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Abstract

The processes of creaming, flocculation and crystallisation are important factors in
the stability and properties of food emulsions. Measurements of the ultrasound velocity
and attenuation in an emulsion are used as a non-destructive probe of emulsion
behaviour. The present work aims to increase the understanding of the destabilisation
processes themselves and to improve the techniques for interpretation of ultrasound
measurements on such systems. These aims were addressed through the computer
modelling of creaming, flocculation and crystallisation behaviour, and through the

investigation of theories for interpreting ultrasound measurements

Two computer models have been developed of creaming in emulsions, both with
and without flocculation. One takes a phenomenological approach, and is able to predict
macroscopic concentration profiles of emulsions. The other is a small-scale simulation at
the level of individual particles. The results of the phenomenological model are in
qualitative agreement with experimental results in the absence of particle interactions
The effects of flocculation on creaming behaviour were not, however, reproduced by the
model. The small-scale simulation demonstrated that a simplified model of flocculation
and creaming could result in features in the concentration profiles which are comparable
with those observed experimentally. However, some aspects of creaming behaviour were

not reproduced by either model

The investigation of theories of ultrasound propagation in emulsions concluded
that multiple scattering theory is appropriate for the typical emulsions studied. The
complex calculations required by the application of the theory are simplified in some
special limits, which are presented. Alternative, practical, techniques are presented for
the interpretation of ultrasound measurements. These are based on scattering theory but
utilise experimental determination of the scattering properties of the emulsion, so
avoiding the difficulties associated with multiple scattering theory calculations. The
methods which have been developed are particularly relevant to creaming and
crystallisation studies. The effects of particle size variation in emulsions can influence the
interpretation of ultrasound measurements, and restrictions are therefore placed on the

application of the methods
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Chapter 1 : Introduction

Many foods are dispersed systems, consisting of a quantity of oil or fat (or both)
dispersed as tiny droplets in a continuous aqueous phase, or as water droplets in an oil
dispersion medium. The term emulsion should, perhaps, strictly be applied only to those
systems where the particles are in the colloidal size range (1 nm-1 pum) and the two
constituent phases are liquid. However, the term is in practice commonly used also for
the many food systems which include some particles larger than 1 um, or a partially
crystallised phase (either the dispersed phase or the continuous phase). Dispersed
systems in which one of the phases exists as a gel may also be referred to as emulsions
This wider scope of the term emulsion is applied to the systems studied in the present
work. Familiar examples of food emulsions are milk and mayonnaise (oil in water
emulsions), margarine and butter (water in oil emulsions with some solid fat in the
continuous phase), and ice-cream (a combination of an oil in water emulsion and a foam;

both ice crystals and solid fat are also present)

Emulsions are thermodynamically unstable; that is, their free energy is greater than
if the two phases existed separately. Exceptions to this are microemulsions and solutions
of some macromolecules. Energy must be supplied in order to form an emulsion, through
the homogenisation or mixing process. In the absence of stabilisation of the emulsion by
physical or chemical means, the emulsion would be “broken” separating into
homogeneous regions of its constituent phases, which is the thermodynamically stable
state. Prevention of the immediate rejoining of dispersed phase particles is achieved by
the use of an emulsifier, usually a protein in food systems. The protein (acting as a
surfactant) forms a protective layer around the surfaces of the droplets, causing an

energy barrier which must be overcome for particles to join together

In the longer term, the thermodynamic instability of the emulsion manifests itself
through a number of destabilisation mechanisms: creaming, flocculation, coalescence,
Ostwald ripening, and phase inversion. Creaming occurs when the dispersed phase has a
lower density than the continuous phase, and the dispersed particles rise to the top of the
emulsion. Flocculation refers to the tendency of particles to stick together, although

retaining their individual identity. In contrast, coalescence is the merging of two or more
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dispersed phase droplets into a single, larger droplet. Ostwald ripening causes larger
droplets to grow at the expense of smaller droplets. This effect is produced by the mass
transport of dispersed phase material between droplets because of a degree of solubility
in the continuous phase. In most food emulsions, Ostwald ripening is usually negligible
because of the very low solubility of triglycerides i water. Phase inversion, in
which an oil in water emulsion becomes a water in oil emulsion, or vice versa, is only
significant at high concentrations. A more detailed description of each of these

destabilisation mechanisms can be found in works such as Dickinson (1992a)

Although thermodynamically unstable, a large degree of kinetic stability can be
attained for emulsions, by physical or chemical means. An emulsion may be considered to
be stable if it remains apparently unchanged over a specified time interval. Some food
emulsions need only to be stable for a short period, such as a salad dressing which can be
shaken before use. Others must remain apparently unaltered over a period of several
years (e.g. cream liqueurs). Creaming is one of the principal destabilisation processes in
food emulsions, and is considered to be a major determinant of shelf-life (Fillery-Travis
et al, 1990). The formation of a cream on top of the emulsion is unsightly, and can in
some cases be considered a spoiling of the product, for example in infant formula
(Fligner et al., 1991). In contrast, a cream liqueur is expected to have a lifetime of
several years, but a small amount of cream development may be acceptable over that

period, since it is dispersed on pouring

Although creaming itself is reversible by shaking, coalescence or strong
flocculation may occur in the concentrated cream region afier some time. The formation
of an oily layer as the result of coalescence in the cream is irreversible and is definitely
unacceptable to consumers. Flocculation and coalescence in the bulk of an emulsion are
also important factors in food stability, not only because of their effects on food taste and
texture, but also through their influence on the creaming rate. Coalescence of oil droplets
leads to an increase in the creaming rate. Flocculation can also cause a considerable
increase in creaming speed, at relatively low oil concentrations. At higher concentrations,
an emulsion may be stabilised against creaming by the flocculation of particles into a
networked structure. The kinetic stability of emulsions, particularly in regard to

creaming, is therefore of great significance to the food industry
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In some foods, such as ice-cream and margarine, the presence of a solid phase in
the emulsion is of vital importance. The crystalline substance may be present in the
aqueous or oil phase, and is often a critical component of the food structure (Darling and
Birkett, 1987, Walstra, 1987a, 1987b). For example, the air bubbles in ice-cream are to
some extent stabilised by partially coalesced globules containing fat crystals, and ice
crystals form a networked structure in the aqueous phase of the emulsion. The
apparently solid nature of a margarine is in part due fat crystals, which may be present in
relatively small quantities. The solid components of chocolate are also significant in
attributing a ‘hard’ structure, and a pleasing, shiny finish to the product. The melting and
crystallisation properties of food fats are also key components in the taste and texture of
food products. Several common food fats have melting ranaze around body temperature,
causing a melt-in-the-mouth characteristic. This is the case in margarines and in
chocolate. The undesirable melting and recrystallisation of one of the morphological
forms of cocoa butter can cause the unsightly ‘blooming’ of the chocolate. In other foods
a degree of crystallisation is essential for the control of a desirable destabilisation process
such as in the whipping of cream. The relevant properties of the common food fats can
be found in The Lipid Handbook (Gunstone et al., 1994). The crystallisation and melting
behaviour of foods must be considered to be an important subject in the ‘freezer-to-

microwave’ culture

1.1 Stability of emulsions

1.1.1  Creaming

Gravitational destabilisation occurs when the two phases of the emulsion are of
different densities. The dispersed phase tends to float to the top of the emulsion
(creaming) if it is less dense than the continuous phase, and to sink to the bottom
(sedimentation) if it is more dense. Since the present work was concerned primarily with
oil in water emulsions, this process is usually called creaming. In the absence of particle
interactions and any flocculation or coalescence of particles, the rate at which creaming
occurs can be reduced by the control of a number of adjustable physical quantities. The
driving force for creaming is the difference between a particle’s weight, and the

buoyancy force (which is equal to the weight of surrounding fluid displaced by the
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particle). Hence the difference in density between the two phases is a determining factor
in the creaming rate. In many food emulsions, the continuous phase is water or an
aqueous solution, and the density difference between water and many food oils (such as
sunflower oil) is approximately 50 kg m™ This relatively small difference (compared
with a low molecular weight alkane in water system, for example) allows some food
emulsions to be stabilised against creaming for several years. Some food systems have in
the past been modified by the addition of substances such as brominated vegetable oils
(in soft drinks) in order to reduce the density difference. However, the use of these oils
has now been prohibited. The densities of the component phases are not readily
modified, and greater creaming stability is usually achieved through the control of other

physical factors

Particle size is one of the major determinants of creaming rate. In a very dilute
emulsion, the creaming speed of a particle is proportional to the square of its diameter
In a polydisperse emulsion, different sizes of particle cream at different rates, the largest
creaming more rapidly than the smallest. The existence in the emulsion of only a small
number of significantly larger droplets can cause the formation of an undesirable oil film
on the top of the emulsion. This is due to the rapid development of a cream of the largest
particles, which can then coalesce into an oil layer. Homogenisation of an emulsion can
be used to obtain a small particle size distribution, in order to control the creaming
rate. This is noticeable in homogenised milk which is apparently much more stable to
creaming than the natural version. Smaller particles not only cream more slowly, but they
are also more diffusive and so resist the changes in concentration associated with
creaming. Creaming is therefore essentially undetectable when particles are below a

certain size

The final key parameter in the control of emulsion stability against creaming is the
viscosity of the continuous phase. This is a more readily controllable parameter which is
affected by the temperature, the presence of polymer in the continuous phase etc. The
study of the viscous (or viscoelastic) properties of materials is a significant research area,
which is given the term rheology. An increase in viscosity of the continuous phase
reduces the mobility of the dispersed phase particles and hence slows down the creaming
process. Since it is particle mobility which is affected, other dynamic processes, such as

flocculation, are similarly reduced, since they depend on the rate of collisions between



=5

particles. In foods, modification of the viscosity of the continuous phase must be
balanced by consideration of the textural properties of the product. A simple thickening
of the continuous phase by the addition of some substance has a direct effect on the
apparent properties of the food. However, the shear stress dependence of the viscosity of
some solutions can be put to advantage in this application. The stress induced by particle
movement under gravity is much smaller than the stresses encountered at the
macroscopic level, associated with pouring, spreading etc. At these very low shear
stresses, some hydrocolloid solutions have a very high viscosity, exhibiting pseudo-
plastic behaviour (Dickinson, 1992a). In the extreme case, control of particle mobility
can be achieved through a gel structure in the continuous phase, which prevents any
macroscopic movement of particles at the stresses involved in the creaming process. For
example, at sufficiently high concentrations, the polysaccharide xanthan produces a gel in
the continuous phase which stabilises the emulsion (Dickinson et al , 1994). Modification
of viscosity is one of the most important methods of enhancing emulsion stability against

creaming

The concentration of the dispersed phase also has an influence on creaming rate
At higher concentrations, particle mobility is reduced due to hydrodynamic interactions
In addition to the direct obstruction of particle movement by other particles, the reverse
flow of the continuous phase fluid also reduces the net creaming speed. Hence, an
increase in concentration can lead to stabilisation of the emulsion. However, the
dispersed phase volume fraction is not a parameter which is readily adjustable to improve

stability, because of its effects on flavour, appearance, cost, texture and calorific value

1.1.2  Flocculation

Flocculation occurs when a minimum exists in the interparticle energy at some
separation (usually small ). The potential minimum
represents a favourable energy state for particles to remain close together. Particles
retain their individual identity, rather than coalescing to form a single, larger droplet. The
depth of the potential minimum determines the reversibility of flocculation, which is the
tendency of the floc to break up again. This may take place if the particles have sufficient
thermal energy to escape from the potential well and to move apart. In order for
flocculation to occur, particles must first approach each other to within a small

interparticle separation. This close approach of particles is caused by some form of
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relative particle motion, for example Brownian motion (leading to perikinetic
flocculation) or a shearing motion (leading to orthokinetic flocculation). The shear
processes include low shear motion, such as relative creaming rates of different sized

particles in a polydisperse sample, and high-shear action, caused by shaking or stirring.

The numbers of close encounters or collisions between pairs of particles (the binary
collision rates) can be derived from the dynamic properties of the particles, and their
effective collision cross-sections. The collision rate due to Brownian motion in a
monodisperse emulsion was derived by Smoluchowski (1913). The combination of the
diffusivity of a particle and its collision area produce a collision rate which is independent
of particle size in this case. The rate is reduced by an increase in the continuous phase
viscosity, or a decrease in temperature. Since a binary collision process is at work, the
collision rate in a dilute emulsion is proportional to the square of the number density of

particles

In a polydisperse emulsion, the Brownian collision rate is increased, because of
interactions between small and large particles. The greater mobility of the smaller
particles combines with the greater collision cross sections of larger particles to produce
a higher effective collision rate. A second source of relative particle motion in a
polydisperse emulsion is caused by the different creaming speeds of particles of different
sizes. Larger particles which are moving more rapidly collide with smaller, more slowly
moving particles. The factors affecting particle creaming rates have similar influences on
the gravitational flocculation rate. The range of particle sizes in the emulsion (or the
degree of polydispersity) is an additional determining factor. Hence the polydisperse
nature of emulsions has an influence on the flocculation rate through both Brownian and

gravitational processes.

The collision rate is a measure of the frequency of events in which particles are
sufficiently close together to allow flocculation. However, the form of the interparticle
potential determines whether or not flocculation occurs following such an encounter. If
the only interparticle interactions are van der Waals forces, the interparticle potential is
attractive over all length scales. No energy barrier exists to flocculation, and the potential
minimum is infinitely deep. Thus, every collision event results in flocculation, which is
irreversible. In most emulsions, however, flocculation is modified both by the existence

of an energy barrier which reduces flocculation rate, and by the finite depth of the
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potential minimum, which causes some degree of reversibility in the flocculation. If an
energy barrier exists in the interparticle potential, there is only a finite probability that
two colliding particles have sufficient energy to overcome the barrier and thereby
flocculate in the potential minimum. The existence of an energy barrier is therefore a
stabilising effect on the emulsion. Enhanced stability of an emulsion against flocculation
can be achieved by physico-chemical means to produce such an energy barrier, which

prevents the close approach of particles.

There are two main stabilisation mechanisms for preventing flocculation through
the existence of an energy barrier in the interparticle potential. These are electrostatic
and steric stabilisation (Dickinson, 1992a) Electrostatic stabilisation results from a
repulsive force between colloidal particles, caused by the charged polar groups on the
adsorbed molecules. The dispersed phase particles carry the same (in sign) electrical
charge, and as they approach each other, ions in solution with the opposite charge
become more concentrated in the interparticle region. The resulting excess osmotic
pressure in the space between the particles drives them apart, preventing them from
flocculating. This is known as the double layer repulsion. The combination of this
electrostatic repulsion and the van der Waals attraction results in the classical Derjaguin-
Landau-Verwey-Overbeek (DLVO) potential whiz‘:ih is often used to describe particle
interactions in colloidal systems. The potential includes an energy barrier due to the
electrostatic repulsion, which slows down the flocculation rate. The strength of the

barrier is also influenced by other conditions such as the pH ond. ionic strenath.

