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Abstract 

Understanding the capacity for species to respond to changes in their environment and the 

rate at which they are able to do so is a key topic in evolutionary biology and of increasing 

importance in wildlife conservation and management. However the mechanisms involved 

in mediating these responses are poorly understood. Specifically, while reactive responses 

may be advantageous in the short term persistent directional changes in environmental 

conditions may require a more profound response in order for organisms to adapt and 

persist successfully. Here I use data from two long-term studies of the great tit Parus major 

and apply a range of statistical techniques to dissect the genetic architecture of laying date, 

a reproductive life-history trait, to discern the extent to which a genetic component of 

variation contributes to observed phenotypic variation. A heritable component of variation 

exists in both populations, but specific regions of the genome contributing to trait variation 

could not be detected by quantitative trait loci mapping (Chapters 2 & 3), genome-wide 

association (Chapters 2 & 3) or chromosome partitioning (Chapter 4) analyses.  These 

findings are consistent with a highly polygenic basis for variation in laying date, variation 

maintained by many genes of small effect. Attempts to increase the statistical power by 

combining two phenotypic datasets to increase overall sample size (Chapter 3) and 

increasing marker density (Chapter 5) drew similar conclusions, with an absence of 

genome-wide significant QTL. Despite evidence of a strong association on chromosome 3 

(Chapter 5), an overall lack of consistency between analyses and datasets on regions 

exhibiting the highest associations suggests that power to detect genomic regions, 

particularly when variation may be determined by many variants of small effect, is low. I 

conclude that while genetic variation exists, environmental factors and phenotypic 

plasticity likely account for much of the variation in laying date.  
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Identifying the potential for and the rate at which species can adapt to changes in their 

environment has consequences not only for a greater understanding of evolutionary 

biology, but also practical implications for the management and conservation of wildlife 

(Seddon et al. 2005; Romanov et al. 2009; Narum et al. 2013; Charmantier et al. 2014). 

However, identifying the mechanisms associated with advantageous adaptations in wild 

populations is fraught with difficulty. By definition, un-manipulated wild populations are 

subject to a host of physical, natural and climatic forces beyond the control, measurement 

and potentially even detection of scientists.  

Increasingly long-term studies of wild organisms are yielding substantial quantities of data 

that, together with genetic information, can be used to estimate the genetic component of 

variation, or heritability of traits, and their underlying genetic architecture (Réale et al. 

2003; Charmantier et al. 2008; Kruuk & Hill 2008; Slate et al. 2010; Poissant et al. 2012; 

Bérénos et al. 2014). Classical theory suggests that the rate of response of any given 

organism to selection is based on the amount of additive genetic variation present in the 

organism’s genome (Fisher 1930). Identifying the extent to which observed phenotypic 

variation is maintained by an underlying genetic component may give us an insight into the 

potential for a microevolutionary response to selection.   

1.1 Climate change and trophic mismatches 

A body of evidence has been amassed documenting the direct effect of climate change on 

organisms across taxa (Gordo & Sanz 2010; Pozsgai & Littlewood 2011; Visser & Both 2005), 

often manifested as shifts in species’ distribution (Parmesan & Yohe 2003) and phenology 

(the timing of seasonal activities (Walther et al. 2002)). Food availability dictates many of 

the responses observed and predicted in organisms, as climate change has the potential to 

induce trophic mismatches where the timing of peak food abundance is no longer aligned 

with peak food requirement (Stenseth & Mysterud 2002). The extent of the mismatch, and 
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the capacity of affected organisms to adapt will ultimately determine the persistence of 

many organisms with the rate and form of response varying substantially between species 

(Donnelly et al. 2011; Visser & Both 2005).  

While some studies have suggested asynchronies could be corrected with very little 

adverse impact to some organisms that are reliant on the changing distribution / 

availability of a food source (van Asch et al. 2007; Stireman et al. 2005), for others the 

consequences could potentially be more severe (Memmott et al. 2007; Saino et al. 2010; 

Thomas et al. 2001; Watanuki et al. 2009). The interplay of many factors ultimately 

determines the outcome of mismatches, particularly the life history strategies of 

organisms. 

Specialist species are at much greater risk of fitness losses than generalists as they are likely 

to be slow or incapable of utilise alternative food sources in the event a preferred source 

becomes unavailable (van Asch & Visser 2007; Miller-Rushing et al. 2010; Miller-Struttmann 

et al. 2015; Kowalczyk et al. 2015). Migratory species display increased vulnerability to 

trophic mismatches and population declines (Both & Visser 2001; Both et al. 2006; Saino et 

al. 2010). Reproductive strategy may also determine species responses to mismatches 

(Gregory et al. 2009; Kerby & Post 2013; Vedder et al. 2013).  

Short-lived species may also be more resilient to environmental changes than longer lived 

species as rapid turnover of generations facilitates rapid adaptation (Perry et al. 2005; 

Vedder et al. 2013). In contrast species with slow life-histories unable to produce rapid 

demographic responses in response to climate-induced trophic mismatches may 

experience population declines (Post & Forchhammer 2008; Vors & Boyce 2009; Gienapp, 

Lof, et al. 2013). 
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Population demography, also has the potential to counterbalance the negative impact of 

asynchronies on with food availability. Fitness losses encountered by individuals breeding 

out of sync with prey availability may bestow fitness gains on individuals breeding in 

synchrony with prey as a consequence of relaxed competition (Reed, Jenouvrier, et al. 

2013; Reed, Grotan, et al. 2013). Understanding the fitness consequences of mismatches is 

essential to be able to identify those species and populations that are most likely to be 

negatively affected by climate change (Donnelly et al. 2011).      

1.1.1 Breeding phenology 

For many species the main strategy employed to alleviate the negative consequences of 

inadequate food availability, and to regain synchrony with the phenology of a food source, 

is a change to the timing of breeding (Visser 2008; Both et al. 2004). Adaptive breeding 

responses to shifts in plant phenology as a result of climate change have been observed in 

a number of mammals including red deer and red squirrels (Moyes et al. 2011; Réale et al. 

2003; Burthe et al. 2011).  

Birds are capable of adapting their breeding strategy by making adjustments to a complex 

suite of stages in their reproduction, namely the date they choose to lay their eggs (laying 

date), their clutch size and the timing of onset of the incubation period (Visser et al. 2004; 

Ardia et al. 2006; Visser et al. 1998; van Balen 1973; Stoleson & Beissinger 1995; Cresswell 

& McCleery 2003; Goodenough et al. 2009). It is well established that the principal 

environmental cue mediating these behaviours is photoperiod (Lyon et al. 2008; Silverin et 

al. 2008; Dawson 2008), but birds are able to vary these behaviours to cope with 

environmental variation by means of ‘supplementary’ cues (Lyon et al. 2008; Dawson 2008; 

Lattin et al. 2016).  
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The physical (neuroendocrine and endocrine) mechanisms underpinning breeding 

phenology can operate under a range of conditions, and this physiological plasticity 

(Dawson 2008; Lattin et al. 2016) enables birds to fine-tune their behaviour by 

incorporating information from supplementary cues such as food availability, temperature, 

rainfall, and the phenology of other organisms (Lyon et al. 2008; Dawson 2008).  

For marine bird species such as the common guillemot and black-legged kittiwake food 

availability (mediated by pre-breeding sea surface temperature) has driven observable 

variation in patterns of laying date (Reed et al. 2009; Votier et al. 2009; Shultz et al. 2009). 

Many birds are also capable of altering their breeding behaviour to take advantage of any 

beneficial conditions they experience such as unexpected food abundance.  

Increased food availability prior to laying shown to advance the onset of laying in starlings 

(Källander & Karlsson 1993; Meijer & Langer 1995), tree swallows (Nooker et al. 2005) and 

seabirds such as murres and kittiwakes (Shultz et al. 2009). At the extreme, opportunistic 

breeders such as crossbills have been observed to breed whenever food is abundant, 

within the limits of their physiological capacity (Deviche 1997; Hahn 1998; Deviche & Sharp 

2001). The onset of breeding on birds has also been shown to occur in response to rainfall, 

in species inhabiting tropical or arid regions such as the spotted antbird (Wikelski et al. 

2000), Rufous-winged sparrow (Deviche et al. 2006) and Darwin’s finch (Hau et al. 2004). 

Temperature is the cue attributed with most of the variation in laying date in birds 

(Cresswell & McCleery 2003; Silverin et al. 2008; Visser et al. 2009; Schaper et al. 2012; de 

Jong et al. 2015). However the precise pattern of temperature influencing laying date varies 

both within and between species. Eider ducks, tawny owls and starlings have all been 

shown to advance the onset of laying in response to milder winters (Fossøy et al. 2014; 

Solonen 2014; Williams et al. 2015). In contrast laying date in the majority of passerines has 

been attributed to spring (March and April) temperature (Forchhammer et al. 1998; Crick & 
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Sparks 1999; Dunn 2004; Visser et al. 2006; Porlier et al. 2012; Schaper et al. 2012; 

Gienapp, Lof, et al. 2013; Thorley & Lord 2015). 

Using captive great tit populations, a model species for studies of avian phenology, a series 

of experiments over the course of three years representing some of the most in-depth ever 

conducted revealed the complex nature of the relationship between spring temperature 

and laying date (Schaper et al. 2012). Broad conclusions drawn from observations made 

over the course of these experiments suggested that the specific nature of temperature 

pattern experienced by birds, not just warm temperatures in general, influence the onset 

of laying  (Visser et al. 2009; Schaper et al. 2012). Seasonal increases in temperature, as 

opposed to mean or daily temperature variation were found to have the most significant 

impact on female’s decisions to start laying (Schaper et al. 2012).     

Schaper et al. (2011) in a previous study were also able to demonstrate that visual cues in 

the form of vegetation phenology (associated with the subsequent abundance of 

invertebrate prey) did not affect timing of breeding. Attributing behavioural variation to 

specific supplementary cues is difficult given that they are inherently connected, with cues 

such as temperature and rainfall determining food availability and abundance in 

subsequent periods (Wikelski et al. 2000; Shultz et al. 2009; Schaper et al. 2011). 

Untangling these cues and identifying the proximate causes of behaviour is important for 

our understanding of how species are likely to respond to climate change.   

1.1.2 Passerine birds and shifts in laying date 

Laying date is one of the life history traits best documented in relation to phenological 

responses to climate change, with evidence having been amassed from numerous long-

term ornithological studies. Trends for earlier egg-laying have been directly attributed to 

changes in temperature (Crick & Sparks 1999; Crick et al. 1997; McCleery & Perrins 1998) 



20 

 

with numerous studies documenting advances in laying date (Bergmann 1999; Koike & 

Higuchi 2002; Pearce-Higgins et al. 2005; Torti & Dunn 2005; Møller et al. 2006; D’Alba et 

al. 2010; Charmantier & Gienapp 2014).  

Research on passerine birds accounts for some of the most concentrated efforts to 

investigate the effect of climate change on organismal phenology. The abundance of many 

species and their short life-histories make them ideal candidates for investigating 

systematic trends. Data available from long-term studies of numerous passerines have 

described varying trends in laying date between species (Both et al. 2004; Moussus et al. 

2011; Visser & Both 2005).  

Reviews have helped build a picture of patterns of avian breeding behaviour in response to 

climate change worldwide. Parmesan & Yohe (2003) identified 78 out of 168 species for 

which long-term trends for earlier laying have been recorded in the literature. The trend for 

earlier laying is particularly pronounced in passerines. For 45 (out of 57) species for which 

evidence was collated documenting trends for earlier egg-laying 36 were passerines (Dunn 

2004), a pattern consistent with other reviews (Crick et al. 1997; Crick & Sparks 1999).  

Earlier laying was also consistently related to temperature in passerines. Crick & Sparks 

(1999) noted that whilst patterns of laying date were found to be accounted for by changes 

in climate in the majority (86%) of species of all orders, earlier laying was strongly 

associated with pre-breeding (March / April) temperatures in 7 species (winter wren, 

dunnock, blackcap, willow warbler, spotted flycatcher, long-tailed tit & greenfinch) all 

passerines (Crick & Sparks 1999).  

Variation is also evident between populations of the same species, some showing a clear 

response, with earlier egg-laying associated with increased temperatures (Dolenec & 

Dolenec 2011; Winkler et al. 2002; Vidyasagar 1999; Both & Visser 2001; Cresswell & 
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McCleery 2003; Crick et al. 1997), others showing no advancement in laying date at all 

(Visser et al. 2003; Gienapp et al. 2006; Ahola et al. 2012). Heterogeneity between 

populations in their breeding phenology and response to increasing temperatures has been 

most well documented in ‘model’ tit and flycatcher species. 

Contrasting patterns of laying date have been observed between populations of great and 

blue tits from several long-term study sites (Table 1.1). Significant advances in laying date 

in great tits from the UK, Belgium and the Netherlands (Visser et al. 2003; Husby et al. 

2010; Matthysen et al. 2011) were not exhibited by populations in France, Finland, Russia 

or other Dutch sites (Table 1.1) (Visser et al. 2003).  Similarly in 12 populations of blue tits 

only 4 displayed significant advances in laying date (Table 1.1) (Visser et al. 2003; Potti 

2009). 

Patterns of laying date also vary between populations of tits and flycatchers breeding in the 

same location. Both blue tit and pied flycatcher populations in Spain have advanced their 

laying date but  the flycatchers have done so a slower rate than the sympatric and resident 

tit species, with blue tits and flycatchers laying approximately 0.41 / 0.2 days per year 

earlier respectively (1984-2007) (Potti 2009). Whilst there was no difference in the slope of 

the response the blue tits responded much more strongly to temperatures earlier in the 

season (Potti 2009), consistent with other studies showing the relationship between laying 

date and temperature strongest for great tits during the period 2nd April – 7th May, and for 

flycatchers 5th-28th May (Ahola et al. 2007).   

A migratory species the breeding phenology of pied flycatchers is constrained by their 

arrival date as they are not exposed to temperatures or vegetation / prey phenology at 

nesting locations before their arrival at nesting sites. Several populations of pied flycatcher 

have shown no trend for earlier laying (Sanz et al. 2003; Both et al. 2004; Ahola et al. 2007; 

Ahola et al. 2012) resulting in reduced reproductive success (Merilä, Kruuk, et al. 2001; 
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Sanz et al. 2003; Both et al. 2004). Out of 25 populations of pied / collared flycatcher 9 have 

exhibited a significant shift to earlier laying (Both et al. 2004) with the Hogue Veluwe pied 

flycatcher population advancing their laying date by 10 days over a 20 year period. Despite 

these advances the shift is insufficient to maintain synchrony with their prey (Both & Visser 

2001; Both et al. 2004; Both et al. 2006), a situation mirrored by the Hogue Veluwe great tit 

population, which are also failing to track the changing phenology of the winter moth 

(Visser et al. 1998; Visser et al. 2004; Nussey et al. 2005). 
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Table 1.1. Adapted from Visser et al. (2003). Patterns of laying date in multiple populations of blue (BT) and great (GT) tits, obtained by regressing the annual mean 

population laying date against year for all populations separately. Countries are France (F), Belgium (B), the Netherlands (NL), United Kingdom (UK), Russia (RU), Finland 

(FIN) and Spain (SP). Results are from Visser et al. (2003) unless otherwise stated. Significant results are highlighted in bold. Years of data collection: Visser et al. (2003); 

1979-1998, Matthysen et al. (2011); 1979-2007, Husby et al. (2010); 1973-2006, Ahola (2009); 1953-2008, Potti (2009); 1984-2007.  

   Number of Years p-value laying date 

versus year 

Slope laying date versus year 

(s.e.) 

Source 

Study site Country Coordinates GT BT GT BT GT BT  

Pirio (Corsica) F 42˚23’ N, 08˚45’ E 0 20 n.a. 0.963 n.a. -0.008 (0.168)  

Ventoux F 44˚35’ N, 05˚25’ E 20 20 0.175 0.158 -0.367 (0.260) -0.326 (0.221)  

Hutsepot B 51˚01’ N, 03˚70’ E 20 20 0.025 0.015 -0.509 (0.209) -0.535 (0.200)  

Boswachter B 51˚16’ N, 04˚29’ E 29 29 0.001 <0.001 -0.416 (0.111) -0.412 (0.110) Matthysen et 
al. (2011) 

Liesbos NL 51˚35’ N, 04˚40’ E 20 20 0.383 0.134 -0.177 (0.198) -0.337 (0.215)  

Wytham Wood UK 51˚47’ N, 01˚20’ W 33 0 <0.001 n.a. -0.367 (0.090) n.a. Husby et al. 
(2010) 

Treswell UK 53˚18’ N, 00˚51’ W 20 20 0.021 0.093 -0.538 (0.213) -0.417 (0.236)  

Oosterhout NL 51˚55’ N, 05˚50’ E 20 19 0.626 0.112 -0.101 (0.204) -0.409 (0.244)  

Warnsborn NL 52˚05’ N, 05˚50’ E 20 20 0.017 0.134 -0.404 (0.153) -0.290 (0.185)  

Hoge Veluwe NL 52˚05’ N, 05˚50’ E 33 0 0.007 n.a. -0.196 (0.079) n.a. Husby et al. 

(2010) 

Vlieland NL 53˚15’ N, 05˚00’ E 20 20 0.227 0.493 -0.200 (0.160) -0.086 (0.123)  

          

Zvenigorod RU 55˚44’ N, 36˚51’ E 19 0 0.544 n.a. -0.118 (0.190) n.a.  

Oulu FIN 65˚03’ N, 25˚26’ E 13 0 0.200 n.a. -0.534 (0.392) n.a.  

Haukipudas FIN 65˚05’ N, 25˚34’ E 16 0 0.395 n.a. -0.236 (0.269) n.a.  

Harjavalta & 

Askainen 

FIN 61˚20’ N, 22˚10’ E / 

60˚30’ N, 21˚45’ E  

57 0 0.97 n.a. 0.0013 (0.039) n.a. Ahola (2009) 

La Hiruela SP 41˚04’ N, 03˚27’ E 0 21 n.a. 0.022 n.a. -0.410 (0.170) Potti (2009) 
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1.2 Study species 

1.2.1 Great tits 

Passeriformes are the largest order of birds containing roughly 60% of all species, many of 

which are prolific and widespread. Readily nesting in nest boxes (Perrins 1965; Kruuk 2004; 

Husby et al. 2012) and with short generation spans, the ease with which many species of 

passerine can be studied makes them ideal subjects for quantitative genetic analyses, with 

long-term studies capable of generating substantial quantities of data (Visser et al. 2003; 

Brommer et al. 2005; Wilkin et al. 2009; Tarka et al. 2010; Ahola et al. 2012; Husby et al. 

2012; Vedder et al. 2013; Thorley & Lord 2015). 

The great tit (Parus major) is a social, common and widespread passerine with a 

distribution that extends through Europe, North Africa and Asia (BirdLife International 

2015). Prolific in Europe with a population size that appears to be increasing (BirdLife 

International 2015), the species is not currently of conservation concern. Great tits occupy 

a wide range of habitats including deciduous and mixed woodland (Gosler et al. 2013) and 

are instantly recognisable as a common garden bird in Europe, with a black cap and breast 

stripe, yellow chest, white cheeks, and blue / green colouration on the back and wings 

(Figure 1.1). Though superficially similar, males are typically distinguished from females by 

having a broader and more defined black chest stripe.   
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Figure 1.1. Great tit (Parus major) (Photo credit: authors own) 

Great tits are primarily insectivorous during the spring and summer, feeding their chicks on 

caterpillars of the winter moth (Operophtera brumata) (Perrins 1965; van Balen 1973; van 

Noordwijk et al. 1995; Visser et al. 2006; van Asch et al. 2007) but will forage on seeds and 

berries when numbers of their insect prey are low (Snow & Perrins 1998). Great tits are a 

monogamous and territorial bird (Krebs 1971; Krebs 1982; Drent et al. 2003; Wilkin et al. 

2006). Egg-laying in Europe generally begins in April. Like many passerines the great tit is a 

cavity nester and readily utilises nest-boxes (Gosler et al. 2013; Garroway et al. 2013).  

Clutch sizes generally range from six to eleven eggs in Europe (Haftorn 2012). In the UK the 

British Trust for Ornithology’s (BTO) Next Record scheme has documented an eight day 

advance in laying date in the species since the 1960’s (Crick & Sparks 1999). Variable 

patterns of laying date in the species have been observed between populations across 

Europe (Visser et al. 2003), with advances attributed to an effort to maintain synchrony 

with peak prey abundance (Charmantier et al. 2008), though some populations have shown 

no advance at all (Gienapp et al. 2006; Ahola et al. 2009).   

 



 

26 

 

1.2.2 Predator and prey phenology 

The emergence of winter moth (Operophtera brumata) caterpillars in spring, timed to 

coincide with oak tree budburst is a crucial event in the life cycle of great tits in Europe, 

which rely on them during the breeding season (McCleery & Perrins 1998; Naef-Daenzer et 

al. 2000; Visser et al. 2006; Visser, te Marvelde, et al. 2011; Reed, Jenouvrier, et al. 2013). 

The consequences of a mismatch between budburst and emergence for the caterpillars is 

so severe (van Asch et al. 2007) that the lifecycle of the winter moth has been 

experimentally proven to retain synchrony with oak tree budburst even when exposed to 

elevated temperatures (Buse et al. 1999).  

Consistently cited as ‘the most important prey for nestling tits’ (van Balen 1973), the 

significance of caterpillar emergence for great tit reproductive success is well documented 

with lower chick mass, body size and fledgling success all being the consequences for 

females that breed late relative to the food peak (Reed, Jenouvrier, et al. 2013; Visser et al. 

2006; Buse et al. 1999; Gienapp, van Noordwijk, et al. 2013). In comparison, females 

capable of responding more strongly to temperature and consistently lay earlier confer a 

greater survival advantage to their offspring and successfully recruit more chicks into the 

population (Nussey et al. 2005; Perrins 1970; Visser et al. 2006; Reed, Jenouvrier, et al. 

2013).  

1.2.3 Wytham 

Data on lay date come from a long-term study of great tits in Wytham Woods (Lack 1964), 

a Site of Special Scientific Interest in Oxfordshire, UK (51°46′N, 1°20′W). Designated an SSSI 

in 1950, the 375 acres of largely deciduous woodland that comprise Wytham Woods have 

formed the backdrop for numerous ecological studies (Watts 1968; Krebs 1971; King 1976; 
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Krebs 1982; Kirby & Thomas 2000; Perrins 2001; Macdonald et al. 2002; Wilkin et al. 2006; 

Savill et al. 2010; Culina et al. 2015).  

Monitoring of the great tit population began in 1947 (Lack 1958; Lack 1964) and continues 

to the present day, overseen and managed by the University of Oxford. About 1020 nest 

boxes are provided for nesting in Wytham Woods, of which 250-450 are used annually 

(Garroway et al. 2013). Metal rings with a unique identifier code are affixed to the legs of 

every adult caught and chick hatched in the site.  

Morphological measurements and behavioural observations recorded annually enable the 

life-histories of individual birds to be documented in detail. About 400 pairs of great tits 

inhabit the wood with around 2,000 chicks hatching each year. A total of around 80,000 

birds have been ringed and studied since records began (B. Sheldon, pers. comm). 

Morphometric measures such as wing length and characteristics such as age (where 

known) are recorded for every bird caught. For female birds information associated with 

each breeding attempt includes various parameters describing the physical location of the 

nest such as GPS coordinates, altitude and the area of the wood where the nest has been 

constructed.  Wytham is divided into nine areas each with a unique code (Figure 2.1).  
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Figure 1.2. Map of Wytham Woods, Oxford (UK) highlighting the nine research areas and position of 

nest boxes (black dots) (with permission, Reinder Radersma). 

