
Multiprocessor-safe Wait-free
Queue in RTSJ

Emad T. Aloqayli
Doctor of Philosophy

University of York
Computer Science

September 2014

Abstract

Currently, most computer systems are running on multiprocessors (or multi-
cores). Moreover, the number of cores inside the processor are expected to
increase. To be able to utilise the increased computational power in these
systems, developers are enforced to expose more parallelism within their
applications. Multi-threading is one of the common techniques that are used
to introduce parallelism within computer applications.

Shared data structures are in the core of multi-threaded applications; these
data structures facilitate the communication between the different threads
to help in completing the designed tasks within the application. A control
mechanism should be provided such that the access of any thread will not
compromise the consistency and correctness of the data structure contents.
The increased number of threads will result in an increased competition, this
will lead to inevitable difficulties in understanding the interleaving scenarios
at runtime, hence, the time analysis will be a very complex task.

The Real-Time Specification for Java (RTSJ) introduces different shared
queues that can facilitate communication between different threads within the
application. However, these queues are uni-directional enabling communication
between standard Java threads and the realtime thread classes, which the
RTSJ introduces.

The work presented in this thesis introduces a novel algorithm for concur-
rently accessing shared data structures in a shared memory multi-processor
(or multi-core) systems. The proposed algorithm is implemented as an array-
based First-In-First-Out (FIFO) queue, which improves the scalability and
time predictability in multi-threaded applications. The algorithm utilises the
different features that the RTSJ introduces to ensure the time predictability.

iii

Contents

Abstract iii

List of Figures ix

List of Tables xi

Listings xii

Acknowledgements xv

Declaration xvii

1 Introduction 1
1.1 Real-time Applications . 6
1.2 Real-time Specification for Java (RTSJ) 8
1.3 Thesis hypothesis . 10
1.4 Thesis outline . 11

2 Non-blocking synchronisation approaches 13
2.1 Blocking Mechanisms . 14

2.1.1 Contention and Lock Granularity 15
2.1.2 Deadlocks . 15
2.1.3 Lock Convoying . 16
2.1.4 Composability . 16

2.2 Non-blocking Mechanism . 18
2.2.1 Classification of approaches 20

2.2.1.1 Based on the real-time properties guarantee . 20
2.2.1.2 Thread coordination 21
2.2.1.3 Type of supported shared data structures . . 23

2.2.2 Non-blocking design issues 26
2.2.2.1 Multi-processor and multi-core processors . . 27
2.2.2.2 Memory Management 29

v

CONTENTS

2.2.2.3 Real-time characteristics 30
2.2.2.4 ABA problem 31

2.3 Examples of Non-blocking Approaches 38
2.3.1 General and specific implementations 38
2.3.2 Transactional Memory (TM) 42

2.4 Summary . 50

3 RTSJ and non-blocking wait-free queues 51
3.1 Core RTSJ Feautres . 52

3.1.1 Real-time threads . 52
3.1.2 Memory Areas and Memory management 54

3.2 RTSJ Wait-Free queues . 59
3.3 Non-blocking implementations for RTSJ environments 61
3.4 Summary . 63

4 Multiprocessor Wait-Free Queues for RTSJ 67
4.1 Computational model and assumptions 68
4.2 Algorithm pseudo code . 70
4.3 Overall Approach . 74
4.4 Design issues . 76

4.4.1 Data structure size . 77
4.4.2 Data structure design . 84

4.5 Time analysis . 88
4.6 Summary . 93

5 Wait Free queue algorithm implementation 95
5.1 Using the algorithm . 95
5.2 Wait-free queue implementation 97

5.2.1 The queue node . 97
5.2.2 Data structure initialisation 99
5.2.3 Enqueue Method . 101
5.2.4 Dequeue Method . 107

6 Evaluation 113
6.1 Software verification tools and Java PathFinder (JPF) 114
6.2 Model checking the algorithm 118
6.3 Model-Checked test cases . 119

6.3.1 Empty queue . 122
6.3.1.1 Test case 1: multiple writers are trying to

enqueue new data items 123

vi

CONTENTS

6.3.1.2 Test case 2: multiple readers are trying to
dequeue data items from the queue 124

6.3.1.3 Test case 3: two writers and two readers are
accessing the queue 125

6.3.2 Partial empty queue . 125
6.3.2.1 Test case 1: multiple writers are trying to

enqueue new data items 126
6.3.2.2 Test case 2: multiple readers are trying to

dequeue data items from the queue 127
6.3.2.3 Test case 3: two writers and two readers are

accessing the queue 128
6.3.3 Partial Full queue . 129

6.3.3.1 Test case 1: multiple writers are trying to
enqueue new data items 130

6.3.3.2 Test case 2: multiple readers are trying to
dequeue data items from the queue 131

6.3.3.3 Test case 3: two writers and two readers are
accessing the queue 132

6.3.4 Full queue . 133
6.3.4.1 Test case 1: multiple writers are trying to

enqueue data items in full queue 134
6.3.4.2 Test case 2: multiple readers are trying to

dequeue data items from the queue 135
6.3.4.3 Test case 3: two writers and two readers are

trying to concurrently access the queue . . . 136
6.3.5 Test cases summary . 137

6.4 Performance Evaluation . 137
6.4.1 Response time test analysis 140
6.4.2 Worst case response time 141

6.5 Case study - Image Processing 145
6.5.1 Image Histogram . 147
6.5.2 Experimentation . 149

6.6 Summary . 160

7 Conclusion and future work 163
7.1 Conclusions . 164
7.2 Future work . 166

Appendices 169

A Atomic variables 171

vii

CONTENTS

B JPF Model checking 177

C JPF test cases 185
C.1 Empty queue - three writers case 193
C.2 Empty queue - three readers case 195
C.3 Empty queue - tow readers and two writers case 197
C.4 Partial empty queue - three writers case 200
C.5 Partial empty queue - three readers case 202
C.6 Partial empty queue - tow readers and two writers case 205
C.7 Partial full queue - three writers case 207
C.8 Partial full queue - three readers case 210
C.9 Partial full queue - tow readers and two writers case 212
C.10 Full queue - three writers case 215
C.11 Full queue - three readers case 218
C.12 Full queue - tow readers and two writers case 220

D Case study code 225
D.1 JamaicaVM wait free queues . 225
D.2 WaitFreeQueue algorithm . 248

References 271

viii

List of Figures

2.1 Simpson’s four-slot algorithm 22
2.2 Threads execution on single and multi-core processors 27
2.3 Pop operation . 35
2.4 Push operation . 35
2.5 Stack before T1 preemption . 36
2.6 Stack After T1 resumed . 37

4.1 Block diagram of the data structure 76
4.2 New writer case . 76
4.3 Worst case scenario of writers and readers execution 78
4.4 Special case scenario . 83
4.5 Suggested memory allocation of the data structure 85
4.6 Data structure components and suggested memory allocation 87

5.1 Class diagram of the wait free algorithm 98
5.2 The node life cycle . 100
5.3 Enqueue method, step 1: reserving a node 104
5.4 Enqueue method, step 2: produce the data 105
5.5 Enqueue method, step 3: update the data structure 106
5.6 Dequeue method, step 1: read a node index 110
5.7 Dequeue operation, step 2: consuming the data 111
5.8 Dequeue method, step 3: updating the data structure 112

6.1 JPF model checking, 2 reader and 2 writer threads 119
6.2 JPF model checking, 3 reader and 3 writer threads 120
6.3 Test case 1: 3 writer threads with empty queue 123
6.4 Test case 2: 3 reader threads with empty queue 124
6.5 Test case 3: 2 writer and reader threads with empty queue . . 126
6.6 Test case 1: 3 writer threads with partial empty queue 127
6.7 Test case 2: 3 reader threads with empty queue 128
6.8 Test case 3: 2 writer and reader threads with empty queue . . 129

ix

LIST OF FIGURES

6.9 Test case 1: 3 writer threads with partial empty queue 131
6.10 Test case 2: 3 reader threads with empty queue 132
6.11 Test case 3: 2 writer and reader threads with empty queue . . 133
6.12 Test case 4: 3 writer threads with partial empty queue 135
6.13 Test case 2: 3 reader threads with empty queue 136
6.14 Test case 2: 2 writer and 2 reader threads with full queue . . 137
6.15 Average response time for the enqueue operation 141
6.16 Average response time for the dequeue operation 142
6.17 Worst case response time for the enqueue operation 143
6.18 Worst case response time for the dequeue operation 144
6.19 Original image and its histogram 148
6.20 Small image . 150
6.21 Medium image . 151
6.22 Large image . 152
6.23 Block diagram of the image histogram application 153
6.24 Average of response time for the enqueue operation, small image156
6.25 Average of response time for the dequeue operation, small image157
6.26 Average of response time for the enqueue operation, medium

image . 158
6.27 Average of response time for the dequeue operation, medium

image . 158
6.28 Response time for the enqueue operation, large image 159
6.29 Response time for the dequeue operation, large image 159

x

List of Tables

6.1 Test cases results summary . 138
6.2 The selected images’ details . 149

xi

Listings

1.1 Simple multi-threaded application 3
2.1 "Account class" . 17
2.2 "Transfer method" . 17
2.3 Stack node . 34
2.4 Pop operation . 34
2.5 Push operation . 34
2.6 "Top pointer" . 37
2.7 "Revised pop operation" . 37
2.8 "Revised push operation" . 38
3.1 MemoryArea class definition . 57
3.2 ScopedMemory class definition 58
3.3 Example of a realtime thread accessing a ScopedMemory area 58
4.1 "Algorithm pseudo code" . 71
5.1 QueueNode class . 99
A.1 Boolean Atomic variable . 172
A.2 Integer Atomic variable . 174
B.1 ReaderThread for JPF testing 178
B.2 WriterThread for JPF testing 178
B.3 Queue Node . 179
B.4 The algorithm code . 180
B.5 The algorithm code . 181
C.1 The writer thread . 186
C.2 The reader thread . 186
C.3 The main class . 187
C.4 The algorithm code . 187
C.5 The main class code . 193
C.6 The main class code . 195
C.7 The algorithm code . 197
C.8 The main class code . 200
C.9 The main class code . 202
C.10 The algorithm code . 205

xiii

LISTINGS

C.11 The main class code . 207
C.12 The main class code . 210
C.13 The algorithm code . 212
C.14 The main class code . 215
C.15 The main class code . 218
C.16 The algorithm code . 220
D.1 JamaicaVM WaitFreeReadQueue 225
D.2 JamaicaVM WaitFreeWriteQueue 235
D.3 JamaicaVM WaitFreeDequeue 241
D.4 image distribution thread . 248
D.5 Pin Data thread . 252
D.6 Pixel counting thread . 254
D.7 Image Histogram application . 257
D.8 Pin thread example . 261
D.9 Writer thread example . 262
D.10 Reader thread example . 264
D.11 Enqueue Method . 266
D.12 Simple multi-threaded application 268

xiv

Acknowledgements

I am very much grateful to my supervisor, Professor Andy Wellings, for his
support, patience, guidance and invaluable time throughout the period of
my study. I like to thank the Realtime system research group for all of their
support and help, especially Professor Neil Audsley and Dr. Rob Davis for
their technical advices.

I would like to thank my friends, Dr. Mohammad AlRahmawy, Dr. Abdul
Haseeb Malik, Hashem Ghazzawi, Dr. Shiyao Lin and David Griffin for their
help and support during the progress of my study.

I would like to thank my mother, my brothers, and my family in-law for
their continuous support and encouragement. Lastly, I would never completed
my research without the endless support of my wife and my sons and daughters,
I like to thank them for their time and effort that encouraged me all the time.

xv

Declaration

I declare that this thesis is a presentation of original work and I am the sole
author. This work has not previously been presented for an award at this, or
any other, University. All sources are acknowledged as References.

xvii

Chapter 1

Introduction

Commercial shared memory multiprocessor computer systems have been widely
used in real life applications [103]; with expectations that they will become
more common as they tend to provide better performance by introducing
low-cost chip multi-threading. Continuous improvements of these machines
are needed in order to meet the increased demand on computational power
required by real-time applications.

Generally, the performance boosts have been achieved by hardware manu-
facturers by improvements in cache memories, instructions optimization and
clock speed [139]. Meanwhile, software developers concentrate on developing
correct applications while relying on the performance enhancements achieved
by the hardware improvements.

However, the increased demand for performance cannot be met by further
improvements in hardware; due to mainly power consumption and heat
dissipation issues [139]. Consequently, the multi-core architecture has been
introduced to overcome these problems and promised better performance. In
the multi-core architecture, the processor is equipped with multiple cores that
share the same address space and local processor caches. The cores within the
same processor will, theoretically, act like multiprocessors; however, there are
some differences between the multi-cores and the multiprocessors; especially
in the memory hierarchy [46]. Currently, hardware manufacturers provide
servers that are equipped with 4 core processors and each core can execute 2
threads concurrently [75]; however, there is in the market specific purpose

1

processors with more than 100 cores [148].
Sequential applications, which were designed for single processors, will be

able to run on multi-core processors. However, these applications are expected
to run slower as the cores in a multi-core processor have less computation
power compared to a single core processor. In general, cores are simpler and
designed to run at lower speeds to overcome thermal issues [140].

Concurrency, for a long time, had been thought of as "the way to the
future" [140]. The introduction of the multi-core architecture requires more
parallelism within applications to exploit the processing power. Generally,
concurrency is achieved by breaking down the application into small units of
code, named threads; each performs a certain operation or set of operations.
Threads can be executed concurrently on multiprocessor system or multiple
cores within the same processor.

In general, concurrency is the execution of multiple tasks, simultaneously,
and it might be required for these tasks to interact while executing. Con-
currency can be achieved by multi-tasking, on a single processor, or parallel
execution, on different cores, in the same processor, or different processors,
in the system [155]. In the single processor case, the processor time is sliced
among the tasks being executed, hence, there is only one active task at a
time, which limits the complexity of interleaving the execution [91]. In the
multiprocessor (or multi-core) case, threads are running in parallel, one or
more thread on each processor, hence, the interleaving of execution of these
threads (or tasks) is more complex and requires better understanding of the
errors and exceptions that might arise due to this parallelism. In this thesis,
the term "concurrent" is used to indicate potential or simultaneous execution
of threads and the term "parallel" is used when there is actual simultaneous
execution of threads.

Multi-threaded programs introduce additional errors to single-threaded
programs, like deadlocks, livelocks, and data races; and these are more likely
to appear when programs are executed in parallel rather than interleaved
execution on a single processor. For example, consider two threads T1 and
T2 concurrently accessing the class shown in listing 1.1. If T1 is executing
the deposit method with an amount of £500 and T1 is executing the deposit

2

CHAPTER 1. INTRODUCTION

method with £400. If the execution of both threads is performed as follows:

• Balance=£0;

• T1: read the value of the Balance

• T2: read the value of the Balance

• T1: add £500 to Balance

• T1: update the Balance value

• T2: add £400 to Balance

• T2: update the Balance value

The Balance value after both threads finish execution is £400, although it
should be £900. This case is called a race condition, and it arises because
threads are allowed to concurrently access the shared resources. The concur-
rency control mechanism should ensure that concurrent accesses to the shared
resources does not compromise the contents of the shared resources.

Listing 1.1: Simple multi-threaded application
1
2 public class Account {
3 double Balance;
4 public void withdraw(double amount){
5 Balance = Balance - amount;
6 }
7 public void deposit(double amount){
8 Balance = Balance + amount;
9 }
10 }

Implementing concurrent data structures and ensuring their correctness is
a challenging task [103]. This is due to the fact that threads are executed
asynchronously and they are subject to faults and interrupts. So, a synchro-
nization mechanism is required to ensure the consistency and correctness of
the data structure contents. The synchronisation mechanism should ensure
coordinated access to the shared data structure, such that: (1) no partial
update to the data structure contents can be seen by any other thread(s) and

3

(2) the failure of a thread will not impact on further accesses to the data
structure. The synchronization mechanism should provide enough guarantees
to ensure that the different operations are concurrently executed in order to
fully utilise the available processing resources.

Lock primitives are the traditional, and common, mechanism to con-
trol threads’ accesses to shared data structure [103]. By using locks, like
semaphores and mutexes, certain sections of the thread code are executed in
exclusion. This will guarantee the serialization of the threads’ accesses to the
same shared location(s) within the data structure, which ensures the integrity
of its content. This integrity should hold even when code optimization is
applied by the compiler or the Operating System (OS).

However, there are different problems associated with using locks. These
problems might limit the scalability of the application or degrade the per-
formance [103]. Different solutions have been proposed to overcome such
problems, like priority inheritance [115], granularity (changing the size of the
code protected by the lock) [53], and helpers (higher priority threads helping
lower priority threads in completing their operations) [7]; However, these
solutions do not prevent the occurrence of such problems they only provide
recovery mechanism. At run time, the occurrence of such problems, and
any further implications cannot be predicted, which might compromise the
real-time properties of the threads being executed; which is not acceptable
for real-time applications.

Concurrent programming is notoriously difficult and it is hard to design
concurrent applications that are reliable and scalable [59]. So, concurrent
programmers should have the necessary skills to build correct and efficient
applications that can fully utilize the computation capabilities of the system.

In real-time applications, threads are executed based on their real-time
properties, mainly priority [20]. When a thread requests a lock that is being
held by another lower-priority thread, either it will yield the processor and be
scheduled later, or it will hold the processor and keep spinning [120]. In this
case, if the thread keeps spinning, the lock might be held for relatively long
period, which will affect the performance. On the other hand, if the thread
yields the processor to allow other threads to be executed this might also

4

CHAPTER 1. INTRODUCTION

negatively affect the performance; as the lock might be released soon after
the higher-priority thread being re-scheduled. This, in turn, might result in
valuable computation time being lost due to context switching.

Non-blocking access has been introduced as a concurrency control mecha-
nism for shared-memory data structures; in which threads are concurrently
executed, with no prior locking. Hence, non-blocking implementations are free
from the problems associated with using locks [51]. The concurrent execution
of the threads will produce arbitrary execution paths; the provided non-
blocking implementation should guarantee the integrity of the data structure
contents regardless of the threads execution interleaving [45].

However, this concurrent execution will only result in high performance if
all accesses are read operations. In the case of one of the accessing threads
performs a write operation, the provided implementation should perform
the necessary actions to ensure the correctness of the threads’ execution,
such that the data structure integrity and consistency is not violated. The
mechanism should invalidate all other current accesses to the same recently
written shared location, and the threads that performed these accesses will
need to be restarted.

Generally, non-blocking implementations outperform lock-based [127].
However, it is not an easy task to provide a practical and reliable non-blocking
implementation. Moreover, it is not an easy task to prove the correctness
of the implementation; in general, semi-formal proof and simulation are the
common methods for testing the correctness.

The proposed non-blocking implementations are based on the presence of
underlying primitives that allow atomic update of the data structure contents,
like Compare And Swap (CAS) and Load-Linked/Store-Conditional (LL/SC)
[45]. These primitives allow atomic updating of single memory locations, and
are used to non-blocking operations on high level data structures such as
queues or stacks.

5

1.1. REAL-TIME APPLICATIONS

1.1 Real-time Applications

Recently, computer systems prices had been noticeably decreasing, which
encouraged the integration of these systems in most aspects of our daily life.
This integration increased the demand for developing applications that are of
high performance with a high degree of scalability [34]. In certain applications,
these systems should provide reliable services with high availability. Different
hardware architectures had been developed to support the increased demand
on high availability applications like audio/video and high-speed networks.

Multiprocessor systems are considered an indispensable part of the infras-
tructure for mission-critical and life-critical applications, as they provide the
required computational capabilities and maintains high availability by tolerat-
ing the failure of one or more processors [106]. Mission-critical applications
are real-time applications in which the time predictability is as important as
the correctness of the results [20]. In real-time applications performance is a
very important issue, however, these applications also require predictability
in their execution to ensure that timing constraints are met.

Real-time applications can be classified into: hard, firm, and soft systems;
based on how strict the timing constraints are [20]. Hard real-time systems
are those systems in which the miss of a deadline will result in a total system
failure. In these systems, the miss of a deadline will result in a catastrophic
results or endanger human life. Examples of these systems are airplanes,
nuclear plants, and space stations.

In firm real-time systems, time constraints are less strict than hard real-
time systems; so, occasional misses of deadlines can be tolerated. There are
two consequences for the misses of the deadlines: (1) possible degradation of
system performance and (2) the results of operations that miss the deadlines
have no value. Video conferencing is an example of these systems. In soft
real-time systems the occasional miss of deadlines will not result in a system
failure, but will degrade the system performance. Soft real-time examples are
banking application and airline online reservation system.

Currently, even single processor computers are becoming multi-core pro-
cessors [32]. Accordingly, the analysis of real-time applications on multicore/-

6

CHAPTER 1. INTRODUCTION

multiprocessor systems is becoming a complex task due to the increase of
complexity in both the real-time applications and the underlying hardware
[44, 108].

The introduction of multi-core enforces reviewing the requirements of
running real-time applications, as the execution of more than a thread on
the a multi-core processor is different from running more than a thread on a
single-core processor. In a multi-core environment the interleaving of threads
execution might affect the time predictability; hence, it is possible to affect the
ability of the concurrency access mechanism to provide wait-free guarantees.

The execution of more than a thread concurrently should be governed such
that the integrity of the data structure contents is maintained all the time.
It is possible that the interleaving of execution of concurrent threads might
result in incorrect results if the concurrency mechanism did not consider all
possible execution paths.

The concurrent access of the threads to the data structure contents might
result on interference of the execution of one of the threads on the others,
also it is possible for a thread to be required to repeat the same operation
more than a time, in the case that more than a thread are trying to perform
the same operation at the same time. For example, in the case that more
than a thread are trying to reserve an empty node in the data structure to
perform an enqueue operation; if they are trying to perform the operation
on the same node, one of them will succeed in reserving the node while the
other writers will try to reserve with another nodes. Accordingly, this is going
to affect the time predictability of the threads execution. The concurrency
mechanisms should provide certain guarantees on the maximum time required
to perform a certain operation.

The multi-core processor is still in development, the number of cores are
increasing; this indicates that the number of threads that can be executed
concurrently are increasing, and the computational power of the multi-core
processor is expected to be relatively higher. The concurrency mechanism
should be able to scale as the number of cores scale to utilise the introduced
computation power in the multi-core processor.

7

1.2. REAL-TIME SPECIFICATION FOR JAVA (RTSJ)

1.2 Real-time Specification for Java (RTSJ)

Java was introduced as a general purpose object-oriented programming lan-
guage [111]. Since its introduction, Java has been used in many applications
like enterprise software, web-based applications, home appliances, and mo-
bile phones [77]. Java has been developed with many new concepts that
encouraged most developers to consider it as the standard language for their
applications. The most important features and concepts of Java are "write
once, run anywhere" (WORA), object-oriented, automatic garbage collection
and memory management.

The WORA enables the programmers to develop their applications once
and compile it into bytecode; using the Java Virtual Machine (JVM) this
bytecode can be executed on any computer architecture that provides a JVM,
which will minimize the time and cost of developing the applications. Java
supports automatic garbage collector. In Java, the memory allocation for
the application is performed in the heap memory space. When this memory
space is consumed, or the application triggers the requirement for free space,
the garbage collector will reclaim the memory space allocated for any objects
within the heap that are not reachable anymore. This will remove the burden
of the memory management from the programmer.

Although it has many attractive features and it is being widely used in
many different applications, Java was not considered within the real-time
domain. Real-time applications require deterministic execution time, which
standard Java cannot support. In a real-time application, threads have real-
time properties, which will govern their scheduling and execution; however,
thread management in Java does not provide any guarantees for threads
execution.

Garbage collection in Java can occur at any moment during the application
execution; during the garbage collection process the application may be halted.
There is no guarantees on the time taken for the garbage collection process as
it depends on many factors like heap size and number of objects within the
heap. Although, there are additional techniques (like incremental algorithms)
still the garbage collection can occur at anytime and with unbounded time.

8

CHAPTER 1. INTRODUCTION

Furthermore, in Java classes are not loaded until they are first referenced
by the application. The time take to load a class depends on its size and the
initialisation ; which requires an additional time when each class is loaded.
This will result in additional delays during the execution time, and these
delays can be unbounded.

The Real-Time Specification for Java (RTSJ) is an extension for standard
Java to facilitate developing real-time applications [16]. It enhances Java in
seven different areas, which are: thread scheduling, memory management,
synchronisation and resource sharing, asynchronous event handling, asyn-
chronous transfer of control, asynchronous thread termination, and physical
memory access.

RTSJ introduced Scoped and Immortal memory areas in addition to heap
memory. These new memory areas are not subject to garbage collection,
hence, threads using these areas cannot suffer delays due to the garbage
collection process. In addition to the standard Java threads, in RTSJ three
new thread classes are introduced: RealtimeThread, NoHeapRealtimeThread,
and AsyncEventHandler as schedulable objects. NoHeapRealtimeThreads
are not allowed to reference any object in heap memory to avoid any delays if
the referenced objects suffers halts because of the garbage collection process.

Explicit support for multiprocessor system is only provided in RTSJ 1.1
[153]. RTSJ 1.1 provides the support for multiprocessor systems based on
the ability provided by the operating system. For different reasons, the
processors in the system can be grouped in sets by the operating system, and
the processor affinity is used to indicate on which processor’s set a thread
or schedulable object can be executed. RTSJ 1.1 provides the programmer
with the access to the affinity, which enables the programmer the ability to
distributed the different schedulable objects within the application across the
available processor’s sets.

In RTSJ, NoHeapRealtimeThread threads are not allowed to access or
reference any object in the Java heap. This ensures that the execution of
NoHeapRealtimeThread threads is free from garbage collection stalls. How-
ever, it might be required for the NoHeapRealtimeThread threads to com-
municate with schedulable objects accessing the Java heap. RTSJ provides

9

1.3. THESIS HYPOTHESIS

WaitFreeReadQueue and WaitFreeWriteQueue; in both queues, only one
NoHeapRealtimeThread thread is allowed to access the queue, hence, the
access of the queue from the NoHeapRealtimeThread thread is wait-free.
From the other side of the queue’s, multiple Java heap schedulable objects
can access the queue. The access is synchronised, hence it is not wait-free.
The wait-free queue in RTSJ is provided only for concurrent access between
NoHeapRealtimeThread threads and those schedulable objects that access
the Java heap [153].

Different enterprise application organisations have developed RTSJ im-
plementations like Sun JRS, IBM Websphere, and AICAS JamaicaVM [119],
which provides promises that RTSJ will be a reliable environment for real-time
applications. RTSJ has been evaluated for mission-critical systems [113].

1.3 Thesis hypothesis

The RTSJ provides a versatile environment to develop real-time applications
with predictable execution times. Unfortunately, the initial specification
did not explicitly address multiprocessor concerns. As a result, the support
provided for wait-free communication is inadequate. However, it is possible
to utilise the RTSJ features to develop a wait-free non-blocking queue imple-
mentation that can provide the required time predictability and scalability at
run time. This implementation can be used as a building block in real-time
applications.

Over time, it is expected that the size of the application (i.e. the number
of schedulable objects within the application) or the hardware and operating
system that support the application will expand. This might affect the
execution time of the application as the system is expanded.

Throughout the thesis the term "predictability" is defined to mean at
run time the worst-case execution time of the schedulable objects within
the application can be determined and the worst-case response time system
behaviour can be determined. The term "scalability" is defined as the ability
of the application to scale as more resources , like CPU and memory, are
added to the system.

10

CHAPTER 1. INTRODUCTION

1.4 Thesis outline

The thesis is organised in six chapters, as follows:
Chapter 2 Non-blocking synchronisation approaches: this chapter

reviews the blocking and non-blocking synchronisation approaches. Both
approaches will be introduced and discussed concentrating on the main
features and issues. A classification of the different approaches of non-blocking
synchronisation will be provided; with an explantation of issues that should
be considered when implementing a non-blocking synchronisation mechanism.

Chapter 3 RTSJ and non-blocking wait-free queues: this chapter
introduces the main features of the RTSJ that enable it to be an adequate
environment to develop real-time applications. A detailed evaluation of the
wait-free queues provided by the RTSJ is undertaken and it is shown that
they are inadequate for use in multiprocessor applications. The different
non-blocking mechanisms that are implemented in RTSJ will also be discussed.

Chapter 4: Multiprocessor Wait-Free Queue for RTSJ: this chap-
ter provides the assumptions, the structure of the algorithm that implements
the queues, and other details including the size of the queue.

Chapter 5 Multiprocessor-safe Wait-Free Queue for RTSJ: in this
chapter the algorithm pseudo code and the implementation of the proposed
algorithm is presented. The algorithm is a non-blocking wait-free queue within
the RTSJ environment that is targeting the multiprocessor environment.

Chapter 6 Evaluation: this chapter provides an argument of the cor-
rectness of the implementation with an analysis of its performance based on a
developed case study.

Chapter 7 Conclusion and future work: this chapter concludes the
thesis with a discussion of further work that is intended to be done.

11

Chapter 2

Non-blocking synchronisation
approaches

Concurrency control mechanisms can be classified as either blocking or
non-blocking. In blocking implementations, accessing threads should have
exclusive access to the shared object(s) prior to performing any operation;
which might include modification to the encapsulated data [92]. Non-blocking
implementations, optimistically, allow the threads to access the shared objects,
without exclusivity; and only interact whenever the accessing threads will
compromise the integrity of the data structure [48].

Generally, if all the operations performed on the shared objects are reading,
these operations will be serialised in the blocking implementations, unless
a read/write lock is used, while in the non-blocking implementations these
operations will run concurrently; which will increase the throughput of the
application. The main advantage of the non-blocking implementations is that
the application can progress in the case of the failure of any thread, which
might not be the case in blocking implementations; for example, in blocking
implementation the failure of any thread that is holding a lock might affect
the progress of other threads that require access to that lock.

This chapter reviews the main non-blocking approaches. Section 2.1
discuss the blocking mechanism. In section 2.2 non-blocking approaches are
discussed along with the issues that should be considered when designing

13

2.1. BLOCKING MECHANISMS

such algorithms. Examples of the non-blocking approaches are introduced in
section 2.3. Section 2.4 provides a summary of the chapter.

2.1 Blocking Mechanisms

With blocking mechanisms, threads are required to gain exclusive access to
the shared object(s), when a writing operation is required. When a thread
tries to access a shared object that had been locked by another thread it will
be blocked. The thread will stay blocked until the thread holding the lock
releases it; then the thread can access that object, unless another scheduled
thread with higher priority is waiting to access that same object.

A blocking mechanism, or lock-based mechanism, is the common concur-
rency control mechanism to control access to shared objects including shared
data structures [92]. This is due to the fact that the use of locks is simple
and easy to use by the programmers. Currently, there are different blocking
mechanisms that can be used as building blocks in concurrent applications.

While having exclusive access to the shared object(s) all operations per-
formed by the thread will appear as atomic to all other threads [5]. This will
avoid any race conditions between the threads and guarantee the integrity
of the shared object(s) contents. However, exclusive access enforces the
serialization of concurrent accesses to the same shared object. In applications
with a high number of threads, it is possible for certain objects to become
hot-spots, if many threads require access to the same shared object(s). This
will result in high contention on these objects [142], which will affect the
execution time of all the threads accessing these objects.

Although the use of locks is simple and easy to program, there are different
problems associated with using locks (e.g. deadlocks and priority inversion
[28]). These problems might have negative impact on one or more threads or
on the application as a whole. There have been different solutions proposed to
overcome these problems (e.g. the Banker’s algorithm for deadlock avoidance
[90] and priority inheritance to limit priority inversions [125]), however, these
solutions might compromise the real-time properties of the threads during the
execution time or are difficult to implement in multiprocessor environments.

14

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

The remainder of this section summarises the main issues associated with
lock-based concurrency control mechanisms.

2.1.1 Contention and Lock Granularity

In large multi-threaded applications resource contention is expected at any
moment during execution, for example, the quantum chemistry application
MADNESS has 65M distinct locks and an average of 30K acquisitions per
second per thread [142]. In such applications, contention might limit the
scalability of the application and degrade the performance due to long queues
of waiting threads.

Lock granularity is used as a contention avoidance technique [140]. Instead
of having one lock for a large shared object, the object can be partitioned
into smaller objects each with its own lock; this will minimize the interference
between threads that do not require access to the same area within the
large object [117]. However, partitioning should be performed carefully, as
increasing the number of locks will increase the burden on the programmer to
ensure that the access to these locks is performed properly.

Generally, there are two granularity levels: coarse and fine. In coarse
granularity, the large shared object will be partitioned into a small number of
shared objects with a lock associated with each partition. In fine granularity,
the large object will be partitioned into a large number of small shared objects,
with a lock associated with each object. The developer should carefully design
the granularity as a trade-off between the targeted performance and the
complexity of the design.

2.1.2 Deadlocks

Irrespective of lock granularity, deadlocks will still occur. Deadlocks occur
when multiple threads are requesting exclusive access to multiple resource.
In the simplest case, one thread holds a resource whilst requesting access to
another resource. That resource is held by another thread that is requesting
access to the first resource. Neither of them can proceed [101]. Backoff-and-
retry protocols are proposed as a solution for the deadlock problem [140];

15

2.1. BLOCKING MECHANISMS

threads involved in the deadlock will release all locks being held, and backoff
for a certain amount of time, then retry to perform the locking. However, these
protocols might suffer from live-lock, which is basically entering a deadlock
every time the backoff is performed. Deadlocks become more complex if there
are more than two threads involved in the deadlock.

At runtime, a thread might request a lock that is being held by another
thread. In this case, the requesting thread either spins-waiting or sleeps-
waiting [142]. In case of the spin-waiting, the thread will hold the processor
waiting for the lock to be released; during the waiting time the processor
will be performing no useful work. In sleep-waiting, the thread will yield the
processor to other threads ready to execute, and will be scheduled to continue
execution when the lock is free; this requires performing context switching.
In both cases, there will be valuable computation time lost. Further problems
might arise in either cases, for example if the thread performing sleep-waiting
is preempted continuously by other higher priority threads, the sleep-waiting
thread might starve.

2.1.3 Lock Convoying

Lock convoying occurs when multiple threads of the same priority repeatedly
contend for the same lock [116] and round-robin scheduling occurs for threads
with the same priority. Those threads that fail to acquire the lock relinquishes
the remainder of their scheduling quantum and forces a context switch. The
repeated context switching might introduce an overhead that may result on
degrading the overall performance. In case of many threads, it is possible
that one or more of the waiting thread will starve while waiting to acquire
the lock. From real-time perspective, this might affect the predictability of
the execution time, as the time required to finish executing might be difficult
to bound.

2.1.4 Composability

Another major issue that faces the use of locks in large applications is
composability [123]; it is not possible to take two lock-based correct pieces

16

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

of code and combine them into a larger piece. Logically, this increases the
developing and testing time to prove an error-free application. For example,
in a bank account there is deposit and withdraw operations, shown in listing
2.1; performing such operations on the account requires locking the account
to ensure the consistency of the account contents. The withdraw and deposit
operations can be considered as abstract and their execution does not interfere
with the execution of any other thread. Composing the transfer operation
from one account to another requires performing the lock on both accounts,
as shown in listing 2.2. The transfer operation can be though of (lock(A);
lock(B)) sequence. If for some reason two transfer operations are occurring
at the same instance of time; the first is (lock(A); lock(B)) and the other is
(lock(B); lock(A)) and both operation succeed in performing the first step;
then both operations enter a deadlock status; as each of them is waiting the
other indefinitely. Hence, composing a larger lock operation from a smaller
correct lock operations might not produce a correct large operation.

Listing 2.1: "Account class"
1 class Account {
2 private double balance;
3 synchronized void deposit(double amount) {
4 balance = balance + amount;
5 }
6 synchronized void withdraw(double amount) {
7 balance = balance - amount;
8 }
9 }

Listing 2.2: "Transfer method"
1 void transfer(Account accountA , Account accountB , int

amount) {
2 synchronized (acc1) {
3 synchronized (accountB) {
4 accountA.withdraw(amount);
5 accountB.deposit(amount);
6 }
7 }
8 }

17

2.2. NON-BLOCKING MECHANISM

2.2 Non-blocking Mechanism

Non-blocking concurrency mechanisms were introduced as an alternative
concurrency control mechanism to blocking or lock-based mechanisms. With
non-blocking mechanisms, threads do not acquire locks for the shared objects
being accessed, hence, threads accessing the same shared object will not
block each other [48]. If any thread dies whilst executing, it will not block
the access to the shared object(s) being accessed by other threads running
concurrently and requires access to the shared resources being accessed or
affect the progress of any other threads within the application. Thus, non-
blocking mechanisms are free from problems associated with the blocking
mechanisms; like deadlocks [140]. However, non-blocking mechanisms are
hard to implement and prove correct [140][37].

An important issue that should be considered when designing a non-
blocking implementation is to guarantee the data coherency; regardless of
the object data size it should be manipulated as one set, either in reading or
writing [131]. Control variables are used to co-ordinate access to the objects
being accessed; so the writer thread will not perform any action with an
objects being accessed by any reader(s), and to prevent access from any reader
thread to the object being written.

Non-blocking mechanisms should provide enough guarantees such that
the threads’ execution will not compromise the integrity of the shared data
structure contents. Generally, this occurs when there are multiple accesses to
the same shared object and at least one of the accesses is a write operation.
In such case, the mechanism should ensure that the write operation should
appear as an atomic operation for all other threads and all threads currently
accessing the updated object should retry based on the new value. The
solution should be compliant with the application requirements (e.g. it might
be allowed for the reader threads to process the most recent value, as long as
that value is consistent).

Generally, a shared data structure is composed of multiple shared objects,
like nodes in a queue, and control variables that can be used by operations
that access the shared objects to achieve the non-blocking guarantees. Writer

18

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

and reader threads perform write and read operations on the shared objects
within the shared data structure. Write and read operations can be thought
of performing the operation in three stages:

• Entry protocol: different threads compete for reading/writing to the
shared data structure; the read/write operation is performed on a single
shared object with the data structure. One of the threads will succeed in
reserving a shared object and the other threads try with the other empty
shared objects in the data structure 1. During the entry protocol, the
failure of any thread will not prevent the progress of all other threads
performing the operation on the shared data structure.

• Data access: the thread, succeeded in reserving a shared object is going
to perform the operation that had been designed by the programmer.
During this stage, the designed operation is executed in isolation of the
other threads on the shared object. This guarantees that the updates
to the shared objects will appear as atomic to all other threads.

• Exit protocol: upon finishing the designed operation, the thread
should ensure that the necessary updates to the data structure are
performed in order to reflect on the operation performed on the accessed
shared object.

The designed operation to perform the data access stage is application
dependent, hence, the computation time required to finish this stage will
be known in advance. For the entry and exit stages, different threads are
competing while trying to reserve a free shared object within the shared data
structure, hence, the time required to perform these stages will differ from one
thread to another. This time will depend on different factors, like the number
of threads currently competing and their real-time properties like priority.

Generally, the time required to perform the entry and exit protocols are
much smaller than the time between two consecutive accesses by the same
thread. The threads that just succeeded in the entry protocol are going to

1This is different from the thread blocking, as threads which are blocked are doing
nothing and are waiting for other operations to finish to be able to continue execution.

19

2.2. NON-BLOCKING MECHANISM

perform the data access and exit protocol. These threads might also face
delays during their execution like preemption. Hence, the thread(s) that just
succeeded in the entry protocol will not affect the current progress of the
other threads performing the entry protocol.

2.2.1 Classification of approaches

There are different non-blocking implementations proposed in the literature.
These implementations can be classified based on different features, like
real-time properties guaranteed, the threads coordination approach, and the
supported data structure.

2.2.1.1 Based on the real-time properties guarantee

Non-blocking implementations should be designed with a certain level of
guarantee on the amount of time required for a thread to execute the entry and
exit stages. As during these stages the thread’s execution might be affected
by other threads concurrently accessing the data structure. Non-blocking
implementations can be classified into three groups based on the level of
guarantee they provide [143]:

1. Wait-free: for all threads accessing the same data structure, each
thread is guaranteed to finish its access within a maximum specific
number of steps; regardless of the actions performed by other threads
concurrently accessing the same data structure. Generally, this requires
careful design for the entry and exit stages to ensure that the interference
of the threads during these stages is totally predicted. Both Simpson’s
Four Slot mechanism in [131] and Hendler and Shavit Work Dealing
algorithm in [63] guarantee that every read or write operation will be
performed within a specific maximum number of steps.

2. Lock-free: during execution, there will be application-wide progress,
thus, a thread accessing the shared data structure might be affected by
any other thread currently accessing the same shared data structure.
However, at least one thread is guaranteed to finish its access within

20

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

a maximum specific number of steps. It is possible that one or more
threads might starve, as they continuously will be affected by other
higher priority threads. In [21] a lock-free approach is introduced based
on universal construction.

3. Obstruction-free, there will be application-wide progress at any spe-
cific time, there is no guarantee on the number of steps any thread will
finish its access. Threads might starve during execution as it is possible
for one or more threads to be delayed indefinitely. The Transactional
Memory (TM) implementation in [66] provides obstruction-free guar-
antees; the obstruction free can provide non-blocking implementations
that are free of lock-based problems, however, it is not efficient enough
to meet the predictability requirements of real-time applications.

Of the above approaches, only wait-free provides the predictability needed
for real-time applications.

2.2.1.2 Thread coordination

Generally, threads might need to communicate with each other to coordinate
their access to the shared data structure. This communication can be
asynchronous communication, or communication that requires synchronising
the operations currently performed by the different threads accessing the
shard data structure.

Asynchronous communication
In asynchronous communication, threads performing the data production

and consumption communicate by setting flags to indicate that there is data
ready for consumption or the data has been consumed. Thus, it is assumed,
theoretically, there is no interference between the threads execution. So, the
execution of any thread will not be blocked by any other thread [131].

Generally, if the shared data structure is based on a single word (which
can be stored in a single register) the underlying hardware primitives can be
used to guarantee the atomicity of the shared contents. If the shared data
structure is based on objects, additional operations are required to ensure

21

2.2. NON-BLOCKING MECHANISM

that the object’s sequential specifications are held [85]. In real time systems,
the execution of these operations as part of the concurrent application should
be analyzable and predictable [23].

To ensure the shared object consistency, asynchronous implementations
[131] [81] used different techniques to guarantee that the writers and the
readers are executing in isolation, which is in most cases using flags.

The four-slot algorithm introduced by Simpson [131] represents a simple
non-blocking mechanism with a one writer and one reader restriction, where
multiple copies of the shared data is stored, as shown in figure 2.1. The 4
slots are divided into two pairs left and right. In each pair there is a top
and bottom slots. The writer writes the data into one of the slots and set
the corresponding flags; latest, which indicates which pair the writer most
recently wrote to and index, which indicates which slot in the pair the writer
most recently wrote to. This indicates that there is a new data ready to be
consumed. The reader controls only the reading flag, to indicate which pair
is being read. The reader has no control over the controls that are set by the
writer.

Figure 2.1: Simpson’s four-slot algorithm

There is no direct communication between the threads and none of the
threads are blocking the execution of the other. However, in Simpson’s
algorithm there is only four data slots. The writer performs the write

22

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

operation on one of the four slots. The reader is following the writer’s
footsteps. In case, where the writer is faster than the reader, the writer might
perform one or more write operations on the same data store, and the reader
will only read the most recent copy. In the case where the reader is faster
than the writer, it might be possible for the reader to perform one or more
read operations from the same slot. Hence, Simpson’s algorithm might not
be suitable for all applications, like computer networks, where each written
network packet should be processed once.

Synchronised communication
In synchronous communication, the progress of any thread might be

affected by current operations performed by other threads [26]. Hence, the
implementation should provide certain guarantees on the limit of the impact
any thread can suffer from all other threads concurrently accessing the same
data structure. For example, in Transactional Memory (TM) implementations,
the thread committing its changes to the shared object, or node within the
data structure, will interfere with the progress of all other threads currently
accessing the same shared location; in TM this is achieved by implementing a
collision manager that is responsible for resolving the collision results from
different transactions accessing the same location in the shared area.

Generally, in multi-threading applications, threads require communication
with each other; this communication will affect the concurrency within the
application [79]. For example, in a producer-consumer application, the
producer(s) will allocate the data in a buffer and the consumer(s) will access
that buffer to consume the produced data [110]. The buffer size will be
controlled by the implementation based on the application requirements. In
certain applications the buffer size will be 0; in such case, if either of the
threads, the consumer or the producer is ready to produce or consume, it will
block until the other end is available and ready to communicate.

2.2.1.3 Type of supported shared data structures

Non-blocking implementations can be classified into three main categories
according to how the data is being stored: universal construction, array based,

23

2.2. NON-BLOCKING MECHANISM

and link based [127].
Universal construction
Universal construction is a process that converts data that can be safely

sequentially accessed into a concurrent nonblocking data structure [127]. This
technique was first proposed by Herlihy in [65]. Herlihy’s appraoch requires
the data structure to be copied on every update [101], this will affect the
performance, and requires large memory space, especially if the data structure
is large. Further enhancement performed on Herlihy’s proposal [4, 84] mainly
reduce the part of the data structure being copied.

Different implementations have been proposed to provide wait-free guaran-
tees by implementing shared data structures using the universal construction
[25, 21, 43]. Generally, these implementations are memory consuming and
enforce limitations on the maximum number of threads that can access the
shared data structure concurrently [127] and are not scalable [144].

Queue
A queue is one of the most common data structures in concurrent applica-

tions [146]. Generally, with queue data structures, the enqueue operation is
performed at one end of the queue and the dequeue operation on the other end,
to support applications that require queues with First-In-First-Out (FIFO)
semantics.

Queue based algorithms manipulate the data as an infinite array [70] or a
finite array [49]. The programmer should ensure proper selection of the queue
size according to the application requirements to ensure best performance and
least memory overhead. In the case of a bounded size, the distance between
the writer and reader threads is limited by the queue size. In the case of
faster reading, the reader threads might try to perform a read operation from
an empty list. In the case of faster writing, the writer threads might perform
a write operation on a full list [98]. In the case of an unbounded queue size,
it is possible for fast writing operations to result in high memory overhead.

There have been different non-blocking queue implementations that are
designed for Operating System (OS) or applications [96, 147, 41, 100], each
implementation has different level of guarantees and limitation. In [104] a
queue based lock-free algorithm introduced to enhance the scalability of the

24

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

shared data structure by implementing the elimination technique. When
concurrently performing enqueue and dequeue operations on the same queue,
the enqueue operations are going to be serialised. In such case, using the
elimination technique an enqueue operation to the queue can be eliminated
using a dequeue operation.

Generally, lock-free algorithms are based on the CAS operation to support
atomic update of the data structure contents; however, in [105] a lock-free
queues introduced based on the fetch-and-add (F&A) instruction available in
the x86 processors. The authors argued that, although the F&A instruction is
a less powerful that the CAS, the implementation of their algorithm provides
better performance in both single- and multi-processor environments.

Linked list
Linked lists are used in data structure [69] that might be bounded or un-

bounded. Unlike queues, linked list based data structures allow the enqueue
and dequeue operations to be performed anywhere in the data structure. This
requires careful handling of the operations performed on the data structure
to avoid any race conditions situations that might occur during burst writing
or burst reading.

Concurrent linked lists are attractive for applications that require a high
degree of concurrency, as the enqueue/dequeue operations can be performed
anywhere in the list [144], which increases the throughput of the application.
However, this flexibility in the design requires high memory management
overhead. For example, to free any node in the list, so it is memory can be
reclaimed, should be performed such that there is no more referencing to that
node from any of the processing threads. It might be possible that a node is
being accessed by a preempted thread, the reclamation of the memory of that
node might affect the progress of that thread when resuming [126]. Hence,
the concurrency mechanism should provide support to avoid any such case,
which might include booking of all references to the nodes and checking the
status of the nodes on every update of every thread accessing the shared data
structure.

In linked-list data structures, the dequeue operation should free the node
and reclaim its memory location or return the node to a free pool, if the

25

2.2. NON-BLOCKING MECHANISM

implementation provides such an option. This operation requires that the
dequeuing thread is the last thread to access the node. According to [127],
in some implementations this can be achieved by associating a counter with
every node, however, if a thread accessed a certain node and is preempted
during execution, other threads might create any number of nodes that are
successors to the node being accessed by the preempted thread. These nodes
cannot be deleted unless that thread is resumed and finishes its execution.
Shann et al. argued that all linked list implementations are subject to memory
management problems (e.g. ensure a node is not referenced before its memory
reclamation is reclaimed), hence these implementation might not produce the
claimed level of efficiency [127].

Stacks
Unlike queues, stacks are a special case of linked list based data structures

that satisfy the requirement of Last-In-First-Out (LIFO) semantics. The first
non-blocking stack implementation was proposed in [145] as a single-linked
list with a pointer to the top of the stack. The implementation has been
compared to many well-known lock-based implementations, and gives better
performance under high parallelism [101]. However, the top pointer represents
a bottleneck to the implementation, especially in high contention, which limits
the scalability of the data structure [103].

In [129] a technique is proposed to limit this contention, by matching a
currently running pop operation with a concurrent push in progress. Thus,
the operations will eliminate each other, and the data structure will not
be affected. Although this technique can enhance the performance of the
implementation, it might only be practical for certain application. Applications
that enforce certain order on reading and writing operations might not be
able to benefit from this technique.

2.2.2 Non-blocking design issues

Non-blocking mechanisms are free from lock-based problems and can pro-
vide required scalability. However, there are different issues that should be
considered and carefully handled to enable fully utilising their potential.

