cancellation, Lee–Yang determinants and Lee–Yang terms are all defined in Sec. 4.7.2.
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Left- and right-differentiation are conventions regarding the definition of derivatives with respect to

a fermionic variable. In left-differentiation, any product containing the fermionic variable are written

with the fermionic variable as the leftmost factor. Right-differentiation instead places the factor at

the right.

The Lie algebra (defined in Sec. 2.1.3) is mostly unrelated to the Lie derivative (defined in Sec.

2.6.2). However, since Killing vectors are closed under the Lie derivative, they form an associated

Lie algebra.

Linearised gravity is defined in Sec. 2.6.1.

The master equation and quantum master equation are respectively given in Eqs. (F.3) and (F.22).

The naïve Hamiltonian is a Legendre transform of the Lagrangian that admits phase space con-

straints. The use of Dirac brackets addresses the implications of these constraints for Poisson brack-

ets. However, additional terms must also be added to the naïve Hamiltonian. This ensures that the

Hamilton’s equations are equivalent to the Euler–Lagrange equations.

The Nakanishi–Lautrup auxiliary field is a bosonic field, of the same spin as the FP-ghost, which

may be used to rewrite a Faddeev–Popov Lagrangian density. The motivation is to ensure that the

Landau gauge does not result in a divergent term.

The Ostrogradski method modifies the Legendre transform for theories in which the Lagrangian

density contains second- and/or higher-order derivatives. It is discussed in Sec. 4.6.

Propagators are defined in Sec. 1.5.3.

A pseudo-inner product is a sesquilinear function 〈ϕ, ψ〉 on a Hilbert space H 3 {ϕ, ψ} satisfying

〈ϕ, ψ〉 = 〈ψ, ϕ〉∗. A “true” inner product also has 〈ϕ, ϕ〉 ≥ 0, with equality if and only if ϕ = 0. A

pseudo-norm (often abbreviated to norm) may be defined as either 〈ϕ, ϕ〉 or
√
〈ϕ, ϕ〉, depending on

convenience. For example, if 〈ϕ, ϕ〉 < 0 it is customary to describe ϕ as negative-norm, using the

first definition of pseudo-norms.

The Hamiltonian density and Lagrangian density may respectively be written as H =
√
|g|H0 and

L =
√
|g|L0, where L0 is a scalar called the scalar Lagrangian density.

The scale factor a (t) in an FLRW metric admits a generalisation for my purposes, as discussed in

Sec. 1.2.1.

Structure constants are defined in Eq. (2.1.16).

The synchronous gauge is N = 1, N i = 0.

The vielbein formalism is a formalism in general relativity. It provides one of two popular notations

for BRST-quantised perturbative gravity. I decided not to use the vielbein formalism in my treatment

of perturbative gravity (which is predominantly confined to Chapter 4). I defend this decision in Sec.

2.6.3.

Yang–Mills theory is an in general non-Abelian generalisation of electromagnetism, viz. Sec. 2.1.3.

Yang–Mills theory is used in the Standard model to describe the electroweak unification of electro-

magnetism and the weak nuclear interaction, as well as the fundamental “colour” interaction. The

strong nuclear interaction includes both this colour interaction and an emergent consequence thereof,

the residual strong force. These interactions are respectively exchanged by virtual gluons and virtual

mesons.
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