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ABSTRACT _

A computational method for solving a wide range of transverse
and longitudinal waveguide discontinuity problems is described.
Results are obtained by the simultaneous solution of matrix
equations, generated by Fourier analysis, which relate the complex
amplitudes of orthogonal electric and magnetic field components.

In some cases the solution is found to be sensitive to the way in
which infinite series of field functions are truncated, and it is
shown how the optimum form of truncation can be determired for many

configurations of practical importance.

Several examples showing the application of the method are
given, and comparison of results with those obtained by experiment,

and by other analytical techniques, confirms its accuracy.

The application of the method in the design of discontinuities
for higher-mode generation in multimode antennas is considered,
particularly in connection with a multimode monopulse feed for a
satellite~-communication reflector antenna. Primary and secondary
characteristics are determined theoretically for various mode-
converter configurations, allowing those giving satisfactoary all~
round performance to be selected. Comparison with conventional
feeds shows the multimode feed to be superior in many respects.

A prototype multimode feed is constructed, and theoretical primary

radiation patterns are compared with those obtained experimentally.
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CHAPTER I

l.1. Introduction

Determining the nature of the electromagnetic fields in the
vicinity of a waveguide discontinuity is a classic microwave engin-
eering problem for which many different methods of solution have been
suggested during the pgst thirty years. In a few specific cases, an
exact solution can be found, using, for example, the Integral Trans-
form technique Elj, but in general this is not possible and some degree
of approximation must be made. Of the approximate techniques, the
Variational and Integral Equation methods are applicable to a wide
range of problems, and can produce sufficiently accurate results for
most purposes. The former method is described by Collin Eé],'whilst
the work of Lewin E}] is well-known in connection with the latter.

Both methods are reviewed by Marcuvitz EQ]. A serious drawback,
particularly with the Variational method, is that the formulation for

a given structure may call for considerable mathematical ability on the
part of the user. A further restriction is that these methods cannot
‘9asily be used in the case of a transverse discontinuity involving

waveguldes capable of supporting more than one propagating mode.

Many of the conventional techniques aim to produce a formula for
a given type of discontinuity from which the solution for a particular
set of dimensions may be obtained by hand calculation. Fairly gross
approximations must often be made to keep such formulae to manageable
proportions. At one time this approach was very valuable, but now
that access to high-speed digital computers is generally available,

there is much to recommend an accurate technique involving lengthy but
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straightforward calculations which can easily be applied to a wide
variety of structures. It is the purpose of this thesis to describe
such a technique, to investigate its accuracy and limitations, and to

conslder some of its applications.

The method has been known for some time in a restricted form,
rarticularly applicable to junctions involving a conducting step
between waveguides of different cross-sections. In this form it
seems to have been developed originally by Slinn[_ij, and has been
subsequently described by Clarricoats and Slinn [ﬁ:L Wexler E?] and
Cole EB]. Wexler's term "Modal Analysis" will be used throughout the
thesis to refer to the restricted method. In Modal Analysis the
fields on either side of the discontinuity plane are expressed init-
ially as infinite series of waveguide modes. The amplitude of each
mode is then equated to a Fourier series of the mode amplitudes on the
opposite side of the junction. For the modes on one side this follows
from the matching of transverse electric fields, whereas for those on
the other side magnetic field matching is considered. Two infinite
sets of linear equations are thus generated, which, after truncatibn,
are solved simultaneously to give the amplitude coefficients of the
various modes. By taking into account multiplereflections of modes
between two adjacent step discontinuities, both Slinn and Wexler were
able to extend the method to deal with a thick iris, but found that,
as the thickness decreased, progressively more modes had to be included
in the calculation for an accurate soluti;n. It was therefore found

impossible to use the method to solve an infinitely thin iris.
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A method similar to Modal Analysis applicable to thin irises has
recently been described by tﬁe author [Q]. Instead of expressing the
fields in the iris aperture in terms of waveguide modes, separate
series of orthogonal functions are used for the transverse electric
and magnetic components. The aperture magnetic field coefficients
are easily found from symmetry considerations, and field matching
between the waveguide modes and aperture functions leads, as in Modal
Analysis, to two sets of linear equations which can be solved simul-
taneously to give the required modal amplitudes. This again is a
special case of the general computational method, and a study of it
forms an important part of the work described in this thesis.

The computational method is primarily concerned with discontin-
uities whose planes are transverse to the direction of wave propagation,
but it can be extended to deal with longitudinal discontinuities, in
particular to determine the characteristics of waveguides with longi-
tudinal ridges or slots. Although more limited in application, it is
more economical as regards computer time and storage than currently
used numerical techniques such as the Finite-Difference [10:]and Finite-
Element [lij methods. A well-known method which has been used .to
determine the dispersion characteristics of some ridged and slotted
waveguides is known as Transverse-Resonance. Here the fields are re-
formulated in terms of modes travelling in directions normal to the
waveguide axis, and if any such mode is above cut-off its flelds are
represented by voltage and current distributions on an eguivalent
transmission line. Waveguide walls and longitudinal discontinuities

are represented respectively by short-circuits and lumped admittances.
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The dispersion characteristics for various modes of the structure can
be found from the resonant frequencies of the equivalent network. The
use of lumped susceptance elements implies that multiple reflections of
evanescent transverse modes are neglected, which is reasonable for a
ridge well away from the waveguide walls. If the separation is small,
however, such reflections become significant, and the method gives
erroneous results. By applying the computational method to the dis-
continuity this "proximity effect" can be properly taken into account,
because there is no restriction on the number of modes incident on the
discontinuity which can be considered. Moreover, structures in which
more than one transverse mode can propagate are as easy to deal with
using the computational method as single-mode cases. Clarricoats and
Slinn E63 have mentioned that Modal Analysis can be applied to some
longitudinal discontinuities, and have used it to treat a thick-walled
circular waveguide with a longitudinal slot [12]. However, by analogy
with their solution of transverse discontinuities, cases involving
longitudinal structures of zero width could not be dealt with. This
difficulty can be overcome by using an extension of the form of the

computational method applicable to thin irises.

An important application of waveguide discontinuities is as mode
éenerators in multimode antennas. By combining several waveguide
modes in the radiating aperture of a microwave horn it is possible to
obtain a radiation pattern which is superior in terms of éain, sidelobe
level or pattern symmetry to that of a conventional single-mode horn.

One of the earliest examples of a multimode horn is the rectangular box-



-5 -
horn described by Silver Eijj, in which the Hip and H30 modes are com-
bined in such a way as to produce a nearly uniform aperture field
distribution, giving a higher gain than if the HlO mode alone were used.
A more recent example is the "Potter Horn" [}4:]- a narrow-angle conical
horn in whose aperture the Hll and Ell circular waveguide modes are
combined to give similar field distributions in both principal planes.
The radiation pattern can be made very nearly circularly symmetric,
with a sidelobe level which does not exceed -25dB in any plane. In
both these examples the higher-order mode is excited by a step discon-
tinuity between a guide capable of supporting only the dominant mode
and one in which the higher mode can also propagate. It is clearly
essential in the design of such horns to be able to calculate accurately
the relative amplitude and phase with which the two modes are launched.
The computational method to be described in the thesis is ideal for this
purpose, since there is no difficulty in applying it to an overmoded

case.

Multimode antennas such as the Potter Horn are particularly useful
as feeds for paraboloidal reflectors, where low spillover and symmetri-

cal illumination are of paramount importance.

Reflector antennas often use the amplitude - comparison monopulse
system to track targets automatically. Monopulse antennas have three
separate radiation patterns: the "sum" pattern which has symmetry about
the principal axis and which is responsible for the transmission and
reception of information and two "difference" patterns, which are anti-

symmetric about the axis and whose purpose is to determine errors in



-6 -

alignment of antenna and target as measured in two perpendicular planes.
The design of feeds for such antennas presents several problems, one of
the more serious of which is the difficulty in producing good reflector
illumination with both sum and difference primary patterns simultaneous-
ly. For example, the commonly used arrangement of a cluster of four
rectangular feed horns has a difference pattern primary beamwidth

which is considerably greater than its sum beamwidth, so that an antenna
designed for optimum sum performance has poor tracking ability because
of excessive spillover. Attempts have been made to overcome this dif-
ficulty by using feed horns additional to the basic four which are not
used for the sum pattern but which effectively widen the radiating feed
aperture for the difference patterns and thus reduce the corresponding
primary beamwidths. Such arrangements have been suggested by Hannan
E}S] and Ricardi and Niro E16] . Their drawbacks are that the assoc-
iated microwave circuitry is quite complex, and that primary sidelobes
are excessively high. The radiation patterns of multi-horn feeds can
in some cases be improved by the use of multi-moding in the individual
horns. A structure of this type has been described by Drabowitch El?] ’
and consists of a stack of four rectangular box-horns in which modes
additional to the dominant mode are excited by means of step discontin-
uities. The all-round performance of a reflector antenna using such

a feed is excellent, but a serious disadvantage is that only linear

polarization can be used.

A rather different approach suitable for designing a circularly

polarized monopulse feed is to combine several modes in a single
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radiating aperture. For the sum pattern, the multimode field distri-
bution is such as to concentrate the energy in the centre of the
aperture, whereas the difference distributions take up its entire
width. In this way the requirement for similar sum and difference
beamwidths can be satisfied. Such a feed has been described by
Keeping [18], but as his design technique was empirical and no attempt
was made to analyse the step discontinuity used to excite the various
modes, its performance probably falls short of the optimum. The
object of the research described in the latter part of this thesis is
to use the computational technique to solve a step discontinuity for
use in a feed broadly similar to that of Keeping, to design such a feed
to give optimum secondary characteristics when used with a front-fed
paraboloid or in a Cassegrain system, and then to examine any discrep-
ancies between actual and theoretical performance of the feed using

an X-band model.

The research on multimode feed design was prompted originally by
reports of improvements in the performance of the SCAT four-horn
cluster E}9] resulting from the addition of a multimode box structure

in front of the horn apertures. The modified SCAT feed will therefore
be used as a standard of commrison when investigating the performance

of the new multimode horn.

1.2. Development of Thesis

Chapter 1 includes a description of the transverse-discontinuity
theory as applied to the general case of a junction between two wave-

guides involving coupling through several apertures in a thin conducting
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diaphragm. A special case of this discontinuity, the thin iris in a
waveguide, is discussed in Chapter 2. A particular example, the thin
inductive iris in rectangular waveguide, is examined in detail, with
emphasis on the effect of the mode/aperture-function ratio on the con-
vergence of the solution. A way of choosing this ratio for optimum
convergence is suggested by this investigation, and is applied to
other examples. Comparison is made with results by other methods,

where these are available. The computing aspect of the problem is

also considered.

Chapter 3 deals with the aspecial case of the step discontinuity,
where the computational method reduces to conventional Modal Analysis.
The formulation given differs from that of some other authors, in that
it leads to more economical use of computer-time and storage. It is
shown that in some cases this formulation can also be derived using a
variational approach. Examples treated include multimode cases, the
object being to show that the method can -be used successfully in multi-
mode antenna design. The effect on convergence of the ratio of numbers
of modes taken into account, which seems to have been overlooked by
other workers, is also discussed. Matrix equations are derived for
double-step discontinuity examples, including rows of posts and thick

irises in waveguides.

Chapter 4 is concerned with the application of the computational
method to longitudinal discontinuities. Examples of its use in treat-
ing homogeneous ridged waveguides are described. A further applica-
tion is in determining the characteristics of shielded microsirip

transmission lines, and a formulation for this problem is given.
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To test the ability of the computational method to predict multi-
mode antenna characteristics, it is used in Chapter 5 in calculating
the radiation patterns and V.S.W.R. of a simple square box-horn, and

comparison is made with experimental results.

In Chapter 6, the computational method is used to analyse a five-
waveguide step discontinuity for use as a mode-generator in a multi-
mode monopulse feedhorn. Secondary characteristics for various step
configurations are calculated, allowing a configuration giving best
all-round performance to be selected. Other aspects in the design of
the feed, such as correct phasing of the various modes, are also con-
sidered. Theoretical performance figures are compared with those for
a conventional feed. The possibility of improving performance by
using a mode-converting throat having two step discontinuities is

investigated.

Chapter 7 describes experimental work on the monopulse feed.
Primary radiation patterns obtained with an X-band version of the feed

are compared with theoretical predictions.

General conclusions on the work described in the thesis, and

suggestions for future work, are contained in Chapter 8.

1.3. The General Case of Two Dissimilar Waveguides Coupled by

Several Apertures.

The waveguide junction shown in figure 1.1 is a general case of a
waveguide discontinuity whose plane is normal to the direction of propa-
gation. There can be any number of coupling apertures, and it is not

necessary for the cross-section of one waveguide to be wholly contained
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within the cross-section of the other. The waveguides need not be
homogeneous: all that is required is that it must be possible to
represent the electric and magnetic fields transverfe_to the direction
of propagation as infinite series of orthogonal modes. In the dis-
continuity plane, let the transverse electric and magnetic field
components of the mth.mode in waveguide 1 be sm’ém respectively, and
those of the nth.mode in waveguide 2 be 3& . Eﬁ respectively.

The following orthogonality properties apply to H and E modes in homo-

geneous waveguides and also to LSE and LSM modes in dielectric-filled

guides:
f_e_ix _lgj.ds =0, i £ 1.1
S
fgix g&.d§=0, i£3 1.2

In general there can be an incident field in waveguide 1 consisting of
an infinitude of modes with coefficients 8 and an incident field in
waveguide 2 with mode céefficients ain . The coefficients are in
general complex. The transverse fields in the discontinuity plane can

then be written as:

0
In waveguide 1: Ep= (aim+arm)_e_m 1.3(a)
m=
N\ (s - 1.3(b
ET' (aim arm)b-m ' 3(b)
In wavegeide.az Ep= (ain+a;n)gﬁ 1l.4(a)
Bp=) (af -ai Jh} 1.4(b)
n=1

The coefficients a, , a) refer to modes travelling away from the

junction in waveguides 1 and 2 respectively, and it is these that the
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method aims to evaluate.

The diaphragm separating the two waveguides is assumed to be
infinitely thin and perfectly conducting. It follows from the latter
assumption that the transverse electric field in the discontinuity
plane vanishes everywhere except in the apertures, and also that the
component of this field parallel to the edge of an aperture must
vanish at that edge. In order to apply the method to be described
in this section, it is necessary to express the transverse electric
field in each aperture as a series of vector functions which satisfy
the above boundary condition. The transverse electric field components
of the normal modes for a homogeneous waveguide having the same cross-
section as the aperture form a convenient set for this purpose.

Let gki be the ith. such component for the kth. aperture. The electric

field in that aperture is then:
Erk =/ PkiSii
i=l

bki is the complex amplitude coefficient of the ith. component.

It is now necessary to represent the magnetic field in each
aperture in a similar manner, and in such a way that the magnetic and

electric aperture field functions have the following orthogonality

property:

. 1.6
&py¥ Ekj'di =0,1#41]

This will be the caé%{if the functions h. . are derived from the same

wavegulide modes as the functions €xi
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The transverse magnetic field in the kth. aperture is then:
fo s}

Ere ‘E Ceies 1.7

i=1
where ckj'is the complex amplitude coefficient of the ith. component.

By using functions derived from waveguide modes to represent the
aperture magnetic field, the condition that the component of ETk
normal to the aperture edge should vanish there has been applied. In
fact this is not the case, since it can be shown that the magnetic
field becomes infinite at an aperture edge. However, by taking a
large number of functions to represent the aperture field, very high
values of field immediately in front of the edge can be achieved, and
in the limit where the number of functions becomes infinite, the

singularity is accurately represented.

It should be pointed out that although the vector functions
€14 By bave properties in common with waveguide modes, they do not
form a "mode"™ in the usual sense of the word. Whereas knowledge of
the transverse electric field in a waveguide as a series of modes
enables the magnetic field to be calculated using the wave admittances,
a series representafion for an aperture electric field such as 1.5
gives no information about the magnetic field in that aperture. In a
waveguide, longitudinal electric field must vanish at the edge of the
cross-section, but this does not hold for an aperture in an infinitely
thin conducting sheet. A much wider variety of solutions to Maxwell's

equations is therefore possible in the latter case.

The transverse electric and magnetic fields must be continuous

across each aperture. Thus, for the kth. aperture,
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fee) o
ETk =§ (aim+arm)3m =£ bkiski 1.8
m=1 i=1
:?l
- 1] ] L
: (a +arn)en
n:l
.t L
-}-{-_Tk = (alm arm > i—kl
m=1l :
00

L tomay bt 19

Note that 1.8 and 1.9 only hold over the aperture in question. By
forming vector products with Bhyhy where M and N can be any positive
integers, and integrating over aperture k, 1.8 gives rise to two

infinite sets of equations:

= * '
C‘

m=1 Sy, i=l % M=1,2,3...00
] [} '
Z (a1n+arn j:nx teds = 2 bkif Neds .
S, i=1 N=1,2,3¢000
Adding together equations of the form f:lo for all apertures gives:
©o N_aE o) ~
= 1l.12
E (aim+arm) /;;x hy-ds = ). by /gkix hy.ds
k=1 i=1

ot M=l,2,3.oom

m=1 Na
kifk
Nap is the tofal number of apertures. The condition that transverse

electric field should vanish over the diaphragm can be expressed as:

-
;ih(aim+arm)3m= O,
m=Jl N
over the surfac; . %Es
°© x=3 k

This implies th%?:

; 1.13
(aim+am)/g:x hy.ds = 0
AN

m=1
S

(o]
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for any M. When 1,13 is added to the left-hand side of 1l.12, the
integral is extended over the whole cross-section S of waveguide 1.

Orthogonality condition 1.1 can now be applied, and 1.12 becomes:
_22
2 l.14
aiM+arM = M.ds \J;;x EM'dﬁ
=l =l S M=1,2,3...m
Similarly, from 1l.1l, using orthogonality property 1l.2:

N
v +a| E

k=1

I\/Is

'x h!.d
Pt [Sa* Byyeds ﬁNx B2
S'

1.1
S, 5

N=1,2,3...oo

7%
it

1

By vector pre-multiplying each term in 1.9 by St where I is any
positive integer, and integrating over aperture k, two further sets of

equations result:

©
ym' 1.16
(ay-a ) |eprx hy.ds = E Cri [ek1X hyy-d8
m=1 . :

Sk i=1 Sk I=1,2,3...m
[e0) (o]
2‘ (agn-ain) j;klx hy-ds = E Cli ﬁka Byy-ds 1e17
n=1 sk i=1 sk I=1'2’3. e e

Orthogonality condition 1.6 may be applied directly to equations 1.16

and 1. 17, which then become:

= - at . 1.18
k1 ~ ; (aim rm ka 292 Ekx" bypede
5 5,
k - — K -
%1 = E (alp=2in’ J;klx byede Sy* Byred2
n=l :1 2 3-00@
— Sk - | S ] I sb~9

k=l’2'3'°'Nap
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In order to solve equations 1.14, 1.15, 1.18 and 1.19 for the

unknown modal amplitudes a__, a'

rm® %pp + it is first necessary to truncate

the infinite series involved so that the equations can be conveniently
handled by a computer. If the numbers of modes taken into account in
waveguides 1 and 2 are p,p' respectively, and the number of functions

taken into account in aperture k is gy, then m<p,M<P,n<P"N<P' and,

for aperture k,i and I<{g,. It is then possible to write 1.1k as

a matrix equation: €
o1y |
(0 ) Y\ T= | . . 1 )
ajq] [2pq] [Rp€101) - ¢ Ri(24q)) 'RN(l,l) Ry(1,ay o
Py . . . ' | ap ap ap 1q1
. . ° . l . . -
Z . $+< . = . . Ia . ol . o ¢ 1.20
] L] 3 . ' I : : ﬁ . >
o L] L ] . I ) —
a a R (p’l) . . R (p'q )| R (p’l) L] L] RN(p'qN b
N5 BN 1o | Nap ap ap| | Npp}
In this equation b;‘ q
ap N
L "Jap
. l.21
R (1,3) = ﬁij h,.ds ﬁix h,.ds
Sk S

For convenience, 1.20 will be written as:
1 { } K] {b} 1.22
If qpis defined as Jap a’ then [R] has dimensions P X dp
andib}has A elements.

The following matrix equation results from 1l.15:

-} { } CrY {b} 1.23)

N .
The column vectors JLa} Laz"j have p' elements, and ERB has dimen-

sions p'x qpe The elementsd of ERB are defined in a similar manner
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to those of [R |, i.e.:

Rt (1,]3) = Sxy X Bi-ds [ [e! x h}.ds 1.24

’ S S
k
The Nap sets of equations represented by 1.18 can be lumped together

to give a single matrix equation: _ - N

clql Sl(ql.l). . Sl(ql.p) 4 : }

y° T * 1.25
4 [ > = . .
j_.'.- IR B G e

°N 1 SN G I I M6 1))

ap ap 2p
c S (q Ql)o . SN(q ,p)
S Nap(,lN - apNap ap ap.-

In this equation-

S(ij)—f xh ds/j—\ x h,.ds 1.26

Writing 1l.25 in a more convenient form:

{c}=0s] {ai} - 8] {ar} 1.27
where {c}has Qp elements, and [S:I has dimensions QpX P Similarly,
from 1.19:

{°}= L] {a}} - [=]] {ai} 1.28

where the qpX p'matrix l'_'sj has ;elements of the form

1 = 1.29
Sp(1,3) ﬁki X Bs.dg ﬁi x b .ds
Sk .

By multiplying 1.22 through by 5], {a } can be eliminated from 1.27,
r -
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to give:

{c}= EES]{ai}‘ [s] ER]{b} 1.30

Similarly, eliminating {a;} from 1.23 and 1.28:
{c}-0sT [Rj]{b} - 2[5 {ai} 1.31
Equating 1.30 and 1.3l

CCsICRT « Cs1 R ] {b} = 2[s] {ai} + 25T {ai} 1.32

The column vectors-{ﬁi} and.{a{}-are known, so l.32 represents a
set of Qp simultaneous equations in dp unknowns bki' Having solved
these eqﬁations, the values for the elements of‘{b:} can be substituted
in equations 1.22 and 1.23 to give the required modal amplitude vectors
{a;}and{ az',} .

Figure 1.2 shows the variation with q, the number of aperture
functions, of the transmission-line equivalent circuit parameters for
an H-plane junction between two rectangular waveguides with a thin
single-aperture inductive iris in the discontinuity plane, for various
values of p/p'. The equivalent circuit relates to the,Hlo mode,
which, for the dimensios in question (see inset), is the only propa-
gating mode in either guide since the structure has symmetry about the
plane x=0. Details of the calculation will not be given here: the
purpose of this example is merely to illustrate the way in which the
cholice of the ratios of modes and aperture functions affects the
solution of discontinuity problems. It is clear that for a given
ratio p/p', even small changes in q can cause very large variations in
the equivalent shunt susceptance, so that in order for the method to be

of practical value some criteria for choosing the ratios must be
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determined. This problem will be approached by considering, in the
following two chapters, two simpler structures in which only one ratio
is involved, namely a thin iris in a waveguide and a step discontinuity
in which the smaller guide's cross-section is entirely contained

within that of the larger at the discontinuity plane.
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CHAPTER II THE SPECIAL CASE OF A THIN IRIS IN A WAVEGUIDE

2.1. Theory.

A particular case of the general discontinuity described in
Chapter 1, and one which has important applications in the design of
matching devices for microwave circuitry, is that of a thin, conducting
iris in a waveguide, transverse to the direction of wave propagation.
Here again there can be any number of apertures, but in this case the
waveguides on either side of the discontinuity have identical proper-
ties, and there is no step between them. Thus the matrices [R} and
[RY] in the general analysis become identical, as do [§] and [S7] .

It has, of course, been necessary to put p=p'. Equation 1l.32 there-

fore becomes:
[s] ER]{b}: [s] {a]} + [s] {ai} 2.1

In the more usual case where incidence is from one side only, one of
the terms on the right-hand side of 2.1 vanishes. The above result
can then be arrived at by a slightly different argument, and one
which throws some light on the problem of choosing the ratios of
numbers of modes and aperture functions. If incidence is from the
left-hand side only, the transverse electric field in the discontin-

uity plane is:

© ®
- = L}
Ep = : (a3 + 8rn)ey = z %rnn , 2.2,
m=1 n=1

The equality holds for the entire cross-section of the guide, because

Ep 1s zero except in the apertures. Thus the relationship

a

2.3

+ a =a.
im rm rm
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must hold for all m. Matching the magnetic fields in one of the

apertures gives
0

A——

2
H, - 2 (a,, - a_dh = ' h 2.4
m=1 n

a
rn—n
=1

7~
7
|

By substituting 2.3 in 2.4 it is found that rmgm = 0,
which leads to the result that m=1
00
ET = E aimgm ' 2.5
m=1

The outcome of this argument may be stated in the following way:

In ay aperture, the transverse magnetic field is that of the incident
field alone. By using series representations for the magnetic
fields in the various aper£ures, and.matching these fields to the

incident field, the following matrix equation can be obtained:
lep= Ls_i{ai} 2.6

{faiF is known, so the elements of<{c7;can be found. When this

result is substituted in 1.27, it is found that:

ES]«{A£}= 0 2.7

It might at first be thought that this set of equations could be solved
to give the unknown coefficients 8, + However, a unique solution is
only possible if there are at least as many linearly independent
equations as there are unknowns, and it is clear that if this is the
case the solution will be arm=0 for all m, which implies that no iris
is’present. In order to obtain the correct solution the problem

must be under-specified in 2.7, in which case qp<<P- Equation 1l.22

can then be used to impose the condition for electric field matching
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on the solution. If this equation is multiplied through by [S],

2.7 can be used to eliminate {ar} + the resulting equation being 2.1.

It is not sufficient merely to set qT<:p in order to obtain
optimum convergence; the ratios qk/p are critical and their values
depend on the dimensions of the structure in question. So as to
illustrate this point and to demonstrate the use of the method a
particular case will now be considered, namely that of a thin single-

aperture inductive iris in a rectangular waveguide.

2.2. The Thin Inductive Iris in Rectangular Waveguide.

2.2.1. Formulation of Problem.

This case is shown in figure 2.1(a). If the dimensions are
chosen so that only the dominantHlo mode can propagate in the wave-
guide, the discontinuity can be represented by the simple equivalent
circuit of figure 2.1(b). YO is the characteristic admittance of the
equivalent transmission line for the‘Hlo mode, and the discontinuity
is represented by a shunt inductive susceptance -JB across the line.
This susceptance is a consequence of magnetic energy storage by
evanescent modes excited at the discontinuity. The incident field
is assumed to consist only of the dominant mode, and this can be taken
to have ynit amplitude without loss of generality. Thus:
1, m=1

&y, 0, m#£l

The susceptance of the iris can be deduced from the complex reflect-

aim

1t

2.8

ion coefficient ari from the expression:

2.9
-4 214+ 3B
l+arl Yo
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Both the discontinuity and the incident field are uniform in the

y - direction: it follows that modes excited by the discontinuity
must also have this uniformity, and are therefore of type Hno s where
n can be any positive integer. Notice, however, that if b=c only
modes for which n is odd will be excited, because of the symmetry of

the structure.

The derivation of expressions for the field components of modes
in a rectangular waveguide is given in many standard textbooks, and
so it is sufficient merely to state expressions for the transverse

fields of the HnO mode in the plane 2=0:

=n = sin %T—Tx /gy 2.10(&
Y s 2
h, = Jj,;%dnsm o 2y 2.10(b

< 2
where 'X; = n -1
b(a/0)°

Suitable expressions for the aperture field components are:

&y = 5in _m T (x-b) 2 2.11(a
a~b=c ¥
Blm = sin msﬂ' (x-=b) i; 2.11(b
a-b=c

When the electric field expressions are substituted into 1.21, it is

found that: %{

=2 L151n nix sin m7 (x-b) dx
a a=-be-c
b

2.12
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Using 1.26, the elements of [ S_] are found to be related to those of
[R] through the equation:

S = J

- Lo Xm . 2.13

a-b-c Mo

It is possible to drop the constant multiplier J a \/po
a-b-c

o
from the above equation, in which case it becomes incorporated in the

vector {cj, which does not need to be evaluated. 2.13 then becones:
!

- 2.13(a
Smn - Xxanm

The evaluation of the integral in 2.12 is straight-forward, and leads

to the result:

b m
om ambec sin mrs - (~1)"sin nw———

"o T a E-b ]22 ' 2.14(a,

am#£ (a=b-c)n

a-b-c mrb
Rim a  °%° & 2.14(b)

am= (a-b-c)n.
The flow diagram shown in figure 2.2 illustrates the way in
which results can be obtained for this case using a digital computer.
The basic operation is the solution of the matrix equation obtained

by substituting 2.8 into 2.1, i.e.

[s]CEI{ v} = {s,} 2.15

where {Sl} is the first column of CSJ.

A difficulty arises in that the elements of'{ﬁ?rare complex, and
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those of [?:]are imaginary if the suffix m in 2.13(a) refers to a
propagating waveguide mode. Since the computer used (KDF9) cannot
deal directly with complex numbers, each equation in the set repre-
sented by 2.15 must be separated into its real and imaginary parts,
yielding a set of 2q equations in 2q real unknowns, yhich form the
vector {x}in figure 2.2. The matrices [R:] and [:S] are replaced by
[A7] and [[B] respectively, where EA] has dimensions 2p x 2q and [B:I
has dimensions 2q x 2p. The elements of [R] are real, and conse-
quently values are assigned only to alternate elements of [&j.
Values are assigned to the elements of [E] simultaneously with those
of E}], to avoid unnecessary duplication of calculations. When an
element of [S] is evaluated, it is initially assumed real, and its
value is copied to the two appropriate elements of [Sj. A test 1s
then mgde to see if the corresponding waveguide mode is above cut-
off, and if this is so the values just assigned to [B] are trans-~
fered to new locations, in one case with a sign change. The exact
manner in which these operations are carried out can be seen in the
flow diagram. The simultaneous equations were solved in practice
by the method of elimination and back-substitution, although an
iterative method could be used as an alternative, possibly with some
saving of computing time. However, by writing the appropriate
subroutine, and also that for matrix multiplication, in '"Usercode',
a low-level programming language suitable for use with the KDF9
computer, it was found possible for example to obtain a solution for
the case p=30, q=15 in about 16 seconds, and further attempts to

reduce computing time were thought unnecessary. Moreover, the use
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of an iterative method would introduce small errors into the solution
which would complicate an investigation of the convergence properties

of this type of analysis.