26

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

2.2.2.1 Multi-processor and multi-core processors

Generally, non-blocking mechanisms were introduced for single-core processors
[146, 94] and depend on the concept that only a single thread is running
at any specific time. This limits the complexity of the implementation.
The introduction of multi-core processors enables multiple thread to run
concurrently on a single processor machine. Hence, the threads’ execution
will be arbitrarily interleaved, which increases the implementation complexity
of any algorithm. A non-blocking mechanism should guarantee that updating
any field in the shared data structure should appear as an atomic operation
to all other thread(s) concurrently accessing the same shared data structure
[69]. Thus, the interleaved accesses to the shared object(s) should be properly
handled to ensure that it will not compromise the shared object integrity [85].

Figure 2.2 shows the execution of two threads T1 and T2 on a single-core
processor with multi-tasking, and a multi-core processor with parallelism. On
the single core processor machine, T1 starts executing and waits after some
time because of a memory access operation, after the time slice for T1 is
finished, a context switching time is required in order to make safe all the
current states of T1 and the loading of T2. One further context switching is
required to load T1 to finish execution. In the multi-core case, each of the
threads is loaded into a different core, hence, no context switching is required.
If there is no dependency between the threads execution each thread can
proceed with no interference from the other thread.

T1 MA T1 CS T2 T2 CS T1 Single core

T1 MA T1 T1

T2 T2
multi-core

Core 1:

Core 1:

MA: Memory access

CS: Context Switching

Figure 2.2: Threads execution on single and multi-core processors

27

2.2. NON-BLOCKING MECHANISM

The state of all currently running threads should be synchronised with all
other threads, so that the synchronisation mechanism can take the required
decision accordingly. The “challenge is to minimize the cost of inter-core
communication, such that threads residing in different cores can efficiently
exchange state information" [87, p. 1].

In multiprocessor and multi-core processor environments, concurrent
accesses to the same shared object may result in data races [8], if any of the
threads update the shared object. Generally, the exit protocol will result in
either a write operation or a check on the accessed shared object(s) contents
to ensure that no changes occurred since the last read, as the execution should
be completed with consistent data.

To prevent data races, the wait free mechanism should be able to roll-back
any updates performed by threads that cause the race [154]. To prevent
consecutive data race, the mechanism should be able to roll-back the effects
and back-off the violating thread, allowing enough time for the winner thread
to finish execution [154]. Generally, roll-backs have negative influence on
the performance; as it is not just a waste of computational time, there
will be an additional overhead to undo all the changes performed. The
STM implementation introduced in [114] addresses the cost of roll-back,
the implementation uses an additional overhead of book-keeping in order
to perform partial roll-back of the changes, instead of full roll-back; which
minimises the overhead of roll-back.

As the number of processors increase in the system, or the number of cores
in a multi-core processors, it is logical to expect more contended data updates
to occur. In such cases, only one thread will be able to commit its updates
and all other threads should retry. In large systems (where it is possible to
have 100’s of processors), the number of retries could be very high, and the
back-off will result in high inefficiency within the system [26].

In certain applications, threads perform complex operations like write-
after-read and read-after-write operations [40], which increases the complexity
of the non-blocking algorithm’s design and the possibility of compromising the
shared data structure contents. The memory consistency and cache coherency
could be used to overcome these problems, such that all threads will progress

28

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

with consistent data [133]. Mainly, this occurs in cases subject to data and
memory hazards, where more than a consecutive operation requires read
or writing of the same variable. In other cases, like read-within-write and
write-within-read, the execution of one of the threads will be delayed until
the other one finishes, this will affect the overall performance of the system as
one or more of the processors will be idle for a certain period. This will also
affect the system’s predictability. Allowing multi-location storing of the data
in the shared area, arrays or linked lists [131], partially solves these problems
by eliminating the interference between the producers and consumers, but
with an added overhead due to synchronization and control operations.

In [133] different examples of data and memory hazards are introduced.
For example, it is possible for a read operation for a variable to appear directly
in the code after a write operation; in this case, a delay between the two
operations should be inserted to allow enough time for the write operation
to finish, otherwise, the read operation might read inconsistence data. The
more common these operations appear in the code, the more delay will occur,
which might affect the performance.

2.2.2.2 Memory Management

A non-blocking implementation should ensure that all accesses to the shared
data structure are monitored, such that the consistency of all data items
within the data structure are maintained [127]. Also, a data item within the
data structure can only be deleted when there are no further references to it.

Programming languages that support garbage collection, like Java, might
remove the burden from the programmer to perform such monitoring, however,
it is possible for an object to reside in the memory for long period if it is
referenced by a thread that is halted or being preempted continuously.

Valois in [149] proposed a solution that depends on freeing (or deleting)
the node from the data structure based on a counter that represent the current
number of references to that node. This solution has different issues, as a
node being accessed by a preempted thread cannot be deleted until that
thread finishes execution, this also includes all successor nodes added while

29

2.2. NON-BLOCKING MECHANISM

the thread is preempted. In general, the proposed solution have an additional
overhead in both processing time and memory space requirements. This
solution might compromise the real-time properties of the threads within the
application.

The hazard pointers solution proposed in [99] is a more practical solution,
as it requires less computation time and memory requirements in performing
the reclamation of the memory locations occupied by the de-queued objects.
In the hazard pointer solution, each thread logs in a list all nodes accessed
during the node execution; this list can only be written by the owning thread
and read by all other threads. When a node should be deleted by the thread,
it is removed to a private list; hidden from all other threads, and the thread
performs regular check on the read lists of all other threads. When there are
no more references to that object by the other threads it can be safely deleted.

2.2.2.3 Real-time characteristics

In multi-processor system (and multi-core), when multiple threads compete
on the same shared location, only one thread will succeed and the others
will either spin-waiting or sleep-waiting. The thread with the lowest priority
(or an unlucky thread) will lose the competition to all other threads. In
real-time applications, threads should meet their real-time properties, thus,
the implementation should ensure that delays in execution caused by other
threads will not affect meeting these properties.

Hence, from a real-time perspective, proposed wait-free algorithms should
be analysed to determine the worst case execution time of its operations.
The operations should include: addition and deletion cost of object contents,
memory management and the interaction with other parts of the system like
I/O. It is even possible certain algorithms can be application specific rather
than general purpose.

The analysis of the thread’s execution should include the costly CAS
operation [80], which is part of any interaction with the data structure.
Moreover, the CAS operations will become more costly in contention periods,
where the CAS will be performed each time the thread is retried.

30

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

As the number of threads grow, the interleaving in threads execution
will increase the complexity of the application. Different sources can cause
further delays in threads execution like a cache miss [26]. This will affect the
predictability of not only the thread’s execution but the execution of all other
threads currently in progress.

2.2.2.4 ABA problem

In general, non-blocking implementations that at the end of the thread (or
transaction) execution the thread is able to update its changes to the shared
area if the initial values of the accessed locations are not changed. However,
it is possible for a thread T1 to access a shared variable V1 and its value is
A to be preempted during execution. While T1 is preempted, it is possible
that a thread T2 updates the shared location to B, and another thread T3
updates V1 again to A. When T1 resumes execution, it is going to updates
its changes to the shared area based on that V1 value is A, while it should
not as the value of V1 is changed to B then to A; this is well-known as the
ABA problem.

Generally, non-blocking algorithms are based on primitives that support
atomic update of the memory locations, like CAS and Load-Link/Store-
Conditional (LL/SC). In LL/SC operation, a memory location is read by
the LL operation. This memory location will be updated by a new value
using the SC operation, if this location has the same value that is read by the
Load-Link operation [141].

The LL/SC is more complex to implement and might suffer false fails. In
a multiprocessor system, if another processor writes to a memory location
that is near to the location being read by an LL operation the SC operation
will fail, unless the implementation is able to monitor the memory translation
page [141].

Unlike the CAS operation, LL/SC is not subject to the ABA problem, as
the memory location read by the LL operation will be cached in a special
register, and this location will be invalidated if any access occurs to that
memory location; even if the thread is being preempted.

31

2.2. NON-BLOCKING MECHANISM

Although non-blocking implementations are free from lock-based associated
problems, like deadlocks and priority inversion, CAS based non-blocking
implementations suffer the "ABA" problem [150]. “The ABA problems
occurrence is due to the intricate and complex interactions of the applications
concurrent operations and, if not remedied, ABA can significantly corrupt
the semantics of a nonblocking algorithm.” [31, p. 1].

During the threads execution, a thread might read a current value of a
shared object, say "A"; the thread might be preempted after reading the value
of the shared location long enough such that the same shared location will be
updated to "B" then to "A" again. When the preempted thread resumed, it
will finish execution successfully, although it should fail and retry.

To avoid the ABA problem in non-blocking implementations three tech-
niques had been used in the literature [24, 99, 33].

The first, is associating a counter with each object in the shared data
structure first proposed by IBM [38]. The counter will be incremented
each time a thread accesses the object and decremented each time a thread
releases it. The object will be deleted by the thread that last releases the
object, allowing the reclamation of the memory space reserved by the object.
Generally, this solution is suitable for applications in which the data stored
in the same node within the data structure might be consumed by multiple
reader threads. This solution can be applied to cases where applications
require multiple write or read on the same shared location, like array, hence,
it cannot be considered as a general solution for all implementations; in the
case of the stack, nodes are added to or deleted from the stack once only.

The second, uses reference counting [33, 61], where a counter is associated
to each shared object and this counter will be incremented by each thread
accessing that object. If the thread is preempted while execution, the counter
will be used to ensure that the object had not been updated by any other
thread since the thread last access it. If updated, the thread will abort and
retry. In contrast to the counter in [38]; the counter in this solution is only
incremented and never decremented.

Both solutions are based on the availability of the double-word CAS
operation, which is viable in 32-bit processors that support double-word

32

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

CAS (64-bit CAS operation). The current 64-bit processors support only
single CAS operation. However, this solution is applicable in certain cases;
like the stack case, as the reference counter can be assigned to the top
pointer; and each thread can monitor any changes to the counter during its
execution. If any change has occurred to the counter, this indicates that
there is another pop or push operation completed which requires aborting
the current operation and retry. It is possible also for this solution to be used
in non-blocking implementations in which the data stored in the nodes are
allowed to consumed only once. In this case, a reference counter is assigned
to each node, and the accessing threads can use this counter to ensure that
there is no changes occurred, if the thread being preempted.

The third solution is a generic solution that can be used for any non-
blocking implementation, the hazard pointers which is “a memory management
methodology that allows memory reclamation for arbitrary reuse” [99]; the
solution is supposed to remove the burden of reclaiming the memory locations
of the deleted objects from the implementation.

In the hazard pointers, each writer thread maintains a list of all shared
objects it accesses. Besides that, each thread maintains a retired list; or
the shared object(s) that the thread finished working on and want to delete.
When the retired list of any thread reached a certain predefined size, it scans
the hazards pointer of all other threads; to free those objects that are not
referenced any more by any other thread. The use of hazards pointers solution
ensures that no memory allocated to a shared object will be reclaimed unless
there is no more references to that object, which ensure safe deletion of shared
objects.

Although the hazards pointers solution guarantees safe reclamation of
memory allocated to shared objects, it suffers different issues. There is an
increased amount of memory that will be consumed to maintain the different
lists; this amount increases proportionally with the number of threads and
the number of shared objects being created. In addition, the amount of time
required to perform the scanning of the lists might affect the threads’ execution
time, as the time required to perform the scanning is also proportional to the
number of threads and the number of live objects.

33

2.2. NON-BLOCKING MECHANISM

Moreover, it might create further drawbacks, like the case of multiple
objects being referenced by a thread that is preempted for long period of
time; these objects will reside in the list of all other threads that accessed
them earlier until the preempted thread is allowed to finish execution.

The ABA problem occurrence might result in any arbitrary situation,
thus is important that a CAS based non-blocking implementation adapts
a proper mechanism to avoid the ABA problem. To further understand
the consequence of the ABA problem, the following examples discusses the
scenario of an ABA problem occurrence.

Assume a Last-In-First-Out (LIFO) linked-list stack shared data structure.
The node is composed of a pointer to a reusable data store and a pointer to
the next node in the stack, as shown in listing 2.3. Threads accessing the
stack either add a new node, push, or remove an existing node, pop. The
pop operation, listing 2.4 removes a node from the top of the stack, figure
2.3. The push operation, listing 2.5, adds a new node at the top of the stack,
figure 2.4.

Listing 2.3: Stack node
1 struct Node
2 {
3 PTR* data;
4 Node* next;
5 };

Listing 2.4: Pop operation
1 Node pop(){
2 Node* newTop , oldTop;
3 if (Top == NULL) return false;
4 oldTop = Top;
5 do {
6 newTop = oldTop ->Next;
7 } while(CAS(Top , oldTop , NewTop));
8 }

Listing 2.5: Push operation
1 Node pop(){
2 Node* newTop , oldTop;
3 if (Top == NULL) return false;

34

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

Figure 2.3: Pop operation

4 oldTop = Top;
5 do {
6 newTop = oldTop ->Next;
7 } while(CAS(Top , oldTop , NewTop));
8 }

Figure 2.4: Push operation

If a thread T1 performing a pop operation, is preempted after reading

the top value and before performing the CAS operation to update the top of

the stack, listing 2.4; with stack status as shown in figure 2.5. During T1’s

preemption, another thread T2, performed two pop operations (nodes A and

B) and a push operation (node A); the status of the stack will be as shown in

figure 2.6. When T1 resumed, it will finish it’s pop operation and the CAS

35

2.2. NON-BLOCKING MECHANISM

operation will succeed. The top will be updated with reference to node C.

top A

B

C

Figure 2.5: Stack before T1 preemption

Thread T1 should be aborted and retried based on the current case of

the stack, rather than removing node A and updating the top of the stack to

node C. Accordingly the pop operation should be reviewed to ensure that

CAS only will succeed when there is no update to the top pointer occurred

during thread T1’s preemption.

Among the three solutions, the ABA problem in the stack case is best

solved using a version number, which is associated with the top pointer [126].

The version number is used to ensure that no changes occurred to the stack

during the thread preemption.

The top pointer of the stack includes a reference counter as shown in 2.6.

The reference counter should be set to an initial value when the top pointer

first initiated. The pop and push operations, should be revised, as shown in

listings 2.7 and 2.8, respectively; if any thread preempted while performing

36

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

top A

C

Figure 2.6: Stack After T1 resumed

the pop operation after reading the top pointer value it is not going to suffer

the ABA problem, as the reference counter is incremented before performing

the CAS. A preempted thread is not going to suffer the ABA problem, as the

CAS will be invalidated if any update occured to the top pointer during the

preemption.

Listing 2.6: "Top pointer"
1 struct stackTop{

2 int refcounter;

3 Node* FirstNode;

4 }

Listing 2.7: "Revised pop operation"
1 Node pop(){

2 stackTop* newTop , oldTop;

3 if (Top ->FirstNode == NULL) return false;

4 oldTop = Top;

5 do {

6 newTop = oldTop ->FirstNode ->next;

7 newTop.refcounter = oldTop.refcounter + 1;

8 } while(CAS(Top , oldTop , NewTop));

37

2.3. EXAMPLES OF NON-BLOCKING APPROACHES

9 }

Listing 2.8: "Revised push operation"
1 void push(Node* NewNode){

2 stackTop oldTop , newTop;

3 oldTop = Top;

4 do {

5 NewNode ->next = TOP ->FirstNode;

6 newTop ->FirstNode = NewNode;

7 newTop.refcounter = oldTop.refcounter + 1;

8 } while (CAS(TOP , oldTop , newTop));

9 }

2.3 Examples of Non-blocking Approaches

Non-blocking implementations have been developed to provide a reliable and

scalable environment to access shared data structures. These implementa-

tions are designed to meet the requirements of certain applications or as a

general concurrency mechanism that can be used as a building block on any

application.

2.3.1 General and specific implementations

In early non-blocking implementations, there have been limitations placed on

the concurrency level of the shared data structures; in [82] only one process

(or thread) is allowed to access the shared data structure, and in [131, 63] the

number of threads is limited to only one writer and one reader threads. In

Simpson’s implementation in [131] there is a limitation on the application

38

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

usage, as the implementation designed such that the writer can overwrite

a previously written data, which had not been yet consumed; hence, it is

suitable for applications that require that the reader can read the most recent

written consistent data.

The first non-blocking stack implementation was proposed by Treiber

in [145] as a single linked list with top pointer [126]. The implementation

supports the reuse of the nodes, thus, a free pool is provided to manage

the allocation, use, and reuse of the nodes. However, the implementation

requires high computation overhead. Although Treiber’s implementation

outperformed many other stack-based implementations, either lock-based or

non-blocking [101], stack based implementations have limited scalability as

the number of threads increase [64]. Certain stack based implementations

limit the number of threads that concurrently access the shared data structure

to avoid contention issues [15].

To overcome the problem of limited scalability, a non-blocking stack

implementation is proposed by Hendler and Shavit in [64] that supports the

elimination process; in which a pop operation in progress can be paired with

a concurrent push operations. Logically, this will increase the parallelism of

the implementation. In [64] a thread T1 attempts to perform an operation

on the stack and fails due to another thread currently in progress on the

stack. T1 announces its intention to perform the operation; T1 will read a

random location from the collision array (which is designed to hold all failing

operations). T1 keeps trying until it pairs with another announcing thread

(finds a pop if wants to perform a push, or vice versa); if a certain time elapsed

before being able to pair, T1 tries to perform the operation directly on the

39

2.3. EXAMPLES OF NON-BLOCKING APPROACHES

stack again.

T1 can only collide with (or eliminate) T2 if both threads performing

opposite operations (a pop can not eliminate another pop). The elimination

process is a two consecutive CAS operations; the first in which the colliding

thread, T1, will mark its location in the collision array as in progress of

elimination and the second is to mark the collided thread location, T2, as

reserved. This will raise the possibility of a race condition as it might be

possible after succeeding in the first CAS and before performing the second

CAS for another thread, T3, to succeed in reserving the collided thread, T2.

Moreover, it might be possible for a thread T4 trying to collide with T1,

while at the same time T1 is trying to collide with T3. If both T1 and T4

succeeded in their first CAS operation at the same time, T1 only can finish

the elimination process, while T4 is required to retry with another thread.

The elimination process helps in minimizing the contention on the stack,

however, from a real-time perspective, the time required for a thread to

finish its pop or push operation is not bounded. In high loads, there is high

probability that the thread will finish fast, as the collision array will contain

high number of announcements; but a thread might be unlucky enough to all

the time read from locations that announce the same operation. In low loads,

a thread might be unlucky if it reads all the time from empty locations. As

the read operation from the collision array is performed randomly.

Colvin and Groves improved the Hendler and Shavit implementation in

[27] using a simpler data structure and better symmetry within the elimina-

tion process; Colving and Groves implementation is better in performance

and scalability. Shavit and Touitou in [129] improved Hendler and Shavit

40

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

implementation by designing the elimination technique using trees, in which

colliding pop and push operations will not affect the stack, hence, the imple-

mentation is more scalable that the original implementation in [64].

In [96] Massalin and Pu introduced a non-blocking stack implementation

that is simple to use, however, the implementation requires the availability of

the CAS and DCAS hardware operations, which makes the implementation

limited to specific hardware architectures. Afek et al. presented a wait-free

stack in [2]. Although the implementation is simple, it is based on an infinite

array, which is not practical as it requires high memory overhead.

Queue based implementations can be based on either linked-lists or arrays

[103]. An array-based implementation proposed in [82] and a linked-list

based implementation proposed in [63]; both implementations provide a wait-

free guarantee, however, they enforce constraint on the number of threads

concurrently accessing the shared data structure to one writer and one reader.

An array based implementation proposed by Herlihy in [70] based on an

infinite array; which may suffer from memory overhead. A modular concurrent

data structure (MCRingBuffer) is proposed in [87], which enables storing

any data type within the data structure. The implementation is designed to

utilise the computation capability offered by the multi-core processors.

Stone in [137] introduced a non-blocking linked-list circular queue im-

plementation, which suffers data race between the enqueue and dequeue

operations [100].

Michael and Scott implementation in [100] is non-blocking and based on

a linked-list data structure, however, the implementation suffers memory

management issues, as the implementation allows the re-use of the removed

41

2.3. EXAMPLES OF NON-BLOCKING APPROACHES

nodes. Two CAS operations are required to add/remove a node to the data

structure. If a thread performs the first CAS, then is preempted long enough

for any other thread to complete its add/remove operation, the thread when

resumed will break the data structure. Thus, additional overhead should be

implemented to perform the required memory management.

Ladan and Sahvit [83] introduced a new dynamic memory lock-free queue

algorithm for a multiprocessor architecture, which outperforms the most

effective dynamic memory concurrent algorithm introduced by Michael and

Scott [101]. For multicore processors it is expected that it is best to utilize

the reduced cost CAS operation in the multicore processors, “This question

remains to be answered.” [83, p. 325]. Dechev et al. in [31] introduced the

first lock-free design of a dynamic resizable array; that runs on multi-core

processors with higher efficiency compared to previous solutions, but even

with the high performance its not ABA free [30].

2.3.2 Transactional Memory (TM)

The success of the transactions in exploiting a high degree of concurrency

within the database domain encouraged the adaption of transactional execution

as a general concurrency model in the parallel programming domain [60]. In

TM, the concurrent part of the code is marked as a transaction, that should

be executed as an atomic block. There will be no locking for any of the

shared objects accessed during the transaction execution, hence, TM is a

non-blocking concurrent mechanism. The implementation should monitor all

shared memory accesses during the transaction execution, and only interact

42

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

when necessary [128]. Generally, the transaction might require access to

different shared objects, or memory locations during the execution; at the

end of the transaction execution, it might be required to update some of

these memory locations with new values. This is only allowed, if none of the

accessed locations have been changed during the transaction’s execution [3].

Otherwise, all updates will be discarded and the transaction will be retried.

Transactions are executed without locking, optimistically, assuming that

the transaction will finish execution before any of the accessed memory

locations have been changed [58]. This is based on the idea that transactions

are light code portions, which does not require long execution periods [112].

Accordingly, this will minimize the chances of transactions being retried.

TM implementations can be classified into: hardware (HTM), software

(STM) and hybrid (HyTM) implementations [60]. Hardware implementations

rely on underlying hardware support to provide atomic update to the accessed

memory locations [68] but may not be available on all processor architectures.

Software implementations do not require any specific hardware requirements,

the atomicity is guaranteed using software; which makes them architecture

neutral [59]; however, STM implementation requires high execution overhead,

especially in high loads. Hybrid implementations are a mix of hardware and

software requirements, at runtime, the best execution scenario will be selected

to guarantee the highest possible performance [9, 102].

The first HTM implementation was proposed by Herlihy and Moss in

[68]; the implementation requires changes in the underlying cache coherency

protocols, which hardware manufacturers did not provide at that time. Shavit

and Touitou proposed the first Software TM in [128], the implementation is

43

2.3. EXAMPLES OF NON-BLOCKING APPROACHES

hardware independent, thus, it is architecture neutral. In [128] the imple-

mentation enforces a limitation on the number of transactions that can be

executed concurrently and the amount of memory that can be allocated to

each transaction.

Transactions can be executed in any arbitrary order. During the transac-

tion execution, it is possible to update any accessed shared memory location.

To guarantee the integrity of the shared memory contents, each transaction (or

the implementation) should maintain a list of all accessed memory locations,

with their initial values [55]. Generally, the transactions either perform direct

update to the memory location(s) or will buffer all updates to be perform at

the end of the transaction execution [60].

An update manager should be implemented to facilitate monitoring the

accesses and updates to the shared memory. With each update, the update

manager will interact according to the update mechanism performed by the

transactions; direct [3] or buffer [67]. Accordingly, when the number of

concurrent executed transactions are high, it is expected to have high spatial

(due to log lists) and computational (due to retries of execution) overhead.

The update manager should maintain a read-list and a write-list of

all accessed memory locations [58]. Whenever, a transaction performs an

update to a shared location, the update manager should invalidate all other

transaction(s) currently accessing that location. Accordingly, a conflict

manager should be used to scrutinize the lists to detect any conflict. The

conflict manager will take a decision of which conflicting transactions will

be aborted and resumed and which are allowed to proceed. The decision

process should be carefully designed to avoid any problems like starvation,

44

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

a transaction is being aborted indefinitely or performance degradation, a

single transaction allowed to proceed at the cost of many transactions being

aborted.

Generally, if the update manager adopted a direct memory update mecha-

nism, the conflict manager should adopt an eager technique, in which the

aborting decision will be taken immediately after every update. On the other

hand, the conflict manager can adopt a lazy technique if the update manager

uses a buffered mechanism, in which the aborting decision will be delayed

until the transaction finishes execution [60].

The conflict manager is a very important component within the TM im-

plementation, as it might highly affect the performance of the implementation

if wrong decisions are taken. In case of conflicting transactions, it is required

to clear the logs of the conflicting transactions and resuming their execution.

The computational cost will scale as the number of transactions increase,

which might negatively affect the performance.

In high contention periods, transaction abortions are expected to increase.

In multiprocessor system, if large size transactions are executing, in a lazy

update mechanism mode, high computation time will be lost; as the abortion

of the conflicting transactions will be delayed until the commit stage [123].

On the other hand, if small size transactions are executing, in eager update

mode, the abort percentage is expected to be very high and the transactions

might hold the processors without performing any progress. As part of the

conflict manager, a contention manager should be implemented to detect the

contention cases [69].

The contention manager is supposed to defer the execution of the con-

45

2.3. EXAMPLES OF NON-BLOCKING APPROACHES

tending transactions to avoid high percentage of aborts. There are different

contention manager implementations proposed to avoid contentions, like

backoff, aggressive, priority, randomised, greedy, and Karma [69]. A good

contention manager can solve the contention by delaying the execution of the

contending transactions, such that allowing more threads to finish execution

successfully; eventually, this will minimize the wasted processors’ time and

increase the performance of the system.

In Hardware TM, memory updates are based on the underlying cache

coherency protocol, which is limited to word size per update [67]; the transac-

tion can perform multiple updates. In Software TM implementations, the

transaction can update a memory location, an object, or multiple objects

[128]. In Software TM implementations, the data structure should be designed

such that it will allow maximum concurrency. At runtime, it is possible for

different transactions to access different locations within the object, if the

data structure is object based, one of these transactions will finish execution

successfully and all the others will retry.

The granularity within the data structure is an important feature that

can be used to tolerate the level of conflict, consequently this will have direct

effect on the contention. In Hardware TM, the granularity is one word, hence,

the parallelism can be very high. In Software TM careful granularity level

should be considered, as this can minimize the computations overhead and

spatial requirements of the TM implementation.

Since the first introduction for a hardware TM in 1993 [67] and software TM

in 1995 [128], different TM implementations had been introduced [3, 9, 52, 55].

Each of these implementations addressed one or more of the TM advantages,

46

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

and/or try to overcome some of the TM obstacles.

Harris and Fraser introduced a lightweight atomic transactions implemen-

tation in [59]. Instead of using lock-based access to shared objects or data

structures, atomic transactions are used. The introduced implementation does

not suffer from any lock-based problems, however, it cannot provide real-time

guarantees, as there is high overhead in atomic transactions execution.

Although TM implementations had been under development for nearly

two decades, there are different issues that limit the use of TM as a general

concurrent mechanism within real time applications. Among the most impor-

tant issues are input/outut operations, support for legacy applications and

contention [60].

At run time, transactions might require input or output operations [57, 72];

which are irreversible operations; accordingly, transactions that perform

input/output operations must succeed when committing their updates and

other conflicting transactions will be retried. However, it is possible that

two transactions that have already performed input or output operations

conflict, in this case, allowing both operations to commit might compromise

the integrity of the data structure contents.

There had been different solutions offered for this problem [109, 14, 134,

135, 56, 11, 97]. The provided solutions depend on identifying if the transac-

tions requires input or output operations before or during their execution.

Transactions that are identified to have input/output operation in advance of

their execution, will be guaranteed to succeed, hence, only one transaction will

be allowed to guarantee at a time, which will limit the degree of parallelism.

Transactions that are identified to have input or output operation during

47

2.3. EXAMPLES OF NON-BLOCKING APPROACHES

execution, will commit in two stages, the first one is to ensure that there are

no conflict and the second stage is a real commit stage.

In large scale applications, it is possible to have different components, which

might be lock based or non-blocking [11, 118]. Based on that, transactions

might suffer conflicting with lock-based threads. TM implementation should

be aware of lock-based accesses to the shared contents and ensure proper

execution of the transactions within such environment [39].

In multiprocessor systems, and multi- and many-core processors, it is

expected to have high contention periods [54], where thousands of objects

should be updated tens of times each second [36]. The contention can

be minimized by the backoff of the contended transactions to allow other

transactions to finish execution. However, the backoff decisions might lead to

further problems, like starvation, if the same transaction(s) being preempted

continuously or performance degradation, if large sized transactions are retried

by small sized transactions [69]. Accordingly, TM implementations should

ensure that the contention management avoid such cases and provide results

that meet the real-time application requirements.

The first TM implementation to address real-time application requirements

was introduced by Manson et al. in [95]. The implementation introduce the

concept of Preemptible Atomic Regions (PAR). If a higher priority thread is

ready for execution, the current atomic region will be preempted, even if the

higher priority thread is not executing an atomic region. The implementation

has two limitations, the first it is designed for uni-processor systems and the

second in case of interrupts the effects of the atomic region will be lost and

cannot be undone.

48

CHAPTER 2. NON-BLOCKING SYNCHRONISATION APPROACHES

Schoeberl et al. introduced in [124] a hardware TM that is targeting hard

real-time applications. The different components of the TM is designed to

ensure that the maximum number of retries is bounded; which results in a

predictable execution time for the atomic regions. Although the results of the

experiment is promising, the implementation is not practical is it requires

fully associative cache; which is very expensive and enforce limitation on the

atomic region size.

A software TM implementation is introduced by Sarni et al. in [122]

that targets soft real-time applications. The implementation integrates a

real-time scheduler. This was the first TM implementation to consider the

deadline as a factor when scheduling the transactions. However, in cases

of high contention, the increased number of retries might compromise the

predictability of the transactions’ execution. Moreover, in solving the conflict,

the older transaction is allowed to proceed, which might affect the real-time

properties, as the retried transaction might have higher priority or earlier

deadline.

The deadline issue had been addressed in the Software TM implementation

proposed by Fahmy and Ravindran in [42]. The implementation contributes

the real-time characteristics of the transaction within the scheduling decision

as the contention manager is designed to achieve the Earliest-Deadline-First

(EDF) semantic. Although the implementation is promising and competitive

to lock-based and other non-blocking implementations, it only provides

obstruction free guarantees.

In [6] a simplified implementation of lock-free transactional solution for

real-time systems was introduced; however, it is designed for uni-processor

49

2.4. SUMMARY

environment with the requirement of the multi-word CAS. The implementation

bounds the number of retries by modifying the scheduler. The time required

for any thread can be bounded as long as no higher priority thread interfered

the threads in progress.

2.4 Summary

Although existing non-blocking synchronisation approaches promise perfor-

mance boosts and implementations that are free from lock-based associated

problems, the proposed algorithms have their own problems, like having sub-

stantial storage overheads, possible serialisation of non-conflicting operations,

or requiring additional hardware support not available so far in current CPUs

[45].

In general, TM implementations are not adequate to support a determin-

istic concurrent application [86], as the proposed implementations require

high spatial and computational overhead, and there is no limitation on the

maximum number of retries.

From real time perspective, only wait-free implementations are suitable for

hard real-time applications; as they guarantee a bounded execution time of the

threads accessing the shared data structure. With lock-free and obstruction-

free implementations, low-priority threads might starve, as the time required

to interact with the data structure cannot be bounded due to the interference

of other threads concurrently accessing the data structure. which make it

more suitable for firm and soft real-time applications.

50

Chapter 3

RTSJ and non-blocking

wait-free queues

Java has proved that it is a premier environment for real-time embedded

systems [12]; currently, Java has presence in different manufactured real-

time applications and dominance in certain applications, like Blu-ray Disks.

Real-time applications can vary from simple applications, tens of lines of

code supported using a single processor machine, to large scale applications

that are complex and require high computation power [19]. Standard Java

might be an appropriate environment for simple real-time applications, but

it is not a reliable environment to implement large scale and hard real-time

applications; as it provide adequate support for threads with hard and soft

time constraints.

RTSJ is an extension for standard Java to facilitate developing large

scale real-time applications [35]. The first version of the RTSJ Specification

does not provide explicit support for multi-processor environments, however,

51

3.1. CORE RTSJ FEAUTRES

implementing applications within the multi-processor environment was not

ruled out. The increased adoption of multiprocessor systems in real-time

applications, has resulted in explicit support for multiprocessor environments

in the latest RTSJ version, although it is only limited to Symmetric Multi-

Processor systems (SMP) [71].

This chapter introduces the RTSJ features that facilitate the development

of real time applications. This chapter is organised as follows. Section 3.1

discuss the RTSJ features. In section 3.2 a discussion for the wait free queues

provided in the RTSJ specifications. Algorithms that are developed for RTSJ

environment is introduced in section 3.3. Section 3.4 provides a summary of

the chapter.

3.1 Core RTSJ Feautres

RTSJ enhances the Java environment in seven different areas; which are:

thread scheduling, memory management, synchronization and resource sharing,

asynchronous event handlers, asynchronous transfer of control, asynchronous

thread termination, and physical memory access [35].

In this section we introduce the main RTSJ features that are used by this

thesis: real-time threads and memory areas.

3.1.1 Real-time threads

The standard Java Thread class provides no support for real-time properties.

Accordingly, RTSJ introduces two new thread classes, RealtimeThread and

NoHeapRealtimeThread. The RealtimeThread class extends the standard

52

CHAPTER 3. RTSJ AND NON-BLOCKING WAIT-FREE QUEUES

Java thread class (java.lang.Thread) and the NoHeapRealtimeThread class

extends RealtimeThread class.

The ReleaseParameters, SchedulingParameters and

MemoryParameters objects are passed to the constructor of the Real-

timeThread, during initialisation, to indicate the real-time properties of the

thread. These properties are used by the scheduler to guarantee that these

threads will be executed based on their real-time properties.

A NoHeapRealtimeThread is not allowed to reference the standard Java

heap memory, hence, NoHeapRealtimeThreads are free from any garbage col-

lection interrupts. Accordingly, NoHeapRealtimeThreads facilitate developing

applications that are time critical as these threads are guaranteed not to be

preempted by any garbage collection activities [151].

RTSJ 1.1 support application execution in multiprocessor environments

by depending on the support provided from the underlying operating system

[153]. The execution of RealtimeThreads in a multiprocessor environment is

supported using affinity sets; “processor affinity is common across operating

systems and has become the accepted way to specify the constraints on which

processor a thread can execute.” [153, p.12].

A processor affinity set is the set of processors that a Java thread or RTSJ

schedulable object can be executed on. The representation of the AffinitySet

class can be communicated with using a BitSet, where each bit refers to a

logical processor ID. An RTSJ implementation should define the relation

between the logical processors and the physical processors in the underlying

hardware architecture.

The RTSJ supports priority ceiling emulation and priority inheritance;

53

3.1. CORE RTSJ FEAUTRES

setting the ceiling of a shared object to the highest priority in the system

results in synchronised code executing non-preemptively.

3.1.2 Memory Areas and Memory management

In general, real-time systems have limited memory resources due to different

constraints like size and power requirements [151]; which requires effective

management of the memory. Standard Java provides heap memory, which is

a single space for all memory allocations.

From real-time perspectives the heap memory has a major limitation. All

objects created by the threads will be allocated within the heap; at a certain

point, the heap will become full. In such case, an allocation failure will trigger

the garbage collection process, which, when started, will halt all currently

in progress threads with no expectation of the time required to finish the

garbage collection process.

To avoid halting the application during the garbage collection process, in-

cremental garbage, and concurrent collection techniques have been introduced

[130]. In incremental garbage collector an incremental step is performed at

every memory allocation operation. Based on these increments the garbage

collection will be done at different phases and the application will only halt

during these phases.

The concurrent garbage collector will perform the garbage collection

concurrently with the programs being executed, however, small halts might

occur from time to time; “Concurrent garbage collectors run concurrently

with the application and only stop it for a short synchronization phase in the

54

CHAPTER 3. RTSJ AND NON-BLOCKING WAIT-FREE QUEUES

beginning or end of the collection” [136, p. 1]. The garbage collection process

will reclaim any memory space allocated for object(s) that are not accessible

any more; this should provide free memory space to allocate new objects to

be created. In certain cases, the garbage collector fails to free enough memory

space; in such cases the heap will be expanded. During the expansion process

all threads will be suspended. The garbage collection process introduces

pauses in the program execution, which affects the time predictability of all

running threads. This pauses might compromise the real-time properties of

the threads. In addition, the memory space is allocated and freed randomly,

hence, the time required to allocate any object in the memory may not be

fixed.

RTSJ introduces new memory areas to facilitate developing applica-

tions that are not dependent on the standard Java heap. The new

MemoryArea class enables better management of the available memory space.

Except for Heap, instances of the MemoryArea class are not subject to

garbage collection. MemoryArea is an abstract base class, there are four

classes that extend the MemoryArea class: ImmortalMemory, ScopedMemory,

ImmortalPhysicalMemory and Heap. RTSJ provides strict rules regarding

the allocation and referencing between these memory areas, and each memory

area has it’s own characteristics.

ImmortalMemory is a memory area that can be used by all the schedulable

objects “The schedulable objects required by this specification are defined

by the classes RealtimeThread, NoHeapRealtimeThread, and AsyncEven-

tHandler. Each of these is assigned processor resources according to their

release characteristics, execution eligibility, and processing group values. Any

55

3.1. CORE RTSJ FEAUTRES

subclass of these objects or any class implementing the Schedulable interface

are schedulable objects and behave as these required classes" [16, p. 37]. in the

application, the lifetime of any object created in the ImmortalMemory is the

same as the application. ImmortalMemory is a memory space allocated outside

the standard Java heap, which makes it safe for NoHeapRealtimeThreads

accesses.

ScopedMemory is an abstract class and is used when it is required to

perform operations on objects that have limited lifetimes. All objects within

the ScopedMemory instances will be freed when the reference count of the

memory area is zero. Like ImmortalMemory, ScopedMemory exists outside the

standard Java heap, hence, it is available for NoHeapRealtimeThreads, as it

is not subject to garbage collection.

LTMemory, LTPhysicalMemory, VTMemory and VTPhysicalMemory ex-

tends the ScopedMemory class. In LTMemory the memory allocation time

is guaranteed to be linear as long as the consumed space is less than the initial

size of the memory area, while in VTMemory the memory allocation time is

not linear. For LTMemory and VTMemory the system does not guarantee the

availability of the memory space if the memory area to be expanded beyond

the initial size.

A schedulable object can use the enter or executeInArea methods to

access a memory area. For each schedulable object there is a scope stack

to keep track of which memory areas had been entered. RTSJ enforces

strict rules regarding enter or executeInArea and referencing objects across

memory areas. These rules ensures proper execution of the threads in a safe

environment.

56

CHAPTER 3. RTSJ AND NON-BLOCKING WAIT-FREE QUEUES

The class definitions for the MemoryArea and and ScopedMemory are

shown in listings 3.1 and 3.2, respectively [152]. Listing 3.3 shows a simple

example of a RealtimeThread entering a ScopedMemory area and executing a

runnable object inside the ScopedMemory area.

Listing 3.1: MemoryArea class definition
1 public abstract class MemoryArea {

2 // constructors

3 protected MemoryArea(long sizeInBytes);

4 protected MemoryArea(long sizeInBytes , Runnable logic);

5

6 // methods

7 public void enter();

8 // Associate this memory area to the current schedulable

object for the duration of the logic.run method

passed as a parameter to the constructor

9 public void enter(Runnable logic);

10 // Associate this memory area to the current

schedulable object for the duration of the logic.run

method passed as a parameter

11 public static MemoryArea getMemoryArea(Object object);

12 // Get the memory area associated with the object

13 public long memoryConsumed ();

14 // Returns the number of bytes consumed

15 public long memoryRemaining ();

16 // Returns the number of bytes remaining

17 public long size();

18 // Returns the current size of the memory are

19 }

57

3.1. CORE RTSJ FEAUTRES

Listing 3.2: ScopedMemory class definition
1 public abstract class ScopedMemory extends MemoryArea {

2 // constructors

3 public ScopedMemory(long size);

4 public ScopedMemory(long size , Runnable logic);

5

6 // methods

7 public void enter();

8 public void enter(Runnable logic);

9 public long getMaximumSize ()

10 }

Listing 3.3: Example of a realtime thread accessing a ScopedMemory area
1 public class rtThread extends RealtimeThread {

2 public rtThread(PriorityParameters pri ,

PeriodicParameters per) {

3 super(pri , per);

4 }

5 public void run(){

6 while(true){

7 boolean throwAway = waitForNextPeriod ();

8 final LTMemory smArea = new

LTMemory (32*1024);

9 smArea.enter(new Runnable () {

10 public void run(){

11 LTMemory myMem = (LTMemory);

12 RealtimeThread.getCurrentMemoryArea ();

13 String st = "In␣a␣SM␣area";

14 myMem.setPortal(st);

15 }

16 });

17 }

18 }

19 }

58

CHAPTER 3. RTSJ AND NON-BLOCKING WAIT-FREE QUEUES

3.2 RTSJ Wait-Free queues

NoHeapRealtimeThread instances are never allowed to allocate or reference

any object allocated in the heap and standard Java threads cannot enter a

ScopedMemory area. The constructors of NoHeapRealtimeThread require a

reference to ScopedMemory or ImmortalMemory, hence, all memory allocation

performed in the given area. If NoHeapRealtimeThread is required to syn-

chronise on a shared object with RealtimeThread or a standard Java thread,

it is possible that the NoHeapRealtimeThread might be blocked. Even with

the presence of priority inheritance or priority inversion avoidance algorithms,

it might be possible for the NoHeapRealtimeThread to be blocked by the

garbage collector, as the RealtimeThread and standard Java thread reference

the heap, which is subject to garbage collection. Hence, "Instances of the

NoHeapRealtimeThread class have an implicit execution eligibility that must

be logically higher than any garbage collector" [16, p. 22].

In RTSJ, WaitFreeWriteQueue and WaitFreeReadQueue facilitate the

communication between a NoHeapRealtimeThread from one side and a

RealtimeThread or a standard Java threads from the other side. This

eliminates any possibility that the NoHeapRealtimeThread is preempted

by the garbage collector. These queues are bounded in size and support

First-In-First-Out (FIFO) semantics.

The WaitFreeWriteQueue is a single writer multiple reader queue. The

writer is an instance of a NoHeapRealtimeThread and the readers are standard

Java threads or heap-using schedulable objects. The NoHeapRealtimeThread

will, using the write method, add new data items to the queue; if the queue

59

3.2. RTSJ WAIT-FREE QUEUES

is full, the write method will return false. The read method will try to

remove the oldest data item in the queue, if any, otherwise the read method

blocks until a data item is available for reading.

The WaitFreeReadQueue is a single reader multiple writer queue. The

reader is an instance of a NoHeapRealtimeThread and the writers are standard

Java threads or heap-using schedulable objects. Using the write method

new data items can be added to queue. If the queue is full, the write

method blocks and the thread synchronises with other writer threads (that

are currently blocked) until an empty location in the queue is available for

writing. The write method is synchronised. The read method is used to

remove the oldest data item from the queue. As there is only one reader, the

method is not synchronised. The read method does not block, it returns

null when the queue is empty.

Both queues are fixed in size, determined at the initialisation of the queue

[16]. From the NHRT thread side, the queues guarantee wait-free access.

Schedulable objects, standard Java and heap-using RT threads accessing these

queues might block while reading or writing, due to different reasons like

preemption by the garbage collector. In the case that more than NHRT thread

is required to access the queue, “it has to supply its own synchronization

protocol between the readers to ensure only one of them attempts access at

any point in time” [153].

The programmer should ensure such blocking will not affect the application

requirements by allowing enough space in the queue, as a write operation,

could return a false to the calling NHRT thread, indicating a full queue. In

such case, the programmer should design a mechanism to avoid discarding the

60

CHAPTER 3. RTSJ AND NON-BLOCKING WAIT-FREE QUEUES

data item if this violates the application requirements; for example applications

that require every produced data item must be consumed.

In JamaicaVM, aicas RTSJ implementation [47], the WaitFreeReadQueue

and WaitFreeWriteQueue are implemented as described in the RTSJ specifi-

cations only for compatibility. JamaicaVM argues that its real-time garbage

collector provides the necessary determinism to execute standard Java threads,

thus programmers do not need these queues for communication between the

standard Java threads and the RTSJ real-time threads. IBM RTSJ implemen-

tation, WebSphere Real Time [74] and Sun RTSJ implementation, Sun Java

Real-Time System [138] both implement real-time garbage collectors. In both

implementation nothing is mentioned on how the WaitFreeReadQueue and

WaitFreeWriteQueue are implemented.

Wait free queues in RTSJ is not intended to support general communication

between threads; “It is important to stress that this motivation is slightly

different from the usual motivation for “waitfree” queues given in the real-time

literature” [153, p.17]. On the other side, the requirements of the wait free

queue that is being developed here is to support general concurrent access for

shared data structure with wait free guarantees.

3.3 Non-blocking implementations for RTSJ

environments

Generally, non-blocking implementations introduced for the RTSJ environment

are seeking priority-inversion avoidance, performance advantages, and imple-

61

3.3. NON-BLOCKING IMPLEMENTATIONS FOR RTSJ
ENVIRONMENTS

mentations that are free from lock-based problems like deadlocks [59, 146, 94].

There are different algorithms introduced to support non-blocking commu-

nication within the RTSJ environment. Each of these algorithms addresses

certain requirements of the concurrent access to shared data structure.

A wait-free algorithm is proposed for RTSJ in [146]; the algorithm imple-

mented offers wait free guarantees while allowing multiple real-time threads to

access the shared queue. The algorithm implements the "enabled late-write"

scenario, where higher priority threads can help lower priority preempted

threads to finish their enqueue or dequeue operation; which ensures that the

interference resulted from higher priority threads will have minimal effect on

the lower priority threads.

In [94] a non-blocking implementation of atomic regions, preemptible

atomic regions is proposed, which depends on using lightweight transactions

to facilitate concurrent access to shared data structures. Accordingly, the

overhead due to unsuccessful attempts will be minimum. The implementation

provide stronger correctness guarantees compared to lock-based.

Both implementations in [94, 146] are designed for a single processor

environment, where a single thread is running at any specific time. In a multi-

processor environment (or multi-core processors) where it is possible for the

execution of multiple threads accessing the shared structure concurrently to

interleave, both implementations provide no guarantees for the data structure

contents consistency or atomic regions execution correctness [18]. Currently,

the trend is toward the multi-core and multiprocessor environments and in

the next RTSJ version support for such environments are provided; hence, the

requirements is to introduce an algorithm that is able to utilise the features

62

CHAPTER 3. RTSJ AND NON-BLOCKING WAIT-FREE QUEUES

that RTSJ provides and safely execute a multi-threaded application in a

multi-processor environment.

In [13] a wait-free communication implementation is proposed, Wait-Free

Pair Transactions (WFPT). The implementation offers multiple communica-

tion channels between the reader and writer threads. A writer/reader thread

can only write to/read from one WFPT, which is the same for the reader

thread. Basically, each node in the data structure is a Simpson’s four-slot

node [131].

In WFPT, the writer thread can write to or read from a specific node in

the data structure. The writes will be visible to the associated reader only

when committed. The reader thread associated with the same WFPT can

also perform read and write operations; however, none of the reader thread

writes will be visible for the writer thread.

The implementation is not a general communication data structure between

reader and writer threads; as, each writer and reader threads is associated

with only one WFPT. Besides that, a faster writer might result in writes that

have not been processed by the reader, which is not acceptable in certain

applications, like packets in a network router. Moreover, the reader might

perform a read operation for an outdated data, if the writer had not performed

the commit operation yet.

3.4 Summary

RTSJ introduces different features, building over the standard Java features,

which enables developing realtime applications and guarantees the application

63

3.4. SUMMARY

safety in the execution environment.

RTSJ introduces wait free queues that facilitate the communication be-

tween NoHeapRealtimeThread from one side and RealtimeThread and stan-

dard Java threads from the other side; in order to avoid garbage collection

influence on NoHeapRealtimeThread. In the RTSJ wait free queues from

the NoHeapRealtimeThread side of the queue only one thread is allowed

to access the queue, and from the other side more than a standard Java

and RealtimeThread threads are allowed to access the queue. This is for

time predictability concerns, as the NoHeapRealtimeThread all the time will

be able to have direct access to the queue without any possible collision.

However, these queues are designed such that it is not guaranteed for the

NoHeapRealtimeThread to have an empty queue in the case of enqueueing

operation, and the programmer should provide the mechanism to handle such

case, like discard the current data item or overwrite the most recent data

item; according to the application requirements. In the case of more than a

NoHeapRealtimeThread are required to access the queue, the programmer

should design the required mechanism to ensure that the operations of the

NoHeapRealtimeThread threads are not interfering with each other.

Hence, those queues are not wait free by definition, and they are not

intended for general purpose communication among the threads in a multi-

threaded application.

There had been different algorithms proposed for threads communications

in a multi-threaded application within the RTSJ environment, however, to

the best of our knowledge, none of these algorithms are designed for the

multiprocessor environment.

64

CHAPTER 3. RTSJ AND NON-BLOCKING WAIT-FREE QUEUES

Our algorithm is designed to support safe execution of a multi-threaded

application in the multiprocessor environment with wait free guarantees.

65

Chapter 4

Multiprocessor Wait-Free

Queues for RTSJ

In general, shared data structure implementations are either designed for

general purpose communication among the application threads or to meet

certain application requirements, which makes them for specific purposes only.

From a real-time perspective, in any shared data structure implementation

the worst-case execution time of its access and its memory requirements are

the key factors of consideration.

