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A B S T R AC T

With increasing demand for high density magnetic recording devices a paradigm shift
is required to overcome the super-paramagnetic limit. By using a high anisotropy
material, such as L10 FePt, and heat assisted magnetic recording the areal density
can be taken well beyond 1 Tbit/in2. For FePt the grains on which the data is stored
can be reduced to 3nm in size before thermal noise becomes an issue. Therefore, the
understanding of how magnetic grains of only a few nanometres in size behave and
switch is highly important. Here an atomistic model of magnetic materials, based
on the Heisenberg exchange interaction and localised classical atomic moments, is
used to investigate the magnetic reversal properties of granular recording media. A
detailed model for FePt, parametrised from ab-initio is presented and this is used
to investigate the finite size effects in nanometre grains. Using this model, the fi-
nite size effects on the linear reversal regime is investigated. Comparing a model
using the Landau-Lifshitz-Bloch macrospin equation to the atomistic results show
that multi-scale modelling may be valid down to the 3 nm length scale. The inter-
granular exchange interaction between neighbouring grains is investigated using a
model invoking the presence of magnetic impurities in the grain inter-layer. Using
constrained Monte-Carlo methods the effective exchange is calculated for different
impurity density, grain separation and temperature. Following this, helicity depen-
dent all optical switching in granular FePt is investigated. The phase space for
switching through the Inverse Faraday effect is explored. Using the Master equa-
tion, a model for thermal switching with magnetic circular dichroism is explored
which qualitatively explains the induced magnetisation observed experimentally. Fi-
nally, the coupling of the spin and lattice system is modelled by combining spin and
molecular dynamics. The coupling to the lattice excites magnons which appear to
decay implying that some damping processes are occurring.
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1
I N T RO D U C T I O N

The unique properties of magnetic materials have made them invaluable for modern
technology. In the recent 2014 magnetism roadmap[1] 12 different areas of research
are highlighted over a broad range of topics from bio-medical applications to mag-
netic logic devices. Whilst these topics are diverse a strong theme remains, that of
data storage using the orientation of the magnetisation to represent the binary logic
states (bits). One topic in the 2014 magnetism roadmap of special interest on this
theme is that of Heat Assisted Magnetic Recording (HAMR).

In the half century that magnetic recording has existed it has experienced a dra-
matic increase in its capacity to store information, driven by the ever expanding con-
sumer market for data storage, which in 2007 had passed 295 optimally compressed
exabytes (2.95 × 1020 bytes)[2]. This has been achieved by the miniaturisation of the
required components and key breakthroughs, such as giant magneto-resistance[3, 4]
which has allowed for better sensing of the recorded data. However further miniaturi-
sation is becoming increasingly more difficult as the natural limit imposed by thermal
fluctuations is restricting the current paradigm of magnetic recording. HAMR is one
of the technologies in development by the magnetic recording industry to achieve
higher storage densities beyond the current limit. This forms the motivation for this
thesis whereby the properties of HAMR in granular media will be investigated using
modelling techniques which simulate the magnetic properties and dynamics from an
atomistic level[5].

1.1 the future of magnetic recording

The current paradigm for magnetic recording is known as perpendicular magnetic
recording (PMR)[6], where data is stored onto magnetic grains on thin film platters
with the up/down orientations of the magnetisation representing the binary 1s and
0s. This was a shift from the previous longitudinal recording with the aim of allowing

13



1.1 the future of magnetic recording

0 01 1
(a)	  A	  typical	  grain	  structure (b)	  Energy	  barrier

KV

Figure 1.1.: (a) An example of a typical grain structure with data bits of different
orientation. The size and shape of the grains can affect the bit bound-
aries. (b) The energy barrier between the orientations is given by the
anisotropy energy barrier. Switching can occur with an applied field to
overcome the barrier or if the barrier is low enough thermal fluctuations
can switch the grains.

the grains to be more tightly packed giving a greater areal density (number of bits
per unit area). An example of the granular media used is shown in figure 1.1.(a);
a single bit of data is comprised of multiple grains with each grain separated from
each other by a non-magnetic inter-layer (segregant). Due to the method of creating
the granular media the grains are not uniformly shaped, this distribution in grain
size and shape can play a big role in recording process. As figure 1.1.(a) shows
the boundaries of each bit can become rough if there is a large size dispersion.
Alongside the areal density, the stability of the stored data is a key factor, since
it needs to be stored safely against thermal effects for a long time. The uniaxial
anisotropy provides the energy barrier between the two magnetisation orientations
(figure 1.1.(b)) and the characteristic thermal switching time between them is given
by the Arrhenius-Neel law[7]:

τ = τ0 exp(KuV /kBT ) (1.1)

Here the Ku is the uniaxial anisotropy constant and V the volume of a single grain.
To achieve thermal stability over a timescale of decades the product of KuV /kBT

is required to be large. Typically the target for thermal stability is KuV /kBT >

60. This simple model shows that the desired reduction in the grain size would

14



1.1 the future of magnetic recording

lead to a loss of thermal stability. For the current generation of magnetic media
used in devices the areal density would be limited at around 1000 Gb/in2. This is
known as the super-paramagnetic limit, since the magnetisation orientation would be
dominated by the thermal fluctuations and behave paramagnetically. The solution
to the super-paramagnetic limit would be to utilise a different magnetic medium
with a higher anisotropy constant as this would give a smaller grain size before the
magnetisation becomes thermally unstable. The drawback to this is the limitation
of the the write field; not only is it required that the data written is stable for
long periods it is also necessary to re-write the data regularly. The magnetic field
generated by the write head is physically limited and so by employing high anisotropy
media it may not be possible to overcome the coercive field. This is known as the
magnetic recording trilemma since it is not possible with current generation devices
to satisfy the three areas of minimising grain size, thermal stability and limited
write field. Recently it has been expanded to a quadrilemma by Evans et al.[8] as
the Bit Error Rate (BER) also constrains the system; which is shown schematically
in figure 1.2. Evans et al. specifically studied the case for HAMR on bit patterned
media where a single bit is stored a single grain and it is required that there is no
backswitching of the magnetisation. It is found that there is a stronger constraint
of the write field than simply exceeding the switching field to minimise this. In
conventional media (with many grains per bit) this requirement is still relevant
as it is still possible for individual grains to back-switch which reduces the net
magnetisation of the bit, this is referred to dc noise.

To achieve areal densities beyond the current generation limit of 1000 Gb/in2

requires a different scheme for magnetic storage. As described by Shiroshi et al.[9]
there is a variety of different options with different benefits and drawbacks. The
most popular future technology options are HAMR, Bit Patterned Magnetic Record-
ing (BPMR) and Microwave Assisted Magnetic Recording (MAMR). HAMR and
MAMR[10] both utilise high anisotropy media to achieve small grain sizes and the
write phase is assisted to allow recording. In HAMR the writing is assisted by heat-
ing the media so that the coercivity drops below the available write field. MAMR
uses an alternating field to excite precessional motion of the magnetisation to assist
the write field. BPMR approaches the problem differently[11]; in BPMR advanced
lithographic techniques are used to pattern the magnetic media into islands. Whilst
the grain size is not minimised by having ordered arrays of islands a high signal to
noise ratio is achieved with only a single island per bit.

15



1.1 the future of magnetic recording

Magnetic 
Recording 

Quadrilemma 

Maximise 
Areal Density 

• Small grain size 

High Thermal 
Stability 

• KV/kBT > 60 

Minimise 
Write Field 

Minimise Bit 
Error Rate 

• Large µµ0H/kBT 

• High Ms 

Figure 1.2.: The magnetic recording quadrilemma[8] showing competing factors re-
qired to develop high areal density devices.

An important part of these potential new magnetic recording devices is the choice
of recording media. Both HAMR and MAMR require high anisotropy materials
to provide thermal stability at the target areal density. Possible candidates are
summarised by Weller et al.[12] and of particular interest to the industry is L10 phase
FePt. L10 FePt exhibits an anisotropy of Ku ≈ 7.0 × 106 J m−3 which is sufficient
to support a minimum stable grain size of Dp ≈ 3 nm. There is a significant interest
in the properties of FePt to tailor it for magnetic recording[13–15]. Various studies
of FePt have been performed over a variety of length scales, ranging from modelling
nanoscale clusters[16, 17] to micro-magnetic models of granular media[18, 19], as well
as extensive experimental analysis[10, 14, 15]. Ab-initio studies[20, 21] have shown
that despite Pt being non-magnetic in the L10 crystal structure a moment is induced.
Since Pt exhibits a high spin-orbit coupling this creates the enhanced anisotropy that
is so desired for HAMR. Whilst ab-initio methods provide a detailed treatment of
system it is limited in the number of atoms (a few hundred atoms) and length of
time that can be simulated effectively. Therefore, an atomistic spin model[5, 22],
which still retains the atomic level view of the system but can access system sizes
up to the 10’s nm scale, is ideal for investigating HAMR-related processes.
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1.2 thesis outline

1.2 thesis outline

In this thesis the properties relating the HAMR in granular media will be inves-
tigated. The aim is to probe these properties on the nanometre length scale for
which the atomistic model is suited. Important areas are the linear reversal switch-
ing mechanism[23] which has been studied in bulk and large grains but not in
grains close to the super-paramagnetic limit and inter-granular coupling in record-
ing media[24, 25] which can play an important role in the stability of the grains.
Later parts of the thesis deal with the emerging phenomena of magnetic recording
using polarised light, and understanding the role the lattice plays in the magnetic
damping. Recent reports of using a femto-second laser to switch the magnetisation
in granular FePt[26] has not been completely understood and here the viability of
the possible causes to the recorded magnetisation is analysed using the atomistic
model of FePt. The role the lattice plays in the magnetisation damping requires an
extended model; one where the atoms are free to move from their crystal positions
to simulate the lattice effects. This model has been pioneered by Ma et al.[27] for
bcc Fe and here we utilise this to investigate the induced damping and the effects
the lattice causes on the magnetisation.

Following this introduction to the context and overview, the rest of the thesis is
now outlined here. The second chapter details the atomistic model that is utilised
throughout of the rest of the thesis. The atomistic Hamiltonian is discussed and
further detail of the Hamiltonian for FePt is given. Details of the simulation methods
are given for both atomistic spin dynamics and Monte-Carlo techniques and the
chapter is completed with a some tests of the model.

The third chapter investigates the finite size effects that occur in FePt close to
the super-paramagnetic limit. Particular focus is on the finite size effects on the
reversal mechanism close to the Curie temperature. The equilibrium properties
are calculated to connect the results from the atomistic model to predictions made
from a micro-magnetic model. By comparing these a judgment of the possibility of
multi-scale modelling on the nanometre scale is made.

In chapter four the atomistic model is used to calculate the inter-granular ex-
change using the constrained Monte-Carlo model. The atomistic model is used to
construct an approximate granular media using hexagonal grains with magnetic im-
purities between the grains. By computing the free energy of rotating a grain against
its neighbours the inter-granular exchange parameter required for micro-magnetic
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1.2 thesis outline

calculations is found. The dependence of this parameter on impurity density, tem-
perature and grain separation are calculated.

The fifth chapter deals with the recent phenomenon of switching in FePt granular
media using circularly polarised femtosecond lasers. The two temperature model
and the inverse Faraday effect are introduced to model the effect of the laser on the
ferromagnet. The required strength and duration of the field generated by the in-
verse Faraday effect is calculated for various laser fluences. This shows that the field
would need to last much longer than the laser pulse and so a simple model based on
the Master equation is used to calculate the switching caused by magnetic circular
dichroism. The resulting induced magnetisation agrees will with experimental mea-
surements for an absorption difference of 3% between the different magnetisation
orientations.

Chapter six describes an advanced atomistic model which incorporates the dynam-
ics of the crystal lattice. The model Hamiltonian and the integration scheme based
on a Suzuki-Trotter decomposition is described. The model is tested for basic energy
and magnetisation conservation for the case without damping and the phonon and
magnon spectra are calculated from the auto-correlation functions. Calculations of
the coupling to the lattice through a psuedo-dipolar anisotropy term shows that
magnons are generated at high k-vectors before decaying to the gamma point. The
effect of free surfaces is also modelled showing that the surface relaxation alters the
exchange coupling and triggers coherent phonons which couple to the magnetisation.

Following this conclusions are presented, summarising the main results of the
thesis and their implications on the field.
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2
AT O M I S T I C S P I N M O D E L

To investigate the magnetic properties and dynamics of granular recording media
we shall employ an atomistic spin model. This model considers permanent mag-
netic moments localised on each atomic site within the system of interest. Early
work by Binder[28] using Monte-Carlo methods established spin models as valuable
technique for investigating thermodynamic properties. More recently they have
been adapted to investigate magnetisation dynamics at finite temperatures using
the Landau-Lifshitz-Gilbert equation of motion and Langevin dynamics. This ver-
satility has allows atomistic spin models to investigate out-of-equilibrium dynamic
processes, such as the thermally induced magnetic switching in ferrimagnets,[29, 30]
and for systems with complicated crystal structure[31]. They have also been used to
investigate L10 FePt since it is simple to parameterise from ab-initio calculations[20];
this includes important microscopic effects that accurately predicts properties such
as the bulk anisotropy strength and that it scales with ∝ M(T )2.1 which is important
for its use in HAMR[32].

Atomistic models provide a bridge between the quantum ab-initio models, such as
Density Functional Theory (DFT), and micro-magnetic models. As stated earlier,
for ab-initio models system sizes of a few hundred atoms becomes computationally
very hard; whilst micro-magnetic models are built within the long-wave length limit
and so atomic level details, i.e. interfaces or small grains, cannot be treated effec-
tively. Therefore, considering the focus of this investigation, atomistic spin models
are ideally suited. A further advantage of the model is that thermal effects can be
introduced and properties at elevated temperatures can be investigated. Whilst the
model is essentially classical, as it is based on normalised Heisenberg spin vectors,
quantum information can be included through the model parameters, allowing for
a multi-scale approach. This however is one of the limitations of the model; the
moments are have a fixed magnitude and localised to an atomic site. For most
materials this is a reasonable assumption but other materials, with higher levels
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2.1 localised atomic magnetic moments
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Figure 2.1.: (a) The energy level diagram for an isolated atom with electrons filling
the shells in order. By Hund’s rules S is maximised first leaving un-
paired electrons which form a net magnetic moment. (b) Spontaneous
splitting of majority and minority spin bands in a ferromagnet due to
the reduction in energy by forming an ordered state.

of delocalisation, are found disagree with experimental measurements. Extensive
details on atomistic spin models are given in reviews by Evans et al.[5] and Skubic
et al.[33] In this chapter the atomistic spin model will be detailed. This model is
based on the interaction of atomic magnetic moments thus the general atomistic
Hamiltonian, based on the Heisenberg Hamiltonian will be described. The specific
Hamiltonian for the technologically important L10 FePt is also described. Following
this the simulation methods, both the Langevin dynamics and constrained Monte
Carlo methods, are introduced with tests of each presented.

2.1 localised atomic magnetic moments

In an atomistic spin model the ensemble is constructed as a set of magnetic moments
that are localised to atomic positions. Typically these atoms form a crystalline
structure with translational invariance but they may also exist in an approximated
amorphous structure. To this end each atom has a position, ri, within the struc-
ture and a corresponding magnetic moment, µi. In isolated atoms these magnetic
moments are formed from electrons in shells that are not full. Each orbital shell
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2.1 localised atomic magnetic moments

has a set of spin states, s and an orbital angular momentum states, l, that can be
occupied. Figure 2.1.(a) shows the energy level diagram for a isolated atom, the
electrons fill up each band in order and with unpaired electrons (in this example
in the 3d shell) a magnetic moment is formed. The spin and angular momenta of
each electron in the shells combine to give a total spin and angular momentum:
S =

∑
n sn, L =

∑
n ln. These are both angular momenta and contribute to the net

magnetic moment through the total angular momentum, J = L + S. According to
this an atom will have a corresponding magnetic moment given by

µJ = µBgJJ = µB (gLL + gSS) , (2.1)

where µB = e h̄/2me = 9.274 16 × 10−24 JT−1 is the Bohr magneton and gJ , gL, gS

are the Landé splitting factors (g-factors).
The order in which the orbital state are filled is described empirically by Hund’s

rules[34, 35]. Hund’s rules state that the order electrons occupy atomic orbitals such
that

1. the multiplicity, 2S + 1, is maximised;

2. for a given multiplicity, the total orbital angular, L, momentum is then max-
imised;

3. if the electron shell is less than half full then the total angular momentum,
J = |L− S| but if the shell is more than half full then J = L+ S.

The first two rules are in essence a description of the minimisation of the Coulomb
energy. For the first rule when the spins are aligned the spatial wave-function muse
be anti-symmetric, which tends to keep the electrons further apart thus reducing
the Coulomb energy. This gives rise to the exchange interaction which is one of
the causes for ordering of the spins and is described in detail later on. The second
rule is similar, in that by maximising L the electrons are orbiting in the same
direction, thus again reducing the Coulomb energy between electrons. The third
rule is more complex as this is a statement of the spin-orbit coupling; this is a
relativistic effect and in Hund’s rules assumes what is known as L-S coupling rather
than J-J coupling which is important in heavier nuclei. In L-S coupling the energy
difference is proportional to L · S and depending on the coefficient will align parallel
or anti-parallel. The sign of the coefficient changes when the shell is more than half
full and so how L and S combine to form J changes.
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2.1 localised atomic magnetic moments

These rules give rise to a net magnetic moment for certain atoms which agrees well
with the moments measured for localised electrons, such as the rare earth metals,
but does not effectively describe the moments of some transition metals where the
orbital angular momentum is quenched. Orbital quenching occurs in 3d transition
metals due to the electrostatic field created by neighbouring atoms. This ’crystal
field’ is stronger than the spin orbit coupling in these metals and so the orbital
momentum is minimised. Therefore for materials like Fe, Co and Ni the atomic
magnetic moment is formed primarily by the spin magnetic moment, this leads to
the convention of describing the atomic magnetic moments as spins. In this case the
atomic magnetic moment is well described by

µ = µsS (2.2)

where µs = gSµB is the magnitude of the magnetic moment. For rare earth metals
the magnetism arises from electrons in the 4f shell, which are more localised and
screened from the crystal field by the 5s25p6 electrons. This means that the assump-
tion that the spin-orbit coupling is higher still holds despite the crystal field and the
orbital angular momentum contributes significantly to the net magnetic moment.

In metals the concept of isolated localised atoms does not work; the itinerant elec-
trons play a significant role in their magnetism. The band theory of magnetism helps
explain the difference between the experimentally measured values of the atomic
magnetic moment and those theoretically predicted from the spin quantum number
of the atoms, shown in figure 2.1.(b). Due to this splitting the minority electron
band has a higher energy then the majority electron band. Therefore when the
density of states is integrated up to the fermi energy then there is net difference
between the number of majority and minority electrons. Since each electron has a
magnetic moment of 1 µB the magnitude of the atomic moment will be

µs = µB

(
Nmaj

e −Nmin
e

)
(2.3)

where Nmaj
e and Nmin

e are the number of majority and minority electrons obtained
by integrating the spin-split projected density of states up to the Fermi energy.
Within the atomistic picture the magnetic moments are assumed to act classically
(S→ ∞) and are described by a 3D vector. The magnitude of the magnetic moment
is assumed to be fixed which allows the moment to be normalised onto the unit
sphere using

S =
µ

µs
. (2.4)
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2.2 generalised atomistic hamiltonian

In the last section, the atomistic magnetic moments were presented and now we
consider how the they interact. The Hamiltonian here now only considers the spin
degrees of freedom and a generalised Hamiltonian is

H = Hexch + Hani + HZeeman + Hdipole (2.5)

The constituent terms in this expression are the exchange, anisotropy, Zeeman
and dipole Hamiltonians which are described in more detail in the following.

2.2.1 Exchange Interaction

The exchange interaction is one of the strongest interactions in magnetism on the
atomic scale and one of the most complex. It brings about magnetic ordering and a
wide variety of effects depending on details of the interaction. The exchange inter-
action is a purely quantum mechanical property since it arises from the fermionic
nature of the electrons. In general the exchange interaction is complex for systems
containing many electrons; typical introductions[34, 35] to the exchange interaction
consider a 2 electron system, such as the H2 molecule or the He atom. Here a similar
introduction is given. The H2 molecule contains 2 nuclei at some separated with
2 electrons; since the electrons are spin 1/2 they are fermions and as such require
the total wave-function, Ψ, to be anti-symmetric under the exchange of the two
electrons.

Ψ(1, 2) = −Ψ(2, 1), (2.6)

where 1, 2 indicates the position and spin variables of electrons 1 and 2 respectively.
The total wave-function can be separated into a product of the spatial and spin wave-
functions. In this case, either the total spatial wave-function, Φ, or the total spin
wave-function, X, can be anti-symmetric.

Ψ(1, 2) =

Φsym(1, 2)Xanti(1, 2)

Φanti(1, 2)Xsym(1, 2)
(2.7)
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2.2 generalised atomistic hamiltonian

The first case is known as the ‘Singlet’ state since the anti-symmetric spin wave-
function has S = 0 and consequently the spin magnetic quantum number is ms = 0.
The wave-function in this case takes the form:

ΨS(1, 2) = 1√
2
[ϕa(1)ϕb(2) + ϕa(2)ϕb(1)] [χα(1)χβ(2) − χα(2)χβ(1)] (2.8)

where ϕa(1) and ϕb(2) are the individual atomic wave functions occupied by either
electron 1 or 2 on atoms a or b, and χα and χβ are the spin wave functions that
represent either spin up or spin down. The second case is the ‘Triplet’ case where
now S = 1 where the three possible spin states give rise to ms = 1, 0, −1.