The laying date of every breeding attempt is recorded as the number of days after April 1st 

(designated the official start of the breeding season) that the first egg was laid in each nest. 

Any breeding events that occurred more than 30 days after the first recorded breeding 

event of the year were removed as these are likely to represent second clutches (van 

Noordwijk et al. 1995). 

1.2.4 Hoge Veluwe 

Insights into great tit ecology in the Netherlands are derived from studies of populations 

inhabiting four main study sites; Liesbos (51°35′ N, 04°40′ E), Oosterhout (51°55′ N, 

05°50′ E), Vlieland (53°15′ N, 05°00′ E) and Hoge Veluwe (52°05′ N, 05°50′ E). These sites 

represent some of the earliest and longest running models for long-term monitoring of any 

wild animal and were the inspiration for great tit and blue tit research as Wytham Woods 

(Lack 1964; Kluijver 1951). 
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Figure 1.3. Location and map of Hoge Veluwe national park in the Netherlands (from (Hein 2011)) 

Of these sites the two largest, Vlieland and Hoge Veluwe, though comparable in pedigree 

size have fundamentally different population dynamics (van Noordwijk et al. 1981; Postma 

& van Noordwijk 2005; Gienapp, van Noordwijk, et al. 2013). Vlieland is an island; Hoge 

Veluwe represents 171 ha of mixed pine and oak woodland (van Noordwijk et al. 1981; 

Visser et al. 2006) (Figure 1.3), more similar in habitat type and ecosystem to Wytham 

Woods (Perrins 1965; Krebs 1971; Savill et al. 2010). Of the Netherlands populations the 

great tit population of Hoge Veluwe is the focus for analyses of patterns of reproductive 

behaviour in this study. Four hundred nest boxes are situated in the park and an average 

125 pairs of great tits breed in the area (Gienapp et al. 2006). 

The same principles used to collect phenotypic and genetic data from the great tits of 

Wytham Woods are applied to data collection in Hoge Veluwe. Birds are caught and ringed 

with metal and / or colour rings during the breeding season (chicks are ringed in the nest) 

to identify individuals. Assuming one egg is laid per day, laying date is calculated from the 
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number of eggs found in the nest and recorded as number of days from April 1st (Gienapp 

et al. 2006; Visser et al. 2006). Only first clutches are used in analyses.   

1.3 Patterns of laying date in Parus major 

The existence of several long term studies of the great tit Parus major, some of which are 

the longest in existence for any wild vertebrate (Krebs 1971; Krebs 1982; Visser et al. 2003; 

Garant et al. 2004; Matthysen et al. 2011; Garroway et al. 2013; Gienapp, van Noordwijk, et 

al. 2013), has ensured that there is an extensive record of laying date trends in this 

particular species. Variable responses to perceived mismatches have resulted in substantial 

variation between populations of the species.  

A comparative study of the breeding responses of 13 great tit populations identified 5 sites 

where laying date has significantly advanced with marked variation in the responses of 

populations inhabiting different locations (Table 1.1) (Visser et al. 2003). Finnish great tit 

populations consistently respond to variation in breeding time temperature by laying 

earlier in warm springs, though the shifts are non-significant (Ahola et al. 2007; Ahola et al. 

2009). In contrast temperature increases of 0.091˚C over a 29 year period resulted in a 

significant advance of 0.42 days / year in the laying dates of great tits in Belgium, the 

breeding phenology of birds in this location able to maintain synchrony with the peak in 

caterpillar abundance (Table 1.1) (Matthysen et al. 2011).   

The laying date of the Wytham Woods great tits has advanced by about 14 days over 47 

years in response to the earlier emergence of their winter moth larvae prey (Charmantier 

et al. 2008). The best predictor for laying date in this population was estimated to be 

temperatures between 15th March - 25th April (Husby et al. 2010) and mean temperatures 

in Wytham in this period increased by 0.048˚C / year between 1965-2008 (Garant et al. 
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2008), with a concurrent shift in laying date of 0.37 days / year (Table 1.1) (Husby et al. 

2010).  

Conversely early studies documenting the laying date of the Hoge Veluwe great tits found 

no advancement, resulting in asynchrony between chick hatching and caterpillar 

abundance (Visser et al. 1998; Visser et al. 2006). Between 1973-2003 laying date advanced 

by 5.4 days in response to temperature increases of 1.7˚C over this period but the shift was 

non-significant (p 0.06) and insufficient to maintain synchrony with prey phenology 

(Gienapp et al. 2006). However given strong directional selection and mean laying dates 

closely associated with mean half fall (peak caterpillar abundance) the expectation was that 

this population would eventually show an adaptive trend for earlier laying (Gienapp et al. 

2006; Visser et al. 2006).   

Laying date is closely related to temperature in both the Wytham and Hogue Veluwe 

populations, with pre-breeding temperatures increasing at similar rates and similar slopes 

in the reactions of both populations in each location (Husby et al. 2010). The relationship is 

significantly weaker in Hogue Veluwe with laying date shifting at half the rate of that 

observed in the Wytham population (HV; 0.2 days / year, WY; 0.37 days / year) (Husby et 

al. 2010). However recent evidence of the first significant early laying trend in the Hogue 

Veluwe population (Table 1.1) (Husby et al. 2010) suggests that phenological changes may 

have been masked in earlier studies by insufficient data coupled with a small magnitude of 

response.    

Changes in environmental conditions and the phenology of other organisms at fine spatial 

scales may provide some explanation for the variation in laying date trends between 

populations. The absence of significant temperature changes in the most northern latitudes 

and evergreen (and thus unchanging vegetation / prey phenology) in the most southerly 

latitudes renders shifts in laying date unnecessary (Visser et al. 2003), reflected in the 
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absence of a response (Table 1.1). The defining patterns exhibited by Wytham and Hogue 

Veluwe are an adaptive population-level response in Wytham with females relatively 

invariant in their own responses to temperature, contrasted by high levels of individual 

plasticity but an insufficient population response in Hogue Veluwe (Nussey et al. 2005; 

Charmantier et al. 2008). 

Contrary to other studies that have attributed trends directly to climate change, Visser et 

al. (2003) found temperature alone insufficient to explain variation in laying date, but 

instead found evidence that a decreasing incidence of second broods was counterbalancing 

selection for earlier laying, partially accounting for failures to synchronise laying date (and 

subsequently hatching date) with prey abundance. While laying date has a significant 

heritable component, the response to selection may be too small to be detected by current 

statistical methods (Gienapp et al. 2006).  

1.3.1 A genetic component to laying date 

With the development of advanced evolutionary genetic and statistical techniques, real-

world studies of avian species have drawn a general conclusion that laying date is primarily 

determined by environmental as opposed to genetic factors (Thorley & Lord 2015; Perdeck 

& Cavé 1992; Hakkarainen et al. 1996; Charmantier et al. 2008; Wiggins 1991). Among 

many species, the heritability of laying date is described as modest, and not the largest 

source of variation, relative to phenotypic plasticity (Thorley & Lord 2015; Nussey et al. 

2005; Charmantier et al. 2008; Husby et al. 2010; Brommer 2013; Garant et al. 2008; 

Gienapp et al. 2006).          

However the literature consistently reports a significant additive genetic component of 

variation for laying date in great tits. From as early as 1981 significant heritable variation 

was detected for two out of four populations from long term study sites in the Netherlands 
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(Noordwijk et al. 1981), with support coming from estimates made in subsequent decades 

(Nussey et al. 2005; Gienapp et al. 2006). The highest estimate (0.30) was obtained in 2005 

(Nussey et al. 2005), while the most recent estimate, of approximately 0.17, concurs with 

the earliest estimate (van Noordwijk et al. 1981; Gienapp et al. 2006).  

Heritability estimates for the Wytham population have varied more widely. Both the time 

period considered, the methodological approach taken, and the abiotic / biotic factors 

taken into account in the calculation have resulted in estimates ranging from 0.03 to 0.24 

(van der Jeugd & McCleery 2002; McCleery et al. 2004; Garant et al. 2008; Liedvogel et al. 

2012). In general it appears laying date has a modest, but significant genetic component in 

most great tit populations including the ones studied in this thesis. 

Evidence for the role of genetics in determining laying date has been illustrated by 

experiments in the Netherlands on captive great tits. Visual stimuli alone were shown to be 

insufficient to generate an early breeding response (Schaper et al. 2011) and female birds 

from early-laying maternal lineages laid their eggs earlier, suggesting that the timing of egg-

laying is heritable (Visser, Schaper, et al. 2011). This was further supported by subsequent 

experiments that found that birds from early or late laying maternal lineages responded 

differently to temperature cues during certain periods, with a cold February / March 

followed by a temperature increase advancing the onset of laying in early layers and 

delaying it in late layers (Schaper et al. 2012).  

However studies with the capacity to investigate microevolution for laying date in response 

to climate change have found it either to be absent (Gienapp et al. 2008) or attribute 

variation to phenotypic plasticity (Charmantier et al. 2008; Nussey et al. 2005; Gienapp et 

al. 2006). 
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1.4 Gene mapping and quantitative genetics  

Gaining an understanding of the genotypes that explain phenotypes and the effect of 

naturally occurring genetic variation on the fitness of populations are some of the most 

fundamental pursuits of evolutionary genetics (Falconer & Mackay 1996; Stinchcombe & 

Hoekstra 2008; Mackay et al. 2009). To understand how an organism can adapt by means 

of a micro-evolutionary response requires a method by which we can determine the extent 

to which variation in certain traits is influenced by genetic variation. Mathematical 

modelling tools exist to enable us to determine whether the potential for animals to adapt 

is in their genes. With pedigree and phenotypic information for animal populations 

quantitative genetics can enable us to elucidate the mechanisms of inheritance and their 

evolutionary potential (Wilson et al. 2010).  

Quantitative genetics is the study of continuously varying traits, those that do not fall into 

discrete classes, human height being the classic example (Galton 1886; Fisher 1918; Yang et 

al. 2010). Quantitative genetics is a statistical method that uses so called ‘animal models’ to 

separate phenotypic variation into its genetic and environmental components (Wilson et al. 

2010). The science of quantitative genetics has been around for around a century, and is 

primarily used to improve yields in plants and animals under artificial selection (Nezer et al. 

1999; Venuprasad et al. 2009; Hayes et al. 2010; Dekkers 2012). The potential of 

quantitative genetics as a tool in the study of evolutionary biology was realised in the 80s, 

and has since been used to study the inheritance of phenotypic traits in a wide variety of 

organisms (Kruuk 2004; Slate 2005; Beraldi, McRae, Gratten, Pilkington, et al. 2007; Kruuk 

& Hill 2008; Hernández-Sánchez et al. 2010). 
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1.4.1 Identifying genes responsible for heritable variation in wild animals 

Identifying the genes underpinning variation in phenotypic traits is a fundamental goal of 

evolutionary biology (Ellegren & Sheldon 2008; Slate et al. 2010). The number and 

magnitude of loci can enable predictions to be made about potential responses to 

selection, with traits likely to respond faster if variation is mediated by loci of large effect 

(Charmantier et al. 2014). Classical quantitative genetic theory assumes that continuously 

varying or quantitative traits are likely to have complex (polygenic) genetic architectures 

with many genes of small effect contributing to overall phenotypic expression (Falconer & 

Mackay 1996; Lynch & Walsh 1998). This has largely been substantiated in the human and 

domestic animal scientific literature with variation in quantitative traits such as human 

height ascribed a polygenic basis (Yang et al. 2010; Visscher 2008; Lango Allen et al. 2010; 

Yang, T. Lee, et al. 2013; Franke et al. 2010; Dekkers 2012; Do et al. 2013; Carneiro et al. 

2014; Daetwyler et al. 2008; Kolbehdari et al. 2008; Goddard & Hayes 2009; Buckler et al. 

2009). 

The challenge of describing the genetic architecture of traits in wild animals is typical 

exacerbated by small sample sizes. Genomic analyses performed on domestic animals and 

humans benefit from ease of access to their subjects and datasets can comprise hundreds 

to hundreds of thousands of subjects (Yang, T. Lee, et al. 2013; Visscher et al. 2007; 

Pimentel et al. 2011; Do et al. 2013; Vaysse et al. 2011). A consequence of the complexity 

of studying wild organisms is that few long-term studies have accumulated datasets with 

sufficient individuals and generations to make the detection of genetic variants of small 

effect viable. Despite some occasional evidence for single genes of genuinely large effect 

(Paterson et al. 1991), the magnitude of QTL tends to be overestimated when small sample 

sizes are used, a phenomenon known as the ‘Beavis effect’ (Beavis 1994; Slate 2013). For 

polygenic quantitative traits, where many small effect QTL contribute to trait variation, 
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small sample sizes may result in reduced (or even zero) statistical power to identify those 

regions harbouring genetic variants (Kroymann & Mitchell-Olds 2005).     

In wild animal populations linkage mapping has identified QTL for a variety of 

morphological traits. The first QTL were mapped in a pedigreed population of red deer on 

the Isle of Rum (Slate et al. 2002) followed by linkage mapping of phenotypic traits in other 

ungulates such as Soay and bighorn sheep (Hernández-Sánchez et al. 2010; Beraldi, McRae, 

Gratten, Slate, et al. 2007; Beraldi, McRae, Gratten, Pilkington, et al. 2007; Gratten et al. 

2010; Gratten et al. 2007; Poissant et al. 2012).  

Contrary to the widely observed polygenicity of complex human traits (Yang, T. Lee, et al. 

2013; Lango Allen et al. 2010; Yang, Manolio, et al. 2011) a number of linkage mapping 

studies of wild animals have identified loci of large effect, for horn size in the Soay sheep 

(Johnston et al. 2010; Johnston et al. 2011), wing length in the great reed warbler (Tarka et 

al. 2010) and morphology between benthic and limnetic forms of the three-spine 

stickleback (Colosimo et al. 2004).  

Replication is the surest way of distinguishing whether traits in wild animals depart from 

the polygenic model (Schielzeth & Husby 2014; Charmantier et al. 2014). The locus on 

chromosome 10 responsible for horn-type in Soay sheep was replicated using a variety of 

statistical techniques (Johnston et al. 2010; Johnston et al. 2011) but the locus does not 

affect the same phenotype of many other bovid species (Johnston et al. 2011).  

Direct comparisons between populations of the same species are even more challenging as 

cases where sufficient genomic and phenotype data are available for multiple distinct 

populations are rare. Colosimo et al. (2004) were able to determine that a single locus of 

large effect explains variation in the same trait in geographically separated populations of 
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threespine sticklebacks (Gasterosteus aculeatus) but few other such examples exist for wild 

animals.  

Genome-wide analyses provide support for many loci of small effect contributing to 

variation in complex behavioural and physiological traits across wild animals as a result of 

increasingly sophisticated genotyping technologies and denser marker maps (Houde et al. 

2013; Johnston et al. 2014; Lotterhos & Schaal 2014; Weber et al. 2013; Greenwood et al. 

2015). In great tits, studies of wing length (Robinson et al. 2013), clutch size and egg mass 

(Santure et al. 2013) employing  range of statistical methods found no evidence for QTL of 

large effect for any trait. A polygenic genetic architecture for clutch size was supported by 

evidence from collared flycatchers where a significant association detected on 

chromosome 18 explained only a small fraction of the phenotypic variance (3.9%), leading 

the authors to conclude that variation in clutch size is most likely determined by many 

genes of small effect (Husby et al. 2015).   

Few studies have succeeded in identifying the genetic variants associated with phenotypic 

variation in wild organisms.  Of those studies to attribute a genetic component to 

phenotypic variation (Réale et al. 2003; Møller 2001; Pulido & Berthold 2003) the 

conclusions in most cases have been based on purely phenotypic, as opposed to genetic 

data (Gienapp et al. 2008), and in a number of cases describe the non-genetic component 

(responses to environmental cues and phenotypic plasticity) as explaining a relatively larger 

proportion of the phenotypic variance (Tarka et al. 2015).  

Environment-induced changes in an individual’s behaviour, morphology or physiology, are 

collectively termed ‘phenotypic plasticity’ (Price et al., 2003) and are considered essential 

for survival in a heterogeneous environment (Lind and Johansson, 2011) and for enabling 

rapid short-term responses to increase the chances of survival (Visser et al. 2004; Yeh & 

Price 2004; Vedder et al. 2013). Phenotypic plasticity as opposed to microevolution is 
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responsible for adaptation in a number of traits in vertebrates (Canale & Henry 2010; 

Gienapp et al. 2008) including laying date and migration in avian species (Tarka et al. 2015; 

Charmantier et al. 2008; Nussey et al. 2005; Przybylo et al. 2000; Dingemanse et al. 2012; 

Vedder et al. 2013; Reed, Grotan, et al. 2013; Gienapp et al. 2006).  

However, the reaction norms that allow individual’s flexibility in their environment are 

unlikely to be optimal outside of the conditions in which they evolved (Ghalambor et al. 

2007; Charmantier et al. 2014; Visser et al. 2004), resulting in reduced survival and 

increased chance of extinction (Lynch & Lande 1993; Burger & Lynch 1995). A genetic 

component to trait variation, upon which selection can act, would enable adaptation by 

means of microevolution and therefore could enable the persistence of populations. 

1.4.2 Mapping QTL 

QTL (quantitative trait loci) are regions of the genome that explain some of the variation in 

continuously varying traits (Slate et al. 2010). Linkage mapping of QTL can be performed 

subject to three basic requirements; a genetic map of variable markers, a pedigree with 

which to follow segregation of those markers and phenotypic data for life history traits 

such as reproductive success for each individual included in the pedigree (Slate 2005).  

Linkage and association (linkage disequilibrium) mapping are two methods commonly 

employed to dissect the genetic architecture underpinning quantitative traits. Linkage 

mapping using an animal model / variance components approach partitions potential 

sources of trait variation into their genetic and non-genetic components using available 

pedigree information (Slate et al. 2010; Hernández-Sánchez et al. 2010). Genome Wide 

Association Mapping (GWAS) scores thousands of SNPs simultaneously to detect statistical 

associations based on the amount of LD between causal variants and markers (Slate et al. 

2010; Pritchard & Przeworski 2001; Korte & Farlow 2013).  
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Linkage mapping exploits recent recombination events to examine the co-segregation of 

marker and trait alleles in a population of genotyped individuals (Hirschhorn & Daly 2005; 

Charmantier et al. 2014), and has considerable power to detect loci of large effect 

(Jimenez-Sanchez et al. 2001; Cardon & Bell 2001; Hirschhorn & Daly 2005). However, 

linkage analysis has much less power to identify causal variants in the absence of clear 

segregation (Cardon & Bell 2001), maps QTL with limited resolution and struggles to 

accurately estimate effect sizes (Hirschorn & Daly 2005; Slate et al. 2010; Korte & Farlow 

2013).  

Using ancestral recombination to detect statistical associations between marker and trait 

alleles (Cardon & Bell 2001; Charmantier et al. 2014), association mapping can detect QTL 

at much higher resolution and estimate effect sizes with a greater degree of accuracy 

(Korte & Farlow 2013). The limitations of association analyses include difficulty in detecting 

variants of low penetrance or small effect (Wang et al. 2005; Korte & Farlow 2013), and a 

tendency to overestimate effect sizes in the absence of sufficient sample sizes (Cardon & 

Bell 2001; Göring et al. 2001). Linkage mapping may lack precision but is also less prone to 

Type I error (Slate et al. 2010; Charmantier et al. 2014).         

Strong physical linkage between a SNP marker and QTL increases the likelihood of 

detecting a statistically significant association between that SNP and the trait of interest 

(Slate 2005). GWAS analyses have the potential to detect QTL at much higher resolution 

than linkage mapping, but the requirement of high marker densities meant that for a long 

time their application was beyond the scope of wild animal genomic studies. The increasing 

availability of genomic information, together with more advanced and cheaper genotyping 

technologies is increasingly enabling the genetic basis of trait variation to be described for 

a much wider variety of species (Bush & Moore 2012; Hill 2012; Schielzeth & Husby 2014).  
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Early mapping studies suffered from being unable to pinpoint QTLs to a precise location 

(Slate et al. 2009). Constraints were imposed by limited genomic information, few typed 

individuals, and insufficient marker densities to detect marker alleles in linkage 

disequilibrium with genes responsible for phenotypic variation (Slate et al. 2010). The 

development of new more efficient and cost-effective genotyping technologies (Metzker 

2010; Hudson 2008; Narum et al. 2013), together with the discovery of a suite of new 

genetic markers such as single nucleotide polymorphisms, or SNPs (Lynch & Walsh 1998), 

greatly facilitated the rise of molecular quantitative genetics as one of the primary tools for 

our understanding of evolution in wild populations. Next-generation sequencing 

technologies have the capacity to produce extensive quantities of data cheaply, in some 

cases performing billions of sequencing reactions simultaneously (Metzker 2010). 

1.4.3 Partitioning variance 

Complimentary to both linkage analyses and association mapping, genome or chromosome 

partitioning is a statistical technique that does not identify individually associated SNPs but 

estimates the cumulative contribution to phenotypic variation of markers in distinct 

(normally autosomal) blocks. The method works by comparing the similarity between 

relatives as an exact proportion of the genes they have in common (Visscher et al. 2006). 

Relationship matrices consisting of estimates of marker based relatedness between 

individuals are constructed for each chromosome and fitted within an animal model 

(Robinson et al. 2013). Variance is then partitioned across chromosomes and statistical 

testing used to determine whether any contribute a significant proportion of the additive 

genetic variation.    

Under a polygenic mode of inheritance it would be expected that the amount of variation 

explained by each chromosome would positively scale with features such as chromosome 

size or length as bigger blocks harbour more genes and subsequently are the source of a 



 

41 

 

greater amount of variation. The theoretical expectations of the method have been 

substantiated by descriptions of the polygenicity of complex traits in a number of 

organisms. Relationships where variation explained was proportional to chromosome size 

or length has been observed for height and body mass index (Visscher et al. 2007; Yang et 

al. 2010; Yang, Manolio, et al. 2011; Yang, T. Lee, et al. 2013), as well as neurobehavioural 

disorders OCD, Tourette syndrome and schizophrenia (Lee et al. 2012; Davis et al. 2013) in 

humans. Similar observations have been made for commercially important production 

traits and disease resistance in cattle, sheep and chickens (Pimentel et al. 2011; Al-Kalaldeh 

et al. 2013; Yi et al. 2015), as well as clutch size and wing length in great tits (Robinson et al. 

2013; Santure et al. 2013), the first instance of genome partitioning being applied to a wild 

animal population.      

1.4.4 SNP markers 

Modern quantitative studies utilise single nucleotide polymorphism (SNP) markers (Morin 

et al. 2004; Mackay et al. 2009; Slate et al. 2009; van Bers et al. 2010; Speed et al. 2012). 

SNPs are point mutations that result in a single nucleotide alteration in the genome 

sequence (Brumfield et al. 2003) and are the most abundant form of genetic variation to 

occur in most, if not all, organisms. The high frequency at which SNPs occur throughout the 

genome mean it is highly likely to find SNPs in close proximity to genes / genomic regions of 

interest (Seddon et al. 2005), which predisposes them to studies of additive genetic 

variation. The accumulation of genomic information for a variety of species adds to the 

suitability of SNPs for analysis of ecological and evolutionary processes (Morin et al. 2004).  

Their simple mutational nature and the ease with which they can be screened, makes SNPs 

suitable for rapid and cost-effective gene mapping (Brumfield et al. 2003). SNP maps have 

accelerated genetic mapping in a number of species including the zebra-fish (Danio rerio) 

(Stickney et al. 2002) and mouse (Mus musculus domesticus) (Lindblad-Toh et al. 2000) with 
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new technologies able to infer genotypes from under-sequenced animal populations and 

thus more effectively map QTL (Baird et al. 2008). Twenty thousand novel SNPs detected 

before the existence of a sequenced genome in the great tit (Parus major) (van Bers et al. 

