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ABSTRACT

This thesis investigates the predictability of non-reacting and reacting anisotropic.
turbulent, swirling flows using popular turbulence models with a robust numerical

procedure.

The performance of these turbulence models is assessed and compared against ex-
perimental data for anisotropic, turbulent swirling flow in a cylindrical pipe and
non-reacting and reacting combustion chambers. The transport equations for the
k — ¢ and k — w two-cquation turbulence models are presented along with the LRR
and SSG sccond-moment closure models for isothermal and variable density flows.
The effect of anisotropy in the Reynolds stress dissipation rate tensor is accounted
for by the inclusion of an algebraic model for the dissipation anisotropy tensor de-

pendent on the mean strain and vorticity of the flow.

The implementation of the SMART and CUBISTA boundedness preserving, high
order accurate convective discretisation schemes is shown to vield superior predictive
accuracy compared to previous methods such as Upwinding. The PISO and SIMPLE

solution algorithms are employed to provide a robust calculation procedure.

The second moment closure models are found to provide increased predictive ac-
curacy compared to those of the two-equation models. Mean flow properties are
predicted well, capturing the effects of the swirl in the experimental flow field. The
LRR model shows a premature decay of swirl downstream compared to the more
accurate predictions of the other models. The effect of dissipation anisotropy on the
SSG model shows an over-prediction of the turbulenut properties in the upstream re-
gion followed by premature decay downstream. In the near field of the non-reacting
combustion chamber flow, the anisotropic dissipation model corrects the SSG model

over-prediction of the velocities at the central axis.

A combined CMC-flamelet combustion model 1s emploved alongside the anisotropic
dissipation Revnolds stress model to predict the flow field and combustion related
properties of the TECFLANM swirl burner. The species mass {ractions are condi-

tioned on the mixture fraction to provide an accurate model for the determination



of the probability density functions governing the reactions within the turbulent

flamelet.

The turbulence model shows an ability to provide accurate predictions for the acro-
dynamic propertics of the flow whilst providing accurate determination of com-
bustion related phenomena alongside the combustion model. A limitation of the
flamelet assumption was identified with the over-prediction of CO due to the larger

lengthscales of the oxidation reactions present in such flows.
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1.1 General background

Swirling flows arise in many areas of engineering and in the natural world. Examples
of natural phenomena include flows such as tornadoes, hurricanes and whirlpools,
whilst engineering flows include vortex shedding at wing-tips (Gursul, 2004). cy-
clonic separators (Hoekstra et al., 1999), jet propulsion engines and combustion
chambers (Gupta et al., 1984). A thorough understanding of swirling flow facili-
tates the prediction of many of the above examples, an important one being the

prediction of gas motion inside combustion chambers.

With the advent of modern computers, the ability to predict fluid flows by com-
putational means has become commonplace, with many researchers exploiting the
current increase in computing power and memory storage to study more complex
flows, for example the Direct Numerical Simulation (see below) of swirling flow

inside the cylinder of an internal combustion engine (Jakirlic et al., 2001).

Computational methods have been employed to predict swirl at the inlet of a com-
bustion chamber (see Shih et al., 1997; Hogg and Leschziner, 1989; Chen and Lin,
1999). The amount of swirl incorporated at the jet can be used to control the com-
bustion characteristics in the following manner for liquid fuel diffusion flames. The
fuel is first atomised into droplets and sprayed into the swirling airflow as shown in

figure 1.1. The main swirl-induced recirculation provides a flow of hot reaction prod-

e

Fuel spray

Recirculated
—  products

FIGURE 1.1: Inlet region of a swirling jet for a liquid fuel burner.



ucts to the flame, passing through the fuel spray, alding fuel/air mixing, maintaining
reaction upon reaching the flame. By adjusting the swirl velocity. stabilisation of
the flame can be achieved by matching the flame front speed to the speed of the
recirculated products. If the flame speed is greater than the speed of the fuel/air
stream, extinction occurs due to an eventual lack of fuel. When the fuel/air stream
speed is greater than the flame speed the flame is lifted from the jet, causing blow-off

(Gupta et al., 1984).

1.2 Characterisation of swirling flow

Swirling flow is characterised by the presence of a tangential velocity component.
Experimentally, this tangential component is often created using rotating guiding
vanes (Kitoh, 1991; Al-Masseeh, 1991), the angle and speed of which may be adjusted
to increase or decrease the swirl. This flow is then passed to the area of interest,
either through a narrow aperture into stagnant surroundings to create a swirling

jet, or into a chamber.

The swirling flow created by the generator can be cast as two types according to the
radial distribution of their tangential velocities. The free vorter can be described by
the swirling jet flow ejected from a nozzle into stagnant fluid. When the jet emerges
from the nozzle, the tendency for a body to continue in a straight line, causes the jet
to spread radially outwards, producing a conical shape as distance is increased from
the nozzle. The tangential velocity decreases with radius due to the dissipation of
the kinetic energy of the jet into the stationary fluid. The decrease is described by

an inverse law,

w=C. (1.1)

T

where C represents the maximum tangential velocity and r the radial distance from

the centre of the jet (Gupta et al., 1984).

The forced vortez, or solid body rotation, can be described by the generation of swirl
via wall friction in an axially rotating cylinder. The velocity obtained at the wall

decays radially towards the axis of the cylinder, where it vanishes in an axisymmetric



flow, and is governed by

W = Cqr (1.2)
where Cgq is the angular velocity at the pipe wall.

In reality, the axial vortex core of the free vortex must have a small forced vortex
about the axis where equation (1.1) does not hold. Firstly an undefined tangential
velocity would otherwise appear at zero radius, and secondly the sign of the tan-
gential velocity must change at the axis of symmetry that can only be described by
forced vortex flow. The radial position of the largest value of tangential velocity
can be used to differentiate between the two vortex types. The free vortex has its
maximum velocity close to the central axis, while the forced vortex maximum is
near the radial extremities, away from the axis. A combination of the two types
of vortex leads to the Rankine vortex, where the inner part is governed by forced

vortex motion and the outer by the free vortex type.

The presence of a jet entering a flow causes flow recirculations to be produced in
a similar way to the classical sudden expansion problem. The addition of swirl to
such a flow modifies the flow field in such a way that additional recirculation is
produced. The most important of such recirculations in the combustion application
is the toroidal recirculation zone that extends axially along a cylinder, as studied by
Young et al. (1999). Figures 1.2 and 1.3 show flow streamlines when an annular inlet
produces a jet into a cylindrical chamber, the first without swirl, the second with

a swirl number of 0.3 [see equation (4.6)]. These figures illustrate the additional

FIGURE 1.2: Annular flow without swirl; Young et al. (1999).

recirculations set about by swirl in a laminar flow. Many applications involving
swirl are inherently turbulent, such as turbomachinery (Gupta et al., 1984), and so

the turbulence interaction with swirl needs to be investigated.
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FIGURE 1.3: Annular flow with S = 0.3; Young et al. (1999).

1.3 Turbulence and swirling flow

Turbulence is characterised by an instability in a fluid, that causes rapid fluctu-
ations in velocity about its mean value. The early work of Reynolds (1895) was
instrumental in its understanding, from which the Reynolds decomposition of flow

variables into their mean and fluctuating components arises.

Turbulent flows have characteristic structures present within them. The largest are
the turbulent eddies that draw energy from the mean flow. Kolmogorov (1941) was
the first to describe the so-called energy cascade from the large turbulent eddies to
their smaller counterparts. The turbulent energy is eventually dissipated into heat

by viscous action.

The fluctuating velocity components in turbulent flows give rise to Reynolds’ con-
cept of turbulent stresses, known as Reynolds stresses. These stresses are able to
generate secondary flows such as secondary flows in non-circular ducts (Speziale,

1996), features which do not arise in laminar flow.

Turbulence is often produced in wall bounded or shear flows due to the speed of
the flow inducing shear leading to vortex roll up and shedding. Swirl introduces a
tangential component to the strain as opposed to the usual axial and radial compo-
nents, thus making the strain field more complex, and the production of turbulence
more difficult to predict. To understand how swirl effects the turbulence, it is in-
structive to compare the rotation vector of the whole flow, 2, to the local vorticity

of a small fAluid element, w, (Hanjalic and Jakirlic, 2002).

When the local vorticity, is aligned with the rotation of the bulk flow, as in figure

1.4(a) for a rotating pipe flow, less turbulence is produced as the local shear upon



FIGURE 1.4: Effect of swirl on turbulence for: (a) swirl in a rotating pipe, (b) swirl in a
stationary pipe.

a fluid element is reduced. For certain rotation speeds, the flow may even become
laminar if the turbulent dissipation outweighs its production. For swirling flow in
a pipe with stationary walls, the reverse radial gradient of the tangential velocity
causes the local vorticity, w, to have an opposing sign to that of . This increases
the turbulence production due to the increase in shear in the r — 6 plane. At the core
of the vortex, both the local and bulk rotation are aligned, again causing reduced

production of turbulence and even laminarisation.

To predict the turbulent contribution to swirling flows, it is necessary to solve the
time-dependent Navier-Stokes equations on a numerical mesh whose grid spacing
is of the size of the smallest turbulent motions (the Kolmogorov scale). Unfortu-
nately, due to their small size, prohibitively large numbers of computational nodes
need to be used. This leads to the use of turbulence models to provide turbulence

information by modelling the effect of the Reynolds stresses on the mean flow field.

The two most popular models providing ease of use and reasonable predictive power
are those of the two equation k — € and k& — w models (Launder and Sharma, 1974;
Wilcox, 1994). These models have been tested on separating and swirling flows
with variants such as the Shear Stress Transport (SST) model of Menter (1994) by
various authors (Yaras and Grosvenor, 2003; Chen and Lin, 1999; Jakirlic et al.,
2001). However, these types of models are unable to capture free vortex motion,

exhibiting a characteristic premature return to solid body rotation axially along a



pipe.

Researchers such as Chien (1982), Shih et al. (1997) and Speziale (1987) attempted
to improve the standard k — € model by accounting for stress anisotropies by using
nonlinear combinations of the mean rate of strain tensor. However, these types of

models did not improve the accuracy of prediction significantly as shown by Yuan

and So (1998).

Improvements have been made over the two equation models in predicting other
flows, such as square duct flows (see Speziale, 1996). using the differential stress
transport, or Reynolds stress, model. The increased predictive power, despite the

additional computational cost, promotes their use in swirling flow.

The main area of research has been into the model for the redistribution of turbu-
lent stress by pressure fluctuations - also known as the pressure-strain correlation.
Among the first models produced were those of Rotta (1951), followed by Han-
Jalic and Launder (1972) and Launder et al. (1975) with the now ubiquitous LRR
(named after the authors) model, all using the stress anisotropy tensor to account

for features such as return to isotropy of initially strained turbulence.

Work by Lumley (1978) presented an improved model by showing a need to apply
physical constraints on the modelling assumptions using the concept of realisability.
More recent research has been performed by Speziale et al. (1991) and Fu, Launder
and Tselepidakis (1987), where the coeflicients of the mean velocity gradients are
represented as nonlinear functions of the anisotropy tensor. Modern models include
the two-component limit model of Craft and Launder (2001), and that of Jovanovic
et al. (2003), at walls or free surfaces. For these models the incorporation of the
two-component nature of the turbulence, where the wall-normal Reynolds stress is
reduced and the tangential components enhanced, is used to provide more accurate

prediction of flow physics in these areas.

Research on the validity of the assumption of dissipation isotropy has also been
undertaken by authors such as Speziale and Gatski (1997), Hallback et al. (1990)
and Jakirlic and Hanjalic (2002). This is due to the inability of the pressure-strain

models to capture all the features of turbulent flows. Although no validation has



explicitly been carried out, to the author’s knowledge, on swirling flow. computations

have been performed by So et al. (1999) for buoyant shear flows, indicating that

additional modelling still needs to be done in this area.

Reynolds stress models show improved performance over the two equation models for
flows such as the turbulent swirling free jet studied by Younis et al. (1996) using the
SSG model (Speziale et al., 1991). This model was also used successfully to predict
free vortex flow in a cylinder by Chen and Lin (1999) where the developed version of
the LRR model by Fu, Launder and Leschziner ( 1987) gave poor predictions. More
advanced models such as that of Craft and Launder (2001) are, as yet, untested for

such flows, so it is not known if any improvement in prediction will be achieved.

1.4 Swirling flows and combustion

As mentioned above, one of the primary uses for swirling flow is the stabilisation
of flame and mixing of fuel with oxidant in combustors. These effects control the
chemistry of the reactions present in a flame, and hence the proper application of
swirl in a combustor can lead to greater efficiency. Using turbulence models, the
effect of swirl on a flow can be predicted well, however prediction of the combustion

process is also required.

A consequence of the heat release due to combustion is the appearance of fluctuat-
ing and variable density. This complicates the normally constant density turbulence
models with additional density based correlations that require further modelling as-
sumptions to be made. To remove the appearance of the fluctuating density, Favre
- or density weighted - averaging is commonly employed (Jones, 1979). However,
modelling the density weighted terms leads to additional problems and so it is com-

mon to use turbulence models developed for constant density.

To model turbulent combustion, the chemical reaction is decoupled from the acro-
dynamic effects and modelled. One of the simplest models is to assume that all
reaction occurs in a negligibly thin flame sheet, on one side of which is unburnt re-

actants, the other side burnt products (see figure 1.5). This forms the basis of the G



equation of Libby and Williams (1990) for premixed combustion where the G isoline
separates the reactants and products. However, the laminar burning velocity is still
required by this equation, and its use is confined to constant density flows (Libby

and Williams, 1994), an unrealistic simplification for reactions with significant heat

release.

u,<_ Tb

T =—— Flame sheet
u

Yp

FIGURE 1.5: The flame sheet model of combustion.

A more widely known model for premixed turbulent combustion is the BML model
of Libby and Bray (1977). A scalar, in the form of the reaction progress variable,
defines areas of pre- and post-reaction. A joint probability density function is used
to describe the properties of the flow in the combustion region between these two
states. By using assumed pdf techniques (whereby the pdf is approximated by
a beta function), expressions for the multiple fluctuating velocity and reactedness
correlations brought about by Favre averaging are solved. This model has been
successful in predicting the counter gradient diffusion phenomena of turbulent flames

(Libby and Bray, 1981).

Flamelet models for turbulent combustion also incorporate assumed pdfs to calculate
fluctuating density, and other variables, as functions of mixture fraction. Bray and
Peters (1994) present a model utilising the G equation, where the burning velocity
is specified via the stretched laminar burning velocity and Markstein lengths. Both
first and second moment equations of G are utilised where the pdf of G is used in the

BML model to find mean reactedness, mass fractions and other scalar quantities.

Other groups, such as that at Leeds, have produced their own versions of the flamelet
model for premixed and diffusion flames (Bradley, Gaskell and Gu, 1998a.b). Here,
an assumed pdf incorporating reactedness and mixture fraction and the pdf of stretch
rate are used to find the unknown chemically related variables (Gu, 1993). Previ-
ously computed chemistry data for laminar flamelets is used in the manner of a

flame library, which is then integrated with the pdf over stretch rate and mixture
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fraction to provide details of the turbulent diffusion flame. Particular emphasis on
this model involves the prediction of the correct behaviour of turbulent burning ve-
locities at positive and negative stretch rates of the flame duc to acrodynamic strain

and flame curvature (Bradley. 2002).

In an effort to improve the modelling for turbulent diffusion flames. Klimenko and
Bilger (1999) have developed the conditional moment closure cquations. whereby the
joint velocity-scalar pdf is conditioned on a particular value of the scalar (usually
mixture fraction). From this, the conditional first and sccond moment cquations
for mass fraction result, leading to an improved prediction over assumed pdf beta

function methods.

Bradley ¢t al. (2002) combined the flamelet model with the conditional moment clo-
sure equations in an attempt to provide a better evaluation of the pdf of reactedness.
This study was performed using the sccond moment CMC equations after carlier at-
tempts (Bradley, Gaskell and Gu, 1998a) to use the first moment equations resulted
in poor prediction of lift off height for jet flames. These second moment equations
were shown to improve the prediction of mass fractions in the highly stretched je

flames.

1.5 Outline of present work

The main thrust of this work is the evaluation of modern Reynolds stress turbu-
lence models for the simulation of isothermal and reacting swirling. turbulent flows.
Rescarch by Speziale et al. (1991) has highlighted the need for a new approach to
Reynolds stress modelling due to inherent deficiencies in the general model for the
pressure-strain term. Indeed, Jakirlic ef al. (2002) states that the addition of non-
lincar terms affords little improvement for swirling flows. Thus the improvement of

existing terms such as that of the dissipation rate tensor has been undertaken.

Chapter 2 provides a brief review of the need for turbulence models. their history,
and the current state of their development. Two equation models. namely the stan-

dard & - ¢ and & = w models, and full differential stress models of Launder «f al.
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(1975) and Speziale ¢t al. (1991) are introduced as a tool for predicting isothermal
swirling flows. As swirl induces large stress anisotropy. it is not inconceivable that
the same applies to the dissipation of turbulence (Jakirlic and Hanjalic. 2002). The
model presented is one based on that of Speziale and Gatski (1997). using an al-
gebraie approach as opposed to a full differential model. These models are then

converted for use in variable density flows by Favre averaging.

The numerical procedures undertaken are then presented in Chapter 3. Here. the
finite volume method is used to integrate the governing differcutial cquations. Par-
ticular cmphasis is given to the discretisation of the troublesome convective terms.
Two schemes are finally recommended because of their high order interpolative ac-
curacy whilst maintaining boundedness; CUBISTA (Alves ef al.. 2003) and SMART
(Gaskell and Lau, 1988). Solution algorithms are then presented in the form of

SIMPLE (Patankar, 1980) and PISO (Issa, 1985).

Two swirling, isothermal test cases arc then considered in Chapter 4, namely the
free vortex type flow studied experimentally by Kitoh (1991) and the combustion
chamber flow studied by Al-Masseeh (1991). The two cquation models are used for
both flows. as are the Reynolds stress models and the benefits of accounting for

dissipation anisotropy are discussed.

Chapters 5 and 6 describe the combustion model used and its application to the
TECFLAM research flame. An introduction to the forerunners of the flamelet-CMC
combustion model, the laminar flamelet and Conditional Moment Closure models. is
presented. The flamelet-CMC model is then addressed. with special emphasis on the
coupling with the turbulent dissipation rate and its effect on combustion. Results
for the TECFLAM flame are presented showing the model capability to predict the

axial recirculation and heat release rate.

Chapter 7 discusses conclusions and offers suggestions for possible future work.
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2.1 Introduction

This chapter introduces the continuous equations and models that describe turbulent

isothermal and variable density swirling fluid flows.

A flow may be accelerated from laminar conditions to a transitional state by an
increase in velocity. Transitional flow is inherently unstable, and the instabilities
present introduce new flow features - or ‘structures’. The increased shear in the flow
leads to a rolling up in the shear layer and the creation of vortices. A well known
example of this is the Kelvin-Helmholtz instability, where vortices are formed in the

shear layer of a wall bounded flow (Acheson, 1998).

If the flow is accelerated beyond the transitional regime the flow becomes fully tur-
bulent. The increased shear and strain of the flow increases the instability and more
vortices arc produced. The smaller vortices ‘feed’ from the mean flow, squashing
and stretching and ultimately increasing in energy and size. These large vortices
are cffectively inviscid in nature, for instance vortices in the atmosphere or in the
ocean, and have long lifetimes. Smaller vortices are created due to the fluctuation
in vorticity around their larger neighbours. These smaller versions are, however,
susceptible to the action of viscosity, and the turbulent energy is dissipated into

heat by the action of viscosity.

The study and prediction of turbulent flow remains an active field of research.
Reynolds (1895) chose to represent turbulence as consisting of a mean and fluc-
tuating part. This method, called Reynolds Decomposition, is used with statistical

averaging methods to predict the mean quantities of the flow, such as velocity and

pressure.

Turbulence is present in many engineering applications, such as the flow over the
wing of an aircraft (Rhie and Chow, 1983) or combustion in the cylinder of an
internal combustion engine (Jakirlic et al., 2000). Its effects can be either a help,
assisting the mixing of fuel and oxidant in a combustion chamber, or a hindrance,
when turbulence reduces the efficiency of an aeroplane wing leading to a sudden loss

of lift. Such effects make the effective prediction of turbulent flows of great interest.
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In the following sections, the equations governing fluid flow are presented. However.
as explained, these equations are unable, in their compact form, to predict the
high Reynolds number flows of interest here and mathematical models are required.
Several types of model are shown, such as the two-equation k — ¢ (Launder and
Sharma, 1974) and k — w (Wilcox, 1994) models. Higher order Reynolds stress
equations, and associated models, are also discussed. Finally, models are presented

incorporating the effect of variable density, facilitating their use in flows with heat

release, such as combustion.

2.2 The Navier-Stokes Equations

The Navier-Stokes equations were developed independently by Stokes (1845) and
Navier (1821) and represent the general behaviour of a fluid. The equation for the
conservation of mass of a fluid element in the steady-state, known as the Continuity
Equation, is expressed as,

V- (pu) =0, (2.1)
where p is the density of the fluid and u its velocity.

The equation for conservation of momentum in an incompressible fluid in the steady

state is,

(pu-V)u=-Vp+pg+ Vo (2.2)

where o is the viscous stress tensor (see below), g is representative of a body force
(such as the vectorial acceleration due to the Earth’s gravitational field) and p the

pressure field within the fluid.

Equations (2.1) and (2.2) can be re-expressed in Cartesian tensor form. adopting
the Einstein summation convention. Using this notation, u; represents a vector,

with individual components (for j = 1,...3),

wp =u, U =0V, U3=W. (2.3)



15

A repeated index, denotes a summation (or contraction of the tensor into a scalar).

Ou; Ou; (')u Bv ow
92, Z 92, =9 T oyt (2.4)

Equation (2.4) can clearly be seen to denote the divergence of the velocity vector.
V - u. From this point onwards, the summation convention is adopted for ease of

representation.

Re-expressing (2.1) and (2.2) in tensorial form gives,

0
6—%(»0“1’) =0, (2.5)
B—i;(lmjm) = —g—i_ + da(;’]’ (2.6)
where
S

1s the viscous stress tensor, with (2.5) - (2.6) referred to as the steady-state Navier-

Stokes equations.

2.3 Treatment of turbulence

Isothermal, turbulent motion is characterised by the apparent random motion of
velocity and pressure about a mean value at a point in a fluid. The nature of the
fluctuations are such that even though the mean values of pressure and velocity are
steady, turbulent flows are inherently time-dependent. The velocity at a point in a
stable, steady-state laminar flow will always be at a constant value, but as the flow
becomes more unstable (usually due to an increase in Reynolds number) a transition
to turbulent motion occurs. In pipe flow, this transition takes place at Reynolds
numbers of around two thousand (Acheson, 1998). In turbulent flow, the smallest

scale of motion is that of the Kolmogorov length scale, . This is the size of the
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smallest turbulent eddics in a flow and is dependent on the flow properties.

n o >
= - (2.8)
3/1
Ry
where ly is the lengthscale of the large turbulent eddics and
k%1
Ry =-02 (2.9)
40

1s the turbulent Reynolds number with ky and v representative values of turbulent
kinetic energy and kinematic viscosity, respectively. Due to the small size of the
Kolmogorov eddies [n = 0.36mm for uniform shear (Champagne ot al.. 1970)]. it
is difficult to simulate them numerically. However. with the continual increase in
computing power, it is becoming increasingly feasible to simulate these small eddies
dircctly via the Navier-Stokes equations using Direct Numcrical Simulation (DNS).
‘This method discretises the Navier-Stokes equations on a computational grid. where
the spacing between grid nodes is of the order of the Kolmogorov length scale. so
that the entire range of length scales is resolved. With the size of the largest eddics
representative of the size of the computational domain, a measurce of the nodes
necded to resolve the Kolmogorov scales is given by the ratio (Libby and Williams.
1994)

b _ gyt (2.10)

n

In three-dimensional flows, the number of nodes required for DNS increases as
(lo/n)"* and hence R?/"l. DNS is therefore limited in its application to only low
Reynolds number simulations, such as transitional flow to mildly turbulent: Le ¢f al.
(1997) performed a study over a backward facing step at a Reynolds number of 5100.
Sandham (2002) states that the increase in computational nodes needed with a dou-
bling of Reynolds number is between 2.2 to 2.5, Despite the low Revnolds number
applications, DNS is useful for improving the predictions of turbulence models (Man-
sour ¢f al.. 1989). 1t also facilitates the prediction of low quantities that are difticult
to measure experimentally, such as the strain rate tensor. For turbulent flows of en-
gincering interest. however, this computational cost is too great at present, and

other methods must be used.
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Large Eddy Simulation (LES) has emerged as a method which has far less computa-
tional cost than DNS. LES splits the turbulent length scales, so that the large scales
are resolved directly as in DNS, while the smaller scales are filtered, using a filter
function, and modelled. The advantage of LES over DNS is that higher Reynolds
numbers may be simulated as the nodal resolution required is much lower. However,

LES still requires a large computational investment for industrial applications.