ΨT(1, 2) = 1√
2
[ϕa(1)ϕb(2) − ϕa(2)ϕb(1)]


χα(1)χα(2)

χα(1)χβ(2) + χα(2)χβ(1)

χβ(1)χβ(2)

(2.9)

The energy of each of these states can be calculated using an atomic Hamiltonian
containing the Coulomb energy terms. The resulting energies are

ES = C + J (2.10)

ET = C − J (2.11)

where C and J are the Coulomb exchange integrals that are calculated using

C =
∫
ϕ∗

a(1)ϕ∗
b(2)Ĥϕa(1)ϕb(2)dr1dr2 (2.12)

J =
∫
ϕ∗

a(1)ϕ∗
b(2)Ĥϕa(2)ϕb(1)dr1dr2 (2.13)

The difference between the energy of the two states is

ES −ET = 2J (2.14)

So despite the Hamiltonian not containing any spin dependent terms the final
energy of the two states are split depending on the parallel or anti-parallel alignment
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2.2 generalised atomistic hamiltonian

of the spin. As Heisenberg showed it is easier to write the Hamiltonian with an
explicit spin dependent term that takes the form:

Hspin = −J12S1 · S2 (2.15)

For the H2 molecule the Heisenberg exchange interaction is isotropic but in con-
densed matter systems it may not be so. Since the derivation of the exchange
interaction is intractable analytically for a system with a large number of electrons
the exchange constants are usually computed from ab-initio methods such as density
functional theory[36, 37]. Consequently, it is convenient to consider a more general
exchange interaction that is based off the Heisenberg form. In this case it can be
written as the tensor product between two spins;

Hexch = −
∑
i,j

SiJijSj (2.16)

where i, j label different spins. In this representation the exchange constant is
tensorial thus as well as depending on distance and direction it may vary for differ-
ent spin components. A more convenient expression of the exchange interaction is
obtained by splitting the tensorial exchange in separate interactions that describe
different behaviours. The tensor can be broken into three parts; isotropic, symmetric
and anti-symmetric.

Hexch = −
∑
i,j

(
J iso

ij Si · Sj + SiJ
sym
ij Sj + Dij · (Si × Sj)

)
(2.17)

The isotropic term is taken as the average of the diagonal elements of the tensor,
given by:

J iso
ij =

1
3

Tr (Jij) (2.18)

This the dominant cause for the alignment and cooperative behaviour of the spins.
Since it is isotropic the spins will align but there is no preferential orientation of
the alignment direction. Whilst ab-initio calculations have shown the exchange
constants can in general be long-ranged and anisotropic, it is reasonable for most
materials to consider a nearest neighbour exchange interaction. In this case it is
possible to extract the parameters from experimental measurements of the Curie
temperature through the following expression

J iso
ij =

kBTC

εz
(2.19)
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2.2 generalised atomistic hamiltonian

where the number of neighbours is given by z. This expression utilises the empir-
ical relationship between the strength of the exchange and the Curie temperature.
The parameter, ε, describes the effect of the crystal structure on the relation and
varies for different basic crystals.

The symmetric term is necessary when the diagonal terms in the exchange tensor
are not equivalent and is defined as:

J
sym
ij =

1
2
(
Jij + JT

ij

)
− J iso

ij I (2.20)

This is the anisotropic part of the exchange interaction and can provide a pref-
erential orientation of the alignment. As described later this anisotropic exchange,
also named ’two-ion anisotropy’ is present in FePt and contributes a significant part
of the overall anisotropy.

The final term in equation 2.17 is the anti-symmetric part of the exchange tensor,
which is known as the Dzyaloshinskii-Moriya (DM) interaction [38, 39]. This way
of writing the tensor shows that the spins will prefer to align perpendicular to each
other and the DM vector, Dij . The DM vector is formed from the off-diagonal
components of the exchange tensor:

Dij =


Jyz

ij

Jxz
ij

Jxy
ij

 (2.21)

This interaction was described by Dzyaloshinskii[38] in an attempt to explain the
weak ferromagnetism in Hematite through consideration of the crystal symmetry
and a thermodynamic potential of the same form given above. Later it was shown
by Moriya[39] that this arises from the spin-orbit coupling. The DM interaction
between two spins occurs through a third atom with the super-exchange mechanism;
for example in Hematite 2 Fe sites interact via the orbitals of a neighbouring O.
In multi-layers it is common to find the DM interaction at interfaces where the
symmetry is broken and another atomic species plays a role.[40]

The value of the exchange interaction can introduce different ordering properties
in a magnetic system. Without the exchange interaction the magnetic moments
do not have any ordering and behave in a manner known as paramagnetism. If
the exchange interaction is positive then a parallel alignment of the spins is pre-
ferred which is known as ferromagnetism. If the exchange interaction is negative
then an anti-parallel alignment is preferred which is known as anti-ferromagnetism.
Paramagnets have no net magnetisation unless ordered with an external magnetic
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2.2 generalised atomistic hamiltonian

field. Ferromagnets have a spontaneous magnetisation in zero field but collinear anti-
ferromagnets, even though are ordered, do not show a magnetisation in zero field
as the anti-parallel configuration leaves no net magnetisation.Weak ferromagnetism
can be observed some anti-ferromagnets as the presence of another competing inter-
action, such as the DM interaction in Hematite, can create a canted anti-ferromagnet
such that they magnetisation of each sub-lattice does not entirely cancel. A fourth
kind exists, where the spins align anti-parallel but if different elements are present
with magnetic moments of different sizes then a net magnetisation will be observed
but behaves as a anti-ferromagnet, this is known as a ferrimagnetism.

For a ferromagnet the order parameter is simply the magnetisation (M) or the
reduced magnetisation (m)

m =
M
Ms

=
1
Ms

∑
i

µs,iSi (2.22)

where Ms is the saturation magnetisation which is usually taken as the sum of
saturation magnetic moments in the system in the ground state configuration. At
finite temperature there exists a ordered state below a critical temperature, which
is known as the Curie temperature TC . Temperature effects bring about disorder
within the system so the magnetisation reduces steadily until close to the Curie
temperature where a phase transition occurs and the magnetisation sharply drops
to zero.

2.2.2 Magneto-Crystalline Anisotropy

The second term in the Hamiltonian is the anisotropy contribution which describes
a preferential axis for the spins to point along. The exchange interaction provides
an ordering of the spins within a material but it is the preferential alignment of the
magnetisation along a direction that plays a key role in its usefulness for certain
applications. In most systems the demagnetising field generated by the magnetisa-
tion is minimised when the magnetisation lies along the longest axes causing what is
known as shape anisotropy. In thin films this forces the magnetisation to lie in plane.
Of particular interest is the magneto-crystalline anisotropy; this is the preference to
lie along certain crystallographic directions caused by the spin-orbit interaction[35].
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2.2 generalised atomistic hamiltonian

There are different forms the anisotropy can take but the simplest ones to include
are the uniaxial and cubic anisotropy given by[41, 42]:

Hani = −
∑

i

ku(Si · êu)
2 −

∑
i

kc

2
(S4

ix + S4
iy + S4

iz) (2.23)

The axis is given by the unit vector êu and the constants ku and kc are the
magnitudes of the interaction. In most systems the z-axis is taken as the anisotropy
axis and depending on the sign of ku it can describe a preference to lie along the
axis (ku > 0) known as easy axis or to lie in the perpendicular plane (ku < 0) known
as easy plane. On the micro-magnetic scale the anisotropic part of the free energy
per unit volume is given by

Faniso/MsV = Ku sin2(ϕ) +Kc

(
α2

xα
2
y + α2

xα
2
y + α2

yα
2
z

)
(2.24)

Here Ku and Kc are the uniaxial and cubic anisotropy constants with the uniaxial
anisotropy along the z direction of the crystal and αx,αy,αz are the directional
cosines. In most cases it is satisfactory to only consider the uniaxial anisotropy
as, certainly for the materials considered in this thesis, it dominates the magnetic
properties. The uniaxial anisotropy provides and energy barrier of KuV between
the two energy minima; it is the size of this energy barrier that provides the stability
of the magnetic orientation against temperature.

Callen and Callen[43] derived the temperature dependence of the anisotropy val-
ues; for an anisotropy of order l it is related to the temperature dependence of the
magnetisation via

Kl(T )

Kl(0)
=

(
M(T )

M(0)

)l(l+1)/2
(2.25)

For uniaxial anisotropy this means that it will followM(T )3 while cubic anisotropy
will follow M(T )10, implying that the anisotropy will reduce at a faster rate than
the magnetisation which is important for HAMR. An example of this behaviour is
shown in figure 2.2; the magnetisation can be approximated by the critical function
M(T )/M(0) = (1 − T/TC)

β where β is the critical exponent, for this example
the mean field value of the exponent is used β = 1/2. This mean field exponent
arises from the Landau model of the free energy, where considering the symmetry
of the magnetisation it is formed from an expansion using only even powers of the
magnetisation. When considering the convexity of the free energy close to the critical
point the coefficients of this expansion have a temperature dependence proportional
to (1 − T/TC), and so from M = ∂F/∂H the earlier expression can be found[44].
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Figure 2.2.: An example of the Callen-Callen theory for the anisotropy temperature
dependence. The uniaxial anisotropy scales as Ku ∝ m3 while the cubic
anisotropy scales as Kc ∝ m10. The magnetisation is shown as M(T ) =
(1 − T/TC)

β where β = 1/2 is the mean field critical exponent.

Since β < 1, the anisotropy will generally decrease with temperature at a much
faster rate than the magnetisation. For the HAMR process this implies that the
anisotropy can be reduced significantly faster than the magnetisation which aids
the switching process.

2.2.3 Zeeman And Dipolar Interactions

The third Hamiltonian term is the Zeeman energy; which is the interaction of the
spins with an external applied magnetic field.

HZeeman = −µs

∑
i

Si · Happ (2.26)

This term forms the splitting of the up and down spins in an external field. Classi-
cally this shows the energy minimum when the spins, and hence the magnetisation,
are aligned with the field. In most cases the field is uniform over the system and
so we can see that the energy depends on the magnetisation; therefore at high tem-
peratures when the magnetisation is sufficiently reduced it will not couple strongly
to the field. This can be an issue for HAMR since the field is applied when the
system is demagnetised; the effect of the field will be to bias the system as it cools
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2.3 model hamiltonian for l10 fept

thus aligning with the field. In this case there is still a large probability of the grain
switching over the energy barrier which can lead to a low remanent magnetisation.

The final term in equation 2.5 is the magnetic dipole-dipole interaction term.
This is the long range coupling of two spins via the magneto-static field that are at
positions ri and rj respectively. The interaction term is given by

Hdipole = −µ0µ
2
s

4π
∑
i,j

3(Si · r̂ij)(Sj · r̂ij) − Si · Sj

r3
ij

(2.27)

where rij = |rij | and r̂ij = rij/rij are the magnitude and unit vector of the sepa-
ration vector rij = rj − ri and µ0 is the vacuum permeability. This interaction is
valid when the separation between dipoles is much greater than their dipole length;
in this case this is true as the magnetic moments are assumed to be point-like and
small on the scale of the whole system. This term governs the long range interaction
of the spins and can be important over large length scales. However on the length
scale considered in the atomistic spin model the magnitude of the interaction is
small compared to the ordering created by the exchange interaction. Blundell[34]
estimates that the dipole interaction at a separation of r=1Å would correspond to a
temperature of 1K. In the HAMR process the temperature is much higher than this
and since a large anisotropy is considered this interaction plays very little role in the
following simulations and is therefore neglected as it is computationally expensive
to include.

2.3 model hamiltonian for l10 fept

For high density magnetic recording devices iron platinum is of great importance,
since in the L10 phase it has been measured to have large uniaxial anisotropy. In the
L10 phase FePt forms into a face centred tetragonal structure with alternating layers
of Fe and Pt forming along [001] axis, which is the anisotropy easy axis. The unit cell
is shown in figure 2.3. Since it is a tetragonal cell the [001] axis is smaller than the
[100] and [010] axes, this gives a unit cell size a = 3.86 Å with c/a = 0.969. Whilst
there will be significant motion of the atoms within the crystal lattice structure due
to thermal effects to simplify the model these are not taken into account. In this
case the atoms are fixed at their equilibrium positions.

A Hamiltonian was developed through ab-initio calculations performed by Mryasov
et al.[20] Iron platinum is a more complex material to model as the two species be-
have in different ways. Fe is a typical ferromagnet and has magnetic moments that
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2.3 model hamiltonian for l10 fept

Figure 2.3.: Unit cell for L10 FePt, white atoms are Fe, dark grey are Pt.

are, to a reasonable degree, constant. It however has a low anisotropy. Pt has a
strong spin-orbit coupling but is a non-magnetic material. The alloying of these two
elements leads to a high anisotropy material and makes FePt a strong candidate for
high density magnetic recording. The origin of this large anisotropy is described in
the following.

The ab-initio calculations by Mryasov et al. used the constrained local spin density
approximation (CLSDA) to force a non-collinear arrangement of the Fe and Pt
moments. Using this approach it was found that the Fe moments vary little with
the onsite field but the Pt moments vary linearly with it. This means when the
Fe moments are in a ferromagnetic configuration a small moment is polarised on
the Pt atoms and when there is anti-alignment there is no moment, as shown in
figure 2.4. Essentially, the Pt spin moment is found to be linearly dependent on
the exchange field from the neighbouring Fe moments. This dependence allows the
Pt moments to be expressed in terms of a linear susceptibility and so the part of
the total Hamiltonian which depends on the Pt moments can be re-written in terms
the Fe moments, giving a resultant Hamiltonian including only the Fe degrees of
freedom. The new Hamiltonian only includes the Fe spins and incorporates mediated
parameters:

H = −
∑
i,j
J̃ijSi · Sj −

∑
i

d
(0)
i S2

iz −
∑
i,j
d
(1)
i Siz · Sjz −

∑
i

µiSi · B (2.28)

The mediated isotropic exchange (J̃ij), onsite anisotropy (d(0)i ) and two-ion anisotropy
(d(1)ij ) parameters are given by the combination of the existing Fe-Fe (Jij), Fe-Pt ex-
change (Jiν), and onsite Fe and Pt terms (k(0)Fe , k(0)Pt ) given by:
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2.4 simulation methods

Figure 2.4.: The dependence of the magnetic moment of the Fe (circles) and Pt
(squares) atoms on the normalised exchange field, h. The Fe moment is
constant where as the Pt moment varies in a linear fashion. This allows
the Pt degrees of freedom to be replaced with only the Fe ones. Figure
taken from Mryasov et al.[20]
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where the parameters Ĩ,χν ,M0
ν are the intra-atomic exchange interaction, the Pt

local susceptibility and the magnitude of the polarised Pt magnetic moment respec-
tively. The two-ion anisotropy represents an anisotropy of the exchange interaction
and is much larger than the onsite uni-axial anisotropy. As Mryasov et al. describes
the ratio of the the two-ion anisotropy to the onsite anisotropy is what gives the
macroscopic anisotropy constant scale with m2.1 in FePt as the two-ion term is found
to scale as m2. Since the two-ion anisotropy is part of the exchange interaction it
also has a long range, implying that surfaces will have a much larger effect on the
anisotropy than in other materials.

2.4 simulation methods

To model the dynamic and static properties of the system described by the Hamil-
tonian given in the previous section two different simulation methods are employed:
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Atomistic Spin Dynamics (ASD) and Monte-Carlo (MC) integration. ASD is a finite
difference method of numerically solving the equation of motion for the spins. MC
integration is an equilibrium method of sampling the phase space through impor-
tance sampling. In the following we give a description of each method. While the
MC method is a useful and efficient method for determining static properties, ASD
is required for the dynamic calculations to be presented.

2.4.1 Atomistic Spin Dynamics

One of the corner stones of modelling magnetisation dynamics is the Landau-Lifshitz
(LL) equation which describes the motion of a magnetic moment in a field. Many
approaches to model the dynamic evolution of the magnetisation utilise this equation
or one of its variants. Landau and Lifshitz[45] write the equation of motion for the
magnetisation as

∂M
∂t

= −γM × H − λ

M2 M × M × H (2.32)

where M = |M| is the magnitude of the magnetisation and H = −∂F/∂M is the
effective field acting on the magnetisation, with F as the free energy. This approach
is derived in a phenomenological manner and, importantly, that effective field can be
calculated from the thermodynamic potential at constant temperature[46]. In this
case it is the Helmholtz free energy and in this manner can contain contributions,
for example, from the demagnetisation field, anisotropy as well as an external field.
In their derivation, Landau and Lifshitz included a phenomenological damping term,
controlled by the parameter λ, that is constructed such that the magnetisation will
move to point along the direction of the field.

The first term in the LL equation is the precession of the magnetisation around
an applied field and the second term gives the damping towards the field to dissipate
energy from the magnetisation. The precession term can be derived in a few different
ways; the most illuminating comes from the quantum mechanical approach. Using
Ehrenfest’s theorem, the equation of motion for the expectation of the spin vector
is given by

iℏ∂⟨S⟩
∂t

= ⟨[S, H]⟩ (2.33)

where the [A,B] = AB − BA is the commutator relation for A and B. In this
equation i is used for the imaginary number. For a spin in a magnetic field the spin
Hamiltonian would be the Zeeman energy such that H = −geµBS · B. Using this
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and the spin commutation relation, [Sa,Sb] = iℏεabcSc where εabc is the Levi-Cevita
tensor ( 1 if a, b, c are cyclic or -1 if anti-cyclic), it is found that

∂⟨S⟩
∂t

= −γ⟨S⟩ × B (2.34)

where the gyromagnetic ratio of the electron, γ = µBg/ℏ = 1.760 859 708 rads−1T−1,
has been used as the pre-factor. Now moving to a classical description where the
magnetisation is M =

∑
n⟨Sn⟩ the original precession term in the LL equation is

recovered.
The damping term in the LL equation is included as a phenomenological term

to account for relativistic effects dissipating energy and angular momentum for the
spin system. This term however is not suitable in the high damping limit[47] and so
a more general damping term is derived by Gilbert[48]. Gilbert’s form of the damp-
ing is derived in a Lagrangian form, where the dissipative effects are incorporated
through the Rayleigh dissipation functional

R =
η

2

∫ ∂M(r, r)
∂t

· ∂M(r, r)
∂t

dr (2.35)

The scalar constant η controls the energy dissipation and could in general be non-
uniform but since the matrix damping function ηij(r, r′) is not well known. From
this functional the equation of motion can be found, which is given as:

∂M
∂t

= −γM ×
[
H + η

∂M
∂t

]
(2.36)

This equation is usually known as Gilbert’s equation; the derivative on the left
hand side of the equation can be problematic so it can be useful to reform the
equation. In this case it is known as the Landau-Lifshitz-Gilbert (LLG) equation
as the damping takes the form as in the LL equation but derived from Gilbert’s
equation. This can be written for the atomistic spins by using M = µsS so that for
each spin in the material it has the equation of motion:

∂Si

∂t
= − γ

(1 + λ2)µs
Si × (Hi + λSi × Hi) (2.37)

with the effective field given by Hi = −∂H/∂Si. The motion described by the
LLG is shown in figure 2.5 for each spin component. The damping is controlled by
the parameter, λ, this represents the coupling of spins to an underlying heat bath to
which energy can be transferred to and out of the spin system. The Gilbert damping
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Figure 2.5.: The damped precession of the LLG equation with λ = 0.1 in an external
field of 100T, shown in terms of the precession frequency ωp = γh/µs.

is measured on a macroscopic scale through experiments such as FMR[49] but this is
a different quantity to the damping on the atomistic scale. The atomistic damping is
not equal to the Gilbert damping due to spin wave scattering in a ensemble of spins
but at 0K they do coincide. To mark this difference the atomistic damping is usually
termed the coupling as described later it provides the strength of the coupling of
the spins to the underlying thermal bath. For FePt the Gilbert damping has been
measured as α = 0.1 from various techniques[50, 51] and therefore this value is used
for the coupling in the later chapters.

From the LLG equation one can easily pick out the relevant time scales. With no
damping the spins will precess about the field with a frequency given by ωp = γh/µs.
For an applied field, h = µshapp, the precession frequency is independent of the
magnetic moment and for happ = 1 T, τ = 2π/ωp = 36 ps. For the exchange field
h = zJ the precession frequency is much higher; for example using the parameters
for bcc Fe; τ = 13 fs. Therefore in the atomistic model the Nyquist frequency is
≈ 10 fs.

The effective field present in the LLG equation arises from the deterministic inter-
nal and external fields which are accounted for by the Hamiltonian. For the system
to stay in thermal equilibrium a stochastic fluctuating field is also incorporated into
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the effective field. This thermal process couples the spin system to a heat bath for
the transfer of energy and angular momentum.

Hi = −∂H
∂Si

+ ξiξ (2.38)

The inclusion of this fluctuating thermal term sets the LLG equation as a Langevin
equation[52], hence this method is usually described as Langevin Dynamics (LD).
From the Brownian approach the fluctuating field is assumed to arise from under-
lying processes that interact with the spin. The exact origin of these processes is
not required but are assumed to lie within the ’white’ noise limit. In this limit
the time correlation of the noise is assumed to be much smaller than that of the
spin motion[52] which allows the thermal noise term to be described by a Gaussian
random number. The time evolution of the probability density function is described
by the Fokker-Planck equation; by converting the stochastic LLG equation into this
form[53] the moments of Gaussian process found to be

⟨ξiα(t)⟩ = 0 (2.39)

⟨ξiα(t)ξjβ(s)⟩ =
2µsλkBT

γ
δijδαβδ(t− s) (2.40)

where i, j refer to spin indices, α, β refers to the vector components and t, s refer
to time. The second moment describes the magnitude of the fluctuations, which as
equation 2.40 shows is related to both the temperature and the atomistic damping
parameter. Since the atomistic damping is distinct from the macroscopic Gilbert
damping it is sometimes referred to as the coupling term as it represents not only the
dissipation of energy and angular momentum from the spin system but the coupling
to the thermal bath.

By incorporating thermal noise into the equations of motion the time evolution
of the spin system are found through numerical integration of the stochastic LLG
(sLLG). This is done by discretising the time domain into steps so that t = n∆t
and the spin ensemble is updated at each time step using an integration scheme.
Kloeden and Platen[54] present a detailed discussion of the integration of stochastic
differential equations, including a description of the Heun scheme which is commonly
used for spin dynamics[5]. Recently more advanced integration schemes have been
presented and so here an alternative method based on the Semi-Implicit scheme[55]
is given. First the Heun scheme shall be described to give a comparison of the
method.
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To begin with the sLLG will be written in terms of a deterministic drift term f and
a multiplicative diffusion tensor g, which can be easily determined from equation
2.37. In stochastic calculus the integral of the noise term can be performed in two
different manners; these two branches are known as Ito and Stratonovich calculus.
Whilst they both can be converted readily, Stratonovich calculus is used here as it
is more physically meaningful.[54] In terms of Stratonovich calculus (denoted by the
◦ in the following) the differential equation is:

dS = f(S, t)dt+ g(S, t) ◦ dW (2.41)

Here, W is a vector Weiner process that arises from the stochastic integral of the
noise term. f and g are the deterministic drift and multiplicative diffusion functions
which are determined from the sLLG equation. With this definition the Heun scheme
is given by:

S̃n+1 = Sn + f(Sn, t)∆t+ g(Sn, t)∆Wn (2.42)

Sn+1 = Sn + (f(Sn, t) + f(Sn+1, t+ ∆t))
∆t
2

+
(
g(Sn, t) + g(S̃n+1, t+ ∆t)

) ∆Wn

2
(2.43)

Where Sn indicates the spin vector at time step n, ∆t is the size of the time step
taken and ∆Wn is the discrete differential of the Wiener process which takes the
form of a Gaussian random number with a variance of

√
∆t. The magnitude of the

thermal noise is taken within the diffusion tensor g.
The first step is a predictor step that uses a simple Euler method to give an

estimate of the variable at the next time point. Whilst this simple update does not
give an accurate result it allows an estimation of the gradient at the new time point.
The combination of the gradient at the old time step and the estimate at the new
time step allows the corrector step to be more accurate. The Heun method has been
shown to converge with order 2[54].