This chapter introduces a new queue based wait-free algorithm designed for

multiprocessor systems within the RTSJ environment. Section 4.2 introduces

the pseudo code of the algorithm. Section 4.1 provides a discussion of the

computational model and assumptions of the algorithm. In section 4.3 the

overall approach is described and in 4.4 a discussion of the different issues

related to the design of the algorithm is given. The timing analysis of the

algorithm is discussed in 4.5. The implemented algorithm is presented in the

67

4.1. COMPUTATIONAL MODEL AND ASSUMPTIONS

next Chapter.

4.1 Computational model and assumptions

Generally, shared data structures are designed to facilitate communication

between threads in a multi-threaded application; each implementation makes

some assumption and is designed to satisfy certain applications’ requirements.

For example, Simpson’s four slot algorithm provides wait-free guarantees but

limits the number of reader and writer threads to one each. The algorithm

presented in this thesis assumes the following:

1. all processors are homogeneous (that is the platform supports SMP)

2. all applications thread are either periodic or sporadic (with a minimum

inter-arrival rate)

3. global scheduling is supported between all cores hosting the RTSJ

application

4. communication between threads is either via atomic shared variables or

through wait-free queues

5. with respect to wait-free queues, a thread is either a producer of data

(writer) or a consumer (reader) for the same wait-free queue; threads,

however, can access multiple wait-free queues

6. for each wait-free queue, a fixed number of data items is produced

or consumed by each thread during a single release; without loss of

generality, we assume this to be 1 in this thesis

68

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ

7. all data produced must be consumed; consumers may find a queue

empty but producers must never find a queue full

8. the act of producing and consuming data is application dependent and

can be time consuming

9. the java.util.concurrent.atomic package is available and multi-

processor safe.

10. the number of concurrent threads accessing the data structure should

be pre-known and fixed at run time.

In order to meet assumption 7, it is necessary to impose some constraints

of the application. The algorithm assumes that the average production rate

of the producer threads is equal to the average consumption rate of the

consumer threads, as shown in equation 4.1. To guarantee this, the algorithm

assumes that the reader and writer threads concurrently accessing the data

structure are periodic or sporadic executing at their minimum inter arrival

rates. There is no limitation on the maximum number of threads allowed to

access a wait-free queue, as long as the production and consumptions rates

are equal; hence, the algorithm is a general purpose communication channel in

a multi-threaded application, however, the number of these threads should be

known in advance, as the queue is sized based on these numbers (see section

4.4.1).

∑
∀i∈readers

1
Ti

= ∑
∀j∈writers

1
Tj

(4.1)

69

4.2. ALGORITHM PSEUDO CODE

In order to avoid garbage collection overheads, data shared between real-

time threads must be stored in scoped or immortal memory. As immortal

memory is never cleared, non persistent data must be stored in scoped memory.

The scoped memory areas are embedded in the queue structure to ensure

that the number of scoped memory areas are initialised during the data

structure initialisation stage and the access to these areas complies with the

RTSJ memory assignment rules.

The queue size, discussed in detail later, should be known in advance for

predictability purposes; hence, the last assumption. The threads concurrently

accessing the queue, for either enqueue or dequeue, should find an empty node

from the first time while searching the queue. This ensures that the overall

time required to perform the enqueue or dequeue operations is predictable;

this is discussed in detail later in this chapter.

4.2 Algorithm pseudo code

The algorithm is an array based queue shared data structure. The data

structure supports two operations: enqueue and dequeue. The writer thread

performing an enqueue operation: reserves a node in the scopedMemoryPool,

produces the data, and add the index of the node to an integer array. The

reader thread performing the dequeue operation: reads a node index from the

integer array, consumes the data from that node, and updates its status to

empty. The algorithm pseudo code is provided in listing 4.1.

70

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ
Li
st
in
g
4.
1:

"A
lg
or
ith

m
ps
eu
do

co
de
"

p
u
b
l
i
c

W
a
i
t
F
r
e
e
Q
u
e
u
e

(
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

,
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

,
l
o
n
g

s
c
o
p
e
S
i
z
e

)
{

I
N
T
E
G
E
R

q
u
e
u
e
S
i
z
e

=
2

*
(

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

)
+

1;

s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l

=
n
e
w

Q
u
e
u
e
N
o
d
e

[
q
u
e
u
e
S
i
z
e
];

A
t
o
m
i
c
I
n
t
e
g
e
r

r
e
a
d
L
i
s
t

=
n
e
w

A
t
o
m
i
c
I
n
t
e
g
e
r

[
q
u
e
u
e
S
i
z
e
];

r
e
a
d
L
i
s
t
I
n
v
a
l
i
d

=
n
e
w

i
n
t
[
q
u
e
u
e
S
i
z
e
];

f
o
r

i
n
t

i
=0

to
q
u
e
u
e
S
i
z
e

s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l

[
i
]

=
n
e
w

Q
u
e
u
e
N
o
d
e

(
s
c
o
p
e
S
i
z
e
)
;

r
e
a
d
L
i
s
t

[
i
]

=
n
e
w

A
t
o
m
i
c
I
n
t
e
g
e
r

(
-1

)
;

r
e
a
d
L
i
s
t
I
n
v
a
l
i
d

[
i
]

=
-1

;

} p
u
b
l
i
c

b
o
o
l
e
a
n

e
n
q
u
e
u
e

(
R
u
n
n
a
b
l
e

r
O
b
j
e
c
t
)

{

I
N
T
E
G
E
R

r
e
s
e
r
v
e
d
N
o
d
e

=
-1

;

I
N
T
E
G
E
R

e
n
q
u
e
u
e
L
o
c
a
t
i
o
n

;

I
N
T
E
G
E
R

c
u
r
r
e
n
t
L
o
c
a
t
i
o
n

;

B
O
O
L
E
A
N

d
a
t
a
S
t
r
u
c
U
p
d
a
t
e
d

=
f
a
l
s
e

;

I
N
T
E
G
E
R

i
n
V
;

s
e
t

p
r
i
o
r
i
t
y

to
m
a
x
i
m
u
m

do
{ r
e
s
e
r
v
e
d
N
o
d
e

=
r
e
s
e
r
v
e
d
N
o
d
e

+
1

if
(
r
e
s
e
r
v
e
d
N
o
d
e

==
q
u
e
u
e
S
i
z
e
)

71

4.2. ALGORITHM PSEUDO CODE
r
e
t
u
r
n

"
f
u
l
l
␣
q
u
e
u
e
"

}
u
n
t
i
l

(
u
p
d
a
t
e

r
e
s
e
r
v
e
d

of
s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l

[
r
e
s
e
r
v
e
d
N
o
d
e
]

to
t
r
u
e

)
;

s
e
t

p
r
i
o
r
i
t
y

to
d
e
f
a
u
l
t

p
r
o
d
u
c
e

t
h
e

d
a
t
a

in
t
h
e

c
o
r
r
e
s
p
o
n
d
i
n
g

s
c
o
p
e
d

m
e
m
o
r
y

b
a
c
k
i
n
g

s
t
o
r
e

s
e
t

p
r
i
o
r
i
t
y

to
m
a
x
i
m
u
m

do
{ c
u
r
r
e
n
t
L
o
c
a
t
i
o
n

=
r
e
a
d
L
i
s
t
H
e
a
d

e
n
q
u
e
u
e
L
o
c
a
t
i
o
n

=
(
c
u
r
r
e
n
t
L
o
c
a
t
i
o
n

+
1)

(
M
O
D
)

q
u
e
u
e
S
i
z
e

i
n
V

=
r
e
a
d
L
i
s
t
I
n
v
a
l
i
d

[
e
n
q
u
e
u
e
L
o
c
a
t
i
o
n

]

if
(

s
u
c
c
e
e
d

to
u
p
d
a
t
e

r
e
a
d
L
i
s
t
H
e
a
d

w
i
t
h

e
n
q
u
e
u
e
L
o
c
a
t
i
o
n

)

r
e
a
d
L
i
s
t

[
e
n
q
u
e
u
e
L
o
c
a
t
i
o
n

]
<
-

r
e
s
e
r
v
e
d
N
o
d
e

}
u
n
t
i
l

(
s
u
c
c
e
e
d

to
u
p
d
a
t
e

t
h
e

r
e
a
d
L
i
s
t
H
e
a
d
)

s
e
t

p
r
i
o
r
i
t
y

to
d
e
f
a
u
l
t

r
e
t
u
r
n

t
r
u
e

;

} p
u
b
l
i
c

b
o
o
l
e
a
n

d
e
q
u
e
u
e

(
R
u
n
n
a
b
l
e

r
O
b
j
e
c
t
)

{

I
N
T
E
G
E
R

d
e
q
u
e
u
e
L
o
c
a
t
i
o
n

;

I
N
T
E
G
E
R

c
u
r
r
e
n
t
T
a
i
l

;

I
N
T
E
G
E
R

i
n
d
e
x

;

I
N
T
E
G
E
R

v
a
l
u
e

;

B
O
O
L
E
A
N

t
e
s
t

=
f
a
l
s
e

;

72

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ
do

{ c
u
r
r
e
n
t
T
a
i
l

<
-

g
e
t

r
e
a
d
L
i
s
t
T
a
i
l

v
a
l
u
e

d
e
q
L
o
c
a
t
i
o
n

<
-

c
u
r
r
e
n
t

t
a
i
l

+
1

(
M
O
D
)

q
u
e
u
e
S
i
z
e

if
r
e
a
d
L
i
s
t
(
d
e
q
L
o
c
a
t
i
o
n
)

==
-1

r
e
t
u
r
n

"
e
m
p
t
y
␣
q
u
e
u
e
,
␣
no

␣
d
a
t
a
␣
r
e
a
d
y
␣
f
o
r
␣
c
o
n
s
u
m
p
t
i
o
n
.
"

}
u
n
t
i
l

(
s
u
c
c
e
e
d

to
u
p
d
a
t
e

r
e
a
d
L
i
s
t
T
a
i
l

w
i
t
h

d
e
q
L
o
c
a
t
i
o
n
)

g
e
t

t
h
e

i
n
d
e
x

of
t
h
e

n
o
d
e

in
r
e
a
d
L
i
s
t
(
d
e
q
L
o
c
a
t
i
o
n
)

to
c
o
n
s
u
m
e
.

s
e
t

t
h
e

v
a
l
u
e

of
r
e
a
d
L
i
s
t
(
d
e
q
L
o
c
a
t
i
o
n
)

to
-1

r
e
t
u
r
n

to
n
o
r
m
a
l

p
r
i
o
r
i
t
y

c
o
n
s
u
m
e

t
h
e

d
a
t
a

in
t
h
e

c
o
r
r
e
s
p
o
n
d
i
n
g

s
c
o
p
e
d

M
e
m
o
r
y

b
a
c
k
i
n
g

s
t
o
r
e

s
e
t

p
r
i
o
r
i
t
y

to
m
a
x
i
m
u
m

s
e
t

t
h
e

r
e
s
e
r
v
e
d

b
o
o
l
e
a
n

of
t
h
e

c
o
r
r
e
s
p
o
n
d
i
n
g

n
o
d
e

to
f
a
l
s
e

s
e
t

p
r
i
o
r
i
t
y

to
d
e
f
a
u
l
t

r
e
t
u
r
n

t
r
u
e

}

73

4.3. OVERALL APPROACH

4.3 Overall Approach

The algorithm uses two arrays and several atomic variables needed to ensure

that threads’ accesses to the data structures are safe, as shown in figure 4.1.

The first array holds the actual data that is produced and consumed; it is called

the scopedMemoryPool as effectively it contains a pool of scoped memory

areas. Data can be inserted and removed from any position in this pool by the

algorithm. The second array is a more traditional FIFO integer queue. It is

called the readList. Each node in the scopedMemoryPool contains a boolean

variable and a scopedMemory reference. The boolean variable indicates that

the node is free to be accessed for writing or holds data to be consumed. The

scopedMemory reference is to a scopedMemory object where the actual data

is produced and consumed. The readList holds the list of nodes that contain

data to be consumed. Atomic head and tail variables are used to enable the

reader and writer threads to access the queue. The writer threads enqueue

the position of produced data in the scopedMemoryPool at the head of the

readList and the reader threads dequeue the data’s position from the tail of

the queue.

A key property of the algorithm is that writers always search for an

empty node in the scopedMemoryPool starting from the first element. It is

guaranteed to find an unreserved node by the time it gets to the end of the

array (see Section 4.4.1).

The writer and reader threads accessing the data structure perform enqueue

(or write) and dequeue (or read) operations, respectively. The write and read

operations are divided into two parts: the part that requires interaction with

74

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ

the data structure and the part that does not require interaction with the

data structure. During the part that does not require interaction with the

data structure (i.e. actual data production and consumption) the progress

of a thread is not affected by the progress of any other threads concurrently

accessing the data structure.

On the other hand, the part that requires interaction with the data

structure, like reserving a node for writing or reading and updating the data

structure, the progress of the thread might be affected by the progress of other

threads concurrently accessing the data structure. For example, a thread

performing a write operation might fail to reserve a node in the queue due

to another thread concurrently running on another processor (or core) that

has succeeded in reserving the same node. Hence, during node reservation

in the scopedMemoryPool and the updating of the readList, the threads

run non-preemptively. This ensures that there is no interference of threads

concurrently accessing the data structure that are scheduled on the same

processor in the system. This allows a simple bounding of the worst-case

access times, as for a writer thread to reserve a node, in the worst case all

processors (or cores) are occupied by writer threads competing together to

reserve an empty node. This is a race condition that cannot be avoided.

The unlucky writer is going to retry a number of times equal to the number

of processors (or cores) - 1; assuming it looses the race to all other writers

concurrently scheduled on the other processors. In the case that the number

of writer threads is greater than the number of processors (or cores) in

the system, if any writer thread is preempted just after finishing the node

reservation step, the new writer is not going to affect the current competition

75

4.4. DESIGN ISSUES

between the writers, as our assumption is that all processors executes at the

same speed. Hence, the new writer is going to search the scopedMemoryPool

starting from the first node, while the competing writers are ahead in the

scopedMemoryPool, as shown in figure 4.2.

⋮

Scoped
Memory
objects

scoped mem-
ory pool

sm ref 1

sm ref 2

sm ref x

1

2

x

1

4

⋮

Boolean variablesscopedMemory
references

readList

tail

head

Figure 4.1: Block diagram of the data structure

node 1 node 2 . . . node (x-1) node x

T1T2T3
New
Writer

Figure 4.2: New writer case

4.4 Design issues

It is a complex task to design an algorithm that can provide wait-free

guarantees; especially if the algorithm is supposed to provide general purpose

76

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ

communication for a multi-threaded application on a multi-processor (or

multi-core) system. Thus, the algorithm is utilizing all the features of the

RTSJ to ensure that it meets the design requirements.

4.4.1 Data structure size

In general, in applications where the average consumption rate of the reader

threads is equal to the average production rate of writer threads 1 the data

structure size can be bounded. This ensures that all produced data items are

enqueued and processed. The algorithm consequently targets applications

that have production rate of the writer threads that is equal to the production

rate of the reader threads, equation 4.2.

Assuming that the number of readers is given by (nreaders) with different

release parameters, and similarly for the number of writer threads (mwriters).

For each thread τi there is a period Ti and a deadline Di.

∑
∀i∈readers

1
Ti

= ∑
∀j∈writers

1
Tj

(4.2)

The worst case occurs, when the reader threads are scheduled to run at

the start of their periods at a time when there is no data in the queue to

consume. In the subsequent periods, the readers are scheduled to complete

just before their deadlines. At the same time, the writer threads are scheduled

to complete just before their deadlines in their first periods, and early at their

1If the average consumption rate for the reader threads is larger there will be no problem.
If the average production rate for the writer threads is larger, then at a certain moment,
the writer threads will not be able to enqueue any produced data, as the queue will be full.
In this case, the programmer should provide a proper mechanism to handle un-enqueued
data items if the application requires that all produced data items should be consumed.

77

4.4. DESIGN ISSUES

following periods, as shown in figure 4.3.

We assume the time required to execute the queuing and dequeuing

protocols are negligible compared to the time required by the thread to

produce or consume the data in any of the data structure nodes. Consequently,

we are interested in finding the largest distance that the writers can be ahead

of the readers, which can be represented as follows, where t is some point in

time:

∑
∀i∈writers

(⌊t +Di

Ti

⌋ + 1) − ∑
∀j∈readers

max(⌊t −Dj

Tj

⌋,0) (4.3)

0 t 2t

Readers Writers Writers Readers

Figure 4.3: Worst case scenario of writers and readers execution

Equation 4.3 is composed of two parts, the first is how much the writers

can be ahead of the average rate of production, 4.4, and the second is how

much the readers are behind the average rate of consumption, 4.5. The first

78

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ

part can be rewritten as:

∑
∀i∈writers

(⌊t +Di

Ti

⌋ + 1) − ∑
∀i∈writers

t

Ti

≤ ∑
∀i∈writers

(t
Ti

+ Di

Ti

+ 1) − ∑
∀i∈writers

t

Ti

= nwriters + ∑
∀i∈writers

Di

Ti

(4.4)

We assume that for the writers the worst-case situation is all writers

produced just before their deadline and then immediately on their next

release. Hence to represent this scenario we must add Di to t to ensure that

we get the correct number of releases. The +1 is because in an interval of any

arbitrary small length, we can have at least one release.

For readers, we assume that the worst-case situation is all readers consume

immediate at their release time and then at their deadline on their next

release. Hence to represent this scenario we must subtract Dj to t to ensure

that we get the correct number of releases. The "-1" appears because we are

making the second summation term as small as possible, and so we substitute

79

4.4. DESIGN ISSUES

x − 1 for ⌊x⌋ since ⌊x⌋ >= x -1. Hence the second part becomes

∑
∀j∈readers

t

Tj

− ∑
∀j∈readers

max(⌊t +Dj

Tj

⌋,0)

≤ ∑
∀j∈readers

t

Tj

− ∑
∀j∈readers

(t

Tj

+ Dj

Tj

− 1)

= nreaders + ∑
∀j∈readers

Dj

Tj

(4.5)

Inserting into Equation 4.3 and simplifying gives the max distance between

the writers and the readers is upper bounded by

nwriters + ∑
∀i∈writers

Di

Ti

+ nreaders + ∑
∀j∈readers

Dj

Tj

(4.6)

Given the threads’ deadlines and periods the buffer size can be calculated,

which might not be an integer value. But as it is a strict upper bound, the

maximum buffer size is given by:

nwriters + nreaders + ⌈ ∑
∀i∈writers

Di

Ti

+ ∑
∀j∈readers

Dj

Tj

⌉ (4.7)

assuming implicit deadlines (i.e. Di = Ti) then the required buffer size is

given by:

2 (nreaders + nwriters) (4.8)

According to equation 4.8, it is guaranteed that at any moment of time

t, there is any empty node in the queue for a writer thread performing an

enqueue operation.

80

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ

However, a key property of the algorithm is that writers always search for

an empty node in the scopedMemoryPool starting from the first element. It

must therefore be guaranteed to find an unreserved node by the time it gets

to the end of the array it is possible for the empty node to become available

for writing after the writer thread passed the location of that node, as shown

in figure 4.4.

We can apply a similar argument to that above to determine what impact

this has on the required queue size. Consider an arbitrary point in time, t

when a writer starts searching the scopedMemoryPool. The maximum number

of items in the buffer must be less than:

∑
∀i∈writers

(⌊t +Di

Ti

⌋ + 1) − ∑
∀j∈readers

max(⌊t −Dj

Tj

⌋,0) (4.9)

Hence, the number of items in the buffer must be

≤ ∑
∀i∈writers

(t
Ti

+ Di

Ti

+ 1)−

∑
∀j∈readers

(t

Tj

− Dj

Tj

− 1)
(4.10)

If D = T

2nwriters + 2nreaders + ∑
∀i∈writers

t

Ti

+ ∑
∀j∈readers

t

Tj

(4.11)

81

4.4. DESIGN ISSUES

Now as the average production and consumption rates are equal:

∑
∀i∈writers

t

Ti

= ∑
∀j∈readers

t

Tj

(4.12)

Therefore, the number of items in the buffer must be

> 2 (nreaders + nwriters) (4.13)

In the worst case, there could be nwriters trying to write, therefore to ensure

that a writer finds a slot on one pass we must add an extra nwriters spaces.

Hence, the buffer size must be

2nreaders + 3nwriters (4.14)

Given this queue size, the algorithm guarantees that

• The time required for the writer or reader thread to perform the enqueue

or dequeue operation is bounded; which is proportional to the number

of writer and reader threads concurrently accessing the data structure.

• All produced data is enqueued in the data structure, which ensures that

every produced data item is consumed.

The algorithm imposes no limitations on the maximum number of reader

or writer threads concurrently accessing the data structure, however, the

number of reader and writer threads should be known prior to initializing

the data structure. If it is required to change the number of reader or writer

82

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ

node 1 node 2 . . . node (x-1) node x

Writer 3

Empty
node

Figure 4.4: Special case scenario

threads accessing the data structure at runtime the data structure should be

re-initialized.

It is possible to set the number of reader and writer threads to a certain

number that is higher than the initial number of threads accessing the data

structure, if it is expected that the number of threads during execution can

increase. However, this comes at the expense of the spatial concern. The

programmer could set the number of threads accessing the data structure to

ensure that the required memory space is reserved during the initialsation of

the data structure, during execution time the number of threads can vary

without being larger that that number. However, in the case of setting large

number of threads, and the real number during the execution did not reach

that number there will be a wasted reserved space, that could be used for

other purposes in the system.

The number of threads can be set to a number higher than the initial

number of threads accessing the data structure, if it is expected that during

execution the number of threads could increase; however, this should be

governed by many factors like the availability of memory space in the system,

83

4.4. DESIGN ISSUES

the size of the data item to be written/read, and the difference between the

expected number of threads and the initial number is logical.

For example, if the initial number of threads accessing the data structure

is 10 and it is expected during run time that it is possible to have 30 threads

concurrently accessing the data structure, to set the number of threads at the

initialisations of the data structure to 30 and not to 100, for example.

4.4.2 Data structure design

The data structure can be initiated in any memory area, assuming that the

free space is sufficient for the application requirements. If the data structure

life is expected to be the duration of the application, it is recommended to

initiate the data structure in immortal memory. However, objects created

in immortal memory cannot be deleted; hence, the immortal memory size is

going to be consumed with time. To utilize the new memory areas that RTSJ

introduces, the data structure can be divided into two parts; the booking

area (the part that facilitate the communication between the threads) and

the actual storage units of the produced data. The data structure cannot

be initiated in the standard Java heap; as the structure supports no-heap

real-time threads.

The booking area, explained in detail below, maintains a record of the

current status of each node in the data structure with the necessary variables

(pointers) that maintain safe access to the data structure contents. This part

can be initiated in Immortal memory, as the amount of memory required for

this part is fixed during the application initialization. Figure 4.5 presents the

84

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ

suggested distribution of the data structure. The booking area is stored in

Immortal memory, and a Scoped Memory backing store is associated with

each node in the data structure. The produced data is stored in scoped

memory area(s).

Associating a scoped memory backing store for each node in the data

structure enables better utilization of the available memory and less effort

for the programmer to perform the required memory management; as the

allocated memory in the scoped memory backing store is reclaimed when the

number of references to the backing store is zero.

heap memory

Data Data Data

Booking
area

Immortal memory

Data structure

ScopedMemory backing stores

Figure 4.5: Suggested memory allocation of the data structure

To avoid any interference between the reader and writer threads, the

booking area is composed of a scopedMemoryPool and a Data Position (an

integer) Queue; shown in figure 4.6. The writer threads enqueue the data in

the data content array; the actual data is stored in the scoped memory backing

stores. The readList maintains a list of all nodes in the scopedMemoryPool

that are holding data available for consumption. The reader threads read the

indexes from this queue and consume the data in the corresponding nodes of

the data content array.

85

4.4. DESIGN ISSUES

A writer thread searches the data content array starting from the first

node trying to find the first available node for writing; accordingly, there is

no pointers (head or tail) associated with this array. If more than a writer

thread compete on reserving the same node, only one is going to succeed in

reserving the node and all the others keep searching forward in the array for

an available node. The loosing writer threads do not restart the search from

the beginning, every time the writer thread fails in reserving a node (due to

another thread competing to reserve the node at the same time and succeed)

the writer thread continues with the next node until it succeed in reserving a

node.

To provide wait free guarantees, the number of retries that a writer or a

reader thread performs when trying to enqueue or dequeue a node should

be bounded. Thus, the data structure is sized such that a writer or a reader

thread only needs to search once to find a node to produce data in or consume

the data it contains.

As discussed earlier, RTSJ reclaims the allocated memory space of a

scoped memory backing store when the number of active schedulable objects

in that backing store is zero. There is going to be certain amount of time

after the writer thread finishes the data production and leaves the memory

area and before a reader thread accesses the node for consumption, hence, the

memory space allocated for the data is reclaimed and the backing store of the

ScopedMemory is going to be empty when the reader tries to consume that

data. RTSJ 1.1 introduces the pinnable ScopedMemory to address this race

condition (which is unavoidable in producer consumer systems); according

to RTSJ a pinned ScopedMemory backing store contents will not be deleted

86

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ

Figure 4.6: Data structure components and suggested memory allocation

until it is unpinned and the active schedulable objects in that memory area is

zero. The algorithm presented in this thesis is implemented on JamaicaVM

[47]; which is currently based on RTSJ 1.0.2, therefore, until the RTSJ 1.1

implementation is released the pinnable feature is not available. Thus, a

simulation of the pinning feature is adopted, in which an additional thread is

created in the ScopedMemory backing store as part of the data production

and the reader thread consuming the data stops that thread (which then

terminates); accordingly, the data in the ScopedMemory backing store is only

deleted after it is consumed.

The memory requirements of the algorithm can be determined by the

number of the reader and writer threads concurrently accessing the data

87

4.5. TIME ANALYSIS

structure, and the amount of memory required to store the data produced by

the writer threads, which is application dependent; thus the programmer can

determine the overall amount of memory required to implement the algorithm

and ensure that the system is able to provide such an amount of memory.

4.5 Time analysis

The algorithm is designed to provide wait free guarantees for a multi-threaded

application in a multiprocessor (or multi-core) environment. Threads accessing

the data structure performs write and read operation. Accordingly, it is

important to ensure that a writer or reader thread execution time is bounded

by defining the maximum time that a thread suffers interference from other

threads running concurrently. In a multi-processor or a multi-core environment,

a thread execution can be interfered by any other thread concurrently accessing

the same data structure; either running on the same processor (with higher

priority) or in a different processor (regardless of the priority).

In the worst case, a writer thread Tw performing a write operation fails to

reserve a node from the scopedMemoryPool a number of times equal to the

number of writer threads in the application except for itself; all other writer

threads are competing at the same time and succeed in reserving nodes before

Tw. Moreover, if Tw is unlucky enough Tw fails also in adding the index of

the node to the readList a number of times equal to the number of writer

threads in the application except for itself.

In a multiprocessor system, the writer threads are scheduled in the same

processor (or core) or different processors (or cores). To avoid the interference

88

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ

of the execution of a writer thread Tw from other writer threads scheduled

on the same processor (or core) it is required that the execution of Tw is not

preempted during the node reservation or adding the index of the node to

the readList. Accordingly, the parts of the code in the writer thread that

performs the node reservation and adding the node index to the readList is

executed while the priority of the writer thread is set to maximum priority.

Consequently, a writer thread only fails to reserve a node if there is another

writer thread concurrently competing to reserve the same node and scheduled

on another processor or core.

If the writer threads within the application are scheduled to run concur-

rently, such that each writer thread is scheduled to run on a different processor

(or core) in the system, a writer thread Tw at a maximum is going to fail in

reserving the node a number of times equal to the number of processors (or

cores) in the system.

In the case of the number of writer threads is more than the number of

processors (or cores) in the system and all writer threads are scheduled to

run concurrently (i.e. there is more than one writer thread scheduled to run

on the same processor) the number of retries to reserve a node in the queue is

limited to the number of processors (or cores) because searching for an empty

node starts from the beginning of the queue; any writer thread searches for

an empty node in the pool starting from the first node. For example, if there

are three writer threads Tw1, Tw2, and Tw3 (and the size of the queue is 8

nodes) and two processors in the system. Writer thread Tw1 is scheduled on

processor P1 and writer threads Tw2 and Tw3 are scheduled on P2. If Tw1 and

Tw2 are competing to reserve the first node and Tw2 succeeds and Tw1 fails.

89

4.5. TIME ANALYSIS

Tw1 is going to try to reserve node 2, while Tw3, if it is able to arrive before

Tw1 succeeds is going to start the reservation from node 1.

Also note, context switching is required before a thread actually starts

execution; the processor performs a context switching between the thread

being executed and the thread to be executed. Relatively, context switching

requires longer time compared to the time required to perform different

operations on the processer [89]. In the previous example, if Tw3 is scheduled

directly after Tw2 succeeds, P2 is required to perform context switching and

Tw3 should be executed to the point that is starts the enqueue method (and

starts the competition on the node reservation). Hence, Tw1 progress is not

affected by the arrival of Tw3. Hence, the maximum number a writer thread

fails is limited to the number of processors.

If we assume that the number of writer threads and the number of reader

threads concurrently accessing the data structure are m and n, respectively.

Accordingly, the size of the data structure is more than (3m + 2n). The time

required for a writer thread to finish an enqueue operation is:

Ten = Tr + Tp + Tu (4.15)

where:

Tr : the time required for the writer thread to reserve a node in the data

structure.

Tp : the time required for the writer thread to perform the production of

the data in the node.

Tu : the time required for the writer thread to update the data structure.

90

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ

In the worst case, the writer thread succeeds in reserving the last node in

the pool (i.e. all other nodes except the last node are reserved by a writer, a

reader is consuming the data, or contains data for consumption), accordingly:

Tr =
(3m+2n)
∑
i=1

TRretry (4.16)

where

TRretry: is the time required to try to reserve a single node in the

scopedMemoryPool

If all the writer threads are trying to add the index of the node to the

readList at the same time, then the last writer thread to succeed should try

m times, accordingly, Tu is:

Tu =
m

∑
i=1
TUretry (4.17)

where

TUretry: is the time required to try to add the index of the node to the

readList once.

Accordingly, the time required to perform an enqueue operation can be

written as:

Ten =
(3m+2n)
∑
i=1

TRretry + Tp + Tu (4.18)

91

4.5. TIME ANALYSIS

The time required to perform the production of the data is application

dependent, which should be determined by the application programmer. The

time required to reserve a node in the queue is proportional to the number of

reader and writer threads concurrently accessing the data structure, while the

time required to add the node index to the readList is proportional to the

number of the writer threads only.

On the other hand, a reader thread accessing the dequeue method only

competes with other reader thread when trying to read a node index from

the readList. The time required for a reader thread to finish the dequeue

method is:

Tde = Tres + Tc + Tup (4.19)

where:

Tres : the time required for the reader thread to read a node index from the

readList

Tc : the time required for the reader thread to consume the data in the node.

Tup : the time required for the reader thread to update the data structure.

A reader thread trying to read a node index from the readList, in the

worst case, will retry a number of times that is equal to the number of

reader threads concurrently accessing the data structure (i.e. all other reader

threads are trying to read a node index from the readList at the same time),

92

CHAPTER 4. MULTIPROCESSOR WAIT-FREE QUEUES FOR RTSJ

accordingly:

Tres =
n

∑
i=1
TResretry (4.20)

where

TResretry: is the time required to try to reserve a node index from the

readList once.

The time required to perform the data consumption is application de-

pendent, which should be determined by the application programmer. The

reader thread is not going to face any competition while updating the data

structure (setting the reserved variable of the corresponding node to false).

accordingly, the time required to finish the dequeue operation is:

Tde =
n

∑
i=1
TResretry + Tc + Tup (4.21)

4.6 Summary

The WaitFreeQueue algorithm presented in this thesis is designed to enable

communication between threads within a real-time multi-threaded application

in a multiprocessor environment. The algorithm provides wait-free guarantees

assuming that all threads meet their real-time properties and the average

production rate of the writer threads is equal to that of the reader threads.

The algorithm supports periodic and sporadic real-time threads. Allowing

aperiodic real-time threads to access the data structure has implications that

93

4.6. SUMMARY

compromise the guarantees that the algorithm provides. In particular, it

becomes impossible to bound the size of the queue.

The computational and memory requirements of the algorithm can be

determined ahead of runtime, the programmer must ensure that there is enough

resources in the system for the algorithm. The changes in the application

requirements (i.e. the size of the data or the number of reader or writer

threads concurrently accessing the data structure) requires re-initializing the

data structure to reflect on these changes.

The data structure can be loaded in any memory area, except the standard

Java heap memory. Currently, each data item produced is allocated in a

separate scoped memory backing store. This ensures that the progress of any

writer or reader thread during the data production or consumption is not

affected by the progress of any other writer or reader thread in the application.

This also helps in better memory management, as the programmer does

not need to perform memory management, as the allocated space in the

scoped memory backing store is going to be reclaimed automatically after the

consumption of the data is finished.

94

Chapter 5

Wait Free queue algorithm

implementation

In this chapter the algorithm implementation in JamaicaVM RTSJ is presented.

The algorithm is a non-blocking wait-free queue within the RTSJ environment

that is targeting the multiprocessor environment.

5.1 Using the algorithm

The algorithm uses the scoped memory backing store as the memory space to

produce and consume the data. Accordingly, the algorithm supports all types

of applications that require a shared data structure, as it is possible to store

any data, regardless of the type or size.

Using the algorithm requires developing writer and reader threads. The

data production and consumption processes are performed using a runnable

object, which is passed as a parameter when accessing the enqueue and

95

5.1. USING THE ALGORITHM

dequeue methods, respectively. The runnable objects is designed according to

the application requirements.

As discussed earlier, the current version of the RTSJ does not implement

the pinnable scoped memory area. Thus, the PinThread, presented in listing

D.8, simulates the pinnable scoped memory area. The algorithm attaches the

PinThread instantiated in the scoped memory backing store to the scoped

memory portal. PinData is a real-time thread that is put to sleep long enough

such that the data produced and stored in the scoped memory backing store

is consumed. The produceData and consumeData methods are used to store

and retrieve the data.

Listing B.2 presents a writer thread sample. The presented writer thread

accesses the enqueue method to perform the data production. The program-

mer should develop the writer thread such that it reflects the application

requirements. The listing in B.1 presents a reader thread sample. The reader

thread access the dequeue method to perform the data consumption.

The ruannable objects to perform the data production and data consump-

tion should be developed by the programmer according to the application

requirements. The writer and reader threads access the enqueue and dequeue

methods once every period, this enables the programmer to better estimate

the data production and consumption rates. However, if the application

requires that the writer or reader thread should perform the data production

or consumption more than once every period, the programmer should be able

to estimate the production rates accordingly.

In a multi-threaded application, the shared data structure is used to enable

the threads within the application to communicate with each other. However,

96

CHAPTER 5. WAIT FREE QUEUE ALGORITHM IMPLEMENTATION

the shared data structure is only one building block of the multi-threaded

application, the application might have many other operations to perform.

5.2 Wait-free queue implementation

This section introduces the implementation of the algorithm on aicas RTSJ,

JamaicaVM [47]. Figure 5.1 presents a class diagram of the wait free algorithm,

a full listing of the algorithm implementation is provided in appendix D.2. The

class diagram shows four classes: QueueNode, WriterThread, ReaderThread

and WaitFreeQueue. The writer thread performs the enqueue operation and

the reader thread performs the dequeue operation; the Runnable object is

passed to the corresponding method to perform the designed operation.

The QueueNode contains an atomicBoolean variable, reserved and a

Scoped Memory object. The reserved flag used to indicate that the node is

empty, reserved=false, or the node have data to be consumed, reserved=true,

it is false by default. The Scoped Memory objet, sMemory, holds a reference

to the Scoped Memory backing store.

The WaitFreeQueue class contains the enqueue and dequeue meth-

ods, scopeMemoryPool and readList arrays, and readListHead and

readListTail AtomicVariables. scopeMemoryPool is an array of the QueueN-

ode class, and the readList is an integer array.

5.2.1 The queue node

The QueueNode class is the basic component of the data structure, shown

in listing 5.1. The reserved AtomicInteger is false by default; indicating

97

5.2. WAIT-FREE QUEUE IMPLEMENTATION

Figure 5.1: Class diagram of the wait free algorithm

that the node is available for writing. The writer threads trying to perform

an enqueue operation might compete on reserving the same node. The first

to set reserved to true reserves the node, and all the other writer threads

will try with the next node, and so on. When a reader thread consumes data

from a node in the queue, it sets the associated reserved AtomicInteger to

false to indicate that the data has been consumed and the node is available

for the writer threads. The writer and reader threads produce and consume

the data on/from the backing store associated with that node of the queue.

The sMemory is a ScopedMemory object; the object holds a reference to

the scoped memory backing store, where the data is produced and consumed.

The size of the scoped memory backing store is application dependent, thus,

the programmer should set the required amount of memory during the

initialisation process of the data structure.

At runtime, any node in the data structure might be in one of four states,

as shown in figure 5.2:

98

CHAPTER 5. WAIT FREE QUEUE ALGORITHM IMPLEMENTATION

• Empty: initially, all nodes in the data structure ar empty and available.

• Data being processed: a writer thread reserved the node and cur-

rently is producing the data in the node.

• Data available: The writer thread finished the data production and

the node is available for the reader threads.

• Data being consumed: a reader thread reserved the node and cur-

rently consuming the data, when the reader thread finishes the data

consumption process, the node is set back to empty.

Listing 5.1: QueueNode class
1 import java.util.concurrent.atomic .*;

2 import javax.realtime .*;

3 import javax.realtime.ScopedMemory .*;

4 public class QueueNode {

5 public final AtomicBoolean reserved;

6 public final LTMemory SMemory;

7

8 public QueueNode(long size) {

9 SMemory = new LTMemory(size);

10 reserved = new AtomicBoolean(false);

11 }

12 }

5.2.2 Data structure initialisation

The data structure should be initialised prior to its usage. The programmer

should identify the number of writer and reader threads concurrently accessing

99

5.2. WAIT-FREE QUEUE IMPLEMENTATION

Figure 5.2: The node life cycle

the data structure and the size of the ScopedMemory backing store, a full

listing of the WaitFreeQueue class is provided in D.2.

As discussed earlier, CAS based non-blocking implementations are subject

to the ABA problem. During the node reservation it is possible that more

than a writer (or reader) threads are competing to reserve the same node.

It is important to ensure that if the writer (or reader) thread is preempted

while performing the node reservation and another writer (or reader) thread

succeed in reserving the subject node while that thread is preempted, the

preempted thread fails to finish the reservation process when resumed. In a

multiprocessor or multi-core environment, to avoid the occurrence of the ABA

problem, if multiple writer (or reader) threads are competing to reserve the

same node and these threads are scheduled on different processors or cores,

100

CHAPTER 5. WAIT FREE QUEUE ALGORITHM IMPLEMENTATION

the variables that facilitate the access to the shared data structure are defined

as atomic variables. Accordingly, if multiple writer (or reader) threads are

competing to reserve the same node and scheduled on different processors

(or cores) only one succeeds in updating the associated variable, and all the

other threads fail.

The algorithm implements the version number as the avoidance solution

to the ABA problem; accordingly, a writer (or reader) thread performing an

enqueue (or dequeue) operation uses a version number; the thread ensures

that the version number is the same before trying to update the associated

variable; otherwise the thread is considered to be preempted and another

thread succeeded in reserving the subject node. The readListInvalid array is

used to store the version numbers.

5.2.3 Enqueue Method

The enqueue operation is divided into three steps:

• Reserve a node: the writer thread searches the data structure starting

from the beginning trying to reserve the first empty node. The writer

thread to succeed in reserving the node sets the reserved atomic

boolean of that node to true; shown in figure 5.3.

• Produce the data: the designed runnable object is then executed in

the scoped memory backing store; which is supposed to perform the

operation required by the application; shown in figure 5.4.

• Update the data structure: the writer thread then add the index of

101

5.2. WAIT-FREE QUEUE IMPLEMENTATION

the node to the readList head, to enable the reader threads to access

that node to consume the data; shown in figure 5.5.

The writer thread that succeeds in reserving the node sets the reserved

atomic boolean to true. If more than a writer thread competing to reserve

the same empty node, the writer thread that succeed in setting the reserved

atomic boolean to true reserves the node and all other writer threads are

going to retry the reservation with the next empty node.

Once the reserved atomic boolean of the node is set to true the node is

considered as unavailable for all other writer threads except for the writer

thread succeed in reserving it; during the production of the data, the writer

thread suffers no interference from any other writer thread concurrently

accessing the data structure. As part of the data production, the writer thread

creates a real-time thread and assign it to the portal of the ScopedMemory

area, this ensures that after the writer thread finished execution and exits the

Scopedmemory backing store, the number of references to the backing store

will not be zero; this is the simulation of the pinning of the Scopedmemory

area.

The writer thread after finishing the data production updates the data

structure by adding the index of the node at the readList head. It is

possible that multiple writer threads are trying to add the index of the

corresponding nodes they reserved at the head of the readList concurrently.

The readListHead is an atomic integer variable. Accordingly, if there are more

than a writer thread that are trying to update the value of the readListHead

only one is going to succeed at a time, and all other writer threads is going to

102

CHAPTER 5. WAIT FREE QUEUE ALGORITHM IMPLEMENTATION

retry, and so on.

Hence, a writer thread accessing the enqueue method is going to suffer

the competition with the other writer threads, concurrently accessing the

data structure, during the node reservation and the data structure update.

During the data production the writer thread execution is not affected by

the progress of any other thread (writer or reader) concurrently accessing the

data structure. Thus, to bound the time required to perform the enqueue

method it is required to bound the number of retries a writer thread performs

when reserving a node or updating the data structure.

Figure 5.3 shows an example of a data structure of six nodes. In the

figure, nodes one and six holds data that is available for consumption and the

data in node three is being consumed. A writer thread is performing a node

reservation by searching the data structure from the beginning of the queue.

Assuming that there are no other writer threads competing, the writer thread

should succeed in reserving the first empty node, in such case, node two.

The writer thread updates the reserved variable and access the corre-

sponding scoped memory backing store, as shown in figure 5.4. Upon finishing

the data production, the writer thread adds the index of the node to the head

of the readList and updates the value of the readListHead, as shown in

figure 5.5.

103

5.2. WAIT-FREE QUEUE IMPLEMENTATION

3
4

ta
il

he
ad

-1
-1

1
6

-1
-1

tr
ue

fa
lse

tr
ue

fa
lse

fa
lse

tr
ue

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

SM
ba

ck
st
or
e

W
rit

er
th
re
ad

pr
od

uc
in
g
th
e
da

ta
R
ea
de
r
th
re
ad

co
ns
um

in
g
th
e
da

ta
Em

pt
y
no

de
D
at
a
av
ai
la
bl
e
fo
r
co
ns
um

pt
io
n

St
ep

1:
Se

ar
ch

fo
r

an
em

pt
y
no

de
st
ar
tin

g
fro

m
th
e
be

gi
nn

in
g

of
th
e
qu

eu
e

Fi
gu

re
5.
3:

En
qu

eu
e
m
et
ho

d,
st
ep

1:
re
se
rv
in
g
a
no

de

104

CHAPTER 5. WAIT FREE QUEUE ALGORITHM IMPLEMENTATION

3
4

ta
il

he
ad

-1
-1

1
6

-1
-1

tr
ue

tr
ue

tr
ue

fa
lse

fa
lse

tr
ue

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

SM
ba

ck
st
or
e

W
rit

er
th
re
ad

pr
od

uc
in
g
th
e
da

ta
R
ea
de
r
th
re
ad

co
ns
um

in
g
th
e
da

ta
Em

pt
y
no

de
D
at
a
av
ai
la
bl
e
fo
r
co
ns
um

pt
io
n

St
ep

1

St
ep

2:
Pr

od
uc

e
th
e
da

ta
in

th
e

sc
op

ed
m
em

or
y

ba
ck
in
g
st
or
e

Fi
gu

re
5.
4:

En
qu

eu
e
m
et
ho

d,
st
ep

2:
pr
od

uc
e
th
e
da

ta

105

5.2. WAIT-FREE QUEUE IMPLEMENTATION

3
5

ta
il

he
ad

-1
-1

1
6

2
-1

tr
ue

tr
ue

tr
ue

fa
lse

fa
lse

tr
ue

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

SM
ba

ck
st
or
e

W
rit

er
th
re
ad

pr
od

uc
in
g
th
e
da

ta
R
ea
de
r
th
re
ad

co
ns
um

in
g
th
e
da

ta
Em

pt
y
no

de
D
at
a
av
ai
la
bl
e
fo
r
co
ns
um

pt
io
n

St
ep

1

St
ep

2

St
ep

3:
U
pd

at
e

th
e
da

ta
st
ru
ct
ur
e
w
ith

th
e
re
se
rv
ed

no
de

in
de

x

Fi
gu

re
5.
5:

En
qu

eu
e
m
et
ho

d,
st
ep

3:
up

da
te

th
e
da

ta
st
ru
ct
ur
e

106

CHAPTER 5. WAIT FREE QUEUE ALGORITHM IMPLEMENTATION

5.2.4 Dequeue Method

A reader thread accessing the dequeue method is going to perform the following
steps:

• Reads a node index: the reader thread reads a node index from the
readList tail and move the readListTail to point to the next location
in the readList.

• Consumes the data: the reader thread access the corresponding
scoped memory backing store and consumes the data stored.

• Updates the data structure: the reader thread then updates the
data structure to indicate that the node is empty and it is available for
writing.

It is possible that a reader thread that is accessing the dequeue method

to find the data structure empty and there is not any node that holds data

available for consumption; as this dependent on the distribution of the reader

and writer threads’ execution concurrently accessing the data structure and

their scheduling parameters.

To ensure that the readListHead does not lag behind the readListTail,

all the locations of the readList are initialised to -1. A reader thread accessing

the dequeue method is expecting the location of the readListTail to have

a value between 0 and queueSize -1. The reader thread that succeeds in

reading the index of the node from the readList (updates the readListTail

value to point to the next location in the readList) resets the value of the

location (that holds the index of the node it just read) to -1. Accordingly, the

dequeue method returns false (indicating empty queue) if the value of the

location that the readListTail points to is -1.

107

5.2. WAIT-FREE QUEUE IMPLEMENTATION

If there are more than a reader thread trying concurrently to read an

index from the readList, only one succeeds in reading the index that the

readListTail points to; this is because the readListTail is an AtomicInte-

ger variable. Thus, only one reader thread is able to update its value, and

all other reader threads concurrently trying to read an index of a node are

going to fail. The failing reader threads retries to read a node index from the

readList, if any.

The reader thread that succeeds in reading the node index consumes the

data from the corresponding scoped memory backing store, when the reader

thread finishes consuming the data and before exiting the Scopedmemory

backing store, it stops the real-time thread assigned to the portal of the

Scopedmemory backing store, hence, when the reader thread exist the Scope-

dmemory backing store, the number of references to the backing store is zero

and a memory reclamation is performed. Then the reader thread updates

the reserved variable of the consumed node to false. This indicates that the

node is empty and available for the writer threads to perform the production

of the data.

During the consumption of the data and updating the node status, the

reader thread does not compete with any other reader thread, thus the reader

threads are only competing during reading the index of the node from the

readList.

Figure 5.6 shows the first step of a reader thread accessing the dequeue

method; the thread reads the index of the node, node 1 in this case, and

updates the value of the readListTail pointer, to 4 in this case; as shown in

figure 5.7. The reader thread consumes the data from the scoped memory

108

CHAPTER 5. WAIT FREE QUEUE ALGORITHM IMPLEMENTATION

backing store, and updates the status of the node, as shown in figure 5.8.

109

5.2. WAIT-FREE QUEUE IMPLEMENTATION

3
5

re
ad

Li
st
Ta

il
re
ad

Li
st
H
ea
d

-1
-1

1
6

2
-1

re
ad

Li
st sc
op

ed
M
em

or
yP

oo
l

tr
ue

tr
ue

fa
lse

fa
lse

fa
lse

tr
ue

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

SM
ba

ck
st
or
e

W
rit

er
th
re
ad

pr
od

uc
in
g
th
e
da

ta
R
ea
de
r
th
re
ad

co
ns
um

in
g
th
e
da

ta
Em

pt
y
no

de
D
at
a
av
ai
la
bl
e
fo
r
co
ns
um

pt
io
n

St
ep

1:
R
ea
d

a
no

de
in
de

x
an

d
up

da
te

th
e

re
ad

Li
st
Ta

il

Fi
gu

re
5.
6:

D
eq
ue
ue

m
et
ho

d,
st
ep

1:
re
ad

a
no

de
in
de
x

110

CHAPTER 5. WAIT FREE QUEUE ALGORITHM IMPLEMENTATION

4
5

re
ad

Li
st
Ta

il
re
ad

Li
st
H
ea
d

-1
-1

-1
6

2
-1

re
ad

Li
st sc
op

ed
M
em

or
yP

oo
l

tr
ue

tr
ue

fa
lse

fa
lse

fa
lse

tr
ue

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

SM
ba

ck
st
or
e

W
rit

er
th
re
ad

pr
od

uc
in
g
th
e
da

ta
R
ea
de
r
th
re
ad

co
ns
um

in
g
th
e
da

ta
Em

pt
y
no

de
D
at
a
av
ai
la
bl
e
fo
r
co
ns
um

pt
io
n

St
ep

1

St
ep

2:
co
n-

su
m
e
th
e

da
ta

fro
m

th
e

sc
op

ed
m
em

or
y

ba
ck
in
g
st
or
e

Fi
gu

re
5.
7:

D
eq
ue
ue

op
er
at
io
n,

st
ep

2:
co
ns
um

in
g
th
e
da

ta

111

5.2. WAIT-FREE QUEUE IMPLEMENTATION

4
5

re
ad

Li
st
Ta

il
re
ad

Li
st
H
ea
d

-1
-1

-1
6

2
-1

re
ad

Li
st sc
op

ed
M
em

or
yP

oo
l

tr
ue

fa
lse

fa
lse

fa
lse

fa
lse

tr
ue

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

re
se
rv
ed

SM
re
f.