2.3.1 Reynolds averaging

The approach used in the present work makes use of the Reynolds Averaged Navier-
Stokes (RANS) equations. Instead of directly simulating the time-dependent, fluctu-
ating velocity, the RANS equations consider the mean value of the velocity. Reynolds
decomposition expresses the flow variables as the sum of a mean and fluctuating

(turbulent) part,

I/

p = P+7yp, (2.11)

where the mean flow quantity is denoted by uppercase letters, and the fluctuating
quantity by lowercase primed letters. The RANS equations are derived on a statis-
tical basis where ensemble averaging can be used to describe the properties of the

ensemble (or mean properties of the flow), by averaging over N experiments.

1 m
Ui = lim — > u (2.12)

W =0
7= 0
Uiu;-=0

Uu; = Uin+u:-u9. (2.13)
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From the above relations, the equations of motion for the mean flow quantities can

be obtained by inserting (2.11) into equations (2.5) and (2.6) followed by averaging.

to give,

0

EE@%)ZO (2.14)
0 N . OP 0 , _
'a?j'(pUJUz) = -6:12, al‘](al] Tij) . (2.15)

Equation (2.14) is the mean flow continuity equation and (2.15) is the mean flow

momentum equation where
Ti; = puiu (2.16)

are the turbulent stresses known as the Reynolds Stresses, formed by the action
of the fluctuating velocity components. The above relations constitute the RANS

equations for turbulent flow.

The introduction of averaging to yield equations for the mean flow introduces new
unknowns, Tilj. In order to solve turbulent flows with the RANS equations, new
equations for Ti,j must be developed. These may be calculated by obtaining a trans-
port cquation governing the motion of the fluctuating velocities. By subtracting

equation (2.15) from (2.6) gives,

8 6 r 6 ' Bp' 6Tz"j
;) — 75— (puU; —_— 2.17
which, after rearrangement using (2.5), leads to,
ou; yOu;  ,0U; 1 Bp 5, 107
el ) — vV + = 2.18
70z U3 oz; 43 8:1:] p 8:51 e p sz (2.18)

However, this does not help to close equation (2.15) in the steady-state, as the tur-
bulent fluctuations are a temporal phenomena and have no steady-state counterpart.

Also, the presence of unknown Reynolds stresses is still not solved.

By using the notation that equation (2.18) can be written as Nu; = 0, where N is
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the operator,

0 0 ; !
Uj—+u;%+u’aU’ 1o
2

107!
2 1]

j%j ;&Ei - 0oz, (2.19)

a transport equation for the Reynolds stresses can be found. The statistical second

moment is constructed as

u;./\/'u; + u;./\/'u; =0 (2.20)

which leads to the Reynolds Stress Transport Equation in its standard form

oT}. oU; oU; 0
_ ' J ' i :
U oz, = —Tika—x,: - 7"‘875,6 + II;; - €ij — éaCijk + I/VZT{]- (2.21)
where
1 [ou'. ou'’
II;; = z [ L+ —’] is the stress redistribution term (2.22)
P 6.'171' 6a:j
ou’ ou’,
€; = 2w r __J is the viscous destruction t 2.23
ij 52, 9oy g struction term (2.23)
and
1
Cijk = ulujup + ;p'ugéjk
1——
+;p’u;5ik are the diffusive transport terms. (2.24)

One may think that it is now possible to close equation (2.15), and hence all of the
equations, as the Reynolds stresses are now provided for. Upon closer inspection of
equation (2.21), however, it can be seen that (2.22), (2.23) and (2.24) are not closed
due to the appearance of the unknown fluctuating velocities. One can go further to
derive higher statistical moments to close the equations, but terms created therein
contain variables that are, again, not defined. This phenomena is known as the
closure problem, whereby the introduction of transport equations for lower order
statistical correlations, leads to unknown higher order correlations, and a closed
set of equations can not be obtained. Therefore, to close the RANS equations,
approximations, or models are required based on physical assumptions, leading to an

arca that has become a research topic in its own right, namely turbulence modelling.



2.4 Turbulence modelling

The purpose of turbulence modelling is to provide the extra terms required o close

the RANS equations. Some of the most popular models are described below.

2.4.1 Zero and one equation models

Early models closed the RANS equations by modelling the Reynolds stresses in an
algebraic fashion, such that estimated quantitics of the mean flow were used to
approximate Tilj. The most well known models use the Boussinesq Eddy Viscosity

hypothesis, 7). =

i —2v7 855, or in its updated form

— 2
Ti']- = —2vpS,;j + 5/«5,-]- (2.25)

where vy is termed the turbulent, or Eddy Viscosity and S, is the strain rate tensor

— 1 foU; 09U,
L= _ 2 9¢
S 2 (é)JTJ * 0.1:,) ' (2.26)

Boussinesq made this approximation in analogy to the viscous stress tensor in the
momentum equation, o;; = 2vS;;. After substituting (2.25) into the RANS equa-
tions, the only term to be modelled is the eddy viscosity itself. Of all the algebraic (or

zero equation models), Prandtl’s mixing length hypothesis is the most well known.

The eddy viscosity, defined as the ratio of a turbulent length scale, lg. to a turbulent

time scale. tg, of the largest eddies,

_k
=2

—_
to
I
-1

vr

was refined by Prandtl (1925) when he suggested that the eddy viscosity could be

represented by the mean velocity gradient
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where the mixing length is defined as

lo =Ky (2.29)

with s the Von Kirméan constant and y the normal distance from a wall. In (2.28),
the time scale is implied through the mean velocity gradient leaving only the length
scale to be determined in order to complete the model. Equation (2.29) is commonly

used to provide this quantity in the case of boundary layer flows (Launder and

Spalding, 1972) with x = 0.4.

Prandtl’s mixing length model, has been used successfully to provide predictions for
free shear flows such as far wakes, mixing layers and jets (Wilcox, 1994). However,
despite this, the model has some serious limitations. Firstly it cannot be applied
to recirculating flows due to the uni-directional formulation of the eddy viscosity.
Also, the transport of the turbulent quantities is not considered, meaning upstream
and downstream conditions have no effect on the turbulence. The empirical nature
of the model means that it is difficult to use for flows other than shear layers it was
designed for. Variations of Prandtl’s algebraic model are provided by Smith and
Cebeci (1967) and Baldwin and Lomax (1978), where different formulations of the
eddy viscosity are applied for different distances from a solid wall. Although these
models are an improvement over Prandtl’s original model and have been used to
predict boundary layer and channel flows well (Wilcox, 1994), they still suffer from

the same limitations.

The next method of closing the RANS equations is the implementation of so called
one equation turbulence models. Instead of just using algebraic methods to close
the equations, a transport equation for the turbulent kinetic energy, k, is derived
to provide the value of the turbulent timescale of the large eddies. By contracting

equation (2.21), the transport equation for k is,

ok , U, 6(1,,, 1,,) , ‘
Ok _ _ 9% 9 | Zurdul + Sy | + vVik 2.30
Ukail‘k Ttkaxk € a.’IIk 2u1uzuk pp U; 0k ( )

where k = %‘Ti’i. The third term on the right hand side of (2.30) represents the

turbulent diffusion of k and needs to be modelled. This is done using the gradient
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diffusion method,
_vr ok
O 0Ty

5 (2.31)

lm + ip'—u: =
P
where o}, is the effective Prandtl number for the diffusion of k. The dissipation rate
of kinetic energy, €, also needs to be modelled due to an inability to quantify it in
terms of known flow parameters. ¢ is governed by the larger scales in the turbulence

and so its formulation is given in terms of k and the large eddy length scale, l;. By

dimensional analysis
k3/2
€=Cp—— (2.32)
0

is the modelled form of ¢, and Cp is an empirical constant. The value of Cp, is
found by examining simple turbulent flows experimentally and fitting numerical
predictions to them. Launder and Spalding (1972) found a value of Cp, to be 0.08
for near wall flow. The velocity scale of the large turbulent eddies is decmed, by

dimensional considerations, to vary as vk, thus the eddy viscosity is given as
vr = Vkly, (2.33)

and so the RANS equations are closed upon specifying the length scale, l;. This
is usually done empirically using experimental data, or, for shear flows, the mixing

length of Prandtl can be used.

Other popular one equation models include that of Spalart and Allmaras (1992),
which provides a transport equation for the eddy viscosity. One equation models,
in general, perform better than zero equation models due to a transport equation
that provides knowledge about a turbulent quantity of the flow, namely the turbu-
lent timescale, ty. Despite the potential for better predictive capability of the one
equation models over their zero equation counterparts, for simple shear flows the
zero cquation models perform equally well (Murty, 2002) leading to the conclusion
that use of one equation models is only worthwhile for more complex flows, or where

turbulence information (such as k) is needed.

The limitations of one equation models are based on the empirical specification

of the length scale. The latter is not a feature of turbulent flows that extends
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over all applications, but is a property of the local conditions of the flow. such
as boundary proximity etc. This means that without knowledge of flow history,

it is very difficult to specify a length scale for the entire flow domain leading to

inaccuracies in predictions.

2.4.2 Two equation models

Two equation models represent improvements over one equation models by providing
a transport equation for both the time and length scales of turbulent motion. Most
formulations of the transport equation for the length scale do not feature the length
scale explicitly. Kolmogorov (1942) first introduced an equation for the length scale
using vk /lo (the frequency of dissipation of energy), but ¢, the dissipation rate,
is by far the most common choice for modern two equation models. The general
transport equation for the length scale can be expressed as the transport of a general

quantity z = k™lj where m and n are constants,

0z 0 (vr 0z z , 0U; k
=~ - (2= ) -, 37— Cpz— + S, 2.34
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where o,, C, and C,, are closure coefficients and S, is a general source term. From

this equation the length scale is extracted from k and 2.

The k-¢ model

The k-¢ model uses a transport equation for the turbulent dissipation rate, €, as
a method of determining the turbulent length scale. The form of the model was
originally prescribed by Jones and Launder (1972), but then re-tuned by Launder
and Sharma (1974) to yield its now ‘standard’ representation as given below. The
time scale is described according to the previous transport equation for k (2.30).

An equation for € can be determined by taking

« [ 'S
% 2wy =0 (2.35)
d:l?j 6.’121‘
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which eventually leads to
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The first four terms of (2.36), relate to the production of dissipation P,, the next two
to turbulent diffusion of dissipation, D, and the penultimate term to the destruction
of dissipation. All of these terms require modelling in some form due to the inherent

inability to resolve the higher correlations present.

Firstly, Jones and Launder (1972) used dimensional considerations to provide an

expression for the eddy viscosity

k.2

where C,, is an empirical coefficient found by fitting with experiments. The diffusion
term in equation (2.36) is modelled in a similar fashion to that in the k equation
(2.31) by using gradient diffusion,

D, 9 (@ a‘) (2.38)

" Oz \ o Oz

where o, the Schmidt number, has a similar meaning as in (2.31). The production
term is modelled by assuming production of turbulent dissipation to be proportional

to production of turbulent kinetic energy due to energy conservation,
P.=C. %P (2.39)

where C,; is an empirical coefficient and P is the production of turbulent kinetic

cnergy from (2.30),
, OU;

P=- * Oy

(2.40)
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Coefficient | Value
Cei 1.44
Ceo 1.92
Cy 0.09
Ok 1.0
O 1.3

TABLE 2.1: Values of coefficients used in k — ¢ model, Launder and Sharma (1974)

The next term to be modelled is the destruction of dissipation term. As for the
destructive term in the k equation (2.30), the destruction of dissipation is governed

by the large scales of the flow, the length and time scales. By dimensional analysis

62

¢e = C('z; (2.41)

with C¢» a dimensionless, empirical constant.

Including the above expressions and after employing the eddy viscosity hypothesis

(2.25), the final form of the modelled equation for the dissipation rate is

de 0 (vr Oe 9
' Ox; E(a( Bmk)_H/VG
€ ou; oU;\ oU; €?
€ _c,% 42
+ CdeT (&rk + axi) ozy, Cez k (2.42)

The closure coefficients reported by Launder and Sharma (1974) are given in table

2.1.

To complete the closure, wall functions (see Chapter 3) must be used to extend the
model for application at walls. This is due to the destruction of dissipation term in
cquation (2.42). At a wall, € is finite whilst k¥ must reduce to zero due to the no-slip
condition. This means that C,o(€?/k) represents a singularity (Gatski and Rumsey,

2002).

The k-w model

In this two equation model, w, instead of € is used to provide the length scale. w is a

measure of the inverse time scale of the dissipation of turbulence energy, or, as it is
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Coefficient | Value
p ]
B 7
B* 0.09
ou 2
o}, 2

TABLE 2.2: Values of coefficients used in k — w model, Wilcox (1994)

more commonly referred to, the rate of dissipation per unit turbulent kinetic energy.
Wilcox (1994) completed the modern formulation of the model after earlier work by
Kolmogorov (1942) and Saffman (1970). In Wilcox’s model, the eddy viscosity is

represented as the ratio of turbulent kinetic energy to w,

vr = —, (2.43)

and the transport equation for w as

Ow  w , 0U; 9 O v\ Ow

Zj
The first term on the right hand side of (2.44) represents the production of w, while
the second represents its turbulent destruction, with gradient diffusion employed for
the turbulent diffusion term. The equation for the transport of turbulent kinetic
energy is slightly modified from that used in the k — € model,

ok , OU; 0 vr Ok
—— = _p — - 2.45
U] 3.'12_7' Tz] 81‘]' 'B hw + 8.’13]' [(V + 0:) a.'BJ):l ( )

where the dissipation rate, €, is given by
e = B*wk. (2.46)

The closure coefficients given by Wilcox (1994) are shown in table 2.2.

The advantage that the k — w model has over the k — € model is its ability to be
integrated to the wall. This allows better resolution of the viscous sublayer (sce
Chapter 3), especially for flows where the mean flow penetrates this layer and the

local turbulent Reynolds number is low. These factors enable the model to cope
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better for transitional regions of the flow. This also means that wall functions (see
later) are not necessarily needed, as opposed to the use of the k — ¢ model where
it is compulsory in its standard form. However, low-Reynolds number versions of
the k — € model, integrated through the viscous sublayer. have been developed (see

Yaras and Grosvenor, 2003) as is discussed next.

Discussion of two equation models

The main disadvantage of two equation modelling is the use of the eddy viscosity
hypothesis since models which employ this term to represent the Reynolds stresses
cannot account for complex flows where the turbulence is highly anisotropic. The
eddy viscosity hypothesis will always produce isotropic turbulence for the normal
stresses (the diagonal component of the Reynolds stress tensor). Speziale (1996)
noted that without a method of determining the anisotropic nature of the Reynolds
stresses, it is impossible to predict secondary motions due to differences in the
Reynolds stresses, such as flows in square ducts. Researchers studying swirling
flows (Chen and Lin, 1999; Wall and Taulbee, 1995) have shown the inability of
these models to capture the mean flow, often showing behaviour such as premature
development of solid body rotation. These researchers have also shown that flows
with high streamline curvature are also poorly represented by these models due to

their inability to capture the shear stresses correctly.

Yaras and Grosvenor (2003) used low Reynolds number versions of two equation
models to solve axisymmetric, separating and swirling flow problems. In their study
the two-layer k— e model of Rodi (1988), the k —w model of Wilcox (1994), the Shear
Stress Transport (SST) model of Menter (1994), the nonlinear k — € model of Chien
(1982) and the eddy viscosity transport model of Spalart and Allmaras (1992) were
compared. All of the models incorporated a streamline curvature correction term to

account for areas of high streamline curvature where standard eddy viscosity models

are inaccurate.

The advantage these latter models possess over the standard & — ¢ model, is that

integration of the transport equations through the viscous sublayer is achievable.
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This removes the requirement of wall functions to approximate the flow in this
region of the boundary layer. Models such as the SST model and Rodi’s two-layer
model, split the flow domain into two distinct regions and model each separately:

the SST model uses the k£ — w model in near wall regions and the k — € model far

from the walls.

Yaras and Grosvenor found that the velocity profiles for a separating flow were
predicted well. However the coefficients of pressure and friction were not resolved
for the separation region. The model of Chien, did not reproduce separation whilst
Rodi’s model did not produce the velocity reversal at this point. For the swirling flow
case, all models showed poor agreement with experiment, and in particular predicted
a premature solid body rotation. The authors reported that the k — w model was
impossible to converge for this flow whilst giving meaningful results. Addition of
curvature correction did not improve results, with the SST model giving the least

acceptable results for tangential velocity.

Speziale (1996) recommended that two equation models with an anisotropic repre-
sentation of the turbulence using a non-linear formulation are the minimum required
to close the RANS equations. Non-linear eddy viscosity models employ an expan-
sion of the strain rate tensor in (2.25) to include non-linear combinations of S;;. In
these models the Reynolds stresses are given by an algebraic formulation, and not
a transport equation. This immediately shows that these types of closures cannot
account for history effects of the turbulence in the flow. Despite the promise of more
accurate prediction of flows using non-linear, two equation models (such as that of

Speziale (1987)), their formulation tends to be ad hoc, with extra terms added to

account for previous model failings.

A nonlinear £k — ¢ model was proposed by Shih et al. (1997) and tested against
data for an axially rotating pipe and swirling flow in a combustor. The Reynolds
stresses were modelled by cubic terms in the mean velocity gradients, with additional

rotational terms. For both flow cases, the model agreed better with the experimental

data compared to the standard k — € model.

Wall and Taulbee (1995) developed an improved algebraic stress model (ASM).
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The algebraic equation set was improved so as to be applicable over a large range
of turbulence anisotropies compared to standard algebraic models which are only
applicable for constant anisotropy. Additional rotation-dependent terms were also
added. The nonlinear solution to these equation sets was implemented as a two-
equation model to predict the flow in a swirling jet. The results for the new model
were in reasonable agreement with experimental data, and bettered those of the
older ASM and the standard k& — ¢ models. However. the results of the second
moment closure of Launder et al. (1975) showed better predictions than any of the
other models when compared with experiment. Wall and Taulbee (1995) attributed
this to the inability of the algebraic models to take into account the history of the

turbulence.

Yuan and So (1998) used two-equation models and a low Reynolds number second
moment closure to study swirling and rotating lows. Two low Reynolds number,
two-cquation models were modified by using the anisotropic stress representation of
Speziale (1987) and the anisotropic dissipation rate model of Speziale and Gatski
(1997) to account for turbulence anisotropy. The models were tested on two swirling
flows in straight pipes with different inlet conditions. For both flows. the anisotropic
two-cquation models performed poorly in comparison to the experimental data for
the mean velocity profiles. Along the axis of the pipe. a solid body rotation is
predicted prematurely by the two equation models. with the dip in velocity close to
the axis grossly under-predicted. Only the second moment closure model predicted

adequate results.

As alluded to above, two-equation models are inadequate for solving flows with high
streamline curvature and anisotropy, such as is present in swirling flows, despite
some successes (Shih et al., 1997). The natural extension to modelling turbulence
is to look at the higher correlations of turbulence. such as the Reynolds stresses.
and how they are transported. This leads to the modelling of the Reynolds stress

transport equation (2.21) itself.
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2.5 Second moment closures

Scecond moment closures use the transport equation for the Reynolds stresses (2.21)
to determine turbulent motion. As mentioned previously, terms (2.22). (2.23) and
(2.24) lead to an open set of equations and models need to be developed for accurate
prediction using mean flow quantities. The first closure for this equation was made
by Rotta (1951), where the pressure redistribution term (2.22) was modelled in the
absence of mean flow gradients (known as the return to isotropy model). Subsequent
additions to the closure of the Reynolds stress equations were made by Daly and
Harlow (1970) and Hanjalic and Launder (1972), where the latter made adequate
predictions of thin shear flows using a simplified set of cquations for the Revnolds

Stresses.

The model of Launder et al. (1975) (LRR) proved to be a major improvement
to Reynolds stress modelling. The work made significant steps in improving the
pressure redistribution term (also known as the pressure-strain correlation). by ex-
pressing the cocflicients of the rapid term (that depending on the mean velocity
gradients) with the anisotropy of the Reynolds stresses. This. coupled with the in-
clusion of an estimate for near wall turbulence, led to the use of this model for more

complex flows such as an axisymmetric pipe contraction (Launder et al., 1975).

Further improvements to the model were made by Gibson and Launder (1978),
where the near wall terms were modified to enhance the prediction of pressure
‘ccho” effects - the reflection of pressure fluctuations at the wall. Lumley (1978)
described the need for nonlinear modelling of the pressure-strain correlation by
expressing the coefficients of the mean velocity gradients in terms of a nonlinear
function of the anisotropy tensor. Another important addition was that of the
realisability condition. This condition identifies that all non-negative quantities.
such as turbulent kinetic energy. must remain so. Lumley developed a coordinate
invariant formulation for the constraints allowing them to be applied to any general

curvilincar coordinate system.

Speziale et al. (1991) created a new pressure-strain model by developing a general

formulation from which a hierarchy of models can be taken. By examining homo-
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geneous turbulence, and using a tensor invariant formulation, they created a model
that is quadratic in the Reynolds stress anisotropy for the rapid term (discussed
below). This led to an improvement over the LRR model which only expressed the
rapid term using linear anisotropic coefficients for the mean velocity gradients. An-
other advantage of the model is the ability to predict flows well without the need for
wall ‘echo’ terms as used in the LRR model. The model was tested against the LRR
and FLT model (Fu, Launder and Tselepidakis, 1987) for rotating shear flow, where
it outperformed both when compared against LES data for the decay of turbulent

kinetic energy.

An interesting note was made by Speziale et al. (1991) concerning the nature of
the general hierarchy of pressure-strain models. The general model formed by the
authors, which constitutes all forms of the pressure-strain terms, inherently cannot
capture all the features of plane homogeneous flow. It was argued that adding more
complex terms to the model that are nonlinear in the anisotropy tensor would not
overcome this problem but only potentially increase the accuracy of an inadequate

formulation.

For swirling and rotating flows many forms of second moment closure have been used.
Liu et al. (1998) showed that the second moment closure of Launder et al. (1975)
performed better than the standard k — ¢, and Renormalisation Group (RNG) k —¢
model in a typical combustor geometry. For the two equation models, the tangential
velocity predicted showed a premature solid body rotation, where the free vortex
type flow decayed into the forced vortex type too early along the length of the pipe.
Sharif and Wong (1995) compared a nonlinear k£ — € model with an algebraic stress
model and full second moment closure (Gibson and Launder, 1978) for swirling
flow in a combustor. The algebraic and second moment closures predicted the
experimental data well for the mean flow quantities with little difference between
them. The nonlinear k — e model gave poor results in comparison, suffering from the
previous faults of two equation models. The turbulent quantities were not predicted
well for any of the models, showing that improvement in the modelling of these

quantities is needed for swirling and rotating flow.

Chen and Lin (1999) studied two swirling flows using the SSG model of Speziale et al.
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(1991) and the ‘Isotropisation of Production’ model of Fu, Launder and Leschziner
(1987), a development of the LRR model of Launder et al. (1975). For the strongly
swirling case (swirl number 2.25) both second moment closures predicted results in
agrecment with the experiments, in contrast to the k — ¢ model. However, for less
strongly swirling flow (swirl number 0.85), there was a marked difference between
them. The SSG model was closer in agreement with the experiments than the
model by Fu et al. This was attributed to the additional quadratic terms in the
pressure-strain correlation (missing in the linear pressure-strain term of Fu et al ).
The extra terms in the SSG model were able to capture the small shear stresses
more accurately, with the model of Fu et al overestimating them due to a lack of

sink terms in its formulation.

Younis et al. (1996) compared the use of three different pressure-strain models on
free turbulent jets with and without swirl. The models used were the SSG model of
Speziale et al. (1991) and the two forms of the LRR model given by Launder et al.
(1975). For the axisymmetric and plane jets the findings of the different models
were of comparable accuracy with experiment. For the swirling jet, however, the
SSG model was able to predict the turbulent quantities with a greater accuracy than
those predicted by the two LRR variants. This was due to the extra terms in the
SSG model which were able to partly counteract the effect of some of the standard
terms (such as the erroneous large negative uw shear stress predicted by all models

near the jet centreline).

Even though Speziale et al. (1991) developed a pressure-strain correlation that is
quadratic in the stress anisotropy tensor and hinted that higher nonlinearities may
not be beneficial, some authors developed cubic models. The model by Fu, Launder
and Tselepidakis (1987) represents the pressure-strain correlation with cubic terms
in the anisotropy tensor to try to capture the effect of high strain which could be used
in flows with high streamline curvature. Speziale et al. (2000) argued, however, that
cubic terms show little advantage over the quadratic models. This, unfortunately.

has not been demonstrated in the literature to the author’s knowledge for swirling

Hows.
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2.5.1 Stress redistribution term modelling

Launder, Reece and Rodi model

One of the most widely used Reynolds stress closures is that of Launder ¢t al.