2010) provided one of the largest frameworks for molecular analysis of the evolutionary 

genetics of a wild bird.   

1.4.5 Great tit genetic resources 

Extensive efforts have been made to generate a comprehensive set of resources that can 

be used for analyses of the genetic architecture of phenotypic variation in the great tit (van 

Bers et al. 2010; Santure et al. 2011; van Bers et al. 2012; van Oers et al. 2014). In the 

absence of a sequenced genome for the great tit, following a methodology proposed by 

Kerstens et al. (2009) for the development of genetic resources for unsequenced species, 

the mapping of short sequence reads into contigs enabled the discovery of over 20,000 

novel SNP markers (van Bers et al. 2010).   

Linkage maps were then constructed for application to linkage and association mapping. 

Based on alignment of contigs to the Zebra finch genome, the total genome coverage for 

two great tit populations from the Netherlands and the UK was 97.1% for the NL map and 

98.3% for the UK map (Santure et al. 2011). The framework linkage maps for both the UK 

and NL populations are constructed for 32 of the great tit chromosomes (1-15, 17-24, 26-

28, 1A, 4A, 25A, 25B, LGE22 and Z) (van Oers et al. 2014).  

For the UK population the framework map is based on 1656 individuals and consists of 

1674 single nucleotide polymorphism (SNP) markers covering 1893cM. A denser 

‘parsimonious’ linkage map was constructed using 5591 markers, consisting of 4878 

‘chromosome-assigned’ SNP markers and 713 markers putatively assigned a chromosomal 

location based on comparison with the Zebra finch genome (Santure et al. 2013).  The NL 



 

43 

 

framework map contains 1674 markers, and the number of SNP markers placed on the NL 

parsimonious linkage map was 5582 spanning a length of 2010cM (van Oers et al. 2014).  

The difference and significance between framework and parsimonious linkage maps relates 

to their marker density and the downstream analyses that utilise them. The framework 

linkage map only includes those markers that can be ordered with support that is 

statistically significantly stronger than any alternative order, while the parsimonious map 

includes less informative markers ordered in the most likely order, but where alternative 

orders have almost equally strong support (Tarka et al. 2010). The parsimonious map 

increases the power of GWAS by giving greater genome coverage.  

1.5 Aims and objectives 

The complexity of mechanisms underlying variation in quantitative traits ensures that there 

are many unanswered questions in the field of evolutionary biology. Primary among the 

goals of quantitative genetics is the potential to be able to identify causative genes and 

alleles for fitness related traits. We can begin to address the substantial gaps in our 

knowledge of this area by employing quantitative genetic and gene mapping techniques to 

pedigreed wild populations.  

The purpose of this thesis was, for two geographically distinct populations of the great tit 

Parus major 1) to determine whether loci responsible for variation in laying date can be 

mapped, by employing linkage mapping, association analyses and chromosome 

partitioning, 2) to provide a description of the underlying genetic architecture of an 

important life-history trait and 3) compare the results between populations, to discern 

whether the same genomic regions underlie variation in laying date in two populations of 

the same species. 
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2.1 Abstract 

Anthropogenic climate change is predicted to impact ecosystems globally but it is the 

capacity of organisms to adapt to changes at a smaller localised scale that will ultimately 

determine the persistence of populations and potentially entire species. One of the most 

important factors influencing survival in wild animals is the timing of breeding in relation to 

food availability, with the survival of offspring dependent on the availability of ample 

resources around the time of birth. So crucial is the timing of this event that the evolution 

of breeding behaviour of many species has resulted in intricate synchronisation with food 

abundance or prey availability. As a warming climate alters the phenology of species at 

lower trophic levels, organisms dependent on such resources will have to modify their own 

phenology to ensure the survival of their offspring. Whilst rapid environmental changes 

may be expected to elicit rapid evolutionary responses the actual rate of response 

exhibited by organisms is likely to be influenced by many factors. Chief among these is 

presence of genetic variation. It is generally considered that the rate of response of any 

given phenotype to selection is proportional to the amount of additive genetic variation 

that exists for the trait. Detecting the amount of genetic variation attributable to a trait is 

dependent on extensive phenotypic and genomic information the absence of which is 

notable for wild animal species. Using data from one of the few long-term studies of a wild 

vertebrate, the great tit Parus major, I employ linkage and association statistical 

approaches to describe the genetic architecture of a behavioural life history trait and 

attempt to identify genetic variants associated with observed phenotypic variation. No 

regions or genetic markers of genome-wide significance were observed from genome 

scans. Evidence suggests variation in laying date is influenced by a small but significant 

genetic component consisting of many genes of small effect. 
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2.2 Introduction 

With a changing climate predicted to have a range of impacts on animal populations the 

ability and speed with which populations can adapt may prove a deciding factor in their 

survival and persistence. In line with the concept that for any given trait the rate of 

response to selection is conditional on the amount of additive genetic variation of the trait 

(Fisher 1930), theoretically a genetic component to life history or fitness associated 

behavioural traits would enable a micro-evolutionary response. Though directional 

selection would be expected to erode additive genetic variation (Falconer & Mackay 1996), 

a heritable basis for phenotypic variation of fitness-related traits has been documented for 

several wild animal species (Mousseau & Roff 1987; Réale et al. 1999; Merilä, Sheldon, et 

al. 2001; Slate 2005; Ellegren & Sheldon 2008; Teplitsky et al. 2009).  

Despite a consensus that behavioural variation is to a large extent mediated by rapid 

responses to environmental cues, so-called ‘plasticity’ (Przybylo et al. 2000; Price et al. 

2003; Yeh & Price 2004; Nussey et al. 2007; Brommer 2013; Vedder et al. 2013; 

Charmantier & Gienapp 2014) evidence for the role of a genetic component in mediating 

behavioural responses also exists (Dingemanse et al. 2002; Stirling et al. 2002; Drent et al. 

2003; Réale et al. 2009; Visser, Schaper, et al. 2011). However, quantifying the genetic 

component of variation through the identification of causative loci has proven challenging 

with many studies constrained by insufficient phenotype and genomic information to 

conduct genomic analyses (Slate 2005).  

The great tit Parus major represents one of the few wild organisms for which several long-

term studies provide a substantial resource for studying the factors influencing behavioural 

variation. This common passerine synchronises its breeding to the emergence of the winter 

moth caterpillar Operophtera brumata, which form such an important component of the 

nestlings diet that chick hatching roughly coincides with peak abundance of this essential 
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food source (Lack 1958; van Balen 1973; Perrins & McCleery 1989; van Noordwijk et al. 

1995; Eeva et al. 2011) (Chapter 1). 

Caterpillar emergence is strongly correlated with oak (Quercus robur) bud burst, itself 

determined by temperature , and caterpillars are only present in large quantities for a short 

period of time (Gibb 1950; Smith et al. 2011; Visser et al. 2006). Subsequently the window 

for great tits to take advantage of this resource is small. Increasing spring temperatures in 

Wytham Woods, Oxford have caused a shift to earlier emergence of the winter moth 

caterpillar, consequently resulting in a corresponding shift to earlier lay dates in great tits.  

A laying date advancement of 14 days over 47 years has been documented in this 

population, attributed to the birds closely ‘tracking’ the emergence of their prey 

(Charmantier et al. 2008). This change in the breeding phenology is not unique to this 

population, with a cumulative assessment of patterns of lay date in 13 European great tit 

populations detecting significant advances in lay date for 5 of the populations, including 

Wytham and a second UK site (Visser et al. 2003).  

Given the suitability of this species as a model system for studying the genomics of 

morphological and behavioural trait variation, research has already begun to investigate 

the potential for a genetic component to various behaviours.  A heritable basis for risk-

taking and exploratory behaviours in great tits from the Netherlands (Dingemanse et al. 

2002; van Oers et al. 2003) form some of the first studies to demonstrate a genetic 

component to behavioural variation in a wild organism.  

Several studies have identified a significant heritable component of laying date from long-

term studies in the Netherlands (van Noordwijk et al. 1981; Nussey et al. 2005; Gienapp et 

al. 2006) and in the Wytham population, with estimates in the range of 0.03-0.24 (van der 

Jeugd & McCleery 2002; McCleery et al. 2004; Garant et al. 2008; Liedvogel et al. 2012). 
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The most recent study to estimate heritability for lay date in the Wytham great tits used a 

model accounting for fixed and random effects (factors such as female age, which influence 

lay date in individuals) and showed low but significant levels of additive genetic variation 

for the trait with a h2 of 0.03 (SE + 0.01) (Liedvogel et al. 2012).  

Whilst research has indicated the presence of a significant genetic component to avian 

laying date (Perdeck & Cavé 1992; Hakkarainen et al. 1996; Wiggins 1991; McCleery et al. 

2004; Nussey et al. 2005; Gienapp et al. 2006; Brommer et al. 2008; Garant et al. 2008; 

Liedvogel et al. 2012; Thorley & Lord 2015) few studies have had the capacity to attempt a 

description of the trait at the genomic level. A candidate gene approach detected 

significant associations between circadian clock gene CLOCK and breeding phenology in the 

blue tit and barn swallow (Liedvogel et al. 2009; Caprioli et al. 2012) but no such 

association with timing variables has ever been detected in the great tit (Liedvogel & 

Sheldon 2010; Liedvogel et al. 2012).  

Using a phenotypic dataset spanning 26 years and the recently constructed great tit linkage 

map (van Bers et al. 2010; van Bers et al. 2012; van Oers et al. 2014) and genome assembly 

(Laine et al., manuscript in revision), I employ linkage and association statistical analyses to 

conduct scans of the great tit genome and describe the genetic architecture underlying 

variation in laying date. 
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2.3 Methods 

2.3.1. Phenotype data  

The phenotypic dataset for QTL analyses contained 1142 breeding events for 671 females 

and 767 males. GWAS analyses were able to include additional genotyped individuals that 

were previously excluded from QTL analyses because they were uninformative / absent 

from the pedigree. Therefore the GWAS phenotypic dataset consisted of 1523 breeding 

events for 951 females. Breeding event records span a 26 year period from 1985 to 2011.   

2.3.2. Pedigree 

Long-term observation of the Wytham great tit population has enabled the life histories of 

birds across many generations to be recorded in depth, and is recognised as rare example 

of a wild animal population for which a comprehensive pedigree exists. Genetic 

information is obtained by extracting a blood sample from each of the birds as they are 

caught and ringed during each breeding season. The QTL pedigree contains 2709 

individuals linking 1733 genotyped individuals of know parentage. A second dataset 

consisting of 2497 genotyped birds was used for GWAS, from which genotype information 

for 951 females was extracted for use in the analysis.  

2.3.3. Marker data  

From 1985 blood samples have been obtained from individual birds as they are caught for 

the purposes of ringing / to make morphological measurements. Genetic information 

obtained from such samples enabled over two thousand UK birds to be genotyped using a 

10K SNP chip (described in detail elsewhere (van Bers et al. 2010; van Bers et al. 2012)). 

Each of the chromosomes (linkage groups) range in length between 3.68 - 139.88cM (van 

Oers et al. 2014). The different downstream analyses required linkage maps of varying 
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marker densities. The QTL and GWAS analyses were performed using the framework and 

parsimonious linkage maps respectively (van Oers et al. 2014) (Chapter 1).  

Identity-by-descent (IBD) matrices were then generated describing the relatedness of pairs 

of birds at each position on the genome using the software LOKI (ver2.4.5) (Heath 1997; 

Heath et al. 1997; as described in Santure et al. 2013).  

2.3.4. Statistical analysis  

Constructing an animal model 

Prior to QTL mapping, animal models were employed to identify variables (known as 

‘terms’) with a significant influence on phenotypic trait variation and to estimate the 

amount of heritable variation for laying date. Factors influencing trait variation and 

subsequently incorporated into the animal model were identified by statistical analysis 

using two statistical softwares. Fixed factors were determined by linear modelling using 

computing software R (version 3.0.0, (2013)) and random factors determined by 

comparison of models using a likelihood ratio test in ASReml (version 3.0) (Gilmour et al. 

2002).  

All variables with the potential to affect lay date were included as terms in an initial model 

(model 1). Variables outlined in blue were categorised as ‘fixed’ and variables outlined in 

purple categorised as ‘random’ (Table 2.1); 

Layd = age + age^2 + altitude + femaleID + femalePE + maleID + area + year + density_poly  

(model 1 – full model prior to removal of non-significant terms) 
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Table 2.1. Description of the variables included as terms in the initial version of the animal model 

and whether they were designated as ‘fixed’ or ‘random’ effects 

Term Description Classification 

age True age in years. Where age was unknown, 

estimated 2 years old from first capture 

Fixed 

age^2 Age quadratic Fixed 

altitude Height of nest box above sea level (m). 

Altitude varies by 106 m within the study site 

Fixed 

femaleID / maleID Term capturing the additive genetic 

component of variation (VA); relies on 

estimating the relationship matrix between 

pedigreed individuals 

Random 

femalePE Female ‘permanent environment’ effect. Term 

which takes into account repeated measures 

on individual females (necessary where 

multiple breeding events for individual 

females may be recorded over the course of 

their lifetime). This term estimates additional 

non-genetic sources of variance among 

individuals (Wilson et al. 2010) 

Random 

area Wytham is divided into 9 areas, each with a 

unique code 

Random 

year Year of data collection Random 

density_poly Area around each nest box transformed into 

polygon dependent on density of nests in 

immediate area; large polygon indicates nest 

sits in sparsely occupied region, small polygon 

indicates close proximity of neighbouring 

nests 

Random 
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A two-step process of elimination was then employed to determine which terms should be 

retained in the final model. The extent to which each term improved the fit of the model to 

the data was determined by significance testing, by comparing hierarchical models of 

increasing complexity (Wilson et al. 2009). The method of significance testing was 

dependent on each term’s classification as either ‘fixed’ or ‘random’.  

Designating a term as fixed indicates explicit interest in how each level of the term affects 

the trait. Terms assigned as random effects account for other sources of non-independence 

in the data (Wilson et al. 2010). Fixed terms were decided by linear modelling (lm function) 

in R (stepwise backward method) (Appendix 2.1), random terms by significance of the 

likelihood ratio tests (LRT) derived by comparison of models excluding (null model) and 

including the term being tested, conducted in ASReml, and subsequent chi-square 

significance testing (Table 2.2).  

Table 2.2. Statistics associated with the random effects included in the animal model, the likelihood 

ratio test (LRT) score obtained by comparison of the logarithm of the odds scores of the models 

excluding (LOD1) and including (LOD2) the relevant term. Variance components of the final 

polygenic model are highlighted     

Term LRT p value Component Comp/SE D.O.F 

Year 586.32 <0.01 52.84 2.80 1 

Area 34.78 <0.01 1.30 1.63 1 

FemaleID 6.06 0.01 3.84 2.17 1 

FemalePE 67.38 <0.01 3.36 1.82 1 

      

Residual variance   14.73 15.91  

Total variance   76.07  1138 
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Using a chi-square test of significance the model incorporating an additive genetic term 

(‘polygenic’ model) (3) proved a better fit to the data than the model with no term 

capturing the additive genetic variation (2) (p< 0.05) indicating a significant additive genetic 

component (Table 2.2).  

Layd = age + age^2 + altitude + year + area + femalePE    

 (model 2 – estimating variance components without additive genetic component) 

The non-significant terms were sequentially deleted with each modification of the model. 

At the end of the process, only those terms found to be statistically significant (p<0.05) in 

contributing to trait variation remained (model 3).  

Layd = age + age^2 + altitude + femaleID + femalePE + area + year  

       (model 3 – polygenic model) 

This model, the ‘polygenic’ model, enables the estimation of the additive genetic 

component of variation (VA), permanent environment variance (VPE) and residual variance 

(VR) from which total phenotypic variation (VP), heritability (h2), permanent environment 

effect (pe2) and residual variance (r2) can be calculated. 

Complex interactions in the form of regression trees were modelled in R by means of R 

package ‘MASS’ (Venables & Ripley 2002). Regression trees, or tree models, were 

constructed to visualise interactions between fixed effects and laying date. This statistical 

analysis recursively partitions response variables into subsets based on their relationship 

with any number of predictor variables (Prasad et al. 2006). Splits in the tree are 

determined by an exhaustive search procedure, maximising between group sum of squares 

as in analyses of variance (ANOVA analyses) (De’ath & Fabricius 2000; Prasad et al. 2006). 

The result is a diagram illustrating a succession of splits from the top or ‘root’ of the tree, 

with mean values of the response variable at the terminal nodes (Prasad et al. 2006).  
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Of the terms considered in the original animal model (model 1), density-poly and male 

identity were dropped on the basis they do not significantly contribute to variation in lay 

date. Density-poly, a value given to each nest describing the proximity of other nests, was 

initially included based on a rationalisation that birds would nest at higher densities in 

habitat ideally suited to the lifecycle of the winter moth. Subsequently lay dates in the 

nests of these birds would be earlier due to increased prey availability and closer tracking 

of the emergence of their caterpillar prey.  

Male identity was initially included to account for any indirect genetic effects of the male 

partner on lay date through resource provisioning or territory acquisition, but consistent 

with the findings of similar studies the contribution of the male to timing of breeding 

events (Pettifor R. A., Sheldon, B., Browne, CW. J.,  Rasbash, J. & McCleery, R. H., 

unpublished, from McCleery et al. 2004; Wilson et al. 2010) was found to have no such 

influence. Laying date is hereafter modelled as a female-only trait.  

Scanning for QTL  

To identify the presence of QTL identity by descent (IBD) matrices constructed at regularly 

spaced (1cM) intervals across the genome were incorporated into the polygenic model as 

an additional random effect (George et al. 2000). These models are termed ‘QTL models’ 

(4). Matrices were constructed for 31 chromosomes at intervals of 1cM using the pedigree, 

consisting of 2709 individuals, and framework map (van Oers et al. 2014), and generated 

using the program Loki (Heath 1997). A QTL model with an IBD matrix specific to the 

genomic region was created for each of 2077 chromosomal locations.   

Layd = age + age^2 + altitude + femaleID + femalePE + area + year + loki0001  

       (model 4 – example QTL model) 
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Running the polygenic and QTL models was performed using ASReml software (Gilmour et 

al. 2002), employing restricted maximum likelihood (REML) statistics to estimate the 

probability of markers at each chromosomal location being in the proximity of genes 

associated with variation in the focal trait (Lander & Kruglyak 1995). The polygenic model 

assumes variation is attributed to many genes of small effect and provides the log-

likelihood against which to test the alternate hypothesis of a segregating QTL at the specific 

location (Beraldi, McRae, Gratten, Slate, et al. 2007). A statistical comparison of polygenic 

and QTL models is conducted by calculating the ratio of the QTL effect component to the 

total phenotypic variance in ASReml. 

LRT significance thresholds of 7.38 and 14.11, representative of suggestive (expected to 

occur once in a genome scan by chance) and genome-wide significance (false positive 

expected once in every 20 genome scans) respectively (Lander & Kruglyak 1995; Nyholt 

2000), were used to ascertain the presence of any QTL. The calculation of these thresholds 

was based on the number of chromosomes and size (Morgans) of the great tit genome 

using the equation for calculating linkage thresholds determined by Lander & Kruglyak 

(1995).   

Genome-wide association analysis  

Repeated measures cannot be routinely accounted for in the genome-wide association 

analysis software GenABEL (Aulchenko, Ripke, et al. 2007). GWAS phenotype data 

therefore took the form of a ‘phenotype value’ generated for each individual from the 

running of a modified version of the aforementioned animal model where the additive 

genetic term was excluded leaving six terms including femalePE.  

Quality control was performed in GenABEL to eliminate poor quality / uninformative 

markers and individuals (thresholds: individual call rate: 0.50, SNP call rate: 0.70, Hardy-
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Weinberg equilibrium: P < 1e-5 (removal of markers out of Hardy-Weinberg equilibrium at 

a p-value of less than 0.00001), minor allele frequency: 0.05). A single run of quality control 

eliminated 279 markers and 1 individual. In total 5313 markers and 950 individuals passed 

quality control criteria and were used in subsequent analyses. A kinship matrix constructed 

using marker data was used to estimate breeding values and correct for population 

stratification, associated with Type I error (Price et al. 2006; Aulchenko, de Koning, et al. 

2007; Svishcheva et al. 2012).  

Association analyses assume phenotype data comes from unrelated individuals in the same 

population. However the large quantities of data required for such analyses increase the 

chance of relatedness in the dataset. Calculating an estimate of lambda, the slope of 

expected test statistics against an expected uniform distribution, gives an indication of 

whether there is stratification in the dataset, with inflation of >1 indicating potential 

population stratification in the data. Population stratification refers to subdivision 

(genetically distinct groups / individuals) in the dataset, which in association-mapping 

studies has the potential to cause spurious (or false-positive) associations between 

phenotypes and markers with no link to causative loci (Pritchard & Rosenberg 1999). Fitting 

the kinship matrix is expected to reduce the amount of inflation.  

Prior to construction of the kinship matrix lambda was estimated at = 1.08 + 4.9x10-4 

(Appendix 2.2a) After correction for population stratification inflation was reduced (λ  = 

0.98 + 6.5x10-4) (Appendix 2.2b). Genome-wide association analysis was carried out using 

the function ‘mmscore’ function in R package GenABEL (Aulchenko, Ripke, et al. 2007; Chen 

& Abecasis 2007). A polygenic model was subsequently estimated to partition breeding 

values and residuals, and mmscore was used to test for associations between the SNPs and 

residuals.  
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Accounting for the false discovery rate inherent in statistical tests (Storey 2002), based on a 

p-value of 0.05 for 5592 SNPs, the number of false positives is estimated to be 280. The 

first of two significance thresholds (nominal significance) multiplying the lowest threshold 

for statistical significance (p = 0.05) by -log10 to give 1.3. The second (genome-wide) 

significant threshold, after Bonferroni correction for multiple testing (Bland & Altman 1995) 

and multiplying by -log10 was taken to be 5.05. Significance testing of associations was 

further determined by a permutation test, of 1000 iterations, whereby quantitative trait 

values are “shuffled” between individuals over the course of many permutations to 

generate a reference sample against which to test the probabilities of associations 

occurring by chance (Fisher 1935; Churchill & Doerge 1994; Ernst 2004). 

Spatial auto-correlation 

Physical distance between individual organisms is one of the biggest drivers of important 

biological processes such as extinction, speciation and species interactions (Legendre & 

Fortin 1989; Legendre 1993; Dormann et al. 2007). This is demonstrated by the phenotypic 

and genetic variation that can be observed across landscapes as organisms respond to fine-

scale environmental conditions (Dormann et al. 2007). The consequence of this is a 

phenomenon known as spatial autocorrelation whereby values are not independent of 

other values taken in close proximity (Tobler 1970; Cliff & Ord 1981; Fortin & Dale 2005). 

Initially recognised as a source of bias in forestry and agricultural studies (Legendre 1993; 

Gilmour et al. 1997; Burgueño et al. 2000; Legendre et al. 2002; Silva et al. 2001) the non-

independence of phenotypes is also an issue for ecological studies of animal populations.  

Only a handful of studies on animals have attempted to incorporate a direct measure of 

spatial autocorrelation and found it to be biologically informative (Peakall et al. 2003; 

Neville et al. 2006; Stopher et al. 2012; Marrot et al. 2015).  
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One of these studies (Stopher et al. 2012) assessed the effect of incorporating two 

measures, spatial autocorrelation and home-range overlap on the heritability of various 

life-history traits in red deer. In line with Stopher et al. (2012) and following the same 

method, spatial autocorrelation was also modelled in this study. To account for spatial 

heterogeneity and the potential for phenotypic similarity between individuals / relatives 

sharing the same environment, spatial autocorrelation was modelled as a first-order 

separable autoregressive process such that the SAC value between any two phenotypic 

values is modelled as a power function of their distance apart (Gilmour et al. 1997; Stopher 

et al. 2012). GPS coordinates of each nest were fitted in the animal model with a 

covariance structure, denoted by AR1 x AR1 (Gilmour et al. 1997) to account for spatial 

dependence. SAC was then fitted as an additional random term within the model (3). 

