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Abstract

This thesis discusses optical investigations of two-dimensional metal-chalcogenide semi-

conductor materials and their heterostructures. Topics include a study of continuous

wave (cw) and time-resolved photoluminescence (PL) of GaTe and GaSe thin films.

Based on experimental evidence, we propose a model explaining the strong PL in-

tensity decrease for thin films as a result of non-radiative carrier escape via surface

states. We investigate the stability of thin films of InSe and GaSe using a combination

of PL and Raman spectroscopies. By comparing signal intensities in films exposed to

ambient conditions for up to 100 hours, we find notable degradation in GaSe and high

stability of InSe. We continue our study with the investigation of optical properties

of light emitting diodes (LED) made of van der Waals (vdW) heterostructures com-

prising graphene as transparent contacts, hexagonal boron nitride as tunnel barriers

and transition metal dichalcogenides (TMDC), MoS2 and WS2, as the semiconductor

active regions. Single and multiple ’quantum well’ structures were fabricated with an

aim to enhance the external quantum efficiency (EQE) under electrical injection. We

also present PL characterisation of LEDs based on vdW heterostructures comprising

WSe2 and MoSe2 as active layers. Temperature dependent experiments show unusual

enhancement of the EQE with temperature in WSe2 in contrast to MoSe2, where both

electroluminescence and PL are reduced with temperature. A theoretical approach to

explain this behaviour is proposed, which is based on the strong spin-orbit interaction

present in both materials.
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Chapter 1

Background and motivation

1.1 Introduction

Modern condensed matter physics have received an addition of a new branch of study

in recent years: physics of two-dimensional (2D) materials [1]. This topic gained

prominence with the first isolation of a single-layer of graphite, known as graphene, in

2004 [2]. Since then, the library of 2D materials has been rapidly expanding includ-

ing hexagonal boron nitride (hBN), transition metal dichalcogenides (TMDCs), III-VI

compounds and layered oxides [3, 4]. After an extensive research of graphene that

followed the advent of this material [5], scientists started paying more attention to

other 2D crystals. This has been reflected in the discovery of various novel character-

istics such as mechanical [6, 7], electronic and optical [8], thermal [9], superconductive

[10, 11], etc. properties. that lead to potential applications in, e.g, flexible devices

[12], lasers [13] and biological studies [14]. Heterostructures based on stacks of 2D

materials (known as van der Waals heterostructures) showed additional interesting

characteristics due to the possibility to combine and manipulate various properties of

the constituent materials [15, 16]. However, because of the novelty of the field, there

is still a long way for 2D materials to reach the point where applications become a
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Background and motivation

reality. For this reason, further investigation of many aspects of material properties

and new device prototypes need to be conducted. This thesis focuses on the optical

properties of two different groups of two-dimensional materials: III-VI compounds and

semiconducting transition metal dichalcogenides. Thin films as well as light emitting

diodes based on van der Waals heterostructures made of TMDCs sandwiched with

hBN and graphene were characterised. The study was performed using a combination

of different optical spectroscopy techniques, including continuous and time-resolved

photoluminescence, electroluminescence and Raman spectroscopy which will be de-

scribed in chapter 2 together with the fabrication methods used to produce samples

and devices.

1.2 The family of layered materials

A new family of layered materials, metal-chalcogenides, has recently emerged which

includes semi-metals, semiconductors and superconductors. Furthermore, the idea of

combining these materials in van der Waals heterostructures has been developed re-

cently. Heterostructures have a long and fruitful history in semiconductor physics.

They were used to produce electron and optical confinement, engineering of the elec-

tronic energy bands and resonant tunnelling , which led to important technologies

such as lasers, solar cells and transistors. These heterostructures, with many exam-

ples among III-V semiconductor materials, are grown directly on top of each other

by very clean techniques such as molecular beam epitaxy. However such growth tech-

niques are usually limited to the lattice-matched materials. The samples produced by

transferring two-dimensional films onto each other to form van der Waals heterostruc-

tures allow the combination of a wide range of materials and control of doping and

thickness with atomic precision. The goal is that functional devices will be fabricated

and that they are able to compete with existing technologies based on heterostructures

2



1.2 The family of layered materials

in a broad range of applications.

Different experimental techniques are needed in order to perform characterisation

of two-dimensional materials and van der Waals heterostructures including electronic

transport, optical spectroscopy, microscopy, etc.

The 2D materials studied in this work are III-VI semicondutors such as GaSe,

GaTe and InSe in chapters 3 and 4; TMDCs such as MoS2, MoSe2, WS2 and WSe2

in chapters 5 and 6; and, to a lesser extent, graphene and hBN in these latter two

chapters. In the following subsections a brief discussion of the properties of these

materials will be presented.

1.2.1 Graphene

Graphene is an allotrope of carbon such as the well known and widely studied nan-

otubes and fullerenes. It consists of carbon atoms in a hexagonal lattice of only one

atom thickness separated by 1.42 Å[17]. In the figure 1.1 different carbon allotropes

are shown, graphene is the honeycomb structure in the right-bottom side of the image.

It has been intensively studied since its first isolation in 2004 by Andre Geim and

Konstantin Novoselov[2].

Graphene performance in electronic devices is expected to be of extremely high

quality due to its properties. In fig. 1.2 ambipolar electric field effect is observed.

This allows charge carrier to be tuned continuously between electrons and holes in

high concentrations (10 13cm−2) and their mobilities µ can exceed 15 000 cm2V−1s−1

[5] as it is shown in the inset of the figure where, with changing Vg, electrons and holes

concentration are tuned. This mobility has been observed to be weakly dependent on

temperature that makes graphene even more impressive [19].

The ability of graphene to act as a thin and transparent contact for carrier injection

is used in this work. Studies of metal-graphene junctions have proved a low resistance

3
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Fig. 1.1 Carbon allotropes[18]. Graphene (bottom right) has a ’honeycomb’ structure
with carbon atoms separated by 1.42 Å.

in the order of tens of Ω µm [20–22]. This makes graphene suitable for electronic

device fabrication like transistors, photo-detectors or LEDs.

Synthesis of graphene

Since the beginning of extensive research of graphene in 2004 using the now famous

mechanical exfoliation method (scotch tape)[2], there have been developed different

ways to produce few-to-single layer graphene. Nowadays, the mechanical exfoliation

technique is still offering the best quality samples for investigation[24]. The main

concern is the fact that it is not viable for mass production processes. In table 1.1

a summary of four fabrication methods show in number of layers, sample size and

mobility is presented. These methods are: mechanical exfoliation[23, 25], thermal

decomposition of silicon carbide[26], chemical vapour deposition (CVD) on Ni[27] and

CVD on Cu[28, 29]. Note that large films in the centimetre scale are already produced

with high mobility, however the larger the size, the more structural defects are present

in the layer.

4
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Fig. 1.2 Graphene resistivity ρ plotted as a function of gate voltage Vb[5]. The rapid
decrease in resistivity when adding charge carriers indicates their high mobility, in this
case 5 000 cm2 V−1 s−1 at 1 K and 0 T. This value depends weakly with temperature.
The insets show its conical low-energy spectrum E(k), showing changes in the position
of the Fermi energy EF with changing gate voltage Vg. Positive Vg induce electrons
and negative Vg induce holes [2, 3, 23].

As it will be discussed in the chapters 2,5 and 6, the graphene layers used in this

work were exfoliated from bulk graphite using the scotch tape method and transferred

onto different layers to form heterostructures. It is used as transparent electrodes in

LEDs for carrier injection thanks to the properties of ambipolar field effect and high

conduction discussed previously.

1.2.2 Boron Nitride

Boron nitride (BN) is a chemical compound that consist on equal number of boron

and nitrogen atoms. It exists in different crystalline forms with the hexagonal (hBN)

being the most studied one. Like TMDCs, it is widely used as a lubricant in industrial

applications [30]. Similar to previously discussed materials, weak interlayer bonding

is present in hBN so exfoliation methods can be implemented. Due to its wide band

5
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Method Layers Size Mobility (cm2V−1s−1)
Exfoliation 1 to 10+ 1 mm 15000
Thermal SiC 1 to 4 50 µm 2000
Ni-CVD 1 to 4 1 cm 3700
Cu-CVD 1 65 cm 16000

Table 1.1 Comparison of graphene synthesis methods. Number of layers, sample size
and mobility are shown [24]

.

gap of ∼6 eV [31], dielectric properties of this material are very attractive.

In fig. 1.3 a schematic of a single layer of hBN is shown. B and N atoms (purple

and yellow spheres, respectively) are arranged in a ’honeycomb’ structure. Its lattice

constant of 2.5 Å is 1.8 % larger than in graphene [32, 33].

Fig. 1.3 Hexagonal boron nitride single layer. Boron (purple) and Nitrogen (yellow)
atoms are arranged in a honeycomb structure separated by 2.5 Å.

An important property of hBN is its transparency in a wide range of wavelengths

[34] so it has been recently reported to be an ideal layered material for encapsulation

and capping of other 2D materials to protect them from oxidation or other atmospheric

effects that could produce damage [35] when they are unstable in ambient conditions.

In a similar way, it has been proved to be an excellent substrate for graphene electron-

ics [36] reducing carrier inhomogeneity and intrinsic doping [37] in comparison with

SiO2/Si (the most common substrate).

6



1.2 The family of layered materials

Synthesis of hBN layers

Comparable to other 2D materials, hBN synthesis has been widely investigated result-

ing in methods similar to those used for graphene. Mechanical exfoliation is, again,

the most common and pure method to produce high quality samples with typical sizes

of 10-50 µm[38]. Moreover CVD [39] and epitaxial [40] grown hBN has been shown

paving the way to the production of samples on the industrial scales.

In this work, hBN is mechanically exfoliated from bulk and used for encapsulation

of devices and as a barrier for the quantum well structures (from single to few layers).

This will be discussed in detail in chapters 5 and 6.

1.2.3 III-VI semiconductors

III-VI semiconductors are compounds of the form AB where A is an element from the

group III of the periodic table and B from the group VI. These compounds are layered

crystals with strong covalent in-plane inter-atomic bonding and weaker van der Waals

inter-plane bonding[41]. Bulk crystals are stacks of a hexagonal tetralayers in-plane

structure of the form B-A-A-B (A=Ga, In; B=S, Se, Te). For the wider studied GaSe,

several types of stacking exist leading to different polytypes[42–44]. For GaTe having

a monoclinic crystal lattice [45, 46] the polytypic behavior has not been observed

[46, 47]. In fig. 1.4 the crystal structure of III-VI compound is presented (III atoms

shown in purple, VI in blue): in 1.4A it is seen from the top and the hexagonal lattice

is observed. In 1.4B it is viewed from the side where group-III atoms are sandwiched

by group-VI atoms, and in 1.4C it is seen from an angle. Table 1.2 presents the

structural parameters and band gap energies of the three III-VI semiconductors used

in this work.

In the past decades, III-VI compounds attracted attention because of their non-

linear optical properties. Some of the most important is their capability as second

7
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a

A

B

C

Ga, In Se, Te

Fig. 1.4 III − V I crystal structure of a single layer viewed from (A) top, (B) side
and (C) an angle to observe the layered geometry. Purple balls represent atoms of a
group-III material, i.e. Ga, In. Blue balls are atoms of a group-VI material, i.e. Se,
Te. See table 1.2 for structural parameters a and c.

Compound a (Å) c (Å) Eg (eV)
GaSe 3.755 15.95 2.1
GaTe 4.06 16.90 1.7
InSe 4.00 16.70 1.3

Table 1.2 Structural parameters and band gap energies of III-VI semiconductors[41].

harmonic generation (SHG) materials [48, 49] and also far infra-red properties in the

THz range [50].

Properties of sub-micron thick films have been reported only recently. GaSe, GaS

and GaTe thin films were investigated for photodetector and sensor applications [51–

53], flexible electronics[54] and phototransistors [55]. InSe suggests interesting po-

tential for solar cells [56, 57], room temperature electroluminescence [58] and shows

tuning of band gap with film thickness [59, 60]. These studies open up new possibilities

for 2D III-VI films in nano- and opto-electronics.

8
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Furthermore, in contrast to molybdenum and tungsten chalcogenides emitting light

efficiently only in films with a single unit cell thickness, as it will be discussed later in

this chapter, III-VI materials are bright light emitters in a range of thicknesses[59, 60].

This may relax the stringent fabrication requirements and add flexibility for the novel

heterostructured devices such as light emitting diodes.

Synthesis of III-VI layers

In the previous section, it was mentioned that III-VI semiconductor materials have not

been studied extensively in their layered form. As a consequence, only few reports of

different methods of synthesis can be found: mechanical exfoliation, used for graphene

in the studies that started the study of 2D materials [2] was employed in the case of

InSe[59, 60], GaSe[53] and GaTe [55] and epitaxy was used for GaSe[54].

3D crystals of Gallium-based III-VI materials are usually grown by high-pressure

vertical zone melting in graphite crucibles under Ar pressure[61–64]. The gallium

mono-chalcogenides used in this work were synthesized from high-purity materials:

Ga and Te - 99.9999 %, Se - 99.9995 %. InSe single crystals were grown by the

Bridgman-Stockbarger method from a preliminarily synthesized ingot [65].

The thin film samples studied in this work were produced using mechanical exfoli-

ation from bulk materials onto SiO2/Si substrates. This method will be explained in

detail in the next chapter.

1.2.4 Transition metal dichalcogenides

Transition metal dichalcogenides (TMDCs) are a family of compounds of the form

MX2, where M a transition metal (Mo, W, etc.) and X a chalcogen atom (S, Se

or Te). These compounds were largely studied in their bulk form five decades ago

in material science and engineering that led to important industrial applications as

9
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solid lubricants and surface protectors[66–68]. New properties of these materials were

discovered when they were produced in monolayer form [3]. The crystal structures of

these compounds are very similar to each other and consists of a M atom sandwiched

by two X atoms. In fig. 1.5 a schematic of a single layer of a MX2 single-layer is

shown from three different angles. X atoms are presented in yellow and M in blue. In

1.5A it is seen from top, where the hexagonal structure is evident. In 1.5B the single

layer is viewed from the side, showing the atomic structure of M atoms sandwiched

by two X atoms and in 1.5C the single layer is viewed from a 3D perspective. Bulk

crystals are formed by vertical stacking of these single layers separated by the half of

the vertical lattice constant c. Table 1.3 shows the structural parameters of the four

TMDCs used in this work.

A
B

C

a

S, Se
Mo, W

Fig. 1.5 Single layer of a MX2 single layer viewed from three different angles: (a) Top
(b) side and (c) 3D perspective. M atoms are shown in blue and X in yellow. See
table 1.3 for parameters of structural parameters of various TMDCs.

Some of the most studied TMDCs in the 2D research such as MoS2, MoSe2, WS2

and WSe2 received much attention in the last few years due to important transfor-

mation in their electronic band structure in few monolayer thick films. These are

10



1.2 The family of layered materials

Compound a (Å) c (Å) Eg (eV) ∆SO (meV) ∆cb (meV) Eb (meV) Ec(meV)
MoS2 3.18 12.296 1.67 146 3 570 18
MoSe2 3.32 12.939 1.44 183 22 550 30
WS2 3.19 12.349 1.81 425 32 700 20-40
WSe2 3.32 12.976 1.55 461 37 600 30

Table 1.3 Structural parameters, band gap energies Eg, spin-orbit splitting of the
valence band ∆SO and the conduction band ∆cb, exciton Eb and trion Ec binding
energies of TMDCs used in this work [72–76].

semiconductor materials with an indirect band gap in the bulk form. When they are

thinned down to single layer, a transition to a direct band gap occurs[69, 70]. Exci-

tonic effects govern their optical properties[71]. The different band gap energies Eg

for the four TMDCs mentioned above are shown in table 1.3.

The electronic structure of TMDCs has been calculated by several theory groups to

show the above mentioned transition from indirect to direct band gap semiconductor

[70, 72, 77]. In fig. 1.6 a calculated band structure of MoS2 using density functional

theory is presented for (a) bulk, (b) quadrilayer, (c) bilayer and (d) monolayer reported

in [70]. In this case the indirect bandgap occurs in the Γ point for bulk and the

transition to direct bandgap occurs in the K point. Similar behaviour of the band is

present in others TMDCs such as MoSe2, WS2 and, more ambiguously, in WSe2 as

was shown in one of the studies [73]. For the latter case, a special investigation of the

band structure is discussed in Chapter 6.

Both optical and electronic remarkable properties have been observed in monolay-

ers. Field effect transistors (FETs) made of MoS2 due to high mobility [78], flexible

electronic devices [79] exploit strain tuning effects[72] and solar cells [80] are some

examples of the research reported recently.

