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ABSTRACT 

This t I!psis irlV('st igates the predictability of nOll-reacting and reacting anis()tropic. 

turhuknt, swirling flows using popular tllrlmlenc(' Illodds with a robust. nUIll<'rical 

pro("('d nre. 

The performance of these turbulence models is ass('ssed and compan'd against ('x­

perimental data for anisotropic, turbulent swirling flow in a <,ylilldrical pipl' and 

non-reacting and reacting combustion chambers. The transport equations for titl' 

k - ( and k - w two-equation turbulence m()dels are pn~spnt.('d al()ng wit.h t.he LRR 

and SSG !-wcond-moment closure Illodpls for isot.hermal and variahle density flows. 

The effect of anisotropy in til<' Reynolds st n'ss dissipation rate t.ensor is ;\("("()ullkd 

for by the inclusion of an algebraic model for t ll<' dissipation anis()trop~' t.ellsor <IP­

l)('lldent 011 the mean strain and vorticit.v of t.h!' flow. 

The implementat ion of the SMART and CUBISTA bouIldedlH'ss prl'S('l"VlIlg, high 

order accurate convective dis(T('tisat.ion schemes is shown 1.0 yield superior prcdict.iv(' 

;\(Tllracy compan~d to previous methods such as Upwinding. Tll(' PISO awl SIMPLE 

s()lution algorithms are employed to provide a robust. calculation pro("(~dure. 

T'Il(' s('c()nd mOllwnt closure models i\}"(' found t.() provid(' increased pn'<iict.iv(' ac­

curacy compared to those of the two-equation models. Mean flow prop('}"t ies iU'(' 

pn'did('d well, capturing the effects of tll(' swirl ill the experiment al flow field. TIl(' 

LH.R modd shows a. premature d('<'ay of swirl downstream cOlllpan'd to tll(' lllOl"(' 

;I(TUrat.(' predictions of the other models. Tll(' effect of dissipation anisot("()py on til(' 

SSG model shows an over-prediction of the t urbul(,llt prop('Ities in til<' upst r('am 1"<'­

gioll followed by prematur(' decay downstream. In the near field of t.he nOll-reading 

cOIllhust.ion chamber flow, the anisotropic dissipatiolllllodd corrects tll<' SSC; Illodel 

()\'('r-pr('di<tioll of til(' vdociti('s at the central axis . 

. \ comhilH'd ('I\1 C-flalll('ld combust ion Illodd is (,Illplo.\'('d alongsi<i(' the allis()1 ropic 

dissip(lt ion R('.\"I10Ids stress model to predict t lw flow fidd alld cOlllbustion rdalPd 

prop('rt i('s of the TECFLAI\l swirl burner. Tll(' species mass fr(lctiolls (lr(' ("(Hl<ii­

t ion('d OIl t 11<' mixtlln' fract iOIl to providp ;tIl (lCCllrat<' model for 111<' d('\('J"Illill;1t iOIl 



of t.he probability density functions go\'crlllllg tlw reactions wit hin t 11(' t Ilrhllient. 

Hamelet. 

The turbulen(:(~ model shows an ability to provide accnrate' predict iOllS for t he aero­

dynamic properties of the flow whilst providing accurate determination (If com­

hllstion relat(~d phenomena alongside the combnstion model. :-\ limit ation of the 

ftamdet assumption was identified wit.h the over-prediction of CO due t.o t h(' largn 

lengthscal<~s of the oxidation reactions present in such Hows. 
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1.1 General background 

Swirling flow ans in many ar as of engin ering and in the' natural w rId. Example 

of natural phenomena include flows, uch as tornadoe . hurrican : and whirlpool. . 

whilst engineering flows include vortex hedding at wing-tip. (Gllf.' uL 2004). <"y_ 

clonic separators (Hoekstra et al., 1999) j t propul'ion C'ngin .' and cOlllbustion 

chambers (Gupta et al. 1984). A t.horough under tanding of ,wirling flm facili­

tates the prediction of many of the above example. , an important one heing t IH' 

prediction of gas motion inside combu. tion chambers. 

Wit.h the advent of modern computer. t.ll(' abilit.y to pre'diet. fluid flows b, com­

putational means has become commonplace wit.h many r s('arclH'fs exploit.ing th(' 

curreut. inc[f~ase in comput.ing pow r and memory, t.orag to study 111 re ('Olllpi<'x 

flows , for example the Direct Numerical Simulation (sec hC'low) of swirling flow 

inside the cy lind r of an internal combustioll ngine (.J akirlic et ai. 2001). 

Computational methods have been pmpl yed to predict swirl at the inlet of a (,Olll­

bw.;tion chamber (see Shih et ai., 1997; Hogg and Leschziner 19 9' hell and Lill, 

1999). The amount of wirl incorporated at the jet can be used to control the COlIl­

bustioll characteristics in the following manner for liquid En 1 diffusion flalll(,s. Til<' 

fll 1 is first atomi d into droplets and sprayed into the wirling airflow ell ,'hown in 

figure' 1.1. Th main swirl-induc d recirculation provide, a flow f hot [('actioll prod-

Air ----
Ir ----

Fuel 'pray 

- -

Reclrculaled 
producl' 

1'1(; l HI 1.1: lni('t r<'gioll of a ,,\\ irling j<'l for a liquid fll('1 bllll\( 'L 
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ucts to the flame, passing through the fuel spray, aiding fuel/air mixing. maintaining 

reaction upon reaching the Harne. By adjusting the swirl velocity. stabilisation of 

the Harne can be achieved by matching the Harne front speed to the speed of the 

recirculated products. If the Harne speed is greater than the speed of the fuel/air 

stream, extinction occurs due to an eventual lack of fuel. When the fuel/air stream 

speed is greater than the Harne speed the flame is lifted from the jet~ causing blow-off 

(Gupta et al., 1984). 

1.2 Characterisation of swirling flow 

Swirling flow is characterised by the presence of a tangential velocity component. 

Experimentally, this tangential component is often created using rotating guiding 

vanes (Kitoh, 1991; AI-Masseeh, 1991), the angle and speed of which may be adjusted 

to increase or decrease the swirl. This flow is then pa..<;;sed to the area of interest, 

either through a narrow aperture into stagnant surroundings to create a swirling 

jet, or into a chamber. 

The swirling flow created by the generator can be cast a..<;; two types according to the 

radial distribution of their tangential velocities. The free vortex can be described by 

the swirling jet flow ejected from a nozzle into stagnant fluid. When the jet emerges 

from the nozzle, the tendency for a body to continue in a straight line, causes the jet 

to spread radially outwards, producing a conical shape as distance is increased from 

the nozzle. The tangential velocity decreases with radius due to the dissipation of 

the kinetic energy of the jet into the stationary fluid. The decrease is described by 

an inverse law, 

W
_ c 
- , (1.1 ) 

r 

where C represents the maximum tangential velocity and r the radial distance from 

the centre of the jet (Gupta et at., 1984). 

The forced vortex, or solid body rotation, can be described by the generation of swirl 

via wall friction in an axially rotating cylinder. The velocity obtained at the wall 

decays radially towards the axis of the cylinder, where it vanishes in an axisymmet.ric 
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flow and is gov rned by 

W =Cnr ( 1.2) 

where Cn is the angular velocity at the pipe wall. 

In reality the axial vortex core of the free vortex mu t have a , mall £ reed vort 'x 

ahout the axis where equation (1.1) does not hold. Fir. tly an undefined tang<' nti;.\! 

velocity would otherwise appear at zero radius and secondly the , ign of the' tan­

gential velocity must change at the axi of symmetry that all onl he d ,'crib 'ei by 

forced vortex flow. The radial position of the largest value of tangrntial veloei t., 

can be used to differentiate betwe n the two vortex types. The frep vort.ex has its 

maximum velocity close to the central axis while the for cd vortrx maximum is 

ncar the radial extremities, away from the axis. A combination of the two Lype's 

of vortex leads to the Rankine vortex, where the inner part i, governed by fore( d 

vortex motion and the outer by the free vortex type. 

The presence of a jet entering a flow causes flow recirculations to be produc<,d in 

a similar way to the classical sudden expansion problem. ThE' addition of swirl to 

such a flow modifies the flow field in such a way that addi tional recirculation is 

produced. The most important of uch recir ulation in tIl<:> ombusti 11 application 

is t.ll toroidal recirculation zone that ext nd axially along a cylillder as studi<>d by 

Young et al. (1999). Figures 1.2 and 1.3 how flow streamlin s when an annular inl t 

produces a jet into a ylindrical chamber, the first without swirl, the second with 

a swirl number of 0.3 [sec equation (4.6)]. These figures illustrate the additiollal 

J _ . 

~ --2 J /-----:.-- _-
~c c ~ 

1 ~' .. _._ •• '" • 

':; -•• '>. - -= -
2 

'Q ,5 

IWTRE 1.2 : ll11ular flo,," without , n'irl; Young ci al. (1999 ). 

rrcirnilaLions set about. b swirl in a lalllinar flow . tany applicat ion: invokillg 

swirl al'( iull rentl, t.urbulcut, such as t.lll'hoIll(lriliuer. ( up!a I'f at .. 1< I), and .... 0 

lite (url U\C'll('(' iut.('ractioll \ ilb :Wirlll<'<,ds I l (' illvC'stiga!('d . 
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FIGURE 1.3: Annular flow with 5 = 0.3' Young et aI. (1999). 

1.3 Turbulence and swirling flow 

Turbulence is characterised by an instability in a fluid , that. cause. rapid fiu 't. u­

at.ions in velocity about its mean value. The early work f Re, 11 Ids (1 95) was 

instrumental in its understanding from which t.he Reynolds decomposition of flow 

variables into their mean and fluctuating components arises. 

1\lrbulent flows hay characteristic trl.lctures present within them. The larg sL arC' 

the turbulent eddies that draw energy from the mean flow . Kolmogorov (1941) was 

th first to describe the so-called energy cascade from the large t,llrlmlent eddies to 

their smaller counterparts. The turbulent energy is eventually dissipat d into heat 

by viscolls action. 

The fluctuating velocity compon nts in turbulent flows give rise to Reyn Ids ' con­

cept of turbul nt stresses, known as Reynolds stres. es. These strcsse. are able t.o 

generate secondary flows such as secondary flows in non-circular ducts (Spezial 

1996) features which do not arise in laminar flow. 

'I\lI'bulence is often produc d in wall bounded or hear flows du to the spped of 

t.he How inducing , hear leading to vortex roll up and shedding. Swirl introcl ure. a 

t.angential component t th strain as oppo cd to the u. Hal axial and radial (' lllJ) -

llC'llt.S , thus making tIl strain field mor complex and til(' production of tnr\ 1l1('Il(" 

llIore difficult, t.o pr diet. 'D under ' tand how wirl cff rts tlH' turhulC'Il(' , it is ill­

struct.iv(' 1.0 compare t.he' rotation vector of t.hr whol(\ tim n, to the local v( rt.icity 

([ a small fluid lemeut. w, (HanjaJic anel Jakirlie, 2002) . 

When the' local vorticity, i~ align(d \ ith th(' rola ion (f th' bulk fl( w, a. ill (i ~ llll ' 

l. I(a) [or n rot.ating pipe fim , le.'stllrbu}PIH'(' i~ prodl1(, d a' tIl(' )()( ',ll ~b 'cu' ll))(H) 
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(8) 

l. 

. 
\ 

FIGURE 1.4: Effect of swirl on turbulence for: (a) swirl in a rotating pipe, (b) swirl in a 
stationary pipe. 

a fluid element is reduced. For certain rotation spe('ds the flow may rvell hrconlC' 

laminar if the turbulent dissipation outweighs its production. For Rwirling flow ill 

a pipe with stationary walls, the rever e radial gradient of the tallgential vrlocit.y 

caUflCS the local vorticity, w to hav(' an oppo. ing sign to that of n. This iller .aHe: 

the turbulence production due to the increase in shear in the 7' - f} planr. At thr core 

of the vortex, both the local and bulk rotation arc aligued again causing [{'duccd 

production of turbulence and even laminarisation. 

To pn.dict the turbulent contribution to wirling flows , it is necessary to olve the 

time-dependent Navier-Stokes equations on a numerical mesh whose grid spacing 

is of the flize of the smallest turbulent motion (the Kolmogorov scale). Unfortu­

nately due to their small size, prohibitively large numbers of computational nodrs 

need 1.0 be used. This leads to the use of turbulen e models to provide turbulcnce' 

information by modelling the effect of the Reynold stresses on the mean flow field . 

Thc two most. popular models providing ease of use and reas nable predictive power 

arc those f the two equation k - E an 1 k - w models (Launder and Sharma, 1974' 

Wilcox 1994). These mod L hav becll tested OIl . eparating and swirlillg flow: 

with ariallt.s such as the Shear' St1'PSS TranspoTi ( T) model of MenU'r (199 ) by 

vari( us a.llth I'S (Yara...<:j and rmWCIl r, 2003; hIland Lin, 199 ; Jakirlic (' ( al., 

200] ). H( wever thcs(' t peL f 1110 leIs ar(' nnablr t capture' frc(' vorte x lllot ion, 

(' hihitillP; a charactprist.ir premature rduru 1.0 solid bod: rotatioll a:xiall,' almlp; a 
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pIpe. 

Researchers such as Chien (1982), Shih et al. (1997) and Speziale (1987) aUPlllpted 

to improve the standard k - € model by accounting for stress anisotropi('s by using 

nonlinear combinations of the mean rate of strain tensor. However, these typ('s of 

models did not improve the accuracy of prediction significantly a..'1 shown by Yuan 

and So (1998). 

Improvements have been made over the two equation models in predicting other 

flows, such as square duct flows (see Speziale, 1996), using the different.ial stress 

transport, or Reynolds stress, model. The increa...,ed predictive power, despite the 

additional computational cost, promot.es their use in swirling flow. 

The main area of research has been into the model for the redist.ribution of turhu-

lent stress by pressure fluctuations - also known as the pressure-strain correlation. 

Among the first models produced were those of Rotta (1951), followed by Han­

jalic and Launder (1972) and Launder et al. (1975) with the now ubiquitous LRR 

(named after the authors) model, all using the stress anisotropy tensor to account 

for features such as return to isotropy of initially strained turbulence. 

Work by Lumley (1978) presented an improved model by showing a need to apply 

physical constraints on the modelling assumptions using the concept of realisability. 

More recent research has been performed by Speziale et al. (1991) and Fu, Launder 

and Tselepidakis (1987), where the coefficients of the mean velocity gradients are 

represented as nonlinear functions of the anisotropy tensor. Modern models include 

the two-component limit model of Craft and Launder (2001), and that of .Jovanovic 

et ai. (2003), at walls or free surfaces. For these models the incorporation of the 

two-component nature of the turbulence, where the wall-normal Reynolds stress is 

reduced and the tangential components enhanced, is used to provide more aecurate 

prediction of flow physics in these areas. 

Research on the validity of the assumption of dissipation isotropy ha.", also been 

undertaken by authors such as Speziale and Gatski (1997), Hallback et al. (1990) 

and .Jakirlk and Hanjalic (2002). This is due to t.he inability of t.ll(' pressure-st.raiu 

models to capture all the features of turbulent flows. Although no validat.ion ha.." 
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explicitly been carried out, to the author's knowledge, on swirling flow. computations 

have been performed by So et al. (1999) for buoyant shear flows, indicating that 

additional modelling still needs to be done in this area. 

Reynolds stress models show improved performance over the two equation models for 

flows such as the turbulent swirling free jet studied by Younis et ai. (1996) using the 

SSG model (Speziale et ai., 1991). This model was also used successfully to predict 

free vortex flow in a cylinder by Chen and Lin (1999) where the developed version of 

the LRR model by Fu, Launder and Leschziner (1987) gave poor predictions. More 

advanced models such as that of Craft and Launder (2001) are, as yet, untested for 

such flows, so it is not known if any improvement in prediction will be achieved. 

1.4 Swirling flows and combustion 

As mentioned above, one of the primary uses for swirling flow is the stabilisation 

of flame and mixing of fuel with oxidant in combustors. These effects control the 

chemistry of the reactions present in a flame, and hence the proper application of 

swirl in a combustor can lead to greater efficiency. Using turbulence models, the 

effect of swirl on a flow can be predicted well, however prediction of the combustion 

process is also required. 

A consequence of the heat release due to combustion is the appearance of fluctuat­

ing and variable density. This complicates the normally constant density turbulence 

models with additional density based correlations that require further modelling as­

sumptions to be made. To remove the appearance of the fluctuating density, Favre 

- or density weighted - averaging is commonly employed (Jones, 1979). However, 

modelling the density weighted terms leads to additional problems and so it is com­

mon to usc turbulence models developed for constant density. 

To model turbulent combustion, the chemical reaction is decoupled from the aero­

dynamic ('ffects and modelled. One of the simplest models is to assume that all 

reaction occurs in a negligibly thin flame sheet, on one side of which is llubllrnt re­

actants, the other side burnt products (see figure 1.5). This forms the ha.-;is of the G 
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equation of Libby and Williams (1990) for premixed combustion where the G isolinp 

separates the reactants and products. However, the laminar burning velocity i:-; still 

required by this equation, and its use is confined to constant density flows (Lihby 

and Williams, 1994), an unrealistic simplification for reactions with significant 11P.at 

release. 

ur---r-_____ T_b ____ __ 

Flame sheet 

FIGURE 1.5: The flame sheet model of combustion. 

A more widely known model for premixed turbulent combustion is the I3ML model 

of Libby and Bray (1977). A scalar, in the form of the reaction progress variable, 

defines areas of pre- and post-reaction. A joint probability density function is used 

to describe the properties of the flow in the combustion region between these two 

states. By using assumed pdf techniques (whereby the pdf is approximated by 

a beta function), expressions for the multiple fluctuating velocity and reactedness 

correlations brought about by Favre averaging are solved. This model has been 

successful in predicting the counter gradient diffusion phenomena of turbulent flames 

(Libby and Bray, 1981). 

Flamelet models for turbulent combustion also incorporate assumed pdfs to calculate 

fluctuating density, and other variables, as functions of mixture fraction. Bray and 

Peters (1994) present a model utilising the G equation, where the burning velocity 

is specified via the stretched laminar burning velocity and Markstein lengths. Both 

first and second moment equations of G are utilised where the pdf of G is used in the 

I3ML model to find mean reactedness, mass fractions and other scalar quantities. 

Other groups, such as that at Leeds, have produced their own versions of the flamelet 

model for premixed and diffusion flames (Bradley, Gaskell and Gu, 1998a,b). Here, 

an assllmed pdf incorporating reacted ness and mixture fraction and the pdf of stretch 

rate are used to find the unknown chemically related variables (Gu, 1993). Previ­

ollsly computed chemistry data for laminar fiamelets is used in the manner of a 

flame library, which is then integrated with the pdf over stretch rate and mixture 
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fraction to provide details of the turbulent diffusion flame. Particular f'llIpha:-,i~ on 

this mo(kl involves the prediction of the correct behaviour of turhulent hurnill).!, \"('_ 

locities at posit.ive and negative stretch raU~s of the flame dll<' to a('[odYllami(' ~I rain 

and flaul(' curvatun~ (Bradley. 2002). 

III an effort to improve the modelling for turbulent diffusion flall}(,~. KliuH'llko and 

Bilger (1999) have developed the conditional moment closure ('quation~. whereby 111(' 

joint velocity-scalar pdf is conditioned on a particular valu(' of the scalar (usually 

mixture fraction). From this, the conditional first and ~;('c()nd mOlIH'1l1 <,qual iOll~ 

for mass fraction result, leading to an improved prediction over assl111l('d pdf h('1 it 

function methods. 

Bradley d al. (2002) combined the flamelet model with the condit.ionallllolIlPllt clo­

sun~ equations in an attempt to provide it better evaluation of the pdf of rPactr~dl\('ss. 

This study was perfoflll('d using the s('cond moment CMC equations aft.er earlier at­

tempt.s (Bradley, Gaskell and Gu, 1998a) to use the first lIloment equations resltlt('d 

ill poor prediction of lift off height for jet flam(,s. These second mOllwnt ('quatiolls 

were shown t.o improve the prediction of mass fractions in the highly strd('hed jd 

flames. 

1.5 Outline of present work 

The malll thrust of this work is the evaluation of modern Reynolds st.n~ss t urhu­

knce models for the simulation of isothermal and reacting swirlill~. turbulelll fl()w~. 

R('s('arch by Spe~iale et al. (1991) has highlighted the need for a new approa('h to 

H('ynolds st.ress mo(i<:'llillg duc to inherent ddi('iencies in the general mo(kl for I II(' 

pn'ssure-straill term. Indeed, .lakirlic d ai. (2002) stat('s that the additioll of nOll­

Ii lIPiI r t('rIllS affords little improvem('nt for swir lin~ flows. Thus thc im proV('IlWlI I of 

('xist illg terllls such a..'1 that of tIl(' dissipation raU' t ('lIsm has 1)('('11 1ll1<i<>rtak('11. 

Chapt('r :2 provides a brief r(,view of tlw ll('('d for tllrblliPlIce llwdcls. I heir hist.or,Y, 

a lid t.li(' CIIlT(,lIt st.atp of their d(,V('\OPIll(,lIt. Two ('<illation 1lI()(kls. namd.Y the st.a.Il­

danl k t and k - w models. awl fnll ditfpl"('lIt ietl st.n'ss 1I1(l(kb of Lallwkr (I Ill. 
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(197;') and Speziale d al. (1991) are introduced as a tool for prpdicting i:--()tlH'rmal 

swirling flows. As swirl induces large st f('SS anisotropy. it i~ ll(Jt illconc('i\'ahl(' that 

til<' same appli(~s to the dissipation of turbulenc(' (.Jakirlic and Halljalic. ~()():?). TIH' 

model presented is one based on that of Speziale and Gatski (1997). llSillg an al­

gebraic approach as opposed to a full differential model. TIH'S(' models arp t lH'n 

COllverted for use in variable density flows by Favre avpraging. 

The Ilumerical procedures undertaken are then presented in Chapl ('!' 3. Hen'. 111<' 

finite volume method is used to integrate the governing differclItial C<Ill;lt iOlls. Par­

ticular emphasis is given to the dis<Tetisation of the troubiesolll<' convectivE' t(,rIns. 

Two schemes are finally recommended b('cause of t heir high order intcrpolat iv(' ac­

curacy whilst maintaining boundedu('ss: CUI3ISTA (Alv('s cf (Ii.. 20(3) awl S~I.\RT 

(Gaskell and Lau) 1988). Solution algorithms are then prescnted in the' form of 

SIMPLE (Patankar) 1980) and PISO (Issa) 1985). 

Two swirling) isothermal test cases arc then considered in Chapterl namely the 

fn~(' vortex type flow studied experimentally by Kitoh (1991) and the combustion 

chamber flow studied by AI-Masseell (1991). The two ('quat ion modds an~ used for 

both flows. as are the Reynolds stress models and the benefits of (l.("("ollllting for 

dissipatiou anisotropy are discussed. 

Chapters 5 and 6 (ksnilw the combustion model used and its applicat ion to the 

TECFLAM research flame. An introduction to the forerunners of tllf' flallwld-CMC 

cOflli>ustion model) the laminar flamelet and Conditional Moment Closure Illodels. is 

prescnt.ed. TIl(' flamdet-CMC model is then addressed. with special cmphasis OIl til(' 

COllplillg with t.he turbulent dissipation rate and its effect on combustion. R('sult s 

for the TECFLAM flame arc presented showing the model capability to predict t hc 

axial n'circuIaJion and beat rekas(\ rate. 

Cllaptn 7 discuss('S cOllclusions and offers suggestioll~ for possibk ful un' work. 
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2 .1 Introduction 

This chapter introduces the continuous equations and models that describe turbulent 

isothermal and variable density swirling fluid flows. 

A flow may be accelerated from laminar conditions to a transitional state by an 

increa...,e in velocity. Transitional flow is inherently unstable, and the instabilities 

present introduce new flow features - or 'structures'. The increased shear in the flow 

leads to a rolling up in the shear layer and the creation of vortices. A well known 

example of this is the Kelvin-Helmholtz instability, where vortices are formed in the 

shear layer of a wall bounded flow (Acheson, 1998). 

If the flow is accelerated beyond the transitional regime the flow becomes fully tur­

bulent. The increased shear and strain of the flow increases the instability and more 

vortices are produced. The smaller vortices 'feed' from the mean flow, sqnashing 

and stretching and ultimately increasing in energy and size. These large vortices 

are effectively inviscid in nature, for instance vortices in the atmosphere or in the 

ocean, and have long lifetimes. Smaller vortices are created due to the fluctuation 

in vorticity around their larger neighbours. These smaller versions are, however, 

susceptible to the action of viscosity, and the turbulent energy is dissipated into 

heat by the action of viscosity. 

The study and prediction of turbulent flow remams an active field of research. 

Reynolds (1895) chose to represent turbulence as consisting of a mean and fluc­

tuating part. This method, called Reynolds Decomposition, is used with statistical 

averaging methods to predict the mean quantities of the flow, such as velocity and 

pressure. 

'I\trbulence is present in many engineering applications, such a.." the flow over the 

wing of an aircraft (Rhie and Chow, 1983) or combustion in the cylinder of an 

internal combustion engine (Jakirlic et at., 2000). Its effects can be either a help, 

assisting the mixing of fuel and oxidant in a combustion chamber, or a hiudrance, 

when turbulence reduces the efficiency of an aeroplane wing leading to a sudden loss 

of lift .. Such effects make the effective prediction of turbulent flows of great interest. 
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In the following sections, the equations governing fluid flow are presented. However. 

as explained, these equations are unable, in their compact form, to predict the 

high Reynolds number flows of interest here and mathematical models are required. 

Several types of model are shown, such as the two-equation k - f (Launder and 

Sharma, 1974) and k - w (Wilcox, 1994) models. Higher order Reynolds stress 

equations, and associated models, are also discussed. Finally, models are presented 

incorporating the effect of variable density, facilitating their use in flows with heat 

release, such as combustion. 

2.2 The Navier-Stokes Equations 

The Navier-Stokes equations were developed independently hy Stokes (1845) and 

Navier (1821) and represent the general behaviour of a fluid. The equation for the 

conservation of mass of a fluid element in the steady-state, known as the Continu.ity 

Equation, is expressed as, 

V· (pu) = 0, (2.1) 

where p is the density of the fluid and u its velocity. 

The equation for conservation of momentum in an incompressible fluid in the steady 

state is, 

(pu . V)u = - Vp + pg + Va (2.2) 

where a is the viscous stress tensor (see below), g is representative of a body force 

(such 3.." t.he vectorial acceleration due to the Earth's gravit.ational field) and p the 

pressure field within the fluid. 

Equations (2.1) and (2.2) can be re-expressed in Cartesian tensor form, adopting 

the Einstein summation convention. Using this notation, Uj represents a vector, 

with individual components (for j = 1, ... 3), 

Ul = 'lL, 'lL2 = 11, 'lL3 = 'W. (2.3) 
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A repeated index, denotes a summation (or contraction of the tensor into a scalar). 

(2.4) 

Equation (2.4) can clearly be seen to denote the divergence of the velocity vector. 

Vi' . u. From this point onwards, the summation convention is adopted for ease of 

representation. 

Re-expressing (2.1) and (2.2) in tensorial form gives, 

(2.5) 

(2.6) 

where 

(
aUi aUj) 2 aUk 

aij = J-L - + - - -J-L--f5ij 
aXj aXi 3 aXk 

(2.7) 

is the viscous stress tensor, with (2.5) - (2.6) referred to as the steady-state Navier-

Stokes equations. 

2.3 Treatment of turbulence 

Isothermal, turbulent motion is characterised by the apparent random motion of 

velocity and pressure about a mean value at a point in a fluid. The nature of the 

fluctuations are such that even though the mean values of pressure and velocity are 

steady, turbulent flows are inherently time-dependent. The velocity at a point in a 

stable, steady-state laminar flow will always be at a constant value, but as the flow 

becomes more unstable (usually due to an increase in Reynolds number) a transition 

t.o turbulent motion occurs. In pipe flow, this transition takes place at Reynolds 

numbers of around two thousand (Acheson, 1998). In turbulent flow, the smallest 

scale of motion is that of the Kolmogorov length scale, TJ. This is the size of tlH' 
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smallest turlmlent eddi(~s in a flow and is depenrlent on tIl(' flow propnti(':--. 

to 
", = '\11 • 

HI 
I 

when~ to is the lengthscale of the large turbulent erldi('s and 

k 1/2 t 
R - a a t-

Va 

( oJ ;-.:) 
_.( 

(2.9 ) 

is t.he turbulent Reynolds number with ko and Vo representative valu('s of t urhulellt 

kinetic energy and kinematic viscosity, respectively. Due t () t he small siz(, of til(' 

Kolmogorov eddies [rJ = O.36mm for uniform shear (ChampaglH' I't oJ. 1 Q70)]. it 

is difficult to simulate them numerically. However. with the continual incrp<tse in 

computing power, it is becoming increasingly feasible to simulate' tIH's(' small eddies 

directly via the Navier-Stokes equations using Direct Num(,T'iml Sill1ulation (DNS). 

This method discretises the Navier-Stokes equations on a computational grid. wh('re 

tIl(' spacing between grid nodes is of the order of the Kolmogorov length seal<,. so 

that the entire range of length scales is resolved. With the size of the largest pddies 

representative of the size of the computational domain, a mea..'mre of t lw nodes 

needed to resolve the Kolmogorov scales is given by the ratio (Libby and \\'illiams. 

1994) 

to _ R:i / I 
- t 

", 
(2.10) 

In three-dimensional flows, the number of nodes required for DNS incn'ases as 

(lolTJ rl and hence R;/-I. DNS is therefore limited in its application to only low 

1{(',Vuolds 1ll1l1l\H'l' simulations, such as transitional flow to mildly turbulellt: L(' et al. 

(1997) 1H'l'formed a study over a backward facing step at a Reynolds Illunber of 5100. 

Sawlh<tm (2002) state's that tIl(' ill<T(,(l.s(' in computational nodi's lle('ded with a dou­

hlillJ,!; of Heynolds lmmber is b<'lw('('11 2.2 to 2.5. Despit (' t he low H('ynolds llllml)('(' 

applic;lIiolls. DNS is useful for improvillg the predictiolls of turbulence Illod<'ls (\Ian­

sour d al.. 1989). It. also facilitates tIl(' predictioll of flow quantit it'S t hat an' difficult 

to lIwasun' ('xpcrilllPlltally, such as th(' strain 1';11<' t('llSOl'. Fm lurbulellt flU\\'s of ('11-

p;ill('('rillp; illkrest. IIm\'!'\'('\'. I his (,()lllput.at iOllal ('ost is too p;rcal ;11 pn'~('Ilt., alld 

ot.her lIH't hods lllUSt \)(' us('d. 
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Large Eddy Simulation (LES) has emerged as a method which ha.<; far less computa­

tional cost than DNS. LES splits the turbulent length scales, so that the large scalps 

are resolved directly a..'! in DNS, while the smaller scales are filtered, using a filter 

function, and modelled. The advantage of LES over DNS is that higher Rpynolds 

numbers may be simulated as the nodal resolution required is much lower. However, 

LES still requires a large computational investment for industrial applications. 

2.3.1 Reynolds averaging 

The approach used in the present work makes use of the Reynolds Averaged Navier­

Stokes (RANS) equations. Instead of directly simulating the time-dependent, fluctu­

ating velocity, the RANS equations consider the mean value of the velocity. Reynolds 

decomposition expresses the flow variables as the sum of a mean and fluctuating 

(turbulent) part, 

p P+p', (2.11 ) 

where the mean flow quantity is denoted by uppercase letters, and the fluctuating 

quantity by lowercase primed letters. The RANS equations are derived on a statis­

tical basis where ensemble averaging can be used to describe the properties of the 

ensemble (or mean properties of the flow), by averaging over N experiments. 

N 

U· = lim ~ '" U"!'-
t N-too N L...J l 

m=l 

(2.12) 

The process of averaging leads intuitively to the following relations, 

U~ 
t 

0 

p' 0 

Uiu'. 
J 

0 

UiUj UiUj + u~uj. (2.13) 
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From the above relations, the equations of motion for the mean flow quantiti('s can 

be obtained by inserting (2.11) into equations (2.5) and (2.6) followed by averaging. 

to give, 

o (2.14) 

8P 8 _ , 
--8 + -8 (aij - TiJ') 

Xi Xj 
(2.15) 

Equation (2.14) is the mean flow continuity equation and (2.15) is the mean flow 

momentum equation where 

(2.16) 

are the turbulent stresses known as the Reynolds Stresses, formed by the action 

of the fluctuating velocity components. The above relations constitute the RANS 

equations for turbulent flow. 

The introduction of averaging to yield equations for the mean flow introduces new 

unknowns, TIj . In order to solve turbulent flows with the RANS equations, new 

equat.ions for TIj must be developed. These may be calculated by obtaining a trans­

port. equat.ion governing the motion of the fluctuating velocities. By subtracting 

equation (2.15) from (2.6) gives, 

(2.17) 

which, after rearrangement using (2.5), leads to, 

(2.18) 

However, t.his docs not help to close equation (2.15) in the steady-state, as t.he tur­

bulent fluctuations are a temporal phenomena and have no steady-state counterpart. 

Also, t.he presence of unknown Reynolds stresses is still not solved. 

By using the notation t.hat equat.ion (2.18) can be written as N'lL~ = 0, where N is 
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the operator, 

(2.19) 

a transport equation for the Reynolds stresses can be fmlnd. Th t t' . I d e s a IstIca sec on 
moment is constructed as 

u~Nuj + ujNu~ = 0 

which leads to the Reynolds Stress Transport Equation in its standard form 

where 

and 

p' [8uj 8u~ 1 - -+-
P 8Xi 8xj 

2v --( 8U~ 8Uj) 
8Xk 8Xk 

I I I + 1-,-/~ u-u -uk -p U-UJ-k 
Z J P Z 

is the stress redistribution term 

is the viscous destruction term 

1-
+_p'U'_~ik are the diffusive transport terms. p J 

(2.20) 

(2.21 ) 

(2.22) 

(2.23) 

(2.24) 

One may think that it is now possible to close equation (2.15), and hence all of the 

equations, as the Reynolds stresses are now provided for. Upon closer inspection of 

equation (2.21), however, it can be seen that (2.22), (2.23) and (2.24) are not closed 

due to the appearance of the unknown fluctuating velocities. One can go further to 

derive higher statistical moments to close the equations, but terms created therein 

contain variables that are, again, not defined. This phenomena is known as the 

closu1'e problem, whereby the introduction of transport equations for lower order 

statistical correlations, leads to unknown higher order correlations, and a closed 

set of equations can not be obtained. Therefore, to dose the RANS equations, 

approximations, or models are required based on physical a...,811mptions, leadin~ to an 

area that has become a research topic in its own right, namely turbuienre modelling. 
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2.4 Turbulence modelling 

The purpose of tllrbllience modelling is to provide the extra t (TlIlS re<juirpd t ~ I d()se 

tlw RANS equations. Some of the most popular models ilr<' desnibed below. 

2.4.1 Zero and one equation models 

Early models closed the RANS equations by modelling t he Reynolds st r('sses ill an 

algebraic fashion, such that estimated quantities of t he mean flow W('l"C used to 

approximate Tij . The most well known models lIS(' the BOu88in" .... q Eddy l "I.'i('()sity 

hypothesis, TIj = -2VTSij, or in its updated form 

(2.25 ) 

where 1/,/, is termed the turbulent, or Eddy t"i8C08ity and Sij is the strain rate t(,IlS()f" 

- 1 (8Ui DU)) Siy = - -r - + -,-
2 ax J a.I: 1 

( 2.2ti) 

I30ussinesq made this approximation in analogy to the viscous stress tensor in tIl<' 

momentuIll equation, aij = 2vSlj. After substituting (2.25) into the RANS equa­

t.ions, the ollly term to be modelled is the eddy viscosity itself. Of all the algebraic (or 

Z(TO equation models), Prandtl's mixing length hypothesis is tIl(' lIlost well known. 

TIH' eddy viscosity, defined as the ratio of a turbulent length scale, lo. to a turbuknt 

time scak. to, of the largest eddies, 

l2 o 
VT =-

to 
(') ')-) _.-1 

was refillcd hy Prandtl (1925) when he sllggested that the eddy visc()sity could be 

ITpr<'S(~llkd by tIl<' lUean v<'iocity gradient 

'2 dU 
/11 = Lo 

dy 
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w here the mixing length is defined 3..') 

lo = "'Y (2.29) 

with", the Von Karman constant and y the normal distance from a wall. In (2.28), 

the time scale is implied through the mean velocity gradient leaving only the length 

scale to be determined in order to complete the model. Equation (2.29) is commonly 

used to provide this quantity in the case of boundary layer flows (Launder and 

Spalding, 1972) with", = 0.4. 

Prandtl's mixing length model, has been used successfully to provide predictions for 

free shear flows such as far wakes, mixing layers and jets (Wilcox, 1994). However, 

despite this, the model has some serious limitations. Firstly it cannot be applied 

to reeirculating flows due to the uni-directional formulation of the eddy viscosity. 

Also, the transport of the turbulent quantities is not considered, meaning upstream 

and downstream conditions have no effect on the turbulence. The empirical nature 

of the model means that it is difficult to use for flows other than shear layers it was 

designed for. Variations of Prandtl's algebraic model are provided by Smith and 

Cebeci (1967) and Baldwin and Lomax (1978), where different formulations of the 

eddy viscosity are applied for different distances from a solid wall. Although these 

models are an improvement over Prandtl's original model and have been used to 

predict boundary layer and channel flows well (Wilcox, 1994), they still suffer from 

the same limitations. 