2.2.2. Computed Results for the Thin Inductive Iris.

The first investigation which was carried out using the computer
program described above was concerned with the dependence of the
solution for a particular iris configuration on the number of func-
tions taken into account in the iris aperture, the number of waveguide
modes being held constant. As indicated in the previous section, the
choice of q/p can be expected to have a considerable effect on the
computed results. The configuration chosen for investigation has an
aperture width equal to one half of the waveguide width a, which is
such that a=0.8k6. Note that for single-mode propagation Ao/2<<h<:A° .
In figure 2.3, results are given for three positions of the iris
aperture; the symmetric case b=c (see fig. 2.1 for definition of
dimensions), the casé b=0 in which the waveguide wall forms one edge
of the aperture, and an intermediate case b=0.la. These cases are
designated (A), (B) and (C) respectively. Twenty waveguide modes
were taken into account, and in case (A) these were such that n was
odd in expressions 2.10,. Because of symmetry, the even modes cannot
be excited, and a step was included in the program to exclude them
from the calculation in this case, and thus economise on time and

storage.

In cases (A) and (B) there is uniform convergence of the values

of normalized susceptance, calculated from 2.9, for q increasing from
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2 to 9. Between q=9 and q=10 the slopes increase slightly, and for
q greater than 10 the value of 'B/yoifalls away rapidly, at first
almost linearly, but with erratic behaviour as the situation q=p is
abproached. In the previous section, consideration of equation 2.7
showed that a1 and consequently B/Yb, §hould be zero when p and q
are equal, but this is not borne out by the results in figure 2.3.
However, solutions obtained using fewer waveguide. modes have behaved
in the expected manner, and it seems likely that the irregular varia-
tions when q lies between 15 and 20 are the result of computational
errors associated with the generation of very large numbers, and
therefore have no real significance. The variation with q of the
susceptance in case (C) follows the same general pattern as in the
other two cases, but is not as regular. This is because additional
aperture functions taken into account have alternate odd and even
dependence. The odd functions are more strongly excited, and there-
fore have a greater effect on the calculated susceptance value.

A feature that the three graphs have in common is the abrupt change
in slope at the point q/p=d/a. Results have been obtained for other
aperture widths, and in every case a distinct change of slope occurs
at this point. The phenomenon is not restricted to the inductive
iris, as will be seen when other cases are dealt with later in this
chapter. The reason for the change of slope can be explained as
follows: The amplitudes of the aperture magnetic field functions are
obfained from the theoretical aperture magnetic field (that of the
incident waveguide mode) by Fourier analysis (equation 2.6) and are

thus fixed before the main body of the program is entered. Each of
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these field functions is matched across the aperture by a series of
waveguide modes. If the highest-order aperture function has a field

variation sin mi (x~b) across the aperture, the predoﬁinant term in
d

the mode series will be that for which n=ma/d, since this has the same
order of field variation across the aperture. If the series of modes
is truncated before this term is reached, as is the case when q/p> d/a.
magnetic field matching for this function will therefore be poor.
Similarly the highest order electric field function cannot be correctl)
matched to the waveguide field, and has been found to acquire an
excessively large amplitude. The more q/p exceeds d/a, the greater
the number of badly matched aperture functions, and the less accurate
does the solution become. A similar effect occurs when there are
insufficient aperture functions for good field matching of the highest-
order waveguide modes, i.e. when q/p<<d/a, but this is not as serious
because the excessively high order modes amplitudes are determined by
the calculations rather than by being fixed beforehand, as was the
case with the aperture magnetic field functions. These tend to be
small and thus the excess modes have a comparatively minor effect on
the solution. The change of slope, or "breakpoint'", represents the
transition from the above situation to one in which the highest order
aperture functions are incorrectly matched. The value of susceptance
at this point can be taken to be the most accurate, since field match-

ing is good for all modes and aperture functions.

It does not always habpen that the ratio of aperture width to

waveguide width can be expressed as a ratio of integers, and in this
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case it is not possible to selectp and q to give a solution at the
"breakpoint'. It can be seen from fig. 2.3 that if q/p is slightly
less than d/a, the error is much smaller than if g/p were greater by
the same amount, for the reasons explained above. Thus if ¢/p is
chosen to be as near d/a as possible without exceeding it, the best
solution will generally be obtained, and results indicate that the
error caused by this discrepancy is unlikely to be serious unless

p and q are very small.

Having determined the optimum value of q/p for a particular con-
figuration, it is interestfﬁg to investigate the convergence of the
solution as q and p increase with this ratio held constant, at the
same time comparing the results with an accepted value of knavn
accuracy. Formulae are given in the '"Waveguide Handbook" Eﬁj from
which normalized susceptance values can be found for the symmetric
case b=c, and for the single-obstacle case b=0. These are derived
by the "equivalent static'! method, which is essentially different
from the one used here and therefore suitable for comparison purposes.
The formulae are stated to be in error by less than 1% in the former
case, and by about one per cent in the latter, for the range Ao/2<(
a<:)o. 'Results for both the above cases are given in table 2.1, the
dimensions having been chosen such that a=0.8)8 and d=0.667a. p and
q are taken in the ratio 3:2, which corresponds to the condition for
optimum field matching derived above. There is uniform convergence
in both cases, and this has enabled Aitken's 52 process to be used to

estimate the final values as p and q tend to infinity. The percentage



Pl aq b=c Error (%) b=0 | Error (%)

6| 4] 0.48382| 1,13 0.83586 2,92
12| 8| 0.48060 0.45 0.85289 0.95

18| 12| 0.47958 0.24 0.85708 | 0.46

241 16| 0.47911 0.14 0.85881 0.26 -

30| 2G4 0.47885 0.09 0.85971 0.16

36 | 24| 0.47869 0.05 0.86025 0.09

Extrapolated
Converged Value 0.47843 0.86106

From. “"Waveguide 0.8485

Handbook" Formula

Table 2.1 : Convergence of Normalised Susceptance

Values for Thin Inductive Iris in Rectangular W/G

a = 0.8 >\O' d = O.667a
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30| 244 0.47885 0.09 0.85971 0.16
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Values for Thin Inductive Iris in Rectangular W/G

a = 0.8 >\°, d = 00667&
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error caused by truncating the series of modes and aperture
functions could therefore be found, and this is given in the table
for each value of p. It is clear that p need not be very large in
order to give an accurate solution: an error of 1% is generally
acceptable, and this is not exceeded in either case when p=12.

In fact the error when p=6 in the symmetric case is only slightly
greater than this. The accuracy for a given value of p is greater
in the case b=c than in the case b=0, because only odd modes and
aperture functions are considered, so the order of approximation to
the true fields is double that in the asymmetric case. Notice
that in the symmetric case the result for any value of p is an upper
bound to the solution, whereas in the asymmetric case it is a lower
bound. It seems that the only way to determine the sense in which

convergence occurs is to find results for various values of p.

The agreement between the estimated converged value and the
result derived from the "Waveguide Handbook" formula for the symmet-
ric case 1s excellent, the discrepancy being less than 0.1%. For
the asymmetric case, the solutions agree to within 1.5%, a sufficient-
ly small discrepancy to confirm the correctness of the method, bearing

in mind the tolerance quoted for the standard value.

With the object of verifying that the theoretically-predicted
characteristics of the fields in the vicinity of the iris are well
represented when q/p = d/a, it was decided to examine the form of the
field distributions in the aperture and in the waveguide, as calcula-

ted from the complex amplitude coefficients generated by the program.
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Of particular importance are the variations of the distributions
as p and q increase, the degree of accuracy with which the aperture
and waveguide fields match one another, and the degree of accuracy

with which they match the theoretical distributions, when these are

"known.

Figures 2.4(a) and 2.4(b) show respectively the electric and
magnetic field distributions in the discontinuity plane, for an iris
with an aperture of width d=0.5a, offset from centre, whose dimensions
correspond to case (C) in figure 2.3. In the case of the electric
field there is no need to show both real and imaginary parts, since
the components of the aperture and waveguide fieldss are all excited
with the same phase, and so the parts are identical except in ampli-
tude. Theory predicts that the electric field should vanish over
the iris, and that the imaginary part of the magnetic field should
vanish in the aperture, because the aperture magnetic field is Jjust
that of the incident mode, and therefore purely real. It can be
seen from figure 2.4 that in both cases the field oscillates about
zero, the amplitude of oscillation increasing towards the aperture
edges. Also, the magnetic field should theoretically become infinite
at the edges. This does not happen when a finite number of modes is
considered, but the field does become large at the edges compared
with the field elsewhere. The aperture magnetic field shon in
figure 2.4(b), is the approximation to the theoretical distribution =~
a truncated sinusoid - given by a Fourier series of the aperture

functions, in this case containing fifteen terms. Here again the
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ripple is most pronounced near the aperture edges. It is not
surprising that the ripple in the waveguide magnetic field across

the aperture has greater amplitude, because this field attempts to
match the ripple in the approximate aperture field and also adds its
own contribution owing to the fact that only a finite number of modes
is taken into account. The same effect can be seen in the electric
field, except that series of aperture functions are now used to match
the waveguide.modes - the reverse process to the magnetic field case =~
and so the ripple is worse in the aperture than in the waveguide.

The effect on the field distributions of increasing p and q in the
correct ratio has been investigated, and it is found that whereas

the frequency of the ripple increases, its amplitude decreases,

except near the aperture edges. This overshoot is known as Gibb's
phenomenon, and occurs whenever a Fourier series is used to represent
a discontinuous function. In the limit as p and q tend to infinity,
such overshoots will become spikes of zero width, which do not affect
field matching as assessed by integrating the squared deviation of the
two distributions. The waveguide magnetic field at the aperture
edges is found to increase as p and q increase, and it seems likely

that the theoretical infinite amplitude will be achieved in the limit.

A necessary, though probably not sufficient, condition for the
solution in the limit as p and q tend to infinity to be exact is
that discrepancies in field matching across the aperture should tend
to zero. As this cannot be adequately confirmed by merely examining

the field distributions, it is necessary to make a quantitative

determination of such discrepancies, The matching of the magnetic
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fields to the theoretical aperture magnetic field distribution, as
well as the matching of the waveguide fields to those represented

by the series of aperture functions, will be considered.

By analogy with Cole's treatment of the. step E8] , an error
parameter is determined for each pair of fields whose matching is to
be investigated, being defined as the mean square deviation between
the two distributions integrated over a surface s'. In general
this surface will be that of the aperture, but it is sometimes also
of interest to investigate field matching over a more limited range.

The electric field error parameter&h is expressed as:

2
l(E W/g —’I‘ap)l ds
EE = s'! 2016

P
LjiéTinc| ds
5'

Similarly, for the magnetic field error parameter:

«.[\(—TW/g —Tap)l de
2
\ﬁéTincl ds

sl
For convenience the above quantities are normalized using the

Eg = 2.17

incident field components E Tinc 204 Hojpe The remaining parameter

concerns the matching of the waveguide magnetic field to the theor-

etical field, and is expressed as:

2
l(I—{I‘W/g - E‘I-T:an)| ds 2.18
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The error parameters may be evaluated by substituting the series
representations for the waveguide and aperture fields. For example,

in the general thin iris case 2.16 becomes:

EE = m=1
f.?.l’f.l ds 2.19
5'
The numerator is now expressed as the sum of the squares of real and
imaginary parts, the coefficients being written as a.,=8 i;) Jaii)
and b b(r) jb(i) . After expanding the squared terms, 2.19
becomes: '
S e
oY (r) (i) N
SE = (Eunl ] ) [e, .e, d5 +2 8, +
n=1 A n=1l j=n+l
5
a(r)(r) | (1), (1) (r) (r) ,
%rn :k %rn ®rj ) En 2y ds - 2 (Esgl ]b
S n=1l m=1
-1
. 2 2
(1), (1) (r) (1)
8n Pm ) [&pe21y 95 ¢ (b " + By ) |81n°81p 98 + 2
A m=1 A ‘ m=1 j=m+l
5 s
(r), (r) (i) (1)
(b, bj + b bj ) ©1m*81j ds €+ ds
' ]
° s 2,20

The mode and aperture functions are assumed to have been defined so
that e, and e, are real. Notice that if s' extends over the whole
aperture, the last term in the numerator vanishes because of
orthogonality. The expanded form of 2.17 for evaluating-gn is
similar, except that the magnetic field functions h, and h,, can be
imaginary. Account is taken of this by interchanging {;al and

imaginary parts of the coefficients where necessary. The expression
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for eDH does not involve the aperture field, and consequently only
terms equivalent to the first two in 2.20 appear in the numerator.
In the case of the inductive iris, analytic expressions can easily
be obtained for the integrals in 2.20, and the error parameters can

be rapidly evaluated using the computer.

Figure 2.5 shows the variation with p of the error parameters
in the case of a thin inductive iris whose dimensions are those of
case (C) in figure 2.3. Three values of the ratio q:p are considered:
the optimum value 1:2 and two values on either side of the "break-

point" - 2:5 and 3:5.

Considering first of all the error integrated over the whole
aperture area, it is clear that with the optimum.ratio.er decreases
fairly rapidly as p increases, although convergence is not uniform
because additional modes taken into account have varying effects on
the solution. The magnetic field parameters, on the other hand, do
not vary appreciably with p, and are several orders of magnitude
higher than SE’ This result does not, however, mean that the
method is incorrect, because the range of integration includes the
aperture edges, and in the limit as p tends to infinity the magnetic
field distribution has singularities there. The infinite spikes
which develop at the ends of the integration range, although having
zero width in the limit, can have finite area, and thus the error
parameters can have finite values even though magnetic field matching
across the aperture is exact. To confirm this, field-matching errors

were evaluated over a reduced area, so as to exclude the aperture
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edges from the range of integration. Figure 2.5 includes graphs

for a 92% range, and the general downward trend ofEH and £DH can be
clearly seen. It is not clear from this diagram, however, that
convergence is to zero rather than to some constant value, so to

check this the symmetric case b=c was investigated, because here the
variation of error parameters is more regular, and higher order
functions can be considered since the even modes are omitted. The
results are shown in figure 2.6, and it seems likely that the relevant
curves will tend to zero, although this is again not obvious because
of their oscillatory nature. Values of p greater than 50 could not

be considered because of limitations on computer storage.

When q=0.4p, figure 2.5 shows that 8E tends to zero as p in-
creases, and is somewhat lower than when q=0.5p, but that magnetic
field errors are significantly higher. In the symmetric case
(fig.2.6) the convergence of magnetic field matching over the reduced
range when q=0.4p can be clearly seen, suggesting that with this ratio
also correct field matching will be obtained in the limit, although

convergence will be slower than when q=0.5p.

Notice that with both the ratios considered so far, there is
mutual convergence of the curves for £H and 6DH' confirming that the
aperture field will give an exact mean-square fit to the theoretical

field in the limit as p tends to infinity.

In the case q=0.6p, i.e. to the right of the "breakpoint",
figure 2.5 shows that although 5H and £DH tend to zero as p increases,

electric field matching becomes progressively worse. This confirms
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earlier remarks that q/p>d/a leads to an incorrect solution and

emphasises the critical nature of the ratio.

To conclude the treatment of the thin inductive iris, suscept-
ance values of practical significance have been calculated, and these
are given in figure 2.7. The curves show the variation of B/Yb with
aperture displacement, for various values of aperture and waveguide
width. In every case 30 modes were taken into account, and q/p
was taken equal to d/a. The accuracy of the results, determined
from convergence tests, is estimated to range from about 10% for the
case d=0.la to less than 1% when d=0.7a . For the single-obstacle
and symmetric cases, denoted by 2b/(a-d) equal to O and 1 respectively,
the results could be compared with those from the '"Waveguide Handbook'",
and agreement was found to be satisfactory when the estimated

accuracies of both methods of solution were taken into account.

The behaviour of the curves for agxo, d/a=0.5 and 0.7 is unusual,
because the susceptance 1s greater for the symmetric case than for the
single-obstacle case, whereas the reverse is generally true. This
effect is confirmed by the '"Waveguide Handbook" results, and seems to

be connected with the excitation of the H,, mode, here at cut-off,

20
which is not excited in the symmetric case but which has a consider-

able effect on the solution when b=0.

2.3, Further Thin Iris Examples - I.

Capacitive Iris in Rectangular Waveguide.

The general configuration for a thin capacitive iris is shown

in figure 2.8(a).  When only the dominant mode can propagate, the

equivalent circuit of figure 2.8(b) applies. Note that in this
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example the condition for single-mode propagation is that %f«:a.<:
29Jg+%§ , provided that c£d. The method of analysis is similar to
that for the inductive iris, but the expressions for the modes and
aperture functions are slightly more involved, because an incident
dominant mode can excite evanescent modes with field variations in
both x and y directions, and these can be E-modes, whereas only H-
modes were involved in the previous example. Since the iris is
uniform in the x-direction, however, these modes must have the same
field variation with x as the incident mode, and are therefore of

type By, and Hype In general n can be any positive integer, but

when c=d only modes for which n is even are excited.

The incident electric field is polarized entirely in the y-
direction, and such fields satisfy the beoundary condition at the
aperture edges. The solution can therefore be simplified if the
problem can be formulated in terms of modes having no x-component
of electric field. By combining the modes Hy, and E;, in the correct
amplitude ratio this component can be eliminated, creating a hybrid
mode designated LSE, . If modes of this type are used in the
analysis rather than individual H and E modes, there is a considerable

saving of computer time and storage for a solution of given accuracy.

The transverse field components in the plane 2=0 for the LSEln

mode can be written as follows:

o
e, = sinTT: cos n:x i, 2.21(a)

I W \2

1 ‘0 A

= j/|=o= (132 - 1) sinTx cos nMy 1+ nlg cosTIx sin nr

X n Eab a y r

2.21(b)
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2 > ,
where S/ln =\/(é° |:%2 + %;] - l)

Notice that if n=0 the expressions reduce to those for the Hlo mode,
so the incident field can also bew thought of as that of the lowest-
order LSE mode. Suitable functions for expanding the aperture

fields are derived from the LSE modes for a waveguide with the same

cross-section as the aperture, i.e.:

e = sinTTxcos m'T (y-c) E
S = ST R S
2
0 A
-l-"-lm = ( Ka - 1) sin]lﬁ cos g%‘l;(y-c) Ex
2 A
m
+ o1 cos Tx sin miy (y-c) 1
ab a B y 2.22(b)

It can easily be shown that the important orthogonality properties

a c+bt! a
h,ol dxd 4
\
y=0x=0 y=c x=0

hold for the above functions. The elements of matrix ER:], defined
by 1.21, become:

c+b! a

2 Fno 2 .
RS —;_6 sin "Tix cos nMy cos mT (y-c) dxdy
a b b! 2.23

y=c¢ x=0
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When the integral is evaluated this becomes:

2 sin nfic + (-1)m+lsin nT(c+b')

.2_12 E' 1 2024(&)
2_ 2
m ©
R, = b cos .mlle bm=b'n
nmm = b =% 0 ¢ 2.24(b)

‘b'

The elements of matrix ES]are related to those of ER] through the

expression:

s = 3/%L b &mw g 2.25
mn /Mogin b' Eng nm

In these equations &ij is defined as:

Eij =1, i=] Eia = 2, 1#J

Notice the similarity between the above expressions and those
for the inductive iris (2.;3 and 2.14). The method of solution on
the computer is entirely analogous to that for the inductive iris,
and only minor modifications to the flow diagram in figure 2.2 are
required, to account for the special case m=0, nfO, and the new

location of the propagation coefficient.

Figure 2.9 shows the dependence of the computed susceptance
on the number of aperture functions, q, when 18 waveguide modes are
taken into account. Various values of b'/b are considered, and
results are presented for both the symmetric case c=d and the single-
obstacle case c=0. Distinct "breakpoints" can be seen where q/p =
b'/b, and these can be accounted for in the same way as in the

inductive iris case. The susceptance values at the "breakpoints"
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should, by analogy with the inductive iris treatment; be the most
accurate. Here again, the erratic behaviour near q=p, where there
is also a deviation of the admittance ratio from unity, is a result of
computational errors. Note that before this region is reached the

solution appears to tend to zero, as predicted by theory.

By specifying the dimensions in terms og the guide wavelength
>\g for the dominant moie, where )‘g -.-.>‘O/(1->\0/l+za.2)3é the waveguide
width 'a' does not come into the calculation. In figure 2.9, the
height of the guide for the symmetric case is such that b=0.6245,xg,

which corresponds to the case a=b=0.8)b.

Table 2.2 shows the convergence of the solution in the case
q/p=b'/b=2/3 for both symmetric and single-obstacle cases. This is
not as rapid as in the inductive iris example, and there is less
difference between the convergence rates for symmetric and single-
obstacle cases., About 20 modes would need to be taken into account
for one per cent accuracy. The estimated converged values differ
from those of Marcuvitz [4_] by about 4% in the case c¢=d, b=0. 6245>
and by about 3.2% in the case ¢=0, b=0, #>b As the accuracy for

Marcuvitz's results is given as less than 5%, the agreement is

satisfactory.

Figure 2.10 shows the normalized susceptance of a symmetric
capacitive iris as a function of b'/b, with b/>t as parameter. In
the range 0.1g;p'/b<:p.7, Lo waveguide modes were taken into account,
and the accuracy of the results in this range is thought to be better

than one per cent.



P | qa |[Case 1 | Error (%) | Case & |Error (%)
6 4 1 o.4112 6.09 0.5889 6.83
12 8 | 0.3960 2.16 0.5641 2e32
18 |12 | 0.3921 1.16 0.5578 1.18 -
24 116 | 0.3903 0.70 0.5551 0.69
30 |20 | 0.3894 0.46 0.5536 0.42
36 |24 | 0.3888 0,31 0.552%7 0.25
Extrapolated

Converged Value 0,3876 0.5512

From “"Waveguide ;

Handbook" Formula 0.4031
Table 2.2 @

Convergence of Normalised Susceptance

Values for Thin-CapacitiVe Iris in Rectangular W/G

Case 1: c=d, b=0.6245 )\g, b'/b=0.6867

Case 2: c=0, b=0.4>\8, b'/b=0.667
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2.4 Further Thin Iris Examples - II

Circular Iris in Circular Waveguide =- Hll mode incident

An example of a thin iris problem with cylindrical geometry
is shown in figure 2.11(a). By taking the incident field to be a

unit-amplitude H1 mode, the problem becomes more complex than the

1
previous examples, since both H and E modes are excited at the dis-
continuity, in this case with unknown relative amplitudes. The
susceptance in the transmission-line equivalent circuit for single-
mode propagation (Fig.2.11(b)) can be either inductive or capacitive,
depending on the dimensions of the structure. It follows that certain
configurations will give a resonant condition, where the iris has no
effect on the Hll mode. The condition fer single-mode propagation is
0.293X°<:R'<:O°610Ab. Because the structure has circular symmetry,
the only modes excited at the iris will be those with the same
azimuthal field variation as the incident mode, which will therefore

be of type Hln and Eln' The transverse fields of these modes in the

flane z=0 are written as follows:

fin

gr(nn) = J]'.(kx'lr) cosei\e + # Jl(kx’ir) Singli\r 2.26(a)
p(H) oy Bl 1 (cir) sinf? J1(k'r) cosfi 6(b)
2y F wu ) KpT “177n g~ J1lkyT) cosdij2.2 (b

where k! R':DC, the nth. root of J!(x)
and X;“J(kﬁa n_ kg ). 1
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Fin

E 1 ;
L7 Tir R c0s02 33 (r) 100, 2.27(a)
EI(IE) -4 %:{Ji(lﬁr) singge_ Ti; 3 (11r) cosef‘i_gl 2.27(b)

where 1,'1R'-'2-*En, the nth. root of Jj(x)
2
and Snz\/(l;l 'ko).

The relevant orthogonality properties of the electric field

functions are:

R' 2
e(H2< h(I.{% r d@ dr = 0, i£j 2.28
-1 =j ==z
r=0 9=0
2
A LR 1.1 .2 .
= -3 227 11 - —2]J X)), i=j
(,./)(4,02 [ Xi 1'731°
R' 21
f(E)z n{E)d 1 a8 ar = 0, i} 2.29
-1 T =] =z
r=0 9=O
22
. wE LR ‘-
= j -871671'2 Jo(Ei) , i=j]
(H) (E)
The surface integral of the vector product of ey and -rlj
or of giE) and Q;H) over the waveguide cross-gsection vanishes for

all 1 and J.

As in previous examples, the aperture field functions are

derived from modes for a waveguide with the same cross-section.
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Suitable functions for this case are:

mth., "H-type" functions

r

(H) N 1 . A
e1p = J]'_(kmr) cose_:\_.g + kmr Jl(kmr) s:.neir
H) 1 A
EZ(Lm = - -1-{;; Ik r) s:i.ng_:_L_9 + Iy ) cosei\
mth., "E-type" functions.

() _ _1_ A , A
e, = Ir Jl(lmr) cosQ_:Ee + Jl(lmr) sine_:i._r
(E) _ A __1 A
hy ' = Jl(lmr) sineg._9 1T Jl(lmr) cos 9}_1_

In these expressions ka=Xm and lmR=Em.

2.30(a)

2.30(b)

2.31(a)

2.31(b)

The aperture magnetic

field functions have the following orthogonality properties:

R 2717

e X h(H) 2
-=1i =1lj °==z

r=0 6=0
- I"a—Ra’: - 'pl"c‘i].lf %), i=j
R 2
f elBy gg).ﬁz r dBdr = 0, ifj
r=0 820
2

TR 2
= -—2—- Jo (Ei) y i=3

r dBdr = 0, i#j

2.32

2+33
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The vector product of Eig) and Eﬁ?) or of e(E) and h(H)

—1i =1J
integrated over the aperture cross-section, vanishes for all i and j.

If waveguide modes and aperture functions of types “H" and "E"
are taken into account alternately, the elements of matrix ER] will

have the following forms:

Rr\ 27T
/ gig)x E:IH).@Z r d@dr
R =
r=0 6=0
2n-1,2m-1 U
f e My n(H) & 4gar
=n =n ‘=z
o
r=0 §=0
j 2% 3,6 ) 33X R/R") 2.3
2
2 R 2 2 2
(Xm R ° -’)Cn)(l - l/’X’n) Jl(Xn)
R 27
[gig)x gr(lH).ﬁz r d@dr
R = ~ _
on-1,2m = 0 2.35
r dBdr
R 2T
f giﬁ)x EI(IE) .il\z r dfdr
R
2n,2m=1 = r=0 6=0
R' 2y
"o (E) &
J &n X b i, T dBdr 2.36
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2R 3,(X ) 3,(& R/R")

EnXmR' Jg( En)

R 21T

f fgii)x EI(IE) ./iz r dfdr

r=0 §=0
R' 21

R2n,2m

_e_r(lE)x Er(lE)'iz r dBar

r=0 =0
2637
. 2(E R/R') J1(E ) 3, (E R/R')
2 2 2
&2 - (& r/mP] a3E )
The elements of matrix L__S] have the forms:
R 27
ff_e_ig)x 21(11{) 'iz r dBar
Somp-1,2n-1 = r=06=0
R 27
ffg](ﬁ)x .}lg_i)'i\z r d@dr
= =0
r=08 2.38

= 3 &0 2)@ J4 (X.nR/R')
wre (Kg X5 Ep) (- XD 51X
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R 21T .
N
fj e(E)x h(H).’:i\. r dBdr
S =lm -n -2
2m,2n-1 = r=0 9‘-—-0 - 0 2.39
R 2{;‘
j ggﬁ)x gg).’iz r dBdr
r=0 6=0
R 21T
s f ggi)x -}lx(xE)°/-j\'z r dfdr
2m-1,2n = r=0 9=0
R 2w
[ [eieni®, « aour
r=0 9:0 2.40
- -jwE, 2 Jl( EnR/R')
& X (& m/RY) (- 1/XD 30X
R 21
()_ ,(E)
e, 'xh i r dBdr
SZm,Zn - f f 1m n
r=0 8=0
R eTr
ffggi)x _lgg_i).’i\. r dBdr
r=0 £=0

2.41

N TAY 2( EnR/R') Ji(sm) Jl( EnR/Rl)

®n (53-5‘3%?_2) &)
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Having assigned values to the elements of matrices [R] and [§],

the method of solution is almost identical to that for the rectangular

waveguide examples.

The application to this problem of the '"breakpoint" technique for
determining the optimum value of p/q is illustrated in figure 2.12,
from which it is clear that p/q=R'/R is the required relationship.
Table 2.4 shows how the solution converges in the case R'/R=3/2,
.;'=0.3 AJ when p/qrcorresponds to the "breakpoint' value. Convergence
is rapid, and compares favourably with that for the inductive iris in
rectangular waveguide. For example, in both cases only 12 modes are
required to give better than one percent accuracy. It should be noted
that in both figure 2.12 and table 2.4 only even values of p and q have
been considered. This is to ensure that the cerrect ratio of modes to
aperture functions holds independently for both "E'" and "H" modes and
functions. If, for example, p and q were taken as 9 and 6 respectively
in the case R'/R=3/2, the numbers of "E" modes and functions would be
in the ratio 4:3, the corresponding "H" ratio being 5:3. Neither ratio
corresponds to the "breakpoint'", and consequently the solution would be

much less accurate than if p and q had both been even.

In order to check the correctness of susceptance values computed
for this case, a comparison was made with values calculated from the

simple formula:

B ==~ \g (212')3

. 6 - 2.3u44
Y, IR' Bko (2R)3 ]

where Ag= >\° {l -(;_3—.>’-:§.TR'->2 }%

2.42




. .