11



Background and motivation

Fig. 1.6 Electronic band structure of (a) bulk (b) quadrilayer (c) bilayer and (d) single
layer MoS2. The transtition from indirect to direct band gap is observed [70].

Excitonic properties of TMDCs

In semiconductor physics, an essential quasiparticle called exciton that consists of an

electron-hole pair is formed when an electron is excited from the valence band to the

conduction band [81]. These quasiparticles can be seen as hidrogen-like atoms due

to the Coulomb force that binds the electron and hole. The simplest exciton, formed

just by one electron and one hole, has no charge (neutral) and is usually denoted

X0 as it is illustrated in fig. 1.7(a). When more than one electrons or holes form

the quasiparticle, they are called charged excitons or trions and denoted X−, X+,

depending on the charge state.

In TMDC monolayers, excitons are strongly influenced by the strong spin-orbit

coupling producing splitting (∆SO) in the valence band [82]. This results in the for-

mation of two excitonic transitions, usually referred to as A and B, associated to direct

12



1.2 The family of layered materials

optical transitions between band edges [8] at the K points, this can be observed in fig.

1.7(b) where the transitions are still depicted in the single-particle band structure rep-

resentation with no excitonic effects shown. The giant magnitude of ∆SO in ultrathin

TMDC layers is predicted to be from ∼140 to 460 meV (see table 1.3)[82] and exper-

imentally observable both from PL and absorption spectra like in the case of MoSe2

in fig. 1.7(c). In general, excitation with light generates free neutral excitons on the

TMDCs and, in the case of doped layers, trions can be created as well when e − h

pairs bind to additional charge. The exciton binding energies Eb have been predicted

by first-principles calculations [83, 84] to be extraordinarily large on the order of hun-

dreds of meV (see table 1.3). Different experimental results have demonstrated these

magnitudes including reflection spectra [85], two-photon absorption [86] and scanning

tunnelling microscopy [87]. The strong binding energy emerges from the 2D geometry

and the large effective masses of electrons and holes [84]. In comparison with III-V

semiconductors, the binding energy is two orders of magnitude larger in 2D TMDCs.

For example, in GaAs it is ∼5 meV with an effective electron mass me=0.063m0. For

MoS2 the binding energy is 146 meV with me=0.37m0. It is clear that the value of the

electron effective masses play a very important roll here as they differ significantly in

both materials. It is worth to compare the exciton Bohr radius aB (distance between

electron and hole) of both types of materials as well. In TMDCs aB ∼1 nm [84], one

order of magnitude smaller than in GaAs. Since the aB is only ∼3 times the unit

cell dimensions a, the excitons in 2D TMDCs belong to a case in between a typical

Wannier-Mott exciton and a Frenkel exciton[88], where aB is larger than the lattice

constant a.

Properties of trions can also be understood from optical spectra. For example,

from the energy splitting in PL spectra as shown in 1.7(c), the difference between X−

or X+ and the neutral exciton X0 is called trion binding energy Ec and corresponds

13
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to the energy that binds the additional charge to the exciton. PL experiments show

clearly separated X0 and X− peaks in TMDCs and range from ∼20 to 40 meV [75]

(see table 1.3). In the inset of 1.7(c) both X0 and X− from monolayer MoSe2 are

clearly observable with a separation of 30 meV [89].

Recent theoretical studies have shown that spin-orbit splitting is also relatively

large in the conduction band for some TMDC monolayers and the spin ordering af-

fects the excitonic dark and bright states [76]. These effects have not been studied

experimentally in detail due to the fact that for MoS2, the most investigated TMDC,

the splitting is of the order of a few meV. In table 1.3 the calculated spin-orbit split-

ting of the conduction band ∆cb for the materials used in this work are presented.

In chapter 6 a temperature dependent study of the electroluminesence of MoSe2 and

WSe2 will be presented and the effects are mainly explained as a result of their large

∆cb.

Another important property of excitons is their spin. It depends on both electron

(↑ or ↓) and hole (⇑ or ⇓) spins and play a key role when a recombination that leads

to emission of a photon occurs. For conservation of angular momentum, an exciton

should have total spin S=0, this is the case when electron and hole have opposite

spins (↑⇓ or ↓⇑), and will be a bright state. For S=0 (same spin, ↑⇑ or ↓⇓), their

direct recombination is forbidden as momentum conservation cannot be satisfied and

the exciton is therefore dark. Optical interband transitions always conserve the spin.

Therefore, only the bright exciton can radiatively recombine and result in a photon

emission, as the name itself implies. Bright excitons are directly observable from the

PL spectra[75].

The excitonic properties of the TMDCs are very important in the study presented

in chapters 5 and 6 where LEDs made of these materials are studied and PL and EL

spectra are described in terms of excitonic effects.
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Fig. 1.7 Excitons in TMDCs monolayers. (a) Diagrams of excitons X0 and trions X+,
X−. (b) Diagram of the band structure around the K point of TMDC monolayers. The
excitonic transitions A and B due to ∆SO are observed in blue and purple, respectively.
(c) Differential reflectance spectra (top) of monolayer MoSe2 at 20 K shows A and B
excitons. X0 and X− are observed in the PL spectra (bottom). Inset: zoom to the
PL peaks shows a X− charging energy of 30 meV[89].
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Synthesis of TMDCs layers

Mechanical cleaving or exfolation used for production of graphene [2] has been ex-

tended to TMDCs. It is possible to obtain clean high quality samples, but the pro-

duction rate is generally low and is not suitable for technological applications. As

a consequence, further fabrication methods emerged that in principle could be used

for a large scale production of TMDCs. This can be obtained, for example, by using

chemical vapour deposition (CVD), a common technique used for decades to produce

thin films of a large variety of composites including silicon, nitrides, carbon nano-

tubes and high-k dielectrics [90–92]. In recent years, reports of different CVD grown

TMDCs like MoS2[93–95], WS2 [95, 96], WSe2[97, 98] and MoSe2[99, 100] have been

published. The properties that all these works share is that crystals grow in a form

of triangles due to hexagonal structure (see fig. 1.5). The layers can be grown on or

transferred onto a variety of substrates such as sapphire, quartz, gold or SiO2 in film

size of hundreds of micrometres to a millimetre scale [93–100].

Another elaborated technique is liquid exfoliation, which uses ion intercalation

between atomic layers in a liquid environment to split them from each other [101–

103]. This process results in a liquid solution that can be span or sprayed onto a

substrate producing a large area covered by single layers of the material.

In the next chapter a detailed description of the mechanical exfoliation method will

be presented since it was the technique used in this work to produce TMDCs samples.

1.2.5 van der Waals heterostructures

One of the properties that all the materials described previously in this chapter share

is the weak interlayer bonding in their bulk form. Due to this, it is natural to think of

the stacking of layers of different materials. A typical analogy, proposed by Geim [15],

is to imagine the atomic layers as LEGO blocks. When various blocks are stacked on
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top of each other, they get strongly attached and form a more complex structure. The

strong covalent bonding of the two-dimensional materials act in a similar way. The

possibility of making multilayer structures forming new artificial materials has been

extensively studied recently [71, 104].

Fig. 1.8 Analogous representation of van der Waals heterostructures with LEGO
blocks. The stacking of different classes of layered materials like graphene, MoS2,
hBN, etc. to build more complex structures is possible[15].

Among the reports on vdW heterostructures are the fabrication of field effect tun-

nelling transistors based on hBN and graphene [104], demonstration of tunnelling

diodes with negative differential resistance[105] and photovoltaic devices based on

MoS2-graphene [106] and WS2-graphene [107]. In terms of optical studies, long-lived

interlayer excitons in MoSe2-WSe2 heterostructures[108] and LEDs [109] have been

demonstrated.

Fabrication of van der Waals heterostructures

In section 2.1.2 the most common method for van der Waals heterostructure will be

presented, namely so-called ’peel/lift transfer’. This technique has been the base of
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almost all the studies mentioned above and consists of the mechanical exfoliation of the

desired layers followed by the transfer and stacking on top of each other [110, 111]. In

this work LEDs based on vdW heterostructures made of graphene, hBN and TMDCs

are built with this method and they will be presented in chapters 5 and 6. These

devices were fabricated in laboratories of The University of Manchester by Dr. F.

Withers.
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Chapter 2

Experimental Techniques

2.1 Sample fabrication methods

As discussed in the previous chapter, layered materials such as III-VI semiconductors

and TMDCs show new properties when they are thinned down to single or few layers.

The key techniques used in this work are mechanical exfoliation and peel/lift transfer.

A detailed description of both fabrication methods will be presented in the following

sections.

2.1.1 Mechanical exfoliation

The most common technique to produce high quality single layers of two-dimensional

materials is referred as mechanical exfoliation (or the ’scoth-tape’ method). It was

demonstrated by Novoselov et al in 2004 in the seminal article of graphene exfoliated

from graphite[1]. It is, surprisingly, a rather straightforward procedure that consists

of the use of sticky tape to peel layers off bulk crystals[2] as it is schematically shown

in Fig. 2.1. The first step is to press a strip of the tape onto a piece of the material

(a), then peel it off (b) and press it on a substrate (c) that usually is Si finished with
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SiO2. This process can be repeated (d) and, eventually, single layers of the crystal will

be formed with different dimensions from few microns up to a millimetre in the case

of graphene[3] and tens to hundreds of microns for hBN and TMDCs [4].

Fig. 2.1 Mechanical exfoliation [2]. (a) Sticky tape is pressed onto a crystal. (b) When
the tape is peeled off, a few number of layers get attached to the tape. (c) Then it is
pressed against a substrate (SiO2/Si for example). (d) Repeating the process in order
to get few to single layers.

Once the mechanical exfoliation procedure is carried out, the challenge is to locate

the single layers on the substrate that, due to their low thickness, could be invisible

even in the microscope. However, studies showed that the contrast of the films can be

increased when the appropriate thickness of SiO2 on Si is chosen[5–7]. It was found

that an optimal thickness of 250-300 nm of SiO2 on Si is needed to visualize thin

films of TMDCs in the microscope, showing differing contrast colour depending on

the TMDC layers thickness down to a single layer. To illustrate this, in fig. 2.2 an

optical image of a MoSe2 single layer surrounded by thicker flakes is presented. Note

how the film colour varies from flake to flake. For more accuracy of the thickness,

once the target films are localized, atomic force microscopy (AFM) is commonly used.

More complex techniques to establish the film thickness have been employed. One

example is Raman spectroscopy [8–10] where the separation of Raman modes depends
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on the film thickness. However, this is not entirely reliable as Raman spectroscopy is

sensitive to strain and charging. Another spectroscopy technique is photoluminesence

when a transition from indirect to direct band gap in the material occurs, as it will

be discussed later in this chapter.

MoSe2

single layer

Fig. 2.2 Optical image of a mechanical exfoliated MoSe2 single layer surrounded by
thicker flakes on a SiO2/Si substrate. The film colour indicates difference in thickness.

2.1.2 Heterostructure fabrication

In chapters 5 and 6 an optical study of light-emitting diodes based on quantum wells

(QW) made of van der Waals heterostructures will be presented. These heterostruc-

tures were produced via multiple ’peel’ and ’lift’ transfer processes described below

[11, 12].

An example of a single quantum well structure is hBN/GrB/2hBN/MoS2/2hBN/GrT /hBN.

This requires stacking of single or few layers of the materials. Fig. 2.3A-F and Fig.
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2.4 show the schematic for the processes. For the ’peel’ process a flake is mechanically

exfoliated (Fig. 2.3A), as described in section 2.1.1, onto a poly(methyl methacrylate)

(PMMA) double layer. Then the bottom polymer is dissolved releasing the membrane

which then floats on top of the liquid as is schematically shown in fig. 2.3B,C. The

PMMA membrane is then inverted and aligned onto the target crystal, Fig. 2.3D.

The two crystals are brought into contact (Fig. 2.3E) and heated until the PMMA

adheres to the target substrate. Once the flake has adequately stuck to the target

crystal the PMMA membrane is brought back, fig. 2.3F. The flake due to the strong

van der Waals interaction peels from the PMMA onto the target flake.

Fig. 2.3 Schematic procedure for the ’peel’ process. (A) A flake is mechanical exfoli-
ated form bulk on PMMA, (B) and released from this polymer (C) shich then floats
on liquid. (D) The flake is inverted and aligned onto the target crystal, (E) and then
brought into contact. (F) The flake gets stacked in the substrate when peeling the
PMMA.

For the ’lift’ process the membrane is produced in the same way as shown in Fig.

2.3. Instead of peeling the flake onto the target crystal, a large flake on the membrane

is used to collect a smaller flake on the substrate. The flake to be lifted is exfoliated

onto a second SiO2/Si wafer.
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Fig. 2.4 Schematic procedure for the ’lift’ process. The septs are similar to the ones
decribed in 2.3. Instead of peeling the flake onto the target crystal, a large flake on
the membrane is used to collect a smaller flake on the substrate. The flake to be lifted
is exfoliated onto a second SiO2/Si wafer.

In this work multiple QW heterostructures are also studied, such as the double QW

hBN/GrB/2hBN/MoS2/2hBN/MoS2/2hBN/GrT /hBN. Fig. 2.5 shows the fabrication

route for the multiple QW (MQW) structure. Firstly a graphene flake is peeled from

a PMMA membrane to an hBN crystal on the Si/SiO2 substrate, Fig. 2.5A. After this

a thin hBN tunnel barrier is peeled from the PMMA membrane onto the hBN-GrB

structure, Fig. 2.5B. A thin hBN spacer carrying a single layer TMDC crystal (lifted

from a second substrate) is then peeled from the membrane, thus completing the first

well, Fig. 2.5C. This process can be repeated as shown in Fig. 2.5D to produce a

double QW and even further to produce multiple QW structures.

2.2 Optical techniques

In the next four experimental chapters, the main subject will be the study of optical

properties of the materials previously discussed. Two essential physical phenomena in
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Fig. 2.5 (A-D) Schematic and differential interference contrast microscope images with
semi-transparent dark field images overlaid to highlight flake edges, for the multiple
QW structures. Scale bar is 50 µm.

these chapters will be photoluminescence and electroluminescence. In the next sections

a description and experimental techniques employed to measure these phenomena will

be discussed.

2.2.1 Luminescence in solids

Luminescence is the emission of light in materials that is not a result of heating (called

incandescence). This emission can be caused by external excitations with light or an

electrical current[13].

Fig. 2.6 shows an schematic of the luminescence process in a solid. We can consider

two bands with a relatively large gap between them. Electrons (holes) are injected

into the conduction (valence) band and relax to the lowest available level. The photon

is emitted when an electron from the conduction band undergoes a transition into an

empty (hole) state in the ground valence band. These empty state are generated by

the injection of holes.

The spontaneous emission rate for a two level system where N is the population
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Fig. 2.6 Schematic of luminescence process in a solid. Electrons (holes) are injected
into the conduction (valence) band before recombination that produces the emission
of a photon.

in the upper level at time t:

(
dN

dt

)
radiative

= −AN (2.1)

This spontaneous emission is ruled by the Einstein coefficient A and the rate equa-

tion can be solved to give:

N(t) = N(0)exp(−At) = N(0)exp(−t/τR) (2.2)

where τR = A−1 is the radiative lifetime of the transition. A is proportional to the

other Einstein coefficient B that determines the absorption probability:

A = 8πhν3

c3 B (2.3)

Hence, if the transitions have large absorption coefficients, they will have high

emission probability and short radiative lifetime. However, according to eq. 2.1, even

if there is high absorption but low population N in the upper level, emission intensity
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may be low, for example, due to strong non-radiative processes

The electrons relax to within ∼ kB/T of the conduction band. The holes follow a

similar series of relaxations. Thus light is only emitted within a narrow energy range,

which is further modified by strong excitonic effects.

An important factor that needs to be taken into account is that electrons excited

in the conduction band can relax into the valence band by emitting phonons or be

trapped by defects. As no photons are emitted in this process, this is called non-

radiative relaxation. Eq. 2.1 needs to be rewritten by adding a new non-radiative

lifetime τNR:

(
dN

dt

)
total

= − N

τR

− N

τNR

= −N
( 1

τR

+ 1
τNR

)
(2.4)

so the total τ will be:

1
τ

= 1
τR

+ 1
τNR

(2.5)

Let’s define the term ηR as the luminescence efficiency given by the ratio of the

radiative emission rate to the total de-excitation rate:

ηR = N/τR

N (1/τR + 1/τNR) = 1
1 + τR/τNR

(2.6)

If τR ≪ τNR, ηR ≈ 1, the maximum possible light is emitted. If τR ≫ τNR, ηR ≈ 0,

light emission is very inefficient. Therefore radiative lifetime should be much shorter

than non-radiative lifetime in order to achieve efficient luminescence.