Layd = age + age^2 + altitude + year + area + femaleID + femalePE + x.y    

         (model 5) 
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2.4 Results 

2.4.1. Complex Interactions 

A tree model constructed to visualise complex interactions showed females breeding for 

the first time consistently lay later than their older counterparts (Figure 2.1). Females 

younger than 2 years old consistently lay later than their older counterparts, irrespective of 

altitude (Figure 2.1). A significant interaction is observed between the laying dates of 

females older than 1.5 years and altitude with a difference of approximately three days 

between females at lower and higher altitudes (Figure 2.1).   

 

Figure 2.1. A tree diagram illustrating the interaction between female age (years) and altitude (m) 

and subsequent laying dates associated with each group 
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2.4.2. Variance components analysis  

Heritability (h2) of laying date, calculated as the ratio of additive genetic variance to total 

phenotypic variance (VA / VP) was estimated from this model (+SE) to be 0.05 + 0.03. The 

permanent environment effect (pe2) was estimated as 0.04 + 0.03.  

When tested for significance spatial autocorrelation (SAC) was found not to significantly 

contribute to variation in laying date by LRT or z-ratio tests. Examination of the z-ratios 

produced by a model incorporating SAC and excluding area, versus a model excluding SAC 

and incorporating area showed that spatially dependent phenotypic variation is captured 

by area. When area is excluded the spatial component of variation is redistributed to SAC. 

SAC was excluded from the model prior to QTL and GWAS analyses. 

2.4.3. Genome scan and Genome-wide association analysis 

No QTL peaks passed the genome-wide significant threshold (Figure 2.2a). One peak, a 

region of chromosome 10 represented by five SNPs passed the suggestive threshold, no 

more than would be expected by chance. Indications that no specific chromosomal regions 

/ underlying genes significantly explained the majority of additive genetic variation in lay 

date was further substantiated by GWAS analyses. No SNPs breached the genome-wide 

significant threshold, with 291 SNPs surpassing the nominally significant threshold, which 

was about the number that would be expected by chance (Figure 2.2b). The absence of 

true associations was confirmed by permuting the data, as none of the the markers 

achieved statistical significance, being no higher than would be expected to occur by 

chance (Table 2.3). 

The occurrence of no more positive associations than would be expected by chance was 

confirmed by means of a binomial test (p > 0.1). A comparison also reveals little accordance 

between the methods for regions or markers of nominal significance, with no obvious 
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similarities in the results. The highest QTL peaks on chromosomes 10, 11 and 1 did not 

correspond to the highest associations detected by GWAS which were located on 

chromosomes 8, 27 and 3, with the seventh highest association on chromosome 11. 
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Table 2.3. The top 10 highest associations from GWAS analysis following a permutation test of 1000 iterations to test for significance. Number of females for which 

complete phenotypic information was available (N), chromosome (Chr) and position (cM). Effect sizes (effB) and their standard errors (se_effB) of allelic substitutions in an 

additive models with 1df. Nominal p value (pre-permutation Pc1df) and genome-wide p value from permutations tests before and after lambda correction (P1df, Pc1df). 

Genotype effect sizes relative to AA and test statistics from a model where genotypes are fitted as a three level factor are described by effAB and effBB.  

Marker Chr Position A1 A2 N effB se_effB chi2.1df 

Pre-permutation 

Pc1df P1df Pc1df effAB effBB 

M5243 8 14 A G 951 0.252718 0.073132 11.94159 0.000339 0.943 0.778 0.346443 0.465262 

M4088 27 29 A G 951 0.274015 0.086193 10.10648 0.000852 1 0.991 0.327914 0.420842 

M5547 3 54 G A 949 0.276957 0.089532 9.569087 0.001266 1 0.998 0.324016 0.367933 

M1348 1A 42 C A 951 -0.26897 0.088528 9.231042 0.001351 1 1 -0.25948 -0.56662 

M8791 Z 24 A G 821 0.219958 0.073385 8.98388 0.001639 1 1 NA 0.439915 

M7140 11 9 G A 948 0.283902 0.094877 8.954039 
0.001761 

1 1 0.317232 0.434368 

M9091 Z 25 G A 757 0.191027 0.065296 8.558987 
0.001522 

1 1 NA 0.382055 

M5073 6 77 G A 951 -0.20988 0.072125 8.467465 
0.002309 

1 1 -0.27904 -0.36514 

M9075 Z 40 G A 733 -0.1802 0.062786 8.237147 
0.002175 

1 1 NA -0.36039 

M1745 2 78 G A 951 -0.20863 0.072741 8.22635 
0.002717 

1 1 -0.21896 -0.41273 
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Figure 2.2. A QTL (a) and GWAS (b) scan for variants contributing to variation in laying date. Dashed blue lines represent (a) suggestive (7.38) and genome wide significant 

(14.11) linkage, and (b) nominal (1.3) and genome-wide significant (5.05) associations.

(a) 

(b) 
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2.5 Discussion 

Timing of breeding is a life history trait for which the presence of additive genetic variation 

has been identified from several analyses of laying date in the Wytham great tit population 

(van der Jeugd & McCleery 2002; McCleery et al. 2004; Garant et al. 2008; Liedvogel et al. 

2012). By conducting statistical testing to search for genetic variants contributing to 

variation in breeding phenology, the research presented here compliments studies which 

have identified a genetic component of variation to laying date. In accordance with the 

findings of van der Jeugd & McCleery (2002), McCleery et al. (2004), Garant et al. (2008) 

and Liedvogel et al. (2012) we confirm the presence of a significant genetic component of 

variation. The heritability estimate obtained here (h2 0.05) is markedly lower than the h2 of 

0.16 presented by the earliest studies (van der Jeugd & McCleery 2002; McCleery et al. 

2004) but in concordance with the estimate of 0.03 reported by Liedvogel et al. (2012).  

In comparison to higher estimates obtained from parent offspring regression (van der 

Jeugd & McCleery 2002; McCleery et al. 2004) the application of the animal model and, in 

particular, accounting for factors influencing phenotypic variation in the form of fixed and 

random effects, ultimately resulted in a lower and more precise heritability estimate in 

both cases (Liedvogel et al. 2012, current study). Mirroring Liedvogel et al. (2012), the 

removal of fixed and random effects restored our heritability estimate to within a similar 

range of all previous estimates (h2 = 0.21). Estimates of heritability may vary for several 

reasons, such as the size and subset of the data used in the analyses, changes to genetic 

variance or variation in phenology in response to environmental perturbation in 

subsequent years (Liedvogel et al. 2012).  

Potentially, selection favouring earlier laying that operated in the years succeeding the 

earliest analyses reduced the genetic variance associated with the trait. Charmantier et al. 

(2008) argue however that the observed behavioural shift bears more resemblance to a 
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plastic as opposed to a micro-evolutionary response, with the rate of response too fast to 

be accounted for by evolutionary adaptation. The similarity between the two estimates 

obtained from parent-offspring regression, and similar concordance between the two 

estimates obtained by means of an animal model, may also indicate that variation in 

estimates is an artefact of the statistical methods employed. Because they utilise a mean 

trait value and fail to account for additional sources of variation, estimates obtained by 

parent offspring regression are generally prone to inflate estimates of heritability (Kruuk 

2004; Akesson et al. 2008).   

Building on previous research, quantitative trait loci analyses were employed to identify 

the genes / genomic regions underlying the observed genetic component of variation. 

Behaviours are complex quantitative traits and as such are assumed to be largely polygenic 

with genetic components comprised of many small genes each of small effect.  Together 

with the fact that as a result of the low heritability, the variance contributed by each of the 

multiple genetic determinants will be a fraction of the already small genetic component, it 

is perhaps not unsurprising that QTL scans failed to identify any SNPs of genome-wide 

significance.  

QTL analyses have been used to identify genomic regions associated with behavioural 

variation in domestic / laboratory animals such as exploratory and anxiety-related 

behaviours in mice and rats (Gershenfeld et al. 1997; Flint 2003; Henderson et al. 2004), 

temperament in cattle (Gutiérrez-Gil et al. 2008; Glenske et al. 2010; Glenske et al. 2011; 

Haskell et al. 2014) and tame / aggressive behaviours in silver foxes (Kukekova et al. 2010; 

Johnson et al. 2013) but due to the inherent difficulties of studying wild animals and the 

dearth of long-term studies with sufficient data to enable their application fewer studies 

exist for wild animals. 
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Studies to identify QTL for behavioural traits in wild animals have typically used a series of 

backcross experiments, involving the controlled breeding of captured wild individuals to 

identify QTL associated with foraging (honeybees (Rüppell et al. 2004)), migratory (rainbow 

trout (Hecht et al. 2015)) and schooling (sticklebacks (Greenwood et al. 2015)) behaviours. 

Quantitative genetic analyses of personality on bighorn sheep represent rare examples of 

research conducted on a truly wild and free ranging organism (Réale et al. 2009; Poissant et 

al. 2013). In birds, QTL analyses for behavioural variation have until now only been 

conducted on domesticated or economically important species (Recoquillay et al. 2015; 

Schütz et al. 2002).  

Relying solely on multigenerational phenotype and pedigree data for a truly wild animal 

with minimal interference and no (anthropogenic) induced selection for variation in laying 

date could be considered a major limitation in terms of reduced power to detect genetic 

variants. However the best way to understand processes operating in the wild is to study 

organisms in their natural environment and in this sense this study, together with studies 

such as those on the bighorn sheep (Réale et al. 2009; Poissant et al. 2013) have a distinct 

advantage.  

The application of GWAS to identify genomic regions associated with behavioural variation 

is typically associated with large-scale human studies of personality and behavioural 

disorders (Terracciano et al. 2010; Calboli et al. 2010; Salvatore et al. 2015; Sokolowska & 

Hovatta 2013). Due to the necessity of an extensive database of genotyped individuals for 

viable and accurate GWAS, domestic and model animal species are the strongest 

candidates for such analyses, after humans, and GWAS has only recently been applied to 

such systems (Do et al. 2013).  

GWAS analyses for morphological and behavioural traits in wild animals are proliferating, 

as genomic tools become increasingly accessible and affordable (Johnston et al. 2011; Bush 
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& Moore 2012; Hecht et al. 2013; Johnston et al. 2014; Bérénos et al. 2015). Genomic 

dissection of life-history traits such as clutch size and egg mass in Wytham great tits using 

genome-wide methods suggest the suitability of this system for genomic analyses of a wild 

vertebrate (Robinson et al. 2013; Santure et al. 2013). This study represents one of the first 

to conduct a GWAS for a behavioural trait.    

In accordance with the QTL analysis, no SNPs reached genome-wide significance in the 

genome scan. No more SNPs passed the p value < 0.05 level of significance than would be 

expected by chance and the regions of highest association in the GWAS, on chromosomes 

8, 27 and 3 do not correspond to the regions with the highest association as observed from 

QTL analyses, on chromosomes 10,11 and 1. This would tend to suggest a polygenic basis 

for heritability of lay date, with many genes contributing to variation each constituting such 

a small fraction of the total heritability, for a trait with a small genetic component, as to 

make their detection by genomic analyses a difficult prospect. 

Our results further highlight the complexity of breeding behaviour being determined by 

multiple interacting factors. Even with a significant genetic component, variation in lay date 

is predominantly a consequence of external abiotic and biotic factors of which temperature 

is thought to be one of the most influential. This is supported by the fact the term ‘year’, 

which will include temperature variation between years, explaining more of the variance 

than any of the other fixed or random model terms including the additive genetic 

component. The effect of temperature on breeding behaviour has been documented in 

dozens of birds with significant advances in laying date occurring in numerous species and 

with predictions that early laying will be observed in many others as temperatures continue 

to increase (Crick & Sparks 1999; Dunn 2004).  

Fine-scale variation in environmental conditions also has a significant effect on breeding 

phenology as demonstrated by the significance of altitude with birds consistently breeding 
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earlier at lower altitudes (Wilkin et al. 2006; Liedvogel et al. 2012; Garroway et al. 2013) 

(Figure 2.2). With poorer natal quality at higher altitudes (Wilkin & Sheldon 2009) the 

complex interaction with age (Figure 2.2) may also be the result of the acquisition of the 

best territories by experienced females leaving inexperienced females only those nest 

boxes at higher altitudes.   

Research on lay date in several great tit populations and other species has determined 

phenotypic plasticity to be the most significant, if not sole, factor influencing variation in 

breeding time (Przybylo et al. 2000; Brommer et al. 2008; Matthysen et al. 2011; 

Charmantier & Gienapp 2014). Using the same method of regressing the mean within-

individual variation against temperature, and comparing the results to the population level 

regression, two independent studies of Wytham and Belgian great tits found that plasticity 

explains most of the observed advance in lay date (Charmantier et al. 2008; Matthysen et 

al. 2011).  

Further studies highlighting the sensitivity of birds to the immediate environment, with 

laying date largely determined by localised variation in vegetation and prey phenology, give 

strong supporting evidence for the importance of plasticity (Vedder et al. 2013; Hinks et al. 

2015). The ability to pick up on cues and respond plastically is likely to be a species greatest 

defence against changing environmental conditions as the response is immediate, 

compared to micro-evolutionary change which requires the passing of several generations 

before the desired adaptation can be readily expressed. In Wytham great tits the absence 

of a lag between the shift in caterpillar biomass and laying date suggests an immediate 

plastic response (Charmantier et al. 2008).   

With strong evidence that external factors play the largest role in determining breeding 

time in great tits, our ability to detect the genetic mechanisms contributing to variation, 

even where a significant genetic component exists, are impeded. For traits with low to 
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moderate heritability, detecting genetic variants is exceptionally difficult, especially when 

there is incomplete linkage disequilibrium between causal variants and typed SNPs (Wang 

et al. 2005; Mackay et al. 2009; Hayes et al. 2010; Yang et al. 2010). Even for traits with 

moderate to high heritabilities detecting and localising QTL is a difficult prospect (Mackay 

et al. 2009). Traits of low heritability or regions of low LD require unrealistically high, if not 

total, coverage of the genome to be genotyped for GWAS to be able to identify regions of 

interest (Risch 2000; Wang et al. 2005; Johnston et al. 2014) and variants of large effect are 

able to be detected more reliably in any case than those of small effect (Hirschorn & Daly 

2005; Hayes et al. 2010).  

Coupled with the importance of a detailed genetic map the issue of sample size presents 

further challenges for those seeking to describe the genetic architecture of a trait. Research 

into the efficacy of genomic analyses have determined extensive phenotypic datasets are 

required in order for genome scans to be able to detect genes or genomic regions 

associated with variation particularly for traits of low heritability (Beavis 1994; Risch & 

Merikangas 1996; Risch 2000). Sample size has been proposed to be even more influential 

in determining the success and accuracy of genomic analyses than dense SNP coverage 

(Hirschhorn & Daly 2005; Wang et al. 2005).  

Despite using one of the largest and most comprehensive datasets for any wild animal the 

Wytham great tit dataset is not on the scale of the human or domestic organism datasets 

with which QTL and GWAS analyses are more commonly associated, in which phenotyped 

individuals typically number into the thousands or even hundreds of thousands (Hayes et 

al. 2010; Lango Allen et al. 2010; Yang, T. Lee, et al. 2013; Wood et al. 2014). The lack of 

long-term studies and extensive datasets available, particularly for wild populations, 

continues to be the main limiting factor in our ability to describe the genetic architecture of 

phenotypic variation (Hill 2012); something which can only be addressed by the continued 
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efforts of researchers working on model wild systems such as the great tit to generate the 

quantity of data that is essential for genomic analyses.     
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3.1 Abstract 

The greatest challenge facing investigations into the evolution and genetic architecture of 

phenotypic traits in wild animals is the notable lack of datasets with the scope and depth 

necessary to enable the application of genomic tools. The great tit Parus major is 

exemplary in being one of very few wild animal species where several geographically 

distinct populations have been monitored with enough intensity to enable direct 

comparisons of loci contributing to phenotypic variation. Following on from analyses of one 

population at Wytham Woods (Oxford, UK) (Chapter 2), here I examine the genetic 

architecture of lay date using data from a second long-term study of great tits in the 

Netherlands. The availability of phenotypic and genomic data from two populations of the 

same species meant that combining the datasets increased overall sample size and 

subsequently the power of gene mapping analyses. Analysis of the Netherlands population 

independently also enabled a direct comparison of the genetic architectures of laying date 

between the two populations. Applying QTL mapping and GWAS methods we found no 

evidence for distinct genomic regions contributing to phenotypic variation in laying date, in 

either the Netherlands population in isolation, or using the combined dataset from both 

populations. There was no correspondence in the genomic regions of strongest statistical 

association between populations, implying either the lack of a shared genetic architecture, 

or a lack of power with which to detect one.  
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3.2 Introduction 

Differences in environmental conditions and selection pressures operating between 

locations can cause variation in life history traits between populations of the same species 

(Visser et al. 2003). The sensitivity of organisms to their environment, and subsequently the 

capacity for different populations of the same species to exhibit phenotypic variation, has 

consequences for our understanding of the genetics of trait evolution. Geographically 

distinct populations may not only differ outwardly in their phenotypic responses but, as the 

result of micro-evolutionary processes, different populations may show signatures of 

genetic differentiation (Wright 1943; El Mousadik & Petit 1996; Estoup et al. 1996; Merilä & 

Crnokrak 2001; Turchetto et al. 2014; Funfstuck et al. 2014).  

Similarities in the genetic architecture phenotypic variation between populations of the 

same species is demonstrable from research on humans and model organisms (Hirschorn & 

Daly 2005; Flint & Mackay 2009) and increasingly from genomic analyses of wild and non-

model organisms as extensive phenotypic and genetic data becomes available for a much 

wider variety of species (Colosimo et al. 2004; Neale & Savolainen 2004; Bonin et al. 2006; 

Protas et al. 2006; Wright et al. 2006; Franck et al. 2007; Stinchcombe & Hoekstra 2008; 

Houde et al. 2013; Christensen et al. 2014). However identifying specific genetic variants 

associated with phenotypic variation between populations remains a significant challenge 

(Ellegren & Sheldon 2008). Whilst a number of studies have managed to identify genetic 

variants in multiple populations of a wild organism (Colosimo et al. 2004; Greenwood et al. 

2015) few studies have been able to quantify in as much detail the genetic structure of 

phenotypic variation in multiple wild populations of a species.  

The great tit Parus major is one of the few wild organisms for which multiple long-term 

studies enable direct comparisons of phenotypic variation between geographically distinct 

populations of a species, and for which genetic resources are available to help identify the 
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determinants of variation between populations. The great tit’s suitability as a model 

organism has facilitated some of the most advanced studies into the genetics of not only 

morphology but behaviour and personality, being one of the few wild animals for which a 

genetic basis for behavioural variation has been described from both captive and wild 

populations (Dingemanse et al. 2002; Drent et al. 2003; Fidler et al. 2007; Riyahi et al. 

2015).  

Phenotypic variation between great tit populations can be observed in varying patterns of 

laying date across the species range with some populations responding to increasing 

temperatures by laying earlier, with others showing no advancement of laying date at all, 

even where there is selection for early laying (Visser et al. 2003; Matthysen et al. 2011). In 

Finland laying date has not significantly advanced despite selection for early laying during 

breeding seasons with high breeding time temperatures and densities (Ahola et al. 2009). 

In contrast studies of a Belgian population found a significant advance in laying date of 12 

days over 30 years (Matthysen et al. 2011).  

Genetic analyses of populations of great tits in the Netherlands have consistently revealed 

a heritable component to laying date (Noordwijk et al. 1981; Nussey et al. 2005; Gienapp et 

al. 2006). Heritability estimates of around 0.17 have been consistently calculated for the 

Hoge Veluwe population from multiple studies over the past three decades (van Noordwijk 

et al. 1981; Gienapp et al. 2006). Despite evidence for a significant genetic component the 

pattern of lay date in Hoge Veluwe is strikingly different from Wytham with no significant 

advance in laying date despite selection for earlier laying (Visser et al. 1998; Gienapp et al. 

2006).  

In contrast the laying date of great tits in Wytham Woods has advanced by an average 14 

days over a 47 year period (Charmantier et al. 2008). A significant advance in the date of 

peak caterpillar biomass of approximately 14 days from 1985 to 2004 (Visser et al. 2006) is 
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not reflected in the breeding phenology of the Hoge Veluwe great tit population which has 

seen a (non-significant) advancement of lay date of 5.4 days over roughly the same period 

(Gienapp et al. 2006).  

The mismatch has been attributed to a number of factors including a reduction in the 

incidence of double broods (Visser et al. 2003) and the possibility of physiological 

constrains preventing earlier breeding (Stevenson & Bryant 2000). However the effect of 

temperature on predator / prey phenology provides the most convincing evidence as to 

why laying date and subsequently hatch date is lagging behind peak caterpillar abundance 

in Hoge Veluwe.  

Several studies have demonstrated the importance of spring temperature as a cue for the 

onset of laying in birds (Visser et al. 2009; Conway & Martin 2000; Matthysen et al. 2011; 

Dolenec & Dolenec 2011; Both et al. 2004) and in determining the rate of development of 

caterpillar pupae (Smith et al. 2011; van Asch et al. 2007; Buse et al. 1999). The mismatch 

between peak food requirement and peak food abundance in Hoge Veluwe appears to be a 

consequence of birds and caterpillars taking their temperature cues for these crucial life-

history events from different time periods.  

Birds in Hoge Veluwe take cues on when to lay their eggs from temperatures during the 

period 1st March to 15th April (van Balen 1973; Visser et al. 2006). Between 1973 and 1995 

temperatures during this early spring period showed no significant increase (Visser et al. 

1998). In contrast, caterpillar development and hatching reacts to temperatures in the 30 

days following April 15th, and average temperatures in this later spring period between 

1973 and 1995 have shown a significant increase (Visser et al. 1998). This has resulted in a 

greater shift in caterpillar phenology than in the breeding phenology of their great tit 

predators (Visser et al. 1998; Visser et al. 2006). 
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In this chapter I use linkage (QTL) and association (GWAS) analyses to scan for genetic 

variants associated with laying date on two great tit datasets. I first conduct analyses on 

data from Hoge Veluwe to generate an estimate of heritability. Then I apply genomics tools 

to identify the genetic variants associated with variation in laying date in this population in 

isolation, the first study to attempt to do so.  

A rare opportunity is taken to perform a comparison of the underlying genetic 

architectures of an important life-history trait in geographically distinct populations of the 

same species, as the results obtained for Hoge Veluwe are subsequently compared to those 

already obtained for Wytham Woods. Finally by combining the phenotypic and genetic 

datasets of Hoge Veluwe and Wytham, a dataset of much greater size and depth than that 

for either population in isolation is generated, lending greater power to subsequent 

statistical testing. I use this ‘master’ dataset to attempt to identify the determinants of 

variation in laying date in the great tit.  
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3.3 Methods 

3.3.1. Phenotype data  

Laying date phenotype data takes the form of number of days after April 1st. Breeding 

events that occurred more than 30 days from the first recorded breeding event of the 

season are likely to be second breeding attempts (van Noordwijk et al. 1995), and were 

therefore removed to limit the analysis to first breeding attempts.   

Hoge Veluwe (NL) 

Phenotype information for Hoge Veluwe (hereafter NL) birds comes from a long-term study 

of great tits at Hoge Veluwe (Balen 1973). Data collection methods mirror those practised 

in Wytham (Chapter 1), with metal rings affixed to the legs of great tits so that subsequent 

breeding events / maternities / paternities can be attributed to specific individuals and a 

blood sample obtained as the birds are ringed for genotyping purposes.  