SM
ba

ck
st
or
e

W
rit

er
th
re
ad

pr
od

uc
in
g
th
e
da

ta
R
ea
de
r
th
re
ad

co
ns
um

in
g
th
e
da

ta
Em

pt
y
no

de
D
at
a
av
ai
la
bl
e
fo
r
co
ns
um

pt
io
n

St
ep

1

St
ep

2

St
ep

3:
U
pd

at
e

th
e
re
se
rv
ed

va
ria

bl
e
of

th
e

co
rr
es
po

nd
in
g

no
de

to
fa
lse

Fi
gu

re
5.
8:

D
eq
ue
ue

m
et
ho

d,
st
ep

3:
up

da
tin

g
th
e
da

ta
st
ru
ct
ur
e

112

Chapter 6

Evaluation

This chapter introduces the evaluation of the algorithm; verifying its correct-

ness, measuring its performance, and comparing its performance against a

lock-based, and an RTSJ implementation versions.

The evaluation of the WaitFreeQueue algorithm is performed for two

reasons. The first is to measure the time response of the algorithm for

different real life scenarios, and estimate the computational cost required for

the algorithm. The second is to ensure the correctness of the algorithm when

evaluated using application that requires intensive computational power and

memory requirements.

To verify the correctness of the algorithm, Java PathFinder is used to

perform model checking of the algorithm and to execute different test cases;

the test cases are designed in order to verify that the reader and writer threads

concurrently accessing the threads are performing the dequeue and enqueue

operation correctly based on the queue’s initial state.

In section 6.1 the algorithm’s correctness is verified using Java PathFinder

113

6.1. SOFTWARE VERIFICATION TOOLS AND JAVA PATHFINDER
(JPF)

model checker. The different test cases is shown in section 6.3.

6.1 Software verification tools and Java

PathFinder (JPF)

There is an increasing dependency on computer systems in all aspects in

modern life, hence, it is essential to ensure that software is highly reliable;

especially if the cost of failure might be expensive in both human safety and

monetary terms. Thus, it is important to ensure that computer programs are

bug free.

In a multi-threaded application, based on the current status of each

concurrently running thread it is possible that the application might be in

any arbitrary state at runtime. The threads’ execution interleaving make it

possible to have countless number of execution paths, which makes it hard

to manually prove the correctness of the algorithm. Testing a concurrent

algorithm programmatically is consequently a very hard task as the number of

paths explodes as the number of concurrently running threads increases and

the size of the concurrent code increases [62]. Moreover, it might be difficult

to reproduce any error that occur as the execution environment is dynamic.

Among the common software correctness validation tools are formal meth-

ods and model checking [88]. Formal methods are mathematical techniques

that are used at different stages of the software development: design, implemen-

tation and testing. Basically, the goal of formal methods is to mathematically

model the behaviour of the system in a precise way [10]. On the other hand,

114

CHAPTER 6. EVALUATION

model checking is the automatic analysis of a computer program in order to

identify an errors in the design.

For formal methods to provide reliable results rigorous description of

the software model should be provided, however, this comes at the cost of

increased learning curve. Besides that, formal methods are complex, expensive

and labor intensive [88]. Moreover, it cannot fix wrong assumptions in the

design.

Model checking has proven that it is cost-effective and can be integrated

easily with conventional design methods, and it can be used to analyse a certain

set of the software program properties [10]. Model checkers confirm that

these properties hold or provide a report that they are violated. Furthermore,

model checkers can provide feedback on the errors found and may help in

discovering design errors. Bowen et al. in [17] argued that the use of formal

methods does not eliminate the need for model checkers and software testing.

To verify the correctness of the algorithm model checking is used to ensure

that all possible execution paths are free from deadlocks. In addition, testing

scenarios are used to ensure that when the queue is in certain states the

algorithm performs as required and the enqueue and dequeue operations are

performed correctly.

Model checking has been developed to provide the necessary tool that can

be used to reason about the correctness behaviour of software programs [78].

Java PathFinder (JPF) is a Java Virtual Machine (JVM) that is designed

to provide state model checking for Java applications [29]. By testing all

execution paths of the program, JPF identifies those paths that might result

in problems. JPF stores the state of each tested execution path to ensure

115

6.1. SOFTWARE VERIFICATION TOOLS AND JAVA PATHFINDER
(JPF)

that each path is tested once; if any problem detected in an execution path

the stored state of the path is used for back tracing.

Java PathFinder (JPF) is an open source model checker that has a highly

customizable environment for the verification of Java programs. JPF was

developed at the Ames Research Center in NASA in 2005 and it is available

for free.

As the number of execution paths can be very large, this is called the state

explosion problem. JPF uses the state matching; “each time JPF reaches

a choice point, it checks if it has already seen a similar program state, in

which case it can safely abandon this path, backtrack to a previous choice

point that has still unexplored choices, and proceed from there. That’s right,

JPF can restore program states, which is like telling a debugger "go back 100

instructions" [107].

JPF is able to provide a report on any defect found in the program using

the trace stack it creates while executing. “first it automatically executes

your program in all possible ways to find defects you don’t even know about

yet, then it explains you what caused these defects." [107].

In addition, JPF uses the partial order reduction in order to reduce the

state space; this limits the analysis to only context switches at operations

that can have effects across thread boundaries. JPF achieve this using Java

bytecodes and reachability information obtained from the garbage collector.

JPF is not aware of atomic variables within Java programs, hence for

test purposes only, the atomic variables used in our wait-free algorithm are

implemented using synchronized methods. The implementation of the boolean

and integer atomic variables are shown in appendix A.

116

CHAPTER 6. EVALUATION

Assertions in Java are used to confirm certain assumptions about the

behaviour of the program [73]. An assertion statement has two forms: assert

expr1; and assert expr1 : expr2. In both cases expr1 is a boolean expression.

In the first form if the expr1 evaluates to false an AssertionError is thrown

with no details. In the second form expr2 has a value which is used as part of

the AssertionError. However, according to the documentation expr2 cannot

invoke a method that is declared as void.

The use of the assertions in all the testing cases is meant to ensure that all

the enqueue and dequeue operations are perform correctly; for example, if two

dequeue operation is initiated at the same time, and there are enough nodes

in the queue to consume, the first two nodes in the queue will be consumed,

or if there is only one node in the queue, then one of the operations will

succeed and the other will return false.

The algorithm is implemented in the aicas RTSJ implementation, Ja-

maicaVM, and use atomic variables to facilitate the access to the data structure

contents. The current version of JPF is not aware of atomic variables and the

RTSJ extension. Accordingly, JPF is not able to model check the algorithm

as it is. The parts of the algorithm that relate to the RTSJ, like executing the

runnable objects in a scopedMemory area, are performed in isolation; hence,

the execution of these parts will not be affected by the progress of execution

of any other thread. Therefore, these parts of the algorithm can be removed

when performing the model checking of the algorithm.

117

6.2. MODEL CHECKING THE ALGORITHM

6.2 Model checking the algorithm

It is important to ensure that the algorithm performs the different operations

correctly and at run time the progress of any operation is not compromising

the integrity of the data structure contents. Model checking is used to ensure

that the execution of the different operations at run time do not suffer any

problems like data races or deadlocks.

The algorithm is model checked on a dedicated server that has four

processors (with four cores each) and 32GB of memory. The Java code used

to perform the model checking is listed in appendix B. Figure 6.1 shows the

results of testing the algorithm with two reader and two writer threads, and

it shows that there is no error detected and the algorithm is error free. Figure

6.2 shows the results of model checking the algorithm with three reader and

three writer threads, and is shows that there is no errors detected while model

checking the algorithm.

By comparing the results of figure 6.1 and figure 6.2 it is clear that the

number of tested paths significantly increased. The number of backtracked

paths in figure 6.1 is 1639091 compared to 796855400 in figure 6.2.

It is clear that as the number of threads concurrently accessing the

data structure increase the number of back traced execution paths explodes,

hence, it is not possible to perform model checking for more than 3 threads.

However, the threads accessing the data structure are performing the same

operations (writers perform enqueue and readers perform dequeue), during

these operations the main concern is when the threads are interacting with the

data structure; performing the reservation and updating the data structure.

118

CHAPTER 6. EVALUATION

etao500@csresearch1: /JPFTesting$ jpf +classpath=. -Xmx24024m Wfq
JavaPathfinder v6.0 (rev 778) - (C) RIACS/NASA Ames Research Center
== system
under test
application: Wfq.java
== search
started: 26/03/14 06:42
== results
no errors detected
== statis-
tics
elapsed time: 00:05:01
states: new=422620, visited=1216471, backtracked=1639091, end=1523
search: maxDepth=67, constraints hit=0
choice generators: thread=422620 (signal=0, lock=270159, shared ref=24050), data=0
heap: new=515059, released=3953445, max live=518, gc-cycles=1609801
instructions: 37647524
max memory: 429MB
loaded code: classes=95, methods=1395

== search
finished: 26/03/14 06:47

Figure 6.1: JPF model checking, 2 reader and 2 writer threads

As these operations are performed correctly for 3 readers or 3 writers, it is

expected that the same operation will be performed correctly as the number

of threads increase. However, it is expected that the time required to perform

this operation is going to increase. For example, if 6 writers are concurrently

trying to perform the enqueue operation, it is expected that the time required

for the last writer to succeed is longer than the case when there is only 3

writers.

6.3 Model-Checked test cases

The above tests just illustrate how the state expands significantly with just

three readers and writers. Any attempt to increase this number results in

the JPF running out of memory. Hence, the scenarios we have developed are

restricted to a maximum of three readers and three writers.

At runtime, due to the interleaving of execution of the threads concurrently

119

6.3. MODEL-CHECKED TEST CASES

etao500@csresearch1: /JPFTesting$ jpf +classpath=. WaitFreeQueue
JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 29/08/15 18:30
== results
no errors detected
== statis-
tics

elapsed time: 17:09:42
states: new=138441862, visited=658413538, backtracked=796855400, end=3770
search: maxDepth=92, constraints hit=0
choice generators: thread=138441862 (signal=0, lock=93359031, shared ref=3624898), data=0
heap: new=1427, released=1557306251, max live=531, gc-cycles=783950497
instructions: 13777607387
max memory: 6028MB
loaded code: classes=87, methods=1373

== search
finished: 30/08/15 11:40

Figure 6.2: JPF model checking, 3 reader and 3 writer threads

accessing the queue, the status of the queue could be in any of the following:

• Empty: for example, at the beginning of execution.

• Partially empty: there are some nodes that contain data to be con-

sumed and there is enough space for all current writers, however, the

number of readers trying to access the queue is more than the nodes

containing data.

• Partially full: the queue is almost full. There is enough data for the

current number of readers, however, the number of writers trying to

enqueue new data items in the queue is more than the available nodes

in the queue.

• Full: the queue is full. In this case, it is expected that there are readers

to consume the available data items.

120

CHAPTER 6. EVALUATION

To ensure the correctness of the algorithm, all of these cases should be

challenged with different test cases. The test cases are designed such that:

• Multiple writer threads: are trying to enqueue new data items to

the queue.

• Multiple reader threads: are trying to consume the available data

items in the queue.

• Two producers and two consumers: are trying to access the queue

concurrently.

For each of the test cases, the queue is going to be initialised in the

suitable state for the test; a pre-condition state of the test. Then the

producers and consumers are run to perform the designed enqueuing and

dequeuing operations; the test case is performed. After that, the state of

the queue is checked to ensure that the performed operations are correctly

executed; the post condition of the test case. In each test case, the writer or

reader thread is going to perform one enqueue or dequeue operation.

As the test cases are intended to test for the correctness of the algorithm,

there will be no real production or consumption of the data during these tests.

The result of any test case will be either passed or failed. When using the

JamiacaVM to perform the testing the number of messages that appeared in

the results is equal to those expected; for example, when three different readers

are performing dequeue operations it is expected to have three messages

indicating the results of each dequeue operation. However, when performing

the testing using the JPF, the number of messages that appear in the results

121

6.3. MODEL-CHECKED TEST CASES

is much larger than the expected number, this is due to the fact that JPF

performs back-tracing for all execution paths, hence, there might be enormous

execution paths and the messages will be shown for each execution path.

However, it is important to confirm that all the result messages are reviewed

and it is ensured that none of them appear to be failed.

For all the test cases, the writer thread and the reader thread is shown

in appendix B. Both the writer and the reader thread is set to perform

one enqueue or dequeue operation, respectively. The number of writers

and readers is set as the test case requires and the main class is shown in

WaitFreeQueue.java shown in appendix C.

6.3.1 Empty queue

The expected results of the test cases in the case of empty queue are:

• For the three writers: it is expected that the first three nodes in

the queue are going to contain data for consumption after the enqueue

operations are finished.

• For the three readers: it is expected that the queue is going to be

empty, as the queue does not contain any data for consumption and the

three dequeue operations return false.

• For two readers and two writers: the result depends on the order

of the threads execution, however, at most the queue is going to have

two nodes containing data for consumption, it is possible to have one or

no nodes, as well. Any of these cases is considered as pass for the test.

122

CHAPTER 6. EVALUATION

6.3.1.1 Test case 1: multiple writers are trying to enqueue new

data items

During this test case, three writer threads are trying to perform enqueue

operations on the queue, initially the queue is empty. TheQueue code shown

in TheQueue.java in appendix C. The queue is initialised with all nodes empty.

The three writers are expected to enqueue the data items in the first three

nodes: 0, 1, and 2. Hence, when a writer thread is trying to enqueue in the

node number 2, the postcheck method is started to test for the presence of

data items in the first three nodes of the queue and the rest of the nodes in

the queue are empty.

The test case is performed using JPF to check for the correctness of the

test case and algorithm correctness. The result of the test is shown in figure

6.3. The results show that there are no errors detected during the test case.

JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 09/09/15 22:50
Test Passed
– repeated 132 times
Test Passed
Test Passed
== results
no errors detected
== statis-
tics
elapsed time: 00:00:46
states: new=64766, visited=158120, backtracked=222886, end=578
search: maxDepth=96, constraints hit=0
choice generators: thread=64766 (signal=0, lock=35769, shared ref=936), data=0
heap: new=7617, released=559557, max live=451, gc-cycles=221121
instructions: 6000129
max memory: 244MB
loaded code: classes=87, methods=1374
== search
finished: 09/09/15 22:51

Figure 6.3: Test case 1: 3 writer threads with empty queue

123

6.3. MODEL-CHECKED TEST CASES

6.3.1.2 Test case 2: multiple readers are trying to dequeue data

items from the queue

TheQueue is shown in TheQueue.java in appendix C. The queue is initialised

with all nodes empty. The three readers are expected to perform no operations

and return false, as there is no data in the queue. Hence, the test passes if the

dequeue operation returns false, and to fail if the dequeue operation succeeds.

The test case is performed using JPF to check for the correctness of the

test case and algorithm correctness. The result of the test is shown in figure

6.4. The results indicate that there are no errors detected during the test

case.

JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 09/09/15 23:00
Test Passed
– repeated 118 times
Test Passed
== results
no errors detected
== statis-
tics
elapsed time: 00:00:01
states: new=1108, visited=2465, backtracked=3573, end=22
search: maxDepth=35, constraints hit=0
choice generators: thread=1108 (signal=0, lock=476, shared ref=124), data=0
heap: new=2593, released=11838, max live=486, gc-cycles=3314
instructions: 67869
max memory: 244MB
loaded code: classes=87, methods=1374
== search
finished: 09/09/15 23:00

Figure 6.4: Test case 2: 3 reader threads with empty queue

124

CHAPTER 6. EVALUATION

6.3.1.3 Test case 3: two writers and two readers are accessing the

queue

TheQueue is shown in TheQueue.java in appendix C. The queue is initialised

with all nodes empty. The two writers are expected to perform two enqueue

operations, one each, and the two readers are expected to perform two dequeue

operations, one each. The queue after the writer and readers threads finish

execution, might contain none, one, or two nodes containing data to be

consumed; this is dependent on the order of execution of the reader and

writer threads. The reader and writer threads are expected to perform their

operations on nodes 0 and 1; hence, any operation performed on any other

nodes is considered as a failure to the test.

The test case is performed using JPF to check for the correctness of the

test case and algorithm correctness. The result of the test is shown in figure

6.5. The results indicate that there are no errors detected during the test

case.

6.3.2 Partial empty queue

The expected results of the test cases in the case of partial empty queue are:

• For the three writers: it is expected that the three writers are going

to succeed in performing the enqueue operations. The status of the

queue after that might be partial full or full.

• For the three readers: it is expected that the queue is going to be

empty or partial empty, depending on the initial number of data items

125

6.3. MODEL-CHECKED TEST CASES

JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 09/09/15 23:16
Test Passed
– repeated 85 times
Test Passed

== results
no errors detected
== statis-
tics
elapsed time: 00:01:02
states: new=132686, visited=426680, backtracked=559366, end=351
search: maxDepth=74, constraints hit=0
choice generators: thread=132686 (signal=0, lock=77810, shared ref=5736), data=0
heap: new=139836, released=1279995, max live=483, gc-cycles=544933
instructions: 10877471
max memory: 244MB
loaded code: classes=87, methods=1374
== search
finished: 09/09/15 23:17

Figure 6.5: Test case 3: 2 writer and reader threads with empty queue

in the queue; the dequeue operation that does not succeed in consuming

data item, false is returned.

• For two readers and two writers: the result depends on the order

of the threads execution, however, at most the queue is going to have

two new nodes containing data for consumption.

6.3.2.1 Test case 1: multiple writers are trying to enqueue new

data items

During this test case, three writer threads are trying to perform enqueue

operations on the queue, initially the queue is partially empty; as certain

nodes are set to contain data. TheQueue code shown in TheQueue.java in

appendix C. The queue is initialised with the first two nodes containing data.

The three writers are expected to enqueue the data items in nodes: 2, 3, and

126

CHAPTER 6. EVALUATION

4. The postcheck method is started to test for the presence of data items in

the first five nodes in the queue and the rest of the nodes in the queue are

empty.

The test case is performed using JPF to check for the correctness of the

test case and algorithm correctness. The result of the test is shown in figure

6.6. The results show that there are no errors detected during the test case.
JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 10/09/15 21:13
Test Passed
– repeated 78 times
Test Passed
== results
no errors detected
== statis-
tics
elapsed time: 00:00:33
states: new=98812, visited=253507, backtracked=352319, end=571
search: maxDepth=99, constraints hit=0
choice generators: thread=98812 (signal=0, lock=60366, shared ref=1038), data=0
heap: new=17979, released=809353, max live=480, gc-cycles=350180
instructions: 8660209
max memory: 244MB
loaded code: classes=87, methods=1374
== search
finished: 10/09/15 21:14

Figure 6.6: Test case 1: 3 writer threads with partial empty queue

6.3.2.2 Test case 2: multiple readers are trying to dequeue data

items from the queue

TheQueue shown in TheQueue.java in appendix C. The queue is initialised

with the first two nodes containing data items. The three readers are expected

to perform dequeue operations, one each. Hence, two of the dequeue operations

is expected to succeed and the third to return false. The postcheck method

is initiated when the third dequeue operation failed to reserve a node for

127

6.3. MODEL-CHECKED TEST CASES

consumption and tries to return a false; the test case is considered as pass if

the queue is empty and contains no data for consumption.

The test case is performed using JPF to check for the correctness of the

test case and algorithm correctness. The result of the test is shown in figure

6.7. The results indicate that there are no errors detected during the test

case.
JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 09/09/15 23:00
Test Passed
– repeated 91 times
Test Passed
== results
no errors detected
== statis-
tics
elapsed time: 00:00:01
states: new=1108, visited=2465, backtracked=3573, end=22
search: maxDepth=35, constraints hit=0
choice generators: thread=1108 (signal=0, lock=476, shared ref=124), data=0
heap: new=2593, released=11838, max live=486, gc-cycles=3314
instructions: 67869
max memory: 244MB
loaded code: classes=87, methods=1374
== search
finished: 09/09/15 23:00

Figure 6.7: Test case 2: 3 reader threads with empty queue

6.3.2.3 Test case 3: two writers and two readers are accessing the

queue

TheQueue shown in TheQueue.java in appendix C. The queue is initialised

with all nodes empty. The two writers are expected to perform two enqueue

operations, one each, and the two readers are expected to perform two dequeue

operations, one each. The queue after the writer and readers threads finish

execution, might contain none, one, or two nodes containing data to be

128

CHAPTER 6. EVALUATION

consumed; this is dependent on the order of execution of the reader and

writer threads. The reader and writer threads are expected to perform their

operations on nodes 0 and 1; hence, any operation performed on any other

nodes is considered as a failure to the test.

The test case is performed using JPF to check for the correctness of the

test case and algorithm correctness. The result of the test is shown in figure

6.8. The results indicate that there are no errors detected during the test

case.
JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 09/09/15 23:16
Test Passed
– repeated 88 times
Test Passed
== results
no errors detected
== statis-
tics
elapsed time: 00:01:02
states: new=132686, visited=426680, backtracked=559366, end=351
search: maxDepth=74, constraints hit=0
choice generators: thread=132686 (signal=0, lock=77810, shared ref=5736), data=0
heap: new=139836, released=1279995, max live=483, gc-cycles=544933
instructions: 10877471
max memory: 244MB
loaded code: classes=87, methods=1374
== search
finished: 09/09/15 23:17

Figure 6.8: Test case 3: 2 writer and reader threads with empty queue

6.3.3 Partial Full queue

The expected results of the test cases in the case of partial full queue are:

• For the three writers: it is not guaranteed that the three writers are

going to succeed in performing the enqueue operations, as it is possible

129

6.3. MODEL-CHECKED TEST CASES

for the queue to have less than three empty nodes. The status of the

queue after that might be full.

• For the three readers: the three dequeue operations are going to

succeed from the first three nodes containing data.

• For two readers and two writers: as the dequeue operations is

going to be performed from the begining of the queue and the enqueue

is going to be performed at the end of the queue, then the number of

nodes that are containing data for consumption is going to be the same,

however, the order of these nodes is going to differ.

6.3.3.1 Test case 1: multiple writers are trying to enqueue new

data items

During this test case, three writer threads are trying to perform enqueue

operations on the queue, initially the queue is partially full; as certain nodes

are set to contain data. TheQueue code shown in TheQueue.java in appendix

C. The queue is initialised with the first six nodes containing data. The three

writers are expected to enqueue the data items in nodes: 6, 7, and 8. The

postcheck method is started to test for the presence of data items, the test is

passed if all the nodes in the queue are containing data.

The test case is performed using JPF to check for the correctness of the

test case and algorithm correctness. The result of the test is shown in figure

6.9. The results show that there are no errors detected during the test case.

130

CHAPTER 6. EVALUATION

JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 11/09/15 00:53
Test Passed
Test Passed
Test Passed
Test Passed
Test Passed
Test Passed
== results
no errors detected
== statis-
tics
elapsed time: 00:00:30
states: new=84100, visited=215143, backtracked=299243, end=514
search: maxDepth=93, constraints hit=0
choice generators: thread=84100 (signal=0, lock=52758, shared ref=1008), data=0
heap: new=11884, released=679366, max live=471, gc-cycles=297134
instructions: 6764315
max memory: 244MB
loaded code: classes=87, methods=1374
== search
finished: 11/09/15 00:54

Figure 6.9: Test case 1: 3 writer threads with partial empty queue

6.3.3.2 Test case 2: multiple readers are trying to dequeue data

items from the queue

TheQueue shown in TheQueue.java in appendix C. The queue is initialised

with the first four nodes containing data items. The three readers are expected

to perform dequeue operations, one each. The dequeue operations is expected

to succeed in consuming the nodes from the first three nodes. The postcheck

method is initiated when the third dequeue operation succeed in reserving

node number two for consumption. In such case, the test case is considered

as pass if all the nodes in the queue is empty except for node three.

The test case is performed using JPF to check for the correctness of the

test case and algorithm correctness. The result of the test is shown in figure

6.10. The results indicate that there are no errors detected during the test

131

6.3. MODEL-CHECKED TEST CASES

case.
JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 09/09/15 23:00
Test Passed
– repeated 64 times
Test Passed
== results
no errors detected
== statis-
tics
elapsed time: 00:00:11
states: new=27886, visited=73616, backtracked=101502, end=197
search: maxDepth=60, constraints hit=0
choice generators: thread=27886 (signal=0, lock=16776, shared ref=508), data=0
heap: new=6560, released=245114, max live=471, gc-cycles=100329
instructions: 1662239
max memory: 244MB
loaded code: classes=87, methods=1374
== search
finished: 11/09/15 00:18

Figure 6.10: Test case 2: 3 reader threads with empty queue

6.3.3.3 Test case 3: two writers and two readers are accessing the

queue

TheQueue shown in TheQueue.java in appendix C. The queue is initialised

with partially full queue (7 nodes out of 10 are not empty). The two writers

are expected to perform two enqueue operations, one each, and the two

readers are expected to perform two dequeue operations, one each. The

queue after the writer and readers threads finish execution should contain 7

non-empty nodes, however, it is possible to have any combination of empty

and non-empty nodes dependent on the order of execution of the reader and

writer threads.

The reader threads are expected to perform the dequeue operations from

nodes 0 and 1. The writer threads might perform the enqueue operations at

132

CHAPTER 6. EVALUATION

nodes 0 and 1, or later in the queue. The test is considered as passed, if the

number of non-empty nodes in the queue are 7.

The test case is performed using JPF to check for the correctness of the

test case and algorithm correctness. The result of the test is shown in figure

6.11. The results indicate that there are no errors detected during the test

case.

JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 09/09/15 23:16
Test Passed
– repeated 73 times
Test Passed
== results
no errors detected
== statis-
tics
elapsed time: 00:01:02
states: new=132686, visited=426680, backtracked=559366, end=351
search: maxDepth=74, constraints hit=0
choice generators: thread=132686 (signal=0, lock=77810, shared ref=5736), data=0
heap: new=139836, released=1279995, max live=483, gc-cycles=544933
instructions: 10877471
max memory: 244MB
loaded code: classes=87, methods=1374
== search
finished: 09/09/15 23:17

Figure 6.11: Test case 3: 2 writer and reader threads with empty queue

6.3.4 Full queue

The expected results of the test cases in the case of full queue are:

• For the three writers: the three writers are going to fail in performing

the enqueue operations, as the queue is full. The status of the queue

after the test is full.

133

6.3. MODEL-CHECKED TEST CASES

• For the three readers: the three dequeue operations are going to

succeed from the first three nodes in the queue.

• For two readers and two writers: according to the order of the

execution of the threads it might be possible to have any scenario.

However, the dequeue operations is expected to succeed from the first

two nodes in the queue, it is expected that the two enqueue operations

is going to fail as the progress of the enqueue operation ahead in the

queue is going to fail in finding any empty nodes.

6.3.4.1 Test case 1: multiple writers are trying to enqueue data

items in full queue

TheQueue shown in TheQueue.java in appendix C. In this test case, three

writers are trying to enqueue three new data items to the queue, one each.

The queue is set such that all the nodes in the queue contain data. In this

test, the enqueue method is expected to return false, as there are no space for

enqueueing any new data items. The test case passes if the three enqueue

operations return false, and fails if any of the operations tries to finish the

enqueue operation.

The test case is performed using JPF to check for the correctness of the

test case and algorithm correctness. The result of the test is shown in figure

6.12. The results indicate that there are no errors detected during the test

case.

134

CHAPTER 6. EVALUATION

JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 11/09/15 01:03
Test Passed
– repeated 97 times
Test Passed
== results
no errors detected
== statis-
tics
elapsed time: 00:00:08
states: new=17700, visited=47441, backtracked=65141, end=64
search: maxDepth=59, constraints hit=0
choice generators: thread=17700 (signal=0, lock=11020, shared ref=634), data=0
heap: new=19863, released=131082, max live=480, gc-cycles=63646
instructions: 1603905
max memory: 244MB
loaded code: classes=87, methods=1373
== search
finished: 11/09/15 01:03

Figure 6.12: Test case 4: 3 writer threads with partial empty queue

6.3.4.2 Test case 2: multiple readers are trying to dequeue data

items from the queue

TheQueue shown in TheQueue.java in appendix C. The queue is initialised

with all nodes containing data items. The three readers are expected to

perform dequeue operations, one each. The dequeue operations are expected

to succeed in consuming the nodes from the first three nodes. The postcheck

method is initiated when the third dequeue operation succeed in reserving

node number two for consumption. In such case, the test case is considered

as pass if the first three nodes are empty and all other nodes are containing

data.

The test case is performed using JPF to check for the correctness of the

test case and algorithm correctness. The result of the test is shown in figure

6.13. The results indicate that there are no errors detected during the test

135

6.3. MODEL-CHECKED TEST CASES

case.
JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 11/09/15 00:11
Test Passed
– repeated 63 times
Test Passed
== results
no errors detected
== statis-
tics
elapsed time: 00:00:17
states: new=30030, visited=79782, backtracked=109812, end=195
search: maxDepth=63, constraints hit=0
choice generators: thread=30030 (signal=0, lock=17896, shared ref=542), data=0
heap: new=7516, released=265626, max live=471, gc-cycles=108573
instructions: 1867991
max memory: 244MB
loaded code: classes=87, methods=1374
== search
finished: 11/09/15 00:11

Figure 6.13: Test case 2: 3 reader threads with empty queue

6.3.4.3 Test case 3: two writers and two readers are trying to

concurrently access the queue

TheQueue shown in TheQueue.java in appendix C. The queue is initialised

with all nodes containing data items. The two writers are expected to perform

enqueue operations, one each, and the two readers are expected to perform

dequeue operations, one each. The dequeue operations are expected to succeed

in consuming the nodes from the first two nodes in the queue, while the

enqueue operations are expected to fail, as the queue by the time the writer

threads are trying to enqueue contain no space for new data items.

The test case is performed using JPF to check for the correctness of the

test case and algorithm correctness. The result of the test is shown in figure

6.14. The results indicate that there are no errors detected during the test

136

CHAPTER 6. EVALUATION

case.
JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center
== system
under test
application: WaitFreeQueue.java
== search
started: 28/10/15 03:47
Test Passed
– repeated 58 times
Test Passed
== results
no errors detected
== statis-
tics
elapsed time: 00:02:14
states: new=465856, visited=1618409, backtracked=2084265, end=97
search: maxDepth=57, constraints hit=0
choice generators: thread=465856 (signal=0, lock=262347, shared ref=29634), data=0
heap: new=1126, released=1176035, max live=423, gc-cycles=2047768
instructions: 42720815
max memory: 244MB
loaded code: classes=87, methods=1378
== search
finished: 28/10/15 03:49

Figure 6.14: Test case 2: 2 writer and 2 reader threads with full queue

6.3.5 Test cases summary

The results of the test cases are shown in table 6.1; the results indicate that

the algorithm is correct; as long as, the Java Pathfinder is correct and the use

of the RTSJ introduces no errors. The Sections 6.4 and 6.5, beside giving an

insight on the performance figures, provide an evidence that the use of the

RTSJ is correct and introduce no errors in the algorithm.

6.4 Performance Evaluation

The enqueue method is divided into three parts: reserve a node in the data

structure, perform the data production, and update the data structure. The

dequeue method is divided into three parts: read a node index from the

137

6.4. PERFORMANCE EVALUATION

Test case Result

Empty
3 readers Test passed
3 writers Test passed
2 readers and 2 writers Test passed

Partial empty
3 readers Test passed
3 writers Test passed
2 readers and 2 writers Test passed

Partial full
3 readers Test passed
3 writers Test passed
2 readers and 2 writers Test passed

Full
3 readers Test passed
3 writers Test passed
2 readers and 2 writers Test passed

Table 6.1: Test cases results summary

readList, perform the data consumption, and update the data structure. The

time required to perform the data production and consumption is application

dependent. The programmer should estimate the time required to execute this

part of the code. The time required to execute the other parts of the enqueue

and dequeue methods is dependent on different variables, like the number of

reader and writer threads and the current status of the data structure.

In this section, the response time of the algorithm is analysed. The

progress of the threads during the production and consumption of the data

is not affecting the progress of any other thread concurrently accessing the

data structure; hence, the performance of the algorithm is measured for those

parts of the enqueue and dequeue methods that require interaction with the

data structure, as the progress of the thread at these parts might be affected

by the progress of any other thread performing the same operation.

For a writer thread to perform the reservation process, it is required to

compete with all other concurrently running writer threads. In the worst

138

CHAPTER 6. EVALUATION

case, the writer thread retries to reserve a node in the data structure and

succeeds in reserving the last node (i.e. all other nodes are reserved by a

writer, reserved by a reader, or holds data to be consumed). The writer

thread is guaranteed to find an empty node in the data structure from the

first iteration, it does not require searching the data structure for a second

time.

After the data production, the writer thread needs to add the node index

to the readList; which might require the writer thread to compete with the

other writer threads concurrently accessing the data structure. However, this

time the writer thread might retry a number of times equal to the number of

writer threads concurrently performing the update of the data structure.

The reader thread is required to compete with the other reader threads

concurrently accessing the data structure while reading a node index from the

readlist; the update of the data structure does not require any competition.

For time analysis purposes, two tests are performed. The first test intends

to measure the average time required to perform the enqueue and dequeue

methods (except for the data production and consumption, which is application

dependent). The second test intends to measure the worst case time, where

the writer threads every time are reserving the last node in the data structure,

and the reader thread is retrying number of times equal to the number of

reader threads.

The two test are performed on a server that has four Intel Xeon E5345

processors (Quad core, 2.3GHz, 32KB L1 cache, 4MB L2 cache). During

the tests the server are not shared with any other users and all processes

that might affect the progress of the test are terminated. The server is

139

6.4. PERFORMANCE EVALUATION

running Ubuntu 12.04 LTS operating system and JamaicaVM multicore RTJS

implementation version 6.2-5-8142.

From a real-time perspective, all the threads are set for the same properties.

The release time is the same as the period start time and the deadline is at

the end of the period. All threads are executed with the same priority, which

is the minimum priority of the system plus 4.

The WaitFreeQueue is initiated in the immortal memory, and all the data

items are stored in scoped memory backing stores. Accordingly, the algorithm

is safe for real-time and NHRT threads.

6.4.1 Response time test analysis

During the average response time test, the enqueue and dequeue method

is performed on the queue from more than a writer and reader threads.

The average time is measured for high number of retries to ensure that the

average represent reliable values. The number of writer and reader threads

concurrently accessing the data structure varies between 2 and 8.

During the test, each writer and reader thread is accessing the enqueue

and dequeue methods 50K times. This is to ensure that the average response

time is performed for a large number of enqueue and dequeue operations and

the measured time represents reliable results.

Figures 6.15 and 6.16 presents the average response time for the enqueue

and dequeue methods.

The results of the average response time indicate that the response of the

algorithm is relatively stable as the number of the threads increase. This

140

CHAPTER 6. EVALUATION

Figure 6.15: Average response time for the enqueue operation

is due to the fact that the cache hit ratio is highly increasing as the same

operation is retried frequently overtime. When the number of threads is 8, the

overall number of times the threads is accessing the enqueue method is 400K

times, which ensures that the average response time reflects the actual time

required to perform the operation. The standard deviation of the enqueue

and dequeue method indicates that the average times are normally distributed

and there is no statistical difference when the number of threads changes.

6.4.2 Worst case response time

In the worst case, a writer thread trying to perform an enqueue operation is

going to succeed in reserving the last node in the queue, which is the longest

time to perform the reservation process. The purpose of this test is to measure

the time required for a writer thread to reserve a node in the WaitFreeQueue

in the worst case. Accordingly, the WaitFreeQueue is initiated such that all

141

6.4. PERFORMANCE EVALUATION

Figure 6.16: Average response time for the dequeue operation

the nodes in the queue is initialised to a reserved state, except for the last

node. Thus, the writer threads are supposed to reserve the last node in the

queue. However, the writer threads are going to falsely reserve the node, so

all the writer threads appear to reserve the last node, no change to the state

of that node is performed. The reader threads, from the other side, read the

index of the node and perform no real dequeue operation; the state of the

node is left as is.

During the test, each writer and reader thread is accessing the enqueue

and dequeue methods 50K times. This is to ensure that the average response

time is performed for a large number of enqueue and dequeue operations and

the measured time represents reliable results; for 2 thread, there are 100K

enqueue or dequeue operations performed, and for 8 threads the number of

enqueue or dequeue operations performed is 400K times.

Figures 6.17 and 6.18 shows the response time to reserving the last node

142

CHAPTER 6. EVALUATION

in the queue for the enqueue and dequeue methods. The results show that,

the average response time for reserving a node in the queue is less that the

time required to reserve the last node in the queue. Besides that, the time

required to perform the dequeue operation is less than the time required to

perform the enqueue operation; as the writer threads are competing twice

while accessing the enqueue method, the first to reserve a node and the second

to update the queue, while the reader threads are competing only once, when

reading a node index from the queue.

The results also indicate that both the average time to reserve a node and

the average time to reserve the last node in the queue has an inverse relation

with the number of threads.

Figure 6.17: Worst case response time for the enqueue operation

In general, the average response time is relatively shorter than the worst

case response time. This is due to that, in the average response time, the

measured time is the time required to perform the operation, enqueue or

143

6.4. PERFORMANCE EVALUATION

Figure 6.18: Worst case response time for the dequeue operation

dequeue, while in the worst case response time, the measured time is the time

required to reach the end of the queue for all of the threads.

In general, at run time the actual response time is in between the average

response time and the worst case response time; as the execution of the reader

and writer threads are going to interleave and there will be empty nodes

across the queue, and the writer threads do not need to reach the end of the

queue in most of the enqueue methods.

In the case of larger number of threads, the size of the queue is going to

be larger; hence, it is expected that the actual time required to find an empty

node in the queue is going to increase. The time required to find an empty

node in the queue will be dependent on many factors, like the number of

other threads concurrently trying to perform the same operation, the time

required to perform the data consumption/production, and the interleaving

of execution between the reader and writer threads.

144

CHAPTER 6. EVALUATION

The actual time required to perform the enqueue or dequeue operation

is expected to be relative to the size of the queue, although at run time

the status of the queue could be changing frequently. Expect of the data

production/consumption time, the time required to perform the enqueue or

dequeue operation requires nearly 50µs. This time is expected to increase as

the number of threads increase, as the queue size is going to increase.

However, it is expected that the time required to perform the enqueue

and dequeue operations is not going to highly increase as the interleaving of

execution of reader and writer threads are going to leave empty nodes across

the queue, hence, the time required to perform the enqueue operation is going

to be relatively close to the current measurements. This is due to the fact

that all the enqueue operations are going to be performed ahead in the queue.

Regarding the dequeue operations, are going to be performed directly on the

enqueued nodes, hence, it is expected that the time required to perform this

operation is not going to relatively increase.

6.5 Case study - Image Processing

Digital image processing is an area that is of high interest in computer

technology [50]. Currently, real-time image processing can be found in many

applications, like digital cell-phone, intelligent robots, video surveillance

systems, high-definition television, medical imaging devices, spectral imaging

systems and defense applications [93]; these application can be soft, firm, or

hard real-time applications.

The concurrency control mechanism for shared data structures within

145

6.5. CASE STUDY - IMAGE PROCESSING

these applications should be designed such that it fully exploits the inherent

concurrency within the application, adopt the best load-balancing technique

and can be easily implemented [22].

Generally, image/video applications require processing huge amounts of

data to conduct a certain decision; this requires performing certain procedures

developed by the programmer. In image processing applications that require

real-time characteristics the response time of these procedures should be

bounded [132].

The amount of data to be processed depends on different factors like

image size, the color depth, and the frame rate (in case of video) [121]. For

example, in [76] a real-time image processing application for face detection

is investigated. The application supports the processing of 500 frames per

second for 8-bit color images that have 512X512 pixel size; nearly 128MB of

image data should be processed every second.

There are many methods and techniques within the image processing

domain that are applied on images to achieve different objectives [1]; like

histogram, convolution, filters, correlation, smoothing, sharpening, and in-

tensity. In certain cases, during the image capturing there might be sources

of noise that affect the quality of the image. In such cases, the captured

image is a degraded version of the original scene. In this case, the image

restoration techniques are used to restore the original version of the image

from the degraded version. Image enhancement can be used to increase the

image dynamic features such that it is better to be viewed and qualify for

further processing.

Based on that, according to the application requirements, an image or

146

CHAPTER 6. EVALUATION

set of images are processed to identify certain characteristics of the image.

Based on the findings of this processing further techniques are applied such

that the final image qualifies to certain conditions that are designed by the

application.

6.5.1 Image Histogram

The image histogram is one of the most common techniques that is used in

digital image processing; it is an essential process that is applied on the image

in order to perform most of the image processing methods and techniques.

Basically, the image histogram is a representation of the image contrast [50];

which is represented by equation 6.1. Figure 6.19 shows an image with its

histogram representation.

The image histogram is used to better understand the image such that

further operations can be performed on that image; for example, based on

the image histogram it is possible to produce an image with better quality, a

certain compression technique can be applied, a segmentation process can be

performed, or a threshold level can be identified.

h (rk) = nk (6.1)

where:

rk is the Kth intensity level and nk is the number of pixels in the image

that have that level of intensity. For example, in an 8bit image there is 256

intensity levels.

147

6.5. CASE STUDY - IMAGE PROCESSING

(a) Original image (b) Image histogram

Figure 6.19: Original image and its histogram

In multi-threaded applications, the different threads collaborate to accom-

plish the designed task. In the case of image histogram, different threads

can collaborate to concurrently process the image in order to produce the

histogram. For example, instead of using one thread to produce the image

histogram, the image can be divided to different segments and multiple threads

can concurrently process these segments, by using n threads to produce the

image histogram instead of one image, the time required to perform the

process might be =< 1/n.

The histogram is an example in which the inherited concurrency of the

application can be exposed to the shared data structure implementation. A

data structure implementation that provides a high degree of parallelism is

able to provide the required scalability as the number of processors (or cores)

in the system scale.

148

CHAPTER 6. EVALUATION

Image Pixel size number of pixels image size (KB) color depth (bit)
Small 384 X 288 110,592 33.2 8

Medium 1920 X 1200 2,304,000 181 8
Large 2817 X 3181 8,960,877 444 8

Table 6.2: The selected images’ details

6.5.2 Experimentation

For evaluation purposes, three images are considered to achieve diversity in

the time required to perform the data production and consumption. The

selected images, shown in figures 6.20, 6.21 and 6.22 are grey scale images;

hence, each pixel is represented by an 8bit. Accordingly, the number of levels

are 256.

Table 6.2 shows the details of the three selected images. The three images

selected such that the time required to perform the enqueue or dequeue

operation significantly varies from one image to another. For example, in the

case of the small image if the image data is divided between four thread to

calculate the image histogram each image is supposed to process 22,118 pixels

compared to nearly 2,240,219 pixels in the case of the large image.

From the evaluation perspective, producing the histogram is a process

that is divided into three steps:

Pre-processing: a thread prepares the image for processing by dividing the

image into segments, based on the number of threads that are going to

produce the histogram. The thread then enqueues the details of each

segment in a node in the data structure.

Processing: at this step, the processing threads collaborates together con-

149

6.5. CASE STUDY - IMAGE PROCESSING

Figure 6.20: Small image

currently to produce the histogram; each thread reads one or more

segment details from the WaitFreeQueue, the histogram corresponding

to that segment is produced and enqueued in another WaitFreeQueue.

Post-processing: at this step, a writer thread reads all the partial histograms

(produced for the segments) to produce a complete histogram.

Figure 6.23 shows a block diagram of the image histogram application.

The imageDistributionThread process the image and divide it into segments,

the details of each segment is enqueued in the imageDataPool. The number

of segments is equal to the number of pixelCountingThreads; such that each

thread produces the histogram for one of the segments. The pixelCountingTh-

reads enqueue the produced histograms of the segments into imageCountPool.

Finally, the countCollection thread collects all partial histograms and produce

the complete histogram of the image. The code listings of the threads are

provided in the Appendix D.2.

150

CHAPTER 6. EVALUATION

Figure 6.21: Medium image

Accordingly, the enqueue of the segment details in the imageDataPool and

the enqueue of the histogram of the segment in the imageCountPool required

relatively short time compared to the the production of the histogram of

the segment and the collection of all partial histograms (both performed

during the dequeue method). The time required to perform the production

of the histogram of the segment and the collection of all partial histograms

to produce the complete histogram is expected to increase as the size of the

image increase.

For example, when there are four threads processing the partial histograms

of the segments the number of pixels each thread is processing for small,

medium, and large images are 27,648, 576,000, and 2,240,219, respectively.

Practically, in the large image case, each of the four threads is processing a

segment that is 20 time the size of the small image.

Accordingly, the real-time properties of the threads is reviewed for every

image to ensure that these properties are adequate for the time required to

perform the designed task.

151

6.5. CASE STUDY - IMAGE PROCESSING

Figure 6.22: Large image

Generally, in image processing applications the image histogram is pro-

duced for the images (or a movie, in which there is a certain frames, or pictures

in each second) to perform further operations on the image. The evaluation

is only concerned with testing the correctness of the algorithm and measuring

its response time, and not the actual operation of the image histogram. Thus,

the evaluation of the WaitFreeQueue is performed as follows:

• Step 1: the evaluation is performed by an implementation of the

WaitFreeQueue, Jamaica RTSJ WFQ (given in appendix D.1), and

lock-based versions.

152

CHAPTER 6. EVALUATION

Figure 6.23: Block diagram of the image histogram application

153

6.5. CASE STUDY - IMAGE PROCESSING

• Step 2: the image is divided into number of segments equal to the

number of processing threads. in each iteration each processing thread

is performing the operation once. For example, if there are four pix-

elCountingThreads, the imageDistributionThread divides the image

into four segments, and each of the pixelCountingThread perform the

designed operation on one of the segments.

• Step 3: the evaluation is performed for the selected images only. For

each image, the same process is performed 50K times. For example,

if there are four pixelCountingThreads and the small image is being

processed. In each iteration each thread of the pixelCountingThreads

processes one of the segments. This is repeated 50K times. In each

iteration pixelCountingThread can process any of the segments.

• Step 4: When performing the dequeue operation, it is possible that the

dequeue operation return a false value; indicating that at that instance

of time there is no data for consumption in the queue. Such cases are

not included in the time analysis. It is worth mentioning that during the

evaluation, the number of dequeue operations that return false is limited

to the number of threads performing the dequeue operation; which is

the case where the dequeue operation is accessed before any enqueue

operation. Besides that, the dequeue operation is taking longer time

to finish, which enables the threads performing the enqueue operation

enough time to enqueue enough data that keeps the processing thread

busy all the time.

• Step 5: the produced image histogram in each iteration is stored and

154

CHAPTER 6. EVALUATION

verified later with the original histogram produced for the image. This

is to ensure that all operations performed during the evaluation produce

correct results.

• step 6: the number of retries that are required to finish the enqueue

operation is not monitored during the evaluation. However, in more than

90% of the cases, the reservation of the node in the queue is achieved

before the thread reaches the middle of the queue. This indicates that

the worst case scenario is not occurring.

• step 7: the experiment is performed on a machine that has four Intel

Xeon E5345 processors (each processor is a Quad core, 2.3GHz, 32KB L1

cache, 4MB L2 cache), these cores are real cores, no hyper-threading is

used, hence a maximum of 16 threads can actually run concurrently on

the system. During the evaluation, the machine is completely dedicated

for the application and all other applications that might affect the

progress of the threads execution is terminated.

• step 8: global scheduling is used, so any thread can be scheduled at any

processor, and all threads are running on the same priority.

Figures 6.24 and 6.25 show the average response time for the enqueue

and dequeue methods for the small image, respectively. In the figure, the

values represent the average time required to perform the enqueue or dequeue

operations as the number of threads change. It is clear that the average time

required to perform the enqueue or dequeue operation is inversely proportional

with the number of threads, this is because that as the number of threads

increase the workload for each thread becomes smaller.

155

6.5. CASE STUDY - IMAGE PROCESSING

The figures show that the WaitFreeQueue algorithm outperforms both

the lock-based and the JamaicaVM RTSJ WFQ, especially, for higher work

load (dequeue operation), where the thread is expected to have more time

processing the data and less time interacting with the queue. In the dequeue

operation case, the WaitFreeQueue shows high stability and the average of

the response time is highly proportional to the number of threads.

Figure 6.24: Average of response time for the enqueue operation, small image

Figures 6.26 and 6.27 show the response time for performing the enqueue

and dequeue operation of the medium image. The WaitFreeQueue outperforms

the lock-based and JamaicaVM RTSJ WFQ in both the enqueue and dequeue

operations. For the enqueue operation the results show that as the number

of threads increases the algorithm become more stable. The dequeue results

show that the response of the algorithm is stable as the number of threads

increases. Besides that, it is clear that the time required to perform the

dequeue operation is significantly increased compared to the time required

156

CHAPTER 6. EVALUATION

Figure 6.25: Average of response time for the dequeue operation, small image

for processing the small image. However, for higher number of threads the

results of the WaitFreeQueue and the lock-based become more closer and the

the lock-based appear to perfrom better; this is mainly due the use of the

costly CAS operation.

In the case of the dequeue operation, the time required to perform the

method is relatively high, hence, the possibility of having different threads

interacting with the queue at the same time becomes lower.