For the luminescence process described above, if the excitation takes place with

light, it is called photoluminescence. If it is with electrical current, electrolumines-

cence. We will describe both in the following subsections together with the spec-

troscopy techniques used to measure them.
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Photoluminescence (PL) is the emission of a photon created due to a recombination

of an electron-hole pair that is optically created in the first step (see fig. 2.7). This

occurs when the excitation photon energy is greater than the band gap (Eg) of the

material, and an electron is then excited from the valence to the conduction band.

Electrons and holes relax to the bottom of their bands and recombine leading to the

creation of a photon with energy around the band gap Eg [13] (excitonic effects are

neglected here). This case, illustrated in fig. 2.7a occurs in materials with direct band

gap, where the bottom of the conduction band and the top of the valence band are

observed for the same k-vector in the Brillouin zone. Fig. 2.7b shows an opposite

case, where they occur for different k-vectors, this leads to an indirect band gap where

a phonon assisted transition is needed for the radiative recombination process and,

therefore, the efficiency is low. For this reason, as it will be discussed in the next

section, commercial applications for luminescence devices are made of direct band gap

semiconductors.

It was mentioned above that PL intensity depends on the absorption of photons.

This process can be described as a function of thickness in a finite material as the

intensity of the light I(h) travelling across in the form I(h) = I0e
αh, where I0 is the

intensity of the light before enters the material, α is the absorption coefficient and

h the thickness. In chapter 3 PL intensity will be described as a function of film

thickness by using this equation.

A common term to calculate the efficiency of the PL process is the Quantum Yield

(QY) defined as:

QY ≡ # of photons emitted
# of photons absorbed (2.7)
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Fig. 2.7 Diagram of photoluminescence processes in semiconductor materials. (a) In a
direct band gap material the top of the valence band coincide with the bottom of the
conduction band. When a photon with an energy ~ωexc excites electrons and holes,
after relaxation of electrons (holes) to the bottom (top) of the band, a photon with
energy Eg = ~ωP L is emitted. (b)For indirect band gap materials, the bottom of the
conduction band and top of the valence band are at different k-vectors. Here, a phonon
assisted transition is needed, after relaxation a photon and phonon are emitted.

Photoluminescence measurements

In order to detect PL we use a set-up schematically shown in fig. 2.8. A diode laser

used as the excitation source, typically with a wavelength of 532 nm. The laser beam

(green solid line) is guided with a mirror to a 50-50 beam-splitter, 50% of the light goes

to a power meter and the rest to a 50x microscope objective with a 25 mm working

distance that focuses the beam onto the target sample achieving a laser spot of ∼ 1-2

µm diameter with a power range from ∼10 nW to 25 mW. The light emitted by the

sample (red dashed line) is collected with the same objective (NA=0.55) and guided

to a slit of a 0.5 m spectrometer, where a 4 cm focal length lens is used for focussing

light on the entrance slit of the spectrometer. Additional devices such as a white light
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source and a CMOS camera in the setup are necessary for visualizing the sample.

The spectrometer is equipped with 3 different gratings: 300, 600 and 1200 lines/mm

for achieving different spectral resolution and a nitrogen cooled CCD camera with

a chip of 100x1240 pixels. The sample is placed in vacuum in a cold finger inside a

continuous flow He cryostat that allows to cool down to ∼ 6 K and achieve controllable

temperatures up to room-T with a heater. Heavy duty XY stages are used to move

the entire cryostat with an accuracy of ∼1 µm in order to align different parts of the

sample under the excitation laser.

Electroluminescence

Electroluminescence (EL) is the generation of light in response to an electric current

passing through a material[13]. As in the case of PL, EL is generated in an active

region due to a radiative recombination of electrons and holes.

The first observation of the phenomenon of EL was on silicon carbide (SiC) in 1907

by H. J. Round in the Marconi Labs[14]. The first light-emitting diode (LED) was

developed using the same material a few years later in 1923 [15]. Since then, LEDs

have been rapidly developing in a large variety of ways and nowadays have many ap-

plications such as smart displays, efficient lighting, traffic lights, car lights, etc. This

made solid-state LEDs a key component of today’s technology [16]. Different mate-

rials and structures have been used for design and fabrication such as nitrides (GaN,

InGaN)[17], porous silicon[18], polymers[19], carbon nanotubes[20], quantum dots[21],

III-V materials (GaAs, AlGaAs, GaAsP, GaP)[22] and more recently graphene[23] and

other 2D materials [24–26].

In fig. 2.9A-B the band diagram of the most common LEDs can be observed. It

consists on a p − n junction with heavily doped p and n regions to generate holes in

the p-region and electrons in the n-region. In (A) when Vb = 0, a depletion region is
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Fig. 2.8 Schematic diagram of the experimental cw µPL setup. A laser beam (green
solid line) is directed and focused to the target sample with a 50x (NA=0.55) objective
in a continuous flow He cryostat. PL emitted (red dashed line) is collected and guided
to a spectrometer and a CCD camera. The laser power is monitored with a power
meter after the beam-splitter. The cryostat is suitable for electrical measurements and
is also used for EL.
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Fig. 2.9 Band diagram of a LED that consists on a p − n junction. In (a) Vb = 0,
no light is emitted due to absence of electrons and holes in the depletion region. (b)
Vb ≈ Eg/e, light is emitted the spatial overlap of e and h populations.

formed in between the two regions so light cannot be emitted. When Vb ≈ Eg/e (fig.

2.9B), current starts to flow through the device. A region is formed at the junction

where both electrons and holes are present. Analogous to PL, light is emitted when

the electrons recombine with holes in that region [13]. The emission wavelength will

depend on Eg and on the binding of the e − h pairs due to excitonic effects.

In this work, electroluminescence from LEDs made of 2D materials was measured

using the µPL setup showed in fig. 2.8. The cryostat is equipped with wires that

are able to connect the contacts in the sample to a voltage source (Keithley 2400) so

when the laser is blocked, the setup allows to measure EL by injecting carriers with

the source. Further experiments of PL or EL bias dependence with either the laser or

electrical excitation are possible to perform with this setup.

Quantum efficiency

The conversion of electrical energy into light is the main function of an LED. So it is

necessary to calculate the efficiency of a device, in other words, the proportion of the

injected carriers converted into photons[27].

The internal quantum efficiency, or luminescence efficiency (described in sec. 2.2.1),
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is the ratio of the radiative electron-hole recombination to the total (radiative and

non-radiative) recombination coefficient (eq. 2.6). This parameter is important for a

semiconductor material because it determines the efficiency of light generation. How-

ever, for a LED we need to take into account the injected current and compare it with

the number of photons emitted [28, 29].

The internal photon flux Φ (photons per second), generated within a volume

V of the semiconductor, is directly proportional to the carrier-pair injection rate

R (pairs/cm3-s). In the steady-state, the injected carrier concentration ∆n = Rτ

(recombination rate = injection rate), where τ is the total recombination lifetime

(1/τ = 1/τR + 1/τNR). The injection of RV carrier pairs per second therefore leads to

the generation of a photon flux:

Φ = ηRRV = ηRi/e (2.8)

where e is the electron charge and i the injection current.

The efficiency with which the internal photons can be extracted from the LED is

known as the extraction efficiency ηe. The output photon flux Φo is related to the

internal photon flux Φ:

Φo = ηeΦ = ηe(ηRi/e) (2.9)

where the extraction efficiency ηe indicates how much of the internal photon flux

Φ is transmitted outside the device.

We can define a single quantum efficiency based on both ηe and ηR as external

quantum efficiency (EQE):

ηext ≡ ηeηR (2.10)
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So the output photon flux will be:

Φo = ηexti/e (2.11)

We can think of ηext as the ratio of the output photon flux Φo to the injected

electron flux i/e.

Finally, we can deduce the LED optical power P :

P = hνΦo = ηexthνi/e (2.12)

With this definition of EQE, an estimate of the efficiency of the devices described

in chapters 5 and 6 will be carried out. Additional losses in the system used to measure

EL that need to be taken into account in order to perform this calculation are discussed

in Appendix B.

Another aspect to consider is the light extraction efficiency of an LED. Photons

are created inside of a material rather than in air, where we would ultimately like

them to go. Different techniques are employed to maximize the light extraction on

the device depending on the chip refraction index. One way to improve the situation

is to immerse the chip in a surrounding index that is higher than air. Typically, the

material used is silicone, with an index of roughly 1.47. A dome larger than the chip

is typically used, since it results in very little refraction (ray deviation) and therefore

does not cause further issues. Additionally, a silver film is deposited below the active

materials to reflect the light emitted [30].

There are two primary types of LED package architectures that have emerged over

the years: dome and flat cast. For the most part, the LED manufacturers supply dome

or flat cast LED sources, and optical designers choose from an array of off-the-shelf

output optics or design their own optic implementations. Typically, when the most

important specification in your application is total lumens, dome out-coupling optics
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provide a better solution. [30].

In fig. 2.10 it shown the domed system geometry on the left and the relative source

flux exiting the dome on the first pass to the right. A relatively modest dome radius

of 1 mm allows >99.9% of the chip flux to exit.

Fig. 2.10 Light flux on a domed LED system (left side). Relative flux out of dome
plotted as a function of dome radius (right side) [30]

.

2.2.2 Time-resolved spectroscopy

Time-resolved spectroscopy is the technique to study dynamic processes that occur in

materials after illumination. It is commonly used to study with temporal and spectral

resolution the luminescence of excited materials such as semiconductors [31].

As discussed in previous subsections, semiconductor materials can emit light by

different ways such as EL and PL. When the excitation needed in the process is not

continuous but pulsed, study of the dynamics of the generated light can be performed.

This allows the measurement of the overall lifetime τ described in section 2.2.1, that

is given by 1/τ = 1/τR + 1/τNR.

An essential instrument to measure PL with temporal resolution is the Streak

Camera. This tool is able to transform a temporal profile of a light pulse into a
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spatial profile. It is achieved when the light pulse enters the camera and a deflection

of the photons is rapidly executed in such a way that the photons that arrive first

are detected in a different place on the detector that those that arrive later in the

detector. When the streak camera is combined with a spectrometer, both temporal

and spectral resolution can be achieved.

The experimental setup used in this work to measure time-resolved PL is presented

in fig. 2.11. It is very similar to the standard µPL system of fig. 2.8. The excitation

source is one of the main differences. A pulsed Ti:Sapphire laser tuned to 808 nm

(red solid line) is directed into a second harmonic generator (SHG) in order to obtain

a higher photon energy beam (blue solid line) at 404 nm. Then this light is guided

with a 50:50 beam splitter to the sample focused with a 20x objective lens and to a

power meter. The PL emitted is collected and directed with the same objective lens

to the spectrometer. The light diffracted by the spectrometer is studied with a CCD

camera to acquire the spectrum and with a streak camera that allows to acquire a

time-resolved PL signal.

2.2.3 Raman spectroscopy

When light is scattered by atoms in a crystal lattice, most photons are scattered

elastically with the same wavelength as the incident light. This process is known as

elastic or Rayleigh scattering. However, a small amount of light is scattered following

an inelastic process that results in a difference in wavelength [32]. The process leading

to this inelastic scattering is called the Raman effect and occurs with a change in

vibrational, rotational or electronic energy of atoms in the crystal [33].

Raman scattering was discovered by Sir C. V. Raman who won the Nobel prize

for his work. A diagram of the different processes is shown in fig. 4.4. If the material

being studied is illuminated by monochromatic light, like a laser, the spectrum of the
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Fig. 2.11 Schematic diagram of the experimental time-resolved µPL setup. A laser
beam (red solid line) enters to a second harmonic generator, then the resulting beam
(blue solid line) is guided and focused to the target sample in a continuous He flow
cryostat. PL emitted (red dashed line) is collected and directed to a spectrometer
equipped with a CCD and a streak camera. Additional devices in the setup allow the
measurement of laser power, movement of cryostat and visualisation of sample.

scattered light consists of a strong line (the laser line, green arrow) with the same

frequency as the incident illumination together with lines with weaker intensities on

either side shifted from the strong line by frequencies from a few to about 3500 cm−1.

The lines with frequency lower (higher) than the exciting laser are called Stokes (anti-

Stokes) lines, red and purple arrows respectively. Each line corresponds to a different

vibrational mode of the crystal.

Raman spectroscopy is, nowadays, an important technique used to identify molecules

with the vibrational and rotational modes [34] and it has been an essential technique to

investigate two-dimensional materials [8, 9, 35, 36]. In this work it was used to study

the stability of two-dimensional films in chapter 4. The equipment employed was an

InVia Renishaw System with a 532 nm laser for excitation at room temperature.
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Chapter 3

Photoluminescence of

two-dimensional GaTe and GaSe

thin films

3.1 Introduction

In section 1.2.3 a description of the properties of III-VI semiconductor materials was

discussed. In this chapter we present a photoluminescence study of thin films of two

of these compounds: GaTe and GaSe.

GaTe and GaSe are layered crystals with strong covalent in-plane inter-atomic

bonding (with some ionic contributions [1, 2]) and weaker predominantly van der Waals

inter-plane bonding [1, 3–6]. Single tetralayer having hexagonal in-plane structure

consists of two Ga atoms and two Se or Te atoms: Se-Ga-Ga-Se and Te-Ga-Ga-Te

[5], see fig. 1.4. The bulk lattices are built by stacking tetralayers, which can occur

in several ways[1, 3, 4]. For the wider studied GaSe, several types of stacking exist

leading to different polytypes[1, 3, 4]. For GaTe having a monoclinic crystal lattice

[2, 7] the polytypic behavior has not been observed [2, 6]. This may lead to lower
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probability of stacking faults in GaTe resulting in a clearer observation (compared to

GaSe) of the excitonic features in optical experiments [2, 6].

Here we study optical properties of GaSe and GaTe thin films as a function of the

film thickness. Continuous-wave (cw) and time-resolved low-temperature micro-PL for

a wide range of films from 200 nm to sub-nm (one tetralayer) thicknesses is measured.

PL intensity is used to monitor the quantum yield (QY), which falls dramatically for

thin films: integrated cw PL intensity drops by up to ≈ 104 − 105 when the film

thickness is reduced from 200 to 10 nm. Apart from the PL intensity decrease, no

trends in spectral and temporal properties have been observed as a function of the

film thickness. A similar observation of reduced PL for thin films was previously

reported for InSe and was explained as transition to a band-structure with an indirect

bandgap, the conclusion also based on the observed PL blue-shift with the decreasing

film thickness [8]. Such indirect bandgap behavior is also theoretically predicted for

single monolayers of GaSe and GaTe [5]. However, no size-quantization effects as

in InSe are observed in our work for GaSe and GaTe. Furthermore neither shows

any trends as a function of the film thickness observed in time-resolved PL. Based

on the evidence from both cw and time-resolved spectroscopy, we develop a model

that shows that the PL reduction can be explained by non-radiative carrier escape to

surface states. Our explanation does not require introduction of the direct-to-indirect

band-gap transition. Following the cw PL data analysis, we identify a critical film

thickness of about 30-40 nm, below which the non-radiative carrier escape changes its

character. In our work we use thin films encapsulated in Si3N4. The importance of

surface states predicted by our results emphasizes the need for development of novel

surface passivation for III-VI films, possibly involving oxygen-free dielectrics such as

boron nitride [9].
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3.2 Experimental procedure

3.2.1 Fabrication of GaTe and GaSe samples

Single crystals of GaSe and GaTe were grown by high-pressure vertical zone melting

in graphite crucibles under Ar pressure. The detailed description of crystal growth

processes and properties of GaSe and GaTe can be found in Refs.[10–13]. The gallium

mono-chalcogenides used in this work were synthesized from high-purity materials:

Ga and Te - 99.9999 %, Se - 99.9995 %. The crystals used are high-resistivity semi-

conductors with low free carrier absorption, which has been confirmed in infra-red

transmission measurements. GaSe and GaTe have n-type and p-type conductivity, re-

spectively. This is a typical observation: selenides are usually of n-type conductivity,

whereas tellurides often can have conductivity of both types, even within one ingot.

Such behaviour is attributed to deviations of the crystal composition from stoichiome-

try, usual for metal chalcogenides. In our case the n-type conductivity clearly indicates

some excess of Ga (donor) in GaSe, whereas the p-type conductivity indicates a slight

excess of Te (acceptor) in the GaTe.