(1975) (hereafter denoted as LRR). The main thrust of their work was to develop a

successful model for the pressure-strain correlation (2.22). The representation of this

term takes the form of Chou (1945), whereby a Poisson equation for the fluctuating

pressure is obtained by taking the divergence of equation (2.18) (note that from this

point onwards the prime notation for fluctuating quantities has been dropped),
0%p 0? oU, Ouy,

= - - - 20— /. 2.47

This can then be integrated using Green’s functions to give p at position x
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where the primed variables are denoted as being at the location x’. If equation
(2.48) is multiplied by (Ou;/dz; + Ou;j/dz;) and then ensemble averaging is used,

an exact equation for II;; (2.22) is obtained.
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The meanings of the above terms are provided by Hanjalic and Jakirlic (2002). ¢;;,
represents the return to isotropy of non-isotropic Reynolds stresses in the absence
of mean strain, body force and wall effects. The pressure fluctuations force the

Reynolds stresses into a more isotropic state. This term is more commonly known
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as the ‘slow term’. ¢;;2 is the isotropisation of the production of the Reynolds
stresses by the mean strain rate. The pressure fluctuations effect the dominant stress
component by feeding it into the weaker components, returning the turbulence to a
more isotropic state. The pressure fluctuations also slow the feeding of turbulence
production into the dominant stress component. This term is more commonly known
as the ‘rapid term’. d)}‘; represents ¢;; 1 and ¢;;2 in the region of a solid wall. Here.
the boundary acts so as to impede the isotropisation of turbulence by the pressure
fluctuations (known as the blocking effect; Hanjalic and Jakirlic (2002)) increasing
turbulence anisotropy. However, the pressure fluctuations are reflected from the wall
surface, increasing the isotropisation of the turbulence. Despite this, the blocking
effect is the larger of the two, leading to strong Reynolds stress anisotropy in the

near wall region.

To close the ¢;;,; term, Launder et al. (1975) used the model of Rotta (1951),

€ 2
$ij1 = —C17 | wuy — 70k (2.50)
k 3

where C) is an empirical constant. It can be seen that this model is negatively
proportional to the anisotropy tensor,

Tij_l

aij = 5~ 3% (2.51)

having the effect of increasing the isotropy of the turbulence by a measure of its
anisotropy. The rapid term of the pressure-strain correlation, ¢;j 2, is also modelled
following an approximation by Rotta (1951),
ou,
Bij2 = 5 (bijmi + biimg) (2.52)

m

Launder et al. (1975) expressed the fourth rank tensor, byjm;, as a linear combination

of the Reynolds stresses,

bljmi = aéljumug + ﬁ(émluiuj + 6,,,juiu1 + (S,‘l'll.m'll,]‘ + 6ijumul)

+ C26mi“luj + [7’61111'6[]’ + "(dml(sij + (smj(sil)]k (2.53)
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where

a = %(4C2+10)

g = —%(24-302)

n = —%(50C2+4)

v = %(2OCQ+6) (2.54)

and C3 is an empirical constant. Combining the above equations leads to the model,

Cy +8 2
Pijr=——7— (Pij - §P5ij)

5 (5%- " aa:,-) BT (Diﬁ - §P5ij) (2.55)

where P;; represents the production of turbulence,

oU; oU;
P=— ; bl BT vy et )
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and
oU; U,
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Launder et al. (1975) noted that equation (2.52) did not approximate the effect of the
mean straining on the pressure-strain term near the wall where high mean velocity
gradients vary rapidly. The surface integral term in equation (2.49) becomes very
significant if the size of the energetic turbulent eddies is of the order of the distance

from the wall, hence the surface integral was re-expressed for a plane wall as,
wo__ L/ a(ulum) , %_*_Qy_]_)
W 47 s 0T,0xm, or; O
oUV\' [ Ouz\' [ Ou; auj) ( 1 1 )
+ v (2.58
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where z9 is the coordinate normal to the surface, x* is the image of point x behind

the wall. This equation was modelled as

) e[ 2 U, ! i
:fl = [C{E (U;‘Uj - ‘:3‘61]k) + E(Cljmi + Climj)] f (;‘z’) (2.59)
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where cyj,; is expressed in a similar way to byjm; in terms of the Reynolds stresses,

— A8 T ! s
Cljmi = & 5,Jumu, + B (6mluiuj + 6mju,-ul + 6ilumuj + 6,-]-umu,)

+C’§5m,-uluj + [n’émiélj + u’(émléij + 6mj6il)]k (2.60)

Equation (2.59) shows that the effect of the wall is dependent on the anisotropy
tensor (2.51) which gives a term similar to equation (2.50) but with the opposite
sign, increasing the turbulence anisotropy. The mean strain is also represented by

the second term in (2.59) and contributes to the wall effect.
Launder et al. (1975) modelled the effect of the mean straining as

oU,
. l (cijmi + Climj) = Co(Pij — Dij) + 'k (
Im

Ui | an) : (2.61)

dr; Oz;
The function f(I/z3) in (2.59) is a wall proximity function that must decrease to
zero as the distance from the wall is increased. [ is the length scale of the energy
containing eddies and is approximated by Launder et al. (1975) as the dissipation
length scale k2 /€. The values attributed to C] and C} are 0.5 and 0.06, respectively,
and with a coefficient of 4.0 for the wall proximity function the final model for near

wall effects is given as,

N
NI

€ 2
qb:‘; = [0.125E (uin - gkéij) + 0.015(Pij — DU)] 6—.'1_7; (2.62)
The rest of the work by Launder et al. (1975) is for closing the turbulent diffusion
term (2.24) and dissipation rate tensor (2.23). Launder et al. (1975) only mod-
clled the turbulent diffusion part of the former, making the assumption that for
high Reynolds numbers, diffusion by pressure fluctuations is negligible. Hence, the

isotropic model of Daly and Harlow (1970) was used,

k 8‘u,'u]'
—uiujuk = Cg —(—ukul 3117[

(2.63)

where ¢, is an empirical constant. Another model was derived by Launder et al.

(1975), by simplifying the transport equation for the third moments. This was



37

Coefficient | Value
C, 1.5
Cs 0.4
Ci 0.5
Cy 0.06
Cs 0.25
Ca 1.44
Ceo 1.90
C, 0.15

TABLE 2.3: Values of coefficients used in LRR model, Launder et al. (1975)

shown, however, to provide little improvement over the Daly and Harlow model.

The dissipation rate tensor, was modelled under the assumption of isotropic dissi-

pation,
Bui an 2

= 25 .
Ozj 0z; 3 i (2.64)

€5 = 2v

where € is the dissipation rate. Launder et al. (1975) modelled this term from its

transport equation (2.36) applied at high Reynolds numbers as,

Oe O (k___ Oe c U, 2
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where C,, C; and C¢o are all empirical coefficients. The empirical coefficients used
in the model were decided by numerical experiments, and are shown in table 2.3.
Test cases used for model calibration included homogeneous shear flow, near wall

turbulent flows and decay of grid turbulence (see Launder et al., 1975).

Speziale, Sarkar and Gatski model

A newer method for closure of the Reynolds stress transport equations was proposed
by Spcziale et al. (1991). This model, like the LRR model before it, focuses on
the pressure-strain correlation, deriving its form, however, from a coordinate frame
invariant methodology, meaning that the physics of the model do not differ under a
change of coordinate system. By studying the case of plane homogeneous turbulent
flow, a nonlinear form was derived for the rapid pressure-strain correlation term

that is quadratic in the anisotropy tensor (unlike the linear LRR model). Using

LEEDS {NIVERSITY {[BRAR
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the above conditions, a simplified model of the general pressure-strain correlation is

formed,

1
Hij = C1€a45 + co€ (aikakj - gamnamnéij)

— — — 2 —
+C3k‘Sij + c4k (aiksjk + a]-kS,-,c — gamnSmnéij)

+esk(aiW jk + ajxWik), (2.66)

where the coeflicients ¢y, c3, ¢3, ¢4 and ¢5 are all constants, and

5. - L9, av
W 2 sz a.’l?i (2'67)
— _1(3U; au;

are the mean strain rate and vorticity tensors, respectively. Calibration of the
coefficients from equation (2.66) was performed by considering several constraints
(Speziale et al., 1991); namely agreement with,

1. the asymptotic limit of small anisotropy;

2. Rapid Distortion Theory (RDT) for initially isotropic, homogeneously strained

flows;

3. experimental values of homogeneous shear flow in equilibrium;

4. RDT for rotating shear flows;

5. experiments on the return to isotropy problem of initially anisotropic flow.

Firstly the coeflicient of the slow term, ¢; was replaced by,
P
C = — (C] + Cr?) ’ (269)

where C) and Cy are empirical constants. This representation of ¢, was formulated
to take into account areas of the flow where turbulent production, P, is greater

than the dissipation rate. The cocfficient, c3, was replaced by terms that include
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Coefficient | Value | Constraint
C, 3.4 5
Cs 4.2 5
Cs 0.8 2
Cy 1.25 3&4
Cs 0.40 3&4
Cyt 1.80 3&4
C3 1.30 3&4

TABLE 2.4: Values of coefficients used in SSG model

the second invariant of the anisotropy tensor,
1
c3=C3—-C35Ilz, (2.70)

where C3 and C3 are empirical constants and I] = aija;; 1s the second invariant
of the anisotropy tensor. These two changes to the model allow the first constraint
to be satisfied by making C} and Cj vanish in the limit of small anisotropy due to

their dependency on the anisotropy tensor.

Table 2.4 shows the values of the empirical coefficients used in the SSG model and

the constraint /flow regime that was used for their specification listed on the previous

page.

An added advantage of the SSG model over other second moment closures, including
the LRR model, is the redundancy of a model for the wall effect term, equation
(2.58). It was found that the SSG model performed well without these terms, easing

computational cost and obviating the need for additional modelling.

2.5.2 Dissipation term modelling

Established second moment closures such as the LRR and SSG models, as discussed
previously, invoke the assumption of local isotropy of dissipation (Kolmogorov,
1941). This assumption is made by considering the energy cascade from large to
small eddies. During the transfer of energy from the large energy containing eddies
to the small, any directionality is assumed to be scrambled by nonlinear processes.

so that at the small dissipative scales at high Reynolds numbers, dissipation is ef-
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fectively isotropic. Equation (2.23) could then be written as.

2
€ij = §€5ij, (2.71)
where
. du,0u; .
B a:rk(').’ltk (H'IH)

18 the trace of ¢;;. This equation is usually modelled in the same manner as its
two-cquation cquivalent, (2.42), but the use of equation (2.10) is now used due to
the availability of the Reynolds stresses. Hanjalic and Launder (1972) gave the
dissipation rate equation as.

Jde 0 [k Je € oU, (7

U. =C, —upuy— | — Coy=wiup— — (') — 2.7
"o, Oxy (ukul('):r, Clk1L7l1AU;I:k ((2/{, (2.73)

with the first term on the right hand side representing turbulent diffusion of dissipa-
tion; the second term the production of dissipation and the third term the destruce-
tion of dissipation. Equation (2.73) was also used in the LRR model of Launder

ct al. (1975) with the values of the coefficients C, ', and ;9 as given in table 2.3.

The assumption of isotropic dissipation may not be valid in flows where turbu-
lence 1s not in equilibrium. such as arcas close to a solid wall or in regions of high
streamline curvature. So ot al. (1999) states that for homogencous shear flows. the
anisotropy of dissipation can be more than 50% greater than the anisotropy of the
Reynolds stresses. Attempts at modelling the anisotropic nature of the turbulent
disspation for high Reynolds number flows are limited, with most calculations still
using the Kolmogorov assumption, preferring to model any turbulence anisotropy
in the pressure-strain term. Low Revnolds number models. however. account for
this anisotropy in their formulation (sce Hanjalic and Jakirlic, 2002). but imposc a
greater computational cost by resolving the near wall turbulence. Due to the limita-
tions of modelling the pressure-strain term as stated by Speziale ef al. (1991). some
turbulence modellers are looking at the dissipation rate as an alternative, to improve

the accuracy of sccond moment closures in areas of high dissipation anisotropy.
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Current models of anisotropic dissipation rate

Two methods prevail over the representation of turbulence dissipation. The first
uses the anisotropy of the Reynolds stresses to give a measure of the anisotropy of
the turbulence dissipation. The second represents the anisotropy of dissipation in

terms of the mean strain and vorticity.

Hallback et al. (1990) gives an expression for the anisotropy of dissipation, d;;, as
a series of terms involving the stress anisotropy, a;j. So et al. (1999) investigated
the use of this model applied to homogeneous buoyant shear flows. It was found
that the results for d;; correlated with those for a;; showing that for these types of
flow the anisotropy of dissipation has a dependence on a;;. It has been reported,
though (So et al., 1999; Hanjalic and Jakirlic, 2002), that the model of Hallback
et al. (1990) does not perform adequately in near wall regions of the flow. This is a
major drawback for wall bounded flows such as cavity flows, where the dimensions
of the cavity are such that the wall plays an important part in the development of

the flow.

Jakirlic and Hanjalic (2002) developed a new closure of the ¢;; equation (2.23)
based on the viscous terms within a two-point transport equation of the Reynolds
stresses. It is shown that the dissipation tensor can be represented in terms of the
homogeneous dissipation tensor and the viscous diffusion of Reynolds stress tensor.
The homogeneous dissipation tensor is then modelled by ‘blending’ the isotropic,
homogencous dissipation rate with the same term modified by the stress anisotropy
tensor. The modelled equation for homogeneous dissipation rate is then modelled
on a term by term basis that leads to an extended set of terms over the standard e

equation which does not facilitate speed of calculation.

The model was tested on channel flow and axially rotating pipe flow. Although the
results compared favourably with corresponding DNS data, the flow in the axially
rotating pipe case showed that for rotating flows, agreement was not as good as for
non-rotating flows. This was attributed to the inaccuracy of the DNS input data to
the model, although the lack of a mean strain term in the model could have added to

this problem (as alluded to by the authors themselves). This model was designed for
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use in a low Reynolds number formulation of a second moment closure, integrating
through the viscous sublayer to the wall. This requires more computational points
in the near wall region, leading to greater computational time; a draw back of this

model for engineering applications, where a rapid turn around time for acquisition

of results is vital.

A model to describe axisymmetric turbulence anisotropy was given by Jovanovic
et al. (2003). Here the anisotropy of dissipation is expressed as a function of the
invariants of stress and dissipation anisotropy and the stress anisotropy itself. Using
axisymmetric formulations of turbulent quantities, such as Reynolds stress and pro-
duction of dissipation, and using the anisotropy invariant map of Lumley (1978), an
anisotropic formulation of the turbulence dissipation equation is stated. The model
was tested for the case of initially isotropic turbulence in uniform rotation and ax-
isymmetric contraction. The model proved adequate for the early time evolution of
the turbulence but overestimated the decay of turbulence over longer time periods.
This inability to reproduce the effect of reduced decay of turbulence energy onset
by the rotation may be due to the lack of any dedicated rotational terms in the

formulation of the model.

Lu and Semiao (2003) proposed a model for the dissipation rate equation for use in
second moment closures. Instead of using constant coefficients in equation (2.73),
C., was re-defined as a function of the second invariant of stress anisotropy. This
was proposed by reasoning that anisotropy in the large scale eddies promotes the
transfer of energy in the cascade process to the smaller eddies more readily compared

to isotropic turbulence.

The model was incorporated into the SSG model and tested against the standard
SSG and LRR models on the experimental test cases of a dump combustor and
an annular burner. Both of the cases were swirling flows. It was shown for the
weaker swirling flow of the dump combustor, the anisotropic dissipation rate model
performed better than the SSG and LRR models alone in predicting the mean flow
and Reynolds stress quantities. For the annular case, little improvement was shown
when using the new model. This was due to the increased level of anisotropy of the

flow compared to the annular case, making the anisotropic terms in the dissipation
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rate model more effective. In both cases, the SSG model wis proven to give superior

prediction against experimental data over the LRR model.

As mentioned earlier, the sccond type of dissipation rate modelling related the
anisotropy of dissipation to the mean strain and vorticity of the flows. One such
model was developed by Speziale and Gatski (1997). Here the authors hypothe-
sised that the orientation of the large cddics has little effect on the small eddies
due to ‘non-linear scrambling’ of directional information in the cnergy cascade. and
that mean strains cause the anisotropy at the smaller scales. A model of the exact
transport equation for the dissipation rate tensor was presented. but for ease of

implementation, a transport equation for the scalar dissipation rate was derived.

Speziale and Gatski (1997) developed an algebraic anisotropic dissipation rate model
that was nonlinear in the mean velocity gradients. This was incorporated into the
transport cquation for the dissipation rate and tested against the ‘isotropisation of
production’ (IP) model of Launder ¢t al. (1975) for homogeneous shear flow with and
without rotation. The new algebraic model was shown to performn better than the
I model (and standard SSG model), especially for rotating flows when compared
against DNS and LES data. For flow in a square duct. the new model improved
the standard SSG model by removing extra sccondary flows that were not present

in the DNS data provided.

Due to its performance in rotating flows (of which swirling flows constitute a spe-
cial type of rotating flow), the anisotropic dissipation rate model of Speziale and
Gatski (1997) was chosen for inclusion in the present work. The model has only two
additional closure coefficients over the standard dissipation rate modcl. despite the
extra terms involved. Also, because of the lack of use of anisotropic dissipation rate
models for simulating swirling Hows, with the exception of Lu and Semiao (2003).
(he performance of the model by Speziale and Gatski in rotating How advocates its

usage here. The model is discussed in greater detail in the following scction
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Speziale and Gatski (1997) model

The Speziale and Gatski (1997) model for anisotropy of dissipation, as stated pre-
viously, is formulated in terms of the mean strain and vorticity tensors. Firstly the
transport equation for the dissipation rate tensor,

O€;j oU; oU; oUy

= —eika—mz kg + 2(fikjt + fika — flkij)a—xl + N;j. (2.74)

needs to be modelled for fijri and N;. fijki is modelled by expressing it as a linear
expansion with the anisotropy of dissipation tensor. d;j. Njj; is modelled using a
relaxation model to give the correct return to isotropy in the absence of any mean
straining on the flow. These two considerations lead to the modelled equation for

transport of the dissipation rate tensor,

-O% = "fikgg—z - €jk%U~: + gégij (2.75)
+ (%gag + —?—(1)) € (dikgjk + djkSik — gdklgklfsij)
_ (%% _ %(13) € (dicW & + d; Wik
— (%aa — %—g—) edrSkibij + % (Cd{:‘P - 062%;) d:j
— 0652 (fij = %f%‘) )
where S;; and W;; are given in (2.67) and (2.68) and
dij = b i —256(5“ (2.76)

is the anisotropy of dissipation. Despite providing a model for the dissipation rate
tensor, the solution of five additional transport equations is required for a three
dimensional calculation, potentially increasing the numerical stiffness of an already
stiff equation set. For engineering applications, this additional computational cost
is disadvantageous. Instead of finding the solution to equation (2.75), an algebraic
approximation to it is used, requiring the solution to only a modified transport

equation for dissipation rate. By studying local homogeneous, equilibrium flows,
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Speziale and Gatski formulated an equation for the anisotropy of dissipation,

k— ? a3 + 1 k;2
dij = —2C, [zSij + (C’lfr,*-f-——il? — (SuWii+SiuWi)  (2.77)

30
a3 k?
+ (h) (Slk‘sk] - —Sk15k15z])]

where P is the production of turbulence energy and,

-1

1 —7—a3+ 1)? 2 By 1)\?
Cuc = 142 1= _11 2_4(_ 10— 1 2
H5(Cs+ 2 - 1) (C(5+B—1 &3 Cos+2 -1 7
(2.78)
= = k — k
n=(8;8;)2=, €= (W,W;)"/?=. (2.79)

For flows with mild departures from equilibrium, Speziale and Gatski use the model,

P
- = 2C;7° (2.80)

with C; = 0.094 for shear flow in equilibrium.

By making use of the transport equation for the dissipation rate tensor (2.75), a
transport equation for the dissipation rate is found. The form of the equation is
similar to the standard equation (2.73), with the modification of the coefficient C,,

taking into account the effects of dissipation rate anisotropy,

Oe o (k Oe € oU; €2
9% _ o % ([Famt 7 ~ Cg—, 2.81
Ulazz:i C‘amk (eukul&m) ‘lku uk@ Th 2k ( )
where
21 + C. +2C*n -1
CHh=Ca+ ( *a) . 25 2 _ 27302 242 (2.82)
15C;; | (Ces +2C3n% — 1)? — £830% + 267¢€
and
7 1 15 1 3 /14 16 .
_ 7 20 e - =2 Zay -2 2.83
h=gemt s o *71 (11 @3 33) (2:83)

The closure coefficients for the anisotropic dissipation rate model are shown in table
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Coefficient | Value
Ce 0.15
Cea 1.0
Ceo 1.83
Ces 5.80
(O 0.094
a3 0.6

TABLE 2.5: Values of coefficients used in the anisotropic dissipation rate model of Speziale
and Gatski (1997)

2.5 and were reached subject to the following requirements (Speziale and Gatski.

1997).
1. The value of 0.15 for C, was set to agree with the Von Karman constant for
boundary layers.

2. Ce1 has a value of unity so that the turbulent time scale grows monotonically

with time as ¢ — oo to agree with the limit of local isotropy.

3. C.o was found by analysing the decay of isotropic turbulence to give a value

of 1.83.

4. C¢5 was found by studying the decay of initially anisotropic turbulence in the

small scales, to an isotropic state.
5. a3 was found by studying DNS data of homogeneous shear flows.

To complete the closure, equation (2.81) is coupled to the Reynolds stress transport

equation (2.21) through (2.76).

2.6 Variable density turbulence models

To predict turbulent flows where temperature variation is significant - such as those
involving chemical reaction, combustion or other forms of heat transfer - it is nec-
essary to make allowances for any corresponding variation in fluid density. For heat

transfer in liquids, this may not represent a problem if density changes are small,
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and conventional modelling may be used. In gasses, however, density change is large

and can not be neglected.

If conventional Reynolds decomposition is used for the turbulent density. splitting
into its mean and fluctuating components, many terms involving p' appear in the
turbulence equations (such as Reynolds stress equations). These terms are diffi-
cult to model (Libby and Williams, 1994) due to their complexity, and if they are

neglected, important physical processes are removed.

The introduction of density weighted averaging by Favre (1971) instead of using con-
ventional averaging provides equations with a more compact set of terms that allow
a more simple physical interpretation. They also avoid the evolution of multiple

terms involving p’. Density weighted, or Favre, averaging is introduced below.

2.6.1 Favre averaging

For variable density flows, Favre averaging provides a more convenient set of equa-
tions to solve, similar to those when using ensemble averaging for constant density
flows. Using the notation of Jones (1979), Favre decomposition and averaging is

defined as,

wi=1t+u, T=T+T"
pu! =0, pI"=0
ul £0, T"#0, (2.84)
where T is the temperature, tildes represent Favre (density weighted) averaging
lim 1 i(pui)"‘ (2.85)
N

U =

(in terms of an ensemble of N clements) and primed variables represent their fluc-

tuating (turbulent) component. The above definitions can be used to describe the
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relationship between Favre and conventional ensemble averaging thus.

u = u;+ul
—~ p u p u
puiu; = pu uj + —
It
— u.
n _ 1
u! =
1,1 —_ J, 0
o pu (2.86)

Using equations (2.84) to (2.86), it is possible to express the equations of motion

for variable density flows, the steady-state continuity equation of which is,

0 ,_.
533—].(;0%‘) =0, (2.87)

with the steady-state momentum equation given by,

o _. . 0p 0 _ ——

T

%j(puju,-) = ~ e + a—xj(au pujuy) (2.88)

where @;; is the mean viscous stress tensor. As with conventional Reynolds aver-
aging, a closure problem exists - the appearance of the pu”/\/" term has no explicit
definition. Again, various forms of closure are available, from two equation turbu-
lence models to full second-moment (or Reynolds stress) closures. For the variable

density flows considered in chapter 6, the Reynolds stress modelling procedure is

used as described below.

2.7 Reynolds stress models for variable density flows

From Jones (1979), and equation (2.20), the variable density Reynolds stress equa-

tion can be expressed as
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au’.' au’-’
+ / _ 1 + J
P ( Or; Oz; )

stress-redistribution

a P S
_ Mo +p ( + u ) —u"0! —u'o’
a.’L‘k pu‘z 7%k ik ik 7 ik U]k

turbulent diffusion

au” aull
- 0’” am + k] amk

~

~

viscous destruction

7 0P 0P
- ( 63: +u;,81:1) (2.89)

Equation (2.89) has similar groups of terms to equation (2.21), with the addition
of the last term involving ;/,7 - equal to zero in constant density flows. As with its
constant density counterpart, this cquation can only be solved by modelling all the

terms on the right hand side of (2.89) bar the first.

Modelling of the various terms in equation (2.89) is conducted in the same manner
as for constant density flows where the density weighting is assumed to include the

influence of density variation (see Jones, 1979; Gu, 1993).

2.7.1 Stress redistribution term modelling

The stress redistribution term due to fluctuating pressure (or pressure-strain cor-
relation) may be modelled as for constant density flows. A Poisson equation for
fluctuating pressure can be found (see Chou, 1945) which, for variable density, takes

the (time dependent) form

82 (')20'2-
2.0 _ au’’ o J
VP = e, P +pu) + om0,
2 P el
B axad (ﬁu"u" pu" T + pul uj +pu ") (2.90)
1

where the gradient operator includes the time derivative. This equation is much
more complex than its constant density counterpart (2.47), and is thus less desirable
for use in the pressure-strain correlation (2.90)(sce Jones, 1979). In an effort to keep

the models as simple as possible, variable density versions of the constant density
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models are used, thus the pressure-strain term is re-expressed in density weighted

form
ou" ou' ' Ou"  Ou
1l J -5 Il U, 7
p (axj + Bmi) p[p ((')zj + Oxi)]' (291)

Equation (2.91) is now of the same form as equation (2.22) and similar models may

be used.