The Heun scheme however does not conserve the length of the vector which for
the case of the classical atomistic spins is incorrect as the magnitude must remain
constant. Therefore for each new position (both predictor and corrector steps) the
vector must be renormalised. This change in the magnitude is due to the nature of
the scheme, the Heun scheme provides a translation of the variable but for the LLG
equation there is only transverse terms and as such only rotation is required. The
Semi-Implicit scheme as presented by Mentink et al.[55] has been shown to conserve
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the spin length and so it is employed here. To describe the Semi-Implicit scheme
the sLLG is re-written taken the cross product of the spins outside of the drift and
diffusion terms in equation 2.41 so that now two new ’cross product’ drift, a, and
diffusion, b, terms are used:

dS = a (S, t) × Sdt+ b (S, t) × S ◦ dW (2.44)

Now the Semi-Implicit scheme given by Mentink et al. is written as:

S′
n+1 = Sn + a(Sn, t) ×

(
Sn + S′

n+1
2

)
∆t (2.45)

+ b (Sn, t) ×
(

Sn + S′
n+1

2

)
∆Wn (2.46)

Sn+1 = Sn + a
((

Sn + S′
n+1

2

)
, t
)

×
(

Sn + S′
n+1

2

)
∆t (2.47)

+ b
((

Sn + S′
n+1

2

)
, t
)

×
(

Sn + S′
n+1

2

)
∆Wn (2.48)

This is an extension of the Implicit Midpoint method presented by D’Aquino et
al.[56, 57], where the fields are calculated at the midpoint between the current and
next time step. In this form a predictor step is used to calculate the fields at the
midpoint for the corrector step and each step itself is implicit. So far these equations
have been written for a single spin but the extension to the entire spin ensemble
is straightforward. In the Implicit Midpoint method, to invert the equations would
require solving a 3N by 3N matrix but in this method the update for each spin is
independent and so the 3 by 3 matrix can be inverted analytically. By doing this
it is found that the Semi-Implicit scheme is described by a Cayley transform[58].
Since the Cayley transform is derived for a deterministic differential equation the
drift and diffusion terms are combined into a single vector:

A (S, t) = a (S, t) + b (S, t)∆W (2.49)

This is termed the ’generator’ and should ideally be a constant but since the LLG
equation contains the damping term it will depend on S. In this case the equation
is being treated deterministically and the stochastic field term is taken into the
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effective field. The generalised solution to equations of these forms are the Cayley
transform[58]:

Cay(A)S = S +
A × S + 1

2A × A × S
1 + 1

4 |A|2
(2.50)

The benefit of this is that the Cayley transform is a rotational update of the
spin vector rather than a translational one. The Semi-Implicit scheme can now be
written as:

S′
n+1 = Cay(A (Sn, t))Sn (2.51)

Sn+1 = Cay
(

A
(

Sn + S′
n+1

2
, t
))

Sn (2.52)

Now the Semi-Implicit scheme is written explicitly and the spin conservation is
naturally included in the model. The testing and comparison of the Semi-Implicit
and Heun schemes will follow in the next section after a discussion of the Monte-
Carlo methods used.

2.4.2 Monte-Carlo and Constrained Monte-Carlo

Efficient calculation of thermodynamic properties can be made using Monte-Carlo
integration techniques. Langevin dynamics is ergodic as the thermal noise will force
the system to explore the full phase space but the timescale for rare events to occur
can be unreasonable for simulation purposes. Therefore when only the equilibrium
properties are required it can be computationally faster to utilise Monte-Carlo tech-
niques. Binder et al.[28] provide an extensive investigation of the properties of spin
systems using Metropolis Monte-Carlo.

Metropolis Monte-Carlo (MMC) is a example of an importance sampling method;
a configuration of the system is generated and excepted through some criteria and
the properties of the accepted configuration are used to compute the ensemble aver-
age. The series of configurations that are generated are known as a Markov chain,
as they have the property that the new configuration only depends on the current
configuration and not any previous configurations. The steps taken to alter the
configuration are important; they must allow for ergodicity but must also efficiently
explore phase space. To this end a combination of three different trial steps are
used[5, 59]; a spin flip, uniform sphere and a small angle change. The Markov chain
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Figure 2.6.: Illustration of the Metropolis Monte-Carlo method with three trial steps.
The series of states Sn make a Markov chain where the new state only
depends on the current state. In this example the energy of the spin
flip state was too high and rejected while the others are excepted.

and the trial steps are illustrated in figure 2.6; mathematically these trial steps are
given by:

S′
i =



−Si spin flip
(u, v,w)

(u2 + v2 +w2)1/2 uniform sphere

Si + δ

|Si + δ|
small step

(2.53)

The first of these step types is the spin flip step in a similar manner to a trial
move in the Ising model. This step by itself would not satisfy ergodicity since the
system would not be able to access the full phase space available.

The second step is selection of the new spin direction uniformly over the unit
sphere. u, v,w are all Gaussian random numbers and the spin vector is normalised
which provides uniform sampling without any clustering at the poles. This move
allows efficient moves through phase space but in situations such as low temperature
when the magnetisation does not vary significantly moves of this type usual have a
low probability.

The third step type is a small deviation from the current spin position; where
δ = Si × (u, v,w), again u, v,w are Gaussian random numbers but improved accep-
tance is taken when the standard deviation of the random numbers is related to the
temperature σ2 ∝

√
T [41]. These small steps have a higher probability compared to

the uniform steps as the deviations are around the energy minimum of the system
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but it will take more of these steps to move through phase space. Ideally the accep-
tance rate of the MC algorithm should be 50% and so the variance of the steps can
be tuned to reach this desired rate.

Following the generation of a trial configuration the MMC method accepts the
new configuration into the Markov chain with the probability:

P = min
[
1, exp

(
− ∆H
kBT

)]
(2.54)

If the MMC rejects the new configuration then the current configuration is kept
and used to calculate the averages. Since the probability is based on the Boltzmann
distribution, the system will move towards the low energy configurations but even
with the trail moves above it can easily become stuck in local minima.

To evaluate properties along a specific direction the Constrained MC is used,
developed by Asselin et al.[41] In this the proposed state is constructed from altering
two spins. The first spin, termed the primary spin, follows the same moves as for
the Metropolis MC and then a second, compensation spin, is chosen for which the
magnetisation direction is left unaltered but with the length allowed to change. The
acceptance criterion has to be modified by the change in the geometric Jacobians
to preserve ergodicity. The full algorithm is given here for completeness but the
derivation of the Jacobian pre-factor in the acceptance probability is given by Asselin
et al.:

1. A trial spin is randomly selected (primary spin)

2. A new orientation of the spin is calculated according to equation 2.53

3. A second spin is randomly selected (compensation spin)

4. The compensation spin is moved to mirror the transverse motion of the primary
spin thus giving no net change in the transverse magnetisation

5. If the compensation spin cannot conserve the magnetisation direction then the
step is rejected

6. If the magnetisation switches orientation (mz ↔ −mz) then the step is rejected

7. The energy of the new state containing both the moves is calculated

8. The new state is accepted with probability given by:
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P = min

1,
(
M ′

z

Mz

)2 |Sjz|
|S′

jz|
exp

(
− ∆H
kBT

) (2.55)

2.5 model tests

The details of the atomistic spin model have now been presented. We proceed now
to discuss the testing of the implementation of the model. The model is tested for
both equilibrium and dynamic properties which test both the integration scheme
and the thermal distribution.

2.5.1 Precession Frequency

Upon implementation of the semi-implicit scheme it has become evident that the
scheme has some dynamic instabilities. In Mentink et al.[55] test the scheme for the
equilibrium properties and the stability is assumed to be up to 4 steps per precession
in this case. However the dynamical properties are only briefly mentioned when the
motion of two coupled spins is considered. In this case Mentink et al. show that all
the schemes introduce error into the precession frequency but this is assumed to be
due to the chosen time step being large and the behaviour of this error with time
step is not followed.

As the stability of the precession frequency was investigated another version of the
semi-implicit scheme was implemented. Lewis et al.[58] discuss how a parameter,
given the symbol sigma, can affect the stability of the schemes. This parameter
controls the addition of a parallel term into the generator which in an exact case
should have no effect on the dynamics as it is cancelled out in the cross products.
This is investigated also in Bottauscio et al.[60] which shows that for certain values
of sigma the required time step for stability can increase by orders of magnitude.
By inspection of Mentink’s semi-implicit scheme we can see that there is an error
introduced in the predictor step. The basis of the scheme is the implicit midpoint
scheme and its full form gives a cross product at the half timestep (n+ 1/2) such
that Sn+1/2 × A(Sn+1/2) and in this case any term in A that is parallel to Sn+1/2

will cancel. However in the semi-implicit scheme the midpoint is now predicted to
reduce the requirement that the forward time step is known and as such the term
is now Sn+1/2 × A(Sn). Now any parallel term is along Sn not Sn+1/2 and will not
cancel. For the atomistic model with an exchange interaction between the spins, if
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they are mostly aligned this will create a component along Sn which can be of the
order of 1000T. Such a strong field as this can easily induce an error in the precession
frequency even if the difference between the time steps is very small. Inspired by
this it was chosen that the orthogonal generator from Ref.58 would counteract this
error. The form of this is:

AO (S, t) = A (S, t) − (S · A (S, t))S (2.56)

This orthogonal generator simply subtracts the parallel component from the cal-
culated generator. If this is substituted into the LLG equation then it is still exact
as it only contains transverse terms. However it importantly corrects the discre-
tised case, which as discussed above will incorrectly involve parallel terms into the
dynamics.

This variation of the semi-implicit scheme was tested alongside the normal semi-
implicit and the Heun schemes. The most important test was that of the precession
frequency. If thermal effects are not included the dynamics of a system of spins is
analytically solvable giving equations that the simulation results can be compared
to. The analytic solutions are given by:

Mx(t) = Ms cos(ωpt) cosh−1(ωdt) (2.57)

My(t) = Ms sin(ωpt) cosh−1(ωdt) (2.58)

Mz(t) = Ms tanh(ωdt) (2.59)

This solution gives motion that precesses about and damps towards the applied
field at rates given by ωp = γh

1+α2 and ωd = ωpα. The precession frequency ωp is
defined by the input parameters and should be a constant when no thermal effects
are considered when the coupling factor is coincident with the Gilbert damping, i.e
α = λ.

Since we are only considering a uniform system these parameters are all constant
for different spins and as such all the spins precess at the same frequency. If the
spins are aligned initially they will stay aligned and there will be no excitation of the
exchange mode even when it is included. It will give a large field term parallel to Sn

that as discussed is crucial to the stability of the semi-implicit scheme. A Fourier
transform of the simulation data was used to calculate the precession frequency and
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Figure 2.7.: The stability of the three schemes for the precession frequency with
no thermal effects. The spins are initially all fully aligned along the
x-axis with a constant applied field in the z direction to create the
precessional motion. The precession frequency is calculated from the
Fourier transform of the system with the minimum frequency being
0.01 GHz.

damping for different time steps to which the analytic equation can be fitted to. For
the x component of the magnetisation the Fourier transform is:

F (Mx) (ω) =
π

2αωp

[
sech

(
π2

αωp

(
ω − ωp

2π

))
+ sech

(
π2

αωp

(
ω+

ωp

2π

))]
(2.60)

Figure 2.7 shows the precession frequencies calculated from a fit of the analytic
Fourier transform to the FFT of the simulated data for different time steps. We are
comparing the two variants of the semi-implicit scheme to the commonly used Heun
scheme. The figure shows that the normal semi-implicit scheme becomes unstable at
very short time steps; for this given system the Nyquist frequency is the precession
frequency and so we would expect schemes to be stable for time steps of the order of
10000 fs. The orthogonal variant and the Heun scheme show good stability within
this region as expected.

Figure 2.8 shows the damping parameter calculated from the same fitting to the
FFT. Again the Heun and orthogonal semi-implicit scheme show good stability
within this regime whilst the normal semi-implicit scheme shows a deviation from
the input coupling factor at time steps even as low as 1 fs. Above a timestep of 1 fs
the damping in the semi-implicit scheme is over-damped and quickly breaks down
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Figure 2.8.: The damping calculated from the FFT data of the precession at 0K.
The orthogonal semi-implicit scheme and the Heun scheme both have
the correct damping for the range of timesteps shown whilst the normal
semi-implicit scheme does not. The semi-implicit scheme has started to
diverge from the correct damping before 1 fs.

into incorrect dynamics leading to the sharp jump in the extracted damping; in the
figure this is where the line is broken as the extracted damping is off the scale of the
plot. This shows that the change made to the semi-implicit scheme improves the
scheme under dynamic situations. It is assumed that the orthogonal change does
not alter the equilibrium stability of the scheme but further tests to investigate the
scheme are important to clearly show its properties.

2.5.2 Boltzmann Distribution

We now proceed to discuss the thermal stability of the model. The inclusion of the
thermal noise term in the stochastic LLG equation is designed to keep the system
at a finite temperature. It is therefore important that the thermal noise keeps the
system following the Boltzmann distribution. Using the Boltzmann distribution
the probability, P , of the magnetisation having an polar angles between (θ,ϕ) and
(θ+ dθ,ϕ+ dϕ) is

P (θ,ϕ) sin(ϕ)dϕdθ ∝ exp(−H(θ,ϕ)
kBT

) sin(ϕ)dϕdθ (2.61)
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Figure 2.9.: The probability of finding the spin along a certain polar angle (ϕ) for
a paramagnet with (a) an applied field of h = 10T and (b) with an
uniaxial anisotropy of 10T. The points show the probability extracted
from the LD simulation using a temperature of 1K (blue squares), 10K
(red circles) and 100K (purple triangles). The solid lines show the exact
Boltzmann distribution given by equation 2.62.

To confirm that the model follow the Boltzmann distribution we consider the case
of a simple paramagnet in an applied field with uniaxial anisotropy. Since the atoms
do not interact with each other the distribution can be reduced to product of the
integral over the individual atoms states. Since the Hamiltonian only depends on ϕ
the integral over θ can be performed and the resulting constant neglected. Now the
probability is given by

P (ϕ) sin(ϕ)dϕ = Z−1 exp
[ 1
kBT

(µsh cos(ϕ) + ku cos2(ϕ))
]

sin(ϕ)dϕ (2.62)

where Z is the partition function and is used to normalise the probability. Using
the Langevin dynamics technique described the paramagnet was simulated for two
cases: (a) no anisotropy but an applied field of h = 10 T and (b) no applied field
but uniaxial anisotropy field of ku/µs = 10 T. The probability of finding a spin
at a certain angle to the field is shown in figure 2.9 for the two cases. The points
show the histogram compiled from the simulations while the solid lines show the
exact Boltzmann distribution given by equation 2.62. The simulation matches the
exact distribution for the both the applied field and uniaxial anisotropy for a range
of temperatures confirming the correctness of the LD model.
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2.5.3 Equilibrium Magnetisation
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Figure 2.10.: The temperature dependence of the equilibrium magnetisation calcu-
lated from the CMC (open squares) and LD (solid line). The Curie
temperature is found by fitting and is slightly higher than the expected
TC = 2.043J/kB owing to finite size effects.

The stability at elevated temperatures is hard to quantify as there is no exact
solutions to compare the results to. As a simple measure of the integration schemes
and the CMC the temperature dependence of the equilibrium magnetisation is com-
puted for a simple nearest neighbour system with a bcc crystal structure. For this
simple case the Curie temperature the empirical relationship in equation 2.19 can
be used to confirm that the exchange interaction and the thermal noise is correct.
The averaged magnetisation length is shown in figure 2.10 for both the CMC and
the LD methods for 20x20x20 bcc unit cells. The CMC is fixed in ẑ direction with
10,000 equilibration steps and 20,000 averaging steps while the LD is equilibrated
for 50 ps and averaged for a further 150 ps with a time step dt = 1 × 10−16 ps. Both
the CMC and LD agree over the whole temperature but the Curie temperature is
found to be slightly higher than the expected value of TC = 2.043J/kB[5]. This
may arise from the finite size effects but since there is good agreement between the
two methods this implies they are both stable.

To further expand on the stability of different semi-implicit scheme versions on
the time step the average magnetisation is calculated for variety of step sizes. In the
absence of an exact analytic M(T ), the expected magnetisation (M0(T ) for each
temperature is taken to be that found using the smallest step size and averaged
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Figure 2.11.: The error between the calculated average equilibrium magnetisation
and the expected magnetisation which is taken as the average of the
two variants using the smallest time step. The error decreases with
time step but close to the Curie temperature the error is larger.

between the different versions. The error between the calculated average and the
expected magnetisation is defined as (⟨M(T , dt)⟩ − M0(T ))/M0(T ). This is not
exact but gives a certain measure of how the averages depend on the time step and
any error in choosing M0(T ) only shifts the axis. Figure 2.11 shows the scaling of the
error for both the semi-implicit scheme and the orthogonal variant introduced earlier
in the tests. There appears very little difference between the variants especially at
small time steps and there is a significant error for time steps greater than 1 × 10−16 s.
The error at TC is large even at small time steps which is to be expected at the cusp
of a phase transition. Going forward a time step of 1 × 10−16 s is selected as this
shows minimal error in relation to computational effort and the orthogonal variant
is employed as even though it does not improve the semi-implicit scheme but should
improve the underlying dynamics as suggested by the precession test.

2.6 summary

To summarise this chapter, the atomistic spin model that will be employed through-
out this thesis has been introduced. The spin model formulates the magnetisation dy-
namics in condensed matter as the dynamics of localised atomic magnetic moments
that behave classically as a 3D vector. The main interactions between the atomic
moments (spins) are the Heisenberg exchange interaction, uniaxial anisotropy, Zee-
man applied field energy and magneto-static dipolar field. These interactions are
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parameterised from ab-initio calculations where possible to provide a complete de-
scription of the system using a microscopic picture.

The specific Hamiltonian for L10 FePt, which is of interest for high density mag-
netic recording, has been described. It is formulated using the ab-initio calculations
of Mryasov et al.[20] , who showed that the platinum spin moments are polarised due
to the interaction with the neighbouring iron moments. This polarisation is linear
with the iron exchange field and so the complete Hamiltonian can be expressed only
in terms of the iron moments with mediated exchange and anisotropy terms. It is
this Hamiltonian that is used throughout as a model of FePt with the long-ranged
interaction due to the Pt mediation.

Two methods of simulating the spin model has been discussed. The first is that of
Langevin dynamics, which allows for the time evolution of the spin model through
the stochastic Landau-Lifshitz-Gilbert equation (sLLG). Temperature effects are
included through a thermal noise term, which is assumed to be in the white noise
limit so that the correlation time is negligible compared to that of the spin dynamics.
The sLLG is evolved using the semi-implicit integration scheme which during the
model tests has been compared to the existing Heun scheme. The semi-implicit
scheme has been updated with an orthogonal generator which eliminates some of the
error generated from the non-linearity of the damping term in the sLLG. The second
method is that of the Monte-Carlo integration; this allows for efficient evaluation of
equilibrium properties but also the adaption of the constrained Monte-Carlo method
allows for calculation of properties along specified magnetisation directions. As will
be shown later this allows for the calculation of the magnetic free energy which is
important for developing multi-scale modelling.

The Langevin dynamics has been tested by observing the dependence of the pre-
cession frequency on time step and obeying the Boltzmann distribution. The preces-
sion frequency was measured for a system with exchange interactions in and applied
field. By Fourier transforming the signal the precession frequency and damping
is extracted which shows that semi-implicit scheme requires an orthogonal gener-
ator to improve stability. Whilst the Heun and orthogonal semi-implicit schemes
are both stable, the conservation of the spin length by the semi-implicit scheme
is recommends the use of the orthogonal semi-implicit scheme. By comparing the
distribution of the spin polar angles to the Boltzmann distribution for both applied
field at different temperatures the thermal stability of the Langevin dynamics has
been shown.
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3
F I N I T E S I Z E E F F E C T S O N L I N E A R R E V E R S A L I N F E P T

In Chapter 2 a detailed model of FePt was described whereby the Pt moments are
completely described by the Fe moments with mediated parameters. This mediation
of the exchange interaction means it is both long range and anisotropic. In this
chapter the finite size effects on nanometre grains are investigated using atomistic
spin dynamics and constrained Monte Carlo methods. In particular the finite size
effects on the linear magnetisation reversal mode are explored at temperature close
to the Curie temperature. The chapter begins with an introduction to the linear
reversal mechanism and a description of the mono-domain grains using the Landau-
Lifshitz-Bloch (LLB) model. This is proceeded by calculations of the equilibrium
properties of nanometre grains which allows parametrisation of the LLB. Following
this the reversal paths and mean first passage times are calculated. By comparing the
switching times to that predicted by the LLB model an estimation of the practical
limits of multi-scale modelling can be made.

3.1 introduction

Iron platinum is a candidate material for high density magnetic recording devices for
use with HAMR. The high anisotropy of FePt allows the grain size of media to be
taken down to approximately 3 nm before super-paramagnetic behaviour becomes
important. On this scale the magnetic properties start to behave in a different
manner to that of a bulk system. Small FePt clusters and slabs have been the subject
of studies using DFT methods by Chepulskii and Butler[17], and also Cuadrado and
Chantrell[16]. These studies have shown that the magnetic moments, exchange
interactions and on-site anisotropy are altered by the shape and size of the clusters.
As the clusters increase in size the properties become more like that of a bulk
system and so to explore the finite size effects in grains not accessible by DFT
the interactions calculated for bulk systems are assumed to be valid. As described
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3.1 introduction

previously the exchange interaction for the Fe spins is mediated through the induced
Pt spins and extends for approximately 5 unit cells (1.93 nm). In this case in grains
that are around 3 nm wide a large number of the atoms in the grain will be ’surface’
atoms.

For HAMR not only is the properties of vary small grains important but also
how the properties of these small grains differ at temperatures near to the Curie
temperature. For the HAMR process to work the grains are heated to close to or
above the Curie temperature where the anisotropy has dropped to allow switching
using a field of around 1T. Through computational modelling it has become evident
that near TC the magnetisation reverses via a different mechanism to that at low
temperature[23, 30]. At low temperatures the magnetisation reversal is characterised
by precession and the magnetisation length is constant over the switching process.
Close to TC the reversal does not precess but instead reverses through a linear route
where the magnetisation length shrinks and passes through zero before orientating
in the opposite direction.