The III-VI thin films studied in this work were fabricated using the mechanical

exfoliation method from bulk described in section 2.1.1. The films were deposited

on Si/SiO2 substrates. Within the first 15 minutes after the exfoliation/deposition

procedure, the films were placed in a plasma-enhanced chemical vapor deposition

(PECVD) reactor and a 15 nm Si3N4 layer was deposited with the sample maintained

at a temperature of 300 ◦C. This process leads to a complete encapsulation of the films,

protecting them from interaction with oxygen and water present in the atmosphere.

Although 3N4 molecules could be grown in between multilayer films, this technique

shows no substantial effects in the PL signal. Films with a wide variety of thicknesses

were obtained from single unit cell (single monolayer, ML) shown in Fig.3.1 to 200
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Fig. 3.1 (a) AFM image of a GaSe thin film having a single unit cell thickness. This
film is obtained by mechanical exfoliation. (b) Cross-sectional plot along the black
line in (a).

nm. The thicknesses of the films were determined using atomic force microscopy.

3.2.2 Optical characterization methods

Optical characterization of the GaTe and GaSe thin films was carried out using the low-

temperature micro-photoluminescence (µPL) technique described in section 2.2.1. The

sample was placed on a cold finger in a continuous flow He cryostat at a temperature of

10 K. A microscope objective was placed outside the cryostat and was used to focus the

laser beam on the sample (in a ≈2µm spot) and to collect the photoluminescence (PL)

from the films. In continuous-wave (cw) experiments, PL was detected with a 0.5 m

spectrometer and a liquid nitrogen cooled charge coupled device. For cw PL excitation

a laser emitting at 532 nm (2.33 eV) was used. Ultra-fast spectroscopy experiments

was obtained with the setup described in section 2.2.2. The excitation of GaTe and

GaSe layers was performed using frequency-doubled titanium-sapphire (wavelength

of 415 nm) focused on the sample in ≈10µm spot. Time-resolved PL (TRPL) was

detected using a streak camera. The temporal resolution of the experimental setup

62



3.3 Experimental results

for the time-resolved measurements was 10 ps.

3.3 Experimental results

3.3.1 Low-temperature cw PL results: GaTe

Fig.3.2(a) shows typical PL spectra measured for Si3N4-capped GaTe thin films at

T = 10K (cw laser power P=2 mW in Fig.3.2(a)). In this figure, in all films but

the one with the thickness hfilm=8 nm, a narrow feature is observed around 1.75

eV. It is observed at an energy where free exciton (FE) PL is expected. We will

therefore refer to such features in GaTe (and GaSe) films as a ’free exciton’ peak

as opposed to the low energy broad PL bands corresponding to excitons bound to

impurities/defects and observed in the range of 1.6-1.7 eV for GaTe. In reality the

free excitons may also experience disordered potential and degree of localization as

evidenced from a relatively broad line of 10-15 meV (varying from sample-to-sample).

A different behaviour of the FE peak compared to the bound excitons has been verified

in temperature and power-dependent measurements and is further confirmed in time-

resolved studies discussed below. Although all spectra in Fig.3.2(a) show these typical

features, no clear trend is observed in the relative intensities of the impurity/defect

band and the FE peak as a function of hfilm. The FE peak is usually pronounced

in thick films of around 100 nm and above. In thin films as in the 8 nm film in the

figure, the FE peak could only be observed under high power pulsed excitation, when

the impurity/defect states saturate.

No size-quantization effects have been observed in GaTe thin films in contrast to

InSe in Ref.[8] where the PL blue-shift was observed for thin layers. The sharpest PL

feature in GaTe spectra, the FE line, has the peak energy varying from film to film in

the range 1.74-1.76 eV. There are also no clear trends for the PL peak energies of the
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Fig. 3.2 Low-temperature cw PL results for GaTe thin films. (a) PL spectra for
films of various thicknesses. hfilm is marked on the plots. On the plot for the film
with hfilm=49 nm FE marks the free exciton peak observed at similar energies for all
films on the figure except the one with hfilm=8 nm. (b) Symbols show experimentally
measured integrated PL (for T=10K) for the cw laser excitation power of 2 mW at
532 nm (2.33 eV). Dashed line shows expected variation of PL following the change in
the absorption of the thin film assuming constant quantum efficiency. Solid line shows
the results of calculations using the model discussed in text.
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localized exciton band as a function of the film thickness.

A pronounced feature of PL measured from different films is a dramatic decrease of

PL intensity with the decreasing thickness of the material [see Fig.3.2(b)]: about 105

(104) decrease is observed between 200 (100) and 7 nm. The strongest PL reduction

by 3 orders of magnitude is detected between 200 and 40 nm. For hfilm <40 nm,

the PL intensity reduction slows down and decreases less than 100 times when hfilm

is varied between 40 and 7 nm. The dotted curve in the graph shows the expected

PL intensity behaviour assuming thickness-independent quantum efficiency, i.e. when

reduction in PL is caused solely by the reduced absorption and reduced number of e-h

pairs created by the laser. The curve is described by the expression IP L = IGaT e[1 −

exp(−αGaT ehfilm)], where IGaT e is the PL intensity for films with hfilm ≈200 nm. The

absorption coefficient αGaT e=5000 cm−1 is used according to Ref.[14]. A discrepancy

by a few orders of magnitude between the experiment and the calculated curve in a

wide range of film thicknesses is evident on the graph.

3.3.2 Low-temperature cw PL results: GaSe

Fig.3.3(a) shows typical PL spectra measured for Si3N4-capped films of GaSe of several

thicknesses between 8 and 70 nm (the cw laser power of 2 mW is used). The PL signal

is observed in a range from 1.95 to 2.05 eV, which is below the emission energy of the

free exciton, reported to be around 2.10 eV for some high purity GaSe samples (see e.g.

Ref.[15]). The detected PL in our samples thus comes from impurity/defect states.

The observed localized states may originate from the non-stoichiometric composition

of the bulk material.

In Fig.3.3(a) it is observed that PL spectra of thin films <20 nm usually consist

of multiple pronounced lines (a feature similar to GaTe in Fig.3.2(a)), whereas PL

spectra tend to exhibit a single pronounced peak for thicker films. PL linewidths
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Fig. 3.3 Low-temperature cw PL results for GaSe thin films. (a) PL spectra for films
of various thicknesses. (b) Symbols show experimentally measured integrated PL (for
T=10K) for the cw laser excitation power of 2 mW at 532 nm (2.33 eV). Dashed line
shows expected variation of PL following the change in the absorption of the thin
film assuming constant quantum efficiency. Solid line shows the results of calculations
using the model discussed in text.
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vary between 15 and 60 meV. From the data measured on more than 50 films, we

observe that PL peak energies have a very wide distribution in the range 1.99-2.06 eV.

Similarly to GaTe, there is no evidence for size-quantization effects as a function of

the film thickness.

In some GaSe films, when excited with low power (<1 µW), sharp PL lines with

linewidths from 1 to 5 meV are observed (see fig. 3.4a-f). These lines are similar to

the sharp features in the PL spectrum for the 8 nm film in Fig.3.3(a) and occur in the

whole energy range of GaSe PL. This ’quantum dot-like’ emissions can be originated

from bound excitons due to impurities in the crystal [16]. A detailed study of such

defect states is outside the scope of this thesis.

Further evidence for exciton localization in thin films is a pronounced Stokes blue-

shift observed when the laser excitation density is increased as shown in Fig.3.5. The

inset in Fig.3.5(a) shows that the PL peak shifts by ≈20 meV as the cw laser power

is changed from 0.01 to 2 mW. This is a typical behaviour observed in all GaSe films

independent on the film thickness: at high power, saturation of some of the PL features

is observed accompanied in most cases with a blue-shift of PL of around 10-20 meV.

This is a typical behaviour observed for localized exciton states in semiconductors,

the effect also similar to the state-filling phenomenon in semiconductor quantum dots

[17]. In some GaSe films, if the optical pumping is further increased, for example,

by using pulsed excitation, a relatively broad free exciton feature can be observed, as

shown in Fig.3.5(b). This behaviour is in agreement with that observed previously in

GaTe and GaSe under pulsed excitation, and is related to saturation of the localized

states having relatively slow recombination rates [18].

Similarly to GaTe films, a significant decrease of PL intensity with the decreasing

thickness of the GaSe films is observed [see Fig.3.3(b)] by about 2×104 between 200

and 7 nm. As for the GaTe films in Fig.3.2(b), the strongest PL reduction by 3 orders
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Fig. 3.5 (a) Observation of the Stokes shift of localized exciton states in cw PL of
a 28 nm thick GaSe films. Excitation with a cw laser at 532 nm (2.33 eV) is used
at T=10K. (a) Observation of the free exciton feature in PL of a 42 nm thick GaSe
films. The time-integrated PL is shown measured for pulsed laser excitation at 420
nm (2.95 eV) with a power of 1 mW. A free exciton peak having a linewidth of ≈25
meV is observed at 2.06 eV.
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of magnitude is detected between 200 and 30 nm. For hfilm <30 nm, the PL intensity

reduction slows down and is about 30 when hfilm is varied between 30 and 7 nm.

Similar to GaTe in films with hfilm <7 nm PL is completely suppressed. Similarly to

Fig.3.2, we show a curve that describes PL reduction due to the reduced absorption

only calculated as IP L = IGaSe[1 − exp(−αGaSehfilm)], where IGaSe is the PL intensity

for films with hfilm=150 nm and the absorption coefficient α=1000 cm−1 [14]. As for

GaTe, a significant discrepancy by a few orders of magnitude between the experimental

results and the calculated curve is clear in a wide range of film thicknesses.

3.3.3 Time-resolved PL measurements

In order to shed further light on the results of cw PL and also provide further ex-

perimental foundation for our theoretical model, time-resolved PL experiments have

been carried out. We find that TRPL measurements show no trend in life-times as

a function of the film thickness in both GaTe and GaSe as discussed below. Fig.3.6

shows typical TRPL data obtained at T ≈10K.

For GaTe, the difference in the origin of the PL features observed in Fig.3.2(a) is

further evidenced in TRPL. Fig.3.6(a,b) shows data for a 27 nm thick film exhibiting

a behavior typical for films with hfilm in the range 20 to 200 nm. Fig.3.6(a) presents

a streak-camera scan clearly showing two pronounced features at 1.76 eV and 1.71

eV corresponding to the free and localized excitons, respectively. The free exciton

peak intensity decays considerably faster than that of the localized states, which does

not change significantly on the time-scale of 130 ps shown in the figure. Fig.3.6(b)

shows two decay curves measured at 1.76 eV (gray) and 1.71 eV (red). Fitting with

single exponential decay functions is shown with blue curves and gives 10 ps for the

free exciton and 150 ps for the localized states. The inset shows a PL decay curve

measured at 1.73 eV on a larger time-scale, exhibiting an almost complete decay of the
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signal at 1 ns. We find similar life-times for other films, however no clear dependence

on the film thickness is observed: the free exciton PL decay time varies between 5

and 25 ps and that for the localized states between 100 and 200 ps. The lifetimes also

weakly depend on the laser excitation power. We also note the rise times of ≈15 and

20 ps for the free and localized states, respectively, indicating fast carrier relaxation

into light-emitting states.

Similar difference between the PL dynamics of the high and low energy part of the

spectrum is observed for GaSe thin films in Fig.3.6(c),(d). Here a behaviour resembling

the Stokes shift shown in Fig.3.5 is observed: as the carrier density decreases with time

after the laser pulse, the PL intensity maximum progressively moves to lower energy.

Fig.3.6(d) details the behaviour shown in Fig.3.6(c): two decay curves measured at

2.055 eV (gray) and 2.035 eV (red) are shown. In the center of the PL band at 2.035

eV, the non-exponential decay occurs with a characteristic time of 400 ps, which also

shows a slow-decaying component. At around 2.055 eV, the initial PL time-dependence

can be well fitted with a single-exponential decay with a lifetime of ≈40 ps, dominated

most likely by carrier relaxation to lower energy. The complex behaviour in GaSe films

occurs due to the partial saturation of the states at short times after the excitation

pulse and fast relaxation to lower energy. We find similar behaviour for films with

other thicknesses. Similarly to GaTe no clear dependence on the film thickness is

observed and the rise times of ≈30 ps are found for the localized states.

3.3.4 Modeling

In order to describe the observed trend of photoluminescence (PL) intensity as a

function of film thickness hfilm in GaSe and GaTe thin films we have developed a

simplified rate equation model described in detail in the Appendix A. As shown in

Fig.3.7 we assume that the film is divided in three regions: (1) two regions of thickness
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Fig. 3.6 Time-resolved PL data for GaTe (a,b) and GaSe (c,d) thin films measured
at T=10K. Note different time-scales for the GaTe and GaSe data. (a) and (c) show
streak-camera scans. (b) and (d) show PL traces measured at 1.76 (gray) and 1.71 eV
(red) for GaTe and 2.055 (gray) and 2.035 eV (red) for GaSe. Blue lines in (b) show
fitting with a single exponential functions as described in text.
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h0 near the film surfaces where fast carrier relaxation to surface traps occurs leading

to non-radiative carrier escape; (2) a ’normal’ region of thickness hfilm − 2h0 in the

film’s central part not containing the traps where the photo-excited carriers can escape

into regions (1), where they undergo non-radiative decay. Here the h0 value may be

associated with a depletion depth or an average surface trap radius[19]. As shown in

Fig.3.7 there are two possibilities: in Fig.3.7(a), where hfilm > 2h0 and both regions

of type (1) and (2) exist; and in Fig.3.7(b), for films with hfilm ≤ 2h0, where region

(2) is not present. The model assumes that light absorption and PL occurs in both

types of regions. In both regions, e-h pairs relax with the time τrel into the ’PL states’

giving rise to radiative recombination. Non-radiative escape from the ’PL states’ is

neglected.

In region (1), in first approximation the average time it takes for the carrier/e-h

pair to escape non-radiatively is proportional to half the thickness of region (1) (can be

understood as the average time for the carrier to reach the surface or as the overlap of

the wavefunction of the carrier and the trap). In region (2), the non-radiative escape

time reflects the average time it takes for a carrier or an e-h pair to reach any of the

regions (1). The underlying mechanism for this process may be depletion and band-

bending expected at the film surface leading to charge separation and non-radiative

decay [19]. We assume that once the carrier or e-h pair has reached region (1) it

escapes non-radiatively. In first approximation, the average time it takes a carrier/e-h

pair to reach region (1) is proportional to half the thickness of region (2). Thus we

introduce non-radiative decay times in region (1) as τnr1 = (h0/2)/u1 for hfilm > 2h0,

and τnr1 = (hfilm/4)/u1 for hfilm ≤ 2h0. In region (2) it is τnr2 = (hfilm/2 − h0)/u2.

Here u1 and u2 have dimensions of m/s. In the case of region 2 where effectively

we assume ballistic exciton (or electron/hole) transport preceding the non-radiative

escape, u2 can be interpreted as the average carrier velocity.
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Fig. 3.7 Diagrams illustrating the theoretical model for the dependence of the cw
PL intensity on the film thickness. (a) Processes included in the model (see text and
supplementary information for more details): optical excitation of e-h pairs; relaxation
into the non-radiative traps with a time τnr1 or τnr2 depending on the thickness of the
film; relaxation with a time τrel into the light-emitting states denoted as ’PL states’;
PL emission from these states with a time τP L. (b) and (c) shows two types of thin
films with thicknesses above and below the critical thickness of 2h0. In (a) we show a
relatively thick film with a thickness of hfilm > 2h0. This film has three regions: two
regions of thickness h0 near the film surfaces where fast carrier relaxation to surface
traps occurs (shown in pink), and a ’normal’ region of thickness hfilm − 2h0 in the
middle of the film (blue) where non-radiative processes are weaker and occur through
carrier escape into the surface regions. In (b) we show a thin film with hfilm ≤ 2h0,
where a region of one type only exists, where fast non-radiative carrier decay occurs.

3.3.5 Discussion

As detailed in Appendix A and observed in Fig.3.2(b) and Fig.3.3(b), we find that the

proposed model provides a reasonable description of our data using four parameters

(which are not completely independent as we find): the ’critical’ thickness h0, a pa-

rameter describing the amount of light absorbed by the film, and products τrelu1 and

τrelu2. In particular the fitting functions that we produce capture the change in the

’slope’ of the data observed at around 30 nm for GaSe and 40 nm for GaTe, which we

interpret as the thickness of the film where hfilm ≈ 2h0, i.e. the thickness of region

(2) turns to zero, and non-radiative carrier escape changes its character.
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However, we find that the accuracy of the fitting is not sufficient to extend our anal-

ysis beyond determination of the order of magnitude of the products τrelu1 and τrelu2.