The next method of closing the RANS equations is the implementation of so called 

one equation turbulence models. Instead of just using algebraic methods to close 

the equations, a transport equation for the turbulent kinetic energy, k, is derived 

to provide the value of the turbulent timescale of the large eddies. By contracting 

equation (2.21), the transport equation for k is, 

(2.30) 

where k = 4rli. The third term on the right. hand side of (2.30) represents the 

turbulent. diffusion of k and needs to be modelled. This is done using til£' gradipnt 
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diffusion method, 

1 , " 1-,-, lIT 8k 
-u·u.uk + -p u· = ---
2 t l l 8 P O"k Xk 

(2.31) 

where O"k is the effective Prandtl number for the diffusion of k. The dissipation rate 

of kinetic energy, €, also needs to be modelled due to an inability to quantify it ill 

terms of known flow parameters. € is governed by the larger scales in the turbulence 

and so its formulation is given in terms of k and the large eddy length scale, 1
0

. By 

dimensional analysis 
k3 / 2 

€ = CD-­
lo 

(2.32) 

is the modelled form of €, and CD is an empirical constant. The value of CJ) is 

found by examining simple turbulent flows experimentally and fitting numerical 

predictions to them. Launder and Spalding (1972) found a value of CD to be 0.08 

for near wall flow. The velocity scale of the large turbulent eddies is deemed, by 

dimensional considerations, to vary as ../k, thus the eddy viscosity is given as 

VT = v'klo, (2.33) 

and so the RANS equations are closed upon specifying the length scale, lo. This 

is usually done empirically using experimental data, or, for shear flows, the mixing 

length of Prandtl can be used. 

Other popular one equation models include that of Spalart and Allmaras (1992), 

which provides a transport equation for the eddy viscosity. One equation models, 

in general, perform better than zero equation models due to a transport equation 

that provides knowledge about a turbulent quantity of the flow, namely the turbu­

lent timescale, to. Despite the potential for better predictive capability of the one 

equat.ion models over their zero equation counterparts, for simple shear flows the 

zero equat.ion models perform equally well (Murty, 2002) leading to the conclusioll 

that use of one equation models is only worthwhile for more complex flows, or where 

turbulence information (such as k) is needed. 

The limitations of one equation models arc based on the empirical specificatioll 

of t.he length scale. The latter is not a feature of turbulent Hows that extends 
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over all applications, but is a property of the local conditions of the flow. such 

as boundary proximity etc. This means that without knowledge of flow history, 

it is very difficult to specify a length scale for the entire flow domain leading to 

inaccuracies in predictions. 

2.4.2 Two equation models 

Two equation models represent improvements over one equation models by providing 

a transport equation for both the time and length scales of turhulent motion. Most 

formulations of the transport equation for the length scale do not feature the length 

scale explicitly. Kolmogorov (1942) first introduced an equation for the length scale 

using v'k/lo (the frequency of dissipation of energy), hut E, the dissipation rate, 

is by far the most common choice for modern two equation models. The general 

transport equation for the length scale can be expressed as the transport of a general 

quantity z = kmlo where m and n are constants, 

(2.34) 

where a z , Cz1 and Cz2 are closure coefficients and Sz is a general source term. From 

this equation the length scale is extracted from k and z. 

The k-f. model 

The k-f model uses a transport equation for the turbulent dissipation rate, f, a.', 

a method of determining the turbulent length scale. The form of the model was 

originally prescribed by Jones and Launder (1972), hut then re-tuned by Launder 

and Sharma (1974) to yield its now 'standard' representation as given below. The 

time scale is described according to the previous transport equation for k (2.30). 

An equation for f can be determined by taking 

a , a 
'lLi N ') 2v--{ tL· = 0 

aXj aXj 1 

(2.35) 
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which eventually leads to 

(2.36) 

The first four terms of (2.36), relate to the production of dissipation Pn the next. two 

to turbulent diffusion of dissipation, DE and the penultimate term to the dest.ruction 

of dissipation. All of these terms require modelling in some form due to the inherent 

inability to resolve the higher correlations present. 

Firstly, Jones and Launder (1972) used dimensional considerations to provide an 

expression for the eddy viscosity 

(2.37) 

where CIL is an empirical coefficient found by fitting with experiments. The diffusion 

term in equation (2.36) is modelled in a similar fashion to that in the k equation 

(2.31) by using gradient diffusion, 

(2.38) 

where at, the Schmidt number, has a similar meaning as in (2.31). The production 

term is modelled by assuming production of turbulent dissipation to be proportional 

to production of turbulent kinetic energy due to energy conservation, 

(2.39) 

where Cd is an empirical coefficient and P is the production of turbulent kinetic 

energy from (2.30), 
, aUi 

p= -rOk­
t a Xk 

(2.40) 
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Coefficient Value 
Cd 1.44 
Cl2 1.92 
CJ1. 0.09 
ak 1.0 
a f 1.3 

TABLE 2.1: Values of coefficients used in k - f model, Launder and Sharma (1974) 

The next term to be modelled is the destruction of dissipation term. As for the 

destructive term in the k equation (2.30), the destruction of dissipation is governed 

by the large scales of the flow, the length and time scales. By dimensional analysis 

(2.41) 

with C(2 a dimensionless, empirical constant. 

Including the above expressions and after employing the eddy viscosity hypothesis 

(2.25), the final form of the modelled equation for the dissipation rate is 

(2.42) 

The closure coefficients reported by Launder and Sharma (1974) are given in table 

2.1. 

To complete the closure, wall functions (see Chapter 3) must be used to extend the 

model for application at walls. This is due to the destruction of dissipation term in 

equation (2.42). At a wall, f is finite whilst k must reduce to zero due to the no-slip 

condit.ion. This means t.hat C(2(f2 / k) represents a singularity (Gatski and Rumsey, 

2002). 

The k-w model 

III this two equation model, w, instead of f is used to provide the length scalc. w is a 

measure of the inverse time scale of the dissipation of turbulence encrgy, or, as it is 
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Coefficient Value 
0 ~ 

{3 ~ 
40 

{3* 0.09 
(1w 2 
(1* w 2 

TABLE 2.2: Values of coefficients used in k - w model, \Yilcox (1994) 

more commonly referred to, the rate of dissipation per unit turbulent kinetic energy. 

Wilcox (1994) completed the modern formulation of the model after earlier work by 

Kolmogorov (1942) and Saffman (1970). In Wilcox's model, the eddy viscosity is 

represented as the ratio of turbulent kinetic energy to w, 

and the transport equation for w as 

k 
lIT = -, 

w 

aw w, aUi 2 a [ ( V'J') aw 1 Uj-=O-Ti·--{3w +- v+- - . ax . k J ax . ax . (1 ax . J J J W J 

(2.43) 

(2.44) 

The first term on the right hand side of (2.44) represents the production of w, while 

the second represents its turbulent destruction, with gradient diffusion employed for 

the turbulent diffusion term. The equation for the transport of turbulent kinetic 

energy is slightly modified from that used in the k - E model, 

ak , aUi * a [( lIT ak ) 1 U·- = 7:.- - {3 kw+ - v+ ---
J ax . ZJ ax . ax . (1* ax· 

J J J W J 

(2.45) 

where the dissipation rate, E, is given by 

E = {3*wk. (2.46) 

The closure coefficients given by Wilcox (1994) are shown in table 2.2. 

The advantage that the k - w model has over the k - E model is its ability to be 

integrated to the wall. This allows better resolution of the viscous sublayer (see 

Chapter 3), especially for flows where the mean flow penetrates this layer and the 

local turbulent Reynolds number is low. These factors enable the model to ('01)(' 
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better for transitional regions of the flow. This also means that wall fUllctions (see 

later) are not necessarily needed, as opposed to the use of the k - f model where 

it is compulsory in its standard form. However, low-Reynolds number versions of 

the k - € model, integrated through the viscous sublayer. have been developf'd (sec 

Varas and Grosvenor, 2003) as is discussed next. 

Discussion of two equation models 

The main disadvantage of two equation modelling is the usc of the eddy viscosity 

hypothesis since models which employ this term to represent the Reynolds stresses 

cannot account for complex flows where the turbulence is highly anisotropic. The 

eddy viscosity hypothesis will always produce isotropic turbulence for the normal 

stresses (the diagonal component of the Reynolds stress tensor). Speziale (1996) 

noted that without a method of determining the anisotropic nature of the Reynolds 

stresses, it is impossible to predict secondary motions due to differences in the 

Reynolds stresses, such as flows in square ducts. Researchers studying swirling 

flows (Chen and Lin, 1999; Wall and Taulbee, 1995) have shown the inability of 

these models to capture the mean flow, often showing behaviour such as premature 

development of solid body rotation. These researchers have also shown that flows 

with high streamline curvature are also poorly represented by these models due to 

their inability to capture the shear stresses correctly. 

Varas and Grosvenor (2003) used low Reynolds number versions of two equation 

models to solve axisymmetric, separating and swirling flow problems. In their study 

the two-layer k-€ model of Rodi (1988), the k-w model of Wilcox (1994), the Shear 

Stress Transport (SST) model of Menter (1994), the nonlinear k - € model of Chien 

(1982) and the eddy viscosity transport model of Spalart and Allmaras (1992) were 

compared. All of the models incorporated a streamline curvature correction term to 

account for areas of high streamline curvature where standard eddy viscosity models 

are inaccurate. 

The advantage these latter models possess over the standard k - f model, is that 

integration of the transport equations through the viscolls suhlay<'r is achipvable. 
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This removes the requirement of wall functions to approximate the flow in this 

region of the boundary layer. Models such as the SST model and Rodi"s two-layer 

model, split the flow domain into two distinct regions and model each separately: 

the SST model uses the k - w model in near wall regions and the k - f model far 

from the walls. 

Yaras and Grosvenor found that the velocity profiles for a separating flow were 

predicted well. However the coefficients of pressure and friction were not resolved 

for the separation region. The model of Chien, did not reproduce separation whilst 

Rodi's model did not produce the velocity reversal at this point. For the swirling flow 

case, all models showed poor agreement with experiment, and in particular predicted 

a premature solid body rotation. The authors reported that the k - w model was 

impossible to converge for this flow whilst giving meaningful results. Addition of 

curvature correction did not improve results, with the SST model giving the lca..,t 

acceptable results for tangential velocity. 

Speziale (1996) recommended that two equation models with an anisotropic repre­

sentation of the turbulence using a non-linear formulation are the minimum required 

to close the RANS equations. Non-linear eddy viscosity models employ an expan­

sion of the strain rate tensor in (2.25) to include non-linear combinations of Sij' In 

these models the Reynolds stresses are given by an algebraic formulation, and not 

a transport equation. This immediately shows that these types of closures cannot 

account for history effects of the turbulence in the flow. Despite the promise of more 

accurate prediction of flows using non-linear, two equation models (such as that of 

Speziale (1987)), their formulation tends to be ad hoc, with extra terms added to 

aeconnt for previous model failings. 

A nonlinear k - f model was proposed by Shih et al. (1997) and tested against 

data for an axially rotating pipe and swirling flow in a combustor. The Reynolds 

stresses were modelled by cubic terms in the mean velocity gradients, with additional 

rotational terms. For both flow cases, the model agreed better with the experimcutal 

data compared to the standard k - f model. 

Wall and Taulbee (1995) developed an improved algebraic stress model (ASM). 
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The al~ebrai(' equation set W<1." improved so <1.<; to bE' applicable ()\'('r a brg(' r;mgp 

of turbulellcP anisotropies compared to standard algebraic llHHkb which ;tn' onl~' 

applicable for constant anisotropy. Additional rotation-dependent tf'flllS wprp a\:-;() 

added. Th(' nonlinear solution to t.hese equat.ion spts W<1.<; implpmpnt('d as a tW()­

equation modd to predict the flow in a swirling jet. The result S for t liP new lIlodpl 

were ill reasonable agreement with experimental data, and lwth'red t hos(' of the 

oldcr ASM and the standard k - f. models. Howev('r. the results of t IH' s('colld 

1ll00ltent closure of Launder et ai. (1975) showed better predictions t.han any of t hp 

other models when compared with experiment. Wall and Taulhee (199G) attrihut.ed 

this to the inability of the algebraic models to take into acc()unt t.he historv of the 

turbulence. 

Yuan and So (1998) used two-equation models and a low Reynolds numher s('('ond 

mOlltent closure to study swirling and rotating flows. Two low Reynolds numher, 

t.wo-equation models were modified by using the anisotropic stress reprcs('ntat ion of 

Spe~iale (1987) and the anisotropic dissipation rate model of Spe~ial(' and Gatski 

(1997) to account for turbul<~ll('(' anisotropy. The models were t('st('d on two swirling 

flows in straight pipes with different inlet conditions. For both flows. t 11<' anis()t ropic 

two-equation models performed poorly in comparison to the experimental data for 

t.he mean velocity profiles. Along the axis of the pipe. a solid body rotat.ion is 

predicted prematurely by the two equation models. with the dip in velocity clos(' t() 

the axis grossly under-predicted. Only the second moment closure model predicted 

a<ieqllat.(' )'('sults. 

As alluded to ahov(" two-equation models are illadequat.(' for solving flows wit h high 

st.I'('(l.llllillP curvature and anisotropy, such as is present in swirling flows, despik 

SOIl)(, S\I('('('SS('S (Shih d ai., 1997). The natural extension to lllod('lling tllrhlllpnc(' 

is t.o look at the higher correlations of turbulence. sl1ch as the H('YllOlds st ITSS('S. 

and how t.hey ;IIT transport('d, This leads to t Iw modelling of the Reynolds st l'('SS 

t.ransport <'qllat.ion (2.21) itself. 
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2.5 Second moment closures 

S(~(,()lId momellt closures use the transport equation for the Reynolds stn'~~('~ (:2.:21) 

to dd(Tmine turbulent motion. As mentioned previously, terms (2.22), {2.2:n alld 

(2.24) lead to an open set of equations and models need to be devcl0pf'd for ;u-cur;\tp 

prediction using mean flow quantities. The first closure for this equat ion was madp 

by Rotta (1951), where the pressure redistribution term (2.22) was Illo(klled in thp 

abs(~nce of mean flow gradients (known as the return to isotropy modd). Suh~('quent. 

additions to the closure of the Reynolds stress equations were made hy Daly and 

Harlow (1970) and Hanjalic and Launder (1972), wlwre the lattn' made ade(lll;lt<> 

predictions of thin shear flows using a simplified set of ('quat ions for til(' ncynolds 

stresses. 

The model of Launder d at. (1975) (LRR) proved to be a major improvPltH'nt 

to Reynolds stress modelling. The work made significant steps in improving tlH' 

PITSSUlT redistribution term (also known as the pressure-strain correlation), by ex­

pn~ssillg the coefficients of the rapid term (that depending on the lllean velocity 

gradiellts) with the anisotropy of the Reynolds stresses. This, coupled with tlte in­

clusion of an estimate for near wall turbulence, led to the lIse of this model for lIlore 

complex flows such as an axisymmetri(' pip<' contraction (Launder d at., 1975). 

Furt.ltn improvements to the model were made by Gibson and Launder (197~), 

wh('n' the near wall terms were modified to enhallce the prediction of pn'SSllre 

'('cho' effects - the reflection of pressure fluctuations at the wall. Lumley (197~) 

descrilH'd t.he lleed for nonlinear modelling of the pressllre-straill correlation by 

expressing the coefficients of the mean velocity gradients in terms of a nonlinear 

function of the anisot.rop)' t.ellSOr. Another important additioll was t ha t of the 

realis;d)ility condition. This cOllditioll idelltifi<'s that all non-ncgative quant.ities. 

such as t urlmknt. kill<'f.ic energy, lllllst remain so. Lumley d('v('lopcd ;1 coor<iinak 

illvariant form1llation for t.he (,()llstraillts allowing t.lWlll t() 1)(' appli<~d to allY general 

curvilinear coordillat(' S.vsl<'lll. 

Sp<'I'-ia.lc d o/. (1991) (Teakd a new pn'ssIIH'-straiu lllo(ki hy d('\'plopiug a ,l.!,t'Il<'ral 

forlllulat ion frmll which a hierarch.\' of lIlo(i<'is call 1)(' takell. Hy eX;lIlliuing hOlllo-
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geneous turbulence, and using a tensor invariant formulation, they created a model 

that is quadratic in the Reynolds stress anisotropy for the rapid term (discussed 

below). This led to an improvement over the LRR model which only expressed the 

rapid term using linear anisotropic coefficients for the mean velocity gradients. An­

other advantage of the model is the ability to predict flows well without the need for 

wall 'echo' terms as used in the LRR model. The model wa.', tested against the LRR 

and FLT model (Fu, Launder and Tselepidakis, 1987) for rotating shear flow, where 

it outperformed both when compared against LES data for the decay of turbulent 

kinetic energy. 

An interesting note was made by Speziale et ai. (1991) concerning the nature of 

the general hierarchy of pressure-strain models. The general model formed by the 

authors, which constitutes all forms of the pressure-strain terms, inherently cannot 

capture all the features of plane homogeneous flow. It was argued that adding more 

complex terms to the model that are nonlinear in the anisotropy tensor would not 

overcome this problem but only potentially increase the accuracy of an inadequate 

formulation. 

For swirling and rotating flows many forms of second moment closure have been used. 

Liu et al. (1998) showed that the second moment closure of Launder et al. (1975) 

performed better than the standard k - €, and Renormalisation Group (RNG) k - € 

model in a typical combustor geometry. For the two equation models, the tangential 

velocity predicted showed a premature solid body rotation, where the free vortex 

type flow decayed into the forced vortex type too early along the length of the pipe. 

Sharif and Wong (1995) compared a nonlinear k - € model with an algebraic stress 

model and full second moment closure (Gibson and Launder, 1978) for swirling 

flow in a combustor. The algebraic and second moment closures predicted the 

experimental data well for the mean flow quantities with little difference between 

them. The nonlinear k - f. model gave poor results in comparison, suffering from the 

previous faults of two equation models. The turbulent quantities were not predicted 

well for any of the models, showing that improvement in the modelling of these 

quantities is needed for swirling and rotating flow. 

Chen and Lin (1999) studied two swirling flows using the SSG model of Sp('ziale d al. 
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(1991) and the 'Isotropisation of Production' model of Fu, Launder and Leschziner 

(1987), a development of the LRR model of Launder et al. (1975). For the strongly 

swirling case (swirl number 2.25) both second moment elosures predictf'd results in 

agreement with the experiments, in contrast to the k - f model. However. for less 

strongly swirling flow (swirl number 0.85), there was a marked difference between 

them. The SSG model was closer in agreement with the experiments than the 

model by Fu et ai. This was attributed to the additional quadratic terms ill the 

pressure-strain correlation (missing in the linear pressure-strain term of Fu et al). 

The extra terms in the SSG model were able to capture the small shear stresses 

more accurately, with the model of Fu et ai overestimating them due to a lack of 

sink terms in its formulation. 

Younis et ai. (1996) compared the usc of three different pressure-strain models on 

free turbulent jets with and without swirl. The models used were the SSG model of 

Speziale et ai. (1991) and the two forms of the LRR model given by Launder et al. 

(1975). For the axisymmetric and plane jets the findings of the different models 

were of comparable accuracy with experiment. For the swirling jet, however, the 

SSG model was able to predict the turbulent quantities with a greater accuracy than 

those predicted by the two LRR variants. This was due to the extra terms in the 

SSG model which were able to partly counteract the effect of some of the standard 

terms (such as the erroneous large negative uw shear stress predicted by all models 

near the jet centreline). 

Even though Speziale et ai. (1991) developed a pressure-strain correlation that is 

quadratic in the stress anisotropy tensor and hinted that higher nonlinearities may 

not be beneficial, some authors developed cubic models. The model by Fu, Launder 

and Tselepidakis (1987) represents the pressure-strain correlation with cubic terms 

in the anisotropy tensor to try to capture the effect of high strain which could be used 

in flows with high streamline curvature. Speziale et at. (2000) argued, however, that 

cubic terms show little advantage over the quadratic models. This, unfortuna.tely. 

has not been demonstrated in the literature to the author's knowledge for swirling 

flows. 
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2.5.1 Stress redistribution term modelling 

Launder, Reece and Rodi model 

One of the most widely used Reynolds stress closures is that of Launder d al. 

(1975) (hereafter denoted as LRR). The main thrust of their work was to develop a 

successful model for the pressure-strain correlation (2.22). The representation of this 

term takes the form of Chou (1945), whereby a Poisson equation for the fluctuating 

pressure is obtained by taking the divergence of equation (2.18) (note that from this 

point onwards the prime notation for fluctuating quantities has been dropped), 

(2.47) 

This can then be integrated using Green's functions to give p at position x 

p 1 l ( a2 (" -, -,) 2 au; au~) dV --- uu -uu + ----
p - 47r v ax~ax~ l m l m ax~ ax~ lx' - xl (2.48) 

where the primed variables are denoted as being at the location x'. If equation 

(2.48) is multiplied by (audaxj + aUj/aXi) and then ensemble averaging is used, 

an exact equation for IIij {2.22} is obtained. 

<Pij,l 

<Pij,2 

+ ~ { [!~p, (aUi + aUj) _ p' (aUi + aUj)!l, (!)] dA (2.49) 
47r JAr an' aXj aXi aXj aXi an r 

, y: " 

The meanings of the above terms are provided by Hanjalic and Jakirlic (2002). ¢ij,\ 
represents the return to isotropy of non-isotropic Reynolds stresses in the absence 

of mean strain, body force and wall effects. The pressure fluctuations force the 

Reynolds stresses into a more isotropic state. This term is more commonly known 
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as the 'slow term'. 4>ij,2 is the isotropisation of the production of the Reynolds 

stresses by the mean strain rate. The pressure fluctuations effect the dominant stress 

component by feeding it into the weaker components, returning the turbulence to a 

more isotropic state. The pressure fluctuations also slow the feeding of turbulence 

production into the dominant stress component. This term is more commonly known 

as the 'rapid term'. 4>ij represents 4>ij,l and 4>ij,2 in the region of a solid wall. Here. 

the boundary acts so as to impede the isotropisation of turbulence by the pressure 

fluctuations (known as the blocking effect; Hanjalic and Jakirlic (2002)) increasing 

turbulence anisotropy. However, the pressure fluctuations are reflected from the wall 

surface, increasing the isotropisation of the turbulence. Despite this, the blocking 

effect is the larger of the two, leading to strong Reynolds stress anisotropy in the 

near wall region. 

To close the 4>ij,l term, Launder et al. (1975) used the model of Rotta (1951), 

(2.50) 

where C1 is an empirical constant. It can be seen that this model is negatively 

proportional to the anisotropy tensor, 

(2.51 ) 

having the effect of increasing the isotropy of the turbulence by a measure of its 

anisotropy. The rapid term of the pressure-strain correlation, 4>ij,2, is also modelled 

following an approximation by Rotta (1951), 

au, 
4>ij,2 = -a (b,jmi + b,imj) 

Xm 
(2.52) 

Launder et ai. (1975) expressed the fourth rank tensor, b,jmi, as a linear combination 

of the Reynolds stresses, 

b,jmi a<5,jum ui + f3(<5mIUitLj + 871ljUiUl + 8i1 tLm tLj + <5ij tLm tLd 

+ C2<5m i tL l U j + [7/8mi <5'j + l~(c5ml<5ij + 8mj 8il )]k (2.53) 
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where 

1 
Q 1l(4C2 + 10) 

f3 
1 

--(2 + 3C2 ) 
11 
1 

TJ - 55 (50C2 + 4) 

1 
v 55 (20C2 + 6) (2.54) 

and C2 is an empirical constant. Combining the above equations leads to the model, 

(2.55) 

where Pij represents the production of turbulence, 

(2.56) 

and 

(2.57) 

Launder et al. (1975) noted that equation (2.52) did not approximate the effect of the 

mean straining on the pressure-strain term near the wall where high mean velocity 

gradients vary rapidly. The surface integral term in equation (2.49) becomes very 

significant if the size of the energetic turbulent eddies is of the order of the distance 

from the wall, hence the surface integral was re-expressed for a plane wall as, 

(2.58) 

where X2 is the coordinate normal to the surface, x* is the image of point x behind 

the wall. This equation was modelled as 

(2.59) 
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where ctjmi is expressed in a similar way to bljmi in terms of the Reynolds stress('s, 

(2.60) 

Equation (2.59) shows that the effect of the wall is dependent on the anisotropy 

tensor (2.51) which gives a term similar to equation (2.50) but with the opposite 

sign, increasing the turbulence anisotropy. The mean strain is also represented by 

the second term in (2.59) and contributes to the wall effect. 

Launder et al. (1975) modelled the effect of the mean straining as 

aUl ( ) C f ( ) f ( aUi aUj ) -a ctjmi + ctimj = 2 Pij - Dij + (k -a . + -a. . 
Xm X J X z 

(2.61) 

The function f(l/x2) in (2.59) is a wall proximity function that must decrease to 

zero as the distance from the wall is increased. I is the length scale of the energy 

containing eddies and is approximated by Launder et al. (1975) a..'l the dissipation 

length scale k ~ / €. The values attributed to C~ and C~ are 0.5 and 0.06, respectively, 

and with a coefficient of 4.0 for the wall proximity function the final model for near 

wall effects is given as, 

(2.62) 

The rest of the work by Launder et al. (1975) is for closing the turbulent diffusion 

term (2.24) and dissipation rate tensor (2.23). Launder et al. (1975) only mod­

elled t.he turbulent diffusion part of the former, making the assumption that for 

high Reynolds numbers, diffusion by pressure fluctuations is negligible. Hence, the 

isotropic model of Daly and Harlow (1970) was used, 

(2.63) 

where ('.~ is an empirical constant. Another model wa..'l derived by Launder et al. 

(1975), by simplifying the transport equation for the third moments. This was 
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Coefficient Value 
C1 1.5 
C2 0.4 
C f 

1 0.5 
Cf 

2 0.06 
Cs 0.25 
Cd 1.44 
Cf.2 1.90 
Cf. 0.15 

TABLE 2.3: Values of coefficients used in LRR model, Launder et al. (1975) 

shown, however, to provide little improvement over the Daly and Harlow model. 

The dissipation rate tensor, was modelled under the assumption of isotropic dissi­

pation, 

(2.64) 

where f is the dissipation rate. Launder et al. {1975} modelled this term from its 

transport equation (2.36) applied at high Reynolds numbers as, 

(2.65) 

where Cu Cd and C(2 are all empirical coefficients. The empirical coefficients used 

in the model were decided by numerical experiments, and are shown in table 2.3. 

Test cases used for model calibration included homogeneous shear flow, near wall 

turbulent flows and decay of grid turbulence (see Launder et al., 1975). 

Speziale, Sarkar and Gatski model 

A newer method for closure of the Reynolds stress transport equations wa.." proposed 

by Speziale et al. (1991). This model, like the LRR model before it, focuses 011 

the pressure-strain correlation, deriving its form, however, from a coordinate frame 

invariant methodology, meaning that the physics of the model do not differ under a 

change of coordinate system. By studying the ca..,",e of plane homogeneous turbulent 

flow, a nonlinear form was derived for the rapid pressure-strain correlation term 

that is quadratic in the anisotropy tensor (unlike the linear LRR model). Using 

LEEDS !J~!\'r-R:~.\TV UBPc1R 
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the above conditions, a simplified model of the general pressure-strain correlation is 

formed, 

IIij = Clmij + C2f ( aikakj - ~amnamnOij) 
- (- 2 ) +C3kSij + C4 k aikSjk + ajkSik - "3amnSmn8ij 

+c5k {aik W jk + ajkWik), (2.66) 

where the coefficients Cl, C2, C3, C4 and C5 are all constants, and 

(2.67) 

(2.68) 

are the mean strain rate and vorticity tensors, respectively. Calibration of the 

coefficients from equation (2.66) was performed by considering several constraints 

(Speziale et at., 1991); namely agreement with, 

1. the asymptotic limit of small anisotropy; 

2. Rapid Distortion Theory (RDT) for initially isotropic, homogeneously strained 

flows; 

3. experimental values of homogeneous shear flow in equilibrium; 

4. RDT for rotating shear flows; 

5. experiments on the return to isotropy problem of initially anisotropic flow. 

Firstly the coefficient of the slow term, Cl was replaced by, 

{2.69} 

where CJ and C; are empirical constants. This representation of c) was formulated 

t.o takp into account areas of the flow where turbulent production, P, is greater 

t.han the dissipation rate. The coefficient, C3, wa.o;; replaced by terms that include 
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Coefficient Value Constraint 
C1 3.4 5 
C2 4.2 5 
C3 0.8 2 
C4 1.25 3&4 
C5 0.40 3&4 
C* 1 1.80 3&4 
C* 3 1.30 3&4 

TABLE 2.4: Values of coefficients used in SSG model 

the second invariant of the anisotropy tensor, 

(2.70) 

where C3 and C3 are empirical constants and I I = aijaij is the second invariant 

of the anisotropy tensor. These two changes to the model allow the first constraint 

to be satisfied by making C; and C3 vanish in the limit of small anisotropy due to 

their dependency on the anisotropy tensor. 

Table 2.4 shows the values of the empirical coefficients used in the SSG model and 

the constraint/flow regime that wa..'i used for their specification listed on the previous 

page. 

An added advantage of the SSG model over other second moment closures, including 

the LRR model, is the redundancy of a model for the wall effect term, equation 

(2.58). It wa..'i found that the SSG model performed well without these terms, easing 

computational cost and obviating the need for additional modelling. 

2.5.2 Dissipation term modelling 

Established second moment closures such a..'i the LRR and SSG models, a..-, discussed 

previously, invoke the assumption of local isotropy of dissipation (Kolmogorov, 

1941). This assumption is made by considering the energy cascade from large to 

small eddies. During the transfer of energy from t.he large energy containing eddies 

to the small, any directionality is a..-,sumed to be scrambled by nonlinear pron'ss('s. 

so t.hat. at. t.he small dissipative scales at high Reynolds numbers, dissipation is ef-
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fcct.ivdy isotropic. Equation (2.23) could then be writt('11 as. 

(2.7L) 

whef(~ 

( ,) -'») -.1-

IS the trace of fij. This equation is usually modelled III the S;llll(' malllH'r as its 

two-equation equivalent, (2.42), but the use of equation (2.-JO) is now lIs('d du(' t.o 

the availability of th(~ R.eynolds stresses. Hanjalic and Launder (1972) gavp til(' 

dissipation rate equation as. 

Vi -- = c( -- -U,,"U{-,-
Of. 8 ( k Of ) 

D.Ti D:Ek f O:r, 
(') -')) _. I.J 

with tIl(' first term on the right hand side representing turbulent diffusion of dissipa­

tion; the second term the production of dissipation and the I hird term the dest.ruc­

tion of dissipation. Equation (2.73) was also used in the LRR. model of Launder 

d ai. (1975) with the values of the coeffici(~llt.S C(. C I and C2 as given in table 2.:L 

The assumption of isotropic dissipation may not be valid in flows wll(~n' turhu-

lence is llot in equilibriulll. such as areas dose to a solid wall or in regions of high 

stn'<llltliw' curvature. So d ai. (1999) states that for hOlIlogell<'Ous shear flows. the 

anisotropy of dissipation can be more than 50% greater than the anisotropy of I he 

RCYllolds st.n'sses. Attempt.s at modelling the anisotropic nature of the turbulent 

disspat.ioll for high Reynolds llllml)('r flows are limited, with most calculations still 

using t.he Kolmogorov assumption, preferring to model any tllrlml(,Il('(' anisotropy 

ill t.he pr('ssnre-straiu term. Low Re~rIlolds nmnber models. however. ;U "("() 11 lit for 

t.his anisotropy in t.heir formulation (S('(' Hanjalic and Jakirlic, 20()2), but impos(' a 

gn'<II(')" ("()lnputatiollaJ cost by resolving the ncar wall lurlmlell("('. Dll<~ 10 Ihe limita­

tions of lllo(i<'llillg Ihe pn'ssnrc-st.raill I (~rlll as sLtI ('d bv Speziale et ai. (1991). SOlll(, 

t urlmh'll(T llloddlers ;11,(, looking al I he dissipat.ioll rai<' as an alt('rllat in" t.o illlpwvP 

I Iw (\('('II\"(\('.\' of sccond 1ll00lH'llt dosnn's ill an';ls of high dissipat.iou allis(lI ropy. 
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Current models of anisotropic dissipation rate 

Two methods prevail over the representation of turbulence dissipation. The first 

uses the anisotropy of the Reynolds stresses to give a measure of the anisotropy of 

the turbulence dissipation. The second represents the anisotropy of dissipation iu 

terms of the mean strain and vorticity. 

Hallback et al. (1990) gives an expression for the anisotropy of dissipation, dij , as 

a series of terms involving the stress anisotropy, aij. So et al. (1999) investigated 

the use of this model applied to homogeneous buoyant shear flows. It was found 

that the results for dij correlated with those for aij showing that for these types of 

flow the anisotropy of dissipation has a dependence on aij. It has been reported, 

though (So et al., 1999; Hanjalic and Jakirlic, 2002), that the model of Hallback 

et al. (1990) does not perform adequately in near wall regions of the flow. This is a 

major drawback for wall bounded flows such as cavity flows, where the dimensions 

of the cavity are such that the wall plays an important part in the development of 

the flow. 

Jakirlic and Hanjalic (2002) developed a new closure of the €ij equation (2.23) 

based on the viscous terms within a two-point transport equation of the Reynolds 

stresses. It is shown that the dissipation tensor can be represented in terms of the 

homogeneous dissipation tensor and the viscous diffusion of Reynolds stress tensor. 

The homogeneous dissipation tensor is then modelled by 'blending' the isotropic, 

homogeneous dissipation rate with the same term modified by the stress anisotropy 

tensor. The modelled equation for homogeneous dissipation rate is then modelled 

on a term by term basis that leads to an extended set of terms over the standard € 

equation which does not facilitate speed of calculation. 

The model wa..'1 tested on channel flow and axially rotating pip(~ flow. Although the 

results compared favourably with corresponding DNS data, the flow ill the axially 

rotating pipe ease showed that for rotating flows, agreement was not a..., good a.<.; for 

non-rotating flows. This wa.." attributed to the inaccuracy of the DNS input data to 

the model, although the lack of a mean strain term in the model could have added to 

this problem (as alluded t.o by t.he authors themselves). This model wa.<.; desiglH'd for 
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use in a low Reynolds number formulation of a second moment closure, integrating 

through the viscous sublayer to the wall. This requires more computational points 

in the near wall region, leading to greater computational time; a draw back of this 

model for engineering applications, where a rapid turn around time for acquisition 

of results is vital. 

A model to describe axisymmetric turbulence anisotropy was given by .Jovanovic 

et al. (2003). Here the anisotropy of dissipation is expressed as a function of the 

invariants of stress and dissipation anisotropy and the stress anisotropy itself. Using 

axisymmetric formulations of turbulent quantities, such as Reynolds stress and pro­

duction of dissipation, and using the anisotropy invariant map of Lumley (1978), an 

anisotropic formulation of the turbulence dissipation equation is stated. The model 

was tested for the case of initially isotropic turbulence in uniform rotation and ax­

isymmetric contraction. The model proved adequate for the early time evolution of 

the turbulence but overestimated the decay of turbulence over longer time periods. 

This inability to reproduce the effect of reduced decay of turbulence energy onset 

by the rotation may be due to the lack of any dedicated rotational terms in the 

formulation of the model. 

Lu and Semiao (2003) proposed a model for the dissipation rate equation for use in 

second moment closures. Instead of using constant coefficients in equation (2.73), 

C
f 

1 was re-defined as a function of the second invariant of stress anisotropy. This 

was proposed by reasoning that anisotropy in the large scale eddies promotes the 

transfer of energy in the cascade process to the smaller eddies more readily compared 

to isotropic turbulence. 

The model was incorporated into the SSG model and tested against the standard 

SSG and LRR models on the experimental test cases of a dump combustor and 

an anllular burner. Both of the cases were swirling flows. It was shown for the 

weaker swirling flow of the dump combustor, the anisotropic dissipation rate model 

performed better than the SSG and LRR models alone in predicting the mean flow 

and Reynolds stress quantities. For the annular case, little improvement was shown 

when using the new model. This was due to the increased level of anisotropy of til(' 

flow compared to the annular case, making the anisotropic terms in til(' dissipation 



ral(' model more effective. In both ca.ses. t he SSG model WitS proV(,ll t () ~iv(' sllJwrior 

prediction a.gaiJlst experimental data over the LRR lllodel. 

As mClltiOlwd earlier, the second type of dissipation rat<' lIloddling rPiat('<\ tll(' 

anisotropy of dissipation to the mean strain and vorticity of the flows. One sllch 

model was developed by Speziale and Gatski (1997). Here t he authors hypo! he­

sised that the orientation of the large eddies has little effect on til(' Slll([ll ('ddies 

due to 'non-linear scrambling' of directional information in the ('llerg.Y (";\s("([<\('. and 

that mean strains cause the anisotropy at the smaller suiles. A lllodf'l of the ('xad 

transport equation for the dissipation rate tensor was preseutcd. hut for ('as(' of 

implementation, a transport equation for the scalar dissipation rate was (krived. 