The linear reversal regime is very important in the recording process. In this
regime the magnetisation switches not via a precessional route but by a longitudinal
contraction of the magnetisation. Along this route the reversal is over the longitu-
dinal barrier leading to a much shorter reversal time. This short reversal time is
important for HAMR as it allows for fast switching and reduces the possibility of
grains freezing against the field. However current investigations of linear reversal
have been restricted to bulk or large nanoparticles. It is the aim of this chapter to
investigate how the finite size of grains affect the magnetisation reversal close to the
super-paramagnetic limit.

Linear reversal was first highlighted by Kazantseva et al.[23] using the Landau-
Lifshitz-Bloch (LLB) model derived by Garanin[61]. This is a micro-magnetic model
that allows for longitudinal fluctuations in the magnetisation length. The LLB
describes the magnetisation dynamics and without thermal noise will follow a path
where the free energy is lowest. The reduced free energy derived in the mean field
limit[62] is described by

F
MsV
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x +m2
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m2 −m2

e

)2

8m2
eχ̃∥

T < Tc

m2
x +m2

y

2χ̃⊥
+

3
20χ̃∥

TC

T − TC

(
m2 +

5
3
T − TC

TC

)2
T > Tc

(3.1)
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Figure 3.1.: At different temperatures the magnetisation reverses through a different
mechanism. At low temperatures (a) the reversal is precessional (circu-
lar). As the temperature increases (b) the reversal still precesses but the
magnitude decreases in the xy plane (elliptic). At high temperatures
close to TC the reversal is linear with no precession. The colour and
contours show the free energy density and the red dashed line shows the
reversal path for the specified ratio of susceptibilities.

where me is the equilibrium magnetisation and χ̃∥ = ∂m/∂h∥, χ̃⊥ = ∂m/∂h⊥

are the reduced longitudinal and transverse susceptibilities; all of which depend on
temperature. This contains two terms; the first is the longitudinal energy which is
keeps the magnetisation at a constant length and the second is the anisotropy en-
ergy which is minimised with the magnetisation orientated in the z direction. The
longitudinal and transverse susceptibilities describe the strength of each of these
terms, and the ratio between them describes the relative strength of the energy
contributions. The free energy is mapped in figure 3.1 for increasing susceptibility
ratios which correspond to increasing temperature. In (a) the ratio is low and so the
longitudinal energy dominates, reversal in this case will be precessional and the mag-
netisation length will remain constant. (b) shows the case where the reversal will
be precessional but the reduction in the longitudinal energy will allow the magneti-
sation length to reduce to minimise the anisotropy energy, this is known as elliptic
reversal. The final case (c) is in the linear reversal regime where the longitudinal
energy is weak causing the reversal to pass through a demagnetised state. In each
(a),(b) and (c) the reversal path, transverse magnetisation vs mz, is shown to high-
light the different reversal paths. Using the free energy the following expression for
the orientation dependence of the magnetisation length, m(ϕ) for a bulk material is
found:
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3.2 equilibrium properties in finite fept grains

m(ϕ) = me

(
1 − 2

χ̃∥
χ̃⊥

sin2(ϕ)

) 1
2

(3.2)

Equation 3.2 gives an important relationship between the ellipticity parameter
and the characteristic parameters of the LLB equation. Specifically, the ratio of
the longitudinal and perpendicular susceptibility determines the ellipticity of the
reversal path. Equation 3.2 predicts a critical temperature, T ∗, corresponding to
χ̃∥(T

∗)/χ̃⊥(T
∗) = 1/2, at which point the perpendicular magnetisation vanishes.

T ∗ is the critical temperature above which the magnetisation will reverse through the
linear switching mechanism. This critical temperature will depend on the strength
of the anisotropy and the exact temperature dependence of both the susceptibilities.
The linear reversal regime is found close to TC as it is in this region that the lon-
gitudinal susceptibility diverges whilst the transverse remains constant. Whilst the
free energy equation is derived in a mean field limit for a coherent macro-spin, a
simple first order approach to modelling of finite sized particles is taken by using the
parameters calculated for each finite system as the parameters for the free energy.

3.2 equilibrium properties in finite fept grains

Following this description we now proceed to calculate the equilibrium properties
of FePt grains. By calculating the equilibrium magnetisation and the longitudinal
and transverse susceptibilities from the atomistic spin model the free energy can be
parameterised for the finite system. A cubic grain of FePt is constructed consisting
of a specified number of fct unit cells in each direction. The FePt unit cell is shorter
along the [001] direction with a c/a = 0.969 so a cubic arrangement of unit cells does
not exactly give a cubic grain in real space. An illustration of the grains are shown
in figure 3.2, showing three cubic grains of 6, 10 and 14 unit cells. Throughout we
focus on grain sizes close to the super-paramagnetic limit, L ≈ 3 nm.

3.2.1 Equilibrium Magnetisation and Susceptibilities

The finite size effects on the equilibrium properties of FePt grains can be investi-
gated using the Hamiltonian introduced in Chapter 2 for FePt. In finite grains the
long range exchange interaction is significantly truncated for the spins that lie close
to the surface. Since the dominant part of the anisotropy comes from the two-ion
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3.2 equilibrium properties in finite fept grains

Figure 3.2.: Illustration of 3 different finite size atomistic grains. Red atoms show
the Fe spins while silver shows the Pt atoms which are not simulated.

anisotropy term the surface spins will also have a much weaker anisotropy. The
loss of neighbours for the exchange interaction means a loss of the magnetic order.
Therefore the magnetisation will reduce more with temperature than for bulk sys-
tems. This can be observed in the different magnetisation curves in figure 3.3. TC

is also extracted from fitting to the magnetisation curves using the form[63]:

m(T ,L) =
(

1 − T

TC(L)

)β(L)

(3.3)

where β(L) is the magnetisation critical exponent that depends on the system size
and is included as a fitting parameter. Previously it was described that in the mean
field approximation β = 1/2; Heisenberg ferromagnets typically have β = 0.36[44]
but in FePt, due to the long-ranged anisotropic exchange interaction, it calculated
by Hovorka et al.[64] to be β = 0.33 ± 0.10.

Using the CMC method the angular dependence of the magnetisation length can
be found. The free energy predicts that close to TC the magnetisation length should
be smaller when it is orientated in perpendicular to the easy axis. Figure 3.4 shows
the angular dependence in the finite grains. There is a clear change in the magneti-
sation length with angle and the size of this change increases close to TC and with
the size of the grain. The lines show equation 3.2 fitted as a guide to the eye but it
is easy to see that the CMC results agree well with the analytic form even for these
grain sizes.
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3.2 equilibrium properties in finite fept grains

We now proceed to calculate the longitudinal and transverse susceptibilities that
are defined in the LLB free energy. By calculating these from the spin model the
critical temperature can be predicted for each grain size. The susceptibilities can be
computed directly from the Langevin dynamics simulations, the derivation of this
form is given in Appendix A, using

χα =
µsN

kBT

(
⟨m2

α⟩ − ⟨mα⟩2
)

(3.4)

where N is the number of spins in the system and ⟨mα⟩ denotes the ensemble
average of the α = x, y, z component of the reduced magnetisation.

Figure 3.5 shows the longitudinal and transverse susceptibilities calculated from
the Langevin Dynamics simulations. The shift in the Curie temperature is clearly
visible as the change in the position of the peak in the longitudinal susceptibility in
agreement with the magnetisation. For an infinite system χ|| should tend to ∞ at the
Curie temperature, however as figure 3.5 shows the peaks are finite. As the system
reaches the Curie temperature the correlation length diverges but in these finite
grains it is limited to the system size thus giving a finite peak in the susceptibility.
The noise for the 2.316 nm grain arises from the switching of the magnetisation; at
high temperatures the reversal time is much shorter than the simulation time. In this
case the average of mz which is used for calculating the longitudinal susceptibility
will tend to zero. This is known as ergodicity breaking[28] but it cannot be easily
corrected as of yet. The susceptibilities are fitted in a similar manner to Kazantseva
et al. where a polynomial is fitted to the susceptibility directly, here the inverse
susceptibility is fitted instead which appears to give simple functions:

χ−1
α (x) =


a0 + a1x+ a2x

2 + a3x
3 + a 1

2
x1/2 x < 0

a0 + b1x+ b2x
2 + b4x

4 x > 0
(3.5)

Where x = (T −TC)/TC and an and bn are fitting coefficients. In principle for an
infinite system at TC the susceptibility should be infinite and thus a0 = 0; however
for these finite systems the susceptibility does not diverge completely and thus to
reach a more accurate fit this term is included.

The ratio of the susceptibilities is shown in figure 3.6, comparing the values cal-
culated from the Langevin dynamics to the fitting functions. The fitting functions
agree well except for in the 2.316 nm case, which is due to the switching of the
magnetisation. From here the T ∗ can be readily extracted from the fitted functions,
which in the figure can be seen to decrease with system size.
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Figure 3.7 shows the scaling of TC and T∗ with the system size as extracted from
the fitting. Both TC and T∗ drop with size but also the range between them is
increasing implying that in the LLB model the linear reversal regime will occur over
a larger range. The behaviour of the Curie temperatures can be described well using
finite size scaling theory[63, 64]:

T∞
C − TC

T∞
C

=
(
L

d0

)−1/ν

(3.6)

Here T∞
C describes TC for an infinitely large system, d0 is a system scale constant

and ν is the power scaling constant. These 3 parameters can be used to fit to the
extracted Curie and critical temperatures in figure 3.7 and the fitted function agrees
very well with the data. From fitting to the Curie temperature results the scaling
constant ν = 0.86 ± 0.01 agrees well with the values computed by Hovorka et al.[64]
and Lyberatos et al.[63].
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3.2 equilibrium properties in finite fept grains

3.2.2 Free Energy Barriers

It is the free energy barrier gives the anisotropy barrier that separates the different
magnetisation orientations and can be the calculated using the constrained Monte
Carlo method. The free energy difference can be calculated using:

∆F =
∫

M̂ × T · dM̂ (3.7)

where the integration is over a reversible path of the magnetisation. The macro-
scopic torque, T, is shown by Asselin et al.[41] to be equal to the ensemble average
of the microscopic torques. By calculating the free energy difference along the path
by which the magnetisation reverses the anisotropy energy barrier can be calculated.
The CMC model is used to simulate the magnetisation at different angles to the
z axis. At each constrained angle the average equilibrium magnetisation and net
torque is calculated. The integration over the magnetisation can be simplified by
moving to polar coordinates and setting the magnetisation as follows

M̂ =
(
sin(ϕ′), 0, cos(ϕ′)

)
(3.8)

dM̂ =
(
cos(ϕ), 0, − sin(ϕ′)

)
dϕ′ (3.9)

∆F = −
∫ ϕ

0
Tydϕ

′ (3.10)

This allows a simple calculation of the free energy directly from the torque. A
simple trapezium integration is used therefore it is important that the averages are
suitably converged and the angular steps are small.

The free energy and torque are shown in figure 3.8.(a) and (b) for a L=3.86 nm
grain at different temperatures. From the definition of the free energy earlier the
form of the free energy barrier and torque can be derived.

∆f =K sin2(ϕ)

(
1 −

χ̃∥
χ̃⊥

sin2(ϕ)

)
(3.11)

Ty =K sin(2ϕ)
(

1 − 2
χ̃∥
χ̃⊥

sin2(ϕ)

)
(3.12)

with the anisotropy constant K = m2
e/2χ̃⊥ and where the definition of the angular

dependence of the magnetisation given in equation 3.2 is used. This crucially shows
that the reduction in the magnetisation at high temperatures shows a reduction in
the torque and free energy at high temperatures. Theses equations are fitted to the
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Figure 3.8.: The free energy (a) integrated from the torque (b) for a 3.86 nm grain
for T=450K, 550K, 650K and 750K. As the temperature increases the
reduction in the magnetisation causes it to reverse over a lower energy
barrier.

CMC results in figures 3.8.(a) and (b) which agrees well. It is also important to
note that if the torque is fitted with a sin(2ϕ) function to extract the anisotropy
constant[65] then there will be a disagreement when the ratio of susceptibilities is
large. Here the anisotropy constant (K) is extracted using both the full functions
above.

Figure 3.9 shows how the anisotropy constant extracted from the CMC results
scales with the magnetisation. Empirically the anisotropy scales asK(T ) ∝ M(T )2.1

and so by plotting the logarithm the exponent can be found. From Callen-Callen
theory uniaxial anisotropy scales with a power 3 while the two-ion anisotropy scales
with power 2 and so the relative contribution of each to the net anisotropy gives
the non-integer power of 2.1 for FePt. As Lyberatos et al.[63] discuss, in finite
size grains the truncation of the two-ion anisotropy close to the surfaces reduces its
contribution to the net anisotropy and so one would expect the exponent to trend
towards 3 as the system size decreases.

The exponent is extracted from the linear fit to the anisotropy as shown by the
lines in figure 3.9. However it can be seen by comparing the fitted lines to the data
in figure 3.9.(a) that there is a significant disagreement at higher temperatures (
log(M(T )) → −∞). To improve the fit it is limited to the data log(M) < −0.5
which is shown in the figure. The fitting can be improved upon by using a quadratic
function instead; this is shown in figure 3.9.(b). For all the grain sizes the fitting is
much more accurate and can be taken over the full data set.
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Figure 3.9.: The scaling of the anisotropy with magnetisation. In (a) a linear func-
tion is fitted to the lower temperature part while in (b) a quadratic
function is fitted. At low temperatures the relation is linear but at
higher temperatures it becomes non-linear and the quadratic function
fits well over the whole range.

The extracted exponents are shown in figure 3.10 from the linear fitting and
quadratic fitting. The results are close to the experimental value of 2.1, especially
at larger system sizes but the two smallest deviate significantly. In the case of the
3.088 nm grain the large increase in the exponent is likely due to the reduction in
the two-ion contribution to the total anisotropy as previously discussed. However
the exponent for the 2.632 nm grain is reduced compared to the experimental result.
This is likely to be due to this grain size being at the limit of the theory and behaves
in a significantly different manner to the larger sizes.

From the temperature dependence of the anisotropy the zero temperature value
can be extracted from the fitting procedure. Figure 3.11 shows how the anisotropy
constant scales with system size. Since the majority of the anisotropy is from the
two-ion exchange which is reduced for atoms close to the surfaces, as the ratio of
surface atoms to bulk atoms increases the net anisotropy per volume decreases.

3.3 reversal dynamics

In the previous section the equilibrium properties of the FePt grains were evaluated
with the intention of applying these to the LLB formalism. In this section the
reversal dynamics are modelled; this can only be done using the Langevin dynamics
approach and so the CMC model is not utilised.
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Figure 3.10.: The exponents extracted from fitting to log(K) vs log(M) for the data
shown in figure 3.9.
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Figure 3.12.: The reversal paths of (a) 2.316 nm, (b) 3.088 nm, (c) 3.860 nm and
(d) 4.632 nm systems using a reversing field of 1T. The reversal paths
are calculated at different temperatures slightly below the Curie tem-
perature. For the larger system sizes the lower temperatures have not
reversed with in the simulation time limit but as the system size de-
creases at the same temperature the system now reverses within the
given time.

3.3.1 Reversal Paths

To observe the linear reversal mechanism we first compute the path by which the
magnetisation reverses. The simulations are performed to a maximum run time of
400 ps and the trajectory of the magnetisation is stored. The reversal path is found
by averaging the transverse magnetisation at intervals along mz.

Figure 3.12.(a)-(d) shows the reversal paths for system size 2.314 nm to 4.632 nm
using a 1 T field to investigate the temperature dependence of the reversal path. In
the 4.632 nm particle the magnetisation does not reverse within the simulation time
limit of 400 ps for 540 K and 560 K but then there is a sharp transition to linear
reversal, characterised by vanishing transverse magnetisation, at 640K. The smaller
systems reverse at lower temperatures but there is a less critical transition to the
linear reversal path.

To further investigate the effect of the system size on the transition to the linear
regime, we calculate the ellipticity of the reversal paths, defined as

e = 1 −
(
Mmax

t

Mmax
z

)2
(3.13)
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Figure 3.13.: The ellipticity extracted from the reversal paths from figures 3.12(a)-
(d) using equation 3.13. The dashed lines show the ellipticity that is
expected by the LLB model using the finite size susceptibilities shown
in figure 3.6.

The ellipticity is shown in figure 3.13 for the reversal paths shown in fig. 3.12.(a)-
(d). As discussed previously the transition to the linear regime (where e ≈ 1)
occurs within a smaller temperature window for the larger systems. Also since the
Curie temperature decreases for smaller system sizes the window is centred at lower
temperatures. The lines shown in fig 3.12.(e) show the ellipticity from the LLB
model which is eLLB = 2χ̃∥(T )/χ̃⊥(T ), this shows that the LLB model reasonably
predicts the ellipticity but significant deviations occur for the smaller particles.

3.3.2 Reversal Times

In terms of HAMR, the temperature dependence of the relaxation time is an im-
portant factor. It has been shown by Evans et al. [8] that the achievable recording
density in HAMR is set by the equilibrium magnetisation at the temperature at
which the magnetisation freezes. Consequently, it is vital to the HAMR process
for the magnetisation to be as close as possible to the equilibrium value at a given
temperature, emphasising the importance of the linear reversal mechanism and its
associated fast switching time governed by longitudinal rather than transverse re-
laxation.

As a measure of the relaxation time we calculate the minimal pulse duration[30];
this is the time taken for mz to first pass the mz = 0 plane starting from an initial
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Figure 3.14.: The reversal time in a constant 1 Tesla reversing field. The solid lines
show the analytic minimum pulse duration which is derived in refer-
ence [23] the parameters for which are calculated from our atomistic
simulations for the finite systems while the black line is for bulk.

fully magnetised state. Figure 3.14 shows the minimal pulse duration calculated with
a 1 T reversing field relevant to the HAMR process. The results show that there
is a significant reduction in the relaxation time in small grains which arises from
a convolution of two factors, the decrease of intrinsic properties and the transition
from circular to linear reversal. The intrinsic parameters K and Ms both decrease
with temperature and depend strongly on the system size. Since a large part of the
anisotropy arises from the 2-ion interaction there is a strong decrease with grain
size and thus the relaxation time predictable from the Arrhenius-Néel law.[7] In the
elliptical and linear regimes the free energy barrier is reduced significantly relative
to the coherent reversal mechanism, leading to a further reduction of switching time
with temperature over and above that predicted by the Arrhenius-Néel law. We
note that both factors are essentially thermodynamic and emerge naturally from
the atomistic model.

These results are compared to the expression for the minimum pulse duration
derived from the LLB equation by Kazantseva et al.[23]

65



3.3 reversal dynamics

t10 =
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3m2
t + b
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 (3.14)

Where the parameter mt is the final value of the magnetisation, and the parame-
ters a and b are given by:

a =



−2m2
e

χ̃∥
γα∥

T < TC

− 5µ0
3J0γα∥

T = TC

−
5(T − Tc)χ̃∥

3Tcγα∥
T > TC

(3.15)

b =



−m2
e T < TC

0 T = TC

−5(T − Tc)

3Tc
T > TC

(3.16)

The minimum pulse duration depends on the equilibrium magnetisation and sus-
ceptibilities so using the values already presented it can be computed for each specific
grain size, which are shown as solid lines in figure 3.14. J0 and α|| are constants
arising from the LLB equation and details can be found in Ref. [23]. There is a good
agreement but since the free energy assumes an infinite system the problems arise
at size dependent TC so only the section above is shown. The analytic expression
with finite input parameters shows qualitative agreement with the atomistic rever-
sal times showing that for moderate system sizes the LLB equation is applicable
using parameters determined for the specific system size. The reversal times for the
6.948 nm particle are similar to the bulk LLB curve. For the smallest system sizes
the validity is questionable since it is far from the bulk regime in which the LLB
is derived. However, for the sizes in excess of 3.5 nm potentially usable as HAMR
media, the parameterisation seems a practical proposition.
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3.4 conclusion

3.4 conclusion

In this chapter the atomistic spin model was used to investigate the finite size effects
in nanometre FePt grains pertinent to the HAMR process. Using Langevin dynamics
and CMC the equilibrium properties were calculated. The temperature dependence
of the magnetisation and susceptibilities show the the Curie temperature drops
consistent with surface effects. The CMC was used to calculate the free energy
barrier and the macroscopic anisotropy. For different grain sizes the anisotropy
scales different with the magnetisation, deviating from the M2.1 behaviour seen
experimentally.

The equilibrium properties were used to parameterise the Landau-Lifshitz-Bloch
model which can be used in comparison to the atomistic calculations to deduce the
feasibility of multi-scale modelling on this scale. The finite size effects on the linear
reversal process were investigated through the reversal paths and times. The reversal
paths show that the reversal becomes linear at lower temperatures compared to the
Curie temperatures in smaller system sizes. The ellipticity compares qualitatively
with that expected from the LLB model; it shows that there is a bigger deviation
for grain sizes of ≈3.5nm so the limit of the multi-scale modelling is down to this
size.

From the results shown in this chapter there are important implications for HAMR.
Any grain distribution in the HAMR media will lead to significant distribution in
the reversal times as the Curie temperature, anisotropy and reversal mechanism are
different over the range of grain sizes simulated. Whilst 3 nm would be the super-
paramagnetic limit estimated from the bulk anisotropy the actual limit is likely to
slightly larger than this as the loss of the two-ion anisotropy at the surfaces will
reduce net anisotropy significantly.
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4
S W I T C H I N G P RO P E RT I E S I N G R A N U L A R M E D I A

The previous chapter investigated how the magnetic properties and dynamics change
as the grain size is decreased down to the super-paramagnetic limit. The grains were
investigated separate from their surroundings but in magnetic recording media the
grains form a large ensemble and interactions between grains are important. The
focus of this chapter is the coupling of neighbouring grains together through the
inter-layer that is designed to reduce the coupling of grains. First the motivation
and details of the atomistic model are described, followed by the calculation of the
effective inter-granular exchange for various grain inter-layer density, temperature
and grain separation.