We find that τrelu1 and τrelu2 are of the order of 1000 nm and 100 nm, respectively, for

both GaSe and GaTe. The solid line shown in Fig.3.2(b) for GaTe films is obtained

for τrelu1 = 3800 nm and τrelu2 = 200 nm, whereas the fitting in Fig.3.3(b) for GaSe

films is done for τrelu1 = 2900 nm and τrelu2 = 150 nm. We note that the description

of GaSe PL is more satisfactory, possibly because in GaTe there is a contribution from

free exciton PL, so additional non-radiative escape channels and relaxation processes

need to be taken into account. For thicker GaTe films, much stronger PL than pre-

dicted by the model is observed, which probably signifies suppression of additional

non-radiative escape that free excitons experience in relatively thin films. It is also

notable that in GaTe the PL lifetime for localized states is shorter than in GaSe, which

may be due to non-radiative escape. Such processes are not included in the model.

Another reason could be deviation from the effectively ’ballistic’ transport that we

assume leads to the carrier escape into regions (1), and its replacement for the larger

thicknesses with a slower ’diffusion’ process leading to slower non-radiative escape.

Assuming that the measured PL rise-times of ≈ 20 ps are close to τrel, we can

estimate characteristic non-radiative times τnr1 and τnr2 for several limiting cases. For

example for GaSe we obtain the following values using τrelu1=1000 nm and τrelu2=100

nm: for hfilm=10 nm τnr1=0.05 ps, for hfilm=30 nm τnr1=0.15 ps, for hfilm=100 nm

τnr2=7 ps. For both hfilm of 10 and 30 nm, the non-radiative decay occurs on a sub-

picosecond time-scale. Here, the non-radiative escape is by a factor of the order of

100 faster than relaxation into the light emitting states, which is consistent with a low

quantum yield of 10−3 reported previously for thin films of MoS2[20]. For the middle

region of a 100 nm film, the characteristic non-radiative escape time is comparable

with the relaxation time into the states giving rise to PL, thus a much higher quantum
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yield can be expected for films of this thickness.

We also note that in the case of region (2), u2 should be of the order of a typical

thermal velocity of an exciton, vth. By using T=10 K and the exciton mass of 0.1 (or

0.2)[21] of the free electron mass we obtain τrelvth ≈ 1200 (or 900) nm for τrel ≈20 ps,

very similar to the order of magnitude predicted by the model for the product τrelu2.

3.3.6 Conclusions

We have investigated thin films of GaTe and GaSe prepared by mechanical exfolia-

tion from bulk crystals, deposited on SiO2 substrates and capped with a thin layer of

Si3N4. The study of optical properties of the thin films has been conducted by means

of low-temperature cw and time-resolved micro-PL techniques. The most pronounced

property observed is a significant reduction of cw PL intensity by up to 105 for thin

films of thicknesses about 10 nm compared with the films of 150-200 nm. No measur-

able PL was observed in films thinner than 7 nm. Except for PL decrease, no other

clear trends, including size-quantization effects and PL life-time modifications as a

function of the film thickness were observed in cw and time-resolved PL. We argue

that the reduction of quantum yield occurs due to the non-radiative processes asso-

ciated with the surface states. The theoretical model that we develop differentiates

between the fast non-radiative carrier escape to surface traps in the thin 15-20 nm

layers near the film surface, and slower decay in the middle region of the film, where

the carriers first diffuse to the surface layers and then decay. The model accounts for

the change in the character of the PL decay for thin films with thicknesses less than

30-40 nm, where we expect only the fast direct relaxation to surface traps.

We do not refer in our model and interpretation to the direct-to-indirect bandgap

transition found for thin InSe films in Ref.[8]. The observed strong PL decrease is not

accompanied with any significant variation of the PL lifetime, which would most likely
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accompany such a change in the band structure. This implies that the PL reduction in

our case is not associated with this type of transition, and instead the reduction in the

radiative recombination contribution is likely due to an increase in the non-radiative

rate in thin films.

Strong non-radiative decay processes occur in the studied films despite complete en-

capsulation in Si3N4 and SiO2 providing partial protection of the surface from chemical

interactions with the ambient atmosphere. This emphasizes the need for development

of novel surface passivation for III-VI films, possibly involving oxygen free substrates

and encapsulation in additional layered materials such as boron nitride. Using this

fabrication methods, the large family of III-VI materials may show weaker dependence

of quantum yield on film thickness, which will allow them to play important role as

building blocks in van der Waals heterostructures. It is likely that in the near fu-

ture fabrication of such heterostructures will be carried out in oxygen and water free

atmospheres and will include carefully designed passivating layers.
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Chapter 4

Photoluminescence and Raman

investigation of stability of InSe

and GaSe thin films

4.1 Introduction

An important issue for a variety of layered materials is stability of thin films in ambient

conditions[3, 15–18]. This has particularly showed significance in recent studies of

semiconducting black phosphorus [15], MoTe2[19] and layered superconductors such

as NbSe2[20]. We show in this chapter that film stability issues have to be taken into

account for III-VI films, in particular GaSe.

Both InSe and GaSe are layered crystals with strong covalent in-plane inter-atomic

bonding and weaker van der Waals inter-plane bonding [21, 22] as discussed in 1.2.3.

The single tetralayer having hexagonal in-plane structure consists of two Se atoms and

two In or Ga atoms: Se-Ga-Ga-Se and Se-In-In-Se as shown in Fig.4.1(a) where the

crystal structure of both materials is presented. InSe is a direct gap semiconducting

material in its bulk form and has important applications in photo-voltaic devices

81



Photoluminescence and Raman investigation of stability of InSe and GaSe
thin films

[23]. More recently it has been studied in its layered form [10, 24, 25], where tuning

of its band-gap by varying the film thickness has been demonstrated making this

material promising for van der Waals heterostructures such as light emitting diodes

[6]. GaSe is well known for its nonlinear properties[26] and in the past few years

thin films of this material were used for fabrication of photo-detectors [27] and in

optical microcavities, where control of light-matter interaction was demonstrated for

two-dimensional films[28].

In this chapter we investigate the stability of mechanically exfoliated thin films of

InSe and GaSe with thicknesses ranging from 9 to 75 nm using micro-photoluminescence

(µPL) and micro-Raman spectroscopy. We observe decrease of both the PL and Ra-

man signal over a few days. Between the optical measurements the films are kept in

air at room temperature. We interpret the decrease of both signals as gradual reduc-

tion of the effective film thickness due to interaction with oxygen and water in the

atmosphere. This results in significant changes of the crystal properties, leading to

modification and decrease of the Raman signal, and also weaker PL following occur-

rence of non-radiative centers at the layers adjacent to the films surfaces [11]. For

GaSe, we estimate the rate of erosion of 0.14±0.05 nm/hour based on our previous

detailed measurements of thickness-dependent PL, where we observed a strong reduc-

tion of PL intensity with the decreasing film thickness[11] (see chapter 3). Here we

also demonstrate that encapsulation of the films in SiO2 or SixNy allows to overcome

the problem of film degradation and prolongs the life-time of the films by two orders

of magnitude up to several months.

4.2 Samples and experimental methods

Bulk GaSe studied in this chapter was grown by high-pressure vertical zone melting in

graphite crucibles under Ar pressure from high-purity materials: Ga - 99.9999 % and
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Se - 99.9995 % [29, 30]. InSe single crystals were grown by the Bridgman-Stockbarger

method from a preliminarily synthesized ingot [31]. The conductivity of both materials

is n-type, a typical observation in selenides.

InSe and GaSe films were exfoliated from bulk using a mechanical cleavage method

discussed in detailed in section 2.1.1 and were deposited on thermally oxidized silicon

substrates. This process generates a variety of films with different thicknesses. En-

capsulated GaSe samples were fabricated with the same method and completed with

additional deposition of a 10 nm capping layer of SixNy or SiO2 by plasma-enhanced

chemical vapor deposition (PECVD). Atomic force microscopy (AFM) was used to

measure the thickness of all studied films, including the capped structures. In Fig.

4.1(b) an AFM image of a multi-layer GaSe film is presented showing that the ma-

terial thickness varies from ∼20 nm to ∼80 nm across the film (see the scale on the

right). In 4.1(c) a group of InSe films with various thickness is presented in an optical

microscope image. Here, film areas with different thicknesses are observed as different

colors[32]. As evidenced from both images, by using a laser spot with a diameter of

≈ 1.5−2µm, film areas with constant thickness can be reliably addressed in micro-PL

and micro-Raman experiments.

Optical characterization of GaSe and InSe thin films was carried out using two

different techniques: micro-PL (µPL) and micro-Raman spectroscopy. The µPL set-

up, described in section 2.2.1, was equipped with a 532 nm continuous wave (cw)

semiconductor diode laser for excitation of the sample placed in a flow cryostat at

T=10K. The laser spot on the sample was ≈ 2µm. PL signal was collected with an

NA=0.55 objective and detected with a 0.5 m single spectrometer and a liquid nitrogen

cooled charge coupled device. Micro-Raman was measured at room temperature using

an InVia Renishaw System equipped with a 532 nm laser for excitation.

We study PL signal in GaSe and InSe films following their exposure to air starting
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(a) (b)

0

90 nm

(c) 10 mm

In (Ga)

Se

Fig. 4.1 (a) Crystal structure of InSe and GaSe. (b) AFM image of a multi-layer
GaSe film. (c) Optical image of various isolated InSe thin films on SiO2/Si substrates.
Different colors in the image are associated with different film thicknesses.

from 1 hour after sample fabrication up to 100 hours. The time the sample is kept in

the cryostat during the cool-down, the experiment itself and warm-up is not counted,

as during this period the sample is kept in vacuum. After the measurement is complete

and the sample returns to room temperature in the cryostat, it is taken out and

stored in ambient conditions. The measurements in the cryostat were repeated after

keeping the sample in air for 24 hours with a maximum total exposure of 100 hours.

Raman experiments were carried out on the day of fabrication within a few hours after

exfoliation and one week later.

4.3 Results

Fig.4.2 shows low-T µPL spectra of (a) a 31 nm InSe and (b) a 52 nm GaSe films

measured with 1 mW laser power. The spectra are recorded from the same area of

both films after different exposure to air. The InSe film shows a typical excitonic peak

at ∼1.3 eV in agreement with previous reports [24, 25, 33]. PL intensity exhibits a
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Fig. 4.2 Micro-photoluminescence spectra measured at low temperature of 10 K for
(a) a 31 nm InSe film and (b) a 52 nm GaSe film after exposure to air from 1 to 100
hours.

negligible decrease from measurement to measurement that can be attributed to the

re-alignment accuracy. For GaSe, a peak at ∼2.02 eV is observed that we relate to

impurity/defect states, which typically show bright PL in this material [11]. In the

material studied in this work, the free exciton feature is only observed under pulsed

excitation when the impurity states are saturated [11]. In contrast to the InSe film in

Fig.4.2(a), for GaSe, PL signal changes its spectral shape and decreases significantly

after the film has been exposed to air for several days.

Similar PL experiment was performed for 10 thin films of different thicknesses for

each material. Figure 4.3 shows a comparison of integrated PL intensity of these InSe

and GaSe thin films normalized by their intensity during the first measurement (1

hour after exfoliation). In order to reveal typical trends, we averaged over two groups

of films showing similar behaviour: for group 1 we selected relatively thick films, 20-60

nm for InSe and 48-75 nm for GaSe; for group 2 we included thin films of 9-12 nm for
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InSe and 10-25 nm for GaSe. For group 1 InSe films (blue squares) the PL intensity

decreases by only about 12 % after 100 hours of exposure to air. For group 2 InSe

films (blue dots) during the same period of time it decreases by a factor of two more,

25 %. For the GaSe films (red squares), we find that after just 24 hours exposed to air

the intensity reduction is 15 % for group 1 thick films and 60 % for the thin films (red

dots). Such rapid reduction of PL intensity is observed for both types of GaSe films,

with the strongest effect for the case of the thin films where PL completely vanishes

after 100 hours of exposure to air, whereas for the thick GaSe films, PL falls to 30 %

of its initial intensity.

Similar behaviour of the signal intensities from the two materials is observed in

Raman spectroscopy. In Fig. 4.4 Raman spectra of a 16 nm InSe and a 24 nm GaSe

films are presented measured at room temperature. Typical modes reported previously

for bulk GaSe and InSe [25, 34–37] are observed for these thin films. For InSe (top

panel), the prominent peaks at 117.5, 179.5, 201.7 and 228.6 cm−1 correspond to the

the vibrational modes A’1, E”, E’(TO) and A’1 respectively. In the case of GaSe

(bottom panel) the modes A’1, E’(TO), E’(LO) and A’1 at 135.6, 215.6, 308.7 cm−1

respectively, are observed. These Raman modes were clearly observed in both samples

on the day when the samples were fabricated. The measurements were then repeated

one week later, during which time both samples were stored at room temperature in air.

As seen in the figure, the Raman intensity for InSe remains unchanged. In contrast,

the Raman spectra for GaSe show significant variation with time: (i) the intensity

drops by a factor of 10 and (ii) different relative strengths of the Raman modes are

observed. These changes indicate significant modification of physical properties of

GaSe films after exposure to air for 1 week.
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(bottom) film. The spectra were measured right after fabrication (solid line) and one
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4.4 Discussion

The significant decrease of PL and Raman signals for GaSe can be attributed to the

interaction of the film layers with water and oxygen in the atmosphere, similar to recent

reports on black phosphorus [15, 16]. Such processes occur in the layers adjacent to

the surface(s) of the film, leading to a significant change of the material properties.

In a simplified way, this can be described as reduction of the effective film thickness

with time when it is exposed to air, as it can be reasonably assumed that only the

unaffected material would give rise to typical PL and Raman signals, whereas the

eroded GaSe would show very low PL intensity (no PL emission at new wavelengths

compared with the original samples were found).

Using our previous results for the detailed thickness-dependence of PL intensity in

GaSe thin films presented in chapter 3, we can estimate the time-dependent changes

of the effective film thickness in our present experiments. First, the PL dependence

on exposure time for each film was analysed and effective thicknesses were obtained

for each exposure time. This was carried out by matching the observed changes in

PL intensities with those previously measured for a large number of films of different

thicknesses, where we observed a strong reduction of PL intensity with the decreasing

film thickness[11]. By performing this procedure, we deduced the erosion rate for

each of the ten films, and finally obtained an average rate for all films of 0.14±0.05

nm/hour.

In contrast, for InSe we suggest that the crystal erosion occurs just for a small

number of atomic layers at the surface and then possibly saturates causing insignificant

impact on PL and Raman intensities.

The fact that GaSe thin films are sensitive to the environmental effects highlights

that additional techniques are required in order to protect this material from inter-

action with atmosphere. Alternative methods such as fabrication of samples in an
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inert atmosphere as well as encapsulation of the films with dielectric materials like

boron nitride (hBN) [38], SiO2 or SixNy[39, 40] is required. For example, thin layers

of black phosphorus exposed to air have been reported to degrade over a few minutes

under environmental influences such as humidity, oxygen and exposure to visible light

[15, 41]. However, such processes have been reported to be suppressed if films are

exfoliated in an oxygen-free atmosphere [16, 38].

In this work, we fabricated a large number of GaSe films of different thicknesses

capped with 10 nm SixNy or SiO2. The films were initially produced by mechanical

exfoliation in air, after which PECVD deposition was carried out. In Fig.4.5 µPL

spectra of a 32 nm GaSe film capped with SixNy are presented. The spectrum shown in

black was acquired one hour after fabrication, and the spectrum shown with a red curve

was measured one month later. The difference between the intensity and lineshape of

the two spectra is negligible, indicating significant slowing of the degradation processes.

Similar degradation slow down was observed for films of any thickness for either SixNy

and SiO2 capping.

4.5 Conclusions

Our results show that chemical interactions in the normal atmosphere lead to erosion

of GaSe layers adjacent to the film surface with an average rate of 0.14±0.05 nm/hour,

leading to significant decay over time of PL and Raman intensity. Such degradation is

significantly weaker for InSe thin films. We relate this behaviour of GaSe with surface

oxidation and interaction with water in the atmosphere. Our findings imply that InSe

will be the least demanding III-VI layered material for the use in devices based on

van der Waals heterostructures, as it requires minimum protection from atmosphere.