Steric stabilisation is effected by the resistance of the adsorbed layer of polymer to
close approach of the particles. At small interparticle separations, the protruding
segments of the adsorbed polymer layers must either be compressed or interpenetrate
Compression of the layers is always associated with a free energy increase
Interpenetration may or may not be energetically favourable, depending on the quality of
the continuous phase as a solvent for the protruding polymer segments. A free energy
increase results from interpenetration if the continuous phase is a good solvent for the
polymer, so that the two polymer layers prefer to exist separately in the solvent. Hence,
steric stabilisation is achieved using heterogeneous polymers which have parts which
adsorb strongly to the surface, but other regions which favour existence in the

continuous phase. Under these conditions, an energy barrier exists in the interparticle
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potential due to these two entropic factors which are unfavourable to particle approach

Therefore, flocculation is to some extent prevented by this mechanism

Having considered the factors which enhance emulsion stability against
flocculation, it is necessary also to understand the circumstances under which
flocculation is promoted. The same chemical species which produce emulsion stability
can, under different conditions, destabilise the emulsion. There are two principal
flocculation mechanisms in this category: bridging flocculation and depletion
flocculation. Bridging flocculation occurs when there is insufficient adsorbing polymer
present to achieve full surface coverage of the emulsion particles When particles
approach each other, a favourable energy state is achieved by ‘sharing’ a single polymer
molecule between the surfaces of both particles. Thus, the polymer acts as a bridge
between droplets. A sufficient quantity of adsorbing polymer must therefore be included
in the emulsion in order to avoid the bridging phenomenon. In some cases, the flocs
formed by this process tend to be rather weak, and are easily disrupted by stirring
However, strong bridging flocculation is effectively irreversible. The mechanism has been

demonstrated by computer simulation (Dickinson and Euston, 1992)

In contrast, depletion flocculation occurs when an excess of adsorbing polymer is
present in the continuous phase. If the interparticle separation becomes smaller than the
radius of gyration of the polymer, polymer is excluded from the region between the
droplets. An osmotic pressure gradient then exists between the interparticle region
(which is deficient in polymer) and the surrounding polymer solution. It is, therefore,
energetically more favourable for the particles to come together, causing flocculation
(Asakura and Oosawa, 1954, 1958). This reversible process is called depletion
flocculation, since it is driven by the absence, or depletion, of polymer in the interparticle
region. Flocculation can be caused by non-adsorbing macromolecules or surfactant
micelles by the same mechanism An investigation of the influence of various system
characteristics on depletion flocculation rate was carried out by Liang et al. (1993). In
practice, it can be difficult to distinguish between weak bridging and depletion

mechanisms of flocculation in a sample

The adsorbing polymer species which promote steric stabilisation may, therefore,
cause flocculation in certain conditions. Too little polymer can lead to bridging

flocculation, whereas too much polymer may cause depletion flocculation. In addition, a
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reduction in the solvent quality for the sterically stabilising polymer may induce
flocculation, since it is then more favourable for the polymer layers to overlap. Just as
stability or instability can be caused by the same species in these cases, a non-adsorbing
polysaccharide in the aqueous phase may be used as a stabiliser in sufficient
concentration, since it increases the effective viscosity. However, at lower concentrations
the presence of the macromolecule can induce depletion flocculation (Dickinson et al
1994). The overall effect on emulsion stability is the net result of the competitive

processes of depletion flocculation and the stabilising effect of increased viscosity

1.1.3  Crystallisation

Although crystallisation is not in itself a mode of instability, both the existence of
solid fat in an emulsion, and the crystallisation of liquid oil can influence the
destabilisation processes. The mechanism of crystallisation of oil droplets in an oil in
water emulsion is not the subject of this study. Rather, it is the effect of solid fat and the
crystallisation process, particularly on creaming behaviour, which is of interest. There are
several possible mechanisms for crystallisation in an oil in water emulsion containing a
mixture of solid and liquid droplets (see studies by Bennema et al, 1992, Bennema,
1993, Simoneau et al., 1993, Ozilgen et al., 1993, Boode et al., 1991). One suggested
mechanism of heterogeneous crystallisation involves binary collisions between solid and
liquid droplets (McClements et al., 1993). A finite proportion of such collisions results in
the nucleation of crystal growth in the liquid droplet, and thereafter its rapid

solidification

The binary collision process is one of the principal controls on the flocculation rate
In this heterogeneous crystallisation mechanism, collisions must occur between solid and
liquid droplets in order to be effective, but essentially the collision process is identical.
Hence, the factors which influence the flocculation rate in an emulsion (which were
discussed in the preceding sections) are also effective in the crystallisation rate, if such a
heterogeneous mechanism is valid. In addition, the stabilisation mechanisms which are
effective in the case of flocculation, may produce similar reductions in the crystallisation
rate. The thickness of the adsorbed layer is thought to be particularly important in

preventing the nucleation of crystal growth when particles collide
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1.1.4  Interrelationships between creaming, flocculation and crystallisation

The destabilisation processes of creaming and flocculation, and the crystallisation
process have been considered independently in the preceding sections. However, they
may occur simultaneously in an emulsion, and the interaction between them may be
significant. Some of the physical factors which stabilise an emulsion against flocculation
also reduce the creaming and crystallisation rate. For example, an increase in viscosity of
the continuous phase impedes the mobility of particles, and therefore reduces the rate of
all dynamic processes which depend on particle movement. Therefore, the effects of

these processes should now be considered together

Flocculation in an emulsion is often difficult to determine directly, especially if the
flocs are held together only weakly. Attempts to measure the effective particle size
distribution, and so to observe floc formation, are undermined by the need to dilute and
stir the emulsion. The shear forces applied, and the change in environment, may be
sufficient to break up the flocs, so that an increase in effective particle size may not be
apparent in the size distribution measurement. If the flocs are strong enough, an increase
in mean particle size will be detected. Rheological examination of flocculated emulsions
may also be thwarted if the application of a shear stress causes the flocs to be disrupted
However, the presence of flocs can often be inferred through the modification in the

creaming behaviour of an emulsion

Flocculation may increase or decrease the creaming rate (see for example
Dickinson et al., 1994) A discussion of the role of the adsorbed polymer layer in
emulsion stability against flocculation, and thereby also its affect on creaming was
presented by Dickinson (1992b). In a dilute system, a compact floc would be expected to
move under gravity more quickly than its constituent particles. The net buoyancy of the
floc is the sum of the buoyancy of the particles, but the viscous drag on the floc is less
than the sum of the drag on the individual particles. Therefore, the floc can move more
rapidly, and in these dilute conditions the formation of flocs can produce a noticeable
increase in creaming rate. In a more concentrated emulsion, the increased obstruction
experienced by flocs due to their larger collision cross-section can cause a reduction in
the creaming rate when flocculation becomes extensive. In the extreme case, the linkage
of individual flocs to each other can develop a particle network which spans the whole

sample, and essentially prevents further movement. Some compression of the network



under gravity may be observed, but creaming in the classical sense is no longer possible
Although such a network stabilises the emulsion against creaming, it may be undesirable

as far as the food product is concerned, for reasons of texture etc

The formation of flocs can therefore have a significant impact on the creaming
behaviour of an emulsion, either to increase the creaming rate or to stabilise the
emulsion. It is also true that the creaming motion of particles increases the flocculation
rate in a polydisperse emulsion. The difference in creaming speeds between small and
large particles leads to a higher rate of collisions between particles, so increasing the
opportunity for flocculation. The same is true in principle of the crystallisation rate, if it

is propagated heterogeneously by collisions between solid and liquid particles

Crystallisation of emulsion droplets can also have an impact on the stability of an
emulsion (Mulder and Walstra, 1974, Boode et al , 1991, van Boekel and Walstra,
1981). The density of solid fat is usually higher than that for the liquid oil. In most food
systems, therefore, the density difference between the dispersed and continuous phases is
less for the solid fat than for the liquid oil. Hence, the creaming rate for solid particles is
often significantly lower than when the dispersed phase is liquid. Thus, crystallisation
may improve the emulsion stability against creaming. However, the needle-like crystals
which occur in some food fats can stabilise or destabilise the emulsion (Coupland et al |
1993, Boode et al., 1991). The crystallisation rate may increase since a collision with a
liquid droplet is more likely to nucleate crystal growth because of the penetration of the
needle-like crystal. The formation of protruding crystals removes the effectiveness of the
adsorbed layers in preventing flocculation and coalescence A particle collision involving
a protruding crystal may lead to the particles sticking together, as the needle penetrates
the adsorbed layers. In dairy emulsions, droplets which include both solid fat crystals and
liquid oil can be formed, which may undergo partial coalescence due to the same
interpenetration mechanism (Walstra, 1987a, 1987b, Boode et al., 1991). The continued
development of such needles may lead to a complete interconnecting network sustained
by crystal ‘bridges’. Creaming would in this situation be reduced. Alternatively,
coalescence of particles by the breakage of the adsorbed layers causes increased

creaming because larger particles are formed

The processes of creaming, flocculation and crystallisation are therefore

interdependent. Experimental observation of creaming is one method of indirectly
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determining the influence of the other interactions in the system, which have some effect

on creaming behaviour

1.2 Experimental studies of creaming

Real food systems tend to be rather complex in their composition and therefore
also in their physical and chemical interactions. For example, milk is a familiar oil in
water emulsion, which undergoes creaming, but which has a number of complicating
features. Some oil may be crystallised, and a degree of flocculation may also be present,
due to the dispersed protein in the aqueous phase. Studies of such food systems are
practically useful and sometimes informative, but it is often difficult to obtain reliable
information on the fundamental processes occurring in the system, due to the number of
contributing interactions. Hence, many studies of emulsions are carried out using model
systems, in which the number of components is limited, and the composition can be
carefully controlled. Some studies have used monodisperse silica particles in an aqueous
dispersion medium (van Duijneveldt et al , 1993) Others use food-grade materials such
as sunflower oil in water emulsions (Ma, 1995). Alternatively, low molecular weight
alkane oil in water emulsions have been studied (Gouldby et al., 1991, McClements et
al, 1993). The choice of model system depends on the emulsion properties and the type
of behaviour under consideration. Components which are commonly present in foods are
often added in a controlled manner to the model system in order to assess their effect on

emulsion stability

A substantial number of studies of creaming in emulsions have been published
These studies are intended both to assess the effects of various food components on the
stability of emulsions, and also to attempt to understand the mechanisms underlying these
effects. The influence of flocculation on creaming behaviour is a particular aspect of
recent investigations. Some non-adsorbing polymers, such as the polysaccharide xanthan,
are used to stabilise food oil in water emulsions. This stabilisation occurs, above a critical
polymer concentration, due to the formation of a weak gel in the continuous phase,
which prevents particle movement. However, it has been observed that at polymer
concentrations below a critical value the emulsion is destabilised (Luyten et al , 1993). It
is thought that this effect is due to depletion flocculation. The very marked increase in

creaming rate under some conditions indicates that the flocs are able to move much more



<]

quickly than the single particles. The result has been confirmed in many later studies,
under a variety of emulsion conditions, for example Dickinson et al. (1994) and Fillery-
Travis et al. (1993). Both of these works also refer to the influence of oil volume fraction

on the flocculation effect

Some investigations of the effect of flocculation on creaming rate as a result of
added polymer have considered the influence of food-like conditions on the system. For
example, the type of surfactant was shown to influence the stabilising or destabilising
effect of polymer in a recent study by Dickinson et al. (1995). This was demonstrated by
the alteration in creaming rate for the different surfactants, and was attributed to
interactions between the surfactant and the biopolymer added to the continuous phase
An earlier study by Cao et al. (1991) inferred a degree of complexation between the
sodium caseinate emulsifier and carboxymethylcellulose (a nonadsorbing polymer present
in the continuous phase). The interaction apparently caused an increase in the
flocculation rate, due to bridging. This occurred in addition to the depletion flocculation
which had been seen to increase the creaming rate with a number of other polymers. In
view of the presence of salt in many food systems, Dickinson et al. (1994) have studied
the influence of ionic strength on creaming stability in systems which are thought to
include depletion flocculation. Salt was added to mineral oil in water emulsions which
included the polysaccharide xanthan. The addition of salt did have an effect on the
creaming behaviour, and this was interpreted in terms of a possible change in the
structure of xanthan molecules with a change in ionic strength. Tonic strength is also

thought to affect the strength and range of the depletion interaction between particles

Experimental investigations of crystallisation in oil in water emulsions are often
concerned with the mechanism of the crystallisation process. Crystallisation in emulsions
of mixed solid and liquid droplets is the subject of much debate. Both food-grade and
non-food emulsions have been studied. The fats commonly occurring in foods can
manifest needle-like crystal growth, which may affect emulsion stability through
increased coalescence, or through the formation of a stabilising network of the crystals
A study of crystallisation in alkane in water emulsions with solid and liquid droplets was
carried out by McClements et al. (1993). The kinetics were found to be consistent with a
binary collision process. However, recent results on emulsions in the presence of

xanthan, which is thought to induce depletion flocculation, have appeared to show
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inconsistencies with this interpretation (Ma, 1995, Dickinson et al, 1996). The
interacting effects of flocculation and crystallisation are not therefore properly
understood. The work of Ma (1995) proceeded to examine the creaming behaviour of
the crystallising emulsions. This is not an area which has been widely studied. The
preliminary results suggest that the crystallisation processes did not in this instance have
a significant impact on the creaming of the emulsion. The interactions between creaming,

flocculation and crystallisation have not yet been fully explored

The preceding discussion demonstrates that the investigation of creaming
behaviour, and its connection with the other processes of flocculation and crystallisation
is an active research area. Many of these studies of creaming are not only concerned with
emulsion stability. but also on increasing the understanding of the fundamental processes
taking place in the emulsion. However, much work has also been carried out on the
prediction of emulsion stability. Food systems are often expected to exhibit long term
stability (perhaps months or years), particularly against creaming, and therefore direct
tests of this stability are difficult and time-consuming. A correlation between some
property of the fresh emulsion and its long-term stability would be of great benefit in
assessing food emulsions. Alternatively, a quantifiable measure of the short-term
behaviour of the emulsion which demonstrated the onset of creaming at a very early

stage would be equally beneficial

A comparison of various tests for predicting emulsion stability was carried out by
Fligner et al. (1991). The bench mark of stability was taken to be the measured cream
thickness in the emulsion after a specified time, when left to cream naturally under
gravity. Other ‘predictive’ tests were the degree of creaming by centrifugation, emulsion
viscosity, the amount of adsorbed protein (although this is somewhat specific to the
systems used), and a measure of fat globule size determined from light scattering
measurements Measurements were made on the fresh emulsion, and a correlation was
made with the natural creaming stability over a period of 10-18 weeks. It was found that
the best predictors of stability were the centrifugation measurements and the emulsion
viscosity. The particle size (of fat globules) was found to be a very poor indicator of
stability, in spite of it being widely used as such (Fligner et al., 1991). The effects of fat

globule size, concentration and polydispersity on creaming and centrifugation rates were
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also investigated by Walstra and Oortwijn (1975), relating to predictions of emulsion

stability

The conditions present during centrifugation (particularly the shear forces) are very
different from those in a naturally settling emulsion. In addition, the dynamic processes
of flocculation and creaming do not scale in the same way with the applied acceleration
A prediction of emulsion stability on the basis of centrifugation may therefore not be
applicable in emulsions where flocculation is significant. However, the study of a mineral
oil in water emulsion in the presence of rhamsan (Dickinson et al , 1993a) similarly
illustrated a connection between creaming stability and the rheological behaviour of the
emulsion. Previous investigations had attempted to relate the creaming stability to the
rheology of the continuous phase of the emulsion, but this was found not to be a reliable
indicator. Flocculation of the particles contributes to the apparent emulsion viscosity

provided the flocs are sufficiently strong

The assessment of such methods for measuring stability illustrates the need for
techniques which can detect the early onset of instability, particularly creaming In
addition, studies of creaming behaviour have indicated the wealth of fundamental
information which can be extracted from creaming results. The interacting processes of
flocculation and crystallisation can be examined through their influence on creaming, In
the past, creaming experiments have used a visual technique to measure the height of the
serum and cream regions. In some cases, these regions are clearly defined, and such
measurements are simple. In other conditions, the serum layer may remain significantly
turbid, with a very poorly defined interface, making a meaningful measurement difficult
The cream may also be difficult to detect in an opaque emulsion. The onset of creaming
could in principle be detected at an earlier stage than is possible with visual creaming
methods if a small change in concentration could be measured at the top or bottom of the
emulsion. In addition, detailed vertical profiles of concentration variation within the
sample offer a significant probe of the creaming, flocculation and crystallisation
processes. A number of experimental methods have been developed to attempt to obtain
more detailed information on the variation of dispersed phase concentration within the
sample. One such technique is magnetic resonance imaging, which has been used both to
obtain qualitative images of the emulsion, and to produce quantitative measures of the

concentration variation (Pilhofer et al , 1993, Kauten et al., 1991). An alternative method
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of measuring the oil concentration in emulsions is the use of low power ultrasound, and

it is this technique which is discussed in the following sections.