The subset of phenotype data available for the purposes of this study represents data 

gathered over the period 1995 to 2012. For the QTL analysis, taking into consideration only 

those females present in the pedigree, phenotype data takes the form of 774 breeding 

event records representing 409 female birds. The requirements of GWAS analyses do not 

include use of a pedigree. Therefore genotyped females absent from the pedigree, but for 

which phenotype information was available could be included in the analysis. The 

phenotypic dataset for NL GWAS analyses consisted of 1615 breeding event records for 947 

females. 

Merged Hoge Veluwe / Wytham Woods (NLUK) dataset  

Merging the QTL phenotypic datasets for both populations resulted in 1916 recorded 

breeding events for 1080 females. For GWAS analysis, the addition of genotyped and 
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phenotyped females that were excluded from QTL analyses resulted in a combined NLUK 

phenotype file containing records of 3137 breeding events from 1898 females.   

3.3.2. Pedigree data (A matrix)   

For the purposes of the NL specific and the combined NLUK analyses an A matrix 

constructed from SNP markers (a realised relationship matrix) was used in lieu of a 

pedigree. Of 1407 genotyped NL birds, 666 related individuals were extracted to form the A 

matrix. Four hundred additional genotyped individuals were included for the purposes of 

incorporating informative links between the 666 individuals, with the resultant relationship 

matrix comprising of 1066 individuals. The genetic relatedness of each pairwise 

combination of birds is detailed in the subsequent A matrix. For GWAS analyses the 

number of individuals could be extended to include genotyped birds that were previously 

excluded from QTL analyses. Genetic information for 947 genotyped female birds was 

utilised in GWAS analyses.   

To construct an A matrix for the combined NLUK analyses, NL birds retained their original 

numeric IDs where WY numeric IDs were modified by the addition of 1066 to their numeric 

IDs. The files were then combined to create a matrix detailing the genetic relatedness of 

each pairwise combination of 3775 individual birds. Using the full complement of 

genotyped female individuals for both populations genetic information for 1898 birds was 

used in GWAS analyses, with NL retaining their original numeric IDs, and WY bird IDs 

modified by the addition of 947 to their own numeric IDs. 

3.3.3. Marker data  

With genetic information available for thousands of individuals from both populations in 

the form of blood samples obtained whilst ringing, an extensive database of genetic 

information has been made available through the detection of SNPs by means of next 
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generation sequencing (van Bers et al. 2010), mapping of SNPs to the Zebra finch 

chromosome and subsequent development of great tit linkage maps (van Oers et al. 2014) 

and a full genome sequence assembly (Laine et al., manuscript in revision). 

 A total 4702 birds from populations of great tits in the Netherlands and the UK were 

genotyped using a 9193 SNP chip (described in detail in van Bers et al. (2012)). The NL 

subset of birds was drawn from 3 populations, 510 from a captive and experimental line 

(descendants of wild caught NL birds), 553 from de Hoge Veluwe and 937 from 

Westerheide. Of the UK birds 2652 individual samples came from Wytham, the remaining 

50 from nearby Bagley woods. The two wild populations in the Netherlands as well as the 

two UK populations are geographically close and so were treated as if each were from one 

continuous population within each country (K. van Oers, personal communication from Van 

Bers et al. 2012; Verhulst et al. 1997). 

Markers were mapped to 32 chromosomes for the great tit (1-15, 17-24, 26-28, 1A, 4A, 

25A, 25B, LGE22 and Z). Two different maps, framework and parsimonious, were used for 

each analysis respectively (Chapter 1).   

Building on the animal model principle, existing identity-by-descent (IBD) matrices for each 

of the 31 chromosomes, at multiple positions (loci) along the chromosome at 5cM intervals 

were obtained for use in QTL analyses. IBD matrices detail the genetic relatedness of every 

possible pair combination at the relevant chromosomal location and were constructed at 

5cM intervals using available marker information for both populations (van Oers et al. 

2014) together with respective population pedigree information and using the program 

LOKI ver2.4.5 (Heath 1997) (as described in (Santure et al. 2013)). The number of IBD 

matrices per chromosome reflects chromosome length (ranging from 4.58cM – 138.14cM 

(NL) and 3.68-139.88cM (UK)), with the largest chromosomes sporting the greatest number 

of IBD matrices.  
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For the combined QTL analysis, IBD matrices from NL and WY were merged together, NL 

birds retaining their original numeric IDs and the numeric IDs of WY birds modified by the 

addition of 1066 (the number of NL birds in the NL pedigree) to each. For GWAS marker 

data for the 5582 SNPs scored in both populations were used, with genotype information 

for WY individuals for the 10 SNPs not scored in the NL individuals removed from the 

genotype files.  

3.3.4. Statistical analyses  

Constructing the animal model 

In order to accurately estimate the additive genetic component of variation it is important 

to distinguish causal factors influencing trait variation to minimise the possibility that the 

relationships we observe are driven by environmental covariances (Gienapp et al. 2006). 

Following the same protocol as Chapter 2, a univariate animal model in the form of a linear 

mixed effects model with fixed and random effects was constructed in order to estimate 

the additive genetic component of variation in laying date. Additional sources of variation 

in to laying date were identified by linear modelling in R ver3.0 (R Core Team, 2013) (fixed 

effects) and linear mixed modelling in ASReml ver3.0 (Gilmour et al. 1996). Accounting for 

variables found to significantly influence variation in lay date enables the true size of the 

additive genetic component to be more accurately estimated. 

Less environmental and spatial information was available to accompany breeding event 

records for the NL birds than those from the UK population. Only those explanatory 

variables present for both populations were extracted from the UK dataset to contribute to 

the NLUK analysis. The subsequent model selection process was the same for both NL and 

NLUK analyses. Age and quadratic age (taking the form of a curvilinear relationship, as 

biological relationships with age may not be completely linear) were significant factors 
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contributing to variation in laying date (p <0.01 both cases), determined by means of linear 

modelling in R statistical software (Chapter 2) and were included as fixed effects in both 

animal models (Appendix 3.1). ‘Population’ was also included as a fixed effect in the NLUK 

animal model.  

Random effects (year of data collection, permanent environment effects i.e. from repeated 

measures and additive genetic effect) were determined by hierarchical significance testing 

of models of increasing complexity using restricted maximum likelihood (REML) testing 

(Wilson et al. 2009) in ASReml ver3.0. Likelihoods were obtained for models excluding and 

including each term. A comparison of the two models was then performed by likelihood 

ratio testing to test the significance of each term (Chapter 2) (Table 3.1).  

All terms were significant in contributing to variation in laying date for both NL and NLUK 

datasets (p < 0.01). The final model, identical for both NL and NLUK analyses, is the 

‘polygenic’ model. This type of mixed effects model partitions the variance associated with 

lay date into each of the genetic and environmental factors. This enables the estimation of 

the additive genetic component of variation (VA), permanent environment variance (VPE) 

and residual variance (VR) from which total phenotypic variation (VP), heritability (h2), 

permanent environment effect (pe2) and residual variance (r2) can be calculated.  
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Table 3.1. Statistical testing of random effect terms included in the final versions of the polygenic 

animal models for the Netherlands (a) and combined (b) datasets, using logarithm of the odds (LOD) 

scores obtained from ASReml, and subsequent likelihood ratio test (LRT) of significance. Variance 

components statistics for the final polygenic models are highlighted.     

(a) NL      

Term LRT p value Component Comp/SE D.O.F 

Year 417.1 <0.01 20.22 2.60 1 

FemaleID 9.96 <0.01 7.22 2.86 1 

FemalePE 76.86 <0.01 2.37 1.01 1 

      

Residual variance   12.56 13.58  

Total variance   42.37  771 

      

(b) NLUK      

Term LRT p value Component Comp/SE D.O.F 

Year 858.68 <0.01 34.72 2.99 1 

FemaleID 10.48 <0.01 4.85 2.97 1 

FemalePE 126.46 <0.01 4.00 2.41 1 

      

Residual variance   16.41 21.05  

Total variance   59.93  1912 
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Scanning for QTL 

For every position at 5cM intervals on each chromosome a modified version of the original 

(NL / NLUK) animal model, known as the QTL model (Chapter 2) was written with the 

relevant chromosomal location IBD matrix fitted as an additional random effect. Animal 

models were run using ASReml ver3.0 software which employs maximum likelihood to 

partition trait variance into discrete components. I was able to estimate the probability of 

there being a QTL at each genomic location by comparing the likelihood ratio test statistic 

of the polygenic model (assuming many genes of small effect) with each of the QTL models.  

If, after accounting for additional sources of variance (fixed and random effects), there is a 

difference between the polygenic and QTL models, such that the IBD matrix at a particular 

genomic location explains significant variation, there is evidence that the location contains 

genes that contribute to variation in the focal trait (Beraldi, McRae, Gratten, Slate, et al. 

2007). 

Likelihood ratio test significance thresholds of 7.38 and 14.11, representative of suggestive 

and genome-wide significance, were calculated according to the method of Lander & 

Kruglyak (1995), which is based on the size and number of chromosomes of the relevant 

organism’s genome. Based on the likelihood of encountering false positive results, one 

false positive would be expected to exceed the suggestive threshold and genome-wide 

significant thresholds once every genome scan and once in every twenty genome scans 

respectively (Nyholt 2000).     

Genome-wide association analysis 

Quality control was performed in GenABEL, eliminating individuals and SNPs that fail to 

meet certain thresholds (individual call rate: 0.50, SNP call rate: 0.70, Hardy-Weinberg 

equilibrium: P < 1e-5, minor allele frequency: 0.05). To reduce the potential for Type I error 
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a relationship matrix based on genome-wide marker relatedness (Price et al. 2006) was 

used to correct for population stratification (Chapter 2).  

For the NL dataset quality control eliminated 347 markers. No individuals were identified as 

being of inadequate quality, with 5234 markers and 947 individuals kept for subsequent 

analyses. For the combined NLUK dataset quality control eliminated 324 markers and 1 

individual with 5258 markers and 1897 individuals retained for association analyses. 

Neither dataset showed much evidence of inflation indicative of population stratification 

with estimates of lambda <1 following steps to account for relatedness between individuals 

(Appendices 3.2 & 3.3).  

Genome-wide association analyses was performed in the R package GenABEL (Aulchenko, 

Ripke, et al. 2007) using the function mmscore (Chen & Abecasis 2007) to account for 

population stratification and conduct statistical tests for association between each of 5582 

SNP markers  and phenotypic variation. As repeated phenotypic measures for individuals 

cannot be accounted for in this type of analysis, phenotype for each individual female took 

the form of a residual value estimated from a version of the aforementioned animal model 

which excludes the additive genetic term (Chapter 2).  

Two thresholds were used to discriminate between significant and non-significant SNPs, 

the first representing a p value < 0.05 level of significance, the second a genome-wide level 

of significance taking into account Bonferroni’s correction for multiple testing (Holm 1979). 

Given the thousands of different association tests being performed, a false discovery rate 

(FDR) was calculated to guard against type I errors using an equation derived from the 

method proposed by Storey (2002) using our defined probability threshold of p < 0.05 and 

the number of SNPs (Bolormaa et al. 2011; Storey & Tibshirani 2003). For 5582 SNPs this 

works out at approximately 280 SNPs, or 280 false positives, expected to cross the first of 

the significance thresholds in any one genome scan. As in Chapter 1, significance testing 
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took the form of a permutation test of 1000 iterations (Churchill & Doerge 1994; Ernst 

2004). 
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3.4 Results 

3.4.1. Variance components analysis (NL)  

In the NL population, complex interactions modelled by the ‘MASS’ package (Venables & 

Ripley 2002) in R indicated female great tits younger than two and a half years old lay 

approximately 2 days later than their older counterparts with averages of 19 and 16.62 

days from April 1st respectively. Heritability (h2) of lay date, calculated as the ratio of 

additive genetic variance to total phenotypic variance (VA / VP) was estimated for the NL 

population (+SE) to be 0.15 + 0.06 with permanent environment effect (pe2) estimated as 

0.08 + 0.06. Combining the two populations and estimating variance components resulted 

in an h2 estimate of 0.08 + 0.03 and a pe2 of 0.07 + 0.03.  

3.4.2. QTL scan and GWAS results (NL) 

Results obtained for the NL population from both the QTL scan and GWAS indicate no 

genomic regions associated with variation in laying date. QTL peaks failed to pass either the 

suggestive or genome-wide significant thresholds (Figure 3.1a). Similarly results from the 

GWAS saw no SNPs pass the genome-wide significant threshold, with 265 passing the 

suggestive threshold, no more than would be expected by chance (Figure 3.1b). Permuting 

the data further confirmed the absence of significant results (Table 3.2).
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Table 3.2. The top 10 associations from GWAS analyses of laying date in the Hoge Veluwe (NL) great tit population, following a permutation test of 1000 iterations to test 

for significance. Number of females for which complete phenotypic information was available (N), chromosome (Chr) and position (cM). Effect sizes (effB) and their 

standard errors (se_effB) of allelic substitutions with 1df. Nominal p value (pre-permutation Pc1df) and genome-wide p value from permutations tests before and after 

lambda correction (P1df, Pc1df). Genotype effect sizes relative to AA and test statistics from a model fitting genotypes as a three level factor described by effAB and effBB.   

Marker Chr Position A1 A2 N effB se_effB chi2.1df Pre-permutation 

Pc1df 

P1df Pc1df effAB effBB 

M8363 2 84 A G 947 0.288525 0.084818 11.57159 0.000380 0.955 0.845 0.337309 0.487702 

M7462 21 14 G A 947 0.253897 0.077463 10.74306 0.000678 0.998 0.951 0.307336 0.462446 

M8748 28 48 A C 947 0.240431 0.073439 10.71822 0.000671 0.998 0.953 0.268375 0.478541 

M5035 5 10 A G 947 0.23959 0.075065 10.18729 0.000918 1 0.988 0.307858 0.463719 

M7628 3 84 G A 943 0.289165 0.090795 10.14291 0.000966 1 0.991 0.399883 0.279369 

M1122 12 5 A C 946 0.234904 0.075156 9.769034 0.001302 1 0.998 0.106295 0.530105 

M8706 5 45 A G 947 0.267627 0.08624 9.630348 0.001339 1 0.999 0.226595 0.611727 

M1495 14 45 A C 947 0.327104 0.107963 9.179533 0.001630 1 1 0.166838 1.648011 

M7100 1 59 G A 947 0.24891 0.082379 9.129603 0.001832 1 1 0.25861 0.484432 

M7391 14 5 G A 947 -0.25121 0.083627 9.023682 0.001976 1 1 -0.3463 -0.35722 
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Figure 3.1. Genome scans using (a) linkage and (b) association mapping to detect genetic variants contributing to variation in laying date in the Hoge Veluwe (NL) great tit 

population. Dashed lines represent nominal (a) 7.38; b) 1.3) and genome-wide significant (a) 14.11; b) 5.05) thresholds. 

(a) 

(b) 
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3.4.3. QTL scan and GWAS results (NLUK)  

Two QTL peaks passing the suggestive threshold were detected when QTL scans were 

performed on the NLUK dataset, on chromosomes 4A (representing two SNPs) and 10 (1 

SNP). No QTL peaks passed the genome-wide significant threshold (Figure 3.3a). Two 

hundred and eighty three SNPs passed the suggestive threshold when GWAS was 

performed, again approximately the number that would be expected to exceed the 

threshold by chance. No SNPs breached the genome-wide significant threshold (Figure 

3.3b). In line with results for the NL population in isolation, a permutation test of 

significance determined the highest associations for the combined dataset could 

statistically be expected to occur by chance and are not significant (Table 3.3).  

A binomial test was applied in R to test for a shared genetic architecture; calculating the 

proportion of SNPs significant at p<0.05 for each population and multiplying them 

generated a proportion 0.0025 SNPs (or a total or ~13 SNPs) expected to be significant in 

both analyses. None of the 265 (NL) or 291 (WY) SNPs that exceeded the nominally 

significant GWAS threshold were common to both populations. The binomial test indicated 

that the null hypothesis of distinct genetic architectures for laying date between 

populations could not be rejected. Fewer SNPs were shared between the populations than 

would be expected by chance though this is unlikely to be biologically meaningful.  
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Table 3.3. The top 10 associations from GWAS analyses of laying date in the combined NL / UK great tit population dataset, following a permutation test of 1000 iterations to 

test for significance. Number of females for which complete phenotypic information was available (N), chromosome (Chr) and position (cM). Effect sizes (effB) and their 

standard errors (se_effB) of allelic substitutions with 1df. Nominal p value (pre-permutation Pc1df) and genome-wide p value from permutations tests before and after lambda 

correction (P1df, Pc1df). Genotype effect sizes relative to AA and test statistics from a model where genotypes are fitted as a three level factor described by effAB and effBB.   

Marker Chr Position A1 A2 N effB se_effB chi2.1df Pre-permutation 

Pc1df 

P1df Pc1df effAB effBB 

M7391 14 5 G A 1896 -0.194095 0.057457 11.411409 0.000429 0.978 0.838 -0.217444 -0.356669 

M8073 2 50 A G 1896 -0.165312 0.053077 9.700746 0.001031 1 0.996 -0.124355 -0.356850 

M7935 1A 42 A G 1893 0.163197 0.052794 9.555577 0.001068 1 0.998 0.212334 0.312123 

M8426 2 94 G A 1896 0.187656 0.061819 9.214727 0.001359 1 0.999 0.181071 0.389667 

M8556 2 71 C A 1891 0.168357 0.055816 9.097964 0.001600 1 1 0.128087 0.384251 

M7750 4A 24 G A 1897 -0.197062 0.066139 8.877477 0.001734 1 1 -0.250497 -0.201249 

M4958 21 15 G A 1895 -0.180656 0.060726 8.850314 0.001792 1 1 -0.054332 -0.623191 

M6210 20 6 A G 1892 0.156078 0.052674 8.779874 0.001886 1 1 0.133405 0.319018 

M6296 19 14 C A 1880 0.173324 0.058587 8.752127 0.002051 1 1 0.163786 0.362584 

M7289 2 52 C A 1891 0.172866 0.058599 8.702432 0.002054 1 1 0.223542 0.258746 
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Figure 3.2. Genome scans using linkage (a) and association (b) mapping to detect genetic variants contributing to variation in laying date for the combined Hoge Veluwe (NL) 

and Wytham Woods (UK) great tit population dataset. Dashed blue lines represent (a) suggestive (7.38) and genome wide significant (14.11) linkage, and (b) nominal (1.3) and 

genome-wide significant (5.05) associations.

(a) 

(b) 
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3.5 Discussion 

The small number of studies to investigate the genetic basis of behaviour in wild (or captive 

wild) vertebrates have demonstrated the difficulties associated with attributing 

behavioural variation to underlying genetic loci, and they have often produced inconsistent 

or non-significant results (Korsten et al. 2010; Mueller et al. 2013; Poissant et al. 2013; 

Johnston et al. 2014; Riyahi et al. 2015). Combining some of the largest and most 

comprehensive phenotypic and genetic datasets for any wild animal I tackle the challenges 

associated with describing the genetic architecture of a polygenic trait.  

The significant (yet modest) heritability estimate obtained by linkage analysis, undermined 

by the complete absence of any significant genomic regions detected by GWAS, suggests 

that there is little power in the dataset to detect loci underlying genetic variation in laying 

date, unless they are of large effect. Many studies emphasise the importance of sample 

size in being able to successfully detect causative genes, particularly for traits of low 

heritability (Beavis 1994; Hirschorn & Daly 2005; Risch 2000; Risch & Merikangas 1996). 

The number of individuals for which we have phenotypic data, even after augmenting the 

dataset by combining two populations, may be too few to enable effective localisation of 

genomic regions and detection of genes associated with phenotypic variation. 

 If, as is probable, different mechanisms contribute to variation in laying date between 

populations, resulting in distinct genetic architectures, increasing the sample size by 

combining the populations will fail to have the desired effect of amplifying our ability to 

detect causal variants. Initial associations between the DRD4 gene and exploratory 

behaviour in a single Dutch population, contrasted with the absence of such an association 

in other European populations (Korsten et al. 2010) exemplifies the potential for 

phenotypic variation between populations of the same species to be influenced by 

fundamentally different mechanisms, or at the very least, different genetic loci. 
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Adaptation by geographically distinct populations of a species to localised environmental 

conditions resulting in distinct phenotypic variation has been reflected in the breeding time 

of European bird populations, with observable variation in patterns of laying date in 

populations of great tits in response to temperatures experienced in different regions 

(Matthysen et al. 2011; Visser et al. 2003). Such fine-scale variation is a consequence of the 

sensitivity of the birds caterpillar prey to regional variation in temperature and topographic 

variation in vegetation phenology (van Asch et al. 2007; Stevenson & Bryant 2000; Hinks et 

al. 2015; Wilkin et al. 2007). The nature of laying date and the biology of Parus major are 

important factors to consider when attempting to determine the extent to which 

phenotypic variation has a genetic or plastic origin, and evidence from this study would 

support current consensus that plasticity and rapid responses to environmental cues play a 

larger role than genetic variation (Przybylo et al. 2000; Nussey et al. 2005; Charmantier et 

al. 2008; Visser et al. 2009; Charmantier & Gienapp 2014; Thorley & Lord 2015; Bourret et 

al. 2015). 

Individual variation, even with little plasticity, can facilitate successful adaptation to a 

changing environment, with short lived species with high reproductive rates likely to be 

more resilient (Vedder et al. 2013). Research has shown that in years of population 

mismatch relative fitness differences between females are large but average absolute 

fitness is not dissimilar to years where the birds are in synchrony with their prey (Reed, 

Jenouvrier, et al. 2013), as fitness losses in mismatched broods are offset by increased 

fitness in other broods as a result of relaxed competition. Such factors may explain why the 

demography of Netherlands great tit populations have remained consistently stable 

despite mismatches between lay date the food peak (Reed, Grotan, et al. 2013; Reed, 

Jenouvrier, et al. 2013).  
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Linkage and association mapping represent two of the most widely used statistical tools 

available to dissect the genetic architecture of phenotypic variation. However a wide range 

of statistical methods exist and are continually being developed to estimate relatedness 

and partition genetic variance. To enable a more comprehensive description of the genetic 

component of variation contributing to variation in laying date, chromosome partitioning 

analyses were subsequently applied to each of the datasets (Chapter 4). 
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4.1 Abstract 

New statistical techniques are continually being developed to enable a description of the 

genetic architecture of phenotypes. Originally developed for genomic analyses on large 

human datasets, partitioning additive genetic variance associated with a trait across 

chromosomes has more recently been adapted for genomic analyses of wild organisms. For 

three datasets I applied chromosome partitioning to describe the genetic architecture of 

laying date in the passerine Parus major. Long-term studies of the great tits of Wytham 

Woods (UK) and Hoge Veluwe (NL) have generated substantial phenotypic and genetic data 

enabling the application of genomic statistical tools to describe the genetic architecture of 

phenotypic traits. The availability of such information for two geographically distinct 

populations of the same species, a relatively rare occurrence, also enabled the creation of a 

third combined dataset.  A significant proportion of the genetic variance was attributed to 

single chromosomes in both the Wytham and Hoge Veluwe (NL) populations 

(chromosomes 6 and 13 respectively). Contrary to the predicted outcome of variance 

partitioning on complex quantitative traits, no statistically significant correlations were 

observed between the amount of variance explained by chromosomes and their size or 

number of genes, for any of the datasets. This is likely to be the result of a combination of 

two factors; low additive genetic variance associated with the trait, and low power in the 

dataset with which to accurately partition variance. However, it is possible that most of the 

variance is attributable to few chromosomes.  
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4.2 Introduction 

Following the advent of high throughput genomic technologies, genome-wide analyses 

have underpinned the basis of investigations into the genetic architecture of complex traits 

(Slate et al. 2010; Kruglyak & Lander 1995), yet many studies of complex traits that find 

variants underlying QTL of small effect size cumulatively fail to explain all of the genetic 

variation attributed to the trait (Manolio et al. 2009; Eichler et al. 2010; Hirschhorn & Daly 

2005; Vinkhuyzen et al. 2013). For example early methods to detect variants associated 

with human height were able to identify SNPs cumulatively explaining only ~5% of a narrow 

sense heritability of around 80% (Gudbjartsson et al. 2008; Lettre et al. 2008; Visscher 

2008; Weedon et al. 2008; Manolio et al. 2009). Analyses of this phenomenon, termed 

‘missing heritability’, have served to highlight some of the limitations that common 

methods employed to detect QTL are subject to.  