GaSe thin films are in contrast relatively unstable under ambient conditions. However,

the stability of these films can be significantly improved using encapsulation with
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Fig. 4.5 PL spectra measured at T=10 K for a 32 nm thick GaSe film capped by a 10
nm PECVD layer of SixNy. The film was measured one hour (black) and one month
(red) after fabrication showing negligible signal decay.
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dielectrics such as SixNy or SiO2, which slow down the degradation rate by more than

two orders of magnitude.
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Chapter 5

Light-emitting diodes by

band-structure engineering in van

der Waals heterostructures

5.1 Introduction

The advent of graphene and related 2D materials [1, 2] has recently led to a new

technology: heterostructures based on these atomically thin crystals [3]. As described

in section 1.2.5, many different devices and applications have been developed. In

this chapter we take the complexity and functionality of such van der Waals het-

erostructures to the next level by introducing quantum wells (QWs) engineered with

one atomic plane precision. We describe light emitting diodes (LEDs) made by stack-

ing up metallic graphene, insulating BN and various semiconducting monolayers into

complex but carefully designed sequences. Our first devices already exhibit extrinsic

quantum efficiency of nearly 10% and the emission can be tuned over a wide range of

wavelengths by appropriately choosing and combing 2D semiconductors (monolayers

of TMDCs).
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Two-dimensional materials, that started with graphene, now include a large variety

of compounds[4]. However the real diversity can be achieved when combining these

materials to make heterostructures. If we take into account their different band-

structures, distinct potential landscapes for electrons to live in can be created.

Such band-structure engineering has previously been exploited to create LEDs and

lasers based on semiconductor heterostructures grown by molecular beam epitaxy[5].

Here we demonstrate that using graphene as a transparent conductive coating, hexag-

onal boron nitride (hBN) as tunnel barriers and different TMDCs[6] as the materials

for QWs, we can create efficient LEDs. In our devices, electrons and holes are in-

jected to a layer of TMDC from the two graphene electrodes. Because of the long

lifetime of the quasiparticles in the QWs (determined by the height and thickness of

the neighbouring hBN barriers), electrons and holes recombine, emitting a photon.

The emission wavelength can be fine-tuned by the appropriate selection of TMDC

and quantum efficiency (QE) can be enhanced by using multiple QWs (MQWs).

We chose TMDC because of wide choice of such materials and the fact that mono-

layers of many TMDC are direct band gap semiconductors[7–11]. Until this work, elec-

troluminescence (EL) in TMDC devices has been reported only for lateral monolayer

devices and attributed to thermally assisted processes arising from impact ionization

across a Schottky barrier[12] and formation of p-n junctions[11, 13, 14]. The use of

vertical heterostructures allows us to improve the performance of LED’s in many re-

spects: reduced contact resistance, higher current densities allowing brighter LEDs,

luminescence from the whole device area (Figs. 5.4A-B) and wider choice of TMDC

and their combinations allowed in designing such heterostructures. The same tech-

nology can be extended to create other QW-based devices such as indirect excitonic

devices[15], LEDs based on several different QWs and lasers.
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5.2 Samples and experimental methods

Figure 5.1 shows schematically the architecture of (a) single quantum well (SQW)

and (b) MQW structures. In the SQW a TMDC single layer is sandwiched by hBN,

graphene (for electrical injection) and again hBN for encapsulation. In the case of

MQW the two or more TMDC layer are separated by hBN (for tunnel barriers) and

then the structure is completed with the sandwich as in SQW. A peel/lift van der Waals

technique[16] was used to produce the devices (see section 2.1.2 for further details on

device fabrication). Electrical contacts connected to the top and bottom graphene

electrodes are patterned using electron-beam lithography followed by evaporation of

5 nm Cr/60 nm Au. Different QW structures comprising single and multiple layers of

TMDC flakes from three different materials, MoS2, WS2 and WSe2 were produced by

Sheffield’s collaborator Dr. F. Withers.

Cross sectional bright field scanning transmission electron microscope (STEM)

images of the SQW and MQW devices, provided by Dr. S. Haigh (Manchester),

demonstrate that the heterostructures are atomically flat and free from interlayer

contamination [17]; Fig. 5.1b,d. The large atomic numbers for TMDC allow the semi-

conductor crystals to be clearly identified due to strong electron-beam scattering (dark

contrast observed in Fig. 5.1b-d). Other layers were identified by energy dispersive X-

ray spectroscopy. The large intensity variation partially obscures the lattice contrast

between adjacent layers but, despite this, the hBN lattice fringes can clearly be seen

in Figs. 5.1b-d. The different contrast of the four MoS2 monolayers in the MQW of

Fig. 5.1d is attributed to their different crystallographic orientations, (confirmed by

rotating the sample around the heterostructure’s vertical direction which changes the

relative intensity of different layers).

Optical characterization of the devices was carried out using micro-photoluminescence

and electroluminescence spectroscopy within a helium flow cryostat at 6 K. The setup
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is described in sections 2.2.1 and 2.2.1. A 532 nm laser was used for PL measure-

ments, focused to a spot size of ∼1-2 µm using a 50x objective. EL was produced

with a voltage source (Keithley 2400) with different bias voltages depending on device

characteristics.

5.3 Results

In fig. 5.2(A-C) the band diagrams of a SWQ based on MoS2 (that can be extended

to any TMDC) for the case of zero applied bias (A), intermediate bias Vb (B) and high

bias (C) are shown. It shows how electrons and holes tunnel through the hBN barrier

when Vb reach the onset bias. When this happens, excitons are created and able to

recombine to create photons. Here the charge neutrality point of graphene lies 1.5 eV

above the valence band of h-BN and 0.5 eV below the conduction bands of MoS2 as

found earlier in tunnelling experiments [18]. The devices often demonstrate some small

asymmetry with respect to the reversal of Vb, which we associate with unintentional

chemical doping being slightly different for GrB and GrT . In nearly all devices, EL

could be observed both for positive and negative Vb, though with somewhat different

intensity.

To gain insight into the operation of the SQW devices current-voltage characteris-

tics and photoluminescence (PL) and EL spectra were measured. Three different SQW

LEDs were characterised using MoS2, WS2 and WSe2. The concerned heterostructures

are shown schematically in Fig. 5.1(a).

5.3.1 MoS2 single quantum well LED

In Fig. 5.3(a-c) the spectral characterisation of the MoS2 SQW device (named SL

MoS2-1) at T=6 K is presented. Fig.5.3(a) shows the PL bias (Vb) dependence from
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a hBN

hBN

GrT

GrB

MoS2

MoS2

GrB

GrT

hBN

b

c d

5 nm

5 nm

Fig. 5.1 Schematics of the (a) SQW heterostructure
hBN/GrB/2hBN/MoS2/2hBN/GrT /hBN. (b) Cross-sectional bright field STEM
image of the type of heterostructures presented in (a). (c) MQW heterostruc-
ture hBN/GrB/2hBN/MoS2/2hBN/MoS2/2hBN/MoS2/2hBN/MoS2/GrT /hBN. (d)
Cross-sectional bright field STEM image of the type of heterostructures presented in
(c).
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Si SiO2 BN GrB BN

MoS2

BN GrT BN
A

B

ℏwEL

Vb

C

Fig. 5.2 Band diagrams for the case of zero applied bias (A), intermediate applied bias
Vb (B) and high bias (C) for the heterostructure presented in Fig. 5.1(a), electrons
and holes recombine to produce EL with energy ~ωEL.

106



5.3 Results

X0

X-

XL

XL XL

X-

(a) (b) (c)

Fig. 5.3 Optical and transport characterization of a MoS2 SQW device (SL MoS2-1).
(a) PL bias dependence of MoS2 LED. (b) EL bias dependence of MoS2 LED. (c)
Comparison of EL and PL spectra for MoS2 LED at 2.3 V.

-2.2 to 2.2 V. At low Vb, the PL is dominated by the peak at 1.93 eV, which we

interpret as the neutral A exciton, X0 [8]. We attribute the two weaker and broader

peaks at 1.87 and 1.79 eV to bound excitons, XL [19, 20] . For -0.8 V <Vb< 0.6 V no

significant change occurs in the spectrum. However, at Vb=0.65 V, the PL spectrum

changes abruptly with another peak emerging at a lower energy of 1.90 eV. We explain

this transition as being due to the fact that at this voltage the Fermi level in GrB rises

above the conduction band in MoS2, allowing injection of electrons into the QW (Fig.

5.3(c)). This leads not only to an increase in tunnelling conductivity but, also, to

accumulation of electrons in MoS2 and formation of negatively charged excitons, X−

[13]. The X− peak is positioned at a lower energy compared to the X0 peak due to the

binding energy, EB, of X−. In the case of MoS2 it is estimated as ∼36 meV near the

onset of X−. As the bias is increased, the energy of the X− shifts to lower values which

we attribute to the quantum confined Stark effect or increase in the Fermi energy in

MoS2[8].

In contrast to PL, EL starts only at Vb above a certain threshold (Fig. 5.3b). Such
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A B

Fig. 5.4 Optical image of a SQW device based on MoS2 (SL MoS2-1). (A) Device with
no voltage applied, the dashed line outlines the heterostructure are. Scale bar, 10 µm.
(B) The same device emitting light with a voltage of 2.5 V.

behaviour is associated with the Fermi level of GrT being brought below the edge of

the valence band so that holes can be injected to MoS2 from GrT (in addition to

electrons already injected from GrB) as sketched in Fig. 5.2C. This creates conditions

for exciton formation inside the QW and their radiative recombination.

We find that the EL frequency is close to that of PL at Vb 2.4 V (Figs. 5.3a-c),

which allows us to attribute the EL to radiative recombination of X−. A comparison

of both EL and PL spectra is shown in fig. 5.3c with Vb=2.4 V. A real image of this

device is presented in fig. 5.4, (A) shows the device with no voltage applied. Here

dashed line highlight the overlaping area of the layers. In (B) this area emits red light

due to a voltage Vb=2.5 V applied through the graphene contacts. The black scale

bar corresponds to 10 µm.
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X0

X-
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X-
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XL

X*

Fig. 5.5 Optical and transport characterization of a WS2 SQW device (SL WS2-1).
(a) PL bias dependence of WS2 LED. (b) EL bias dependence of WS2 LED. (c)
Comparison of EL and PL spectra for WS2 LED at 2 V.

5.3.2 WS2 single quantum well LED

Similar behaviour is observed for a WS2 QW device (SL WS2-1), see Figs. 5.5a-c. PL

spectra show a neutral exciton X0 peak [21] at 2.06 eV from -2.1 to 1.8 V (fig. 5.5a).

At positive bias Vb a trion peak X− is tuned from 2.01 eV to lower energies down to

1.95 eV. At negative bias an additional peak at lower energy (1.91 eV) is observed,

this emission is associated with the bound excitons [19]. EL arises from ∼1.9 V from

X∗, as can be seen in fig. 5.5b. White line in this figure shows the current density as

a function of Vb. The difference in EL and PL spectra is notable in this material at

2V (fig 5.5c), showing two pronounced peaks in PL and only one peak and a shoulder

at lower energy beyond X0 and X− peaks in EL, the origin of other spectral lines

cannot be established at present with certainty. It is likely that X∗ peak correspond

to emission from impurity-bound excitons, similarly to XL.
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5.3.3 Multiple quantum well LED devices

As described above, MQW devices were fabricated. The same optical characterisation

as for SQW devices was carried out.

Figs. 5.6 and 5.7 show results for two such MQW structures with three (3MQW

MoS2-1) and four MoS2 QWs (4MQW MoS2-1), respectively. The current increases

with Vb in a step-like manner, which is attributed to sequential switching of tunnelling

through individual MoS2 QW (see Figs. 5.6 and 5.7).

In the three-QW device PL is qualitatively similar to that of SQW devices (Fig.

5.6a) but the X0 peak is replaced with X− peak at a Vb=-0.4 V. The X0 peak reappears

again at Vb>1.2V. This can be explained by charge redistribution between different

QWs. The EL first becomes observable at Vb>3.9 V and j of 1.8 nA/µm2; Fig. 5.6d.

This current density is nearly 2 orders of magnitude smaller than the threshold current

required to see EL in similar SQWS. Figure 5.6e shows EL and PL spectra where it

can be seen that both X0 (width 24 meV) and X− (width 78 meV) peaks appear in EL

at energies of 1.94 and 1.86 eV, respectively, similar to their positions in SQWs. The

width of the X− exciton line, however, has been significantly broadened compared to

the SQWs.

For the four-QW device, PL spectra are dominated by X0 and X− (Fig. 5.7b). A

broad peak at 1.6 eV appears at negative bias from 2.5 V originating from the localized

excitons XL. EL is seen from 0.9 nA/µm2 (blue curve in Fig. 5.7d), less than in the

3 QWs device with a photon energy of 1.8 eV originated from only X−. Two more

individual spectra with higher injection currents are shown in Fig. 5.7d in green and

red. Comparison of both EL and PL at 7 V is observed in Fig. 5.7e.

The described technology of making designer MQWs offers the possibility of com-

bining various semiconductor TMDCs in one device. Figs. 5.8(a-c) describe an LED

made from WSe2 and MoS2 QWs: Si/SiO2/hBN/GrB/3hBN/WSe2/3hBN/MoS2/3hBN/GrT /hBN
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(WSe2/MoS2 QW-1). EL and PL occur here in the low energy part of the spectra

and can be associated with excitonic states proposed by You et al. [22] in WSe2. EL

is shown in 5.8(a and c) and originates from both X− and P2 for negative bias and

from X−, P1, P2 and P3 for positive bias. In the case of PL (5.8b)) it is much brighter

at negative bias showing a notable shift of emission from 1.7 eV to lower energies for

X− and, less intense, P1. At positive bias a relatively weak emission from X− is seen.

X0 is observed with very low intensity at 1.72 eV and Vb ≈0 V. In comparison with

SQW devices, the combinational device in Fig. 5.8 exhibits more than an order of

magnitude stronger both PL and EL. We associate this with charge transfer between

the MoS2 and WSe2 layers such that electron-hole pairs are created in both layers

but transfer to and recombine in the material with the smaller band-gap [23]. Such

process is expected to depend strongly on band alignment, which is controlled by bias

and gate voltages. This explains the complex, asymmetric Vb dependence of PL and

EL in Fig. 5.8b.

113



Light-emitting diodes by band-structure engineering in van der Waals
heterostructures

5.4 Discussion

EL is seen from all nine devices characterised showing different intensities and emission

wavelengths depending on the active material. An important parameter for any light

emission device is the QE that is defined as the number of emitted photons N to the

number of injected electron-hole pairs, as discussed in section 2.2.1. To perform an

accurate estimation of EQE, a detailed study of the losses in the system was performed

in order to obtain a relation between the number of counts taken with the CCD and

the current. This study is presented in Appendix B.

For the SQW structures we estimate η up to 1%, this value by itself is ten times

larger than that of planar p–n diodes [11, 13, 14] and 100 times better than EL

from Schottky barrier devices based on single atomic layer TMDCs [12]. Our rough

estimations show that the EQE for PL is lower than that for EL. Relatively low EQE

found in PL indicates that the crystal quality itself requires improvement and that

even higher EQE in EL may then be achieved [21]. Further improvements to η could

be expected, if fabrication procedures are developed to reduce the exposure of the

crystals to oxygen and atmospheric water, which may lead to their partial oxidation.

Another route to improve the QE is to increase the time quasiparticles spend in

the QWs. To this end, we have employed multiple QWs stacked in series (see figs.

5.6 and 5.7), which increases the overall thickness of the tunnel barrier and enhances

the probability for injected carriers to recombine radiatively. For these devices, η

reaches values of ∼8.4 % for four QW MoS2 device (4MQW MoS2-1) and 5.4% for

MoS2/WSe2 LED (MoS2/WSe2 QW-2), figs. 5.8. These values of QE are comparable

to modern-day organic LED lighting and the concept is compatible with the popular

idea of flexible and transparent electronics due to the thickness of 10–40 atoms.

A summary of all devices studied showing EL peak position, linewidth and quan-

tum efficiency at highest injection current at 6 K is presented in table 5.1. Linewidths
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Device EL Peak Posi-
tion (eV)

FWHM (meV) QE (%)

SL MoS2 – 1 1.86 30 0.30
SL MoS2 – 2 1.81 90 0.51
SL WS2 2.00 23 1.32
3MQW MoS2 1.94 78 6.00
4MQW MoS2 1.83 65 8.40
WSe2/MoS2 QW-1 1.66 14 4.80
WSe2/MoS2 QW-2 1.68 21 5.40

Table 5.1 The main peak position, width and quantum efficiency at highest injec-
tion current T=6 K for the electroluminescence spectra for different devices based on
TMDC materials.

as narrow as 14 meV were observed in MoS2/WSe2 devices.