Fig, 2.12': Normalised Suacepe

B
, t Yo
tance 4or Thin Circular Iris 16

in Circular W/G Supporting

H,, Mode as a Function of no. .jy4

-

of Aperture Components

p=24, R'=0.3%

\ t
 Re2R'/3 .
! "VHL%A- e
' S B
! Lapn e, |
L C
<, TR N 'y ;. ;:.'Ad,‘,“ ) N
N 'i__’ 6 8 10 12 1k
R'| R B/Y, B/Y, Discre-| . > |a B/Yo Error
5S R' | (comp.) | (ref.8) p?ggy | (%)
0.3 |o.1| -2632 |-2780 [5.6 . 6] ] -4.111 }1.91
0.3 | 0.3 ] -90.50 | =94.13 | 4.0 12| 8] -4.066 |0.79
0.3 | 0.5| =-14.96 | -13.16 | 12.0 . 18|12} -4.051 {0.42
0.4t ] 0.1| -612.8 | =653.9 | 6.7 2k | 16| -4.044 Jo.25
0.4 | 0.3 <=19.,03 | =22.14 | 16.4 30} 20| =4.040 |0.15
o.4 | 0.5 -2.678 | =3.095 | 15.5 36| 24| -4.037 |0.,07
0.5 | 0.1| -403.3 | =439.4 (9.0
0.5 | 0.3] -10.08 -14.88 | 47.6 Estimated Gcmverged
0.5 ] 0.5] =0.799 | -2.080 | 160,1 value = -4,034
Table 2.3 ¢ Computed Susceptances Table 2.4 : Conve
for Circular Iris Compared with of Circular Irie Solution

R=2R'/3, R-.o.sib
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This formula is given by Marcuvitz [&], who derived it by an
integral ~ equation method; It is subject to the limitations that
R should be small éompared with R! anduXO/HT, and that the second mode
should be well below cut-off. No estimates of accuracy are given.
The results of the comparison are shown in table 2.3. In general,
the smaller R/R' and R'[Xo become, the better the agreement between
the two solutions. This is to be expected in view of the above limi-
tations, and tends to confirm the correctness of the computational

method. '

Figure 2.13 shows the normalised susceptance of a thin circular
iris as a function of R/R', with R'/xoas parameter. Forty waveguide
modes were tgken into account for R/R'<0.?7, and the accuracy is
estimated to ﬁe less than one percent for R/R' greater than about 0.25.
The susceptance is inductive except where otherwise stated. Notice
the resonant condition on the RV&§0.6 curve, which cannet be adequately

predicted using expression 2.42,

This example clearly shows the advantage of the computational

method over a conventional technique in which the need to make approxi-

mations severely limits the range of applicability.

2.5. Discussion.

The three above examples clearly illustrate the value of the
computational technique for solving thin iris problems, and show that

the location ef a "breakpoint' is a reliable way of determining the

oeptimum mode-aperture function ratio.
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The application of the technique to multi-aperture problems such
as inductive or capacitive strips in rectangular guide or annular
irises in circular guide is also straightforward. The general thin
iris theery ef section 2.1 applies, using the forms for matrices ER]
and [S] given by 1.20 and 1.25. Here again, the "breakpoint" tech-

nique can be used to confirm the optimum values fer the ratios qk/p.

In all the examples considered so far, the aperture and waveguide
cross-sections have had similar geometries. If this is not the case
the argument put foerward in section 2.2 for the existence of the
"breakpeint!" does not apply. Consider the case of an iris in rectangu-
lar waveguide having a circular aperture: the waveguide fields are
expressed in terms of sines and cosines whereas those in the aperture
involve Bessel Functions. It is difficult to see how any particular
ratie q/p pould correspond to optimum field matching, since, after
converaion te Cartesian co-ordinates, the spatial frequency of a given
aperture compenent varies with x and y, whereas that of a waveguide
mode does not. A plet of B/Yb as a function of q with p held censtant

would probably give no indication of the optimum ratio.

The results of the field-matching investigation in section 2.2
showed that correct matching could be obtained with a less than
optimum value of a/p, although convergence was slower. Whether the
final value of B/Yo is the same under these circumstances as with the
"preakpoint! ratio is questionable, but results indicate that if there
is a discrepancy it will be very small, Fer example, in the symmet-
rical inductive iris case where d/a = 0.5, a=0.8 Xo solutions for

q/p=0.4 and q/p = 0.5 agree to within 0.6% when q=20. Applying these
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findings te the mixed - geometry example, a fairly accurate solution
should be obtained with an arbitrarily chesen value of g/p, previded
this is small enough to avoid a divergent situation. Some experimenta.
tion would reveal the value thch gave most rapid convergence. A draw-
back in the solution of this type of problem is that the surface
integrals involved in the expressions for the elements of matrices ER]
and [SJ must be evaluated numerically. This is a rather time-consuming
process, and one which introeduces further inaccuracies. Fer these
reasons the solution of a problem of this type was not attempted.
However, it is suggested that future work on thin irises should include
a study of the mixed - geometry case. It might, fer example, be
pessible te speed up the solution in such cases by modifying the methed

te include the use of Fast Fourier Transferms.

An aspect of the thin iris problem which has not been investigated
is the way in which the magnetic field goes te infinity near the
aperture edges in the limit as p becomes infinite, and how this depends
on q/p. There seems to be an analogy here with Mittra's investigation
of a method for treating a thin bifurcation in rectangular waveguide
Ego], in which he shows that there is a unique choice of the ratios of
numbers of medes for which the condition that the field goes to
infinity as r-¥% at the edge of the septum is satisfied, and that only
with this cheoice does convergence to the correct solution eccur. (r is
here the radial distance from the edge). A study of the mégnetic
field's behavieur near an iris edge might therefere show whether values

of q/p less than the '"breakpoint" value ceuld give an exact selutien.



- 51 -

CHAPTER III THE SPECIAL CASE OF A WAVEGUIDE STEP DISCONTINUITY

3.1, Description of Problem and Methed of Selution.

The type of discontinuity which will be censidered in this chapter
censists eof a junction between twe waveguides of different cross-
sections, such that at the discontinuity plane the cross-section of the
smaller guide is entirely contained within the cress-section of the
larger. The twe guides are jeined by means of a perfectly conducting
step. Since the large waveguide may suppert mere prepagating modes
than the smaller, the junctien is useful as a launzher ef higher eorder
modes. The treatment can be extended to bifurcations, er te junctions
ef several parallel waveguides. A further develepment is the analysis

of deuble step discontinuities, fer example a thick iris.

In the general two-waveguide junctien of figure l.l, consider new
that the thin diaphragm in the discontinuity plane is remeoved, and that,
in cress-sectien AA', surface S lies entirely within surface S'. The
coupling aperture new has the same cross-section as waveguide 1, se the

aperture functiens e, ,h become identical to the field components

Im'=1m
e ’hm in waveguide 1l. It follows from 1.1, 1.5 and 1.7 that
—m—'

aim + arm = blm

and
a - a = C

im rm im 3.1
fer all m.
Having set q=p, it is clear frem 1.21 and 1.26 that [R] and [S]
will new be unit matrices. Substituting fer {b} and {c}in 1.31

using 3.1, the equation becomes

{od - fe } =051 [] {a o + 01 [R7 {ar} -2[s7] {ai} 3.2

Aty mm———

PR N L M S e S
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The elements of the two matrices are new such that:

h'od f °
. /;j X 2402 oY hi.ds 3.3

iy = & ! 13 2

t
S/:i x h!.ds /:i x h,.ds

In“equation 3.2, ai} and {.i}-sare known, se 3.2 represents a set

.

ef p linear equatiens in p complex unknowns a n' which may be seolved

r
as in the thin iris case. ' A matrix equation similar te 3.2 but
invelving the vecter {%;}-instead of {éé} could have been derived, but
as p is generally smaller than p', 3.2 gives the least number of simul-
taneous equatiens to be solved. Two special cases of 3.2 are ef part-
icular interest; that in which incidence is in the form of a unit-
amplitude deminant mede in the smaller guide, i.e. {Qi}.:{zg},{ai}.zo.
and the converse situation {}3:} =&Ai}, {};}:0 for incidence from the

larger guide. The vectors-{ﬁ{}and”{Af are here defined se that

z}l=6&=1,lﬁi=ﬁi=0, i£1, The vectors have p and p' elements respectively. :

For incidence from the small guide, 3.2 becemes:

] » 0D {2} ={A}- {r,} 3.4
where [T = [S7 [RY] and [17]is a pxp unit matrix({Ti} is the first
column ef [@ﬂ . The equation fer incidence frem the large guide is:
([r9 + 1) {ar}= 2 {Si}- 3.5

where {Si} is the first celumn of [57] .

Except for the inclusion of the unit matrix and the different
censtant terms, 3.4 and 3.5 are similar te the thin iris equatioen 2.15,
and a single cemputer program can be used to solve either a step or an
iris preblem. Details of the medifications invelved will be given

later.
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Having obtained the small-waveguide ceefficients a

rm? those fer

the large waveguide may be obtained frem 1l.23, having substituted for
{p} using 3.1. The version of 1l.23 correspending to 3.4 is

@) -0 ) - i}
where {?{} is the first celumn of“[ﬁ] , and that corresponding to 3.5 is

{u} -T2 .} -}

As mentioned in chapter 1, the use of the abeve appreach te selve:

_step preblems is net new, although the formulation given here differs
in some respects from that ef other workers. Fer example, an impreve-
ment which has been made en the work eof Clarriceats and Slinn EQ] is the
eliminatien ef one unknown celumn vector to give an equation such as 3.l.

In their treatment, {;;}.and {E}j} were obtained simultaneously by |

solving a set of p+p' equatiens in p+p' unknowns. Unnecessarily large

ameunts of computer time and sterage were therefere required. The

P T I DL

advantage of eliminating one vector has alse been recognised by Cole [3],
whe derives an equatien very similar te 3.4, but solves it by an
jterative methed as oppesed to the direct technique of elimination and
bacg-substitution used here. There seems little advantage in this,
since selutions have been obtained with quite adequate speed using the
direct method. (Run time is comparable to that for the thin iris.
selution - see section 2.21). Moreover, Cole seems to have had some
difficulty in obtaining reliable convergence with the iterative technique.}
The appreach described in Cele's paper alse differs in that the expres-
sions for the elements of matrices EE] and Esj involve scalar preducts ;
of two electric eor magnetic field compenents rather than the vecter | |

products as shown in 3.3. If the waveguides are hemegeneous, the twe
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metheds give rise te identical sets of equations, but if scalar preducts

are used junctions involving dielectric-filled guides cannet in general
be treated, because the transverse electric or magnetic field components

of any two modes may ne longer be erthogonal.

Wexler [ 7] has formulated the solution in a similar way to that
described here, but does not use matrix netation. Altheugh not essen~
tial for the solution of a single step, matrix notation is almost in-
dispensable when treating double discontinuities such as the thick iris,

as will be seen later in this chapter.

It should be pointed out that although in some instances it para-
1lels the work of Cole and Wexler, the research described in this

chapter was 1afgely carried out before the publication eof these papers.

3.,2. The Equivalence of Modal Analysis and Variatioenal Methods in the

Case of a single-mode Step Discentinuity.

In the particular case of a step discontinuity where incidence is
in the form of a deminant-mode wave from one side, other modes being
belew cut-off; a variational approach based on that given by Collin and
Brown EZ;] can lead to the generation of a set of linear equations

identical to that ebtained by Medal Analysis, as represented by 3.4 or
3.5
The coefficients of modes on both sides of the junction are

expressed in terms of the transverse electric field, ET' in the dis-

continuity plane, using Fourier analysis:

ng + arM = E —E'T' hM jb 3°8

Y R et A e o ——— i e -

B A AR



Ep by s 3.9

[ ey By s

37N
M,N = 1,2,3...“)

Dashed quantities refer to the larger guide, incidence is from the

smaller guide, and the notation

...!]Szﬁxxds

has been used. Insequaticn 3.9, the vanishing of the electric field
- vover the step has been incorporated to enable erthogonality of modes
" 4n the larger guide te be used. The coefficient in the magnetic

field matching equation

, W [o's)
h, = a h = at h! 3.10
-1 z rm —m z rn -n
m=1 n=1

are now replaced by the expressions in 3.8 and 3.9, with the

exception of a.;. The following equation can be obtained:

1-a, [ T’—ljs - i‘é Epk ]s = [ Epoiy 1 311

1+a1‘1E el’hl:l -m’hmjs n=1 I:—r'x’—n S

The term 1-a ;1 will be written as Y n' the complex input admittance

l+arl
for the transmission line equivalent circuit. Each term in 3.1l is

vector pre-multiplied by 5&. an arbitrary transverse vector function
which exists over surface 5, and then integrated over g,..- The result

is:

EOO:EET’h S E ZE._T'h jsl:_T’h':ls
m=2 E m —m]s n=1 n~S'

C EpebyJs C Erony g

3.12

in ®

)

PO

s -

OO, 77 g
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It can easily be shown that Yin is stationary for small changes
in 5T. To make it also stationary for small changes in ET’ it is

necessary to put §T=ET. The variational expression for Yi is there-
. = n

fore: ® 5 o
N E Epsh S , L —’I"Bn
4:_ E 3 'héjs n=1 E —n

Y = 3.13
in
C EpbyJg

Eqéﬂs

ngust now be chosen so that the above expression is satisfied.

If it is written as an infinite series of the electric fields of modes

in the smaller guide i.e.

== 2 Z rMeM !

Yinwill have the required property if

éYin
aarM
After substituting for ET in 3.13 and using the fact that

= 0 for all M.

orthogonality holds for modes in the smaller guide, the equation

rgm (8 )L 1 ﬁ& :
+a eoohplgh
oo » E gm'hm s w pl rp P'~n s‘
Yin = arm ( )2 N + ) N
1ea )L gpabyds 43 (l*a Tepn s L e

m=2

becones:

-n n-S'

For M>l, the application of the condition for Yin to be

stationary for small changes in g is straightforward, the result

rM
being:

Z C eyobids ]s ” ) C sp’h']s‘}= o 3,15

1t
'hM]S p=1 P rP E —e-;J.’g;ljS'

3.14
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When M=1, differentiation of 3.14 gives:

¥y _ y;t 208 i(spfarp) C 52'.1.1.;1]5 }

a
d°%r1 (1*3 21'.}11]3 p=1 Egﬁ'B'jsu
(1+a 1)2
- D —— 3.16
(1+a_,)’ fin ]
Writing Yin’l 2r1 in the second part of 3.16 and setting a!&n

l+a Y
=0 jeads to the rg%ult: 8 rl

o0 o0 -

a + =

~rl rp 3.17
n=].‘L —1’21]5 p=1 L- e' h']Sl

If the integrals in 3.15 and 3.17 are now expressed using the

notation given by 3.3, these equations can be written in the general

form:

® o
o 2D Shufhe Gty ~Bi 318

p=1 n=1
’ M= 1’2’30000 (o o]
It can be seen by comparing 3.18 and 3.4 that apart from the replace-
ment of infinite by truncated series the two expressions are identical.
Similarly, if incidence from the larger waveguide is considered, an

expresglion equivalent to 3.5 can be obtained.

Although leading to the same result, the variational formulation
is not nearly as straightforward as Model Analysis. It is also more

restricted in application, since the above approach is not valid if

several modes are simultaneously incident on the Junction.

ik . uw ta
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This illustration of a parallel between the computational and
variational methods in a particular case is valuable in that it tends
to confirm the correctness of the new method, at the same time showing
its advantages in terms of generality and simplicity over a well-

established technique.

3.3 Choosing the Ratio of the Numbers of Modes.

By analogy with the thin iris, the choice of the mode ratio p/p'
can be exprted to have a significant effect on the convergence of a
step discontinuity's solution as p and p!' increase, and a similar
argument regarding correct matching of field components in the
aperture can be applied. For junctions of waveguides with similar
geometries, it is easy to see what ratios will equate the spatial
frequencies of the highest order modes on either side of the discontin-
uity plane. For example, the ratios for the junctions shown in
figure 3.1 should be p/p'=d/a for case (a), the H-plane step, and
p/p'=b'/b for case (b), the E-plane step. To confirm that such
ratios also give optimum convergence, the equivalent normalised
susceptance for a symmetric E-plane step discontinuity in which
b'/b=0.5 has been calculated as a function of p, for various mode
ratios p/p'. The results are shown in figure 3.2. In all cases
convergence is to very similar, if not identical, values. Any dis=-
crepancy there may be between the final values is less than 0.3%.
The choice of p/p' is therefore not nearly so critical as the choice of
q/p for the thin iris, and it is clear how other workers succeeded in
obtaining accurate results with arbitrarily chosen ratios. It can be

seen, however, that with the ratio for optimum field matching, p/p'=0.5,
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convergence is considerably faster than in the other cases. For
example, an error of less than one percent can be achieved with only
three modes in the small waveguide whereas five modes are required in
the case p/p'=0.25, and twelve when p and p' are equal. Since the
value of p governs the number of simultaneous equations to be solved,
it is clear that for a solution of given accuracy there will be a con-
siderable saving of computer time and storage if p/p' is correctly
chosen.

Referring back to the combined step and iris for which results
were given in figure l.2, it is now possible to apply the condition of
spatial-frequency matching for the highest order modes and aperture
functions to obtain the correct values of the ratios q/p and p/p'.
Clearly, the most accurate solution for B/Yi‘will lie on the 10:20
characteristic at the point g=5. Note that this value corresponds to
a well-defined '"breakpoint'. If the ratio q/p is held constant at
1/2, an increase in p' from 20 to 30 changes the value of B/Yl.by less
than 1¥%. If p' is reduced to 10 the change is about 7¥%. Similarly,
if q/p' is kept as near as possible to 1/4, and p/p' is varied, no
change greater than 10% occurs even though q may be as small as 2.
YR/YL does not vary Ly more then 1% in any of these cases. When
these figures are viewed in the light of the gross variations which
may occur if other values of p,p' and q are selected, it is clear that
provided there is correct spatial-frequency matching between the
aperture functions and one set of waveguide modes, errors in the choice
of the number in the other set will not drastically affect the solution.

This is always the case with the type of step discontinuity treated in
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this chapter, since the modes in the smaller guide also serve as

aperture functions, and this explains why mode ratio is a comparatively

minor consideration in the step case..

3.4 H-Plane Step in Rectangular Waveguide

An H-plane step discontinuity in rectangular waveguide is
illustrated in figure 3.1(a). If incidence is in the form of the
dominant HiO mode in either guide, only modes of type Hno will be
excited, because of the structure's uniformity in the y-direction.
The modal fields in the discontinuity plane may then be expressed as

follows:

Small Waveguide

e = sin 5%1 (x-b)iy 3.19(a)
E. v A
Em = Jé;ix; sin gg(x-b) I, 3+19(b)

where X = m -
i J 5(d/ \g)2

Large Waveguide

P
el = sin n;fx iy 3.20(a)
-t TAN
h! = j//fignsin pg_)_g 2 3.20(b)
where , 2 -1

:lu(a/x )2
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The expression for an element of [RY , defined by 3.3, is
identical to that for an element of [R] in the iris case, as given by
expressions 2.14(a) and (b). The elements of [S'] are related to
those of [R)] through the equation:

-2 %n
5 - d

nn R 3.21

< nm

S
Because two propagation coefficients, which can be real or imaginary,
are involved in the above expression, the procedure for assigning
values to the real matrices [A] and EH] corresponding to the complex
matrices ER] and [Sﬂ is slightly more complicated than in the case

of the thin iris., However, the details of this operation should be
clear from the flow diagram of figure 3.3. Comparison of this diagram
with figure 2.2 shows that, with only minor modifications, a program
for solving the H-plane step could be made to solve the thin inductive

iris as well.

The conditions for single-mode propagation, when only the Hio
mode is above cut-off in either waveguide, are:

0.5<a/A<1.5, 0,5<d/X§:1.5 when c=b
0.5<8/\5<1.0,  0.5<d/A5<1.0  when c#b

It is possible in this case to represent the junction by the trans-
mission line equivalent circuit included in figure 3.1(a). When
incidence is from the smaller guide, the circuit parameters are deri;ed

from the reflection coefficient a.qy using the equation:

A-ar1=J + JB 3,22
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Note, however, that if incidence is from the larger guide the

parameters will not be exactly the same as those given by 3.22.

Results for the single-mode case will not be given here, as its
solution by modal analysis has already been investigated by other
workers. Clarricoats and Slinn [ﬁ] have obtained values of the
equivalent circuit parameters which agree with those given by Marcuvitz
[ﬁ] to within the accuracy specified for the latter results. As they
arbitrarily set the mode ratio equal to unity, and took only seven modes
into account, their work confirms the non-critical nature of the mode
ratio and rapid convergence of the solution when the computational

method is applied to step discontinuities.

An H-plane junction of rectangular waveguides capable of supporting

more than one propagating mode has been solved by Felsen [22] using a
quasi-optical technique. Comparison has been made between his results
and those derived by the computational method in both symmetric and
asymmetric cases, and for incidence of the dominant mode from either
waveguide. Agreement was found to be satisfactory in all cases. The
results presented here (figures 3.4 and 3.5) are for a symmetric step

in which the dominant mode is incident in the smaller guide, the guide
widths being in the ratio 2:1. 24 modes were taken into account in

the larger guide and 12 in the smaller. The amplitudes of H d

10° H}O an

H modes reflected from the junction are shown in figure 3.4 as

50
functions of frequency, whilst figure 3.5 gives their phases relative
to that of the incident Hlo mode. Whereas Felsen's curves are smooth,

those derived by the computational method have several "breakpoints"
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corresponding to higher-mode cut-off frequencies. It would seem that
Felsen's method is too ;pproximate to bring out the fine structure of
the curves. Since the discrepancy between the solutions in the
vicinity of a "breakpoint" can be as much as 90% in amplitude and 50°
in phase, the computational method is particularly valuable if opera-

tion near a cut«off point is of interest.

3.5 E-plane Step Discontinuity in Rectangular Waveguide.

The E-plane step, illustrated in figure 3.1(b), has already been
mentioned in section 3.3. As in the case of the capacitive iris
(section 2.3), the solution can be formulated in terms of modes of type
LSE ),y B being odd for a symmetrical junction, i.e. c=d. These modes

have transverse fields in the discontinuity plane given by:

In the large waveguide

A
el = sin ‘n;x cosrﬂbx iy 3.23(a)

,8
B! 3 =2 %- {(Xi/qaz - 1) sin Trx cos nfy ’}\_
/u‘o ¥y a b "

h! =
n>\2 A 3023(b)
+ o cos TTx sin nly i }
LTap a b y
In the small waveguide
= sinTlx cos mW 4
-m re 'ﬁ Zy 3.24(a)
,8 1 2
h, =1 = = {(Xo/‘ma - L)sinT[x cos m’{
So X, a B X 3.24(b)
"b\z
+ o cosTx sin mly 4
Ir;’fﬁ a o' "Y}
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The elements of [RY] are then identical to those of [R] in the
capacitive iris formulation, and may be evaluated using 2.24. The

relation between the elements of [53 and [Rﬂ is:

b .8_1_119 R 3.25
b! 650 nm

s
mn

Sati

Having assigned values to the elements of these matrices, the

method of solution is then identical to that for the H-plane step.
In the case of single-mode propagation, i.e.

b/,\8<0.5. b'/>\g<0.5 when c £d
b/kg<:1. b'/kg<:l when ¢ =d

where >\g‘>\o/\/(l-/ 2/1+a2), the transmission line equivalent circuit in-
cluded in figure 3.1(b) can be used, the parameters being derived from
the complex reflection coefficient through 3.22. In this particular
case the circuit parameters are the same whichever side incidence is
from. The computed results show that, for any set of dimensions or

ratio of modes, the admittance ratio is exactly that of the heights of

the guides, i.e.

3.26

<
"
olo

O

This is in agreement with the findings of Marcuvitz [ 4],

In figure 3.6, computed values of normalised equivalent susceptance
for a symmetrical junction are shown superimposed on curves from the
"Waveguide Handbook" [H:} 20 modes were taken into account in the

larger waveguide, and the mode ratio was taken as p'/p=b/b'. It can
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be seen that agreement is very good, even for small values of b'/b,
where accuracy can be exprted to be lower because only a few modes in

the small waveguide are included in the solution.

3.6 Junction of Circular Waveguides - HyjMode Incident.

A circularly symmetric junction of homogeneous circular waveguides
is shown in figure 3.7. If the H mode is incident from either side,

modes of type Hy, and Ein will be excited in both waveguides. In the

(H) (H)
large wav;guic(le5 expressions for the transverse fields e ﬁ + h ﬁ
(E E
and e ; v Y are identical to 2.26 and 2.27, except that the pro-

J U
pagation coefficients must now be written as }Ql and Sn to distinguish.

them from those of the small waveguide. The field expressions for the

small waveguide are:

Elm mode
(") , A 1 .. .An
en = Jl(kmr) cosaie + i—;-; Jl(kmr) 51n93‘-r 3,27(a)
(1) $m § 2 g4 , 54
h " = -jfy‘b w7 Jy(kr) sinbi, - J1(kT) cosO L, 3.27(b)
m

where ka=Xm and Xm = \/(ki - ki )

E mode

-1m

e{B) o 15 (1 1) cosB@%ps T1(L 1) 5in0R 8(a)
(B)  jW&)., A

ll_m = ﬂg;c{yl(lmr) Sing_j_.e - ‘]Ti;F Jl(lmr) cos Qgr} 3028(b)

where LR =5 ana 8 - [a2 . i)
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Values can now be assigned to the elements of [R'] using expressions

2.34 to 2.37. The elements of [Sj are given as follows:

H-modes in both guides:

Y, 2X 31X _B/RY)

St -1 3.29
2m-1,2n-1 2 2 .2 /52 2
Y (X -XE RE/RE) - /KT (X))
H- largé guide, E - small guide:
s! =0 3.30

2m,2n-1 =

E -~ large guide, H - small guide:

' K 2 3,( & Rr/R') 3.31
Shael,on = T ITY, W gnR/R')(l T7X2) 9 (X

E - modes in both guides:
S! = Slm 2( €nR/R') Ji( Em) Jl( ng/R')
2my2n = Y (&2 - £2 p%/me?) 52(8 )

3.32

Here again, the treatment for the rectangular waveguide H- plane
step, as set out in figure 3.3, applies once matrices [R' and [SJ]

have been generated.

An important application of the circular waveguide junction is as
a mode-converter in the "Potter Horn" multimode antenna [lﬁj, where
an Hllmode incident in the small guide excites both Hlland Ellpropaga-
ting modes in the large guide. The transverse field patters of these
modes are included in figure 3.7. If other modes are to be evanescent,
the dimensions must be chosen such that:

0.293<<R/A;<C0.610,  0.610<R'/) <0.847

P—
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The amplitﬁde ratio with wnich thne Hlland Ellmodes are excited in
the larger guide has been determined experimentally by Nagelberg and
Shefer Eé}], who express it in terms of a "mode conversion factor'",
being the ratio of the radial electric field amplitude of the Ellmode
to that of the Hllmode. measured at the waveguide wall. In terms of

decibels, this is written as:

M= 20 loglo —m dB 3.33

a;Z and a;lbeing the complex transmission coefficientsof the Ell and

H,9 modes respectively.

Computed values of M are compared with Nagelberg's experimental
results in figure 3.8. Sixteen H and sixteen E modes were taken into
account in the larger waveguide, and the mode ratio was taken as
p'/pg;R|/R. The agreement between theory and experiment is clearly
good, especially for the smaller values of R/R'. When 2R=2.5", there
is a discrepancy of about 1dB, but one would expect experimentally
determined values to disagree with theory here, because the Ellmode is
only very weakly excited, and any imperfections in the manufacture of

the junction will have significant effects on its amplitude.

The "breakpoints" observable on the 2R=2.3" and 2R=2.5" curves

correspond to E,,cut-off in the small waveguide.

Values of V.S.W.R. for the case 2R=2.5" are included in figure 3.9,
with experimental points for comparison. Although there is good agree-

ment in magnitude, the computed values show no sign of the oscillatory

behaviour observed by Nagelberg,
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There seems to be no physical reason why such behaviour should

occur, so0 it may well be a spurious effect connected with Nagelberg's

particular set-up.

Nagelberg has also measured the relative phase with which the Hil

and Eilmodes are launched in the case 2R=2.1"E?4]. This is shown in |
figure 3.9, together with a graph of computed results. It can be seen
that on average the experimental values differ from the computed ones
by about 10°, a satisfactory figure in view of the scatter on the

experimental points.

The modal analysis technique has also been applied to this problem
by Cole [87], who giveé values of M for the case R'=2.8", R=2.1". These

values do not differ appreciably from the ones presented here.

3,7 The Treatment of a Junction involving More than Two Waveguides.

Figure 3.10 shows a Jjunction between a single waveguide on one side

of the discontinuity plane, and several smaller waveguides on the other,
such that the axes of all guides are parallel and the cross-sections of
all the small guides lie within that of the large guide. The guides
are joined by a perfectly conducting step. The method of solution is
an extension of that for a simple junction described in section 3.1:
equation 3.2 applies when [RY and [S7] are expressed in partitioned
forms similar to those in 1.20 and 1l.25. The elements of the sub~-
matrices resulting from field matching in aperture k are given by 1.24
and 1.26, where Ekj and Bkj are now the transverse field components in
the discontinuity plane of the jth,mode in the kth. small waveguide,

whose cross-section is sk' Each of the column vectors-{ar} and {Ai}-in :
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equation 3.2 now contains series of modal amplitudes for all the small
waveguides. In the usual case, where the dominant mode is incident
from the large waveguide, equation 3.5 can be used to give the ampli-
tude coefficients for the modes in all the small guides. The large

guide's mode coefficients are then obtained using 3.7.

For most rapid convergence, the numbers of modes taken into account
in the various guides should be chosen for best matching of the highest-

order modes' spatial frequencies across the apertures.

Some simplifications can be made in the case of a structure with
symmetry about a centre line, such as a symmetrical H-plane bifurcation
in rectangular waveguide. A dominant mode incident from the large
guide excites in that“guide only Hrﬂ)modes for which n is odd.

A magnetic wall along thé:axis can be inserted without affecting the
fields, and because the orthogonality of the odd modes holds over half
the cross-section, the problem reduces to a simple step junction
between two rectangular guides, one of which has a magnetic wall. This
type of simplification is applied in chapter 6 when treating a junction

with four-fold symmetry used in multimode antenna design.