1.3 The ultrasound method

Ultrasound is the term applied to sound waves which are of a higher frequency
than is audible by the human ear (approximately 16 kHz). High power, continuous
operation ultrasound methods are used in food applications for cleaning purposes, for
emulsification or for breaking up aggregates. However, the application of ultrasound to
the measurement of emulsion properties involves the use of very low power acoustic
fields (<100 mW). The power levels are not sufficient to cause any disruption of the
particles or to modify the emulsion, and it therefore constitutes a non-destructive
technique. Typically, these low power applications of ultrasound are operated in pulsed

mode so that only a short burst of sound is passed through the emulsion

The technique involves measurement of the properties of ultrasound propagation in
the emulsion. Usually, the parameter which is measured is either the velocity or
attenuation of the sound wave in the emulsion. Alternatively, a determination of the
wavelength of the sound wave (which is closely related to the velocity) may be used
Although there are a number of practical ways of measuring the velocity and attenuation,
the principles are the same in most cases (Povey and McClements, 1989) A pulse of
ultrasound is passed through the emulsion, and is either reflected off a hard surface
(pulse-echo) and received at the transmitter, or passes right through the emulsion and is
received at the other side. The velocity in the emulsion can be calculated from the time
taken for the pulse to pass through the emulsion, and the attenuation from the reduction

in signal amplitude.

The application of the ultrasound technique to creaming experiments involves the
measurement of ultrasound velocity in the emulsion as a function of position and time
From these data, concentration profiles can be determined, which demonstrate the
progression of creaming in the emulsion. A schematic diagram of the equipment used for
such creaming experiments is shown in Figure 1.1. A similar technique has been used by
other workers with some variations (Fillery-Travis et al., 1993, Dickinson et al., 1993a).
The sample is contained in a square-section glass cell which is placed in a water bath to

maintain a constant temperature and to achieve ultrasound coupling. The emulsion
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Figure 1.1 Schematic diagram of the ultrasound scanner used to obtain concentration profiles in creaming emulsions.
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sample has dimensions of approximately 250 mm x 35 mm x 35 mm_ Use of such a large
sample enables features (oLseen which would be insignificant in a small sample. The
thickness of cream formed depends on the volume of oil in the sample, and so a taller

sample produces a thicker cream layer

The piezoelectric transducers act as a transmitter and receiver of a pulse of low
power ultrasound which is passed through the cell. A timer-counter determines the time
of flight between the transmitter and receiver, which is recorded by computer. The
probes scan the height of the sample, taking measurements at specified intervals. The
diameter of the probes is approximately 10 mm, and measurements are typically made at
5 mm height intervals. The time-of-flight measurements are converted into the velocity of
ultrasound within the emulsion using standard equations of motion. The path length of
sound inside the cell is determined by calibration with distilled water, for which the
velocity is known precisely. A sequence of such scans during the creaming process

provides data, which can be transformed into time dependent oil concentration profiles

The underlying principle in the use of ultrasound in emulsion measurements is that
the measured properties of the ultrasound wave as it passes through an emulsion sample
(usually the velocity and attenuation in the emulsion) are related to the physical
characteristics of the emulsion. Usually, the quantity which is obtained from the
measurement is the concentration of the dispersed phase. In some circumstances, the
ultrasound properties may also be influenced by particle size, and other contributory
factors. In crystallisation studies, the ultrasound velocity measurement is used to
calculate the proportion of the dispersed phase which is solid In many cases, a modified
version of the equation for the sound speed in a pure fluid is used. The modified equation
is called the Urick equation, and is given in chapter 4. In order to calculate the dispersed
phase concentration from the sound speed in an emulsion using the Urick equation, the
densities and compressibilities of the component phases must be known. These are easily
measured (the compressibility can be determined from the sound speed in the bulk
component). Although the equation applies reliably to solutions, and is used as a
technique for investigating solution properties (Sarvazyan, 1991), it is not always valid in
emulsions. In some cases where discrepancies have been detected in the use of the Urick
equation, the sound speed/ concentration relationship has been determined

experimentally by using a series of uniform emulsions of known concentration
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Several studies of creaming behaviour using the ultrasound technique have been
published in recent years. An example of the results which can be obtained is shown in
chapter 2 (figure 224, Ma, 1995) for a sunflower oil in water emulsion containing
xanthan. This figure, and other published results, illustrate the greater detail available
from the method when compared to visual creaming experiments. The technique
therefore allows more fully the study of the interaction between flocculation,
crystallisation and creaming. Many studies of depletion flocculation present the
contrasting concentration profiles obtained with or without added polymer. For example,
the addition of xanthan was found to increase the creaming rate very significantly (Cao et
al., 1991) and to produce a sharp serum interface which moves steadily up the system. In
the absence of xanthan, creaming is much slower, and the serum is less clearly defined
At a much higher oil concentration (50 wt.%). the same study (Cao et al, 1991)
demonstrated that the addition of xanthan caused a serum region to develop. However,
the concentration in the rest of the emulsion remained mostly uniform, showing only a
gradual increase with time. A clear cream layer was not observed. The result indicated
the gradual compression and rearrangement of the flocculated structure, ‘squeezing’ out
the continuous phase to form a serum. This behaviour would not be detectable by visual

creaming experiments

Emulsions containing polymer have been shown to exhibit very complex creaming
behaviour (Gouldby et al., 1991) Concentration profiles were obtained using the
ultrasound technique, in the absence of polymer, and with a range of polymer
concentrations. The concentration of polymer influenced the shape of the concentration
profiles in a variety of ways. In some cases, the flocculated emulsion exhibited
monodisperse creaming behaviour. The serum interface was sharp and moved steadily up
the sample In a sample with a lower polymer concentration, the concentration profiles
indicated that creaming was proceeding as if two separate species were present — a
rapidly-creaming flocculated species, and unflocculated particles which creamed much
more slowly. The flocs creamed rapidly, leaving a low concentration in the emulsion
which then creamed like an unflocculated emulsion. This result was also seen in a later
study (Fillery-Travis et al., 1993). The measurements were also able to detect a change
in concentration in the cream region between samples of different polymer concentration.
This is an indication of the sparse nature of the flocs formed and the efficiency with

which they can pack together in the cream. In addition, in some flocculated samples, the
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concentration in the cream was found to be fairly uniform but became more concentrated
with time, as the cream was compressed into a more densely packed arrangement. It was
particularly noted in one case that the creaming was not visible by eye until it was well-
advanced, although the concentration profiles showed that considerable changes had

occurred

The development of a serum layer with a sharp interface has been seen in several
studies of flocculated emulsions. In some cases, the position of the serum interface does
not move with time, as seen in the studies discussed above Instead, the interface
develops rapidly, but the creaming rate is then reduced and can continue in a variety of
ways (Dickinson et al., 1993a, Dickinson et al . 1994). The addition of rhamsan to a
mineral oil in water emulsion with Tween20 emulsifier was found to cause creaming to
cease after a serum layer had developed (Dickinson et al . 1993a). The system was
sufficiently concentrated (30 wt.% oil) and flocculated to prevent further movement. In
contrast, the concentration profiles in mineral oil in water emulsions in the presence of
xanthan showed substantial changes with no corresponding change in serum interface
position (Dickinson et al., 1994). In some cases no cream development was observed. At
a higher xanthan concentration, a serum interface was formed and remained in the same
position. However, cream continued to develop and the concentration in the bulk of the

emulsion decreased with time

The development of a serum, with a sharply defined interface appears to be a
characteristic feature at low xanthan concentrations. At higher concentrations of
xanthan, creaming behaviour appears to be dominated by the cream development, and
the concentration profiles show a gradual increase throughout the rest of the emulsion
The addition of salt to the mineral oil in water emulsions was found to influence the
concentration profiles in the presence of xanthan (Dickinson et al., 1994). At low
xanthan concentrations, less serum development was observed, but at higher xanthan
concentrations, the emulsions appeared to be less stable when salt was added. The
differences in concentration profiles under the different conditions hold information on
the processes occurring in the emulsion, for example the extent of flocculation, the

apparent floc size, etc. (see, for example, the analysis of Fillery-Travis et al., 1993)

The preceding sections have shown that the processes of creaming, flocculation

and crystallisation interact. The use of an ultrasound technique enables detailed
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information on the creaming behaviour to be obtained. The objective of the present work
was to understand more fully the physico-chemical factors behind the experimental
observations of creaming, flocculation and crystallisation made using the ultrasound
scanner. There are two main aspects to the study: firstly, computer modelling of the
creaming process and the contributory effects of flocculation and crystallisation, and,
secondly, the investigation of methods of interpretation of ultrasound measurements
Computer modelling of creaming is intended to help understand the contributions of
various physical processes to the creaming behaviour which is observed. The study of
methods of interpreting ultrasound measurements aims to improve the ways in which
useful information can be extracted from ultrasound measurements on dynamic emulsion
systems, to observe creaming, flocculation and crystallisation behaviour quantitatively
The various theories of ultrasound interpretation can also be tested using the computer
model, which provides fully-characterised data of concentration and particle size

variation

1.4 Computer modelling

The computer modelling of creaming behaviour in emulsions is intended to
increase the understanding of the influences of the various contributory physical
processes. This can be achieved by constructing a model of the emulsion including a
limited number of phenomena and interactions, to observe the individual effects of the
different factors. Initially creaming alone was modelled. Later, the effects of
crystallisation and flocculation on creaming behaviour were considered in a limited way.
The models have been designed for oil in water emulsions, and initially the model was
tailored to the experimental technique of the ultrasound scanner. Thus, the modelling
results could be directly compared with the observations of real emulsions. As will be
argued later, the size of the samples involved leads to a phenomenological approach to

the problem, rather than a model of particulate dynamics

Previous modelling of the phenomenon of creaming has mostly been concerned
with the inverse problem of sedimentation (in which the dispersed phase is more dense
than the continuous phase). The related field of fluidisation (in which an upward flow of
fluid is used to ‘suspend’ particulate matter) has been the subject of analysis in other

cases. A number of different approaches have been adopted by previous workers. The
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early work of Kynch (1952) was concerned with the rate of fall of the supernatant
interface in a monodisperse suspension as sedimentation proceeded He proposed a
solution of the continuity equations by the method of characteristics. The mass balance
of particles could then be used to relate the interface position to the dependence of
particle velocity on local concentration. The principles of this solution have been used by

many other later workers

The same approach was applied to a polydisperse system by Stamatakis and Chi
Tien (1988). The suspension is assumed to comprise a number of zones of constant
concentration. The interfaces between the zones represent the upper limit of particles of
each size fraction. The rate at which those interfaces fall is determined by the local
concentration, according to an assumed relationship between particle creaming velocity
and concentration. This relationship is obtained from previous analytical and empirical
studies. A solution for the concentration in each zone and the speed of fall of the zone
interfaces can be determined using the mass balance of particles between the zones
Special care is taken at the interface with the sediment, which grows with time, and
changes composition as the zone interfaces meet the sediment. This is a relatively simple
and efficient process. However, it does require assumptions, such as constant
concentration in the sediment, with no compression. It is also difficult to see how

diffusion, or other forces on the particles, could be included

An alternative method of solution, used by the same authors (Stamatakis and Chi
Tien, 1988, 1992), is to solve the continuity equations for the local volume fraction of
dispersed phase. The velocity of the particles is determined by the local concentration,
again using a previously obtained correlation for creaming speed. The solution of the
continuity equation is achieved by a finite difference technique on a one-dimensional
grid. The compressive stress in the sediment can be included in this formulation,
assuming empirically determined relationships for the dependence of the stress on
parameters such as permeability. The model is applicable to polydisperse suspensions,

although only monodisperse and bidisperse systems were analysed.

The finite difference approach was also employed by Shih et al. (1986, 1987), but
these workers solved the continuity and conservation of momentum equations for the
system. The techniques previously described assume that the inertial effects and the

particle acceleration can be neglected. The motion of particles can therefore simply be
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described by the creaming speed, which is obtained from the local concentration. The
solution of the equations of motion (continuity and momentum equations) is more
general, and includes inertial and acceleration effects. However, a number of constitutive
relationships are still required, for example for the dependence of the drag force on a
particle with concentration. Thus, it does not avoid the need to use previously obtained
analytical or empirical relationships. Other forces can, however, be easily included in this
scheme, through the momentum equation. An applied electric field, for example, exerts a

force on charged particles

Shih et al. (1986) used the method of characteristics to obtain the characteristic
solutions to the equations of motion. These were then solved using a finite difference
method. The computational expense of the numerical analysis led them to modify their
model and neglect the inertial and acceleration terms in the equation of motion The
equations then reduce to a continuity equation and a force balance equation, which is
essentially the same formulation as used in the other methods (Kynch, 1952, Stamatakis
and Chi Tien, 1988, 1992). The method of characteristics and a finite difference
technique were used to obtain the solution. The model was also extended to polydisperse

systems (Shih, et al., 1987)

The general consensus in these analyses is to neglect inertial and acceleration terms
in the equations of motion. The critical components of a phenomenological creaming
model are therefore the mass balance of particles (continuity equation) and some
relationship for the rate of particle movement. This may be determined through a
creaming speed, or through a force balance equation, if other forces are to be included.
The creaming speed or drag force is related to the local concentration of particles. These
components were present in the model of Zimmels (1988, 1992). Instead of solving the
equations of motion, however, the changes in concentration were modelled by the
cumulative displacement of thin layers of particles. The layers have a constant thickness
and concentration. The overlap of layers for different sizes of particles results in the
overall concentration profile in the system. Alternatively, Williams and Amarasinghe
(1989, 1991) calculate the displacement of particles of each size fraction in order to
determine the change in local concentration. In both of these models, the system is
defined as a set of horizontal layers, within each of which the concentration is uniform.