LRR model in variable density form

The LRR model of Launder et al. (1975) can be recast into variable density form
for the pressure-strain model. As in constant density flows, the term is split into
the ‘slow’ and ‘rapid’ terms. The LRR model also accounts for the near wall region,

where eddy squashing occurs. Thus the pressure-strain term is expressed as,

_ p’ au" B'U,;!
P9 L 25 Y = sy + biso + dina 2.92
pl:p (3$] + 61‘1 d) ],l + ¢ ],2 + ¢’LJy ( )

where ¢;; | is the slow term, ¢;;2 is the rapid term and ¢;;,, is the wall-effect term.

From Gu (1993), the LRR model is re-written as

e [—= 2
diji = —C wP (ui"“;" - §5ijk) (2.93)
Cy+ 8 2
bij2 = -— 1 (Pij - §P5ij>
30C, — 2, (di; Ou;\ 8Cy—2 ( 2 )
_ _ D;; — P&, 2.94
5 " (3%' " e 11 i-3Phu) 2
3
w & (@ - 26,k ) +0.015(P,; — Dyy) ik (2.95)
2] = 0,125PE 1Ll ’UJ - § 1 . 2 1] f:E?, .
where
| = o _/\_—:(d'lli 2
Pj=-p (uiukﬁ + Ujuk (')a:k) (2.96)
and 9
—~ Ot ——Oug
o _a el U —— | . 2.97
D;j = -p (utuk oz, + ujug or; ) ( )

with P given by the trace of F;j. The closure coefficients for the model are given in

table 2.3.
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SSG model in variable density form

The SSG model of Speziale et al. (1991) can also be used for variable density flows
as outlined by Li et al. (2003). As mentioned previously. the SSG model does not
include a term for the wall effect, ¢;‘J’~, but relies on its nonlinear formulation to

account for this phenomenon.

The slow and rapid terms for the SSG model are written for variable density flows

as

P
Piji = —€p (Cl + CT:) a;j (2.98)

1 T
bij2 = Cape (aikakj - gamnamn(sij) +p (C'; + C3II'2) kS;;
~ - 2 -
+Cap (aiksjk + @k Sik — gamnsmn(sij)

+Cspk (aikwjk + ajkwik) , (2.99)

with the mean strain and vorticity tensors given by

= 1 (ou; du

ij = = 2.100
5i = 3 (axj * Bxi) (2.100)
—~ 1 6’[1,1 811]'

i = = - 2.101
Wz] 2 (8.’17] 8:1:,) ( )

and the stress anisotropy tensor by

T
aij = —% - 5(51] (2102)

The closure coeflicients used for the model are given in table 2.4.

2.7.2 Turbulent diffusion modelling

The turbulent diffusion of the Reynolds stresses in equation (2.89) can be mod-
clled using the gradient diffusion hypothesis of Daly and Harlow (1970). Gu (1993)

states that the turbulent diffusion due to pressure fluctuations is small and the main

P

. . . . = "n_n_n . . \ ' . “.
contribution is from the triple correlation term —pu] Uy The gradient diffusion
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equation (2.63) can be expressed in variable density form to give the entire model

for the turbulent diffusion term

8 — 0 k ——— a,ull n
"o 1o 07 — g o _ J
. (pu ujug + p'(ufdik + uidji) ujoy, — u ojk) = C, epuzu;"?:r_

(2.103)

where C; is the same closure coefficient as given in table 2.3.

2.7.3 Dissipation modelling

Previously, it was shown that two different types of modelling for dissipation of
turbulent kinetic energy are available. It is common to invoke the Kolmogorov

hypothesis of local isotropy for high Reynolds number flows given as

3“" du” _ 2_
Ukz a:I,‘k + 0o ch Bz, = p€jj = gpe(sij (2.104)

which is then used in equation (2.89). The other way of modelling dissipation is to
assume that the non-linear squashing and stretching of turbulent eddies, reducing
them in size to smaller and smaller scales, does not produce isotropic dissipation

(Speziale and Gatski, 1997).

The anisotropic dissipation model of Speziale and Gatski (1997) is again used for
variable density flow. The expression integrated into the Reynolds stress equation

(2.89) consists of the isotropic part and the deviatoric part
_ _ 2_ .
pEij = 2p€dij + §p€6ij- (2.100)

The variable density form of the algebraic equation for dissipation anisotropy is
identical to the constant density form [due to its algebraic nature and the variation
in density incorporated in equation (2.105)] and is represented in equations (2.77)

to (2.80). The closure coefficients are given in table 2.5.

The transport equation for the scalar dissipation rate is expressed for variable density
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flows (Gu, 1993) as

miaa; C. ai (pkug ;'adf) - Clp; "u;;g“’ —C(,u—g— C(Qﬁ%, (2.106)
where the third term on the right is a consequence of Favre averaging (see Jones,
1979), and not present in constant density flows. The value of the closure coefficient.

1> 1s dependent on the use of either an isotropic or anisotropic formulation. For
the isotropic model C}; = C; and equation (2.104) is used in the Reynolds stress
equation with the corresponding value of C,; for the LRR or SSG models. For
anisotropic flows, C¢; is given by equations (2.82) and (2.83).

2.7.4 Fluctuating velocity model

In equations (2.89) and (2.106) the fluctuating velocity, u”, appears which leads to
an open set of equations. To model this term, relation (2.86) is used to express u_;’
in terms of p'u;. Jones (1979) models this term using a complex algebraic equation,
which itself requires additional modelling. However, Jones reduces this equation to

a more simple form,
— 1 k=5—

n __
u; =

o5
—uju — i (2.107)
C¢1 € oz’

by making the assumption that density fluctuations and mean pressure gradients
are independent. The closure coefficient, Cy;, is empirical and is given the value

0.22.

2.8 Summary

This chapter has discussed the various equations needed to describe practical engi-
ncering fluid flows with turbulence models employed, using approximations based
on physical reasoning, to close the RANS equations. A full second moment clo-
sure, using either the popular LRR model or the SSG model, is given with a more
modern approach to modelling the dissipation rate of turbulent kinetic energy, us-

ing anisotropic methods. The Favre averaged equivalents of these models are also
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presented to account for fluid flows - such as the combustion problem reported in

Chapter 6 - where variation in density is important.
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3.1 Introduction

To find solutions to the equations of motion presented in Chapter 2. it is necessary
to generate complimentary discrete equivalents that can be solved efficiently via a
computer. Several means exist for discretising such equations. namely the finifc

difference (Book, 1981), finite element (Pironeau. 1989) and finite volume methods
(Patankar, 1980).

The finite difference approximation turns continuous differential equations into a set
of discrete difference equations based at nodal points. The nodes are a set of points
situated within the calculation domain of the flow field of interest, “sampling” the
characteristics of the flow at that point. The finite difference method approximates
variations in flow variables by using Taylor series expansions truncated at a suitable
level of accuracy. This method, although conservative on a domain basis. does
not guarantee local conservation, in that momentum and mass are not identically

conserved in the control volumes surrounding individual nodes Book (1981).

The finite element method divides the calculation domain into a set of contiguous
‘clements’ where interpolation functions are used to describe the variation of the flow
variables over the element. These functions are then assumed to satisty the governing
equations cxactly with the presence of a residual which is then minimised using
weighting methods. This provides the coefficients used in the interpolation functions
and hence a solution. As with the finite difference method. the finite element method
is only conservative over the whole calculation domain and not locally - which may
lead o unphysical solutions if care is not maintained. The computational difficulty in
implementing this technique is also higher than that of the finite difference method.
relying mainly on unstructured. triangular or tetrahedral meshes. These tvpes of
clements are, however, highly advantageous for usc in complex geometries. The
method has been applied in many flows such as free surface flows (Walkley ¢t al.,

2001), and cavity flows (Fawchinmi et al.. 2002).

The finite volume method. like finite differencing, sub divides the caleulation do-
main into a set of control volumes wherein lie the computational nodes. Unlike the

previous methods, the cquations of motion are integrated over a control volume,
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meaning that momentum and mass are conserved locally within it. and also in the

calculation domain. The method is also more intuitive and simple to implement.

For these reasons, the finite volume approach is adopted as the discretisation method
of choice and is described below in more detail. The basic formulation is presented
along with discretisation schemes for the troublesome convection terms. To solve
the resulting algebraic equations, the pressure correction method is employed in
the form of the PISO (Issa, 1985) and SIMPLE (Patankar and Spalding, 1972)

algorithms. Finally, this method is applied to two-dimensional, laminar test cases.

3.2 The Finite Volume Discretisation Method

The finite volume method is used to discretise the governing partial differential equa-
tions encountered in this thesis. Some authors such as Patankar (1980); Verstecg
and Malalasekera (1996); Ferziger and Peric (2004) give a good general introduction

to the method; an outline only is provided below.

The conservative form of the steady state momentum conservation equation (2.2),

V- (puu) = ~Vp +V - (uVu), (3.1)
N — —— N e’
convection pressure gradient  diffusion

can be integrated, using Gauss’ theorem, over the two dimensional control volume
shown in figure 3.1, where P is the central nodal point, E,W,N,S are the surrounding

nodes and lower case letters denote control volume faces.

Splitting the integral into convective, diffusive and pressure gradient components,

these can be approximated as,

$s(puu) - ndS = (puu)eAye - (pun)yAyy + (puv)n Az, — (puv)sAzs  (3.2)

«

9 9 9 N
$,nVu-ndS = (;L%u)pAye - (ua—xu)wAyw + (uégu)nAxn - (/l.-,(}gu)sA.L's

§.pndS = peilye — puilyu + PriBin — PJAT

where it is assumed that variables integrated over the faces of the control volumes



FIGURE 3.1: A control volume in 2D used in the finite volume method.

are constant. Expressing (3.2) in 2 and y components gives,

€I C( )llll)()ll(?llt .

(/’“‘)P“(’Ay(’ = (/)“)m“mAyur + (pv)nun Az, — (pv)susAzy =
0 0 ¢ (
(h32) . Aye — (n52), Ayw + (/t%_ij)n Azy — (/13—3)

[(PA!/)( = (])A7/) m]

Axg—

S

Yy component:

(pu)eveAye — (PU) w0 AYw + (PV)nvp Az, — (pv)vsAzy =
v v ( v
(453 A = (u8),, Ay + (u8y) Ara — () v

[(pAzZ), — (pAz)]. (3.3)

The terms on the left hand side of these equations, preserve the conservation of
momentum through the control volume faces due to advection, while the terms

on the right hand side conserve momentum due to diffusion effects and pressure

gradients, respectively.

The presence of partial derivatives in equations (3.3) means that further discretisa-
tion is required before (nonlinear) algebraic equations for the dependent variables
can be obtained. One method of removing the partial derivatives is to discretise
them using a piecewise linear interpolation scheme. For any scalar variable, ¢, its

gradients at the face of a control volume can be expressed in terms of the difference
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between its value at the nodes adjacent to the face. i.e.

d¢ b — dp
drle [(5.17(, = (3.4)

where 4z, is the distance from node P to node E as shown in figure 3.1. All of the
diffusion terms in equations (3.3) may be approximated in a similar manner. This
method of discretisation is more commonly known as Central Differencing. which
approximates the gradient as a linear profile. and so the interpolation is first order
with a second order truncation term. In CFD circles. it is well known that the order
of accuracy of a particular discretisation scheme is given in terms of its leading

truncation term, therefore central differencing is said to be second order accurate.

The central differencing method has been successfully used for the diseretisation of
diffusion terms because no directional information is needed, diffusion being a ran-
dom motion of particles permeating all directions cqually in a uniform medium. The
reason for its success numerically is due to its order of accuracy, and demonstrates
that when using interpolation formulae, it is appropriate to use at least an interpo-
lation that is of the same order as the derivative terms in the original continuum

cquation (sce Press et al., 1993).

As mentioned previously, nonlinearitics are present in equations (3.3) due to the

conveetive terms. Methods of discretising the convective terms are reviewed below.

3.3 Convective Discretisation Schemes

For the convective terms in the integral equations (3.3). the dependent variable is lo-
cated at the faces of the control volume. Unfortunately, in the finite volume method.
variable values are stored at the centre of control volumes. As such. methods for
approximating control volume face fluxes (velocities) in terms of the nodal values

are needed.
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3.3.1 Central Differencing

Following Patankar (1980) the velocity at the face of a control volume can be ex-

pressed using the central difference approximation. At the east face. for example.

1
Ue = §(UE + UP) (3.5)
which assumes that the east face lies midway (denoted by the premultiplying factor
of one half) between nodes E and P. Several authors, (Patankar, 1980; Versteeg

and Malalasekera, 1996; Ferziger and Peric, 2004) have noted a flaw in the central

difference scheme for certain flows.

The ratio of convective flux, F, to diffusive flux, D, in the control volume is known

as the Peclet number, where
Few = (puly)ew , Fns= (pulz),, (3.6)

are the convective fluxes at the faces of the control volume, and

A,
De,w = (%Ay) ’ Dn,s = (%) (37)
T/ ew Y /ns

are the corresponding diffusive mass fluxes. The Peclet number at the control volume

centre for the u-momentum equation is given by

F pu
= == : 3.8
Pe D pu/ix (3:8)

Patankar (1980) performed a simple numerical experiment, the outcome of which
showed that if Pe > 2, the central difference scheme yields unphysical solutions for
the discretised equations. Amongst the observed effects was the lack of bounded-
ness of the variables at the control volume faces. That is, in the absence of mass

Hux sources or sinks, the face values calculated lay outside the upper and lower

boundaries of the adjacent nodal values.

The lack of robustness of the central difference scheme for flows with Pe > 2,

subsequently motivated the search for different methods for obtaining physically
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realistic values of the velocities at the control volume faces.

3.3.2 Upwind differencing

One solution to the problems experienced with central differencing is to use Upwind
differencing (see Ferziger and Peric, 2004). This is a zero order interpolation for the
value of the velocity at the node in the upwind direction on to the control volume
face. The implementation thus requires a knowledge of the direction of the flow
before discretisation can take place. Taking the left hand side of equations (3.3) for
« momentum and expressing it in terms of the mass fluxes F. the convective terms

become,

Fou, — Fyuy + Fuuy, — Foug. (;9)

To express the face velocities in terms of the nodal values, the direction of the
|
> ro
|

*——o>—=e

[
P 1 E
|
|
re0 ],

Ficure 3.2: Use of control volume face mass fluxes in the Upwind scheme.

flow is found by making use of the mass fluxes. Referring to figure 3.2, if Fi is
positive(negative), 1. is given by the value of u at node P(FE). In summary, this
method can be used to express the control volume face values for u velocity as

follows.

Fou, = mar(E..0)up —mar(—F.0)up.
Foue = mar(Fe 0wy — mar(=Fg, 0)up.
Fou, = mar(Fp.0)up —mar(=F, 0)ux.

Fo, = mar(Fy0us = mar(=F. 0)up, (3.10)



62

where the maz(z, y) function finds the largest of the two values z or y. Incorporating
equations (3.10), (3.6), (3.7) and (3.4) into equations (3.3), leads to the following

general discretisation equations for u and » momentum,

apup = GQEUfr +awuw +anuyN + asug — [(PAy)e - (pAy)w]

apvp = Ggvg+awvw +anun + asvs — [(pAz), — (pAz),]  (3.11)

where

ag = mam(_Fe,O) +D., , aw = mal‘(FwaO) + Dy,
any = max(—F,,0)+ D, , as=maz(F;,0)+ D,

ap =ag +aw +any +ag (3.12)

are the coefficients of the variables at the nodes E, W, N, S and P.

Now that the discretised form of the integral equations (3.3) is complete, it should
be a simple matter of moving on to their solution. There are, however, issues with

the upwind scheme that require further investigation and discussion.

Limitations of Upwind differencing

Despite overcoming the problems associated with central differencing, the upwind

scheme has some serious numerical drawbacks of its own (see Leonard, 1979).

A discretised, one dimensional equation, without source terms, for the transport of
a scalar variable, ¢, may be obtained in a similar manner to that resulting in equa-
tions (3.3). Starting with the convection-diffusion equation for ¢ in one dimension

(replacing partial with full derivatives),

d _ d d¢
E(Pwﬁ) = a (lta) (3.13)

it is possible to form an integral equation by integrating over the one dimensional

control volume

d d do
— = —_— — . 3.14
Lz (pud)dV /‘ . (“dm) dVv (3.14)
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This reduces to a definite integral over a length dz from the left side, w. of the

control volume to the right hand side, e,

[ d(pug) = Jid(nl)
= (pug)e — (pud)y = (u%‘ﬁ)e—(u%)w (3.15)
> Fege—Fudw = (u§2) —(ng2) |

where Fe ., = (pu)e,w

The convective terms in equation (3.15) can be discretised using the upwind and

central difference schemes when a positive u velocity is in effect, thus,

Upwind
d d
Fe¢P - Fw¢W = (Mﬁ) - (Mﬁ) (316)

Central Difference

Fegp | Fegp  Fudw _ Fudp _ ( ﬂf) — (u%) (3.17)

2 + 2 2 2 “dx dz

The upwind scheme can be rewritten to look like the left hand side of (3.17) to give,

2 2 2 2 Haz Haz
LR (¢E — ¢P) L F (¢W - ¢P)(3.18)

Fpp | Fepp _ Fubw _Fubr _ ( d_¢) _( d_¢)

2 2

the final two terms of which can be converted back to their continuous form using

the reverse discretisation as per equation (3.4), giving,

Fepi , Fepr Fubw _ Fudp _ ( %) B (udjg)

2 2 2 2 Haz dz
F, (d¢ F, (dé
il e _ 2w (22} Az (319
2 (da:)(,Am 2 (dw)u, z (3.19)

It is now possible to re-express the upwind scheme as a central difference scheme

with an effective diffusion term, f,

Fopr | Fepp Fudw Fudp _(_d¢) (_d¢ 3.0
2 T2 2 >~ \fa) ~\ka) - B2
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where

(pu)e,w Az

fleqw = 4+ 2

(3.21)

From equation (3.20), the upwind scheme is equivalent to the central difference
scheme with the physical diffusion coefficient replaced by (3.21) which is larger than
the physical diffusion by %(pu)e,w Az. This suggests that the effect of the zero order
interpolation of the upwind scheme introduces additional diffusion in comparison to
the first order interpolation of the central difference scheme, an effect that is known

as numerical diffusion and is characteristic of the upwind scheme (see Leonard.

1979).

Numerical diffusion has a detrimental effect on the accuracy of computed results.
Due to the additional diffusion present, sharp gradients in the predicted variable
appear smeared, as shown by Leonard (1979) for the convection of a scalar step
profile. It is possible to reduce the numerical diffusion by decreasing the mesh size -
sec equation (3.21) - but this may increase the computational cost beyond the scope

of many calculations to reach a desired accuracy.

A partial solution to numerical diffusion and lack of boundedness is to formulate
a hybrid upwind-central difference scheme (Spalding, 1972). For Peclet numbers of
less than two, the central difference scheme is used, but when the flow conditions
are such that the Peclet number increases beyond this, upwind differencing is used.
Even though this overcomes the problems of the central differencing scheme for high

Peclet number flows, its use affords little improvement over the upwind scheme for

high speed flows.

An improvement to convective discretisation methods was made by Patankar (1981)
in the form of the Power Law scheme. This scheme is an improved approximation to
the exponential scheme - the discrete version of the exact solution to the convection-
diffusion equation (no sources or sinks) in one dimension. The power law scheme
enables a higher accuracy approximation of the control volume face values by using
a fifth degree polynomial in terms of the Peclet number. It allows a more gradual
variation in control volume face values to be predicted for a wider range of Peclet

numbers between zero and ten. For Peclet number above ten, the power law scheme



reverts to the upwind scheme.

Although this scheme behaves more like the exponential scheme than the hvbrid
scheme does, Leonard and Drummond (1995) recently called into question the va-
lidity of using any exponential based scheme. They revealed that such schemes
approximate the exact exponential solution of the convection-diffusion equation by
finding an effective Peclet number that matches the exact solution. They showed
that the use of the effective Peclet number led to an additional artificial diffusivity
being present in the solution. When the ceffective Peclet number becomes greater
than two, these schemes become equivalent to using the upwind scheme for convec-

tion, ignoring the effects of the physical diffusion completely.

Leonard and Drummond also went on to state that these schemes, although suitable
for one-dimensional, steady state, source free flows (with constant cocfficients in the
discretised equations), are not suitable outside these constraints. For example, in
two dimensional flows. the cross stream diffusion can be very large if the Peclet
number is too large in the cross stream direction. For cases when the flow is oblique
to the computational grid, the Peclet number could be too large in both coordinate

directions, allowing excessive numerical diffusion in both directions.

Another important point was made regarding the use of exponentially based schemes
when used with turbulence equations. In turbulence models that make use of the
Bousinesq eddy viscosity hypothesis (sce chapter 2), serious problems occur when
the artificial Peclet number becomes greater than two. As stated previously. when
this happens. physical diffusion is ignored and only the artificial numerical diffusion
is present. For eddy viscosity models, such as the k — € model. this would negate
any calculations made to find the eddy viscosity. meaning that solutions would
become insensitive to the type of eddy viscosity turbulence model used (Leonard

and Drumimond, 1995).

These arguments clearly point to a need to increase the accuracy of convective dis-
crotisation schemes using higher order interpolations. whilst keeping artificial diffu-
Sivity to a minimum. The next section outlines methods that have been developed

using these ideas.
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3.4 High order convective discretisation schemes
Review

The first step to increase the accuracy of the convective discretisation whilst avolding
the oscillations produced by the central difference scheme. was to introduce a more
accurate upwinding method. Warming and Beam (1976) introduced a second order
upwind scheme (SOUS) where the value of the convected variable at the control
volume face is found by extrapolating the variable gradient found at two upstream

nodes. For example

3 I
) 39— géw  for we>0 .
Pe =19 , (3.22)
561 — 3¢ for we <0 |

(where the computational stencil is shown later in figure 3.3).

The scheme was tested by Biagioli (1998) using the classical lid driven cavity and
sudden expansion problems (sce Ghia et al., 1982; Armaly ct al., 1983). For the
cavity example the second order upwind solution was found to agree with Ghia of
al. ’s solution on a grid of size 80 x 80 while a hybrid solution could only match
it for a grid of size 160 x 160. The SOUS was capable of reproducing the steep
velocity gradients near the lid, despite a more coarse mesh density due to the first
order (linear) interpolation providing greater interpolative accuracy. More accurate
predictions of reattachment length for the sudden expansion problem were also ob-

served when using the SOUS when comparing against the measurements of Armaly

ot al. (1983).

A third order accurate scheme, QUICK, was introduced by Leonard (1979) and
cmploys an upwind biased quadratic interpolation formula. Leonard showed that
this scheme was capable of reproducing sharp gradients. such as convection of a
step profile. whilst maintaining conveetive stability (sce later). Despite the ability
to predict steep gradients. Leonard himself produced results showing unphysical
oscillations in these regions (however much smaller than those produced by o central

difference scheme).
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Owing to its simplicity of implementation and other schemes’ comparative lack of
accuracy, the QUICK scheme has enjoyed widespread use and has even been incor-
porated into several commercial CFD codes such as FLUENT (Fluent Inc.). Due to
its significance, and influence on successive schemes, a more complete description of

the QUICK scheme is presented later.

A fourth order discretisation scheme was implemented by Lilek and Peric (1995) after
integrating the governing equations using Simpson’s rule. To maintain the order of
approximation of the integral equations, a cubic interpolation scheme, equivalent to
a fourth order central difference scheme, was used. For test problems such as the
lid driven cavity, the fourth order scheme was shown to achieve grid independence
much quicker than the central difference or upwind schemes upon successive grid
refinement. Due to the higher numbers of nodes required for interpolation, 15 for
any control volume face, the computational cost for the scheme is increased over the

central difference scheme.

Unfortunately the above schemes suffer from unbounded (see Gaskell and Lau, 1988)
interpolations, so control volume face values may lie outside those of the neighbour-
ing nodal points in the absence of sources or sinks. This property can give rise to
unphysical solutions and even computational divergence. There are, however, other

schemes that have been developed that counteract this problem.

Total Variation Diminishing (TVD) schemes were first introduced by Harten (1983)
for time dependent hyperbolic problems. These schemes dictate that the total vari-

ation (TV) of a solution, u, decreases from one time step to the next,

TV (uF*!) < TV (uF) (3.23)
where
oo
TV(u) = Y |um -yl (3.24)
Jj=-00

Harten also went on to say that these schemes always provide convergent, unique
solutions. Many of the schemes derived using this method include flux limiting tech-

niques to stop unbounded solutions from occurring (sce Van Leer, 1979; Darwish
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and Moukalled, 2003; Sweby, 1984). Despite their ability to capture sharp gradients
in variable profiles, TVD schemes are mainly applied to solution of the time depen-
dent Euler equations for compressible, high speed flows, and do not have a steady

state counterpart.