The symmetric H-plane bifurcation has been solved by Wexler E?]
using modal analysis. In the case where the two small guides are

separated by an infinitely thin septum, his results are in excellent

agreement with exact values obtained by a transform technique.

3.8 The Treatment of Double Step Discontinuities.

In this section, a pair of interconnected step discontinuities

between waveguldes with parallel axes is considered. Some examples
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are shown in figure 3.11. In case A, there is boundary enlargement in
both planes 1 and 2 if incidence is from the left, or boundary
reduction at both planes for incidence from the right: such config-
urations have applications as waveguide impedance transformers.

Figure 3.1l B shows the case of enlargement at the first plane followed
by reduction at the second. An example of this arrangement is given
in chapter 6, where its use as a mode generator for a multimode antenna
is discussed. In case C, a boundary reduction at plane 1 is followed
by enlargement at plane 2. A particular case of this junction is the
thick iris in a waveguide. Since the method of treatment for type C
junctions applies also when there is more than one interconnecting

guide, it is possible to tackle such problems as a row of posts across
a guide.
For a general 3-waveguide junction of the above type, with a

unit-amplitude dominant mode incident from the left, field matching

at plane 1 gives:

@O [¢2]

1t Ly ®p%p ~ :L:l_( %q * !-Eq) % 3.34
(o] [ee])

b - ; ah = ;( ?q -?q) N 335

where the amplitude of the qth mode in the intermediate guide at plane

1l is expressed in terms of components travelling away from and towards
- <«

the junction, denoted by'tq and ’Kq respectively. The fields of this

mode at plane 2 can be expressed in terms of those at plane 1 using the

"
propagation coefficient Xq and the length 1 of the intermediate

section. Field matching at plane 2 then gives:
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= -Zf 1 « ¥ 1
Z( I’qe q +'qu q) _e_:l- = Zax"-e-z" 3.36
q=1

I‘:l
[o'e) 1" (1] 0
> =81 <« Y2
E (T e T -Te %) nn =§a'h' 3.37
q q -q r—-r
q=1 r=1

Matrix Equations for Junction 1l

Equation 3.34 is vector post-multiplied by each of the magnetic
field functions in the larger guide taken in turn, and each term is
integrated over the smaller guide's cross-section. The range of
integration on one side of each equation is extended over the larger
waveguide's cross-section to take account of the vanishing electric
field over the step, and the orthogonality of the modes in this guide
is used to reduce the relevant series to a single ternm. By restricting
the numbers of modes in the input and intermediate guides to n and n"“
respectively, the equations can be expressed in matrix form:

For boundary enlargement:

{b}: CR,] {a} + {Rll} 3.38(a)

For boundary reduction:

{A} + {a}= [ri] {b} 3,38(b)

In these expressions:

R, (4, 3) = L/[\ x h"°d5//<;C; x hi.ds, R} (1,3) = eg x h,.ds e, x b ods;
S

Matrices ERi]and ERi] have dimensions n"xn and nxn" respectively.
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Vector {b} has elements bi =:Ei +$i , and {Rll} is the first column of
Cr, 1.

The magnetic field matching equation, 3.35, is vector pre-
multiplied in turn by each of the smaller guide's electric field
functions, the various terms then being integrated over that guide's
cross-section. The orthogonality of the smaller guide's modes is used

directly. Eventually the following matrix equations are obtained:

For boundary enlargemeht:
{a- {a}- 5,06} 3.39(a)

For boundary reduction:

fod- - 453
where [S;] and [S{] have elements:

e X g:_j'odﬁ ﬁ! bd -}-1-j°d§
S gn

Sl(igj) = ’ Si(isj) =
ﬁi x Eiodi fsg x lx_'i'_.dg
'

S .
the dimensions being n x n" and n" x n respectively. {Si:&is the

-5 e
first column of [S17] and c, = 'Ui - Ti , 1h.

Matrix Equations for Junction 2

The coefficients of the intermediate waveguide modes at junction 2

can be written in terms of b, and cy . 3436 and 3,37 then become:

(e}
[ chosh( X;l) - cqsinh( \6;1) ] 38 = Z a'e

9
r-r

i
= r=1 3.40
© t

] ]
§1 [: _bqsinh( qu) + cqcosh( qu) :] _}3; = E arh? 3,41
q= wo]
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Vector multiplication and integration are carried out as for junction 1, |

and after restricting the number of modes in the right-harid guide to
n', the matrix equations resulting from electric field matching are as

follows:

For boundary enlargement:

Cr,] Lexd fo} - [r,1 [at] e} = {a'}

3.42(a)

For boundary reduction:

3.42(b)

Cond §o} - [l §c }= [rs] {a'}

where " ' ",
ij x hi.ds f_e_j x hi.ds

gn g
Ry(1,3) = , RI(1,3) = )
v ' " n
_e.i x Hi"dg ff:'.i X .lii"dé

gn
[r,] and ERéj having dimensions n' x n'" and n" x n' respectively.

Esh:! and [ch:] are n" x n" diagonal matrices having elements Shii= sinh

(X'i'l) and ch =cosh (X:l).

Again following 'the method for junction 1, the matrix equations

obtained by matching magnetic fields at junction 2 are:

For boundary enlargement:

Jsh] {b} +[en] {c} =-[:82:| {a'} 3.43(a)

For boundary reduction:

far} ={Sa'] Csn] {b} +Le5] [en] {c} 3.43(b)
Matrices Esgj and [Séj are n" x n' and n' x n" respectively, with
elements: el! x g:_lodg f_e_i x El_:.j'°d§.

S"
S,(1,3) = v S3(4,3) = s! —

"
fsi X hi.ds Jgi x hi.ds
SH ] ’

%
4
¥
;
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Simultaneous Solution of the Equations

Having generated, for a given double step junction, a set of four
matrix equations involving four unknown column vectors, one method of
solution is to lump all these unknowns together into a single vector,
and produce a single matrix equation which can be solved to give all the
coefficients simultaneously. Clarricoats and Slinn [67] have success-
fully used this method to treat a thick inductive iris in rectangular
waveguide. A serious disadvantage, however, is that 2n 4+ 4n" 4+ 2n°
linear equations in the same number of real unknowns have to be solved,
and for average-sized computers storage limitations severely restrict
the numbers of modes which can be taken into account - about 12 modes
in any one waveéuide is the maximum if n,n" and n' are approximately
equal. This restriction can be overcome by combining the matrix
equations to give an equation involving only one of the original column
vectors. Once this equation has been solved, the other unknowns can be
found by back-substitution. In this way the number of linear equations
to be solved is reduced by a factor of four when n = n" = n', and it is
found that, for a given store limit, at least twice as many modes can

be taken into account.

The elimination of {a} from 3.38 and 3.39 gives:

(R 05,1 {e}e {63 - 2{Ry 1} 3.4k (a)
[syd [mid dud + fek=2{s;} 3.4k (b)

The equations apply for boundary enlargement and reduction respectively.
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Similarly, §a'} can be eliminated from 3.42 and 3.43 to give:
(s RALex R [enD {6} = ([5,1[R,1End D {3} 3.45(a)
([Rs] [s5] Cetdelen]) §o} = (RG] Lenl s [0 {c} 3.45(b)

If there is boundary enlargement at the first junction, 3.44(a) should
be combined with either 3.45(a) or 3.45(b) to give an equation involving
only the vector {c}. For boundary reduction at junction 1, elimina-
tion of {c} from 3.44(b) and 3.45(a) or (b) gives an equation in {b}
only. Writing the matrices on the left and right hand sides of

3.45(a) as [U]and [V]respectively, and those in 3.45(b) as [U'] and

[V7], the final equations to be solved are:

Enlargement at both junctions:

(IR, IE T+ 0D {3 - a[uj{nn} 3,46
Reduction at both junctions:

(A By IR + O {v} =2[v] {s1,} 3.47
Enlargement gt Junction 1, reduction at Junction 2:

(IERE, 3+ D) fe} = 2V {R,, 3 3,48
Reduction at junction 1, enlargement at junction 2:

(VIBy IOy 3+ [ {o}= o[ {s1,} 3.49

Back-substitution to obtain the other unknowns is most easily
done as follows: For enlargement at junction 1, {a} is found from
3,39(a) and substituted in 3.38(a) to give {b}. For reduction at
junction 1, {a}'is found from 33.8(b) and substituted 2n 3.39(b) to

give {c} Knowing {b} and fc}, {a'} can be evaluated using 3.42(a)
or 3.43(b).
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For configurations of type C in figure 3.11 where there is more
than one interconnecting waveguide, matrices [R]'_J, ERZJ° ESi] ’ Esz'_'[,
[sh] and [ch7] should be written in partitioned form following the tech-

nique outlined in section 3.7.

In the case of a thick iris or row of rectangular posts in a
waveguide, junctions 1 and 2 are identical. I:Ri] and I:Raj are then
equal, as are [?i:]and [?210 Recognition of this leads to some simpli-

fications in programming.

If the numbers of modes in the various waveguides are chosen
using the field-matching criteridn for the highest order modes, n"
will be less than n or n' for type C junctions. Thus the smallest
column vectors, in this case {b}~and fc}, are determined first - the

most economical arrangement as regards computer time and storage.

As mentioned in chapter 1, Slinn [5] and Wexlerl:jj have found
that when modal analysis is applied to a double step junctiion the rate
of convergence decreases with the length of the intermediate section.
However, Slinn [5:]haa obtained an accurate solution for a rectangular
waveguide inductive iris of thickness 0.0BXb'with n"=7, so it appears
that the effect is only troublesome when 1 is very small, in which case
a fairly good solution can be obtained by putting 1=0 and treating the

junction as a simple thin iris, step, or a combination of the two.

A junction of type B in figure 3.11 has been treated using the
above method (see chapter 6), and it was found that results were un-
reliable for 1 greater than about 2>&f This seems to be because

1

terms of the form e ¢ become very large for the highest-order modes,
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so that rounding errors occurring during the solution of the simultan-
eous equations have a serious effect on the values of the unknown
coefficients. In cases such as this multiple reflections of evanes-
cent modes could be neglected, and a solution obtained by considering

a transmission line equivalent circuit whose parameters were calculated

by treating each junction separately.

3,9 Discussion and Conclusions.

In this chapter the Modal Analysis technique for step discontin-
uities has been developed as a special case of the general computational
method of chapter 1. 'Matrix equations applicable to a wide range of
both single and double discontinuity problems have been derived. It
has been shovn that.although the choice of the ratios of numbers of
modes considered is not nearly as critical as for the thin iris; ratios
selected by field-matching considerations give most rapid convergence.
Results obtained using Modal Analysis have been shown to agree well
with values found by experiment and by other theoretical methods, for
both single mcde and multimode cases. The technique can therefore be
used with confidence in the design of mode-generators for multimode

antennas.

As with the thin iris, solution of junctions involving mixed
geometries may be lengthy because of the need to use numerical inte-

gration.. However, since no divergent situation can occur in the step

case, the choice of mode ratio can be quite arbitrary.

Although the treatment in section 3.8 applies only to two

adjacent steps, there is no reason why it should not be extended to
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any number of successive junctions. Manipulation of the matrix equa-
tions for the various junctions would lead to the elimination of all but
one of the unknown column vectors, giving a set of simultaneous equa-
tions to be solved in the usual way. This final set of equations

would require no more storage than in the double step case, but addit-
ional storage would be needed for the matrices generated by field
matching at the new junctions, and in practice this would limit the

complexity of structures that could be treated.

A restriction which has applied to all the configurations dealt
with in this chapter is that every aperture in a discontinuity plane
has the same cross-section as one of the waveguides. If this is not
thp case, separate series of functions must be used to describe the
aperture fields, and the general method of chapter 1 should be used.
Note that such junctions can still be true '"steps", i.e. transverse

discontinuities where no thin diaphragm is involved.
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CHAPTER IV. THE APPLICATION OF THE COMPUTATIONAL METHOD TO LONGITUDINAL
WAVEGUIDE DISCONTINUITIES

4.1, Introduction.

So far the computational method has been applied only to discon-
tinuities whose planes are transverse to the direction of wave propaga-
tion. It is the purpose of this chapter to show how the method can be
extended to determine the properties of some waveguides which are
uniform in the direction of propagation, but which have discontinuity
surfaces parallel to the longitudinal axis. This development depends
on the re-formulation of the fields within.the waveguide in terms of
modes travelling in directions normal to both the axis and the discon-
tinuity surfaces, so that a field-matching technique similar to that
for transverse discontinuities can be used to determine relationships
between their coefficients. Field expressions for such "“transverse"
modes applicable to cartesian and cylindrical geometries have been given
by Goldstone and Oliner [25]. [25]. Figure 4.1 shows the types of
discontinuity which are amenable to treatment. With the cartesian
co-ordinate system, the transverse modes travel in the x - direction,
and the types of discontinuity which can be considered are those whose
planes lie parallel to the x = O plane. Similarly in the cylindrical
case the transverse modes travel radially and discontinuity surfaces

must correspond to cylinders for which r is constant.

As with conventional modes, it is possible to represent the fields
of a propagating transverse mode by voltage and current distributions

_on an equivalent transmission line. The cross-section of a waveguide
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containing longitudinal discontinuities can therefore be represented by
an equivalent transverse network, in which transmission lines for the
various propagating transverse modes are coupled by transformers at the
discontinuities and have lumped susceptance elements to account for
stored energy. Perfectly conducting walls are represented by short
circuits and radiating slots by complex admittances. It is usually
the dispersion characteristics for different modes of the structure
which are required, and these are found by specifying values, in
general complex, for the longitudinal propagation coefficient,xz which
is involved in the determination of the equivalent network parameters,
and then finding the corresponding resonant frequencies of the network
by solving a transcendental equation. In the case of a lossless
homogeneous structure, the'X/aJcharacteristics may be found from a
knowledge of the cut-off frequencies alone, in which case'x'may be set
equal to zero. This Trangverse-Resonance* method has been used by
Marcuvitz [47] to treat simple structures with a single propagating
transverse mode in any region, where either no discontinuity suscept-
ances are involved or where general formulae are available for calcula-
ting the susceptances. In a homogeneous rectangular waveguide at
cut-off, for example, the transverse modes reduce to conventional modes

for a parallel-plate waveguide, and equivalent susceptances for longi-

* Although the computational method for longitudinal discontinuities
is, in a sense, a transverse-resonance technique, the expression

will be used in this chapter to refer to the method using an equiva-
lent-network formulation.
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tudinal ridges can be determined from formulae applicable to irises in
parallel-plate guide. It is only in a few cases, however, that
suitable formulae for calculating discontinuity susceptance are avail-
able, and in general it is necessary to derive formulae for the
equivalent clrcuit parameters before the Transverse-Resonance method
can be applied. This can present considerable difficulty, particularly
if several propagating modes are involved. A further drawback
resulting from the use of lumped elements is that evanescent transversae
modes excited at a discontinuity are assumed to have negligible ampli-
tudes by the time they have reached an adjacent one. In a case such
as that of a ridge close to a waveguide wall multiple reflections of
evanescent modes can be significant, and Transverse-Resonance gives
inaccurate results because this "proximity effect" is not taken into

account.

t

The disadvantages of the Transverse-Resonance method can be over-
come by treating the determination of dispersion characteristics, as a.
field problem rather than a network problem. The calculations are
more lengthy, but solutions are obtained rapidly using a computer.
With reference to figure hoi, it can be seen that, provided the discon-
tinuity surfaces are those of constant x or r, analogies can be drawn
between the interaction of transverse modes with longitudinal discontin-
uities and that of conventional modes with the transverse discontinuities
whose solutions have already been described in this thesis. The genera-
tion of matrix equations to relate the coefficients of modes in
different regions proceeds in exactly the same way as in the transverse.

case. For example, a thin longitudinal ridge or strip in rectangular
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waveguide would be treated as a thin iris, with suitable functions
being introduced to represent the transverse (to x) fields in the
aperture (s) . Care would need to be taken in choosing the ratios of
numbers of modes and aperture functions, making the same considerations
as in chapter 2. As multiple reflections are involved, the mode co-
efficients are composed of two components, referring to parts of the
wave travelling in positive and negative x or r directions. At a
perfectly conducting wall the relationship between the components is
such that the transverse (to x or r) electric field for the mode
vanishes. Having applied the field-matching technique to all the
discontinuities in the structure, sufficient matrix equations will
have been generated to allow their reduction to a single matrix
equation involving only one set of coefficients. As there is no
wincident" field in the transverse-mode case, one solution will always
be that for which these coefficients are all zero. However, the
situation of interest is that where other values are possible, and for
this to be the case the determinant of the matrix must vanish. Each
element of the matrix is a function of frequency, and those frequencies
at which, for a particular‘xz the determinant vanishes, correspond to
points on the dispersion curves for various modes of the structure.
The most convenient way of finding such frequencies is first to supply
an approximate value and then to use an iterative technique to improve

the solution.

As multiple reflections of evanescent modes are taken into account,

the restrictions caused by the proximity effect do not apply with this

computational technigue.
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In the case of cartesian geometry,.itructures amenable to treat-
ment include rectangular waveguides with lonéitudinal ridges which can
be infinitely thin or of finite width. There are many commonly-
occurring examples of waveguides of this type in which the cross-section
is symmetrical about a vertical or horizontal plane, and in such cases
the treatment can be simplified because the field distribution for any
mode will be such that either an electric or a magnetic wall can be
introduced in the plane of symmetry. Only half the structure need
then be treated, and, in the case of a vertical plane of symmetry, the
number of boundaries at which field matching must be considered is

correspondingly reduced.

Suitable cases for treatment which involve cylindrical geometry
include circular or coaxial waveguides with longitudinal corrugations,
partial dielectric filling, or radiating longitudinal slots. The
latter type of problem can be considered because radially propagating
modes can be used to represent the fields in free space surrounding
the waveguide, so the slot can be viewed as a discontinuity between
two radial guides in the same way as any of the other discontinuities
shown in figure 4.1(b). Clarricoats and Slinn [12] have used a method
similar to the one described here in the case of a slot in a thick-
walled circular guide, and have obtained satisfactory agreement with
experimental results, It would now be possible to solve this problem
if the wall were infinitely thin, because of the extension of the
computational technique to include thin irises. Moreover, the

solution for a thin wall would be less complicated, because only one

discontinuity surface is involved,



- 84 -

4,2 Rectangular Waveguide with Thin Longitudinal Strips, having

Different Permittivities on Either Side of the Discontinuity
Plane.,

In this section the technique outlined above is applied to the
determination of dispersion characteristics for a rectangular wave-
guide containing a number of infinitelyréhin strips, uniform in the
z - direction, which lie in the x = O plane (see Fig. 4.2). The
relative permittivity £, for the region x>0 is in general different
from Sé, that for the region x<0. It is assumed that the waveguide
walls and the strips are perfectly conducting, and that the dielectric
is lossless. This structure has important applications, since if 11
is small compared with 12 and £€,=1, it can be viewed as a number of
coupled microstrip transmission lines surrounded by a conducting
shield, Although microstrip lines are generally regarded as open
structures for the purpose of analysis, a treatment of the shielded
case is also valuable as this arrangement commonly occurs in practice.
The dispersion curve for the quasi - TEM mode is of particular interest,
and the rigorous nature of the method should allow the deviations from

linearity of this characteristic to be investigated.

Although only the theory for the general caseSi £ 8213 given here,
computed results have been obtained for the special caseéi =:§? and

these are presented in section 4.3.
Using the formulation of Goldstone and Oliner [25], the transverse

modes for representing the fields in either region of the structure can

be either E-type, for which h =0, or H-type, for which &,=0. Any given
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field distribution can be represented by an infinite series involving
both types of modes. For a region with relative permittivity &, the

transverse (to x) fields for the E-type mode of order n are:

nfMy A n1y z n1ly 4 ko1
sln=sin PL - §F s T4
gk; - k,
LELEP
k- - k y '
o z
For the H~type mode of order n:
" - - I‘_E}:A Lfo
Ztn = cos 3 iy 3
2 2
€k~ -k k
pM = O % o Bly4d AW __zZ_ ., 004 bob
-tn “y“opn b =z b ﬁ%"bpn b =y

The factor e'j(kzz*pHX) has been suppressed, and the wavenumbers

are related through the expression:

2.2
2 - 2 - 2l n< 2 l"os
ek, T WAMLEE, T Pn * b2 +k,

Coefficients X;, Kz will be used to represent the amplitudes

of nth order E-type and H-type modes respectively, immediately to the
right of the x=0 plane and travelling in the positive x direction.
Similarly, K; ’ Xi refer to the components of these modes travelling
in the negative x direction. On the left of the x=0 plane the
corresponding coefficients are ﬁz ’ ﬁﬁ . ﬁg and 52. The transverse

(to x) electric fields on either side of the x=0 plane must match in
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the apertures and vanish on the strips. They are therefore identical

over the entire longitudinal cross-section at x=0, i.e.

[0 0] . oo
«—
By ek e (&) «y & oKDy,
n=1 n=0
00 ' 00
-«
. Z B+ 5 o1 (&) +z R+ 5 e 4.6
n=1 n=0

The notation e} (-E.) implies that € is replaced by €, in k.1,

Similarly wi '
milarly with et (82), etc.

On equating the z - components it is found that:

- <« - <
A' 4+ A' = B! + B' for alln b7
n n n n - <«
Equating y -~ components, and substituting for Bh +—B£ :
—> < - < nr <> < kz k
B 4 Bn = An + AN + j— (A' + A! ) - z #08
n n n n b n n 2 2 2 2
Qﬁ:- k gak -k
o z o -4

The transverse (to x) electric field must vanish at x:ll and x=-¥r

For the right-hand wall this gives:

-3 plnll*x-'- e:j plnll _

-—n

A;}e q =0 4,9
-ip,. 1 ip, 1

X;l,’e ln]_'.bz;‘ie In"l _ 4,10

- - > &
If, therefore, A! is defined as Kz + A' and A as AV 4 AV,

n n
AT -]

- -~
AN AN
n n

-4AN 012
JAh cot (plnll) #
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Allowing for vanishing transverse electric field

and using 4.7 and 4.8,

at the left-hand wall,

- - — .
B;1 - B;l = jA!'l cot (panla ) l+°13
k k
B - BN n ntl 2 2 4,1l
" " -~ - At °
Bn Bn = J cot (panlz){A;; + ] b n( 5 k2 2 ezka-kz\)}
o'z

The magnetic field transverse to x in the plane x=0 can then be

written as:

On the right of the strips:

4 ®
‘H'TR = "JZOOt(Plnll)KAEén( 'Pln) -chot(plnl )Aghgn(el’pltl) l"els

n=1
On the left of the strips:
Bpp =3 ) cotlpy 15) Anhy (€50p5)

n=l

4,16
ey . kz k
"JX cot(Pyplp) {A" MENT 8 P 2 & kz 2 }-tn(Ez’PEn)

A suita%le representation for the fields in the kgh

®
y-u y-u
A 17 k
ETk = E ( Ckmsin mT v oo it kacos mll ==
k 'k k 'k
n=0
= y-u y-u
H ( cos mw - i + F  8in ol 3
Tk < Ekm k k k uk

The electric fields must match in each aperture.

aperture is:

D) 4,17
=Y
& ) 4018
-y

Therefore,

for the kth aperture, matching of z and y components separately gives,
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from 4.6, 4.1, 4,3 and 4.17:

(o) ® y-u
- ntr '

E A&\sin —Sz = E Ckmsinmxrvk Sup 4,19
n=1 m=1

® . 0

k Z y-u 4,20
- T - k °

- E (:jA;1 %— . kaz 5 + Ag) cos E%X = ka cos mﬂﬁ

n=0 1%k, m=0

As for a transverse discontinuity, each of the modal amplitudes A; is
expressed in terms of the electric field function coefficients Ckm

for all N;p apertures, using Fourier analysis and taking into account

the vanishing of the field over the strips.

Yk

y-u '
E k N 4,21
Ckm sin mﬂ = sin 5 ¥ dy

N
k=1 m=1 "
u

>l
c1m

, N = 1,2,3...00
Having truncated the infinite series, bearing in mind the

requirement for matching the spatiél frequencies of the highest order

functions, this can be written in matrix form:

{&} =2 &, J{c} 4,22

Similarly, from 4.20:

N k
NT 2 ‘ENo = zm y=uy Nory
An-l-:jb 2 2 A'N = -5 ka cos mif-—=7— €08 — dy L. 23
E k- k k
1% k=1 m=1 2
k N = 0,1,24:0:@

After truncation this can be written as:

{A"}'#J

k
2

=  [RI{EY -- IR IS 424

1 (6]

Matrices Egij, [32] and vectors {c}, §D} have partitioned forms as
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in 1.20. Ed] is a diagonal matrix with elements dii =i-1wm Eejis a
diagonal matrix with elements sii" 1,1i=1, E _2,1¥L o 2 dummy coeffic-
ient Aé is included for convenience in equations 4 .22 and 4.24, although
the value of this is irrelevant as all fields for the E-type mode

vanish when n=0.

The coefficient of each magnetic aperture field component can be
expressed as a series of modes on either side of the strips, using the
orthogonality of such components in the aperture in question. Here
again, y and z components can be considered separately. Thus, using
4,15 and 4.18:

Matching z-components:

e .2
£ £k -k, y=u
By —dga =0 E e cot(py,1y) cos MTr—=% cos-rﬂ-zldy 4.25
kU YUMo I

M = O.l,Z-o.m
"k

— weoelpln -
kM v -ukZ{b Q}u, pl n JW A}cot(pl ) sin MTT

k
sin
vk-uk b dy M= 1,2,300000

Using 4.16 and 4 18 and matching z-components:

k 1
5M0 Eé nTr kz z cot(pan 3)
Eem= AT jAn Ac =3 - > 2) 5
vk /‘o e lko-k E.k =k 2n

Z 20 'z 4,27
y-u
h/ﬁ cos M- .ﬁ cos Eﬂ-y dy
> k "k

kMatching y-component5°

Matchingny-components.

b.26

M= 0.1,2.00(0

=

2.2 k

{ A" . 5T [“‘bﬁzpan i A
= - 2_2
Tk

k y-u

az 2)]}cot(p2n12) sin M1 _l: sin n'lkl)‘y dy

E K K Yk~ Yk . 4,28
M= l,2,3...m

Yy
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Combining expressions of the form of 4.25 and 4.27 for all
apertures and expressing the result in matrix form, then eliminating

the coefficients E

kM:
-3 EL ERajT [(6 k2-k2)[p,] +(£, kK 2)p,] ]{A"
/u’g 4,29
gy o7 e Ll Tod [0 83 - 0
Ei o~

where Riq = c°t(pl,i-111) v Poyy = c°t(P2,i-112)

Py,i41 Po,i-1
Similarly, eliminating F from 4.26 and 4.28:

kM
2

[le [EPJ,] Epa:]:] Ca] {A.. 5 [Rl]rr wso 1 (E ] .

Ce,d [ Ca - :?82 o] « - kz Cv,] [d] [d]>]{A} 0 W30
20 2

where
1, )

Pi34=Py 4100t (Py 4 g11) v Phys=Pa 5 1%0t(Rp 443
If the choice of ratios of modes and aperture functions has been
made as suégested in chapter 2, the total number of aperture functions
will be less than the number of modes. Thus there will be insufficient
equations in the sets represented by 4.29 and 4.30 to allow the elimina-
tion of one unknown column vector. If, however, {I'} and{_A" are
replaced by expressions involving §C} and §D}, using 4.22 and k.24,
either.{d} or fD} can be eliminated by combining the resulting equations,

which are given below:
T
-4 [:(Elki-ki) [p,1 + (622 Ep2]:| [e1Cr0{0} + x[R.]

L,31

[Epl] * Epaj] [d] [r,] {c}= 0
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2
2 T (D)7 + LT LI mT 23 9 cnl:F [e 2z O -
2 e
2 DI LI LD + b0 ol - =5 : Do 0] C] 0563 - o

o 2 o z 1 4,32
These can be written in more convenient form as:

€k

4.31(&)

]
Qo

-, 10} + ¥, Crpl {c}
k, I'_'Tsjgn} +3 [1,] {c?

fD} can be eliminated by multiplying 4.31(a) through by [@1] and

0 h,32(a)

substituting for {D} in 4.,32(a). It is preferable to invert [Tij or
ETA] rather than [ﬁa:br Ei3], since the former are symmetric, and rapid
iterative methods dependent on this property can be used. The final

equation is:

2 -1 |
E-kz ET3j [le ETaj - E?qj ] {C} =0 433
Notice that all the matrix elements are real.

Having specified kz' the values of ko for which the determinant
of the matrix in 4.33 vanishes are required. As Epi] . Epé] . [pij
and E}é] are functions of ko’ it is necessary to generate new
matrices [T,], EEaj. ET3] and Em#j, using 4.31 and 4.32, for each

trial value of this parameter.

An alternative way of formulating this problem would be to define
sets of E-type and H-type aperture functions and then expand each set
of modal amplitudes in terms of both sets of aperture components using

the orthogonality properties:
b b b b

(L) =
JE S N A R
0 0 nen

0 0
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Similar properties would apply to the aperture field components,
and would be used when matching the magnetic fields. It is doubtful.

however, whether there would be any advantage in this, since the deriva-
tion of equations relating the sets of coefficients would be more
involved, and each would contain three sets of unknowns whereas 4.21
and 4.25 contain only two. Moreover, the need to invert a matrix

would not be avoided.

4.3 Homogeneous Rectangular Waveguide with Thin Longitudinal Ridges.

The special case of the structure described above which will be
analysed in this section is an otherwise empty rectangular waveguide
fitted with an infinitely thin longitudinal ridge, or a pair of ridges
in the same longitudinal plane such that there is a single coupling
slit. By introducing thinlridges in a rectangular guide, it is
prossible to reduce significantly the cut-off frequency of the dominant
-mode, because of the effective increase in length of the guide boundary.
Also, if the ridges are centrally positioned, the H,, mode's cut-off
frequency is unaffected since it has no y-compénent of electric field
in the plane of symmetry. As the 320 is the next higher-order mode for
usual aspect ratios, the useful bandwidth of the guide can therefore be

increased.