Techniques such as these, in which the effects of particle movement on local
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concentration are calculated directly, are an alternative to solving the equations of

motion

The models of creaming which have been discussed in the preceding paragraphs
are appropriate for a phenomenological description of the process. Such an approach
enables direct comparison with the experimental results obtained from the ultrasound
scanner, for example. However, some microscopic processes are difficult to simulate in a
phenomenological manner. The influence of these processes can sometimes best be
understood by a simulation at the level of the individual particles. The incorporation of
greater complexity and detail into a simulation must inevitably be associated with a
reduction in the size of system which can be analysed, due to the limitations of
computational resources. Thus, a particulate model can not reproduce the concentration
profiles obtained experimentally, but can only be used to indicate the anticipated effects
of various processes on creaming profiles. This approach was applied in a later section of
the present work to understand the effects of flocculation on creaming behaviour. A
number of different approaches to particulate modelling are discussed in the following

paragraphs

The statistical mechanical characteristics of fluids have been studied for a number
of years using the well established technique of molecular dynamics. The molecules in the
fluid are treated as if they exist in a vacuum, with their motion determined by the
intermolecular forces. The definitive reference work in this area is by Allen and Tildesley
(1989). On colloidal length scales, where the particle sizes are of the order of 10° times
larger than molecular dimensions, a molecular simulation is impractical. At this level,
continuum descriptions can be applied to the component fluids. In particular, when the
Reynolds number is small (as is the case for most emulsions at rest), the continuous
phase fluid obeys the Navier-Stokes equations of motion. An important simulation
technique which is designed for these conditions is Stokesian dynamics, or Brownian
dynamics. Useful reviews of the technique are presented by Brady (1992) and Dickinson
(1985). The intermolecular forces are replaced by effective forces between the dispersed
particles, and hydrodynamic forces which are mediated by the continuous phase fluid.
The effect of collisions by continuous phase fluid molecules on the dispersed particles is
exhibited in an additional random (stochastic) motion of those particles. This is
commonly called Brownian motion, and is simulated by applying a stochastic force to the

particles.
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The Brownian dynamics approach has been applied to the simulation of many
processes at the colloidal level, particularly to obtain rheological and diffusional
properties. References to many recent studies are given by Davis (1993). The formation
of gels and aggregates is an important area of Brownian dynamics simulation, in which
an interaction energy is applied between particles to cause them to stick together. For
example, a recent study by Bijsterbosch et al. (1995) examined the effect of interparticle
interactions on particle gel structure. A simulation of sedimentation was carried out by
Ansell and Dickinson (1986), in which particles were added to the system one at a time
to observe the growth of a sediment. A simulation of many-body sedimentation by this
method would require considerably more resources. Brownian dynamics is therefore in
principle applicable to creaming and flocculation in an emulsion, but the calculation of
pairwise hydrodynamic interactions in a many-body system is very computationally

demanding, and a simplified approach may be more appropriate

An alternative technique for including hydrodynamic interactions in colloidal
simulations is by the lattice-gas and lattice-Boltzmann models. The lattice-gas simulation
applies a lattice to the continuous phase fluid. Each node of the lattice acts as a site
which can be occupied (or not) by a fluid ‘particle’, with a given velocity. These fluid
particles move between adjacent sites and collide with other particles according to
predefined rules to conserve momentum and energy. The colloidal, dispersed phase
particles are introduced by defining boundaries, at which the lattice-gas particles interact
The interaction may be through a non-slip condition, for example, resulting in forces on
the colloidal particles. The considerable statistical fluctuations in the model require
spatial averaging to obtain meaningful results. Although the standard method is time-
consuming for dispersed systems, the more recent modification to the technique (lattice-
Boltzmann) improves its efficiency considerably. In this method, the earlier single-
‘particle’ occupation of lattice nodes is replaced by the real-valued average number of
particles at the node with a given velocity. The collision rules are obtained from the
corresponding lattice gas rules, but including the probability of such a collision
occurring, based on the local populations. Thus, the lattice-Boltzmann method implicitly
conducts the ensemble averaging process which is necessary with the lattice-gas
approach. The application of the lattice-Boltzmann technique to colloidal dispersions is
relatively recent (see for example, McNamara and Alder, 1993, Ladd, 1993, Yuan et al.,

1993) but may be a suitable method of simulation for creaming and flocculation
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A simplified approach to the dynamics of particle motion is to neglect the
hydrodynamic interactions altogether. In addition, the system can be discretised spatially,
so that only a finite number of particle locations are permitted. Particle movement is
therefore reduced to movement between the allowed sites. Such techniques are usually
called lattice simulations since a lattice is applied to the system to define the permitted
particle locations. This term should not be confused with the lattice-gas and lattice-
Boltzmann techniques in which the lattice refers to the continuous phase molecular
properties, not to the locations of the colloidal particles. Movement is specified through
the diffusional (and creaming) properties of the particles. The benefit of such simulations
is that relatively large systems can be investigated. Although many physical interactions
are ignored in this description, the influence of bonding energy between particles on
aggregate structure, for example, can successfully be modelled (Haw et al, 1995)
Lattice models have been applied to the sedimentation problem (van der Knaap et al ,
1994, Huang and Somasundaran, 1988), and are therefore appropriate for the study of

flocculation and creaming required in the present work

1.5 Ultrasound theory

The use of the ultrasound technique as a probe of emulsion behaviour was
discussed briefly in a previous section. In particular, ultrasound has been used to
determine the detailed creaming characteristics of emulsions, sometimes in the presence
of flocculation or crystallisation. The technique has also been applied to studies of the
kinetics of crystallisation and the detection of phase transitions in emulsions. A crucial
element of the method is the determination of the dispersed phase volume fraction or the
solid fat content from the measurement of ultrasound velocity. Measurements of
attenuation have been found to suffer from difficulties caused by diffraction and other

effects, whereas velocity measurements have been found to be more reliable

In colloidal systems, such ultrasound methods often operate in the long wavelength
region; that is, the wavelength of the sound wave is much larger than the particle size. In
this case, Urick (1947) suggested that the Wood equation for the speed of sound in a
homogeneous fluid, could be modified to apply to dispersed systems (see chapter 4). The
density and compressibility are replaced by the volume averages of these quantities for

the dispersion. Thus, the sound speed is related to the concentration of the dispersed
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phase  Although this formulation has been adopted by many workers, significant
deviations have been observed experimentally. Several other approaches have been
applied to the problem of sound wave propagation in dispersed systems These range
from complex analytical treatments of the scattering problem to proposed empirical
relationships between velocity and concentration with little physical basis. Since it is the
long wavelength limit which is of interest here, some of these studies can be neglected,

such as the ray-tracing formulations of Pal (1994) and Bonnet and Tavlarides (1987)

The two major approaches to the problem seem to be multiphase hydrodynamic
methods, and scattering theories. The multiphase continuum theories are based on the
equations of motion for fluid flow in the dispersion, such as the multiphase continuity
and momentum equations. The properties of the dispersion are treated as local volume
averages which therefore relates them to the local concentration of the dispersed phase
Additional properties are supplied through constitutive equations to include effects such
as heat flow between the phases, stress relationships and the effects of viscous drag. One
such approach is described in the review by Harker and Temple (1988), with reference to
the work of Ahuja (1972, 1973). A more recent study on similar lines is that presented
by Margulies and Schwarz (1994). This last study is formulated only for very dilute
systems, due largely to the assumptions of dilute limits for the hydrodynamic expressions

in the viscosity, for example

The scattering theory formulation is based on the analysis of the modification of a
sound wave by a single particle, and the cumulative effects of a dispersion of many such
particles. A sound wave which is incident on a particle initiates scattered waves inside
and outside that particle, which interfere with the incident wave and modify its phase and
intensity. Studies of the scattering characteristics of single particles are numerous, and
are discussed in chapter 4. The effect of many such particles in a dispersed medium is a
more difficult problem. One method, adopted by Gaunaurd and Uberall (1982, 1983) and
Gaunaurd and Wertman (1989) is the effective medium approach. The scattering
properties of a spherical volume of the effective medium are defined to be equivalent to
the sum of the scattering characteristics of all the individual particles within that volume
Multiple scattering of sound waves is omitted. There is some discussion over the validity
of the effective medium approach and its relationship to multiple scattering theories

(Anson and Chivers, 1989, McClements et al., 1990b, Gaunaurd and Wertman, 1990).
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The multiple scattering approach is based on the determination of the acoustic field
which results from the scattering and rescattering of the incident wave by the dispersed
particles. The result is usually expressed as an infinite series in the different scattering
modes (representing the different angular dependencies of the scattering fields).
However, the formalism is most appropriate for the long wavelength regime, in which
the series can be truncated after only a few terms (corresponding to monopole and dipole
scattering). The major analytical studies are by Waterman and Truell (1961), Fikioris and

Waterman (1964), Lloyd and Berry (1967), Ma et al. (1984, 1990)

It is the multiple scattering theory solutions which are most widely used, and
therefore the present work is based on this formulation of the ultrasound interpretation
issue. Experimental evidence (McClements and Povey. 1989) suggests that, at least in
some systems, multiple scattering theory accurately relates ultrasound velocity to
concentration. However, other studies have found different relationships to be of greater
accuracy in other experimental systems. It is apparent that confidence is not high that
existing scattering theories can be directly applied to determine dispersed phase
concentration from ultrasound velocity measurements. In addition, the calculations are
rather complicated and not easy to implement for an experimental system. The approach
taken in the present work, therefore, is to adopt the established theoretical basis of
multiple scattering theory, but to develop techniques by which it can be accurately

applied in experimental systems

1.6 Objectives and preview

The study of creaming, flocculation and crystallisation in emulsions has been
conducted through the two aspects of computer modelling and the investigation of
techniques for the interpretation of ultrasound measurements. The development of a
computer model of creaming in emulsions was intended to demonstrate the effects of the
contributory physical processes on creaming behaviour. Having modelled the behaviour
of an emulsion in the absence of particle interactions, the influence of flocculation and
crystallisation on creaming was also to be investigated. In particular, the model was
intended to reproduce the concentration profiles observed experimentally. Such a
correlation would indicate that the model of the physical processes used in the computer

simulation was a valid description of the experimentally observed creaming behaviour.
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Initially, a phenomenological approach to the modelling of creaming was adopted,
so that comparison could be made with experimental studies. The overview of simulation
techniques presented in section | 4 illustrated that a particulate description of emulsions
on the scales used in experiments is not possible at the current level of computational
resources. Hence a phenomenological description was used, and the model which has
been developed in the current work is presented in chapter 2. Although this model
produced a good representation of creaming behaviour in emulsions with no flocculation,
it was unable to reproduce the concentration profiles observed in flocculating systems
Hence, a second model was developed on a microscopic scale to examine the creaming
and flocculation behaviour at the level of individual particles. This model is presented in

chapter 3

Only with accurate and reliable techniques of interpretation can ultrasound be
applied as a valuable non-destructive probe of emulsion behaviour. A number of theories
currently exist, and it was intended to establish which of these was the most appropriate
method for interpreting ultrasound measurements, and under what circumstances it
should be used. In addition, the practical complications and difficulties associated with
the experimental application of multiple scattering theory, for example, needed to be
overcome. The theoretical principles of multiple scattering theory are considered to be
the most appropriate basis for the work, and the main results of the theory are presented
in chapter 4. In this chapter, the relationship between multiple scattering theory and
other, simpler formulae (such as the Urick equation) is also established. The range of
conditions under which the different theoretical results can be applied is illustrated both
in the theoretical investigation (chapter 4), and through the results of the
phenomenological creaming model (chapter 2). The model was used to predict the

ultrasound velocity profiles anticipated by a number of ultrasound theories.

Following a study of the ultrasound theories currently available, an attempt has
been made to develop methods which may be readily applied to a range of experimental
systems. The techniques which have been developed are based on the theoretical
principles of multiple scattering theory. However, it was intended to circumvent some of
the difficulties of complexity and uncertainty associated with the established methods
which are outlined in chapter 4. The alternative methods which have been developed for

the interpretation of ultrasound measurements are presented in chapter 5.
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Chapter 2 : Phenomenological Modelling of Creaming

In chapter 1, the study of creaming in emulsions was presented as a means of
investigating emulsion stability and the effects of flocculation and other processes The
objective of the phenomenological computer modelling was initially to develop a model
of creaming behaviour in an ideal oil in water emulsion (in the absence of particle
interactions) which would reproduce the concentration profiles observed in practice.
Such a model allows the contributions of the different physical processes to be
investigated. The effects of crystallisation and flocculation on creaming behaviour were
to be later included in the model. It was intended to establish whether simple models of
flocculation and crystallisation could explain the deviations from ideal creaming

behaviour which have been observed experimentally. In addition to the study of the

creaming process, the computer model was designed also to assist in the investigation of

appropriate theories of ultrasound propagation. The data produced by such a modelo=
fully characterised (in terms of concentration and particle size variation), and
representative of real emulsions This allows the different methods of interpretation of

ultrasound measurements in creaming emulsions to be compared

Several widely differing approaches to the modelling of emulsions were discussed
in chapter 1. For the comparison of the computer model results with experimental
measurements, a phenomenological approach was required. A model of an emulsion on
the scale used in creaming experiments can not trace the movement of individual
particles, but must instead interpret the motion in terms of changes in concentration or
other macroscopic quantities. Previous modelling in this area has been applied to the
inverse problem of sedimentation, or to the related field of fluidisation (in which an
upward flux of a carrier fluid is used to suspend heavier particles) The models of
sedimentation due to Zimmels (1988, 1992) and Williams and Amarasinghe (1989, 1991)
were considered to be the most appropriate starting points for the creaming model
developed in this work. Each assigns a sedimentation velocity to particles, rather than
solving the equations of motion for the whole system. Zimmels uses a set of horizontal
"slabs" of particles of each size which move as a single unit. The local environment is

defined using an additional fixed set of layers to calculate a total, local concentration
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Williams and Amarasinghe employ the technique of using horizontal layers to define a
local concentration, but appear to track the movement of individual particles (or at least
individual size fractions) in the system. The methods of horizontal layering, and of
assigning particle velocities rather than solving the equations of motion, were employed
in the model presented here. However, a somewhat different approach was employed to

calculate the development of the concentration profiles

2.1 Overview of model

The computer model is one-dimensional, the vertical direction determining the
critical variation in concentration. The horizontal dimensions of emulsion samples in
experiments are approximately 35 mm square, which is several orders of magnitude
greater than the particle diameter (up to approximately 2 jum). Therefore, the size of the
container might be assumed to be not a strong factor affecting the creaming rate of
individual particles. Some effects of the cell wall may be felt especially by the particles
near the walls, but these are likely to be small when compared with the concentration
changes in the bulk of the sample. The horizontal dimensions of the sample are therefore
assumed to be infinite in the model. The vertical dimension in the model is an adjustable
parameter, but is usually taken to be 250 mm, as in the ultrasound scanner (see section
1.3). On the macroscopic level, the emulsion is completely defined locally by the
concentration of oil (dispersed phase) and the particle size distribution. The presence of
individual particles with their own identity can be overlooked. The definition of a sample
in terms of the movement of identifiable particles is only practicable for a small scale
model, otherwise the number of particles needed properly to model the system is

unacceptably large.

As with any computer model, a certain amount of discretisation is necessary to
enable numerical simulation. In the creaming model, the system is discretised spatially,
temporally and into discrete particle size fractions. A schematic diagram of the model is
shown in figure 2.1. The sample is split into horizontal layers, within which the
concentration is uniform with height. The concentration profile in the sample is therefore
described by a stepwise variation, which approaches a smooth profile as more, narrower,
layers are used. For a polydisperse emulsion, there exists a continuous particle size

distribution, which must also be split into discrete units. A certain concentration of
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Figure 2.1 Schematic diagram of the representation of an oil in water emulsion in the
phenomenological computer model

dispersed phase is assigned to each one of a number of discrete size fractions (figure
22). As the number of size fractions is increased, each covering a smaller range of
particle size, the discretised size distribution approaches the real, continuous distribution
The local concentration in each horizontal layer is the sum of the concentration over all

particle size fractions.