Figures 6.28 and 6.29 show the response time for performing the enqueue

and dequeue operation of the large image. The results show that the Wait-

FreeAlgorithm outperforms the lock based and JamaicaVM RTSJ WFQ. The

main influence on the WaitFreeQueue results is the time required to perform

the CAS operation, which increases as the number of threads increases. In

addition, the average time of the dequeue operation is significantly increases

compared to the small and medium images, for example, for 8 thread the

average time is nearly 230milli second, compared to 70 milli second in the

157

6.5. CASE STUDY - IMAGE PROCESSING

Figure 6.26: Average of response time for the enqueue operation, medium
image

Figure 6.27: Average of response time for the dequeue operation, medium
image

158

CHAPTER 6. EVALUATION

medium image case.

Figure 6.28: Response time for the enqueue operation, large image

Figure 6.29: Response time for the dequeue operation, large image

159

6.6. SUMMARY

6.6 Summary

In this chapter the proposed algorithm correctness and performance is evalu-

ated using model checking, test cases, and a case study.

The model checking of the algorithm is used to ensure that the algorithm

is correct from errors like deadlocks and data races. Java Pathfinder is used to

model check the algorithm; JPF backtraces all possible execution paths and

verifies that the algorithm is error free. The model checking is performed for 2

writer and 2 reader threads, and for 3 writer and 3 reader threads concurrently

accessing the WaitFreeQueue. The results show that the algorithm is error

free.

The test cases are used to test the behaviour of the algorithm under

different conditions. For each of the test conditions, the behaviour of the

algorithm is monitored to ensure that it is working correctly as designed. In

all the test cases, the code is executed using JPF to further check for error

free code when performing different enqueue and dequeue operations. In all

the test cases, the WaitFreeQueue is initialised according to the test case,

and a post check is used to ensure that the state of the queue is modified as

expected during the execution.

The performance of the algorithm is evaluated to measure the time required

to perform the enqueue and dequeue operations in average and in the worst

case. In the average response time, the enqueue and dequeue operations

are performed extensively on the queue, and the average time required to

performed these operations are measured. In the worst case, the enqueue

and dequeue operations are performed to reserve the last node in the queue,

160

CHAPTER 6. EVALUATION

this measures the worst case execution time when the enqueue and dequeue

operations are required to perform the maximum number of CAS operations.

In the results of the performance evaluation, the average response time for

the enqueue operation is less than 1 milli-seconds, while in the worst case

the time required is nearly 7 milli-seconds. For the dequeue operation, in the

average response time the time requires is less than 1 milli-seconds and in

the worst case is nearly 4 milli seconds. This can be referred to that, in the

dequeue operations a single CAS operation is required, while in the enqueue

operation two CAS operations are required for a success operation.

To test the algorithm in real environment, an image processing application

is developed and implemented using JamaicaVM RTSJ implementation. The

algorithm is designed to build the histogram for a set of images, the images

is selected such that the enqueue and dequeue operations is going to have

significant difference in the work load for each image. For all the executions,

the results of the histogram is compared to the standard histogram of the

image been working on, to test for the correctness of the operations.

In the image processing cases study, the enqueue and dequeue operations

is executed large number of times (nearly 50K times) to produce a reliable

response time of the algorithm. The results of the algorithm are compared

to a lock-based and JamaicaVM RTSJ WFQ implementations. In all cases,

the WaitFreeQueue outperforms its lock-based and JamaicaVM RTSJ WFQ

counterparts.

161

Chapter 7

Conclusion and future work

Multi-processor and multi-core systems are the inevitable future of computer

systems. Within the foreseen future, a multi-core processor on an end user

machine is expected to has 10 cores and the number of cores for high end servers

is expected to reach 100. Accordingly, it is required that the applications

are developed while fully exploiting the parallelism in order to utilise the

computational power these systems introduce. Shared data structures are

a key component in multi-threaded applications. Developing a shared data

structure that can provide the required scalability is a challenging task.

The RTSJ introduces new features that enable developing multiprocessor

and multi-core safe real-time applications. The features that the RTSJ

introduce enable the programmers to develop shared data structures that

are safe in multiprocessor environment and can be designed such that the

multi-threaded application can scale as the number of threads scale.

163

7.1. CONCLUSIONS

7.1 Conclusions

This thesis introduces an algorithm that provides wait free guarantees for

multi-threaded applications in multi-core and multi-processor environments.

The algorithm is implemented as a FIFO queue data structure. The different

features that the RTSJ introduces are utilised in order to satisfy the required

spatial and time predictability constraints of real-time applications. The

algorithm is designed for general purpose use, thus, it can be used to provide

the communication between any writer and reader threads within any multi-

threaded application.

To ensure the correctness behaviour of the algorithm, it is model checked

using JPF. The model checking ensures that the interleaving of the threads

execution does not results in any errors; like deadlock and data races. The

time response of the algorithm is analysed to estimate the time required to

perform the enqueue and dequeue methods.

The algorithm response time for the average time required to perform an

enqueue and dequeue operation and the worst case scenario are performed.

The results indicate that the algorithm is stable and time required to perform

the enqueue and dequeue methods are bounded. A time analysis of the

worst case time required to perform the operations relate to the shared data

structure is performed. The analysis shows that the algorithm outperforms

the lock-based and the JamaicaVM RTSJ WFQ. Also, the algorithm promises

stable performance as the number of threads increases.

After the evaluation of the WaitFreeQueue algorithm, it was notices the

following:

164

CHAPTER 7. CONCLUSION AND FUTURE WORK

• Enqueue operation always succeeds: the WaitFreeQueue algorithm

designed such that a writer thread accessing the queue succeeds in

finishing the enqueue operation by searching the queue only once. In

all the tests performed the enqueue operation succeeds in reserving a

node in the queue from by searching only once. This enable using the

algorithm in any multi-threaded application.

• Number of retries: for every enqueue operation the writer thread

needs to reserve a node in the queue. The writer threads searches the

queue for an empty node starting with the beginning of the queue. The

writer thread keeps retrying with the next node until it succeeds in

reserving an empty node. Although the number of retries depends on

different factors and it might be possible for the same set of factors to

yield different results when tested more than once, as it depends on the

runtime environment. But it was noticed from the results and testing

that in 90% times of the cases the writer threads are able to succeed in

reserving a node before reaching the middle of the queue.

• WaitFreeQueue vs. Lock-based and JamaicaVM RTSJ WFQ:

the WaitFreeQueue outperforms the lock-based and the JamaicaVM

RTSJ WFQ. As the number of threads increases, the number of com-

peting threads increase and the number of retries increase, hence, the

WaitFreeQueue response time become closer to the lock-based, as each

retry requires executing two costly CAS operation. This was the main

reason for the decline of the average execution time in the WaiFreeQueue.

Currently, the WaitFreeQueue algorithm code is being refined in order

165

7.2. FUTURE WORK

to enhance the response time and decrease the need for performing the

CAS operation.

7.2 Future work

The WaitFreeQueue algorithm represents a basic building block in any multi-

threaded application. Further improvements are planned in order to increase

the algorithm performance and enhance its response time. In addition,

different variations of the algorithm and other basic data structure is being

designed to provide a set of algorithms that satisfy the demand of the different

multi-threaded applications. The planned future work as follows:

• Memory requirements: the memory requirements of the algorithm

varies according to the number of writer and reader threads and the

operations being performed by the application. However, the basic

memory requirements of the algorithm can be analysed and estimated

to ensure that the system is able to provide the required amount of

memory ahead of applying the algorithm. The programmer should

identify the memory requirement that is application dependent, for

example, in the image histogram of the grey scale image it is required to

have an integer array of 256 locations, if the image histogram is required

for a colored image, the array size will be dependent on the color depth.

• support standard Java, sporadic and aperiodic threads: if it is

required for standard Java, sporadic and aperiodic threads to access

the WaitFreeQueue; the implication of their access must be carefully

166

CHAPTER 7. CONCLUSION AND FUTURE WORK

investigated; as these threads might stall during the execution, which

might affect the progress of other threads concurrently accessing the

queue. The algorithm design should be reviewed, such as the size of the

queue, to ensure that the execution of the real-time and NHRT threads

is not affected. Furthermore, the usage of the memory areas should be

reviewed such that it adheres to the RTSJ rules regarding the memory

referencing.

• variations of the WaitFreeQueue algorithm: the current imple-

mentation of the WaitFreeQueue isolates the writer threads execution

from the reader threads execution, and the data storage from the im-

plementation. The implementation is loaded in immortal or scoped

memory while each data item is stored in a different scoped memory

area. However, in certain applications the use of the scoped memory

areas to store the data item might be costly, as it is required for each

enqueue and dequeue operation to enter a scoped memory area to

produce and consume the data. If the data size is low, like an integer

or a boolean, it is possible to boost the performance of the application

by storing the data item locally in the same scoped memory area and

avoid the time required to enter and exit the scoped memory area. The

applications requirements can be used to derive the introduction of

different variations of the WaitFreeQueue algorithm.

• WaitFreeStack and WaitFreePool: the most common shared data

structure is the queue. Based on the design semantics of the WaitFree-

Queue it is being investigated to introduce an algorithm implementation

167

7.2. FUTURE WORK

that is based on the stack semantic, Last-In-First-Out (LIFO), and pool,

where the enqueue and dequeue operations can be performed randomly

without any order. However, both data structures intend to provide

wait free guarantees.

• Real-time properties: during the evaluation, the real-time properties

of the threads is adjusted to be suitable for the tasks being executed.

For example, the time required for two threads to produce the histogram

of the large image is relatively much higher than the time required for

producing the histogram for the small image. Further evaluation is being

designed such that the real-time threads fails to meet their real-time

properties, such as deadline, are identified and handled. Further to that,

evaluation for the enqueue and dequeue methods to be performed for

the cases when the real-time properties of the threads might changed

during run time; like priority and deadline.

168

Appendices

169

Appendix A

Atomic variables

171

Li
st
in
g
A
.1
:
Bo

ol
ea
n
A
to
m
ic

va
ria

bl
e

1
p
u
b
l
i
c

c
l
a
s
s

A
t
o
m
i
c
B
o
o
l
e
a
n

{

2 3
p
u
b
l
i
c

A
t
o
m
i
c
B
o
o
l
e
a
n
(
b
o
o
l
e
a
n

i
n
i
t
)

{

4
v
a
l
u
e

=
i
n
i
t
;

5
}

6 7
p
u
b
l
i
c

s
y
n
c
h
r
o
n
i
z
e
d

v
o
i
d

s
e
t
(
b
o
o
l
e
a
n

v
a
l
)

{

8
v
a
l
u
e

=
v
a
l
;

9
if

(
v
a
l
u
e
)

b
e
c
a
m
e
T
r
u
e

=
t
r
u
e
;

10
}

11 12
p
u
b
l
i
c

s
y
n
c
h
r
o
n
i
z
e
d

b
o
o
l
e
a
n

g
e
t
()

{
r
e
t
u
r
n

v
a
l
u
e
;

};

13 14 15
p
u
b
l
i
c

s
y
n
c
h
r
o
n
i
z
e
d

b
o
o
l
e
a
n

c
o
m
p
a
r
e
A
n
d
S
e
t
(
b
o
o
l
e
a
n

e
x
p
e
c
t
,

b
o
o
l
e
a
n

u
p
d
a
t
e
)

{

16
if

(
v
a
l
u
e

==
e
x
p
e
c
t
)

{

17
v
a
l
u
e

=
u
p
d
a
t
e
;

18
if

(
v
a
l
u
e
)

b
e
c
a
m
e
T
r
u
e

=
t
r
u
e
;

19
r
e
t
u
r
n

t
r
u
e
;

20
}

e
l
s
e

r
e
t
u
r
n

f
a
l
s
e
;

21
}

22

172

APPENDIX A. ATOMIC VARIABLES

23
p
u
b
l
i
c

s
y
n
c
h
r
o
n
i
z
e
d

b
o
o
l
e
a
n

w
a
s
T
r
u
e
()

{

24
r
e
t
u
r
n

b
e
c
a
m
e
T
r
u
e
;

25
}

26 27
p
r
i
v
a
t
e

b
o
o
l
e
a
n

v
a
l
u
e
;

28
p
r
i
v
a
t
e

b
o
o
l
e
a
n

b
e
c
a
m
e
T
r
u
e

=
f
a
l
s
e
;

29
}

173

Li
st
in
g
A
.2
:
In
te
ge
r
A
to
m
ic

va
ria

bl
e

1
p
u
b
l
i
c

c
l
a
s
s

A
t
o
m
i
c
I
n
t
e
g
e
r

{

2 3
p
u
b
l
i
c

A
t
o
m
i
c
I
n
t
e
g
e
r
(
i
n
t

i
n
i
t
)

{

4
v
a
l
u
e

=
i
n
i
t
;

5
m
a
x

=
i
n
i
t
;

6
}

7 8
p
u
b
l
i
c

s
y
n
c
h
r
o
n
i
z
e
d

v
o
i
d

s
e
t
(
i
n
t

v
a
l
)

{

9
v
a
l
u
e

=
v
a
l
;

10
if

(
v
a
l
u
e

>
m
a
x
)

m
a
x

=
v
a
l
u
e
;

11
}

12 13
p
u
b
l
i
c

s
y
n
c
h
r
o
n
i
z
e
d

i
n
t

g
e
t
()

{
r
e
t
u
r
n

v
a
l
u
e
;

};

14 15
p
u
b
l
i
c

s
y
n
c
h
r
o
n
i
z
e
d

i
n
t

g
e
t
M
a
x
()

{
r
e
t
u
r
n

m
a
x
;

};

16 17
p
u
b
l
i
c

s
y
n
c
h
r
o
n
i
z
e
d

i
n
t

g
e
t
A
n
d
S
e
t
(
i
n
t

n
e
w
V
a
l
u
e
)

{

18
i
n
t

t
m
p

=
v
a
l
u
e
;

19
v
a
l
u
e

=
n
e
w
V
a
l
u
e
;

20
if

(
v
a
l
u
e

>
m
a
x
)

m
a
x

=
v
a
l
u
e
;

21
r
e
t
u
r
n

t
m
p
;

22
}

174

APPENDIX A. ATOMIC VARIABLES

23
p
u
b
l
i
c

s
y
n
c
h
r
o
n
i
z
e
d

b
o
o
l
e
a
n

c
o
m
p
a
r
e
A
n
d
S
e
t
(
i
n
t

e
x
p
e
c
t
,

i
n
t

u
p
d
a
t
e
)

{

24
if

(
v
a
l
u
e

==
e
x
p
e
c
t
)

{

25
v
a
l
u
e

=
u
p
d
a
t
e
;

26
if

(
v
a
l
u
e

>
m
a
x
)

m
a
x

=
v
a
l
u
e
;

27
r
e
t
u
r
n

t
r
u
e
;

28
}

e
l
s
e

r
e
t
u
r
n

f
a
l
s
e
;

29
}

30 31
p
u
b
l
i
c

s
y
n
c
h
r
o
n
i
z
e
d

i
n
t

i
n
c
r
e
m
e
n
t
A
n
d
G
e
t
()

{

32
v
a
l
u
e
+
+
;

33
if

(
v
a
l
u
e

>
m
a
x
)

m
a
x

=
v
a
l
u
e
;

34
r
e
t
u
r
n

v
a
l
u
e
;

35
}

36 37
p
u
b
l
i
c

s
y
n
c
h
r
o
n
i
z
e
d

i
n
t

d
e
c
r
e
m
e
n
t
A
n
d
G
e
t
()

{

38
v
a
l
u
e
-
-;

39
r
e
t
u
r
n

v
a
l
u
e
;

40
}

41 42
p
r
i
v
a
t
e

i
n
t

v
a
l
u
e
;

43
p
r
i
v
a
t
e

i
n
t

m
a
x
;

44
}

175

Appendix B

JPF Model checking

177

Li
st
in
g
B.
1:

R
ea
de
rT

hr
ea
d
fo
r
JP

F
te
st
in
g

1
p
u
b
l
i
c

c
l
a
s
s

R
e
a
d
e
r
T
h
r
e
a
d

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
T
h
e
Q
u
e
u
e

l
o
c
a
l
D
a
t
a
P
o
o
l
;

3
p
u
b
l
i
c

R
e
a
d
e
r
T
h
r
e
a
d
(
T
h
e
Q
u
e
u
e

d
P
o
o
l
)

{

4
t
h
i
s
.
l
o
c
a
l
D
a
t
a
P
o
o
l

=
d
P
o
o
l
;

5
}

6
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

7
l
o
c
a
l
D
a
t
a
P
o
o
l
.
d
e
q
u
e
u
e
()

;

8
}

9
}

Li
st
in
g
B.
2:

W
rit

er
T
hr
ea
d
fo
r
JP

F
te
st
in
g

1
p
u
b
l
i
c

c
l
a
s
s

W
r
i
t
e
r
T
h
r
e
a
d

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
T
h
e
Q
u
e
u
e

l
o
c
a
l
P
o
o
l
;

3 4
p
u
b
l
i
c

W
r
i
t
e
r
T
h
r
e
a
d
(
T
h
e
Q
u
e
u
e

l
P
o
o
l
)

{

5
t
h
i
s
.
l
o
c
a
l
P
o
o
l

=
l
P
o
o
l
;

6
}

7
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

8
l
o
c
a
l
P
o
o
l
.
e
n
q
u
e
u
e
()

9
}

10
}

178

APPENDIX B. JPF MODEL CHECKING
Li
st
in
g
B.
3:

Q
ue
ue

N
od

e
1

p
u
b
l
i
c

c
l
a
s
s

Q
u
e
u
e
N
o
d
e

{

2
p
u
b
l
i
c

f
i
n
a
l

A
t
o
m
i
c
B
o
o
l
e
a
n

r
e
s
e
r
v
e
d
;

3 4
p
u
b
l
i
c

Q
u
e
u
e
N
o
d
e
(
l
o
n
g

s
i
z
e
)

{

5
r
e
s
e
r
v
e
d

=
n
e
w

A
t
o
m
i
c
B
o
o
l
e
a
n
(
f
a
l
s
e
)
;

6
}

7
}

179

Li
st
in
g
B.
4:

T
he

al
go
rit

hm
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
3;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
3;

5
T
h
e
Q
u
e
u
e

i
m
g
D
a
t
a
P
o
o
l

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

6
W
r
i
t
e
r
T
h
r
e
a
d

w
t
1

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
i
m
g
D
a
t
a
P
o
o
l
)
;

7
W
r
i
t
e
r
T
h
r
e
a
d

w
t
2

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
i
m
g
D
a
t
a
P
o
o
l
)
;

8
R
e
a
d
e
r
T
h
r
e
a
d

r
t
1

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
i
m
g
D
a
t
a
P
o
o
l
)
;

9
R
e
a
d
e
r
T
h
r
e
a
d

r
t
2

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
i
m
g
D
a
t
a
P
o
o
l
)
;

10
w
t
1
.
s
t
a
r
t
()

;

11
w
t
2
.
s
t
a
r
t
()

;

12
r
t
1
.
s
t
a
r
t
()

;

13
r
t
2
.
s
t
a
r
t
()

;

14
}

15
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

16
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

17
w
f
q
.
s
t
a
r
t
()

;

18
}

19
}

180

APPENDIX B. JPF MODEL CHECKING
Li
st
in
g
B.
5:

T
he

al
go
rit

hm
co
de

1
p
u
b
l
i
c

c
l
a
s
s

T
h
e
Q
u
e
u
e

{

2
p
r
i
v
a
t
e

f
i
n
a
l

i
n
t

q
u
e
u
e
S
i
z
e
;

3
p
r
i
v
a
t
e

f
i
n
a
l

Q
u
e
u
e
N
o
d
e

s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
]
;

4
p
r
i
v
a
t
e

f
i
n
a
l

A
t
o
m
i
c
I
n
t
e
g
e
r

r
e
a
d
L
i
s
t
[
]
;

5
p
r
i
v
a
t
e

f
i
n
a
l

A
t
o
m
i
c
I
n
t
e
g
e
r

r
e
a
d
L
i
s
t
T
a
i
l

=
n
e
w

A
t
o
m
i
c
I
n
t
e
g
e
r
(
-1

)
;

6
p
r
i
v
a
t
e

f
i
n
a
l

A
t
o
m
i
c
I
n
t
e
g
e
r

r
e
a
d
L
i
s
t
H
e
a
d

=
n
e
w

A
t
o
m
i
c
I
n
t
e
g
e
r
(
-1

)
;

7
p
r
i
v
a
t
e

f
i
n
a
l

A
t
o
m
i
c
I
n
t
e
g
e
r

r
e
a
d
L
i
s
t
C
o
u
n
t

=
n
e
w

A
t
o
m
i
c
I
n
t
e
g
e
r
(
0
)
;

8 9
p
u
b
l
i
c

T
h
e
Q
u
e
u
e
(
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

l
o
n
g

s
c
o
p
e
S
i
z
e
)
{

10
t
h
i
s
.
q
u
e
u
e
S
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)
;

11
s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l

=
n
e
w

Q
u
e
u
e
N
o
d
e
[
q
u
e
u
e
S
i
z
e
];

12
r
e
a
d
L
i
s
t

=
n
e
w

A
t
o
m
i
c
I
n
t
e
g
e
r
[
q
u
e
u
e
S
i
z
e
];

13
r
e
a
d
L
i
s
t
I
n
v
a
l
i
d

=
n
e
w

i
n
t
[
q
u
e
u
e
S
i
z
e
];

14
f
o
r
(
i
n
t

i
=
0
;
i
<
q
u
e
u
e
S
i
z
e
;
i
+
+
)
{

15
s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
i
]

=
n
e
w

Q
u
e
u
e
N
o
d
e
(
s
c
o
p
e
S
i
z
e
)
;

16
r
e
a
d
L
i
s
t
[
i
]

=
n
e
w

A
t
o
m
i
c
I
n
t
e
g
e
r
(
-1

)
;

17
r
e
a
d
L
i
s
t
I
n
v
a
l
i
d
[
i
]

=
-1

;

18
}

19
}

20 21
p
u
b
l
i
c

b
o
o
l
e
a
n

e
n
q
u
e
u
e
()

{

22
i
n
t

r
e
s
e
r
v
e
d
N
o
d
e

=
-1

;

181

23
i
n
t

e
n
q
u
e
u
e
L
o
c
a
t
i
o
n
;

24
i
n
t

c
u
r
r
e
n
t
L
o
c
a
t
i
o
n
;

25
b
o
o
l
e
a
n

o
k
T
a
i
l
=
f
a
l
s
e
;

26
i
n
t

i
n
V
;

27
do

{

28
r
e
s
e
r
v
e
d
N
o
d
e
+
+
;

29
if

(
r
e
s
e
r
v
e
d
N
o
d
e

==
q
u
e
u
e
S
i
z
e
-
1
)

30
r
e
t
u
r
n

f
a
l
s
e
;

//
Q
U
E
U
E

IS
F
U
L
L

31
}

w
h
i
l
e
(!

s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
r
e
s
e
r
v
e
d
N
o
d
e
].

r
e
s
e
r
v
e
d
.
c
o
m
p
a
r
e
A
n
d
S
e
t
(
f
a
l
s
e
,

t
r
u
e
)
)
;

32
do

{

33
c
u
r
r
e
n
t
L
o
c
a
t
i
o
n

=
r
e
a
d
L
i
s
t
H
e
a
d
.
g
e
t
()

;

34
e
n
q
u
e
u
e
L
o
c
a
t
i
o
n

=
(
c
u
r
r
e
n
t
L
o
c
a
t
i
o
n

+
1)

%
q
u
e
u
e
S
i
z
e
;

35
i
n
V

=
r
e
a
d
L
i
s
t
I
n
v
a
l
i
d
[
e
n
q
u
e
u
e
L
o
c
a
t
i
o
n
];

//
f
o
r

A
B
A

a
v
o
i
d
a
n
c
e

36
if

(
r
e
a
d
L
i
s
t
H
e
a
d
.
c
o
m
p
a
r
e
A
n
d
S
e
t
(
c
u
r
r
e
n
t
L
o
c
a
t
i
o
n
,

e
n
q
u
e
u
e
L
o
c
a
t
i
o
n
)
)
{

37
r
e
a
d
L
i
s
t
[
e
n
q
u
e
u
e
L
o
c
a
t
i
o
n
].

s
e
t
(
r
e
s
e
r
v
e
d
N
o
d
e
)
;

38
o
k
T
a
i
l

=
t
r
u
e
;

39
}

40
}

w
h
i
l
e

(!
o
k
T
a
i
l
)
;

41
i
n
t

t
h
r
o
w
A
w
a
y

=
r
e
a
d
L
i
s
t
C
o
u
n
t
.
i
n
c
r
e
m
e
n
t
A
n
d
G
e
t
()

;

42
a
s
s
e
r
t

t
h
r
o
w
A
w
a
y

>
0

:
"
a
t
o
m
i
c
␣
i
n
t
e
g
e
r
␣
f
a
i
l
e
d
"
;

43
r
e
t
u
r
n

t
r
u
e
;

44
}

45

182

APPENDIX B. JPF MODEL CHECKING

46
p
u
b
l
i
c

b
o
o
l
e
a
n

d
e
q
u
e
u
e
()

{

47
i
n
t

d
e
q
u
e
u
e
L
o
c
a
t
i
o
n
;

48
i
n
t

c
u
r
r
e
n
t
T
a
i
l
;

49
i
n
t

i
n
d
e
x
;

50
do

{

51
c
u
r
r
e
n
t
T
a
i
l

=
r
e
a
d
L
i
s
t
T
a
i
l
.
g
e
t
()

;

52
d
e
q
u
e
u
e
L
o
c
a
t
i
o
n

=
(
c
u
r
r
e
n
t
T
a
i
l
+

1)
%

q
u
e
u
e
S
i
z
e
;

53
if

(
r
e
a
d
L
i
s
t
[
d
e
q
u
e
u
e
L
o
c
a
t
i
o
n
].

g
e
t
()

==
-1

)
{

54
r
e
t
u
r
n

f
a
l
s
e
;

55
}

56
}

w
h
i
l
e

(!
r
e
a
d
L
i
s
t
T
a
i
l
.
c
o
m
p
a
r
e
A
n
d
S
e
t
(
c
u
r
r
e
n
t
T
a
i
l
,

d
e
q
u
e
u
e
L
o
c
a
t
i
o
n
)
)
;

57
i
n
d
e
x

=
r
e
a
d
L
i
s
t
[
d
e
q
u
e
u
e
L
o
c
a
t
i
o
n
].

g
e
t
()

;

58
s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
i
n
d
e
x
].

r
e
s
e
r
v
e
d
.
s
e
t
(
f
a
l
s
e
)
;

59
r
e
a
d
L
i
s
t
[
d
e
q
u
e
u
e
L
o
c
a
t
i
o
n
].

s
e
t
(
-1

)
;

60 61
r
e
t
u
r
n

t
r
u
e
;

62
}

63
}

183

Appendix C

JPF test cases

185

Li
st
in
g
C
.1
:
T
he

w
rit

er
th
re
ad

1
p
u
b
l
i
c

c
l
a
s
s

W
r
i
t
e
r
T
h
r
e
a
d

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
T
h
e
Q
u
e
u
e

l
o
c
a
l
P
o
o
l
;

3 4
p
u
b
l
i
c

W
r
i
t
e
r
T
h
r
e
a
d
(
T
h
e
Q
u
e
u
e

l
P
o
o
l
)

{

5
t
h
i
s
.
l
o
c
a
l
P
o
o
l

=
l
P
o
o
l
;

6
}

7
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

8
l
o
c
a
l
P
o
o
l
.
e
n
q
u
e
u
e
()

9
}

10
}

Li
st
in
g
C
.2
:
T
he

re
ad

er
th
re
ad

1
p
u
b
l
i
c

c
l
a
s
s

R
e
a
d
e
r
T
h
r
e
a
d

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
T
h
e
Q
u
e
u
e

l
o
c
a
l
D
a
t
a
P
o
o
l
;

3
p
u
b
l
i
c

R
e
a
d
e
r
T
h
r
e
a
d
(
T
h
e
Q
u
e
u
e

d
P
o
o
l
)

{

4
t
h
i
s
.
l
o
c
a
l
D
a
t
a
P
o
o
l

=
d
P
o
o
l
;

5
}

6
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

7
l
o
c
a
l
D
a
t
a
P
o
o
l
.
d
e
q
u
e
u
e
()

;

8
}

9
}

186

APPENDIX C. JPF TEST CASES
Li
st
in
g
C
.3
:
T
he

m
ai
n
cl
as
s

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
3;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
3;

5
T
h
e
Q
u
e
u
e

i
m
g
D
a
t
a
P
o
o
l

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

6
W
r
i
t
e
r
T
h
r
e
a
d

w
t
1

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
i
m
g
D
a
t
a
P
o
o
l
)
;

7
W
r
i
t
e
r
T
h
r
e
a
d

w
t
2

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
i
m
g
D
a
t
a
P
o
o
l
)
;

8
R
e
a
d
e
r
T
h
r
e
a
d

r
t
1

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
i
m
g
D
a
t
a
P
o
o
l
)
;

9
R
e
a
d
e
r
T
h
r
e
a
d

r
t
2

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
i
m
g
D
a
t
a
P
o
o
l
)
;

10
w
t
1
.
s
t
a
r
t
()

;

11
w
t
2
.
s
t
a
r
t
()

;

12
r
t
1
.
s
t
a
r
t
()

;

13
r
t
2
.
s
t
a
r
t
()

;

14
}

15
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

16
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

17
w
f
q
.
s
t
a
r
t
()

;

18
}

19
}

187

Li
st
in
g
C
.4
:
T
he

al
go
rit

hm
co
de

1
p
u
b
l
i
c

c
l
a
s
s

T
h
e
Q
u
e
u
e

{

2
p
r
i
v
a
t
e

f
i
n
a
l

i
n
t

q
u
e
u
e
S
i
z
e
;

3
p
r
i
v
a
t
e

f
i
n
a
l

Q
u
e
u
e
N
o
d
e

s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
]
;

4
p
r
i
v
a
t
e

f
i
n
a
l

A
t
o
m
i
c
I
n
t
e
g
e
r

r
e
a
d
L
i
s
t
[
]
;

5
p
r
i
v
a
t
e

f
i
n
a
l

i
n
t

r
e
a
d
L
i
s
t
I
n
v
a
l
i
d
[
]
;

6
p
r
i
v
a
t
e

f
i
n
a
l

A
t
o
m
i
c
I
n
t
e
g
e
r

r
e
a
d
L
i
s
t
T
a
i
l

=
n
e
w

A
t
o
m
i
c
I
n
t
e
g
e
r
(
-1

)
;

7
p
r
i
v
a
t
e

f
i
n
a
l

A
t
o
m
i
c
I
n
t
e
g
e
r

r
e
a
d
L
i
s
t
H
e
a
d

=
n
e
w

A
t
o
m
i
c
I
n
t
e
g
e
r
(
-1

)
;

8
p
r
i
v
a
t
e

f
i
n
a
l

A
t
o
m
i
c
I
n
t
e
g
e
r

r
e
a
d
L
i
s
t
C
o
u
n
t

=
n
e
w

A
t
o
m
i
c
I
n
t
e
g
e
r
(
0
)
;

9 10
//

f
o
r

t
e
s
t
i
n
g

p
u
r
p
o
s
e
s

11
i
n
t

n
u
m
b
e
r
o
f
d
e
q
u
e
u
e
f
a
i
l
s

=
0;

12
i
n
t

n
u
m
b
e
r
o
f
e
n
q
u
e
u
e
f
a
i
l
s

=
0;

13 14
p
u
b
l
i
c

T
h
e
Q
u
e
u
e
(
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

l
o
n
g

s
c
o
p
e
S
i
z
e
)
{

15
t
h
i
s
.
q
u
e
u
e
S
i
z
e

=
(2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

16
s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l

=
n
e
w

Q
u
e
u
e
N
o
d
e
[
q
u
e
u
e
S
i
z
e
];

17
r
e
a
d
L
i
s
t

=
n
e
w

A
t
o
m
i
c
I
n
t
e
g
e
r
[
q
u
e
u
e
S
i
z
e
];

18
r
e
a
d
L
i
s
t
I
n
v
a
l
i
d

=
n
e
w

i
n
t
[
q
u
e
u
e
S
i
z
e
];

19
f
o
r
(
i
n
t

i
=
0
;
i
<
q
u
e
u
e
S
i
z
e
;
i
+
+
)
{

20
s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
i
]

=
n
e
w

Q
u
e
u
e
N
o
d
e
(
s
c
o
p
e
S
i
z
e
)
;

21
r
e
a
d
L
i
s
t
[
i
]

=
n
e
w

A
t
o
m
i
c
I
n
t
e
g
e
r
(
-1

)
;

22
r
e
a
d
L
i
s
t
I
n
v
a
l
i
d
[
i
]

=
-1

;

188

APPENDIX C. JPF TEST CASES

23
}

24
}

25
p
u
b
l
i
c

b
o
o
l
e
a
n

e
n
q
u
e
u
e
()

{

26
i
n
t

r
e
s
e
r
v
e
d
N
o
d
e

=
-1

;

27
i
n
t

e
n
q
u
e
u
e
L
o
c
a
t
i
o
n
;

28
i
n
t

c
u
r
r
e
n
t
L
o
c
a
t
i
o
n
;

29
b
o
o
l
e
a
n

o
k
T
a
i
l
=
f
a
l
s
e
;

30
i
n
t

i
n
V
;

31
do

{

32
r
e
s
e
r
v
e
d
N
o
d
e
+
+
;

33
if

(
r
e
s
e
r
v
e
d
N
o
d
e

==
q
u
e
u
e
S
i
z
e
-
1
)

{

34
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
F
a
i
l
e
d
,
␣
F
u
l
l
␣
q
u
e
u
e
"
)
;

35
n
u
m
b
e
r
o
f
e
n
q
u
e
u
e
f
a
i
l
s
+
+
;

36
r
e
t
u
r
n

f
a
l
s
e
;

//
Q
U
E
U
E

IS
F
U
L
L

37
}

38
}

w
h
i
l
e
(!

s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
r
e
s
e
r
v
e
d
N
o
d
e
].

r
e
s
e
r
v
e
d
.
c
o
m
p
a
r
e
A
n
d
S
e
t
(
f
a
l
s
e
,

t
r
u
e
)
)
;

39
do

{

40
c
u
r
r
e
n
t
L
o
c
a
t
i
o
n

=
r
e
a
d
L
i
s
t
H
e
a
d
.
g
e
t
()

;

41
e
n
q
u
e
u
e
L
o
c
a
t
i
o
n

=
(
c
u
r
r
e
n
t
L
o
c
a
t
i
o
n

+
1)

%
q
u
e
u
e
S
i
z
e
;

42
i
n
V

=
r
e
a
d
L
i
s
t
I
n
v
a
l
i
d
[
e
n
q
u
e
u
e
L
o
c
a
t
i
o
n
];

//
f
o
r

A
B
A

a
v
o
i
d
a
n
c
e

43
if

(
r
e
a
d
L
i
s
t
H
e
a
d
.
c
o
m
p
a
r
e
A
n
d
S
e
t
(
c
u
r
r
e
n
t
L
o
c
a
t
i
o
n
,

e
n
q
u
e
u
e
L
o
c
a
t
i
o
n
)
)
{

44
r
e
a
d
L
i
s
t
[
e
n
q
u
e
u
e
L
o
c
a
t
i
o
n
].

s
e
t
(
r
e
s
e
r
v
e
d
N
o
d
e
)
;

45
o
k
T
a
i
l

=
t
r
u
e
;

189

46
}

47
}

w
h
i
l
e

(!
o
k
T
a
i
l
)
;

48
i
n
t

t
h
r
o
w
A
w
a
y

=
r
e
a
d
L
i
s
t
C
o
u
n
t
.
i
n
c
r
e
m
e
n
t
A
n
d
G
e
t
()

;

49
a
s
s
e
r
t

t
h
r
o
w
A
w
a
y

>
0

:
"
a
t
o
m
i
c
␣
i
n
t
e
g
e
r
␣
f
a
i
l
e
d
"
;

50
r
e
t
u
r
n

t
r
u
e
;

51
}

52 53
p
u
b
l
i
c

b
o
o
l
e
a
n

d
e
q
u
e
u
e
()

{

54
i
n
t

d
e
q
u
e
u
e
L
o
c
a
t
i
o
n
;

55
i
n
t

c
u
r
r
e
n
t
T
a
i
l
;

56
i
n
t

i
n
d
e
x
;

57
do

{

58
c
u
r
r
e
n
t
T
a
i
l

=
r
e
a
d
L
i
s
t
T
a
i
l
.
g
e
t
()

;

59
d
e
q
u
e
u
e
L
o
c
a
t
i
o
n

=
(
c
u
r
r
e
n
t
T
a
i
l

+
1)

%
q
u
e
u
e
S
i
z
e
;

60
if

(
r
e
a
d
L
i
s
t
[
d
e
q
u
e
u
e
L
o
c
a
t
i
o
n
].

g
e
t
()

==
-1

&&
c
u
r
r
e
n
t
T
a
i
l

==

r
e
a
d
L
i
s
t
T
a
i
l
.
g
e
t
()

)
{

61
n
u
m
b
e
r
o
f
d
e
q
u
e
u
e
f
a
i
l
s
+
+
;

62
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
,
␣
R
e
t
u
r
n
i
n
g
␣
F
a
l
s
e
␣
to

␣
d
e
q
u
e
u
e
␣

o
p
e
r
a
t
i
o
n
"
)
;

63
n
u
m
b
e
r
o
f
d
e
q
u
e
u
e
f
a
i
l
s
+
+
;

64
r
e
t
u
r
n

f
a
l
s
e
;

65
}

66
}

w
h
i
l
e

(!
r
e
a
d
L
i
s
t
T
a
i
l
.
c
o
m
p
a
r
e
A
n
d
S
e
t
(
c
u
r
r
e
n
t
T
a
i
l
,

d
e
q
u
e
u
e
L
o
c
a
t
i
o
n
)
)
;

190

APPENDIX C. JPF TEST CASES

67
//

p
e
r
f
o
r
m

s
o
m
e

o
p
e
r
a
t
i
o
n

f
o
r

s
o
m
e

ti
me

,
f
o
r

t
e
s
t
i
n
g

r
e
a
s
o
n
s
.

68
i
n
d
e
x

=
r
e
a
d
L
i
s
t
[
d
e
q
u
e
u
e
L
o
c
a
t
i
o
n
].

g
e
t
()

;

69
s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
i
n
d
e
x
].

r
e
s
e
r
v
e
d
.
s
e
t
(
f
a
l
s
e
)
;

70
r
e
a
d
L
i
s
t
[
d
e
q
u
e
u
e
L
o
c
a
t
i
o
n
].

s
e
t
(
-1

)
;

71
r
e
t
u
r
n

t
r
u
e
;

72
}

73
p
u
b
l
i
c

b
o
o
l
e
a
n

g
e
t
n
o
d
e
s
t
a
t
e
(
i
n
t

i
)

{

74
r
e
t
u
r
n

s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
i
].

r
e
s
e
r
v
e
d
.
g
e
t
()

;

75
}

76
p
u
b
l
i
c

v
o
i
d

p
r
i
n
t
q
u
e
u
e
()

{

77
f
o
r
(
i
n
t

i
=
0
;

i
<
q
u
e
u
e
S
i
z
e
;
i
+
+
)

78
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
i
].

r
e
s
e
r
v
e
d
.
g
e
t
()

+
"
␣
␣
"
)
;

79
f
o
r
(
i
n
t

i
=
0
;

i
<
q
u
e
u
e
S
i
z
e
;
i
+
+
)

80
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
(
r
e
a
d
L
i
s
t
[
i
].

g
e
t
()

+
"
␣
␣
"
)
;

81
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
()

;

82
}

83
p
u
b
l
i
c

v
o
i
d

s
e
t
n
o
d
e
s
t
a
t
e
(
i
n
t

i
,

i
n
t

j
)

{

84
s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
i
].

r
e
s
e
r
v
e
d
.
s
e
t
(
t
r
u
e
)
;

85
r
e
a
d
L
i
s
t
[
j
].

s
e
t
(
i
)
;

86
}

87
p
u
b
l
i
c

i
n
t

g
e
t
n
o
f
d
e
q
f
a
i
l
s
()

{

88
r
e
t
u
r
n

n
u
m
b
e
r
o
f
d
e
q
u
e
u
e
f
a
i
l
s
;

89
}

191

90
p
u
b
l
i
c

i
n
t

g
e
t
n
o
f
e
n
q
f
a
i
l
s
()

{

91
r
e
t
u
r
n

n
u
m
b
e
r
o
f
d
e
q
u
e
u
e
f
a
i
l
s
;

92
}

93
p
u
b
l
i
c

i
n
t

g
e
t
q
(
i
n
t

i
)
{

94
r
e
t
u
r
n

q
[
i
];

95
}

96
}

192

APPENDIX C. JPF TEST CASES

C
.1

E
m
pt
y
qu

eu
e
-
th
re
e
w
ri
te
rs

ca
se

Li
st
in
g
C
.5
:
T
he

m
ai
n
cl
as
s
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
0;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
3;

5
i
n
t

q
s
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

6
T
h
e
Q
u
e
u
e

w
a
i
t
F
r
e
e
Q
u
e
u
e

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

7 8
//

Pr
e
-
c
o
n
d
i
t
i
o
n
s

f
o
r

an
e
m
p
t
y

q
u
e
u
e
,

n
o
t
h
i
n
g

is
d
o
n
e
.

9 10
//

s
t
a
r
t
i
n
g

a
n
d

j
o
i
n
i
n
g

t
h
e

t
h
r
e
a
d
s

11
W
r
i
t
e
r
T
h
r
e
a
d

w
t
1

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

12
W
r
i
t
e
r
T
h
r
e
a
d

w
t
2

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

13
W
r
i
t
e
r
T
h
r
e
a
d

w
t
3

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

14
w
t
1
.
s
t
a
r
t
()

;

15
w
t
2
.
s
t
a
r
t
()

;

16
w
t
3
.
s
t
a
r
t
()

;

17
t
r
y

{

18
w
t
1
.
j
o
i
n
()

;

19
w
t
2
.
j
o
i
n
()

;

193

C.1. EMPTY QUEUE - THREE WRITERS CASE
20

w
t
3
.
j
o
i
n
()

;

21
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{

22
//

T
O
D
O

Au
to

-
g
e
n
e
r
a
t
e
d

c
a
t
c
h

b
l
o
c
k

23
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

24
}

25 26
//

P
o
s
t
c
h
e
c
k

c
o
n
d
i
t
i
o
n
s

27
//

t
e
s
t

p
a
s
s

if
t
h
e

f
i
r
s
t

t
h
r
e
e

n
o
d
e
s

c
o
n
t
a
i
n

d
a
t
a

a
n
d

a
l
l

28
//

o
t
h
e
r

n
o
d
e
s

a
r
e

e
m
p
t
y

29
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
0
)

==
t
r
u
e

&&

30
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
1
)

==
t
r
u
e

&&

31
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
2
)

==
t
r
u
e
)

32
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

33
e
l
s
e

34
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

35
f
o
r
(
i
n
t

i
=
3
;
i
<
q
s
i
z
e
-
1
;
i
+
+
)

36
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
i
)

==
f
a
l
s
e
)

37
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

38
e
l
s
e

39
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

40 41
}

42
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

194

APPENDIX C. JPF TEST CASES

43
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

44
w
f
q
.
s
t
a
r
t
()

;

45
}

46
} C
.2

E
m
pt
y
qu

eu
e
-
th
re
e
re
ad

er
s
ca
se

Li
st
in
g
C
.6
:
T
he

m
ai
n
cl
as
s
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
3;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
0;

5
i
n
t

q
s
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

6
T
h
e
Q
u
e
u
e

w
a
i
t
F
r
e
e
Q
u
e
u
e

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

7 8
//

Pr
e
-
c
o
n
d
i
t
i
o
n
s

f
o
r

an
e
m
p
t
y

q
u
e
u
e
,

a
l
l

n
o
d
e
s

a
r
e

e
m
p
t
y
.

9 10
//

s
t
a
r
t
i
n
g

a
n
d

j
o
i
n
i
n
g

t
h
e

t
h
r
e
a
d
s

11
R
e
a
d
e
r
T
h
r
e
a
d

r
t
1

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

12
R
e
a
d
e
r
T
h
r
e
a
d

r
t
2

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

195

C.2. EMPTY QUEUE - THREE READERS CASE
13

R
e
a
d
e
r
T
h
r
e
a
d

r
t
3

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

14
r
t
1
.
s
t
a
r
t
()

;

15
r
t
2
.
s
t
a
r
t
()

;

16
r
t
3
.
s
t
a
r
t
()

;

17 18
//

e
n
s
u
r
e

t
h
a
t

t
h
e

t
h
r
e
a
d
s

f
i
n
i
s
h

e
x
e
c
u
t
i
o
n

b
e
f
o
r
e

c
h
e
c
k

t
h
e

19
//

p
o
s
t

c
o
n
d
i
t
i
o
n
s
.

20
t
r
y

{

21
r
t
1
.
j
o
i
n
()

;

22
r
t
2
.
j
o
i
n
()

;

23
r
t
3
.
j
o
i
n
()

;

24
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{

25
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

26
}

27 28
//

P
o
s
t
c
h
e
c
k

c
o
n
d
i
t
i
o
n
s

29
//

t
e
s
t

p
a
s
s

if
a
l
l

n
o
d
e
s

a
r
e

e
m
p
t
y
,

o
n
e

of
t
h
e

d
e
q
u
e
u
e

o
p
e
r
a
t
i
o
n
s

is

e
x
p
e
c
t
e
d

to
f
a
i
l

30
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
0
)

==
f
a
l
s
e

&&

31
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
1
)

==
f
a
l
s
e

&&

32
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
2
)

==
f
a
l
s
e

&&

33
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
3
)

==
f
a
l
s
e

&&

34
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
4
)

==
f
a
l
s
e

&&

196

APPENDIX C. JPF TEST CASES

35
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
5
)

==
f
a
l
s
e

&&

36
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
f
d
e
q
f
a
i
l
s
()

=
=
3
)

37
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

38
e
l
s
e

39
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

40
}

41
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

42
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

43
w
f
q
.
s
t
a
r
t
()

;

44
}

45
} C
.3

E
m
pt
y
qu

eu
e
-
to
w

re
ad

er
s
an

d
tw

o
w
ri
te
rs

ca
se

Li
st
in
g
C
.7
:
T
he

al
go
rit

hm
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
2;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
2;

5
i
n
t

q
s
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

197

C.3. EMPTY QUEUE - TOW READERS AND TWO WRITERS CASE
6

T
h
e
Q
u
e
u
e

w
a
i
t
F
r
e
e
Q
u
e
u
e

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

7 8
//

Pr
e
-
c
o
n
d
i
t
i
o
n
s

f
o
r

an
e
m
p
t
y

q
u
e
u
e
,

a
l
l

n
o
d
e
s

a
r
e

e
m
p
t
y
.

9 10
//

s
t
a
r
t
i
n
g

a
n
d

j
o
i
n
i
n
g

t
h
e

t
h
r
e
a
d
s

11
W
r
i
t
e
r
T
h
r
e
a
d

w
t
1

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

12
W
r
i
t
e
r
T
h
r
e
a
d

w
t
2

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

13
R
e
a
d
e
r
T
h
r
e
a
d

r
t
1

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

14
R
e
a
d
e
r
T
h
r
e
a
d

r
t
2

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

15
w
t
1
.
s
t
a
r
t
()

;

16
w
t
2
.
s
t
a
r
t
()

;

17
r
t
1
.
s
t
a
r
t
()

;

18
r
t
2
.
s
t
a
r
t
()

;

19 20
//

e
n
s
u
r
e

t
h
a
t

t
h
e

t
h
r
e
a
d
s

f
i
n
i
s
h

e
x
e
c
u
t
i
o
n

b
e
f
o
r
e

c
h
e
c
k

t
h
e

21
//

p
o
s
t

c
o
n
d
i
t
i
o
n
s
.

22
t
r
y

{

23
w
t
1
.
j
o
i
n
()

;

24
w
t
2
.
j
o
i
n
()

;

25
r
t
1
.
j
o
i
n
()

;

26
r
t
2
.
j
o
i
n
()

;

27
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{

198

APPENDIX C. JPF TEST CASES

28
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

29
}

30 31
//

P
o
s
t
c
h
e
c
k

c
o
n
d
i
t
i
o
n
s

32
//

t
e
s
t

p
a
s
s

if
a
l
l

n
o
d
e
s

a
r
e

e
m
p
t
y
,

o
n
e

of
t
h
e

d
e
q
u
e
u
e

o
p
e
r
a
t
i
o
n
s

is

e
x
p
e
c
t
e
d

to
f
a
i
l

33
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
0
)

==
f
a
l
s
e

&&

34
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
1
)

==
f
a
l
s
e

&&

35
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
2
)

==
f
a
l
s
e

&&

36
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
3
)

==
f
a
l
s
e

&&

37
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
4
)

==
f
a
l
s
e

&&

38
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
5
)

==
f
a
l
s
e

&&

39
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
f
d
e
q
f
a
i
l
s
()

=
=
0
)

40
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

41
e
l
s
e

42
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

43
}

44
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

45
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

46
w
f
q
.
s
t
a
r
t
()

;

47
}

48
}

199

C.4. PARTIAL EMPTY QUEUE - THREE WRITERS CASE
C
.4

P
ar
ti
al

em
pt
y
qu

eu
e
-
th
re
e
w
ri
te
rs

ca
se

Li
st
in
g
C
.8
:
T
he

m
ai
n
cl
as
s
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
0;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
3;

5
i
n
t

q
s
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

6
T
h
e
Q
u
e
u
e

w
a
i
t
F
r
e
e
Q
u
e
u
e

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

7 8
//

Pr
e
-
c
o
n
d
i
t
i
o
n
s

f
o
r

a
p
a
r
t
i
a
l

e
m
p
t
y

q
u
e
u
e
,

t
h
e

f
i
r
s
t

t
h
r
e
e

n
o
d
e
s

9
//

a
r
e

a
s
s
u
m
e
d

to
h
a
v
e

da
ta

,
a
n
d

t
h
e
i
r

i
n
d
e
x
e
s

a
d
d
e
d

to
r
e
a
d
L
i
s
t
.