As the ridged guide is a homogeneous structure, the cut-off wave-
number k. for a given mode is related to k, and ko through the equation:
2 2 2
k, =k, =k bo3l

Thus if kc is determined by Betting kz= 0, the value of k, corresponding

to any other value of k, may easily be found.
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If the values £=1, kz=0 are substituted in the transverse mode
expressions hol-4,4, it is found that the E-type and H-type mode
fields become identical to those for conventional E and H modes in
rarallel-plate waveguide. The second term on the right-hand side of
4.8 vanishes, which implies that the two types of transverse mode no
longer couple together at the slit, so solutions may be found using one
type of mode alone. Solutions using transverse E-modes give H~mode
cut-off frequencies for the ridged guide, since their fields are such
that h,= O, whilst E-mode cut-off frequencies are obtained using
transverse H-modes. Solutions for the transverse E-mode case are

found by using 4.22 and putting k, = 0, El.-.Ez =€in 4.30. The latter

equation beconmes:

Gz, T [Epi] + [pé]:l 3t =0 4435

Imposing the electric field matching condition using 4.22:

L-.leT [:EPi] + Epé:]] [r,]4c}=0 k36

This now involves the required square matrix whose determinant
must vanish for a non-trivial solution.
Matrix equations for the transverse H-mode case are found by substi-

tuting for k,, £, and 92 in 4.24 and 4.29:
{3 = - 3 €1 [r] {0} 437

ERZJT [:Epl:] + Epa:]] = o 4,38

Upon elimination of %K‘}, the final equation for this case is:

e (Lo » [o1] @3R3 {03 .39
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A computer program has been written which determines vales of ko
for which the determinant of the matrix in either 4.36 or 4.39 vanishes,
using the method of False Position. The method requires initial
values of ko on either sides of the zero, and where necessary, these
are obtained by stepping ko by small increments over a suitable range
and watching for sign changes in the value of the determinant.
Iteration then proceeds until two successive estimates of kc agree to
within a prescribed criterion. As the elements of EBlj and ERZJ are
independent of ko' these matrices may be generated before iteration
begins, and stored by the computer. However, the generation of the
diagonal matrix and the formation of the matrix product must be

rerformed for each estimate of kc °

Computed values of cut-off wavelength for a rectangular waveguide
of aspect ratio 2:1, fitted with a pair of identical centrally-positioned
ridges, are given in tables 4.1-4.3 and figdre 4.3, Because of sym-
metry, transverse modes with odd and even y - dependences are not
coupled by the slit in this case, and a solution may therefore be found
using only one of these types. Table 4.1 shows the convergence of the

solution for the perturbed Hl mode in the case b'/b=0.25, as more _

o
modes and aperture functions are taken into account. The ratio of
these is 4:1, equal to that of the heights of guide and slit. Con~- !
vergence is clearly rapid, and the solution using 20 transverse modes
differs by less than 0.1% from the estimated converged value. By
analogy with the thin iris problem, the 4:1 mode/aperture-function ratio
should give the most accurate solution, and this is supported by the

results displayed in table 4.2. Here the effect of changing the




Table 4,1 (Hlomode, b'/b=0,25)

Table 4,2 (Hlomode, b'/b=0.25)

No. of No. of t No. of No. of
transverse {ap. fns. )E/a transverse lap. fns. >b/&
modes modes
L 1 2.6413 10 5 2.4064
8 2 2.6093 L 15 5 |2.5582
12. 3 2.6020 20 5 2.5975
16 L 12.5990 25 5 ]2.599%
20 5 |2.5975 30 5 |2.6005
35 5 2.6012
Estimateéyconverggd value 46 5 2.6015
= 2.5960
Table 4o3(a),(H10mode)
1 r .
b/b |transvrse |an. tose| }/a | Handvacke
modes ¢ value
0.10 20 2. 3,084 3,062
0.15 20 3 2.873 2.925 Tables refer to
0.20 20 L 2.719 2.747 symmetric thin-
0.25 20 5 2.598 2.636 ridged w/g for
0.30 20 6 2.498 2,536 which a=2b (see
0.35 20 ’ 3413 2.505 inset to fig.4.3)
0,40 10 L 2,344 2,374
1050 10 5 2.226 2.268
Table 4.3(b) (Hjomode)
0.10 20 2 {0.888 | 0.880
0.20 20 4 0.851 0.867
0.25 20 5 0,834 0,858
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number of transverse modes while keeping the number of aperture
functions constant is investigated, and it can be seen, for example,
that whereas increasing the ratio from 4:1 to 8:1 alters the solution
by less than 0.2%, reducing it to 2:1 produces a change of over 7%.
The ratio 4:1 corresponds to a "breakpoint" in the characteristic, and
it therefore seems that the argument of section 2.2.2 regarding the
choice of this ratio applies equally to both transverse and longitudi-

nal discontinuities.

In table 4.3, computed values of Hlo and H30 cut-off wavelength
for various slit heights are compared with those given in the Waveguide
Handbook [4]. The mode/aperture-function ratio was set equal to b/b'.
The results in reference 4 were obtained by conventional Transverse- '
Resonance, and can be expected to be less accurate than the computed
ones, particularly as the latter lie on a smooth curve (see fig. 4.3)
whereas the former do not. The agreement is quite good in most cases,
however, the maximum discrepancy being about 4%. For the case b'/b=0.5,
anmed [27] has obtained a solution ) /a= 2,140 using the Finite-Element
method. As this is known to be a lower bound to the true value and

was obtained using a very coarse mesh, the agreement is felt to be

satisfactory.

Figdre 4.3 shows the computed variation of cut-off wavelength with
slit height for-the Hlo’ H}O’ Hllgnd Ellmodgs° Twenty transverse
modes were taken into account for b'/b§;0035. otherwise ten were

considered. Cut-off wavelengths for the H and E,, modes,

20" H21 21
which are unaffected by the ridges, are shown dashed. It can be seen
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that by inserting thin ridges such that b'/b is about 0.1, the

useful bandwidth of the guide can be increased by a factor of two.

As the height of the slit is decreased, the field pattern of the

.

Hlfmode is transformed into that of two individual HOl modes in the

two separate square guides formed when b'/b=0. Similarly, the E11

mode transforms into two individual Ell modes. When b'/b=0, the

- he H
11and E11 modes have the same cut-off wavelengths as the 20 1

modes respectively. Care had therefore to be taken when determining

and E
H 2

H,, and E;, cut-off's for small values of b'/b, in view of the prox-
imity of the two solutions, particularly as the antisymmetric mode
solutions in this case correspond to poles of the determinant, and

the inclusion of such a pole in the iteration range causes divergence

of the False Position method.

L4 T - Septate Waveguide.

A structure whose analysis is similar to that of the thin-ridged
waveguide is a rectangular guide fitted with a thin T - shaped septum
such that there is symmetry about a horizontal plane halfway up the
guide. (See figure 4.4). With the correct choice of dimensions,
this guide can support two modes which propagate with the same phasge
velocity, and it can then form the basis for a slotted line-source

antenna with arbitrary polarization.

Approximate electric field distributions for the two modes,
referred to as "sum" and "difference', are included in figure 4.4,
Because of symmetry, there is no x-component of electric field, in the

plane y =b, x>0 for the sum mode, nor is there an x~-component of
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magnetic field in this plane for the difference mode. It is therefore
permissible to insert an electric wall in this plane for the former
case and a magnetic wall for the latter, and then consider only the
lower half of the structure. This gives two single-ridged guides,
also shown in figure 4.4, for which the perturbed H,, mode cut-off
wavelengths are identical to those for the sum and difference modes in
the T - septate guide. The equivalent single-ridged guide for the
sum mode may be analysed as in the previous section, but a slight
modification is needed for the equivalent difference structure

because of the magnetic wall -~ n must be replaced by (2n41)/2 in the
expressions for the transverse E-type and H-type mode fields on the

right of the ridge.

A check on the correctness of the difference mode solution was
made by comparing the cut-off wavelength for the case h=0 with that
found by rotating the guide through 90° and treating it as a rectangu-
lar guide with a centrally located thin ridge. Theré was found to be

excellent agreement between the two solutions.

The T - septate waveguide has been analysed by Elliott E?B], who
uses a variational method to determine the effect of the ridge in the
equivalent single-ridged guide. This author also gives experimentally
derived guide wavelengths for both principal modes for a T - septate
guide in which a=1.372", 2b=0.622", operated at a frequency of 6 GHz.
These are shown in figure 4.5 as functions of the parameters 12 and h,
together with curves derived by the computational method using twenty
transverse modes in both regions and 20 b-h, or the nearest lower

integer, functions in the aperture. It can be seen that the experi-
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mental values are generally less than the theoretical ones, but this
can be accounted for by the finite thickness (0.,063") of the septum
in the experimental case. Elliott's theoretical results agree well
with those in figure 4.5 for the sum mode, but the discrepancy for
the difference mode is very considerable, and the agreement between
theory and experiment in this case is far better using the computa-
tional method. For example, the septum insertion required for equal
guide wavelengths can be predicted to within about 15% using the com-
putational method, despite the thickness of the septum, whereas that

given by Elliott's theory can be almost 100% in error.

4,5 Discussion

In this chapter the application of the computational method to
longitudinal discontinuities has been described, and examples involving
thin conducting strips and septa in rectangular waveguide have been
given. It has been shown that for homogeneous structures of the
latter type the formulation is quite straightforward, particularly if
use can be made of symmetry, and that very accurate results can be
obtained with no more than twenty transverse modes. In fact, it
seems that with this method the dispersion characteristics of such
waveguides can be determined to an accuracy which was not previously
possible except by using numerical techniques such as the Finite-

Difference and Finite-Element methods.

Although these numerical methods are invaluable for treating

waveguides with irregular boundaries to which the method described here
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is inapplicable, they are uneconomical by comparison in cases where
both types of method can be used. For example, Davies and Muilwyk
[10] have stated that up to four minutes of computing time are required
for 0.1% accuracy using the Finite-Difference method, and in the case
of ridged rectangular waveguide they needed to store field values for
some 8,000 mesh points. With the computational method, on the other
hand, results of similar accuracy were obtained in under ten seconds,
and with a corresponding storage requirement (for the various matrix
elements) of only two or three hundred words. Another advantage is
that whereas, for homogeneous structures, the Finite~Difference method
in the form described by Davies and Muilwyk determines only the lowest-
order H and E mode cut-off wavelengths, a programme using the method
described here can find cut-off‘'s for higher-order modes without

modification.

The Finite-Element method [117] appears to require less time and
storage for a given accuracy than Finite-Difference, but still compares

unfavourably in this respect with the computational method.

In conclusion, the computational method seems to be the most
economical way of obtaining very accurate solutions to a wide range of

longitudinal waveguide discontinuity problems of practical importance.
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CHAPTER V ANALYSIS OF A SQUARE MULTIMODE BOX-HORN

5.1 Introduction.

The ability of step discontinuities in waveguides to excite
higher-order propagating modes can be made use of in the design of box~
horn antennas such as that described by Silver [}3:} As well as the
increase in gain which can be achieved under certain circumstances,
box-horns have the advantage of short physical length when conmpared
with conventional flared horns, and this makes them particularly
suitable for use in compact airborne radar installations involving
solid-state circuitry. This chapter is concerned with the determina-
tion, using the computational method of chapter 3, of the performance

of X-band box-horns for such applications.

The horn structure is shown in figure 5.1(a), it being specified
that the aperture width a should be about 3%, Both the box section
and the input waveguide are of square cross-section, allowing the horn
to be circularly polarized. It is required that the gain should be at
least 10dB relative to an isotropic source, and should if possible com-
pare favourably with that of a flared horn of the same aperture size.

The length of the box section should preferably be about 1",

The step discontinuity analysis provides an opportunity for testing
a computer program intended eventually for use in monopulse feed design.
As box-horn radiations patterns are determined both theoretically and
experimentally, the accuracy of the computational method as applied to

multimode step discontinuities can be verified.
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5.2 Design Considerations.

The symmetry of the junction is such that only modes having an
odd horizontal field dependence and an even vertical field dependence
are excited in the box section by an H10 mode incident in the input
waveguide. Thus the propagating modes in the box section for the
specified aperture width of about 2.4 free space wavelengths are

H the range of a/Ao for which

10° B1p0 Bype Hygs Hyyy Eppy Hyy and By,

only these modes can propagate being given by:

2,06<a/) <2.5 5.1

Of these modes, only the HlO and H30 contribute to the on-axis component
of the horn's far-field radiation pattern, and they should therefore be
excited as strongly as possible relative to the other modes for maximum
gain. The choice of the length L of the box section governs the
relative phase of the Hlo and H3° modes in the aperture, because of
their different phase velocities. If the transverse aperture electric

fields due to these modes are written as:

Ep(1,0) = Ajg sin T x ?.y 5.2(a)
and .
Ep(3,0) = A30 8in LZ’S iy 5.2(b)
the complex coefficients Aio and A%O need to have the same phase

for maximum gain, since the two-mode illumination law then most nearly

approximates the optimum uniform distribution.

The width b of the input waveguide should be large enough for the

Hlo mode to propagate, but not so large that over-moding occurs. As
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the restrictions imposed by symmetry on the mode-orders in the box
section also apply to the input waveguide, the next higher-order modes
that can be excited are the H12 and Iiz, with a cut-off wavelength of
2b o The range of b is therefore:

/. J5 8 Axo s therefor

0.5 <b/>\°< 1.12 5.3

To avoid excessive attenuation, the input waveguide should not be

operated too close to cuf-off.

5.3 Step Solution.

" The step discontinuity was analysed using the method of section
3.1, it being assumed that reflections of modes from the apérture and
source were negligible. As the box-horn step discontinuity is a |
special case of the more general junction treated in section 6.5.1,
mathematical details will not be given here. In the small waveguide,
eleven modes were taken into account, being chosen in order of increas-
ing cut-off frequency up to the Hand E34. In the box section, twenty
modes were considered, the H70 having the highest cut-off frequency.
The choice of the highest-order x and y dependences was somewhat
arbitrary, but for some of the configurations considered it corresponded
well to the condition for matching the highest-order spatial frequencies
of modes on either side of the discontinuity plane, shown in section 3.3
to be the optimum. Four values of a /Xo in the range given by 5.1 were
considered, namely 2.1, 2.2, 2.3 and 2.4. Values of p/a were taken in

the range 0.28 to 0.43, in steps of 0.05.

The computed distribution of power among the propagating modes

excited at the step is shown in figure 5.2, from which it is clear that
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Wﬂo should be as large as possible for maximum power transfer to the
transmitted HlO mode, and minimum reflected power. The proportion of
power transferred to the HSO mode, on the other hand, is largely
independent of a and b, Other transmitted modes convey at least 50%
of the power throughout the range considered. The level of reflected
power is generally very low, particularly with the a/)\o = 2.2 and 2.3
configurations, where it in no case exceeds 1% of the incident power.
Propagating E and H modes of the same order were found, for small values
of b/Ao, to be excited with very nearly the relative amplitude and
phase needed for them to form the corresponding LSE hybrid mode with no
associated cross-polarized field. The relative phase of excitation of
the H1 and H modes was calculated as 178° :lofor all the values of a.

0 30
and b considered.

S.4 Theoretical Performance

As mentioned in section 5.2, maximum gain for a particular choice

1] 1
of step dimensions occurs when AlO and A}O

phase difference between the Hlo and H}O

shown to be almost exactly 180°, a relative phase shift of (2n4l)qp

have the same phase. As the

modes at the step has been

radians is required; n being any positive or zero integer. This can

be produced by choosing I such that:

L = (2n+1) W/(ﬁio'/:’éo ) 504

where /3i0 and‘/séo are the propagation coefficients of the H 0 and

1
HBO modes respectively. Unfortunately, the values of L for n=0 vary
from about 1.8 h = =

xohren a 201.Xoto about 2.5 Xo when a-ZoQXb, giving a

box length at least twice that specifieds To assess the effect of
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reducing the box length, the gain of the horn was calculated as

follows:

The electric far-field component at a distance R along the horn

axis, due to the multimode aperture illumination, is given by:

koala - o -3k R 4 5.5
= {A' (143! ) + A}, (144! )} e Vo 1
>2n L 201 Plo 30 19330 ¥
The power on axis per unit solid angle is:
p 1l IE IZ 2 5.6

and the input power to the horn due to the unit-amplitude HlO mode is:

L1 2

where/@&o is the HlO propagation coefficient for the input waveguide.

Py 5.7

The gain relative to an isotropic source is defined as:

G = lwrpo/Pi 5.8

Substituting for P0 and P, using 5.5, 5.6 and 5.7:

- - rr>\2 |{A10(1 + Blo) + Ago(L + 30)}l2 5.9

For comparison purposes, the gain of a dominant-mode horn of narrow

flare angle with a square aperture of side a is given by:

G (1 + 5.10
M = Iy 2 ﬁlo

Figure 5.3 shows how G and Gpy vary with the parameters a and b.
For the box-horn, values of L for optimum phasing (see equation 5.4),

and equal to °°8°4X°(1ﬁ at 9.5GHz) are considered. The results
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confirm that the increase with b[Ao in power transfer to the H,,
mode brings about an increase in gain, and show that a reduction in
box length from that for in-phase H,, and H3O modes at the aperture
to the specified 1" causes a loss in gain of about 2dB. The gain of
the single-mode horn is always greater than that for the box-horn, but
the difference can be as small as 3dB for a correctly phased box~horn
in which b/Xo is about 1.0. The specified minimum gain of 10dB is

exceeded throughout the considered range of a and b if L is chosen for

correct phasing, but if a 1" box is used b/)\° must exceed about 0.75.

Principal-plane far-field radiation patterns for a square box-horn
in which a=203ko. b=0.28a, have been calculated for various values af
box-length L, and are shown in figure Solts These were obtained by
summing the patterns due to individual modes in the aperture, derived
from formulae given by Silver E29]. Only the Hlo and H}O modes con=-
tribute to the H-plane pattern, where the 49° main lobe and 7% dB
sidelobe level obtained with in-phase modes will clearly lead to a
higher value of gain than the very broad beam associated with short
box-lengths. In the E-plane, where all the propagating modes affect
the pattern, the beam tends to be broader and more flat-topped than
that of the dominant-mode horn. The modes other than HlO and 8309
which have no on-axis radiated field, are responsible for this effect.
The pattern forlL = xois interesting because of the near-null at around
P=43°, a feature which is .clearly sensitive to the relative phases of
the modes, and whose experimental verification would therefore tend to

confirm the accuracy of the step solution.
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5.5. Measured Characteristics.

A box-horn for which a=2.3xo, b=0.28a, L=x°, for operation at

9.5 GHz was manufactured out of 0.055" brass sheet. The horn was fed
from no. 16 waveguide'via a section of guide linearly tapered in both
planes. The behaviour of such tapers has been determined by Johnson
E}OJ, who has shown that their input V.S.W.R. when correctly terminated
oscillates about a gradually falling value as the taper length increases.
For the guide dimensions in question, minima of oscillation occur when
the length is a multiple of 0.915", and a value of 3.66" was found to be
convenient. The theoretical V.S.W.R. for this taper is 1.010. The

combined box-horn and input taper is shown in figure 5.1(b).

For pattern measurement, the antenna test range which will be des-
eribed in chapter 7 was used. The box-horn was mounted on the turntable
and used as the transmitting antenna, the receiving horn being at a
distance of about 12°'. This is an entirely adequate separation, since
the minimum distance to ensure that the far-field pattern predominates

at the receiving horn is 2a2/\°, in this case only about 14",

Principal-plane radiation patterns were measured at 9,5GHz, and
these are shown in figure 5.5. The patterns were calibrated individ-
ually because of the non-linearity of the detector. In the H-plane,
there are no major discrepancies between theory and experiment. The
most prominent feature, namely the 4%dB "“shoulder" for O in the region

o
of 307, can be clearly seen in both theoretical and experimental

patterns.

In the E-plane, the experimental pattern shows the expected flat-
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topped beam and near-null at around 43 °, There are some small dis-
crepancies, however, particularly in the sidelobe level which was
predicted as ~6dB but measured as -8dB. The predicted %dB increase in
field strength at about l7° is not apparent, and the "null" is deeper

by about 5dB in the experimental case.

The V.S.W.R. of the combined horn and input taper was measured over
the frequency range 8.8-10.2GHz at intervals of about 0.1GHz, using an
Elliott type 1637 slotted line and Hewlett-Packard type 415D S.W.R.
meter, the average of about three measurements being taken at each
frequency. The results are displayed in figure 5.6, together with a
theoretical curve derived from the step analysis results. Agreement
is considered satisfactory in view of the fact that the effects of the
taper, whose V.S.W.,R. is particularly frequency-sensitive, and of
reflections of modes at the radiating aperture were neglected in the
theoretical case.

Notice that in both theoretical and practical cases minimum V.S.W.R.
occurs at the design frequency, where a value as low as 1.1l can be

realised.

5.6. Discussion

It has been shown that, for the preferred horn dimensions given in
section 5.1, the required minimum gain can be achieved by making the
input waveguide sufficiently large. If b exceedsxo 4/5: however,
care must be taken to ensure that the Hll and Ell modes are suppressed.
Although symmetry precludes the generation of these modes at the step,

they may be generated together with the Hlo mode in the input waveguide

if, for example, this is excited by a probe.
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The dominant-mode flared horn has been shown to be superior to the
box-horn in terms of gain, by at least 5dB for the preferred box-length.
About 3dB of gain have been sacrificed by making the horn square,
because of the modes having no axial radiation which are then generated,

but this loss is offset by the advantage of circular polarizability.

A desirable feature of the square box-horn is the very low V.S.W.R.
obtainable with certain dimensions, which has been shown both theoret-
ically and experimentally. Comparison of computed results for a sym-
metric squaré-waveguide junction with those for E and H-plane steps of
similar dimensions indicates that although the H-plane discontinuity
predominates at low frequencies, the solution tends towards that of the
E-plane step as frequency increases. Thus a resonant frequency nay
exist where the effects of the E and H-plane discontinuities are almost
mutually cancelling, giving a very low reflection coefficient. The

results of figure 5.6 clearly support this hypothesis.

The discrepancies between theory and experiment do not necessarily
cast doubt on the accuracy of the step solution, since they can be
attributed to effects neglected in the calculation of radiation patterns
and V.S.W.R, The reflection of modes at the aperture, with subsequent
re-reflection from the step, is an important source of error, high-
order propagating modes such as the qu and E14 being particularly
affected since their propagation coefficients are much smaller than that
of free space. Since such modes carry an appreciable proportion of the
total power, the radiation characteris&ics may be significantly modified.
Currents on the outer surface of the horn may also affect the patterns,

especially in regions of low signal strength where most of the discrep-

ancy occurse.
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CHAPTER VI THE DESIGN OF A MULTIMODE MONOPULSE FEED FOR A
_SATELLITE-TRACKING ANTENNA.

6.1. Introduction.

As mentioned in section 1.1, the use of multi-moding in a square
aperture seems an attractive proposition in the design of monopulse
feeds for front-fed paraboloid or Cassegrain reflector systems. The
use of higher modes, particularly the H12’E12 and H}O' in addition to
the basic Hlo for sum-channel operation can result in a feed aperture
field distribution with nearly equal tapers in both principal planes,
whose far-field radiation pattern is almost circularly symmetric and
has a low sidelobe level. Thus the reflector is efficiently illunina-
ted and spillover is low, giving a considerable increase in gain and
signal-to-noise ratio over a system with a conventional feed. Also,
sum and dlfference primary beamwidths are more compatible, since the
sum feed aperture illumination is now concentrated in the centre.

A circularly polarized wave can be viewed as a combination of two

components of equal magnitude, at right angles to one another and
differing in phase by 90°. A feed with four-fold symmetry can radiate
such a wave, since propagation conditions for modes corresponding to
each component are the same. Thus a square-aperture feed can be
circularly polarized, an important consideration for satellite tracking
applications where the satellite's antenna may be randomly orientated.

Several designs have been published for multimode feeds of the
type described above: these differ mainly in the way in which the
various propagating modes are excited. In the usual configuration,

there is a transition from four input waveguides of square cross-sectior
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to a single square guide large enough to allow the required modes to
propagate. In some cases, for example in the design of Jensen [31]
or in that of Galindo and Pon E32] , the four input guides share
common walls, and the transition is merely the point at which these
walls terminate, the other walls continuing to form the output wave-
guide. If, as in the latter case, there are no further discontin-
uities, only the Hlo propagating mode is excited for the sum channel

( unless overmoding of the input guides is allowed ) and the desired
central concentration of the sum-channel aperture illumination cannot
be achieved. Alternatively, the transition may incorporate a conduct-
ing step, in which case there is more scope for obt;misation of feed
performance in the design of the transition itself, since the relative
sizes of the input.and output waveguides and the diagonal displacement

of the input guides from the centre of the output guide's cross-section

all have a significant effect on the amplitudes and phases with which
higher-order propagating modes are excited. A feed design involving
such a step transition is that of Keeping ElB] s in which the input
guides are clustered together at the centre of the output guide's cross-
section. This configuration, together with an appropriate choice of

waveguide dimensions, brings about the suppresion of the H,. mode,

30
whose presence can be detrimental if sum-channel bandwidth is an
important consideration. Hezgyer, this is not necessarily the best
arrangement as far as the otﬂer modes' agplitudes and phases are
concerned. In the feed to be degcribed, the output guide is not large
enough for the H,, mode to propagate, thus allowing more freedom in the
step transition design. The computational method for treating step

discontinuities, as described in chapter 3, enables the amplitudes and
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phases of propagating modes excited at this transition to be accurately
determined, and such an analysis forms the basis of the feed design

described in this chapter.

6.2 Structure and Excitation of the Multimode Feed

The structure of the multimode monopulse feed is shown in figure
6.1. The four input waveguides, of width b, terminate in a step trang-
ition to a single waveguide of width 2a, where d;;b, and of length 1.
This is followed by a pyramidal flared section whose flare angle is

20, The open end of this section, whose width is 2a', forms the

radiating aperture of the feed.

The use of a section of waveguide of unifo;m cross-section in
addition to the flare enables two paifs of propagating modes to be
given their correct relative phases at the aperture. This is achieved
by adjusting 1 and ;, and will be explained in section 6.6.3.

The flare angle is considered small, so that the modes in the
aperture can be taken as those in a squéré‘waveguide of side 2a’'. It
is assumed that no mode conversion occurs within the flared section, so

that the power associated with a particular propagating mode remains

constant during its transit from step to aperthre.

The size of the radiating aperture determines, to a large extent,
the beamwidths of thé feed's radiation patterns. Since the feed is
intended for use wifh a front-fed paraboloid having a large F/D ratio,
or with a Cassegrain system in which the angle subtended by the sub~
reflector at the feed centre is small, these beamwidths need to be
fairly narrow. In a typical case, the 15 dB sum-channel beamwidth

might need to be 300, requiring a feed aperture approximately five
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wavelengths across. Such an aperture is large enough for all the
propagating modes excited by the step to have propagation coefficients
in the aperture that are approximately equal to that of free space.
The mismatch at the aperture is therefore small, and reflections of
modes will be considered negligible. Any reflections from the trans-
ition from uniform to flared guide will also be neglected.

In the treatment which follows, the feed is assumed to be linearly
polarized. Because the feed has four-fold symmetry the sum-channel
performance is unaffected when this is changed to circular po}arization.
but certain design restrictions arise in the difference-channel case,
and these will be discussed in Section 6.6.2.

The following table gives the relative phases with which the HlO
modes in the four input waveguides are excited to produce radiation
patterns corresponding to the three monopulse channels and to the
redundant '"double difference' channel. The table also shows whether
the corresponding modes excited in the larger square guide have odd or

even x and y dependences.

TABLE 6.1

hannel Phase, Phase, Phase, Phase, Modal Modal

Guide 1.|Guide 2. Guide 3.|Guide 4. %¥-depen- ﬁagggen-
Sum + + + + ODD EVEN
Azimuth
Difference + .+ - - EVEN EVEN
Elevation
Difference] + - - + ODD ODD
Double
Difference + - + - EVEN 0DD

(Phases denoted by "+" and "-" differ by 180°).
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The four guides are excited in practice by a network of hybrid-tees
known as a comparator. This has four inputs, each of which corresponds
to one of the four channels.

The radiation patterns for sum-channel modes are symmetric about
the axis in both principal planes: those for gzimuth-difference modes

are anti-symmetric in the H (y= 0) plane, and those for elevation-

difference modes are anti-symmetric in the E (x = O) plane.

6.3 Multimode Primary Radiation Patterns

6.3.1. Sum Channel

The lowest order propagatiqg mode that can be excited in this case
is. the HlO' which gives rise to the feed aperture illumination shown in
figure 6.2 (a). The illumination law has a sinusoidal taper in the
H-plane, and is uniform in the E-plane. The electric field in the
aperture may be written as:

- = AV Irx!
E_, = o, Ey' = AlO sinaa, 6.1

The resulting principal-plane far-field radiation patterns are then:

H~ Plane:

Ea = 0,

k a'2( 0. cos(k a'sinf) -Jkﬂ/a
E, = _j Al cos e 6.2(&)
# 102y ﬁm (k_a'sind)?~ (7/2)°

E- Plane:
2
k,a' sin(k _a'sinf) -jk
L o o

Ee— J Alo 2/3 ( 1+ loccsg) koa'sine e f 602(b)

=0.
The primary pattern chordinate system is included in figure 6.7.

Expressions 6.2 are derived from formulae given by Silver[?ﬁj and
are shown graphically in figures 6.3(a) and (b) (solid curves) for the

case a' /)\o= 2029 , when the 15dB H-plane beamwidth is 30°. The level
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of the first sidelobe in this plane is -23dB, an acceptable figure for
most applications. Inq the E-plane, however, the main lobe is much
narrower than in the H-plane, and the level of the first sidelobe is
only -13.5dB. Thus the use of the Hlo mode alone leads to a reflector
illumination with very unequal principal-plane edge tapers and
considerable spillover loss. In fact, it will be shown that the gain
of a reflector illuminated in this way cannot exceed about 72% of that
which would be obtained with ideal illumination.