Volume fraction

log (particle diameter)

Figure 2.2 Discrete size fraction representation of a continuous particle size distribution
in the computer model.
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The particle size distribution used in the model was log-normal, which is typical of
emulsions produced through a laboratory homogeniser. Thus, the concentration of

particles in each size fraction is proportional to the factor
[2.1]

where, if 7 is particle radius
w =In(2r /jum) [2.2]

The mean value of w defines the centre of the distribution and thereby the particle size at
which the peak of the distribution occurs. The width of the distribution (the degree of
polydispersity) is defined by the parameter o, . The distribution is divided into equal

segments in w, in the range
=3 S(u'frr)sla“ [23]

with each segment representing a different size fraction

The evolution of the sample is calculated using discrete time steps. As the length of
the time step is reduced, the model of the sample approaches, in principle, the real
situation of a continuous progression. In each time interval, the change in oil
concentration in each layer is calculated, according to the equations of motion for the
fluid. The rules applied to determine the volume flux of dispersed phase at the layer
boundaries correspond to the effects of the physical processes included in the model. The
dominant processes included are creaming and thermal diffusion, and these are discussed
in the following sections. The concentration changes caused by these processes are
assumed to be determined only by the local conditions in the adjacent layers, namely the
particle size distribution, concentration and concentration gradient. In addition to the
concentration changes in layers, each size fraction has an upper and lower boundary
which represents the spatial extent of particles of that size. Initially these boundaries
correspond to the top and bottom of the sample. However, during creaming, the particles
which were initially at the bottom of the sample move upwards and their position at any
time defines a lower boundary. In a monodisperse sample this is the serum interface,
which is clearly defined if Brownian diffusion is negligible. During each time step,

therefore, the position of the upper and lower boundaries for each size fraction must be
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calculated. The following sections discuss the physical processes in the emulsions which

determine the concentration changes in the layers and the movement of the boundaries

2.2 Physical processes included in the model

The equations of motion for a single, continuous fluid are well known. They can be
derived from the continuity equation (conservation of mass) and conservation of
momentum (Newton's second law) and energy. When the fluid velocity is very low, as is
the case in creaming, the inertial terms in the equations can be neglected (since they are
second order in the flow speed). This is called the Stokes regime of flow, and
corresponds to a very low Reynolds number. The equations of motion then take the
famous Navier-Stokes form. In a multiphase system, the equations become more
complicated, but the appropriate modifications can be found in works such as Shih et al.
(1986), Roco (1992) and Gidaspow (1994). Additional constitutive equations are
required, for example to obtain the drag force on each particle. The equations of motion
are not reproduced here, since the phenomenological model does not directly solve these
equations for the whole system. Some workers have applied finite difference or finite
element methods to obtain a solution to the equations of motion in the sample. However,
in the phenomenological model described here, the motion of the particles is defined in
terms of the contributing physical processes (creaming and diffusion), for which the
equations of motion have been solved separately. The effects of the multi-particle nature
of the system are included implicitly in the numerical model through the combination of
the creaming and diffusion properties of the individual particles, and through ensemble

averaged hydrodynamic effects

The dominant physical effects which occur in an emulsion, in the absence of direct
particle interactions, are the gravitational force, thermal diffusion, viscous drag and
hydrodynamic interactions. The net effect of the gravitational forces on a particle in an
oil in water emulsion is to cause creaming, which is limited by the viscous drag exerted
by the continuous phase fluid. The thermal energy of the particles causes them to execute
random motion, again restricted by the viscous drag. This is the effect of diffusion, which
acts to blur sharp concentration gradients. At finite concentrations, hydrodynamic
interactions between particles, i.e. those that are mediated by the continuous phase fluid,

may also be significant. The application of the equations of motion to these individual
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processes results in expressions for particle movement which can then be applied in the
phenomenological model. This approach avoids the need to solve the equations of

motion directly for the entire multi-phase sample

2.2.1  Gravity (creaming)

As Archimedes discovered, bodies immersed in a fluid experience an upward force
(called the buoyancy force) due to the differential pressure acting over the surface of the
body. This force slows the fall of particles which are more dense than the surrounding
fluid, and causes particles which are less dense than the fluid to rise upwards or float
The magnitude of the buoyancy force is easily derived for an isolated cylindrical object
(with its axis vertical) by considering the extra pressure acting upwards on the lower
surface of the cylinder due to the additional weight of fluid at this lower depth. The
result is equally valid for spheres and irregularly shaped objects. Archimedes principle
states that the upward force due to the fluid is equal to the weight of fluid displaced by
the object. The net force due to gravity on an object submerged in a fluid is therefore
proportional to the density difference between the object and the surrounding fluid. For a

sphere this takes the form

,‘}‘,,,,‘gA,, [2.4]

where 7 is the particle radius and Ap is the density difference between the dispersed and
continuous phases. In an oil in water emulsion, the dispersed phase (oil) is less dense
than the continuous phase, and therefore the particles tend to rise to the top of the
sample (to form a cream) The net gravitational force would tend to accelerate the
particle, but in a viscous fluid its movement is restrained by the viscous drag exerted by

the surrounding fluid. For a sphere, the Stokes drag is given by

F, = 6xnru [2:5]

where u is the particle’s speed, and 7 is the viscosity of the surrounding fluid

Since the particle movement in the creaming of emulsions is within the Stokes
regime of flow, the inertial terms in the equations of motion can be neglected. For a
single, isolated, spherical, solid particle in an infinite fluid medium, a particle will
accelerate to a constant terminal velocity given by the balance of the gravitational force

(equation 2.4), and the drag of the fluid on the particle (equation 2.5). Thus
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B=F, [2.6]
The resultant velocity is called the Stokes velocity and is given by the equation

_2r’ghp

u,
! 9n

[27]
Equation 2.7 describes the speed at which a single oil droplet will rise to the top of the
emulsion (in the absence of any other emulsion droplets) It can therefore be called the
creaming velocity. The dependence of the creaming velocity on the parameters of particle
size, density difference and viscosity is very important for the stabilisation of food
emulsions, as discussed in chapter 1. The assumption of sphericity and rigidity (infinite
viscosity) for the particle are reasonably valid for emulsion droplets coated with a
protective layer of emulsifier or protein (Walstra and Oortwijn, 1975). Crystallised fat
particles may not conform so well to this description, but a variety of modifications are

available using shape factors to describe the non-sphericity

In reality, equation 2.7 is only the infinite time asymptotic limit of the particle’s
speed, as the acceleration decreases to zero and the force balance is approached.
However, in a typical oil in water emulsion, the drag on the particle is sufficiently large
that the time taken for the particle to accelerate to within an accepted tolerance of its
terminal velocity is negligible. Therefore, the particle can be considered to move with its
terminal velocity at all times. In the model, the environment of the particle changes as it
moves through the sample, and therefore its terminal velocity will also change. However,
the time taken at each point for the particle to reach its terminal velocity is negligible
compared with the time scale over which its environment changes significantly
Therefore, the model neglects particle acceleration and simply attributes a terminal

creaming speed according to the local conditions

Equation 2.7 is valid for an isolated particle in an infinite fluid medium. In a real
emulsion with a finite concentration of dispersed phase particles, hydrodynamic
interactions become significant and introduce concentration-dependent factors into the
particles” speed. The modifications to the creaming speed include the effect of the
backflow of the surrounding fluid, and the effective density and viscosity of the emulsion
Such hydrodynamic effects are discussed in section 223 Although the overall

considerations of the effect of particle size, viscosity and density difference are still valid,
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the hydrodynamic interactions can result in very different effective creaming speeds for

the particles

2.2.2  Thermal diffusion

Thermal diffusion is a term for the random process otherwise known as Brownian
motion. The jittery motion of small specks of pollen on a pool of water was observed by
Robert Brown in 1828 and was later attributed to the effect of random collisions of the
water molecules by Goiiy (see Dickinson, 1985). The random motion of the water
molecules themselves is a result of their thermal energy. Similar random motion occurs
on a colloidal scale in an emulsion due to the thermal energy of the oil droplets. If a
particle is observed at various time intervals it can be seen to execute a convoluted and
random motion, for example, the path shown in figure 23 Its true path is even more

convoluted but this represents a sample of its position at regular intervals of time

Figure 2.3 Thermal random walk

A possible two-dimensional random walk path traced by recording a particle’s position at
a sequence of time steps

In one dimension, if the particle is equally likely to move in either direction, the
average displacement from its original position must be zero. However, it has a non-zero

root mean square displacement, which Einstein showed was given by
2\ "
(-=)) =on 28]

where z, is the initial position and ) is a diffusion coefficient. In three dimensions the
mean square displacement is simply three times as large, since there are three orthogonal

co-ordinates. Thus, if the particle is initially at the origin,
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(R)" =(611)" [2.9]

For the purposes of the model, only one-dimensional diffusion need be considered
Although the particles do diffuse in all three directions, the system is assumed to be
uniform in the two horizontal components, and the motion can be resolved into a single
vertical direction. It is interesting to note the characteristic feature of random walk
phenomena such as diffusion, that the distance travelled is proportional to the square
root of the time taken. This is in contrast to the creaming behaviour in which the distance

travelled is directly proportional to the time taken

The description of thermal particle motion in terms of a random walk is not directly
applicable in a phenomenological model. The effect of thermal diffusion in an emulsion
must instead be defined in terms of the resultant changes in concentration. The usual

phenomenological description is given by Fick's first law of diffusion
J=-DVn [2.10]

where J is the vector particle flux, and # is the particle density per volume (in three
dimensions) or per length (in one dimension). We have defined another (macroscopic)
diffusion coefTicient, 1), in this equation, but the two coefficients of equation 2.10 and
2.8 will be shown to be equivalent, at least for an extremely dilute system of identical
particles. Equation 2.10 indicates that, in a phenomenological model, diffusion will only
become significant in the presence of concentration gradients. In a uniform sample, the
effects of diffusion are not visible on a macroscopic level. The process of creaming,
however, creates concentration gradients, for example at the underside of the cream
layer, or at the serum interface. Diffusion may, therefore, be significant in these regions
Equation 2.10 is the form of diffusion equation used in the model to calculate the volume

flux moving between the horizontal layers

Fick's second law of diffusion can be derived from equation 2.10 by considering

the net flux in a small slice of sample (in one dimension), which is given by

Gl o 211]

& ot

from which Fick's second law is obtained

%":1)?7' [212]
ot 4
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The application of this equation to the case of a single particle provides the link to the
random walk description. The initial probability distribution function of a single particle,
whose position is known, can be described by a delta function. The “envelope” of the
particle’s likely location spreads with time, approaching asymptotically a uniform
distribution in which the particle is equally likely to be at any position. Fick's second law
(equation 2.12) can be solved for the particle probability distribution function with the

boundary conditions appropriate for a single particle which are given by

z2#£2,,1=0

n(z,1)=0 % [2.13]

z—> 30,120
and the normalisation condition
j:n(z,/)dz:l [2.14]

where z is the particle’s initial position. The result for the probability distribution of the
particle’s position at any time is a Gaussian function centred on the particle’s initial

position. Thus

u(z,l): Jéﬁexp[%] [2.15]

where D is the diffusion coefficient. The root mean square displacement from the initial
position can be calculated by integration, resulting in equation 2.8, which arose from the
random walk description. This demonstrates the link between the phenomenological and
random walk descriptions of diffusion, and also that the diffusion coefficients previously

defined in each case are equivalent for a single isolated particle

Although the phenomenological description of diffusion given by equation 2.10 is
used in the model, it cannot be applied when the concentration gradient is not defined
This is the case at the upper and lower boundary of particles (which initially correspond
to the top and bottom of the sample). These boundaries define the limit of particle
concentration for each size fraction, and therefore represent a step-change in
concentration. The concentration gradient at the step is not defined, and therefore
equation 2.10 cannot be applied, although it is known physically that diffusion will blur
the sharp change in concentration. The effect of diffusion on a step change in

concentration can be found using the probability distribution of the position of a single
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particle, equation 2.15. In mathematical terms, the overall particle number density
distribution after a given time is the convolution of the individual particle probability
distribution and the initial particle number density profile. On the microscopic level, the
distribution is the superposition of the random walk trajectories of all the individual
particles, whose starting positions are defined by the initial concentration profile. If the
step change in concentration is at the origin, the initial particle number density profile is
constant in the negative half-space and zero elsewhere.

n, forz<0

z,0)=
alz0) 0 forz>0 [zde]

The convolution of the two functions, equations 2.15 and 2.16, gives the probability

distribution of the number density of particles at time 7. Thus

n(z,1)= :/4';‘;])’ fd:,, exp[ (;]{;QJ [2.17]

By substituting the dummy variable

(z-2) [2.18]
4Dt

the distribution can be expressed in terms of the complementary error function, giving

n(z,1) = {/'l;j L chxp(—ZZ) = "ierfc(—\/—m) [2.19]
where

20 2
erfe(z) = 1 - erf(z) = ﬁj dz exp(—Z ) [2.20]

The evolution of a step change in concentration with time is illustrated in figure
2.4, using equation 2.19 to calculate the concentration profile. The initial sharp boundary
becomes more diffuse with time, as the particle distribution spreads out. The boundary
can be defined as the position at which the concentration is some specified proportion of

the initial amplitude of the step, i.e

n(z,t)=an, [2.21]
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Figure 2.4 Effect of diffusion on a step-change in concentration.

The solid line is the initial concentration profile. The other lines represent the
concentration profile after arbitrary time units of 1, 2, 3, and 10

The distance moved by this boundary between the times 7, and ¢, is given by

z,— 2, =VAD({5; 1, ) erfc ' (2a) [222]

The upper and lower boundaries in the model can be related to this step change. The
effect of diffusion is therefore embodied in an additional time-dependent displacement in
each time step, given by equation 2.22, relative to the current boundary position. A
boundary defined as being at half of the amplitude of the initial step does not move with
time, but remains at the original position of the step change. For the model, the boundary
was defined as the position at which the concentration is 25 % of the initial step
amplitude. The displacement defined by equation 222 is superimposed on the
displacement due to the creaming velocity for the lower and upper interfaces, to

represent the spreading of the step interface

The magnitude of the effects of diffusion are embodied in the diffusion coefficient.
The particle movement is a balance between the particle's thermal energy (which causes
it to move about at random), and its mobility (which may be restricted by viscous drag,

for example). The discussion is restricted to the isotropic case. In the more general case,
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the diffusion coefficient must be replaced by a tensor. In the Stokes regime of flow, the
diffusion coefficient for a single, isolated, spherical particle is given by the Stokes-
Einstein equation:

k,T

6”}]"

D, = [2.23]
where kg is the Boltzmann constant and 7 is the absolute temperature. Diffusion is
therefore strongest for the smallest particles, which experience less viscous drag
Conversely, the creaming velocity is greatest for the largest particles. In the colloidal
size-range, diffusion is significant (the importance of thermal diffusion may be taken as a
definition of the colloidal size range). The viscosity of the continuous phase is again a
determining factor, as is the temperature which defines the thermal energy of the

particles

The Stokes-Einstein equation for the diffusion coefficient (equation 2.23) is valid
only for a single, spherical particle in an infinite fluid medium. This corresponds to the
conditions for the derivation of the Stokes creaming velocity (equation 2.7). At finite
concentrations, the diffusion coefficient is modified due to the influence of the other
particles. The thermal motion can then no longer be described by a single coefficient and
is replaced by two different parameters. The se/f-diffusion coefficient quantifies the
movement of a single labelled particle in a uniform environment. The mutual-diffusion
coefficient defines the movement of particles in the presence of inhomogeneity such as
concentration gradients (Dickinson, 1983). It is the second of these, the mutual-diffusion
coefficient which is of relevance to the phenomenological model. In the following
discussion the diffusion coefficient is assumed to be the mutual-diffusion coefficient
throughout.