For incompressible flows Leonard’s QUICK scheme proved very popular due to its
ability to resolve steep gradients. However, its ability to predict unbounded solutions
was a major drawback. Gaskell and Lau (1988) changed the way that high order
discretisation schemes should be conceived by introducing two important method-
ologies: the Convection Boundedness Criterion (CBC) and Curvature Compensated
Convective Transport (CCCT). The CBC was defined using physical principles in
order that convective discretisation schemes should remain bounded. CCCT was
introduced as a method of providing an explicit curvature correction to the third
order QUICK scheme of Leonard, to ensure that the CBC was fulfilled. The specific
methods the authors undertook to implement CCCT resulted in the well known

SMART algorithm.

The third order accurate SMART scheme was tested against two cases: convection
of a top-hat function, and convection of a scalar step, both oblique to the compu-
tational mesh. For both test cases, SMART showed superior resolution of the steep
gradients compared to lower order interpolative schemes, and matched the results
of the QUICK scheme. However, unlike the QUICK scheme, it was able to achieve
physical, bounded solutions whilst maintaining good resolution. Gaskell and Lau
also included an illustrative tool, the normalised variable diagram (NVD), upon

which CCCT schemes such as SMART may be defined complying with the CBC.

Zhu (1991) introduced a scheme based upon a quadratic function in the normalised
variable diagram, as opposed to the piecewise linear method proposed by Gaskell
and Lau, in an attempt to remove the effect of discontinuities in changing from
one linear function to another. Zhu tested his NVD scheme against QUICK and
the hybrid scheme but surprisingly not against SMART. For convection of a square
step, the scheme outperformed the other schemes in a manner similar to SMART.
This scheme however was only second order accurate (as opposed to third order for

SMART) duc to the second order truncation terms in its formulation.
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Seok et al. (1995) compared the scheme of Zhu with that of Gaskell and Lau and
another high order scheme introduced by the authors. The scheme presented was
similar to that of Zhu, being a quadratic function in the normalised variable diagram.
but passing through the point (0.5,0.75) in the NVD with the gradient of the QUICK
scheme to ensure third order accuracy. For the convection of a scalar step case,
the NVD schemes were virtually identical in capturing the steep gradient without

unbounded oscillations.

Song et al. (2000) and Alves et al. (2003) also added to the list of NVD schemes with
the WACEB and CUBISTA variants, respectively. These schemes not only incor-
porated the CBC to ensure boundedness of any solutions, but also used the TVD
constraints to ensure converged solutions. Both schemes have lower interpolative
accuracy than the SMART scheme, but when tested for several test cases including
convection of a top hat profile, the WACEB scheme was not able to predict the
maximum value of the top hat function in the same manner as the SMART scherne,
as shown by Gaskell and Lau (1988), and both schemes could not match SMART
for convection of a step profile. Despite this, all of the schemes are found to be in

close agreement, with only small differences in their predictions.

In this work the SMART scheme of Gaskell and Lau will be used for its higher
interpolative accuracy, while the CUBISTA scheme will be used for its TVD conver-
gence properties where SMART experiences convergence difficulties. The following

sections describe these schemes in more detail, with an introduction to Leonard’s

QUICK scheme as an aid to understanding.

QUICK

Leonard (1979) made a significant improvement to convective discretisation with
the introduction of his QUICK (Quadratic Upstream Interpolation for Convective
Kinematics) scheme. This method extended the interpolation stencil to include the
adjacent nodes to the central computational node, plus the far ones, equating to the

usc of a total of five nodes in 1D (sce figure 3.3).

Depending upon the direction of the flow, a quadratic interpolation was imple-
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FIGURE 3.3: 2D computational stencil for the QUICK scheme.

mented, weighted in the upstream direction. In the one dimensional example of the
advection of a general scalar, ¢, shown in figure 3.4, the downstream control volume

face value is given by

be = = (P + ¢E) — %((bw + ¢ — 2¢p) (3.25)

DO | =

where advection is from left to right (F' > 0). If advection is in the reverse direction,
from right to left (F < 0), the interpolation formula for the right control volume

face value of ¢ is

1
Pe = %(¢P + ¢E) — §(¢151; + op — 2¢5) . (3.26)

Equations (3.25) and (3.26) can be interpreted as a linear interpolation for ¢ from
the neighbouring nodal values plus a correction term that is proportional to the
curvature in the variation of ¢ in the upstream direction. Similar expressions exist

for the left control volume face value, ¢,,.

Using the interpolation formula(3.25) and (3.26), for u and v velocities, the coeffi-
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FIGURE 3.4: Illustration of upstream weighting in the QUICK scheme.

cients of the discretisation equations (3.11) are

ag

aw

an

as

apE

aww

aGNN

ass

ap

3
— maxz(F,, O)g + mazx(—F,, 0)l + D,

3 3
max(Fy, O)Z — maz(—F,, 0)§ + max(F,, O)% + Dy,

maz(—F,,0)

=
oc

3 3
max(—Fn,O)Z - maz(Fn,O)-S— + max(—FS,O)% + D,

3 3 1
maw(FS,O)Z - max(—FS,O)g + mam(Fn,O)g + D,

—maz(—Fe,0)

QO | =

—ma:v(Fw,O)%
—maz(—Fy,,0)
—-mam(Fs,O)%

ag +aw +an +as+agg +aww +any +ass . (3.27)

OO | =t

As noted previously, the computational stencil is increased compared to the afore-

mentioned upwind or central difference schemes. For two and three dimensions,

nine and twelve nodes are required, respectively. At the boundaries of the solution

domain, the far node coefficients cannot be prescribed in the usual manner; they lie

outside the computational domain. Leonard suggested the use of ‘ghost’ nodes that

mimic real nodes. To overcome this computational problem, the hybrid scheme can

be used at domain boundaries, where it is possible to make Pe < 2 by adequate

mesh refinement, meaning that the central difference part of the hybrid scheme is

operational without the instabilities mentioned earlier.

Leonard introduced a new parameter, the convective sensitivity, to analyse the sta-
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bility of discretisation schemes. Convective sensitivity is defined as the sensitivity of

the convective influx to the change in the convected variable ¢ at the central node,

P.
< 0 stable,

oCir
=0 neutral, (3.28)

Odp

> (0 unstable

The convective sensitivity of the QUICK scheme was shown by Leonard to be un-
conditionally stable in the simple case of uniform, uni-directional convection of a

scalar variable.

The present author has generalised this analysis further here showing that

4
16A$ T6as (12ue — 6uy) if ue > 0 and u,, >0

oCrp ) 16A1: (6|ue| + 6uy) ifue <0and uy >0 (3.29)
odp —t6a55 (120 + 12Juy|) if ue > 0 and uy, < 0 ’ '

16A:1: (6lue| — 12|uy|) fue <0and uy <0

from which the following conclusions can be drawn. Firstly, when fluid is convergent
upon a control volume cell (when u, < 0 and u,, > 0), convective instability is always
present. Conversely, when fluid is divergent from a control volume cell (when %, > 0
and u,, < 0), convective stability persists. In practice, this may be applicable to only
small parts of the flow field, but large instabilities are capable of causing divergent
behaviour in a numerical calculation through propagation of unphysical solutions. In
the remaining cases of equation (3.29), where the flow is aligned in a single direction,
neutral sensitivity is achieved when one of the control volume face velocities is twice
the value of the other. For example, when the flow is aligned from left to right,
neutral sensitivity occurs when u,, = 2u.. As can be seen from equation (3.29),
when the value of u,, exceeds twice the value of u, convective instability occurs.
This effect is reproducible in more realistic flow regimes where impingements or

shocks occur, leading to steep velocity gradients over the width of a control volume.

Leonard (1979) tested the QUICK scheme for several ideal flow problems, such as
the convection of a scalar square step profile. From these results it was shown

that in regions of high gradients for the convected variable, oscillatory behaviour
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was observed but the gradient was captured more accurately than with methods
such as the central difference or upwind schemes. The nature of the oscillations
showed the convected variable exceeding its physically bounding values. The above
reasoning would explain this behaviour in the convection of a step profile where one
control volume face value of the convected variable is more than double that at the
opposing face. This is obviously an undesirable feature of the schene, leading to
physically unrealistic solutions. More recent convective discretisation schemes have

been formulated to overcome this problem and are presented below.

3.4.1 The Convection Boundedness Criterion

To counteract the appearance of unphysical oscillations and lack of boundedness
in convective discretisation schemes, Gaskell and Lau (1988) proposed the SMART
(Sharp and Monotonic Algorithm for Realistic Transport by Convection) scheme.
In their analysis, it was noted that the QUICK scheme (and other higher order
schemes) does not always achieve interpolative boundedness due to the parabolic

interpolation profile adopted.

For the one dimensional control volume shown in figure 3.2, interpolative bound-
edness at the east face for the convected variable ¢ is satisfied when its value lies
between the values at the adjacent nodes when sources are not present. To illus-
trate interpolative boundedness the normalised variable diagram is used, where the

normalised convected variable at a position & between nodes W and F is defined as

i P~ dw 3.30
i ¢E — dw (3.40)

Figure 3.5 shows the normalised variable diagram for the normalised variable be at
the right face of the control volume against the nodal value at the control volume

centre, ¢p. In normalised variable notation, interpolative boundedness for ¢ is

given by

e € (pp,1]  when  @p € (~00,1]

de € [I,QSP) when ép € [1,00) (3.31)



74

The condition of interpolative boundedness is not. however, sufficient to satisfy
computational boundedness. When source terms are present, the relations for inter-

polative boundedness (3.31), need to be modified to create a more general, sufficient

definition,

op < e < <0 if S<0, ¢p<0 (3.32)

where S is a normalised source term. From equations (3.32), a Convection Bound-
edness Criterion (CBC) can be formulated (Gaskell and Lau, 1988). The CBC is
shown in figure 3.5, as the shaded area that lies between (0,0) and (1,1) bounded
from below by the line ¢, = ¢p and from above by the line ¢, = 1. When ¢p ¢ [0, 1],

¢e 18 equal to ¢p, as shown by the line. Gaskell and Lau showed that any convective

~

e

¢
NN

N

CBC

FiGure 3.5: Normalised variable diagram for ¢ at the east face of the control volume;
Gaskell and Lau (1988).

scheme that adheres to the CBC, and falls within the shaded area of figure 3.5, will

produce bounded, monotonic interpolations of control volume face variables.
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3.4.2 Curvature Compensated Convective Transport

To define their higher order convection scheme, Gaskell and Lau (1988) introduced
the novel method of curvature compensation. Taking Taylor series expansions of the
convected variable, ¢, about the central node, P and the E and W nodes, ignoring
higher order derivatives gives,

Az 0 Azr? 2 Az? 53

2 5%t g ozttt gastt
Az O Az? §? Az 93

¢E = ¢e+

= T S et g ot T ag et
3Az O 9Az? 52 9Az? 93
w = e — —2*6—$¢e+——8——5$—2¢e— 16 @qﬁew&.. (3.33)

from which it is possible to create an expression for the convected variable at the

right hand control volume face, ¢,

3 3 1 Azx® 83
$e = Z¢P + §¢E - gd’w - T(i—@(pe . (3.34)

By discretising the double differential of ¢ with respect to z, a curvature term
(representative of a double derivative) is produced, a measure of which may be

deduced by equations (3.33),

0? Az 83
2
¢E — 2¢p + ¢w = Az 5;2“1553 + Tﬁqbe . (3.35)
Rearranging this term gives
0? Az® 83
2 —

which can then be added to expression (3.34) for the control volume face value.

3 3 1 Az3 O3 Az3 0° Ax? 23_
b = gor+gte -~ ghw — qg gt tagmbe m 0y Gt

_ (%+za)¢P+(g—a>¢E—(:—;+a)¢w

+ Higher derivative terms. (3.37)
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Equation (3.37) can be seen as adding a second order curvature correction to the
already third order interpolation for the control volume face value, ¢.. The «
variable is used to dynamically adjust the amount of compensation required to attain
bounded, high order interpolations and is typically given by the interpolation scheme
used. The piecewise NVD formulations of Gaskell and Lau’s SMART scheme and
the CUBISTA scheme of Alves et al. are used to provide values of « in the present

work, and are outlined below.

3.4.3 SMART

To fulfill the CBC, Gaskell and Lau formulated the well known SMART algorithm,
which at the time represented a major step forward. At first glance, the interpolation
(3.37) has the same form as the QUICK scheme with each coefficient containing
a weighted (by a) upstream curvature component. To maintain the third order

truncation characteristics, « is kept to a minimum, while maintaining boundedness.

The SMART algorithm is shown diagrammatically in figure 3.6. For ép ¢ [0,1] the

normalised face value, <Z)e is equal to <;3p in agreement with the CBC. When ép €

~

¢C Y,
/,
Ve
7
QUICK s
LS
10}
%
/1
7| /=7 SMART
//
/
d |
pd
1.0 op

FIGURE 3.6: Normalised variable diagram for the SMART algorithm.

(;5., 1], to maintain boundedness, ¢, must not be greater than one (as shown by the
)]

horizontal line). In the region bp € [0, %], qASe is approximated by the line from (0.0)
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1
to (3, ]5) to prevent lack of boundedness due to undershoots in the interpolation.
The remainder of the region lies on the o = 0 line, which is identical to the QUICK

algorithm with its third order truncation error.

Determination of « yields the amount of curvature compensation required to achieve
monotonically varying, bounded interpolations. From equation (3.37), a is given by,
ge — §(2¢p +1)

o= @ér_1) (3.38)

From this equation, and the piecewise linear function shown in the normalised vari-

able diagram (figure 3.6), the following values of a are obtained.

) if ¢p ¢[0,1]
3] if épe€0,l)
0) if ép € (2,
a=0 if ¢pell

ép and ae(—é,

. 3¢p and o€ (0
1

e oY)

(3.39)
and « € [—g,

1
%(2({51) +1) and

The SMART scheme was implemented and tested by its authors against several
idealised flow cases. The two test cases were pure convection of a step profile for
differing angles of obliqueness to the computational mesh and pure convection of
a top hat function. The SMART algorithm showed important improvements over
the QUICK scheme for both test cases. Whilst still being able to capture the steep
gradients associated with the step and top hat functions to an equivalent degree of
accuracy, SMART did not produce the same under and overshoots in the vicinity of
those steep gradients as the QUICK scheme. Computationally, SMART was found
to be only slightly more costly than QUICK, with the same mesh density. However,
when the mesh was varied so that the upwind, QUICK and SMART schemes all
achieved the same accuracy of solution, it was found that SMART was the least

costly by the ratio 1:1.3:1.3 x 103 (SMART:QUICK:upwind).
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3.4.4 CUBISTA

Despite the high accuracy (formally third order truncation error in the smooth
flow region) and boundedness of the SMART scheme, the CBC does not always
guarantee a converged solution. Gaskell and Lau attempted to remove this problem
by under-relaxation of the o parameter for each iteration. Alves et al. (2003) noted
that the CBC constraints in the normalised variable diagram were not sufficient for
convergence, and that only the more severe TVD constraints were able to cnsure

convergence.

In normalised variable notation, the TVD constraints are given by

dp <P <2-C)op if ¢p <

A

$p <P <1-C(1-¢p) if dp >, (3.40)

N — DN —

as shown in figure 3.7. Instead of only the TVD constraints being used for the new
convection scheme several others were considered. In the smooth region of the NVD
diagram (for instance when ¢p € [}, 2] in the SMART scheme), the QUICK scheme
was used. Using similar reasoning to that of Gaskell and Lau, the QUICK scheme
behaves monotonically and is bounded in this region and is also capable of high
accuracy due to the third order truncation error. In figure 3.7, the TVD constraints
require the gradient of the line in the region ép = 0 to be given by 2 — C where C is
the Courant number for unsteady flows. In the region where 43p ~ 1, the gradient
of the line is equal to C. In these regions, the lines from (0,0) and (1,1) with the
corresponding gradients, are joined to the QUICK line. In reality C was treated
as a parameter and not a real Courant number due to the implicit time marching
algorithm used by Alves et al. (2003). The value given for this parameter was 0.25
and obtained by numerical experiments to provide convergent results for all the test
cases that the authors considered. This value of C is used to provide a balance
between good resolution of steep gradients (when C' is small - approximating the

SMART scheme), but also to obtain convergent solutions (when C has a higher

value).
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FIGURE 3.7: TVD constraints represented in the Normalised Variable Diagram.

When (i)p approaches unity, it is seen from the normalised variable diagram (figure
3.6) that the QUICK scheme does not obey the CBC (i.e. the line extends beyond
be = 1). As mentioned previously, this has the effect of causing overshoots in the
interpolation of the face variable, ¢.. The equation of the QUICK interpolation over

a local coordinate ( may be given as

HE)=gp o oW - L AR e ¢‘2V —<OF 2 (3.41)

where: ¢p = ¢(0), ¢ = ¢(1) and ¢ = ¢(—1). Alves et al noted that the location
at which the overshoot occurred is given by the turning point of the interpolation

curve of (3.41) as ( — 1, leading to

bp — dw

~ 3
Lt B

—. 3.42
e — dw | i)

To avoid overshoots as (Z)p ~ 1, at the point (?)p = % a line must be drawn from the
QUICK line to the point (1,1) in the normalised variable diagram. The slope of this
line is equivalent to the parameter C' = .25, verifying the results of the numerical

experiments undertaken by the authors.

From the above considerations, the CUBISTA (Convergent and Universally Bounded
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Interpolation Scheme for the Treatment of Advection) can be defined on the nor-

malised variable diagram as follows,

(

Tép if ¢p € (0, 3)

37,3 , 3 3

- op+ 3 if dpel, 2
be = ¢ ‘1‘ 2 i [z i) (3.43)

atp+3 if épe(y,1)

| ép if ép ¢[0,1]

This scheme can be implemented using the CCCT methodology requiring calculation
of the o parameter. From equation (3.38), values of @ may be obtained for the

piecewise linear function for CUBISTA in the NVD.

€ (Oa %) if (ip € (Oa %)
— if & 3 3
ol =0 it op € 61 (3.44)
€ (0,_%) if ¢P € (%71)
| € (=5 8) if ¢p¢[0,1]

Both the SMART and CUBISTA schemes can be implemented into the discretised
momentum equations using the same method as that for the QUICK scheme, but

replacing equation (3.25) by equation (3.37).

3.4.5 Convective sensitivity of SMART and CUBISTA

Previously, it was shown that the QUICK scheme had undesirable oscillations in the
solution when predicting steep gradients. The generalised 1D convective sensitivity
analysis proved that when 2u, < u,, during positive flow from left to right through
the control volume, QUICK is unstable. Despite the improved physical basis of
SMART and CUBISTA through the use of the CBC and CCCT methodology, the
convective sensitivity of SMART has only briefly been mentioned by Gaskell and
Lau (1988) and not at all by Alves et al. (2003).

Using the interpolation formula for CCCT in (3.37), a similar convective sensitivity
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analysis to that of QUICK is possible,

(
_——15A19;,, (12 + 32ac]ue — [6 — 160y ]uy) ifue >0and u, >0

oCip 6857 (6 — 160c][ue| + [6 — 1601, |uy) if ue < 0 and uy, > 0
Odp - IGAIIIJP (12 + 320c]u. + [12 + 32ay]|uy]) if ue >0 and uy < 0

\ 16A11‘p ([6 - 16a€]|u6| - [12 + 32aw]luwl) if ue < 0 and Uy < 0
(3.45)

The stability equations in (3.45) show a dependence upon the curvature correction
parameter, a, at the corresponding control volume faces. From (3.39) and (3.44)
the value of a varies between —% and % which can then be inserted into (3.45) to

give an overall picture of sensitivity of SMART and CUBISTA.
For the first condition in (3.45) when face velocities are positive, the largest value

of convective sensitivity is given when both a, = a,, = —%, leading to,

stable if we > uy
neutral if we, = uy

unstable if u, < uy, . (3.46)

The smallest value of convective sensitivity occurs when a, = a,, = %, which gives

stability as 0C1p/0¢p x —24u,.

The next condition is for flow convergent on the control volume (u, < 0,u,, > 0). In

this case, the largest value of convective sensitivity is when a, = a,, = —};, giving
9 :
9Cir X 8|ue| + 8uy, (3.47)
Opp
and instability. When the smallest value of sensitivity occurs (ae = ay = 3)

ncutral sensitivity persists. This result compares more favourably than the result of
the QUICK scheme, where instability is always present. For flow divergent from a

control volume it is clear to see that stability is always present, as for the QUICK

scheme, independent of values of «.

When the face velocities are negative, the opposite happens to when they are posi-
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tive. The largest value of convective sensitivity is when Qe = Q. = —-g-, giving

stable if |uy| > |ue
neutral if [|uy| = |u

unstable if |u,| < |ue| . (3.48)
When a, = a,, = %, a stable condition persists with the smallest value given by
OCrr/0dp —24|uy| . (3.49)

The above analysis shows that the SMART and CUBISTA schemes have more
favourable stability characteristics compared to the QUICK scheme, especially when

flow is convergent upon a control volume.

3.5 Solution of the Discretised Equations

Now that the momentum equations have been discretised using the above convective
approximations, it is appropriate to discuss methods for their solution. There is,
however, a varying physical quantity that appears in these equations but lacks a
method for its determination, namely pressure. The lack of an explicit equation
for the pressure means that it must be determined indirectly. The main pressure
algorithms in use in the CFD community are related to the SIMPLE (Semi IMplicit
Pressure Linked Equations) method of Patankar and Spalding (1972), such as the
SIMPLER (Patankar, 1980), SIMPLEC (Van Doormaal and Raithby, 1984) and the
well known PISO method (Issa, 1985).

3.5.1 The SIMPLE Procedure

Patankar and Spalding (1972) introduced the SIMPLE algorithm as a way of incor-
porating the effects of pressure into the solution for the momentum equations. This

was done indirectly by the use of the continuity equation (2.1). This equation can
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be integrated over a control volume in the same way as the momentum equations,

fs pu - ndS = [(pu)e — (pu)w]Ay + [(pv)n — (pv)s]Az. (3.50)

If the equation for a face velocity could be given as (see section 3.5.3)

aeue = He — (Pg — Pp)Ay (3.51)

then it may be used in equation (3.50). In an iterative procedure, the velocity u*

may not satisfy the continuity condition, and so a correction must be added,

u=u"+u > u =u-u". (3.52)

From this an expression for the correction may be obtained (assuming coefficients

remain constant)
a [He — HZ — (Pp — P, — Pp + P) Ay (3.53)
ac [H, — (P — Pp)Ay]

where P’ is the correction to the pressure to maintain continuity. Patankar (1980)
neglected the H. term in equation (3.53) because as the calculation converges u* —
u and so H, — 0. This leaves the correction in a simplified manner as

(3.54)

1
u, = ——(Pp — Pp)Ay
Qe

Inserting this equation, using (3.52), into the integrated continuity equation (3.50)

gives a discretisation equation for the pressure correction,

ApP;a = AEP'E + AWp(,V + ANPIIV + Aspé +b (3.55)

where
Ay? Ayl
AE=pe Y , Aw=pw Y
Qe G
A.’L‘2 f A;IT2
Ay = Pn L Ag = Ps
Qs
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b= (pwuy — peuz)Ay + (psu; — pnug)Ac. (3.56)

To update the pressure field, all that is then needed is to add the correction for the
pressure to the current value of the pressure at the nodal point. It is then possible

to update the velocity through equation (3.54).

As the SIMPLE algorithm is iterative and the variables are calculated in a segregated
manner, the order of calculation needs to be determined. Patankar proposed the

following algorithm,

1. guess an initial pressure field,

2. solve the momentum discretisation equations to find u* and v*,

3. solve the discretised equation for the pressure correction, P’ (3.55),

4. correct the velocity fields from the pressure corrections (3.54) (3.52),

9. correct the pressure field,

6. repeat from step 2.
The SIMPLE algorithm has been the mainstay of the control volume method since
its introduction, and is now routinely used in flow situations ranging from laminar
to turbulent and viscoelastic flows. Reports, however (Patankar, 1981), (Patankar,
1981) have stated that the convergence rates of SIMPLE are not always favourable.
The removal of the H' term from equation (3.53) to (3.54) leads to the over pre-
diction of the pressure correction, slowing convergence rates. By performing under-
relaxation for the pressure correction (discussed later), a fraction of the correction

is used to update the pressure field. While this helps to stabilise the algorithm, this

also leads to slower convergence rates if excessive under-relaxation is required.

3.5.2 PISO

Issa (1985) first introduced the PISO (Pressure-Implicit with Splitting of Operators)

algorithm for the improvement of convergence rates for time dependent calculations.
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Instead of just using a single pressure correction, as in the SIMPLE algorithm, a
second corrector step is added. For time dependent calculations, the PISO algorithm
obviates the need for iteration in the calculation, unlike the SIMPLE method. As
PISO is stable for large time-steps due to its pseudo- implicit formulation, the
author also advocated its use for steady state calculations. It is possible, however.
to formulate a steady state version of the algorithm, as used in the course of the

present work.