4.1 introduction

As described earlier, storage of binary data on magnetic recording devices utilises
magnetic grains as bits of data. Since the stored data is read back from the stray
fields produced by the grains, to have a good output signal the data bits need to
incorporate many grains. Greater areal densities can be achieved through both
the reduction in grain size and also the reduction of the number of grains in each
bit. The recording media is grown through deposition techniques and as such the
media is granular in structure. To stop the media growing into a continuous film
a non-magnetic inter-layer is introduced at the grain boundaries with the aim to
decouple the grains from each other. During the deposition process the grains start
at nucleation sites and grow until they are almost touching and a high deposition
temperature can force the material used as the inter-layer to form at the boundaries
of grains[14]. A great deal of effort has been performed to minimise the dispersion
of the grain sizes and properties but cannot be removed entirely. This disordered
grain structure has an adverse effect on the signal-to-noise ratio (SNR) as it makes
the bit boundaries uneven and wider. An example of granular media is shown in
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4.2 atomistic model of inter-granular exchange coupling

figure 4.1 for FePtAgC and FePtC. Ag and C are included to act as the boundary
layer but typically other spacers are used such as oxides (SiO2, TiO2). The grains
show a distinct Voronoi-like structure with the spacer separating each grain.

Figure 4.1.: A sample of the grain structure in FePtAgC and FePtC media. Repro-
duced from Lambert et al.[26]

If the inter-layer is thin enough then it is possible for the grains to couple due to
the underlying exchange interaction of the atomic spins[66]. This can be removed
by increasing the grain separation but this would reduce the packing density of the
grains which decreases the areal density and it has been observed that as the grain
size decreases the inter-layer thickness also decreases[67] which would increase the
coupling. The coupling of the grains together causes problems at the bit boundaries
where anti-parallel domains are competing and increases the correlations within the
bit. Whilst it is in general undesirable the inter-granular exchange does provide some
benefits for recording media as it helps stabilise the grains against stray fields[68]
and reduce thermal errors within the bits.

4.2 atomistic model of inter-granular exchange coupling

The model of inter-granular exchange presented here follows on from the work of
Evans et al.[25], which will be discussed here. The origin of the coupling of neigh-
bouring grains is assumed to occur due to magnetic atoms which are present in the
inter-layer material. This happens due to thermal diffusion of the atoms and also
arises from the growth process. Different inter-layer materials may support higher
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4.2 atomistic model of inter-granular exchange coupling

Figure 4.2.: Schematic of the inter-granular exchange coupling due to the chain for-
mation of diffuse magnetic atoms within the oxide inter-layer, here a
density of 30% is shown. The colour represents the spin orientation; red
Sz = 1, white Sz = 0 and blue Sz = −1

levels of diffusion or longer range interactions between the magnetic atoms. This
can be easily represented within the atomistic formalism described so far. In essence
the magnetic impurities form a connection that directly connects the grains together
despite their separation. This is schematically shown in figure 4.2 for a chain of im-
purities linking 2 macro-spins. Since the magnetic impurities have diffused within
the inter-layer their positions are assumed to be random and therefore will form
clusters spanning from one grain boundary to the next, especially when the density
is above the percolation limit.

A granular system based on Co with hexagonal grains has been simulated to
represent the common grain structure found in magnetic recording media. A hybrid
constrained/unconstrained Monte-Carlo algorithm has previously been implemented
into the Vampire code[5, 41] which allows us to fix the magnetisation orientation for
the grains whilst the spins within the inter-layer are unconstrained and follow the
usual Metropolis Monte-Carlo algorithm. A visualisation of the system employed
is shown in figure 4.3. Each grain has a side length of 2.5nm giving the diameter
from corner to opposite corner of 5nm. The system height was set at 5nm but with
periodic boundaries in the z direction to remove any surface effects on the top and
bottom planes. In figure 4.3 the inter-layer thickness is set at 2nm but different
inter-layer thicknesses are obtained by moving the surrounding grains further away
from the central grain.

Since FePt contains long-range interactions and large anisotropy, which would
make extracting the inter-granular exchange complicated, a simplified model based
on Co is used. The parameters used are µs = 1.44µB and Jij = 5.6 × 10−21J which
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4.3 micro-magnetic representation of inter-granular exchange

Figure 4.3.: The physical system is setup to represent a hexagonal grain with 6
neighbouring grains. Each grain diameter is 5nm and 5nm tall with
periodic boundaries in the z direction. The inter-layer thickness is set
at 2nm in this example.

corresponds to TC ≈ 1280K. The lattice structure is set as a fcc lattice with the unit
cell size a = 0.354nm. Due to the hexagonal shapes it is hard to set the inter-layer
thickness to be a specific number of monolayers, i.e for the diagonal neighbouring
grains, therefore the inter-layer thickness has been specified in nm which is then set
within the code.

4.3 micro-magnetic representation of inter-granular exchange

On an atomistic scale, the inter-granular exchange is an extension of the direct
exchange interaction between the spins. Therefore the inter-granular exchange is
described on the micro-magnetic scale where the magnetisation of each grain can
be represented by one (or a small group of) macro-spins. Whilst the inter-granular
exchange considered here is through the segregant with a low density of magnetic
atoms, usual micro-magnetics considers the exchange stiffness[69]. In the long length
scale limit the exchange stiffness is given by

Econt
exch = A

∫
V
(∇mx)

2 + (∇my)
2 + (∇mz)

2
dV , (4.1)

where A is the exchange stiffness constant. In this representation the magneti-
sation is considered to be continuous and thus a gradient can be calculated. For
simulation of granular media the grains are considered distinct from their neighbours
and thus a gradient is not ideal. In this case the exchange stiffness can be expressed
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4.3 micro-magnetic representation of inter-granular exchange

as the discrete approximation of the gradient and more alike the underlying exchange
interaction that it represents. The form in this case is given by:

Edisc
exch =

A

m2
eM

0
s

∑
i,j

(mj − mi)
2 (4.2)

In both cases an approximate relation for the free energy difference as a function of
angle between the two macro-spins can be derived. For the micro-magnetic exchange
stiffness if a 1d chain of spins stretching between two macro-spins at an angle ψ to
each other is considered. Using a simple formalism where with no anisotropy the
spins will spread out over domain wall and can be described by the simple form
Mx(x) = Msin(ψx/L),My(x) = 0,Mz(x) = Mcos(ψx/L). This leaves the energy
formed by this domain wall:

Econt
exch ∝ ψ2 ∴ Ty ∝ ψ (4.3)

In the discrete version of the same simple system the (macro)spins within the
chain are separated by an angle ∆ϕ = ψ/N , such that mi · mi+1 = m2

e cos(∆ϕ).
This leaves the free energy taking the form:

Edisc
exch ∝ cos(ψ/N) ∴ Ty ∝ sin(ψ/N) (4.4)

If the limit of a long domain wall is taken such that ∆ϕ → 0 then the Taylor series
of the cosine can be used. In this case Edisc

exch ∝ ψ2 and so the two forms agree with
each other. Whilst they do agree within limits it does highlight that it is possible
for the inter-granular exchange to take different forms depending on which regime
it falls in; at small separations with only a few atomic layers between the grains
then one would expect the discrete form as it is dominated by the atomic exchange
interaction where as at large separations there is sufficient number of layers to allow
the domain wall to take small angular deviations at each layer. Also the simple
treatment assumed that the magnetisation stays constant throughout the domain
wall but this may not be the case if the system exhibits strong anisotropy[70]. The
system under consideration here does not include any anisotropy as this complicates
the calculation of the inter-granular exchange and without anisotropy the domain
wall width is as large as the structure allows.

With this understanding we proceed to calculate the free energy difference for a
system with inter-granular exchange. In the simulations, the surrounding grains are
constrained to be fixed in the +z direction and the central grain is constrained at
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4.3 micro-magnetic representation of inter-granular exchange

different polar angles ranging from 0◦ to 180◦ in steps of 5◦, with θ = 0◦ (my = 0.0).
With this setup the torque should have no components in the x or z direction and so
the magnitude of the torque is taken, τ = |τ | = τy. The Monte-Carlo simulations
are performed using 10000 steps for equilibration and 20000 steps to gather averages
of the properties for each separate constrained angle. With the torque vs polar angle
curve outputted from the simulations a linear function is fitted to the curve, focusing
on 0 < ϕ < 45◦ on which the linear relation is most appropriate.

To extract the strength of the effective inter-granular exchange interaction from
the CMC model we proceed using the method described by Evans et al. [25], which
is repeated here for completeness. To determine the exchange interaction the free
energy difference is required which can be computed from the integration of the
macroscopic torque, τ . As shown earlier at small angles a linear relation of the
torque with polar angle, ϕ, holds and using this ansatz the integral to recover the
free energy difference can be readily solved.

τ =

(
∂τ

∂ϕ

)
ϕ (4.5)

∆F =
∫ π

0
τdϕ (4.6)

=
∫ π

0

(
∂τ

∂ϕ

)
ϕdϕ (4.7)

=
π2

2

(
∂τ

∂ϕ

)
(4.8)

This can then be equated to the functional form given of the inter-granular ex-
change coupling. Since we are focusing on granular media it is more convenient to
express the inter-granular exchange between two grains mi and mj as

Fexch = −Jeff
m2

e
mi · mj (4.9)

Here Jeff is the effective inter-granular exchange constant that we wish to extract
from the atomistic simulations. Using this form the free energy difference between
the parallel and anti-parallel is

∆F = F(π) − F(0)

= −Jeff
m2

e
(|mi||mj | cos(π) − |mi||mj | cos(0))

= 2Jeff (4.10)

73



4.3 micro-magnetic representation of inter-granular exchange

-1.2

-0.9

-0.6

-0.3

0.0

(a) τy, 30%

τ y
 [
1
0

-1
8
 J

]

-2.4

-1.8

-1.2

-0.6

0.0

0 20 40 60 80 100 120 140 160 180

(b) τy, 50%

τ y
 [
1
0

-1
8
 J

]

φ [degrees]

0

25

50

75

100

(c) ∆F, 30%

∆
f 
[1

0
-1

8
 J

]

S = 0.50nm
    0.75nm
    1.00nm
    1.50nm
    2.00nm
    5.00nm

0

50

100

150

200

0 20 40 60 80 100 120 140 160 180

(d) ∆F, 50%

∆
f 
[1

0
-1

8
 J

]

φ [degrees]

Figure 4.4.: The torque acting on the central grain as a function of the constraint
angle for impurity densities of (a) 30% and (b) 50%, and the free energy
difference calculated from the torque for again (c) 30% and (d) 50%. The
points are from the CMC calculations and the lines show a linear fit to
the torque and quadratic fit to the free energy, fitted to the 0 < ϕ < 45◦

region.

It is assumed that the magnetisation is constant in the different configurations.
Equating these two forms gives a relation between the gradient of the torque and
effective exchange constant.

∆F = 2Jeff =
π2

2

(
∂τ

∂ϕ

)

Jeff =
π2

4

(
∂τ

∂ϕ

)
(4.11)

Therefore to obtain the effective exchange interaction from the atomistic simu-
lations the torque is calculated from the ensemble average of the net microscopic
torques for different constrained polar angles. The effective exchange interaction is
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4.4 calculations of the effective inter-granular exchange

normalised by the contact area of the grains which contains all 6 of the faces so that
the Jeff presented should be for a single interaction.

The torque and free energy difference calculated for the central grain is shown in
figure 4.4. Two densities are shown; (a) and (c) show 30% while (b) and (d) show
50% density, both at 300K for a range of grain separations (S). The solid lines on
the graph show a fit; for the torque this is a linear term while for the free energy
it is quadratic representing the continuous inter-granular exchange form discussed
previously. For the 50% density the torque (4.4.(b)) appears to have a strong linear
dependence on the constraint angle up until a certain point when the torque appears
to disappear. This is also shown in the free energy (4.4.(d)), as the quadratic fit
agrees well for small angle deviations. The 30% density shows a bigger deviation and
appears less like the continuous inter-granular exchange form. However it also does
not agree with the discrete form either, as the torque would be a sine dependence
which this is not. At larger grain separations the continuous form agrees almost
exactly, which would be expected as there is a longer range for a domain wall to
spread over and minimise the angle between each spin within the chain.

4.4 calculations of the effective inter-granular exchange

The effective inter-granular exchange that is extracted using the method that has
been set out depends on a large variety of parameters. The parameters of interest
are the density of the magnetic impurities in the inter-layer, the temperature and
the separation of the grains.

4.4.1 Dependence On Interlayer Density

We begin with how the effective inter-granular exchange depends on the density of
the magnetic impurities. Figure 4.5 shows the inter-granular exchange for different
inter-layer densities with different separations at 300K. There is a strong variation
with the density as expected since any clusters formed in the inter-layer will achieve
a more effective connection between the grains. Within site percolation theory the
percolation threshold for a 3D fcc lattice with 12 nearest neighbours is pc = 0.198.
This threshold is the smallest density (or probability of site occupation) at which
on an infinite lattice an infinite cluster may appear. Below this density clusters
are unlikely to form spanning from one edge to another and thus the inter-granular
exchange will be limited. As figure 4.5 shows, at small separations there is still
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Figure 4.5.: The effective inter-granular exchange strength for different inter-layer
thickness and density at 300K.

strong inter-granular exchange even at low densities. This is expected as only a few
atomic layers are between the atoms and thus a much higher probability of clusters
spanning from each grain. At the larger separations since the densities are above
the percolation threshold the inter-granular exchange coupling can extend for larger
separations.

4.4.2 Dependence On Temperature

The temperature dependence of the inter-granular exchange will be important for the
HAMR process as while there may exist a larger grain coupling at low temperatures it
may be sufficiently weakened at higher temperatures. The temperature dependence
of the exchange stiffness has been investigated by Atxitia et al.[71], where it is found
to scale as m1.76 for FePt and m1.745 for a generic fcc system. This is the case for
a continuous media where the ’grains’ are touching and so would represent the zero
inter-layer limit of the system considered here. Experimentally the temperature
dependence of the inter-granular exchange was measured by Huang and Kryder[72]
who found that the coupling energy density drops linearly with temperature which
agrees with temperature dependence found by Evans et al.[25].

Figures 4.6 and 4.7 show the temperature dependence of the coupling for a inter-
layer thickness of 0.5nm and 0.75nm respectively. From the previous bi-layer results
it was seen that there is a linear relationship with temperature but here a non-linear
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Figure 4.6.: The temperature dependence of the inter-granular exchange at a sepa-
ration distance of S = 0.5nm. The solid lines show fitted lines to the
data points.
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Figure 4.7.: The temperature dependence of the inter-granular exchange at a sepa-
ration distance of S = 0.75nm. The solid lines show fitted lines to the
data points.
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4.4 calculations of the effective inter-granular exchange

behaviour is shown over the wider range of inter-layer densities. The following
equation has been fitted to the data, shown as solid lines in figures 4.6 and 4.7:

Jeff(T , d) = A(d)

(
1 − T

T ∗
C(d)

)β(d)

(4.12)

With A(d), T ∗
C(d) and β(d) used as fitting parameters at each density. This

models the exchange interaction well and as the density tends to 100% this can be
understood as relating to the magnetisation of the inter-layer which is commonly
modelled with a similar expression[5]. In these results it is clear that, as to be
expected, there is no effective inter-granular exchange above the Curie temperature
which relates directly to the HAMR process. At higher densities there is significant
change in the exchange close to the Curie temperature which is not present in the
smaller densities. After the fitting it appears that the fitting exponent β(d) behaves
as power law as function of the density. The lines shown in figure 4.8 show a fitted
power law to the β(d) exponents. This shows that at some density the exponent
drops below 1 and thus the temperature dependence becomes more critical close to
TC .
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4.4.3 Dependence On Grain Separation

The dependence of the inter-granular exchange on the grain separation is shown
in figure 4.9. As in the previous bi-layer simulations[25] and in experimental mea-
surements by Sokalski et al.[24] the exchange drops in an exponential manner. The
strength of the interaction is comparable to Sokalski et al. for inter-layer densities
of ≈20%. Since the inter-granular exchange depends strongly on the connections
formed by the magnetic impurities this may change significantly if longer range
interactions or if the inter-layer structure is different.

4.5 conclusion

To conclude, a Co granular system has been simulated using a hybrid constrained/un-
constrained Monte-Carlo algorithm that has been previously implemented in the
Vampire code[5]. The effective inter-granular exchange has been calculated for a
central grain with 6 surrounding neighbours that have a fixed orientation while the
central grain is rotated. The effective exchange interaction is shown to increase
strongly with inter-layer density above a certain threshold density. The tempera-
ture dependence is seen to behave non-linearly with temperature with the exponent
strongly dependent on density. With increasing inter-layer thickness the effective
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exchange interaction drops exponentially and for low inter-layer densities can be
negligible at separations of more than a few nm.

The temperature dependence of the inter-granular exchange interaction has im-
portant implications for HAMR, as it shows that above TC the interaction will have
no effect on the magnetisation switching process. In the density regime which would
be expected experimentally the temperature dependence decreases faster than the
magnetisation implying that even below TC it may have reduced sufficiently so as
not be a hinderance to reversal. Since the inter-granular exchange will reform as
the system cools it will help reduce the freezing of grains in the wrong orientation,
which can be a big problem for HAMR.
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5
U LT R A FA S T S W I T C H I N G I N F E P T U S I N G C I RC U L A R LY
P O L A R I S E D L I G H T

The previous chapters were concerned with the magnetisation switching of granular
FePt relevant to the HAMR process. Now we now turn to a more recent proposition
of ultrafast switching using femtosecond lasers. The chapter begins with a brief
introduction to the field of ultrafast magnetisation dynamics and the modelling of
the heating driven by a femtosecond laser pulse within the atomistic model. We
then investigate the required parameters for ultrafast switching in FePt based on
the Inverse Faraday Effect (IFE) showing the required field magnitudes and lifetimes.
Finally a model for the induced magnetisation in a granular system is considered
through the thermal reversal of the grains and a difference in the absorbed energy
due to the magnetisation orientations.

5.1 introduction

The topic of ultrafast magnetisation dynamics is at the forefront of research since it
was initially discovered by Beaurepaire et al. in 1996[73]. Beaurepaire et al. showed
that by exciting Ni with a femtosecond laser that the magnetisation changes on a sub-
picosecond timescale, much faster than ever assumed possible. What Beaurepaire
observed was a demagnetisation that took only a few hundred femtoseconds followed
by the magnetisation recovering on a longer timescale of a few picoseconds. 20 years
later the understanding of the microscopic processes occurring on this timescale are
much better understood but there still remain phenomena that have not been fully
explained. The most significant is the phenomenon of All Optical Switching (AOS)
whereby the magnetisation can be switched without any external applied field to
break the symmetry. This promises to be an important technological advancement
as magnetic recording may be possible without the inductive write heads currently
required.
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5.1 introduction

Currently all optical switching has appeared to be confined to ferrimagnets with
theory and experiments showing that the differential relaxation times and angular
momentum transfer of the multiple sub-lattice in these types of materials provide
the driving force for switching. It was originally shown by Stanciu et al.[74] that the
magnetisation in GdFeCo excited by a femtosecond laser pulse will switch depend-
ing on the helicity of the light; known as Helicity Dependent All Optical Switching
(HD-AOS). In this experiment the laser was swept over multiple domains and it was
observed that the helicity of light determined the final state of the magnetisation.
Later theory[75] and experiments[29] showed that GdFeCo exhibits helicity indepen-
dent switching whereby a linearly polarised laser pulse will switch the magnetisation.
The driving mechanism from the laser is only the heating caused by it has no an-
gular momentum can be transferred into the magnetic system from the light, thus
giving the name Thermally Induced Magnetisation Switching (TIMS). In this case
the magnetisation will reverse deterministically from its initial state, therefore the
final state will always be switched relative to the initial state.

Therefore while the underlying mechanism is TIMS the observed experimental
evidence for helicity dependent switching in GdFeCo relies on the magnetic system
absorbing more or less energy from a particular circular polarisation of the laser
light. Further experiments on rare earth - transition metal (RE-TM) ferrimagnets
and synthetic ferrimagnetic multilayers have expanded the range of materials that
exhibit the phenomenon. However it is confined to materials that exhibit a ferri-
magnetic structure with two or more sub-lattices interacting anti-ferromagnetically.
Recently experiments have shown that all optical helicity dependent switching can
occur in ferromagnets. Lambert et al.[26] have used different helicities to switch
the magnetisation in Co/Pt multilayers and also L10 FePt granular thin films. The
mixing of the ultrafast timescales of all optical switching and the material properties
of FePt are of great importance for technological applications.

The thermal induced switching in GdFeCo is driven by the ferrimagnetic coupling
of the two RE-TM sub-lattices. This does not occur in FePt as the Pt is polarised
and ferromagnetically coupled to the Fe[20]. The Inverse Faraday Effect (IFE) is
predicted to generate a magnetic field inside a magnetic material due to the circularly
polarised laser pulse.[76] The exact properties of such a field are unknown so here we
investigate the required field magnitude and duration required to cause all optical
switching in FePt. The IFE was used by Vahaplar et al.[77] as an early model
for the switching in GdFeCo. Computational work modelled the field generated by
the IFE as 20 T field with varying duration. Whilst this showed that a switching
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5.2 modelling the laser heating

window opens for a peak electron temperatures of between 800K and 1300K for
field durations approximately greater than 0.3 ps. Whilst this does go someway to
explaining HD-AOS it is based on parameters for an Fe-like material which has a
much weaker anisotropy the FePt. As described in the following section the Pt
alloying alters the parameters that are used to model the temperature dynamics
meaning a higher peak temperature can be reached. This and the difference in
the anisotropy mean that the origin of HD-AOS in FePt media is still not well
understood and remains an important question.

5.2 modelling the laser heating

The incident laser pulse creates a strong non-equilibrium within the sample and as
such the electron, phonon and spin sub-systems are treated separately. The spins
are treated using the atomistic spin model but the electron and phonon thermal
reservoirs are treated phenomenologically using the two temperature model.[78–80]
The temporal evolution of the electron, Te, and lattice temperatures, Tl, are governed
by the following equations[81]:

Ce
∂Te

∂t
= −Gel(Te − Tl) + P (t) −Ce

Te − Troom
τph

(5.1)

Cl
∂Tl

∂t
= Gel(Te − Tl) (5.2)

P (t) = I0F exp

−
(
t− t0
τl

)2 (5.3)

Where Ce = γeTe and Cl are the electron and lattice specific heats. Gel is the
electron-lattice coupling factor which governs the transfer of energy between the sub-
systems. P (t) is the laser power which takes the form of a Gaussian pulse centred
at t0 with a pulse width of τl as specified. The fluence, F , is incorporated with a
proportionality constant, I0. The final term in equation 5.1 represents the cooling
of the electron temperature back to room temperature over a timescale τph = 340 ps.
The parameters for FePt used here are presented by Mendil et al.[81], which are
calculated to agree with experimental results. Mendil et al. describes that because
of the Pt alloying the density of states close to the Fermi energy in FePt is smaller
than for materials like Fe. This gives the electrons a much smaller specific heat
capacity which under the action of the laser pulse drives the electron temperature
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5.2 modelling the laser heating

Parameter FePt Fe-like Unit
γe 110 1700 J m−3 K−2

I0 5.0 × 1016 3.0 × 1017 cm−1 s−1

Gel 1.5 × 1017 1.8 × 1018 W m−3 K−1

Cl 3.7 × 105 3.3 × 106 J m−3K−1

Table 5.1.: Parameters used in two temperature model for L10 FePt and a Fe-like
material with a high density of states at the Fermi energy taken from
reference 81.

to a higher peak value. The parameters given by Mendil et al. for L10 FePt and a
Fe-like material are summarised in table 5.1.