The modifications to the diffusion coefficient at finite concentration are due to both
hydrodynamic and thermodynamic effects. Hydrodynamic interactions affect the particle
mobility, M, which may be defined by the velocity, U, attained by a particle due to the

application of a steady force. Thus

U=MF" [2.24]

where the velocity refers to axes in which the mean volume flux of continuous and

dispersed phases is zero. For the creaming problem the velocity is therefore relative to
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the container. The definition of the force, F‘ (in Batchelor’s notation) is such that the
flux of dispersed phase is the same as if the particles are acted on by this force, and the
continuous phase experiences no force (Batchelor, 1976). The hydrodynamic effects on
particle mobility are discussed in the next section, since they are also relevant to the

creaming speed

The thermodynamic modification to the diffusion coefficient is introduced because
of the greater volume available for the particle to occupy at lower concentrations. There
is therefore a statistical influence which increases the probability of a particle moving
down a concentration gradient. The statistical factor can be related to the concentration
dependence of the osmotic pressure or chemical potential. Batchelor (1976, 1983)

showed that the overall diffusion coefficient in a monodisperse system can be written as
Y
D= Mi(ﬂj [2.25]
1-¢\ 3 =
where 4 is the chemical potential per particle and ¢ is the volume fraction. Alternatively,

the coefficient can be expressed in terms of the osmotic pressure, IT thus

[2.26)

D= M(fn)

én/ ,r

At low concentrations, the thermodynamic factor in a monodisperse system is given by

I—%[%] ’ =k, 7(1+8¢ +3047) [2.27]

(Batchelor, 1976). At higher concentrations, a more complete description is necessary,

such as that provided by the Carnahan-Starling equation (Sami-Selim et al , 1993, and in

approximate form in Glendinning and Russel, 1982), thus

1424) +(¢—4)¢°
1(3) s +(0- 901 b
o\@),, (-9

The thermodynamic factor diverges as the concentration, ¢, approaches unity. However,
it can be seen from the next section that hydrodynamic effects dominate at high

concentration and prevent particle movement. The diffusion coefficient therefore
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decreases to zero in a concentrated emulsion. A useful review of the concentration

dependence of the diffusion coefficient can be found in Sami-Selim et al (1993)

2.2.3 Hydrodynamic interactions

The derivation of the Stokes creaming velocity, or the Stokes-Einstein diffusion
coefficient assumed that there was a single isolated particle moving in an infinite fluid
The situation is modified when the volume fraction of particles is finite, due to
hydrodynamic interactions. These are interactions between particles which are mediated
by the continuous phase fluid. The movement of a particle causes a corresponding flow
of the surrounding fluid, which, in turn, has an effect on any neighbouring particles. Thus
the movement of any particle influences other particles through the reaction of the
surrounding fluid. One of the contributions to the hydrodynamic interactions is the
backflow of continuous phase fluid (which occurs to conserve volume) However, there
are other contributions due to the velocity field created in the fluid by the particle

motion. These are discussed in the dilute limit by Batchelor (1972)

A complete solution for the particle movement is theoretically possible for a given
configuration of particles, provided the fluid flow field around a spherical particle is
known. The complete equations of motion for the fluid could be solved numerically, but
this is not practical for a large-scale model. Progress is required via analytical or
empirical results. Experimentally, observations are made over time-scales which are very
long compared with the time during which the system can explore the many different
configurations of particle positions. Therefore, any measured properties are effectively an
average over all particle configurations. The hydrodynamic interactions can thus be
expressed as ensemble averages, assuming the particles to be randomly distributed. They
can then be written as a function of the concentration, rather than the particle

configuration.

The hydrodynamic effects are incorporated into the particle mobility, which was
defined by Batchelor (1976) in terms of the velocity-force relationship, equation 2.24
This expression is valid for both diffusion and creaming, showing the connection between
the hydrodynamic effects in each case. The force on each particle due to gravity (when
the fluid is force-free) is given by equation 2.4. In Batchelor's definition, the density

difference is (as written) between the particle and the continuous phase fluid, rather than
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the suspension. Thus, in a monodisperse suspension, the creaming speed (relative to the

container) is related to the mobility by
4
n= Em“gApM [2.29]

The diffusion coefficient was related to the mobility through equation 2 25
For a single, isolated, spherical particle, the mobility is given by

1
M = 3
6nnr [230]

(from the Stokes drag law, equation 2.5). The mobility in a dispersion of finite
concentration may be written as

) ()

231
6anr [ I

where /(@)is a hindrance factor. The reasons for the choice of this form will become
apparent later. The creaming speed in a monodisperse suspension (equation 2.29) can
therefore be expressed in terms of the Stokes velocity of the particles (equation 2.7) and

the hydrodynamic factors (equation 2.31), thus
u=h(g)(1- p)u, [2.32]

Similarly, the diffusion coefficient in a monodisperse suspension can be written in terms

of the Stokes-Einstein coefficient as

D= Dyh(p)(1-¢ .J_'_g_(a;,)

= [233]
kT (1-g)\ ),

(equations 2.31, 2.25 and 2.23)

Although Batchelor expresses all velocities relative to the zero-volume-flux axes
(which is the laboratory frame of reference in the creaming problem), other workers have
used a different reference frame. Much work in this area has been involved with
fluidisation, in which a volume flux of fluid is used to maintain the buoyancy of heavy
particles. The usual frame of reference in this case moves with the mean velocity of the
continuous phase fluid. In other words, the frame of reference in which the mean flux of

continuous phase is zero. The creaming speed of a particle in this frame of reference is
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denoted by the subscript ¢ When the suspension is at rest in a container (as is the case
for creaming), the relationship between the frames of reference is given by
u=u,+u [2.34]
where all velocities are positive upwards. The continuous phase velocity, u,, can be

found by conserving the volume flux crossing any horizontal plane, thus for a

monodisperse sample
u,(1-¢) +ug=0 [2.35]
so that the relative velocity is given in this case by

u

"=l [2.36]
Thus
u, = h(g)u, [2.37]

hence the reason for the choice of the form of the mobility in equation 2 31 Barnea and
Mizrahi (1973) conclude that the results of previous workers, particularly Mertes and
Rhodes (1955) have demonstrated that only the relative velocity can be used to compare
results from the different experimental processes (sedimentation, fluidisation and others)
Barnea and Mizrahi discuss the relationship between the relative and absolute velocities
in each of the different methods. The determination of the hydrodynamic effects has
therefore focused on the hindrance factor /(¢), mainly through the concentration
dependence of the creaming or sedimentation velocity. A very useful review is presented
by Williams and Amarasinghe (1989) of the results in the literature, and only the main

results are drawn out here

Analytical results for the hindrance factor are only accessible in the dilute limit,
mostly also for monodisperse systems. The earliest attempts assumed either a regular
arrangement of particles, or that the fluid flow around each particle was confined within
a cell (usually spherical) where some boundary condition is applied. The first of these

was by Smoluchowski (1913), who obtained the result

M [2.38]
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where s is the interparticle spacing. Each of these approaches predicts that the

sedimentation velocity varies in the form
%
u=u\l-a,p ) [2.39]

in the dilute limit. A review of these techniques and the results obtained can be found in

Happel and Brenner (1965) and in Barnea and Mizrahi (1973).

Later, the ensemble average of a random arrangement of particles was attempted,
first by Burgers (1941, 1942), and later by Batchelor (1972) and Reed and Anderson
(1976, 1980). These methods based on a random particle arrangement predicted that the
modification to the creaming velocity should be first order in concentration The

definitive work is considered to be that of Batchelor, who obtained the result
u=u,(1-6554) [2:40]
or as a hindrance factor

h(@)=(1-555¢4) [2.41]

Batchelor (1972) also discusses the difference between the ensemble average approach
and previous techniques with results of the form 2.39. He attributes the difference to the
use in the earlier models of a characteristic length scale, usually the inter-particle spacing,
which is inversely proportional to the one-third power of concentration. In a random
system, no one particle separation has any special significance. It is interesting to note
that Smoluchowski (who obtained the result 2.38) commented that if the particles were
arranged at random, the leading order term in the third power of concentration would
vanish. It is now generally accepted that the dilute limit should take the form of equation

2.40, although the coefficient of the concentration term varies somewhat

The analytical method becomes extremely difficult beyond the dilute limit, and
empirical and semi-empirical approaches have been used by later workers to obtain the
hydrodynamic interactions at higher concentrations. Richardson and Zaki (1954)

suggested the use of a hindrance factor of the form

¢ )
e [2.42)
wo=(1-5
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which has the correct dependence in the dilute limit. The parameter ¢, is a maximum

packing fraction, but is usually taken to be unity. A variety of results for the coefficients
exist, from theoretical, semi-empirical and empirical investigations. Many of these are
included in the review by Williams and Amarasinghe (1989). The general consensus is

that if ¢ ., =1, the coefficient ¢ is around 4. The most widely used value is that given by

Garside and Al-Dibouni (1977), g=4.1 (in the low Reynolds number limit), although they
produced a more complicated formula valid for a wide range of Reynolds number. An
alternative empirical correlation due to Dallavalle for a wide range of Reynolds number

has also been used in some sedimentation models (Williams and Amarasinghe, 1989)

The other, very widely used correlation for the hindrance factor in a monodisperse
suspension was determined by Barnea and Mizrahi (1973) They compiled a semi-
empirical relationship for the creaming velocity, which was fitted to many sets of
experimental data over a range of concentration and Reynolds number. The form of the
relative velocity dependence was established by considering the component effects due to
modifications to the suspension density, viscosity and drag force. These contributions
can be seen in the force balance equation used to derive the Stokes velocity (equations
24,25 and 2.6). A consideration of the Stokes drag force also indicates the possible
source of the requirement to use the relative velocity in comparisons between
experiments. The Stokes drag is derived by considering the pressure acting on the
surface of a particle which is stationary in a uniform flow of fluid. The velocity in the
drag force is therefore the relative velocity between the particle and the surrounding fluid
at a large distance from the particle (where the flow is uniform if there is only one
particle). Hence it appears sensible to use the relative velocity when defining the

concentration dependence of the drag force

The density difference in the gravitational force is modified by using the suspension
density in the buoyancy component, rather than the density of the continuous phase. This
introduces a factor of
(1-¢) [2.43]
The viscosity of the suspension was written in an exponential form, consistent with
earlier theoretical work (Barnea and Mizrahi include a review of previous work on
viscosity of suspensions). The coefficients in the viscosity expression are determined

empirically. Finally, they adopt a form for the additional hydrodynamic effects in the drag
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force which varies with the one-third power of concentration. Unfortunately, their work
was slightly too early to incorporate the result of Batchelor for the dilute limit, which is
the preferred form of the hydrodynamic dependence. However, their expression for the
relative velocity was fitted to a wide range of experimental results, and the empirical fit

was given by a hindrance factor

@) = o gomeflodle 2 [2.44]

(l ; ¢“)exp{ 3(]53)}

Equation 2 44 is the form used for the hydrodynamic interactions in the creaming model
The creaming velocity and diffusion coefficient are related to it in a monodisperse system

through equations 2.32 and 2.33.

Figure 2.5 shows the concentration dependence of the creaming velocity and
diffusion coefficient in a monodisperse system as a proportion of their dilute limiting
values (the Stokes velocity, equation 2.7, and the Stokes-Einstein coefficient, equation
2.23). The hydrodynamic concentration dependence was taken to be that given in

equation 2.44, which is used in the model. The creaming speed decreases monotonically
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Figure 2.5 Concentration dependence of creaming speed and diffusion coefficient for a
monodisperse sample.

The solid line is the creaming speed and the dashed line the diffusion coefficient used in
the model. For comparison, the dotted line is the creaming speed and the dash/dot line
the diffusion coefficient using a modified hindrance factor.
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to zero as the concentration increases, which is due entirely to the hydrodynamic
hindrance. The diffusion coefficient, however. initially falls, but then increases with
increasing concentration, when the volume fraction is less than approximately 0.4,
because of the statistical thermodynamic effects. It then decreases rather steeply to zero

at high concentrations as the hydrodynamic hindrance becomes predominant

For comparison, figure 2 5 also shows the creaming speed and diffusion coefficient
which would be obtained using the Richardson-Zaki form for the hydrodynamic

hindrance factor (equation 2.42) with ¢, =1 and the Batchelor coefficient of ¢=5.55

The form of the creaming speed remains unchanged, although the Barnea-Mizrahi
version is somewhat steeper at low concentrations due to its limiting dependence in the
one-third power of concentration. However, the diffusion coefficient is very different
The peak value and the volume fraction at which the peak occurs are considerably
altered by this change in the hydrodynamic term. The fall in the diffusion coefficient at
the lowest concentrations is only seen with the Barnea-Mizrahi form for the
hydrodynamic hindrance. This feature is due to the one-third power concentration
dependence of the hydrodynamic term at low concentrations. It has already been seen
that this is steeper than the correct, linear form for the dilute limit. Hence, the drop in the
diffusion coefficient at low concentration is not a physical effect but is an artefact of the
hydrodynamic form used. The differences in the diffusion coefficient arising from the
hydrodynamic components may cause a considerable degree of uncertainty in the effects
of diffusion in the creaming model. However, for consistency, the Barnea-Mizrahi
expression for the hydrodynamic hindrance was used for both the creaming velocity and

the diffusion coefficient

2.2.4 Polydispersity

The results of the previous section for the hydrodynamic interactions are applicable
to monodisperse systems. However, real emulsions are polydisperse (even though in
some cases the size distribution may be very narrow), and it is therefore necessary to

determine the hydrodynamic effects in this case.

Batchelor (1983) showed how the mobility formulation (equations 2 24, 2 25 and
2.29) can be extended to a polydisperse system. The hydrodynamic interactions now
include pair-wise interactions between each combination of particle sizes. The

hydrodynamic interactions in the dilute limit for a polydisperse system were examined by
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Batchelor (1982) in terms of the sedimentation velocity, and numerical results were given
(Batchelor and Wen, 1982) for some limiting cases of the nature of the polydispersity
and flow. However, the case of a pauci-disperse system (in which there exists a range of
particle sizes around a mean value), which is the usual case in emulsions, does not appear
to be addressed directly, and the range of the Péclet number for the creaming emulsions
does not appear to fall into the special cases. When the density of all particles is the
same, the coefficients for a small range of particle size are very similar, and therefore the

hydrodynamic factor approaches the monodisperse case, using the total volume fraction

It is difficult to see how the dilute limit results might be extended to more
concentrated systems. Davis and Grecol (1994) suggested a modification of the form of
the Richardson-Zaki expression for the monodisperse case (equation 2.42), using the
coefficients calculated by Batchelor and Wen (1982) for the dilute limit. However, the
numerical values for the coefficients are not certain, as discussed in the preceding
paragraph. Several workers have postulated modifications to the monodisperse hindrance
factors appropriate for polydisperse systems. Mirza and Richardson (1979) included an

extra correction factor
(-9 [245]

in the Richardson-Zaki equation for their bidisperse settling experiments. Others
suggested the inclusion in the suspension density only of those particles smaller than the
particle whose velocity is being calculated (Selim et al, 1983). However, the
modifications adopted have mainly been empirical, with little assessment of the

applicability to a general polydisperse suspension

The formulation for polydispersity used in the present model has been adopted
previously by several workers in sedimentation modelling (Stamatakis and Chi Tien,
1992, Zimmels, 19831988, Williams and Amarasinghe, 1989, 1991). The hydrodynamic
effects are considered to be due to the overall flow of particles and are thus related to the
total concentration, rather than to the detailed particle size distribution. The
hydrodynamic factors derived for monodisperse systems can then be applied to the
relative velocity in the polydisperse case, using the total dispersed phase concentration.