The poor E-plane pattern is a result of the uniform E-plane feed
aperture field distribution, from which it is derived by Fourier trans-
formation. The high sidelobes are a consequence of the abrupt discon-
tinuities in the distribution at the aperture edges, so it is clear
that in order to improve the pattern this distribution must be tapered
in some waye. This can be done by using the two permitted modes next
in order of increasing cut-off frequency, namely the Hl2 and E12

These modes have the same cut-off frequency, and propagate with the

same phase velocity in the uniform waveguide, and also, with the assump-

tions embodied in the '"quasi-uniform" approximation (see Section 6.6),
at any cross-section of the horn flare, The transverse electric field

in the feed aperture due to these two modes may be written as:

'\'rx' 1f ]

E., = (B},-2A],) cos Sav 5in —ET
6.3

E ., = (2B!_+A!.) sinﬁEZL cos15[1

y' 12712 2a' a'
Since the transverse electric field in all four input waveguides is

linearly polarized in the y-direction, the component Ex' is generally

small compared with E ' . As a first approximation it can be assumed

-
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that B!

12 = 2A

i2 so that Ex' = 0. The resulting hybrid mode is the
LSE12 (or "EH12") whose electric field structure is shown in figure
6.2 (b). If this mode is shifted in phase by 180°, and superimposed

on the H 0’ the aperture field distribution is then of the form shown

1l
in figure 6.2 (c). The effect of introducing the LSE,, mode is to
reduce the intensity of Ey' at the upper and lower edges of the
aperture, and to increase it in the centre: the resulting E-plane
illumination law is then tapered so as to produce an E-plane radiation
pattern with a wider main lobe and lower sidelobes than obtained

previously. The ratio of LSE., to H,. modes in the aperture is

12 10
denoted by ol , where:
?
o - M2 * 2B Mol 5 |Bia
- A' 5 A' = E [] 6.4
10 10 10

The aperture transverse electric field is then:
Ex' =0

6.5

E,, = Ajsin (1 -oCcos -jL-)

y EET
Since the H-plane illumination law is unaffected by the introduction
of the LSElamode, the H-plane radiation pattern remains that of the
Hlo mode alone. The E-plane pattern is now:

Zk a'3
10 1r2/o

1
(koa'sin9)2

i } -:jk/g E¢= . 6.6

(koa sine) - _t
This expression has been simplified by putting /310 /312 = 1,

= JA! - 51n6(1+cosb) sin(koa'sina) {

which is very nearly so when the aperture is several free-space wave-

lengths across. E-plane radiation patterns have been calculated for
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various values of ¢ , and these are shown in figure 6.3 (b).

It is often desired to equate the principal~plane edge tapers of
the reflector illumination, and the value of o that makes them equal
when the angle subtended by the reflector at the feed centre is ié%

is given by:

& = ua- 11'2 ﬂzcot(u) ' _l}
u 4u2-112 u 6.7

in which u = koa'sinég
For example, for equal 15dB edge tapers when 90 = l5° which, as

mentioned above , requires that a'/) = 2.29, © is found to be 0.642.
o
The E-plane pattern for this case, which is included in figure 6.3 (b),

clearly shows the effect of the LSE mode on the sidelobes, in that

12

the first sidelobe is almost completely suppressed and the level of the

other sidelobes does not now exceed -30dB.
In order to show that the use of the LSE, , mode does not adversely
affect the radiation patterns in other planes, h5°-p1ane patterns are
also given (fig. 6.3 (c)). It can be seen that the level of sidelobes
for this plane is extremely low, even when ¢¢= O, When ©¢ = 0.642,in
which case the sidelobes are all below -60dB, the 15dB beamwidth is
slightly greater than in the principal planes, but the resulting
deviation from a circularly symmetric reflector illumination is too

small to be serious in practice.

It will be shown that the ghin of a reflector illuminated by a

feed in which the HlO and LSE12 modes are combined can attain about

83% of the maximum possible value.

The next higher mode available for sum-channel beam shaping is the

H}O' which, when superimposed on the H an taper the H-plane aperture

10 €
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illumination law so0 as to broaden the main lobe of the corresponding
radiation pattern and reduce the sidelobe level, without affecting
the E-plane law and radiation pattern. The use of both LSEla-and H}O
modes in addition to the H therefore allows the sum-channel beamwidth

10

to be varied while maintaining equal E and H-plane reflector illumina-
tion tapers, and in this way simultaneous optimisation of sum and
difference performance can be achieved. However, it is not in general
possible with the simple feed configuration of figure 6.1 to generate
both LSE12 and H}O modes with the desired amplitudes, and to arrange
for them to have the required phases relative to the HlO mode in the
aperture. Moreover, the aperture illumination distribution of a feed
using all three modes changes more rapidly with frequency than that of
one using two modes, owing to the strong frequency dependence of the
differential phase shift between HlO and H}O modes. The three-mode
feed therefore has a moré limited bandwidth than the two-mode feed.
For these reasons it was decided to eliminate the H30 mode by arranging
for it to be cut off in the uniform waveguide, which requires a/>6<0.2%

The use of the LSE12 mode alone in addition to the Hlo for the

sum channel can lead to a very satisfactory compromise between sum and

difference performances, as will be shown in Section 6.4.

6.3.2 Azimuth Difference Channel

With azimuth difference excitation, the lowest-order propa-

gating mode that can exist in the feed aperture is the H,., whose

20
transverse electric field distribution, shown in figure 6.4 (a), may

be written as:.

= 2A! sin"lz—'- 6.8
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The resulting far-field radiation pattern has no E-plane component,
the H-plane pattern being given by:
Eg=0,

6.
k are sin(k a'sin®) -jk ’
-t O/O

Ejfs =2 A, ——— (cos8 + + e
20~
# / 20 (koa'sinB) 2
This pattern (fig.6.5 (a)), which is antisymmetric about the axis of

the feed, has a reasonably low sidelobe level (<-19dB) as a result of
the sinusoidal taper of the H-plane illumination law, which is also
responsible for the wide main lobes.

If the HBO‘mOde is to be suppressed in the sum-channel case, the
only modes which can be uséd to modify the above pattern -are the H22
and E22° These can, as a first approximation, be considered to form
the LSE,, (EHZZ) hybrid, which has the following transverse electric
field in the feed aperture:

E

o =0, E

[ '
vt = Z(Aé2 + Béa) sin11§7 cosTEz-

a’ 6010

] :-.B'
in which A32 5o -

The radiation pattern of this mode has no principal-plane component,

and the effect of combining the H,. and LSE22 modes in the feed

20
aperture is most clearly seen by examining the 45°;plane radiation

pattern (fig.6.5 (b)). The two modes are assumed to be in antiphase
in the aperture, thus giving rise to the illumination distribution of

figure 6.4 (¢). Their amplitude ratio is denoted by of', where:

+B' A' B'
oL = .EEL_iﬁi =2 I$§ 2 K$£ 6.11
A'ZO 20 20

Thus, if it is assumed that/;;o =/'jé2 =1 , in which case the

45°-plane pattern has equal 6 and fcomponents, the expression for



ap
Eg
=10 4

80 a ‘0)90

.;i :;‘;

Lo

i

70

(a) H-Plane

tion' Patterns

SRR

R

g
it

Feed Rad

Figi6.5 AzZimuth Uifference Channel

=T WAz - - T
SEpT Ry ao. P i st T v b Taty
H e zt
tRrasmbehll Serea s aml
— i —
Tt L o et say
cigpE L R
L S USSRl O




- 119 -
B,5(=J2E, = /2Ep) is:

2_,3 2 -jk
E’+5 = =/2 Aéo koa 8inB(1+cosfh) M {-]-'-2 - 00! } e o/o
6.12
p

£2 -2 L2 2 - g2

in which t = (k_a'sinB)A/2
It has been shown by Hannan E}}] that one of the most important

difference~channel characteristics, namely the gain in the direction of
the secondary radiation pattern's main lobe peaks, is optimised when
the reflector illumination due to the feed matches that which would be
produced by a distant point source displaced from the principal axis

by an amount which maximises the odd ﬁower in the reflector aperture.
This illumination is a truncated sinusoid whose wavelength is constant
at any cross-section of the aperture parallel to the displacement plane.
If, as in the azimuth difference-channel case, displacement is in the«#
=0 plane, the aperture distribution in any other plane containing the
axis therefore has a wavelengthAo /cos¢, wherer is the wavelength when
4:0. The peak amplitude of the distribution is independent of¢>.

Thus in the 45°-p1ane, the main lobes of the primary pattern should have
the same amplitude as in the H-plane, and their widths should be greater
by a factor of approximatelyqf_. Examination of figures 6.5(a) and (b)
shows that these conditions are not satisfied when the HZO mode alone
is used, since the main lobes are narrower in the 45°-plane than in the
H-plane, and their peak amplitudes are lower by about 5dB. However, it
can be seen that the effect of increasing o'is to broaden the main lotes
and increase their amplitude, at the bame time reducing the level of

sidelobes. Thus the use of both H.. and LSE.. modes can give a better

20 22
azimuth differénce reflector illumination and lower spillover than the
use of the H,, mode alone. As will be shown in Section 6.4, this can

lead to a secondary pattern with much improved characteristics.
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6.3.3 Elevation Difference Channel

The odd x and y dependences of modes excited at the step in
this case, and the restriction that aAo be less than 0.75, imply
that the Hll and Ell modes are the only propagating ones in the feed
aperture. As with other mode pairs, they are considered in the form

of an LSE hybrid, with a transverse electric field in the aperture:

EX' =0
Mx! wy!
Ey = (A11+Bi1) sin Sar €08 -é-z—,- 6.13
in which All il

This field, together with the E and H~plane illumination tapers, is
shown in figure 6.4 (d). If it is assumed that/ﬁ?il=l , there is
no H-plane component of radiated field and the E-plane pattern
(fig.6.6(a)) is:

2,3
ka" cos(k a'sin®) -Jk
Eg = 2(A11+B]'_1) s8in @ (1+cosf) = > e O/o
/; (k_a'sinB)® -17%/4
o 6.14
E = Oo

The narrow main lobes and high sidelobes in this plane are due to the
discontinuous nature of the corresponding aperture field distribution.
In the 45°-plane, Eg and E?‘ are equal if /illis taken as unity,

6.6
and the far-field radiation pattern in this plane (fig.9 (b)) is then

given by: 3
ka! 2 -jk
E . =f2 A, =2 5inB(1+cosh) ___cgs_(t_)__} e of’
L5 ‘/— 11 2/3 t2~ "T\'a/l*

in which t=(k_a'sin0)//2 6.15

The level of the main lobe peaks in this plane is only 3dB below that

in the E-plane, and the width of these lobes is somewhat greater than
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in the E~-plane. The sidelobe level in the 45°-p1ane is good (<:-30dB)
The LSE,,(EH,,) radiation pattern can produce a reflector illumina-
tion that corresponds well with the theoretical maximum difference gain
illumination described in Section 6.3.2, the only major disadvantage
being the spillover loss caused by the high E-plane sidelobes. Since
the main lobes are considerably narrower than in the case of the
azimuth difference channel, sum and elevation difference performances
can be optimised simultaneously more readily than sum and azimuth
difference , a fact that will be more clearly seen when the secondary

characteristics of the antenna system have been calculated.

6.4 Radiation Characteristics of a Paraboloidal Reflector

Illuminated by a Multimode Feed.

6.4.1 A General Expression for the Far-Field of the Reflector

The following evaluation of the feed-reflector system's
secondary characteristics is for a front-fed paraboloid, but it can
also be applied with a good degree of accuracy to most Cassegrain
systems. On the basis of geometric optics, such a system can be
shown to be equivalent to a front-fed paraboloid whose diameter is
equal to that of the Cassegrain main reflector, and whose focal
length is such that the Cassegrain hyperboloid subreflector and the
equivalent paraboloid subtend the same angle.at the feed centre.

The equivalence holds when the subreflector is large compared with)\°
(about lOA()minimum diameter), as is usually the case in practice.
The following assumptions are made:

(i) The reflector has a sufficiently long focal length for it to

lie entirely within the far-field of the feed.

|
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(ii) The effect of blockage caused by the feed, support
structure, or Cassegrain subreflector is negligible.

(iii) The theoretical phase-centre of the feed, i.e. the centre
of the feed aperture, coincides with the focus of the
reflector.

Fig. 6.7 shows the co-ordinate system used for expressing the

~primary and secondary radiation patterns.

The radiation from the feed, whose electric component may be

written in the general fornm:

A e-Jko/o
31/3

where §i is a unit vector denoting polarization, is incident on the

E, = E,(6,$) 6.16

paraboloidal reflector whose boundary subtends an angle % 60 at the

focus. Since all rays from the focus of a paraboloid are reflected
parallel to the axis, the field distribution in the "aperture plane"
may, on the basis of geometric optics, be consideréd as the

projection of the reflector field distribution onto this plane. The

aperture plane field may therefore be written as:

-jko/o (1 + cosb)

= AT
Epp = Eo(9975) Eap/o 6.17

The unit polarization vector gap can be shown to be related to :i in

the following way: if, in the incident field,

A _nb A
then, in the aperture plane field:

Ey(8:$) 8p = - 6.19

A A
E . - 7,)1% o
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This result follows from consideration of the boundary conditions

imposed by the perfectly conducting reflector surface.

By using the fundamental equation for a paraboloid surface:

/O(l + COSG) = 2F 6020
it is apparent from equation 6.17 that there is no phase variation

over the aperture plane provided the phase of Eo(9,¢0 is constant
for all O and¢.

The far-field for small values of © due to this aperture plane

field distribution may be determined approximately by Fourier trans-

formation, i.e.

. r a1
k, e'JkoR ° Jk v sin@cos($-P)
_E_:(R,@,‘i’) =Jsn g gap e r deﬁ dr
00

6.21

It is clear from figure 6.7 that r,/A;and O are related through the

equation:

r =/osin9= 2F tang 6.22

Thus,

6.2
dr:Fsec2§d9=/od9 >

By substituting for Q;ﬁ using 6.17 and eliminating r and/o using
6.22 and 6,23, 6,21 becomes:

e

r

e 2
& ko °jko(R+2F) 0 T A o jkantangsingcm#-§)
EROP = § 3 J];F Eo(9,75)3aptan-2- e
0

dp 40  6.24
Note that the above expression is not exact, because of the

geometric optics approximation and the restrictions implied in the
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u he F
se of the Fourier transform. For practical reflectors many

wavelengths in diameter, however, expression 6.24 is quite adequate,

particularly if the fine structure of the secondary patterns is not

of interest.

6.4.2 Efficiency Factors for Feed-Reflector Systen.

(1) Spillover Efficiency

Since only the power radiated by the feed within the cone # < 6
is incident on the reflector, there is a loss of efficiency on trans-
mission due to spillover energy radiated at angles greater than 6.
On reception, radiation from directions for which 6> 90 is detected
by the feed. This is usually in the form of noise, and contributes
to the noise temperature of the system. Spillover efficiency is
defined as Ehat fraction of the power radiated by the feed which is

incident on the reflector, and nmay be written as:
an
o

___f | &, (6,$)|%61n6 a a6
Yl = 6.25

S
——J;/‘ |E 6,$)| ainedﬁde

Since reflections of modes at the feed aperture are assumed

negligible, the denominator of the above expression can alternatively
be written as RT' the sum of the powers associated with the propaga-
ting modes in the feed aperture. The expreasion is applicable to

both sum and difference channels.

(11) Cross-Polarization Efficiency

In a system designed for linear polarization, the secondary

radiated field at a far point may be thought of as consisting of a
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component polarized in the required direction, and a cross-polarized
component. Provided that directions close to the principal axis are
considered, each of these components is due solely to the component
of field in the aperture plane with the same polarization. If the
feed is polarized in the y - direction, the wanted component Ey in

the aperture plane is given by:

Ey = E} sin¢+ E;‘ cosyg 6.26(a)
the cross-polarized component being:
E, = E. cos%- EYysin ¢ 6.26(b)

Ey and Ex may also be expressed in terms of the primary radiated

field, using 6.19:

Ey = -E sin - E¢ cos¢ 6.27(a)
E, = E}é sin;ﬁ- Eg cos}?ﬁ 6.27(b)

The cross=-polarization efficiency is defined as the ratio of the

power in the aperture plane associated with the required polarization

component to the total power in that plane.

It may also be expressed in terms of the field incident on the
reflector, being the ratio of the incident power associated with

Eys given by 6.27(a), to the total incident power, i.e,

fﬁE (9¢)| sinf g d6 6.28
= Qoz-n'
[ﬁE (9¢)|281n9d¢d9

Here again, the expression can be applied to both sum and difference

cp

channels,
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6.4.3. Gain Factors.

In any assessment of antenna performance, an important factor to
consider is the gain of the antenna, in some specified direction,
relative to a given reference source. In the case of a circular
aperture, it can be shown that the on-axis gain is maximised when the
aperture is uniformly illuminated, and such an aperture is chosen as
the reference source for the gain calculations in this section. The
"gain factor'" of a given paraboloid is then defined as the ratio of
the power per unitsolid angle in the specified direction associated
with the "wanted" polarization component to that which would exist on

the axis if the aperture were uniformly illuminated with no spillover,

Consideration of equation 6.17 shows that in the primary pattern
giving rise to the '"ideal" illumination, Eyis proportional t9/09 and
nay be written as

By = Ao, 1010, &) - 0,l6]>8, 6.29
where A 1s a constant. The polarization is such as to eliminate the
cross-polarized component. Equation 6.24 for the secondary far-field

gives, after substitution fOf/O. the following result for the on-axis
power in the "ideal" case:
27 9

2

2 2 6 286

PO(O,O) = A°B /PZF tan > se'.-c 3 12) d% 6.30
00

B is also a constant. Since the power incident on the reflector in

the ideal case must equal the total power PT radiated by the feed in
the actual case, A may be found from:

o 21 Q} o
A j‘ 2F24 2 6
5 an = sec =2 d6d =P
1, 2[0 2 2 #= Py 6.31



- 127 -

Equation 6.24 gives the power per unit solid angle associated with

E in the direction (®,P) due to the actual illumination as:
2@ 2

k| 2Ftan— ginfcos @-H)
P©P)=s 2Fff E (9¢)tan- e éd& dg 6.32

By eliminatlng A from 6.30 using 6.31, and recognizing that the
2
integral in these expressions has the value ITFetan 20, the following

expression for the gain é‘actor can be obtained;

2}
jk_2Ftans 1in€os(P-9)
ﬂE(9¢)tan—e ° ° ¢§ <f>

P@,P) 0
G(@,P) = —-("—'—5'
q) Po 0,0 ? TTtana _9_0
'I‘ 0 2
(1) Sum Channel Gain Fadtor 6.33

For the sum channel, peak gain occurs in the direction along

the principal axis, i.e. é =0, ©® =17, the gain factor then being:

2
6
ff (9,¢)tan 3 46 a¢ 5
Gy =B -3
Yl‘rftan -5
This gain factor may also be viewed as the product of three
efficiencies:
G_ = X "Z X 6.35
z 7Zs cp 71
where >Z]: is termed the "illumination efficiency'" and is a measure of

the degree to which the aperture plane illumination matches the ideal
uniform distribution.

Figure 6.8 shows how the sum gain factor varies with the para-
meter X-Zﬂ-‘x, for various values of o¢, which expresses the ratio of
the modes LSE,, and HlO in the feed aperture. The curves were cal-
culated using a digital computer, the integral in expression 6.34

being evaluated by Simpson's Rule. Although the calculation was
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performed for a'=2o29xo, the use of the parameter X as co-ordinate
enables the variation of gain factior with 90 to be determined for
other feed aperture widths, provided these are sufficiently large
for the HlO and LSE12 propagation coefficients not to deviate

appreciably from that of free space.

It can be seen from the sum-channel primary patterns shown in
figure 6.3 that, for a given feed aperture, the secondary aperture
jllumination becomes more tapered as 90 increases, causing a decrease
in)zI. However, the amount of radiated power intercepted by the
reflector increases with 90 and so, in consequence does)z o The
maximum gain factor corresponds to the best compromise beﬁween these
two efficiencies. The feed aperture field due to the superimposed
chpnd LSEq, modes is linearly polarized, and in the corresponding
radiation pattern the cross-polarized component given by 6.27(b) is
eliminated when the aperture width is large. ThusVZCP is very

nearly 100% in the cases considered.

As would be expected from the discussion of section 6.31, the
maximum gain factor increases with ¢, Also, for a given a'/xog
the value of 90 for which maximum gain occurs increases withol, a
fact which will be shown to have an important bearing on the simul-

taneous optimisation of sum and difference performance.

(ii) Difference Channel Gain Factors.

The values of ® corresponding to the main lobe peaks of the
secondary difference patterns cannot easily be determined mathemati-

cally, and for this reason it was decided to plot gain as a function
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of@ and then determine the peak gain factor and corresponding

value of@ by inspection.

Peak gain occurs in the plane(I):O for the azimuth difference
channel, and in the plane §= gfor the elevation difference channel.
In both cases it is found that the real part of the integral

vanishes, giving:

2r 6 2
0
ff EyAAZ(B,}S)tan ';_? sin(2Fk tan —gsin @cosyg )a 6 d¢
0O O
Gy 7 (@O = —
o B 2oFranz™ 2R 3° 6.36
(
ff EyAEL(9,¢)tan 'gsin(ZFkotan -29 sin®sinp ?da dé
O O
Gy (B =

2 0
2YoPrapL T tan 3°
6.37

Figure 6.9 shows how the peak azimuth and elevation difference
gain factors vary with the parameter X. In the case of the azimuth
difference channel, curves are plotted for various values of«' , the
- ratio of LSE,, to HZO in the feed aperture. Here again, the maximum
values represent the best compromise between spillover and secondary
aperture illumination. As mentioned in section 6.3.2, the aperture
illumination leading to the maximum possible difference gain factor
takes the form of a truncated sinusoid whose amplitude and wavelength
are constant in any plane parallel to that in which peak gain is
required to occur, and Kinsey [_}A\] has shown that the required wave-
length for a circular aperture is '1.223 times the aperture diameter.

The corresponding gain factor at the difference peak is 0.566.
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64,4, Difference Channel Slope Factor.

When dealing with the tracking ability of a monopulse antenna,
an important consideration is its sensitivity to small changes in the
direction of the received signal, which depends to a large extent on
the slope of the secondary difference radiation pattern measured at

the principal axis, A "slope factor' is therefore introduced, being

2
{acs’ﬁ) }
S = _— 6038
Bu u=0

where u= (7Dsin(® )/>\oo

defined as:

Slope factors for both difference channels are included in
figure 6.9, and were determined graphically, although it is possible
to obtain a good approximation to the slope factor by calculating the

gain factor corresponding to u=l, the secondary pattern being almost

linear in this region.

The aperture illumination corresponding to the maximum possible
slope factor has been shown by Kirkpatrick [35] to have a linear,
odd distribution. The value of the slope factor in this case is
0.25. The primary difference patterns described in sections 6.3.2
and 6.3.3 are, however, such that this ideal illumination cannot be
approached without excessive spillover. It is not surprising, there-

fore, that the slope fagtors in figure 6.9 fall well short of the

maximum possible value.
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6.4.5., Discussion.

Now that performance figures for the complete system of feed and
reflector have been determined, it is possible to see precisely‘the
effect of the addition of the higher-order modes LSE12 and LSE22°
Figures 6.8 and 6.9 show that in the case ©¢ =0, corresponding to
the use of the Hlo mode alone in the sum-channel case, the maximum
gain factor occurs when X=5.6, whereas maximum difference-channel
gain and slope factors are all obtained when X is in the region of 8.
Thus if the dimensions of the system are chosen for maximum sum-
channel gain, difference-channel performance is poor, and vice-versa.
However, the introduction of the LSE12 mode not only increases the
maximum sum gain factor by as much as 14%, but also causes it to occur
at larger values of X. In fact, if a value of ©¢ in the region of
unity is chosen, sum and difference gain factors are almost maximised
simultaneously. Notice that the value &=0.642 which was shown in

section 6.3.1 to produce an almost circularly symmetric reflector

illumination is also nearly optimum for the sum gain factor.

It is seen in figure 6.9 that the elevation difference gain and
slope factors, due to the LSE11 mode, are considerably better than
those of the azimuth difference channel when the H mode alone is
used (i.e. o'=0). The reasons for this were outlined in section
633, When the system is used with circular polarization, it is
particularly important that the elevation and azimuth gain and slope
factors should be similar, otherwise the feed responds differently
to each of the two equivalent linearly polarized components of the

signal received from a source displaced in either principal plane,
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and the resulting waves excited in the four small guides then have
elliptical rather than circular polarization. The use of the LSE22
mode can be seen to improve significantly the azimuth difference

gain and slope factors, but unfortunately it causes the peak values to
occur at even larger values of X. The improvement at any given

value of X can still be considerable, however. Wheneot! is in the
region of 0.5, the azimuth and elevation difference performance
factors have similar values when X=8, the point at which the elevation
difference gain and slope factors are both near their respective

maxima.

Although maximum sum-channel gain is desirable when the antenna
is used for transmission, it is often the ratio of signal to noise
which must be maximised for reception. When the paraboloid is
front-fed it is possible, assuming losses other than those due to
spillover to be negligible, to make an estimate of the effective
antenna temperature 'I'A in terms of the spillover et‘fic:i.enc:y"ZSe
The elevation of the antenna is assumed to be such that half the
spillover pattern picks up noise radiated by the earth, while the
other half, and the entire secondary pattern, pick up noise from the

sky. By taking the noise temperature of the earth as 290°K, and
that of the sky as 10°K, it is found that:
_ _ ) 6.39
TA = (150 140715) K
Graphs showing the variation of 3& with X, for various values of o |

are included in figure 6.8, as are also some grahs of G/T, , which is

proportional to the signal-to-noise ratio of the antenna. The peak
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values of this factor occur at larger values of X than those of the
gain factor, so that a smaller value of o is required if tracking

ability is to be optimised simultaneously with signal-to-noise ratio

rather than gain,

In a Cassegrain system, power spilled over past the subreflector
"gees" only the cold sky, so that TA is much less than in the front-
fed case, Ideally, in fact, it would be independent of Qs;and equal
to the sky temperature, in which case the optimum G/TA for the system

would occur when the sum-channel gain factor was a maximum.

6.5. Design of the Mode-Converter.

6.5.1 Method of Analysis for Single-Step Converter.

With reference to the discontinuity cross-section shown in
figure 6.1, it is clear that there are three parameters which can be
varied to control the excitation of propagating modes, while
preserving the four-fold symmetry of the junction. They are:

(1) The width b of the small waveguides relative to the free-space
wavelengthxo. Since overmoding of these waveguides is undesirable,
the allowed range of variation is that in which only the E&O and H

0l
modes can propagate, i.e.

1eb o1
1<t <
(i1) The width 2a of the large waveguide, relative to )‘6

6.40

This factor determines whether the modes excited by the step are

propagating or evanescent.

(1i1) The diagonal displacement of the small waveguides towards

the centre of the step, denoted by c¢/a. The range for this para-
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meter is:

b/(2a)<c/a<(2a-b)/(2a) 6.41

It would be possible to obtain solutions to the discontinuity
problem using the method described in section 3.7 involving the
partitioned matrix formulation, but in this particular case the
symmetry of both the junction itself and the excitation can be used
to simplify the analysis. The transverse modal fields in the large

waveguide have the following forms:

HMN mode
Mtx Nty
Ex = -AMN N cos >a sin >a
6.42
_ M1Tx N1y °
Ey = AMN M sin 5= cos S8
(i [
H =3 —E H = = =~
N A
EMN mode
_ M1ix Ny
Ex = BMN M cos >a sin >a
6.43
. Mtx Nﬂz
Ey = BMN N sin Eres cos >a
Weo wEo
H = - = = 4 W=0
< Jr, Ey Hy ;jr, E_
MN MN

The co-ordinate system is that shown in figure 6.1. 1In the

above expressions:

2 .
PMN - M4+2N2.n.2 ) ki) 6.4
a

It can be seen from 6.42 and 6.43 that if M is even, E, vanishes in

the plane X=a, corresponding to the existence of an electric wall in
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that plane, Similafly, if N is even, Ex vanishes when y=a and an
electric wall can be considered to exist there also. If M is odd,
Hy vanishes at x=a, as does Hx at y=a when N is odd. A magnetic
wall can therefore be inserted in the appropriate plane without dis-
turbing the fields. As shown in table 6.1, M and N are each either
even or odd for all modes corresponding to a given monopulse channel.
Thus a wall of the appropriate type may be considered to exist in
each of the planes x=a and y=a for that particular excitation. It
is then possible to analyse the discontinuity by considering only one
quarter of the structure, i.e. a junction between two square wave-~
guides, the larger of which has two walls which can be either electric
or magnetic. Figure 6.10 shows tﬁe simple junctions equivalent to
the four excitations of table 6.1. Each junction can be treated
using the method of section 3.1, the relevant matrix equation being
3.4, The evaluation of the elements of EE] and ESJ is given in the

Appendix.

Restrictions on the modes taken into account in the solution
were imposed by matching the highest-order spatialyfrequencies
separately in both x and y directions. In many of the configura-
tions considered, b/2a was of the order of 1/3. The highest x
dependence was 3 in the small guide and 9 in the large guide, the
corresponding highest y- dependences being 2 and 6. Thus 14 modes
were taken into account in the small guide and between 20 and 22 in

the large guide, depending on the channel in question.
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-6.5.2 Computed Results.

The first parameter whose variation was considered was the

diagonal displacement of the input waveg.uides° In order to obtain

a fairly large range for this variation, the waveguide sizes were
chosen so that a=0072Ad b=0.7a, in which case the HBO mode can propa-
gate in the large guide. 6.41 then gives the range of c/a as 0.35
to 0.65. Figures 6.11(a), (b) and (c) show the proportions in which
the incident power is divided among the various transmitted and re-
flected propagating modes, as functions of c/a, while figures 6.12
(a), (b) and (c) give the phases of these modes relative to that of
the HlO mode incident in number 1 input waveguide. All three mono-

pulse excitations are considered.

In the sum-channel case (figs. 6.11(a) and 6.12(a)), it can be
seen that the Hl2 and E12 modes are most strongly excited when c/a=
0.35 or c¢/a=0.65, whereas, when c/a=0.5, they are completely suppres-
sed owing to the symmetry of the equivalent junction. A reversal of
the phase of these modes occurs as c/a passes through this point.