5.5 Conclusions

In summary, we have demonstrated band-structure engineering with one atomic layer

precision by creating QW heterostructures from various 2D crystals including several

TMDC, hBN and graphene. Our LEDs based on a single QW already exhibit quantum

efficiency of the order of 1% and linewidths down to 14 meV, despite the relatively

poor quality of currently available TMDC layers. This QE can be improved signifi-

cantly by using multiple QWs, and LED devices consisting of 3 to 4 QWs show the

QE up to 8.4% at low temperature. Combining different 2D semiconductor materials

allows fine tuning of the emission spectra, and the demonstrated concept is compatible

with the popular idea of flexible and transparent electronics. The range of functional-

ities for the demonstrated heterostructures is expected to grow further with the rapid

progress in technology of chemical vapour deposition growth that will allow scaling up

of production of similar devices.
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Chapter 6

Temperature-dependent behaviour

of MoSe2 and WSe2 van der Waals

heterostructure LEDs

6.1 Introduction

Recently molybdenum and tungsten dichalcogenides (MoX2 and WX2), have attracted

considerable attention following the discovery of the indirect-to-direct band gap tran-

sition [1, 2] and the coupling of the spin and valley degrees of freedom in atomically

thin layers[3]. Both in WX2 and MoX2, electrons and holes form excitons exhibiting

very high binding energies [4–6] and stability at room temperature [1–3, 7, 8], making

them attractive for optoelectronic devices.

Further to this, an important band-structure property arising from the strong spin-

orbit interaction in these compounds has been predicted by density functional theory

[9, 10] (see Fig. 6.1A-B): in WX2 (MoX2) the lowest energy states in the conductance

band and the highest energy states in the valence band have the opposite (same) spin

orientations preventing (enabling) their recombination with emission of a photon. For
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this reason, according to the spin-state ordering predicted by the theory, the lowest

energy excitonic sub-band in WX2 corresponds to dark excitons, separated from the

bright exciton sub-band by the energy approximately equal to the electron spin-orbit

splitting ∆SO of the order of 30-40 meV [9–12]. In this chapter we will show that such

band-structure properties of WX2 strongly impact on the LED performance, similar to

the structures presented in chapter 5, leading to significant enhancement of the room

temperature external quantum efficiency of ∼10 % for the WSe2 LEDs in the EL

regime. A comparison with a MoSe2 LED will be carried out, where a more common

behaviour is observed: EL intensity falls by up to 100 times when the temperature is

varied from 10 to 300 K leading to a reduction of the quantum efficiency.
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Fig. 6.1 Schematic representation of the band structure of (A) WSe2 and (B) MoSe2.
Red and blue arrows denote spin orientation.
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6.2 Samples and experimental methods

The LEDs used in this chapter are identical to the devices presented in chapter 5

fabricated with the lift/peel method described in section 2.1.2. In the present case the

TMDCs used were single layers of WSe2 and MoSe2. Fig. 6.2A shows schematically

the structure: GrB/3hBN/WSe2/3hBN/GrT . A bias voltage VB is applied between

the two graphene contacts, hBN layers act as tunnel barriers and the WSe2 is the

active semiconductor layer.

Optical characterisation of the LEDs was carried out using µPL setup shown in

fig. 2.8 with a 532 nm diode laser for excitation and a helium flow cryostat that allows

temperature dependent measurements from 6 to 300 K. EL was obtained applying

bias voltage with a source-meter device (Keithley 2400).

DSO

Vb

h-BNh-BN

WSe2

GrT GrB

h-BN

h-BN

WSe2

GrT

GrB

A B

Fig. 6.2 (A) Schematic of the WSe2 LED architecture. (B) Band alignment at high
bias of a WSe2 LED.
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6.3 Results

Fig. 6.2B shows the band structure of an LED based on WSe2. By applying bias

voltage, Vb, between the two graphene electrodes, it is possible to set conditions for

electron (hole) injection into the conductance (valence) band of the WSe2 layer. The

hBN barriers act to control the lifetime of the charge carriers inside the TMDC layer

leading to increased probability of radiative recombination: for a long enough dwell

time of the charge carriers controlled by the thickness of hBN, excitons forming in the

WSe2 layer can recombine with light emission. The same effect occurs in a MoSe2 based

LED. Full optical characterisation including EL and PL at different temperatures was

performed for both structures in order to make a comparison and analyse the results

influenced by the spin-orbit effects described above.

6.3.1 MoSe2 device

As the temperature dependence of the LEDs is the key study of this work, it is

necessary to describe the behaviour of the excitons in the devices. For this reason

a temperature dependence of PL was carried out. This is presented in fig. 6.3A-D. In

6.3A, a PL spectrum at 5 K can be observed, the two well resolved peaks correspond

to X0 (1.65 eV) and X− (1.62 eV, binding energy Ec=30 meV) with linewidths of 10.4

meV and 8.6 meV respectively (calculated with the lorentzian fits shown in blue and

red solid lines, respectively). In 6.3B, a normalized temperature dependence from 5

to 300 K is shown. X− line dominates up to 55 K when it starts vanishing while X0

remains up to room temperature. The peak positions of both lines are plotted in 6.3C

as a function of temperature in order to see the band gap (Eg) dependence with T

(red circles for X0 and black squares for X−). Solid lines are fittings done using the
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Bose-Einstein model [13]:

Eg(T ) = Eg(0) − 2αB

e
ΘE
T − 1

(6.1)

where Eg(0) is the band gap at base temperature, αB represents the strength of the

exciton-phonon interaction and ΘE corresponds to the average phonon temperature.

The values obtained were Eg(0)=1.648 eV, αB=45 meV and ΘE=250 K for X0 and

Eg(0)=1.618 eV, αB=50 meV and ΘE=250 K for X−. In 6.3D, Arrhenius fits using

the following equation:

I(T )
I(T = 5K) = 1

1 + e−E1/kBT
(6.2)

for PL intensities of both lines are shown, this allows to calculate a activation

energies E1 of 20 and 25 eV for X0 and X−, respectively. This plot clearly shows how

X− (black squares) decays faster with temperature than X0 (red circles).

Once knowing the excitonic behaviour of MoSe2 through PL, electrically driven

experiments on LEDs were performed. This is summarized in fig. 6.4A-F. PL bias-

dependence at T=6 K is shown in fig. 6.4B, X0 and X− are observed for |Vb| <1.5 V

at 1.63 meV and 1.61 meV, respectively. X0 gets weaker for |Vb| >1.5 V. The current

density is plotted with a white line in fig. 6.4B). Fig. 6.4A shows EL negative bias-

dependence, where strong emission appears when Vb <-1.85 V from X−. A different

behaviour is seen for positive bias (fig. 6.4C) where EL, from both X0 and X−, is

1000 times weaker possibly due to asymmetry in the thickness of hBN barriers. An

EL spectrum for Vb=2 V is plotted in fig. 6.4E showing features similar to those in

the PL regime. Temperature dependent EL measurements were also performed: in

fig. 6.4D spectra taken at 6 K (blue), 150 K (green) and 300 K (red) for Vb=-2 V

are presented showing a significant EL reduction with T. For positive bias, EL rapidly

decreases to zero when T≃40 K. The Arrhenius fit in 6.4F for EL at -2V shows an
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Fig. 6.3 (A) Typical PL spectrum of MoSe2 LED taken at T=5 K with 10 µW showing
two characteristic peaks attributed to a neutral (X0) and charged (X−) exciton with a
measured linewidth of 10.4 meV and 8.6 meV respectively obtained from the Lorentzian
fittings (red and blue solid lines). (B) Normalized PL temperature dependence of
MoSe2 LED from 5 to 300 K. (C) Peak positions of X0 (red) and X− (black) as a
function of temperature. Solid lines indicate fittings with Bose-Einstein model (eq.
6.1). (D) Arrhenius plot of the PL yield for both X0 (red) and X− (black), fittings
with eq. 6.2 are showed in red and solid lines to calculate activation energies E1 of 20
and 25 meV for X0 and X−, respectively.
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activation energy of 30 meV.

6.3.2 WSe2 device

Similar to the experiments presented for a MoSe2 LED, PL was first studied in WSe2.

Fig. 6.5A shows a PL spectra taken at T=6 K and excitation power of 50 µW. Using

the notation adopted in You et al [14], the peaks observed are neutral exciton X0 (1.733

eV, blue line) and trion X− (1.70 eV, red) as well as a number of additional features,

with the most pronounced peaks P1 (1.675 eV) and P2 (1.652 eV). Linewidths obtained

with lorenzian fits are shown in the graph. In fig. 6.5B, normalized PL temperature

dependence from 6 to 300 K can be observed. X0 is visible at all temperatures while

the three additional peaks eventually disappear with P1 and P2 becoming negligible

above 80 K. The band gap temperature dependence for X0 and X− is plotted in fig.

6.5C. By doing the same analysis as in MoSe2 using eq. 6.1, the following values are

calculated: Eg(0)=1.734 eV, αB=70 meV and ΘE=270 K for X0 and Eg(0)=1.706

eV, αB=60 meV and ΘE=270 K for X−. The Arrhenius plot in 6.5D was obtained

with integrated PL intensities over the whole spectra for all temperatures to calculate

an activation energy of ∼40 meV. Strikingly PL intensity increases with temperature,

opposite to the behaviour observed in MoSe2.

Fig. 6.6A,C shows typical light emission behaviour of a WSe2 LED at low T=6K.

6.6A,C show that for biases |Vb|>2 V, strong EL is observed. The peaks in EL spectra

are clearly identifiable, using the description of PL features as shown in figs. 6.6A,C.

For negative bias, EL originates from X− and P1 while for positive bias the four peaks

X0, X−, P1 and P2 are observed. Similar to PL, when T increases, the neutral exciton

line dominates. This can be corroborated in fig. 6.6D where EL spectra for Vb=2.3

V at 6K (black), 20 K (red), 40 K (green) and 80 K (blue) are plotted. It is worth

noting that, although features P1, P2 are always present in all the LEDs measured,
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their intensities relative to X0 and X− vary from device to device. For example, in

6.6E EL obtained at three different temperatures with a different device (WSe2-LED2)

(Vb=2.3 V) shows only emission from X− (1.698 eV at 6 K) up to room temperature

with an increase of ∼400 times compared to low-T. This kind of device is made with

thin h-BN barriers (2 single layers) and no X0 is observed. Finally, EL enhancement

is studied in fig. 6.6F with an Arrhenius fit. Like in PL, this result contrasts with the

T-dependent behaviour of EL from MoSe2.

6.4 Discussion

MoSe2 LED exhibits a typical behaviour with temperature: PL and EL intensity

decrease when increasing temperature up to 300 K. WSe2 shows the opposite behaviour

with an enhancement of both PL and EL intensities at room temperature. This

comparison is illustrated in Fig. 6.7. WSe2 EL, shown in red squares, increases with

a factor of 200 from 5 to 300 K while MoSe2 EL (blue squares) decreases by a factor

of ∼100.

The devices described in chapter 5 show a significant decrease in EL intensity by

a factor exceeding 10 when the temperature was varied between 10 and 300 K. As an

example, Fig. 6.8 shows EL temperature dependence of a MoS2 LED. In 6.8A I-V

curves from 6 to 300 K are plotted showing an increase in the current through the

device with temperature of ∼20 µA at high bias (|Vb|>2 V). EL spectra in the same

range of temperatures for Vb=2.7 V can be observed in Fig. 6.8B. An Arrhenius fit of

EL yield is plotted in fig. 6.8C that allows to calculate an activation energy of 15.57

meV. The decrease in intensity corresponds to a reduction in EQE to ∼0.1 % at room

temperature.

The strong increase of the EL with temperature in WSe2 corresponds to a rise of

EQE. This makes van der Waals heterostructures with embedded WSe2 monolayers
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highly promising material for ultra-thin flexible LEDs. Fig. 6.9A shows EQE T-

dependence for three WSe2 devices. Here the EQE is calculated as described in section

2.2.1 and appendix B, similar to previous chapter. It is observed in Fig. 6.9A that

the EQE shows the characteristic increase with temperature reaching 10% at T = 300

K, a factor 200-500 improvement in the room temperature performance as compared

to the single-monolayer MoS2 or MoSe2 LEDs. In addition to this, in Fig. 6.9C we

observe a monotonically increasing EQE as a function of bias voltage and injection

current density to a maximum measured value of j=103 A/cm2. Fig. 6.9B shows

the EL spectra obtained from device 3 in Fig. 6.9A operated at room temperature at

increasing injection current densities with a peak emission of more than 1.3 million

counts per second.

100 200 300
0

5

10

1.6 2.0 2.4
0

2

4

6 Device 1
 Device 2
 Device 3

A

 

 

EQ
E 

(%
)

Temperature (K)

B C

EQ
E 

(%
)

Bias (V)

0 5 10
Current density ( A/ m2)

T = 300 K

1.6 1.810
0

101

102

103

104

105

106

 EL Intensity (cts/sec)

 

Energy (eV)

9.4 A/ m2

6.8
1.1
0.5

Fig. 6.9 (A) Temperature dependence of the quantum efficiency for three separate
WSe2 LEDs measured measured at bias voltages and injection currents of, Device
1 (2.8 V, j=0.15 µA/µm2), Device 2 (2.8 V, j=0.5 µA/µm2) and Device 3 (2.3 V,
j=8.8 µA/µm2). (B) Individual electroluminescence spectra plotted for four different
injection current densities for Device 3. (C) The external quantum efficiency plotted
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the EQE monotonically increases even up to current densities of 10 µA/µm2 or 1000
A/cm2.

Indeed, a common drawback of commercial LED lighting is a suppression of the
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EQE (so-called ’efficiency droop’) at high injection currents caused by increased non-

radiative processes [15, 16]. In contrast, the presented WSe2-based van der Waals

heterostructure LEDs become brighter at higher temperature, and their efficiency

remains high and increases with current densities even at high j as shown in Fig.

6.9C.

We suggest that the mechanism of the unusual T-dependence of EL and PL in

WSe2 LEDs is related to the ordering of the spin states in the free carrier bands as

illustrated in Fig. 6.1, leading to the specific ordering of the bright and dark exciton

sub-bands in these materials [9, 10]. The discussion below will be focused on the

behaviour of the neutral exciton, the PL and EL of which dominate at room T in

the majority of LEDs described. The dark and bright exciton sub-bands are split by

approximately ∆SO ∼ 30-40 meV. The splitting is further modified by the electron-

hole exchange interaction, which is different for the bright and dark states but is of

the order of 1-2 meV [9–12] and is therefore neglected in the following discussion.

At low temperature the exciton population accumulates in the low energy dark

exciton sub-band, which mostly decay via (i) non-radiative escape, and (ii) phonon-

and electron-assisted light-emission processes. In processes (ii), momentum and energy

conservation is fulfilled as a result of the exciton scattering with phonons or electrons.

It is possible, that the origin of the features P1-P2 is exactly through such phonon or

electron assisted decay of the dark exciton, which would explain the strong intensity

of those features at low T. At the same time, at low T the bright exciton sub-band is

weakly populated as it is shifted to higher energy by ∼ ∆SO with respect to the dark

exciton sub-band and therefore the intensity of the X0 line is low.

As the temperature increases, the thermal equilibrium dictates the increase of the

exciton population in the bright exciton sub-band in WSe2. This population will

be mostly contained in the high-k exciton ’reservoir’ outside the small-k light-cone
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states. Excitons from the reservoir will then be scattered into the light-cone where

they recombine radiatively. The scattering will occur as a result of interaction with

phonons and electrons, the latter is particularly significant in the EL regime.

The fact that at high T the intensity of the X0 line increases both in PL and

EL is the manifestation of such thermal activation behaviour. The rate of the X0

line intensity increase with T depends on several factors, and will not only reflect the

equilibrium Boltzmann distribution of excitons among the four exciton and trion sub-

bands. In a simplified approximation, the light emission intensity will be proportional

to the product of such equilibrium population in the bright exciton sub-band and

the ratio of τnr/(τrel + τnr), where τnr is a typical non-radiative decay time for the

high-k reservoir excitons, and τrel a typical relaxation time of the high-k excitons

into the light-cone states. Both time constants may be functions of temperature,

and vary from sample to sample depending on the residual doping of the layers and

device architecture (the latter for example defining the carrier dwell time in the active

layer). Furthermore, the X0 linewidth shows pronounced dependence on T, typically

increasing from 10-20 meV at T=10K to over 40 meV at room T. Such homogeneous

broadening would effectively relax the energy conservation required for the scattering

into the light-cone states and would modify the way the reservoir states (as well as

the dark excitons) contribute to PL and EL.