The interactions within the two temperature model are shown schematically in
figure 5.1. The laser is assumed to couple directly to the electrons and excite them
to higher energy states above the Fermi energy. From these high energy states the
electrons scatter and thermalise towards an equilibrium distribution. Since the elec-
trons are excited on a very short timescale there is a period where the electrons
cannot be described by an electron temperature arising from the Fermi-Dirac distri-
bution. However the electrons thermalise rapidly and it is therefore assumed that
the two temperature model is still valid. As the electrons thermalise they interact
with phonons and so energy is transferred into the lattice. The spin system is cou-
pled to the electron temperature through the thermal noise term in the Langevin
dynamics. The strength of this is controlled by the atomistic coupling parameter, λ,
which phenomenologically represents the underlying electron-spin interactions. Spin-
Phonon interactions are possible but are not incorporated here. In materials with
large spin-orbit coupling, such as rare-earths, it is possible to couple the magnetic
moments to the lattice via a second thermal noise term[33, 82].

The two temperature model described by equations 5.1 and 5.2 is coupled into
the atomistic spin dynamics through the thermal noise term:

⟨ξiα(t)ξjβ(s)⟩ =
2µsλkBTe(t)

γ
δijδαβδ(t− s) (5.4)

During the simulation the electron and lattice temperatures are updated following a
Euler integration step to provide the temperatures at each point in time. The spin
temperature (Ts) can be calculated directly from the atomistic configuration using
the formula given by Ma et al.[83]:

Ts =

∑
i |Si × Hi|2

2kB
∑

i Si · Hi
(5.5)
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Phonon

Spins

Electron
Laser

�

Gel

Ce Cl

Figure 5.1.: Schematic of the interactions within the two temperature model. The
laser adds energy directly into the electron system which then transfers
energy into the phonon and spin system. Spin-Phonon interactions are
possible but are neglected at this stage.

This expression allows the interaction of the spin system and the two temperature
model to be observed. As noted earlier the spin-electron coupling depends on λ and
this is shown in figure 5.2.(a) for λ =0.01, 0.05 and 0.1. Te and Tl are determined
using equations 5.1 and 5.2 using the parameter set for FePt in table 5.1 and therefore
do not vary for different λ. Ma et al.[84] consider a feedback mechanism such that
Te and Tl do depend on the instantaneous Ts, thus effectively representing a three
temperature model, but this is not necessary for the current investigation. As figure
5.2.(a) shows for lower λ the peak Ts is lower and the time lag between them is
longer. This arises because λ controls the strength of the thermal noise term in the
sLLG and so the thermal disorder is smaller. The effect on the magnetisation is
shown in figure 5.2.(b); since the lower λ leads to a lower peak spin temperature the
observed demagnetisation is smaller and the demagnetisation time is also longer in
agreement with experimental observations[85].

The dynamic response of the magnetisation to the laser pulse is shown in figure 5.3
for a range of fluences. The higher fluences drive the electron temperature to a higher
peak value causing a larger demagnetisation of the system. The demagnetisation
time is very short due to the higher damping of FePt whilst the remagnetisation
time occurs over a few picoseconds. The remagnetisation time is dominated by the
ordering of the spins through the exchange field but the formation of spin clusters
slows the recovery as the clusters orientate in different directions. At high fluence
the system becomes fully demagnetised for a few hundred picoseconds and any field
will switch the magnetisation easily at this point.
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Figure 5.3.: The dynamic response of the magnetisation to laser pulse of different
fluence.
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5.3 the inverse faraday effect

In magneto-optics the Faraday effect gives a change in the laser polarisation due
to the magnetisation of the sample it is passing through. Following from this it is
therefore possible that the inverse relation is possible and the polarisation of the light
can act on the magnetisation of the sample; this is known as the inverse Faraday
effect (IFE). Early theoretical work on the IFE was presented by Pitaevskii[86] and
later observed experimentally by Van der Ziel et al.[87] and others. Theoretically
the IFE can be described starting from a general thermodynamic potential that
incorporates the energy of light-matter interaction[88]:

F = ε0εijEi(ω)E∗
j (ω) (5.6)

Here Ei(ω) is the i component of the electric field at a frequency ω and ∗ denotes
the complex conjugate. ε0 is the vacuum dielectric constant and εij is the dielectric
tensor inside the material. To satisfy symmetry relations the symmetric, ε(s)

jj , and
anti-symmetric,ε(a)

ij , parts depend on the even and odd powers of magnetisation
respectively. Therefore they can be expressed as a series expansion in the following
manner;

ε
(a)
ij = αijkMk + βijkM

3
k + . . . , (5.7)

ε
(s)
jj = ε

(0)
jj + γijkM

2
k + . . . , (5.8)

where αijk, βijk and γijk are coefficients and ε
(0)
jj is the dielectric tensor without

any magnetisation. If we only consider the term linear with the magnetisation the
effective field can be easily found,

Hk = − ∂F
∂Mk

= −ε0αijkEi(ω)E∗
j (ω). (5.9)

In an isotropic medium, αijk forms an anti-symmetric tensor with only single scalar
constant α, so the IFE field takes the form

HIFE = −ε0α [E(ω) × E∗(ω)] (5.10)

For circularly polarised light the cross product of the electric field vector and its
complex conjugate will result in a vector pointing along the direction of propagation.
In particular with the incident wave perpendicular to a thin film this will be ±n̂,
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Figure 5.4.: Temporal profile of inverse Faraday effect modelled using a flat Gaus-
sian with a lifetime of 500 fs and the electron and lattice temperatures
simulated for a fluence of F = 12 mJ/cm2.

where n̂ is the film normal, the sign of which depends on whether it is right (+)
or left (-) handed polarisation. While this derivation predicts that a field will be
induced due to the dependence of the dielectric tensor on the magnetisation the
magnitude of the field depends on the parameter α which is unspecified here.

An alternative description of the IFE is given by Hertel[76], who derives an expres-
sion for the magnetisation induced by the inverse Faraday effect within a collision-
less electron plasma. In this picture the electric field drives the electron motion
which forms a magnetisation which can be related to a generated field through the
susceptibility; MIFE = χHIFE. This simple theory was further expanded by Yoshino
et al.[89] where the magnetic flux density generated by the inverse Faraday effect is
related to the optical properties of the material. Using optical constants measured
by Cen et al.[90] the inverse Faraday field can be estimated but it is in the order of
mT. A more detailed model is derived quantum mechanically by Battiatio et al.[91]
which requires ab-initio calculations to parameterise.

Here we proceed by exploring the required magnitude and lifetime of any possible
inverse Faraday effect. As stated earlier the IFE field points parallel or anti-parallel
to the wave propagation and thus normal to the thin film. For our orientation the
film normal is orientated along the z-axis. Thus the IFE field for a given polarisation
(σ±) takes the form

HIFE(t,σ±) = ±hIFEf(t)ẑ (5.11)

hIFE is the magnitude of the field and f(t) is the temporal shape of the field. Two
temporal shapes of the IFE field are used; first a square shaped field which starts
at the peak of the laser power and continues for the desired time. Second is a flat
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Gaussian, which is similar to the square field but with Gaussian sides of the same
FWHM of the laser. An example of the field with a flat Gaussian shape is shown
for a magnitude of 10T and lifetime of 500 fs in figure 5.4. It is shown alongside the
electron and lattice temperatures to show the timescale of the field relative to the
relaxation of the thermal reservoir.

5.4 switching with the inverse faraday effect

The field strength and duration are varied to map the possible parameter space
for which there is a high probability of switching. The probability of switching is
investigated by observing the percentage of samples that are unswitched 10 ps after
the application of the laser and opto-magnetic field pulse. To generate a statistical
sample the simulation is repeated 25 times with different initial random seeds to
generate different trajectories.

The percentage of unswitched grains is shown in figure 5.5 and 5.6 for varying opto-
magnetic field strengths and duration for fluences of 8 mJ/cm2 and 10 mJ/cm2. The
results show that there is a clear boundary beyond which the grains will switch with
a high probability. By comparing the different fluences we see that the transition
into the switching regime is sharper in the lower fluence. This is likely due to thermal
activation since in the higher fluence the peak temperature is higher and thus the
magnetisation will experience larger thermal fluctuations and a reduced anisotropy
barrier. From these results the assumption of a field generated by the inverse Faraday
effect must either occur for a duration near to a picosecond or generate field strengths
of many Tesla. Certainly if the switching is to be deterministic both cases would be
required.

Using the Landau-Lifshitz-Bloch model Kazantseva et al.[23] derived a expression
for the relaxation time required for the magnetisation to switch at a constant tem-
perature. This expression, the minimum pulse duration, allows us to predict for
a given opto-magnetic field strength a required field duration. The solid lines in
figure 5.6 show calculated minimum pulse duration parameterised for the FePt sys-
tem. Whilst a direct comparison is not exact, since the temperature is not constant,
if an effective temperature estimated from the average spin temperature over the
field duration is considered there is good agreement. For this fluence an effective
temperature of 900K (c.f. figure 5.9.(e)) shows the approximate boundary for the
switching regime.
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Figure 5.5.: Ratio of unswitched grains for different square field pulse duration and
strengths for a laser fluence of F = 8 mJ/cm2.
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Figure 5.7.: Percentage of unswitched grains at (a) F = 12 mJ/cm2 and (b) F =
14 mJ/cm2 for a inverse Faraday field modelled by a flat Gaussian for
varying strengths and duration. The sides of the field are Gaussian
shaped with a width of τl = 100 fs.

Figure 5.7 shows the percentage for unswitched grains for fluences of (a) 12
mJ/cm2 and (b) 14 mJ/cm2 now using a flat topped Gaussian to represent the
IFE field. The flat Gaussian represents the smooth rise and decay of the laser pulse;
the same Gaussian width of the laser pulse is used (100fs) but it is extended by
a fixed duration. This does not alter the results significantly as it seems to just
create a slightly longer effective duration compared to the square pulse. Since the
fluence is higher here we see that the regions which were unswitched at lower fluence
are now tending to a random switching of the magnetisation. The heating is the
dominant factor as the field is too short or weak to largely bias the switching and
so the percentage unswitched is tending to 50%. Even at these higher fluences the
almost deterministic switching region is similar to those of lower fluences. This is
mainly due to the extra field required to overcome the higher thermal noise and to
limit thermal activation against the field.

The mean first passage of the magnetisation is shown in figure 5.8 for a fluence of
F = 12 mJ/cm2. Clearly when the field duration is longer than the average time to
switch for that given field strength then the mean first passage time does not change.
The dashed line shows where the mean first passage time equals the field duration,
and to one side of this the data points do not vary significantly. At lower field
durations there appears to be a certain chance that switching is aided by thermal
effects. At very short field duration it appears that the switching is random and
due to the demagnetisation.
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5.5 accessing the linear reversal mode

Whilst the inverse Faraday effect is assumed to create a field which is the dominant
cause for the switching the laser heating is also highly important. At higher tem-
peratures the switching mechanism is through the linear reversal mode described
previously. In this regime the magnetisation switched with a collapse of the mag-
netic order before reforming in the switched direction. Therefore the timescale is on
the order of the longitudinal relaxation time which is much faster than the transverse
relaxation time characterising precessional switching.

Figure 5.9 shows the switching mechanism at different fluences with a 30 T opto-
magnetic field with a duration of 1 ps. Fig. 5.9.(a) shows the switching at a low
fluence (6 mJ/cm2); the switching occurs due to the large field chosen but because
the peak temperature is low and the system does not spend sufficient time above
the Curie temperature the switching proceeds by precessional reversal shown by
large transverse magnetisation components. The corresponding temperature profile
is shown in (d). This shows that the system temperature only peaks briefly above
the Curie temperature before reaching a low final temperature thus corresponding
to the precessional reversal.
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Figure 5.9.: The switching dynamics at different fluences with an field of 30T for
1ps. (a)-(c) show the switching dynamics at different fluences while (d)-
(f) show how the temperature evolves with time. In (d)-(f) the arrows
indicate where the system passes the Curie temperature.

Since the damping of FePt is assumed to be relatively large (λ = 0.1) there is
only a short delay between the electron and spin temperatures. At a higher fluence,
fig. 5.9.(b) the switching has no transverse component and occurs within a few
hundred femtoseconds after excitation. The corresponding temperature profile, fig.
5.9.(e), shows that the system is above the Curie temperature for a significant time
and within the linear reversal regime. However when the fluence is too high, fig.
5.9.(c) and (f), the final temperature is above the Curie temperature and so while
the magnetisation switches initially it remains in a demagnetised state.

5.6 magnetic circular dichroism model of switching

From the previous results the required opto-magnetic field generated through the
IFE would need to have a considerable magnitude and duration to cause switching.
This is in part due to the large anisotropy of L10 FePt and also due to the heating
process caused by the laser. An alternative explanation for the induced magnetisa-
tion in granular FePt measured by Lambert et al. is that the switching occurs by
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thermal activation due to the high temperatures caused by the laser. By itself this
would only lead to a demagnetised sample but if one orientation of the magnetisation
was to absorb more energy from the laser then it would have a higher probability
of thermally switching compared to the other orientation. In a large ensemble of
grains this would lead to more grains with their magnetisation along the orientation
that absorbs less energy from the laser and thus a net magnetisation.

The differential absorption of energy with circularly polarised light due to the
magnetisation is known as Magnetic Circular Dichroism (MCD) and is extensively
used with X-rays to probe the magnetic properties of materials. The role of MCD
in the helicity dependent switching in GdFeCo was examined by Khorsand et al.[92]
where it was found that the earlier HD-AOS could be explained by the combination
of the MCD and TIMS. The TIMS provides the switching mechanism and the helicity
dependence is determined by the MCD effect. As for the ferromagnetic materials
of interest here, there is no underlying TIMS to causes switching and so only the
thermal activation is a possible route to HD-AOS.

5.6.1 Thermal Switching Of Grains During Laser Heating

Since this model of HD-AOS relies on the random nature of thermal switching, the
induced magnetisation will require a large ensemble of grains to be observed. In
this case it will be hard to simulate directly using the atomistic spin dynamics due
to the size limitations of model. Therefore to construct a description of the process
and to analyse what level of induced magnetisation is possible using the MCD effect
a different approach is required. In L10 FePt the magnetisation orientation can
be considered binary; either up (+n̂) or down (−n̂) which we orientate along the
z-axis. So the ensemble can be modelled as the probability of each grain occupying
one of these 2 states and the time evolution of these probabilities is governed by
the Master equation. For a system of N states the evolution of the probability of
occupying state i, pi, is given by

∂pi

∂t
=

N∑
j=1

Wijpj . (5.12)

Wij is the transition matrix which is formed from the transition rates τ−1
ij of moving

from state i to j. To proceed the transition rate of a single grain moving from an up
to down (or vice-versa) is required; this can be calculated using the atomistic spin
model which then provides a detailed model of the switching. Since the switching
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Figure 5.10.: The probability of a single grain switching without the inverse Faraday
effect. Even without a field the grain thermally switches when the flu-
ence is high enough to demagnetise the grain. Above F = 16 mJ/cm−2

the system is above the Curie temperature and will cool over a longer
timescale. The switching is also calculated for a constant field of 1T
either aligned or anti-aligned with the grain direction. The lines show
a fit to the data.

is through a highly demagnetised state the inter-grain interactions can be ignored.
The transition rate is calculated by performing multiple independent simulations for
a range of laser fluences and finding the ratio that have switched 10 ps after the
laser pulse. This considers a single switching event over the course of a single laser
pulse. The combination of this transition probability and the laser repeat frequency,
fl, gives the transition rate (τ−1),

τ−1(F ) = flPs(F ) (5.13)

Figure 5.10 shows the probability of a grain switching during the laser heating
process. Below 8 mJ/cm2 there is no thermal activation as the system does not
demagnetise significantly. Above 8 mJ/cm2 there is a possibility for the grains to
end in the reversed direction and the probability increases strongly with fluence
until about 16 mJ/cm2 where the heating would leave the system above the Curie
temperature. At this point the grains would be evenly distributed between up and
down and so the probability of switching would be 1/2. The effect of an applied
field that is constant over the whole laser pulse can be seen to raise or lower the
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5.6 magnetic circular dichroism model of switching

H 0 1 -1 [T]
P∞ 0.50 0.21 0.74
F0 11.56 11.06 12.17 [mJ/cm2]
∆F 1.37 1.33 1.47 [mJ/cm2]

Table 5.2.: Fitting parameters for probability of switching as a function of fluence
for zero field and ±1T. All parameters have a dependence on the field
but most important is the variation of P∞.

switching probability whether it is anti-parallel or parallel to the initial direction
respectively. The probability does not tend to 1 for H = -1T as the thermal effects
can also cause back switching against the field which is a important problem for
HAMR[93]. To provide a functional form to the data in figure 5.10 the following
equation is fitted:

Ps(F ) =
P∞
2 (1 + tanh((F − F0)/∆F )) (5.14)

The fitting parameters are given in table 5.2; showing that all three parameters
depend on the field. The variation of P∞ is most important. Calculating a switching
for more fields would give a compete description but a linear interpolation of the
values is used to give an estimate of the field effects.

5.6.2 Two Sate Master Equation Model

Using the probability of switching calculated from the atomistic spin dynamics the
Master equation can now be constructed to estimate the induced magnetisation due
the magnetic circular dichroism. To make a distinction between the probability
of occupying a state and the probability of switching the notation, n± is used here.
These are the probability of the grain having a magnetisation that is orientated such
that it absorbs more or less energy through the MCD effect; n+ or n− respectively.
This can be easily seen ratio of grains in either state in relation to the total number
of grains. Each state has a magnetisation of mz = ±me, where me is the equilibrium
magnetisation for a given temperature. Therefore the net reduced magnetisation of
the ensemble will be

m = n− − n+. (5.15)

This is the magnetisation along the orientation of the state that absorbs less energy.
From this the two state Master equation can be constructed as follows:
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5.6 magnetic circular dichroism model of switching

∂n+
∂t

= −n+τ−1
+ + n−τ

−1
− (5.16)

∂n−
∂t

= −n−τ
−1
− + n+τ

−1
+ (5.17)

where τ−1
± are the transition rates of the grain switching from the high (+) or low

(−) absorption states to the opposite state. The fitted function gives the probability
of switching over the range of fluences. To incorporate the effect of magnetic circular
dichroism the transition rates are assumed to have an effective fluence with is larger
or smaller by a specified ratio for each of the two states.

τ−1
± (F ) = flP (Fδ±) (5.18)

The attempt frequency, fl, is set by the laser repeat rate which in experiments
is 1 kHz. The difference in the absorbed fluence due to the different magnetisation
orientation is modelled using the factor δ± = 1 ± ∆/2. ∆ is the MCD ratio which
is assumed to be a few percent. The equilibrium values are found by finding the
stationary state, ∂n−/∂t = ∂n+/∂t = 0, which gives the criteria

n∞
−
n∞
+

=
τ−
τ+

. (5.19)

From this the equilibrium induced magnetisation in the low absorption direction,
m∞ = n∞

− − n∞
+ , can be derived by making use of the total probability must be

normalised, n+ + n− = 1. This gives the expression;

m∞ =
τ− − τ+
τ+ + τ−

. (5.20)

Solving equations 5.16 and 5.17 the time dependence of the induced magnetisation
is given by

m(t) = m∞ − (m∞ −m(0))e− t
τ , (5.21)

with the magnetisation relaxation time is given by

1
τ
=

1
τ+

+
1
τ−

. (5.22)

The transition times τ± and the magnetisation relaxation time τ are shown in
figure 5.11.(a) for an example MCD ∆ = 5%; normalised by the repeat rate of
the laser such that they are expressed as a number of pulses. At low fluence the
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Figure 5.11.: (a) The switching times; τ , τ+ and τ− as a function of fluence with a
MCD of 5% expressed as number of laser pulses. τ is independent of
the MCD ratio and drops rapidly with fluence. (b) The induced mag-
netisation with the number of laser pulses for different fluences. At
low fluence the switching time is large and so many laser pulses are re-
quired to reach the final induced magnetisation. At higher fluences the
induced magnetisation saturates within a few pulses but since thermal
effects are higher the induced magnetisation is lower.

transition times are very large and unlikely to lead to a induced magnetisation
on a typical experimental timescale. As the fluence increases the transition times
decrease rapidly so that only a few laser pulses are needed to reach equilibrium. The
magnetisation switching time does not depend on the MCD ratio but for τ± a larger
MCD ratio widens the difference between the two times. Figure 5.11.(b) shows the
time evolution of the induced magnetisation with a MCD ∆ = 5% for a number of
fluences. As shown in (a) the low fluences take a large number of laser pulses to
reach the equilibrium value. However whilst high fluences saturate quickly the value
of m∞ is smaller.

The magnetisation induced by the MCD is shown in figure 5.12.(a) for a range
of MCD. The solid lines show the induced magnetisation after 100 laser pulses and
the dashed lines after 10,000. Whilst this simple model is unlikely to give quantitive
results it does show that even a small MCD will give rise to a measurable induced
magnetisation over a series of laser pulses. The maximum induced magnetisation
is close to where the steepest gradient of the switching probability but due to the
thermal randomisation at high fluences it is not centred on the steepest part. The
induced magnetisation in figure 5.12 is defined as in the orientation of the low
absorption state and since the values are positive this implies that the system will
move towards the low absorption orientation. Khorsand et al. measure a MCD of
1.5% for GdFeCo and also demonstrate that it can be increased by tailoring the
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Figure 5.12.: Induced magnetisation after 100 laser pulses (solid lines) and 10,000
laser pulses (dashed lines). (a) shows the case where the field is ori-
ented in the direction of the low absorption state while (b) shows it
in the direction of the high absorption state. The field is incorporated
through a linear interpolation of the switching probability parameters.

structure of the multilayer sample increasing up to 3%. The MCD ratio can be
estimated from the polar Kerr rotation which using the measurements of Sato et
al.[94] would give ∆ ≈ 0.85% for a 800 nm wavelength. This value would predict
an induced magnetisation of only m ≈ 0.05 which is smaller than that observed
experimentally. Whilst this may be due to the simplicity of the model used here,
the MCD ratio may well be higher depending on film structure.