The need for them to be excited strongly relative to the HiO mode for
a satisfactory multimode radiation pattern suggests the choice of
either the corner position (c/a=0.35) or the centre positiony
(c/a=0.65), which also give small relative phase angles between.the
two modes. In the former case, less than 1% of the incident power
is reflected, compared with 13% in the latter. However, if the
dimensions are reduced so that the H30 mode can no longer propagate,
computation shows that the amount of power reflected is similar in

the two cases, and is typically about 5%. As there seems to be
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little to choose between the corner and centre positions from the
sum-channel point of view, the choice will depend on the behaviour of

the discontinuity with difference~channel excitation.

The equivalent output waveguide for the azimuth difference
channel, shown in figure 6.10(b), has four electric walls, so that a
junction with input guide displacement c is identical to one in which
the displacement is a-c. Thus the curves showing the distribution
of power among the propagating modes (fig. 6.11(b)) are symmetrical
about the value c¢/a=0.5. By analogy with the 1,2 modes in the sum-
channel case, the Héz and EEa modes are not excited when c/a=0.5,
the point at which they undergo a phase reversal as the input wave=-
guide displacement is varied (see fig. 6.12(b),  Here again, the
positions ¢/a=0.35 and c¢/a=0.65 give rise to the minimum relative

phase angle for the pair of modes (about 30°). About 10% of the

incident power is reflected in these cases.

In figures 6.11(c) and 6.12(c) the curves corresponding to the
elevation difference channel are given. It can be seen that the
mismatch at the discontinuity is much more serious than in the other
two cases, particularly if the four input guides are grouped together
at the centre of the step. About 29% of the incident power is
reflected when ¢/a=0.35, as opposed to 67% when c/a=0.65, which
suggests that the corner position should be chosen for best elevation
difference matching. In this case the Hll and Ell modes are excited
with a relative phase of about 50°, which, although a high figure,

cannot be improved without increasing c¢/a to a point at which an

excessive amount of power is reflected.
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Having chosen the corner position ¢=b/2 as that which gives best
all-round performance, there are two further parameters the effect of
whose variation needs to be determined, namely the waveguide widths b
and 2a. The range for b is given by 6.40, whereas that for a is:

oA /H<a<3), /4 6.1k

This is the condition for the H,. made to be cut off, but for the

30
Hyo and E,, to be propagating. The curves in figures 6.13, 6.14 and
6.15 show amplitude and phase variations with b/)\oof propagating

modes excited at the step when a/xo takes values from 0.64 to 0.74, in
steps of 0.02., When a/)\o is 0.72 or 0.74, the H

and E._ modes,

22 22
which are excited in the azimuth difference case, are above cut-off

in the large waveguide.

With sum-channel excitation, figures 6.13(a) and (b) show that
for the H12 and E12 modes to be strongly excited relative to the Hlo
mode, as required for a satisfactory multimode radiation pattern,
b/xo should be kept small, while a/)\° should be as large as possible.
Note that these higher modes are suppressed when a=b, because of the
symmetry of the equivalent simple discontinuity. Despite the in-
creasing higher-mode excitation near input guide cut-off, operation
in this region is undesirable because of the high attenuation which
occurs in practice. Also, figure 6.13(c) shows that reflected
power in the form of the H,g mode increases rapidly as cut-off is
approached. A choice of b[x°=006 avoids these difficulties, giving
a total reflected powér which does not exceed 6% of the input power.

At - this point the phase argle between the le and E modes is about

12
33° for all the values of a/xaconsidered (see fig. 6.13(d)).
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In the azimuth difference case, it can be seen in figure 6.1%4

(a) that the curves showing the Héa mode excitation are similar to
those for the HlZ mode in the sum-channel case, whereas those for the
Ezé mode have peaks in the region bAAJgO.B}. The HZO mode alone
satisfies the matching conditions when a=b, so0 both normal and cross=-
polarized reflection coefficients are zero at this point (see figs.
6.14(c) and (d)). The reflection coefficients increase smoothly as
b[ko decreases, but here again the mismatch is not serious unless the
input waveguides are operating close to cut-off. In fact, when b/)\o
=0.6, the proportion of input power reflected is only about 2% in the
worst case. The relative phase angle of the HZZ and E2 modes,
whose variation is shown in figure 6.14(b) increases rapidly with

b[A , the value for b[ko=0.6 being between 50° and 60°,
o .

The dependence upon a/}\o and b[Ao of the Hy, and E,; elevation
difference modes is shown in figure 6.15(a) and (b). Figure 6.15(a)
shows that the amplitude of the Hll mode decreases initially relative
to that of the E,, as b/>\o is increased from cut-off, and that for
a X;><L7O a point is reached at which the Hy; mode is not excited at
all., After this its level increases again towards a value similar to
that near input guide cut-off. The points of Hll mode suppression
are also those at which the curves showing the amplitudes of the
reflected HlO and HlO modes have peaks (see figs. 6.15(c) and (d)).
These regions should be avoided for good monopulse operation, since
the Hll and E11 modes must be launched with similar amplitudes if the
aperture field is to approximate the LSE hybrid mode. As with the

11
other channels, a choice of b[xo in the region of 0.6 seems to be
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optimum, as this gives reasonably low reflection coefficients and is
not too close to input guide cut-off, while avoiding the region of
H11 suppression. In contrast to the sum channel, however, a/>\o
should here be as low as possible, since, for b/X°=O°6, the value
a/xo=o.64 gives the lowest reflected power (about 8¥%%) and smallest
relative phase angle (28°) between the H,, and E;; modes (see fig.

6.15(b)).

It appears, then, that choosing b/xo as 0.6 glves a satisfactory
compromise between the requirements for good matching and strong
higher-mode excitation for all channels. The choice of a/)\° is less
straight-forward, however, since good H,y, and Ela generation for the
sum channel is incompatible with satisfactory elevation-difference
matching. This will be more thoroughly investigated in section
6.6.4, where secondary characteristics corresponding to different

values of a/>\o are evaluated.

6.5.5. An Alternative Mode-Converter Design Using Two Step

Discontinuities.

With the mode-converting step described above, the maximum value
of lo¢|that can be realised when b/k°=0.6 is about 0.35, which, as can
be seen from figures 6.8 and 6.9, is insufficient for simultaneous
optimisation of sum and difference gain factors. It is therefore
worth considering how the Hl2 and E12 modes might be more strongly
generated without reducing b/Xo. Clearly, their excitation increases
with a/k()for either the corner (c¢=b/2) or centre (c=za-b/2) location
of the small guldes, but the magnitude of this parameter cannot

exceed 0.75, otherwise unwanted propagating modes are generated. The
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restriction can be removed, however, if the step is followed by a
transition involving a further step or taper to a guide in which only
the required modes can propagate. A configuration using a second
step is shown in figure 6.16, and can be solved by the method of
section 3.8, (boundary enlargement at first discontinuity, reduction
at second), recognizing that, as with the single step converter, only
one guarter of the structure needs to be considered because of sym-
metry. Two walls of the equivalent intermediate and output wave-~
guides can be either electric or magnetic, depending on the channel
to which the excitation corresponds, the choice of wall type being as
for the single step (fig. 6.10). The division of power among propa~-
gating modes in the input and output guides when b=0.6>\°, a=0.77 )‘o
and d=0,7ko has been calculated as a function of intermediate section
length 1' for the cases c=b/2 (fig. 6.18) and c=a-b/2 (fig. 6.17).
The calculation took into account 14 modes in each input waveguide
and between 20 and 22 in both intermediate and output guides. As
mentioned in section 3.8, the results were not considered reliable for

values of 1' in excess of about éxo' as power was not then shown to

be conserved exactly.

From the sum-channel point of view the c=a-b/2 configuration
(fig. 6.17(a)) 1s attractive, since reflected power is below 7% for
1'/a less than 2.0, and generation of the 1,2 modes when 1'/a is
around 1.875 is strong enough for o/ to approach 0.6. Unfortunately
this value of 1'/a gives a bad azimuth-difference mismatch (fig.
6.17(b)), and better all-round performance would be achieved: with

1'/a around l.l§ when o can reach about O.45. As with the single
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step, reflected power for the elevation difference channel (fig. 6.17

(a)) is very high, generally more than 40%.

The c=b/2 configuration gives a generally higher level of sum-
channel reflected power (fig. 6.18(a)) than when c=a-b/2, except when
1'/a is around 0.75, where it is down to only 3%, and where the
excitation of the 1,2 modes is greatest. Values of ¢{of approxi-
mately 0.5 can be achieved in this region. The greatest drawback
with this choice of ¢ is that excitation of the Bil elevation differ-
ence mode is very weak compared with that of the Ell.mode (fig. 6.18
(c)), giving a radiation pattern with a very strong cross~polarized

component.

Further improvements in all-round performance might be achievedi
by increasing a, and sum~-channel mode conversion for a=0.95)\° has
been investigated. Although high values of © are possible, the modal
amplitudes fluctuate very rapidly with 1' and A‘; This emphasises
the main drawback of double-step exciters: their dependence on
multiple reflections of propagating modes imposes serious bandwidth
limitations. For this reason a practical feed design based on a
double-step exciter will not be considered here. However, it is
suggested that such a design might form the subject of future work on

multimode feeds for single-frequency operation.

6.6 Complete Feed Designs Using the Single-Step Exciter, with
Corresponding Secondary Characteristics.

6.6.1. Determination of the Amplitudes and Phases of Propagating
Modes in the Feed Aperture.

In section 6.5.1, the determination of the amplitudes and
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phases of propagating modes in the uniform section at the discontin-
uity plane z=0 was described. Since these modes generally propagate
with different velocities in the uniform section, and horn flare,
their relative phases change during passage from step to aperture.
The relative amplitudes of their transverse field components are also
affected, because of the requirement, mentioned in section 6.2, for
the power associated with any propagating mode to remain constant.
This requirement allows the calculation of the modal amplitudes at

the aperture in terms of those at the step. It is found that:

Ml _a [, Bl o [
|Ad] 2P Pudl 2 Pun

The phase angle )2,°f a propagating mode in the plane of trans-

6.45

ition from uniform to flared waveguide is given by:

X, = Xo - /3t 6.46

where )% is the phase in the plane z=0.

Using the "quasi-uniform" approximation, the phase change that a
propagating mode undergoes in the flared guide may be determined by
treating each elemental length 82 (see fig. 6.1) of the flare as a
section of uniform wavéguide. calculating the phase shift across this
element, and summing the effects of all such elements along the
length of the flare. The propagation coefficient in a plane with co-

ordinate 2 is given by:

L@ =0 - afs ¥ (L) 6.47

where x=Ztanf. The phase-shift S'X,across the element 2 is:

§X= -/3,(2) 8z,

and the total phase-shift in the flare is therefore
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f/BMN(Z) 4z 648

By making the substitution dz= cotﬂdx and using 6047, the integral is

evaluated to give:

:ff = -cottf(a'2 2_ v )% (a 2 2 vz)}é - vcos-;—!-
o k af
’ - o 6ol+9

v cos'l-—‘-’—
i koa-S 2
where v= -V M2+ WP)

The above method of determining phase-shift in the flare is not
exact, since it depends on the assumption that transverse field
components at any cross-section of the flare can be expressed in
terms of the normal modes for a square wavegulide of the same cross-
section, there being no transfer of energy between modes during
their propagation along the flare. Thus the quasi-uniform method is

only &pplicable when i: is sufficiently small for the modal wavefronts

to have negligible curvature.

A rigorous analysis of the field structure within the flare
‘requires a solution of Maxwell's equations subject to the boundary
conditions imposed by the pyramidal structure, Such a solution is
difficult to obtain, since the surfaces defining the walls of the
flare cannot be expressed as functions of only one co-ordinate of a
spherical co-ordinate system centred at the apex of the pyramid, as
would be the case with a conical horn. However, Keeping [:18: states
that the modes would have radial field variations depending on the
Hankel functions h} (k Z) of orders n= ."‘;, ’(Mz-e—Nz)- 1/2 and

n..a;,/(Mz-vN )= 3/2. The arguments of such functions are not well
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tabulated, and Keeping therefore uses approximate expressions
applicable when k°Z§>n. His exprédssion for the higher-order function
is found to be identical to 6.49, and the contribution from the lower
function is stated to be negligible. Calculated phase-shifts are
therefore exactly the same as those which would be obtained using the

gquasi-uniform method.

6.6.2 Phasing Requirements for the Three Channels

(1) Sum Channel Phasing Requirement

It was shown in section 6.3.1, that the hybrid LSE,, mode needs
to be in antiphase to the Hyo mode in the feed aperture if the desiredi
multimode illumination is to be produced. However, the computations
of section 6.5 show that a pure LSE,, mode cannot be excited in prac-
tice, s0 it is necessary to find the relative phases of the modes

5&0 ’ 1-5_2 and Fia in the aperture which give the best radiation
pattern, bearing in mind that the relative phase of the Hia and Eia

modes is fixed by the design of the step.

In the ideal case of section 6.3.1, there is a unique phase-
centre located at the centre of the feed aperture, but in practice,
when the H12 and Eia modes are not in phase, the position of the
phase=-centre varies with'# (see co-ordinate system, fig. 6.7): only
in the H-plane, where the 1,2 modes do not contribute to the radiation
pattern, is the phase-centre always located at the aperture centre.
Phase errors in the resulting reflector illumination can be minimised
by adjusting the relative phase of the H mode and the 1,2 pair so

10
that the E and H-plane phage-centres are coincident. If, in the E-
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plane pattern expression given by 6.6, o{is now defined as the complex
; ' ' ' ; : -

quantity (A12 + 2BJ, )/A10 y comparison with the H-plane pattern

expression 6.2(a) shows that the imaginary part of & must vanish for

phase-centre coincidence. If”y% is the phase angle by which the E

12

mode leads the le. then the required angle}ﬁ'by which the Hla leads

Hlo in the aperture is, to satisfy the above condition:

Y = tan-l SL_ 2|Bi,|sin Ny | 6.50
lAi2| + 2|Bi2'coslpb

Table 6.2 gives the values of'#fcorresponding to mode=converter

solutions for the case b/xo=0,6, where a/'xotakes values from 0.64 to
0.74 in steps of 0.02, together with the required phase-shift between
the Hlo mode and 1,2 pair from step to aperture. a' was taken as
2,29X°. but the results are quite accurate for larger values of a!
since‘/Bio and /Sia are both approximately equal to 1 in such apert-

uresSe

(1i) Azimuth Difference Channel Phasing Requirement.

As the H22 and E22 modes do not give rise to an E-plane component
of radiated field, H-plane and h5°-plane phase-centres are made to co-
incide for the azimuth difference channel. of' in the expression for
the normally polarized 45°-plane component (eqn. 6.12) is now the
complex quantity (Aé2 + B, )/Aéo , and its imaginary part must

vanish for phase-centre coincidence with the H-plane pattern given by

6.,9. This occurs when

1 B3l sinfry

IAé2| +|Béalco§v;

' 6.51

\pﬂ = tan_




7{ _,5

. ‘
| | Bestell |z 2z ||y e
Ao %10 Ao A tedd 1410 2o 118 paiy

0.64 | 0.0355 | 0.0266 | 33.53°]|-35.279 0.0261 | 0.0389 | 154.719 189.98&9

0.66 | 0,0496 | 0.0414 | 33.,97°} -34.17° 0.0380 | 0.0578 | 154.249 188.41°

0.68 | 0.0630 | 0.0572 |33.98°-32.98° 0.0499 | 0.0772 | 154.13] 187.11°

0.70-}0.0760 | 0.0740 | 33.80°-31.789% 0.0617 | 0.0970 | 154.17% 185.95°

a.72 |0.0885 | 0.0913 | 33.43°% -30.80™ 0,0734 | 0.1166 | 154.399 185.19°

0.74% | 0.0999 | 0.2084 [33,22° -3o.oa°|o.ost+l+ 0.1355 ! 154,45 184.51%

TABLE 6.2

— A B E: ' B! Req. ps

T T v o [ | o
o | T2l | I420 ° |at step| 14201 | 420 L:Lr 329 2n9

0.72 | 0.1799 | 0.0984 | 59.029 -3.75° 0.093% | 0.2573 [135.68° 139.4

0.74 ! 0.2062 | 0.1573 | 49.019 -8.04°| 0,1321 | 0.3249 | 144,619 152.65

TABLE 6,3
a | (B J |H,, phasq B! /1 |Req. p=
2 11 - 1 11
Ag |-—- ir rel. - 1,1‘ etyee
9] 14 7o lat step%c |A11| A Baoﬁ?_

0.64 | 0.8588 | 28.07°]|~16.47"] 1.0179 | 14.16"| 357.69

0.66 | 0.8789 | 28.70°}| -17.24° 1.0285| 14.56°) 357,32°

0.68 | 0.9062 | 30.24°| -19.27° 1.0481| 15.48% 356.27F

0.70 | 0.949%4 | 33.30°| -221529 1.0869| 17.36°| 354.8L°

10.72 1,0299 | 38.90°| -30:14°| 1.1680] 21.02° 351.96°

0.74 | 1.2507 | 49.79°| ~42,92% 1540871 29.40 346.48]

TABLE 6.4
, C oo | Tine _
a/)\o| 7in=0 | hin=1) fin=2 an |1/y | & | Flare

J0.64 | 17029 6.06°] 3.649 0.9 Agl length

0066‘ 16.290 5&‘730 30430 0073 20533 ‘+o35° 20066\0

0.68 | 15.599 5.45% 3.21°% TABLE 0.74 | 4.658 |6.099 14.53\0

0470 | 15.019 5.22° 3.15° 75,5 TABLE 6.6
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qf being the angle by which the H22 phase leads that of the H t

20 @
the aperture, and 1p3 that by which E,, leads H,,. Table 6.3 gives

values of%#" and corresponding relative phase-shifts for a/X°=O.7# and
0.72, the other dimensions being as for the sum-channel case. Notice

that if ‘Aé2| and lBéa‘ are not equal, a cross-polarized component

will also exist in the 45%°-plane.

(iii) Difference-Channel Phasing for Circular Polarization.

A distant circularly polarized source displaced from the principal
axis of the antenna in either the E or the H-plane produces in the

feed aperture two orthogonal linearly polarized field distributions,

differing in phase by 900. One of these distributions consists of
the "azimuth difference! modes HZO' H22. E22 etc., whereas the other
consists of the "elevation difference! modes Hll‘ Ell etc. Owing to
the differences in phase velocity of these modes, and the different
matching conditions at the step, the Hlo and HOI.modes excited in
each small waveguide will not have a 90° phase difference unless the
relative phase-shifts betwéen modes in the horn are correctly control-
led, and if circular polarization is achieved by including a circular
polarizer in each small guide there may be a serious degradation of
tracking performance. If the feed is thought of as transmitting the
difference patterAs, the phasing requirement is that the H-plane
phase~-centre under linearly polarized azimuth difference excitation
shouid coincide with the E-plane phase-centre under elevation differ=-
ence excitation. This occurs when the*H., mode has a phase leading

20
that of the H,, mode in the aperture S&1p", where

B!.lsi "
-,_Fn = tan-l{ l llt nwc’

A
|%11|+|Bil|cqsyug

6.52
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Y being the angle by which the Ell phase leads that of the H11 mode.
o
The results of the phase-shift calculation for this case are given in

table 6.4, the dimensions being as in sub-section (i), above.

6.6.3 Choice of Horn Dimensions to Satisfy Phasing Requirements

It was hoped that by suitably choosing 1 and t,it would be
possible to satisfy phasing requirements 6.50 and 6.52 simultaneously,
but calculation has shown that, in all cases of interest, the differ-
ential phase-shift per unit length between the Hlo and 1,2 modes is
almost exactly twice that between the 1,1 and H20 modes, both in the
uniform section and in the flare, Since the required differential
phase-shift between the Hﬁx)and 1,2 modes is approximately (2n+l) T
radians, and that between the 1,1 and H,j, modes approximately
(2m+2)7T radians, where n and m are any positive integers, it is there-
fore not possible to satisfy both requirements simultaneously unless
the horn is extremely long. This would make any inaccuracies in the
phase-shift calculation very significant, and would severely limit the
bandwidth owing to the rapid change with frequency of the relative

phases of modes in the aperture.

The difference-channel circular polarization phasing requirement
may alternatively be satisfied by modifying the comparator circuitry
so that an additional phase-shift between the horizontally and verti-
cally polarized components of the difference channel signals is intro-
duced to compensate for the phase error caused by the horn. A draw-
back is that the circuitry ﬁow needs to be considerably more complex

than before. For example, eight hybrid-Tees are required instead of
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the previous four.

For sone satellite-tracking applications, the polarization of
the incident wave is linear, but randomly orientated, and a circular-
ly polarized feed is used to give a signal level independent of this
orientation. Such a wave can be viewed as a combination of equal-
amplitude left and right-hand circularly polarized components, only
one of which contributes to the signal at the feed output. As the
effect of a 180° rhase-error between tracking modes at the step is
merely to reverse the sense of each component, the tracking signal

levels are not affected in this case.

Under circumstanes such as those mentioned above, where phasing
requirement 6.52 is not applicable, the choice of 1 and z depends
only on the sum-channel phasing requirement when a<$\°A/E'. Since
only one of these parameters needs to be adjusted to give correct
phasing, it is possible in this case to put 1 equal to zero, so that
the flare commences at the steb discontinuity. The flare angle can
then be determined using expression 6.49 and the values of differen-
tial phase-shift between the H,, mode and the 1,2 pair given in table
6.2, to which may be added an integral number n of complete phase
rotations., The larger the value of n, the more restricted is the
bandwidth of the feed, whereas if n is too small the flare angle may
be so large that the quasi~uniform approximation can no longer be
applied. Table 6.5 gives the values of Z for the cases a/)0=0.6#,
0.66, 0.68 and 0.70, when n=0,1 and 2. a' is taken as 2,29\ ;o The
values of ;o for n=1 appear to be the best compromise between the

small flare angle and broad bandwidth requirements.
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When €>.°/vﬁi, the sum and azimuth difference phasing require-
ments can be simultaneously satisfied by suitably choosing 1 and 7; .
The required differential phase-shift between sum~-channel propagating
modes is as given in table 6.2, plus n complete phase rotations,
whereas that for the azimuth difference channel is as given by table
6.3, to which m phase rotations may be added. Here again, bandwidth
and small flare angle requirements must be borne in mind when selecting
m and n, énd suitable values for the cases a/ko=0.?# or 0.72 were
found té be m=3, n=2 when a' was equal to 2.29XO. The corresponding

feed dimensions are given in table 6.6.

6.6.4. Secondary Characteristics.

The gain and slope factors of the sum and difference secondary
patterns when the modal amplitudes and phases in the feed aperture
are as given in tables 6.2 to 6.4 may be determined from the expres-
sions in sections 6.43 and 6.4k, Since the component E& of the pri-
mary pattern is now a complex function of © andqb, separate integra-
tions are performed for the real and imaginary parts. In figures
6.19 to 6.21, the variation with X(=2ﬂ% %é ) of the gain and slope
faétors‘cérresponding to the six previously considered values of
@/Xois shown. Both the case in which the input waveguides are
equipped with perfect matching devices, and that where reflected

power is absorbed by a load are considered.

The use of the parameter X as co~ordinate enables the graphs to
be used with fair accuracy fér any feed aperture large enough for the.

modes to have propagation coefficients approaching that of free space.
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The increase with a/>\o of the 1,2 to H,, mode amplitude ratio for
the sum channel, which was shown in section 6.5.2, can be seen from
figure 6.19 to be associated with an increase in gain factor. With
correct matching, this can reach 0.801 when a=0¢7#>H’ but if no match-
ing is provided there is a reduction in gain of about 5¥% in all cases

considered.

For azimuth difference operation (figure 6.20) the effect of the
mismat;h at the step is negligible when only the.Hao mode propagates,
and is only’very slight when the H22 and Eaa modes are also above cut-
~off. The use of these modes can be seen to produce an appreciable
improvement in gain factor. For example, when a=0.74\o, the maximum
gain factor is 0.39, as opposed to 0.31 when a is less thaﬁxoﬁfi‘ t an
increase of about 25%. . There is a corresponding increase in the
slope factor, which can reach 0.16 when a=0.74-xo, the maximum value
when a is less than)\o/JE being about O.1l%. In no case does the

cross-polarization efficiency for this channel fall below 98.5%.,

The elevation difference gain and slope factors can be seen

from figure 6.21 to decrease as &/onincreases. Refereﬁce to table
6.4 shows that this is due to increases in the relative phase angle
between the Hll and Ell modes, and in the deviation of the amplitude
ratio of these modes from unity. Associated with this deviation is

a decrease in cross-polarization efficiency, which falls from 94% when
a=0.64>\°t° 80% when-a=0.74xo » and also an increase in primary H-
plane radiation, which is only completely suppressed when the illum-
ination is a pure LSE,, mode. This radiation has an adverse effect

on tracking performance when circular polarization is used, since a.
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signal from a source displaced in one of the principal planes gives
rise to outputs in both difference channels. The antenna then comes
into alignment with the source via a spiral rather than a direct path.
If no matching is provided, the elevation difference gain and slope
factors are further reduced because of the increase in reflected
power which occurs as a/>\° is increased. With correct matching, how-
ever, the gain factor can attain 0:385 when a=0.6l+X°, a value compar-~
able with the maximum azimuth difference gain factor. The best pos-
sible slope factor is 0.145, somewhat lower than that in the azimuth

difference case.

As the values of a/)‘o for best sum and azimuth difference per-
formance also gives the poorest elevation difference performance, and
vice versa, a compromise must be made if both sum gain and tracking
ability are of equal import.a.nce.\ For éxample. when a=0.70>\° azimuth
and elevation difference gain and slope factors are similar in the un-
matched case, but this is'achieved by accepting a 2% reduction in peak

gain factor compared with the asoo?Ll-)\oconfiguration.

Comparison of figures 6.19, 6,20 and 6.21 confirms that the H,o
and E ) modes cannot be excited sufficiently strongly to bring about
simultaneous optimization of sum and difference gain and slope
factors. The value of}| & |in the case a=0.7’+\°is about 0.35, com-
pared with the value of 1.0 mentioned in section 6.4.5 as. being
required for simultaneous optimisation. However, it was also shown
that, for a front-fed paraboloid, difference slope and sum gain-

temperature ratio are maximised simultaneously at a lower value of

|e¢|, and figure 6.22 shows that when a=0.74 xo letlis large enough for
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this to occur. Difference slopes and G /'l‘A all have peaks in the

region of X=8 for this case.

The relative merits of multimode feeds for which a/)o equals
0.74, 0.70 and 0.66 and dbf a conventional feed consisting of a cluster
of four square single-mode horns are campared in table 6.7. The
feeds are assumed correctly matched for all channels. Because of
the greatly improved feed aperture illumination, the sum-channel gain
factor using a multimode feed can exceed that for the four-horn
cluater by between 35% and 40%. In many cases there is also a sig-

nificant increase in difference slope, and in no case is the Blope

Sum Gain AAZSIOPe ApiSlope

Factor Factar Factor GZ/TA

Feed Peak Cors Peak Cor~ | Peak Cor- Peak Cer-
value [resp. | value | resp. | value |resp. | value |resp.

X X X X
ﬁulti-
mode: 0.801 6.15 | 0,161 8.9 0.125 7.7 0.047 8.1
(1*:7*3X0
Multi-

mode: 00786 6000 Oal}B 801 09142 707 0u0‘§0 796
a= *To%

Multi-
mode: 00767 5085 09138 801 0011"5 707 0.03’-5 703

zebbk

4-Horn
Cluster| 0.570 | 4.30| 0.141{ 6.7 | 0.122| 6.3 | 0.010 | 4.9

TABLE 6,7

obtained with a multimode feed appreciably less than that for the four-

horn cluster. Furthermore, the value of X for maximum difference
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slope is between 30% and 35% greater than that for maximum sum gain
with a multimode feed, as against 50% in the case of the four-horn
cluster: thus sum gain and difference slope are more nearly simul-
taneously optimised when multimode feeds are used. The moat striking
improvement, however, is in the an/’1‘A ratio for a front-fed paraboleid
which is greater in the multimode case by a factor of as much as &4.7.
In a receiving system which, apart from the antenna, is noise-free,
this represents an increase in signal - to - noise ratio of 6.7dB,

but in a practical system with receiver and lead-in noise the increase

would not be so great.

Using geometric optics, the results displayed in figures 6.19 -
6.21 can be applied to a Cassegrain system by considering the equival-
ent front-fed paraboloid. As mentioned in section 6.4.1, diffractimm
effects at the subreflector are usually ignored when its diameter
exceeds about 10}5 However, as & program for evaluating such effects
was available, it was decided to have the main reflector sum ~channel
41llumination and sfillover efficiencies calculated for the a‘OQOAXO‘
a'=2.,29 )ofeed, used at 7.3GHz, in a Cassegrain antenna having a L4o¢
diameter main dish of F/D ratio 0.3. A subreflector of eccentricity
1,295 is required under these circumstances. Two configurationas
were considered; that in which the feed was located at the apex of
the dish, requiring a subrefiector of diameter 59.6" for maximum sum
gain, and that corresponding to the minimum blockage condition, with
the feed centre positionéd.79°8" in front of the apex and a subref-
lector 26,6" in diameter. The method used in the analysis was that

of Rusch [36:L In the former case, main reflector spillover effic-
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‘:?'iency was calculated as 99.3%, and in the latter case as 99.0%.
The calculated illumination efficiencies were 90.1% and 88.9%
respectively, as oppésed to 89.4% using the equivalent front-fed
paraboloid method. These results show that, at least for the sum
channel, the effect of diffraction at the subreflector is small and
that it is justifiable to neglect it. For the difference channels
the effect would probably be more serious because of the higher fields
at the subreflector edge, but an analysis of this case was not possible

because of the asymmetric nature of the primary patterns.

6.6.5 Frequency Dependence of Sum-Channel Gain.

As it is usual for satellite communication antennas to use dif-
ferent frequencies for transmission and reception, sum-channel band-
width is an important consideration in their design. Figure 6.23
shows the variation of sum-channel gain factor with frequency for
antennas using unmatched multimode feeds in which a=0.66)°. 0.70 >‘o
and 0.74)\°at the design frequency, the other feed dimensions being
as given in tables 6.5 and 6.6. The F/D ratio is taken as that for

maximum sum gain factor at the design frequency.