The factors considered above imply a non-trivial dependence of the PL and EL

intensity on temperature in WSe2. Indeed the overall increase of PL and EL in the

range from 10 to 300 K varied between different devices. Still, the Arrhenius fit (Fig.

6.6F) to the exponential increase of the EL with increasing temperature on some

of our devices yields the characteristic energy of ∼40 meV, which is in reasonable

agreement with the predicted ∆SO [9]. On the other hand, the MoSe2 films and LEDs,

where the dark exciton sub-band is higher in energy than the bright exciton sub-band,
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always showed the opposite behaviour with the notable decrease of light emission with

increasing T. While it is expected that the emission efficiency would decrease due to

the transfer of some exciton population into the dark exciton sub-band and also into

the high-k states, such a strong decrease by a factor of 100 and more may only be

possible if the non-radiative escape time shortens at elevated temperature.

6.5 Conclusions

High-efficiency LEDs made from van der Waals heterostructures comprising a sin-

gle atomic layer of WSe2 as active light-emitting material, hBN tunnel barriers, and

graphene electrodes for vertical current injection were fabricated. Such WSe2-based

LEDs show unexpectedly enhanced performance at room temperature compared with

the low-T operation. This enhancement is also in contrast to MoSe2 and MoS2 LEDs

studied in this thesis, where both PL and EL decrease by a factor of 10 to 100 when the

temperature is varied from 10 to 300 K. With the record external room temperature

efficiencies of 10%, such single layer WSe2 LEDs present significant promise for future

development of flexible opto-electronic components. The efficiency can be boosted fur-

ther by creating multiple quantum well devices as described in chapter 5 and by the

fine tuning of the h-BN tunnel barrier thickness. One of the remaining challenges is

scalable production of these components, only possible with well controlled wafer-scale

growth techniques [17, 18].
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Chapter 7

Conclusions

In this thesis optical characterisation of two different groups of two dimensional semi-

conductor materials was carried out: III-VI compounds and transition metal dichalco-

genides (TMDCs). With the latter, light emitting diodes based on van der Waals

heterostructures were realised and characterised using photoluminescence (PL) spec-

troscopy. The key results for each topic were the following:

1. In chapter 3, low temperature cw and time resolved PL of two dimensional

GaTe and GaSe two dimensional films was presented. It was observed that

PL intensity decreases significantly when the film thickness is reduced for both

materials and that films thinner than 7 nm show no detectable PL. We claim

that the reduction of quantum yield is a consequence of non-radiative processes

associated with surface states. A model was proposed to differentiate between

the fast non-radiative carrier escape to surface traps in the thin 15–20 nm layers

near the film surface, and slower decay in an intermediate region of the film,

where the carriers first move to the surface layers and then decay. The model

accounts for the change in the character of the PL decay for thin films with

thicknesses less than 30–40 nm, where we expect only fast direct relaxation to
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surface traps. No other trends with thickness were observed including notable

changes in PL lifetime and blue shift which would be expected due to quantum

confinement. Further protection of the films such as oxygen-free encapsulation

is needed to hinder the fast PL intensity decay. This will allow III-VI materials

to be considered as building blocks for van der Waals heterostructures.

2. In chapter 4, the stability of thin films of InSe and GaSe was studied using PL

and Raman spectroscopy. We showed that GaSe films are affected by chemical

interactions on the surface layers leading to film erosion with an average rate

of 0.14±0.05 nm/hour when they are exposed to ambient conditions. This was

observed as a significant decrease over time of PL and Raman intensity. In

the case of InSe, degradation under the same condition is much weaker. It

demonstrates that this III-VI layered material is a good candidate to be used in

van der Waals heterostructure. A reduction of the degradation rate by more than

two orders of magnitude in GaSe films can be achieved by using encapsulation

of the films with dielectrics such as SixNy or SiO2.

3. In chapter 5, light emitting diodes based on van der Waals heterostructures fab-

ricated by stacking graphene, insulating hexagonal boron nitride and various

semiconducting TMDC monolayers were presented. Our devices made with a

single quantum well (QW) exhibit an external quantum efficiency (EQE) of ∼1%

under electrical pumping. When increasing the number of quantum wells, the

quantum efficiency increases up to ∼10%. The emission can be tuned over a

wide range of wavelengths by appropriately choosing and combining 2D semi-

conductors such as MoS2, WS2 and WSe2.

4. In chapter 6, light emitting diodes based on van der Waals heterostructures made

from WSe2 and MoSe2 were presented. Here we show that the EQE in van der
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Waals LEDs comprising monolayers of WSe2 unexpectedly grows with temper-

ature. Room temperature EQE under electrical injection of 10% was demon-

strated in single WSe2 monolayer QW LEDs exceeding by more than 500 the

previous best performance of MoX2 QWs in ambient conditions. Such tempera-

ture activated behaviour is a consequence of the strong spin-orbit interaction and

specific ordering of the spin states in tungsten dichalcogenides resulting in the

lowest-energy dark exciton sub-band. A comparison with a MoSe2-based LED

was carried out to emphasize this behaviour. In MoSe2 LEDs strong decrease of

EQE was observed at elevated temperatures.
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Appendix A

Model for PL intensity dependence

on thickness of GaTe and GaSe

thin films

In order to describe the observed trend of photoluminescence (PL) intensity as a

function of film thickness hfilm in GaSe and GaTe thin films we have developed a

simplified rate equation model described below. It describes the behavior of photo-

excited carriers in terms of populations of e-h pairs, i.e. electrons and holes are not

treated separately for simplicity.

A.1 Modeling

As shown in Fig. 3.7(b) we assume that the film is divided into three regions: (1) two

regions of thickness h0 near the film surfaces where fast carrier relaxation to surface

traps occurs leading to non-radiative carrier escape; (2) a ’normal’ region of thickness

hfilm − 2h0 in the central part of the film where carriers do not decay non-radiatively,

but can escape into the regions (1), where they undergo non-radiative decay. Here the
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Model for PL intensity dependence on thickness of GaTe and GaSe thin
films

h0 value may be associated with a depletion depth or an average surface trap radius[1].

It is assumed to be independent of the film thickness and may be different for films

made of different materials.

In region (1), in first approximation the average time it takes for the carrier/e-h

pair to escape non-radiatively is proportional to half the thickness of region (1) (can

be understood as the average time for the carrier to reach the surface or as the overlap

of the wavefunction of the carrier and the trap). This half-thickness is given by h0/2

for the two regions adjacent to the surface for film thicknesses hfilm > 2h0, and is

hfilm/4 for hfilm ≤ 2h0, when the two surface regions merge. Thus we introduce a

non-raditive decay time in the regions of type (1) as τnr1 = (h0/2)/u1 for hfilm > 2h0,

and τnr1 = (hfilm/4)/u1 for hfilm ≤ 2h0. Here u1 is a constant with the dimensions of

meter per second.

In region (2), the non-radiative escape time reflects the average time it takes for a

carrier or an e-h pair to reach any of the regions (1). The underlying mechanism for

this process may be depletion and band-bending expected at the film surface leading

to charge separation and non-radiative decay [1]. We assume that once the carrier or

e-h pair has reached region (1) it escapes non-radiatively. In first approximation, the

average time it takes a carrier/e-h pair to reach region (1) is proportional to half the

thickness of region (2), hfilm/2 − h0. Thus we introduce a non-raditive decay time in

region (2) as τnr2 = (hfilm/2 − h0)/u2. Here u2 is a constant with the dimensions of

meter per second, effectively corresponding to the average carrier velocity in region

(2). Notably, in films with hfilm ≤ 2h0, region (2) does not exist, and the only non-

radiative escape that we consider is due to the escape to traps as described above for

region (1).

In equations below, we denote e-h pair populations in regions (1) and (2) as N1

and N2, respectively, and the population of the ’PL states’ as Nloc. Appropriately,
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A.1 Modeling

N2 = 0 for hfilm ≤ 2h0. In both regions, e-h pairs relax with the time τrel into the

’PL states’ giving rise to radiative recombination. Non-radiative escape from the ’PL

states’ is neglected. This assumption is based on the fact that in most cases PL is

observed from the tightly-bound localized states. Nloc states decay radiatively with a

characteristic time τP L, so that the PL intensity IP L = Nloc/τP L. Saturation of ’PL

states’ is neglected as the data reported in Figs.3.2(b),3.3(b) is measured for the laser

powers where saturation effects are unimportant. The light absorption coefficient, α is

assumed to be the same in both types of regions (1) and (2). For the small thicknesses

of the films that we consider, the e-h pair generation rate is equal to Pα multiplied by

the thickness of the regions (1) or (2) as given below. Here P is the e-h pair generation

rate due to the laser excitation rescaled to account for the PL detection efficiency.

The following rate equations can thus be introduced for the case hfilm > 2h0:

dN1/dt = 2h0Pα − N1/trel − N1/τnr1

dN2/dt = (hfilm − 2h0)Pα − N2/trel − N2/τnr2

dNloc/dt = N1/τrel + N2/τrel − Nloc/τP L

For the case hfilm ≤ 2h0 we will have:

dN1/dt = Phfilmα − N1/trel − N1/τnr1

N2 = 0

dNloc/dt = N1/τrel − Nloc/τP L

In the steady-state case we obtain the following expression for PL intensity for

hfilm > 2h0:

IP L = 2h0Pα/(1 + τrel/τnr1) + (hfilm − 2h0)Pα/(1 + τrel/τnr2), (A.1)
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Model for PL intensity dependence on thickness of GaTe and GaSe thin
films

where τnr1 = τ1h0/2 and τnr2 = τ2(hfilm/2 − h0), and for hfilm ≤ 2h0

IP L = hfilmPα/(1 + τrel/τnr1), (A.2)

where τnr1 = (hfilm/4)/u1.

By substituting these expressions for the non-radiative decay times directly we

obtain for PL intensity for hfilm > 2h0:

IP L = 2h2
0Pα/(h0 + 2τrelu1) + (hfilm − 2h0)2Pα/(hfilm − 2h0 + 2τrelu2). (A.3)

For hfilm ≤ 2h0 we get:

IP L = h2
filmPα/(hfilm + 4τrelu1), (A.4)

A.2 Results of the modeling

A.2.1 Results for GaSe thin films

According to Eqs. A.3, A.4, we have four parameters, with which we describe the

observed dependence of IP L on the film thickness: h0, the products Pα, τrelu1 and

τrelu2.

Further analysis of Eqs.A.3, A.4 shows that these parameters are not completely

independent. This becomes obvious if we note that for small hfilm where we expect fast

non-radiative process (i.e. large τrelu1) we get hfilm ≪ 4τrelu1, and Eq.A.4 reduces to a

simple parabolic dependence: IP L ≈ h2
filmPα/(4τrelu1). This function is independent

of individual parameters Pα and τrelu1, and depends on their ratio only.

For large hfilm where we expect slower non-radiative process we get (hfilm − 2h0)
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A.2 Results of the modeling

of the order of 2τrelu2, and a simple approximation can be used for Eq.A.3 giving

IP L ≈ (hfilm − 2h0)Pα. From here we find that Pα should be of the order of 105

nm−1s−1.

The two functions described by Eqs.A.3, A.4 and especially their asymptotics have

significantly different form, effectively with different ’slopes’ as seen e.g. in Fig.3.3(b)

for the case of GaSe. For GaSe data in Fig.3.3(b), it is relatively easy to define the

position of a characteristic kink around hfilm =30 nm, where the behavior changes.

We use this observation to fix the value of h0 to 15 nm.

In the next step, we have explored a range of fitting functions providing a reason-

able agreement with the experiment. We conclude that our model can reliably predict

the order of magnitude of the fitting parameters, but not the actual value. So we find

that τrelu1 is of the order of a 1000 nm and τrelu2 is of the order of a 100 nm.

As an illustration for the GaSe data, in Fig.3.3(b) we show a fitting with Pα =

3.5 × 105nm−1s−1, τrelu1 = 2900 nm and τrelu2 = 150 nm. The figure also shows

the variation of PL intensity as would be expected from the change in absorption

only (dashed line). This would correspond to a thickness independent non-radiative

processes occurring with the same rate in the whole volume of the film. This curve is

described by the expression IP L = IGaSe[1 − exp(−αGaSehfilm)], where IGaSe is the PL

intensity for films with hfilm ≈200 nm and the absorption coefficient α=1000 cm−1

[2].

A.2.2 Results for GaTe thin films

We used the same fitting procedure for GaTe with the results shown in Fig.3.2(b).

Although the ’kink’ in the thickness-dependence of IP L for GaTe is not as pronounced

as for GaSe, it is still observable at a slightly higher value of 2h0=40 nm. The model

describes adequately the data for hfilm up to around 90 nm, but fails to reproduce
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the very steep enhancement of PL for thicker films. This probably occurs due to

the contribution of the free excitons to the PL signal. It is probable that there is an

additional strong non-radiative escape mechanism for free excitons in thin films, which

is overcome in thicker films with the result that the PL intensity for thick films grows

faster than the model predicts. Another reason could be deviation from the effectively

’ballistic’ transport that we assumed leads to the carrier escape into regions (1), and

its replacement for the larger thicknesses with a slower ’diffusion’ process.

In a similar way to GaSe, we confine ourselves to determination of the order of

magnitude only for the main parameters, which are similar to GaSe: we find that

τrelu1 is of the order of a 1000 nm and τrelu2 is of the order of a 100 nm. As an

illustration for the GaTe data, in Fig.3.2(b) we show a fitting with Pα = 5.0 × 106

nm−1s−1, τrel/τ1 = 3800 nm and τrel/τ2 = 200 nm. The figure also shows the variation

of PL intensity as would be expected from the change in absorption only (dashed line).

This curve is described by the expression IP L = IGaT e[1 − exp(−αGaT ehfilm)], where

IGaT e is the PL intensity for films with hfilm ≈200 nm. The absorption coefficient

αGaT e=5000 cm−1 is used according to Ref. [2].
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Appendix B

Calculation of collection efficiency

In chapters 5 and 6 the external quantum efficiency was calculated following the de-

scription of section 2.2.1. In order to get the most accurate calculation it is necessary

to take into account the losses on the system used to measure. This will depend on

the device environment inside the sample, optics used to collect and guide the light

emitted and the detector. On this appendix a detailed description of the calculation

wis presented

In section 2.2.1 the quantum efficiency was defined as the number of photons

emitted per number of injected electron-hole pairs. In order to estimate the number

of emitted photons we need to estimate our collection efficiency. The total loss is

defined as:

η = ηLensηopticηsystem (B.1)

ηoptic is the loss of all the optical components in the optical circuit. It was mea-

sured directly using a 1.96 eV laser and a power meter to determine the loss at each

component. We find ηoptic = 0.18.

ηsystem - converts the number of photons arriving at the incoming slit of the detector
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Calculation of collection efficiency

into the detector counts. It takes into account the loss of photons which pass through

the slit, grating and onto the CCD and has been again measured directly by using the

1.96 eV laser and taking spectra of the laser for different powers in order to get a counts

vs incident photons. For our system we get 4203 integrated cts/sec per 1 pW. If the

system were 100% efficient we should count N = P/hν = 3177476 photons, therefore

we arrive at an estimate for the system efficiency to be ηsystem = 4203/3177476 =

1.32 × 10−3.

ηLens is the efficiency of the lens collection[3]. We use a 50x objective with a

numerical aperture, NA = 0.55. LEDs are fabricated on either two substrates,

firstly Si/SiO2(290nm) with refractive index of Si (n=3.734) and SiO2(n=1.645) or

distributed Bragg reflectors which consist of 10 alternating quarter wave pairs (187.5

nm) of SiO2 (n=1.46) and NbO2 (n=2.122) [1, 2].

Numerical simulations allow us to make an improved estimate of the collected light

emitted from a dipole on each substrate type. Our NA=0.55. This gives a collection

angle of 33.4°.

So for a WSe2 flake on SiO2 we find that:

ηLens = PSiO2(33.4)
PSiO2(180) = 2.5% (B.2)

while for WSe2 flake on a DBR we find that:

ηLens = PDBR(33.4)
PDBR(180) = 31% (B.3)

This gives us two loss factors depending on the substrate the LED was fabricated

onto.

ηSiO2 = 0.18 × 1.32 × 10−3 × 0.025 = 5.94 × 10−6 (B.4)
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Fig. B.1 Total power emitted within a polar angle for an emitting dipole placed on
Si/SiO2 and on a distributed Bragg reflector (DBR) as well as in free space.

ηDBR = 0.18 × 1.32 × 10−3 × 0.31 = 7.37 × 10−5 (B.5)
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