SpeJl;ial(' and Gatski (1997) developed an algebraic anisotropic dissipation rate lllod('1 

t.hat was nonlinear in the mean velocity gradiellts. This wa..., incorporat ('d into t IH' 

transport equation for the dissipation rate and t('sted against the 'isotropisatioll of 

production' (IP) model of Launder d ai. (1975) for homogcneous sh(~ar flow with and 

without rotation. The new algebraic model was shown to perform l)('Un than the 

IP model (and standard SSG model), especially for rotating flows wlH'n ('olllpared 

against DNS and LES data. For flow in a square duct.. the new model improv('d 

the standard SSG model by removing extra secondary flows that wen~ not pn's('llt 

ill t.he DNS data provided. 

Dll(~ to its J)('rf()rmance in rotating flows (of which swirling flows cOllstitut.(~ a spe­

cial tYI)(' of rotating flow), the anisotropic dissipation rate model of Spezial<~ and 

Cat.ski (1997) was chosen for inclusion in the present work. The model has only two 

addit.ional closur<' coefficients over the standard dissipation rate lIlodd. dcspit (' t h(' 

extra !'('rIllS involved. Also, lWC(\IlS(' of the lack of IlS(' of anisotropic dissipation rat(' 

lllo(i<'ls fl.)!' silllulat.ing swirling flows, wit.h the ('x('ept.ion of' Lll and S('miao (2(lI U). 

the pnforman("(' of the modd by SpcJI;ial(' a.nd Gatski ill rotat ing flow advocal<'s its 

usage hCfT. The lllodd is discllssed in greater dd.ail ill the followillg S('ctiOll 
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Speziale and Gatski (1997) model 

The Speziale and Gatski (1997) model for anisotropy of dissipation, as stated pre­

viously, is formulated in terms of the mean strain and vorticity tensors. Firstly the 

transport equation for the dissipation rate tensor, 

(2.74) 

needs to be modelled for fijkl and N ij . fijkl is modelled by expressing it as a linear 

expansion with the anisotropy of dissipation tensor. dij . N ij is modelled using a 

relaxation model to give the correct return to isotropy in the absence of any mean 

straining on the flow. These two considerations lead to the modelled equation for 

transport of the dissipation rate tensor, 

8Eij 

at 

where Sij and Wij are given in (2.67) and (2.68) and 

(2.75 ) 

(2.76) 

is the anisotropy of dissipation. Despite providing a model for the dissipation rate 

tensor, the solution of five additional transport equations is required for a three 

dimensional calculation, potentially increa..')ing the numerical stiffness of an already 

stiff equation set. For engineering applications, this additional computational cost 

is disadvantageous. Instead of finding the solution to equation (2.75), an algebraic 

approximation to it is used, requiring the solution to only a modified transport 

equat.ion for dissipation rat.e. By studying local homogencous, equilibrium flows, 
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Speziale and Gatski formulated an equation for the anisotropy of dissipation, 

(2.77) 

+ 

where P is the production of turbulence energy and, 

C = 1 1 + 2 IT a
3 + IT e _ ~ IT a 3 - IT 2 [ ( 

7 1)2 (1.5 \)2]-\ 
JU 15{ C(:) + ~ - 1) C(5 + ~ - 1 3 C(.') + ~ _ 1 TJ ' 

- - 1/2k (: - (W· ·W··) -~ - ZJ ZJ • 
( 

(2.78) 

(2.79) 

For flows with mild departures from equilibrium, Speziale and Gatski usc the model, 

(2.80) 

with C,: ~ 0.094 for shear flow in equilibrium. 

By making usc of the transport equation for the dissipation rate tensor (2.75), a 

transport equation for the dissipation rate is found. The form of the equation is 

similar to the standard equation (2.73), with the modification of the coefficient Cd 

taking into account the effects of dissipation rate anisotropy, 

(2.81) 

where 

(2.82) 

and 

3 (14 16) 
0' = 4 IT a3 - 33 (2.83) 

The closure coefficients for the anisotropic dissipation rate model are shown in tabl(' 
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Coefficient Value 
C( 0.15 
Cd 1.0 
C(2 1.83 
C(5 5.80 
C* 

J.l 0.094 
Q3 0.6 

TABLE 2.5: Values of coefficients used in the anisotropic dissipation rate model of Speziale 
and Gatski (1997) 

2.5 and were reached subject to the following requirements (Speziale and Gatski. 

1997). 

1. The value of 0.15 for C( was set to agree with the Von Karman constant for 

boundary layers. 

2. Cd has a value of unity so that the turbulent time scale grows monotonically 

with time as t --t 00 to agree with the limit of local isotropy. 

3. C(2 was found by analysing the decay of isotropic turbulence to give a value 

of 1.83. 

4. Cd) was found by studying the decay of initially anisotropic turbulence in the 

small scales, to an isotropic state. 

5. Q:J was found by studying DNS data of homogeneous shear flows. 

To complete the closure, equation {2.81} is coupled to the Reynolds stress transport 

equation {2.21} through {2.76}. 

2.6 Variable density turbulence models 

To predict turbulent flows where temperature variation is significant - such as those 

involving chemical reaction, combustion or other forms of heat transfer - it is nec­

essary to make allowances for any corresponding variation in fluid density. For heat 

t.ransfer in liquids, this may not represent. a problem if densit.y changes are sllla.ll, 
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and conventional modelling may be used. In gasses, however, density change is large 

and can not he neglected. 

If conventional Reynolds decomposition is used for the turbulent density. splitting 

into its mean and fluctuating components, many terms involving p' appear in the 

turbulence equations (such as Reynolds stress equations). These terms are diffi­

cult to model (Libby and Williams, 1994) due to their complexity, and if they are 

neglected, important physical processes are removed. 

The introduction of density weighted averaging by Favre (1971) instead of using COIl­

ventional averaging provides equations with a more compact set of terms that allow 

a more simple physical interpretation. They also avoid the evolution of IIlultiple 

terms involving p'. Density weighted, or Favre, averaging is introduced below. 

2.6.1 Favre averaging 

For variable density flows, Favre averaging provides a more convenient set of equa­

tions to solve, similar to those when using ensemble averaging for constant density 

flows. Using the notation of Jones (1979), Favre decoIIlposition and averaging is 

defined as, 

PU~' = 0 
z ' 

U~' ~ 0 z T , 

T = T +T" 

(2.84) 

where T is the temperature, tildes represent Favre (density weighted) averaging 

N 
_ PUi 1. 1 '" ( )1Tt 
Ui = --=- = = hm N ~ PUi 

P P N-+oo m=l 

(2.85) 

(in terms of an ensemble of N clements) and primed variables represent their fluc­

tuating (turbulent) component. The above definitions can be used t.o descrihe t.he 



48 

relationship between Favre and conventional ensemble averaging thus. 

Ui Ui + U~' 
--- p' U~ p' U'. 

pu~U'. PU"U'~ + t J 
t J t J -

P 

U~' _P'U~ 
t P 

p'U~' p'u~ (2.86) 

Using equations (2.84) to (2.86), it is possible to express the equations of motion 

for variable density flows, the steady-state continuity equation of which is, 

8 ( __ ) 
-8 p'l.Lj =0, 

X· J 

with the steady-state momentum equation given by, 

8 (_ _ _ ) _ 8p 8 (_ _ -;;-;,) 
-8 PUjUi - --8 + -8 aij - puJ,ui Xj Xi Xj 

(2.87) 

(2.88) 

where aij is the mean viscous stress tensor. As with conventional Reynolds aver-

aging, a closure problem exists - the appearance of the pu'Ju~' term has no explicit 

definition. Again, various forms of closure are available, from two equation turbu­

lence models to full second-moment (or Reynolds stress) closures. For the variable 

density flows considered in chapter 6, the Reynolds stress modelling procedure is 

used as described below. 

2.7 Reynolds stress models for variable density flows 

From .Jones (1979), and equation (2.20), the variable density Reynolds stress equa­

tion can be expressed as 



49 

+ p' __ 1 + __ J (
aull au'~) 
aXj aXi 

~'---""'v __ ---"J 

stress-redistribution 

viscous destruction 

(u~' ap + u'~ ap ) . 
aXj J aXi 

(2.89) 

Equation (2.89) has similar groups of terms to equation (2.21), with the addition 

of the last term involving u~' - equal to zero in constant density flows. As with its 

constant density counterpart, this equation can only be solved by modelling all the 

terms on the right hand side of (2.89) bar the first.. 

Modelling of the various terms in equation (2.89) is conducted in the same manner 

as for constant density flows where the density weighting is assumed to include the 

influence of density variation (see Jones, 1979; Gu, 1993). 

2.7.1 Stress redistribution term modelling 

The stress redistribution term due to fluctuating pressure (or pressure-strain cor­

relation) IIlay be modelled as for constant density flows. A Poisson equation for 

fluctuating pressure can be found (see Chou, 1945) which, for variable density, takes 

t.he (t.ime dependent) form 

(2.90) 

where t.he gradient operator includes the time derivative. This equation is much 

more eomplex than its constant density counterpart (2.47), and is t.hus 1<'SS desirable 

for use ill t.he pressure-strain correlation (2.90)(s('(' Jones, 1979). In an effort to keep 

t.he models as simple as possible, variable density versions of the ("Ollst.ant. dpllsity 
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models are used, thus the pressure-strain term is re-expressed in density weighted 

form 

p' (au~I + au,}) = p[pl (au~I + au'})]. 
aXj aXi p aXj aXi (2.91 ) 

Equation (2.91) is now of the same form as equation (2.22) and similar models may 

be used. 

LRR model in variable density form 

The LRR model of Launder et al. (1975) can be recast into variable density form 

for the pressure-strain model. As in constant density flows, the term is split into 

the 'slow' and 'rapid' terms. The LRR model also accounts for the near wall region, 

where eddy squashing occurs. Thus the pressure-strain term is expressed as, 

--------
- [pI (au~I au'] ) ] 
p p aXj + 8Xi = ¢ij,l + ¢ij,2 + ¢ij,UI (2.92) 

where ¢ij,l is the slow term, ¢ij,2 is the rapid term and ¢ij,w is the wall-effect term. 

From Gu (1993), the LRR model is re-written as 

(2.93) 

(2.94) 

(2.95) 

where 

(2.96) 

and 

(2.97) 

with P given by the trace of Pij. The closure coefficients for the model are given in 

t.able 2.3. 
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SSG model in variable density form 

The SSG model of Speziale et al. (1991) can also be used for variable density flows 

a.~ outlined by Li et al. (2003). As mentioned previously. the SSG model dops Bot 

include a term for the wall effect, ¢ij, but relies on its nonlinear formulation to 

account for this phenomenon. 

The slow and rapid terms for the SSG model are written for variable density flows 

as 

-fij (Cd Ci~) lliJ (2.98) 

C2p< (aikakj - ~amnamndij ) + Ii (C3 + C:iII~) kSij 

( 
- - 2 - ) +C4P aikSjk + ajkSik - "3amnSmn8ij 

+Cspk ( aik Wjk + ajk W ik ) , (2.99) 

with the mean strain and vorticity tensors given by 

(2.100) 

(2.101) 

and the stress anisotropy tensor by 

---
U~/u/~ 1 

a .. - _1_) - -8 .. 
1) - 2k 3 1)' (2.102) 

The dosure coefficients used for the model are given in table 2.4. 

2.7.2 Turbulent diffusion modelling 

The t.urbulent diffusion of the Reynolds stresses in equat.ion (2.89) can be mod­

elled using t.he gradient diffusion hypothesis of Daly and Harlow (1970). G u (1993) 

st.at.ps t.hat t.he turbulent. diffusion dup to pressure fluctuations is small and t.hp main 

cont.ribut.ion is fro III the t.riple correlation tprm -"jYlL~'tL'JU~. The gradi('ut diffusion 
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equation (2.63) can be expressed in variable density form to give the entire model 

for the turbulent diffusion term 

= - C -(J1.l"U" I ) 
a ( k ~a;;;;;') 

aXk 8 E k I aXI 

(2.103) 

where Cs is the same closure coefficient as given in table 2.3. 

2.7.3 Dissipation modelling 

Previously, it was shown that two different types of modelling for dissipation of 

turbulent kinetic energy are available. It is common to invoke the Kolmogorov 

hypothesis of local isotropy for high Reynolds number flows given as 

, J ,uz - _ 

( 
au'~ a ~') 2 

a ki aXk + a kj aXk = PEij = :3 pE8ij (2.104) 

which is then used in equation (2.89). The other way of modelling dissipation is to 

assume that the non-linear squashing and stretching of turbulent eddies, reducing 

them in size to smaller and smaller scales, does not produce isotropic dissipation 

(Speziale and Gatski, 1997). 

The anisotropic dissipation model of Speziale and Gatski (1997) is again used for 

variable density flow. The expression integrated into the Reynolds stress equation 

(2.89) consists of the isotropic part and the deviatoric part 

(2.105 ) 

The variable density form of the algebraic equation for dissipation anisotropy IS 

identical to the constant density form [due to its algebraic nature and the variation 

in density incorporated in equation (2.105)] and is represented in equations (2.77) 

to (2.80). The closure coefficients arc given in table 2.5. 

The transport equation for the scalar dissipation rate is expressed for variable density 
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flows (Gu, 1993) as 

where the third term on the right is a consequence of Favre averaging (see Jones, 

1979), and not present in constant density flows. The value of the closure coefficient. 

Ct1' is dependent on the use of either an isotropic or anisotropic formulation. For 

the isotropic model C:1 = Cd and equation (2.104) is used in the Reynolds stress 

equation with the corresponding value of Cd for the LRR or SSG models. For 

anisotropic flows, C:1 is given by equations (2.82) and (2.83). 

2.7.4 Fluctuating velocity model 

In equations (2.89) and (2.106) the fluctuating velocity, u~', appears which leads to 

an open set of equations. To model this term, relation (2.86) is used to express u~' 

in terms of p'u~. Jones (1979) models this term using a complex algebraic equation, 

which itself requires additional modelling. However, Jones reduces this equation to 

a more simple form, 

(2.107) 

by making the assumption that density fluctuations and mean pressure gradients 

are independent. The closure coefficient, C<jJ1, is empirical and is given the value 

0.22. 

2.8 Summary 

This chapter has discussed the various equations needed to describe practical engi­

n<~ering fluid flows with turbulence models employed, using approximations ba.,.,ed 

011 physical reasoning, to dose the RANS equations. A full second moment clo­

sure, using either the popular LRR. model or the SSG model, is given with a more 

modern approach t.o modelling the dissipation rate of turbulent killetie energy, llS­

ing anisot.ropic methods. The Favre averaged equivalent.s of tlU'se models are also 
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presented to account for fluid flows - such as the combustion problem reported ill 

Chapter 6 - where variation in density is important. 
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3.1 Introduction 

To find solutions to the equations of motion presented in Chapter 2. it is W'("('SS;}I)' 

to g;erwrat.(~ complimentary discrete equivalents that can be s()h'(~d efficiellt ly via a 

computer. Several means exist for discret ising such equations. namely the .fini.t( 

rli.!Te7'e(u:(' (Book, 1981), finite element (Pironeau. 1989) and .finite l'oi1l7111' Illethods 

(Pataukar, 1980). 

The finite difference approximation turns continuous differential pquations into a sd 

of discrde difference equations based at nodal points. The nodes are a sd of poillt s 

sit.uated within the calculation domaill of the flow field of interest, 'salllpling' t.h(' 

characteristics of the flow at that point.. The finit(, diff('l'<'llc(' lllet hod ilpproximaf<'s 

variations in flow variables by using Taylor s(']'ies expansions trlllH:ated at a sllit a1>h' 

levd of accuracy. This method, although conscrvative on a dOlllain basis. do('s 

not guarante(~ local conservation, in that momentuIll and mass an~ not identically 

comwrved in the control VOlUllWS surrounding individualnod('s Book (1981). 

The tinite eleJllent method divides the calculation domain into a set of contiguous 

'('hmteuts' where interpolation functions are used to d('scribe the variation of tiw flow 

variables over the ekment. These functions are tlwn assullled to satisfy the goverlling 

('quaJions ('x;tct.iy with the presence of a r('sidual which is t hell minimised Ilsing 

w(~ight.ing methods. This provides the coefficient.s used in the interpolat.ion funci ions 

<twllwn('(' a solut.ion. As with the tillite difference md.hod. t.he tinit.e dement llH't hod 

is only ('olls(~rvative over tll<' whole calculation domain and not locally - which lllay 

h~ad to unphysical solutions if car(' is not maintained. The computational difficult,v in 

impkm('nting this t ('chniqlle is also higlH'r than that of the finit-<, differcnce ll}('t hod. 

rel,ving mainly Oil llllstrnct.ur('d. triangular or tdrahedral lll('shes. TIH's(' types of 

('1('1\\('I1t.s an\ however, highly advantageolls for 11se in complex geomdries, TIl(' 

lll('/ hod has be(,11 applied in man:\, flows sH('h as free sllrfa('e flows (\\'alkh''y d al.. 

:!()() 1), alld (,'Ivit.\' flows (Faw<'iliIlllli et of .. 20()2). 

'I'll(' {init(' \'OIUIll<' method, like finite diffcITJlcillg, Sill> diyid('s the calclllat.ioll do­

main illln a set ()f cont.rol volumes wherein lie t.ll(' ("olllput.ationaillodes, Unlike til(' 

pJ'('vious Illet hods, t.hp ('quat.iOlls of 1ll0tiOll are inkgrated ()\'('r a control VOhlllH'. 
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meaning that momentum and mass are conserved locally within it. and also in the 

calculation domain. The method is also more intuitive and simple to implement. 

For these reasons, the finite volume approach is adopted as the discretisation method 

of choke and is described below in more detail. The ba.'Iic formulation is presented 

along with discretisation schemes for the troublesome convection terms. To solve 

the resulting algebraic equations, the pressure correction method is employed in 

the form of the PISO (Issa, 1985) and SIMPLE (Patankar and Spalding, 1972) 

algorithms. Finally, this method is applied to two-dimensional, laminar test ca.'Ies. 

3.2 The Finite Volume Discretisation Method 

The finite volume method is used to discretise the governing partial differential equa­

tions encountered in this thesis. Some authors such as Patankar (1980); Versteeg 

and Malalasekera (1996); Ferziger and Peric (2004) give a good general introduction 

to the method; an outline only is provided below. 

The conservative form of the steady state momentum conservation equation (2.2), 

V· (puu) = 
"--....-' 
convection 

-Vp 
~ 

pressure gradient 

+ V . (J-tVu), 
~ 

diffusion 

(3.1 ) 

can he integrated, using Gauss' theorem, over the two dimensional control volume 

shown in figure 3.1, where P is the central nodal point, E,W,N,S are the surrounding 

nodes and lower case letters denote control volume faces. 

Splitting the integral into convective, diffusive and pressure gradient components, 

these can be approximated as, 

fs(puu) . ndS 

f". ILVU . ndS 

fspndS 

= (puu)e~Ye - (puu)w~Yw + (puv)n~xn - (puv) . .,~x . ., (3.2) 

a a a D 
= (JL-U)f'~Ye - (J-t-a U)w~Yw + (J-t-a U)n~xn - (IL!:lU)s~Xs & x Y ~ 

= Pf'i~Ye - Pwi~yw + p,J~Xn - P ... j~X!i 

where it is assumed that variables integrated over the faces of t.he control volullU's 
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FIGURE 3.1: A control volume in 2D u.ed in the' finite volume 1I1 thocl. 

are constant. Expressing (3.2) in x and Y components gives 

.7: component: 

Y component: 

(PU) e'l.teb.Ye - (pu)w71w b.yw + (PV)n'l.1'71b. xn - (pv)s1.t s b.:rs = 

(It g~) e b.Ye - (It Z~) w b.Yw + (It ~~ ) n b.X 71 - (It ~~ ) s b. :r;.~­
[(pb.Y)e - (pb.Y)wl 

(PU)eveb.Ye - (pu)wvwb.Yw + (P'U)71 vnb.xn - (PV)SV8b..r; .~ = 

(ltg~)eb.y - (ltg~)wb.yw+ (ltg~)nb.Xn- (ltg~) 8 b.xs-
[(pb.x)n - (pb.x )8l· (3.3) 

The t.erms n the left hand ide of these equations, preserve the conservation of 

momentum t.hrough the ontrol volume faces due to advection, while the t('I'lns 

011 t.he right band sick conserve momentum due to diffusion effc'cts and prf'SSllr<' 

gradie'llts n spectiV()ly. 

The' pr<'S('llC(, of partia.l derivatives ill equations (3.3) meaus t.hat furtiH'r discrd.isa­

(,jon is required before (11 lllin ar) algebraic equation. f( r tlH' dqWlHi<'1l1 variel hlP" 

CiUl 1)(' (bt.aiue<i. One llleth d f relllO iug t}w partial d('ri at iv('s is to di~CT('( is(' 

t.lH'1ll Ilsing a pie ('wis(' lin ',U' int.erpolation seh lllP. Fe r all, ' s('alar variahl<'. (p. its 

gradicut.s a.( the' fa('(' of a (' ntr I VOhlllH' ('all \)(' ('XI)[{'ss('d ill (('rIllS of (li(' diff n'Il{,' 



bdweCll its value at the no(h~s adjacent to the fac('. I.e. 

a¢1 = ¢F_~¢P. 
ax ( i'J.r.(' 

wlwr(' f5:E(" is the distance from node P to node E as shown in figure J.1. All of t h(' 

diffusioll terms in equations (3.3) may he approximCih'd in Ci similCir manner. This 

method of discretisation is more commonly known CiS C(I/tral DiiffTPTlciTiq. which 

approximates the gradicnt as a linear profile. and so the int('fpolation is first oni('1" 

with a second order truncation tcrm. In CFD circles. it is wcll known that t h(' order 

of accuracy of a particular discretisation schclIw is givcn in U'nns of its leading 

truncation term, thcrefore central diffcrcncing is said h) b(' s('cond oni('1" accuratc. 

The ccntral diffcrencing method has 1)('('11 sllcc(,ssfllily lls('d for the' disn<'lis;lt i()n of 

diffusion t.erlllS lwcftus(' 110 directional information is IJ('('(kd, diffusion l)('illg a I"all-

dom motion of particles p(~rllleatiIlg all directions ('quail.\' in a uniform llwdiulll. Tlw 

r('ason for its success llllllIerically is due to its ordcr of accuracy, and delllOlls tra t ('S 

t.hat w lwn using interpolation forlllula~, it is appropriate to us(' at l('ast an interpo­

lat.ion that is of the salllC order as the dcrivativ(' terms in the original continuulll 

('quation (S('(' Press et ai., 1993). 

As mcntioncd prcviously, nonlincarities are present in equations (:3.3) d1l(' to the 

('ollv('dive terms. Methods of discl"dising the convective terms are reviewed lwlow. 

3.3 Convective Discretisation Schemes 

For t.he ('ollv('d i v(' t.nllls in t.h(' illtegral equations (3.3). the dependent variable' is 10-

eat('d ;1 t. tlw fac('s of tIl(' control volume. tT llfort ullatcly, in the fini t!' volullle III <'I hod. 

\";triahle values ar(' st.on'd at the n~nt r(' of cOlltrol volullles. As such. llH'thods for 

approxilll;lIing cOlltro\ VOhlllW fac(' fiux('s (ve\ociti('s) in krms of t Iw l10dal vahu's 

are ll('('<icd. 
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3.3.1 Central Differencing 

Following Patankar (1980) the velocity at the face of a control volume can he ex­

pressed using the central difference approximation. At the east face, for examplp, 

(3.5) 

which assumes that the east face lies midway (denoted by the premultiplying factor 

of one half) between nodes E and P. Several authors, (Patankar, 1980; Versteeg 

and Malalasekera, 1996; Ferziger and Peric, 2004) have noted a flaw in the central 

difference scheme for certain flows. 

The ratio of convective flux, F, to diffusive flux, D, in the control volume is known 

as the Peclet number, where 

Fe,w = (pu~y )e,w (3.6) 

are the convective fluxes at the faces of the control volume, and 

D - (J-L~Y) 
e,w - 8x e,w ( J-L~X) Dn,s = -8-

Y n,s 
(3.7) 

are the corresponding diffusive mass fluxes. The Peclet number at the control volume 

centre for the u-momentum equation is given by 

F pu 
Pe= - = --. 

D J-L/8x (3.8) 

Patankar (1980) performed a simple numerical experiment, the outcome of which 

showed that if Pe > 2, the central difference scheme yields unphysical solutions for 

the diseretised equations. Amongst the observed effects wa.."i the lack of bouuded­

ness of the variables at the control volume faces. That is, in the absenc(' of ma.."iS 

Hux sources or sinks, the face values calculated lay outside th(' upper and lower 

boundaries of the adjacent nodal values. 

Til<' laek of robustness of the central difference scheme for flows with Pc > 2, 

subs('quently motivated the search for different methods for obtaining physi('ally 
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realist ic valll(,s of t he velocities at t]1<' control volulIl(, fil("('S. 

3.3.2 Upwind differencing 

One solution to the problems experienced with central differencing is to 11S(, ['IJlI'iT/(/ 

differpncing (spp Ferziger and Peric, 2(04). This is a zero order interpolation for til(' 

value of the velocity at the node in the upwind direction on to the coutrol VOllllIl(' 

fac<~. The implementation thus requires a knowkdge of the direction of th(' How 

be/ore discretisation can take place. Taking the left hand sid" of equatious (3.3) for 

'/I, mOIIwlltuIIl and expressing it in terms of the mass HlIX('S F. til(' convective I<'rllls 

hecome, 

To express the face velocities in terms of the nodal vahws. the direct ion of til(' 

:C=) F>O 

• p 
I 

I 

F<O<=J: 

• E 

FI(;IIHE 3.2: llS(' of control voluIIlc facc mass flux(,s in til(' l:p\\'jw! scli(,JlH'. 

How is found by making use of the mass fluxes. Referring to figun~ :L2, if Fe is 

p()sit.ive(II('gative), U e is given by the value of u at node P(E). In sUIllmary, this 

method C:tll ])(' used to express the control volume fac(, values for Il velocity a.'·; 

follows. 

llUl.r(F:. 0) lip - llw.r( - Fc. O)ur. 

llul.r(Fll"O)ul\' - rrw.r( -Fll " O)UI'. 

FII I/,/I 

F,II., 
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where the max(x, y) function finds the largest of the two values x or y. Incorporating 

equations (3.10), (3.6), (3.7) and (3.4) into equations (3.3), leads to the following 

general discretisation equations for u and 'lJ momentum, 

apup 

apvp 

where 

aEuE + awuw + aN uN + as Us - [(P~Y)e - (p~Y)w] 

aEvE + awvw + aNvN + asvs - [(p~x)n - (p~x)s] 

aE = max( -Fe, 0) + De , aw = max(Fw, 0) + Dw 

aN = max( -Fn, 0) + Dn , as = rnax(F.~, 0) + Ds 

(3.11) 

ap = aE + aw + aN + as (3.12) 

are the coefficients of the variables at the nodes E, W, N, Sand P. 

Now that the discretised form of the integral equations (3.3) is complete, it should 

be a simple matter of moving on to their solution. There are, however, issues with 

the upwind scheme that require further investigation and discussion. 

Limitations of Upwind differencing 

Despite overcoming the problems associated with central differencing, the upwind 

scheme has some serious numerical drawbacks of its own (see Leonard, 1979). 

A discretised, one dimensional equation, without source terms, for the transport of 

a scalar variable, ¢, may be obtained in a similar manner to that resulting in equa­

tions (3.3). Starting with the convection-diffusion equation for ¢ in one dimension 

(replacing partial with full derivatives), 

d d ( d¢) -(pu¢) = - IL-
dx dx dx 

(3.13) 

it is possible to form an integral equation by integrating over the one dimensional 

control volume 

j d j d ( d¢) -d (pu¢)dV = -d' IL-
d

_ dV 
\' x \' X X 

(3.1-1) 
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This reduces to a definite integral over a length dx from the left side, w. of the 

control volume to the right hand side e , , 

J~ d(pu¢) 

=> (PU¢)e - (pu¢)w (3.15) 

where Fe,w = (PU)e,w 

The convective terms in equation (3.15) can be discretised using the upwind and 

central difference schemes when a positive 7l. velocity is in effect, thus, 

Upwind 

(3.16) 

Central Difference 

Fe¢E + Fe¢P _ Fw¢w _ Fw¢p = (11- d¢) _ (11- d¢) 
2 2 2 2 dx e dx w 

(3.17) 

The upwind scheme can be rewritten to look like the left hand side of (3.17) to give, 

the final two terms of which can be converted back to their continuous form using 

the reverse discretisation as per equation (3.4), giving, 

It is now possible to re-express the upwind scheme as a central difference scheme 

with an effective diffusion term, jJ" 

Fe¢E + Fe¢P _ Fw¢w _ Fw¢p = (ii. d¢) _ (ii, d¢) . 
2 2 2 2 dx (' dx U' 

(3.20) 
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where 

II. = /I. + (PU)e,w ~ re,w r 2 x (3.21) 

From equation (3.20), the upwind scheme is equivalent to the central differenc(' 

scheme with the physical diffusion coefficient replaced by (3.21) which is larger than 

the physical diffusion by !(PU)e,w~X. This suggests that the effect of the zero order 

interpolation of the upwind scheme introduces additional diffusion in comparison to 

the first order interpolation of the central difference scheme, an effect that is known 

a.<.; numerical diffusion and is characteristic of the upwind scheme (see Leonard. 

1979). 

Numerical diffusion has a detrimental effect on the accuracy of computed results. 

Due to the additional diffusion present, sharp gradients in the predicted variable 

appear smeared, as shown by Leonard (1979) for t.he convection of a scalar step 

profile. It is possible to reduce the numerical diffusion by decreasing the mesh size -

sec equation (3.21) - but this may increase the computational cost beyond t.he scope 

of many calculations to reach a desired accuracy. 

A partial solution to numerical diffusion and lack of boundedness is to formulate 

a hybrid upwind-central difference scheme (Spalding, 1972). For Peclet numbers of 

less than two, the central difference scheme is used, but when the flow conditions 

are such that the Peclet number increases beyond this, upwind differencing is used. 

Even though this overcomes the problems of the central differencing scheme for high 

Peclet number flows, its use affords little improvement over the upwind scheme for 

high speed flows. 

Au improvement to convective discretisation methods wa..., made by Patankar (1981) 

in the form of the Power Law scheme. This scheme is an improved approximation to 

the exponential scheme - the discrete version of the exact solution to the convectioll­

diffusion equation (no sources or sinks) in one dimension. The power law scheme 

enables a higher accuracy approximation of the control volume face values by using 

a fifth degree polynomial in terms of the Peclet number. It allows a more gradual 

variation in control volume face values to be predicted for a wider rallge of Pedet 

1l1lIIlbers bet.ween zero and t.en. For Peclet IlUIllber above ten, the power law SdWIlU' 



f(~vert.s to the Ilpwind scheme. 

Although t.his scheme behaves more like the exponelltial scheme than tiH' Il\·hrid 

SdlPIIH' does, Leonard and Drummond (1995) recent.ly called into (pH'stion th(' va­

lidit.y of llsing any exponential hased scheme. Tbe\ reveah~d that snch Sc\H'IlH'S 

approximate the exact exponential solution of the convection-diffusion equat ion h.Y 

finding (til effective P(~det number t.hat matches the exact solution. Th('\ show('d 

t.hat the use of the effective Peclet number led to an additional art ificial diffllsivit y 

lwing present in the solution. When the effectiv(' Pedet lllllIllwr becollles great.er 

than two, these schemes become equivalent to using t he upwind SdlCIIW for <:011\"('("­

tion, ignoring the dfects of the physical diffusion cOlllpletely. 

L(~om1fd and DrumIIlond also went on to state that tlH'se schemes. alt.hough suitah\(' 

for one-dimensional, steady state, sOllrc(' fn'(' flows (wit h constant. coefficients in tIl(' 

discretiscd equations), are not suitable outside th('se constraints. For example, in 

two dimensional flows. the cross stream diffusion can be V<Ty large if tIl<' P<'cld 

Illllllbcr is too large in the cross stream direction. For cases wllE'lI the flow is obliqu(' 

to the computational grid, the Peclet number could be t()() large in both coordinat.e 

directions, allowing excessive numerical diffusion in both directions. 

Allothel" important point was made regarding the use of exponelltially bas('d schemcs 

whell Ils(~d with turbulen("(' equations. In turhulence models that make 11S(, of t.he 

Buusin('sq cddy viscosity hypothesis (s{~e chapter 2), S<Tious problems occur whell 

the artificial P('clct number becomes greater than two. As stated previously. wlwn 

this happells. physical diffusion is ignored and only the artificialnumcrical diffusion 

is present. For ('ddy viscosity models. such as the k - E model. this would n{'gat (' 

allY calculations made to find the eddy viscosity. mcaning that solutions wOllld 

I)('("olllc ills(~llsitive to the typc of eddy viscosity turhulen("(' model used (LctHlard 

and DrUllllllOll(i, 199;)). 

These arglllllcnts dearly poillt to a lwcd to ill<T('<lS(' the ;1("{"llracy of ("01I\"('("t ive dis­

nd isatioll SciH'llH'S llsing higher onkr illt ('r1'ola t iOllS. whilst k('('piug ;1 rt ificial diffll­

sivity t.o a, lIliuilllulIl. The lwxt s('ct iOIl out lines 1I1('t 11< Ids t 1t;lt ha,\'(' be('n d('v<'iop('d 

llsing t h('s(' i<i('as. 
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3.4 High order convective discretisation schemes 

Review 

Tlw first step to increase the accuracy of the cOllvectiv(' disndisat.ion whibt <l\'()idillg 

th(~ oscillations produced by the central difference scheme, was to illtro<itl('(' a lllor(' 

<!('(:urat,(' upwinding method, Warming and Beam (1~)/()) introduced a second onipr 

upwind scheme (SOUS) where the value of the convected variahl<' at thc control 

volume face is found by extrapolating the variable gradiellt found ;d. two upstream 

nodes, For example 

(:L22) 

(wlwre the computational stencil is shown later in figure 3.:n. 

Tlw sdwme was tested by Biagioli (1998) using thc classical lid drivt'll cavity ;tJld 

sudden expansion problems (S(~(' Ghia ct ai., 1982; Armaly d ai., 1983). For the 

cavity example the second order upwind solut ion was found to agI"<'(' with G hia ", 

ai. 's solution on a grid of size 80 x 80 while a hybrid solutioll could only m;lt-ch 

it for a grid of size 160 x 160. The SO US was capable of reproducing tlw st('('1> 

velocity gradients near the lid, despite a more coarse lIwsh density due to th(' first 

order (lill(~ar) interpolation providing greater interpolative accuracy. More (t("('urate 

pn'dictiolls of reattachment length for the sudden expansion problem weI"<' also ()b­

served when using the SOUS when comparing against the measurenwllts of :\nnal~" 

r'f ai. (1983). 

A third order a(TUrate Scil<'IlH', QUICK, was introdu('('d by Leollard (1979) and 

('Illploys ,tIl upwind biased quadratic interpolation formula. Leonard s\t(}w('d that 

this SciH'IIl<' was ('apa ble of reproducing sharp gradi('llt s. such as ('Oll\"('('t iOIl of a 

st.ep profil<" whilst lIlaintailling ('ollv('div(' stability (st't' lat('1'). D('spik th(' ahility 

tn predict st('('P gradiellts. L('Ollard hilll~('lf produc('d results shO\\"ill,!!, llllpitYsi(";t1 

()s("illat iOllS ill tlH'S(' r<~gi()llS (ll()\\"('\,('r much ~lIlalkr t hall those produc('d h\" ;1 ("(,lit ral 
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Owing to its simplicity of implementation and other schemes' comparative lack of 

accuracy, the QUICK scheme has enjoyed widespread use and ha.., even been incor­

porated into several commercial CFD codes such a.'i FLUENT (Fluent Inc.). Due to 

its significance, and influence on successive schemes, a more complete description of 

the QUICK scheme is presented later. 

A fourth order discretisation scheme was implemented by Lilek and Peric (1995) after 

integrating the governing equations using Simpson's rule. To maintain the order of 

approximation of the integral equations, a cubic interpolation scheme, equivalent to 

a fourth order central difference scheme, wa."l used. For test problems such a.., the 

lid driven cavity, the fourth order scheme was shown to achieve grid independew'(\ 

much quicker than the central difference or upwind schemes upon successive grid 

refinement. Due to the higher numbers of nodes required for interpolation, 15 for 

any control volume face, the computational cost for the scheme is increased over the 

central difference scheme. 

Unfortunately the above schemes suffer from unbounded (see Gaskell and Lau, 1988) 

interpolations, so control volume face values may lie outside those of the neighbour­

ing nodal points in the absence of sources or sinks. This property can give rise to 

unphysical solutions and even computational divergence. There are, however. other 

schemes that have been developed that counteract this problem. 

Total Variation Diminishing (TVD) schemes were first introduced by Harten (1983) 

for time dependent hyperbolic problems. These schemes dictate that the total vari­

ation (TV) of a solution, u, decreases from one time step to the next, 

(3.23) 

where 
00 

TV(u) = L IUJ +l - ujl (3.24) 

j=-oo 

Harten also went on to say that these schemes always provide convergent. ulllque 

solut.ions. Many of the schemes derived using this method include flux limiting tech­

niques to stop unbounded solutions from occurring (s('(\ Van Leer. 1979; Darwish 
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and Moukalled, 2003; Sweby, 1984}. Despite their ability to capture sharp gradients 

in variable profiles, TVD schemes are mainly applied to solution of the time <iep('n­

dent Euler equations for compressible, high speed flows, and do not have a stead~' 

state counterpart. 