10
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

11
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

12
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

13 14
//

s
t
a
r
t
i
n
g

a
n
d

j
o
i
n
i
n
g

t
h
e

t
h
r
e
a
d
s

15
W
r
i
t
e
r
T
h
r
e
a
d

w
t
1

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

16
W
r
i
t
e
r
T
h
r
e
a
d

w
t
2

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

17
W
r
i
t
e
r
T
h
r
e
a
d

w
t
3

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

18
w
t
1
.
s
t
a
r
t
()

;

19
w
t
2
.
s
t
a
r
t
()

;

200

APPENDIX C. JPF TEST CASES

20
w
t
3
.
s
t
a
r
t
()

;

21
t
r
y

{

22
w
t
1
.
j
o
i
n
()

;

23
w
t
2
.
j
o
i
n
()

;

24
w
t
3
.
j
o
i
n
()

;

25
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{

26
//

T
O
D
O

Au
to

-
g
e
n
e
r
a
t
e
d

c
a
t
c
h

b
l
o
c
k

27
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

28
}

29 30
//

P
o
s
t
c
h
e
c
k

c
o
n
d
i
t
i
o
n
s

31
//

t
e
s
t

p
a
s
s

if
t
h
e

f
i
r
s
t

s
i
x

n
o
d
e
s

c
o
n
t
a
i
n

d
a
t
a

a
n
d

a
l
l

32
//

o
t
h
e
r

n
o
d
e
s

a
r
e

e
m
p
t
y
.

33
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
0
)

==
t
r
u
e

&&

34
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
1
)

==
t
r
u
e

&&

35
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
2
)

==
t
r
u
e

&&

36
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
3
)

==
t
r
u
e

&&

37
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
4
)

==
t
r
u
e

&&

38
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
5
)

==
t
r
u
e
)

39
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

40
e
l
s
e

41
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

42
f
o
r
(
i
n
t

i
=
6
;
i
<
q
s
i
z
e
-
1
;
i
+
+
)

201

C.5. PARTIAL EMPTY QUEUE - THREE READERS CASE
43

if
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
i
)

==
f
a
l
s
e
)

44
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

45
e
l
s
e

46
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

47 48
}

49
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

50
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

51
w
f
q
.
s
t
a
r
t
()

;

52
}

53
} C
.5

P
ar
ti
al

em
pt
y
qu

eu
e
-
th
re
e
re
ad

er
s
ca
se

Li
st
in
g
C
.9
:
T
he

m
ai
n
cl
as
s
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
3;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
0;

5
i
n
t

q
s
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

202

APPENDIX C. JPF TEST CASES

6
T
h
e
Q
u
e
u
e

w
a
i
t
F
r
e
e
Q
u
e
u
e

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

7 8
//

Pr
e
-
c
o
n
d
i
t
i
o
n
s

f
o
r

a
p
a
r
t
i
a
l

e
m
p
t
y

q
u
e
u
e
.

9
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

10
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

11 12
//

s
t
a
r
t
i
n
g

a
n
d

j
o
i
n
i
n
g

t
h
e

t
h
r
e
a
d
s

13
R
e
a
d
e
r
T
h
r
e
a
d

r
t
1

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

14
R
e
a
d
e
r
T
h
r
e
a
d

r
t
2

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

15
R
e
a
d
e
r
T
h
r
e
a
d

r
t
3

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

16
r
t
1
.
s
t
a
r
t
()

;

17
r
t
2
.
s
t
a
r
t
()

;

18
r
t
3
.
s
t
a
r
t
()

;

19 20
//

e
n
s
u
r
e

t
h
a
t

t
h
e

t
h
r
e
a
d
s

f
i
n
i
s
h

e
x
e
c
u
t
i
o
n

b
e
f
o
r
e

c
h
e
c
k

t
h
e

21
//

p
o
s
t

c
o
n
d
i
t
i
o
n
s
.

22
t
r
y

{

23
r
t
1
.
j
o
i
n
()

;

24
r
t
2
.
j
o
i
n
()

;

25
r
t
3
.
j
o
i
n
()

;

26
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{

27
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

203

C.5. PARTIAL EMPTY QUEUE - THREE READERS CASE
28

}

29 30
//

P
o
s
t
c
h
e
c
k

c
o
n
d
i
t
i
o
n
s

31
//

t
e
s
t

p
a
s
s

if
a
l
l

n
o
d
e
s

a
r
e

e
m
p
t
y
,

o
n
e

of
t
h
e

d
e
q
u
e
u
e

o
p
e
r
a
t
i
o
n
s

is

e
x
p
e
c
t
e
d

to
f
a
i
l

32
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
0
)

==
f
a
l
s
e

&&

33
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
1
)

==
f
a
l
s
e

&&

34
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
2
)

==
f
a
l
s
e

&&

35
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
3
)

==
f
a
l
s
e

&&

36
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
4
)

==
f
a
l
s
e

&&

37
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
5
)

==
f
a
l
s
e

&&

38
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
f
d
e
q
f
a
i
l
s
()

=
=
1
)

39
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

40
e
l
s
e

41
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

42
}

43
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

44
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

45
w
f
q
.
s
t
a
r
t
()

;

46
}

47
}

204

APPENDIX C. JPF TEST CASES

C
.6

P
ar
ti
al

em
pt
y
qu

eu
e
-
to
w

re
ad

er
s
an

d
tw

o
w
ri
te
rs

ca
se

Li
st
in
g
C
.1
0:

T
he

al
go
rit

hm
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
2;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
2;

5
i
n
t

q
s
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

6
T
h
e
Q
u
e
u
e

w
a
i
t
F
r
e
e
Q
u
e
u
e

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

7 8
//

Pr
e
-
c
o
n
d
i
t
i
o
n
s

f
o
r

a
p
a
r
t
i
a
l

e
m
p
t
y

q
u
e
u
e
,

a
l
l

n
o
d
e
s

a
r
e

e
m
p
t
y
,

n
o
t
h
i
n
g

d
o
n
e
.

9
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

10
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

11
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

12
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

13 14
//

s
t
a
r
t
i
n
g

a
n
d

j
o
i
n
i
n
g

t
h
e

t
h
r
e
a
d
s

15
W
r
i
t
e
r
T
h
r
e
a
d

w
t
1

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

16
W
r
i
t
e
r
T
h
r
e
a
d

w
t
2

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

17
R
e
a
d
e
r
T
h
r
e
a
d

r
t
1

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

18
R
e
a
d
e
r
T
h
r
e
a
d

r
t
2

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

205

C.6. PARTIAL EMPTY QUEUE - TOW READERS AND TWO
WRITERS CASE

19
w
t
1
.
s
t
a
r
t
()

;

20
w
t
2
.
s
t
a
r
t
()

;

21
r
t
1
.
s
t
a
r
t
()

;

22
r
t
2
.
s
t
a
r
t
()

;

23 24
//

e
n
s
u
r
e

t
h
a
t

t
h
e

t
h
r
e
a
d
s

f
i
n
i
s
h

e
x
e
c
u
t
i
o
n

b
e
f
o
r
e

c
h
e
c
k

t
h
e

25
//

p
o
s
t

c
o
n
d
i
t
i
o
n
s
.

26
t
r
y

{

27
w
t
1
.
j
o
i
n
()

;

28
w
t
2
.
j
o
i
n
()

;

29
r
t
1
.
j
o
i
n
()

;

30
r
t
2
.
j
o
i
n
()

;

31
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{

32
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

33
}

34
//

P
o
s
t
c
h
e
c
k

c
o
n
d
i
t
i
o
n
s

35
//

t
e
s
t

p
a
s
s

if
a
l
l

n
o
d
e
s

a
r
e

e
m
p
t
y
,

o
n
e

of
t
h
e

d
e
q
u
e
u
e

o
p
e
r
a
t
i
o
n
s

is

e
x
p
e
c
t
e
d

to
f
a
i
l

36
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
0
)

==
f
a
l
s
e

&&

37
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
1
)

==
f
a
l
s
e

&&

38
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
2
)

==
t
r
u
e

&&

39
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
3
)

==
t
r
u
e

&&

40
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
4
)

==
t
r
u
e

&&

206

APPENDIX C. JPF TEST CASES

41
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
5
)

==
t
r
u
e

&&

42
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
6
)

==
f
a
l
s
e

&&

43
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
7
)

==
f
a
l
s
e

&&

44
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
8
)

==
f
a
l
s
e

&&

45
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
9
)

==
f
a
l
s
e

&&

46
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
f
d
e
q
f
a
i
l
s
()

=
=
0
)

47
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

48
e
l
s
e

49
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

50
}

51
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

52
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

53
w
f
q
.
s
t
a
r
t
()

;

54
}

55
} C
.7

P
ar
ti
al

fu
ll
qu

eu
e
-
th
re
e
w
ri
te
rs

ca
se

Li
st
in
g
C
.1
1:

T
he

m
ai
n
cl
as
s
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

207

C.7. PARTIAL FULL QUEUE - THREE WRITERS CASE
3

i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
0;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
3;

5
i
n
t

q
s
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

6
T
h
e
Q
u
e
u
e

w
a
i
t
F
r
e
e
Q
u
e
u
e

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

7 8
//

Pr
e
-
c
o
n
d
i
t
i
o
n
s

f
o
r

a
p
a
r
t
i
a
l

f
u
l
l

q
u
e
u
e
,

t
h
e

q
u
e
u
e

is
9

n
o
d
e
s

9
//

o
u
t

of
w
h
i
c
h

7
n
o
d
e
s

a
r
e

c
o
n
t
a
i
n
i
n
g

da
ta

,
h
e
n
c
e
,

o
n
e

of
t
h
e

t
h
r
e
e

w
r
i
t
e
r
s

10
//

is
g
o
i
n
g

to
f
a
i
l

t
h
e

e
n
q
u
e
u
e

o
p
e
r
a
t
i
o
n
.

11
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

12
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

13
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

14
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

15
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

16
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

17
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

18 19
//

s
t
a
r
t
i
n
g

a
n
d

j
o
i
n
i
n
g

t
h
e

t
h
r
e
a
d
s

20
W
r
i
t
e
r
T
h
r
e
a
d

w
t
1

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

21
W
r
i
t
e
r
T
h
r
e
a
d

w
t
2

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

22
W
r
i
t
e
r
T
h
r
e
a
d

w
t
3

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

23
w
t
1
.
s
t
a
r
t
()

;

24
w
t
2
.
s
t
a
r
t
()

;

208

APPENDIX C. JPF TEST CASES

25
w
t
3
.
s
t
a
r
t
()

;

26
t
r
y

{

27
w
t
1
.
j
o
i
n
()

;

28
w
t
2
.
j
o
i
n
()

;

29
w
t
3
.
j
o
i
n
()

;

30
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{

31
//

T
O
D
O

Au
to

-
g
e
n
e
r
a
t
e
d

c
a
t
c
h

b
l
o
c
k

32
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

33
}

34 35
//

P
o
s
t
c
h
e
c
k

c
o
n
d
i
t
i
o
n
s

36
//

t
e
s
t

p
a
s
s

if
t
h
e

a
l
l

n
o
d
e
s

a
r
e

c
o
n
t
a
i
n
i
n
g

d
a
t
a
.

37
f
o
r
(
i
n
t

i
=
0
;
i
<
q
s
i
z
e
-
1
;
i
+
+
)

38
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
i
)

==
t
r
u
e
)

39
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

40
e
l
s
e

41
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

42 43
}

44
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

45
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

46
w
f
q
.
s
t
a
r
t
()

;

47
}

209

C.8. PARTIAL FULL QUEUE - THREE READERS CASE
48

} C
.8

P
ar
ti
al

fu
ll
qu

eu
e
-
th
re
e
re
ad

er
s
ca
se

Li
st
in
g
C
.1
2:

T
he

m
ai
n
cl
as
s
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
3;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
0;

5
i
n
t

q
s
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

6
T
h
e
Q
u
e
u
e

w
a
i
t
F
r
e
e
Q
u
e
u
e

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

7 8
//

Pr
e
-
c
o
n
d
i
t
i
o
n
s

f
o
r

a
p
a
r
t
i
a
l

f
u
l
l

q
u
e
u
e
,

m
o
s
t

of
t
h
e

n
o
d
e
s

c
o
n
t
a
i
n

d
a
t
a
.

9
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

10
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

11
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

12
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

13 14
//

s
t
a
r
t
i
n
g

a
n
d

j
o
i
n
i
n
g

t
h
e

t
h
r
e
a
d
s

15
R
e
a
d
e
r
T
h
r
e
a
d

r
t
1

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

210

APPENDIX C. JPF TEST CASES

16
R
e
a
d
e
r
T
h
r
e
a
d

r
t
2

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

17
R
e
a
d
e
r
T
h
r
e
a
d

r
t
3

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

18
r
t
1
.
s
t
a
r
t
()

;

19
r
t
2
.
s
t
a
r
t
()

;

20
r
t
3
.
s
t
a
r
t
()

;

21 22
//

e
n
s
u
r
e

t
h
a
t

t
h
e

t
h
r
e
a
d
s

f
i
n
i
s
h

e
x
e
c
u
t
i
o
n

b
e
f
o
r
e

c
h
e
c
k

t
h
e

23
//

p
o
s
t

c
o
n
d
i
t
i
o
n
s
.

24
t
r
y

{

25
r
t
1
.
j
o
i
n
()

;

26
r
t
2
.
j
o
i
n
()

;

27
r
t
3
.
j
o
i
n
()

;

28
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{

29
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

30
}

31 32
//

P
o
s
t
c
h
e
c
k

c
o
n
d
i
t
i
o
n
s

33
//

t
e
s
t

p
a
s
s

if
a
l
l

n
o
d
e
s

a
r
e

e
m
p
t
y

e
x
c
e
p
t

f
o
r

n
o
d
e

3

34
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
0
)

==
f
a
l
s
e

&&

35
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
1
)

==
f
a
l
s
e

&&

36
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
2
)

==
f
a
l
s
e

&&

37
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
3
)

==
t
r
u
e

&&

38
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
4
)

==
f
a
l
s
e

&&

211

C.9. PARTIAL FULL QUEUE - TOW READERS AND TWO WRITERS
CASE

39
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
5
)

==
f
a
l
s
e
)

40
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

41
e
l
s
e

42
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

43
}

44
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

45
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

46
w
f
q
.
s
t
a
r
t
()

;

47
}

48
} C
.9

P
ar
ti
al

fu
ll
qu

eu
e
-
to
w

re
ad

er
s
an

d
tw

o
w
ri
te
rs

ca
se

Li
st
in
g
C
.1
3:

T
he

al
go
rit

hm
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
2;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
2;

5
i
n
t

q
s
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

6
T
h
e
Q
u
e
u
e

w
a
i
t
F
r
e
e
Q
u
e
u
e

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

212

APPENDIX C. JPF TEST CASES

7 8
//

Pr
e
-
c
o
n
d
i
t
i
o
n
s

f
o
r

a
p
a
r
t
i
a
l

e
m
p
t
y

q
u
e
u
e
,

a
l
l

n
o
d
e
s

a
r
e

e
m
p
t
y
,

n
o
t
h
i
n
g

d
o
n
e
.

9
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

10
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

11
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

12
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

13
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

14
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

15
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

16
//

s
t
a
r
t
i
n
g

a
n
d

j
o
i
n
i
n
g

t
h
e

t
h
r
e
a
d
s

17
W
r
i
t
e
r
T
h
r
e
a
d

w
t
1

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

18
W
r
i
t
e
r
T
h
r
e
a
d

w
t
2

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

19
R
e
a
d
e
r
T
h
r
e
a
d

r
t
1

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

20
R
e
a
d
e
r
T
h
r
e
a
d

r
t
2

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

21
w
t
1
.
s
t
a
r
t
()

;

22
w
t
2
.
s
t
a
r
t
()

;

23
r
t
1
.
s
t
a
r
t
()

;

24
r
t
2
.
s
t
a
r
t
()

;

25 26
//

e
n
s
u
r
e

t
h
a
t

t
h
e

t
h
r
e
a
d
s

f
i
n
i
s
h

e
x
e
c
u
t
i
o
n

b
e
f
o
r
e

c
h
e
c
k

t
h
e

27
//

p
o
s
t

c
o
n
d
i
t
i
o
n
s
.

28
t
r
y

{

213

C.9. PARTIAL FULL QUEUE - TOW READERS AND TWO WRITERS
CASE

29
w
t
1
.
j
o
i
n
()

;

30
w
t
2
.
j
o
i
n
()

;

31
r
t
1
.
j
o
i
n
()

;

32
r
t
2
.
j
o
i
n
()

;

33
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{

34
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

35
}

36
//

P
o
s
t
c
h
e
c
k

c
o
n
d
i
t
i
o
n
s

37
//

t
e
s
t

p
a
s
s

if
a
l
l

n
o
d
e
s

a
r
e

e
m
p
t
y
,

o
n
e

of
t
h
e

d
e
q
u
e
u
e

o
p
e
r
a
t
i
o
n
s

is

e
x
p
e
c
t
e
d

to
f
a
i
l

38
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
0
)

==
f
a
l
s
e

&&

39
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
1
)

==
f
a
l
s
e

&&

40
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
2
)

==
t
r
u
e

&&

41
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
3
)

==
t
r
u
e

&&

42
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
4
)

==
t
r
u
e

&&

43
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
5
)

==
t
r
u
e

&&

44
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
6
)

==
t
r
u
e

&&

45
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
7
)

==
t
r
u
e

&&

46
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
8
)

==
t
r
u
e

&&

47
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
9
)

==
f
a
l
s
e

&&

48
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
f
d
e
q
f
a
i
l
s
()

=
=
0
)

49
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

50
e
l
s
e

214

APPENDIX C. JPF TEST CASES

51
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

52
}

53
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

54
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

55
w
f
q
.
s
t
a
r
t
()

;

56
}

57
} C
.1
0

Fu
ll
qu

eu
e
-
th
re
e
w
ri
te
rs

ca
se

Li
st
in
g
C
.1
4:

T
he

m
ai
n
cl
as
s
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
0;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
3;

5
i
n
t

q
s
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

6
T
h
e
Q
u
e
u
e

w
a
i
t
F
r
e
e
Q
u
e
u
e

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

7 8
//

Pr
e
-
c
o
n
d
i
t
i
o
n
s

f
o
r

a
f
u
l
l

q
u
e
u
e
,

7
n
o
d
e
s

c
o
n
t
a
i
n
i
n
g

d
a
t
a

i
t
e
m
s

to
be

c
o
n
s
u
m
e
d
.

215

C.10. FULL QUEUE - THREE WRITERS CASE
9

w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

10
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

11
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

12
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

13
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

14
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

15
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

16
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

17
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

18 19
//

s
t
a
r
t
i
n
g

a
n
d

j
o
i
n
i
n
g

t
h
e

t
h
r
e
a
d
s

20
W
r
i
t
e
r
T
h
r
e
a
d

w
t
1

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

21
W
r
i
t
e
r
T
h
r
e
a
d

w
t
2

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

22
W
r
i
t
e
r
T
h
r
e
a
d

w
t
3

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

23
w
t
1
.
s
t
a
r
t
()

;

24
w
t
2
.
s
t
a
r
t
()

;

25
w
t
3
.
s
t
a
r
t
()

;

26 27
//

e
n
s
u
r
e

t
h
a
t

t
h
e

t
h
r
e
a
d
s

f
i
n
i
s
h

e
x
e
c
u
t
i
o
n

b
e
f
o
r
e

c
h
e
c
k

t
h
e

28
//

p
o
s
t

c
o
n
d
i
t
i
o
n
s
.

29
t
r
y

{

30
w
t
1
.
j
o
i
n
()

;

31
w
t
2
.
j
o
i
n
()

;

216

APPENDIX C. JPF TEST CASES

32
w
t
3
.
j
o
i
n
()

;

33
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{

34
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

35
}

36 37
//

P
o
s
t
c
h
e
c
k

c
o
n
d
i
t
i
o
n
s

38
//

t
e
s
t

p
a
s
s

if
t
h
e

a
l
l

n
o
d
e
s

a
r
e

c
o
n
t
a
i
n
i
n
g

d
a
t
a

a
n
d

t
h
e

e
n
q
u
e
u
e

39
//

m
e
t
h
o
d

f
a
i
l
s

t
h
r
e
e

t
i
m
e
s
.

40
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
f
e
n
q
u
e
u
e
f
i
l
a
s
()

=
=
3
)

41
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

42
f
o
r
(
i
n
t

i
=
0
;
i
<
q
s
i
z
e
-
1
;
i
+
+
)

43
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
i
)

==
t
r
u
e
)

44
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

45
e
l
s
e

46
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

47 48
}

49
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

50
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

51
w
f
q
.
s
t
a
r
t
()

;

52
}

53
}

217

C.11. FULL QUEUE - THREE READERS CASE
C
.1
1

Fu
ll
qu

eu
e
-
th
re
e
re
ad

er
s
ca
se

Li
st
in
g
C
.1
5:

T
he

m
ai
n
cl
as
s
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
3;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
0;

5
i
n
t

q
s
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

6
T
h
e
Q
u
e
u
e

w
a
i
t
F
r
e
e
Q
u
e
u
e

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

7 8
//

Pr
e
-
c
o
n
d
i
t
i
o
n
s

f
o
r

a
f
u
l
l

q
u
e
u
e
,

7
n
o
d
e
s

o
u
t

of
9

c
o
n
t
a
i
n
s

d
a
t
a

i
t
e
m
s

to

be
c
o
n
s
u
m
e
d

9
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

10
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

11
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

12
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

13
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

14
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

15 16
//

s
t
a
r
t
i
n
g

a
n
d

j
o
i
n
i
n
g

t
h
e

t
h
r
e
a
d
s

17
R
e
a
d
e
r
T
h
r
e
a
d

r
t
1

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

18
R
e
a
d
e
r
T
h
r
e
a
d

r
t
2

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

218

APPENDIX C. JPF TEST CASES

19
R
e
a
d
e
r
T
h
r
e
a
d

r
t
3

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

20
r
t
1
.
s
t
a
r
t
()

;

21
r
t
2
.
s
t
a
r
t
()

;

22
r
t
3
.
s
t
a
r
t
()

;

23 24
//

e
n
s
u
r
e

t
h
a
t

t
h
e

t
h
r
e
a
d
s

f
i
n
i
s
h

e
x
e
c
u
t
i
o
n

b
e
f
o
r
e

c
h
e
c
k

t
h
e

25
//

p
o
s
t

c
o
n
d
i
t
i
o
n
s
.

26
t
r
y

{

27
r
t
1
.
j
o
i
n
()

;

28
r
t
2
.
j
o
i
n
()

;

29
r
t
3
.
j
o
i
n
()

;

30
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{

31
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

32
}

33 34
//

P
o
s
t
c
h
e
c
k

c
o
n
d
i
t
i
o
n
s

35
//

t
e
s
t

p
a
s
s

if
a
l
l

n
o
d
e
s

a
r
e

c
o
n
t
a
i
n
i
n
g

d
a
t
a

e
x
c
e
p
t

f
o
r

t
h
e

f
i
r
s
t

t
h
r
e
e

n
o
d
e
s

36
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
0
)

==
f
a
l
s
e

&&

37
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
1
)

==
f
a
l
s
e

&&

38
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
2
)

==
f
a
l
s
e
)

39
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

40
e
l
s
e

219

C.12. FULL QUEUE - TOW READERS AND TWO WRITERS CASE
41

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

42
f
o
r
(
i
n
t

i
=
3
;
i
<
q
s
i
z
e
-
1
;
i
+
+
)

43
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
i
)

==
t
r
u
e
)

44
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

45
e
l
s
e

46
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

47
}

48
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

49
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

50
w
f
q
.
s
t
a
r
t
()

;

51
}

52
} C
.1
2

Fu
ll
qu

eu
e
-
to
w

re
ad

er
s
an

d
tw

o
w
ri
te
rs

ca
se

Li
st
in
g
C
.1
6:

T
he

al
go
rit

hm
co
de

1
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
Q
u
e
u
e

e
x
t
e
n
d
s

T
h
r
e
a
d

{

2
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

3
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
2;

4
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
2;

5
i
n
t

q
s
i
z
e

=
2

*
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
)

+
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
;

220

APPENDIX C. JPF TEST CASES

6
T
h
e
Q
u
e
u
e

w
a
i
t
F
r
e
e
Q
u
e
u
e

=
n
e
w

T
h
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

7 8
//

Pr
e
-
c
o
n
d
i
t
i
o
n
s

f
o
r

a
f
u
l
l

q
u
e
u
e
,

a
l
l

n
o
d
e
s

c
o
n
t
a
i
n

d
a
t
a

i
t
e
m
s

to
be

c
o
n
s
u
m
e
d
.

9
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

10
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

11
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

12
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

13
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

14
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

15
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

16
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

17
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

18
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
e
n
q
u
e
u
e
()

;

19 20
//

s
t
a
r
t
i
n
g

a
n
d

j
o
i
n
i
n
g

t
h
e

t
h
r
e
a
d
s

21
W
r
i
t
e
r
T
h
r
e
a
d

w
t
1

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

22
W
r
i
t
e
r
T
h
r
e
a
d

w
t
2

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

23
R
e
a
d
e
r
T
h
r
e
a
d

r
t
1

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

24
R
e
a
d
e
r
T
h
r
e
a
d

r
t
2

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
w
a
i
t
F
r
e
e
Q
u
e
u
e
)
;

25
w
t
1
.
s
t
a
r
t
()

;

26
w
t
2
.
s
t
a
r
t
()

;

221

C.12. FULL QUEUE - TOW READERS AND TWO WRITERS CASE
27

r
t
1
.
s
t
a
r
t
()

;

28
r
t
2
.
s
t
a
r
t
()

;

29 30
//

e
n
s
u
r
e

t
h
a
t

t
h
e

t
h
r
e
a
d
s

f
i
n
i
s
h

e
x
e
c
u
t
i
o
n

b
e
f
o
r
e

c
h
e
c
k

t
h
e

31
//

p
o
s
t

c
o
n
d
i
t
i
o
n
s
.

32
t
r
y

{

33
w
t
1
.
j
o
i
n
()

;

34
w
t
2
.
j
o
i
n
()

;

35
r
t
1
.
j
o
i
n
()

;

36
r
t
2
.
j
o
i
n
()

;

37
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{

38
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

39
}

40
//

P
o
s
t
c
h
e
c
k

c
o
n
d
i
t
i
o
n
s

41
//

t
e
s
t

p
a
s
s

if
a
l
l

n
o
d
e
s

a
r
e

e
m
p
t
y
,

o
n
e

of
t
h
e

d
e
q
u
e
u
e

o
p
e
r
a
t
i
o
n
s

is

e
x
p
e
c
t
e
d

to
f
a
i
l

42
if

(
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
0
)

==
f
a
l
s
e

&&

43
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
1
)

==
f
a
l
s
e

&&

44
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
2
)

==
t
r
u
e

&&

45
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
3
)

==
t
r
u
e

&&

46
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
4
)

==
t
r
u
e

&&

47
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
5
)

==
t
r
u
e

&&

48
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
6
)

==
t
r
u
e

&&

222

APPENDIX C. JPF TEST CASES

49
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
7
)

==
t
r
u
e

&&

50
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
8
)

==
t
r
u
e

&&

51
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
d
e
s
t
a
t
e
(
9
)

==
t
r
u
e

&&

52
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
f
d
e
q
f
a
i
l
s
()

=
=
0

&&

53
w
a
i
t
F
r
e
e
Q
u
e
u
e
.
g
e
t
n
o
f
e
n
q
f
a
i
l
s
()

=
=
2
)

54
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
P
a
s
s
e
d
"
)
;

55
e
l
s
e

56
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
T
e
s
t
␣
f
a
i
l
e
d
"
)
;

57
}

58
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

59
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
()

;

60
w
f
q
.
s
t
a
r
t
()

;

61
}

62
}

223

A
pp

en
di
x
D

C
as
e
st
ud

y
co
de

D
.1

Ja
m
ai
ca
V
M

w
ai
t
fr
ee

qu
eu

es

Li
st
in
g
D
.1
:
Ja

m
ai
ca
V
M

W
ai
tF
re
eR

ea
dQ

ue
ue

1
p
a
c
k
a
g
e

j
a
v
a
x
.
r
e
a
l
t
i
m
e
;

2 3
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
R
e
a
d
Q
u
e
u
e

4
{

5
f
i
n
a
l

O
b
j
e
c
t
[]

d
a
t
a
;

225

D.1. JAMAICAVM WAIT FREE QUEUES
6

f
i
n
a
l

b
o
o
l
e
a
n

n
o
t
i
f
y
;

7
v
o
l
a
t
i
l
e

i
n
t

n
e
x
t
_
w
r
i
t
e
_
a
t

=
0;

8
v
o
l
a
t
i
l
e

i
n
t

n
e
x
t
_
r
e
a
d
_
a
t

=
0;

9 10
i
n
t

i
n
c
(
i
n
t

i
)

11
{

12 13
if

(
i

==
t
h
i
s
.
d
a
t
a
.
l
e
n
g
t
h
)

{

14
i

=
0;

15
}

16
r
e
t
u
r
n

i
;

17
}

18 19
s
t
a
t
i
c

M
e
m
o
r
y
A
r
e
a

g
e
t
B
e
s
t
M
e
m
A
r
e
a
(
R
u
n
n
a
b
l
e

w
r
i
t
e
r
,

R
u
n
n
a
b
l
e

r
e
a
d
e
r
,

M
e
m
o
r
y
A
r
e
a

m
e
m
o
r
y
)

20
t
h
r
o
w
s

M
e
m
o
r
y
S
c
o
p
e
E
x
c
e
p
t
i
o
n

21
{

22
if

((
w
r
i
t
e
r

!=
n
u
l
l
)

&&
(
!
(
w
r
i
t
e
r

i
n
s
t
a
n
c
e
o
f

T
h
r
e
a
d
)
)

&&
(
!
(
w
r
i
t
e
r

i
n
s
t
a
n
c
e
o
f

A
b
s
t
r
a
c
t
A
s
y
n
c
E
v
e
n
t
H
a
n
d
l
e
r
)
)
)

{

23
t
h
r
o
w

n
e
w

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n
(
"
w
r
i
t
e
r
␣
m
u
s
t
␣
be

␣
nu

ll
,
␣
a
␣
T
h
r
e
a
d
␣
or

␣
an

␣

A
b
s
t
r
a
c
t
A
s
y
n
c
E
v
e
n
t
H
a
n
d
l
e
r
"
)
;

24
}

25
if

((
r
e
a
d
e
r

!=
n
u
l
l
)

&&
(
!
(
r
e
a
d
e
r

i
n
s
t
a
n
c
e
o
f

T
h
r
e
a
d
)
)

&&
(
!
(
r
e
a
d
e
r

i
n
s
t
a
n
c
e
o
f

A
b
s
t
r
a
c
t
A
s
y
n
c
E
v
e
n
t
H
a
n
d
l
e
r
)
)
)

{

226

APPENDIX D. CASE STUDY CODE

26
t
h
r
o
w

n
e
w

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n
(
"
r
e
a
d
e
r
␣
m
u
s
t
␣
be

␣
nu

ll
,
␣
a
␣
T
h
r
e
a
d
␣
or

␣
an

␣

A
b
s
t
r
a
c
t
A
s
y
n
c
E
v
e
n
t
H
a
n
d
l
e
r
"
)
;

27
}

28
if

(
m
e
m
o
r
y

!=
n
u
l
l
)

29
{

30
if

((
m
e
m
o
r
y

i
n
s
t
a
n
c
e
o
f

S
c
o
p
e
d
M
e
m
o
r
y
)
)

31
{

32
if

((
w
r
i
t
e
r

!=
n
u
l
l
)

&&
(!

i
s
A
n
c
e
s
t
o
r
(
m
e
m
o
r
y
,

g
e
t
M
e
m
A
r
e
a
(
w
r
i
t
e
r
)
)
)
)

{

33
t
h
r
o
w

n
e
w

M
e
m
o
r
y
S
c
o
p
e
E
x
c
e
p
t
i
o
n
(
"
m
e
m
o
r
y
␣
a
r
g
u
m
e
n
t
␣
is

␣
i
n
c
o
m
p
a
t
i
b
l
e
␣
w
i
t
h
␣
w
r
i
t
e
r
␣

t
h
r
e
a
d
"
)
;

34
}

35
if

((
r
e
a
d
e
r

!=
n
u
l
l
)

&&
(!

i
s
A
n
c
e
s
t
o
r
(
m
e
m
o
r
y
,

g
e
t
M
e
m
A
r
e
a
(
r
e
a
d
e
r
)
)
)
)

{

36
t
h
r
o
w

n
e
w

M
e
m
o
r
y
S
c
o
p
e
E
x
c
e
p
t
i
o
n
(
"
m
e
m
o
r
y
␣
a
r
g
u
m
e
n
t
␣
is

␣
i
n
c
o
m
p
a
t
i
b
l
e
␣
w
i
t
h
␣
r
e
a
d
e
r
␣

t
h
r
e
a
d
"
)
;

37
}

38
}

39
r
e
t
u
r
n

m
e
m
o
r
y
;

40
}

41
if

((
r
e
a
d
e
r

!=
n
u
l
l
)

||
(
w
r
i
t
e
r

!=
n
u
l
l
)
)

42
{

43
M
e
m
o
r
y
A
r
e
a

m1
=

g
e
t
M
e
m
A
r
e
a
(
w
r
i
t
e
r
)
;

44
M
e
m
o
r
y
A
r
e
a

m2
=

g
e
t
M
e
m
A
r
e
a
(
r
e
a
d
e
r
)
;

45
if

(
m1

==
m2

)
{

227

D.1. JAMAICAVM WAIT FREE QUEUES
46

r
e
t
u
r
n

m1
;

47
}

48
if

((
m1

i
n
s
t
a
n
c
e
o
f

I
m
m
o
r
t
a
l
M
e
m
o
r
y
)
)

{

49
r
e
t
u
r
n

m1
;

50
}

51
if

((
m2

i
n
s
t
a
n
c
e
o
f

I
m
m
o
r
t
a
l
M
e
m
o
r
y
)
)

{

52
r
e
t
u
r
n

m2
;

53
}

54
if

(
i
s
A
n
c
e
s
t
o
r
(
m1

,
m2

)
)

{

55
r
e
t
u
r
n

m1
;

56
}

57
if

(
i
s
A
n
c
e
s
t
o
r
(
m2

,
m1

)
)

{

58
r
e
t
u
r
n

m2
;

59
}

60
r
e
t
u
r
n

I
m
m
o
r
t
a
l
M
e
m
o
r
y
.
i
n
s
t
a
n
c
e
()

;

61
}

62
r
e
t
u
r
n

I
m
m
o
r
t
a
l
M
e
m
o
r
y
.
i
n
s
t
a
n
c
e
()

;

63
}

64 65
s
t
a
t
i
c

M
e
m
o
r
y
A
r
e
a

g
e
t
M
e
m
A
r
e
a
(
R
u
n
n
a
b
l
e

t
)

66
{

67
M
e
m
o
r
y
A
r
e
a

R
e
s
u
l
t

=
n
u
l
l
;

68
if

((
t

i
n
s
t
a
n
c
e
o
f

R
e
a
l
t
i
m
e
T
h
r
e
a
d
)
)

{

228

APPENDIX D. CASE STUDY CODE

69
R
e
s
u
l
t

=
((

R
e
a
l
t
i
m
e
T
h
r
e
a
d
)
t
)
.
p
a
r
a
m
e
t
e
r
s
()

.
o
r
i
g
i
n
a
l
A
r
e
a
_
;

70
}

71
if

((
t

i
n
s
t
a
n
c
e
o
f

A
b
s
t
r
a
c
t
A
s
y
n
c
E
v
e
n
t
H
a
n
d
l
e
r
)
)

{

72
R
e
s
u
l
t

=
((

A
b
s
t
r
a
c
t
A
s
y
n
c
E
v
e
n
t
H
a
n
d
l
e
r
)
t
)
.
p
a
r
a
m
e
t
e
r
s
.
o
r
i
g
i
n
a
l
A
r
e
a
_
;

73
}

74
if

(
R
e
s
u
l
t

==
n
u
l
l
)

{

75
R
e
s
u
l
t

=
H
e
a
p
M
e
m
o
r
y
.
i
n
s
t
a
n
c
e
()

;

76
}

77
r
e
t
u
r
n

R
e
s
u
l
t
;

78
}

79 80
s
t
a
t
i
c

b
o
o
l
e
a
n

i
s
A
n
c
e
s
t
o
r
(
M
e
m
o
r
y
A
r
e
a

m1
,

M
e
m
o
r
y
A
r
e
a

m2
)

81
{

82
M
e
m
o
r
y
A
r
e
a

p
=

m2
;

83
w
h
i
l
e

(
p

!=
n
u
l
l
)

84
{

85
if

(
p

==
m1

)
{

86
r
e
t
u
r
n

t
r
u
e
;

87
}

88
if

((
p

i
n
s
t
a
n
c
e
o
f

S
c
o
p
e
d
M
e
m
o
r
y
)
)

{

89
p

=
((

S
c
o
p
e
d
M
e
m
o
r
y
)
p
)
.
g
e
t
P
a
r
e
n
t
()

;

90
}

e
l
s
e

{

91
p

=
n
u
l
l
;

229

D.1. JAMAICAVM WAIT FREE QUEUES
92

}

93
}

94
r
e
t
u
r
n

f
a
l
s
e
;

95
}

96 97
p
u
b
l
i
c

W
a
i
t
F
r
e
e
R
e
a
d
Q
u
e
u
e
(
i
n
t

m
a
x
i
m
u
m
,

b
o
o
l
e
a
n

n
o
t
i
f
y
)

98
t
h
r
o
w
s

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n

99
{

10
0

t
h
i
s
(
nu

ll
,

nu
ll

,
m
a
x
i
m
u
m
,

I
m
m
o
r
t
a
l
M
e
m
o
r
y
.
i
n
s
t
a
n
c
e
()

,
n
o
t
i
f
y
)
;

10
1

}

10
2

10
3

p
u
b
l
i
c

W
a
i
t
F
r
e
e
R
e
a
d
Q
u
e
u
e
(
i
n
t

m
a
x
i
m
u
m
,

M
e
m
o
r
y
A
r
e
a

m
e
m
o
r
y
,

b
o
o
l
e
a
n

n
o
t
i
f
y
)

10
4

t
h
r
o
w
s

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n

10
5

{

10
6

t
h
i
s
(
nu

ll
,

nu
ll

,
m
a
x
i
m
u
m
,

m
e
m
o
r
y
,

n
o
t
i
f
y
)
;

10
7

if
(
m
e
m
o
r
y

==
n
u
l
l
)

{

10
8

t
h
r
o
w

n
e
w

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n
(
"
M
e
m
o
r
y
␣
a
r
g
u
m
e
n
t
␣
is

␣
n
u
l
l
.
"
)
;

10
9

}

11
0

}

11
1

11
2

p
u
b
l
i
c

W
a
i
t
F
r
e
e
R
e
a
d
Q
u
e
u
e
(
R
u
n
n
a
b
l
e

w
r
i
t
e
r
,

R
u
n
n
a
b
l
e

r
e
a
d
e
r
,

i
n
t

m
a
x
i
m
u
m
,

M
e
m
o
r
y
A
r
e
a

m
e
m
o
r
y
)

11
3

t
h
r
o
w
s

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n
,

M
e
m
o
r
y
S
c
o
p
e
E
x
c
e
p
t
i
o
n

11
4

{

230

APPENDIX D. CASE STUDY CODE

11
5

t
h
i
s
(
w
r
i
t
e
r
,

r
e
a
d
e
r
,

m
a
x
i
m
u
m
,

m
e
m
o
r
y
,

f
a
l
s
e
)
;

11
6

}

11
7

11
8

p
u
b
l
i
c

W
a
i
t
F
r
e
e
R
e
a
d
Q
u
e
u
e
(
R
u
n
n
a
b
l
e

w
r
i
t
e
r
,

R
u
n
n
a
b
l
e

r
e
a
d
e
r
,

i
n
t

m
a
x
i
m
u
m
,

M
e
m
o
r
y
A
r
e
a

m
e
m
o
r
y
,

b
o
o
l
e
a
n

n
o
t
i
f
y
)

11
9

t
h
r
o
w
s

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n
,

M
e
m
o
r
y
S
c
o
p
e
E
x
c
e
p
t
i
o
n

12
0

{

12
1

if
(
m
a
x
i
m
u
m

<
0)

{

12
2

t
h
r
o
w

n
e
w

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n
(
"
m
a
x
i
m
u
m
␣
a
r
g
u
m
e
n
t
␣
m
u
s
t
␣
be

␣
l
a
r
g
e
r
␣
t
h
a
n
␣
0:

␣
"

+

m
a
x
i
m
u
m
)
;

12
3

}

12
4

m
e
m
o
r
y

=
g
e
t
B
e
s
t
M
e
m
A
r
e
a
(
w
r
i
t
e
r
,

r
e
a
d
e
r
,

m
e
m
o
r
y
)
;

12
5

t
h
i
s
.
d
a
t
a

=
((

O
b
j
e
c
t
[
]
)
m
e
m
o
r
y
.
n
e
w
A
r
r
a
y
(
O
b
j
e
c
t
.
c
l
a
s
s
,

m
a
x
i
m
u
m

+
1)

)
;

12
6

t
h
i
s
.
n
o
t
i
f
y

=
n
o
t
i
f
y
;

12
7

t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t

=
0;

12
8

t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t

=
0;

12
9

}

13
0

13
1

p
u
b
l
i
c

v
o
i
d

c
l
e
a
r
()

13
2

{

13
3

t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t

=
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
;

13
4

}

13
5

231

D.1. JAMAICAVM WAIT FREE QUEUES
13

6
p
u
b
l
i
c

b
o
o
l
e
a
n

i
s
E
m
p
t
y
()

13
7

{

13
8

r
e
t
u
r
n

t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t

==
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
;

13
9

}

14
0

14
1

p
u
b
l
i
c

b
o
o
l
e
a
n

i
s
F
u
l
l
()

14
2

{

14
3

r
e
t
u
r
n

i
n
c
(
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
)

==
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
;

14
4

}

14
5

14
6

p
u
b
l
i
c

O
b
j
e
c
t

r
e
a
d
()

14
7

{

14
8

b
o
o
l
e
a
n

n
e
e
d
T
o
N
o
t
i
f
y

=
i
s
F
u
l
l
()

;

14
9

O
b
j
e
c
t

R
e
s
u
l
t

=
n
u
l
l
;

15
0

if
(!

i
s
E
m
p
t
y
()

)

15
1

{

15
2

R
e
s
u
l
t

=
t
h
i
s
.
d
a
t
a
[
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
];

15
3

t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t

=
i
n
c
(
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
)
;

15
4

}

15
5

if
(
n
e
e
d
T
o
N
o
t
i
f
y
)

{

15
6

s
y
n
c
h
r
o
n
i
z
e
d

(
t
h
i
s
.
d
a
t
a
)

15
7

{

15
8

t
h
i
s
.
d
a
t
a
.
n
o
t
i
f
y
()

;

232

APPENDIX D. CASE STUDY CODE

15
9

}

16
0

}

16
1

r
e
t
u
r
n

R
e
s
u
l
t
;

16
2

}

16
3

16
4

p
u
b
l
i
c

i
n
t

s
i
z
e
()

16
5

{

16
6

i
n
t

n
=

t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t

-
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
;

16
7

if
(
n

<
0)

{

16
8

n
+=

t
h
i
s
.
d
a
t
a
.
l
e
n
g
t
h
;

16
9

}

17
0

r
e
t
u
r
n

n
;

17
1

}

17
2

17
3

p
u
b
l
i
c

v
o
i
d

w
a
i
t
F
o
r
D
a
t
a
()

17
4

t
h
r
o
w
s

I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n
,

U
n
s
u
p
p
o
r
t
e
d
O
p
e
r
a
t
i
o
n
E
x
c
e
p
t
i
o
n

17
5

{

17
6

if
(!

t
h
i
s
.
n
o
t
i
f
y
)

{

17
7

t
h
r
o
w

n
e
w

U
n
s
u
p
p
o
r
t
e
d
O
p
e
r
a
t
i
o
n
E
x
c
e
p
t
i
o
n
()

;

17
8

}

17
9

s
y
n
c
h
r
o
n
i
z
e
d

(
t
h
i
s
.
d
a
t
a
)

18
0

{

18
1

w
h
i
l
e

(
i
s
E
m
p
t
y
()

)
{

233

D.1. JAMAICAVM WAIT FREE QUEUES
18

2
t
h
i
s
.
d
a
t
a
.
w
a
i
t
()

;

18
3

}

18
4

}

18
5

}

18
6

18
7

p
u
b
l
i
c

v
o
i
d

w
r
i
t
e
(
O
b
j
e
c
t

o
b
j
e
c
t
)

18
8

t
h
r
o
w
s

I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

18
9

{

19
0

s
y
n
c
h
r
o
n
i
z
e
d

(
t
h
i
s
.
d
a
t
a
)

19
1

{

19
2

w
h
i
l
e

(
i
s
F
u
l
l
()

)
{

19
3

t
h
i
s
.
d
a
t
a
.
w
a
i
t
()

;

19
4

}

19
5

t
h
i
s
.
d
a
t
a
[
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
]

=
o
b
j
e
c
t
;

19
6

t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t

=
i
n
c
(
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
)
;

19
7

if
(
t
h
i
s
.
n
o
t
i
f
y
)

{

19
8

t
h
i
s
.
d
a
t
a
.
n
o
t
i
f
y
()

;

19
9

}

20
0

}

20
1

}

20
2

}

234

APPENDIX D. CASE STUDY CODE
Li
st
in
g
D
.2
:
Ja

m
ai
ca
V
M

W
ai
tF
re
eW

rit
eQ

ue
ue

1
p
a
c
k
a
g
e

j
a
v
a
x
.
r
e
a
l
t
i
m
e
;

2 3
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
W
r
i
t
e
Q
u
e
u
e

4
{

5
f
i
n
a
l

O
b
j
e
c
t
[]

d
a
t
a
;

6
v
o
l
a
t
i
l
e

i
n
t

n
e
x
t
_
w
r
i
t
e
_
a
t

=
0;

7
v
o
l
a
t
i
l
e

i
n
t

n
e
x
t
_
r
e
a
d
_
a
t

=
0;

8 9
i
n
t

i
n
c
(
i
n
t

i
)

10
{

11 12
if

(
i

==
t
h
i
s
.
d
a
t
a
.
l
e
n
g
t
h
)

{

13
i

=
0;

14
}

15
r
e
t
u
r
n

i
;

16
}

17 18
i
n
t

d
e
c
(
i
n
t

i
)

19
{

20 21
if

(
i

<
0)

{

22
i

+=
t
h
i
s
.
d
a
t
a
.
l
e
n
g
t
h
;

235

D.1. JAMAICAVM WAIT FREE QUEUES
23

}

24
r
e
t
u
r
n

i
;

25
}

26 27
p
u
b
l
i
c

W
a
i
t
F
r
e
e
W
r
i
t
e
Q
u
e
u
e
(
i
n
t

m
a
x
i
m
u
m
)

28
t
h
r
o
w
s

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n

29
{

30
t
h
i
s
(
nu

ll
,

nu
ll

,
m
a
x
i
m
u
m
,

I
m
m
o
r
t
a
l
M
e
m
o
r
y
.
i
n
s
t
a
n
c
e
()

)
;

31
}

32 33
p
u
b
l
i
c

W
a
i
t
F
r
e
e
W
r
i
t
e
Q
u
e
u
e
(
i
n
t

m
a
x
i
m
u
m
,

M
e
m
o
r
y
A
r
e
a

m
e
m
o
r
y
)

34
t
h
r
o
w
s

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n

35
{

36
t
h
i
s
(
nu

ll
,

nu
ll

,
m
a
x
i
m
u
m
,

m
e
m
o
r
y
)
;

37
if

(
m
e
m
o
r
y

==
n
u
l
l
)

{

38
t
h
r
o
w

n
e
w

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n
(
"
M
e
m
o
r
y
␣
a
r
g
u
m
e
n
t
␣
is

␣
n
u
l
l
.
"
)
;

39
}

40
}

41 42
p
u
b
l
i
c

W
a
i
t
F
r
e
e
W
r
i
t
e
Q
u
e
u
e
(
R
u
n
n
a
b
l
e

w
r
i
t
e
r
,

R
u
n
n
a
b
l
e

r
e
a
d
e
r
,

i
n
t

m
a
x
i
m
u
m
,

M
e
m
o
r
y
A
r
e
a

m
e
m
o
r
y
)

43
t
h
r
o
w
s

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n
,

M
e
m
o
r
y
S
c
o
p
e
E
x
c
e
p
t
i
o
n

44
{

45
if

(
m
a
x
i
m
u
m

<
0)

{

236

APPENDIX D. CASE STUDY CODE

46
t
h
r
o
w

n
e
w

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n
(
"
m
a
x
i
m
u
m
␣
a
r
g
u
m
e
n
t
␣
m
u
s
t
␣
be

␣
l
a
r
g
e
r
␣
t
h
a
n
␣
0:

␣
"

+

m
a
x
i
m
u
m
)
;

47
}

48
m
e
m
o
r
y

=
W
a
i
t
F
r
e
e
R
e
a
d
Q
u
e
u
e
.
g
e
t
B
e
s
t
M
e
m
A
r
e
a
(
w
r
i
t
e
r
,

r
e
a
d
e
r
,

m
e
m
o
r
y
)
;

49
t
h
i
s
.
d
a
t
a

=
((

O
b
j
e
c
t
[
]
)
m
e
m
o
r
y
.
n
e
w
A
r
r
a
y
(
O
b
j
e
c
t
.
c
l
a
s
s
,

m
a
x
i
m
u
m

+
1)

)
;

50
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t

=
0;

51
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t

=
0;

52
}

53 54
p
u
b
l
i
c

v
o
i
d

c
l
e
a
r
()

55
{

56
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t

=
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
;

57
}

58 59
p
u
b
l
i
c

b
o
o
l
e
a
n

i
s
E
m
p
t
y
()

60
{

61
r
e
t
u
r
n

t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t

==
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
;

62
}

63 64
p
u
b
l
i
c

b
o
o
l
e
a
n

i
s
F
u
l
l
()

65
{

66
r
e
t
u
r
n

i
n
c
(
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
)

==
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
;

67
}

237

D.1. JAMAICAVM WAIT FREE QUEUES
68 69

p
u
b
l
i
c

O
b
j
e
c
t

r
e
a
d
()

70
t
h
r
o
w
s

I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

71
{

72
O
b
j
e
c
t

R
e
s
u
l
t

=
n
u
l
l
;

73
s
y
n
c
h
r
o
n
i
z
e
d

(
t
h
i
s
.
d
a
t
a
)

74
{

75
w
h
i
l
e

(
i
s
E
m
p
t
y
()

)
{

76
t
h
i
s
.
d
a
t
a
.
w
a
i
t
()

;

77
}

78
R
e
s
u
l
t

=
t
h
i
s
.
d
a
t
a
[
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
];

79
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t

=
i
n
c
(
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
)
;

80
}

81
r
e
t
u
r
n

R
e
s
u
l
t
;

82
}

83 84
p
u
b
l
i
c

i
n
t

s
i
z
e
()

85
{

86
i
n
t

n
=

t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t

-
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
;

87
if

(
n

<
0)

{

88
n

+=
t
h
i
s
.
d
a
t
a
.
l
e
n
g
t
h
;

89
}

90
r
e
t
u
r
n

n
;

238

APPENDIX D. CASE STUDY CODE

91
}

92 93
p
u
b
l
i
c

b
o
o
l
e
a
n

f
o
r
c
e
(
O
b
j
e
c
t

o
b
j
e
c
t
)

94
t
h
r
o
w
s

M
e
m
o
r
y
S
c
o
p
e
E
x
c
e
p
t
i
o
n

95
{

96
if

(
i
s
F
u
l
l
()

)
{

97
s
y
n
c
h
r
o
n
i
z
e
d

(
t
h
i
s
.
d
a
t
a
)

98
{

99
if

(
i
s
F
u
l
l
()

)

10
0

{

10
1

i
n
t

l
a
s
t

=
d
e
c
(
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
)
;

10
2

t
h
i
s
.
d
a
t
a
[
l
a
s
t
]

=
o
b
j
e
c
t
;

10
3

}

10
4

r
e
t
u
r
n

t
r
u
e
;

10
5

}

10
6

}

10
7

w
r
i
t
e
(
o
b
j
e
c
t
)
;

10
8

r
e
t
u
r
n

f
a
l
s
e
;

10
9

}

11
0

11
1

p
u
b
l
i
c

b
o
o
l
e
a
n

w
r
i
t
e
(
O
b
j
e
c
t

o
b
j
e
c
t
)

11
2

{

11
3

b
o
o
l
e
a
n

n
e
e
d
T
o
N
o
t
i
f
y

=
i
s
E
m
p
t
y
()

;

239

D.1. JAMAICAVM WAIT FREE QUEUES
11

4
b
o
o
l
e
a
n

R
e
s
u
l
t
;

11
5

b
o
o
l
e
a
n

R
e
s
u
l
t
;

11
6

if
(
i
s
F
u
l
l
()

)

11
7

{

11
8

R
e
s
u
l
t

=
f
a
l
s
e
;

11
9

}

12
0

e
l
s
e

12
1

{

12
2

t
h
i
s
.
d
a
t
a
[
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
]

=
o
b
j
e
c
t
;

12
3

t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t

=
i
n
c
(
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
)
;

12
4

R
e
s
u
l
t

=
t
r
u
e
;

12
5

}

12
6

if
(
n
e
e
d
T
o
N
o
t
i
f
y
)

{

12
7

s
y
n
c
h
r
o
n
i
z
e
d

(
t
h
i
s
.
d
a
t
a
)

12
8

{

12
9

t
h
i
s
.
d
a
t
a
.
n
o
t
i
f
y
()

;

13
0

}

13
1

}

13
2

r
e
t
u
r
n

R
e
s
u
l
t
;

13
3

}

13
4

}

240

APPENDIX D. CASE STUDY CODE
Li
st
in
g
D
.3
:
Ja

m
ai
ca
V
M

W
ai
tF
re
eD

eq
ue
ue

1
p
a
c
k
a
g
e

j
a
v
a
x
.
r
e
a
l
t
i
m
e
;

2 3
i
m
p
o
r
t

c
o
m
.
a
i
c
a
s
.
j
a
m
a
i
c
a
.
l
a
n
g
.
W
a
i
t
;

4 5
/*

*

6
*

@
d
e
p
r
e
c
a
t
e
d

7
*/

8
p
u
b
l
i
c

c
l
a
s
s

W
a
i
t
F
r
e
e
D
e
q
u
e
u
e

9
{

10
f
i
n
a
l

O
b
j
e
c
t
[]

d
a
t
a
;

11
v
o
l
a
t
i
l
e

i
n
t

n
e
x
t
_
w
r
i
t
e
_
a
t

=
0;

12
v
o
l
a
t
i
l
e

i
n
t

n
e
x
t
_
r
e
a
d
_
a
t

=
0;

13 14
i
n
t

i
n
c
(
i
n
t

i
)

15
{

16 17
if

(
i

==
t
h
i
s
.
d
a
t
a
.
l
e
n
g
t
h
)

{

18
i

=
0;

19
}

20
r
e
t
u
r
n

i
;

21
}

22

241

D.1. JAMAICAVM WAIT FREE QUEUES
23

i
n
t

d
e
c
(
i
n
t

i
)

24
{

25 26
if

(
i

<
0)

{

27
i

+=
t
h
i
s
.
d
a
t
a
.
l
e
n
g
t
h
;

28
}

29
r
e
t
u
r
n

i
;

30
}

31 32
/*

*

33
*

@
d
e
p
r
e
c
a
t
e
d

34
*/

35
p
u
b
l
i
c

W
a
i
t
F
r
e
e
D
e
q
u
e
u
e
(
R
u
n
n
a
b
l
e

w
r
i
t
e
r
,

R
u
n
n
a
b
l
e

r
e
a
d
e
r
,

i
n
t

m
a
x
i
m
u
m
,

M
e
m
o
r
y
A
r
e
a

m
e
m
o
r
y
)

36
t
h
r
o
w
s

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n
,

M
e
m
o
r
y
S
c
o
p
e
E
x
c
e
p
t
i
o
n

37
{

38
if

(
m
a
x
i
m
u
m

<
0)

{

39
t
h
r
o
w

n
e
w

I
l
l
e
g
a
l
A
r
g
u
m
e
n
t
E
x
c
e
p
t
i
o
n
(
"
m
a
x
i
m
u
m
␣
a
r
g
u
m
e
n
t
␣
m
u
s
t
␣
be

␣
l
a
r
g
e
r
␣
t
h
a
n
␣
0:

␣
"

+

m
a
x
i
m
u
m
)
;

40
}

41
m
e
m
o
r
y

=
W
a
i
t
F
r
e
e
R
e
a
d
Q
u
e
u
e
.
g
e
t
B
e
s
t
M
e
m
A
r
e
a
(
w
r
i
t
e
r
,

r
e
a
d
e
r
,

m
e
m
o
r
y
)
;

42
t
h
i
s
.
d
a
t
a

=
((

O
b
j
e
c
t
[
]
)
m
e
m
o
r
y
.
n
e
w
A
r
r
a
y
(
O
b
j
e
c
t
.
c
l
a
s
s
,

m
a
x
i
m
u
m

+
1)

)
;

43
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t

=
0;

44
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t

=
0;

242

APPENDIX D. CASE STUDY CODE

45
}

46 47
/*

*

48
*

@
d
e
p
r
e
c
a
t
e
d

49
*/

50
b
o
o
l
e
a
n

i
s
E
m
p
t
y
()

51
{

52
r
e
t
u
r
n

t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t

==
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
;

53
}

54 55
/*

*

56
*

@
d
e
p
r
e
c
a
t
e
d

57
*/

58
b
o
o
l
e
a
n

i
s
F
u
l
l
()

59
{

60
r
e
t
u
r
n

i
n
c
(
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
)

==
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
;

61
}

62 63
/*

*

64
*

@
d
e
p
r
e
c
a
t
e
d

65
*/

66
p
u
b
l
i
c

O
b
j
e
c
t

n
o
n
B
l
o
c
k
i
n
g
R
e
a
d
()

67
{

243

D.1. JAMAICAVM WAIT FREE QUEUES
68

b
o
o
l
e
a
n

n
e
e
d
T
o
N
o
t
i
f
y

=
i
s
F
u
l
l
()

;

69
O
b
j
e
c
t

R
e
s
u
l
t

=
n
u
l
l
;

70
if

(!
i
s
E
m
p
t
y
()

)

71
{

72
R
e
s
u
l
t

=
t
h
i
s
.
d
a
t
a
[
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
];

73
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t

=
i
n
c
(
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
)
;

74
}

75
if

(
n
e
e
d
T
o
N
o
t
i
f
y
)

{

76
s
y
n
c
h
r
o
n
i
z
e
d

(
t
h
i
s
.
d
a
t
a
)

77
{

78
t
h
i
s
.
d
a
t
a
.
n
o
t
i
f
y
()

;

79
}

80
}

81
r
e
t
u
r
n

R
e
s
u
l
t
;

82
}

83 84
/*

*

85
*

@
d
e
p
r
e
c
a
t
e
d

86
*/

87
p
u
b
l
i
c

v
o
i
d

b
l
o
c
k
i
n
g
W
r
i
t
e
(
O
b
j
e
c
t

o
b
j
e
c
t
)

88
{

89
s
y
n
c
h
r
o
n
i
z
e
d

(
t
h
i
s
.
d
a
t
a
)

90
{

244

APPENDIX D. CASE STUDY CODE

91
w
h
i
l
e

(
i
s
F
u
l
l
()

)
{

92
W
a
i
t
.
w
a
i
t
(
t
h
i
s
.
d
a
t
a
)
;

93
}

94
b
o
o
l
e
a
n

n
e
e
d
T
o
N
o
t
i
f
y

=
i
s
E
m
p
t
y
()

;

95
t
h
i
s
.
d
a
t
a
[
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
]

=
o
b
j
e
c
t
;

96
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t

=
i
n
c
(
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
)
;

97
if

(
n
e
e
d
T
o
N
o
t
i
f
y
)

{

98
t
h
i
s
.
d
a
t
a
.
n
o
t
i
f
y
()

;

99
}

10
0

}

10
1

}

10
2

10
3

/*
*

10
4

*
@
d
e
p
r
e
c
a
t
e
d

10
5

*/

10
6

p
u
b
l
i
c

b
o
o
l
e
a
n

n
o
n
B
l
o
c
k
i
n
g
W
r
i
t
e
(
O
b
j
e
c
t

o
b
j
e
c
t
)

10
7

{

10
8

b
o
o
l
e
a
n

n
e
e
d
T
o
N
o
t
i
f
y

=
i
s
E
m
p
t
y
()

;

10
9

b
o
o
l
e
a
n

R
e
s
u
l
t
;

11
0

b
o
o
l
e
a
n

R
e
s
u
l
t
;

11
1

if
(
i
s
F
u
l
l
()

)

11
2

{

11
3

R
e
s
u
l
t

=
f
a
l
s
e
;

245

D.1. JAMAICAVM WAIT FREE QUEUES
11

4
}

11
5

e
l
s
e

11
6

{

11
7

t
h
i
s
.
d
a
t
a
[
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
]

=
o
b
j
e
c
t
;

11
8

t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t

=
i
n
c
(
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
)
;

11
9

R
e
s
u
l
t

=
t
r
u
e
;

12
0

}

12
1

if
(
n
e
e
d
T
o
N
o
t
i
f
y
)

{

12
2

s
y
n
c
h
r
o
n
i
z
e
d

(
t
h
i
s
.
d
a
t
a
)

12
3

{

12
4

t
h
i
s
.
d
a
t
a
.
n
o
t
i
f
y
()

;

12
5

}

12
6

}

12
7

r
e
t
u
r
n

R
e
s
u
l
t
;

12
8

}

12
9

13
0

/*
*

13
1

*
@
d
e
p
r
e
c
a
t
e
d

13
2

*/

13
3

p
u
b
l
i
c

O
b
j
e
c
t

b
l
o
c
k
i
n
g
R
e
a
d
()

13
4

{

13
5

O
b
j
e
c
t

R
e
s
u
l
t

=
n
u
l
l
;

13
6

s
y
n
c
h
r
o
n
i
z
e
d

(
t
h
i
s
.
d
a
t
a
)

246

APPENDIX D. CASE STUDY CODE

13
7

{

13
8

w
h
i
l
e

(
i
s
E
m
p
t
y
()

)
{

13
9

W
a
i
t
.
w
a
i
t
(
t
h
i
s
.
d
a
t
a
)
;

14
0

}

14
1

R
e
s
u
l
t

=
t
h
i
s
.
d
a
t
a
[
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
];

14
2

t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t

=
i
n
c
(
t
h
i
s
.
n
e
x
t
_
r
e
a
d
_
a
t
)
;

14
3

}

14
4

r
e
t
u
r
n

R
e
s
u
l
t
;

14
5

}

14
6

14
7

/*
*

14
8

*
@
d
e
p
r
e
c
a
t
e
d

14
9

*/

15
0

p
u
b
l
i
c

b
o
o
l
e
a
n

f
o
r
c
e
(
O
b
j
e
c
t

o
b
j
e
c
t
)

15
1

t
h
r
o
w
s

M
e
m
o
r
y
S
c
o
p
e
E
x
c
e
p
t
i
o
n

15
2

{

15
3

if
(
i
s
F
u
l
l
()

)
{

15
4

s
y
n
c
h
r
o
n
i
z
e
d

(
t
h
i
s
.
d
a
t
a
)

15
5

{

15
6

if
(
i
s
F
u
l
l
()

)

15
7

{

15
8

i
n
t

l
a
s
t

=
d
e
c
(
t
h
i
s
.
n
e
x
t
_
w
r
i
t
e
_
a
t
)
;

15
9

t
h
i
s
.
d
a
t
a
[
l
a
s
t
]

=
o
b
j
e
c
t
;

247

D.2. WAITFREEQUEUE ALGORITHM
16

0
}

16
1

r
e
t
u
r
n

t
r
u
e
;

16
2

}

16
3

}

16
4

n
o
n
B
l
o
c
k
i
n
g
W
r
i
t
e
(
o
b
j
e
c
t
)
;

16
5

r
e
t
u
r
n

f
a
l
s
e
;

16
6

}

16
7

} D
.2

W
ai
tF
re
eQ

ue
ue

al
go

ri
th
m

Li
st
in
g
D
.4
:
im

ag
e
di
st
rib

ut
io
n
th
re
ad

1
i
m
p
o
r
t

j
a
v
a
.
a
w
t
.
i
m
a
g
e
.
B
u
f
f
e
r
e
d
I
m
a
g
e
;

2
i
m
p
o
r
t

j
a
v
a
.
a
w
t
.
i
m
a
g
e
.
D
a
t
a
B
u
f
f
e
r
B
y
t
e
;

3
i
m
p
o
r
t

j
a
v
a
.
a
w
t
.
i
m
a
g
e
.
W
r
i
t
a
b
l
e
R
a
s
t
e
r
;

4
i
m
p
o
r
t

j
a
v
a
.
io

.
F
i
l
e
;

5
i
m
p
o
r
t

j
a
v
a
.
io

.
I
O
E
x
c
e
p
t
i
o
n
;

6
i
m
p
o
r
t

j
a
v
a
x
.
i
m
a
g
e
i
o
.
*
;

7
i
m
p
o
r
t

j
a
v
a
x
.
r
e
a
l
t
i
m
e
.
*
;

8
i
m
p
o
r
t

j
a
v
a
.
s
q
l
.
T
i
m
e
s
t
a
m
p
;

9
i
m
p
o
r
t

j
a
v
a
.
u
t
i
l
.
D
a
t
e
;

248

APPENDIX D. CASE STUDY CODE

10
p
u
b
l
i
c

c
l
a
s
s

i
m
a
g
e
D
i
s
t
T
h
r
e
a
d

e
x
t
e
n
d
s

R
e
a
l
t
i
m
e
T
h
r
e
a
d

{

11
//

l
o
c
a
l

v
a
r
i
a
b
l
e
s

12
W
a
i
t
F
r
e
e
Q
u
e
u
e

l
o
c
a
l
P
o
o
l
;

//
r
e
f
e
r
e
n
c
e

to
t
h
e

i
m
a
g
e
D
a
t
a
P
o
o
l

13
b
y
t
e
[]

i
m
g
A
r
r
a
y
;

//
r
e
f
e
r
e
n
c
e

to
t
h
e

i
m
a
g
e

14
i
n
t
[]

s
e
g
m
e
n
t
N
u
m
b
e
r

=
n
e
w

i
n
t
[
1
]
;

15
i
n
t

n
u
m
b
e
r
O
f
P
r
o
c
e
s
s
i
n
g
T
h
r
e
a
d
s
;

16
//

t
h
e

s
e
g
m
e
n
t

si
ze

,
c
h
a
n
g
e
s

a
c
c
o
r
d
i
n
g

to
t
h
e

n
u
m
b
e
r

of
t
h
r
e
a
d
s

17
i
n
t

s
e
g
m
e
n
t
S
i
z
e
=
4
4
8
0
4
3
8
;

18 19
p
u
b
l
i
c

i
m
a
g
e
D
i
s
t
T
h
r
e
a
d
(
i
n
t

n
u
m
b
e
r
O
f
A
c
t
i
v
e
T
h
r
e
a
d
s
,

W
a
i
t
F
r
e
e
Q
u
e
u
e

l
P
o
o
l
,

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s

pr
i
,

P
e
r
i
o
d
i
c
P
a
r
a
m
e
t
e
r
s

pe
r
,

S
t
r
i
n
g

n
a
m
e
)

{

20
s
u
p
e
r
(
pr

i
,

p
e
r
)
;

21
t
h
i
s
.
s
e
t
N
a
m
e
(
n
a
m
e
)
;

22
t
h
i
s
.
l
o
c
a
l
P
o
o
l

=
l
P
o
o
l
;

23
t
h
i
s
.
n
u
m
b
e
r
O
f
P
r
o
c
e
s
s
i
n
g
T
h
r
e
a
d
s

=
n
u
m
b
e
r
O
f
A
c
t
i
v
e
T
h
r
e
a
d
s
;

24
}

25 26
//

p
r
e
p
a
r
e

t
h
e

i
m
a
g
e

f
o
r

p
r
o
c
e
s
s
i
n
g
,

c
h
a
n
g
e

t
h
e

i
m
a
g
e

to
a

b
i
n
a
r
y

v
e
r
s
i
o
n

27
p
u
b
l
i
c

v
o
i
d

p
r
e
p
I
m
a
g
e
()

{

28
B
u
f
f
e
r
e
d
I
m
a
g
e

b
I
m
a
g
e

=
n
u
l
l
;

29
t
r
y

{

30
b
I
m
a
g
e

=
I
m
a
g
e
I
O
.
r
e
a
d
(
n
e
w

F
i
l
e
(
"
l
a
r
g
e
.
j
p
g
"
)
)
;

31
}

c
a
t
c
h

(
I
O
E
x
c
e
p
t
i
o
n

e
)

{

249

D.2. WAITFREEQUEUE ALGORITHM
32

//
T
O
D
O

Au
to

-
g
e
n
e
r
a
t
e
d

c
a
t
c
h

b
l
o
c
k

33
e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
()

;

34
}

35
W
r
i
t
a
b
l
e
R
a
s
t
e
r

r
a
s
t
e
r

=
b
I
m
a
g
e
.
g
e
t
R
a
s
t
e
r
()

;

36
D
a
t
a
B
u
f
f
e
r
B
y
t
e

d
a
t
a

=
(
D
a
t
a
B
u
f
f
e
r
B
y
t
e
)

r
a
s
t
e
r
.
g
e
t
D
a
t
a
B
u
f
f
e
r
()

;

37
i
m
g
A
r
r
a
y

=
d
a
t
a
.
g
e
t
D
a
t
a
()

;

38
}

39 40
//

r
u
n
n
a
b
l
e

o
b
j
e
c
t

to
e
n
q
u
e
u
e

t
h
e

s
e
g
m
e
n
t

d
e
t
a
i
l
s

in
t
h
e

i
m
a
g
e
D
a
t
a
P
o
o
l

41
R
u
n
n
a
b
l
e

r
=

n
e
w

R
u
n
n
a
b
l
e
()

{

42
i
n
t
[]

s
N
u
m
b
e
r

=
s
e
g
m
e
n
t
N
u
m
b
e
r
;

43
i
n
t

s
S
i
z
e

=
s
e
g
m
e
n
t
S
i
z
e
;

44
b
y
t
e
[]

p
i
x
e
l
A
r
r
a
y

=
i
m
g
A
r
r
a
y
;

45
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

46
L
T
M
e
m
o
r
y

m
y
M
e
m

=
(
L
T
M
e
m
o
r
y
)

R
e
a
l
t
i
m
e
T
h
r
e
a
d
.
g
e
t
C
u
r
r
e
n
t
M
e
m
o
r
y
A
r
e
a
()

;

47
P
i
n
D
a
t
a

p
t
h
r
e
a
d

=
n
e
w

P
i
n
D
a
t
a
()

;

48
p
t
h
r
e
a
d
.
s
t
a
r
t
()

;

49
//

s
t
o
r
e

t
h
e

s
e
g
m
e
n
t

d
e
t
a
i
l
s

50
p
t
h
r
e
a
d
.
s
e
t
S
e
g
m
e
n
t
D
e
t
a
i
l
s
(
i
m
g
A
r
r
a
y
,

s
N
u
m
b
e
r
,

s
S
i
z
e
)
;

51
m
y
M
e
m
.
s
e
t
P
o
r
t
a
l
(
p
t
h
r
e
a
d
)
;

52
}

53
};

54

250

APPENDIX D. CASE STUDY CODE

55
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

56
p
r
e
p
I
m
a
g
e
()

;

57
b
o
o
l
e
a
n

r
e
s
u
l
t
;

58
s
e
g
m
e
n
t
N
u
m
b
e
r
[
0
]

=
0;

59
i
n
t

c
o
u
n
t
e
r

=
0;

60
//

o
u
t
e
r

l
o
o
p
;

r
e
p
e
a
t

t
h
e

s
a
m
e

p
r
o
c
e
s
s

50
K

t
i
m
e
s
.

61
do

{

62
//

i
n
n
e
r

l
o
o
p
;

e
n
q
u
e
u
e

t
h
e

s
e
g
m
e
n
t
s

d
e
t
a
i
l
s

in
t
h
e

i
m
a
g
e
D
a
t
a
P
o
o
l

63
do

{

64
b
o
o
l
e
a
n

t
h
r
o
w
A
w
a
y

=
w
a
i
t
F
o
r
N
e
x
t
P
e
r
i
o
d
()

;

65
if

(
l
o
c
a
l
P
o
o
l
.
e
n
q
u
e
u
e
(
r
)
)

{

66
s
e
g
m
e
n
t
N
u
m
b
e
r
[
0
]
+
+
;

67
}

68
}

w
h
i
l
e
(
s
e
g
m
e
n
t
N
u
m
b
e
r
[0

]
<
n
u
m
b
e
r
O
f
P
r
o
c
e
s
s
i
n
g
T
h
r
e
a
d
s
)
;

69
s
e
g
m
e
n
t
N
u
m
b
e
r
[
0
]

=
0;

70
c
o
u
n
t
e
r
+
+
;

71
}

w
h
i
l
e
(
c
o
u
n
t
e
r
<
5
0
0
0
0
)
;

72
}

73
}

251

D.2. WAITFREEQUEUE ALGORITHM

Li
st
in
g
D
.5
:
Pi
n
D
at
a
th
re
ad

1
i
m
p
o
r
t

j
a
v
a
.
u
t
i
l
.
*
;

2
i
m
p
o
r
t

j
a
v
a
x
.
r
e
a
l
t
i
m
e
.
*
;

3
p
u
b
l
i
c

c
l
a
s
s

P
i
n
D
a
t
a

e
x
t
e
n
d
s

R
e
a
l
t
i
m
e
T
h
r
e
a
d

{

4
i
n
t
[]

p
i
x
e
l
c
o
u
n
t

=
n
e
w

i
n
t
[
2
5
6
]
;

5
i
n
t

s
t
a
r
t
O
f
S
e
g
m
e
n
t
;

6
i
n
t

e
n
d
O
f
S
e
g
m
e
n
t
;

7
b
y
t
e
[]

i
m
a
g
e
A
r
r
a
y
R
e
f
;

8
//

T
h
e

c
o
n
s
t
r
u
c
t
o
r

9
p
u
b
l
i
c

P
i
n
D
a
t
a
()

{

10
i
n
t

m
a
x
P
r
i
o

=
P
r
i
o
r
i
t
y
S
c
h
e
d
u
l
e
r
.
i
n
s
t
a
n
c
e
()

.
g
e
t
M
a
x
P
r
i
o
r
i
t
y
()

;

11
R
e
a
l
t
i
m
e
T
h
r
e
a
d

t
=

R
e
a
l
t
i
m
e
T
h
r
e
a
d
.
c
u
r
r
e
n
t
R
e
a
l
t
i
m
e
T
h
r
e
a
d
()

;

12
((

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s
)

t
.
g
e
t
S
c
h
e
d
u
l
i
n
g
P
a
r
a
m
e
t
e
r
s
()

)
.
s
e
t
P
r
i
o
r
i
t
y
(
m
a
x
P
r
i
o
)
;

13
}

14 15
//

C
o
p
y

t
h
e

s
e
g
m
e
n
t

of
t
h
e

i
m
a
g
e

to
t
h
e

s
c
o
p
e
d

m
e
m
o
r
y

a
r
e
a

16
p
u
b
l
i
c

v
o
i
d

s
e
t
S
e
g
m
e
n
t
D
e
t
a
i
l
s
(
b
y
t
e
[]

i
m
g
A
r
r
,

i
n
t
[]

s
e
g
m
e
n
t
N
u
m
b
e
r
,

i
n
t

s
e
g
m
e
n
t
S
i
z
e
)
{

17
t
h
i
s
.
i
m
a
g
e
A
r
r
a
y
R
e
f

=
i
m
g
A
r
r
;

18
t
h
i
s
.
s
t
a
r
t
O
f
S
e
g
m
e
n
t

=
s
e
g
m
e
n
t
N
u
m
b
e
r
[
0
]

*
s
e
g
m
e
n
t
S
i
z
e
;

19
t
h
i
s
.
e
n
d
O
f
S
e
g
m
e
n
t

=
s
t
a
r
t
O
f
S
e
g
m
e
n
t

+
s
e
g
m
e
n
t
S
i
z
e
;

20
}

21 22
//

r
e
t
u
r
n

t
h
e

c
o
u
n
t

252

APPENDIX D. CASE STUDY CODE

23
p
u
b
l
i
c

i
n
t

g
e
t
p
i
x
e
l
C
o
u
n
t
(
i
n
t

i
n
d
e
x
)
{

24
r
e
t
u
r
n

p
i
x
e
l
c
o
u
n
t
[
i
n
d
e
x
];

25
}

26 27
//

p
e
r
f
o
r
m

t
h
e

c
o
u
n
t

p
r
o
c
e
s
s

28
p
u
b
l
i
c

v
o
i
d

p
C
o
u
n
t
()

{

29
i
n
t

i
n
d
e
x
;

30
i
n
t

v
a
l
u
e
;

31
f
o
r

(
i
n
d
e
x
=
s
t
a
r
t
O
f
S
e
g
m
e
n
t
;
i
n
d
e
x
<
e
n
d
O
f
S
e
g
m
e
n
t
;

i
n
d
e
x
+
+
)
{

32
v
a
l
u
e

=
(
i
n
t
)

i
m
a
g
e
A
r
r
a
y
R
e
f
[
i
n
d
e
x
]

&
0
x
f
f
;

33
p
i
x
e
l
c
o
u
n
t
[
v
a
l
u
e
]
+
+
;

34
}

35
}

36 37 38
//

s
t
a
r
t

t
h
e

t
h
r
e
a
d

39
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

40
t
r
y

{

41
s
l
e
e
p
(
9
9
9
9
9
9
9
)
;

42
}

c
a
t
c
h

(
I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

e
)

{}

43
}

44
}

253

D.2. WAITFREEQUEUE ALGORITHM

Li
st
in
g
D
.6
:
Pi
xe
lc

ou
nt
in
g
th
re
ad

1
i
m
p
o
r
t

j
a
v
a
.
u
t
i
l
.
*
;

2
i
m
p
o
r
t

j
a
v
a
x
.
r
e
a
l
t
i
m
e
.
*
;

3
p
u
b
l
i
c

c
l
a
s
s

p
i
x
e
l
C
o
u
n
t
i
n
g
T
h
r
e
a
d

e
x
t
e
n
d
s

R
e
a
l
t
i
m
e
T
h
r
e
a
d

{

4
i
m
a
g
e
C
o
n
t
e
n
t
P
o
o
l

l
o
c
a
l
D
a
t
a
P
o
o
l
;

5
i
m
a
g
e
C
o
n
t
e
n
t
P
o
o
l

l
o
c
a
l
C
o
u
n
t
P
o
o
l
;

6
i
n
t
[]

p
a
r
t
i
a
l
C
o
u
n
t

=
n
e
w

i
n
t
[
2
5
6
]
;

7
i
n
t

i
m
g
I
n
d
e
x
;

8
S
t
r
i
n
g

t
N
a
m
e
;

9 10
p
u
b
l
i
c

p
i
x
e
l
C
o
u
n
t
i
n
g
T
h
r
e
a
d
(
i
m
a
g
e
C
o
n
t
e
n
t
P
o
o
l

d
P
o
o
l
,

i
m
a
g
e
C
o
n
t
e
n
t
P
o
o
l

c
P
o
o
l
,

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s

pr
i
,

P
e
r
i
o
d
i
c
P
a
r
a
m
e
t
e
r
s

pe
r
,

S
t
r
i
n
g

n
a
m
e
)

{

11
s
u
p
e
r
(
pr

i
,

p
e
r
)
;

12
t
h
i
s
.
s
e
t
N
a
m
e
(
n
a
m
e
)
;

13
t
N
a
m
e

=
n
a
m
e
;

14
t
h
i
s
.
l
o
c
a
l
D
a
t
a
P
o
o
l

=
d
P
o
o
l
;

15
t
h
i
s
.
l
o
c
a
l
C
o
u
n
t
P
o
o
l

=
c
P
o
o
l
;

16
}

17
//

e
x
e
c
u
t
a
b
l
e

to
e
n
q
u
e
u
e

t
h
e

p
a
r
t
i
a
l

h
i
s
t
o
g
r
a
m

in
t
h
e

i
m
a
g
e
C
o
u
n
t
P
o
o
l

18
R
u
n
n
a
b
l
e

r
e
n

=
n
e
w

R
u
n
n
a
b
l
e
()

{

19
i
n
t
[]

t
e
m
p

=
p
a
r
t
i
a
l
C
o
u
n
t
;

20
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

21
L
T
M
e
m
o
r
y

m
y
M
e
m

=
(
L
T
M
e
m
o
r
y
)

R
e
a
l
t
i
m
e
T
h
r
e
a
d
.
g
e
t
C
u
r
r
e
n
t
M
e
m
o
r
y
A
r
e
a
()

;

254

APPENDIX D. CASE STUDY CODE

22
P
i
n
C
o
u
n
t

p
t
h
r
e
a
d

=
n
e
w

P
i
n
C
o
u
n
t
()

;

23
p
t
h
r
e
a
d
.
s
t
a
r
t
()

;

24
p
t
h
r
e
a
d
.
s
e
t
P
i
x
e
l
C
o
u
n
t
(
t
e
m
p
)
;

25
m
y
M
e
m
.
s
e
t
P
o
r
t
a
l
(
p
t
h
r
e
a
d
)
;

26
}

27
};

28
//

e
x
e
c
u
t
a
b
l
e

r
e
q
u
i
r
e
d

to
r
e
a
d

t
h
e

s
e
g
m
e
n
t

d
e
t
a
i
l
s

f
r
o
m

t
h
e

i
m
a
g
e
D
a
t
a
P
o
o
l

29
R
u
n
n
a
b
l
e

r
d
e

=
n
e
w

R
u
n
n
a
b
l
e
()

{

30
i
n
t
[]

t
e
m
p

=
p
a
r
t
i
a
l
C
o
u
n
t
;

31
i
n
t

i
;

32
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

33
L
T
M
e
m
o
r
y

m
y
M
e
m

=
(
L
T
M
e
m
o
r
y
)

R
e
a
l
t
i
m
e
T
h
r
e
a
d
.
g
e
t
C
u
r
r
e
n
t
M
e
m
o
r
y
A
r
e
a
()

;

34
P
i
n
D
a
t
a

p
t
h
r
e
a
d

=
(
P
i
n
D
a
t
a
)

m
y
M
e
m
.
g
e
t
P
o
r
t
a
l
()

;

35
if

(
p
t
h
r
e
a
d

==
n
u
l
l
)

36
r
e
t
u
r
n
;

37
}

38
e
l
s
e

{

39
p
t
h
r
e
a
d
.
p
C
o
u
n
t
()

;

40
f
o
r
(
i
=
0
;
i
<
2
5
6
;
i
+
+
)
{

41
t
e
m
p
[
i
]

=
p
t
h
r
e
a
d
.
g
e
t
p
i
x
e
l
C
o
u
n
t
(
i
)
;

42
}

43
p
t
h
r
e
a
d
.
i
n
t
e
r
r
u
p
t
()

;

44
}

255

D.2. WAITFREEQUEUE ALGORITHM
45

}

46
};

47 48
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

49
i
n
t

c
o
u
n
t
e
r
=
0
;

50
do

{

51
b
o
o
l
e
a
n

t
h
r
o
w
A
w
a
y

=
w
a
i
t
F
o
r
N
e
x
t
P
e
r
i
o
d
()

;

52
//

t
r
y

to
r
e
a
d

a
s
e
g
m
e
n
t

d
e
t
a
i
l
s

f
r
o
m

t
h
e

i
m
a
g
e
D
a
t
a
P
o
o
l

53
if

(
l
o
c
a
l
D
a
t
a
P
o
o
l
.
d
e
q
u
e
u
e
(
r
d
e
)
)

{

54
//

if
s
u
c
c
e
e
d
,

e
n
q
u
e
u
e

t
h
e

p
r
o
d
u
c
e
d

h
i
s
t
o
g
r
a
m

in
t
h
e

i
m
a
g
e
C
o
u
n
t
P
o
o
l

55
l
o
c
a
l
C
o
u
n
t
P
o
o
l
.
e
n
q
u
e
u
e
(
r
e
n
)
;

56
c
o
u
n
t
e
r
+
+
;

57
}

58
//

t
h
e

c
o
u
n
t
e
r

l
i
m
i
t

v
a
r
i
e
s

a
c
c
o
r
d
i
n
g

to
t
h
e

n
u
m
b
e
r

of
t
h
r
e
a
d
s

59
}

w
h
i
l
e

(
c
o
u
n
t
e
r
<
2
5
0
0
0
)
;

60
}

61
}

256

APPENDIX D. CASE STUDY CODE
Li
st
in
g
D
.7
:
Im

ag
e
H
ist

og
ra
m

ap
pl
ic
at
io
n

1
i
m
p
o
r
t

j
a
v
a
x
.
r
e
a
l
t
i
m
e
.
*
;

2
p
u
b
l
i
c

c
l
a
s
s

i
m
a
g
e
H
i
s
t
o
S
i
m

e
x
t
e
n
d
s

R
e
a
l
t
i
m
e
T
h
r
e
a
d

{

3 4
p
u
b
l
i
c

i
m
a
g
e
H
i
s
t
o
S
i
m
()

{

5
s
u
p
e
r
()

;

6
}

7 8
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

9
I
m
m
o
r
t
a
l
M
e
m
o
r
y
.
i
n
s
t
a
n
c
e
()

.
e
x
e
c
u
t
e
I
n
A
r
e
a
(
n
e
w

R
u
n
n
a
b
l
e
()

{

10
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

11
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
2;

12
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
1;

13
i
n
t

p
r
i
p

=
P
r
i
o
r
i
t
y
S
c
h
e
d
u
l
e
r
.
i
n
s
t
a
n
c
e
()

.
g
e
t
M
i
n
P
r
i
o
r
i
t
y
()

;

14
R
e
l
a
t
i
v
e
T
i
m
e

s
t
a
r
t

=
n
e
w

R
e
l
a
t
i
v
e
T
i
m
e
(
1
0

/*
ms

*/
,

0
/*

ns

*/
)
;

15 16
//

p
a
r
a
m
e
t
e
r
s

f
o
r

i
m
a
g
e
D
i
s
t
r
i
b
u
t
i
o
n

a
n
d

i
m
a
g
e
C
o
u
n
t
C
o
l
l
e
c
t
i
o
n

t
h
r
e
a
d
s

17
P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s

p
r
i

=
n
e
w

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s
(
p
r
i
p

+
4)

;

18
R
e
l
a
t
i
v
e
T
i
m
e

p
e
r
o
d
1

=
n
e
w

R
e
l
a
t
i
v
e
T
i
m
e
(
5
0

/*
ms

*/
,

0
/*

ns

*/
)
;

257

D.2. WAITFREEQUEUE ALGORITHM
19

R
e
l
a
t
i
v
e
T
i
m
e

d
e
a
d
l
i
n
e

=
n
e
w

R
e
l
a
t
i
v
e
T
i
m
e
(
5
0

/*
ms

*/
,

0
/*

ns
*/

)
;

20
P
e
r
i
o
d
i
c
P
a
r
a
m
e
t
e
r
s

p
e
r
i
o
d

=
n
e
w

P
e
r
i
o
d
i
c
P
a
r
a
m
e
t
e
r
s
(
s
t
a
r
t
,

p
e
r
o
d
1
,

d
e
a
d
l
i
n
e
,

nu
ll

,
nu

ll
,

n
u
l
l
)
;

21 22
//

p
a
r
a
m
e
t
e
r
s

f
o
r

p
i
x
e
l
C
o
u
n
t
i
n
g
T
h
r
e
a
d
s

23
P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s

p
r
i
1

=
n
e
w

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s
(
p
r
i
p

+
4)

;

24
R
e
l
a
t
i
v
e
T
i
m
e

p
e
r
1

=
n
e
w

R
e
l
a
t
i
v
e
T
i
m
e
(
5
0

/*
ms

*/
,

0
/*

ns

*/
)
;

25
R
e
l
a
t
i
v
e
T
i
m
e

d
l
i
n
e

=
n
e
w

R
e
l
a
t
i
v
e
T
i
m
e
(
5
0

/*
ms

*/
,

0
/*

ns

*/
)
;

26
P
e
r
i
o
d
i
c
P
a
r
a
m
e
t
e
r
s

p
e
r
i
o
d
1

=
n
e
w

P
e
r
i
o
d
i
c
P
a
r
a
m
e
t
e
r
s
(
s
t
a
r
t
,

pe
r1

,
d
l
i
n
e
,

nu
ll

,
nu

ll
,

n
u
l
l
)
;

27 28
//

p
o
o
l

f
o
r

t
h
e

i
m
a
g
e

s
e
g
m
e
n
t
s

29
W
a
i
t
F
r
e
e
Q
u
e
u
e

i
m
g
D
a
t
a
P
o
o
l

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

30 31 32
//

p
o
o
l

f
o
r

t
h
e

p
i
x
e
l

c
o
u
n
t

33
W
a
i
t
F
r
e
e
Q
u
e
u
e

i
m
g
C
o
u
n
t
P
o
o
l

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

5
9
0
0
0
0
)
;

258

APPENDIX D. CASE STUDY CODE

34 35
//

t
h
r
e
a
d

to
s
e
g
m
e
n
t

t
h
e

i
m
a
g
e

36
i
m
a
g
e
D
i
s
t
T
h
r
e
a
d

i
m
g
D
i
s
t
T
h
r
e
a
d

=
n
e
w

i
m
a
g
e
D
i
s
t
T
h
r
e
a
d
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

i
m
g
D
a
t
a
P
o
o
l
,

pr
i
,

p
e
r
i
o
d
,

"
I
m
a
g
e
D
i
s
t
r
i
b
u
t
i
o
n
T
h
r
e
a
d
"
)
;

37 38 39
//

t
h
r
e
a
d
s

to
p
e
r
f
o
r
m

t
h
e

p
i
x
e
l

c
o
u
n
t
i
n
g

40
p
i
x
e
l
C
o
u
n
t
i
n
g
T
h
r
e
a
d

p
r
o
c
e
s
s
i
n
g
T
h
r
e
a
d
1

=
n
e
w

p
i
x
e
l
C
o
u
n
t
i
n
g
T
h
r
e
a
d
(
i
m
g
D
a
t
a
P
o
o
l
,

i
m
g
C
o
u
n
t
P
o
o
l
,

pr
i1

,

p
e
r
i
o
d
1
,

"
p
i
x
e
l
C
o
u
n
t
i
n
g
T
h
r
e
a
d
1
"
)
;

41
p
i
x
e
l
C
o
u
n
t
i
n
g
T
h
r
e
a
d

p
r
o
c
e
s
s
i
n
g
T
h
r
e
a
d
2

=
n
e
w

p
i
x
e
l
C
o
u
n
t
i
n
g
T
h
r
e
a
d
(
i
m
g
D
a
t
a
P
o
o
l
,

i
m
g
C
o
u
n
t
P
o
o
l
,

pr
i1

,

p
e
r
i
o
d
1
,

"
p
i
x
e
l
C
o
u
n
t
i
n
g
T
h
r
e
a
d
2
"
)
;

42 43
//

t
h
r
e
a
d

to
c
o
l
l
e
c
t

t
h
e

c
o
u
n
t
s

44
c
o
u
n
t
C
o
l
l
e
c
t
i
o
n
T
h
r
e
a
d

c
o
u
n
t
C
o
l
l
e
c
t
i
o
n
T
h
r
e
a
d

=
n
e
w

c
o
u
n
t
C
o
l
l
e
c
t
i
o
n
T
h
r
e
a
d
(
i
m
g
C
o
u
n
t
P
o
o
l
,

pr
i1

,
p
e
r
i
o
d
1
,

"
c
o
u
n
t
C
o
l
l
e
c
t
i
o
n
T
h
r
e
a
d
"
)
;

45 46
//

s
t
a
r
t
i
n
g

t
h
e

t
h
r
e
a
d
s

47
i
m
g
D
i
s
t
T
h
r
e
a
d
.
s
t
a
r
t
()

;

48
p
r
o
c
e
s
s
i
n
g
T
h
r
e
a
d
1
.
s
t
a
r
t
()

;

259

D.2. WAITFREEQUEUE ALGORITHM
49

p
r
o
c
e
s
s
i
n
g
T
h
r
e
a
d
2
.
s
t
a
r
t
()

;

50
c
o
u
n
t
C
o
l
l
e
c
t
i
o
n
T
h
r
e
a
d
.
s
t
a
r
t
()

;

51
}

52
})

;

53
}

54
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

55
i
m
a
g
e
H
i
s
t
o
S
i
m

i
h
g

=
n
e
w

i
m
a
g
e
H
i
s
t
o
S
i
m
()

;

56
i
h
g
.
s
t
a
r
t
()

;

57
}

58
}

260

APPENDIX D. CASE STUDY CODE
Li
st
in
g
D
.8
:
Pi
n
th
re
ad

ex
am

pl
e

1
i
m
p
o
r
t

j
a
v
a
x
.
r
e
a
l
t
i
m
e
.
*
;

2
p
u
b
l
i
c

c
l
a
s
s

P
i
n
T
h
r
e
a
d

e
x
t
e
n
d
s

R
e
a
l
t
i
m
e
T
h
r
e
a
d

{

3
//

l
o
c
a
l

v
a
r
i
a
b
l
e
s
,

if
r
e
u
q
u
i
r
e
d

4
//

T
h
e

c
o
n
s
t
r
u
c
t
o
r
,

if
r
e
u
q
u
i
r
e
d

5
p
u
b
l
i
c

P
i
n
T
h
r
e
a
d
()

{

6
}

7
//

P
r
o
d
u
c
e

d
a
t
a

m
e
t
h
o
d

8
p
u
b
l
i
c

v
o
i
d

p
r
o
d
u
c
e
D
a
t
a
()

{

9
//

T
h
e

c
o
d
e

r
e
q
u
i
r
e
d

to
s
t
o
r
e

t
h
e

d
a
t
a

in
t
h
e

s
c
o
p
e
d

m
e
m
o
r
y

b
a
c
k
i
n
g

s
t
o
r
e
.

10
}

11
//

C
o
n
s
u
m
e

t
h
e

d
a
t
a

12
p
u
b
l
i
c

v
o
i
d

c
o
n
s
u
m
e
D
a
t
a
()

{

13
//

T
h
e

c
o
d
e

r
e
q
u
i
r
e
d

to
c
o
n
s
u
m
e

t
h
e

d
a
t
a

s
t
o
r
e
d

in
t
h
e

s
c
o
p
e
d

m
e
m
o
r
y

b
a
c
k
i
n
g

s
t
o
r
e
.

14
}

15 16
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

17
//

T
h
e

t
h
r
e
a
d

p
e
r
f
o
r
m
s

no
a
c
t
i
o
n
s
,

t
h
e

r
e
a
d
e
r

t
h
r
e
a
d

t
e
r
m
i
n
a
t
e
s

t
h
i
s

t
h
r
e
a
d

w
h
e
n

d
a
t
a

c
o
n
s
u
m
p
t
i
o
n
s

is
f
i
n
i
s
h
e
d
.

18
}

19
}

261

D.2. WAITFREEQUEUE ALGORITHM

Li
st
in
g
D
.9
:
W
rit

er
th
re
ad

ex
am

pl
e

1
i
m
p
o
r
t

j
a
v
a
x
.
r
e
a
l
t
i
m
e
.
*
;

2
p
u
b
l
i
c

c
l
a
s
s

W
r
i
t
e
r
T
h
r
e
a
d

e
x
t
e
n
d
s

R
e
a
l
t
i
m
e
T
h
r
e
a
d

{

3
//

l
o
c
a
l

v
a
r
i
a
b
l
e
s
,

t
h
e

v
a
r
i
a
b
l
e
s

r
e
q
u
i
r
e
d

to
p
e
r
f
o
r
m

t
h
e

d
a
t
a

p
r
o
d
u
c
t
i
o
n
.

4
W
a
i
t
F
r
e
e
Q
u
e
u
e

l
o
c
a
l
P
o
o
l
;

5 6
//

t
h
e

c
o
n
s
t
r
u
c
t
o
r

7
p
u
b
l
i
c

W
r
i
t
e
r
T
h
r
e
a
d
(
W
a
i
t
F
r
e
e
Q
e
u
e
u
e

wf
q
,

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s

pr
i
,

P
e
r
i
o
d
i
c
P
a
r
a
m
e
t
e
r
s

pe
r
,

S
t
r
i
n
g

n
a
m
e
)

{

8
s
u
p
e
r
(
pr

i
,

p
e
r
)
;

9
t
h
i
s
.
s
e
t
N
a
m
e
(
n
a
m
e
)
;

10
t
h
i
s
.
l
o
c
a
l
P
o
o
l

=
w
f
q
;

11
}

12 13
//

t
h
e

r
u
n
n
a
b
l
e

o
b
j
e
c
t
,

s
h
o
u
l
d

be
d
e
s
i
g
n
e
d

to
\\

14
//

p
e
r
f
o
r
m

t
h
e

d
a
t
a

p
r
o
d
u
c
t
i
o
n
.

15
R
u
n
n
a
b
l
e

r
=

n
e
w

R
u
n
n
a
b
l
e
()

{

16
//

l
o
c
a
l

v
a
r
a
i
b
l
e
s

t
h
a
t

a
r
e

r
e
q
u
i
r
e
d

d
u
r
i
n
g

t
h
e

d
a
t
a

p
r
o
d
u
c
t
i
o
n

p
r
o
c
e
s
s
.

17 18
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

19
//

i
d
e
n
t
i
f
y

t
h
e

s
c
o
p
e
d

m
e
m
o
r
y

a
r
e
a

20
L
T
M
e
m
o
r
y

m
y
M
e
m

=
(
L
T
M
e
m
o
r
y
)

R
e
a
l
t
i
m
e
T
h
r
e
a
d
.
g
e
t
C
u
r
r
e
n
t
M
e
m
o
r
y
A
r
e
a
()

;

21
//

P
i
n
T
h
r
e
a
d

s
u
p
p
o
s
e
d

to
s
i
m
u
l
a
t
e

t
h
e

p
i
n
n
a
b
l
e

s
c
o
p
e
d

m
e
m
o
r
y

a
r
e
a
.