Equation 2.37 is valid for each individual component, giving

1y, = (@), [2.46]
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for the relative velocity of a particle of size fraction i. The conservation of volume flux in
the laboratory frame can be used to calculate the continuous phase velocity, and thereby

the particle velocity relative to the container. Thus
Sug = 7::,(1 = Z,¢,) [2.47]

Substitution of the solution for the fluid velocity into a polydisperse version of equation
2.34 leads to

218,
(-29)

Multiplication by the concentration of species 7 followed by summation over all particle

u=u, - [2.48]

species leads to

%%%_Z,"m [2.49]

whence the absolute particle velocity of species i can be obtained:

u =u, ’Z,"n‘t_l [2.50]

This is the form used in the model for the polydisperse emulsions. The hindrance factor

used in the relative velocity (equation 2.46) was the Barnea-Mizrahi formulation, 2 44.

A form for the diffusion coefficient in a concentrated polydisperse suspension has
not become available. Batchelor (1983) gave general results for the diffusion and cross-
diffusion coefficients but these include complicated expressions in the chemical potential,
dependent on the interactions between particles. The monodisperse form of the diffusion
coefficient and the diffusive flux was therefore used in the model, using the total volume
fraction. The diffusive flux for each size of particle is given by equation 2 10, using the
concentration gradient of particles of that size. Thus
J, ==DYVn, [2:51]
The diffusion coefficient is given by equation 2.33, with the Stokes-Einstein coefficient
for the correct particle size, and using equation 2.44 for the hydrodynamic hindrance

factor (using the total volume fraction). The thermodynamic factor is calculated from

equation 2.28, also using the total volume fraction. Although this is not an exact result
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for diffusion, it is the creaming velocity which should be dominant in the model, and
therefore the precise concentration dependence of the diffusion coefficient is of

secondary importance.

2.3 Time evolution

The sample is initially uniform in terms of concentration and particle size
distribution. The evolution of the concentration profile is modelled by calculating the
concentration changes in the horizontal layers and the movement of the upper and lower
limits of each size fraction in a series of small time steps. The processes affecting these
contributions have been discussed in the previous sections, and now the application of

these results in the model is detailed

2.3.1 Calculation of change in concentration at layer boundaries

The volumetric flux of dispersed phase particles crossing the boundary between
adjacent layers is calculated in each time interval. There are two contributions, due to
creaming and diffusion. The flux in both cases is determined entirely from the local
environment (that is the concentration and particle size distribution in the two layers)
The total volume fraction at the interface is taken to be the average of the volume
fraction in the two layers. The hydrodynamic hindrance factor is calculated from this
average total concentration using the Barnea-Mizrahi relation, equation 2.44. The
creaming velocity of particles of each size fraction is determined by equations 2.46, and
2.50. The diffusion coefficient is calculated using equations 2.33, and 2.28, again using

the total average concentration
The volumetric flux of particles of size fraction i due to creaming, is proportional
to their velocity and the local concentration of particles of that size, thus
AP, cm =¢5,",ﬂ [2.52]
: Ah
For diffusion, the flux is proportional to the concentration gradient, equation 2.51,

(#r ~#0 ) &1 23]

Ag, gn =D, A Ah
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where the difference in concentration is for particles of the same size fraction between

the two layers. Both of these fluxes have been defined as positive in the upward

direction

2.3.2  Boundary velocities for each size fraction

The lower and upper limits of particles of each size fraction are defined as
boundaries, which move with a velocity determined by the local conditions. In the
absence of diffusion, the boundaries move with the local creaming velocity of particles of
the same size. Diffusion causes the change in concentration at these limits to become less
well defined as time progresses. This effect is modelled using an additional boundary
velocity, which was derived from the evolution, due to diffusion, of a step-change in
concentration. The extra displacement of the boundary was defined in equation 2.22. In
the model, the boundary was defined as the position where the concentration is 25 % of

the initial concentration, which gives an extra time-dependent velocity of

", :%\/ﬁ(ﬁ i ar) [254]

2.4 Choice of discrete units

2.4.1 Layer thickness

The layer thickness, A/, must be small enough to represent accurately any regions
of rapidly varying concentration, and to avoid a significantly stepped effect in the
concentration profile. Creaming experiments using the ultrasound scanner (figure 1.1)
have a resolution of 1 mm and the creaming model ought to have at least as fine
divisions. The layer thickness is reduced in size (for the same overall sample height) until
there is no significant difference in the concentration profiles and ultrasound velocity
profiles obtained. For polydisperse samples, a layer thickness of 0.5 mm was found to be
sufficient, but for monodisperse samples, in which the concentration gradients can be
much larger, better accuracy was obtained using a layer thickness of 0.25 mm. This may
also be true for a polydisperse sample when there is no diffusion, and the concentration

gradients again become steeper
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2.4.2 Time interval

The time interval, A7, used in the model is not fixed in an absolute manner. In
order for the model to produce accurate results, the volumetric flux crossing a layer
boundary during any time step must not be a large proportion of the volume of particles
in the layer. Otherwise the conditions in the layer at the beginning of the time step, which
were used to calculate the flux, are not truly representative of the conditions during the
whole time interval. One way of ensuring sufficiently small changes in each time step is
to define the time interval in terms of the largest distance which could be travelled by a
particle in a single time step, as a proportion of the layer thickness. The fastest particle
speed is the Stokes velocity for the largest particles in the sample. The actual particle
speed will be significantly lower than the Stokes velocity due to hydrodynamic hindrance,
but the Stokes velocity can be used to set an upper limit. The time step is therefore

defined by

kA [2.55]
u

‘max

Thus in one time step, no particle can travel further than a proportion @ of the layer
thickness. It was found that a value of a =05 was sufficient to obtain consistent

concentration profiles. A maximum time interval of 10 minutes was specified.

2.43 Size range in each size fraction

The continuous particle size distribution is split into discrete size fractions as
shown in figure 2.2, It was chosen to restrict the distribution to three standard deviations
either side of the mean, as given in equation 2.3. The number of size fractions therefore
defines the range of particle size assigned to a single size fraction. This is especially
significant at the larger particle size limits, where the same interval (on the logarithmic
scale) represents a wider range of particle sizes. Also, since the creaming velocity is
proportional to the square of particle size, the difference in speed between the smallest
and largest particles in the size fraction is greatest for the largest particle sizes. The
concentration profiles are step-like, with each step corresponding to the lower boundary
of the particles of a given size fraction. As the number of size fractions is increased, the
volume fraction of particles assigned to the size fraction is reduced, and the steps in the

total concentration profile decrease in size, until the profile is smooth. Also, the
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difference in position of the lower boundary between consecutive size fractions decreases
as the number of size fractions is increased. The number of size fractions used in the
model was 101, which was found to be sufficient to obtain acceptably smooth

concentration profiles

2.5 Computer requirements

The computer code was written in FORTRAN 77. The development was carried
out on the Sun SPARCenter 2000 system, and jobs were run on the Silicon Graphics
Challenge XL server at the University of Leeds. A flow diagram of the calculation is
shown in figure 2.6, and the program is given in Appendix Al The polydisperse
sunflower oil in water samples take approximately 2 days of CPU time to complete. The

monodisperse samples are much faster

2.6 Ultrasound velocity and attenuation calculations

One of the objectives of developing the computer model was to provide data which
would be representative of real creaming emulsions, in order to compare different
theories for interpreting ultrasound velocity measurements. The data from the model are
completely characterised in terms of the concentration and particle size distribution,
whereas any experimental system includes unknown variables, particularly height-
dependent changes in particle size distribution. To this end, the calculation of ultrasound
velocity, using multiple scattering theory and the Urick equation, was incorporated into
the creaming model The different theories of ultrasound propagation are discussed in
chapter 4, along with a description of the computer program used to calculate the
ultrasound velocity and attenuation. The programs have been organised so that the
ultrasound velocity profiles in the creaming model can be obtained using the separate
ultrasound calculation subroutines. The ultrasound program need only be invoked when
the model results are output, to obtain the ultrasound velocity and attenuation for the

particle size distribution in each layer.
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Figure 2.6 Flow diagram of the calculation for the phenomenological creaming model.
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2.7 Samples analysed

The phenomenological model of creaming was used to analyse an idealised
emulsion, which was intended to be representative of those used in creaming
experiments. Although no specific particle interactions are included in the model, the
properties were taken to be those of 20 % (by volume) sunflower oil in water at 30 °C
The properties of the two phases are shown in table 2.1. The creaming model uses only
the densities of the two phases, and the viscosity of the continuous phase, but the rest of
the data are required for the ultrasound calculations. The particle size distribution was
log-normal, and is shown in figure 2.7 The mode particle diameter is 0.56 pm, and the

width of the distribution is defined by o, =05 (see equation 2.1)

Water Sunflower oil
Ultrasound velocity / m s 1509.127 1437.86
Density / kg m™ 995.65 912.9
Shear viscosity / Pa s 0.0007973 0.054
Thermal conductivity /J m” s K'! 0.6032 0.170
Specific heat capacity (at constant 41782 1980.0
pressure) / J kg K!
Thermal expansivity / K' 0.000301 0.0007266

Table 2.1 Physical properties of sunflower oil and water at 30 °C
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Figure 2.7 Initial particle size distribution for the sunflower oil in water emulsion used in
creaming model

2.8 Results

2.8.1 Total oil concentration profiles

Figure 2.8 shows the predicted total concentration of oil as a function of height in
the polydisperse sunflower oil in water emulsion at various time intervals during
creaming. The corresponding profiles for a monodisperse sample (with particle diameter
0.56 pm) are shown in figure 2.9. The bottom of the sample corresponds to zero height
The concentration profiles of the monodisperse sample can be divided into three
sections: the cream (a high concentration region at the top of the sample), uniform
emulsion, and serum (an oil-deficient region at the bottom of the sample). The serum
layer interface is sharply defined, and moves up the system at a rate which is uniform
until it meets the cream. The underside of the cream is also well defined, and moves
downwards until it meets the serum interface. The emulsion between the serum and
cream interfaces remains uniform at the initial concentration. Thus creaming can be

thought of as an “end effect” in which parts of the emulsion which are far enough from

either end are unchanged in a monodisperse sample
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Figure 2.9 Predicted volume fraction of oil as a function of height and time for a
monodisperse sunflower oil in water emulsion
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In the polydisperse sample (figure 2 8) the concentration varies more gradually
with height in the lower regions. It would be difficult in this case to define a serum
interface, except in the early stages of creaming. The step-like nature of the
concentration profile is due to the contributions of the component size fractions. Since
larger particles cream more quickly, the lower interface for these particles (equivalent to
the serum interface in a monodisperse sample) has reached a higher level at a given time
than for smaller particles. The total concentration therefore increases with height because
more of the particle size fractions are present at higher levels. The difference in the
height of the lower interfaces of particles of different sizes increases with time, so that
the increase in concentration with height becomes more gradual at later times. The
concentration in the bulk of the sample falls with time at a given position, as the lower
interface of more and more size fractions passes that point. This contrasts with the
monodisperse case in which the emulsion remains unchanged between the serum and

cream interfaces.

The cream interface is sharp in both the monodisperse and polydisperse samples
The interface moves downwards at a very similar rate in the two systems, although the
polydisperse sample is marginally faster. This is probably due to the contribution of the
more rapid creaming of larger particles which are present in the polydisperse system. In
both cases, the concentration increases rapidly with height up to a concentration of about
50 %, but above this level, the concentration in the cream increases much more gradually
with height. This is due to the strong hydrodynamic hindrance at high concentration,

which slows the particle creaming rate considerably

The concentration profile within the cream takes a rather different form in the two
cases. In the monodisperse system, the model restricts the concentration so that it cannot
be higher than 63 %, which is the approximate maximum (random) packing fraction for
identical spheres. In a polydisperse system, however, the concentration is allowed (in the
model) to take any value up to 100 %, and is only determined by the hydrodynamic
factor in the creaming velocity. The hydrodynamic hindrance factor tends to zero as the
volume fraction approaches unity, and this factor is applied in the model to both the
monodisperse and polydisperse systems. The concentration profile for the polydisperse

sample (figure 2.8) shows that the concentration only reaches a value of approximately
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85 %, and does not rapidly approach an unrealistic volume fraction of unity. The

creaming rate at concentrations higher than this must be negligible

It is clear that, physically, the maximum packing fraction is determined by the
degree of polydispersity, since smaller particles can occupy the interstices of larger
particles. The hydrodynamic effects (which determine particle mobility and should
incorporate obstruction) are therefore dependent, at high concentrations, both on the
total concentration and the particle size distribution. However, the hydrodynamic
description used in the model assumes that the hydrodynamic interactions can be entirely
accounted for by the total volume fraction, neglecting the particle size distribution. The
particle mobility in this case tends to zero only as the volume fraction approaches 1.0. If
the sample is monodisperse, the particle mobility should decrease to zero around the
maximum packing fraction of 0.63. The creaming velocity in a monodisperse system is
therefore non-zero, in the model, at the maximum packing fraction (which is imposed on
the system in the monodisperse case), and this may affect the concentration profile in the
cream to some degree. Conversely, the maximum concentration attained in a
polydisperse sample may be higher than the real value if the degree of polydispersity is
low. These discrepancies are due to the assumption of the form of the hydrodynamic
interactions, and the lack of a generally applicable description of particle mobility in a

polydisperse system.

The effect of diffusion on the concentration profiles is shown in figure 2.10 for the
polydisperse sample and figure 2.11 for the monodisperse sample. In both cases, the
neglect of diffusion causes the concentration gradients to become sharper, as might be
expected. The influence of diffusion in the polydisperse sample is not as significant as in
the monodisperse system because the creaming profile (in the polydisperse case) is more
predominantly determined by the larger particles, for which diffusion is weaker. It will be
seen in the following sections that diffusion has a greater effect on the concentration
profiles of the individual size fractions, and thereby the particle size distribution in the

polydisperse system

It is perhaps surprising that the effect of diffusion is more noticeable at the cream
interface, rather than at the serum interface. The spreading of the serum interface due to
diffusion is counteracted by the concentration dependence of the creaming velocity. As

the interface spreads, the lower particles are in a less concentrated region and therefore
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Figure 2.10 Effect of diffusion on the total concentration profiles after 250 days ina
polydisperse sunflower oil in water emulsion.
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Figure 2.11 Effect of diffusion on concentration profiles in a monodisperse sunflower oil
in water emulsion.

The dashed and solid lines are the concentration profiles with diffusion included after 200
and 400 days respectively. In the absence of diffusion the profiles are the dotted and
dashed/dotted lines respectively.
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cream (upwards) more quickly. Particles which are higher up the interface have a smaller
creaming velocity due to the stronger hydrodynamic hindrance in this more concentrated
region. The spreading of the boundary region due to diffusion is therefore strongly
restricted by the sharpening of the boundary due to the concentration dependence of the
creaming velocity. At the cream interface, the hydrodynamic hindrance reduces both the
diffusion and creaming rates. However, the diffusion coefficient includes an additional
statistical factor (section 2.2.2) which increases at higher concentrations. Although the
diffusion coefficient decreases to zero at high concentrations, it does so more slowly than
the creaming speed, due to the statistical factor (see figure 2.5). The effects of diffusion
are therefore proportionately greater in the cream region, and so the concentration

gradient at the cream interface is reduced.