Sample size is consistently regarded as one of the most influential factors with regards 

genomic analyses (Brito et al. 2011; Beavis 1994), with the estimated size of QTL likely to be 

inflated in studies with smaller samples sizes (Slate 2013) and the ability to localise QTL to 

precise genomic locations difficult even when they are detected (Beavis 1994; Mackay 

2001). Smaller sample sizes may also exacerbate factors associated with difficulty in 

detecting variants such as incomplete linkage disequilibrium (LD) in the dataset (Yang et al. 

2010), rendering variants not associated with typed markers undetectable.  

The issue of being able to detect variants accurately or at all is increasingly reflected in a 

growing consensus that the ability of QTL analyses to detect genetic variants of small effect 

/ rare occurrence is limited, that in fact heritability is not ‘missing’ only that the effects of 

many variants are too small to be detected by many of the current methods (Yang et al. 

2010). Analyses have shown that the greater the number of variants contributing to genetic 

variance the smaller of number of QTLs that will actually be detected (Otto & Jones 2000).  
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Variation in many complex traits is thought to be maintained either by many common 

variants each of small effect (Yang, T. Lee, et al. 2013; Yang, Manolio, et al. 2011; Eyre-

Walker 2010; Lee et al. 2012), or rare variants (Eyre-Walker 2010). Therefore the power to 

detect them may be low and the goals of simultaneously localising and estimating the 

effect size of QTL cannot be performed to the precision we increasingly require i.e. to 

identify the effects of causal mutations (Göring et al. 2001). In disciplines such as 

evolutionary biology, medicine and agriculture the importance of understanding the 

genetic architecture of phenotypic variation is recognised (Hill et al. 2008). Driven by the 

aforementioned limitations, new methods are continually being sought to improve ways to 

which we can accurately estimate the additive genetic component of variation and further 

identify the genomic regions / genes contributing to it.  

In an attempt to increase the accuracy of genomic analyses, a method built on marker 

based QTL methodologies, chromosome partitioning (otherwise known as genome 

partitioning) is increasingly being applied to describe the genetic architecture of complex 

phenotypic traits (Visscher et al. 2007; Yang, Manolio, et al. 2011). Calculating actual 

relatedness (usually referred to as the ‘realised relatedness’) between individuals, as 

opposed to pedigree-based estimates of relatedness such as expected identity by descent 

(IBD) have been used in human studies to identify the genetic structure of traits such as 

height (Visscher et al. 2007; Yang, Manolio, et al. 2011).  

Pedigree-based relatedness estimates produce IBD matrices that represent the expected 

proportions of alleles shared between individuals (Blouin 2003; Slate et al. 2009; Visscher 

2009). Chromosome partitioning relies on using realised relatedness to calculate the 

covariance between the proportion of the genome shared and phenotypic similarity 

between individuals (Visscher et al. 2006). Adapting the method for a wild organism, 

Robinson et al. (2013) partitioned variance across the genome  by calculating identity by 
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state (IBS) and constructing single chromosome genome-wide relationship matrices 

(GWRMs). These were then run in a familiar restricted maximum likelihood (REML) 

framework, the variance attributable to each genomic segment quantified by means of 

likelihood ratio testing (Robinson et al. 2013).       

Conclusions drawn from chromosome partitioning studies have implied polygenicity is 

ubiquitous in complex  human traits (Yang, T. Lee, et al. 2013), with observations that 

multiple chromosomes contribute to additive genetic variation. Variation is not typically 

localised to specific regions but spread across the entire genome, with strong correlations 

between the length of genomic segments and the amount of variation explained (Yang, T. 

Lee, et al. 2013; Yang, Manolio, et al. 2011; Visscher et al. 2007). Larger chromosomes 

possess a greater number of sites potentially harbouring genetic variants contributing to 

phenotypic variation, therefore theoretically we would expect a positive correlation 

between the proportion of variance explained by chromosomes and their size.   

Given the much greater availability of large-scale datasets and practical / economic 

interest, genome partitioning has thus far been applied most widely to studies of humans, 

livestock and crop plants (Yang, T. Lee, et al. 2013; Dekkers 2012; Riedelsheimer et al. 

2012). Due to inherent difficulties in studying animals in their natural environment, the lack 

of extensive genetic and phenotype data for any wild animal population remains the 

greatest limitation when interested in understanding the genetic architecture of traits in 

natural populations (Hill 2012; Slate 2005).  

The great tit Parus major, introduced in Chapter 1, provides a rare example of a wild 

organism for which multiple long-term studies have yielded extensive amounts of 

phenotype and genetic data for multiple populations. Therefore, it provides a unique 

opportunity to apply genomic tools to describe and compare the genetic components of 

phenotypic trait variation. Robinson et al. (2013) applied chromosome partitioning analysis 



 

100 

 

to data available for the great tits of Wytham Woods, the first study to use such an 

approach on a wild population. Consistent with studies on complex traits in humans, the 

results of chromosome partitioning found multiple genomic regions contributing to 

variance in wing length, with the contribution of each chromosome relative to its gene 

content (Robinson et al. 2013; Santure et al. 2013).  

QTL and genome-wide analyses presented in previous chapters have consistently been 

unable to detect variants associated with laying date. In this chapter I employ the method 

developed by Robinson et al. (2013) to partition genetic variance across the genome. This 

analysis represents the first time genetic variation will be partitioned across chromosomes 

for multiple populations of Parus major. The analysis should increase the understanding of 

the genetic architecture of life-history traits in an ecological model organism, and is 

especially relevant as laying date is a reproductive life-history trait, that potentially enables 

local adaptation in a wild animal. 
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4.3 Materials & Methods 

4.3.1. Phenotype information  

As detailed in Chapters 2 & 3 birds in the Wytham Woods (UK) and Hoge Veluwe (NL) 

populations are regularly caught and ringed to enable detailed accounts of individual life 

histories, morphological and behavioural characteristics to be made. Laying date is a 

numerical value taken as the number of days from April 1st. Nests subject to experimental 

manipulation were excluded and all breeding events (hereafter BE’s) that exceeded 30 days 

from the first recorded BE of same year in which the event occurred (considered likely 

second broods) were removed so the analysis considered first broods only. Breeding events 

that predated 1985 were also excluded as no genetic information was available for birds 

before this period. Females for which age of birth was not known were assumed to be age 

‘2’ at first capture. 

Data for Wytham (WY) consists of 1523 BE’s representing 951 females for the period 1985-

2011. For the Netherlands (NL) 1614 lay date records exist for 947 females spanning the 

period 1993-2008. Combining the populations to generate a master phenotype file 

subsequently resulted in a dataset consisting of 3137 BE’s for 1898 females.        

4.3.2. Pedigree & marker information  

Based on a SNP chip consisting of 9193 SNP markers, 4702 birds from the two long-term GT 

study populations were genotyped (Van Bers et al., 2012). Two thousand samples were 

taken from NL birds with the remaining 2702 samples obtained from the UK. As with the 

marker data utilised in GWAS analyses (Chapters 2 & 3), chromosome partitioning utilises 

parsimonious linkage map marker data, taking the form of 5582 and 5592 SNPs placed on 

the NL and UK maps spanning 2010cM and 1917cM respectively. Given the small number 

of markers on some of the chromosomes, the 32 chromosomes were modified into 23 
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chromosomes and ‘chromosome sets’ of smaller chromosomes. Chromosomes 1-15, 17-20, 

1A, 4A, LGE22 and the Z chromosome were analysed as individual chromosomes, with 

chromosomes 21-28 merged into a set known as the ‘micro-chromosomes’ (Santure et al. 

2013). 

Genotype information was available for 1407 and 2497 individuals from the NL and UK 

populations respectively. For the combined analysis, consistent with the modifications 

made for QTL and GWAS analyses (Chapter 3) NL individuals retained their original numeric 

IDs, WY individual IDs were modified with the addition of 1407 to each of their numeric IDs, 

creating genotype files for 3904 NLUK individuals.  

4.3.3. Chromosome partitioning model method & statistical testing  

Partitioning genetic variation across chromosomes was invented for application to human 

genetic studies (Yang et al. 2010; Yang, Manolio, et al. 2011), and was recently adapted for 

use in wild animal systems (Robinson et al. 2013). The method presented here follows the 

methodology presented by Robinson et al., (2013), using a different subset of phenotype 

data on the same study organism. 

To generate IBS matrices for chromosome partitioning analysis genotype data first has to 

be converted from the format describing the alleles making up each individual’s genotype 

at each SNP marker, to a -1, 0, 1 format, representing homozygote, heterozygote, and the 

other homozygote. Relationship matrices (GWRMs) were generated for 22 of the 

chromosomes / chromosome sets (1-15, 17-20, 1A, 4A, 21-28). The Z chromosome was 

excluded from chromosome partitioning analysis on the basis that SNP alleles are coded 

differently on the sex chromosome because it is heterogametic (Robinson et al. 2013), and 

for the purposes of describing the genetic architecture of laying date analyses of the 

autosomes would be sufficient. 
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For each of the 22 chromosomes (which includes the set of micro chromosomes) three 

different types of relationship matrices were constructed; one for all markers excluding 

those on the focal chromosome, one constructed using all markers and one containing only 

those markers on the specific chromosome (Robinson et al. 2013). Four mixed models 

using different combinations of relationship matrices were specified as follows, where ‘X’ is 

a focal chromosome; 

GWRM (minus chromosome ‘X’)       (model i) 

GWRM (minus chromosome ‘X’) + GWRM (only chromosome ‘X’)   (model ii) 

GWRM (all markers)        (model iii) 

GWRM (all markers) + GWRM (only chromosome ‘X’)    (model iv) 

Using the principle of the animal model to calculate heritability, the four mixed model sets 

were then used to partition variance across each of the genomic regions. Two likelihood 

ratio tests (LRT) were used to investigate the contribution of each chromosome to the 

additive genetic variation attributed to laying date. LRT1 contrasts model (ii) against model 

(i) to determine the contribution of each chromosome to phenotypic variation. LRT2 

contrasts model (iv) against model (iii) to assess whether variation exhibited by 

chromosome(s) is greater than expected given the region’s size and gene content. The null 

hypothesis for the first test is that the chromosome explains no VA; a significant result 

indicates the chromosome does contribute to VA. The second test has a null hypothesis that 

the chromosome explains the amount of VA that would be expected for its size, while a 

significant result indicates it explains more than expected for its size. 

Linear models were constructed to test whether the trait has a polygenic architecture, by 

testing whether the VA explained by each chromosome scales with its size (Mbp) and 

number of genes. The null hypothesis is that there is no relationship between chromosome 
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parameters and the proportion of variance explained while a positive relationship is 

consistent with the pattern of variation that would be expected from a polygenic pattern of 

genetic variation. 
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4.4 Results 

4.4.1. Likelihood ratio testing 

The twenty-two chromosome sets failed to account for any phenotypic variation in laying 

date in the UK great tit population, with heritability of laying date, based on an animal 

model incorporating a genome-wide relationship matrix estimated as zero (Table 4.1). LRT 

testing identified four chromosomes contributing to VA but only one (chromosome 6) was 

determined to be significant (Table 4.2).  

Table 4.1. Estimates of heritability for laying date in the UK, NL and combined NLUK great tit 

datasets, as obtained from animal modelling and chromosome partitioning (Gmatrix), showing 

standard error.  

 h
2
 

 UK NL NLUK 

Animal model 0.05 (+0.03) 0.15 (+0.06) 0.08 (+0.03) 

Gmatrix 0.00 (+0.00) 0.17 (+ 0.03) 0.10 (+ 0.03) 

 

For the Netherlands population a significant genetic component of variation was detected 

using marker derived estimates of relatedness with an estimated h2 of 0.17 (Table 4.1) 

divided between 11 chromosomes (Table 4.2). Likelihood ratio testing identified two 

chromosomes (4A and 13) as explaining significant amounts of additive genetic variation (p 

= 0.05, 0.02 respectively) (Table 4.2) though chromosome 4A explained no more than 

would be expected given its size (LRT2). 

For the NLUK dataset a heritability of 0.10 (Table 4.1) was calculated using marker data 

alone. Ten chromosomes each explaining a h2 of 0.01 (with the exception of the micro 

chromosome set; h2 = 0.02) explained the total additive genetic variance of the trait (Table 
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4.2). Likelihood ratio testing identified a single chromosome (12) as explaining a significant 

amount of variation (p = 0.03) but did not explain more than expected given its size (LRT2). 

No chromosome set explained more VA than expected.  

One of the main purposes of these analyses was to determine if the same chromosomes 

contributed significantly to VA in both populations. A direct comparison of the variance 

explained by the chromosomes between the UK and NL populations was largely 

uninformative and not significant (p = 0.08) (Figure 4.1), as all but four chromosomes in the 

UK explain no variance at all. There was also no correspondence between populations 

using likelihood ratio testing, with both LRT tests attributing significant VA to different 

chromosomes; chromosome 6 (UK) and chromosome 13 (NL) (Table 4.2).  
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Figure 4.1. Results of the chromosome partitioning analysis, showing the relationship between the 

variance (h
2
) explained by chromosomes in the UK and NL great tit populations (p = 0.09). For clarity 

chromosomes that explain no variance are not labelled. 
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Table 4.2 Likelihood ratio test (LRT) results for chromosome partitioning analysis performed on the Wytham Woods (UK), Hoge Veluwe (NL) and combined population 

(NLUK) datasets, for each chromosome (Chr) including micro chromosomes (M). Statistically significant results are highlighted in bold (continued on the next page) 

  UK NL NLUK 

Chr No. SNPs 

(WY) 

No. SNPs 

(NL / NLWY) 

Length 

(cM) 

Number 

genes 

Size 

(Mbp) 

h
2 

(+SE) LRT1 LRT2 h
2 

(+SE) LRT1 LRT2 h
2 

(+SE) LRT1 LRT2 

1 579 579 139.9 1254 119.6 0 0 0 0 0 0 0.01 (0.01) 0.4 0 

1A 415 415 93.6 972 73.7 0 0 0 0 0 0 0 0 0 

2 700 699 139.7 1450 156.4 0 0 0 0.02 (0.05) 0.16 0 0.01 (0.02) 0.2 0 

3 596 596 114.9 1290 112.6 0 0 0 0.01 (0.04) 0.04 0 0.01 (0.01) 0.86 0 

4 356 355 97.6 811 69.8 0 0.06 0.06 0 0 0 0 0.02 0 

4A 103 103 59.4 39 20.7 0 0 0 0.04 (0.03) 3.9 3.16 0.01 (0.02) 1.18 0.52 

5 346 346 98.6 998 62.4 0 0 0 0 0 0 0.01 (0.01) 0.66 0.02 

6 177 177 78 596 36.3 0.02 (0.01) 4.56 4.56 0.04 (0.03) 1.88 1.34 0 0.38 0.04 

7 176 176 72.6 562 39.8 0.01 (0.01) 0.68 0.68 0 0 0 0 0 0 

8 134 134 53.8 575 28 0 0 0 0 0 0 0.01 (0.01) 3.28 1.84 

9 130 130 54.2 497 27.2 0.01 (0.01) 0.32 0.32 0.01 (0.02) 0.12 0.002 0 0.18 0 

10 148 148 50.5 444 20.8 0 0 0 0 0 0 0 0 0 

11 135 135 58.2 397 21.4 0 0.04 0.04 0.02 (0.02)  0.78 0.48 0 0.16 0 

12 152 151 51.9 369 21.6 0 0 0 0.05 (0.03) 3.68 2.82 0.01 (0.01) 4.44 2.74 

13 117 115 40.9 379 17 0 0 0 0.06 (0.03) 5.3 4.46 0 0.3 0.06 
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Table 4.2 (continued) 

 UK NL NLUK 

Chr No. SNPs 

(WY) 

No. SNPs 

(NL / NLWY) 

Length 

(cM) 

Number 

genes 

Size 

(Mbp) 

h
2 

(+SE) LRT1 LRT2 h
2 

(+SE) LRT1 LRT2 h
2 

(+SE) LRT1 LRT2 

14 126 126 49.2 426 16.4 0 0 0 0.04 (0.03) 2.44 1.86 0.01 (0.01) 0.72 0.24 

15 173 173 49.1 381 14.4 0 0 0 0 0 0 0 0.02 0 

17 96 96 45.4 336 11.6 0 0 0 0 0 0 0 0 0 

18 93 93 49.9 334 11.2 0 0 0 0 0 0 0 0 0 

19 97 97 49.4 348 11.6 0 0.10 0.10 0 0 0 0 0 0 

20 155 155 49.4 356 15.7 0 0 0 0.01 (0.02) 0.18 0.04 0.01 (0.01) 1.38 0.6 

M 308 307 411 1808 40.2 0.02 (0.01) 1.96 1.96 0.05 (0.04) 1.96 1.22 0.02 (0.01) 3.56 1.68 
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4.4.2. Linear modelling 

Linear modelling for variance explained by chromosomes in relation to their size 

parameters using the UK dataset largely confirmed LRT results of no significant VA being 

attributed to laying date in this population, with no significant relationships between 

number of genes (Figure 4.2a) or size (Mbp) (Figure 4.2b). Using the NL dataset linear 

modelling of the number of genes and chromosome size (Mbp) against the variance (h2) 

explained found no significant correlations with either of these parameters (Figure 4.3).  

Linear modelling of the relationships between the two parameters and the amount of 

variance explained by chromosomes using the NLUK dataset revealed positive relationships 

in both cases (Figures 4.4a, 4.3b), with the number of genes (p = 0.05, r2 = 0.17) (Figure 

4.4a) explaining significant variation. To ascertain whether this result was purely a 

consequence of the cumulative size of the micro chromosomes, the micro chromosomes 

were removed to compare the effect of their inclusion on the pattern and statistical 

significance. The relationship between variance explained and number of genes remained 

positive but was non-significant (p > 0.1, r2 = 0.03)  
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Figure 4.2. Linear modelling for variance attributed to chromosomes in relation to (a) number of 

genes (p = 0.13) and (b) size (Mbp) (p = 0.77) for the UK great tit population. For clarity 

chromosomes that explain no variance are not labelled.  
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Figure 4.3. Linear modelling for variance attributed to chromosomes in relation to (a) number of 

genes (p = 0.79) and (b) size (Mbp) (p = 0.32) for the NL great tit population. For clarity 

chromosomes that explain no variance are not labelled.   
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Figure 4.4. Linear modelling for variance attributed to chromosomes in relation to (a) number of 

genes (p = 0.05) and (b) size (Mbp) (p = 0.34) for the NLUK dataset. For clarity chromosomes that 

explain no variance are not labelled.   
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4.5 Discussion 

As a comparison of the genetic architecture of a trait in multiple populations of a species, 

chromosome partitioning analyses revealed little correspondence between the UK and NL 

populations. Two different chromosomes with a significant contribution to VA (LRT1), above 

that expected given their size (LRT2) were detected in the UK (chromosome 6) and NL 

(chromosome 13) populations (Table 4.2).  The variance attributed to the significant 

chromosomes is small, explaining 2% (UK) and 5% (NL) of the additive genetic component.   

With little additive genetic variation for laying date in the UK little could be inferred from a 

comparison of the chromosomes contributing to variance between populations. Unlike the 

UK, where most of the additive genetic variation was captured by a few chromosomes, 

statistical testing on the NL and combined datasets indicated that additive genetic variance 

was distributed more widely across chromosomes.  

Contrary to expectations for both the NL and combined datasets, no significant 

relationships were observed between chromosome parameters and variance explained. 

Trends of the amount of variance explained in relation to chromosome size and number of 

genes for the NL population were predominantly negative. Larger chromosomes explained 

little to no variation, with contributions to additive genetic variation distributed among the 

smaller chromosomes (Figure 4.2). While trends for the combined dataset were positive, 

they were also non-significant. These results are contrary to what would be predicted 

assuming a polygenic mode of inheritance, where positive trends would be expected to be 

observed between measures and the amount of variance explained (Yang, Manolio, et al. 

2011; Santure et al. 2013).  

These results would suggest either an oligogenic genetic architecture for laying date, with 

variance attributed to single genes of large effect, or a lack of statistical power with which 
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to accurately partition variance resulting in the observed departure of patterns from those 

that were hypothesised. If variance has been partitioned accurately, and an oligogenic basis 

for variation is assumed, statistical testing has revealed a different genetic architecture for 

laying date between populations, with two different statistically significant chromosomes 

associated with phenotypic variation in the UK and NL.  

The existence of single genes of large effect associated with phenotypic variation has been 

observed in wild organisms (Johnston et al. 2010; Tarka et al. 2010; Johnston et al. 2011; 

Poissant et al. 2012) but there is evidence that this effect may in some cases be a 

consequence of small sample size. Smaller sample sizes can lead to inflated estimates of VA 

(Slate 2013), an effect that is known as the Beavis effect (Beavis 1994; Slate 2013).  

The genetic architecture of complex traits where many common variants of small effect 

exist are notoriously difficult to describe, as the effective contribution of each genomic 

region is so small that statistical testing often fails to identify causal variants (Yang et al. 

2010; Risch 2000; Cardon & Bell 2001). With other analyses of the UK great tit dataset 

having suggested inadequate power to detect genetic variants (Santure et al. 2013), a lack 

of power in the datasets analysed here, due to smaller sample sizes than is common in 

human or domestic animal datasets (Visscher et al. 2007; Weedon et al. 2008; Pimentel et 

al. 2011), may have limited the capacity of statistical analyses to accurately partition 

variance.    
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5.1 Abstract 

The recent development of a new high density single nucleotide polymorphism (SNP) chip, 

with 500,000 SNP markers mapped to the great tit genome, has provided more powerful 

genomic tools to accurately identify regions and genes associated with heritable 

phenotypic variation. Previous work in this thesis and elsewhere has described a small yet 

heritable component of phenotypic variation in laying date, and provided a description of 

the genetic architecture based on a genomic map composed of fewer than 8000 markers. I 

now take advantage of the substantially greater number of markers to employ genome 

wide statistical analyses in an attempt to increase the precision with which regions 

associated with variation in this trait can be identified. GWAS analyses failed to find any 

SNPs of genome-wide significance. This finding is consistent with numerous genes of small 

effect, in line with what would be expected for a complex polygenic behavioural trait. 

However chromosome partitioning analyses attributed a significant proportion of VA to 

chromosome 3, consistent with a SNP that almost reached genome-wide significance on 

the same chromosome detected by GWAS. Based on the results obtained from these 

analyses I further suggest that the dominant limiting factor in the ability to detect genetic 

variants is sample size itself and not marker density.       
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5.2. Introduction 

In birds, the synchronicity of breeding time with peak food availability is known to be a 

crucial determining factor in the reproductive success of individual females. In great tits 

lower chick weight and fledging success are some of the consequences of mistimed 

breeding events (Perrins 1970; Nussey et al. 2005; Gebhardt-Henrich 1990; Visser et al. 