For incompressible flows Leonard's QUICK scheme proved very popular due to its 

ability to resolve steep gradients. However, its ability to predict unbounded solutions 

was a major drawback. Gaskell and Lau (1988) changed the way that high order 

discretisation schemes should be conceived by introducing two important method­

ologies: the Convection Boundedness Criterion (CBC) and Curvature Compensated 

Convective Transport (CCCT). The CBC wa...-; defined using physical principles in 

order that convective discretisation schemes should remain bounded. CCCT was 

introduced as a method of providing an explicit curvature correction to the third 

order QUICK scheme of Leonard, to ensure that the CBC was fulfilled. The specific 

methods the authors undertook to implement CCCT resulted in the well known 

SMART algorithm. 

The third order accurate SMART scheme was tested against two cases: convection 

of a top-hat function, and convection of a scalar step, both oblique to the compu­

t.ational mesh. For both test cases, SMART showed superior resolution of the steep 

gradients compared to lower order interpolative schemes, and matched the results 

of the QUICK scheme. However, unlike the QUICK scheme, it wa.'i able to achieve 

physical, bounded solutions whilst maintaining good resolution. Gaskell and Lau 

also included an illustrative tool, the normalised variable diagram (NVD), upon 

which CCCT schemes such as SMART may be defined complying with the CBC. 

Zhu (1991) introduced a scheme based upon a quadratic function in the normalised 

variable diagram, a...-; opposed t.o the piecewise linear method proposed by Gaskell 

and Lau, in an attempt to remove t.he effect of discontinuities in changing from 

one linear function to another. Zhu tested his NVD scheme against QUICK and 

the hybrid scheme but surprisingly not against SMART. For convection of a square 

st.ep, t.he scheme outperformed the other schemcs in a manner similar t.o SMART. 

This scheme however wa...-; only second order accurate (a.-. opposed to third order for 

SMART) due t.o the second order t.ruIlcation terms in its formula.tion. 
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Seok et al. (1995) compared the scheme of Zhll with that of Gaskell and Lan and 

another high order scheme introduced by the authors. The scheme presented was 

similar to that of Zhu, being a quadratic function in the normalised variable diagram. 

but passing through the point (0.5, 0.75) in the NVD with the gradient of the QUICK 

scheme to ensure third order accuracy. For the convection of a scalar step case, 

the NVD schemes were virtually identical in capturing the steep gradient without 

unbounded oscillations. 

Song et al. (2000) and Alves et al. (2003) also added to the list of NVD schemes with 

the WACEB and CUBISTA variants, respectively. These schemes not only incor­

porated the CBC to ensure boundedness of any solutions, but also used the TVD 

constraints to ensure converged solutions. Both schemes have lower interpolative 

accuracy than the SMART scheme, but when tested for several test cases including 

convection of a top hat profile, the WACEB scheme was not able to predict the 

maximum value of the top hat function in the same manner as the SMART scheme. 

as shown by Gaskell and Lau (1988), and both schemes could not match SMART 

for convection of a step profile. Despite this, all of the schemes are found to be in 

close agreement, with only small differences in their predictions. 

In this work the SMART scheme of Gaskell and Lau will be used for its higher 

interpolative accuracy, while the CUBISTA scheme will be used for its TVD conver­

gence properties where SMART experiences convergence difficulties. The following 

sections describe these schemes in more detail, with an introduction to Leonard's 

QUICK scheme as an aid to understanding. 

QUICK 

Leonard (1979) made a significant improvement to convective discretisation with 

the introduction of his QUICK (Quadratic Upstream Interpolation for Convectivp 

Kinematics) scheme. This method extended the interpolation stencil to include the 

adjacent nodes to the central computational node, plus the far oncs, equating to t.he 

use of a total of five nodes in ID (see figure 3.3). 

Depending upon the direct.ion of the flow, a quadratic interpolation wa. .. impi('-
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FlCiUH8 3.3: 2D comput.ational stencil for th(' QUICK . ('heme. 

rtlcnt.ed, wcighteo in the upstream direction. In the one dimensional example of the 

advection of a general calar, ¢, shown in figure 3.4 the downstr('cull control vollllIle 

fa.ce value is gi ven by 

(3.25) 

where a.dvcction is from left to right (F > 0). If advection is in the reverse direction 

from right. to left. (F < 0), the interpolation formula for the right control volume 

fa.ce valuc of 1; is 

(3.26) 

"' qna.t.iolls (3.2'-) and (3.26) (an be interprctco cu a linear int,('rpolation for ¢ from 

t.h<' lleighbouring ll( clal vaIn s pIns a correction term that is proportiollal l( the' 

(,1I rvat.ur<' in tbe va.ria.tion of ¢ ill thr ups tn'a.m dir ct.ioll. imilar ('X pre:s imt.' ('xi~ ( 

for Ill<' I<'fi ('0111.1'01 VOllLlll fa.( a.lne, (Pt(" 

Using t.lH ill!.<'rpolntioll for1J11llcl'(3.2r:) and (J.26), ~ r II and I v<'l )riliC',>. tile' ('odli-
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FIGURE 3.4: Illustration of upstream weighting in the QUICK scheme. 

cients of the discretisation equations (3.11) are 

aw 

as 

aww 

ass 

ap 

3 3 1 
max( -Fe, 0)4" - max(F(" 0)8 + max( -Fw, 0)8 + D(. 

331 
max(Fw, 0)4" - max( -Fw, 0)8 + max(Fe , 0)8 + Dw 

331 
max( -Fn, 0)4" - max(Fn, 0)8 + max( -F~, 0)8 + Dn 

3 3 1 
max(Fs, 0)4" - max(-F~,0)8 + max(Fn, 0)8 + Ds 

-max(-F. O)! e, 8 

1 
-max(F: 0)­w, 8 

1 
-max( -Fn, 0)-

8 
1 

-rnax(F~, 0)8 

aE + aw + aN + as + aEE + a",,:w + aNN + ass (3.27) 

As noted previously, the computational stencil is increased compared to the afore­

mentioned upwind or central difference schemes. For two and three dimensions, 

nine and twelve nodes are required, respectively. At the boundaries of the solution 

domain, t.he far node coefficients cannot be prescribed in the usual manner; t.hey lie 

outside the computational domain. Leonard suggested the use of 'ghost' nodes t.hat 

mimic real nodes. To overcome this computat.ional problem, the hybrid scheme can 

be used at domain boundaries, where it is possible t.o make Pe < 2 by adequate 

uH'sh refinement, meaning that the cent.ral difference part of the hybrid sch('me is 

operat.ional wit.hout. the instabiliti(,s mentioned earlier. 

L<'onard introduced a new parameter, the r.onvertive' sensitivity, to allalys(' the sta-
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bility of discretisation schemes. Convective sensitivity is defined as the sensitivity of 

the convective influx to the change in the convected variable ¢ at the central node, 

P. 

< 0 stable, 

= 0 neutral, (3.28) 

> 0 unstable 

The convective sensitivity of the QUICK scheme was shown by Leonard to be Ull­

conditionally stable in the simple case of uniform, uni-directional cOllvection of a 

scalar variable. 

The present author has generalised this analysis further here showing that 

-161xp (12ue - 6uw ) if U e > 0 and U w > 0 

161xp (6lue l + 6uw ) if U e < 0 and U w > 0 

-161xp (12ue + 121uw i) if U e > 0 and U w < 0 

161xp (6lue l - 121uw i) if U e < 0 and U w < 0 

(3.29) 

from which the following conclusions can be drawn. Firstly, when fluid is convergent 

upon a control volume cell (when U e < 0 and U w > 0), convective instability is always 

present. Conversely, when fluid is divergent from a control volume cell (when U e > 0 

and U w < 0), convective stability persists. In practice, this may be applicable to only 

small parts of the flow field, but large instabilities are capable of causing divergent 

behaviour in a numerical calculation through propagation of unphysical solutions. In 

the remaining cases of equation (3.29), where the flow is aligned in a single direction, 

neutral sensitivity is achieved when one of the control volume face velocities is twice 

the value of the other. For example, when the flow is aligned from left to right, 

neutral sensitivity occurs when U w = 2ue . As can be seen from equation (3.29), 

when the value of U w exceeds twice the value of U e convective instability occurs. 

This effect is reproducible in more realistic flow regimes where impingements or 

shocks occur, leading to steep velocity gradients over the width of a control volullle. 

Leonard (1979) tested the QUICK scheme for several ideal flow problems, such as 

t.he convection of a scalar square step profile. From these results it WH..O; shown 

t.hat. ill regions of high gradient.s for the convected variable, oscillatory behaviour 
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W8..,) observed but the gradient was captured more accurately than with mC't.hods 

such 8..') the central difference or upwind schemes. The nature of the oscillations 

showed the convected variable exceeding its physically bounding values. The above 

reasoning would explain this behaviour in the convection of a step profile where one 

control volume face value of the convected variable is more than double that at the 

opposing face. This is obviously an undesirable feature of the scheme, leading to 

physically unrealistic solutions. More recent convective discretisation schemes have 

been formulated to overcome this problem and are presented below. 

3.4.1 The Convection Boundedness Criterion 

To counteract the appearance of unphysical oscillations and lack of boundedness 

in convective discretisation schemes, Gaskell and Lau (1988) proposed the SMART 

(Sharp and Monotonic Algorithm for Realistic Transport by Convection) scheme. 

In their analysis, it was noted that the QUICK scheme (and other higher order 

schemes) does not always achieve interpolative boundedness due to the parabolic 

interpolation profile adopted. 

For the one dimensional control volume shown in figure 3.2, interpolative hound­

edness at the east face for the convected variable <p is satisfied when its value lies 

between the values at the adjacent nodes when sources are not present. To illus­

trate interpolative boundedness the normalised variable diagram is used, where the 

normalised convected variable at a position k between nodes Wand E is defined as 

(3.30) 

Fignre 3.5 shows the normalised variable diagram for the normalised variable <Pe at 

the right face of the control volume against the nodal value at the control volume 

t ,I.. III norlnalised variable notation, interpolative bounded ness for <Pe is cen ,re, 'fJp. 

given hy 

;Pe E (;Pp, 1] 

;Pe E [l,;Pp) 

when 

when 

;PI' E (-00,1] 

;Pp E [1, 00) (3.31 ) 
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The condition of interpolative boundedne, i, n t, howf'vef. ,'ll£fici nt to ,'atisf:' 

computational boundedness. When source terms are pre. f'nt. tIl(' rdati no' for in[c'r­

polative boundedlless (3.31), need to be modified to Cfeat a more generaL :ltfficicllt 

definition , 

1 < ¢e ~ ¢p and 0 ~ ¢w < ¢e if S > 0 ¢p > 1 

o ~ ¢w ~ ¢p < ¢e ~ 1 if S ~ 0, 0 ~ ¢p ~ 1 

¢ p ~ ¢e < ¢w < 0 if S < 0, ¢ p < 0 (3.32) 

where S is a normalised sonrce term. From equation. (3.32), a Convection BOlLnd­

cdness CTiteTion (CnC) can be formulated (Gaskell and Lau, 1988). The cn IS 

shown in figure 3.5, as the shaded area that lies between (0 0) a.nel (1,1) bOllUdcd 

from below by the line ¢e = ¢ p and from above by the line ¢(' = 1. When ¢ p ¢ [0 1], 

¢e is eqnal to ¢p, as shown by the lin . Gaskell and Lan showed that any cOllvectiv(' 

CBC 

l~ 1 C U HI ·; 3 .5: N orlllaii. cd variabl . diagram for ¢ at t.he ra. t facC' of the control VOhllll 

Gaskrll and Lau (1988). 

srhCIlH' that. a.dhere. t.o th B and fall: within tIl<.' shad('d ar 'a of fignre 3 .. will 

pro<ill(' bOllndl'd, III IH Lonic interpolations of control l hUll ' face' va.riahle's. 
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3.4.2 Curvature Compensated Convective Transport 

To define their higher order convection scheme, Gaskell and Lau (1988) introduced 

the novel method of curvature compensation. Taking Taylor series expansions of the 

convected variable, 4>, about the central node, P and the E and W nodes, ignoring 

higher order derivatives gives, 

4>w (3.33) 

from which it is possible to create an expression for the convected variable at the 

right hand control volume face, 4>e, 

(3.34) 

By discretising the double differential of 4> with respect to x, a curvature term 

(representative of a double derivative) is produced, a measure of which may be 

deduced by equations (3.33), 

{3.35} 

Rearranging this term gives 

(3.36) 

which can then be added to expression (3.34) for the control volume face value. 

+ Higher derivative terms. (3.37) 



76 

Equation (3.37) can be seen as adding a second order curvature correction to the 

already third order interpolation for the control volume face value, <pp. The 0-

variable is used to dynamically adjust the amount of compensation required to attain 

bounded, high order interpolations and is typically given by the interpolation scheme 

used. The piecewise NVD formulations of Gaskell and Lau's SMART scheme and 

the CUBISTA scheme of Alves et al. are used to provide values of Q in the present 

work, and are outlined below. 

3.4.3 SMART 

To fulfill the CBC, Gaskell and Lau formulated the well known SMART algorithm, 

which at the time represented a major step forward. At first glance, the interpolation 

(3.37) has the same form as the QUICK scheme with each coefficient contaiuing 

a weighted (by a) upstream curvature component. To maintain the third order 

truncation characteristics, Q is kept to a minimum, while maintaining boundedness. 

The SMART algorithm is shown diagrammatically in figure 3.6. For ¢p (j. [0,1] the 

normalised face value, ¢e is equal to ¢p in agreement with the CBC. When ¢p E 

/' 
/' 

/' 

1.0 

/' 
/' 

/' 

QUICK -----.. ,/ ,/ 

SMART 

,/ 
,/ 

,/ 

/.: 
,/ 

,/ 

" 1.0 <pp 

FI<~URE 3.6: Normalised variable diagram for the SMART algorithm. 

( ~, 1], to maintain boundedness, ¢e must not be greater than one (a.<; showu by t.he 

horh~ontallille). In the region ¢p E [0, ~], ¢e is approximated by tll(' line from (O.O) 
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to (~, ~) to prevent lack of boundedness due to undershoots in the interpolation. 

The remainder of the region lies on the Q = 0 line, which is identical to the QUICK 

algorithm with its third order truncation error. 

Determination of Q yields the amount of curvature compensation required to achieve 

monotonically varying, bounded interpolations. From equation (3.37), Q is given by, 

~ 3 ~ 

¢e - g(2¢p + I} 
Q = ~ . 

(2¢p - I) 
(3.38) 

From this equation, and the piecewise linear function shown in the normalised vari­

able diagram (figure 3.6), the following values of Q are obtained. 

¢p and QE(-k,~} if ¢p fi. [0,1] 

3¢p and Q E (0, ~] if 
~ 1 
¢p E [0, 6) 

¢e = (3.39) 
1 and QE[-k,O} if ¢p E (~, 1] 
3 ~ 

g(2¢p + I) and Q=O if ~ 1 5 
¢p E [6' 6] 

The SMART scheme was implemented and tested by its authors against several 

idealised flow cases. The two test cases were pure convection of a step profile for 

differing angles of obliqueness to the computational mesh and pure convection of 

a top hat function. The SMART algorithm showed important improvements over 

the QUICK scheme for both test cases. Whilst still being able to capture the steep 

gradients associated with the step and top hat functions to an equivalent degree of 

accuracy, SMART did not produce the same under and overshoots in the vicinity of 

those steep gradients as the QUICK scheme. Computationally, SMART was found 

to be only slightly more costly than QUICK, with the same mesh density. However, 

when the mesh was varied so that the upwind, QUICK and SMART schemes all 

achieved the same accuracy of solution, it was found that SMART was the least 

costly by the ratio 1:1.3:1.3 x 103 (SMART:QUICK:upwind). 
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3.4.4 CUBISTA 

Despite the high accuracy (formally third order truncation error in the smooth 

flow region) and boundedness of the SMART scheme, the CBC does not always 

guarantee a converged solution. Gaskell and Lau attempted to remove this problem 

by under-relaxation of the a parameter for each iteration. Alves et al. (2003) noted 

that the CBC constraints in the normalised variable diagram were not sufficient for 

convergence, and that only the more severe TVD constraints were able to pnsure 

convergence. 

In normalised variable notation, the TVD constraints are given by 

¢p ~ ¢e ~ (2 - C)¢p if 

¢p ~ ¢e ~ 1 - C(1 - ¢p) if (3.40) 

as shown in figure 3.7. Instead of only the TVD constraints being used for the new 

convection scheme several others were considered. In the smooth region of the NVD 

diagram (for instance when ¢p E [k, ~] in the SMART scheme), the QUICK scheme 

was used. Using similar reasoning to that of Gaskell and Lau, the QUICK scheme 

behaves monotonically and is bounded in this region and is also capable of high 

accuracy due to the third order truncation error. In figure 3.7, the TVD constraints 

require the gradient of the line in the region ¢p :::::: 0 to be given by 2 - C where C is 

the Courant number for unsteady flows. In the region where <pp :::::: 1, the gradient 

of the line is equal to C. In these regions, the lines from (0,0) and (1,1) with the 

corresponding gradients, are joined to the QUICK line. In reality C was treated 

as a parameter and not a real Courant number due to the implicit time marching 

algorithm used by Alves et al. (2003). The value given for this parameter was 0.25 

and obtained by numerical experiments to provide convergent results for all the test 

cases that the authors considered. This value of C is used to provide a balanc(~ 

between good resolution of steep gradients (when C is small - approximating the 

SMART scheme), but also to obtain convergent solutions (when C ha.-; a high('r 

value). 
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slope=2-C 

FtGURE 3.7: TVD constraints reprc entcd in the ormali cd Variabl Diagram. 

When ¢p approaches unity, it is seen from the normalised variable diagram (£igurc 

3.6) that the QUICK scheme does not obey the CBC (i.e. the line extcnds heyond 

¢e = 1). As rnentioned previously, this has the effect of causing ov rshoots in the 

interpolation of the face variable, ¢e' The equation of the QUICK interpolation over 

a local coordinate ( may be given as 

(3.41) 

where: ¢T' = ¢(O), ¢I:) = ¢(1) and ¢w = ¢(-1). Alves et al noted that the location 

at which the overshoot occurr d is given by the turning point of the interpolation 

curve of (3.41) as ( --+ 1, leading to 

¢p - ¢ l\ ' _ ~ 3 
~-~- = ¢p ~-. 
¢E - ¢w 4 

(3.42) 

To av id OVCI'. h ot. as ¢ p ~ 1 at the point ¢ p = ~ a lillC mUL be drawn [I' III Lhc 

Q I K liuc to the p iIlt (1,1) in t.h llormali, cd variabl diagram. Th ,l( pt' ( f t.his 

lint' it' ('qui alcllt to thc param t. r C = 0.25, vrrifyiug t h rcsuIts of the llllU1C'rical 

('xl)('riuH'llt.!-I Hlldntakcll b. the aut.hors. 

FrOlll LIt< a.bo (' cOllsi<ierati 118 , UH' Dr T ( on {rg<'ut and lIivNsally OUI1<i(' I 
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Interpolation Scheme for the Treatment of Advection) can be defined on the nor­

malised variable diagram as follows, 

7 ~ 
4¢P if ~ 3 

¢pE(O,S) 
3 ~ 3 

if ~ 3 3 

¢e = 
4¢P + S ¢p E [s' 4] 
1 ~ 3 

if 
A 3 

4¢P + 4 ¢p E (4,1) 
(3.43) 

¢p if ¢p ¢. [0,1] 

This scheme can be implemented using the CCCT methodology requiring calculation 

of the Q parameter. From equation (3.38), values of Q may be obtained for the 

piecewise linear function for CUBISTA in the NVD. 

E (0, i) if 
~ 3 
¢pE(O,s) 

=0 if A 3 3 
¢p E [s' 4] 

Q (3.44) 
E (0, -i) 

~ 3 
if ¢p E (4,1) 

E(-i,i) if ¢p ¢. [0,1] 

Both the SMART and CUBISTA schemes can be implemented into the discretised 

momentum equations using the same method as that for the QUICK scheme, but 

replacing equation (3.25) by equation (3.37). 

3.4.5 Convective sensitivity of SMART and CUBISTA 

Previously, it was shown that the QUICK scheme had undesirable oscillations in the 

solution when predicting steep gradients. The generalised ID convective sensitivity 

analysis proved that when 2ue < U w during positive flow from left to right through 

the control volume, QUICK is unstable. Despite the improved physical basis of 

SMART and CUBISTA through the use of the CBC and CCCT methodology, the 

convective sensitivity of SMART has only briefly been mentioned by Gaskell and 

Lau (1988) and not at all by Alves et al. (2003). 

Using the interpolation formula for CCCT in (3.37), a similar convective s(,llsitivity 
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analysis to that of QUICK is possible, 

aC1F 

8cpp 

- 16lxp ([12 + 32ae1ue - [6 - 16aw1uw ) if U e > 0 and U1l' > 0 

16lxp ([6 - 16aeJlue i + [6 - 16aw 1uw ) if U e < 0 and U w > 0 

-16lxp ([12 + 32ae1ue + [12 + 32aw 11uw l) if U e > 0 and U w < 0 

16lxp ([6 - 16ae1lue l- [12 + 32aw 1luw l) if U e < 0 and U w < 0 

(3.45) 

The stability equations in (3.45) show a dependence upon the curvature correction 

parameter, a, at the corresponding control volume faces. From (3.39) and (3.44) 

the value of 0 varies between -k and ~ which can then be inserted into (3.45) to 

give an overall picture of sensitivity of SMART and CUBISTA. 

For the first condition in (3.45) when face velocities are positive, the largest value 

of convective sensitivity is given when both a e = Ow = -k, leading to, 

stable if U e > U w 

neutral if U e = U w 

unstable if U e < U w (3.46) 

The smallest value of convective sensitivity occurs when Oe = a w = ~, which gives 

stability as 8C1F /8cpp ex -24ue . 

The next condition is for flow convergent on the control volume (ue < O,uw > 0). In 

this case, the largest value of convective sensitivity is when a e = aw = - k, giving 

(3.47) 

and instability. When the smallest value of sensitivity occurs (ae = a w = ~) 

neutral sensitivity persists. This result compares more favourably than the result of 

the QUICK scheme, where instability is always present. For flow divergent from a 

control volume it is clear to see that stability is always present, as for the QUICK 

scheme, independent of values of a. 

When t.he face velocities are negative, t.he opposite happens to when t.hey are posi-
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tive. The largest value of convective sensitivity is when Oe = Oil' = - k, giving 

stable if Iuwl > luel 

neutral if luwl = luel 

unstable if IUwl < luel (3.-18) 

When cte = ctw = ~, a stable condition persists with the smallest value given by 

(3.49) 

The above analysis shows that the SMART and CUBISTA schemes have more 

favourable stability characteristics compared to the QUICK scheme, especially when 

flow is convergent upon a control volume. 

3.5 Solution of the Discretised Equations 

Now that the momentum equations have been discretised using the above convective 

approximations, it is appropriate to discuss methods for their solution. There is, 

however, a varying physical quantity that appears in these equations but lacks a 

method for its determination, namely pressure. The lack of an explicit equation 

for the pressure means that it must be determined indirectly. The main pressure 

algorithms in use in the CFD community are related to the SIMPLE (Semi IMplicit 

Pressure Linked Equations) method of Patankar and Spalding (1972), such as the 

SIMPLER (Patankar, 1980), SIMPLEC (Van Doormaal and Raithby. 1984) and the 

well known PISO method (Issa, 1985). 

3.5.1 The SIMPLE Procedure 

Patankar and Spalding (1972) introduced the SIMPLE algorithm as a way of incor­

porating the effects of pressure into the solution for the momentuIll equations. This 

was done indirectly by the use of the continuity equation (2.1). This equation can 
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be integrated over a control volume in the same way as the momentum equations. 

1 pu. ndS = [(PU)e - (pu)w]~Y + [(PV)n - (pv)s]~x. Is 

If the equation for a face velocity could be given as (see section 3.5.3) 

(3.50) 

(3.51) 

then it may be used in equation (3.50). In an iterative procedure, the velocity u* 

may not satisfy the continuity condition, and so a correction must be added. 

u = u * + u' -t u' = U - u*. (3.52) 

From this an expression for the correction may be obtained (assuming coefficients 

remain constant) 

u' e 1e [He - H; - (PE - PE - Pp + Pp)~y] 
...L [H' - (PI - pI )~y] 
ae e E P 

(3.53) 

where pI is the correction to the pressure to maintain continuity. Patankar (1980) 

neglected the H~ term in equation (3.53) because as the calculation converges u* -t 

u and so H~ -t O. This leaves the correction in a simplified manner as 

(3.54) 

Inserting this equation, using (3.52), into the integrated continuity equation (3.50) 

gives a discretisation equation for the pressure correction, 

(3.55) 

where 
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(3.56) 

To update the pressure field, all that is then needed is to add the correction for the 

pressure to the current value of the pressure at the nodal point. It is then possihlp 

to update the velocity through equation (3.54). 

As the SIMPLE algorithm is iterative and the variahles are calculated in a segregated 

manner, the order of calculation needs to be determined. Patankar proposed the 

following algorithm, 

1. guess an initial pressure field, 

2. solve the momentum discretisation equations to find u* and v*, 

3. solve the discretised equation for the pressure correction, pI (3.55), 

4. correct the velocity fields from the pressure corrections (3.54) (3.52), 

5. correct the pressure field, 

6. repeat from step 2. 

The SIMPLE algorithm has been the mainstay of the control volume method since 

its introduction, and is now routinely used in flow situations ranging from laminar 

to turbulent and viscoelastic flows. Reports, however (Patankar, 1981), (Patankar, 

1981) have stated that the convergence rates of SIMPLE are not always favourable. 

The removal of the H' term from equation (3.53) to (3.54) leads to the over pre­

diction of the pressure correction, slowing convergence rates. By performing under­

relaxation for the pressure correction (discussed later), a fraction of the correction 

is used t.o update the pressure field. While this helps to stabilise the algorithm, this 

also leads to slower convergence rates if excessive under-relaxation is required. 

3.5.2 PISO 

Issa (1985) first introduced the PISO (Pressure-Implicit with Splitting of Operators) 

a.lgorit.hm for the improvemcnt of convcrgence rates for time dependent calculations. 
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Instearl of just using a single pressure correction, as in the SIMPLE algorithm, a 

second corrector step is added. For time dependent calculations, the PISO algorithm 

obviates the need for iteration in the calculation, unlike the SIMPLE method. As 

PISO is stable for large time-steps due to its pseudo- implicit formulation, the 

author also advocated its use for steady state calculations. It is possible, however. 

to formulate a steady state version of the algorithm, as used in the course of the 

present work. 

The first step in the PISO algorithm is to calculate a velocity field, u*, from the 

previous iterate value of the pressure field, pk. As with the SIMPLE algorithm, in 

general, this velocity field will not satisfy the continuity equation. The discretised 

momentum equation is given 3..'1 

(3.57) 

which is known as the predictor step in the PISO algorithm. The next step is to 

define a velocity field, u**, that satisfies the continuity condition by determining an 

updated pressure field, P*. 

(3.58) 

Note that in equation (3.58), the updated velocity field at the central node is cal­

culated explicitly from its neighbouring nodal values. Subtracting equation (3.57) 

from (3.58) gives 

(3.59) 

where the updated pressure is not known. The velocity field satisfies continuity, and 

so equation (3.50) may be used to obtain an equation for the updated pressur(', P*. 

If the equation for the updated velocities at control volume faces is written as 

(3.60) 

t.h{,ll inserting t.his into equation (3.50), for u**, gives an equation for the updated 
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pressure, via, 

pt::..y2 (p* _ pk) + pt::..y2 (p* _ pk) + pt::..X2 (p* _ pk) + pt::..X2 (p* _ pk) = 
aw P P ae P P as P P an P P 

pt::..y2 (p*, _ pk) + pt::..y2 (p,* _ p,k ) + pt::..x2 (p* _ pk) + p~.T:.! (p* _ pk)+ 
ae E E aw W W an N N as S S 

p(U:V - u:)~y + p(U; - U~)~X, 

(3.61) 

which is identical to relations (3.55) and (3.56) for the SIMPLE algorithm. 

Instead of restarting the algorithm from this point, in PISO a second correction step 

is initiated. The equation for the velocity field, u***, updated via the new pressure 

field, P* is given by, 

a u*** = H** - (P** - P**)~ P P Pew y, (3.62) 

where the velocity field is, once again, solenoidal. To solve this equation, the updated 

pressure, P* needs to be calculated. By subtracting equation (3.58) from (3.62) an 

expression for u*** is obtained in terms of the previous and updated pressures. 

a (1 *** - u**) = H** - H* - (P** - P* - P** + P*)~y p Lp P P Pee w w (3.63) 

If the velocity at the control volume faces can be expressed a.I ' 

( *** **) H** H* (P** p* P** + P*) A ae Ue - Ue = e - f' - E - E - P P uy, (3.64) 

upon substitution into the incompressibility condition (3.50) for u***, the following 

equation for pressure is obtained, 

t::..y2 (p** _ P*) + t::..y2 (p** _ P*) + pt::..x2 (p** _ P*) + pt::..x2 (p** _ P*) = p aw p p p ae P P as P P an P P 

t::..y2 (p** _ p*,) + pt::..y2 (p,** _ p,* ) + pt::..x2 (p** _ P*) + pt::..x2 (P~* _ P*)+ P at' E E aw W W an N N as S S 

~(H** - H*) - p~{H** - H*) + pt::..X(H** - H*) - p~{H** - H*) PaUl tv w ae e e as S S an 11 n 

p(u~) - u.;)~y + p{u; - u~)~x. 
(3.65) 

It. is this pressure field that is then used to update the velocity field in equation 

(3.63), and to complete the correction process. 

It. ha..o; been reported (see Kobayashi and Pereira, 1991) that. the PISO scheme greatly 
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reduces the number of iterations required to obtain a converged solution. and that 

despite the increased computational cost of a single PI SO iteration, the total CPU 

time was reduced by 15 percent compared to the SIMPLE procedure. Barton (1998) 

noted that although the SIMPLE scheme used less computational time per iteration. 

the accuracy of the results obtained with PISO were greater than with SIMPLE for 

Crank-Nicolson time stepping procedures. Comparisons of the PISO and SIMPLE 

algorithms for some benchmark laminar flow cases is provided later. 

3.5.3 Momentum interpolation 

The full solution for the pressure still needs the cakulatioll of the cell face velocities 

in equations (3.51), (3.60) and (3.64). These equations are required in order t.o use 

the discretised form of the continuity equation (3.50), to obtain the pressure field 

or a correction to it. 

The most straightforward method of approximating t.he control volume face veloc­

ities would be to use linear interpolation. From equation (3.50) the u-velocity face 

difference using linear interpolation is 

ue - U w 
UE+UP _ up+uw 

2 2 

UE-UW 
2 

(3.66) 

from which, it can be seen that the velocity difference is based upon alternate nodal 

points. This means that the continuity equation is solved using a grid that ha.'3 half 

the nodal density as that for the momentum equation, reducing resolution. Also as 

the alt.ernate nodes are used, two independent grids are present, capable of solving 

the continuity equation for two different velocity fields (and hence pressure correction 

fields). This gives rise to the well known pressure or velocity cheqllerboard effect as 

outlined by Pat.ankar (1980), where two independent. solution fields are present 011 

adjacent. grid nodes, like the black and white squares on a chess board. 



The staggered grid approach 

Harlow and Welch (1965) introduced a novel way of dealing with thi.' prohlPlll . 

later adopted by researchers such a.s Patankar and Spalding (1972) . In. tead of 

using just one set of control volumes to di cretise the ontinuous 'olnti 11 pr tlH' 

computational domain, a new set of control volumes was introdllccd. The. C' ront.rol 

volumes were staggered in such a way that the dependent variable in OIl(' sct of 

control volumes lay on the face of another set. To be more spe ific, the nodal point: 

of the velocity control volumes lie on the faces of the pressurC' rontrol volmllC's (as 

shown in figure 3.8). This has the immediate effe t of supplying the face vPlocit.ies 

needed to solve the pressure quation, but also the pressure gradiC'nt r 'qllirpd t.o solve' 

the momentum equations. The use of a staggered grid provides a strong conpling 

between the pressure and the velocity. 

Storage] .oca t ions 

.. u 

1 v 

o p 

s 

FI(;\ ' IU: 3. Staggrred cont.rol volumr arrangement on a . true! llred grid . 

There an" howe' C1', SOlllC disadvantag<'s to Ilsing t.he staggcl'( d grid llH'Lhod . Tit ' 

. ]. It' 't gIll t,I"l'C (,Ollll)k it., lradill tT to infirxii>ility. · 01' simI I llliUIl (IlH(1.( an ,age IS 1 ,S . n 

I t I · l' t' '1"'1 t( l'lllJ)lC'lll<'llt F)r (,01ll1)kx P t' Ulll< ' t ri( ' " g('Ol1lct rics t. 1(' sagg \'('( grlCl IS ,1'1\ n , ' /") 

\\'11('1'(' unstructured 111<'811<'8 lila, be illlpl 'lllcnlpd to approxilllat<' CIlf\'('d \'('~ i ( ll S, till' 



9 

creation of a staggered grid is much more difficult. L o. th(' IlS(, of more ad VaIl(' 'd 

solution techniques, . uch a.<) the Multigrid method, or Parall lisation of cod i .. lll)f(' 

difficult when using a staggered grid arrang ment (Lien and Le. chzin~r. 199-1). 

The collocated grid approach 

The alternative to the staggered grid approach i to place all flow variable. at th ('('11 

centre, known as the collocated grid approach as shown in figure 3.9. To cakulat<> 

the velocity of the fluid the momentum equation are also calculated at. tIl(' ('('11 

centre as in equations (3.11) and (3.12). However a ill thod is . till lTquirrd to 

obtain the velocities at the control volume faces to enable thC' lIS(' of thC' (' ntillllit.y 

constraint. The method of solving this problell1 requires a special illtC'rpolatioll of 

the velocity component from the cell centre to the face , and is known as rnornentlt7n 

interpolation. Different forms of moment.um interpolation have b en proposed in thC' 

+ 

FI(:UHE 3.9: CollocatC'd control volume arrangement. Se figure 3. for key to . yrnbols. 

lit.('rat.nre (see Majumdar 1988' Papageorgak poulos ft al. , 20(0) bu it. is t.hC' wdl­

knowll a.lld well validated (Lilek and P ric. 1995; Biagioli 199 ; BradlC'y, ask<'ll. 

:;\1, LawC's and ("ott, 199 ), pr('s8nrr weighted illterpolatioll llH'tilod of Rbi and 

how (] 9 3) t.hal. is lls('d here. The equation for ll-vdocit. at Lwo adjaC('llt uoclal 

point.s ('(UI b(' \ ritt,ell as 

(1 t> II I' I p = L (/ lib II lib II) - (PI") II' 
lib 
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apuplE = L anbUnblE - (PI}IE 
nb 

(3.67) 

where nb denotes the neighbouring nodal values to the central node and P.r denotes 

the gradient of P in the x direction. The equation for the value at the east control 

volume face is 

aeUe = L anbUnble - (Px}le. 
nb 

(3.68) 

To approximate the first term on the right hand side of (3.68), linear interpolation 

of the same terms in (3.67) is performed, thus 

(3.69) 

where the overbar denotes linear interpolation. However, this interpolated result 

can be expressed in terms of the other interpolated terms in (3.67) 

[L anbunb] = aeUe + (Px)le. 
nb e 

(3.70) 

By using (3.70) instead of (3.69) in (3.68), and using ae to approximate the unknown 

face coefficient ae , it is possible to obtain Rhie and Chow's interpolatioIl, 

where the pressure gradient terms are given by 

(Px)le = f(Px)IE + (1 - f)(Px)lp 

(Px)le = (PE - Pp)~y, 

(3.71) 

(3.72) 

and f is the interpolation factor dependent on the cell face position, varying from 

zero to unity. 
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3.5.4 Relaxation 

As mentioned previously, under-relaxation can be used in thp solution procedure to 

provide stability to the numerical scheme by limiting the change in the calculated 

variables from one computational iteration to the next. By rearranging equation 

(3.11) for U velocity at the central node P, 

(3.73) 

it is possible to add and subtract the previous value of Up from the left hand side 

of (3.73). This gives an equation that shows the present value of velocity in terms 

of its old value, plus the change, thus 

Up = up + [a~ (~~>nbunb -(p, - p,")~y) - up 1 
, # 

(3.74) 

v 

Change in Up since previous iteration 

where up is the value from the previous iterate. To provide under-relaxation, a 

fraction of the change may be added to the previous iterate value by the inclusion 

of an under-relaxation factor, O!, 

(3.75) 

where values of O! vary from zero to one. This has the effect of slowing down con­

vergence, but brings additional stability by limiting the effect of large destabilising 

oscillations in the solution from one iteration to the next. 

Pressure can also be under-relaxed by the use of a similar factor when updating the 

pressure field. When using either the SIMPLE or PISO algorit.hms, the pressure 

correction is added t.o the pressure, thus updating it. From equations (3.55) and 

(3.65), a pressure correction can be obtained and added to the pressure, 

p = P* + (,(p' (3.76) 

where the under-relaxation met.hod is used t.o limit. t.he change in pressure from one 

-



92 

i tt~ratioll to t ht, next. 