The primary beamwidth, which depends largely on the electrical
size of the feed aperture, is chosen to give the best compromise
between illumination and spillover at the design frequency. Any
change in beamwidth caused by frequency deviation therefore reduces
the gain factor. Also, the frequency-dependence of propagation co-
efficients causes the relative phases of modes in the feedl aperture
to change with frequency, leading to an increase in primary sidelobes

and in the asymmetry of the reflector illumination.. This effectt is

ey e s
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particularly noticeable with the a=0.74)‘ofeed, where a 10%
frequency reduction causes the relative phase of the Hlo and 1,2
modes in the aperture to change by almost 180°. The lengthening of
the feed caused by the introduction of the uniform section makes the

phases particularly frequency-sensitive in this case.

Another factor affecting the antenna bandwidth is the introduc-
tion of the Hs, mode, which begins to propagate when >\°-‘+a/3. The
presence of this mode is detrimental to the gain factor, since,
depending on its phase, it either broadens the H-plane primary bean-
width, causing excessive spillover, or tapers it so as to give a poor

reflector illumination and high H-plane sidelobes.

The gain of the antenna relative to an isotropic source does not
vary with frequency in quite the same way as the gain factor, since
the gain of the reference source in the latter case (a uniformly
41luminated aperture) varies as the square of the frequency. Thus
the antenna gain may increase slightly with frequency over a small

.

range, even though the gain factor is reduced.

For military satellite communications, typical transmission and
reception frequencies are 8.0 and 7.3GHz. respectively. If the
antenna is designed for maximum gain at the reception frequency, the

relative gain at the transmission frequency is as given in the

following table: Gain at 8.0 GHz

a/), at 7.3 GHz relative to
that at 7.3 GHz

TABLE 6.8 0.74 -2.01dB
0.70 -0.55dB
0066 +o. sde
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It can be seen that by using the a=0.66>\° feed a slight increase
in gain can, in fact, be achieved at the transmission frequency.
This advantage is offset, however, by a loss in gain at the reception

frequency when compared with an antenna using the a:O.?‘f)ofeed.,
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APPENDIX TO CHAPTER VI. EVALUATION OF MATRIX ELEMENTS FOR SOLUTION

OF THE SINGLE-STEP MONOPULSE EXCITER

Field Expressions for number 1 small W/G

H mode:
mn
mr b .onwm. b
Ex = -a ncos 1;(x-c+2) sin b(y c+2)
_ . T, b or, b
Ey = a msin b(x-c+2) coe b_(y c+2)
H = j ¥nn H = -j b8
x = 3 oo By y = "I Gas x
E mode:
mn
w7, b n b
Ex = by mcos b(x-crz) sin.—g{y-c+2)
- L1 PR L1 PO
Ey- bmnnsinb(x c+2) cos b(y c+§)
£
Hx=-;j$E H =39—£-9-E
mn Y y Em X
m2+ n 2 2
In these expressions, X;n = (-——5—-11 - ko)

b

Field expressions for the modes in the large waveguide are given by

6.42 and 6.43.
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Expressions for the Elements of [R] and [ 5]

l, 1 refers toHMN mode in large w/g, j to Hmn mode in small w/g.

2 NI, I, :
. &o ® + MI,I, . . €000 T;N nNI;I, + mMI,I,
iJ a‘2 NZ M2 i b‘2 Ymn n2 + m2

2. 1 refers to E, wmode in large w/g, J to Hmn mode in small w/g.

3] N2 + M2 i ) b2 x‘xﬂ'{N n2 + m2

2
, BNI,I, - oML I 0%o ¥, ®NI;I, - nMI I,
a

3. 1 refers to Ey, mode in large w/g, J to E,, mode in small w/ge

Y,

(n TMI T, + nNIST,
‘EN na +m2

+

a

P TR L

b, 1 refers to Hyy mode in large w/g, J to E , mode in small w/g.

Ryq =

-.-.S =°¢

Ryy =54

Integrals Il - 14 are defined as follows:

c+b/2 c+b/2
I, = ‘cos % cos pblr(x-c-o-g-)dx I2 fsin sin —(y-c+-)dy
c-b/2 c-b/2
c+b/2 c+b/2
MTx nT, b NTTy
13 = sin a sin (x-c+§)dx I,+ fcos "a‘f cos ‘—'(y-c+-)dy
c-b/2 ’ c=b/2
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General case M/2a £ m/b

Mt Mttb
m even: I, = o °°° 2a_°" Ta I. =
L e (M/2a)% - (m/b)? 3
Mt Mwrb
M sin S cos Ta
m odd: Il = 27 > > I3
(M/2a)"=(m/b)
Special case M/2a = m/b
b c 1
Il' 13..5cosm17’(5-3
General case N/2a- £ n/b
cos Nre sin AL
n even: I, = 2n 2a a2 P
2 dT (n/2a)2- (n/b)
e Nrb
2n 510 74~ COSLa
n odd: IZ = - -ﬁr > > Il|. =
. (N/22)°- (n/b)

Special case N/2a = n/b

b c 1
IZ=I4=€6C°8nT!(-S--2-)

Il+=

MTb
2m Ta

T (M/2a)2- (m/b)2

cos Mme sin
2a

om sin

BT (M/2a)%= (m/b)°

Nub

cos Ne sin
La

N_ 2a
aT  (N/2a)°- (n/b)2
N sin g{ cos KN?-’-
& (N/2a)%- (n/b)°
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CHAPTER VII. EXPERIMENTAL STUDY OF THE MULTIMODE MONOPULSE FEED.

7.1. Introduction.

The extent to which the theoretical predictions of the previous
chapter could be experimentally verified was limited by the availa-
bility of suitable equipment. In particular, it was not possible to
gain access to a reflector system in order to measure secondary
characteristics, s0 that experimental work had to be confined to

measurement of the feed radiation patterns.

The a:O.?#Xo configuration was selected for the experimental feed,
as the effect of higher-order propagating modes on the sum and azimuth-
difference patterns is most pronounced in this case. Discrepancies
between measured and theoretical sidelobe structures and cross-
polarized energy levels were expected to enable errors in the predic-
ted relative amplitudes and phases of modes in the aperture to be
determined. It was also hoped that the effects of factors neglected
in the theory, such as the excitation of unwanted propagating modes
in the flare and the sphericity of the aperture wavefront could be

deduced from the radiation patterns.

As microwave circuit components for X-band were readily avail-

able, a design frequency of 9,5GHz was chosen.

7.2 Construction of the Feed and Comparator.

The basic dimensions of the feed are as given in table 6.6, with
Ao equal to 1.2L4", The structure of the experimental feed is shown

in figure 7.1, and in the photographs of figure 7.2, there being a
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number of seprate component parts which are illustrated in figure
7.2(a). The flare and uniform section were made from 0.055" brass
sheet, For structural rigidity, a %" flange was fitted to each end
of the uniform section and éo the narfo&-end of the flare, and a %"
flange to the end fofming'the radiat;ng aperture., Originally, a
uniform section having the calculated length of 5.79" was used, but
some modification was lafer necessary so as to adjust the relative
phases of modes in the aperture. The reasons for this will be ex-
plained in section 7.4%. Figures 7.1 and 7.2 show the final version,
with a basic uniform section length of 4.78", extendable.to 5.34" by
the addition of a 0.34" spacer and up to four 0.055" shims. The
uniform section is followed by a K" spacer having four 0.746" square
apertures, whose outer edges align with the inner surfaces of the
uniform section walls, the junction of these components forming the

mode~-converting step.

To allow standard no. 16 waveguide to be used for input to the
horn, a téper unit was constructed, having four symmetrically
arranged waveguides tapering linearly from 0,.746" x 0.746" to 0.9"

x O.4" internal dimensions. To ensure rigidity, a single %" brass
flange was fitted at each end of the unit, that at the end nearest
the mode-converter having its four square apertures arranged to

match exactly those in the four aperture spacer, The other flange
was made suff}ciently large, and drilled in such a way, that no. 16
waveguides terminated in standard square flanges could be bolted on
directly. 4As with the experimental box-horn (chapter 5), the length

of the tapers was determined using the formulae given by Jghnaon [30],
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which show that the V.S.W.R, for a correctly terminated taper depends
only on the internal dimensions at the terminal planes, and the perpen-
dicular distance between the planes. For the above dimensions, V.S.
W.R., minima occur when this distance is a multiple of 0.957", and a
value of 3.83" was found convenient. The theoretical V.S.W.R. for
this taper is 1.010, s0 close to unity that the effect of the taper

should be negligible.

For elevation difference operation, fairly high levels of power
reflected from the mode-converter in the form of the cross~polarized
301.m°d° were expected, As this mode is below cut-off in no.l6
waveguide at 9.5GHz, reflection back towards the junction can occur
within the tapers, causing discrepancies between theoretical and
actual mode generation at the step. It was therefore decided to
eliminate the cross-polarized energy by interposidg between taper and
four-aperture spacer short lengths of square waveguide fitted with
centrally positioned horizontal strips of resistive card, which

theoretically do not affect H propagation, but cause the Hbl mode

10
to be highly attenuated. Propagation characterisgics flor such wave=-
guides have been determined by Marcuvitz [}:L‘and these indicate that,
using 40062/0 resistive card, the attenuation of the HOl mode for
the dimensions in question will be about 26dB. The cards were
"fishtailed" to minimise reflections from the ends of the attenuator.

Figure 7.2(b) shows the assembly of the cross-polarization attenuator

with the mode-convertor components.

To ensure correct alignment of the various units, 3/16" diameter

brass dowels were fitted at the junctions between flare and uniform
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section and attenuator and taper, and at the mode-converter

junction,

The monopulse comparator network is shown in figure 7.2(c¢), and
schematically in figure 7.3. It consists basically of four hybrid
Tees, T;-T4, interconnected in such a way that an input to the H or E
arm of either T1 or T, produces, at the ends of the through arms of
Tz and Ty, one of the four phase combinations given in table 6.1. 1In
practice T3 and T, were connected to the taper unit via H-plane bends,
12" lengths of flexible waveguide and short, angled, lengths of wave-
guide, the latter providing the required change from circular to
square flanges and reducing the distortion of the flexible guides.,
Input to the network was from 5042 coaxial cable via a coax. / wave-
guide transformer, unused input ports being terminated in matched

loads.

7.3 The Antenna Test Range.

1

The experimental set-up used for radiation pattern measurements,
;hown in figure 7.4, is based on that described by Green E}Z]. The
feed was used as the transmitting antenna, and, together with the
§omparator circuitry, was mounted on a turntable using a wooden
support structure (see fig. 7.2(d)). The cradle for the horn itself
had mounting positions for H, E and 450 plane pattern measurement.
The transmitted signal was amplitude-modulated with a 1kHz square |

wave.,
.

A superheterodyne réceiving system was used because of its high

selectivity and consequent good signal-to-nise performance. The

.
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diode mixer was followed by a 40 MHz I.F. amplifier chain terminating
in a diode detector from which the audio signal was fed to a polar-
chart level recorder. As it was not possible to obtain a linear
response from the detector over the large range of signal strength
required (about 32dB), calibrating points were plotted at 4dB inter-
vals on each chart, a calibrated attenuator following the receiver
horn being used for this purpose. The recorder chart was set to
rotate in synchronism with the turntable, a complete rotation occuring
in about 80 seconds. A control unit allowed remote operation of the
turntable and recorder, and enabled the turntable to be reversed, for
rapid re-setting to a required position. Reference 37 should be

consulted for full details of this unit.

The separation of transmitting and receiving horns was about
12', compared with 4'4" as given by 2 (2a1)° y the minimum separation
for the predominance of the far-field pattern. The peak signal-to-
noise ratio for sum-channel patterns with the 12' separation was at
least 35dB, high enough for detailed measurements of sidelobes

structures to be made.

As the experiments were performed in a laboratory, reflections
from walls, floor, ceiling and nearby objects were possible causes of
inaccuracy. To minimise such reflections, transmitting and receive
ing antennas were mounted at a height of about 5', approximately
equidistant from floor and ceiling, and the whole set-up was kept to
the centre of the room. A microwave absorbent screen measuring
6' x 6' was available, and this was placed in front of possible

sources of reflection, but as no detectable change in measured
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;pgtterns occurred it was concluded that the reflections were too weak

- to be significant.

Ideally, the feed should have been rotated about an axis in the

plane of the radiating aperture, but this was not possible because of

;the need to distribute correctly the load on the turntable. This

 ;neant that 6, the angular displacement of the receiving horn, meaasuredi

at the feed aperture centre, was in general slightly larger than 0°',
i;ithat indicated by the recorder. Furthermore, the hogg aepar#tion
increased as the feed rotated away from‘tﬁe é'=o a¥ia.'causing a
reduction in received signal strength which‘could reach about 2dB for
) §0° rotation. However, these effects could be accurately calculated,
and were taken into accounf when preparing theoretical patterns for

comparison purposes.

The measured signal level was also affected by the receiving
horn's radiation pattern, since the angle of the feed aperture centre,
as seen from the receiving horn, varied with ©' up to a maximum of
about 11° for 6' equal to 90°. Because of this it was found essen-
tial to align the horn correctly, with its axis in the 9'n0 plane,
otherwise asymmetries in the recorded patterns resulted. The dimen-
sions of the horn aperture were such that H and E plane patterns were
similar, and the reduction in signai strength in these planes Iormin-
creasing 6' was calculated assuming the aperture field distribution
to be that of the Hjn rectangular waveguide mode. The results are
shown in figure 7.5, together with curves of error due to varying
horn separation and estimated total error. These curves should be
consulted when comparing theoretical and measured patterns, asince the

errors are significant even for small values of ©'.
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7.4 Theoretical and Experimental Patterns Compared.

In figures 7.6 - 7.l14, measured radiation patterns for all three
monopulse channels are shown, together with correasponding theoretical
patterns calculated from the results of chapter 6. The latter were
obtained by summing patterns, as given by Silver [297], for individual
modes having in most cases the relative amplitudes and phases at the
aperture given by tables 6.2 - 6.4, The theoretical patterns were
modified to show signal strength as a function of measured angle Q'
rather than actual angle O, and were corrected to account for varying
horn separation. Corrections for receiving horn main lobe taper

were not made, however, as its effect was only approximately known.

7.4.1 Sum Channel,

For the sum channel, 4, E and QSO plane patterns are of intereat,

and these are shown in figures 7.6, 7.7 and 7.8 respectively, for
operation at 9.5 Glz.

As pointed out in chapter 6, the H-plane pattern should be that
of the Hjg mode alone for a<:0.75x°. but the meaoured pattern (fig.
7.6(a)) shows evidence of over-moding since the level of the first
sidelobes, corrected for reception pattern taper, is about ~19MdB,
compared with -23)% dB in theory, and the firat nulla are not clearly
defined. These effects are thought to be due to the preaence of the
H3p mode, which is only just below cut-off at the mode-converter
when n-O.?h)‘ound may therefore still have a aignificant asmplitude
at the point where the flare becomes wide enough to support it. In

the E-plane, on the other hand, multi-moding ia intentionally introe-
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’fduced, and its effect can be seen in figure 7.7. The measured

pattern obtained with a uniform section having the calculated length

‘»(\n

T ‘pf_5.79" (fig. 7.7(a)) shows there to be a significant error in the

f relative phase of Hy, and LSE 12 modes at the aperture, causing the

e

‘f;;sp sidelobes to appear as "shoulders"™ on the main lobde. However,

after some experimentation with different values of uniform section

P

o iéngth 1, the pattern shown in figure 7.7(b) was obtained for 1=5.23",

:iwith distinet first nulls indicating near-perfect phasing. With

- this value of 1, the measured levels of the first three sidelobes,

o

o e

‘ corfected for reception pattern taper, are approximately -19%, =21

i ;,ia‘ -26dB compared with -22, -23% and -27dB as calculated, showing

’fiéf the amplitude of the LSE,, hybrid relative to that of the Hlo

o

:'imode at the aperture is slightly 1ess than predicted, although the
'3fiﬁbrovement over the single-mode E-plane pattern is still very con-
jgiderable. It can be seen that the theoretical and measured angles

bf nulls and sidelobes aré in excellent agreement.

Y
N

4

The phase error with the original uniform section is thought to

' be largaly due to shortcomings in the "quasi-uniform" method for

/ltcalculating phase-shifts in the flare. The amount of reduction in

' 1 required shows this error to have been about 46°, of the same order

g of magnitude as that which Nagelbeérg [?#j-showed would result if the

:)gyasi-unifcrm“method were used to calculate phase-shift between Hll

and E;4 modes in a conical horft of similar flare-angle. It seens,

then, that accurate evaluation of the Hankel Function arguments is

“necessary for a satisfactory phase-shift calculations

. 5
L
&

The theoretical and experimental patterns for the normally-
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:I“;'b’?l.q.r"ized component in the 45° plane (fig. 7.8) agree well in respect
ﬂ of iﬁainlobe beamwidth and the absence of sidelobes above ~35dB. The.
) ‘n’igaﬂsured cross-polarized pattern shows evidence of spurious Hy, and
"l/-.,’l’-"_:‘i'l"mode generation due to errors in the phasing of the four input
f—’w(ﬁafveguides, but when this is allowed for the agreement with theory

j_}g‘é‘;;sfatisfactory.
’ Principal-plane patterns were also measured at 10.41 GHz, this
’ ’_‘being equivalent to the 8.0GHz transmission frequency for a 7.3GHz

feed design. As can be seen in figures 7.9 and 7.10, agreement with

; ﬁ‘héory is good, differences in sidelobe levels being in most cases

- »/é’f"{:ributable to reception pattern taper. The narrow main lobe and

high sidelobes at this frequency emphasise the narrow bandwidth of

- the a=d°7l+/\°£eed, which was predicted in figure 6.23. The phases,

“f";-‘elative to the Hio mode, of the H}O mode, which affects the H-plane

* - .pattern (fig. 7.9), and the H,, and E,, modes, which affect the E-

;i'élane pattern (fig. 7.10), are here such as to cause a reduction in

béamwidth and an increase in sidelobe level, the opposite of what is

- pequired for good illumination of the dish.

. “7.4.2 Azimuth Difference Channel

In this case none of the modes involved radiates a field compo-

S ';ent in the'E-plane, so only H-plane (figure 7.11) and 45°-plane

" *'(figure 7.12) patterns are considered.

In the H-plane, where theoretically only the Hyn mode «contri-

". butes, measured angles of sidelobes agree well with theory, as does

" " the level of the second sidelobes, but there is evidence of a higher-
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"éjrder mode, probably the H,,, causing "filling-in" of the first
“1n§lls and an increase of about 3dB in the first sidelobe level.
'{rpe on-axis null is clearly defined, its finite depth being due to
i;?érious sum mode excitation caused by input waveguide phase errors,

i gnd the limited response of the recorder pen.

In the 45°-plane the effect of the additional Hpp and E;, modes
" can be examined. As with the sum channel, the use of the original

-uniform section did not produce the expected sidelobe structure, bdut

" . the reduction to 5.23" leads to better agreement with theory, although

the measured sidelobe level for the normally-polarized component
(fig. 7.12(a)) exceeds the theoretical level by about 7dB, indica=-

: ting that phasing errors may still be present.

Measurements of the peak 45%°-plane normally-polarized energy
iAlevel relative to the H-plane peak were made, and a value of =5.9
4+0.3dB waé obtained, although the accuracy of this is doubtful as
the time required to change from 45%-plane to H-plane measurement
was sufficient for significant variations in radiated power and

receiver gain to occur. The theoretical level is -4,8dB.

The 45°-plane cross polarized pattern (fig. 7.12(b)) should be
due entirely to the Hpp and E;> modes, and its level therefore
provides a check on their amplitudes relative to one another, and to
the H20 mode in the aperture. The shape of this pattern clearly

agrees well with theory and its measured level of =-9.75 +0.42dB

relative to the peak normally-polarized level compares favourably

- with the predicted value of -10.9dB.
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743 Elevation Difference Channel.

It can be seen in figure 7.13 that there are no major discrepan-

cies between measured and theoretical E-plane patterns for this

" channel. Angles of nulls and sidelobes are as predicted, and after

- correction for reception pattern taper, the sidelobe levels agree to

within about 2d4B. Here again the on-axis null is clearly shown,

but other nulls are not as deep as expected, an effect which is also
evident in some of the patterns for other channels, and which is

probably due to a phase variation across the aperture caused by the
éphericity of the wavefront.

‘ Agreement between theory and experiment in the 45%-plane
(fig. 7.14) is also good, and the predicted peak level of -2.84B

;rélative to the E -plane peak is confirmed experimentally.

The level of cross-polarized radiation in the H-plane shows the

deviation from unity of the relative .amplitudes of Hll and E11 modes

in the aperture. The measured level was -6.5+#1.0dB relative to the

normally-polarized E-plane pattern, which is in satisfactory agree-

ment with the calculated value of -5.72dB. With the cross-polariza-

tion attenuator removed, the relative level was only -~2dB, showing

the importance of this unit for meaningful measurements.,

¢

7.5 Problems of V.S.W.R. Measurement,

It was hoped that calculated values of input V.S.W.R. for the
multimode feed could be verified experimentally, but reflections from
comparator components were found to be of the same order of magnitude

as those from the mode converter, making measurements at the compara=-
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. tor input ports meaningless. Measurement of V.S.W.R. in one of the
four input waveguides was not attempted because of the difficulty of

- providing compensation in the other three guides for the presence of

_ the slotted line, so as to preserve the phase balance.

7.6 Comparison with the Modified SCAT Feed.

As mentioned in the introduction, the research into multimode
feed design was instigated by the results .of modifications to the
SCAT feed El9], basically a cluster of four quite sharply flared
square horns intended for use at 7.275 GHz. It was found that by
adding a 4)%" parallel-sided extension to eagh horn a significantly
greater sum-channel efficiency was obtained than with the theoretical
uniform x double-cosine aperture distribution. The improvement is
thought to be due to the excitation of higher modes, particularly

the H 0* at the junction between flare and extension, the length of

3
the latter being such as to phase H}O and Hlo modes at the aperture

to create a more nearly uniform H-plane distribution.

Measured primary patterns for the modified SCAT feed were
available, and principal features of these are summarized in table

7.1, together with corresponding results for the a=0.7kAo multimode

feed.
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i Channel Property SCAT feed Multimode Feed
AT 1.07 1.20
51§:i§bg-§§::§ ~7dB -19%4B
s1§:;§bf-§232; -10¥:dB ~19%dB
AL ne/iverese T | 2 1.87
'A * Siﬁiifbf'iiiii -164B -16¥%dB
o e i | 196 1.40
A\
EL Siiiiﬁbf'iiiii \ -4¥.dB -9dB
TABLE 7.1

It is clear that the more nearly optimum aperture distributions
of the multimode feed lead to superior radiation characteristics.
In all cases the sidelobe level is lower than with the SCAT feed,
for the sum channel by at least 9dB. Moreover, the ratios of
difference to sum channel beamwidth are smaller with the multimode
feed, showing that simultaneous optimisation of the three channels
can be more nearly achieved. One slight advantage of the modified
SCAT feed, however, is that the sum-channel main lobe is almost

circularly symmetric.

Although no figures are available, it is 1likely that the
modified SCAT feed has a considerably greater bandwidth and lower
input mismatch than the multimode feed, and this may make it prefer-

able for some applications.



- 174 -

/4;7;? Discussion.

} After correction of phaging errors the theoretical and experi-
n@ental patterns presented in this chapter agree sufficiently well to
Lﬁonfirm the accuracy of the multimode feed mode~converter solution.
’t{ Such discrepancies as there are seem to be largely due to mode-

'éonversion at the junction between flare and uniform section, to the
:~generation of unwanted higher modes in the flare and to the spherical
"éperture wavefront, but the combined effect of these factors is
fclearly too minor to affect the secondary characteristics significant-

1ly. Moreover, the measured levels of cross-polarized energy, par-
ticularly for the elevation difference channel, confirm the assumption
that the power associated with individual H,,  and E,n modes during
passage through the horn remains constant, rather than that associa-

ted with the equivalent LSEj, and cross-polarized LSEnm modes.

In conclusion, it is felt that the experimental results show the
design technique of chapter 6 to be adequate except in the prediction
of horn length for correct phasing, a more rigorous solution for the
field structure in a pyramidal horn being required for satisfactory

accuracye.
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. CHAPTER VIII ___GENERAL CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

T 8.1 On the Computational Method for Solving Waveguide

Discontinuity Problems

- . It has been shown that the computational method can be applied to

o a{jyide range of both transverse and longitudinal discontinuities, and

"‘iis accuracy has been confirmed by comparing results with those

- obtained by other methods in some special cases. The moat important

" innovation has been in the computational treatment of discontinuities
»tiinv01VinE thin diaphragms, although a considerable amount still

1iz: femains to be done in this field. For example, although the

;}‘”breakpoint" technique for selecting optimum ratios of modes and

l/;aperture functions has been found satisfactory for certain geometries,
:1éva:general method has yet to be developed. ' As suggested in section
- 12,5, a study of the effect of these ratios.on the degree to which the
/fedge éondition is satisfied may be the best approach to this problem.
;j;%Future work should also include the analysis of irises whose aperture
- geometries differ from those of the waveguide cross-section, since

~ this would enable a general method for calculating the mode/aperture-

function ratio to be tested. Such irises might include ones with

apertures of irregular shape, where the cholce of aperture functions

. is not straightforward.

A longitudinal discontinuity problem requiring further considera~
tion is that of the partially dielectric-filled rectangular waveguide
containing thin conducting strips, dispersion characteristics for

which should be calculated using the method presented in chapter 4,
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) JfAcomputer program has been written at Queen Mary College, London,
- for this purpose, but this is not operational at the time of writing.
‘mbther longitudinal discontinuity worth considering is mentioned in

~ ‘gection 4.1, namely a radiating slot in a thin-walled circular wave-

‘ ~ guide, results for which could be compared with Clarricoats and

'~slinn's values for the thick-walled case Elajo

"~ 82 On the Design of Multimode Horns and Satellite Communication
‘ Antennas.

The research described in chapters 5,6 and 7 has shown that the

version of the computational method applicable to atep discontinuities
is a powerful tool in the design of multimode antennas, permitting
accurate calculation of modal amplitudes and phases at mode-convert-

ing junctions. For the monopulse feed, however, the method for

" referring such amplitudes and phases to the aperture is less satis-

factory, and it is here that the existing design techrnique has most

need of improvement. Accurate evaluation of the Hankel Function

" arguments, mentioned in section 6.6.1, should allow the phases of
u modes in the horn aperture to be adequately predicted, but an

entirely satisfactory treatment would require a closed-form solution

| to Maxwell's equations for the pyramidal horn. The difficulties

caused by the awkward boundary conditions could to some extent be
overcome by considering the gquasi-pyramidal structure bounded by the
planes 4>=t<f>oand the conical surfaces 0= g 39,y which is not signifi-

cantly different from an actual pyramid for small flare angzles.

The structure of the monopulse feed treated in this thesis was
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© pever regarded as the optimum, and there are several modifications

which might be made to improve performance. In particular, increas-

ing the excitation of the LSE12 mode relative to the Hlo would lead

1o higher sum gain and greater compatibility of sum and difference

primary beamwidths. The double-step exciter has been suggested in

. this connection, and the preliminary results of section 6.5.3 have

“ghown that this merits further investigation. Another possibility

_ which dces not involve such severe bandwidth restrictions is to
- reduce the size of the input waveguides, and thus increase the step
v area, by loading them with dielectric or with a symmetric arrangement

of longitudinal ridges. The fitting of such ridges in the horan it-

- gelf might also be useful as this could alter the guide wavelengths

in such a way that sum and circularly-polarized difference~channel

phasing requirements could be simultaneously satisfied.

The primary main lobe taper sets an upper limit to the second-
‘ary sum-channel gain factor obtainable with the type of feed-reflect-

bor system treated in this thesis, and it is worth considering how

this limitation can be overcome. A synthesis technique in which the

focal=plane field distributions resulting from the incidence of
plane waves on the main reflector are approximately matched by series

of waveguide modes in the feed aperture is one possibility, but the

problems of @xciting more than two modes per channel with the
required amplitudes and phases over a useful band-width are consider-
able. A better method is to modify the main and sub-reflector
profiles so as to increase the illumination efficiency for a given

feed pattern without creating phase errors, in the manner described
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by Williams [387]. Computation has shown that a sum-channel illum-
ination efficiency of 97.6% could be obtained if the a=007hk° multi-
mode feed were used in such a system. However, the effect of such
modifications on the difference~channel characteristics is not known,

and could be detrimental.

The main drawback of the multimode monopulse feed for many
applications is its very limited bandwidth, but recent work on the
design of Scalar Feeds indicates how this might be overcome. Scalar
Feeds have horn flares fitted with transverse corrugations of such a
depth that electric and magnetic field boundary conditions at a wall
are similar, so that modes of the balanced hybrid type can propa-
gate. Such modes have similar principal-plane field distributions,
and in a Scalar horn of square cross-section the dominant 3“11 mode
produces an aperture distribution resembling that due to an ideal
HlO/LSEIZ combination in the multimode horn, but the need to phase
two modes is eliminated and the bandwidth is cqnsequently much greater.
| Early work on Scalar Feeds, for example that of Simmons and Kay [}9:}
was concerned with corrugated conical horns, which have subsequently
been thecretically analysed by Clarricoats and Saha [yo:]and Clarri~-
coats [Fl:]for narrow and wide-angle cases respectively. However,
Bryant [}2:]has recently determined the nature of modes, including
those which could be used for tracking, in corrugated square waveguide
and this shos that the design of a broadband monopulse feed similar in
structure to the multi-mode feed, but with a corrugated flare, should
be a practical proposition. The throat discontinuity would be amen-

able to solution by the computational method, although there would
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probably be little flexibility in its design because of the need to

prevent excitation of higher modes and surface waves.

A satellite communication antenna using & Scalar monopulse feed
.to illuminate a Williams-modified reflector system should combine
excellent sum-channel spillover and illumination efficiencies with
broad bandwidth (at least 30%) and adequate tracking ability. It is
therefore suggested that future work should be concerned with the

design of such an antenna.
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