The first step in the PISO algorithm is to calculate a velocity field, u*, from the
previous iterate value of the pressure field, P¥. As with the SIMPLE algorithm, in
general, this velocity field will not satisfy the continuity equation. The discretised

momentum equation is given as
apup = Hp — (Pf - P;)Ay, (3.57)

which is known as the predictor step in the PISO algorithm. The next step is to
define a velocity field, u**, that satisfies the continuity condition by determining an

updated pressure field, P*.
apup = Hp — (P¢ — P,)Ay (3.58)

Note that in equation (3.58), the updated velocity field at the central node is cal-
culated explicitly from its neighbouring nodal values. Subtracting equation (3.57)

from (3.58) gives
ap(up —up) = —(P; — Pf = Py + Pp)Ay (3.59)

where the updated pressure is not known. The velocity field satisfies continuity, and
so equation (3.50) may be used to obtain an equation for the updated pressure, P*.

If the equation for the updated velocities at control volume faces is written as
ae(ul* —ul) = —(P — Pk — P + PE)Ay (3.60)

then inserting this into equation (3.50), for u**, gives an equation for the updated
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pressure, via,

2
P2 (Pp — PE) + pBL (P} — PE) + pA22 (P}, — Pk) + p222 (p;, — Pk) =
2
P%GL(P* P’“)+p 2(PW—P")+ Az’ (pN_plc)+ AI Az (py _ PE)+

p(u:) - ue)Ay + p(us - un)AIBa

(3.61)
which is identical to relations (3.55) and (3.56) for the SIMPLE algorithm.

Instead of restarting the algorithm from this point, in PISO a second correction step
is initiated. The equation for the velocity field, u***, updated via the new pressure
field, P* is given by,

apup® = HY — (PI* — P)")Ay, (3.62)

where the velocity field is, once again, solenoidal. To solve this equation, the updated
pressure, P* needs to be calculated. By subtracting equation (3.58) from (3.62) an

* %k

expression for u*** is obtained in terms of the previous and updated pressures,

ap(up* —up)=Hp —Hp — (P} — P} — P," + P;)Ay . (3.63)
If the velocity at the control volume faces can be expressed as
ae(us*™ —ui*) = H* — H; — (Pg' — P — Pp" + Pp)Ay, (3.64)

upon substitution into the incompressibility condition (3.50) for u***, the following

cquation for pressure is obtained,

2

PR (P — Pp) + pSL(Py — Pp) + pBE(Pp — Pp) + pRE(Py = Pp) =
PR (P — Pf) +Pz%(Pw — Py) + 022 (Py - Py) + pAZ(Py - P5)+
pSL(Hy — Hy) - p2Y(H;* — HY) + pQE(Hy* — HY) - pSU(Hy — H})

p(u, — ut) Ay + plug — up) A,
(3.65)

It is this pressure field that is then used to update the velocity field in equation

(3.63), and to complete the correction process.

It has been reported (see Kobayashi and Pereira, 1991) that the PISO scheme greatly
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reduces the number of iterations required to obtain a converged solution, and that
despite the increased computational cost of a single PISO iteration, the total CPU
time was reduced by 15 percent compared to the SIMPLE procedure. Barton (1998)
noted that although the SIMPLE scheme used less computational time per iteration,
the accuracy of the results obtained with PISO were greater than with SIMPLE for
Crank-Nicolson time stepping procedures. Comparisons of the PISO and SIMPLE

algorithms for some benchmark laminar flow cases is provided later.

3.5.3 Momentum interpolation

The full solution for the pressure still needs the calculation of the cell face velocities
in equations (3.51), (3.60) and (3.64). These equations are required in order to use
the discretised form of the continuity equation (3.50), to obtain the pressure field

or a correction to it.

The most straightforward method of approximating the control volume face veloc-
ities would be to use linear interpolation. From equation (3.50) the u-velocity face

difference using linear interpolation is

__ ugp+tup uptuw
'U/e - Uw _ 9 - 2

(3.66)

. ug—uw
2 b}

from which, it can be seen that the velocity difference is based upon alternate nodal
points. This means that the continuity equation is solved using a grid that has half
the nodal density as that for the momentum equation, reducing resolution. Also as
the alternate nodes are used, two independent grids are present, capable of solving
the continuity equation for two different velocity fields (and hence pressure correction
ficlds). This gives rise to the well known pressure or velocity chequerboard effect as
outlined by Patankar (1980), where two independent solution fields are present on

adjacent grid nodes, like the black and white squares on a chess board.
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The staggered grid approach

Harlow and Welch (1965) introduced a novel way of dealing with this problem,
later adopted by researchers such as Patankar and Spalding (1972). Instead of
using just one set of control volumes to discretise the continuous solution over the
computational domain, a new set of control volumes was introduced. These control
volumes were staggered in such a way that the dependent variable in one set of
control volumes lay on the face of another set. To be more specific, the nodal points
of the velocity control volumes lie on the faces of the pressure control volumes (as
shown in figure 3.8). This has the immediate effect of supplying the face velocities
needed to solve the pressure equation, but also the pressure gradient required to solve
the momentum equations. The use of a staggered grid provides a strong coupling

between the pressure and the velocity.
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FIGURE 3.8: Staggered control volume arrangement on a structured grid.

There are, however, some disadvantages to using the staggered grid method. The
main disadvantage is its geometric complexity, leading to inflexibility. For simple
geometries, the staggered grid is trivial to implement. For complex geometries,

2 " ‘ s 1 ) [ (YY1 ate ¢ ¢ (V) S. o
where unstructured meshes may be implemented to approximate curve d regions, th



89

creation of a staggered grid is much more difficult. Also, the use of more advanced
solution techniques, such as the Multigrid method, or Parallelisation of code is more

difficult when using a staggered grid arrangement (Lien and Leschziner, 1994).

The collocated grid approach

The alternative to the staggered grid approach is to place all low variables at the cell
centre, known as the collocated grid approach as shown in figure 3.9. To calculate
the velocity of the fluid, the momentum equations are also calculated at the cell
centre as in equations (3.11) and (3.12). However, a method is still required to
obtain the velocities at the control volume faces to enable the use of the continuity
constraint. The method of solving this problem requires a special interpolation of

the velocity component from the cell centre to the face, and is known as momentum

interpolation. Different forms of momentum interpolation have been proposed in the

Z

Z

FIGURE 3.9: Collocated control volume arrangement. See figure 3.8 for key to symbols.

literature (see Majumdar, 1988; Papageorgakopoulos et al., 2000), but it is the well-
known, and well validated (Lilek and Peric, 1995; Biagioli, 1998; Bradley, Gaskell,
Gu. Lawes and Scott, 1998), pressure weighted interpolation method of Rhie and
Chow (1983) that is used here. The equation for u-velocity at two adjacent nodal

points can be written as,

apup|lp = Z anptins|p — (Pr)|p

nb
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apuple =) apytinlg — (Pr)l (3.67)
nb

where nb denotes the neighbouring nodal values to the central node and P, denotes
the gradient of P in the z direction. The equation for the value at the east control

volume face is

Qelle = Zanbunble - (Pzr)le- (3.68)
nb

To approximate the first term on the right hand side of (3.68), linear interpolation

of the same terms in (3.67) is performed, thus

, (3.69)

S ampiingls = [z ]
nb nb

e

where the overbar denotes linear interpolation. However, this interpolated result

can be expressed in terms of the other interpolated terms in (3.67)

= Gete + (Pr)le- (3.70)

By using (3.70) instead of (3.69) in (3.68), and using @, to approximate the unknown

face coefficient a., it is possible to obtain Rhie and Chow’s interpolation,

ue = + = [(BLe - (P)le] (3.71)

Qe

where the pressure gradient terms are given by

(Pz)le = f(Pa:)|E + (1 - f)(Pz)lP
(P;)|e = (Pe — Pp)Avy, (3.72)

and f is the interpolation factor dependent on the cell face position, varying from

zero to unity.
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3.5.4 Relaxation

As mentioned previously, under-relaxation can be used in the solution procedure to
provide stability to the numerical scheme by limiting the change in the calculated
variables from one computational iteration to the next. By rearranging equation

(3.11) for u velocity at the central node P,

1
up = E)‘ (Z AnbUnp — (Pe — pw)Ay> (3-73)
nb

it is possible to add and subtract the previous value of u p from the left hand side
of (3.73). This gives an equation that shows the present value of velocity in terms

of its old value, plus the change, thus

1
up =up + !;; (Z AnbUnb — (Pe — pw)Ay) - “‘;’} (3.74)
' nb

7

g

Change in up since previous iteration

where u}p is the value from the previous iterate. To provide under-relaxation, a
fraction of the change may be added to the previous iterate value by the inclusion

of an under-relaxation factor, o,

—a,l_p (Z AnpUnp — (pe - pw)Ay) - u?’} (3°75)
nb

where values of o vary from zero to one. This has the effect of slowing down con-
vergence, but brings additional stability by limiting the effect of large destabilising

oscillations in the solution from one iteration to the next.

Pressure can also be under-relaxed by the use of a similar factor when updating the
pressure field. When using either the SIMPLE or PISO algorithms, the pressure
correction is added to the pressure, thus updating it. From equations (3.55) and

(3.65), a pressure correction can be obtained and added to the pressure,
P =P +aF (3.76)

where the under-relaxation method is used to limit the change in pressure from one



92

1teration to the next.

3.6 Boundary Conditions

For any numerical simulation of fluid flow. it is necessarv to impose boundary con-
ditions to limit its size. CFD boundary conditions typically consist of wall, inlet.

outlet and symmetry conditions.

Wall boundary conditions

Typically, for laminar flow, the no-slip boundary condition is specified for all velocity
components, i.c.

u =0 as n—-o0 (3.77)

where n s the normal distance from a stationary wall (Versteeg and Malalasekera.
1996). For turbulent flow this condition still holds for the mean and turbulent

velocities) but additional modelling is needed in the vicinity of the wall.

For wall bounded flow, four distinct regions exist (Versteeg and Malalasekera, 1996:
Wilcox, 1994). The first region, called the viscous sub-layer, is a very thin layer
adjacent. to the wall where viscous shear forces dominate the fow, independent of
the main flow. The next layer is that of the buffer zone. which rapidly attenuates
turbulence from the layers above, to a state where viscous effects dominate. The
third layer is the inner region where turbulence is dominant. but the proximity to
the wall dictates that the size of the energy containing eddics are of the order of
the distance from the wall. The final layer is the outer region, where the size of the

turbulent eddies are of the order of the boundary layer thickness.

In the viscous sublayer it is assumed (sce Versteeg and Malalasekera. 1996) that
the shear forces are equal to the wall shear stress. meaning that the velocity in the

direction of the stress is proportional to it i.e. U x 7,. Non-dimensional parameters
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for velocity and wall-normal distance (u* and y*, respectively) may be defined as

U
ut == and y* = puTy’ (3.78)

Usr M

L. . : : i
where u, = (r,,/p)2 is the friction velocity. In this region (y* < 5) it is found that

ut = y* (i.e. the velocity varies linearly with distance from the wall).

Another commonly used name for the inner layer is the ‘log layer’ extending from
30 < y* < 500. It’s name is derived from the relationship between u* and y* . where
the velocity varies logarithmically with the wall distance. Launder and Spalding

(1972) express this relationship as
+ 1 *, + -
ut =~ In(E*y™), (3.79)

where k = 0.4 is the Von Karman constant and the value of E* is given by the
physical properties of the wall. Launder and Spalding (1972) give the value of this
parameter to be E* = 9.0, but this has been updated to E* = 9.8 for smooth walls
Verstceg and Malalasekera (1996).

To resolve the flow accurately in these layers, without modelling, many computa-
tional nodes must be inserted. Unfortunately, this greatly increases the computa-
tional cost, putting it out of the range of efficient engineering use. The models
above, however, show an idealised case of wall bounded shear flow that can be ap-
plied to a variety of flows, dependent upon wall flow behaviour. The work of Lien
and Leschziner (1994) gives a recent treatment of these near wall models - or wall

functions - for use with two equation and second moment turbulent closures and is

used here.

To define the wall function, it is common to begin the analysis with the shear force

at the wall. This can be written in terms of the wall shear stress as
Fy = 1, As, (3.80)

where Ag is the area of the south control volume face adjacent to the wall as shown

in figure 3.10. The wall shear stress is given by Verstecg and Malalasckera (1996)
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as

A i 1
_ pCikgU, _ _ pCakEsU,

T | (3.81)
=+ 1/2
A In (E iy )

12

where yp and kp are the distance from the wall to the node P and the turbulent

kinetic energy at that node, respectively.

R 7

Fi1GURE 3.10: Control volume adjacent to the wall boundary.

To include the wall function in the momentum equation. the discretisation coefficient
at the wall, ag, is set to zero and the source term of the equation set to include the

shear force, giving

1 1
452,
pCii ky kUp

Sc + SpUp = Sc¢ — 72N A8
In (E L. )

(3.82)

v

To complete this model, the value of &, is required. When in the log layer, k is
determined by the balance of production and dissipation. The mean production
term of k is given by Lien and Leschziner (1994) as

P, = l—n(ﬂ’&# (3.83)

1 w

prypkp

and the mean turbulent energy dissipation rate as

2 pls:;/2 v L In(y, /1)

yp  \ Ik Ci

(3.84)

€

where [ is the mixing length and C; = 2.55 is an empirical closure coefficient. To

define the Reynolds stresses at the near wall node, it is possible to use the solution
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of the k equation instead of defining wall functions for each stress individually as

shown by Lien and Leschziner (1994). The approximations used for the stresses are,

u? = 1.098k,, v2 =0.247k,, @0 = —0.255k, . (3.85)

Outlet boundary condition

The outlet boundary condition is prescribed using a zero gradient assumption. If
the computational domain is large enough that the flow at the outlet is considered
to be fully developed, the velocity at the outlet may be taken to be that at the node

adjacent to the boundary, implying

v

& 3.86
o =0 (3.86)

for horizontal flow through a vertical outlet boundary. This condition can be ex-

tended to any general scalar variable, ¢.

Symmetry boundary condition

The symmetry condition is very similar to that of the outlet boundary condition. If
a boundary is such that it acts as a line of symmetry for the flow then there must
be zero gradient of any flow variable across it. For a boundary in the vertical plane

dv = 0, (3.87)
dy
while for an axis of symmetry in axisymmetric flow,

v

— =0, 3.88)
dr (

where the axis of symmetry is in the z direction.
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3.7 2D Test Cases

Two laminar flow test cases are now investigated, namely the backward facing step
and the classical lid driven square cavity. Both provide stern challenges for numerical
convection schemes, with high streamline curvature oblique to the computational
grid. They also provide a simple introduction to the type of geometries studied

later, and a feel for how well the underpinning numerical methods perform.

3.7.1 Lid driven cavity flow

This test case is based on the one studied by Ghia et al. (1982), whose results are
widely quoted in the literature as a bench-mark solution (see Seok et al., 1995: Deng
et al., 1994; Biagioli, 1998). The computational domain is shown in figure 3.11, with

the Reynolds number of the flow given by

_ pUiiga L
7

Re

(3.89)

To obtain the Reynolds numbers for comparison with the work of Ghia et al. , Ujq,
L and g were all set to unity so that density, p, corresponded to the required value.

Non-slip boundary conditions at the cavity walls were also implemented.

Uiid

—
—_

S )

FIGURE 3.11: Flow schematic for the 2-D lid driven cavity case.

Uniform grids of size 16 x 16, 32 x 32. 64 x 64 and 128 x 128 were used in the
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computations, with Re = 100,400. Four convection schemes, Upwind, QUICK.
CUBISTA and SMART, were tested as well as the SIMPLE and PISO solution
algorithms. Results for the Re = 100 case are shown in figures 3.12 to 3.15 together

with the benchmark solution of Ghia et al. computed using a 129x129 grid.

I T T ¥ | ! | !
0.4 e ]
| ,/l -
021 / 7
- —.—--\~ T
01 i = ’
v >
= | \\\
‘.\ T i
02k \ ]
\ * Ghia ct al (129x129 grid)
i . ——  Upwind (16x16) 4
....... Quick (16x16)
—-—- CUBISTA (16x16)
04 --==  SMART (16216) ]
l . | , \ L | | |
0.4 -0.2 0 0.2 0.4

FIGURE 3.12: Results for different discretisation schemes on a 16 x 16 grid; Re = 100.

From these figures it can be seen that at this Reynolds number the higher order
schemes - QUICK, CUBISTA and SMART - all behave in an identical manner as
shown by all the lines converging onto the non- upwind line (solid). The reason for
this is that the flow conditions are such that only the smooth region of the NVD
is being used for the bounded schemes. In other words, QUICK produces bounded
results. This is due to the speed of the flow being relatively slow with no steep

gradients in the flow variables.

It can also be seen that, as expected, the higher order schemes provide greater
accuracy on the coarser meshes than the upwind scheme. Upwind is only able to
approximate the benchmark solution when the grid is of size 128 x 128. Referring to
figure 3.16, it can be seen that the higher order schemes - in this case the SMART

scheme on the 32 x 32 grid - results in a solution comparable to the benchmark.

Results for the Re = 400 casc are shown in figures 3.17 to 3.20. Increasing the
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FIGURE 3.13: Results for different discretisation schemes on a 32 x 32 grid; Re = 100.
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F1GURE 3.14: Results for different discretisation schemes on a 64 x 64 grid; Re = 100.
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FIGURE 3.15: Results for different discretisation schemes on a 128 x 128 grid; Re = 100.
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FIGURE 3.16: Grid independence tests for the SMART scheme at Re = 100.
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Reynolds number degrades the performance of the upwind and higher order schemes
on grids with a low mesh density; the effect being more pronounced for the upwind
scheme. The higher order schemes predict grid independent results on a 64 x 64 grid,
whereas the upwind scheme shows appreciable disagreement with the benchmark

results even on the finest 128 x 128 grid. Results of the Re = 1000 case are shown in

I T [ T i ! | ;
—’/‘
04 7 7
/'
| ,
0.2 //.
. /
* ©® !
- "__/-"’__-~\~~ ll‘ ]
- \_\ ’
04 = [
. ~
/ ™~
i , N T
} R
0.2 | * 7
1 L J
\ e Ghinctal (129x129 grid)
i * \‘ ——  Upwind (16x16) -
N \ ------- Quick (16x16)
\ ~==- CUBISTA (16216}
oal A\ -.==  SMART (16x16) _
| 1 I L - 1 L . .
0.4 -0.2 0 0.2 0.4

FIGURE 3.17: Results for different discretisation schemes on a 16 x 16 grid; Re = 400.

figure 3.21 for a 64 x 64 grid. Again the same trends mentioned above are apparent,

with grid independence achieved at this mesh density.

Note that the reason for the poor performance of the upwind scheme is due to the

numerical diffusion inherent in the scheme, and as predicted by equation (3.21), this

reduces as the grid is refined.

The computational cost of the various schemes can be measured in terms of the
CPU time required to achieve convergence. For this work the times were obtained
using the Intel C++ compiler (for IA-32, version 8.1) on an AMDG64 3200 processor.
CPU times obtained with the PISO algorithm for the flow at Re = 100 are given in
table 3.1. These CPU times increase from left to right due to the increased number
of operations per iteration of the higher order schemes - although CUBISTA and

SMART are identical. They also increase down the table due to the increased
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FIGURE 3.18: Results for different discretisation schemes on a 32 x 32 grid; Re = 400.
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FIGURE 3.19: Results for different discretisation schemes on a 64 x 64 grid; Re = 400.
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FIGURE 3.20: Results for different discretisation schemes on a 128 x 128 grid; Re = 400.
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FIGURE 3.21: Results for different discretisation schemes on a 64 x 64 grid; Re = 1000.
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Grid Upwind | QUICK | SMART | CUBISTA
16 x 16 0.130 0.200 0.200 0.200
32 x 32 1.650 2.270 2.550 2.560
64 x 64 27.940 | 39.010 42.780 43.400

128 x 128 | 611.320 | 839.380 | 965.110 984.190
TABLE 3.1: CPU times (in seconds) for the lid driven cavity problem using PISO o Re =
100.
Grid PISO SIMPLE

16 x 16 0.200 (181) 0.190 (213)

32 x 32 2.550 (642) 2.130 (675)

64 x 64 42.780 (2436) | 34.900 (2455)
128 x 128 | 965.110 (9528) | 756.460 (9525)

TABLE 3.2: CPU times and iteration numbers for SIMPLE and PISO @ Re = 100.

number of nodes in the computational domain, increasing the size of the matrix to

invert and hence the number of operations required during the inversion.

As mentioned earlier, even though the high order schemes require more CPU time
per iteration, the solution achieves grid independence much earlier than the upwind
scheme. To illustrate this, the time for the CUBISTA scheme on the 32 x 32 grid is
found to take less than 1/200th of the time of the less accurate upwind solution on

a 128 x 128 grid.

Comparison of CPU times between the SIMPLE and PISO algorithms for the
SMART scheme are shown in table 3.2. Even though the PISO scheme is seen
to reduce the number of iterations in the computations, the CPU times are, in fact,
greater than those of the SIMPLE scheme. This is due to additional time assembling
the intermediate pressure-correction equations leading to an increase in time per it-
crate. The cause of the discrepancy between the results presented here and those in
the literature (Kobayashi and Pereira, 1991) are due to the use of the steady state
version of PISO. Although very effective for time-dependent problems, the steady

state version of PISO is tantamount to SIMPLE with additional pressure-correction
steps.
The CPU times for the higher Reynolds number case (Re = 400) are represented in

table 3.3. Compared to the times for Re = 100, the two finest grids take less time

to converge. The CPU time savings for the higher order scheme are smaller at this



104

Grid Upwind | QUICK | SMART | CUBISTA
16 x 16 0.160 0.300 0.330 0.330
32 x 32 1.570 2.890 3.240 3.260
64 x 64 23.720 | 34.420 38.430 38.730

128 x 128 | 464.020 | 637.460 | 714.660 709.730
TABLE 3.3: CPU times (in seconds) for the lid driven cavity problem using PISO «@ Re =
400.
Grid PISO SIMPLE

16 x 16 0.330 (301) 0.340 (322)
32 x 32 3.240 (821) 2.670 (838)
64 x 64 38.430 (2189) | 31.640 (2255)

128 x 128 | 714.660 (7361) | 617.000 (8052)

TABLE 3.4: CPU times and iteration numbers for SIMPLE and PISO @ Re = 400.

Reynolds number; the CUBISTA scheme on a 64 x 64 grid takes less than 21/250ths
of the time that the upwind scheme takes on the 128 x 128 grid. The computational
saving at this higher Reynolds number decreases and is approximately 1/20th of the

saving at the lower Reynolds number.

The CPU times of the SIMPLE and PISO algorithms for the SMART scheme at
Re = 400 are shown in table 3.4. Again the SIMPLE algorithm is the more CPU

time efficient, despite the reduced number of iterations for the PISO algorithm.

3.7.2 2D Backward facing step

The case presented in this section is that studied by Armaly et al. (1983) and is
also a benchmark problem for testing CFD schemes. Flow features present in the
backward facing step - such as separation, reattachment and recirculation - are in
comnon with the more complex situations to be studied later in this thesis. The

flow schematic is shown in figure 3.22 where the Reynolds number of the flow is

given by

Re = VHp
It

(3.90)

where V is two thirds of the maximum inlet velocity, Umqz- In the computations
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FIGURE 3.22: Flow schematic of the backward facing step flow of Armaly et al. (1983).

performed in this work the following values were used,

S=05 ; p=1 . (3.91)

At the inlet, a parabolic profile was adopted across the opening from the step to the

upper wall. This profile is given by the formula

u(h) = uph(S — h) (3.92)
where
4Um
ug = 52“ (3.93)

and the vertical coordinate, h, defines the distance from the corner of the step to the
upper wall. At the channel exit, zero gradient boundary conditions were imposed

for all low variables, with non-slip conditions at all other surfaces.

Several different flow speeds were studied for this case from Re = 100 to Re = 1000.
To minimise computational time, different domain lengths, L, were adopted so that
a fully developed flow was achieved without using unnecessary grid points. For
Reynolds numbers less than 200, L = 30 units with a computational mesh of 450 x 15
nodes. For Reynolds numbers up to 600, L = 45 units with a mesh size of 800 x 35.
For Re = 1000, a mesh size of 2240 x 35 with L = 126 units was used. All of these

grids were seen to achieve mesh independent results.

The results for the Re = 100 flow can be seen in figure 3.23. The upwind scheme
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clearly shows an inability to capture the experimental data accurately due to the
high numerical diffusion. The high order schemes, as in the previous test case.
all predict the same profiles. Once again this is due to the fact the flow is in the
smooth region of the NVD diagram, where QUICK is suitable for obtaining bounded
results (the other schemes reduce to QUICK in this region). Even for the higher
order schemes, the simulations do not match the experimental data exactly. This, as
mentioned by Armaly et al. , is due to the simulation having a parabolic inlet profile
imposed at the edge of the computational domain, instead of including an inlet pipe
where the flow can develop fully before reaching the expansion. The results for
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FIGURE 3.23: u-velocity profiles for the case of Armaly et al. (1983): Re = 100.

Re = 389 are shown in figure 3.24. As for the lid driven cavity problem, the high
order convection schemes show a greater improvement at higher Reynolds nuinbers

for the same size mesh over the upwind scheme.