3.6 Boundary Conditions 

For allY numerical simulation of fluid flow. it is necessary to imposp boundary ('Oll­

ditiolls to limit its size. CFD boundary conditions typically cOllsist of wall. inld. 

outld and symmetry conditions. 

Wall boundary conditions 

Typically, for laminar flow. the no-slip boundary condition is sp('cified for all vdocit.\' 

COlIlpOlwnts. i.c. 

//', ----t 0 as n ----t 0 (:L77) 

wh('l"l' n is tlw llormal distance froIll a stationary wall (Vnst('('g and l\laLdasekcr;1. 

1996). For turbulent flow this condition still holds for the ll}('illl and turbulent 

vclociti('s, hut additional modelling is needed in tll(' vicinity of the wall. 

For wall bounded flow, four distinct regions ('xist (V(,l"skcg and l\Ialalasekera. 199h: 

Wilcox, 1994). The first rl'gion. called the viscous sub-layer, is a very thin layer 

adjacent to the wall where viscous shear forces dominate the flow, illdepend(~nt of 

the lIlain flow. TIt(, next. layer is that of the buffer ZOlle. which rapidly attenuatl's 

turi>lllcll(,(' from the layers above, to a state where viscous effects dominate. The 

third layer is the inner region where turbulence is dominant. but the proxillli t y t () 

1.1\(\ \vall dictates that the siz(' of the energy ('ontaining eddies an' of the order of 

the distall('(' from the wall. The final layer is the outer region, wlH'I'<' til<' siz(' of t.1l(' 

t.urhulpllt ('ddi('S an' of tlH' order of the boundary layer t hickn('ss. 

In t.iII' viscous sublayer it is aSSlllll('d (S('(' V(~rst('('g alld l\Ialalasekpra. U}96) , hat 

tl}(' shear forc('s al'(' equal to tlt(' wall shcar st l"('ss. lllcaning that thc velocit.y in t hl' 

din'et ion of t.1l<' stn'ss is proport.ional to it., i.e. U "X. TI/I' NOll-dilllCllsi()wti par;IIIl('t.('rS 
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for velocity and wall-normal distance (u+ and y+, respectively) may be defined a .... 

and y+ = (JUrY . , 
It 

(3.78) 

1 

where Ur = (Tw/p)2 is the friction velocity. In this region (y+ < 5) it is found that 

u+ = y+ (Le. the velocity varies linearly with distance from the wall). 

Another commonly used name for the inner layer is the 'log layer' extending from 

30 < y+ < 500. It's name is derived from the relationship between u+ and y+, where 

the velocity varies logarithmically with the wall distance. Launder and Spalding 

(1972) express this relationship as 

(3.79) 

where K, = 0.4 is the Von Karman constant and the value of E* is given by the 

physical properties of the wall. Launder and Spalding (1972) give the value of this 

parameter to be E* = 9.0, but this has been updated to E* = 9.8 for smooth walls 

Versteeg and Malalasekera (1996). 

To resolve the flow accurately in these layers, without modelling, many computa­

tional nodes must be inserted. Unfortunately, this greatly increases the computa­

tional cost, putting it out of the range of efficient engineering use. The models 

above, however, show an idealised case of wall bounded shear flow that can be ap­

plied to a variety of flows, dependent upon wall flow behaviour. The work of Lien 

and Leschziner (1994) gives a recent treatment of these near wall models - or wall 

functions - for use with two equation and second moment turbulent closures and is 

used here. 

To define the wall function, it is common to begin the analysis with the shear force 

at the wall. This can be written in terms of the wall shear stress a.c.; 

(3.80) 

where As is the area of thp south control volume face adjacent to the wall a.c.; shown 

in figure 3.10. The wall shear stress is given by Versteeg and Malala.c.;ekpra (1996) 

• 



94 

a,s 

(3. 1) 

where y p and kp are the distance from the wall to the node P and th turbul<'llt 

kinetic energy at that node, respectively. 

~-------------------I 

p 

• 

I 

y 

FIGUR8 3.10: Control volume adjacent to th wall boundary. 

To include the wall function in the momentum equation, the disCf('t.isation coefficient 

at the wall, as , is set to :lero and the source term of the eqnation set to includr the 

shear force, giving 

(3.82) 

To complete this modcl, the value of kp is required. When in the log layer , k if) 

determiued by the balance of production and di. sipation. The mean production 

tenll of J..; is givcn by Lien and LeschzilH'r (1994) a 

In(yp/ l) 2 
PI,; = 1 Tw 

PK,'/.'j J..; "2 
< p P 

and I.h(\ meau t.urbulent energy dissipation rate' as 

(3. 3) 

h('1'(' I is t.he lllixil1g lellgth auel C, = 2.r:5 is all ('mpirical rl >S\lr<' c()<'ffici lit. To 

<ld111(, t.Il(' R(. Holds stre'ss('s at th(' llrar wall llod{', it is possibl(' III \lS(\ tIll :olu( inn 
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of the k equation instead of defining wall functions for each stress individually as 

shown by Lien and Leschziner (1994). The approximations used for the stresses are. 

(3.85) 

Outlet boundary condition 

The outlet boundary condition is prescribed using a zero gradient assumption. If 

the computational domain is large enough that the flow at the outlet is considered 

to be fully developed, the velocity at the outlet may be taken to be that at the node 

adjacent to the boundary, implying 

dU =0 
dx ' (3.86) 

for horizontal flow through a vertical outlet boundary. This condition can be ex­

tended to any general scalar variable, ¢. 

Symmetry boundary condition 

The symmetry condition is very similar to that of the outlet boundary condition. If 

a boundary is such that it acts a,.., a line of symmetry for the flow then there IIlUSt 

be zero gradient of any flow variable across it. For a boundary in the vertical plane 

dU =0, 
dy 

while for an axis of symmetry in axisymmetric flow, 

dU =0, 
dT 

where t.he axis of symmetry is in the z direction. 

(3.87) 

(3.88) 

• 
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3.7 2D Test Cases 

Two laminar flow test cases are now investigated, namely the backward facing stpp 

and the classical lid driven square cavity. Both provide stern challenges for numerical 

convection schemes, with high streamline curvature oblique to the computat.ional 

grid. They also provide a simple introduction to the t.ype of geometries st.udied 

later, and a feel for how well the underpinning numerical methods perform. 

3.7.1 Lid driven cavity flow 

This test case is based on the one studied by Ghia et al. (1982), whose results are 

widely quoted in the literature as a bench-mark solution (see Seok et al., 1995: Deng 

et al., 1994; Biagioli, 1998). The computational domain is shown in figure 3.11, with 

the Reynolds number of the flow given by 

(3.89) 

To obtain the Reynolds numbers for comparison with t.he work of Ghia et al. , Ulid, 

Land 11- were all set to unity so that density, p, corresponded to the required value. 

Non-slip boundary conditions at the cavity walls were also implemented. 

L 

FIGURE 3.11: Flow schematic for the 2-D lid driven cavity ca"ip. 

Uniform grids of size 16 x 16, 32 x 32, 64 x 64 and 128 x 128 were llsed III the' 
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computations, with Re = 100,400. Four convection schemes, Upwind, QUICK. 

CUI3ISTA and SMART, were tested as well as the SIMPLE and PISO solution 

algorithms. Results for the Re = 100 case are shown in figures 3.12 to 3.15 together 

with the benchmark solution of Ghia et al. computed using a 129x 129 grid. 

0.4 

0.2 

o 

-0.2 

-0.4 

-0.4 -0.2 o 

• Gh,. cl aII12~. I ~ gridl 

Upwind fl6.lb, 

Quick (lb. Ib, 

CUBISTA fl6.lb, 

SMART 116.16, 

0.2 0.4 

FIGURE 3.12: Results for different discretisatioll schemes on a 16 x 16 grid; Re = 100. 

From these figures it can be seen that at this Reynolds number the higher order 

schemes - QUICK, CUBISTA and SMART - all behave in an identical manner as 

shown by all the lines converging onto the non- upwind line (solid). The reason for 

this is that the flow conditions are such that only the smooth region of the NVD 

is being used for the bounded schemes. In other words, QUICK produces bounded 

results. This is due to the speed of the flow being relatively slow with no steep 

gradients in the flow variables. 

It can also be seen that, as expected, the higher order schemes provide greater 

accuracy on the coarser meshes than the upwind scheme. Upwind is only able to 

approximate the benchmark solution when the grid is of size 128 x 128. Referring to 

figure 3.16, it can be seen that the higher order schemes - in this case thc SMART 

schcme on thc 32 x 32 grid - results in a solution comparable to the bcnduuark. 

Results for t.he Re = 400 case are shown in figures 3.17 t.o 3.20. Increasing til(' 
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Reynolds number degrades the performance of the upwind and higher order schemes 

on grids with a low mesh density; the effect being more pronounced for the upwind 

scheme. The higher order schemes predict grid independent results on a 64 x 64 grid, 

whereas the upwind scheme shows appreciable disagreement with the benchmark 

results even on the finest 128 x 128 grid. Results of the Re = 1000 case are shown in 
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FIClJRE 3.17: Results for different discretisation schemes on a 16 x 16 grid; Re = 400. 

figure 3.21 for a 64 x 64 grid. Again the same trends mentioned above are apparent, 

with grid independence achieved at this mesh density. 

Note that the reason for the poor performance of the upwind scheme is due to the 

llumerical diffusion inherent in the scheme, and as predicted by equation (3.21), this 

red uees as the grid is refined. 

The computational cost of the various schemes can be measured in terms of the 

CPU time required to achieve convergence. For this work the times were obtained 

using the Intel C++ compiler (for IA-32, version 8.1) on an AMD64 3200 processor. 

CPU times obtained with the PISO algorithm for the flow at Re = 100 are given in 

table 3.1. These CPU times increase from left to right due to the increased number 

of operations per iteration of the higher order schemes - although CUBISTA and 

SMART are identical. They also increase down the table d\l(' to til(' increa.,;('d 
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Grid Upwind QUICK SMART CUBISTA 
16 x 16 0.130 0.200 0.200 0.200 
32 x 32 1.650 2.270 2.550 2.560 
64 x 64 27.940 39.010 42.780 43.400 

128 x 128 611.320 839.380 965.110 984.190 

TABLE 3.1: CPU times (in seconds) for the lid driven cavity problem using PISO <I Rr = 
100. 

Grid PISO SIMPLE 
16 x 16 0.200 (181) 0.190 (213) 
32 x 32 2.550 (642) 2.130 (675) 
64 x 64 42.780 (2436) 34.900 (2455) 

128 x 128 965.110 (9528) 756.460 (9525) 

TABLE 3.2: CPU times and iteration numbers for SIMPLE and PISO (~ Re = 100. 

number of nodes in the computational domain, increasing the size of the matrix to 

invert and hence the number of operations required during the inversion. 

As mentioned earlier, even though the high order schemes require more CPU time 

per iteration, the solution achieves grid independence much earlier than the upwind 

scheme. To illustrate this, the time for the CUBISTA scheme on the 32 x 32 grid is 

found to take less than 1/200th of the time of the less accurate upwind solution on 

a 128 x 128 grid. 

Comparison of CPU times between the SIMPLE and PISO algorithms for the 

SMART scheme are shown in table 3.2. Even though the PISO scheme is seen 

to reduce the number of iterations in the computations, the CPU times are, in fact, 

greater than those of the SIMPLE scheme. This is due to additional time assembling 

the intermediate pressure-correction equations leading to an increase in time per it­

erate. The cause of the discrepancy between the results presented here and those in 

the literature (Kobayashi and Pereira, 1991) are due to the use of the steady state 

version of PISO. Although very effective for time-dependent problems, the steady 

state version of PISO is tantamount to SIMPLE with additional pressure-correction 

steps. 

The CPU times for the higher Reynolds number ca.o;;e (Re = 400) are represented in 

t.able 3.3. Compared to the times for Re = 100, the two finest grids take less time 

to converge. The CPU time savings for the higher order scheme are smaller at this 
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Grid Upwind QUICK SMART CUBISTA 
16 x 16 0.160 0.300 0.330 0.330 
32 x 32 1.570 2.890 3.240 3.260 
64 x 64 23.720 34.420 38.430 38.730 

128 x 128 464.020 637.460 714.660 709.730 

TARLE 3.3: CPU times (in seconds) for the lid driven cavity problem using PISO ,q Rc = 
400. 

Grid PISO SIMPLE 
16 x 16 0.330 (301) 0.340 (322) 
32 x 32 3.240 (821) 2.670 (838) 
64 x 64 38.430 (2189) 31.640 (2255) 

128 x 128 714.660 (7361) 617.000 (8052) 

TABLE 3.4: CPU times and iteration numbers for SIMPLE and PISO (Q) Re = 400. 

Reynolds number; the CUBISTA scheme on a 64 x 64 grid takes less than 21/250ths 

of the time that the upwind scheme takes on the 128 x 128 grid. The computational 

saving at this higher Reynolds number decreases and is approximately 1/20th of the 

saving at the lower Reynolds number. 

The CPU times of the SIMPLE and PISO algorithms for the SMART scheme at 

Re = 400 are shown in table 3.4. Again the SIMPLE algorithm is the more CPU 

time efficient, despite the reduced number of iterations for the PISO algorithm. 

3.7.2 2D Backward facing step 

The case presented in this section is that studied by Armaly et al. (1983) and is 

also a benchmark problem for testing CFD schemes. Flow features present in the 

backward facing step - such as separation, reattachment and recirculation - are in 

common with the more complex situations to be studied later in this thesis. The 

flow schematic is shown in figure 3.22 where the Reynolds number of the flow is 

given by 
Re= VHp 

JL 
(3.90) 

where V is two thirds of the maximum inlet velocity, Umax · In the computations 
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FIGURE 3.22: Flow schematic of the backward facing step flow of Armal:v pf al. (1983). 

performed in this work the following values were used, 

H= 1 

8 = 0.5 

J..L=1 

p=l (3.91 ) 

At the inlet, a parabolic profile was adopted across the opening from the step to the 

upper wall. This profile is given by the formula 

where 

u(h) = uoh(8 - h) 

4Umax 
Uo = 8 2 

(3.92) 

(3.93) 

and the vertical coordinate, h, defines the distance from the corner of the step to the 

upper wall. At the channel exit, zero gradient boundary conditions were imposed 

for all flow variables, with non-slip conditions at all other surfaces. 

Several different flow speeds were studied for this case from Re = 100 to Re = 1000. 

To minimise computational time, different domain lengths, L, were adopted so that 

a fully developed flow was achieved without using unnecessary grid points. For 

Reynolds numbers less than 200, L = 30 units with a computational mesh of 450 x 15 

nodes. For Reynolds numbers up to 600, L = 45 units with a mesh size of 800 x 35. 

For Re = 1000, a mesh size of 2240 x 35 with L = 126 units was used. All of these 

grids were seen to aehieve mesh independent results. 

The result.s for t.he Re = 100 flow can be seen in figuf(' 3.23. The upwind sdl<'lIH' 
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clearly shows an inability to capture the experimental data accurately due to the 

high numerical diffusion. The high order schemes, as in the previous test case. 

all predict the same profiles. Once again this is due to the fact the flow is in the 

smooth region of the NVD diagram, where QUICK is suitable for obtaining bounded 

results (the other schemes reduce to QUICK in this region). Even for the higher 

order schemes, the simulations do not match the experimental data exactly. This, as 

mentioned by Armaly et ai. , is due to the simulation having a parabolic inlet profilp 

imposed at the edge of the computational domain, instead of including an inlet pipe 

where the flow can develop fully before reaching the expansion. The results for 
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• E'pcrimcnl 
Upwind 
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FIGURE 3.23: u-velocity profiles for the case of Armaly et al. (1983): Re = 100. 

Re = 389 are shown in figure 3.24. As for the lid driven cavity problem, the high 

order convection schemes show a greater improvement at higher Reynolds numbers 

for the same size mesh over the upwind scheme. 

The results for Re = 1000, are shown in figure 3.25. Here all of the convective dis­

cret.isat.ion schemes predict erroneous values. Luckily, this feature is not a problem 

wit.h t.he numerical scheme, but a propert.y of the experimental flow. Above this 

Reynolds number, Armaly et al. shows that the flow exhibits thr('(' dimensional pf-
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FIGURE 3.24: u-velocity profiles for the case of Armaly et al. (1983): Re = 389. 

fects and is no longer a pure two dimensional flow. As the computations are strictly 

two dimensional, they are inherently unable to capture any three dimensionality, 

and hence discrepancies between measured and computed results exist. 

As mentioned previously, this case is a good test of the numerical algorithm's ability 

to predict separation, reattachment and recirculation accurately. Figure 3.26 shows 

both the measured and computed reattachment length of the primary recirculation 

bubble (Xl as shown in figure 3.22). For Reynolds numbers between 100 and 400, the 

numerical results agree well with the measured data, showing that for this laminar 

flow, the numerical schemes capture the flow features well. However, for Reynolds 

numbers above 400, it can be seen that the numerical predictions begin to differ 

from the experimental measurements. This is again due to the three dimensionality 

of the flow above Re = 400. 

---- ----
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FIGURE 3.25: u-velocity profiles for the case of Armaly et al. (1983) : Re = 1000. 
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3.8 Summary 

This chapter has presented a suitable method for solution of laminar flow problems. 

that can also be applied to turbulent flows as shown in Chapter 4. The improved ac­

curacy of the higher order discretisation schemes has been demonstrated for the lid 

driven cavity and backward facing step problems against benchmark data. The use­

fulness of the CUBISTA and SMART schemes over the unbounded QUICK scheme. 

although not demonstrated here, is in the convective discretisation of turbulent vari­

ables such as k and E that are positive definite, a.'l well a.'l where steep flow variable 

gradients occur at higher Reynolds numbers. 

A robust solution algorithm has been implemented using the SIMPLE or PISO 

pressure-based methods. Although PISO gives convergence in fewer iterations, the 

overall CPU time is greater than that of the SIMPLE scheme. This advocates the 

use of SIMPLE in the calculations in the following chapters, where large sets of 

coupled differential equations are to be solved. 
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4.1 Introduction 

Isothermal swirling flow is often studied as a prerequisite for the study of turbulent 

reacting swirling flow. In the isothermal case, the effect of temperature on th(' 

fluctuating density is removed, thus enabling verification of the purely aerodynamic 

models used to describe the turbulence. 

Flow features that are studied contain free vortex motion, forced vortex motion 

and the transition between the two. The first is usually present in confined flows 

with high swirl which retards the transition to forced vortex motion (or solid body 

rotation). This has been studied experimentally by Kitoh (1991) and Xia et al. 

(1997) for flow in a long cylindrical pipe and a model combustor, respectively. Free 

vortex motion is also present in unconfined flows, such a.', the swirling jet studied 

by Younis et al. (1996). 

Forced vortex motion in confined flows appears when the swirl decays along the pipe 

so a transition occurs from the free vortex. Researchers such as AI-Massedl (1991) 

and So et al. (1984) have experimentally studied these flows. 

The difficulties presented to numerical analysts, is that most turbulent models are 

designed to predict, and hence calibrated using, flows such as homogeneous shear. 

These simpler flows do not incorporate the additional features that swirl brings, 

particularly the mean strains due to the radial gradient of the swirl, or tangential. 

velocity, aWjar, and the additional radial gradient of axial velocity, au jar. 

This chapter presents the results of simulation for two swirling flow test cases, the 

free vortex flow of Kitoh (1991) and the lower swirl case of AI-Masseeh (1991). 

The two equation k - f. and k - w turbulence models (section 2.4.2) are used. a.', 

are the more complex SSG and LRR Reynolds stress closures (section 2.5.1). The 

addition of the anisotropic dissipation rate model to the SSG pressure-strain model 

(SSG-ADRM - section 2.5.2) is also assessed. 
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4.2 Swirling flow in a cylinder - Kitoh's swirling flow 

The swirling flow case studied by Kitoh (1991) was cho n as a te,t ra e for th 

models and numerical methods outlined in previou chapter, du 0 it-, omparati (' 

simplicity. The geometry is that of a cylindrical pipe where swirling air i iutr durcd 

at the open end via a mechanical swirl generator and is visuali ed as hown ill figure 

4.1 below. The flow is less complex than that of normal ombu. tor ge III tries, 

7000mm 

FIGURE 4.1: Flow schematic for the Kitoh asc. 

, , 
160mm , , , 

sueh as those with annular inlets, with smaller streamline urvature in the v, - 1) 

velocity plane, less recirculating regions and a 1 . s complex strain field due to th 

small values of 1) velocity present. The strong swirl impo ed at the inlet provides 

fluid motion predominantly of the free vortex type along the length of the pipc, 

leading to areas of high velocity gradients near the pipe walls and boundaries of thC' 

vortex. These factors provide a relatively simple test ca e for the turbul nee model. 

lllC'utioned previously. 

The s('cti 11 of pipe simulated begin from the fir t te t se tion (TS 1) from w bieh 

llH'aSUfement. were obtained, to the ninth (TS9) (Kitoh, 1991). The laboratory loca-

tiOllS of the t.est stations llsed h re ar : T 1= 55mm, TS3=1 45 III Ill, T 5=2 50mlll, 

T 7=3 55n1111 and T 9=4 60IllIll. The inlrt conditiolls £ r the :illluiatioll weI' ob-

t.aiIH'd from t11C' experimcntal IllCc ' urem 'nts at t.he axial distance f c: r: mlll . TIH' 

swirl at. t.he inid. of t.he pip We s geJlC'rated h, a serics of guidillg am's mOllnted ( 11 

a r )tat.iug disc. Tht' swirl int.ensit.y proou('('o b, th qniplllC'llt is pro i<l«1 hy til' 
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expression, 

(4.1) 

where U and Ware the mean axial and tangential velocities, r the radial distance 

and Urn the bulk velocity, giving a swirl intensity of 0.97 at the simulation inlet. For 

this flow Re = 50000 and is obtained using the bulk velocity, Urn = 5.23ms- 1 and 

the pipe diameter, d = 150mm 

Re = pUrnd 

JL 

where JL = 1.85 x 10-5Ns/m2 for air and p = 1.18kg/m3 for air. 

(4.2) 

For the experimental measurements, Kitoh used hot wire anemometry to obtain 

values for the mean and RMS fluctuating velocity components. He comments that 

the nonlinear response of the hot wire to the fluid velocity can cause error in mea­

surement. When moments of the fluctuating velocity componcnts higher than thc 

second are ignored in the measurements, errors may be incurred whcn the turbu­

lence intensity exceeds 20%. Also as the wires have a finite size, Kitoh mentions that 

in regions of high variable gradients, the accuracy of experimental measurements 

may be compromised. After these considerations, Kitoh stated that the measurcd 

Reynolds stress results were reliable to within ±O.OOlU~ except in regions of high 

turbulence intensity (greater than 10%) and high velocity gradients. These regions 

occur mainly in the central vortex core at 0 < r ;S 0.0225mm (the reader is referred 

to Kitoh, 1991). 

4.2.1 Numerical Procedure 

After grid independence tests, the calculation domain was created using an irreg­

ularly spaced grid consisting of 250x100 nodes. The mesh was refined in the inlet 

regions and dose to the wall as shown in figure 4.2. The total length of the cal­

culation domain is 6145mm (7000-855)mm, as the simulation starts frolll the first 

IIlca.."'llrement position, not. the laboratory pipe inlet, with a width of 75111IIl. The 

width corresponds to t.he radius of the pipe, a.." the simulation is a.."8umcd to bc ax­

isymmetric in nature with the symmetry line at the lower edge of the computational 

grid. 
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Boundary Conditions 

Th inlet boundary conditions wer obtained directly from th experimental data of 

Kitoh (1991) at the first test section (855mm in th laboratory) with a wirl inten ity 

equal to 0.97. From the experiments, values of U V W , u2 v2 w2 uv uw and 

vw wer imposed there by linearly interpolating the measured data point onto th 

computational grid points as shown in figure 4.3 for the axial inlet velocity. For the 
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upper boundary of the domain a no slip boundary condition wa.." implemented, with 

the addition of the logarithmic wall functions to account for variables close to the 

wall. 

At the exit of the domain on the right hand side, a zero axial gradient boundary 

condition was implemented for all flow variables, as the flow is fully developed at 

this axial distance. The same condition also applies to the symmetry line on the 

lower boundary of the domain, except that here zero gradient applies in the radial 

direction. 

The inlet condition for the dissipation rate of turbulent kinetic energy, f, was found 

using the method of Hogg and Leschziner (1989), where, using dimensional analysis, 

(4.3) 

with l being the integral length scale of the turbulence at the inlet and CIJ.( = 0.09 

as in the k - f model. Following numerical experiments, where l was adjusted to 

find a value of f that gave good agreement with experimental turbulent data, it was 

found that its value giving the most adequate predictions was 1~8 d. 

4.2.2 Computational Results 

Two-equation model results 

Firstly the two equation k - f and k - w models were used to predict the mean 

flow and value of k. Figure 4.4 shows the mean axial velocity profiles from TS3 

through to TS9. Both models are seen to predict an erroneous positive velocity at 

the axis, which shows an inability to predict the effects of swirl. At the wall, the 

axial velocity is also under-predicted. As the flow develops downstream, the axial 

velocity profile becomes flatter where its value at the axis becomes greater than 

that at the wall. The reason for the erroneous prediction for axial velocity is the 

inahility of the models to capture swirl and hence the tangential velocity (sec figure 

4.5). Note the experimental and computed values of the radial velocity (denoted 

by open diamonds and dotted line, respectively) are shown alongside those for axial 
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FIGURE 4.6: Two equation model results for turbulent kinetic energy; Kitoh's case. 

velocity in figure 4.4. The size of the predicted radial velocity is approximately two 

orders of magnitude smaller than the other mean velocities and so has a small effect 

on the flow field in general. 

I30th models produce tangential velocities characteristic of forced vortex motion 

(figure 4.5). The high experimental values at the axis, representative of free vortex 

motion type, are not predicted at all. The strength of this solid body rotation also 

decays quickly downstream. This is responsible for the erroneous 'plug' shape axial 

velocity profile predicted for the axial velocity in figure 4.4. In the region close to 

the wall, both models initially predict values close to those given by experiment. 

However, the agreement rapidly decays downstream. 

Looking at the predictions for k in figure 4.6, again both models under-predict this 

quantity at the central axis. Near the wall, model predictions improve, with the 

A: - w model showing greater accuracy upstream and the k - f model proving more 

accurate downstream. Both models appear to overestimate the value of k in the 

wall region at TS3 but the k - w model tends to increasingly under-predict it a.', the 

flow develops further downstream. 
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The experiments of Kitoh (1991) show that the eddy-viscosity is anisotropic in na­

tun~. Both two equation models tested use the Bousinesq eddy-viscosity hypothpsis. 

stating that the Reynolds stresses are linearly dependent on t.he mean rate of st.rain 

tensor; equation (2.25). This effectively means that the eddy-viscosity, 'rr, acts like 

a constant of proportionality. The anisotropic nature of vr in this part.icular case, 

invalidates the eddy-viscosity hypothesis due to its differing effects on the various 

components of the Reynolds stress tensor. 

Reynolds stress model results 

Results using the Reynolds stress transport. equation were obt.ained using the afore­

mentioned LRR, SSG and SSG-ADRM models. Figure 4.7 shows t.he predictions for 

the mean axial velocity. Comparison against. t.he result.s for the two equation models 

dearly shows the superior predictive capability of all the Reynolds stress models. 

All predict a large negative velocity at. the axis, coinciding with the swirl induced 

reverse pressure gradient. 

In the wall region, all the models under-predict the velocity gradient, although 

only to a small degree. This is due to the use of wall functions as opposed to 

intcgrating the governing equations up to the wall. Wall functions model the flow 

in the near wall region without the need for excessive computational nodes, whereas 

full integration includes additional nodal points in the near wall region, providing 

greater resolution. Overall, the predictions using the wall functions are adequate for 

engineering applications as Kitoh (1991) showed that the experimental data agreed 

wit.h the log-law up to values of y+ = 200. To provide improvement, full integration 

t.o t.he wall must. be sought at the expense of additional computational cost. 

In this region the LRR model under-predicts the gradient of axial velocity in the up­

st.ream region, leading to an under-prediction of the velocity. Further downstream, 

the LRR prediction of the gradient improves; where eventually an overestimation of 

t.he velocity occurs, especially at TS9. The SSG and SSG-ADRM models provide 

predictions for axial velocity and its gradient in dose agrccment with experimcIlt. 

An illitialuurler-prcdiction of U at TS3 is givcn by both SSG and SSG-ADRM 1110<1-
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els which turns into an over-prediction at TS9 for SSG. The SSG-ADRM provide 

the best prediction overall in this region. 

For the annular part of the profile (O.025;S R ;SO.07), the LRR model initially 

over-predicts the velocity at TS3. As the flow develops this disparity increase 

steadily until at TS9 the U velocity is overestimated by as much as 4rns- 1 in place. 

The same trend occurs for the SSG model but to a much smaller extent. At TS3 

the velocity is initially under-predicted. As the flow develops the SSG model over­

predicts the measurements until at TS9 it provides predictions approximately 1m -1 

greater than the measurements. The SSG-ADRM model bucks thi trend, showing 

a resistance to the growing over-predictions of the other models, providing the most 

accurate prediction of the experimental measurements. All of the models, however, 

over-predict the axial velocity as the outer region of the vortex core is approach d. 
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models show greatest agreement with experiment, correctly predicting the gradi­

ent of increasing negative velocity. The LRR model incorrectly predicts a slightly 

positive gradient in this region, reducing the negative axial velocity. 

All models predict a premature turning point in the velocity gradient between 2 

and 4 metres, the first being the SSG-ADRM model followed by the LRR and the 

SSG models. The positive gradient predicted by the LRR model is, however, much 

larger than that of the SSG-ADRM model giving rise to a flow reattachment at 

approximately 3.75m. The SSG-ADRM model also shows a premature flow reat­

ta hment at approximately 4.3m. The SSG model shows an ability to maintain the 

swirl b tt r than the other models by maintaining the reverse axial velocity along 

th - whole pipe. 

Tang ntial v locitie ar predicted shown in figure 4.9. As m ntioned previou ly, 

th r ult for th LRR mod I how a pr mat ure decay of the wirl t nding toward 

a lid body r tati n at T 9. Th 

th tang n tial velo i ty i 

(T 3 and T 5). E 

t.he iuitial 
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the swirl to a greater degree than the predictions of the LRR model. 

The SSG-ADRM model shows good agreement with the experimental mea..'iurements 

in both the upstream and downstream regions of the flow. Initially~ the model 

over-predicts the tangential velocity at TS3, but by a smaller amount than the 

SSG model. Downstream the model shows an increased under-prediction of the 

measurements, however, the free vortex profile is maintained (unlike the LRR model 

predictions) and better prediction is found at R ~ 0.013m compared to the SSG 

model. 

In the near wall region, all models predict the tangential velocity well, except very 

close to the wall, where the velocity is under-predicted. Usc of wall functions for 

this velocity component is more questionable than for others as the standard wall 

function approach was developed for plane shear flows (Launder and Spalding, 1972). 

Due to the premature return to solid body motion, as the distance from the wall 

increases, the LRR model under-predicts the experimental measurements. Despite 

the inability of the models to reproduce the tangential velocity at the wall, better 

agreement with experiment is provided by the SSG and SSG-ADRM models as 

distance from the wall increases into the annular part of the flow. 

Despite the improved predicting power of the Reynolds stress models for the mean 

flow quantities, the turbulent quantity predictions do not show a..-, good agreement. 

Figure 4.10 shows that all of the turbulence models over-predict the value of the 

turbulent kinetic energy at TS3. As the flow develops, the measurements show a 

growth in k at the central axis, with a reduction in the annular region. The Reynolds 

stress models, however, are unable to predict the drop in k in the annular part of 

the flow, or the increasing value of k in the axial vortex core. 

Figures 4.11 to 4.13 illustrate this point for the individual norIIlal stress components. 

The mea..-,ureIIlents for these components show a nearly isotropic stress field, with 

exception of the near wall and central axis regions. The models generally predict a 

larger value of the stresses than the experimental mea.surements from TS3 to TS9. 

The LRR model over-predicts the axial normal stress COmpOll<'nt at all locations in 

the fiuid, ('specially in the near wall region shown in figure .:1. 11. The SSG lIlodd, 
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however, shows improved agreement with the measurements at all axial lo('ations. 

The SSG-ADRM model gives predictions larger than those of the SSG model in the 

upstream region, but this decays to values below the SSG model downstream. 

For the radial normal stress in figure 4.12, all of the models predict the same trend 

with a large over-prediction in the annular region, reducing towards the central axis. 

Again the SSG-ADRM shows an initial over-prediction upstream that decays fa."ter 

than the other models. The predictions of the LRR and SSG models are shown to 

be of comparable accuracy. 

The tangential normal stress predictions are shown in figure 4.13. The t.rends for 

this stress repeat those of the u 2 stress component. The predict.ions of t.he LRR 

model are, however, not over-predicted t.o the same degree as for u2 with the SSG­

ADRM model showing a larger, erroneous prediction at TS3 and TS5 due t.o t.he 

over-prediction affected by this model upstream. 

The inability of the Reynolds stress models to capture the increase of the normal 

stresses at the central axis needs further discussion. From figure 4.17 it is seen t.hat 

the dissipation of turbulent kinetic energy takes the form of a flat radial profile 

except in the near wall region. This means that the loss in t.he values of the normal 

stress components in the axial vortex core is not effected by the dissipative process. 

As noted previously, the normal stress components are close to isot.ropy in this 

region. If isotropic turbulence is present in a flow, the 'slow' (or return to isotropy) 

term in the stress-redistribution model becomes small, due to its dependence on 

the stress anisotropy tensor [see equations (2.50) and (2.69) for the LRR and SSG 

models]. Redistribution of the larger normal stresses to the shear stresses is also 

small ill this region as illustrated in figures 4.14 to 4.16. Both the SSG and LRR 

models describe the redistribution process in the 'fast' models of equations (2.55) 

and (2.66). Here, t.he stress anisotropy tensor is used, but its effect is minimis('ci as 

discussed above. 

The other terms in the 'fast' models involve the mean rate of strain and vorticity 

tensors, Si) and W ij which take into account the effect. of the mean velocity gradi­

ents. III t.his region of the flow, the dominant radial gradient of the velocity must 
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reduce to zero at the axis due to the symmetry boundary condition reducing th 

stress redistribution. 

The reduction in mean shear near the vortex core, also reduce the production of 

turbulence by mean shear. This, coupled with the near isotropy condition glv 

rise to the under-prediction of the normal stress components near the chamber axi 
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FIGURE 4.16: Reynolds stress model results for vw stress; Kitoh)s case. 

all test sections in the annular flow region. As the tangential velocity predictions 

are in much better agreement with the measurements, they are larger than the 

predictions made by the LRR model and so provide larger po itive source terms 

in the equation for uv. The SSG-ADRM model shows an improvement over the 

standard SSG model in the annular region, reducing the size of this shear stre s 

more in line with measurements. 

All of the models used provide overestimates of the uv stress in the near wall region. 

How ver, the tangential velocity, W is underestimated in this region by all model 

du to the use of wall functions, and the above arguments cannot be u ed. It i cl ar 

that the peak produced by the LRR model i larger than those of the other mod 1 . 

Thi i du to th r di tribution of turbulence from the normal tre e which are 

v r-pr di t d for th LRR model. Thi £feet i ob erved in th LRR pr di tion 

£ r all th e. 

Th LRR III del pr di tion for vu in the wall r gion i gr atly ov r-pr diet d C lll-

par d l the olh r III d 1 . Thi i ' du to th abov r . all w 11 as th ' iz f th 
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cony ctive source term of vw as given by (Appendix A.l) 

(
- -) W w2 - v2 -:;: ( 4.4) 

For the LRR model, it can be seen that the values of the normal radial stre are 

und r stimat d for the LRR model compared to the other models. This along with 

th ov restimation of the w2 stress has the effect of increasing the value of vw in 

thi r gion. 

Th 1LW h ar tre s pr diction by the models in figure 4.15 for the near wall region 

f il to giv the n gative valu illu trated by the measur ment. Th wall ff t 

term provid th LRR mod I with th cIo e t re ult to the exp rim nt by a bng 

a ink t rm in th quation for 1LW . This giv a lightly n gativ valu of thi 

h ar tr ' s alb it at a furth r 1 abon away from th wall. 

aptur th ' harp gradi llt tha 1 ad t n g­

at.ivr alu s f the till ' 11 ar tr xplain d b. th pr du ti 11 and .' ur 

terms ill its III d lled cquc ti n. Th . s nfC ' t nIl du t pr du tiOll f lW , -llU V/7' 
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is small due to the small value of V, and can be neglected. The remaining domi­

nant terms are the convective source term, -uvW/r, the production term and the 

stress-redistribution term. The production term is positive in this region due to the 

negative signs of the U and W gradients in the radial direction, while the convective 

term is negative. This implies that the stress-redistribution terms in the respective 

models are not able to provide a large enough sink term to give the correct negat.ive 

value of uw. 

The difference between the SSG and LRR versions of the stress-redistribution term 

can be summarised (neglecting wall effect terms) as 

(4.5) 

where Cj = 0.9 and C2 = 1.05. In the first term, the increased production due 

to the high mean shear, and stress anisotropy in the near wall region works to 

decrease the value of uw. However, the increased dissipation in the second term 

of (4.5) counteracts this for the SSG /SSG-ADRM models, increasing the value nij. 