2006). Given the importance of laying date on individual fitness, mechanisms are expected 

to have evolved to enable females to correctly time the laying of their eggs to ensure their 

offspring have the best possible chances of survival on hatching.  

Most of the variation in lay date can be explained by sensitivity to environmental cues 

(Visser et al. 2009; Conway & Martin 2000), and it is likely that a great number of avian 

breeding and migratory behaviours are instinctive reactions to these cues, particularly 

temperature (Conway & Martin 2000; Torti & Dunn 2005; Ardia et al. 2006; Visser et al. 

2009; Garroway et al. 2013; Charmantier & Gienapp 2014; Tarka et al. 2015). However 

evidence from populations of the great tit Parus major have suggested a genetic 

mechanism contributing to variation in laying date (van Noordwijk et al. 1981; van der 

Jeugd & McCleery 2002; McCleery et al. 2004; Gienapp et al. 2006; Garant et al. 2008; 

Schaper et al. 2011; Visser, Schaper, et al. 2011; Liedvogel et al. 2012).  

Using several different statistical methods previous Chapters in this thesis described 

attempts to understand the genetic architecture of laying date, but there was little 

correspondence between the results. Linkage analyses of the Wytham Woods (UK) and 

Hoge Veluwe (NL) great tit populations failed to identify any regions of genome-wide 

significance (Chapters 2 & 3), though a region of chromosome 10 reached a nominally 

significant threshold using the UK dataset (Chapter 2).  
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Association (GWAS) analyses did not detect any SNPs for either population at a genome-

wide significant level, with no more passing nominally significant thresholds than would be 

expected by chance (Chapters 2 & 3). Combining the datasets to increase overall sample 

size and statistical power resulted in the detection of two nominally significant SNPs using 

linkage analyses, on chromosomes 4A and 10, but again no genome-wide significant results 

were detected using either linkage or association methods (Chapter 3).  

Finally genetic variance attributed to laying date was partitioned across the genome for 

each population in isolation and the combined dataset (Chapter 4). Contrary to an overall 

hypothesis and the results of previous analyses that would predict a polygenic architecture, 

variance for the UK and NL populations was attributed to single (different) chromosomes (6 

and 13 respectively). Relatively large proportions of variance were further attributed to 

chromosomes 4A (NL) and chromosome 12, (NLUK) which though statistically significant, 

did not explain more variance than expected given their size.  

Limited evidence for an oligogenic architecture was further supported by linear modelling 

and the absence of positive relationships between chromosome size and variance 

explained by chromosomes. However, low additive genetic variation may have masked a 

polygenic architecture, with variance approximately equally partitioned between 

chromosomes too small to reach statistical significance.  

Assuming a polygenic mode of inheritance, as variance is distributed equally across the 

genome, larger chromosomes harbouring a greater number of genes would be expected to 

explain a greater proportion of variance (Yang, Manolio, et al. 2011). This would generate 

positive relationships between chromosome size and variance explained. A lack of 

statistically significant relationships between variance explained and chromosome size 

suggests either that few genes of large effect contribute to variation in laying date, or a lack 

of statistical power with which to accurately partition variance. 
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Complex traits are usually considered by their nature to be polygenic (Reif & Lesch 2003; 

Yang, Manolio, et al. 2011). In humans and domestic animals the polygenicity of 

quantitative traits have been largely substantiated by genomic analyses (Visscher 2008; 

Lango Allen et al. 2010; Yang et al. 2010; Pimentel et al. 2011; Lee et al. 2012; Yang, T. Lee, 

et al. 2013; Carneiro et al. 2014). In wild organisms however, analyses attempting to 

describe the architecture underlying complex traits have produced more varied results.  

The results of some studies of wild organisms support the hypothesis of variance explained 

by many genes of small effect (Robinson et al. 2013; Santure et al. 2013; Husby et al. 2015; 

Bérénos et al. 2015) whilst others have detected genes of large effect contributing to 

phenotypic variation (Colosimo et al. 2004; Beraldi et al. 2007; Gratten et al. 2007; 

Johnston et al. 2010; Tarka et al. 2010). Whether variance in these cases is truly 

represented by few genes of large effect, or whether these results are an artefact of small 

sample sizes inflating QTL effect sizes (Beavis 1994; Slate 2013; Bérénos et al. 2015) is 

uncertain.  

It is difficult to ascertain whether suggestive QTL (in the absence of genome-wide QTL) for 

traits in wild animals (Beraldi, McRae, Gratten, Slate, et al. 2007; Beraldi, McRae, Gratten, 

Pilkington, et al. 2007; Poissant et al. 2012; Poissant et al. 2013; Wenzel et al. 2015) 

(Chapters 2, 3 and 4) are true associations or represent a similar lack of power with which 

to accurately partition variance. Increasing the power of statistical analyses may provide a 

way to determine whether the genetic architecture of some quantitative traits in wild 

animals truly depart from a polygenic model.  

Low additive genetic variance (VA), low marker density and limited phenotypic data are all 

factors that make detecting genetic variants and partitioning variation difficult and may 

explain why previous analyses have failed to converge on genomic regions associated with 

variation in laying date. Genome-wide analyses on humans typically utilise genomic 



 

121 

 

information obtained from marker chips comprising hundreds of thousands of markers for 

thousands of subjects (Duerr et al. 2006; Franke et al. 2010; Kappen et al. 2015; Yang et al. 

2010; Yang, Manolio, et al. 2011; Vinkhuyzen et al. 2013). Such resources for wild 

organisms are becoming increasingly available, enabling more accurate and precise 

descriptions of the genetic basis of variation (Johnston et al. 2011; Robinson et al. 2013; 

Santure et al. 2013).  

Increasing marker density has the potential to increase the resolution of genomic analyses 

in a number of ways. The detection of QTL in GWAS studies relies on the extent of linkage 

disequilibrium (LD) between markers and causal loci (Pritchard & Przeworski 2001; Li & 

Merilä 2010; Slate et al. 2010; Bush & Moore 2012; Hill 2012; Bérénos et al. 2015) which 

can be low if causal variants have lower minor allele frequency (MAF) than genotyped SNPs 

(Wray 2005; Tabangin et al. 2009; Vinkhuyzen et al. 2012).  

If the genetic variance associated with a trait is composed of rare variants, with lower 

minor allele frequencies than markers, statistical analyses may fail to identify the genes 

contributing to VA (Manolio et al. 2009; Yang et al. 2010; Hill 2012; Speed et al. 2012). 

Increasing marker density not only increases the likelihood of SNPs being in LD with causal 

loci, but with wider SNP frequency distributions, including some with low minor allele 

frequencies, the identification of variants that previously would have gone undetected 

becomes possible (Xu 2003; Wang et al. 2005; Hill 2012).       

Extensive efforts have been made to develop genomic resources for the great tit, one of a 

handful of wild vertebrates for which long-term observations and DNA samples are 

available for multiple populations. Over 4000 birds were genotyped on a 10K SNP chip, to 

develop a genetic map comprised of 32 linkage groups (van Bers et al. 2010; Santure et al. 

2011; van Oers et al. 2014). More recently, as the result of collaborations between several 

research institutions DNA samples from over a dozen populations of great tits have been 
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used in the development of a high density SNP chip mapping around half a million markers 

to the great tit genome (in press).  

Using genotype information obtained from the new SNP chip I revise my attempt to 

identify genomic regions associated with variation in laying date in the Wytham Woods 

great tit population, applying association mapping and chromosome partitioning statistical 

techniques to seek genetic variants for laying date.      
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5.3. Methods 

5.3.1. Processing the Axiom array 

As part of the collaborative great tit HapMap project DNA, samples representing 2010 

individual great tits from 27 populations inhabiting Europe, Russia and Asia were selected 

for inclusion on a 500K SNP chip, the largest effort of its kind generating perhaps the most 

extensive genomic resource available for any wild vertebrate (unpublished). SNP 

genotyping was performed with an Affymetrix Axiom custom chip at Edinburgh Genomics, 

with output in the form of CEL files detailing raw probe intensity data for each sample.  

Genotype calling for individuals was performed using the AffyPipe genotyping pipeline 

(Nicolazzi et al. 2014) (Figure 5.1) in accordance with Affymetrix’s default best practice 

guidelines (using “Axiom genotyping solution data analysis guide” and "Best practice 

supplement to Axiom genotyping solution data analysis user guide"). Poor quality samples 

were first identified using a single sample metric, Dish-QC (DQC), followed by sample QC 

call test rate.  

The DQC test is based on intensities of probe sequences for non-polymorphic genome 

locations. The default DQC threshold for Axiom arrays is 0.82. Twenty five individuals were 

excluded on the basis of low DQC. To achieve the highest genotyping performance, as not 

all poor quality samples are detectable by DQC, an additional step was applied (sample QC) 

whereby samples passing DQC are genotyped using a subset of probe sets, and those with 

a call rate of <0.97 excluded. No samples failed this test.  

Two further tests for plate quality control were then performed. For Axiom genotyping 

projects samples are processed together on 96- or 384- array plates (in this case 96- array 

plates). All samples on plates that fail these tests are excluded from further analysis. The 

metrics used are plate pass rate and average QC call rate (details in Axiom genotyping 
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solution data analysis guide), with thresholds of 0.95 and 0.97 respectively. Two plate files 

failed to pass these quality control steps, eliminating 181 (94, 87) individuals. In total 1804 

individuals passed the AffyPipe quality control steps. 

 

Figure 5.1. Schematic view of the Affymetrix genotyping ‘AffyPipe’ protocol for standard and ‘best 

practice’ (indicated by the dashed line) workflows (from (Nicolazzi et al. 2014)) 

The R package SNPolisher was then installed in AffyPipe to calculate QC metrics for each 

SNP. Used for post-processing the results of Axiom arrays, SNPolisher evaluates the quality 

of marker signals and classifies SNP probes into classes (Nicolazzi et al. 2014). Of 610,970 

probes read from the remaining samples, 494,705 SNPs were kept. Finally all best probeset 

SNPs were converted into genotypes of PLINK ACGT format.           
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Of the 1804 individuals for which genotypes were successfully called, 861 were from 

Wytham Woods, UK. Only 42 individuals from the Hoge Veluwe population in the 

Netherlands were present in the post-processing genotype file, and as this sample size is 

insufficient for genomic analyses, only the UK great tit population was subject to further 

downstream analyses. Using the same method presented in Chapter 2, phenotype 

information was extracted for those females for which breeding events have been 

recorded. The resultant phenotype file consisted of 629 breeding events for 385 females.     

5.3.2. GWAS analysis 

Before running a genome-wide association analysis (GWAS), to account for repeated 

measures (i.e. where more than one breeding event has been recorded for a single female) 

a ‘phenotype’ in the form of a residual value obtained by running a version of the animal 

model in ASReml (Gilmour et al. 2002) was generated for each female (Chapters 2 & 3). As 

a different subset of females was used in this analysis compared to Chapter 2, tests of 

significance for fixed and random effects contributing to variation in laying date were re-

run in R ver3.0 (Team 2013) and ASReml ver30 (Gilmour et al. 1996) respectively (methods, 

Chapters 2 & 3).  

Linear modelling determined both female age and altitude to be significant (p <0.01) and 

were fitted as fixed effects (Appendix 5.1). Year and area of the wood were statistically 

significant and fitted as random effects together with female permanent environment 

effect (Table 5.1). The full mixed effects model with statistically significant fixed (blue) and 

random (purple) terms was then; 

Layd = age + altitude + femalePE + area + year    
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Table 5.1. Statistical testing of random effect terms included in the final versions of the mixed 

effects model for the UK great tit population using a high density SNP chip, using logarithm of the 

odds (LOD) scores obtained from ASReml, and subsequent likelihood ratio test (LRT) of significance. 

Variance components statistics for the final polygenic models are highlighted.     

Term LRT p value Component Comp/SE D.O.F 

Year 351.64 <0.01 51.69 2.83 1 

Area 14.12 <0.01 1.27 1.43 1 

FemalePE 5.8 0.02 2.40 1.99 1 

      

Residual variance   19.88 12.73  

Total variance   75.24  626 

 

Genome-wide association analysis was performed using GenABEL (Aulchenko, Ripke, et al. 

2007) implemented in R (version 3.0.0 (2013)). Quality control using default parameters 

was performed in GenABEL to remove markers and individuals of poor genotyping quality 

(Chapter 1). In total 48672 SNPs and 18 individuals were removed for failing to pass 

individual and marker call rate, Hardy-Weinberg equilibrium and minor allele frequency 

thresholds (individual call rate: 0.50, SNP call rate: 0.70, Hardy-Weinberg equilibrium: P < 

1e-5, minor allele frequency: 0.05). A total 446,033 SNPs and 367 individuals were retained 

for association analysis.  

Typically GWAS analyses assume phenotypic data comes from unrelated individuals from a 

single population (Svishcheva et al. 2012) but even with carefully constructed datasets 

there exists the potential for relatedness between individuals and population stratification. 

Population stratification can be problematic in that it is known to increase the incidence of 

Type I error (Aulchenko, de Koning, et al. 2007; Svishcheva et al. 2012). Tests implemented 
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in GenABEL correct for population stratification by fitting a relationship matrix based on 

genome-wide marker relatedness to account for the presence of related individuals (Chen 

& Abecasis 2007). Lambda before correction for population stratification was estimated as 

1.04 (estimates of lambda >1 indicate inflation) (Appendix 5.2a).  

A polygenic model applied using function ‘mmscore’ (Chen & Abecasis 2007) in GenABEL 

was used to test for associations between SNP markers and the trait. Interpretation of the 

association scan to identify regions of significance was determined by Bonferroni 

correction for multiple testing to set the genome-wide significance threshold and a 

permutation test subsequently to substantiate the results of the association scan and set 

the genome-wide significance threshold.   

5.3.3. Chromosome partitioning analysis 

A second statistical analysis was then employed to partition variance between individual 

chromosomes. Consistent with former analyses (Chapter 4) the smaller chromosomes (21-

28, LGE22) were grouped to form a micro chromosome set. Results were then obtained for 

22 chromosomes (1-15, 17-20, 1A and 4A, also including the micro chromosome set). In 

contrast to Chapter 4 which utilised the chromosome partitioning method of Robinson et 

al. (2013), the construction of genetic relatedness matrices and subsequent partitioning of 

genetic variation was performed using the programme GCTA (Yang, Lee, et al. 2011; Yang, 

S. H. Lee, et al. 2013).  

The objective of this method is to estimate genetic variation captured by all SNPs (Yang, 

Lee, et al. 2011). GCTA uses information captured by markers to estimate the genomic 

relationships between pairs of individuals, and performs association analyses to correlate 

genome-wide SNP similarity with phenotypic similarity (Yang et al. 2010; Yang, Lee, et al. 

2011; Deary et al. 2012; Yang, S. H. Lee, et al. 2013). Two sets of genetic relatedness 
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matrices (GRMs) were generated for each chromosome; one multi chromosome GRM 

consisting of marker information for all chromosomes with the exception of the focal 

chromosome, and one constructed from the markers on the focal chromosome. 

Partitioning variance across the autosomes was then performed using a familiar restricted 

maximum likelihood (REML) approach (Yang, Lee, et al. 2011). A comparison between the 

two sets of genetic relatedness matrices in the form of a likelihood ratio test (where one 

model fits both GRMs and the other omits the focal chromosome’s GRM (Chapter 4)) was 

the performed for each chromosome to ascertain whether any of the chromosomes 

contributed a significance proportion of variance.  

Linear modelling was then used to test for relationships between chromosome size (Mbp) 

and number of genes, to ascertain whether larger chromosomes explain a greater 

proportion of the additive genetic variance (VA). If variance explained is proportional to 

these parameters, this would provide evidence for a polygenic mode of inheritance (Yang, 

Manolio, et al. 2011). The null hypothesis predicts no relationship between the amount of 

variance explained by chromosomes and either of the size parameters.  
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5.4. Results 

5.4.1. GWAS 

A heritability estimate of 0.27 was obtained from GenABEL. Correction for population 

stratification was successful with an estimate of lambda of 1.00 (+ 1.11) (Appendix 5.2b). 

The association scan detected no genome-wide significant SNPs with 24100 passing a 

nominally significant threshold of p<0.05 (Figure 1). Assuming a false discovery rate of 5%, 

for 495705 markers we would expect 24735 markers to achieve nominal significance by 

chance. The results of the permutation test where an empirical distribution of test statistics 

was derived from 1000 permutations (Bush & Moore 2012) validated the absence of 

genome-wide significant SNP markers giving the SNP with the highest association, located 

on chromosome 3, a p-value of 0.13 (Table 5.2). 
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Table 5.2. The top 10 associations from GWAS analysis using genetic information from a 500K SNP chip, following a permutation test of 1000 iterations to test for 

significance. Number of females for which complete phenotypic information was available (N), chromosome (Chr) and position (cM). Effect sizes (effB) and their standard 

errors (se_effB) of allelic substitutions with 1df. Nominal p value (pre-permutation Pc1df) and genome-wide p value from permutations tests before and after lambda 

correction (P1df, Pc1df). Genotype effect sizes relative to AA and test statistics from a model fitting genotypes as a three level factor described by effAB and effBB.    

Marker Chr Position A1 A2 N effB se_effB chi2.1df Pre-permutation 

Pc1df 

P1df Pc1df effAB effBB 

Affx-100103406 3 17523790 T C 364 0.1673 0.0341 24.0337 7.07E-07 0.231 0.14 0.1352 0.3532 

Affx-100794769 7 57838616 G C 359 -0.2346 0.0526 19.8640 4.88E-06 0.921 0.795 -0.2519 -0.4103 

Affx-100991634 4A 1.07E+08 C G 364 0.1583 0.0357 19.7019 1.07E-05 0.936 0.818 0.1334 0.3259 

Affx-100497585 3 31092231 A G 363 0.1538 0.0347 19.6655 7.74E-06 0.94 0.822 0.1795 0.3048 

Affx-100429736 3 14007486 A T 359 0.1870 0.0427 19.2119 6.70E-06 0.971 0.895 0.1345 0.5393 

Affx-100461164 3 67660605 C T 366 0.1649 0.0385 18.3249 1.35E-05 0.996 0.973 0.1641 0.3310 

Affx-100343672 20 58991237 G A 366 -0.1685 0.0395 18.1699 1.68E-05 0.997 0.975 -0.2098 -0.2482 

Affx-100775219 3 51021709 T G 367 0.2264 0.0544 17.3217 1.90E-05 1 0.998 0.2653 0.2670 

Affx-100256884 7 1436465 C G 365 -0.2238 0.0541 17.1377 2.47E-05 1 0.998 -0.2263 -0.4321 

Affx-100670379 3 31092283 G A 363 0.2368 0.0573 17.1077 2.68E-05 1 0.998 0.2647 0.3283 
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Figure 5.2. GWAS scan for regions associated with variation in lay date. The blue dashed lines represent significance thresholds of nominal (1.30) and genome-wide (7.00) 

significance
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 5.4.2. Chromosome partitioning 

Likelihood ratio testing revealed VA was distributed over 10 chromosomes of which 

chromosome 3 explained the most variation and was the only chromosome to explain a 

statistically significant proportion of variation overall (p < 0.05) (Table 5.3). No significant 

relationships were detected either between the amount of variance explained by each 

chromosome in relation to chromosome size (Mbp) or the number of genes (p >0.1 all 

cases) (Figure 2).  
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Table 5.3. Likelihood ratio test (LRT) results for chromosome partitioning analysis performed on the 

Wytham Woods (UK) population using genotype information from a 500K SNP chip. Statistically 

significant results are highlighted in bold. 

     UK 

Chromosome 

/ set 

No. 

SNPs  

Length 

(cM) 

Number 

genes 

Size 

(Mbp) 

h
2 

(+SE) LRT1 

1 68300 139.9 1254 114.1 0 0.00 

1A 36660 93.6 972 71.4 0 0.00 

2 85089 139.7 1450 150.3 0.07 (0.15) 0.28 

3 62097 114.9 1290 111.6 0.3 (0.15) 7.87 

4 39833 97.6 811 68 0 0.00 

4A 7969 59.4 39 19.9 0.12 (0.13) 0.85 

5 29395 98.6 998 61.9 0 0.00 

6 10116 78 596 33.3 0 0.00 

7 18014 72.6 562 37.7 0.09 (0.12) 0.75 

8 12611 53.8 575 31.3 0.17 (0.13) 1.50 

9 10873 54.2 497 25.1 0 0.00 

10 9600 50.5 444 20.2 0 0.00 

11 9024 58.2 397 20.3 0 0.00 

12 9659 51.9 369 20.5 0 0.00 

13 7882 40.9 379 16.5 0.08 (0.11) 0.64 

14 3374 49.2 426 16.2 0 0.00 

15 5445 49.1 381 13.8 0.13 (0.11) 1.67 

17 3512 45.4 336 10.5 0.04 (0.11) 0.16 

18 4404 49.9 334 11.6 0.08 (0.10) 0.89 

19 3565 49.4 348 9.9 0 0.00 

20 6212 49.4 356 14.7 0.12 (0.13) 0.80 

micros 11271 411 1808 44.2 0 0.00 
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Figure 5.3. Results of the chromosome partitioning analysis where the amount of variance explained 

by each chromosome (labelled directly on the figure) is plotted relative to (a) number of genes (p = 

1) and (b) size (Mbp) (p = 0.44).   
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5.5. Discussion 

Increasing the density of markers mapped on the great tit genome did not result in the 

detection of any genome-wide significant genetic variants associated with variation in 

laying date. However, the position of the SNP with the highest association on chromosome 

3 is in accordance with the findings of the chromosome partitioning analysis which found 

chromosome 3 the only chromosome to explain a significant amount of variation. This is as 

expected, based on the fact both analyses use the same markers and individuals. Whether 

there is a true causal variant in this region of chromosome 3 remains unresolved.  

There is no consistency between the analyses performed on the Wytham, Dutch and 

combined populations and those obtained for Wytham using the new chip. None of the 

association analyses on the other datasets identified significant variants, or consistently 

found that the same locations produced the strongest associations. Markers on 

chromosomes 8, 2 and 14 represented the top associations for the UK, NL and combined 

datasets respectively (Chapters 2&3) and (different) markers on chromosome 3 appeared 

in the top 10 associations for both the UK (Chapter 2) and NL datasets (Chapter 3). 

However permutation tests of the significance of associations drawn from all datasets 

suggested that none of the association scores were stronger than what would be expected 

to occur by chance.   

The results of chromosome partitioning analyses between datasets also failed to 

consistently show the same chromosome(s) contributing the most variance. Chromosome 3 

was not found to contribute a significant amount of variance using the other datasets, 

which identified chromosomes 6, 13 and 12 from the UK, NL and combined datasets 

respectively (Chapter 4). The only consistency between analyses on different datasets came 

from linear modelling, when the amount of variance attributed to chromosomes was 

plotted relative to their size and gene content.  



 

136 

 

Identifying whether quantitative traits adhere to a polygenic model, or whether in fact the 

genetic component of variation is composed of few genes of large effect is one of the 

fundamental aims of evolutionary biology (Charmantier et al. 2014). Having data from 

multiple populations of the same species, enabling replication of analyses and a direct 

comparison of results, is a useful tool when attempting to describe the genetic architecture 

underlying trait variation. If a pattern of many genes of small effect is observed between 

populations evidence of a polygenic architecture may be substantiated.  