The results for Re = 1000, are shown in figure 3.25. Here all of the convective dis-
cretisation schemes predict erroneous values. Luckily, this feature is not a problem
with the numerical scheme, but a property of the experimental flow. Above this

Reynolds number, Armaly et al. shows that the flow exhibits threc dimensional ef-
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FIGURE 3.24: u-velocity profiles for the case of Armaly et al. (1983): Re = 389.

fects and is no longer a pure two dimensional flow. As the computations are strictly
two dimensional, they are inherently unable to capture any three dimensionality,

and hence discrepancies between measured and computed results exist.

As mentioned previously, this case is a good test of the numerical algorithm’s ability
to predict separation, reattachment and recirculation accurately. Figure 3.26 shows
both the measured and computed reattachment length of the primary recirculation
bubble (z, as shown in figure 3.22). For Reynolds numbers between 100 and 400, the
numecrical results agree well with the measured data, showing that for this laminar
flow, the numerical schemes capture the flow features well. However, for Reynolds
numbers above 400, it can be seen that the numerical predictions begin to differ

from the experimental measurements. This is again due to the three dimensionality

of the flow above Re = 400.
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FIGURE 3.25: u-velocity profiles for the case of Armaly et al. (1983): Re = 1000.
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FIGURE 3.26: Reattachment lengths for the backward facing step flow at different Reynolds
numbers.
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3.8 Summary

This chapter has presented a suitable method for solution of laminar flow problems,
that can also be applied to turbulent flows as shown in Chapter 4. The improved ac-
curacy of the higher order discretisation schemes has been demonstrated for the lid
driven cavity and backward facing step problems against benchmark data. The use-
fulness of the CUBISTA and SMART schemes over the unbounded QUICK scheme,
although not demonstrated here, is in the convective discretisation of turbulent vari-
ables such as k and e that are positive definite, as well as where steep flow variable

gradients occur at higher Reynolds numbers.

A robust solution algorithm has been implemented using the SIMPLE or PISO
pressure-based methods. Although PISO gives convergence in fewer iterations, the
overall CPU time is greater than that of the SIMPLE scheme. This advocates the
use of SIMPLE in the calculations in the following chapters, where large sets of

coupled differential equations are to be solved.
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4.1 Introduction

Isothermal swirling flow is often studied as a prerequisite for the study of turbulent
reacting swirling flow. In the isothermal case, the effect of temperature on the
fluctuating density is removed, thus enabling verification of the purely aerodynamic

models used to describe the turbulence.

Flow features that are studied contain free vortex motion, forced vortex motion
and the transition between the two. The first is usually present in confined flows
with high swirl which retards the transition to forced vortex motion (or solid body
rotation). This has been studied experimentally by Kitoh (1991) and Xia et al.
(1997) for flow in a long cylindrical pipe and a model combustor, respectively. Free
vortex motion is also present in unconfined flows, such as the swirling jet studied

by Younis et al. (1996).

Forced vortex motion in confined flows appears when the swirl decays along the pipe
so a transition occurs from the free vortex. Researchers such as Al-Masseeh (1991)

and So et al. (1984) have experimentally studied these flows.

The difficulties presented to numerical analysts, is that most turbulent models are
designed to predict, and hence calibrated using, flows such as homogeneous shear.
These simpler flows do not incorporate the additional features that swirl brings,
particularly the mean strains due to the radial gradient of the swirl, or tangential.

velocity, OW/0r, and the additional radial gradient of axial velocity, U /Jr.

This chapter presents the results of simulation for two swirling flow test cases, the
free vortex flow of Kitoh (1991) and the lower swirl case of Al-Masseeh (1991).
The two equation k — € and k — w turbulence models (section 2.4.2) are used, as
are the more complex SSG and LRR Reynolds stress closures (section 2.5.1). The

addition of the anisotropic dissipation rate model to the SSG pressure-strain model

(SSG-ADRM - section 2.5.2) is also assessed.
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4.2 Swirling flow in a cylinder - Kitoh’s swirling flow

The swirling flow case studied by Kitoh (1991) was chosen as a test case for the
models and numerical methods outlined in previous chapters, due to its comparative
simplicity. The geometry is that of a cylindrical pipe where swirling air is introduced
at the open end via a mechanical swirl generator and is visualised as shown in figure

4.1 below. The flow is less complex than that of normal combustor geometries,

I:ﬁOmm

FIGURE 4.1: Flow schematic for the Kitoh case.

such as those with annular inlets, with smaller streamline curvature in the u — v
velocity plane, less recirculating regions, and a less complex strain field due to the
small values of v velocity present. The strong swirl imposed at the inlet provides
fluid motion predominantly of the free vortex type along the length of the pipe,
leading to areas of high velocity gradients near the pipe walls and boundaries of the

vortex. These factors provide a relatively simple test case for the turbulence models

mentioned previously.

The section of pipe simulated begins from the first test section (TS1) from which
measurements were obtained, to the ninth (TS9) (Kitoh, 1991). The laboratory loca-
tions of the test stations used here are: TS1=855mm, TS3=1845mm, TS5=2850mm,
TS7=3855mm and TS9=4860mm. The inlet conditions for the simulation were ob-
tained from the experimental measurements at the axial distance of 855mm. The
swirl at the inlet of the pipe was generated by a series of guiding vanes mounted on

a rotating disc. The swirl intensity produced by the equipment is provided by the



113

expression,
,
2r [,° UWr2dr
= 5= ,
mraUgs,

Q (4.1)

where U and W are the mean axial and tangential velocitics, r the radial distance
and Up, the bulk velocity, giving a swirl intensity of 0.97 at the simulation inlet. For
this flow Re = 50000 and is obtained using the bulk velocity, U, = 5.23ms~! and
the pipe diameter, d = 150mm

(4.2)
where p = 1.85 x 1075Ns/m? for air and p = 1.18kg/m? for air.

For the experimental measurements, Kitoh used hot wire anemometry to obtain
values for the mean and RMS fluctuating velocity components. He comments that
the nonlinear response of the hot wire to the fluid velocity can cause error in mea-
surement. When moments of the fluctuating velocity components higher than the
second are ignored in the measurements, errors may be incurred when the turbu-
lence intensity exceeds 20%. Also as the wires have a finite size, Kitoh mentions that
in regions of high variable gradients, the accuracy of experimental measurements
may be compromised. After these considerations, Kitoh stated that the measured
Reynolds stress results were reliable to within +0.001U2, except in regions of high
turbulence intensity (greater than 10%) and high velocity gradients. These regions
occur mainly in the central vortex core at 0 < r < 0.0225mm (the reader is referred

to Kitoh, 1991).

4.2.1 Numerical Procedure

After grid independence tests, the calculation domain was created using an irreg-
ularly spaced grid consisting of 250x100 nodes. The mesh was refined in the inlet
regions and close to the wall as shown in figure 4.2. The total length of the cal-
culation domain is 6145mm (7000-855)mm, as the simulation starts from the first
measurement position, not the laboratory pipe inlet, with a width of 75mm. The
width corresponds to the radius of the pipe, as the simulation is assumed to be ax-

isymmetric in nature with the symmetry line at the lower edge of the computational

grid.
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FIGURE 4.2: Velocity vectors computed using the SSG model for Kitoh’s case.

Boundary Conditions

The inlet boundary conditions were obtained directly from the experimental data of
Kitoh (1991) at the first test section (855mm in the laboratory) with a swirl intensity
equal to 0.97. From the experiments, values of U, V, W, u?, ;2_, UZ, uv, uw and
vw were imposed there by linearly interpolating the measured data points onto the

computational grid points as shown in figure 4.3 for the axial inlet velocity. For the

' t
= 005 = =1
g
8
2
I
3
0.025 - |
+ U measured i
i — U interpolated
| ; | . | . |
0-2 - 0 2 4 6

U (m/s)

FIGURE 4.3: Interpolation of measured u-velocity at the pipe inlet.
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upper boundary of the domain a no slip boundary condition was implemented, with
the addition of the logarithmic wall functions to account for variables close to the

wall.

At the exit of the domain on the right hand side, a zero axial gradient boundary
condition was implemented for all flow variables, as the flow is fully developed at
this axial distance. The same condition also applies to the symmetry line on the
lower boundary of the domain, except that here zero gradient applics in the radial

direction.

The inlet condition for the dissipation rate of turbulent kinetic energy, €, was found

using the method of Hogg and Leschziner (1989), where, using dimensional analysis,

3/2
€ = CufkT (43)

with [ being the integral length scale of the turbulence at the inlet and Cue = 0.09
as in the k — ¢ model. Following numerical experiments, where | was adjusted to
find a value of € that gave good agreement with experimental turbulent data, it was

found that its value giving the most adequate predictions was T%Ed'

4.2.2 Computational Results
Two-equation model results

Firstly the two equation k¥ — ¢ and k¥ — w models were used to predict the mean
flow and value of k. Figure 4.4 shows the mean axial velocity profiles from TS3
through to TS9. Both models are seen to predict an erroneous positive velocity at
the axis, which shows an inability to predict the effects of swirl. At the wall, the
axial velocity is also under-predicted. As the flow develops downstream, the axial
velocity profile becomes flatter where its value at the axis becomes greater than
that at the wall. The reason for the erroneous prediction for axial velocity is the
inability of the models to capture swirl and hence the tangential velocity (sec figure
4.5). Note the experimental and computed values of the radial velocity (denoted

by open diamonds and dotted line, respectively) are shown alongside those for axial
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velocity in figure 4.4. The size of the predicted radial velocity is approximately two

orders of magnitude smaller than the other mean velocities and so has a small effect

on the flow field in general.

Both models produce tangential velocities characteristic of forced vortex motion
(figure 4.5). The high experimental values at the axis, representative of free vortex
motion type, are not predicted at all. The strength of this solid body rotation also
decays quickly downstream. This is responsible for the erroneous ‘plug’ shape axial
velocity profile predicted for the axial velocity in figure 4.4. In the region close to

the wall, both models initially predict values close to those given by experiment.

However, the agreement rapidly decays downstream.

Looking at the predictions for & in figure 4.6, again both models under-predict this
quantity at the central axis. Near the wall, model predictions improve, with the
k — w model showing greater accuracy upstream and the k£ — ¢ model proving more
accurate downstream. Both models appear to overestimate the value of k in the

wall region at TS3 but the k — w model tends to increasingly under-predict it as the

flow develops further downstream.



118

The experiments of Kitoh (1991) show that the eddy-viscosity is anisotropic in na-
ture. Both two equation models tested use the Bousinesq eddy-viscosity hypothesis,
stating that the Reynolds stresses are linearly dependent on the mean rate of strain
tensor; equation (2.25). This effectively means that the eddy-viscosity, 17, acts like
a constant of proportionality. The anisotropic nature of vr in this particular case,
invalidates the eddy-viscosity hypothesis due to its differing effects on the various

components of the Reynolds stress tensor.

Reynolds stress model results

Results using the Reynolds stress transport equation were obtained using the afore-
mentioned LRR, SSG and SSG-ADRM models. Figure 4.7 shows the predictions for
the mean axial velocity. Comparison against the results for the two equation models
clearly shows the superior predictive capability of all the Reynolds stress models.
All predict a large negative velocity at the axis, coinciding with the swirl induced

reverse pressure gradient.

In the wall region, all the models under-predict the velocity gradient, although
only to a small degree. This is due to the use of wall functions as opposed to
integrating the governing equations up to the wall. Wall functions model the flow
in the near wall region without the need for excessive computational nodes, whereas
full integration includes additional nodal points in the near wall region, providing
greater resolution. Overall, the predictions using the wall functions are adequate for
engineering applications as Kitoh (1991) showed that the experimental data agreed
with the log-law up to values of y* = 200. To provide improvement, full integration

to the wall must be sought at the expense of additional computational cost.

In this region the LRR model under-predicts the gradient of axial velocity in the up-
stream region, leading to an under-prediction of the velocity. Further downstream,
the LRR prediction of the gradient improves; where eventually an overestimation of
the velocity occurs, especially at TS9. The SSG and SSG-ADRM models provide
predictions for axial velocity and its gradient in close agreement with experiment.

An initial under-prediction of U at TS3 is given by both SSG and SSG-ADRM mod-
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els which turns into an over-prediction at TS9 for SSG. The SSG-ADRM provides

the best prediction overall in this region.
For the annular part of the profile (0.025< R <0.07), the LRR model initially
over-predicts the velocity at TS3. As the flow develops, this disparity increases
steadily until at TS9 the U velocity is overestimated by as much as 4ms~! in places.
The same trend occurs for the SSG model but to a much smaller extent. At TS3
the velocity is initially under-predicted. As the flow develops, the SSG model over-
predicts the measurements until at TS9 it provides predictions approximately 1ms™!
greater than the measurements. The SSG-ADRM model bucks this trend, showing
a resistance to the growing over-predictions of the other models, providing the most
accurate prediction of the experimental measurements. All of the models, however,

over-predict the axial velocity as the outer region of the vortex core is approached.
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FIGURE 4.7: Reynolds stress model results for axial velocity; Kitoh’s case.

The predicted axial velocity at the axis is a good indicator of a model’s ability to
capture the decay of the swirl correctly. Kitoh (1991) made similar measurements

to show the axial decay of swirl along the pipe. Predictions are shown in figure 4.8

with reference to figure 4.7. Between 1 and 2 metres, the SSG-ADRM and SSG
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FIGURE 4.8: Reynolds stress model results for U velocity at the axis; Kitoh’s case.

models show greatest agreement with experiment, correctly predicting the gradi-
ent of increasing negative velocity. The LRR model incorrectly predicts a slightly

positive gradient in this region, reducing the negative axial velocity.

All models predict a premature turning point in the velocity gradient between 2
and 4 metres, the first being the SSG-ADRM model followed by the LRR and the
SSG models. The positive gradient predicted by the LRR model is, however, much
larger than that of the SSG-ADRM model giving rise to a flow reattachment at
approximately 3.75m. The SSG-ADRM model also shows a premature flow reat-
tachment at approximately 4.3m. The SSG model shows an ability to maintain the

swirl better than the other models by maintaining the reverse axial velocity along

the whole pipe.

Tangential velocities are predicted as shown in figure 4.9. As mentioned previously,
the results for the LRR model show a premature decay of the swirl, tending toward
a solid body rotation at TS9. The SSG model shows the reverse behaviour, where
the tangential velocity is actually over-predicted in the upstream regions of the pipe
(TS3 and TS5). Even though the swirl decays prematurely as shown by figure 4.8,

the initial over-prediction of tangential velocity is convected downstream, preserving
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the swirl to a greater degree than the predictions of the LRR model.

The SSG-ADRM model shows good agreement with the experimental measurements
in both the upstream and downstream regions of the flow. Initially, the model
over-predicts the tangential velocity at TS3, but by a smaller amount than the
SSG model. Downstream the model shows an increased under-prediction of the
measurements, however, the free vortex profile is maintained (unlike the LRR model
predictions) and better prediction is found at R ~ 0.013m compared to the SSG

model.

In the near wall region, all models predict the tangential velocity well, except very
close to the wall, where the velocity is under-predicted. Use of wall functions for
this velocity component is more questionable than for others as the standard wall
function approach was developed for plane shear flows (Launder and Spalding, 1972).
Due to the premature return to solid body motion, as the distance from the wall
increases, the LRR model under-predicts the experimental measurements. Despite
the inability of the models to reproduce the tangential velocity at the wall, better
agreement with experiment is provided by the SSG and SSG-ADRM models as

distance from the wall increases into the annular part of the flow.

Despite the improved predicting power of the Reynolds stress models for the mean
flow quantities, the turbulent quantity predictions do not show as good agreement.
Figure 4.10 shows that all of the turbulence models over-predict the value of the
turbulent kinetic energy at TS3. As the flow develops, the measurements show a
growth in k at the central axis, with a reduction in the annular region. The Reynolds
stress models, however, are unable to predict the drop in k£ in the annular part of

the flow, or the increasing value of k in the axial vortex core.

Figures 4.11 to 4.13 illustrate this point for the individual normal stress components.
The measurements for these components show a nearly isotropic stress field, with
exception of the near wall and central axis regions. The models generally predict a

larger value of the stresses than the experimental measurements from TS3 to TS9.

The LRR model over-predicts the axial normal stress component at all locations in

the Huid, especially in the near wall region shown in figure 4.11. The SSG model.
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however, shows improved agreement with the measurements at all axial locations.
The SSG-ADRM model gives predictions larger than those of the SSG model in the

upstream region, but this decays to values below the SSG model downstream.

For the radial normal stress in figure 4.12, all of the models predict the same trend
with a large over-prediction in the annular region, reducing towards the central axis.
Again the SSG-ADRM shows an initial over-prediction upstream that decays faster
than the other models. The predictions of the LRR and SSG models are shown to

be of comparable accuracy.

The tangential normal stress predictions are shown in figure 4.13. The trends for
this stress repeat those of the u2 stress component. The predictions of the LRR
model are, however, not over-predicted to the same degree as for u2 with the SSG-
ADRM model showing a larger, erroneous prediction at TS3 and TS5 due to the

over-prediction affected by this model upstream.

The inability of the Reynolds stress models to capture the increase of the normal
stresses at the central axis needs further discussion. From figure 4.17 it is seen that
the dissipation of turbulent kinetic energy takes the form of a flat radial profile
except in the near wall region. This means that the loss in the values of the normal

stress components in the axial vortex core is not effected by the dissipative process.

As noted previously, the normal stress components are close to isotropy in this
region. If isotropic turbulence is present in a flow, the ‘slow’ (or return to isotropy)
term in the stress-redistribution model becomes small, due to its dependence on
the stress anisotropy tensor [see equations (2.50) and (2.69) for the LRR and SSG
models]. Redistribution of the larger normal stresses to the shear stresses is also
small in this region as illustrated in figures 4.14 to 4.16. Both the SSG and LRR
models describe the redistribution process in the ‘fast’ models of equations (2.55)
and (2.66). Here, the stress anisotropy tensor is used, but its effect is minimiscd as

discussed above.

The other terms in the ‘fast’ models involve the mean rate of strain and vorticity
tensors, S;; and W ,; which take into account the effect of the mean velocity gradi-

ents. In this region of the flow, the dominant radial gradient of the velocity must
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reduce to zero at the axis due to the symmetry boundary condition, reducing the
stress redistribution.

The reduction in mean shear near the vortex core, also reduces the production of
turbulence by mean shear. This, coupled with the near isotropy conditions, gives

rise to the under-prediction of the normal stress components near the chamber axis.
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FIGURE 4.13: Reynolds stress model results for tangential stress; Kitoh’s case.

As mentioned previously, due to the near isotropic nature of the flow, the shear
stresses are small in comparison to the normal stresses, as is seen in figures 4.14
to 4.16. For the wv stress, the LRR model captures the experimental data in the
annular part of the flow more accurately than the other models except when in the
vicinity of the wall. Downstream, however, it predicts a larger negative value at TS9
and to a certain degree at TS7. This occurs because of dependency of the equation
for wo to W in the source terms for its production and convection (see Appendix
A.1). As the tangential velocity is retarded by the LRR model as the flow develops,

these positive source terms become smaller, leading to increased negative values uv.

For this shear stress, the other models show the opposite, v is over-predicted for
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FIGURE 4.14: Reynolds stress model results for uv stress; Kitoh’s case.
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FIGURE 4.15: Reynolds stress model results for uw stress; Kitoh’s case.
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FIGURE 4.16: Reynolds stress model results for 7w stress; Kitoh’s case.

all test sections in the annular flow region. As the tangential velocity predictions
are in much better agreement with the measurements, they are larger than the
predictions made by the LRR model and so provide larger positive source terms
in the equation for wov. The SSG-ADRM model shows an improvement over the

standard SSG model in the annular region, reducing the size of this shear stress

more in line with measurements.

All of the models used provide overestimates of the uv stress in the near wall region.
However, the tangential velocity, W is underestimated in this region by all models
due to the use of wall functions, and the above arguments cannot be used. It is clear
that the peak produced by the LRR model is larger than those of the other models.
This is due to the redistribution of turbulence from the normal stresses which are

over-predicted for the LRR model. This effect is observed in the LRR predictions

for all the shear stresses.
The LRR model prediction for 7w in the wall region is greatly over-predicted com-

pared to the other models. This is due to the above reason as well as the size of the
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convective source term of vw as given by (Appendix A.1)

— =\ W
iy R
(w v ) = (4.4)
For the LRR model, it can be seen that the values of the normal radial stress are
underestimated for the LRR model compared to the other models. This, along with

the overestimation of the w? stress, has the effect of increasing the value of 7w in
this region.

The ww shear stress predictions by the models in figure 4.15 for the near wall region
fail to give the negative values illustrated by the measurements. The wall effect
terms provide the LRR model with the closest result to the experiment by acting
as a sink term in the equation for ww. This gives a slightly negative value of this

shear stress, albeit at a further location away from the wall.

The overall failure of the models to capture the sharp gradients that lead to neg-
ative values of the ww shear stress can be explained by the production and source

terms in its modelled equation. The source term due to production of uw, —awV/r,
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is small due to the small value of V, and can be neglected. The remaining domi-
nant terms are the convective source term, ~woW/r, the production term and the
stress-redistribution term. The production term is positive in this region due to the
negative signs of the U and W gradients in the radial direction, while the convective
term is negative. This implies that the stress-redistribution terms in the respective
models are not able to provide a large enough sink term to give the correct negative

value of uw.

The difference between the SSG and LRR versions of the stress-redistribution term

can be summarised (neglecting wall effect terms) as
* * 1
i ss6 — ij,rr = —Ct Pasj + Ce(aiar; — 51151‘1) (4.5)

where Cf = 0.9 and C; = 1.05. In the first term, the increased production due
to the high mean shear, and stress anisotropy in the near wall region works to
decrcase the value of uw. However, the increased dissipation in the second term
of (4.5) counteracts this for the SSG/SSG-ADRM models, increasing the value II;;.
The wall effect terms for the LRR model have a greater effect in this region as
shown in figure 4.15, except in the downstream region, where redistribution from

its over-predicted normal stresses occurs.

Effects of the anisotropic dissipation rate model

The main effect of the ADRM, is through the coefficient C}; in equation (2.82).
This coefficient determines the amount of production of dissipation through the
ratio €/k and its values are shown in figure 4.23. In the absence of any mean strain

or vorticity, C, =~ 1.36, as is shown by the dotted line (C¢, — Ca = 0.36).

The valuc of the anisotropic effect on the coefficient, C, — C¢1, increases with radius
towards the annular part of the flow. In this region, the gradients of the mean
velocities are at their lowest, and so the mean strain and vorticity has less effect on
the valuc of C*. With reference to figure 4.17, it is seen that the dissipation rate
is initially (TS3) approximately equal to that predicted by the SSG model in this

region. As the flow moves downstream, the value of the dissipation rate predicted
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by SSG-ADRM falls below that of the SSG model.

In the upstream region, as the value of C?, can never be (without additional tuning)
as high as that specified by the SSG model (C}, = 1.44). the production of k in
the annular region is initially higher than that predicted by the SSG model. This
increased production of k then effects the production of € that is directly proportional
to it. For this reason, despite the lower value of C¢;. predictions for ¢ in the annular
region at TS3 and TS5 appear indistinguishable from the prediction of the SSG
model. As the flow develops, isotropisation and turbulent diffusion act to reduce
the value of k, and hence the normal stresses. in turn lowering the production of

dissipation rate. At TS7 and TS9, this is seen in the annular region when compared

to the SSG model.

This effect is reproduced in the vortex core region about the central axis. Due to
the large radial gradients of W and U in this region, ¢ and 7, equation (2.79), also
become large. This again leads to a small C}; and hence the above argument as
at the annular region is applicable. The larger size of the dissipation compared to
the SSG model is due to the additional production of turbulence energy by mean
shear in this region compared to that in the annular region. The combination of
the shear reducing C}, and also causing additional turbulence production causes the

dissipation to be larger for the SSG-ADRM than the SSG model alone.

In the wall region, C7; quickly reduces due to the presence of high shear, effectively
reducing the amount of production of dissipation. This is reflected in figure 4.17,
where the dissipation for the SSG-ADRM is less in the near wall region than for
the SSG model. This reflects the non-equilibrium nature of turbulence in near wall

flows, where production of turbulence is greater than its dissipation.

The components of ¢;; are shown in figures 4.18 and 4.19 with a breakdown of
the isotropic and deviatoric parts for the diagonal components in figures 4.20 to
4.22. The main redistribution of the dissipation from the diagonal to off diagonal
components occurs in the near wall region, where the mean strain is highest. The
redistribution in the annular and core parts of the flow are reduced compared to

this due to the much smaller mean flow gradients in these areas. The reason for
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the negative sign of €3 in the wall region is due to the negative value of the axial
gradient of the tangential mean velocity, counterbalanced by the other terms in

equation (2.77), resulting in an overall positive value.

The compositions of the diagonal components of ¢;; show that the effect of the
dissipation anisotropy, d;;, is small in comparison to the isotropic component. This
is due to values of d;; in the range O(1072). It is clear that the coefficient C o
has far more influence in this flow than the redistribution of dissipation to other

COIIlI)()IlCIltS.