The wall effect terms for the LRR model have a greater effect in this region as 

shown in figure 4.15, except in the downstream region, where redistribution from 

its over-predicted normal stresses occurs. 

Effects of the anisotropic dissipation rate model 

The main effect of the ADRM, is through the coefficient C;1 in equation (2.82). 

This coefficient determines the amount of production of dissipation through the 

ratio f./k and its values are shown in figure 4.23. In the absence of any mean strain 

or vort.icity, C(*1 :::::: 1.36, as is shown by the dotted line (C(*1 - Cd :::::: 0.36). 

The value of the anisotropic effect on the coefficient, C;] - C f ], increases with radius 

towards the annular part of the flow. In this region, the gradients of the mean 

velocit.ies are at their lowest, and so the mean strain and vorticity has less effect on 

t.he value of C(*]. With reference to figure 4.17, it is seen that the dissipation rat,(' 

is init.ially (TS3) approximately equal t.o that predicted by th(' SSG model in this 

region. As the flow moves downstream, the value of the dissipation rat.e predict('d 
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by SSG-AD RM falls below that of the SSG model. 

In the upstream region, as the value of C:1 can never be (without additional tuning) 

a..<;J high as that specified by the SSG model (C:1 = 1.44). the production of k in 

the annular region is initially higher than that predicted by the SSG model. This 

increased production of k then effects the production of E that is directly proportional 

to it. For this reason, despite the lower value of C;l' predictions for f in the annular 

region at TS3 and TS5 appear indistinguishable from the prediction of the SSG 

model. As the flow develops, isotropisation and turbulent diffusion act to reduce 

the value of k, and hence the normal stresses. in turn lowering the production of 

dissipation rate. At TS7 and TS9, this is seen in the annular region when compared 

to the SSG model. 

This effect is reproduced in the vortex core region about the central axis. Due to 

the large radial gradients of Wand U in this region, ~ and 'f/, equation (2.79), also 

become large. This again leads to a small C:1 and hence the above argument as 

at the annular region is applicable. The larger size of the dissipation compared to 

the SSG model is due to the additional production of turbulence energy by mean 

shear in this region compared to that in the annular region. The combination of 

the shear reducing C:1 and also causing additional turbulence product.ion causes the 

dissipation to be larger for the SSG-ADRM t.han the SSG model alone. 

In the wall region, C f*l quickly reduces due to the presence of high shear, effectively 

reducing the amount of production of dissipation. This is reflect.ed in figure 4.17, 

where the dissipation for the SSG-ADRM is less in the near wall region than for 

t.he SSG model. This reflects the non-equilibrium nature of turbulence in near wall 

flows, where production of turbulence is greater than its dissipat.ion. 

The components of (ij are shown in figures 4.18 and 4.19 with a breakdown of 

t.he isot.ropic and deviatoric part.s for the diagonal component.s in figurE'S 4.20 to 

4.22. The main redist.ribution of the dissipation from the diagonal to off diagonal 

component.s occurs in the near wall region. where the mean strain is highest. TIl(' 

redist.ribution in the annular and core part.s of t.he flow are reduced compared t.o 

this due t.o the much smaller mean flow gradient.s in these areas. TIl<' rE'a.-';oll for 
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the negative sign of E13 in the wall region i due to th ncgativc value> of th cDcial 

gradient of the tangential mean velocity, counterbalanced by thc oth r trrm~ ill 

equation (2.77), resulting in an overall positive value. 

The compositions of the diagonal components of Eij show that th ffrct of the 

dissipation anisotropy, dij, is small in comparison to the i otropi comp ncnt. Thi.' 

is due to values of dij in the range 0(10- 2 ). It is clear that t.h cocfficirut. C;I 

has far more influence in this flow than the redi. tribution of dis. ipation t ther 

components. 

4.3 The combustion chamber flow of AI-Masseeh 

Compared to the flow studied by Kitoh, that studied by AI-Ma 'srch (1991) is f~lr 

more complex due to the increased st.raining produced by t.he anllular inlrt. jet.. Thr 

flow field is shown schematically in figur 4.24 showing the annular inlet leading to 

recirculation and high streamline curvature. For this flow wirling air is iutrociuc('d 

-.-~------

Inlet --.:::::::---..-

~-------

1.5m 

FI(;llHI ~ 4.24: Flow chrmati for AI-fda C'('h\ swirling flow problC'TIl . 

i11t.o t.he combustion chamb r through th anllular iulet. Tb(' pr . ( nee of Lll('.' irl 

C'lllutlH'('s t.h axial H'circulat.ion by creating a low prc.'sul'r at the ('entre of tit, axial 

vort(,x (as in t.he prC'vioH. C~ c). III this Cl...,) the swirl at th' inlet i .. d fill('d hy tile 

Hwirl lltllllbcl' 

( to) 
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which was set to be S = 0.53, where U and W are the mean axial and tangential 

inlet velocities (prescribed as below), and r is the radial distance from the central 

axis. The high streamline curvature and jet impingements near the wall due to the 

recirculation regions close to the inlet, provide a more complex flow field in term 

of velocity and mean strain rate. These factors serve as a more stringent te t for 

the computational models than Kitoh's case described above. 

The experimental measurements were performed using laser doppler velocimetry 

(LDV). Unlike the hot wire method used by Kitoh, LDV is less invasive to the flow 

with only the presence of small 'seeds' - or particles - being carried by the flow 

itself. These particles reflect the laser light, from which calibrated electroni s may 

calculate their velocities, and hence the fluid velocity, using the well known Doppl r 

Effect relations. From these experiments values of the mean flow quantitie were 

found along with data on the normal Reynolds stress components. 

4.3.1 Numerical Procedure 

The computational domain was created using an irregularly paced, structured me h. 

A nodal density of 100x56 nodes was found to give mesh independent results in the 

manner described in Chapter 3. The nodal density was increased close to the bound­

aries and the annular inlet, as shown in figure 4.25 to resolve the high gradients of 

the flow quantities in these regions. The length of the domain was equal to 1.5m with 

-= T - - ---r=--=... -+ 

1 

Fl. R 4.25: SSG model treaklines for the cas of Al- las h. 

a pIp radiu f 24mm. Th inn r and out r radii of th annular inl t ar 10mm and 

1 1. 1 mIll r sp ti vely. Thr ugh th xpcrim ntal ob rvation h (19 1). 

tItis flow we. s als £ und t be axi mIll tri in natur ,thu nabling h u f a 
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FIGURE 4.26: LRR model streaklines for the case of Al- lasseeh. 

FIGURE 4.27: SSG-ADRM model streaklines for the case of Al-Masseeh. 

two dimensional domain with an axis of symmetry at the lower boundary. 

Boundary Conditions 

Exp rimental data was not available for all of the turbulent stresses and 0 could not 

be used to provide inlet boundary conditions as in Kitoh's case. The experimental 

data for turbulent kinetic energy measured at an axial distance of 2mm from the 

inl twas u ed to approximate inlet turbulent kinetic energy. It was found after 

num ri al experimentation and guidance from Al-Masseeh (1991), that 

k = O.09U2 (4.7) 

w 11 r U i th m an axial in1 t velocity provided th be t approximation of kin ti 

n rgy t tho xp rim nt . Th axial inl t veloci ty U w t at 30m -1 

uniform a ro th annular inl t. Th turbul nt di ip hon rat at til inl w ' 

approximat d b 
3 

= O.09k "2 L, (4. ') 
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turbulence equations while the momentum equation are di creti ed wi h Q ICK 

(U, V) and SMART (W). 

Figures 4.28 to 4.31 show the effect of the different convective di creti ation ch m 

on the solution of the mean momentum equations. The main area of the flow wher 

the performance benefits of the higher order schemes are vi ible i in the near wall 

region. This is where the gradients of U and W are the greatest due to the high 

velocities meeting the no slip condition. This feature is een for U velocit at axial 

locations x = 5,15, 30mm, where a flow reversal i pre ent betw n 15 and 30mm 

due to the presence of the corner recirculations. 

The inlet jet region, x = 5, 15mm, is al 0 wher high order schem outperform tho 

of lower order. Here a fast moving jet is injected into low r moving fluid reating 

high shear rates and velocity gradi nt . Th width of the inlet j t for th high r 

order schemes are thinner than tho e of the upwind and hybrid chern howing 

their greater interpolative accura y and lack of numerical diffu ion to giv b tt r 

agreement with experiment. 
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where L = 5.5 x 10-
4m - corresponding to half the inlet width - is an integral length 

scale and k is found from (4.7). The effective viscosity (turbulent plus molecular) 

was approximated by 
J 

/-LeI I = 0.202pk 2 L. (4.9) 

The inlet tangentiaL or swirl velocity was specified by Al-Masseeh &'1 a piecewise 

linear function, giving a triangular profile, 

( 4.10) 

where To and Ti are the outer and inner annulus radii, T the radial distance and 1 a 

constant to be found. To find 1, one of the situations represented in (4.10) may be 

substituted into equation (4.6) where S = 0.53. After performing the integration of 

(4.6), the value of the gamma constant was found to be, 

18=0.53 = 2.0, (4.11 ) 

which corresponds to a peak tangential velocity of 30ms- 1 • 

At the solid walls, the no slip boundary condition is applied and standard logarithmic 

wall functions are used to approximate variables close to the wall. At thc exit of 

the chamber, a fully developed, zero gradient boundary condition is applied. For 

the symmetry axis, zero radial gradient boundary conditions are applied to all flow 

variables. 

4.3.2 Computational Results 

Comparison of Convective Discretisation Schemes 

Firstly a comparison of the discretisation schemes is presented using the two equa­

tion k - f model. Two situations are considered: effect. of convective scheme on 

solutions of t.he mean momentulll equations while the turbulence equations are dis­

cret.ised using the SMART scheme and effect of convection schcme 011 solutions of ttl(' 
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Figure 4.28 shows th effect on th mean axial velo ity, U. Th higher order ch m 

(QUICK, CUBISTA and SMART) give prediction that ar indi tingui hable du 

to the lack of very teep gradients in U. Thi b haviour i remini cent of th 

re ults depicted in Chapter 3 for the two-dimensional t t cases, wher th flow 

r main in the smooth region of the NVD diagram (SMART and CUBISTA redu 

to QUICK) and the QUICK scheme produces bounded re ult . Due to their lack 

of num ri al diffu ion these schemes are also shown to outperform the upwind and 

hybrid ch m when compared to the experimental data. The num rical diffu ion 

in u h i illu trated by the broader peak of th inl t jet at x = 5mm. Th 

h brid ch m om way to improv th pr di tion of th upwind 

cll m lying midway b tw n upwind and the high ord r ch m for 11 of til 

axial I ation h wn. Thi are region in th flow wh r P < 2, 

, that utral diffi r n ing i u d whi h i 
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shown in figure 4.29. Despite only qualitative agreement with the experimental 

results, it can still be seen that the higher order schemes are able to predict a less 

diffusive profile than the hybrid and upwind schemes. This is most noticeable at 

x = 15mm, where the peak is reduced in amplitude but broader for the low order 

schemes. These trends are repeated for the W velocity as shown in figure 4.30. 

The differences in the predictions for the different convective schemes are relatively 

small. The main reason for this relatively insensitive response to convective discreti­

sation is attributed to the Eddy-Viscosity hypothesis. As mentioned in previous 

chapters, this closure method introduces an effective viscosity into the momentum 

equations, resulting in a dominant diffusion term. It is this term that dominates 

diffusion in the momentum equation, as the molecular diffusion and any a.';sodated 

numerical diffusion is small in comparison. 

The effect on k of changing the momentum equation convective discretisation scheme 

is seen in figure 4.31. The momentum equations are coupled to the transport equa­

tion (2.30) for k through the Eddy-Viscosity hypothesis, the various models used to 

close the equation and the explicit appearance of Ui , so there is a dependence on 

the discretisation scheme used. The term describing the production of k, 

aUi 
P = -Tik- (4.12) 

aXk 

is directly proportional to the gradient of the velocity. The hypothesis can be 

made that the production of k will be less when low order convective discretisatioll 

schemes are used in the momentum equations. Results in figure 4.31, with reference 

to figures 4.28 and 4.30, support this hypothesis. Where x = 15mm the gradients of 

the velocities are smaller for the low order schemes than for those of higher order. 

This is reflected in the size of the predicted value of k. At x = 15mm the values of k 

predicted when the momentum equations are discretised using low order convection 

schemes are smaller than those of the higher order schemes. This is compounded 

by the appearance of Tij in (4.12) that is modelled by the eddy-viscosity hypothesis, 

equation (2.25), which includes the velocity gradients in its formulation. 

The effect of the convective discretisation scheme employed on f and k can h(' S(,(,11 
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in figures 4.32 to 4.35. Again, the difference between the upwind scheme and the 

high order schemes is small for the approximation of the turbulence equations. For 

the axial and radial velocity profiles, the upwind scheme provides a re ult that i 

in better agreement with the experimental data. This is due to the prediction of 

k. Comparing figures 4.32 and 4.35 for U and k at x = 15mm, it is seen that k i 

under-predicted in the region r > O.012m due to numerical diffusion. k appear in 

the source term of the U velocity equation in the model for Tij, 

( 4.13) 

where the turbulent viscosity, lJT = Cp.k2 IE. As k is reduced in this region, the 

magnitude of the momentum equation source term involving Tij is also reduced. 

This reduces the effective viscosity of the U velocity equation allowing less effectiv 

diffusion' leading to sharper velocity gradients as shown in figure 4.32. 
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turbulence equations; S = 0.53. 

Comparison of Turbulence Models 

As mentioned previously the higher order, bounded convection schemes are mo t 

applicable to flows with steep gradients in flow variables to counteract the po ibility 

of under/overshoots in the interpolation. For turbulence variables such as turbulent 

kinetic energy or turbulence dissipation rate, it is of utmost importance that they 

remain bounded to comply with realisability (see Lumley, 1978). These variable 

are positive definite, and so must not become negative, which may happen when 

unbounded scheme ar used. For the results presented below the SMART chern 

w u d for all turbul nt quantities in all of the turbulence model con idered. Du 

t th highly tiff equation ets of the se ond moment do ure mod 1 th SMART 

alway onv rg. In th e ituations the CUBISTA hem w 

mpl y d ~ r it mor favourable onverg nce properti (e Chapter 2 and Alv 

t ai. (2003)). For tIl III m ntum quati n it w found that th Q I K MART 

and UBI TA cll III all pr du ' d indi tingui habl r ult. For thi r n th 

I scheme We S us d £ r Lh and l ill m ntum quation ' with a b und d 
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scheme for the tangential W velocity as this must also be positive definite. 

Comparison of the k - E and k - w models 

The computed results for the two-equation turbulence models can be seen in figures 

4.36, 4.37, 4.38 and 4.39. From figures 4.36 and 4.38 it can be seen that the k - f 

model predicts U and W more accurately in the inlet jet region. Near the central 

axis, both models predict an erroneous negative U velocity close to the inlet. This 

can be traced to an over-prediction of the tangential swirl velocity at the central 

axis (figure 4.38). The high velocity gradients in this jet region result in high values 

of strain rate leading to an increased 'effective' diffusion term in the momentum 

equations, diffusing the inlet swirl velocity to the central axis. This main drawback 

is due to the use of the Bousinesq hypothesis (2.25) to model the Reynolds stresses. 

The effect of this additional diffusion term can be seen for U, V and W near the 
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FICl1RE 4.36: Axial velocity profiles for the case of AI-Masseeh (1991); S = 0.53. 

inlet. where a spreading of the velocity profiles means that the st.eeper gradients and 

finer det.ail of the flow are not. predicted accurately. 
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From figure 4.36 at x = 200mm, the flow is purely in the positive, downstream 

direction, showing that both two equation models predict a premature relaxation of 

the flow, with a smaller primary axial recirculation. This behaviour is also shown 

in the tangential velocity profiles. At x = 30 and x = 200mm both two equation 

models under-predict the size of the tangential velocity, where the profiles resemble 

more that of a solid body rotation (a linear profile from axis to wall). 

Predictions for the turbulent kinetic energy are shown in figure 4.39. In the inlet 

region, the central peak is better predicted by the k - w model where the profile 

returns more closely to the experimental results upon moving closer to the central 

axis. The k - € model predicts a peak that is much too wide to agree with the 

experimental results, leading to an over-prediction at the central axis. 
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FIGURE 4.39: Thrbulent kinetic energy profiles for the case of AI-Masseeh (1991); S = 0.53. 

Further along the pipe axis, the k - f model shows better agreement with experi­

mental results than the k - w model. At 15mm, k - f behaves better at the central 

axis but both models under-predict the turbulent kinetic energy in the wall region. 

As t.he flow develops a.long the pipe the k - f model matches the experimental data 



148 

more closely. 

Overall, the two-equation models do not perform well when trying to captufP the 

turbulent kinetic energy of the flow. This can he attributed in the main to the 

isotropic formulation of the model. No account is made for the differing values of 

the normal Reynolds stresses, especially in the steep gradient regions near the inlet. 

This means that their effect is not reintroduced into the momentum equations. which 

are unable to respond to differences in the Reynolds stresses. 

Reynolds Stress Models 

As mentioned in prevIOUS sections, the full second moment, or Reynold.s stress, 

closure models include full transport equations for the individual stress components. 

This can overcome the deficiencies of isotropic two-equation models by modelling the 

individual stress components to the momentum equations, thus allowing for stress 

anisotropy. The modelling of the Reynolds shear stresses, as well as the normal 

stresses is also included to provide a closure that enables the incorporation of more 

turbulence physics of the flow. 

The models tested here are the LRR, SSG and SSG-ADRM and their results shown 

in figures 4.41 to 4.47. An immediate improvement can be observed when compared 

to the predictions of the two equation models. For the mean velocity profiles in 

figures 4.41 to 4.43, it is clearly seen that the computations reproduce the steep 

gradients shown in the measured data. This is especially apparent at the inlet jet 

region for the mean axial and tangential velocities. 

A more accurate prediction of the tangential velocity at the inlet, leads to a better 

prediction of the axial vortex due to the swirling inlet. As this quantity is reduced 

(in line with the experiments) when compared to two equation models, the speed of 

the axial vortex is reduced. This leads to a smaller negat.ive axial pressure gradient 

and hence improves prediction of axial velocity at the chamber axis. 

The Reynolds st.ress models also predict the axial recirculation length more ac­

curat.ely than the two equation models as shown in figure 4.40. At 200mm, t IH' 
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FIGURE 4.40: Axial velocity along the pipe axis; S = 0.53. 

Reynolds stress models still predict a negative axial velocity in agreement with x­

periment. The two equation models, as mentioned previously, predict a po itiv 

sign here, indicating premature flow relaxation. This observation is again linked to 

the prediction of the tangential velocity. At the 200mm measurement location, the 

two equation models predict a linear profile from chamber axis to the wall. Thi 

indicates a solid body rotation of the fluid , in contrast to the measurements. The 

Reynolds stress models improve the prediction by delaying the transition to solid 

body rotation. Unfortunately, this effect is more pronounced, and although results 

agree more strongly with the measurements, this transition is retarded too much 

compared to the experiments. 

This has a knock-on effect on the previously mentioned axial recirculation length. 

As the tangential velocity is slightly overestimated at the chamber axis, the negativ 

axial velocity is slightly larger than the experiments show at the axis. However, as 

shown in figure 4.40, at around 250mm, the decay of the axial velocity is increas d 

ompar d to the experimental data. This leads to premature flow reattachm nt, 

e p cially by th LRR model. The SSG-ADRM prediction how an improv m nt 

with th SSG mod I providing th be t prediction albeit premature. 

Pr di ti n f th ill an radial v 10 ity al 0 how improv ment over tho of th 

tw quaLioll mod 1. All of the R ynolds tres mod 1 u ed predict a P ' iliv 

radial v'locit. up t appr ximat 1 on half of th hamber radiu 11 r til inl , t, 
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in line with experiments. It is only in the outer region of the chamber that th 

sign becomes negative. Despite this more accurate prediction over the two equation 

models, the position and width of the central peak at the inlet till cannot mat h 

the experimental data. 
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For th pr diction of th turbulent kinetic energy hown in figure 4.44 the Reynold 

tr s mod 1 agr more closely with the experimental data especially for th inl t 

r gion (x = 5mm). Th peak in k at the inlet is more clearly defined returning to a 

flat profil at th hamber axi in agr ement with measurement . Toward th wall 

th valu of k i slightly under-pr dict d howing imilarit with 

th two q uati n mod I . A th flow d v lop down th hamb r th pr i tion 

ntinu s t with xp rim ntal data in th wall r gi n x p at 

lar . r di'tan ' (>200mm). 

As xp t d h ab v r uIt how that th R yn Id tr' m d 
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It is now appropriate to compare these individual models. 

For most regions of the flow, the mean velocity profile are very similar, but a 

few regions require attention. Firstly at the inlet, the axial velocity pr diction 

n ar the wall are slightly different for the SSG and LRR model. The LRR model 

pr dicts a positive velocity at the wall quickly changing sign at a radial po ition of 

22mm indicating the presence of an additional axial recirculation compared to that 

pr di ted by the SSG model. Indeed figure 4.26 illustrates this. 

Th SSG mod 1 produ e a negative axial velocity in thi region only returning 

tap i tiv ign at a radial po ition of around 17mm indicating a larg r axial 

r ir ulation (nam ly th primary orner recirculation). Th r al phy i al fl w i 

unkll wn d u to th lack of xperim ntal data in thi r gion. How v r , 10 0 

tll wall th III UT III nt pr di t a larg r n gative valu than th giv n by h 

b tw n th LRR and G mod 1 in h 

m d lling f h wall ur - tr 1Il 'orr la i n. Th LRR 111 d 1 

h<1.s a d di 'atcd t rm t a '(' llnt C r the proximit f a wall and h ff t f del)' 
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squashing, whereas the SSG model relies on the nonlinear term in it pre ure- train 

model to account for wall effects. 
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F IGURE 4.45: Reynolds stress model results for axial normal stress component ; S = 0.53. 

Another difference between the models is the prediction of the axial velocity at the 

chamber axis. Both models consistently over-predict the negative U in this region 

as the flow develops. The SSG model, however, shows a much larger discrepan y 

compared to the predictions of the LRR model. At 15mm, the axial velocity peak 

i I u hed further towards the wall than the prediction of the SSG model. Both pr -

dictions are slightly inaccurate when compared to measurement, and only repre nt 

a portion of the peak. This shows that the LRR model is more sensitive here to th 

c ntrifugal force experienced by the fluid due to swirl. 

F r the tangential v locity prediction the LRR model give more accurate pI' di tion 

than th SSG implem ntation. At the inlet region the LRR model give pr di ti n 

that ar v -ry 10 t th xperimental data, whereas th SSG mod 1 ov r-pr di l 

th lZ f th tang ntial v 10 ity. A mentioned previou ly both R ynoid tr 

v I-pr di t th tang ntial v 10 ity at th hamb th flow d 

hn. ing th ctf ct f d layin th tran i ion to lid b mIn. Til 
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FIGU RE 4.46: Reynolds stress model results for radial normal stress component; S 0.53. 
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the LRR model due to the smaller value of the vw and w2 stresses which act a. .. 

sink terms in the transport equation for W. For the results at most of the axial 

measurement locations, the LRR model affords a slightly improved prediction for 

tangential velocity compared to the SSG model. 

Predictions for the turbulent kinetic energy can be evaluated by looking at. those 

for the normal Reynolds stress components shown in figures 4.45 to 4.47. For all 

'fj,2, 'iP and w 2 predictions, the experimental data cannot be matched near t.he wall. 

Despite accurate prediction away from the wall, neither the LRR or SSG models can 

predict accurately in this region despite the LRR model's wall modelling approach, 

or the nonlinear terms in the SSG model. A possible rea.')on for the failure of the 

Reynolds stress model could be the use of wall functions, where an assumed variable 

profile is adopted close to the surface. Even though Kitoh {1991} advocated the use 

of wall functions for the flow he studied, they may not be appropriate here. 

For the SSG model, normal stress predictions are of the same accuracy as those for 

the LRR model near the chamber axis at the x=5mm and 15mm axial locations. 

As the flow develops, at x=30mm, the SSG prediction begins to underestimate the 

measured data to a greater extent than the LRR model. In the inlet region, the peak 

in the axial normal stress is under-predicted by both SSG and LRR, with the latter 

predicting a slightly smaller value. For the radial normal stress component, both 

models accurately predict the magnitude of the inlet peak. The width of this peak is 

overestimated by both models, showing an inability to resolve the sharp inlet peak. 

Again, for the tangential normal stress component, both models show inaccuracies 

at the inlet region. The peak in tangential normal stress is over-predicted, along 

wit.h it.s width. The SSG model, however, gives results that are less exaggerated 

than those of the LRR model. 

The rea..'ion for the inaccuracies of t.he predictions for normal stresses at the inlet 

are due t.o their specificat.ion. Only an inlet condition for k is given, and not the 

individual components themselves. As k = 1/2[u2 + 1)2 + w2
], it is a..'isumed that t.he 

normal components are isotropic at t.he inlet. Further downstream at ;t = 30111111, 

the effect of the inlet is less pronounced, and the computc\d results are in hett('r 

agreement. with measurement. It can also be not.iced that the flow heCOllH'S more 
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isotropic downstream. This is due to the reduction in production of turbulence 

mean straining itself is reduced. 

Effects of the anisotropic dissipation rate model 

The effect of including anisotropic dissipation on the mean flow and normal tre 

components can be seen in figures 4.41 to 4.47. For the mean axial velocity pro­

files, this model improves the SSG predictions at the chamber axis, bringing bett r 

agreement with experiment and giving superior prediction compared to tho e from 

the LRR model for x < 30mm. This is due to the reduction of tangential velocity 

at the axis and a consequent reduction in the rever e pre ur gradient brought 

about by the swirl. The axisymmetric ource term for the mean tangential velocity 

equation, -vw Ir , helps to contribute to the reduction in tangential velo ity at the 

axis. Figure 4.48 shows that this shear tress component i increased over i otropic 

methods. Also the increased prediction of the w2 stress (as shown in figure 4.47) 

acts to reduce the diffusion term in the transport equation for W. 
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model with a small reduction in the size of the axial velocity predicted. This illdi­

eates that the strength of the corner recirculation is diminished at x = 5, 15mm, as 

shown. 

For the mean radial velocity profiles, the ADRM provides only a mild departure 

from the predictions of the SSG model at the wall. At the axis, the model produ('('s 

results indistinguishable from those of the standard SSG model. This is primarily 

due to the small strain rate at the central axis associated with the radial velocity. 

As the ADRM is modelled using the mean strain and vorticity tensors, little effect 

is seen in this region. 

When considering the tangential velocity profiles, the anisotropic model offers sig­

nificant improvements at the chamber axis. Reductions in the size of the velocity 

at the axis are achieved, bringing the SSG prediction doser to the measured re­

sults than those of the LRR model. At x = 200mm, the prediction still retards the 

transition to solid body rotation, but supplies a prediction comparable to the LRR 

model but improved over that made by the SSG model. This behaviour is observed 

in Kitoh's case due to the increased value of the predicted vw shear stress in this 

region, acting as a sink term in the W momentum equation. 

For the area close the wall, the ADRM overestimates the velocity compared to 

experiments and the other models. At x = 5mm, this is due to the additional 

vw shear stress caused by redistribution from the normal stresses. As mentioned 

above, this shear stress acts as a sink term in the mean tangential velocity equation. 

However, as r is at its greatest value this sink term is reduced and so the contribution 

due to stress gradient takes precedence. The increased negative radial gradient of 

V111 due to the ADRM acts as a positive source term in the equation for W, leading to 

its increase near the wall. Even though this gradient reduces to that of the standard 

SSG model downstream, the increased upstream value of W is then transported 

dowIlstream due t.o convection. 

The most dramat.ic illustration of t.he effect of the anisotropic dissipation model (,(Ul 

be seen ill the results for the normal stresses. The results for the axial normal strpss 

in figure 4.45 show that the anisotropic profile ncar t.he inlet (:1: = 51111ll) shows it'ss 
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FIGURE 4.53: Diagonal components of the dissipation rate tensor; S = 0.53. 

resolution than both other models by a broadening of the central peak. The valu 

towards the chamber axis is also overestimated compared to the measured data and 

other model predictions. This behaviour is repeated further down tream alb it to a 

lesser degree. The other normal stress components v2 and w2 , al 0 how thi same 

behaviour (figures 4.46 and 4.47) as well as the shear stresses (figures 4.48, 4.49 and 

4.50). This is due to the modified production of dissipation coefficient, 0:1, 

The ontribution of the new model in equation (2.82) to the coefficient of production 

of di sipation is shown in figure 4.51. The standard SSG model sets this value as 

0;1 = 1.44 and so when 1.0 (the value of Cd in table 2.5) is added to the contribution 

in the figure, the coefficient does not achieve as high a value. Thi lead to an initial 

drop in production of di sipation at the inlet , causing the high valu of normal 

' tr ,and thu k, to b predicted up tream. 

If it i ' urn d that fJ and ~ in equation (2. 2) are zero (i.e. th ab n of III n 

train and vorti ity) C:1 - Oel ~ 0.36. Th dott d lin in figur 11 ' 

this vaIn . N ar th inl t, only th r gion around th j t h appr iablc ' training, 

r fI ('tcd ill th r du tion of 0;1 - Cd. Th P ak in th utr f th r d ueLi 11 i.' 

cam: \ i by the low 't raining in the c r f th j t. H r nl fi w d 'curs 
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in the axial direction. 

In the wall region, the value of C;l - Cd goes to zero as the strain of the flow incre e 

due to shear. At the central axis, the most important strain rate is that as 0 iated 

with the tangential velocity, as this velocity component must return to zero as radiu 

decreases. Figures 4.41 and 4.42 show that the contribution from U and to a greater 

extent, V are much smaller. In the upstream region, near the inlet, C;l - Cd take 

a large value due to the absence of large velocity gradients. Downstream wh r 

the transition to solid body rotation occurs, the dominant component in ~ and 'T/ 

becomes the radial tangential velocity gradient. This has the effect of redu ing 

C;l - Cd at the axis, thus reducing production of dissipation, leading to increased 

normal stress production. 

Figure 4.54 shows a shaded plot of C;l - Cd with overlaid momentum vector arrows. 

It can be seen that the lowest values of C:1 - Cd are present where the gradient of 

the momentum is largest. As alluded to above, these are at the sides of the inlet jet 

and the central axis as the flow develops into solid body rotation. 

FI RE 4.54: Plot f the v 10 ity v ctor with domain had d a C(-l - Cd; = O . ~3 . 
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The effect of C:1 on the dissipation is seen in figures 4.52 to 4.58. The isotropic 

part of the dissipation tensor is shown in figure 4.52. At the inlet, the peaks of 

the dissipation predicted by the SSG-ADRM are much smaller than those using the 

standard SSG model. The reason for this lies in the production of dissipation in this 

region. The value of C:1 is lower than that of the isotropic modeL thus reducing the 

production of dissipation. 

Despite the reduced production of dissipation in this region, the value of k, and 

hence the normal stress components, remain unchanged. The specified inlet value 

of k does not decay, due to the high convection of the inlet jet. 

The reduction in dissipation is also observed in figure 4.53 for the diagonal compo­

nent of Eij directly responsible for the dissipation of the normal stresses. In the jet 

region, again, the diagonal components of dissipation are reduced compared to the 

equivalent isotropic SSG model predictions. However, adjacent to the main central 

peak, the SSG-ADRM predicts larger values of dissipation than the isotropic model. 

Here, the value of C:1 reduces greatly due to mean shear. This promotes produc­

tion of turbulent kinetic energy from which increased dissipation arises, due to the 

dependence of production of E on that of k. 

Further downstream (x = 15mm), dissipation remains reduced compared to the 

isotropic models due to convection, but has increa.')ed relative to them because of 

the reduction in C:1 - Cd. At x = 30mm, the dissipation predicted by the SSG­

ADRM has increased beyond the values predicted by the isotropic models. In a 

similar way for the predictions for Kitoh's case, C:1 - Cd decreases from the wall 

towards the central axis due to the rotation of the fluid about the axis. This increases 

turbulent production, in turn increasing production of dissipation. 

The redistribution of dissipation is shown in figure 4.55. This component is directly 

proportional to the value of the dissipation anisotropy, dij. Upstream, the dominant 

componcnt of the mean strain and vorticity tensors is the radial gradient of mean 

a.xial velocity on which d ij depends. Below the inlet jet this gradient is positivc 

giving a negative value of d 12 , and vice versa above the jet leading to the largest off 

diagonal component of fij. The same effect is seen for the £23 component, d('l)(\wient 
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on radial gradient of tangential velocity. The E13 component has little effect except 

at the inlet jet, where the axial deceleration of the tangential velocity has greate t 

effect on d13. 

The diagonal components of Eij shown in figures 4.56 to 4.58 show that the isotropi 

dissipation remains dominant. The small effects of the irrotational strain (flow 

acceleration or deceleration) cause the departure from isotropy. This is ob erved 

mainly at the peak positions of the respective velocities. For Ell the axial de­

celeration causes an additional dissipation. The converse happens for E22 wh r 

acceleration decreases the dissipation. For E22, there is no tangential gradi nt of 

tangential velocity due to the axisymmetric specification. The very small di sipa­

tion anisotropy in this case is due to nonlinear terms in d33 comprised of ~, rJ and 

other combinations of mean strain and vorticity. These terms, however, have only 

a small effect for this dissipation component. 
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4.4 Summary of main results 

4.4.1 Swirling flow in a cylinder 

For the free vortex flow in this case, the two equation models were found to be 

inadequate for predicting the mean flow quantities due to the isotropic nature of the 

ddy viscosities. Predictions consist of data characteristic of forced vortex motion. 

Th Reynolds stress models provide a more accurate method of prediction of this 

flow. The LRR model predicts mean flow quantities that show reasonable agreement 

with experiment in the upstream region of the flow. Downstream, however the wirl 

d ay too rapidly leading to erroneou prediction of mean axial velocity and flow 

rcatta hm nt at the c ntral axi , in contrast to experiment. 

Th S G m del provide better agr m nt with experim nt than th LRR mod 1 for 

th mean flow quantitie . The r vcr axial flow at th vort x or 1 pr 

t the mall v r-pr di tion of tang ntial veloci ty. Thi a due to th und r- pr di t i 11 

[th vw h a1' t1' that a ts as a ink in th quation for l . Th 1 

III d 1 fih w ' imilar r · ' ult to tha of th G mod 1. Th axial v 1 , h w a 
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flow reattachment point at the axis, albeit further downstream than thp LRR model. 

Again this is due to a reduction of the tangential velocity, stimulated by a small 

increase in vw at the vortex core. 

The normal stress component are generally over-predicted by a small amount, and 

an inability to resolve the additional production in the vortex core is due to the 

high stress redistribution term present in all models. The SSG model shows more 

accurate prediction in the upstream region, while downstream, as the flow partially 

relaxes, the SSG-ADRM provides results in better agreement with experiment.Shear 

stresses are predicted well by all models, where the use of the SSG-ADRM affords 

more accuracy. 

The main effect of the SSG-ADRM is to modify the production of dissipation, and 

hence turbulent kinetic energy, through the coefficient C:1• It is shown that this 

coefficient is always lower than that used in isotropic dissipation models. This has 

the effect of increasing production of k when Cf*l is reduced in areas of high shear, 

which leads to increasing dissipation. As the flow relaxes downstream, this effect is 

reduced. 

4.4.2 Combustion chamber flow 

Again the predictive capabilities of the two equation models are inferior to those 

of the Reynolds stress models. The mean flow quantities are predicted well for the 

LRR, SSG and SSG-ADRM models. The increased reverse axial velocity at the 

central axis, as in Kitoh's case, is caused by an over-prediction of the tangential 

velocity. Again the under prediction in the vw stress in this region, is responsible. 

Axia.l recirculation lengths are underestimated compared to experiment. The SSG 

model provides the closest prediction to the measurements, with the LRR model 

showing the largest decay of the swirl. 

Normal stresses are predicted well for all models. The only discrepanci<'s are dm' 

to t.he inlet specification of k, instead of the individual stress compoD<'nts, and the 

use of wall fund ions leading to under-predicted values near the wall. Downstream. 

a..~ t.he flow relaxes, the SSG-ADRM model preserves the turbulence l)('U('r thall th{' 
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other models, in agreement with experiment. No comparison to experiment can 

be made for the shear stresses. However, computations show that the LRR model 

produces larger values of these stresses downstream. 

Again the SSG-ADRM model contribution comes from the evaluation of the Ct·' 

coefficient. Where the flow exhibits high strain rates due to shear at the inlet, 

dissipation is increased compared to the other models. This is especially not.iceable 

on the boundaries of the inlet jet where increased dissipation is seen around the 

central peak. When the convective effects of the jet are reduced downstream, the 

dissipation increases as in Kitoh's case. This effect decreases further dowllstream as 

the flow becomes more isotropic. 

As opposed to the previous case, a larger amount of redistribution of dissipation 

occurs due to the high strain rates at the inlet. As the flow develops, t.he strain rat.e 

decreases, having the same effect on the redistribution. 
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5.1 Introduction 

Swirl is incorporated into many types of industrial flow. For confined combustion 

flows, such as inside the cylinder of an internal combustion engine or a swirl burner. 

swirl is used to enhance the mixing of fuel with oxidant, resulting in optimal reaction 

(Gupta et at., 1984). Another important use of swirl is to anchor flame to prevent 

blow-off and extinction by providing flow recirculations in the flame region (Bradley, 

Gaskell, Gu, Lawes and Scott, 1998) 

The remainder of this thesis will concentrate on testing the generality of the aerody­

namic models described previously on a swirling, combustion flow. To facilitate the 

prediction of such flows, it is necessary to discuss the relevant methods of describing 

the combustion reactions and predicting the position of the flame. 