Contrary to theory for assumed polygenic traits, which would predict the amount of 

variance explained by chromosomes should be proportional to their size (Yang, Manolio, et 

al. 2011), results using three previous three datasets (UK, NL, NLUK (Chapter 4)) found no 

significant associations between variance explained by chromosomes and their size (Mbp) 

or number of genes. The only exception was a positive association with number of genes 

using the NLUK dataset, though this was largely driven by the cumulative size of the micro 

chromosome set (Chapter 4). The results presented here using the high density chip 

similarly found no statistically significant relationships between size / number of genes and 

the amount of variance explained in the UK population. These results suggest either a lack 

of power in the dataset to accurately partition variance, as a consequence of low additive 

genetic variance or small sample size, or a departure from the polygenic model laying date 

is assumed to have. 

Human genetic studies on traits such as height, BMI and certain medical conditions have 

found strong positive correlations between the amount of variance explained by 

chromosomes relative to chromosome length (Yang, Manolio, et al. 2011; Visscher et al. 

2007; Lee et al. 2012) and gene content (Yang, Manolio, et al. 2011). However examples of 

large effect loci have been described for complex quantitative traits in both domestic and 

wild organisms (Rich 1990; Nezer et al. 1999; Colosimo et al. 2004; Bernier et al. 2007; 
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Venuprasad et al. 2009; Johnston et al. 2010; Tarka et al. 2010; Yang, Manolio, et al. 2011). 

Variation in armour plate pattern and number in multiple populations of threespine 

sticklebacks (Colosimo et al. 2004), horn size and length in soay sheep (Johnston et al. 

2010) and wing length in great reed warblers (Tarka et al. 2010) were attributed to large 

effect single loci. The detection of several large effect QTL in wild animal populations may 

be a consequence of the sample sizes used in analyses.  

Sample size is a key determinant not only of the ability to detect QTL but also influences 

QTL effect size (Beavis 1994; Slate 2013). With an observed correlation between sample 

and QTL effect sizes (Slate 2013) many large effect QTL may in fact be the result of small 

sample size masking the true genetic architecture. Utilising the first great tit SNP chip 

research into the genetic architecture of clutch size and egg mass found significant positive 

correlations between chromosome size (Mbp) and both traits (Robinson et al. 2013; 

Santure et al. 2013) suggestive of a polygenic basis for phenotypic variation.     

Whilst the patterns observed between datasets in this thesis suggest variants of small 

effect, the absence of positive correlations between the variance explained by 

chromosomes in relation to their size is an unexpected departure from the pattern that 

would be expected from a highly polygenic trait. The lack of consistency between QTL 

identified by means of different statistical analyses, and between populations and datasets, 

suggests a lack of power as opposed to an oligogenic architecture may explain the results. 

A potential factor, and one of the greatest limitations of these analyses, is small sample 

size. While the phenotypic data available to us is, one of the most extensive available for a 

wild animal (see Husby et al. 2012; Bérénos et al. 2015 for other examples), the power of 

genomic analyses is dependent, even proportional, to sample size (Beavis 1994; Slate 

2013).  
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Increased marker density and sample sizes are often cited as being essential for the success 

of genomic analyses (Risch & Merikangas 1996; Manolio et al. 2009; Poissant et al. 2012; 

Poissant et al. 2013). Sample size and low heritability, together with many variants of small 

effect are likely all contributing factors limiting the effectiveness and accuracy of the 

statistical analyses that have been applied here. One conclusion that may be drawn from 

the analyses presented in this chapter is that increased statistical power from increased 

marker density was likely countered by a reduction in power due to a reduced sample size, 

compromising the results. The power of genomic statistical analyses relies on the 

availability of both extensive phenotypic and genetic data. Insufficient quantity or quality of 

just one of these data sources effectively limits the power of statistical tests to identify the 

variants associated with phenotypic variation.   
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Chapter 6 

Discussion 
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Advances in both the sophistication and accessibility of genotyping technologies are 

increasingly providing an avenue for researchers studying a wide range of organisms to 

dissect the genetic architecture of phenotypic traits. Understanding the amount of genetic 

variation associated with traits has significant implications for our understanding of how 

traits may evolve and the potential for organisms to adapt. In this thesis, I took advantage 

of privileged access to data from two of the longest running individual-based studies of 

wild animal populations to understand the genetic basis of a behavioural life history trait.  

Focusing on the Wytham Woods population of great tits, Chapter 2 described how linkage 

and association mapping were used to scan for genetic variants associated with variation in 

laying date. A suggestive peak on chromosome 10 identified by a QTL scan failed to be 

replicated when the data was subjected to GWAS analysis where the highest associations 

were located on chromosomes 8, 27 and 3. In Chapter 3, the same methods were used to 

explore the genetic architecture of laying date in the Dutch Hoge Veluwe population. No 

genome-wide significant QTL were detected using either method. In fact neither linkage 

nor association mapping identified any QTL that were significant at the less stringent 

suggestive threshold.  

The datasets for the UK and Dutch great tit populations were then combined, increasing 

the overall size of the dataset to determine whether more data leads to increased 

resolution and / or power. Applying the same statistical techniques, suggestive QTL peaks 

were identified on chromosomes 10 and 4A. No genome-wide significant regions were 

identified and, mirroring the results of each population analysed independently, the 

highest GWAS associations did not co-localise with the suggestive QTL peaks.  

In Chapter 4 a more recently developed statistical technique, genome or chromosome 

partitioning was employed to partition the genetic variance associated with variation in 

laying date between autosomal blocks. This approach was applied to each population and 
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the combined dataset. There was little evidence for variation in laying date in the Wytham 

population being attributed to any specific region, with the vast majority of chromosomes 

explaining no variation. However Chromosome 6 explained a significant amount of the 

variance and significantly more than would be expected given its size, but still its 

contribution represented just 2% (h2 0.02) of the total phenotypic  variance. For the 

Netherlands population two chromosomes (4A and 13) explained a significant amount of 

the variance with chromosome 13 explaining more than would be expected. One 

chromosome (12) explained a significant proportion of variation in the combined dataset. 

Using the results of the chromosome partitioning analysis, linear modelling was then used 

to elucidate the relationships between the amount of variance explained by each 

chromosome relative to the parameters of chromosome size (Mbp) and number of genes. 

For each of the three datasets no significant relationships were detected for variance 

contributed by each chromosome relative to either of these parameters.  

In Chapter 5 genotype information was extracted from the most recently developed and 

much larger SNP chip and used in association and chromosome partitioning analyses. The 

hope was that the increased marker density would increase the power of statistical tests to 

detect regions harbouring genetic variants associated with laying date, and to map them 

with a greater degree of precision. Evidence for a SNP marker approaching the genome-

wide significant threshold was detected on chromosome 3, and was substantiated by a 

subsequent chromosome partitioning analysis where the same chromosome explained a 

significant amount of variance. All correlations between the additive genetic variance 

explained by a chromosome and its size and number of genes were positive, but again were 

non-significant. 
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Variation in laying date has a significant genetic component 

Analyses on the three datasets using genomic information from the 8K SNP chip, and on 

the Wytham Woods dataset using the 500K SNP chip supported the findings of several 

other studies (van Noordwijk et al. 1981; van der Jeugd & McCleery 2002; McCleery et al. 

2004; Nussey et al. 2005; Gienapp et al. 2006; Garant et al. 2008; Liedvogel et al. 2012), 

that laying date is heritable with a small but significant genetic component contributing to 

variation. The lower density SNP chip gave low heritability estimates for Wytham of 0.05 (+ 

0.03) (Chapter 2) and 0.00 (Chapter 4) which were consistent with the previously most 

recent pedigree based estimate of 0.03 (+ 0.01) (Liedvogel et al. 2012).  

The Hoge Veluwe heritability estimates were also consistent with estimates published in 

the literature, with h2 of 0.15 (+ 0.06) (Chapter 3) and 0.17 (+ 0.03) (Chapter 4) closely 

matching a previously published estimate of 0.17 (Gienapp et al. 2006). The estimate 

calculated for the Wytham Woods population, using GenABEL and data from using the new 

SNP chip, was 0.27 and is the largest calculated for the species, close to an earlier estimate 

of 0.24 before accounting for spatial autocorrelation (van der Jeugd & McCleery 2002).  

The genetic architecture of laying date does not adhere to patterns commonly associated 

with a polygenic mode of inheritance 

An absence of genome-wide significant QTL, no more significant SNPs passing a suggestive 

threshold than would be expected by chance and a visual interpretation of association 

scans showing a fairly homogenous distribution across the genome point to a polygenic 

genetic architecture. However the absence of significant or positive correlations identified 

from chromosome partitioning analyses on any of the datasets is contrary to the expected 

trends that would be exhibited by a polygenic trait.  
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The alternate scenario would be an oligogenic architecture, with few genes of large effect 

contributing to phenotypic variation, but evidence for this is also scarce. A SNP on 

chromosome 3 close to genome-wide significance was deemed non-significant following 

permutation tests (Chapter 5), and on further inspection the marker is not in a region 

currently known to harbour genes associated with seasonal timing (Veronika Laine, pers 

comm).   

The genetic architecture of complex traits in wild organisms has been observed to vary 

substantially. Major loci explaining a large proportion of additive genetic variation 

associated with phenotypic variation have been described in several wild species (Slate et 

al. 2002; Beraldi, McRae, Gratten, Slate, et al. 2007; Johnston et al. 2010; Poissant et al. 

2012; Tarka et al. 2010), though there is some evidence that many of these results are an 

artefact of small sample sizes causing overestimates of the genetic effect (Beavis 1994; 

Slate 2013).  

In wild avian species polygenicity of phenotypic variation has been demonstrated for traits 

such as clutch size in the collared flycatcher (Husby et al. 2015) as well as clutch size, egg 

mass and wing length in the great tit (Santure et al. 2013; Robinson et al. 2013). Based on 

the evidence accumulated in this thesis it is difficult to ascribe laying date an oligogenic or 

polygenic architecture. It remains highly likely that laying date is polygenic, influenced by 

many genes of small effect, but that low heritability and low statistical power hindered the 

ability of statistical tests to identify QTL or accurately partition variance.   

Observed breeding time shifts in response to climate change are largely influenced by 

non-genetic effects 

One of the greatest problems that has faced biologists attempting to distinguish between 

micro-evolutionary and plastic responses to climate change is a lack of phenotypic / 
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genomic information and subsequently statistical power to detect a genetic component, 

leading them to infer micro-evolutionary responses from phenotypic data alone (Parmesan 

& Yohe 2003; Root et al. 2003). Whilst there is mounting evidence from long-term studies 

that support a genetic component to several avian life-history traits (Pulido & Berthold 

2003; Gienapp et al. 2006; Garant et al. 2008; Liedvogel et al. 2012; Husby et al. 2015; 

Tarka et al. 2015; Thorley & Lord 2015), there is undoubtedly a consensus that much of the 

observed variation can be attributed to behaviour within the range of existing reaction 

norms (Visser et al. 2004; Ghalambor et al. 2007) and phenotypic plasticity (Husby et al. 

2015; Tarka et al. 2015; Charmantier & Gienapp 2014; Vedder et al. 2013; Gienapp et al. 

2008).  

The reaction norm concept describes how phenotypes change across an environmental 

gradient (Falconer 1990; Weis & Gorman 1990; Gavrilets & Scheiner 1993; Via et al. 1995; 

Schlichting & Pigliucci 1998). Organisms are adapted to the varying conditions that may be 

experienced in their environment, as a result of seasonal fluctuations in temperature for 

example. The range of conditions within which they are able to function (for example the 

upper and lower temperature limits the species has evolved under and is expected to 

experience) is defined as the reaction norm, enabling phenotypic variation in response to 

environmental variation (Weis & Gorman 1990; Gavrilets & Scheiner 1993; Schlichting & 

Pigliucci 1998). The capacity for organisms to cope with environmental perturbation 

depends on the extent of existing reaction norms. If environmental conditions fall within 

the range of the reaction norm adaptive responses may occur without the aid of additive 

genetic variation. If however conditions exceed these thresholds, organisms would be 

expected to evolve new mechanisms to cope, or perish.  

Of the studies that have attempted to explain variation in laying date there is a consensus 

that environmental cues are the dominating factor in determining breeding time, with 
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plasticity the main mechanism enabling responses to changes in climate (Przybylo et al. 

2000; Brommer et al. 2005; Nussey et al. 2005; Gienapp et al. 2008; Husby et al. 2010; 

Thorley & Lord 2015; Perdeck & Cavé 1992; Hakkarainen et al. 1996). The rapidity of the 

responses suggest plasticity as the most likely mechanism as genetic-based adaptation 

would require generations before a phenotypic shift could be observed (Charmantier et al. 

2008). Even studies with the capacity to test for a genetic based response to advances in 

laying date attributed most of the variation to plasticity, in response to temperature cues, 

as opposed to a microevolutionary responses (Sheldon et al. 2003; Gienapp et al. 2006). 

Temperature has been suggested to be one of the most important cues dictating 

behavioural responses in birds, especially with regard to migratory behaviour (Tarka et al. 

2015), onset and length of incubation (Ardia et al. 2006; Vedder 2012) and laying date 

(Winkler et al. 2002; Thorley & Lord 2015; Matthysen et al. 2011; McCleery & Perrins 

1998). In great tits temperature is consistently identified as one of the most influential 

factors determining the onset of laying (Visser et al. 2009; Schaper et al. 2011; Ahola et al. 

2009).  

Whilst temperature was not explicitly modelled in the analyses presented in this thesis, the 

year in which the breeding event was recorded was consistently the most important 

random effect, explaining the highest proportion of variation in laying date (Chapters 2 & 

3). This is possibly a reflection of increases in spring temperature and subsequent shift in 

the timing of emergence of their caterpillar food prey (Charmantier et al. 2008). Altitude 

was also significant in accordance with research demonstrating that great tits time their 

breeding events in response to food availability at a very localised scale (Wilkin et al. 2007; 

Hinks et al. 2015).     
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Limitations 

One of the major limitations of molecular quantitative genetic analyses is that the small 

effect sizes typically attributed to each gene make it extremely difficult for statistical 

methods to detect variants associated with the trait. Power analyses performed on the 

Wytham great tit dataset have concluded that even for traits of moderate heritability / QTL 

of moderate effect size, the power to detect variants in this dataset is very low (Santure et 

al. 2013, Poissant pers comm).  

Given the complexity of laying date being determined by many factors, with a much smaller 

genetic component than traits such as clutch size, the inability of statistical methods to find 

significant associations or accurately partition variation between autosomal blocks in this 

case is a consequence of the inherent lack of power in the dataset, which is smaller and 

consists of fewer individuals than the vast majority of datasets associated with similar 

analyses on humans and domestic animals (Meyer 1989; Dekkers 2012; Visscher et al. 

2007).  

This thesis attempted to identify any of the numerous small effect genes underlying laying 

date. Given the ability to detect QTL relies on the magnitude of effect size (Lynch & Walsh 

1998; Hill 2012; Korte & Farlow 2013; Bush & Moore 2012), and for association analyses 

the amount of LD between markers and causal variants (Pritchard & Przeworski 2001; Hill 

2012), the small genetic component and size of the dataset ultimately limited the power of 

statistical tests detect the variants associated with the focal trait. Statistical methods, 

particularly GWAS, typically struggle to identify variants of small effect size (Korte & Farlow 

2013), which is a major issue when attempting to analyse highly polygenic traits, and is 

exacerbated by small sample sizes.  
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Sample size has been demonstrated to inflate effects sizes of variants associated with 

phenotypic variation and affect the precision with which genetic variants can be mapped 

(Beavis 1994; Slate 2013). The amount of variation explained by QTL is found to diminish 

with increasing sample size, indicating that small sample sizes result in upwardly biased 

effect sizes (Slate 2013). Linked chromosomal regions tend to be inherited together, only 

becoming separated by rare recombination events, which means that the more progeny 

and generations contained within a dataset the higher the probability that the sample will 

include rare recombinants which will help us to interpret their individual effects and 

increase the precision of QTL estimation (Beavis 1994).  

Such is the impact of sample size on the estimation and identification of quantitative 

genetic variance components that Beavis (1994) cited it as the singular most important 

factor in our ability to detect and describe the genetic component of variation of 

phenotypic traits, even above increased computational power, improved statistical 

techniques and higher marker density (Beavis 1994; Kearsey & Farquhar 1998).  

Implications & future directions 

An understanding of the genetic architecture underlying complex traits may ultimately be 

used to measure the capacity of animal populations to respond to changes in the 

environment. Current theories suggest the reaction norms that enable organisms a degree 

of flexibility in response to environmental perturbation may enable populations to adapt in 

the short-term with individuals capable of modifying their behaviour (Yeh & Price 2004). 

Long-term irreversible changes may have far more serious consequences for population 

persistence as traits which have evolved to provide specific advantages become 

maladaptive (Visser et al. 2004; Ghalambor et al. 2007; Gienapp, Lof, et al. 2013).  
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Currently it appears breeding time birds is occurring within the existing reaction norms and 

as such plasticity is sufficient, with micro-evolution absent or too small to detect (Gienapp 

et al. 2006; Sheldon et al. 2003). With persistent changes in environmental conditions, 

selection may act on the available genetic component of variation resulting in a significant 

shift to earlier laying by means of micro-evolution. Yet heritability and selection for earlier 

laying may not culminate in the patterns we would predict, given the ecology and 

demography of the population.   

Research has found that while mismatches may have a strong effect on relative individual 

fitness, the overall effects on mean demographic rates are negligible as the fitness losses 

encountered by late breeding females in the form of fewer recruits are offset by the 

benefits accrued by individuals and offspring of early breeding females as a result of 

reduced competition (Reed, Grotan, et al. 2013; Reed, Jenouvrier, et al. 2013). Great tits 

seem amply capable of modifying their behaviour to localised environmental conditions. 

The effect of increased temperatures and climate change induced mismatches on the 

fitness of populations and the role of a genetic component of variation will only be resolved 

by taking advantage of annually expanding datasets to run increasingly powerful statistical 

models.   

The power of genomic statistical analyses relies heavily on the size of the phenotypic 

dataset, with the number of cases and generations enabling statistical methods to more 

accurately detect genetic variants. Continued long-term monitoring is essential for 

advancing our understanding of the genetic architecture of complex traits in wild 

vertebrates by providing ever more detailed pedigrees and enabling association studies to 

utilise complex genomic information and patterns of LD.  

Increasingly sophisticated statistical methods can also be used to elucidate the mechanisms 

underlying phenotypic variation. Given that loci contributing to phenotypic variation may 
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contain multiple different alleles, regional heritability mapping uses genome-wide SNP data 

to estimate distant and previously uncaptured familial relationships, increasing statistical 

power, to estimate whole genome and regional genome heritability (Nagamine et al. 2012; 

Uemoto et al. 2013; Riggio & Pong-Wong 2014).  Advances in our computing capability and 

the development of programmes and methods such as regional heritability mapping 

(Uemoto et al. 2013; Riggio & Pong-Wong 2014; Riggio et al. 2013) will also enable future 

studies to make the best use of the phenotypic datasets that exist to detect genetic 

variants.   

The rapidly advancing field of epigenetics represents a future avenue of research for 

studies attempting to elucidate the mechanisms underlying behavioural and morphological 

variation. Observations made in rodents that environmentally-induced changes in gene 

expression manifest phenotypically in subsequent generations (Morgan et al. 1999) have 

been attributed to a heritable pattern of DNA methylation that occurs without modification 

of the DNA sequence (Holliday 2006; Bird 2007; Bollati & Baccarelli 2010).  

Experiments focused on modifying expression of the agouti gene in mice, resulting in 

yellow fur, obesity and diabetes, found offspring phenotype to be directly related to the 

phenotype of the mother and not a consequence of postpartum maternal environment 

(Wolff et al. 1998; Morgan et al. 1999). Subsequent studies confirmed maternal phenotype 

for traits such as obesity and diabetes could affect the phenotype of the offspring 

(Reifsnyder 2000; Li et al. 2013) and mice born from dams exposed to high levels of stress  

predisposed to display behaviours, such as hyperactivity and deficits in social interaction 

associated with psychiatric disorders (Holmes et al. 2005; Franklin et al. 2010; Matrisciano 

et al. 2013; Dong et al. 2016). 

Given the ubiquity of conditions such as diabetes and mental health disorders in human 

populations much research has focused on the potential for epigenetics to aid in the 
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diagnosis, prognosis and treatment of such conditions, notably cancer (Jones & Laird 1999; 

Egger et al. 2004; Esteller 2008), Alzheimer’s (Mastroeni et al. 2011; Rao et al. 2012; 

Traynor & Renton 2015; Zhu et al. 2015; Watson et al. 2016) and obesity (Campión et al. 

2009; Campión et al. 2010; Soubry et al. 2013; Thomas 2015) in humans. However 

controversy surrounding the extent and accuracy with which phenotypic variation can be 

assigned an epigenetic mode of inheritance is pervasive in the field of genetics and 

genomics (Jablonka & Raz 2009; Bollati & Baccarelli 2010; Hughes 2014; Meloni & Testa 

2014). 

Phenotypic expression has the potential to be affected by a complex interaction of 

epigenetics and genetics (Jiang et al. 2004; Chibnik et al. 2015). In human cancer research 

epimutations linked to predispositions for colon cancer were subsequently found to be a 

consequence of a genetic mutation in a neighbouring gene (Chan et al. 2006; Ligtenberg et 

al. 2009; van Engeland et al. 2011; Meloni & Testa 2014). There is also difficulty in 

establishing whether epimutations are truly inherited by offspring as opposed to being 

triggered after birth (Daxinger & Whitelaw 2012; Meloni & Testa 2014). The continual 

development of statistical techniques and research in fields such as epigenetics can only aid 

our efforts and increase our understanding of the mechanisms underlying phenotypic 

variation.        
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Appendix 2.1 Coefficients and standard errors for fixed effects included in the final animal 

model, for heritability of laying date in the Wytham Woods great tit population 

Factor Coefficient SE p value 

age -3.53  1.02 <0.01 

age quadratic 0.44  0.12 <0.01 

altitude 0.04  0.01 <0.01 
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Appendix 2.2 Quantile-Quantile (QQ) plot of an association scan for laying date in the 

Wytham Woods (UK) great tit population before (λ  = 1.08 + 4.9x10-4) (a) and after (λ  = 0.98 

+ 6.5x10-4) (b) correction for population stratification 
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Appendix 3.1. Coefficients and standard errors for fixed effects included in the final animal 

model for Hoge Veluwe (NL) and combined (NLUK) dataset 

NL    

Factor Coefficient SE p value 

age -2.32 0.61 <0.01 

age quadratic 0.28 0.10 <0.01 

    

NLUK    

Factor Coefficient SE p value 

age -2.99 0.43 <0.01 

age quadratic 0.36 0.07 <0.01 

population 2.18 0.30 <0.01 

 

 

 

 

 

 

 

 

 

 

 

 



 

155 

 

Appendix 3.2. Quantile-Quantile (QQ) plot of an association scan for laying date in the 

Hoge Veluwe (NL) great tit population before (λ  = 1.01 + 4.9x10-4) (a) and after (λ  = 0.99 + 

4.6x10-4) (b) correction for population stratification  
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Appendix 3.3. Quantile-Quantile (QQ) plot of an association scan for laying date in the 

combined Wytham Woods (UK) / Hoge Veluwe (NL) dataset before (λ  = 1.00 +8.5x10-4) (a) 

and after (λ  = 0.99 + 5.6x10-4) (b) correction for population stratification 
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Appendix 5.1 Coefficients and standard errors for fixed effects included in the final mixed 

effects model, for heritability of laying date in the Wytham Woods (UK) great tit population 

Factor Coefficient SE p value 

Age -0.64  1.17 <0.01 

Altitude 0.03  0.01 <0.01 
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Appendix 5.2 Quantile-Quantile (QQ) plot of an association scan for laying date in the 

Wytham Woods (UK) great tit population before (λ  = 1.04 + 4.74x10-6) (a) and after (λ  = 

1.00 + 5.65x10-6) (b) correction for population stratification using a 500K SNP chip.  
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