4.3 The combustion chamber flow of Al-Masseeh

Compared to the flow studied by Kitoh, that studied by Al-Masseeh (1991) is far
more complex due to the increased straining produced by the annular inlet jet. The
flow field is shown schematically in figure 4.24, showing the annular inlet, leading to

recirculation and high streamline curvature. For this flow, swirling air is introduced

24mm

7777777/ 44222477/,
D777/

1.5m

FIGURE 4.24: Flow schematic for Al-Masseeh’s swirling flow problem.

into the combustion chamber through the annular inlet. The presence of the swirl
enhances the axial recirculation by creating a low pressure at the centre of the axial
vortex (as in the previous case). In this case the swirl at the inlet is defined by the

swirl number

g Orn UWr2dr

- - (4.6)
To jor” U2rdr
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which was set to be S = 0.53, where U and W are the mean axial and tangential
inlet velocities (prescribed as below), and r is the radial distance from the central
axis. The high streamline curvature and jet impingements near the wall due to the
recirculation regions close to the inlet, provide a more complex flow field in terms
of velocity and mean strain rate. These factors serve as a more stringent test for

the computational models than Kitoh’s case described above.

The experimental measurements were performed using laser doppler velocimetry
(LDV). Unlike the hot wire method used by Kitoh, LDV is less invasive to the flow
with only the presence of small ‘seeds’ - or particles - being carried by the flow
itself. These particles reflect the laser light, from which calibrated electronics may
calculate their velocities, and hence the fluid velocity, using the well known Doppler
Effect relations. From these experiments values of the mean flow quantities were

found along with data on the normal Reynolds stress components.

4.3.1 Numerical Procedure

The computational domain was created using an irregularly spaced, structured mesh.
A nodal density of 100x56 nodes was found to give mesh independent results in the
manner described in Chapter 3. The nodal density was increased close to the bound-
aries and the annular inlet, as shown in figure 4.25, to resolve the high gradients of

the flow quantities in these regions. The length of the domain was equal to 1.5m with
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FIGURE 4.25: SSG model streaklines for the case of Al-Masseeh.

a pipe radius of 24mm. The inner and outer radii of the annular inlet are 10mm and
11.1mm respectively. Through the experimental observations of Al-Masseeh (1991),

this flow was also found to be axisymmetric in nature, thus enabling the use of a



FI1GURE 4.27: SSG-ADRM model streaklines for the case of Al-Masseeh.

two dimensional domain with an axis of symmetry at the lower boundary.

Boundary Conditions

Experimental data was not available for all of the turbulent stresses, and so could not
be used to provide inlet boundary conditions as in Kitoh’s case. The experimental
data for turbulent kinetic energy measured at an axial distance of 2mm from the
inlet was used to approximate inlet turbulent kinetic energy. It was found, after

numerical experimentation and guidance from Al-Masseeh (1991), that
k = 0.09U2, (4.7)

where U is the mean axial inlet velocity, provided the best approximation of kinetic
energy to those of the experiments. The axial inlet velocity, U, was set at 30ms™!,
uniform across the annular inlet. The turbulent dissipation rate at the inlet was

approximated by
e = 0.09k2 L, (4.8)
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turbulence equations while the momentum equations are discretised with QUICK

(U, V) and SMART (W).

Figures 4.28 to 4.31 show the effect of the different convective discretisation schemes
on the solution of the mean momentum equations. The main area of the flow where
the performance benefits of the higher order schemes are visible is in the near wall
region. This is where the gradients of U and W are the greatest due to the high
velocities meeting the no slip condition. This feature is seen for U velocity at axial
locations z = 5,15, 30mm, where a flow reversal is present between 15 and 30mm

due to the presence of the corner recirculations.

The inlet jet region, z = 5, 15mm, is also where high order schemes outperform those
of lower order. Here a fast moving jet is injected into slower moving fluid, creating
high shear rates and velocity gradients. The widths of the inlet jet for the higher
order schemes are thinner than those of the upwind and hybrid schemes, showing
their greater interpolative accuracy and lack of numerical diffusion to give better
agreement with experiment.

X =200mm
\I I T I T [ T 1j

X = 5mm

0.024

] * Experiment
- —— ke~ Upwind
1 & k-¢ - Hybrid
/ ~==- ke&-QUICK
I --=- k&~ CUBISTA
- ke-SMART

0.02

*

0.016

0.008

<4 -

ll lAlllllllllL
44 3 -2 -1 0 1 2

|
2

FIGURE 4.28: Axial velocity profiles testing effect of convective discretisation on momentum
equations; S = 0.53.
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where L = 5.5 x 10~*m - corresponding to half the inlet width - is an integral length
scale and k is found from (4.7). The effective viscosity (turbulent plus molecular)

was approximated by

pess = 0.202pkz L. (4.9)

The inlet tangential, or swirl velocity was specified by Al-Masseeh as a piecewise

linear function, giving a triangular profile,

W — ’Y%ﬁ if 1< 5(ro+mi) (4.10)
U(ro—r1) . '
7—1,(% if T>%(ro+mi),

where 7, and r; are the outer and inner annulus radii, r the radial distance and v a
constant to be found. To find -, one of the situations represented in (4.10) may be
substituted into equation (4.6) where S = 0.53. After performing the integration of

(4.6), the value of the gamma constant was found to be,

Ys=0.53 = 2.0, (4.11)

which corresponds to a peak tangential velocity of 30ms~!.

At the solid walls, the no slip boundary condition is applied and standard logarithmic
wall functions are used to approximate variables close to the wall. At the exit of
the chamber, a fully developed, zero gradient boundary condition is applied. For
the symmetry axis, zero radial gradient boundary conditions are applied to all flow

variables.

4.3.2 Computational Results
Comparison of Convective Discretisation Schemes

Firstly a comparison of the discretisation schemes is presented using the two equa-
tion k — ¢ model. Two situations are considered: effect of convective scheme on
solutions of the mean momentum equations while the turbulence equations are dis-

cretised using the SMART scheme and effect of convection scheme on solutions of the
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tum equations; S = 0.53.
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Figure 4.28 shows the effect on the mean axial velocity, U. The higher order schemes
(QUICK, CUBISTA and SMART), give predictions that are indistinguishable due
to the lack of very steep gradients in U. This behaviour is reminiscent of the
results depicted in Chapter 3 for the two-dimensional test cases, where the flow
remains in the smooth region of the NVD diagram (SMART and CUBISTA reduce
to QUICK) and the QUICK scheme produces bounded results. Due to their lack
of numerical diffusion, these schemes are also shown to outperform the upwind and
hybrid schemes when compared to the experimental data. The numerical diffusion
in such schemes is illustrated by the broader peak of the inlet jet at £ = 5mm. The
hybrid scheme, however, goes some way to improve the predictions of the upwind
scheme, lying midway between upwind and the high order schemes for all of the
axial locations shown. This shows that there are regions in the flow where Pe < 2,

so that central differencing is used, which is second order accurate as opposed to

first order for upwind.

The V velocity profiles show similar behaviour to those of the U velocity and are
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shown in figure 4.29. Despite only qualitative agreement with the experimental
results, it can still be seen that the higher order schemes are able to predict a less
diffusive profile than the hybrid and upwind schemes. This is most noticeable at
z = 15mm, where the peak is reduced in amplitude but broader for the low order

schemes. These trends are repeated for the W velocity as shown in figure 4.30.

The differences in the predictions for the different convective schemes are relatively
small. The main reason for this relatively insensitive response to convective discreti-
sation is attributed to the Eddy-Viscosity hypothesis. As mentioned in previous
chapters, this closure method introduces an effective viscosity into the momentum
equations, resulting in a dominant diffusion term. It is this term that dominates
diffusion in the momentum equation, as the molecular diffusion and any associated

numerical diffusion is small in comparison.

The effect on k of changing the momentum equation convective discretisation scheme
is seen in figure 4.31. The momentum equations are coupled to the transport equa-
tion (2.30) for k£ through the Eddy-Viscosity hypothesis, the various models used to
close the equation and the explicit appearance of U;, so there is a dependence on

the discretisation scheme used. The term describing the production of &,

ouU;

P = _Tik(?—a:;

(4.12)

is directly proportional to the gradient of the velocity. The hypothesis can be
made that the production of k will be less when low order convective discretisation
schemes are used in the momentum equations. Results in figure 4.31, with reference
to figures 4.28 and 4.30, support this hypothesis. Where z = 15mm the gradients of
the velocities are smaller for the low order schemes than for those of higher order.
This is reflected in the size of the predicted value of k. At z = 15mm the values of &
predicted when the momentum equations are discretised using low order convection
schemes are smaller than those of the higher order schemes. This is compounded
by the appearance of 7;; in (4.12) that is modelled by the eddy-viscosity hypothesis,

equation (2.25), which includes the velocity gradients in its formulation.

The cffect of the convective discretisation scheme cinployed on € and k can be seen
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in figures 4.32 to 4.35. Again, the difference between the upwind scheme and the
high order schemes is small for the approximation of the turbulence equations. For
the axial and radial velocity profiles, the upwind scheme provides a result that is
in better agreement with the experimental data. This is due to the prediction of
k. Comparing figures 4.32 and 4.35 for U and k at £ = 15mm, it is seen that k is
under-predicted in the region r > 0.012m due to numerical diffusion. & appears in

the source term of the U velocity equation in the model for 7,

2
Tij = —21/’['5,']' + §k5ij (4.13)

where the turbulent viscosity, vr = C,k?/e. As k is reduced in this region, the
magnitude of the momentum equation source term involving 7;; is also reduced.
This reduces the effective viscosity of the U velocity equation allowing less ‘effective
diffusion’ leading to sharper velocity gradients as shown in figure 4.32.
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FIGURE 4.32: Axial velocity profiles testing effect of convective discretisation on turbulence
equations; S = 0.53.



143

X = 5mm X = 15mm X =30mm X =200mm
0-024 T I T 1 I T I 1 I T T T I T I T I T T I T I T I ] l
Lo =t . = - 4
0.02 F‘ S |1 . _
L = * ! -4 .
Il
0.016 - e =N 4
. |
- . 2 i e
Epor2 o s . 41 4
& .
L . £ A5
*
0.008 — — e -
= — -« -
Experiment r -1
— k'tpi Upwind »
0.004 — ke -QUICK —— - _
-==- k-e - CUBISTA . *
----- k-t - SMART
O 1 l 1® l 1 l 1 l 1 1 l 1 l 1 l 1 1 l | l 1 L 1 1 1 L l e l L l k
4 2 0 2 4 6 0 2 4 6 -4 -3 -2 -1 -1 -0.8 -06 -04 -02 0
V (m/s)

FIGURE 4.33: Radial velocity profiles testing effect of convective discretisation on turbulence
equations; S = 0.53.
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bulence equations; S = 0.53.
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FIGURE 4.35: Turbulent kinetic energy profiles testing effect of convective discretisation on
turbulence equations; S = 0.53.

Comparison of Turbulence Models

As mentioned previously the higher order, bounded convection schemes are most
applicable to flows with steep gradients in flow variables to counteract the possibility
of under/overshoots in the interpolation. For turbulence variables such as turbulent
kinetic energy or turbulence dissipation rate, it is of utmost importance that they
remain bounded to comply with realisability (see Lumley, 1978). These variables
are positive definite, and so must not become negative, which may happen when
unbounded schemes are used. For the results presented below the SMART scheme
was used for all turbulent quantities in all of the turbulence models considered. Due
to the highly stiff equation sets of the second moment closure models, the SMART
scheme did not always converge. In these situations, the CUBISTA scheme was
employed for its more favourable convergence properties (see Chapter 2 and Alves
et al. (2003)). For the momentum equations, it was found that the QUICK, SMART
and CUBISTA schemes all produced indistinguishable results. For this reason the

QUICK scheme was used for the U and V' momentum equations with a bounded
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scheme for the tangential W velocity as this must also be positive definite.

Comparison of the k£ — ¢ and k — w models

The computed results for the two-equation turbulence models can be seen in figures
4.36, 4.37, 4.38 and 4.39. From figures 4.36 and 4.38 it can be seen that the k — ¢
model predicts U and W more accurately in the inlet jet region. Near the central
axis, both models predict an erroneous negative U velocity close to the inlet. This
can be traced to an over-prediction of the tangential swirl velocity at the central
axis (figure 4.38). The high velocity gradients in this jet region result in high values
of strain rate leading to an increased ‘effective’ diffusion term in the momentum
equations, diffusing the inlet swirl velocity to the central axis. This main drawback
is due to the use of the Bousinesq hypothesis (2.25) to model the Reynolds stresses.

The effect of this additional diffusion term can be seen for U, V and W near the
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FIGURE 4.36: Axial velocity profiles for the case of Al-Massech (1991): S = 0.53.

inlet. where a spreading of the velocity profiles means that the steeper gradients and

finer detail of the flow are not predicted accurately.
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From figure 4.36 at z = 200mm, the flow is purely in the positive, downstream
direction, showing that both two equation models predict a premature relaxation of
the flow, with a smaller primary axial recirculation. This behaviour is also shown
in the tangential velocity profiles. At £ = 30 and £ = 200mm both two equation
models under-predict the size of the tangential velocity, where the profiles resemble

more that of a solid body rotation (a linear profile from axis to wall).

Predictions for the turbulent kinetic energy are shown in figure 4.39. In the inlet
region, the central peak is better predicted by the k¥ — w model where the profile
returns more closely to the experimental results upon moving closer to the central
axis. The k — ¢ model predicts a peak that is much too wide to agree with the

experimental results, leading to an over-prediction at the central axis.
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FIGURE 4.39: Turbulent kinetic energy profiles for the case of Al-Massech (1991); S = 0.53.

Further along the pipe axis, the k — ¢ model shows better agreement with experi-
mental results than the k — w model. At 15mm, k — ¢ behaves better at the central
axis but both models under-predict the turbulent kinetic energy in the wall region.

As the flow develops along the pipe the k — ¢ model matches the experimental data
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more closely.

Overall, the two-equation models do not perform well when trying to capture the
turbulent kinetic energy of the flow. This can be attributed in the main to the
isotropic formulation of the model. No account is made for the differing values of
the normal Reynolds stresses, especially in the steep gradient regions near the inlet.
This means that their effect is not reintroduced into the momentum equations. which

are unable to respond to differences in the Reynolds stresses.

Reynolds Stress Models

As mentioned in previous sections, the full second moment, or Reynolds stress,
closure models include full transport equations for the individual stress components.
This can overcome the deficiencies of isotropic two-equation models by modelling the
individual stress components to the momentum equations, thus allowing for stress
anisotropy. The modelling of the Reynolds shear stresses, as well as the normal
stresses is also included to provide a closure that enables the incorporation of more

turbulence physics of the flow.

The models tested here are the LRR, SSG and SSG-ADRM and their results shown
in figures 4.41 to 4.47. An immediate improvement can be observed when compared
to the predictions of the two equation models. For the mean velocity profiles in
figures 4.41 to 4.43, it is clearly seen that the computations reproduce the steep
gradients shown in the measured data. This is especially apparent at the inlet jet

region for the mean axial and tangential velocities.

A more accurate prediction of the tangential velocity at the inlet, leads to a better
prediction of the axial vortex due to the swirling inlet. As this quantity is reduced
(in line with the experiments) when compared to two equation models, the speed of
the axial vortex is reduced. This leads to a smaller negative axial pressure gradient

and hence improves prediction of axial velocity at the chamber axis.

The Reynolds stress models also predict the axial recirculation length more ac-

curately than the two equation models as shown in figure 4.40. At 200mm, the
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FIGURE 4.40: Axial velocity along the pipe axis; S = 0.53.

Reynolds stress models still predict a negative axial velocity in agreement with ex-
periment. The two equation models, as mentioned previously, predict a positive
sign here, indicating premature flow relaxation. This observation is again linked to
the prediction of the tangential velocity. At the 200mm measurement location, the
two equation models predict a linear profile from chamber axis to the wall. This
indicates a solid body rotation of the fluid, in contrast to the measurements. The
Reynolds stress models improve the prediction by delaying the transition to solid
body rotation. Unfortunately, this effect is more pronounced, and although results

agree more strongly with the measurements, this transition is retarded too much

compared to the experiments.

This has a knock-on effect on the previously mentioned axial recirculation length.
As the tangential velocity is slightly overestimated at the chamber axis, the negative
axial velocity is slightly larger than the experiments show at the axis. However, as
shown in figure 4.40, at around 250mm, the decay of the axial velocity is increased
compared to the experimental data. This leads to premature flow reattachment,
especially by the LRR model. The SSG-ADRM prediction shows an improvement

with the SSG model providing the best prediction, albeit premature.

Prediction of the mean radial velocity also shows improvement over those of the
two equation models. All of the Reynolds stress models used predict a positive

radial velocity up to approximately one half of the chamber radius near the inlet,
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in line with experiments. It is only in the outer region of the chamber that the
sign becomes negative. Despite this more accurate prediction over the two equation

models, the position and width of the central peak at the inlet still cannot match

the experimental data.
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FIGURE 4.41: Reynolds stress model results for axial velocity; S = 0.53.

For the prediction of the turbulent kinetic energy shown in figure 4.44, the Reynolds
stress models agree more closely with the experimental data, especially for the inlet
region (z = 5mm). The peak in k at the inlet is more clearly defined returning to a
flat profile at the chamber axis in agreement with measurements. Towards the wall
region, however, the value of k is slightly under-predicted, showing similarity with
the two equation models. As the flow develops down the chamber, the prediction

continues to show discrepancies with experimental data in the wall region except at
larger distances (>200mm).

As expected, the above results show that the Reynolds stress models generally give

more accurate prediction compared to the two equation models. As mentioned

previously three Reynolds stress closures were used: LRR, SSG and SSG-ADRM.
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FIGURE 4.42: Reynolds stress model results for radial velocity; S = 0.53.

It is now appropriate to compare these individual models.

For most regions of the flow, the mean velocity profiles are very similar, but a
few regions require attention. Firstly at the inlet, the axial velocity predictions
near the wall are slightly different for the SSG and LRR models. The LRR model
predicts a positive velocity at the wall quickly changing sign at a radial position of
22mm, indicating the presence of an additional axial recirculation compared to that

predicted by the SSG model. Indeed, figure 4.26 illustrates this.

The SSG model produces a negative axial velocity in this region only returning
to a positive sign at a radial position of around 17mm, indicating a larger axial
recirculation (namely the primary corner recirculation). The real physical flow is
unknown due to the lack of experimental data in this region. However, close to
the wall, the measurements predict a larger negative value than those given by the
computations. The difference between the LRR and SSG models in this area is the
modelling of the wall echo effect in the pressure-strain correlation. The LRR model

has a dedicated term to account for the proximity of a wall and the effect of eddy
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FIGURE 4.44: Reynolds stress model results for turbulent kinetic energy; S
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squashing, whereas the SSG model relies on the nonlinear terms in its pressure-strain

model to account for wall effects.
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FIGURE 4.45: Reynolds stress model results for axial normal stress component; S = 0.53.

Another difference between the models is the prediction of the axial velocity at the
chamber axis. Both models consistently over-predict the negative U in this region
as the flow develops. The SSG model, however, shows a much larger discrepancy
compared to the predictions of the LRR model. At 15mm, the axial velocity peak
is pushed further towards the wall than the prediction of the SSG model. Both pre-
dictions are slightly inaccurate when compared to measurement, and only represent
a portion of the peak. This shows that the LRR model is more sensitive here to the

centrifugal force experienced by the fluid due to swirl.

For the tangential velocity prediction the LRR model gives more accurate prediction
than the SSG implementation. At the inlet region, the LRR model gives predictions
that are very close to the experimental data, whereas the SSG model over-predicts
the size of the tangential velocity. As mentioned previously, both Reynolds stress
models over-predict the tangential velocity at the chamber axis as the flow develops,
having the effect of delaying the transition to solid body motion. The SSG model

overestimates this value when compared to experiments, and to the predictions of
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the LRR model due to the smaller value of the 7w and w? stresses which act as
sink terms in the transport equation for W. For the results at most of the axial
measurement locations, the LRR model affords a slightly improved prediction for

tangential velocity compared to the SSG model.

Predictions for the turbulent kinetic energy can be evaluated by looking at those
for the normal Reynolds stress components shown in figures 4.45 to 4.47. For all
%2, 72 and w? predictions, the experimental data cannot be matched near the wall.
Despite accurate prediction away from the wall, neither the LRR or SSG models can
predict accurately in this region despite the LRR model’s wall modelling approach,
or the nonlinear terms in the SSG model. A possible reason for the failure of the
Reynolds stress model could be the use of wall functions, where an assumed variable
profile is adopted close to the surface. Even though Kitoh (1991) advocated the use

of wall functions for the flow he studied, they may not be appropriate here.

For the SSG model, normal stress predictions are of the same accuracy as those for
the LRR model near the chamber axis at the x=5mm and 15mm axial locations.
As the flow develops, at x=30mm, the SSG prediction begins to underestimate the
measured data to a greater extent than the LRR model. In the inlet region, the peak
in the axial normal stress is under-predicted by both SSG and LRR, with the latter
predicting a slightly smaller value. For the radial normal stress component, both
models accurately predict the magnitude of the inlet peak. The width of this peak is
overestimated by both models, showing an inability to resolve the sharp inlet peak.
Again, for the tangential normal stress component, both models show inaccuracies
at the inlet region. The peak in tangential normal stress is over-predicted, along
with its width. The SSG model, however, gives results that are less cxaggerated

than those of the LRR model.

The reason for the inaccuracies of the predictions for normal stresses at the inlet
are due to their specification. Only an inlet condition for & is given, and not the
individual components themselves. As k =1/ 20u? + v? + w2, it is assumed that the
normal components are isotropic at the inlet. Further downstream at & = 30mm,
the effect of the inlet is less pronounced, and the computed results are in better

agreement with measurement. It can also be noticed that the flow becomes more
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isotropic downstream. This is due to the reduction in production of turbulence as

mean straining itself is reduced.

Effects of the anisotropic dissipation rate model

The effect of including anisotropic dissipation on the mean flow and normal stress
components can be seen in figures 4.41 to 4.47. For the mean axial velocity pro-
files, this model improves the SSG predictions at the chamber axis, bringing better
agreement with experiment and giving superior prediction compared to those from
the LRR model for z < 30mm. This is due to the reduction of tangential velocity
at the axis and a consequent reduction in the reverse pressure gradient brought
about by the swirl. The axisymmetric source term for the mean tangential velocity
equation, —vw/r , helps to contribute to the reduction in tangential velocity at the
axis. Figure 4.48 shows that this shear stress component is increased over isotropic
methods. Also the increased prediction of the w? stress (as shown in figure 4.47)

acts to reduce the diffusion term in the transport equation for W.
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In the wall region, the predictions for U closely match those of the original SSG
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FIGURE 4.50: Reynolds stress model results for uv shear stress component; S = 0.53.
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model with a small reduction in the size of the axial velocity predicted. This indi-
cates that the strength of the corner recirculation is diminished at  — 9, 15mm, as

shown.

For the mean radial velocity profiles, the ADRM provides only a mild departure
from the predictions of the SSG model at the wall. At the axis, the model produces
results indistinguishable from those of the standard SSG model. This is primarily
due to the small strain rate at the central axis associated with the radial velocity.
As the ADRM is modelled using the mean strain and vorticity tensors, little effect

is seen in this region.

When considering the tangential velocity profiles, the anisotropic model offers sig-
nificant improvements at the chamber axis. Reductions in the size of the velocity
at the axis are achieved, bringing the SSG prediction closer to the measured re-
sults than those of the LRR model. At z = 200mm, the prediction still retards the
transition to solid body rotation, but supplies a prediction comparable to the LRR
model but improved over that made by the SSG model. This behaviour is observed
in Kitoh’s case due to the increased value of the predicted 7w shear stress in this

region, acting as a sink term in the W momentum equation.

For the area close the wall, the ADRM overestimates the velocity compared to
experiments and the other models. At £ = 5mm, this is due to the additional
vw shear stress caused by redistribution from the normal stresses. As mentioned
above, this shear stress acts as a sink term in the mean tangential velocity equation.
However, as r is at its greatest value this sink term is reduced and so the contribution
due to stress gradient takes precedence. The increased negative radial gradient of
7w due to the ADRM acts as a positive source term in the equation for W, leading to
its increase near the wall. Even though this gradient reduces to that of the standard
SSG model downstream, the increased upstream value of W is then transported

downstream due to convection.

The most dramatic illustration of the effect of the anisotropic dissipation model can
be seen in the results for the normal stresses. The results for the axial normal stress

in figure 4.45 show that the anisotropic profile near the inlet (x = S5mm) shows less
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FIGURE 4.51: Value of C}, — C¢ for the production of dissipation of k; S = 0.53.
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FIGURE 4.52: Dissipation rate of turbulent kinetic energy, € for different Reynolds stress
models; S = 0.53.
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FIGURE 4.53: Diagonal components of the dissipation rate tensor; S = 0.53.

resolution than both other models by a broadening of the central peak. The value
towards the chamber axis is also overestimated compared to the measured data and
other model predictions. This behaviour is repeated further downstream albeit to a
lesser degree. The other normal stress components, v2 and w?, also show this same
behaviour (figures 4.46 and 4.47) as well as the shear stresses (figures 4.48, 4.49 and
4.50). This is due to the modified produc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>