The effect of an applied field is to bias the thermal switching as shown in figure
5.10. The experiments show that a 700 Oe field can counter the all-optical switching.
Using a linear interpolation of the fitting parameters given earlier the effect of a 0.1T
field is considered. In order to compare to the experiments we now consider that
the polarisation vector for right circularised light is −ẑ and that grains with their
magnetisation in this direction absorbs more energy. The effect of the field is shown
in figure 5.12.(b) and (c) for the field parallel and anti-parallel to the polarisation
vector respectively. As (b) shows the field and the MCD switching cooperate so the
field increases the induced magnetisation. In (c) the field counteracts the effect of the
MCD switching, reducing the induced magnetisation. For this case the field reduces
the induced magnetisation to approximately 0 for for an MCD of ≈ 1.7%. Earlier
the MCD in FePt was estimated at ∆ ≈ 0.85%, despite the factor of 2 difference
this does give an indication that the model describes the effects well. This agrees
with the experimental results, showing that a small field can eliminate the effects of
the thermal MCD switching.

99



5.7 conclusion

5.7 conclusion

The required parameter space for switching in FePt by a field generated through
the inverse Faraday effect has been investigated using an atomistic model. To cause
almost deterministic switching any field created would need to be either upwards
of 30 T or have a duration of nearly a picosecond. Such a field may be physically
unreasonable but may be possible if driven by the exchange field which can be
larger still. Higher fluences access the linear reversal regime but higher thermal
noise causes the switching to become more or less random with only a slight bias
towards the field.

A further explanation of the experiment results of Lambert et al. is using mag-
netic circular dichroism. Due to the helicity of the light the different magnetisation
orientation leads to a difference in the energy absorbed from the laser. The prob-
ability of a grain changing orientation was calculated showing that there is a clear
dependence on the final state on the laser fluence. Using a simple model based on
a two-state Master equation the induced magnetisation due to the MCD was found
to agree qualitatively well with the magnetisation found in the experiments. Whilst
this supports the picture that the differential absorption leads to a net magnetisa-
tion a more detailed model incorporating the effects of surrounding grains on the
switching probability would allow for a quantitive evaluation of the MCD. Within
this approach an MCD of 3% would explain what is observed experimentally. Es-
timates for the MCD in L10 FePt would indicate ∆ ≈ 0.85%, which would predict
a smaller induced magnetisation but is close to the MCD value which counters the
induced switching in a field. This may be due to the simplicity of the model or the
actual MCD ratio of the FePt samples used by Lambert et al. is larger. It may also
indicate that whilst the IFE does not cause switching it may enhance the induced
magnetisation when combined with this MCD model of the switching.
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6
C O U P L E D S P I N - L AT T I C E DY N A M I C S I N F E

So far the atomistic spin model introduced in Chapter 2 has been used to model
the magnetic properties of granular media. The energy transfer channels have been
simulated phenomenologically using Langevin dynamics and the two temperature
model. Here an advanced approach is employed to incorporate the lattice dynamics
alongside the spin dynamics to provide a coupling mechanism between the two sub-
systems. First the motivation for development of such a model is discussed before
describing the details and testing of the model. The model is then used to calculate
the magnon and phonon dispersion relation for both infinite and thin film structures.
The inclusion of an anisotropic coupling term is discussed showing that strong spin-
lattice coupling can excite magnons at the Brillouin zone boundary before they decay
to the gamma point.

6.1 introduction

Typical atomistic dynamics includes thermal effects and damping through phe-
nomenological terms as described in Chapter 2. It is assumed that the spin sys-
tem transfers energy and angular momentum to and from the electronic and lattice
systems. Whilst the underlying mechanisms for these processes are highly complex
the phenomenological treatment allows the effects to be introduced into the spin dy-
namics easily. The coupling of the spin system to the lattice can be done in a more
exact way by considering the dynamics of the lattice alongside the spin dynamics.
In this way the dynamical lattice will act as a thermal reservoir for the spin system
and provides a channel for energy to dissipate out of the spin system.

The development of molecular dynamics (MD) and spin dynamics (SD) as com-
putational tools have allowed for detailed investigation of the microscopic dynamics
of condensed matter systems. Interest in coupling spin and molecular dynamics has
expanded in recent years. Several groups have developed such models to investi-
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gate a variety of dynamical effects where the coupling is important. It was shown
by Karakurt et al.[95], using a first order coupling term, that the interaction of
the spins and lattice can induce a magnetic damping effect which arises from finite
boundaries. However, the physics of such a coupling term is not clear as it results
in a net acceleration on the lattice.

Further developments have been made extensively by Ma et al.[27], who incorpo-
rated advanced magnetic inter-atomic potentials and ab-initio calculations to model
bcc iron. Ma et al. have also shown that by coupling the instantaneous tempera-
tures of the spin and lattice systems to the three temperature model[73] the electron
temperature can be effectively simulated[84]. In the work by Ma et al. the only en-
ergy transfer channel between the spins and lattice is through the dependence of
the exchange on the distance between atoms. This does not allow for transfer of
angular momentum and so another coupling term is highlighted by Beaujouan et
al.[96] Later in this chapter this coupling term is employed to to demonstrate the
utilisation of the lattice as a thermal reservoir and that magnons can be excited
without direct thermal noise.

In the context of heat assisted magnetic recording the simulation of the lattice
dynamics in FePt would provide valuable insights. However due to the nature of
the polarised Pt moments any motion by the Fe moments would cause a fluctuation
of the Pt moment beyond the derivation of the Hamiltonian derived in Ch 2. This
would require longitudinal spin fluctuations[97] to be incorporated which would in-
crease the complexity of the model. Here a more simplified approach is taken to
focus on the dynamic effects of the coupling of the spins to the lattice and so a
simple model for bcc Fe, which is well parametrised in the literature, is utilised.

6.2 model details

To model the coupled spin and lattice system the starting point is the Hamiltonian
containing contributions from all the degrees of freedom.

H (r, v, S) = −
∑
i,j
J(ri − rj)Si · Sj − µs

∑
i

Si · Happ

+
∑

i

miv2
i

2
+

1
2
∑
i,j
U(|ri − rj |) (6.1)
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bcc Fe Unit
Morse Potential[98] D 0.4174 eV

α 1.3885 Å
r0 2.845 Å

Exchange[27] J0 0.90490177 eV
rc 3.75 Å

System[5, 102] µs 2.22 µB

m 55.845 u
a 2.8635 Å

Table 6.1.: Parameters for the Morse potential, exchange interaction and other sys-
tem constants used for bcc Fe. References are given for where the pa-
rameters are taken from.

The first two terms form the magnetic Hamiltonian which drives the spin dynam-
ics. The third term is the kinetic energy of the lattice and the final term is the
lattice inter-atomic potential energy, which is written here as a pairwise interaction.
µs and mi are the saturation magnetic moment and atomic mass which are system
constants, the values are given in table 6.1. The potential used here for bcc Fe is
the Morse potential[98], described by:

U(rij) = D
[
e−2α0(rij−r0) − 2e−α0(rij−r0)

]
(6.2)

This potential incorporates attractive and repulsive parts, which is quadratic close
to the energy minimum but with added anharmonicity further away. D and r0

represent the depth and position of the energy minimum and α0 controls the width,
these parameters are given in table 6.1. These parameters give a lattice constant
a0 = 2.8635 Å[98] which is close to the experimental aexp = 2.870 Å[99, 100]. More
accurate inter-atomic potentials for metals utilise many body effects, in particular
Derlet and Dudarev[101] derived a many body inter-atomic potential for Fe that
incorporates magnetic effects. These potentials greatly increase the accuracy of the
lattice properties but here the focus is on the magnetic properties of the system and
so the Morse potential should be suitable.

Since the atoms will not remain in their equilibrium positions the exchange in-
teraction must depend on the separation of the atoms and therefore provides the
simplest coupling term between the spins and lattice. In principle, how the exchange
varies with atomic separation is highly complex; especially for metals like Fe where
long range exchange interactions like RKKY exchange may occur[37]. The form of
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the exchange used here is given by Ma et al.[27] for ferromagnetic bcc Fe. This is
an isotropic exchange interaction that only depends on the magnitude of the atomic
separation and has no directional dependence.

J(rij) =


J0

(
1 − rij

rc

)3
rij < rc

0 rij > rc

(6.3)

The equations of motion for the coupled system combine the Landau-Lifshitz-
Gilbert (LLG) equation with Newton’s equations for the lattice.

∂ri

∂t
= vi (6.4)

∂vi

∂t
=

Fi

mi
(6.5)

∂Si

∂t
= − γ

(1 + λ2)µs
Si × (Hi + λSi × Hi) (6.6)

The spin damping, λ, is included here for clarity but for conservative dynamics
this can be removed by using λ = 0. The F and H are the local force and effective
field respectively and are given by:

Hi = −∂H
∂Si

(6.7)

Fi = −∂H
∂ri

(6.8)

Since this system now contains 3 sub-systems that each interact the numerical
simulation requires careful treatment. Both Ma et al. and Beaujouan et al. use
a Suzuki-Trotter decomposition method[103] to integrate the coupled equations
of motion. This method is a symplectic integrator which has been used for spin
liquids[104, 105] and has been shown to be accurate with larger time steps than
other integration techniques[106]. To begin with the state vector of the system
which combines the lattice and spin degrees of freedom is given by:

X(t) =


{ri(t)}
{vi(t)}
{Si(t)}

 (6.9)

Using this notation the coupled differential equations are written in Liouville form
where the Liouville operator is the sum of the operators for each sub-system. The

104



6.2 model details

position, velocity and spin Liouville operators themselves are the equations of motion
for the position, velocity and spin given earlier.

∂X
∂t

= L̂X(t) =
(
L̂r + L̂v + L̂s

)
X(t) (6.10)

L̂r =
∑

i

vi · ∂

∂ri
(6.11)

L̂v =
∑

i

Fi

mi
· ∂

∂vi
(6.12)

L̂s =
∑

i

(ai × Si) · ∂

∂Si
(6.13)

Where the axial vector Ai in the spin Liouville operator is equivalent to the cross
product drift function presented in Chapter 2:

ai =
γ

(1 + λ2)µs
(Hi + λSi × Hi) (6.14)

Despite the complicated nature of the Liouville operators the formal general so-
lution is the exponential update. Due to the complexity the exponential cannot be
evaluated directly but instead the Suzuki-Trotter decomposition approximates this
as the exponential update for each separate Liouville operator as the following

X(t+ ∆t) = e(L̂r+L̂v+L̂s)∆tX(t) (6.15)

= eL̂v∆t/2eL̂r∆t/2eL̂s∆teL̂r∆t/2eL̂v∆t/2X(t) + O(∆t3) (6.16)

These exponentials are algorithmic functions that update the extend variable;
these updates are given below. For the position and velocity they follow a simple
first order update but for the spins the Cayley transform is applied which is a norm
conserving rotation about the given axial vector.

eL̂v∆tvi = vi +
∆t
mi

Fi (6.17)

eL̂r∆tri = ri + ∆tvi (6.18)

eL̂s∆tSi =
Si + ∆tai × Si +

∆t2

2

(
(ai · Si)ai − 1

2a
2
i Si

)
1 + 1

4∆t2a2
i

(6.19)
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Figure 6.1.: The mean error in the total energy for different time steps calculated
at 10K in an applied field of 10 T. The update order is vrsrv, with the
semi-implicit scheme used for the spin update.

Without the spins the position and velocity updates are then identifiable as the
velocity ( or position) Verlet integration scheme; where the velocity and position
are updated in an alternating manner with a half timestep between them. For the
coupled system the order of updates shown in equation 6.16 is just one possibility
and the subscripts can be re-ordered to give the same approximation. To simplify the
notation the order that the updates are performed in is described by the subscript
of each of the Liouville operators; i.e eL̂v∆t is given as v. Therefore the update
specified in equation 6.16 is noted as vrsrv. After each update the forces and fields
need updating depending on the new system state, therefore the ordering of the
operators can affect the computational cost for each time step. Whilst the other
updates allow for a minimisation in the computation of the forces[27], the vrsrv
allows the spin update to be replaced with the semi-implicit scheme which is also
uses the Cayley transform. Since the semi-implicit scheme uses a predictor step this
improves the accuracy of the spin update which is the critical update of the system.
Since the spin time scale is shorter than the positions and velocities the vrsrv also
allow for the spin update to be repeated multiple times before the positions are
re-updated[107]. Whilst this has not been implemented in this work it represents a
useful addition for later development.

The integration scheme is tested by measuring the total energy, which since there
is no dissipative effects should remain constant. The system is initialised with the
velocities in random directions with a magnitude given by vtherm =

√
(6kBT/m)
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and the spins are aligned in the z direction. The initial temperature is set at 10
K and a 10 T field is applied to the spins. Figure 6.1 shows the relative error in
the mean total energy calculated for different time steps. As the time step reaches
1 fs the error becomes significant; this arises from the spin integration since the
spins begin to damp towards the field even without the damping term (λ = 0). The
natural timescale of the atomic motion is slower than that of the spin precession and
so it is this that limits the integration scheme. As observed in figure 6.1 the error for
a time step of 0.1 fs is small and the time step is not too small to be computationally
inefficient. This time step is used throughout unless otherwise mentioned.

Consistent with the atomistic spin dynamics, the system is kept at a constant
temperature through the Langevin thermostat. Conventional molecular dynamics
incorporate a thermal noise and damping terms into the velocities, here this is ex-
tended to incorporate thermal noise and damping in the spin system as well. Since
the sub-systems are coupled a single thermostat would be possible. If the only the
velocities are thermostatted this would allow the lattice to act as a thermal reser-
voir for the spins. However in practice the whole system is kept at an equilibrium
temperature more efficiently when both the spins and velocities are thermostatted.
In this case the fields and spins are altered as follows

Hi = −∂H
∂Si

+ ξi (6.20)

Fi = −∂H
∂ri

− ηmivi + Γi (6.21)

where ξi and Γi are the fluctuating thermal fields acting on the spins and velocities
respectively. The dissipation in the lattice is controlled by the friction, η, which has
units of s−1. The strength of the fluctuation term for the lattice can be found by
converting the stochastic differential equations into a Fokker-Planck equation for
which a stationary solution can be found. The solution results in the following
moments of the Gaussian noise[27].

⟨Γiα(t)⟩ = ⟨ξiα(t)⟩ = 0 (6.22)

⟨Γiα(t)Γjβ(t
′)⟩ = 2ηkBT

mi
δijδαβδ(t− t′) (6.23)

⟨ξiα(t)ξjβ(t
′)⟩ = 2λµskBT

γ
δijδαβδ(t− t′) (6.24)

107
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Figure 6.2.: The temperature dependence of the magnetisation and susceptibility
showing the Curie temperature is TC ≈ 1100K.

where i, j are atoms numbers, α, β = x, y, z. Despite the coupling the variance of
the thermal noise does not change from the separate spin or molecular dynamics.

6.3 equilibrium properties

Now that the model has been detailed we begin by investigating the equilibrium
properties of the coupled system. First the equilibrium magnetisation and suscep-
tibility are calculated using the thermal noise term for both the spin and lattice
systems which is shown in figure 6.2. The damping terms are set to be λ = 1.0
and η = 0.6ps−1 which brings the system in thermal equilibrium. Both the mag-
netisation and susceptibility show TC ≈ 1050 K which agrees well with the values
calculated by Ma et al.[27] and Körman et al.[108] In this case because both the spin
and lattice damping are high the system stays close to equilibrium. The atoms are
close to their equilibrium positions and so the exchange does not vary much from
the values if the atoms were fixed at the lattice sites.

We now move on to calculate the magnon and phonon dispersion relations at
equilibrium in a bulk system. These excitations are created at finite temperature
through the thermal noise term but since damping terms are incorporated into
the equations of motion they will dissipate. Therefore to calculate the dispersions
the temperature is set at 10 K and the damping constants are set low to λ =

0.01 and η = 0.01ps−1 so the excitations will exist over a longer timescale. The
phonon dispersion were calculated using the velocity auto-correlation function and
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6.3 equilibrium properties

Figure 6.3.: Schematic of the bcc Brillouin zone, adapted from reference 111. The
path taken is N-Γ-H-P-Γ.

is shown in figure 6.4. The velocity auto-correlation function in Fourier space is
defined[109, 110] as:

Ap(k,ω) =
∫ T

0
⟨vp

k(0)v
p
k(t)⟩e

−iωtdt (6.25)

where p = x, y, z and vp
k(t) is the spatial Fourier transform of the velocities and

T is the total time over which the sampling is taking place which sets the minimum
frequency that is observable. The evaluation of the spatial Fourier transform cannot
be undertaken using a fast Fourier transform as the positions do not lie on an exact
discrete grid. Therefore it is calculated using a sum over the atoms in the system.

vp
k(t) =

∑
i

vp
i e

−ik·ri (6.26)

This sum is performed over a discrete set of k vectors. The symmetry directions in
the bcc Brillouin zone are shown in figure 6.3; the path taken through the Brillouin
zone is N-Γ-H-P-Γ with the k vector discretisation given by dk = 2π/L where L is
the size of the system.

The peaks of the velocity auto-correlation function are shown in figure 6.4 for
a system of 32x32x32 unit cells. The calculated phonon dispersion is compared
to experimental values of Minkiewicz et al.[112] The calculated values agree with
the experimental values for some k vectors and show some of the key features but
otherwise does not match. The agreement at low k vectors may arise from small
amplitude oscillations around the equilibrium positions where the Morse potential
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Figure 6.4.: The peaks in the velocity autocorrelation function showing the phonon
distribution calculated at 10K with η = 0.6 ps−1. Experimental results
of Minkiewicz et al.[112] are shown as solid lines for comparison.

will behave quadratically. Despite the difference the energy scale is correct which is
important for the simple approach here.

The magnon dispersion can be calculated using the dynamical spin structure
factor[75, 113]

Sαβ(k,ω) =
∑
r,r′

eik·(r−r′)
∫
eiωtCαβ(r − r′, t)dt (6.27)

The equal time spin-spin correlation function is defined as

Cαβ(r − r′, t) = ⟨Sα(r, t)Sβ(r′, 0)⟩ − ⟨Sα(r, t)⟩⟨Sβ(r′, 0)⟩ (6.28)

Its calculation is detailed in Ref. 75 but relies on the translational invariance of
the system and uses a fast Fourier transform. Therefore the approach used above for
the velocity auto-correlation function is applied to the spins as well, which is similar
to the manner employed in Refs. 114 and 115. The magnon dispersion is shown in
figure 6.5 at 10K using a low damping of λ = 0.01. The solid lines show the phonon
dispersion from figure 6.4 which is at as much lower energy (frequency) than the
ferromagnetic magnon branch. Since there is a large difference in the energy scales
there will be little coupling between the modes at high k vectors. At low k vectors
the behaviour of the magnons and phonons are different; from linear spin wave
theory the magnon energies will be ∝ k2 whilst the phonons will be ∝ k indicating
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Figure 6.5.: The magnon dispersion at T=10K with λ = 0.01. The solid red lines
show the phonon dispersion which occurs at much lower energies than
the phonon.

that they will cross. Figure 6.6 shows the region close to Gamma point from figure
6.5. Here the magnon and phonon bands cross and have similar energies which may
allow for exchange of energy between them. Since they are at low k vectors a much
larger system would be required to observe any detailed effects of the dispersions
which becomes computationally difficult.

6.4 induced spin damping due to lattice coupling

The coupling of the spins to the lattice is a dominant effect in the dissipation of
energy from the spin system. To dissipate energy from the spin system angular
momentum needs to be transferred to the lattice. Control of the damping in a
material can be important for future recording devices since high damping materials
will switch faster with an applied field. Generally the damping relates strongly to
the spin-orbit coupling so materials with rare earth elements can be engineered
to have high damping[82]. The distance dependence of the exchange is meant to
form a coupling between the spin and lattice systems. However since the exchange
interaction is isotropic and pairwise there is no net effect on the magnetisation
dynamics. This can be seen by considering the spin equation of motion without
damping for a pair of spins. The equation of motion for the magnetisation ∂M/∂t =
Si × JijSj +Sj × JjiSi. Since Jij = Jji the terms will cancel and the magnetisation
is conserved. Therefore a separate coupling term is included into the Hamiltonian
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Figure 6.6.: The small k vector region of figure 6.5. At small k vectors the magnon
dispersion follows ∝ k2 while the phonon dispersion follows ∝ k.

for which the spins and lattice can transfer energy and angular momentum. This
term is introduced by Beaujouan et al.[96] and as described by other literature[116]
as arising from the spin-orbit interaction.

Hc = −
∑
i,j
K(rij)

(
(Si · r̂ij)(Sj · r̂ij) − 1

3
Si · Sj

)
(6.29)

Since this term has the same form as the dipole interaction term (equation 2.27) it
is termed the ”pseudo-dipole” coupling term. The difference arises in the pre-factor,
K(rij); in the dipole interaction it decays slowly as 1/r3 whereas the pseudo-dipole
coupling term should decay very sharply with separation in a similar manner to the
exchange. In this case to simplify the model the pre-factor is assumed to take the
same form as for the exchange but scaled, thus K(rij) = (K0/J0)J(rij).

To investigate the effect of the coupling term the magnetisation dynamics in a
field is calculated for different values of K0. A small damping, λ = 0.01, is included
so that the spins are in an thermalised state and so any change in the damping
is clearly observable. Figure 6.7 shows My(t)/|M(t)| as a function of time for
K0 = 0, 0.1 and 0.5 with a 10 T field in the y direction. The values are normalised
by |M(t)| as the different coupling changes the equilibrium magnetisation and each
curve would reach a slightly different value. The magnetisation curves show a change
in the damping, with the large coupling reducing the damping rate. The damping
is extracted by fitting my(t) = tanh(ωpλt) where ωp is the precession time which is
extracted from the x and z components. The extracted damping values are shown in
the inset of figure 6.7 and a decrease in the damping is observed for strong coupling.
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Figure 6.7.: Damping of the magnetisation towards the field direction for different
coupling values. Lines show my(t) = tanh(ωpλt) fitted to the data,
the extracted damping is shown in the inset (normalised to the input
damping).

This decrease is unexpected as the coupling to lattice is intended to transfer energy
from the spin system to the lattice. This may arise from the direction in which the
field due to the pseudo-dipolar interaction acts as it may, depending on the local
position and spin structure, act in the opposite direction to the damping torque.
The interaction also will be affecting the equilibrium state of the system, as it will
act against the exchange interaction (c.f. the last term in equation 6.29) depending
of the sign of K0. At finite temperature the generation and scattering of spin waves
plays a role in damping and so the damping will increase with temperature[117];
therefore the role of the pseudo-dipolar interaction may be to alter the underlying
dynamics of the system which will require further investigation.