In addition to the equations of motion presented in chapter 2, conservation equations 

for the individual species present are required, such as mixture fraction and mass 

fraction (described later). In continuation of the discussion on DNS for isothermal 

turbulent flows, it is worth mentioning the current capability of DNS for solving the 

aerodynamic and additional reaction equations. It has been mentioned previously 

that the mesh size for accurate resolution of the smallest turbulent scales using DNS 

must be of the order of the size of the Kolmogorov length scale. For reacting flows, 

where the reaction takes place over a very thin reaction zone, the impracticalities 

of using DNS are amplified. For this case the thickness of the reaction zone can be 

much smaller than the Kolmogorov length scale, as is the chemical reaction time to 

the smallest isothermal timescales. These phenomena serve to increase the range of 

length and timescales needed to resolve the additional conservation equations using 

DNS, making its use even more impractical than for isothermal, inert flows. 

The above points show that to calculate reacting flows it is necessary to decouple 

the equations governing the reaction from those governing the aerodynamics due to 

the separation of time and length scales. The aerodynamics of the turbu}pnt flow are 

dealt with in the manner shown in chapter 2, whilst new models must be introduced 

to accurately describe the combustion process. Once this is done, re-coupling of the 

models facilitates prediction of the flow and reaction dominated parameters. There 
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are several popular methods for predicting turbulent combustion in use. namely. 

probability density function (pdf) methods (Roekaerts, 2002), flamelet IllPthods 

(Gu, 1993), conditional moment closure (CMC) pdf methods (Klimenko and Bilger. 

1999) and the hybrid flamelet-CMC method (Bradley et al.. 2002). 

Pdf methods are used for modelling the highly nonlinear thermo-chemical corre­

lations present in the governing equations. The distribution of these correlations 

can be obtained by solving the joint velocity-scalar pdf using Monte-Carlo methods. 

Unfortunately, these methods are very computationally expensive pushing t.hem be­

yond the boundaries of affordable engineering. 

Flamelet models are employed when there is a clear separat.ion bet.ween the reaction 

and turbulent timescales, with the 'fast' chemistry timescale much short.er than that 

of the turbulence. Also for the flamelet model to be usefuL t.he lengt.h of the reaction 

zone must also be shorter than the Kolmogorov length-scale (Bray and Peters, 1994). 

The flamelet methodology is based upon defining a region, the flamelet, where re­

actions occur. Different formulations of flamelet modelling exist for premixed and 

diffusion flame. For premixed flame, the mean volumetric heat release rate is ex­

pressed in terms of an assumed pdf and the laminar heat release rate. A library of 

laminar flames is provided to accomplish this for the varying flow conditions across 

the reaction zone. For diffusion flames, the assumed pdf incorporates the effect of 

mixture fraction to give the mean volumetric heat release rate. The effects of flame 

stretch are also considered for both cases, where flame curvature and straining leads 

to changes in heat release and, in some circumstances, flame extinction. 

CMC methods provide a different approach by finding the conditional pdf of a scalar 

variable. This is done by providing conditional moment equations for quantities 

such as species mass fraction and temperature/energy (Klimenko and Bilger, 1999). 

These equations can then be solved using conventional methods, avoiding t.he highly 

expensive algorithms used in pdf methods. 

The outcome of this chapter is the definition of the CMC-flamelet combust.ioll model 

to be used in the study of the TECFLAM swirl burner presented in Chapter 6. 

To arriv(, at this outcome, an understanding of ftamelet modelling is Ile("('ssary. 
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and is presented. The final model presented is based on those used for the study 

of premixed laminar flame, with the effects of turbulence incorporated via flame 

stretch. Premixed flames, as opposed to diffusion flames, are used with a conserved 

scalar, the mixture fraction, to account for the amount of mixing of fuel and oxidant. 

The CMC equations for the first and second moments of species mass fraction are 

then presented. After these equations are Favre averaged, they are then incorporated 

into the flamelet model structure to provide a more accurate description of the 

a."lsociated assumed pdfs. 

5.2 Laminar flames 

5.2.1 Laminar, premixed flames 

Flamelet models are used to describe the position of flame within the fluid and 

the reaction characteristics within the small reaction zone. The simplest flamelet is 

that of the premixed, planar, one-dimensional laminar flame. In the review by Law 

and Sung (2000), three separate levels of complexity are used within the Hamelet 

methodology. 

The first assumes the reaction zone to be infinitely thin, the flamelet represented 

by a flame sheet propagating into unburnt mixture with Harne velocity Ul, a.., shown 

in figure 5.1(a). At the flame sheet a discontinuity exists between the burnt, (b), 

and unburnt, (u), sides for temperature, T, and fuel mass fraction, Y. This type 

of Hamelet is wholly governed by the fluid dynamics of the flow, where mass and 

energy are conserved, with a decoupling of the simple one-step reaction that occurs 

across the Harne sheet. 

In the second approximation the flame sheet is expanded to a finite length, ~" within 

which the conservation of heat and mass fraction is accounted for. Within this zone 

is an infinitely thin reaction sheet preceded by the preheat zone (see figure 5.1(b)). 

As the unburnt fuel enters the preheat zone it is heat.ed by the heat re!f'a..-,c of the 

wact.ion sheet. propagating towards it with velocity Ub. The temperature of tlu' 
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unburnt fuel rises accordingly until enough heat has been absorbed to satisfy the 

activation energy of the mixture and reaction commences in the reaction sheet. At 

the reaction sheet, both the temperature and mass fraction profiles take their values 

in the burnt gas region causing the discontinuity at this location. The profiles of 

temperature and ma..'lS fraction across the preheat zone are dependent on the ratio 

of thermal to mass fraction diffusivity {known as the Lewis number, Le = kt/ pDCp : 

D-diffusivity, kt-thermal diffusivity, Cp-specific heat capacity at constant pressure}. 

The final approximation uses that of the second with an expanded reaction zone. In 

this zone, molecular diffusion plays the dominant role over the very short reaction 

distances. As shown by Law and Sung {2000}, the heat release profile over this thin 

region rises very steeply towards a peak which falls as the fuel is exhausted (see 

figure 5.1 (c)). Note that discontinuities do not exist at the boundary of the reaction 

zone and burnt gas regions. 

The widths of the preheat zone and the reaction zone are dependent on the reaction 

rate for the reaction in the flame, and hence on the chemical kinetics therein. For 

hydrogen fuel, the propagation of the flame is governed by the production of the H 

radical. Williams (2000) gives the simple reactions involved: the branching reaction, 

H+02 ~ OH+O, {5.1} 

which produces radicals and the recombination reaction, 

{5.2} 

which reduces them (M represents the action of other species present that aid the 

reaction by providing collisional energy but is not consumed). 

The branching reaction is stopped below a critical temperature, Te, where the 

branching and recombination reaction rates are equal. This means that heat re­

lease in the preheat zone can only be possible by upstream radical diffusion from 

the reaction zone when the temperature is below Tr . In the reaction zone, where 

the adiabatic flame temperature, Ta! = Tb > Te·, the branching reaction persists. 
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FIGURE 5.1: Representations of structure for premixed, one-dimensional, planar laminar 
flame: (a) simple model, (b) transport model, (c) diffusive reaction model. 

As either Tb decreases or Tc increases (due to increased pressure), the reaction zone 

narrows, increasing the activation energy. At Tb = Tc a flammability limit is defined 

by the chemical kinetics. For Tb < Tc energy loss due to radiation would be sufficient 

to cause flame extinction. 

The laminar burning velocity, Ul may be defined by numerical computation of the 

chemistry (Dixon-Lewis, 1990). The chemical length and time scales are represented 

as (Abraham et al., 1985) 

(5.3) 



where lS{ is the laminar flame thickness and Tc is the chemical t iUH'-:-;('(llp. 

The planar laminar flame is a simplification to those present in [pal flo\\":-; but i:-; 

instructive in their understanding (Gu, 1993). Turbulent fiamelets mllst tilk(' into 

(l("(:(Jllnt flame stretch both tangential and normal to the flame surfac<'. aff('ct ing tIl(' 

burning rates within. Considering the flame model in figure ::i.1{a). tlH' ('ffeet of 

stret,ch tangential to the flame alters its surface area, in turn changing the bUrIling 

rate. The normal velocity alters the flame front position so that flamp Sl)('('d and 

flame front velocity are balanced. 

Tangential velocity in the reaction zone effects the react.ion by transport of heat and 

lIlass (temperature and concentration) through it, resulting in changes ill reaction 

rat(' and heat release. Also changes in normal velocity affects the time t h(' mixt Ul"(' 

is in tlH' reaction .,;one. These points make it necessary to describe the effects of 

flame stretch. 

5.2.2 Stretched, laminar premixed flames 

Flame stretch rate is described by using the expression of Williams (1985) 

1 dA 
s---
< - A dt 

I 1', th(' rat" of chaIlge of an l'nfiIll'tesl'Inal surface area, A. at a point on w !ere oS s , ~, . . 

t.he fla.me surface normalised by A. The stretch rate can then be decomposed into 

cOlllponcnts arising from flame curvature, Sr, and flame straining, '''8' 

TIl(' t.(~llsoria.1 rq>1Ts('lItation of this equa.tion is given by Cawh'i and Poillsot (l!)!)()) 

S = -00: Vv + \'. v + Sn \'. 0 
" V J ~ 

,"'t' 

Not.(' t hat ill th(' abo\'e. the sccond t('rIll would 1)(' zero if t h('!"(' \vas ";('1'0 (,lIn'at lIrc 

of t h(' II" Ill(' slIrfan'. 
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For small strain and curvature, Clavin (1985) describes the dependence of the 

stretched laminar burning velocity, 'lln, in terms of the stretch rate, 8, via, 

'lll - Un = .cs (5.7) 

where .c is the Markstein length, relating change in burning velocity to flame stretch. 

The associated non-dimensional parameter of the Markstein length is the Markstein 

number, Ma = L/8[. Bradley et at. (1996) found that not only are the influences 

of strain and curvature different for premixed flame, but so are the responses of 

the flame front and the reaction zone to strain and curvature. This leads t.o t.he 

definition of two burning velocities, Un and U nr , the former based on the rate of 

disappearance of unburned gas, the latter on the rate of appearance of burned gas. 

From their computational study of propagating spherical laminar methane flames, 

it was found (Bradley et at., 1996) 

UI - 'llnr 

(5.8) 

(5.9) 

where .cc, .ccr and .cs, .csr are the Markstein lengths of a laminar flame for curvature 

stretch and straining, respectively. 

The unstretched volumetric laminar heat release rate, qLO, is affected by the com­

pleteness of the reaction in the flame. This is expressed using the reaction progress 

variable, (), which is expressed as the fractional change in concentration of a perma­

nent reaction product species, such as H20, 

() = YH2 0 

(YH20)max 
(5.10) 

Laminar heat release is also affected by flame stretch in a manner discussed by 

I3 rad ley, Gaskell and Gu (1998b) as, 

ql((), .'i) = !(S)qLO((}), (5.11 ) 
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where J(8} is a function derived from the chemical kinetics that depends on both 8 

and the Markstein numbers of the mixture. The function J{8} is used to attelluate 

the laminar heat release rate when stretching occurs and is given by Bradley et al. 

(1996), after analysis of computed results for propane-air and methane-air spherical 

flames, as 

{

I - 0.8(1 - unr/ut} if 
J(8) = 

1 - 0.8(1 - un/ut} if 

5.3 Premixed, turbulent flames 

1 - Unr/Ul ~ 0 

1 - Unr/Ul < 0 
(5.12) 

Laminar flamelets in turbulent flows are stretched due to the effects of strain or 

curvature, which modify their internal structure and the value of laminar burning 

velocity as described above. For turbulent premixed flame, the mean volumetric 

heat release rate, qt, is expressed in terms of an assumed pdf, p( (), .~), of the reaction 

progress variable, (), the stretch rate, and the laminar heat release rate, ql((), 8), i.e. 

1+00 /.1 qt = ql((),s)p((),s)d()ds 
-00 0 

(5.13) 

Excessive flame stretch can lead to flame extinction at the stretch limits Sq+ and 

Sq_ under positive and negative stretch rates, respectively. If the influences of () and 

s are assumed to be statistically independent (Gu, 1993), the joint pdf of () and 8, 

p((), 8), may be expressed by the product of the two separate pdfs, p(s)p(()) and 

{Sq+ /.1 
}Sq_ 0 J(s)qLO(())p(())p(s)d()ds 

(Sq+ /.1 
}Sq_ J(s)p(s)ds 0 qLO(())p(())d() 

p" { qlO(/1)p(/1)d/1 (5.14) 

Here 
{Sq+ 

Pb = J.'1 J(8)p{s)ds 
Sq_ 

(5.15) 

is the probability of burning factor, which has been studied extensively by Bradley 

(2002) and Bradley, Gaskell and Gu (1998b). The pdf of stretch rate is assumed by 
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Bradley, Ga.."kell and Gu (1998b) to be a Gaussian distribution, 

P s - exp -( ) _ 1 [( ,r:; 8 - .'; S ) 2] 
V'iias V2a.~ (5.16) 

where Ss is the aerodynamic strain rate, with its mean and r.m.s. values given by 

(Bradley, Gaskell and Gu, 1998b), 

u' 
Ss = l.08-:x, (5.17) 

The term u' / A is the Eulerian strain rate comprising the turbulent velocity and the 

Taylor microscale, A and is approximated by (Gu, 1993), 

(5.18) 

The stretched laminar flamelet model is used to account for the physics of turbulent, 

premixed flame. For non-premixed systems, the relevant concentrations of the fuel 

and oxidant species changes over the flow field due to aerodynamic and diffusive 

mixing effects, unlike the fixed concentrations of premixed gas. The theory of pre­

mixed, stretched laminar flames can, however, be applied to these so-called diffusion 

flames, as shown below. 

5.3.1 Non-premixed, turbulent flames 

For turbulent non-premixed flames, a conserved scalar approach is adopted. Lami­

nar diffusion flamelet structures can conveniently be exhibited employing the mix­

ture fraction, ~ (not to be confused with ~ in chapter 2 regarding the mean vorticity), 

a conserved scalar described in the next section, as the independent variabk. The 

mixture fraction is defined as the fraction of the local mixture that originated ill 

the fuel stream, giving ~ = 0 in the oxidant stream and ~ = 1 in the fuel stream. 

Most. of the chemistry typically occurs in the vicinity of t.he stoichiomet.ric valup of 

~ (i.e. when the molar concentrations of the reactants are in the ideal proportions 

for a reaction to occur). In laminar diffusion flames, fuel and oxidant are on hoth 
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sides of a reaction zone where diffusion of these reactants into the zone provides the 

appropriate concentrations for reaction to occur. At the reaction zone the maximum 

heat for the concentration of reactants is released. 

The burning rate of such flames is controlled by the molecular diffusion of the 

reactants towards the reaction zone. The scalar dissipation rate of the mixture 

fraction is defined by (Libby and Williams, 1994): 

(5.19) 

which is a measure of the inverse diffusion time. As this time decreases, heat and 

mass transfer through the stoichiometric surface is enhanced. 

The mean properties of turbulent non-premixed flames, such as the mean tempera­

ture, may be calculated as, 

T = l fO T(~,X)p(~,X)d~dX, (5.20) 

where T(~, X) is the local flame structure in mixture fraction space and the joint 

pdf of ~ and X captures the statistics of the fuel/air mixing. 

The expression for the mean volumetric heat release must now be altered to take 

into account the mixture fraction. From equation (5.14) 

(5.21) 

and the total mean volumetric heat release rate is given by 

(5.22) 

where ~min and ~max are the flammability limits of mixture fraction. 

When the fuel is discharged into the air, the shear-generated aerodynamic strain 

rate is initially sufficiently high to not only mix the fuel and air but also to qnench 

both premixed and diffusion flamelets. Further dowIlstream, the strain rate relaxes 

and premixed burning is initiated. Premixed, not diffusion flamelets are employ('d 
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by Bradley, Gaskell and Gu (1998a) to account for the turbulent non-premixed 

flames at high strain rate to predict liftoff heights for different methane flow~ from 

a pipe into still air. However, instead of assuming that the effects of ~ and (J are 

uncorrelated, a conditional pdf of the reaction progress variable on the mixture 

fraction is used, 

p{(J,e) = p{(Jle = ry)p{O (5.23) 

Recently a conditional moment closure (CMC) for turbulent non-premixed flames 

has been developed by Klimenko and Bilger (1999). CMC methods predict the 

conditional averages and higher moments of quantities such as species mass fraction 

and temperature, conditional on the mixture fraction, allowing the calculation of 

the conditional pdfs. 

A combined CMC-flamelet model has been developed by Bradley et al. (2002) and 

this model is used in the present study to compute the TECFLAM research flame 

as described in Chapter 6. 

5.4 Mixture fraction - a conserved scalar 

The steady state conservation equations for the relevant reacting species can be 

written as (Libby and Williams, 1994) 

(5.24) 

(5.25) 

where YF and Yo are the fuel and oxidant ma..'lS fractions, DF and Do are the 

diffusion coefficients for fuel and oxidant and W is the relevant mass volumetric 

reaction rate. The mass fraction, Y, indicates the ratio of the mass for a specific 

chemical species to the total mass in the fluid and may be defined by its molar 

concentration, C as 
Yx 

Cx =p--, 
Mx 

(5.26) 
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for a species X with molecular mass M x. If it is assumed that 1 kilogram of fuel 

reacts with n kilograms of oxidant, then it is possible to write 

By defining a parameter, F, such that 

Yo 
F=YF - -; 

n 

(5.27) 

{5.28} 

dividing (5.25) by n and then combining with (5.24), a transport equation for F is 

obtained, 

a a ( aF) -a (pukF) = -a pD-
a 

' 
Xk Xk Xk 

where DF = Do = D. The mixture fraction, ~, may be defined by F as 

F-Fo 
~=---

FF -Fo 

(5.29) 

(5.30) 

where Fo is the value of F in the separated oxidant stream and Fp is the value 011 

the separated fuel stream for which ~ takes values of zero and unity, respectively. 

From equations (5.29) and (5.30), a transport equation for mixture fraction may be 

derived, 

(5.31) 

By using Favre decomposition and averaging, the transport equation for the mean 

mixture fraction at high Reynolds numbers reads, 

(5.32) 

Equation (5.32) is not closed due to the presence of the velocity-mixture fraction 

correlation, u%~". A transport equation can be obtained for this correlation in a 

similar manner for that of the Reynolds stresses in equation (2.89), leading to 
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- (pu--;;;;, 8Ui + {hN 8~ ) + n· + n. _ ~II Up 
k 8Xk k 18xk l{ l{,W I., ax; (5.33) 

w here the first term on the right is the production term and 

(5.34 ) 

where the pdf, p(~) is expressed in terms of its Favre averaged counterpart using 

p(~) = W(O 
p 

(5.35) 

A transport equation for the second moment of mixture fraction is derived as (Gu, 

1993), 

(5.36) 

The coefficient Cr in equation (5.36) is defined by Chomiak et al. (1991) after 

studying the ratio of dissipation for k and variance of temperature, giving 

( 
2 X 151

/
4

) 1 
Cr = 1 + Rel/2 Pr' (5.37) 

where Pr is the Prandtl number. The Taylor Reynolds number, ReA is based on 

the Taylor length-scale, 

( 
'2) 1/2 \ _ VU 

A- , 
f 

{5.38} 

and the r.m.s. velocity fluctuation, u' and has the same form as the conventional 

Reynolds number expression. The other coefficients for the above equations are 

shown in table 5.1. 

To define the above equations in the present work, consideration of some of t.he 

reaction chcmistry is necessary. The stoichiometry of the reaction of methanp in 
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Coefficient Value 
Cst 0.15 
CIT 3.0 
C2T 0.33 
C~T 0.5 
Ct 0.15 

CT ( 1 + 2x 15"4) _1 
Re 1/ 2 Pr 

A 

TABLE 5.1: Values of coefficients used in the first and second moment equations for mixtur(' 
fraction (Gu, 1993). 

oxygen is expressed by the equation 

(5.39) 

From equation (5.28), when 16kg of methane react with 64kg of oxygen and n = ·t 
the value of F becomes, 

Yo 
F = }';CH -­

'4 4 

The stoichiometric mole proportions for the above reaction may be given by 

(5.40) 

(5.41) 

where, from (5.39), 0.21y = 2. When the fuel-air mixture dictates that one mole of 

methane is present in x moles of air, it is possible to define an equivalence ratio, 

(5.42) 

which can then be used to find the value of x by 

y 2 
x = ¢ = 0.21¢ 

(5.43) 

Using this, the mass fractions of methane and oxygen in the mixture may 1)(' given 

as, 

16 

16 + x(0.21 x 32 + 0.79 x 28) 
¢ 

¢+17.167 
(5.-1-1) 
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x(0.21 x 32) 

16 + x(0.21 x 32 + 0.79 x 28) 
4 

¢ + 17.167 (5.45) 

From equations (5.44) and (5.45), (5.40) can be re-expressed for the reaction a,." 

F= _¢_-_1_ 
¢ + 17.167 (5.46) 

From (5.40) it can be seen that FF = 1 in the pure fuel stream as the values of 

YCH4 = 1 and Y0 2 = O. In the air stream ¢ = 0 setting YCH4 = 0 and Y02 = 0.233 

with Fa = -0.0583. The dependency of mixedness on the value of equivalence ratio 

may be expressed using equation (5.30), 

(¢ - 1)/(¢ + 17.167) + 0.0583 
1 + 0.0583 

0.0551 + ¢ - 1 
1.0583¢ + 18.168 

(5.47) 

For the methane-air mixture, the stoichiometric value of mixed ness is equal to 

0.0551. The flammability limits for cold premixture are, ~max = 0.08 when ¢ = 1.5 

and ~min = 0.028 when ¢ = 0.5 for rich and lean mixtures, respectively (Strehlow, 

1985; Andrews and Bradley, 1973). 

5.5 Conditional Moment Closure equations 

The Conditional Moment Closure (CMC) method defined by Klimenko and Bilger 

(1999) has its roots in the pdf methods described previously. Instead of solving the 

joint pdf, or using an assumed pdf to find the average value of a variable such as 

mass fraction, Y, a conditional pdf is defined, conditioned on another flow quantity 

such a,." mixture fraction, ~. The methods described in this section are applied later 

to facilitate the CMC-flamelet model. 

The joint probability of two events a and f3 occurring is cOIllIIlonly given by. 

P(o, (3) = P(nlf3)P(f-J), (5A8) 
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where P( 01,8) is the probability of 0 occurring conditional on the event ,8 oc(,urring. 

The definition of the probability density function for a variable. y, taking values lpss 

than a number, z, is given as (Klimenko and Bilger, 1999), 

p(z) = dP(y < z) 
dz (5.-19) 

By rearranging equation (5.49), multiplying by z and then integrating, the mean _ 

or expected - value of y, (y), is obtained, 

1+00 101 
(y) = zp(z)dz = z dP(y < z) 

-00 0 
(5.50) 

Note that equation (5.50) is similar to obtaining the first moment equations 1Il 

Chapter 2 for the mean flow properties. 

A conditional expectation can be derived by defining a conditional pdf from the 

joint pdf in the same way as in equation (5.48), 

(5.51) 

where Zl and Z2 are particular occurrences of Yl and Y2, respectively. The conditional 

expectation of Yl on a particular value of Y2 can thus be defined 

(5.52) 

Using the method of conditional expectations, Klimenko and Bilger (1999) derived a 

conditional transport equation for the mass fraction based on values of mixture frac­

tion. The full unconditioned transport equation for the mass fraction of a particular 

species is given by Libby and Williams (1994) as, 

ay a a ( a ) P-a + PUi-a Y - -a pD-a Y = pW, 
t Xi Xi Xi 

(5.53) 

where D is the diffusion coefficient of the species of interest in Y and W is the rate 

of format.ion of the species of interest in Y per unit mass. By decomposing the value 

of Y int.o a conditional expectation, Q = (YI11), where 11 is the value of ~ that is 
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being used for conditioning, and a fluctuation, Y", about Q, such that 

Y(x, t) = Q(~(x, t)x, t) + Y" (x, t), (5.54) 

a conditional equation for the mass fraction can be derived. Differentiating (5.54) 

with respect to time and space gives, 

8Y 
8t 
8Y 

8Xi 

Substituting equations (5.55) and (5.56) into equation (5.53) obtains, 

(5.55) 

(5.56) 

(5.57) 

from which the conditional expectation can be found, upon the condition that mix­

ture fraction ~ = 'f/, 

(5.58) 

In equation (5.58) the values of eQ and Cy are given by, 

/ 8 ( 8Q ) 8~ 8 (8Q) ) 
\ 8Xi pD 8Xi + pD 8Xi 8Xi 8'f/ ~(Xi, t) = 'f/ (5.59) 

ey / 8Y" 8Y" 8 ( 8Y") ) 
- \ Pm + PUi 8Xi - 8Xi pD 8Xi ~(Xi' t) = 'f/ ' (5.60) 

and X is the scalar dissipation rate of Y given by equation (5.19) and PTI = (pIT/). 

Klimenko and Bilger (1999) found that eQ has a negligible effect at high Reynolds 

numbers and can be omitted. ey contains terms involving Y" which are, a.t present, 

unknowns. Klimenko and Bilger (1999) noted that the unconditional and conditional 

expectation of the fluctuating terms (Y") = (Y"I'f/) = O. The expectation of t lip 

conditional gradients and time derivatives of the fluctuations cannot, however. ill' 
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set to zero. The integral of these terms with the pdf, P(17). over all 17, however, give..;; 

a zero result, 

(5.61) 

due to the zero expectation value of the unconditional gradients. Integrating f')' 

over all 17 using the pdf, P(17), in a similar manner to that in (5.61), gives (Klimenko 

and Bilger, 1999), 

(5.62) 

which gives 

1 8( ("" ) ey = --(-) -8 P71 Ui Y 117)p{17) 
P 17 Xi 

(5.63) 

By substituting equation (5.63) into equation (5.58) the first moment CMC equation 

for mass fraction is obtained, 

8Q ( I) 8Q 1 8 ( (" "I ) ( )) (I) 8
2 
Q 

8t + 1Li 17 -8 . + () -8. P71 1Li Y 17 P 17 - X 17 -8 2 = (W 117) 
X z P 17 P71 X Z 17 

(5.64) 

To represent the fluctuations in mass fraction, Y", the equations for the conditional 

second moments of mass fraction are derived by Klimenko and Bilger (1999). Firstly 

the unconditional covariance for two mass fractions, Kl'2 = Y!,Y~' is defined as, 

where 

8Kl2 
PEit + PUi 8Kl2 _ ~ (DP 8K12 ) + 2Dp (8Y!' 8Y~') 

8Xi 8Xi 8Xi 8Xi 8Xi 

P(WI Y~' + W2Y{') + EDl2 + ED21 - EQl2 - EQ21 (5.65) 

(5.66) 

(5.67) 

Decomposing Kl2 into its conditional expectation and fluctuating parts, different.i­

ating {as ill equations (5.54) to (5.58)) and then taking the conditional expectation 
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gIves, 

where 

(EK 11]) 

p __ 12 +p Ui-_12 __ Dp __ 12 8K" (8K" ) 8 ( 8K") 
8t 8Xi 8Xi 8Xi 

and 

(E I) ( 8Qk (y" "1) 02Qk (Y" "1 )) eQ.ik = Qjk 1] = PrJ 8Xi j ui 1] - 01]2 j X 1] 

In a similar manner to the ey term of equation (5.58), eK is expressed as 

The equation for the conditional variance can now be written as 

8C 12 (I 8C 12 (I) 8 2 
C 12 1 0 ( (" "1 ) ( )) 

8t + ui 1]) -8- - X 1] 8 2 + () -8 PrJ Ui K 12 1] P 1] 
Xi 1] P 1] PrJ xi 

(5.68) 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

((Wi'Y;' + W~'Ynl'l) - 2\ D (~~' '::') 'I) -~~: (YN'lrl) 

_ 8Q2 (y/' ~'I ) + 8
2
QI (Y;"x"I1]) + 8

2
Q2 (Y/'x"I1]) (5.73) 

8Xi 1 Ut 1] 81]2 2 81]2 1 . 

By assuming that species Y1 and Y2 are identical (Klimenko and Bilger, 1999), the 

conditional variance equation is obtained 

8C 
8t 

(5.7..1) 
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5.6 The CMC-flamelet model 

Using the CMC equations outlined in the previous section, a hybrid CMC-flamelct 

model was created by Bradley et al. (2002). In flows with high strain rates, the 

conditional fluctuations of mass fraction and temperature become significant for a 

given mixture fraction, 'fJ, thus requiring the specification of the second moments 

of the reaction progress variable to determine the conditional Favre pdf, ]3(8171) of 

equation (5.23) and the chemical source terms. 

The reaction progress variable is defined by equation (5.10) where (YH20)ma.r is 

the maximum mass concentration of H20 for an unstretched laminar flamelet with 

mixture fraction 'fJ. The conditional first and second moments of reacted ness are 

given by, 

(81'fJ) 
{Y ('fJ )lhO )max 

GH20 

(5.75) 

(5.76) 

where QH20 and GH20 are the Favre conditional mean and variance expectations of 

the mass fraction YH2 0 , 

(pYH 20 1'fJ) 

Pl1 

(pY{{;ol'fJ) 

Pl1 

(5.77) 

(5.78) 

The Favre averaged forms of equations (5.64) and (5.74) may be used to define Q 

and G, where the pdf of mixture fraction at 'fJ may be expressed in Favre averaged 

form as 

(5.79) 

Additional closure is required for the unknown terms in equations (5.64) and (5.74). 

The conditional fluctuating velocity-mass fraction covariance may be expressed llsing 

t.he closure of Klimenko and Bilger (1999), 

liT DQ (5.80) 
Pr8X i 
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V'r Be 
(5.81) 

where Pr = 0.72 is the Prandtl number. 

Equations (5.64) and (5.74) can be cast into their steady state forms for time­

independent calculations as (Bradley et at., 2002), 

for the first moment equation and 

for the second moment of conditional mass fraction. 

The equation for the conditional temperature, QT = (pTI"I) / PrJ' can be derived in 

the same manner as that of the conditional mass fraction 

{5.84} 

The conditional source terms in equations (5.82), (5.83) and (5.84), can be given 

using the conditional pdf of reactedness, p(OI"l). This pdf is assumed to he a beta 

function (Cu, 1993), 

-(Ol ) = r{a + l1) 00 - 1(1 _ 0}/3-1 
P "I r{a}r(J3) 

(5.85 ) 
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where 

{5.86} 

{3 {5.87} 

and the gamma function is given by 

(5.88) 

The conditional volumetric heat release can now be expressed as 

\ 
q) ( ) 10 1 qlO ( 0, "l) -c "l = Pb "l C (0 ) (0 ) Pl1P( Ol"l )dO 
POp ,"lP ,"l 

(5.89) 

with the conditional mass rate of formation of a specific species given by, 

(5.90) 

where the unstretched laminar heat release profiles, qlO, and laminar mass rate 

of formation, WlO, for mixture fraction, "l, are given in the fiamelet library. The 

laminar fiamelet data in the library are computed using the chemical kinetic code, 

CHEMKIN-II (Kee et al., 1989) using the GRI-MECH 2.11 mechanism (Bowman 

et al., 1996). The conditional covariance of mass formation rate and mass fraction 

in equation (5.83) can be expressed as, 

The value of Q R is the conditional radiative heat loss from reaction products and is 

modelled using (Barlow et al., 2001) 

(5.92) 

when' (T is the Stefan-Boltzmann constant, Pi is the partial pressure of sppcips i. and 

(1.,1,; is tlw Planck mean absorption coefficient of species i. The temperatures T and Tb 
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are the local flame temperature and the background temperature, respectively. The 

absorption coefficients for the different species are calculated using the RADC'AL 

program (Grosshandler, 1993). 

The unclosed terms on the right hand side of (5.83) are modelled using (Klimcnko 

and Bilger, 1999), 

(5.93) 

(5.94) 

where 0 1 and O2 take the values of 2.0 and 1.1, respectively. 

The conditional average scalar dissipation rate is modelled using the DNS mapping 

closure of O'Brien and Jiang (1991), where 

(5.95) 

and erf represents the well known error function. The coefficient, 0, is then deter­

mined by 

c = X [[ [-2 (erC-1 (2'1 - 1)) 2] P('I)d'lj-1 (5.96) 

The Favre mean scalar dissipation rate, X is obtained by assuming equal diffusion 

timescales of species (Klimenko and Bilger, 1999), 

(5.97) 

The conditional velocity is approximated in the popular form of Kuzlletsov and 

Sabelllikov (1990), 

(5.98) 

The unconditional Favre mean quantities may be obtained by integrating ovcr thc 
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mixture fraction space using the pdf of conditional mixture fraction. jj(T7). ~Ilch as 

1'; = l Q;p(17)dr/, 

T = l QTP(17)dr/, 

(.).99) 

(5.100) 

fiJr specIes mass fractions and temperature, respectively. The pdf of conditional 

mixture fraction is obtained by assuming the form of a beta function, a.nalogous 

to the pdf of reactedness, p(B). The Favre averaged first and second mOIllellh of 

mixture fraction are then used in equations (5.85) to (5.87) in place of the condit ional 

reaction progress variahle (Blry). 

5.7 Summary 

In this chapter a combustion model hased on the hybrid CMC-fiamf'ld model has 

heen presented for the solution of non-premixed, turbulent flames. Instead of using 

assumed pdfs bas('d on partial conditioning (Bradley, Gaskell and Gu, 1998a), for 

the modelling of the mean quantities. the latter were found using it pdf. condit ioned 

on mixture fraction. The first and second moment CMC equatiOlI~ were t hen used 

t.() approximate the conditional mean and variance of the react.ioll progr('ss variable, 

{}, facilit.at.ing the (~valuation of the conditional pdf of the reaction progress variable. 

and IH'w'('. the conditional mean reaction quantitif's, 

The model can be applied to non-premixed combustion flow ('ases without using a 

diffusion fiamelet model. The next ('haptn introdu('('s such a flow. the TECFLA ~ I 

swirl burner, incorporating the effects of swirl to mix t he separate fuel and air 

streallls, ('olllbiIWd with reaction. 
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6.1 Introduction 

The incorporation of reaction often has a significant effect on the underlying na­

ture of the turbulent flow. For any reaction with significant heat release, there will 

be changes in fluid density due to the increased molecular spacing, and changes in 

pressure due to the increased kinetic energy of those molecules. These effects gen­

erate secondary flows in the fluid due to its expansion/contraction and the presence 

of additional pressure gradients, which can amplify or alternatively attenuate the 

straining already present in the flow and hence amplify/attenuate the turbulence. 

Turbulence, however, also affects the heat release of chemical reactions, giving rise 

to high frequency straining of the fluid leading to rapid changes in concentration 

of reactants (Law and Sung, 2000). If the concentrations of the reactants are not 

in the stoichiometric molar proportions, the reaction rate slows from the maximum 

rate given for the current temperature and pressure. Thus, turbulence causes high 

frequency oscillations in reaction rate and, therefore, heat release due to the con­

centration fluctuations. 

The present chapter illustrates the above, by the study of the combustion flow 

investigated by the TECFLAM research cooperation (Landenfeld et al., 1997, 1998; 

Bergmann et at., 1998; Meier et al., 2000b). In an effort to provide a 'standard' 

research flame, the TECFLAM group have created a natural gas swirl burner that 

is able to run in either premixed or non-premixed configurations (see figure 6.1 

below). Experimental work performed on the burner has produced detailed data 

for the velocity and turbulence quantities, by way of Laser Doppler Velocimetry, 

and the mean mass fractions of the major species present in the flame by Raman 

scatt.ering (Landenfeld et al., 1998; Bergmann et al., 1998). 

A previous numerical study has been performed by Meier et al. (2000a) using th£' 

Fluent 5 commercial code. For this calculation the LRR model has been used to closp 

t.he Reynolds stress equations. The assumed pdf combustion model from .Jom's and 

Whit.elaw (1982) is used with all relevant inlet data provided by the exp('rimental 

mea.surements. 
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Here, the combined CMC-flamelet model presented in Chapter 5 is used along with 

the SSG-ADRM Reynolds stress closure to simulate the effect of turbulence, swirl. 

and combustion on the flow field. The effects of the anisotropic dissipation model 

appear in the models for the pdf of stretch from equation (5.16) and the Favre mean 

scalar dissipation rate in equation (5.97). 

6.2 The TECFLAM swirl burner 

The geometry of the burner is shown in figure 6.1, where the inlets for the air and fuel 

consist of two concentric annular openings at the nozzle in the hase of the chamber. 

The fuel enters the chamber through the innermost annulus with inner radius, r fi = 

10mm, and the outer radius, r fo = 13mm, with the air annulus corresponding to, 

rai = 15mm and rao = 30mm, for the inner and outer radii, respectively. The 

nozzle rises 30mm from the base of the chamber of lengt.h l = 1200mm and radius, 

R = 250mm. An annulus at the top of the chamber of inner radius R;. = 235I1llll, 

bounded by the exterior wall, is used to remove the exhaust ga..,ses. 