262

APPENDIX D. CASE STUDY CODE

22
P
i
n
T
h
r
e
a
d

p
t
h
r
e
a
d

=
n
e
w

P
i
n
T
h
r
e
a
d
()

;

23
p
t
h
r
e
a
d
.
s
t
a
r
t
()

;

24 25
//

s
t
o
r
e

t
h
e

d
a
t
a

in
t
h
e

P
i
n
T
h
r
e
a
d
,

t
h
i
s

is
a
p
p
l
i
c
a
t
i
o
n

26
//

d
e
p
e
n
d
e
n
t
,

t
h
e

p
r
o
g
r
a
m
m
e
r

s
h
o
u
l
d

i
d
e
n
t
i
f
y

t
h
e

t
y
p
e

of
t
h
e

d
a
t
a
.

27
p
t
h
r
e
a
d
.
p
r
o
d
u
c
e
D
a
t
a
()

;

28
//

l
i
n
k

t
h
e

P
i
n
T
h
r
e
a
d

to
t
h
e

29
m
y
M
e
m
.
s
e
t
P
o
r
t
a
l
(
p
t
h
r
e
a
d
)
;

30
}

31
};

32 33
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

34
//

a
c
c
e
s
s
i
n
g

t
h
e

e
n
q
u
e
u
e

m
e
t
h
o
d

35
l
o
c
a
l
P
o
o
l
.
e
n
q
u
e
u
e
(
r
)
;

36
//

a
f
t
e
r

f
i
n
s
h
i
n
g

t
h
e

d
a
t
a

p
r
o
d
u
c
t
i
o
n
,

w
a
i
t

f
o
r

t
h
e

n
e
x
t

p
e
r
i
o
d

37
//

t
h
e

w
r
i
t
e
r

t
h
r
e
a
d

a
s
s
u
m
e
d

to
a
c
c
e
s
s

t
h
e

e
n
q
u
e
u
e

m
e
t
h
o
d

o
n
c
e

e
v
e
r
y

p
e
r
i
o
d
,

38
//

in
o
r
d
e
r

to
e
s
t
i
m
a
t
e

t
h
e

d
a
t
a

p
r
o
d
u
c
t
i
o
n

r
a
t
e
.

39
b
o
o
l
e
a
n

t
h
r
o
w
A
w
a
y

=
w
a
i
t
F
o
r
N
e
x
t
P
e
r
i
o
d
()

;

40 41
}

263

D.2. WAITFREEQUEUE ALGORITHM

Li
st
in
g
D
.1
0:

R
ea
de
r
th
re
ad

ex
am

pl
e

1
i
m
p
o
r
t

j
a
v
a
x
.
r
e
a
l
t
i
m
e
.
*
;

2
p
u
b
l
i
c

c
l
a
s
s

R
e
a
d
e
r
T
h
r
e
a
d

e
x
t
e
n
d
s

R
e
a
l
t
i
m
e
T
h
r
e
a
d

{

3
//

l
o
c
a
l

v
a
r
i
a
b
l
e
s

4
W
a
i
t
F
r
e
e
Q
u
e
u
e

l
o
c
a
l
P
o
o
l
;

5 6
//

T
h
e

c
o
n
s
t
r
u
c
t
o
r

7
p
u
b
l
i
c

R
e
a
d
e
r
T
h
r
e
a
d
(
W
a
i
t
F
r
e
e
Q
u
e
u
e

l
P
o
o
l
,

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s

pr
i
,

P
e
r
i
o
d
i
c
P
a
r
a
m
e
t
e
r
s

pe
r
,

S
t
r
i
n
g

n
a
m
e
)

{

8
s
u
p
e
r
(
pr

i
,

p
e
r
)
;

9
t
h
i
s
.
s
e
t
N
a
m
e
(
n
a
m
e
)
;

10
t
h
i
s
.
l
o
c
a
l
P
o
o
l

=
l
P
o
o
l
;

11
}

12 13
R
u
n
n
a
b
l
e

r
=

n
e
w

R
u
n
n
a
b
l
e
()

{

14
//

l
o
c
a
l

v
a
r
a
i
b
l
e
s

t
h
a
t

a
r
e

r
e
q
u
i
r
e
d

d
u
r
i
n
g

t
h
e

d
a
t
a

p
r
o
d
u
c
t
i
o
n

p
r
o
c
e
s
s
.

15 16
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

17
//

i
d
e
n
t
i
f
y

t
h
e

s
c
o
p
e
d

m
e
m
o
r
y

a
r
e
a

18
L
T
M
e
m
o
r
y

m
y
M
e
m

=
(
L
T
M
e
m
o
r
y
)

R
e
a
l
t
i
m
e
T
h
r
e
a
d
.
g
e
t
C
u
r
r
e
n
t
M
e
m
o
r
y
A
r
e
a
()

;

19 20
//

a
c
c
e
s
s

t
h
e

p
o
r
t
a
l

of
t
h
e

s
c
o
p
e
d

m
e
m
o
r
y

b
a
c
k
i
n
g

s
t
o
r
e

21
P
i
n
T
h
r
e
a
d

p
t
h
r
e
a
d

=
(
P
i
n
T
h
r
e
a
d
)

m
y
M
e
m
.
g
e
t
P
o
r
t
a
l
()

;

264

APPENDIX D. CASE STUDY CODE

22 23
//

R
e
a
d

t
h
e

s
t
o
r
e
d

da
ta

,
t
h
e

c
o
d
e

s
h
o
u
l
d

be
d
e
v
e
l
o
p
e
d

h
e
r
e
.

24
p
t
h
r
e
a
d
.
c
o
n
s
u
m
e
D
a
t
a
()

;

25 26
//

I
n
t
e
r
r
u
p
t

t
h
e

P
i
n
T
h
r
e
a
d
,

w
h
e
n

t
h
e

r
e
a
d
e
r

t
h
r
e
a
d

l
e
a
v
e
s

27
//

t
h
e

s
c
o
p
e
d

m
e
m
o
r
y

a
r
e
a

R
T
S
J

r
e
c
l
a
i
m
s

t
h
e

a
l
l
o
c
a
t
e
d

m
e
m
o
r
y
.

28
p
t
h
r
e
a
d
.
i
n
t
e
r
r
u
p
t
()

;

29
}

30
};

31 32
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

33
//

A
c
c
e
s
s

t
h
e

d
e
q
u
e
u
e

m
e
t
h
o
d

34
l
o
c
a
l
P
o
o
l
.
d
e
q
u
e
u
e
(
r
)

35
//

T
h
e

r
e
a
d
e
r

t
h
r
e
a
d

s
u
p
p
o
s
e
d

to
a
c
c
e
s
s

t
h
e

d
e
q
u
e
u
e

m
e
t
h
o
d

o
n
c
e

36
//

e
v
e
r
y

p
e
r
i
o
d
,

in
o
r
d
e
r

to
e
s
t
i
m
a
t
e

t
h
e

d
a
t
a

c
o
n
s
u
m
p
t
i
o
n

r
a
t
e
.

37
b
o
o
l
e
a
n

t
h
r
o
w
A
w
a
y

=
w
a
i
t
F
o
r
N
e
x
t
P
e
r
i
o
d
()

;

38
}

39
}

265

D.2. WAITFREEQUEUE ALGORITHM

Li
st
in
g
D
.1
1:

En
qu

eu
e
M
et
ho

d
1

p
u
b
l
i
c

b
o
o
l
e
a
n

e
n
q
u
e
u
e
(
R
u
n
n
a
b
l
e

r
)

{

2
//

E
n
q
u
e
u
e

m
e
t
h
o
d

v
a
r
i
a
b
l
e
s

3
i
n
t

r
e
s
e
r
v
e
d
N
o
d
e

=
-1

;

4
i
n
t

e
n
q
u
e
u
e
L
o
c
a
t
i
o
n
;

5
i
n
t

c
u
r
r
e
n
t
L
o
c
a
t
i
o
n
;

6
b
o
o
l
e
a
n

d
a
t
a
S
t
r
u
c
U
p
d
a
t
e
d
=
f
a
l
s
e
;

7
i
n
t

i
n
V
;

8 9
i
n
t

m
a
x
P
r
i
o

=
P
r
i
o
r
i
t
y
S
c
h
e
d
u
l
e
r
.
i
n
s
t
a
n
c
e
()

.
g
e
t
M
a
x
P
r
i
o
r
i
t
y
()

;

10
R
e
a
l
t
i
m
e
T
h
r
e
a
d

r
t
T
h
r
e
a
d

=
R
e
a
l
t
i
m
e
T
h
r
e
a
d
.
c
u
r
r
e
n
t
R
e
a
l
t
i
m
e
T
h
r
e
a
d
()

;

11
i
n
t

d
e
f
P
r
i
o

=
((

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s
)

r
t
T
h
r
e
a
d
.
g
e
t
S
c
h
e
d
u
l
i
n
g
P
a
r
a
m
e
t
e
r
s
()

)
.
g
e
t
P
r
i
o
r
i
t
y
()

;

12 13
((

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s
)

r
t
T
h
r
e
a
d
.
g
e
t
S
c
h
e
d
u
l
i
n
g
P
a
r
a
m
e
t
e
r
s
()

)
.
s
e
t
P
r
i
o
r
i
t
y
(
m
a
x
P
r
i
o
)
;

14
do

{

15
r
e
s
e
r
v
e
d
N
o
d
e
+
+
;

16
if

(
r
e
s
e
r
v
e
d
N
o
d
e

==
q
u
e
u
e
S
i
z
e
-
1
)

17
r
e
t
u
r
n

f
a
l
s
e
;

//
Q
U
E
U
E

IS
F
U
L
L

18
}

w
h
i
l
e
(!

s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
r
e
s
e
r
v
e
d
N
o
d
e
].

r
e
s
e
r
v
e
d
.
c
o
m
p
a
r
e
A
n
d
S
e
t
(
f
a
l
s
e
,

t
r
u
e
)
)
;

19
((

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s
)

r
t
T
h
r
e
a
d
.
g
e
t
S
c
h
e
d
u
l
i
n
g
P
a
r
a
m
e
t
e
r
s
()

)
.
s
e
t
P
r
i
o
r
i
t
y
(
d
e
f
P
r
i
o
)
;

266

APPENDIX D. CASE STUDY CODE

20 21
s
c
o
p
e
d
M
e
m
o
r
y
P
o
o
l
[
r
e
s
e
r
v
e
d
N
o
d
e
].

S
M
e
m
o
r
y
.
e
n
t
e
r
(
r
)
;

22 23
((

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s
)

r
t
T
h
r
e
a
d
.
g
e
t
S
c
h
e
d
u
l
i
n
g
P
a
r
a
m
e
t
e
r
s
()

)
.
s
e
t
P
r
i
o
r
i
t
y
(
m
a
x
P
r
i
o
)
;

24
do

{

25
c
u
r
r
e
n
t
L
o
c
a
t
i
o
n

=
r
e
a
d
L
i
s
t
H
e
a
d
.
g
e
t
()

;

26
e
n
q
u
e
u
e
L
o
c
a
t
i
o
n

=
(
c
u
r
r
e
n
t
L
o
c
a
t
i
o
n

+
1)

%
q
u
e
u
e
S
i
z
e
;

27
i
n
V

=
r
e
a
d
L
i
s
t
I
n
v
a
l
i
d
[
e
n
q
u
e
u
e
L
o
c
a
t
i
o
n
];

//
A
B
A

a
v
o
i
d
a
n
c
e

m
e
c
h
a
n
i
s
m

28
if

(
r
e
a
d
L
i
s
t
H
e
a
d
.
c
o
m
p
a
r
e
A
n
d
S
e
t
(
c
u
r
r
e
n
t
L
o
c
a
t
i
o
n
,

e
n
q
u
e
u
e
L
o
c
a
t
i
o
n
)
)
{

29
r
e
a
d
L
i
s
t
[
e
n
q
u
e
u
e
L
o
c
a
t
i
o
n
].

s
e
t
(
r
e
s
e
r
v
e
d
N
o
d
e
)
;

30
d
a
t
a
S
t
r
u
c
U
p
d
a
t
e
d

=
t
r
u
e
;

31
}

32
}

w
h
i
l
e

(!
d
a
t
a
S
t
r
u
c
U
p
d
a
t
e
d
)
;

33
((

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s
)

r
t
T
h
r
e
a
d
.
g
e
t
S
c
h
e
d
u
l
i
n
g
P
a
r
a
m
e
t
e
r
s
()

)
.
s
e
t
P
r
i
o
r
i
t
y
(
d
e
f
P
r
i
o
)
;

34 35
a
s
s
e
r
t

t
h
r
o
w
A
w
a
y

>
0

:
"
a
t
o
m
i
c
␣
i
n
t
e
g
e
r
␣
f
a
i
l
e
d
"
;

36
r
e
t
u
r
n

t
r
u
e
;

37
}

267

D.2. WAITFREEQUEUE ALGORITHM

Li
st
in
g
D
.1
2:

Si
m
pl
e
m
ul
ti-
th
re
ad

ed
ap

pl
ic
at
io
n

1
i
m
p
o
r
t

j
a
v
a
x
.
r
e
a
l
t
i
m
e
.
*
;

2
p
u
b
l
i
c

c
l
a
s
s

A
p
p
l
i
c
a
t
i
o
n
S
a
m
p
l
e

e
x
t
e
n
d
s

R
e
a
l
t
i
m
e
T
h
r
e
a
d

{

3 4
p
u
b
l
i
c

A
p
p
l
i
c
a
t
i
o
n
S
a
m
p
l
e
()

{

5
s
u
p
e
r
()

;

6
}

7 8
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

9
//

i
n
i
t
i
a
t
e

t
h
e

q
u
e
u
e

in
t
h
e

I
m
m
o
r
t
a
l

m
e
m
o
r
y

10
I
m
m
o
r
t
a
l
M
e
m
o
r
y
.
i
n
s
t
a
n
c
e
()

.
e
x
e
c
u
t
e
I
n
A
r
e
a
(
n
e
w

R
u
n
n
a
b
l
e
()

{

11
p
u
b
l
i
c

v
o
i
d

r
u
n
()

{

12
//

d
e
f
i
n
e

t
h
e

n
u
m
b
e
r

of
t
h
r
e
a
d
s

c
o
n
c
u
r
r
e
n
t
l
y

a
c
c
e
s
s
i
n
g

t
h
e

q
u
e
u
e
.

13
i
n
t

n
u
m
b
e
r
O
f
R
e
a
d
e
r
s

=
2;

14
i
n
t

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s

=
2;

15 16
//

d
e
f
i
n
e

t
h
e

r
e
a
l
t
i
m
e

p
r
o
p
e
r
t
i
e
s
.

17
i
n
t

p
r
i
p

=
P
r
i
o
r
i
t
y
S
c
h
e
d
u
l
e
r
.
i
n
s
t
a
n
c
e
()

.
g
e
t
M
i
n
P
r
i
o
r
i
t
y
()

;

18
R
e
l
a
t
i
v
e
T
i
m
e

s
t
a
r
t

=
n
e
w

R
e
l
a
t
i
v
e
T
i
m
e
(
1
0

/*
ms

*/
,

0
/*

ns
*/

)
;

19
//

S
e
t

t
h
e

p
r
i
o
r
i
t
y

of
t
h
e

r
e
a
l
t
i
m
e

t
h
r
e
a
d
,

h
e
r
e

it
is

20
//

s
e
t

to
m
i
n
i
m
u
m

p
r
i
o
r
i
t
y

+
4

21
P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s

p
r
i

=
n
e
w

P
r
i
o
r
i
t
y
P
a
r
a
m
e
t
e
r
s
(
p
r
i
p

+
4)

;

268

APPENDIX D. CASE STUDY CODE

22
R
e
l
a
t
i
v
e
T
i
m
e

d
e
a
d
l
i
n
e

=
n
e
w

R
e
l
a
t
i
v
e
T
i
m
e
(
5
0
/*

ms
*/

,0
/*

ns
*/

)
;

23
P
e
r
i
o
d
i
c
P
a
r
a
m
e
t
e
r
s

p
e
r
i
o
d

=
n
e
w

P
e
r
i
o
d
i
c
P
a
r
a
m
e
t
e
r
s
(
s
t
a
r
t
,

p
e
r
o
d
1
,

d
e
a
d
l
i
n
e
,

nu
ll

,
nu

ll
,

n
u
l
l
)
;

24 25
//

T
h
e

w
a
i
f
r
e
e

q
u
e
u
e

26
W
a
i
t
F
r
e
e
Q
u
e
u
e

w
f
q

=
n
e
w

W
a
i
t
F
r
e
e
Q
u
e
u
e
(
n
u
m
b
e
r
O
f
R
e
a
d
e
r
s
,

n
u
m
b
e
r
O
f
W
r
i
t
e
r
s
,

9
0
0
0
0
0
)
;

27 28 29
//

W
r
i
t
e
r

t
h
r
e
a
d
s

30
W
r
i
t
e
r
T
h
r
e
a
d

T
w
1

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
wf

q
,

pr
i
,

p
e
r
i
o
d
,

"
T
w
1
"
)
;

31
W
r
i
t
e
r
T
h
r
e
a
d

T
w
2

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
wf

q
,

pr
i
,

p
e
r
i
o
d
,

"
T
w
2
"
)
;

32 33
//

R
e
a
d
e
r

t
h
r
e
a
d
s

34
R
e
a
d
e
r
T
h
r
e
a
d

T
r
1

=
n
e
w

R
e
a
d
e
r
T
h
r
e
a
d
(
wf

q
,

pr
i
,

p
e
r
i
o
d
,

"
T
r
1
"
)
;

35
W
r
i
t
e
r
T
h
r
e
a
d

T
r
2

=
n
e
w

W
r
i
t
e
r
T
h
r
e
a
d
(
wf

q
,

pr
i
,

p
e
r
i
o
d
,

"
T
r
2
"
)
;

36
}

37 38
//

s
t
a
r
t

t
h
e

t
h
r
e
a
d
s

39
T
w
1
.
s
t
a
r
t
()

;

40
T
w
2
.
s
t
a
r
t
()

;

41
T
r
1
.
s
t
a
r
t
()

;

269

D.2. WAITFREEQUEUE ALGORITHM
42

T
r
2
.
s
t
a
r
t
()

;

43 44
})

;

45
}

46
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)
{

47
A
p
p
l
i
c
a
t
i
o
n
S
a
m
p
l
e

s
a
m
p
l
e
1

=
n
e
w

A
p
p
l
i
c
a
t
i
o
n
S
a
m
p
l
e
()

;

48
s
a
m
p
l
e
1
.
s
t
a
r
t
()

;

49
}

50
}

270

References

[1] T. Acharya and A.K. Ray. Image Processing: Principles and Applications.
Wiley, 2005.

[2] Yehuda Afek, Eli Gafni, and Adam Morrison. Common2 extended
to stacks and unbounded concurrency. In Proceedings of the Twenty-
fifth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’06, pages 218–227. ACM, 2006.

[3] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested parallelism
in transactional memory. In In PPoPP ’08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 163–174, 2008.

[4] Juan Alemany and Edward W. Felten. Performance issues in non-
blocking synchronization on shared-memory multiprocessors. In Proceed-
ings of the eleventh annual ACM symposium on Principles of distributed
computing, PODC ’92, pages 125–134. ACM, 1992.

[5] A. Alexandrescu. Lock-free data structures, October 2004.

[6] JamesH. Anderson, Srikanth Ramamurthy, Mark Moir, and Kevin
Jeffay. Lock-free transactions for real-time systems. In Azer Bestavros,
Kwei-Jay Lin, and SangHyuk Son, editors, Real-Time Database Systems,
volume 396 of The Springer International Series in Engineering and
Computer Science, pages 215–234. Springer US, 1997.

[7] USENIX Association, IEEE Computer Society. Technical Committee
on Operating Systems, and ACM Special Interest Group in Oper-
ating Systems. ACM Symposium on Operating Systems Design and
Implementation. Number v. 2 in Conference proceedings (USENIX
Association). USENIX Association, 1996.

[8] Hagit Attiya, Nancy Lynch, and Nir Shavit. Are wait-free algorithms
fast? J. ACM, 41(4):725–763, 1994.

271

REFERENCES

[9] Woongki Baek, Chi Cao Minh, Martin Trautmann, Christos Kozyrakis,
and Kunle Olukotun. The opentm transactional application program-
ming interface. In Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques, PACT ’07, pages
376–387, Washington, DC, USA, 2007. IEEE Computer Society.

[10] C. Baier and J.P. Katoen. Principles of Model Checking. MIT Press,
2008.

[11] Lee Baugh and Craig Zilles. Analysis of I/O and syscalls in critical
sections and their implications for transactional memory. In TRANS-
ACT ’07: 2nd Workshop on Transactional Computing, August 2007.

[12] Timothy Beneke and Tori Wieldt. Javaone 2013 review: Java takes on
the internet of things, 2013.

[13] Ethan Blanton and Lukasz Ziarek. Non-blocking inter-partition com-
munication with wait-free pair transactions. In Proceedings of the 11th
International Workshop on Java Technologies for Real-time and Em-
bedded Systems, JTRES ’13, pages 58–67, New York, NY, USA, 2013.
ACM.

[14] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin. Decon-
structing transactions: The subtleties of atomicity. In Fourth Annual
Workshop on Duplicating, Deconstructing, and Debunking. International
Symposium on Computer Architecture (ISCA), June 2005.

[15] Hans-J. Boehm. An almost non-blocking stack. In Proceedings of the
Twenty-third Annual ACM Symposium on Principles of Distributed
Computing, PODC ’04, pages 40–49. ACM, 2004.

[16] Greg Bollella, Ben Brosgol, Steve Furr, David Hardin, Peter Dibble,
James Gosling, Mark Turnbull, and Rudy Belliardi. The Real-Time
Specification for Java. Addison-Wesley, Boston, MA, USA, 2000.

[17] JonathanP. Bowen and MichaelG. Hinchey. Seven more myths of formal
methods: Dispelling industrial prejudices. In Maurice Naftalin, Tim
Denvir, and Miquel Bertran, editors, FME ’94: Industrial Benefit of
Formal Methods, volume 873 of Lecture Notes in Computer Science,
pages 105–117. Springer Berlin Heidelberg, 1994.

[18] K. Breitman and R.N. Horspool. Patterns, Programming and Everything.
SpringerLink : Bücher. Springer London, 2012.

272

REFERENCES

[19] A. Burns and A. Wellings. Concurrent and Real-Time Programming in
Ada. Cambridge University Press, 2007.

[20] A. Burns and A.J. Wellings. Real-Time Systems and Programming Lan-
guages: Ada, Real-Time Java and C/Real-Time POSIX. International
Computer Science Series. Addison-Wesley, 2009.

[21] Francois Carouge and Michael Spear. A scalable lock-free universal
construction with best effort transactional hardware. In NancyA. Lynch
and AlexanderA. Shvartsman, editors, Distributed Computing, volume
6343 of Lecture Notes in Computer Science, pages 50–63. Springer Berlin
Heidelberg, 2010.

[22] Daniel Cederman. Concurrent Algorithms and Data Structures for
Many-Core Processors. PhD thesis, The school where the thesis was
written, Chalmers University of Technology, 2011.

[23] Jing Chen and Alan Burns. Asynchronous data sharing in multiprocessor
real-time systems using process consensus. In Proc. 10th Euromicro
Workshop on Real-Time Systems, pages 2–9, 1998.

[24] Chergert. Came for the beer, stayed for the freedom: Programming is
not a spectator sport, 4 2007.

[25] Phong Chuong, Faith Ellen, and Vijaya Ramachandran. A universal
construction for wait-free transaction friendly data structures. In
Proceedings of the 22nd ACM symposium on Parallelism in algorithms
and architectures, SPAA ’10, pages 335–344. ACM, 2010.

[26] Cliff Click. Just what-the-heck is a "wait-free" algorithm, 2008. accessed:
25-March-2010.

[27] R. Colvin and L. Groves. A scalable lock-free stack algorithm and its
verification. In Software Engineering and Formal Methods, 2007. SEFM
2007. Fifth IEEE International Conference on, pages 339–348, 2007.

[28] W. Damm and E.R. Olderog. Formal Techniques in Real-Time and
Fault-Tolerant Systems: 7th International Symposium, FTRTFT 2002,
Co-sponsored by IFIP WG 2.2, Oldenburg, Germany, September 9-12,
2002. Proceedings. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2003.

[29] I.F. Darwin. Checking Java Programs. O’Reilly short cut. O’Reilly
Media, 2007.

273

REFERENCES

[30] Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup. Lock-
free dynamically resizable arrays. In MariamMomenzadehAlexanderA.
Shvartsman, editor, Principles of Distributed Systems, volume 4305 of
Lecture Notes in Computer Science, pages 142–156. Springer Berlin
Heidelberg, 2006.

[31] Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup. Under-
standing and effectively preventing the aba problem in descriptor-based
lock-free designs. In Proceedings of the 2010 13th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing, ISORC ’10, pages 185–192, Washington, DC, USA,
2010. IEEE Computer Society.

[32] Ashley M. DeFlumere and Sadaf R. Alam. Exploring multi-core lim-
itations through comparison of contemporary systems. In The Fifth
Richard Tapia Celebration of Diversity in Computing Conference: In-
tellect, Initiatives, Insight, and Innovations, TAPIA ’09, pages 75–80.
ACM, 2009.

[33] David L. Detlefs, Paul A. Martin, Mark Moir, Guy L. Steele, and Jr.
Lock-free reference counting. In in Proceedings of the 20th Annual ACM
Symposium on Principles of Distributed Computing, pages 190–199,
2001.

[34] Srinivas Dharmasanam. Multiprocessing with real-time operating sys-
tems, 2003. Accessed: 13-June-2013.

[35] Dr. Peter C Dibble. Real-Time Java Platform Programming: Second
Edition. BookSurge Publishing, 2nd edition, 2008.

[36] Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka. Stretch-
ing transactional memory. In PLDI ’09: Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design and implemen-
tation, pages 155–165. ACM, 2009.

[37] Akos Dudas and Sandor Juhasz. Blocking and non-blocking concurrent
hash tables in multi-core systems. WSEAS Transactions on Computers,
12:74–84, 2013.

[38] Robert J. Dugan. System/370 extended architecture: A program view
of the channel subsystem. In ISCA ’83: Proceedings of the 10th annual
international symposium on Computer architecture, pages 270–276.
ACM, 1983.

274

REFERENCES

[39] Haggai Eran, Ohad Lutzky, Zvika Guz, and Idit Keidar. Transactifying
apache’s cache module. In SYSTOR ’09: Proceedings of SYSTOR 2009:
The Israeli Experimental Systems Conference, pages 1–9. ACM, 2009.

[40] J. Esparza and R. Majumdar. Tools and algorithms for the construction
and analysis of systems. In Proceedings of the 16th International
Conference, TACAS 2010, Held as Part of the Joint European Conference
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,
March 20-29, 2010, Advanced research in computing and software
science. Springer, 2010.

[41] C. Evequoz. Non-blocking concurrent fifo queues with single word
synchronization primitives. In Parallel Processing, 2008. ICPP ’08.
37th International Conference on, pages 397–405, 2008.

[42] S. Fahmy and B. Ravindran. On stm concurrency control for multicore
embedded real-time software. In Embedded Computer Systems (SAMOS),
2011 International Conference on, pages 1–8, 2011.

[43] Panagiota Fatourou and Nikolaos D. Kallimanis. A highly-efficient wait-
free universal construction. In Proceedings of the 23rd ACM symposium
on Parallelism in algorithms and architectures, SPAA ’11, pages 325–334.
ACM, 2011.

[44] Nathan Wayne Fisher. The Multiprocessor Real-Time Scheduling of
Gnereal Task Systems. Chapel Hill, 2007.

[45] Keir Fraser and Tim Harris. Concurrent programming without locks.
ACM Trans. Comput. Syst., 25(2), May 2007.

[46] F. Gebali. Algorithms and Parallel Computing. Wiley Series on Parallel
and Distributed Computing. Wiley, 2011.

[47] Aicas GmbH. Jamaicavm, 2013. accessed: 1-May-2011.

[48] B. Goetz, T. Peierls, J. Bloch, J. Bowbeeer, D. Holmes, and D. Lea.
Java Concurrency in Practice. Addison Wesley, 2006.

[49] Chun Gong and Jeannette M. Wing. A library of concurrent objects and
their proofs of correctness. Technical report, Carnegie Mellon University,
Research Showcase, 1990.

[50] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing
(3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

275

REFERENCES

[51] Alexey Gotsman, Byron Cook, Matthew Parkinson, and Viktor Vafeiadis.
Proving that non-blocking algorithms don’t block. In Proceedings of
the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’09, pages 16–28. ACM, 2009.

[52] Justin E. Gottschlich, Manish Vachharajani, and Jeremy G. Siek. An
efficient software transactional memory using commit-time invalidation.
In Proceedings of the 8th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, CGO ’10, pages 101–110. ACM,
2010.

[53] D. Gove. Multicore Application Programming: For Windows, Linux,
and Oracle Solaris. Developer’s Library. Addison-Wesley, 2010.

[54] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Contention
Management. In Proceedings of the 19th International Symposium on
Distributed Computing (DISC’05), volume 3724 of Lecture Notes in
Computer Science, pages 303–323, 2005.

[55] R. Guerraoui, M. Kapałka, and N. Lynch. Principles of Transactional
Memory. Synthesis lectures on distributed computing theory. Morgan
& Claypool Publishers, 2010.

[56] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D.
Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos
Kozyrakis, and Kunle Olukotun. Transactional memory coherence and
consistency. In ISCA ’04: Proceedings of the 31st annual international
symposium on Computer architecture, page 102. IEEE Computer Society,
2004.

[57] Tim Harris. Exceptions and side-effects in atomic blocks. Science
of Computer Programming, 58(3):325 – 343, 2005. <ce:title>Special
Issue on Concurrency and synchonization in Java programs</ce:title>
<xocs:full-name>Special Issue on Concurrency and synchronization in
Java programs</xocs:full-name>.

[58] Tim Harris, Adrián Cristal, Osman S. Unsal, Eduard Ayguade, Fabrizio
Gagliardi, Burton Smith, and Mateo Valero. Transactional memory:
An overview. IEEE Micro, 27(3):8–29, May 2007.

[59] Tim Harris and Keir Fraser. Language support for lightweight transac-
tions. SIGPLAN Not., 38(11):388–402, October 2003.

276

REFERENCES

[60] Tim Harris, James Larus, and Ravi Rajwar. Transactional memory, 2nd
edition. Synthesis Lectures on Computer Architecture, 5(1):1–263, 2010.

[61] Timothy L. Harris. A pragmatic implementation of non-blocking linked-
lists. In Proceedings of the 15th International Conference on Distributed
Computing, DISC ’01, pages 300–314, London, UK, UK, 2001. Springer-
Verlag.

[62] K. Havelund, J. Penix, and W. Visser. SPIN Model Checking and
Software Verification: 7th International SPIN Workshop Stanford, CA,
USA, August 30 - September 1, 2000 Proceedings. Forschungen Zur
Kirchen- Und Dogmengeschichte. Springer, 2000.

[63] D. Hendler and N. Shavit. Work dealing. In Proc. of the Fourteenth ACM
Symposium on Parallel Algorithms and Architectures, pages 164–172,
2002.

[64] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-
free stack algorithm. In Proceedings of the Sixteenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’04,
pages 206–215. ACM, 2004.

[65] M. Herlihy. A methodology for implementing highly concurrent data
structures. SIGPLAN Not., 25(3):197–206, February 1990.

[66] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free
synchronization: Double-ended queues as an example. In Proceedings of
the 23rd International Conference on Distributed Computing Systems,
ICDCS ’03, pages 522–, Washington, DC, USA, 2003. IEEE Computer
Society.

[67] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer,
III. Software transactional memory for dynamic-sized data structures.
In Proceedings of the twenty-second annual symposium on Principles of
distributed computing, PODC ’03, pages 92–101. ACM, 2003.

[68] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architec-
tural support for lock-free data structures. SIGARCH Comput. Archit.
News, 21(2):289–300, May 1993.

[69] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

277

REFERENCES

[70] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, July 1990.

[71] T. Higuera-Toledano and A.J. Wellings. Distributed, Embedded and
Real-time Java Systems. Springer, 2012.

[72] Owen S. Hofmann, Donald E. Porter, Christopher J. Rossbach, Hany E.
Ramadan, and Emmett Witchel. Solving difficult htm problems without
difficult hardware. In In ACM TRANSACT Workshop, 2007.

[73] J. Hunt and A.G. McManus. Key Java: Advanced Tips and Techniques.
Practitioner Series. Springer London, 2013.

[74] IBM. Websphere real time, 2014. accessed: 27-March-2014.

[75] Intel. 4th generation intel® core™ i7 processor, 2013. accessed: 28-
June-2013.

[76] Idaku Ishii, Tomoki Ichida, Qingyi Gu, and Takeshi Takaki. 500-fps face
tracking system. Journal of Real-Time Image Processing, 8(4):379–388,
2013.

[77] Java. Learn about java technology, 2013. accessed: 25-June-2013.

[78] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM
Comput. Surv., 41(4):21:1–21:54, October 2009.

[79] G. Wade Johnson. Programmer musings, 2005. accessed: 20-June-2013.

[80] Lawrence Kesteloot. A survey of mutual exclusion algorithms for
multi-processor operating systems, 1995. Accessed: 3-March-2010.

[81] M. Kowalczyk. Asynchronous communication between threads. In
In 6th Symposium on Trends in Functional Programming, TFP 2005:
Proceedings, Institute of Cybernetics, Tallinn, 2005, TFP 2005, page 76
– 87, 2005.

[82] Lamport L. Specifying concurrent program modulus. In ACM Transac-
tions on Programming Languages and Systems, volume 5 of PODC ’83,
pages 190–222, 1983.

[83] Edya Ladan-mozes and Nir Shavit. An optimistic approach to lock-free
fifo queues. In In Proceedings of the 18th International Symposium on
Distributed Computing, LNCS 3274, pages 117–131. Springer, 2004.

278

REFERENCES

[84] Anthony LaMarca. A performance evaluation of lock-free synchroniza-
tion protocols. In Proceedings of the thirteenth annual ACM symposium
on Principles of distributed computing, PODC ’94, pages 130–140. ACM,
1994.

[85] Andreas Larsson, Anders Gidenstam, Phuong H. Ha, Marina Papatri-
antafilou, and Philippas Tsigas. Multiword atomic read/write registers
on multiprocessor systems. J. Exp. Algorithmics, 13:1.7–1.30, 2009.

[86] E. A. Lee. The problem with threads. Computer, 39(5):33 – 42, May
2006.

[87] Patrick P. C. Lee, Tian Bu, and Girish Chandranmenon. A lock-
free, cache-efficient multi-core synchronization mechanism for line-rate
network traffic monitoring. In in 24th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Atlanta, Georgia, 2010.
IEEE.

[88] Leonard Lensink. Applying Formal Methods in Software Developmen.
PhD thesis, Radboud University Nijmegen, 11 2013.

[89] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of
context switch. In Proceedings of the 2007 Workshop on Experimental
Computer Science, ExpCS ’07, New York, NY, USA, 2007. ACM.

[90] Quan Liu, Xingran Cui, and Xiuyin Hu. Conflict resolution within
multi-agent system in collaborative design. In Computer Science and
Software Engineering, 2008 International Conference on, volume 1,
pages 520–523, Dec 2008.

[91] J. Lourenço and E. Farchi. Multicore Software Engineering, Performance,
and Tools: International Conference, MUSEPAT 2013, Saint Petersburg,
Russia, August 19-20, 2013, Proceedings. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013.

[92] Yuval Lubowich and Gadi Taubenfeld. On the performance of distributed
lock-based synchronization? SIGOPS Oper. Syst. Rev., 45(2):28–37,
July 2011.

[93] R. Mall. Real-Time Systems: Theory and Practice. Pearson Education,
2009.

279

REFERENCES

[94] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, Bin Xin,
and J. Vitek. Preemptible atomic regions for real-time java. In Real-
Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International,
pages 10 pp.–71, 2005.

[95] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, Bin Xin,
and J. Vitek. Preemptible atomic regions for real-time java. In Real-
Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International,
pages 10 pp.–71, 2005.

[96] Henry Massalin and Calton Pu. A lock-free multiprocessor os kernel.
TechReport CUCS-005-91, Computer Science Department, Columbia
University, 1991.

[97] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi Cao
Minh, Hassan Chafi, Christos Kozyrakis, and Kunle Olukotun. Architec-
tural semantics for practical transactional memory. SIGARCH Comput.
Archit. News, 34(2):53–65, 2006.

[98] Maged M. Michael. High performance dynamic lock-free hash tables and
list-based sets. In Proceedings of the fourteenth annual ACM symposium
on Parallel algorithms and architectures, SPAA ’02, pages 73–82. ACM,
2002.

[99] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Transactions on Parallel and Distributed Systems,
15:491–504, 2004.

[100] Maged M. Michael and Michael L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In Proceedings
of the fifteenth annual ACM symposium on Principles of distributed
computing, PODC ’96, pages 267–275. ACM, 1996.

[101] Maged M. Michael and Michael L. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared memory multipro-
cessors. J. Parallel Distrib. Comput., 51:1–26, May 1998.

[102] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald,
Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun.
An effective hybrid transactional memory system with strong isolation
guarantees. SIGARCH Comput. Archit. News, 35(2):69–80, June 2007.

280

REFERENCES

[103] M. Moir and N. Shavit. Concurrent data structures. Chapman and
Hall/CRC Press, handbook of data structures and applications, d. metha
and s. sahni edition, 2007.

[104] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. Using elimi-
nation to implement scalable and lock-free fifo queues. In Proceedings of
the Seventeenth Annual ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’05, pages 253–262, New York, NY, USA, 2005.
ACM.

[105] Adam Morrison and Yehuda Afek. Fast concurrent queues for x86
processors. SIGPLAN Not., 48(8):103–112, February 2013.

[106] Jogesh K. Muppala, Kishor S. Trivedi, and Steven P. Woolet. Real-time
systems performance in the presence of failures. Computer, 24(5):37–47,
May 1991.

[107] NASA. What is jpf?, 2009. accessed: 25-August-2015.

[108] Farhang Nemati. RESOURCE SHARING IN REAL-TIME SYSTEMS
ON MULTIPROCESSORS. Mälardalen University Press Dissertations,
no. 124 edition, 2012.

[109] Marek Olszewski, Jeremy Cutler, and J. Gregory Steffan. Judostm: A
dynamic binary-rewriting approach to software transactional memory. In
PACT ’07: Proceedings of the 16th International Conference on Parallel
Architecture and Compilation Techniques, pages 365–375, Washington,
DC, USA, 2007. IEEE Computer Society.

[110] Oracle. Multithreaded programming guide, the producer/consumer
problem, 2010. accessed: 13-Sep-2013.

[111] Oracle. The history of java technology, 2011. Accessed: 10-June-2013.

[112] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell.
O’Reilly Media, Inc., 1st edition, 2008.

[113] Filip Pizlo, Marek Prochazka, Suresh Jagannathan, and Jan Vitek.
Transactional lock-free objects for real-time java. In Proceedings of
the PODC Workshop on Concurrency and Synchronization in Java
Programs, pages 54–62, July 2004.

[114] Alice Porfirio, Alessandro Pellegrini, Pierangelo Di Sanzo, and Francesco
Quaglia. Transparent support for partial rollback in software transac-
tional memories. In Felix Wolf, Bernd Mohr, and Dieter an Mey, editors,

281

REFERENCES

Euro-Par 2013 Parallel Processing, volume 8097 of Lecture Notes in
Computer Science, pages 583–594. Springer Berlin Heidelberg, 2013.

[115] R. Rajkumar. Synchronization in Real-Time Systems: A Priority
Inheritance Approach. The Springer International Series in Engineering
and Computer Science. Springer US, 2012.

[116] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly Media, 2010.

[117] R. L. Rockhold. Synchronization in java, September 2012.
http://www.cs.utexas.edu/ rockhold/CS439/handouts.

[118] Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E.
Ramadan, Bhandari Aditya, and Emmett Witchel. Txlinux: using and
managing hardware transactional memory in an operating system. In
SOSP ’07: Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, pages 87–102. ACM, 2007.

[119] RTSJ. Rtsj timeline, 2006. accessed: 22-June-2013.

[120] Bo Sanden. Coping with java threads. Computing Practices, 2004.

[121] M. F. Santarelli, V. Positano, and L. Landini. Real-time multimodal
medical image processing: A dynamic volume-rendering application.
Trans. Info. Tech. Biomed., 1(3):171–178, September 1997.

[122] T. Sarni, A. Queudet, and P. Valduriez. Real-time support for soft-
ware transactional memory. In Embedded and Real-Time Computing
Systems and Applications, 2009. RTCSA ’09. 15th IEEE International
Conference on, volume 24-26, pages 477 –485, 2009.

[123] William N. Scherer, III and Michael L. Scott. Advanced contention
management for dynamic software transactional memory. In Proceedings
of the twenty-fourth annual ACM symposium on Principles of distributed
computing, PODC ’05, pages 240–248. ACM, 2005.

[124] Martin Schoeberl, Florian Brandner, and Jan Vitek. Rttm: real-time
transactional memory. In SAC ’10: Proceedings of the 2010 ACM
Symposium on Applied Computing, pages 326–333. ACM, 2010.

[125] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Trans. Comput.,
39(9):1175–1185, September 1990.

282

REFERENCES

[126] Niloufar Shafiei. Non-blocking array-based algorithms for stacks and
queues. In Proceedings of the 10th International Conference on Dis-
tributed Computing and Networking, ICDCN ’09, pages 55–66. Springer-
Verlag, 2009.

[127] Chien-Hua Shann, T.-L. Huang, and Cheng Chen. A practical nonblock-
ing queue algorithm using compare-and-swap. In Parallel and Distributed
Systems, 2000. Proceedings. Seventh International Conference on, pages
470–475, 2000.

[128] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, PODC ’95, pages 204–213. ACM, 1995.

[129] Nir Shavit and Dan Touitou. Elimination trees and the construction of
pools and stacks. Theory of Computing Systems, 30:645–670, 1997.

[130] F. Siebert. Hard Real-time Garbage Collection Im Modern Object
Oriented Programming Languages. Aicas realtime, 2002.

[131] H.R. Simpson. Four-slot fully asynchronous communication mechanism.
Computers and Digital Techniques, IEE Proceedings E, 137(1):17–30,
1990.

[132] Y. Sorel. Real-time embedded image processing applications using the
a3 methodology. In Image Processing, 1996. Proceedings., International
Conference on, volume 1, pages 145–148 vol.2, 1996.

[133] Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, and Lipasti. Pipelin-
ing, 2009. accessed: 19-Sep-2013.

[134] M.F. Spear, M. Silverman, L. Dalessandro, M.M. Michael, and M.L.
Scott. Implementing and exploiting inevitability in software transac-
tional memory. In Parallel Processing, 2008. ICPP ’08. 37th Interna-
tional Conference on, volume 9-12, pages 59 –66, 2008.

[135] Michael F. Spear, Maged Michael, and Michael L. Scott. Inevitability
mechanisms for software transactional memory. In TRANSACT ’08:
3rd Workshop on Transactional Computing, February 2008.

[136] B. Steensgaard, E. Petrank, and G. Kliot. Incremental lock-free stack
scanning for garbage collection, September 2 2014. US Patent 8,825,719.

283

REFERENCES

[137] J. M. Stone. A non-blocking compare-and-swap algorithm for a shared
circular queue. In Parallel and Distributed Computing in Engineering
Systems, pages 147–152. Elsevier Science Publishers, 1992.

[138] Sun. Sun java real-time system 2.2, 2014. accessed: 27-March-2014.

[139] Herb Sutter. The free lunch is over: a fundamental turn toward
concurrency in software. Dr. Dobb’s Journal, 30(3), 2005.

[140] Herb Sutter and James Larus. Software and the concurrency revolution.
Queue, 3(7):54–62, September 2005.

[141] Dominic Sweetman. See MIPS Run. Morgan Kaufmann, edition 2,
2010.

[142] Nathan R. Tallent, John M. Mellor-Crummey, and Allan Porterfield.
Analyzing lock contention in multithreaded applications. SIGPLAN
Not., 45(5):269–280, January 2010.

[143] G. Taubenfeld. Efficient transformations of obstruction-free algorithms
into nonblocking algorithms. In In: Pelc, A. (ed.) DISC 2007. LNCS,
volume 4731, pages 450–464. Springer, 2007.

[144] Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank.
Wait-free linked-lists. SIGPLAN Not., 47(8):309–310, February 2012.

[145] Kent Treiber. Systems programming: Coping with parallelism. TechRe-
port RJ 5118 (s3r62) 4/23/86, IBM Almaden Research Cente, San Jose,
Californi, 1986.

[146] P. Tsigas, Yi Zhang, D. Cederman, and T. Dellsen. Wait-free queue
algorithms for the real-time java specification. In Real-Time and Em-
bedded Technology and Applications Symposium, 2006. Proceedings of
the 12th IEEE, pages 373–383, 2006.

[147] Philippas Tsigas and Yi Zhang. A simple, fast and scalable non-blocking
concurrent fifo queue for shared memory multiprocessor systems. In in
Proceedings of the 13th ACM Symposium on Parallel Algorithms and
Architectures, pages 134–143. ACM, 2001.

[148] Andras Vajda. Programming Many-Core Chips. Springer, Dordrecht,
2011.

[149] J. D. Valois. Lock-free data structures. In Ph. D. dissertation. Rensselaer
Polytechnic Institute, 1995.

284

REFERENCES

[150] John D. Valois. Lock-free linked lists using compare-and-swap. In
Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, PODC ’95, pages 214–222. ACM, 1995.

[151] A. Wellings. Concurrent and Real-Time Programming in Java. Wiley,
2005.

[152] Andrew Wellings. Concurrent and Real-Time Programming in Java.
John Wiley & Sons, 2004.

[153] AndyJ. Wellings, Peter Dibble, and David Holmes. Supporting multipro-
cessors in the real-time specification for java version 1.1. In M. Teresa
Higuera-Toledano and Andy J. Wellings, editors, Distributed, Embedded
and Real-time Java Systems, pages 1–22. Springer US, 2012.

[154] Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and Andreas
Moshovos. Mechanisms for store-wait-free multiprocessors. In ISCA ’07:
Proceedings of the 34th annual international symposium on Computer
architecture, pages 266–277. ACM, 2007.

[155] K. Windisch, K. Kline, and L. Davidson. Pro SQL Server 2005 Database
Design and Optimization. Apress, 2006.

285

	Abstract
	List of Figures
	List of Tables
	Listings
	Acknowledgements
	Declaration
	Introduction
	Real-time Applications
	Real-time Specification for Java (RTSJ)
	Thesis hypothesis
	Thesis outline

	Non-blocking synchronisation approaches
	Blocking Mechanisms
	Contention and Lock Granularity
	Deadlocks
	Lock Convoying
	Composability

	Non-blocking Mechanism
	Classification of approaches
	Based on the real-time properties guarantee
	Thread coordination
	Type of supported shared data structures

	Non-blocking design issues
	Multi-processor and multi-core processors
	Memory Management
	Real-time characteristics
	ABA problem

	Examples of Non-blocking Approaches
	General and specific implementations
	Transactional Memory (TM)

	Summary

	RTSJ and non-blocking wait-free queues
	Core RTSJ Feautres
	Real-time threads
	Memory Areas and Memory management

	RTSJ Wait-Free queues
	Non-blocking implementations for RTSJ environments
	Summary

	Multiprocessor Wait-Free Queues for RTSJ
	Computational model and assumptions
	Algorithm pseudo code
	Overall Approach
	Design issues
	Data structure size
	Data structure design

	Time analysis
	Summary

	Wait Free queue algorithm implementation
	Using the algorithm
	Wait-free queue implementation
	The queue node
	Data structure initialisation
	Enqueue Method
	Dequeue Method

	Evaluation
	Software verification tools and Java PathFinder (JPF)
	Model checking the algorithm
	Model-Checked test cases
	Empty queue
	Test case 1: multiple writers are trying to enqueue new data items
	Test case 2: multiple readers are trying to dequeue data items from the queue
	Test case 3: two writers and two readers are accessing the queue

	Partial empty queue
	Test case 1: multiple writers are trying to enqueue new data items
	Test case 2: multiple readers are trying to dequeue data items from the queue
	Test case 3: two writers and two readers are accessing the queue

	Partial Full queue
	Test case 1: multiple writers are trying to enqueue new data items
	Test case 2: multiple readers are trying to dequeue data items from the queue
	Test case 3: two writers and two readers are accessing the queue

	Full queue
	Test case 1: multiple writers are trying to enqueue data items in full queue
	Test case 2: multiple readers are trying to dequeue data items from the queue
	Test case 3: two writers and two readers are trying to concurrently access the queue

	Test cases summary

	Performance Evaluation
	Response time test analysis
	Worst case response time

	Case study - Image Processing
	Image Histogram
	Experimentation

	Summary

	Conclusion and future work
	Conclusions
	Future work

	Appendices
	Atomic variables
	JPF Model checking
	JPF test cases
	Empty queue - three writers case
	Empty queue - three readers case
	Empty queue - tow readers and two writers case
	Partial empty queue - three writers case
	Partial empty queue - three readers case
	Partial empty queue - tow readers and two writers case
	Partial full queue - three writers case
	Partial full queue - three readers case
	Partial full queue - tow readers and two writers case
	Full queue - three writers case
	Full queue - three readers case
	Full queue - tow readers and two writers case

	Case study code
	JamaicaVM wait free queues
	WaitFreeQueue algorithm

	References