Figure 6.8 shows the magnon dispersion where there is no spin damping and a
large coupling K0 = 0.5J0. Compared to figure 6.5 the same ferromagnetic branch
has been excited; since there is no thermal noise this is caused by the coupling term.
There is a low energy branch appearing which is on the scale of the phonon modes
and is likely due to the method used to compute the structure factor but may be
coupled modes.

The effect of the coupling term can be seen by comparing the relative distribution
in the Brillouin zone. Figure 6.9 shows the values of the peaks for each k vector
normalised to the value at the Γ point for the two cases. For the case without
the coupling term but with thermal noise an equilibrium distribution is obtained
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6.4 induced spin damping due to lattice coupling

Figure 6.8.: The magnon dispersion without any thermal noise and the coupling
term set with K0 = 0.5J0. The ferromagnetic bands are visible implying
that the coupling term is exciting modes. Some low energy bands are
also present which are likely to be the phonon modes that are visible
due to the computational method.
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Figure 6.9.: The relative peak values of each the magnon dispersions where the val-
ues are normalised to the value at the Γ point. With out the coupling
but with thermal noise (circles) the power is distributed close and pri-
marily at the Γ point. Without the thermal noise but with the coupling
term included (squares) the system is still out of equilibrium with most
of the power at the edge of the Brillouin zone.
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6.5 effects due to free surfaces

with the majority of power close to the Γ point. However for the case without
thermal noise and the coupling term included the distribution is not in equilibrium,
partially due to the limited run time, and the distribution is mostly at the edges
of the Brillouin zone. Since the coupling term is short ranged this likely drives
the magnon modes at the edge of the Brillouin zone. There appears to be some
relaxation processes occurring as there is an similar amount of power in modes close
to the Γ point so the coupling term is exciting modes at short wavelengths which
then relaxing to longer wavelengths.

6.5 effects due to free surfaces

We now turn to the effects generated by creating a surface in the system. The surface
spins have different local fields from first missing exchange interactions and second
from a reconstruction of the surface compared to the bulk. Figure 6.10 shows the
spin auto-correlation function calculated for a system with non-periodic boundaries
in the z-direction. The solid black line shows the magnon dispersion for a bulk
system from figure 6.5. Whilst the bulk ferromagnetic branch is still distinct it does
vary around P and N. Both P and N are along kz and so the change represents a
change in the exchange in this orientation. At P the surface modes are at a higher
energy than the bulk mode which would imply a stronger exchange interaction. This
may be possible if the surface reconstructs so the surface layer lies closer to the layer
below it thus giving a larger exchange interaction. Figure 6.10 also shows low energy
surface magnon modes that would appear to be at a similar energy to the phonon
modes and thus more easily accessible for the transfer of energy.

The surface starts in the bulk equilibrium position but due to the finite boundaries
it starts to relax. This triggers phonons travelling in the z direction, which with low
friction can be long lived, causing a coherent oscillation of the magnetisation. Figure
6.11 shows how the magnetisation behaves in time at the beginning of the simulation.
There is a clear oscillation in the magnitude of the magnetisation in comparison to
the relaxation curve shown for bulk. By removing the demagnetisation part of the
curve the oscillation can be fitted using

mosc(t) = A sin(ω(t− t0)e
−t/τd +m0 (6.30)

with A,ω, t0, τd and m0 as fitting parameters. The fitting is shown in the inset of
figure 6.11. The fitted mode angular frequency is ω = 1.632 ± 0.002 ps−1 which corre-
sponds to f = 0.259 THz or 1.074 meV. Such an effect is observed experimentally[118–
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Figure 6.10.: Spin auto-correlation function calculated for a system with finite
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persion for a bulk system. There exists some surface modes due to the
reconstruction of the surfaces.
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Figure 6.11.: The magnetisation shows oscillations attributed to phonons triggered
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for a bulk system while the solid black line shows a fitted double
exponential which characterises the longitudinal relaxation. The in-
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y(x) = A sin(ω(x − x0))e−x/τd + y0. The fitted frequency is ω =
1.632 ± 0.002ps−1, corresponding to an energy of 1.074 meV.
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120] in Gd thin films using femto-second laser pulses to excite the dynamics. In this
case the oscillations are attributed to a coupled magnon-phonon mode that occurs at
the surface that has a frequency of 2.9 THz, which is much larger than the frequency
here. While this is a significant difference, in Gd the magnon frequencies are at a
lower energy due to the weaker exchange interaction and the magnetic moment is
much larger[5, 36] so the transfer of energy will happen at different points in the
Brillouin zone. Experimentally the coupling occurs with the optical branches, thus
at a higher energy. Here since the energy is much lower it would correspond to
a acoustic branch. The crossing of the acoustic branches was shown in figure 6.6
which shows the magnon and phonon are at similar energies for the first k-vector
considered. The magnetisation oscillation was not observed in simulations of N=16
unit cells, for which the first allowed k-vector would be the second point away from
Γ in figure 6.6 for which the energies are starting to separate. Studying the oscilla-
tion frequency over the temperature range T = 1 - 25 K shows little variation on
this scale. Despite the differences between the coupled modes, the aim here was to
demonstrate that these effects will occur through a dynamical exchange interaction
in the simple model for Fe where as the potentials for Gd are less well known.

6.6 conclusion

To summarise, a model of the coupled spin and lattice dynamics has been developed
to explore the effect of the lattice acting as a heat bath. An example system of bcc
Fe was modelled and was tested for first the energy conservation and the phonon
dispersion. With thermal noise and damping incorporated on both the spin and
lattice system the equilibrium magnetisation and susceptibility showed TC ≈ 1050
K. The phonon and magnon dispersion relations were calculated using the velocity
auto-correlation function and dynamical structure factor respectively. The phonon
dispersion showed similar energies and features to the experimental values given by
Minkiewicz et al.[112] but do not match over the full range. The magnon dispersion
shows a clear ferromagnetic branch which is at a much higher energy than the
phonons. There is some crossing at low k due to the different behaviour of the
excitations; a much larger system would be required to observe any coupling between
the bands at these k vectors.

The range dependent exchange interaction does not provide a suitable coupling
due to the symmetry of the equations of motion and so a specific coupling term is also
included based on the spin-orbit coupling. The induced damping was measured from
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the magnetisation dynamics in an applied field and showed that a strong coupling
to the lattice reduces the damping slightly. With no spin damping, λ = 0, the
coupling term excites magnons at the Brillouin zone boundary which decay to the
Gamma point indicating that some relaxation processes are occurring. Whilst the
coupling term is transferring energy between the sub-systems it requires a large
value to induce any magnetisation change on a picosecond timescale. This would
indicate that the lattice may not act as a sufficient thermal bath for spin dynamics
simulations.

A thin film was considered for which the magnon dispersion showed a main fer-
romagnetic branch as well as surface modes. The surface modes occur at higher
energies than the bulk modes for k-vectors with some kz component indicating that
the surface relaxes to a shorter separation from the second layer. Alongside the
relaxation of the surface, the magnetisation shows a coherent oscillation that arises
from a dynamic change in the exchange interaction at a frequency of f = 0.259 THz.
Whilst at a different frequency the process agrees with that seen experimentally for
Gd.
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7
C O N C L U S I O N

This thesis has explored the paradigm of heat assisted magnetic recording in relation
to the high density granular media required for further development of recording
devices. In this chapter the main results and conclusions presented throughout this
thesis are summarised and discussed. The final section concludes the chapter with
a discussion of the future prospects for the research.

Finite Size Effects On Linear Reversal In FePt

In Chapter 2 a model for FePt was introduced based on ab-initio calculations which
show that the Pt magnetic moments depend linearly on the exchange field from the
neighbouring Fe atoms. This allows the Hamiltonian to be expressed in terms of
only the Fe spins with mediated exchange and anisotropy parameters. Due media-
tion through the Pt they are both long ranged, extending for 5 unit cells (1.93 nm)
before they can be suitably truncated. Therefore with the aim to develop mag-
netic recording devices with grain sizes of a few nm the finite size effects are very
important.

These finite size effects have been investigated systematically using the atomistic
spin model. Calculations of the equilibrium magnetisation show that the trunca-
tion of the exchange interaction at the surfaces significantly reduces the apparent
Curie temperature. Using the constrained Monte-Carlo method the variation of the
magnetisation with polar angle shows that the magnetisation varies less for smaller
grains. Using Langevin dynamics the longitudinal and transverse susceptibilities
have been calculated for the range of grain sizes. These have been fitted which
allows for them to be used with the Landau-Lifshitz-Bloch model. By comparing
the ratio of the susceptibilities the critical temperature for the linear reversal range
drops for smaller grains and temperature range between this and the Curie temper-
ature widens. This indicates that if the free energy model is valid for these grains
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then the linear reversal regime will occur at small temperatures and exist over a
larger temperature range.

Following this the reversal properties were directly simulated. The reversal paths
show that the magnetisation does switch through a linear path in the temperature
range indicated by the equilibrium susceptibilities. However in the smaller grains
the ellipticity of the reversal path predicted from the free energy over-estimates in
comparison with the simulation results. The mean first passage time was calcu-
lated and shows that the combination of reduced anisotropy and different switching
mechanism means smaller grains reverse faster over the temperature range.

Exchange In Granular Media

After investigating the finite size effects in FePt grains, the inter-granular exchange
coupling was investigated. In granular media understanding the interactions be-
tween grains is important for the stability of bits. The dipolar interactions tend
to introduce errors into stored bits but the exchange interaction between grains
will reinforce grain stability. The effective exchange between grains is assumed to
arise from magnetic impurities in the inter-layer. These impurities form spin chains
between the grains.

To model this a sample grain structure was simulated atomistically, comprising of
a central grain surrounded by 6 grains, all hexagonal in shape. The non-magnetic
atoms in the inter-layer are not simulated so the magnetic impurities only have
a specified density which was varied. The exchange was extracted using a hybrid
CMC-MC model, where the magnetisation of each grain was fixed and the inter-layer
unconstrained following the usual MC method. The torque for the central grain was
calculated with the surrounding grains fixed. By fitting the gradient of the torque
with polar angle the effective inter-granular exchange was found.

The inter-granular exchange depends quite strongly on the density of magnetic
atoms in the inter-layer. The atoms were set on an fcc lattice which has a percolation
threshold of 19%. Since the grain separation is varied down to 0.5 nm the percola-
tion threshold is not exact but the inter-granular exchange is negligible below this
limit. The temperature dependence of the inter-granular exchange was found and is
seen to exist up to the Curie temperature. In agreement with experimental results,
the inter-granular exchange is found to decay exponentially with grain separation.
This indicates that as the recording media reduces the grain size and thus the grain
separation the inter-granular exchange will become more significant. The exponen-
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tial dependence on distance also shows that any distribution in the grain separation
when the mean separation is small will have a drastic effect on the inter-granular
exchange. The inter-granular exchange is likely to be beneficial to the long term sta-
bility of data bits as it reinforces the grain orientation whilst since its temperature
dependence shows that there is no coupling above the Curie temperature it will not
inhibit any switching during the HAMR process.

Ultrafast Switching In FePt

Recent experimental and theoretical work has observed that the magnetisation in
transition metal rare earth ferrimagnets can be switched using a femtosecond laser
pulse. It was first observed using circularly polarised light but has recently been
shown to occur in linearly polarised light, now known as thermally induced mag-
netisation switching. Theoretical efforts have shown that TIMS requires a anti-
ferromagnetic exchange coupling between two sub-lattices with different magnetic
moments. What was observed as helicity dependent all optical switching has now
been explained as the magnetic circular dichroism linked to this underlying TIMS. It
is therefore unexplained when helicity dependent all optical switching was observed
in ferromagnetic FePt granular media. Using the atomistic model of FePt the all
optical switching was investigated. Since the Pt sub-lattice is polarised and ferro-
magnetically coupled to the Fe sub-lattice TIMS is not expected to occur. The effect
of the femtosecond laser is modelled using the two temperature model. These elec-
tron and phonon temperatures are distinct and the laser directly heats the electron
temperature before thermalisation occurs into the phonons. The spins are coupled
to the electron temperature through the Langevin dynamics.

The experimentally observed switching is first assumed to be driven by the pres-
ence of a field generated through the inverse Faraday effect (IFE). The magnitude
and duration of the inverse Faraday field were varied to find the regime where switch-
ing occurs. The required field for FePt would need to be either > 60 T or have a
duration of 1 ps after the laser pulse. A duration of 500 fs would still require a field
strength of > 30 T. Whilst the strength or duration of a field caused by the IFE is
unknown the parameters required here are unlikely to occur.

An alternative explanation of the experimental results is through the thermal
activation of grains. The probability of a grain switching without a field increases
with fluence. The helicity dependent switching in different orientation of grains
absorbs either or less energy from the polarised laser. A simple two state master
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equation is then used to model the effect of a differential absorption of the laser heat
on the final magnetisation of the system. Using the transition rates calculated from
the atomistic model for different fluences the master equation predicts an induced
magnetisation in the orientation of the low absorption state. Whilst the induced
magnetisation is small it agrees well with the experiments for a magnetic circular
dichroism of 3%. Experimentally it is also shown that an applied field of 700 Oe can
stop the switching entirely. The effect of the applied field is incorporated into the
Master equation model and shows that it will indeed limit the induced magnetisation
when the applied field is against the low absorption orientation.

Coupled Spin-Lattice Dynamics In Fe

For magnetic reversal the damping plays an important role. If larger damping can be
engineered then the switching characteristics can also be controlled. In the atomistic
spin model described in chapter 2 the damping is included as a phenomenological
term so here a model incorporating the lattice dynamics is simulated. The model
utilises molecular dynamics to evolve the positions and velocities of the atoms along-
side the spin dynamics. For simplicity bcc Fe is modelled as this has been simulated
in the literature. In this simple model it is clear that the lattice will not induce any
damping as the exchange interaction is isotropic. Therefore an anisotropic coupling
term is introduced which represents the spin-orbit interaction. Using this term it
is shown that angular momentum is transferred between the spins and lattice. By
calculating the magnon dispersion a ferromagnetic branch is populated and through
analysing the relative amplitudes it is shown that the magnons are being excited at
the edge of the Brillouin zone and decay to reach the Gamma point. This implies
that the coupling term is exciting and removing energy from the spin system.

7.1 further work

Multi-Scale Modelling Of Granular Media

The topic of multi-scale modelling is currently at the forefront of research; by
coupling the length scales provided by ab-initio atomistic spin models and micro-
magnetics it is possible to simulate a large scale magnetic system or device from
essentially first principles. In chapter 3 ab-initio parameters were used to investi-
gate small grains of FePt for which the equilibrium magnetisation and susceptibilities
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were computed for various grain sizes. By using these parameters, for which fitted
functions have been calculated, it is possible to model these finite grains using the
Landau-Lifshitz-Bloch model. The simulation of a granular recording media utilising
these parameters would be able to investigate the stability of a full data bits (com-
prised of multiple grains) on a much longer timescale that is accessible in atomistic
spin dynamics

Whilst it was concluded that the LLB model is applicable down to grain sizes of
≈ 3.5 nm it would improve the accuracy of the modelling if a realistic free energy
could be derived or calculated for finite size grains. There exists such techniques
for calculating free energies from molecular dynamics and therefore it would be
possible to translate these algorithms to atomistic spin models. A method known as
Metadynamics uses biased steering to force a system out of a local energy minima,
which can be used to model rare events such as magnetic reversal over high energy
barriers. The resulting bias used to force the system is then directly relatable to
the free energy of the system. A method such as this could be employed to extract
the free energy in a finite system; which could then be entered into micro-magnetic
models directly or a suitable functional form fitted.

The results of Ch. 4 could also be incorporated in to the micro-magnetic modelling
using finite parameters to provide an almost complete model of granular media
parametrised from an atomistic model. Again by incorporating the inter-granular
exchange parameters into a micro-magnetic model it would be possible to investigate
it’s effects on a much longer time scale. This would allow for a detailed analysis
of the effects of inter-granular exchange on the recording and long time stability of
bits. In addition to this a more detailed investigation of inter-granular exchange
utilising ab-initio modelling would provide a more realistic model of the magnetic
impurity density and the exchange interaction between them which is important on
the overall interaction.

All Optical Switching In Granular Media

From the simulations performed here it was concluded that the helicity dependent
all optical switching in granular FePt arises from the different switching rates caused
by the orientations absorbing different amounts of energy from the laser. A simple
Master equation model was presented which provided a qualitative agreement with
the experimental findings. This model could be developed further to provide a more
accurate comparison to the experiments. The model does not account for any many-
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body interactions that would occur in a real system. As a larger magnetisation is
induced in the sample the increased dipole may act to reduce the switching rate.
This however may only be a small effect as the magnetisation only switched after
demagnetisation for which the dipole field would be very small.

Coupled Spin-Lattice Dynamics

The spin-lattice model presented represents only a prototype developed to initially
investigate the effects caused by coupling the sub-systems. A further aim would
be to develop a more advanced model that would allow for the investigation of the
spin dynamics driven by coupling to a phonon thermal reservoir. The pseudo-dipolar
coupling term has been shown to drive dynamics in the spin system but further work
is required to understand the behaviour and limits of utilising this as a coupling
to the heat bath. Further work must also be under taken to fully parameterise
the exchange interaction. The pseudo-dipolar term is required as the exchange is
isotropic; if an exchange interaction that has a more complicated dependence on the
atomic structure was to be developed then a stronger coupling to the lattice may be
possible. This is non-trivial however as the dependence of the exchange interaction
on the local environment cannot be simply calculated.
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A
C A L C U L AT I O N O F T H E S U S C E P T I B I L I T Y F RO M
AV E R AG E S

This appendix details the derivation of how the susceptibility can be calculated from
the atomistic spin simulations using the averages for m and m2. The susceptibility
tensor is defined as

χαβ =
∂Mα

∂Hβ
, (A.1)

and the magnetisation is given by

Mα =
∂F
∂Hα

. (A.2)

To calculate these we first use the definition of the Helmholtz free energy,

F = −kBT ln Z, (A.3)

where Z is the partition function that is calculated using.

Z =
∑
σ

exp
(

− H
kBT

)
. (A.4)

In this expression the sum extends over all the possible system states, σ. To
calculate this we utilise a Hamiltonian which is split into two parts; the underlying
Hamiltonian H0 and the Zeeman term:

H = H0 − µs

∑
i

Si · H (A.5)

H0 contains all the other microscopic interactions that do not involve the applied
field and thus no restrictions are made on this. Using these definitions to find the
magnetisation we first take the derivative of the free energy with respect to the
applied field
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calculation of the susceptibility from averages

∂F
∂Hα

= −kBT
∂ ln Z
∂Hα

(A.6)

=
kBT

Z
∂Z
∂Hα

(A.7)

We next calculate the derivative of the partition function, which is

∂Z
∂Hα

=
∂

∂Hα

[∑
σ

exp
(

− H
kBT

)]
(A.8)

=
∑
σ

(
− 1
kBT

)
exp

(
− H
kBT

)
∂H
∂Hα

(A.9)

Under the assumption that the applied field only appears in the Zeeman term the
derivative of the Hamiltonian is

∂H
∂Hα

=
∂H0
∂Hα

− µs

∑
i

∂

∂Hα
(Si · H) (A.10)

= −µs

∑
i

Sα (A.11)

By returning this to the derivative of the partition function we notice that the term
on the right hand side is the definition of the ensemble average of the magnetisation.

∂Z
∂Hα

=
1

kBT

∑
σ

(
µs

∑
i

Siα

)
exp

(
− H
kBT

)
(A.12)

=
Z
kBT

⟨Mα⟩ (A.13)

Returning to the susceptibility:

χαβ =
∂Mα

∂Hβ
(A.14)

=
∂

∂Hβ

∂F
∂Hα

(A.15)

=
∂

∂Hβ

(
kBT

Z
∂Z
∂Hα

)
(A.16)

= kBT

(
1
Z

∂2Z
∂Hα∂Hβ

− 1
Z2

∂Z
∂Hα

∂Z
∂Hβ

)
(A.17)

126



calculation of the susceptibility from averages

Using A.13 the second term can be expressed as:

1
Z2

∂Z
∂Hα

∂Z
∂Hβ

=
( 1
kBT

)2
⟨Mα⟩⟨Mβ⟩ (A.18)

The first term can be calculated by taking the derivation of eqn. A.12:

∂2Z
∂Hα∂Hβ

=
∂

∂Hβ

[
1

kBT

∑
σ
Mα exp

(
− H
kBT

)]
(A.19)

=
1

kBT

∑
σ
Mα exp

(
− H
kBT

)( −1
kBT

)
∂H
∂Hβ

(A.20)

=
( 1
kBT

)2∑
σ
MαMβ exp

(
− H
kBT

)
(A.21)

=
( 1
kBT

)2
⟨MαMβ⟩ (A.22)

Combining these two into eqn. A.17 we arrive at a relation for the isothermal zero
field susceptibility that can be easily computed from equilibrium properties:

χαβ =
1

kBT
(⟨MαMβ⟩ − ⟨Mα⟩⟨Mβ⟩) (A.23)

The derivation used the total magnetisation but the reduced magnetisation, mα =

Mα/MsV , can be used to calculate the reduced susceptibility

χ̃αβ =
χαβ

MsV
=
MsV

kBT
(⟨mαmβ⟩ − ⟨mα⟩⟨mβ⟩) (A.24)
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DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . Density Functional Theory
DM . . . . . . . . . . . . . . . . . . . . . . . Dzyaloshinskii-Moriya (interaction)
HAMR . . . . . . . . . . . . . . . . . . . . . Heat Assisted Magnetic Recording
HD-AOS . . . . . . . . . . . . . . . . . Helicity Dependent All Optical Switching
IFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Faraday Effect
LD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Langevin Dynamics
LL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Landau-Lifshitz
LLG . . . . . . . . . . . . . . . . . . . . . . . . . . . . Landau-Lifshitz-Gilbert
MAMR . . . . . . . . . . . . . . . . . . Microwave Assisted Magnetic Recording
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Monte-Carlo
MCD . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic Circular Dichroism
MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Molecular Dynamics
RE-TM . . . . . . . . . . . . . . . . . . . . . . . . Rare Earth - Transition Metal
SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spin Dynamics
sLLG . . . . . . . . . . . . . . . . . . . . . . Stochastic Landau-Lifshitz-Gilbert
TIMS . . . . . . . . . . . . . . . . . Thermally Induced Magnetisation Switching
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