Swirl is introduced at the air inlet, the fuel having no swirl imparted, via a swirl 

generator mounted below the burner nozzle, giving a swirl number of S = 0.9. 

The Reynolds numbers of the fuel and air jets are Ref = 7900 and Rea = 42900, 

respectively (Keck et ai., 2002). 

The experimental data was obtained using Laser Doppler Velocimetry and Laser 

Raman scattering for the aerodynamic quantities and species mass fractions. The 

error associated with the mean velocities is 5%, and those associated with the RMS 

fluctuating velocities is 6% as given by Landenfeld et al. (1997) and Landellfeld et al. 

(1998). The result of the Raman scattering performed by BergmanIl et al. (1998) 

and Meier et at. (2000b) gives errors as: 3% (temperature), 2% (N:d. 7% (H20), 

15% (02)' 2% (CH4) and 20% (CO). Mea..,urements for these quantities were t.aken 

in the near field (in the region of the inlet nozzle) to capturc the physic's of the 

flame. 
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~ 0500mm ~ 

1------i 

Air Air Swirl 
Gas Generator 

FIGURE 6.1: Flow schematic showing the burner and experimental etup; Meier et al. 

(2000a). 
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6.2.1 Numerical procedure 

It was found that a structured, irregularly spaced grid con i ting of 299 4 n d 

produced grid independent results , after grid refinement around the inl t regi n. 

The computations were performed using the PISO algorithm for tricter m ll­

servation per iteration, with the CUBISTA scheme to approximate th 

terms for all equations. In order to avoid flow recirculation at the inlet wh n u ing 

experimental data as the boundary conditions (as in the fir t swirling cas pI' nt d 

in chapter 4), the grid is extended at the inlet in an attempt to aptur th flow f­

fects at the two annuli. Figure 6.2 shows the r circulation pr nt a ro th annular 

opening for the air where the fuel and air j t m t . 
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Boundary conditions 

For this flow, the boundary conditions are more complex than those ill Chapter 4 

due to the presence of the fuel and air inlets. At all walls the no slip condition 

is employed along with the standard wall functions discussed earlier for turbulent 

quantities. At the exhaust, the zero gradient condition is applied where the flow 

becomes fully developed. An axisymmetric boundary condition is applied at the 

central axis, deduced from the experimental measurements (Landenfeld et al., 1997). 

At the fuel inlet, the following boundary conditions are applied. The inlet veloc­

ity is specified using the experimental data given by Landenfeld et al. (1997) and 

Landenfeld et at. (1998), where the bulk axial inlet velocity Ubf = 21ms-l. This 

condition is applied uniformly across the inlet where the inlet pipe is long enough 

for flow development to occur. The radial and tangential velocities are both set to 

zero. 

The turbulent kinetic energy was chosen in a similar manner to that of the isother­

mal ease in chapter 4, studied experimentally by AI-Masseeh (1991). After some 

numerical experimentation to fit the predicted values of turbulent kinetic energy to 

experiments, it was found that, 

- 2 
kf = (O. lUbl) , (6.1) 

gave the best approximation. The turbulent kinetic energy dissipation rate was 

also specified using a similar method in the manner of Hogg and Leschziner (1989). 

gIvmg 
-3/2 
k - I f.1 = --, 
II 

(6.2) 

where l I = 1 x 10-3m is the length scale, equal to one third of the fuel inlet width. 

The Favre mean mixture fraction and variance are specified as, 

~"21 = 0 (6.3) 

where unity signifies a pure fuel stream for the Favre mean mixture fraction. TIH' 
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effective viscosity at the fuel inlet is given, using the expression in equation (2.37), 

by 
-2 k 

J-Lell,1 = 0.202p I -!- + J-L 
€ 

(6.-1) 

where PI = 0.6885kg/m3 for methane and J-L = 1 x 10-5Ns/m2 . The inlet tempera­

ture is set at 300K. 

The air inlet is more complex than that of the fuel, due to the presence of swirl. The 

method for specification of the tangential velocity is analogous to that expressed for 

the case of AI-Masseeh (1991) discussed previously. Equation (4.6) is integrated 

using a triangular, piecewise profile of the form in equation (4.1 0) for W. The 

resultant value of the coefficient used to find the tangential velocity from equation 

(4.10) is calculated to be, 

'S=0.9 = 2.356 (6.5) 

The hulk velocity of the air at the inlet is specified uniformly across the boundary 

from t.he experiment.s of Landenfeld et al. (1997) as, 

Uba = 23ms- 1 (6.6) 

As for t.he fuel inlet. t.he value of turbulent kinetic energy is given by 

- 2 
ka = (O. IUba) , (6.7) 

wit.h its dissipation prescribed using 

(6.8) 

where la = 3.75 x 10-3m, corresponds to one quarter of the air anIlulus width. The 

Favre mean and variance of the mixture fraction at. the air inlet are 

~"2 = O. (6.9) 
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The effective viscosity is specified as 

(6.10) 

where Pa = 1.2865kg/m3 for air with the same viscosity a.." for methane. As for the 

methane jet, the Favre mean temperature is set to 300K. 

The initial conditions for the interior of the domain need to be specified for Favre 

mean species mass fractions and temperature, so that combustion is initiated in the 

simulation. From the first moment of conditional mass fraction and temperaturf' 

equations, (5.82) and (5.84), the convective, diffusive and turbulent transport terms 

are neglected, leaving two Poisson equations in conditional mixture fraction space, 

{6.11} 

(6.12) 

These equations are then solved to produce the conditional Favre mean ma..'Is and 

temperature profiles against mixture fraction that are then used as the initial con­

ditions in the domain. Figure 6.3 shows the profiles for the conditional Favre mean 

temperature and species mass fractions. 

6.3 Computational results 

6.3.1 Aerodynamic quantities 

The computed flow field is shown in figure 6.4 where the heat release is shown at 

the bottom of the figure and the streaklines and Yeo contours to the left and right 

of the symmetry axis, respectively. The main axial recirculation zone is sccn to 

recirculate reaction products to the base of the flame as expected. 

In the following analysis of computational results. Favre averaged quantities are 

given for the aerodynamic variables. The experimental data, however, is R('ynolds 

averaged and so discrepancies exist when the density gradient is high. This happens 
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in the region of the flame close to the axis, where the temperature gradient is high. 

The mean velocity profiles of the flame are shown in figures 6.5 to 6.7. For the ax­

ial velocity shown in figure 6.5, reasonable agreement with experiment is obtained. 

However, it can be seen that near the inlet nozzle (x = 10mm). there are distinctly 

two jets of gas resolved by the computations in contrast to the experimental mea­

surements. The cause of this preservation of the jet, is that the reverse axial velocity 

near the central axis is not large enough compared to experiment. This allows the jet 

to persist further downstream than the experiments show, leading to a smaller neg­

ative axial velocity at this radial location at greater axial distance from the nozzle. 

This effect also stops the fuel jet being 'pushed' into the air jet as the measurements 

show only a single, but broader, peak. 

From x = 70mm onward, it is seen that the jet spreads more than the experimental 

data shows. This is due to the loss of swirl near the central axis compared to that 

at other radial locations. The loss of swirl reduces the low pressure at the cent.re 

of the axial vortex. The force exerted on the fluid due to the low pressure can be 

seen as a counterbalance to the centrifugal force seen by the fluid as a consequence 

of the imparted swirl. As the tangential velocity decays t.oo rapidly downstream 

near the axis, the force on the fluid due to the low pressure is reduced. However, 

this reduction is greater than that of the tangential velocity (after x = 70nun W is 

approximately constant in this region), resulting in the moving of the jet radially 

outward further downstream. 

This result is corroborated by those shown in figure 6.6 for the mean radial velocities. 

The peak in the velocity profile is shifted radially outward, indicating the increased 

movement of the jet in this direction compared to experiment. Near the nozzle, it is 

seen that t.he computed results show two separate peaks, indicating t.hat the fud and 

air have not fully coalesced as the broad experimental peak shows. At .r = 20nun, 

however, the computed results match those of the experiment, showing that t he two 

independent peaks have merged albeit with an under-predicted siz('. 

The tangential velocity profiles are shown in figure 6.7 showing the lluder-predktC'ci 

values at axial locations x = 70mm and further for 0 < R < 0.025. This cont.rihut.ps 
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directly to the under-predicted negative axial velocity a.s mentioned above. I an 

also be seen that the peak in tangential velocity at the jet is under-predicted from 

x = 10mm to x = 30mm denoting a premature decay of swirl compared to th 

experimental mea.surements. Further downstream, an annulus of tangential vela it 

is formed at a greater radial distance than the experimental results show. Ind d, 

the experiments predict the formation of two concentric annuli in the down tl' am 

regIOn. 
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FIGURE 6.5 : Mean axial velocity for TECFLAM flame: +, experimental result (Land nfeld 
et al., 1997, 1998) ; - computed result. 

The components of the Reynolds tress ten or are shown in figures 6.8 to 6.12. At 

th nozzl the square root of the axial normal stress component doe not r olv th 

different peak shown by the experimental mea.sul'ement of RMS fiu tua ing axi 1 

v 10city ( ee figure 6.8). This is also a featur exhibited by th omput d r di 1 and 

tangential normal stl' s compon nt a.s hown in figur 6.9 nd .10. Th pn1ll~ r 

r OIl for thi di cr pancy betw n omput d and m ur d data i tha th n l'mal 

R ynold tr w r pr crib d t h inl t u ing k in d 

p cificati n. To th auth r kn wI dg , th nly wa to rIlly thi ' it u( ti 11 i 

LO U xperim ntal data £ r th input qllantiti ~ r I it h'; '(U > I r vi u ' lv. 

This how \ r bring m C 11 rvati n diffi ulti 'cill t h' r rlrculalil 11 a 'r 1":-' 
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FIGURE 6.8: Axial normal stress component for TECFLAM flame: • exp rim ntal r ult 
(Landenfeld et at. , 1997, 1998); -, computed re ult . 

the inlet p lane. Also the strength of k at the fuel jet is too mall compared to that at 

the air jet, resulting in the loss of the double peak for the normal tre compon nt ' 

near the nozzle. 

Further downstream, the computed values of u2 show a bett r agreement with xp r­

iment up to x = 30mm. From x = 70mm onward u2 is under-predicted compar d 

to the measured data, with the profile maxima occurring at slightly larger radial 

positions. 

As mentioned above, the radial normal tress component prediction only how a 

ingle peak close to the nozzle, in contrast to experiment. This defi iency i tran­

ported downstream, leading to und r-prediction at th central axi . Th main p ak 

in thi stress component al 0 becom more under-pr di t d down tr am, 11 wing 

the g n ral tr nd of premature r du ti n of turbul n n ar th hamb r axis. 

F r th tangential tr compon nt hown in figur 6.10, til agr m nt \ ith x-

p .rimellt at x = 20mm and x = 30nun i b tt r than h th r n rmal str s .. , 

as both p aks ar r Iv d. Th ntral axi regi n i till und r-pr di ' t t and til \ 

n w return to a 111 re i tropic tat d wll ' tr am at x = 16 mm. 
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Figures 6.11 and 6.12 show the predictions of the uv and uw hear tr . Th 

results of the computations show that the finer detail gained by the experim ntal 

measurements cannot be reproduced, although the location of the main p ak i 

reproduced well for UV. The size of this peak is however under-pr di t d. B r 

the uw shear stress, the profiles are under-predicted at all axial location hown. 

This is mainly due to the under-prediction at the nozzle region that i transp rt 

downstream. Both shear stresses prematurely return to value do to z ro at 

0.1 

0.05 

00 5 10 0 5 

FIGURE 6.9 : Radial normal stress component for TECFLA I flame: . xp rimental r ult 
(Landenfeld et al. 1997 199 ). - computed re ul . 

x = 160mm. 

6.3.2 Reaction related quantities 

Th pr di tion n rn d with th Orub\'l I'on in th fi w r 'h \! 11 in fi nrp .13 

d· t' 11 w g d agr III nt with h xp rim'lltal t 6.22. Th t Illp ratur pr Ie 1 n 

III ur m nt £ r all axiall atioll h W11 in figur 6.13. axial di lane 

d· t' b 11 III 11 r the 11 th lll', [r 1ll th 11 zzl h t Illp r ur pr lIn 1 

;: t R ::::::: O. 25m. Thi indica 

sh wn b th high r than xp t d I v I [ 
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FIGURE 6.10: Tangential normal stress component for TECFLAM flame: • exp rim ntal 
results (Landenfeld et at., 1997, 1998); -, computed r ult. 
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FIGURE 6.12: uw shear stress for TECFLAM flame: . , experimental re ult (Land nf Id 
et al., 1997, 1998); -, computed result. 

(see figures 6.21 and 6.22) . 

On the right hand side of figure 6.14, the predicted temp rature contour in th 

nozzle region are shown, along with predict d mean volum tri h at r I on 

the left hand side. Contours obtained from xperimental data are shown in figur 

6.15 along with computed predictions performed using th Fluent commer ial cod 

(Meier et ai., 2000a). As noted previously the predictions in figure 6.13 how go d 

agr ement with the experimental temperature contour correctly predicting th 

high temperature region near the central axis. They also show increased p rformanc 

ov r the commercial code, which cannot correctly predict the location of th high 

t mp ratur region. 

Re ults for th mixture fraction how good agr ment with xp rim nt h wn 111 

figure 6.16, as do the fuel mas fra tion in figur 6.17. Mixtur fra ti 11 onlour ' 

ar hown in figur 6.1 and again how b tter agT ill Ilt with t h <' btaincd 

xp rim ntally than th tho predict d b Flu nl (M i r t aI., 2 0 a) n III 

figur 6.19. Thi i pr bably du t th u ' c f til LRR III dIe r th 

'tr ' in th Flu llt code. F r ' tr llgl. swirliu fi "or, ' u'11 sKit h" :wirliu r fIL w 
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in Chapter 4, the LRR model has shown a tendency to predict premature decay of 

swirl, which will effect the fuel/air mixing. 

There are, however, some discrepancies in the current predictions. Thf' region of 

mixture fraction around the stoichiometric value for methane-air (~ = 0.0551) is 

more concentrated towards the base of the flame and the central axis for the COIll­

putations, whereas the experimental result shows a much larger axial penetration 

into the chamber. This shows that computationally, the air and methane are mixing 

too quickly at the base of the flame. Similar behaviour is shown by the Fluent pre­

diction, but the fuel jet extends too far radially outward compared to the predictions 

made here (again probably due to premature decay of swirl). 

The reason for the discrepancy in prediction of mixture fraction must lie in the 1I10d-

eUed eqnations (5.32), (5.33) and (5.36). These equations use modelling taken from 

a direct analogy of the LRR second moment closure of the aerodynamic quantities. 

This assumption of similarity between combustion related transport and aerody­

namic transport is shown to break down. 

The C02 mass fraction shown in figure 6.20, is under-predicted compared to the 

experimental result. Close to the central axis, the value is largely under-predicted 

for the axial locations shown. This shows that this reaction product. largely fed hack 

to the root of the flame via the swirl induced reverse axial velocity, is not produced 

by the flame in as high a quantity as expected. Again, this evidence supports the 

presence of incomplete combustion in the flame as shown by the high levels of CO 

outside the main oxygen jet (figure 6.21). 

The main concentration of CO is at a higher radial value than that of the inlet jet 

posit.ion. Figure 6.4, shows that the main concentration of CO lies in the corner 

recirculation. This indicates that the part of the flame closest to the wall is produc­

ing CO. As expected, the concentration of CO reduces as the hot f(\a.ction products 

approach t.he exhaust. 

The 02 ma ... .,s fraction profiles are shown in figure 6.22. In general, good agn,(~lllent 

with experiment is obtained, however, the mC\..'\s fraction of this sped(\s is oV('f(\sti­

mat.ed. The main regions of the flow when\ this occurs is a.t the n\lltral axis and 
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at the inlet jet. As would be expected the inlet J'et l'S hi h . d , g m oxygen ue to th 

air inlet. However, the overestimation in this region suggests that Ie oxygen i 

being used for combustion in the flame. This is clearly shown by the decrease in th 
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FIGURE 6.13: Temperature profiles for TECFLAM flame: +, xp rimental r ult 
(Bergmann et at., 1998; Meier et al.) 2000b); -, computed re ult. 

mass fractions of the H20 (figure 6.23) and C02 reaction product in the flam fj t 

region. 

At the axis region, the excess oxygen present can once again be explain d U lllg 

the mass fraction predictions of the reaction products. CO, C02 and H20 mas 

fractions are all under-predicted at the axis. As the oxygen in the flamefj t r gi 11 

i not being consumed by the combustion process the axial recirculation that £ d 

reaction products back to the root of the flame carrie th oxyg n along t h 

aJO 

Th omputational prediction of H2 m fraction 

mcasurem nts xc pt in th flame/j t r gion and th 

to tb xp f1111 utal 

ntral axi ' . Again thi i ' <.ill ' 

to the la k of con umption of xyg 11 in th flam rai ing its 11 me .. . fracti n uti 

1 wring th of oth r pis. 

The st.ra.ill rat f the flam , i an iml rtant fact r du tits ( bility lc fl,u'h 'm I 
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FIGURE 6.14: Computed temperature contours for the TECFLAM burner. 
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FIGU RE 6.15: Measured and comput d temperature contours for the TECFLAM burner 
(Meier et al., 2000a). 
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FIGURE 6.16: Mixture fraction profiles for TECFLAM flame: • exp rim ntal r ult 
(Bergmann et al., 1998; Meier et al., 2000b); -, computed r ult. 
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FIGURE 6.18: Mixture fraction and mean strain contours for the TECFLAM burn r. 

...... 1 
E 
E ....... 

-100 o 
[mm] 

0.1 
0.05 
0.02 
o 

-0.01 
-0 .02 
-0 .03 
-0.04 
-0.05 

F I RE 6.19: Measured and comput d mixture fraction contour ( 1 i r et aI., 20 Oa). 



214 

• • • • • • 

0.1 • • • • • 
• • 

""' E • • • • • 
'-" 

0::: • • • • • • • • • 
0.05 • • • • • • • • • • • • • • 

• 
0\:\ 

\.<-:J 

FIGURE 6.20: CO2 mass fraction profiles for TECFLAM flame: +, xp rim ntal r ult 
(Bergmann et al., 1998; Meier et al. 2000b) ; - computed r ult . 
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FIGURE 6 .22: O2 mass fraction profiles for TECFLAM flame: • experim ntal r ult 
(Bergmann et ai. , 1998; Meier et al., 2000b); -, ornputed re ult. 
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extinguish the flame, as well as effect the flame reactant concentrations. Figure 6.18 

shows contours of strain rate around the burner nozzle. The flammability limits of 

strain rate for methane-air flames are given by Gu (1993) as 2200s- 1 for premixed 

flames and 360s- 1 for diffusion flames. As the modelling used here dictates a partial 

premixing of reactants (based on mixture fraction), reaction may occur bet.ween 

these two limits. The strain rate is seen in figure 6.18 to be too large ncar the air 

and fuel inlets for combustion to occur. When correlating the heat release profile 

with the mean strain rate contours, it is seen that the ideal strain rates for reaction 

given above, coincide with areas of high mean volumetric heat release ratc. As the 

mean strain is dependent on the dissipation rate of turbulent kinetic cnergy, f. frolll 

equation (5.16), its prediction shows that the anisotropic dissipation rate model ha."; 

no adverse effects for this quantity. 

Although the combined CMC-flamelet model gives good accuracy for the prediction 

of temperature as well as the mass fractions of O2, H20 and CH I, it is found to 

be unsatisfactory for the prediction of CO and CO2 mass fractions. The main 

discrepancy is the presence of excess CO in the corner recirculation and the lack 

of C02 in the flow field. The experimental burner is operated with an overall 

equivalence ratio, </> = 0.833, corresponding to a mixture fraction, € = 0.0463 which 

represents a leaner mixture than the stoichiometric value of 0.0551. Around the 

flame, figure 6.18 shows that the values of mean mixture fraction are close to the 

operating mixture fraction where combustion occurs. This means that the mixture 

is lean in areas where reaction occurs. This, however, cannot be reconciled with the 

presence of excess CO in the reaction products, as a lean flame promotes complete 

combustion forming C02 in preference to CO. 

The inclusion of anisotropic dissipation rate in the SSG-ADRM model may account 

for the over-prediction of CO. The conditional dissipation of Qco is directly de­

pendent on the dissipation rate of turbulent kinetic energy via equation (5.97). An 

under-prediction of E would cause the scalar dissipation to he reduced. leaving a 

greater conditional mass fraction of CO to be predicted. This ca.n he discounted hy 

comparison with the isothermal results for the ca."e of AI-Massceh (1991) in figure 

4.52. At the inlet of the annular jet in figure 4.52. th(' value of f is Ull<i('r-prpdictl'd 
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compared to the other model predictions. However. at the 30mm axial location. the 

value of f is comparable in size to the predictions of the other models. 

The explanation for the excess CO can be shown to be a limitation of the flamelet 

model methodology. When the reaction time, and hence flame thickness, can he 

considered to be smaller than the Kolmogorov time and length scales, the assump­

tion of the flamelet may be used to model the thin reaction zone without having to 

resolve this zone computationally (i.e. using DNS). The combustion rcadion pro­

ducing CO qualifies to be approximated using the flamelet model as shown by its 

rapid formation in figure 6.24 for a C3H8-air flame (Dibble et al., 1999) 
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FIGURE 6.24: Flame structure in a C3 Hs-air flame (Dibble et al., 1999). 

At z > 2.5IIllll, the mass fraction of CO is seen to drop. along wit.h that of O:,!. 

wit.h a corresponding rise in the ma...,s fraction of C0 2' 

described by Williams (2000) where reactions such as 

This is the oxidation laypr 



218 

(6.13) 

occur, serving to remove CO from the reaction products. The oxidation layer extends 

to a larger distance than the main reaction layer, indicating that the act nal flame 

thickness is larger than that assumed by the laminar flamelet model. The above 

reactions, therefore, are not included in the laminar flame library at this distance 

from the main reaction. This ha." the effect of stopping the prod nction of CO2 from 

CO, leading to the observed excess mass fraction of co. 

A way of modelling this behaviour could be to use the full CMC closure for the 

combustion terms (Klimenko and Bilger, 1999) or solution of the joint scalar pdfs via 

a Monte-Carlo method (Roekaerts, 2002) removing the need for flamelet modelling, 

but significantly increasing the computational cost. An extension of the flamclet 

model to take into account formation of oxides in the oxidation layer would involve 

modification of the mass formation rate source term in equation (5.90). To a.ffect 

this, the removal of the dependency of (5.90) on flammability limits of flame stretch 

and mixture fraction to allow reaction outside the main reaction zone, is needed. 

6.4 Summary of main results 

The aerodynamic quantities were generally well predicted. The boundary conditions 

at the inlet are shown to be a source of discrepancy between computational and 

experimental results. This occurs due to the inability to provide adequate boundary 

conditions at the annular apertures for the fuel and air stream, necessitating the use 

of extended inlet pipes in an attempt to capture the recirculations present across 

the aperture plane. 

Mean velocities are predicted well except for an under-prediction of axial and ta.n­

gential velocity at the chamber axis. The position of the inlet jets are predict('d 

at higher radial positions than the experimental results show downstream of the 

x = 70nun axial position. This is due to the decay of the tangential velocity at 

t.he cent.reline and also the expansion of the fluid in t.his region due t.o til(' onset of 

r('action and the associated increase in temperature. Some discrepancy is duc t.o the 
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comparison between Favre averaged computational results and Reynolds averagpd 

experimental data, as large variations in density occur in the region of the flame. 

The predictions are underestimated for the turbulent stresses mainly due to th(' 

specification of k at the inlet boundary. The shear stresses are especially und('r­

predicted indicating a premature isotropisation of the turbulence. together with its 

premature decay. 

The reaction dependent quantities such as temperature, mixture fraction and species 

mass fraction are also in good agreement with experiment. The major diffel"Pllces 

are in the prediction of the mixture fraction and mass fraction of CO. The com­

puted mixture fraction field is seen not to stretch out as far in the axial direction 

when compared to experiment, indicating a premature mixing of fuel and air. This 

is attributable to the inadequate modelling used for the mixture fraction related 

equations. The SSG-ADRM model is seen to provide adequate results due to the 

correct prediction of the mean strain in the flow. 

The discrepancy between predicted and measured Favre mean mass fraction of CO 

lies in the limitation of the flamelet assumption. The flame thicklless when including 

the oxidation of CO becomes larger than the laminar flame from which the chemical 

kinetic data is retrieved from the flame library. 
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7.1 Conclusions 

The main research objective of this thesis was to provide methods for the accurate 

simulation of turbulent swirling flow and, where the situation arises, tll<' predict.ion of 

reacting flow. Large Reynolds stress anisotropies were modelled, in the ca."es stuciipd, 

using the differential second moment closure method for the RANS equations. To 

simulate the effect of anisotropy of the dissipation for the Reynolds stresses, an 

algebraic anisotropic dissipation rate model for the turbulent kinetic energy ha." 

been incorporated into the closure. 

For flows involving combustion, a premixed laminar flame let model ha..., been used 

conditioned on the mixture fraction of the fluid to account for nOll-premixed COIll­

bustiOIl. The effect of flame stretch is embedded in the model, allowing prediction 

of the effects of turbulence on the flame due to the local fluctuation of velocity. 

By modelling the effects of flame stretch by straining, the turbulent kinetic energy 

dissipation rate is introduced into the flame let model, thereby adding the effects of 

dissipation anisotropy. 

A solution method using the SIMPLE or PISO solution algorithms ha.<; heen shown 

to work robustly and accurately for laminar and turbulent flows. The higher order 

SMART and CUBISTA convection schemes have been used to increase accuracy at 

little additional computational cost, whilst maintaining bounded ness of the solution 

_ an important consideration for the realisability of turbulent flows. 

7.1.1 Isothermal flows 

As expected, the two-equation turbulence models used are incapable of accurately 

predicting the nature of swirling confined flows. The inability to predict differenc('s 

in the normal Reynolds stresses, severely limits their ability to describe secondary 

flows (in this case the propagation of swirl by the tangent.ial and radial Reynolds 

stress components). For the swirling ca.."te studied by AI-Ma....,seeh (1991), t.he com­

puted results for mean velocity show a qualitative agreement in the near field of 

t.he jet, but the agreement is reduced dowllstream, when' solid body rotat.ion is prt'-
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dieted. For the swirling flow studied by Kitoh (1991), qualitative agreement with 

experiment is not obtained; solid body rotation is predicted throughout. 

The Reynolds stress closures show improved agreement with experiment compared 

to the predictions of the two-equation models. This is due to the ability to account 

for Reynolds stress anisotropy, and its initiation of secondary flow that pres('rves 

swirl. 

For these flows the SSG-ADRM model demonstrates the following characteristics: 

1. increased turbulence in the upstream region of the flow, leading to over­

prediction of normal stress components, and shear stresses, 

2. improved prediction of swirl velocity in the upstream region, a..-, shown by axial 

decay results (figures 4.8 and 4.40), an important result for the consideration 

of flame position in combustion flows, 

3. decreased turbulence in the downstream region compared to other models, 

4. premature decay of swirl in the downstream region, affected by the reduction 

in turbulence downstream, 

5. an inability to account for the sign of the mean strain and vorticity in the 

determination of the coefficient c:1, and hence the different effects upon the 

dissipation rate by the sign of these properties. 

These effects are discussed in more detail below along with the predictions of the 

other second-moment closures. 

For high swirl, in Kitoh's ca..~e, the LRR model failed to predict adequate mean 

How results in comparison with experiment. The large reverse axial velocity a.long 

with the a...,sociated free vortex distribution of tangential velocity were not predicted 

well along the length of the pipe showing premature decay of the swirl. In contrast 

the SSG and SSG-ADRM model predictions show that the swirl is preserved in the 

axial coordinate, showing increased agreement with experiment for the a.xial and 

tangential velocity profiles. The additional nonlinear terms in the pressure-strain 

correlat.ion for the SSG model improve its performance over the LRR lIlo(kl. 
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For the Reynolds stresses, it wa.." found that the LRR, SSG and SSG-ADRM models 

over-predict the normal components, to a much greater extent when the LRR model 

is in use. The shear stresses are well produced by the SSG and SSG-ADRM models, 

while the LRR model is least accurate. The anisotropic dissipation rate t.f'rms in 

the SSG-ADRM model show only minor departures from the standard SSG model. 

Closer to the inlet, predicted turbulent quantities are greater than those of the SSG 

model as the it reduces the production of dissipation, thereby increasing turbulence. 

As the flow develops, and mean strain and vorticity relaxes, the turbulence is shown 

to decay more readily than predicted using the SSG model. This results in t.he 

increased axial decay of swirl when compared to the SSG model. 

For the lower swirl case of AI-Ma.."seeh (1991), the same limitat.ions of the two­

equation models are apparent as for the higher swirl flow. The Reynolds stress 

closures are again more accurate. The LRR model predicts a premature decay of 

swirl, a.." indicated by positive axial velocity occurring at a lower axial position at 

the centreline compared to the other models. However, the LRR model is shown to 

give more realistic prediction of the flow field near the inlet in the wall region dlw 

to the wall effect terms included in the pressure-strain correlation. 

The SSG model over-predicts the tangential velocity at the chamber axis, delaying 

the onset of solid body motion in the upstream region, as seen in the strongly swirling 

flow. The SSG-ADRM model corrects this behaviour in the upstream region of the 

jet. However, this leads to premature decay of the tangential velocity downstream, 

and shortening of the axial recirculation. 

The isotropic specification of turbulence at the inlet is shown to cause inaccuracy in 

the prediction of the normal Reynolds stresses only at the inlet jet region. As the 

flow relaxes quickly, and becomes more isotropic, the inlet effects subside rapidly 

with axial distance. However, the prediction of the normal Reynolds stresses in the 

near wall region is inadequate. This calls into question the use of wall functions for 

this particular flow due to the presence of flow reattachments in this region. 

Again the effect of dissipation anisot.ropy in the SSG-ADRM model is seen t.o r<'du('(' 

the production of dissipation in the upstream region, leading to over-prediction of 
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turbulent quantities. This, however, reduces downstream for this flow a..o.; it beconlPs 

more isotropic. In the jet region, where the shear is greatest at the bounds of the 

jet, the anisotropic dissipation reduces, causing the increa.."e in turbulence produc­

tion. This increase is erroneous, as the tangential shear induced at the inlet ha.o.; 

opposing signs above and below the jet, affecting the production and dissipation of 

turbulence differently (analogous to alignment of local vorticity with or against t.he 

bulk vorticity to stabilise or increase turbulence). 

However, redistribution of the diagonal components of the dissipation rate tensor 

to the other components is observed at the jet region, with opposing eff('cts that 

enhance and attenuate the turbulence above and below the jet. The smaller size of 

the off-diagonal dissipation rate components still suggests that the diagonal COIll­

ponents, and hence the scalar turbulent dissipation rate, are dominant in this flow. 

The anisotropic effects are thus small compared to the isotropic dissipation. 

7.1.2 Reacting flow 

The SSG-ADRM model has shown an ability to capture the aerodynamic quanti­

ties of the TECFLAM turbulent, combustion flow well. The prediction of the jet 

position, and hence the flame, shows inaccuracies where the expansion of the gas at 

the central core pushes the jet too far radially outwards. Also the peak velocities 

in the jet are under-predicted by approximately 30% for axial velocity to 15% for 

tangential velocity. 

The aerodynamic mixing of the fuel and air jets was also under-predicted in the 

region of the nozzle, where the fuel jet is seen to persist further than experiment 

shows. The inlet. boundary conditions are t.he main culprit for this prediction, as 

t.he normal Reynolds stresses as well as the shear stresses are not resolved well ill 

t.his region. 

The predict.ion of mixture fraction and the mass fractions of CO and CO~ show 
. . 
maCCllraclCS. The mixture fraction, although predicted within t.he flammahility 

limits ill the flame region, shows area.." of IlOIl- uniformit.y across the width of the 

flame, wit.h regions of greater richness OIl the out.er edge of the flamC'. Despite this. 
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the air and fuel were shown to mix too rapidly at the base of the flame. Tht' use 

of the LRR model to account for mean mixture fraction and its fluctuation lIlay 1)(' 

unreliable for this application as it is based wholly on aerodynamic considera.tions. 

not taking into consideration the diffusive processes of the different species. 

A limitation of the flamelet model has been identified for the prediction of excessiv(' 

amounts of CO. The thin reaction zone assumption is valid for the main rpactions. 

but the oxidation layer for CO, and noxious gasses where applicable, is not consid­

ered in the model. This leaves the reaction converting CO~C02 untreated. 

7.2 Suggestions for future research 

Despite the increased computing cost required to integrate the equations fully up 

to the wall, it has been shown (Jakirlic et ai., 2001; Hanjalic and .lakirlic, 1998) 

that flows such as those studied here could benefit from this approach. Whilst the 

wall function assumption works well for the strongly swirling isothermal How up to 

y+ ~ 200 (Kitoh, 1991), its predictions for separating flows, as in the lower swirling 

flow of AI-Masseeh (1991), are not as accurate. To account for this, a low-Re number 

model needs to be developed to account for near wall effects. 

As mentioned in chapter 2, the modelling of the pressure-strain correlation term in 

the transport equation for the Reynolds stresses is of great importance. All of the 

models used in the work presented here do not comply wholly with the realisability 

constraints prescribed by Lumley (1978). More recent models, such a..'! those of Craft 

and Launder (2001) and Jovanovic et al. (2003), take into account the realisability 

constraints with additional modelling to capture the two-component nature of the 

normal Reynolds stresses when approaching a wall or a free surface. Testing of these 

types of models should be undertaken to validate them for swirling flows. 

The anisotropic dissipation rate model used here is implemented by adjusting the 

production of dissipation with respect to the size of the mean strain and vorticity 

tensors. However, the coefficient C
t
•1 has only a dependence on the modulus of th('s(' 

tensors. 11 and ~. This shows an insensitivity to the sign of the straiu and vorticity 
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that has an important effect in either attenuating or amplifying the production of 

turbulence. Even though the use of the stress anisotropy tensor to model dissipat ion 

anisotropies was discounted in this thesis, a combination of this along wi t h ('ffects 

of mean strain and vorticity should be investigated. 

The prediction of the Reynolds stresses, particularly at the centre of t he axis in 

strong swirl, has been shown to be inaccurate. By the use of DNS methods. lIlore 

accurate modelling could be produced by identification of the current inadequacies in 

the Reynolds stress model terms (i.e. the pressure-strain correlation) by comparison 

of the same computed by DNS. However, for the flow speeds studied here, LES is 

the only viable option for Reynolds stress model improvement. 

A significant improvement in the solution algorithms is required to redm'(' calcula­

tion time for the use of differential second-lIloment closure modelling. Possible solu­

tions are multiresolution techniques such as those presented by Lien and Lesch7.iner 

(1994), and parallelisation techniques, Without a reduction in computing times, the 

use of Reynolds stress models is not cost effective for industrial purposes. 

Extension of the flamelet model to account for the oxidation layer also needs to 

be addressed when computing comhusting flows. This should be performed by 

modifying the prediction of the rate of formation of species source terms in the 

equations for the relevant species mass fraction. Extension of the integrals for these 

source terms, outside the flammability limits for mixture fraction and flame stretch 

(effectively lengthening the flamelet width) should be incorporated. 
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A.1 Reynolds Stress Models - RSM 

The modelled equations for Reynolds stresses and dissipation rate read : 

(A.3) 

(A.4) 

(A.G) 

(A.6) 

(;\.8) 
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(A.9) 

(:\.10) 

(A.Il) 

C1 C1 C2 C;J C1 C" 
LRR 1.8 0.0 0.0 0.8 0.6 0.6 
SSG 1.7 1.05 0.9 0.8 - 0.65AY2 0.625 0.2 

Ct C2 Cs 

LRR 0.125 0.015 0.22 
SSG 0.0 0.0 0.22 

Cd C(2 Cf E {1I;J Cr ;., Ct: 

LRR 1.44 1.92 0.18 0 - - -
SSG 1.44 1.83 0.18 0 - - -

SSG-ADRM 1.0 1.83 0.15 E 0.6 5.80 0.094 
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SUiUj Convection Production Viscous Turbulent Diffusion 
Diffusion 
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s- +2vw w +2-w 2 v2 -w2 21 a (C k- -) 
1}2 vw- - r Elf S (" U'/LJ • V'llI 

r r - v-rr-
-2~ ~r (Cs~'lJw. VW) 

2C 1 k (-miTi' -avw) - - - U'II1-,- + VW 
S r ( c)I --aT 

+2C k2!''2-;;;-'} 
s (" 'll! -----,.r-

S2 2-w -2w2l.: +2v~ +2~ ~ (C,~~uW' vw) - vw-
til r r r +2~ ~r (C,~~V'/l1' vw) 

+ 2C 1! (uw (1JiW + 11'111 iJ!,fji ) 
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TA HLE A.1: List of source t<>rms. SUi Uj' arising from c()-or<iinate transformat iOlls, 
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z=J-1 z=J=2 z=J=3 

vw W w2 v 
kr-kr 

_2t1w ~\/ + ! w2 1..:. 
k r 2 k r 

85 
1 w 2 \" 

2T7 

z=1,j=2 Z = 1, j = 3 i=2,j=3 

uv V 1 uw w 1 uw \' 
kr - 2kr 2kr 

1 uw \" 
2kr 85 

TABLE A.2: List of source terms, S4 and S", arising from co-ordinate transformations. 
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