The total concentration profiles predicted by the model can be compared with
experimental results. Many of the experimental systems studied do not fit into the
idealised assumptions of the model, since they include particle interactions (electrostatic
interactions, for example) or there is some degree of flocculation. Experiments carried
out by Fillery-Travis et al. (1993) on alkane in water emulsions were thought to be
reasonably ideal (no particle interactions). The emulsifier was the non-ionic surfactant
Brij35 and no additional polymer was included. The alkane was a 9:1 mixture of heptane
and hexadecane, with a density of 643.0 kg m™. This density has been derived from the
stated percentages by weight and volume of the emulsions. The experiments were
conducted at 20 °C, at which temperature the density and viscosity of water are
9982 kgm™” and 0.001 Pas respectively (Kaye and Laby, 1986). The particle size
distribution appears to be rather positively skewed, but a similar log-normal size
distribution was used in the model, with a modal diameter of 1.4 um and a width of

o, =05 The predictions of the model, and the experimental concentration profiles are
shown in figure 2.12

The form of the concentration profiles predicted by the model below the cream
region compares well with the experimental results. However, the creaming rate is more
rapid experimentally than in the model, especially at early times. This may be due to the
form of the hydrodynamic hindrance used in the model, which perhaps overestimates the
reduction in creaming speed due to the other particles. In the cream region, the shape of
the concentration profiles differs markedly between model and experimental results. The

sharp change in concentration gradient in the cream occurs at a much higher
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Figure 2 12 Comparison of experimental (Fillery-Travis et al , 1993) and modelled
creaming profiles for a polydisperse alkane in water emulsion.

The squares, diamonds, circles and triangles are the model predictions after 0.25, 5. 12.5
and 50 days respectively. The experi | results repr d by the dotted, dot/dashed,
dashed and solid lines are after 0.22, 5.14, 12.12 and 57.2 days respectively.

concentration in the experiments (around 70 %), compared with 50 % in the model. This
causes the concentration profile to look very different in the two cases. The peak in
concentration at the bottom of the cream which is seen experimentally in the profiles
after 12 days and 57 days, is not present in the modelled results. However, the
predictions of the model for the sunflower oil in water emulsion (figure 2 8) after a long
period did show such a peak in concentration. This feature takes longer to form in the

model than in the experiment

The differences between experiment and model may be attributable to the
simplified description of the hydrodynamic interactions in the model, especially in the
most concentrated region. In an earlier section, the hydrodynamic effects in concentrated
regions were discussed, noting that polydispersity must have an influence at high
concentrations. These effects are not included in the model, and therefore the model can
not be expected to provide a complete description of the concentration profile in the

cream region. The agreement between the concentration profiles at lower concentrations
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is evidence that the hydrodynamic interactions used in the model (the hindrance factor
determined solely by the local oil concentration) is a good description in this less-
concentrated region. A second contribution to the discrepancy between the experimental
and modelled results is the possible existence of non-hydrodynamic interactions in the
experimental system, which are not included in the model. The magnitude and effect of

any such interactions are not known for this system

2.8.2  Particle size distribution

The quadratic variation of the Stokes creaming velocity with particle size inevitably
has an effect on the variation with height of the particle size distribution in a polydisperse
sample, since larger particles cream considerably faster than smaller particles. The effect
of this difference in creaming rate has already been seen in the total concentration
profiles. Although not included in the model, colloidal interactions may also cause
particle size dependent effects. The creaming velocities of particles of different sizes are
influenced by the hydrodynamic interactions, mainly through the backflow of the
continuous phase fluid. The velocity of each size fraction relative to the container is
determined from equation 2.50, which includes the opposing flow of continuous phase
fluid. Under some circumstances, it is possible that the backflow of the surrounding fluid
is sufficient to carry the smallest particles downwards. Only when the local size
distribution changes, due to the loss of the larger particles, can the smaller particles
reverse their direction and cream upwards. This phenomenon was noted in the particle
trajectories derived by Zimmels (1988). The creaming behaviour of the different particle
size fractions is therefore influenced not only by the Stokes velocity dependence on
particle size, but also by the flow of the surrounding fluid which causes smaller particles

to move downwards

The effect of the different size fractions in a polydisperse sample on its creaming
behaviour can be demonstrated by observing the concentration profiles of the individual
size fractions, and the variation in particle size distribution with position and time. Figure
2.13 shows lhe[gc\):gemration profiles of particles of various sizes after 250 days for the
sunflower oil in water emulsion. The total concentration profile at this time is also shown
as a reference. A clear lower boundary can be seen for each size fraction, corresponding
to the position of particles which were initially at the bottom of the sample. Below the

boundary for each fraction there are no particles of that size. The position of the lower
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Figure 2. 14 Effect of diffusion on the concentration profile of a single size fraction in a
sunflower oil in water emulsion

The profiles are for a radius of 0.154 pm after 250 days. The solid line includes diffusion,
and the dotted line is in the absence of diffusion
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boundary is higher up the sample for the larger particles, due to the dependence of the

creaming speed on particle size.

The effect of diffusion on the concentration profiles is indicated by the rounded,
diffuse nature of these boundaries, especially for the smaller particles. The larger, less
diffusive particles have a sharp lower boundary. The diffusive spreading of the lower
interface is not as significant as might be expected, due to the effect of the concentration
dependence of the creaming velocity which tends to sharpen the boundary. This effect
was discussed in relation to the total concentration profiles for a monodisperse sample.
The peak in concentration just above the lower boundary is also due to the
concentration-dependence of creaming, as particles accumulate in the more slow moving
region of higher total concentration above the boundary. Figure 2 14 illustrates the
influence of diffusion on the concentration profile of one of the smaller particles in the
sample, with a radius of 0.154 pm. In the absence of diffusion the lower boundary is very
sharp, and the peak is narrower and larger. It would appear that diffusion rounds off and
reduces the peak in the concentration profile. This is consistent with the understanding
that diffusion acts to promote uniformity of concentration and so to reduce regions of

inhomogeneity

For size fractions whose lower interface is below the cream, there is also a jump in
concentration at the position of the underside of the cream. The largest particles are
completely contained within the cream region and therefore this feature is missing from
their concentration profiles. Between the lower boundary and the cream interface, the
concentration for each size fraction decreases with increasing height (figure 2 13). This
would appear to have the same cause as the peak in concentration at the lower boundary
Since the total concentration increases with increasing height in this region, the creaming
velocity of individual particles decreases. Therefore, particles tend to accumulate from
below, and increase the concentration. This effect gradually propagates through the
system, from the lower boundary upwards, and causes the increase in concentration

towards the lower boundary seen in the plots

Within the cream, the concentration of most sizes of particle decreases towards the
top of the sample (figure 2.13). The largest particles (those with a radius of 1.25 pm are
shown here) occupy only a very small region at the top of the sample, and their

concentration increases with height. These are the most rapidly creaming particles, and
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dominate the creaming process at early times. For most particle sizes, as more cream
develops, a greater number of the larger size fractions are absent at the lower interface of
the cream, and the smaller particles can occupy a larger proportion of the space. The
concentration profile therefore decreases towards the top of the sample. In addition to
the more rapid upward motion of the large particles, the fluid backflow also contributes
to the particle size balance. The smaller particles are carried downwards in the
continuous phase flow in the early stages of creaming, and so there is a reduced volume
of these particles at the top of the emulsion. The diffusive spreading of the upper
interface for these small particles causes them still to be present at the top of the sample,
but the concentration is reduced as particles lower down move downwards. In the
absence of diffusion, the upper boundary for the smallest particles (that is, the particles
initially at the very top of the sample) does move downwards a little way. The position of
the upper boundary can be seen in figure 2.14. The top layer in this case contains none of

the smallest particles

The effects of polydispersity described in the preceding paragraphs can also be
identified in the variation of the particle size distribution with height. It is the local
particle size distribution (and concentration) which will determine the ultrasound velocity
in the emulsion at any position. It is therefore informative to compare the particle size
distribution at various points in the sample with the initial distribution, which was shown
in figure 2.7. Figure 2.15 shows the particle size distribution at three different heights in
the bulk of the emulsion after 250 days. In each distribution there is a sharp cut-off at the
large particle size limit, due to the absence of particles larger than a specific size. The
lower interfaces of all particles larger than this limit have moved higher up the sample
than the position at which the distribution is taken. Near the bottom of the sample, only
the smallest particles remain, due to their slower creaming speed, and to the effect of
diffusion. The concentration of particles of a given size can be seen to decrease with
increasing height, as was observed in the concentration profiles. It is clear that in this
region the particle size distribution may be very different from that in the initial uniform
sample.

The particle size distribution in the cream varies even more strongly with height, as
shown in figure 2.16. These distributions correspond to 500 days, when the cream is

more extensive. At the top of the sample, the average particle size is considerable larger
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than the initial mean size, due to the differential creaming rates, and the backflow of the
smaller particles. At lower levels in the cream, the particle size distribution is centred at
smaller particle sizes. As was the case in the lower parts of the sample, there is a sharp
cut-off in the particle size distribution at the higher particle size end, except near the top
of the sample. This is due to the lower interface position of the large particles being
higher up than the position being observed. It is the absence of the larger particles which
allows the particle size distribution to contain a larger proportion of the smaller particles
at lower levels in the cream. The effect of diffusion on the particle size distribution in the
cream after 500 days is shown in figure 2.17. In the absence of diffusion, the upper
boundary of the smaller size fractions can move downwards with the fluid backflow. The
backflow also occurs when diffusion is significant, but thermal diffusion acts to maintain
the presence of particles at the very top of the sample. The particle size distribution at
the top of the sample is therefore truncated at small particle sizes when there is no

diffusion (figure 2.17)
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Figure 2.17 Effect of diffusion on the/ particle size distribution in the cream after 500 days
in a sunflower oil in water emulsion
Open symbols represent no diffusion, filled symbols represent diffusion. The heights are
the same as in the previous figure
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2.8.3  Ultrasound velocity and attenuation profiles

Figures 2.18 and 2.19 show ultrasound velocity and attenuation profiles generated
by the model for the polydisperse sunflower oil in water emulsion The ultrasound
parameters have been calculated using multiple scattering theory, and the frequency was
1 MHz. The theories of ultrasound propagation commonly used to interpret ultrasound
measurements are discussed in more detail in chapters 4 and 5, and only the main points

are presented here

The ultrasound velocity in the pure oil phase is lower than in the aqueous phase. A
simple interpretation would therefore expect that an increase in oil concentration at one
position in the emulsion would correspond to a decrease in ultrasound velocity at that
position. This is indeed true in the lower regions of the sample (compare figure 2.18 with
the total concentration profiles, figure 2.8). In the cream, the concentration always
increases towards the top of the sample (apart from a small peak at the bottom of the
cream). The ultrasound velocity does decrease with height in the cream at early times
However, at later times the ultrasound velocity increases with increasing height in the
cream layer (after 1000 days, for example) At intermediate times (500 days) the
ultrasound velocity in the cream is almost constant. It is clear, then, that the total
concentration of oil is not the only factor determining the ultrasound velocity. Similarly,
if the attenuation were dependent only on concentration, it would be maximum at the top
of the sample. It is clear from figure 2.19 that this is not the case, but that the attenuation
peaks below the top of the sample. The attenuation can be very much higher in the cream
than in the initial emulsion, due to the scattering of the ultrasound signal by the particles
(see chapter 4). This has been observed experimentally (unpublished data). Since it is
usually the velocity which is measured in experimental creaming equipment such as the

ultrasound scanner (figure 1.1), the attenuation is not considered further here

The results of chapter 4 show that the particle size and frequency used in the model
(which are typical of experimental systems) are in the range in which ultrasound velocity
increases as the particle size increases (see, for example, figure 4.2). Although the total
concentration of oil increases towards the top of the sample (causing a decrease in sound
speed), the particle size distribution also becomes skewed towards the larger particles

(causing an increase in sound speed). These two factors have an opposing influence on
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Figure 2.18 Ultrasound velocity profiles calculated from multiple scattering theory from
the creaming model for a sunflower oil in water emulsion
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the ultrasound velocity. At early times, the concentration varies strongly with height in
the cream and this dominates the variation of the ultrasound velocity, causing the
velocity to decrease towards the top of the sample (figure 2 18). As the concentration
gradient in the cream becomes shallower at later times, it is the variation in particle size
distribution which dominates the dependence of ultrasound velocity with height in the

cream. The velocity then increases towards the top of the sample in the cream

It is clear that the interpretation of such a velocity profile on the basis only of oil
concentration would produce misleading results. Figure 2.20 shows a comparison of the
ultrasound velocity profile after 500 days calculated using single and multiple scattering
theories, and the Urick equation (see chapter 4 for details). The Urick velocity is only
dependent on the total oil concentration. Since multiple scattering theory is taken as the
benchmark, it is clear that the Urick equation would produce totally unreliable data for
this system. The difference between the single and multiple scattering theories is included
to illustrate that at the oil concentrations present in the cream, multiple scattering effects
can be very significant. However, the difference between the single and multiple
scattering results is much smaller than that between the Urick equation and scattering

theory.
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Figure 2 20 Comparison of ultrasound velocity theories after 1000 days from the
creaming model for a sunflower oil in water emulsion.

The solid line is calculated from multiple scattering theory, the dotted line from single
scattering theory, and the dashed line using the Urick equation
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The ultrasound technique for creaming studies is based on the determination of
local oil concentrations from the measured velocity profiles. The difficulties discussed
here of the effects of particle size distribution need to be avoided if simple interpretations
of ultrasound measurements are to be possible Chapter S discusses the ways in which
simplified interpretations can be used, and under what circumstances they may be
applied. The results of the creaming model have shown up the potential problems of
ultrasound measurements used in this way, but have also indicated some ways to

overcome them.

2.9 Creaming and crystallisation

Combined crystallisation and creaming behaviour in emulsions containing a mixture
of solid and liquid droplets was investigated by including a solid fat dispersed phase in
the model, in addition to the usual liquid oil phase Each size fraction has its own solid
and liquid volume fraction, and upper and lower boundaries for the solid and liquid
particles. Crystallisation is modelled by converting, in each time step, some volume of
liquid phase droplets into solid droplets of a corresponding size. Since the solid phase is
more dense, the volume of a particle decreases when it crystallises. Although the volume
change (and radius change) of the particles is included in the model, the total volume of
the emulsion is assumed to be constant. Thus, the volume fraction when all the dispersed
phase is solid is assumed to be related simply to the volume fraction when it is all liquid

by the expression
o, =0 [2.56]
pZ

where the subscripts 2 and 3 represent the liquid and solid dispersed phases respectively
®, and @, are the dispersed phase volume fraction when the particles are all liquid or
all solid respectively. Equation 2.56 is only approximately true, since the volume of the
emulsion also changes (the volume of continuous phase is conserved). It can be shown
that the relationship should be

o 1
®, -0, |+(!L‘)¢S} [257)
) P

P2
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Equation 2.56 is therefore a good approximation at low concentrations of dispersed
phase, but may not be as good in the cream, especially where the density difference
between solid and liquid phases is quite large, as for hexadecane. However, inclusion of
the volume change of the emulsion is an added complication in the creaming model, since
it represents a variation in thickness of the horizontal layers used to define the volume
fraction profile. Therefore, a change in solid volume fraction due to the solidification of a
given volume fraction of liquid droplets was calculated using the ratio of the densities

only (equation 2.56).

2.9.1 Crystallisation kinetics

Recent studies of creaming and crystallisation have been carried out on »n-
hexadecane in water emulsions (Ma, 1995), for which earlier crystallisation studies had
also been made (McClements et al , 1993, Dickinson et al., 1993b) The analysis of the
crystallisation kinetics is, however, applicable to any emulsion containing solid and liquid
particles, provided the dominant crystallisation mechanism is the same. The only
difference is in the rate constant. The crystallisation kinetics in such emulsions were
investigated using an ultrasound technique (McClements et al , 1993, Dickinson et al ,
1993b), which is discussed in more detail in chapter 5. The principle of the method is that
the proportion of the dispersed phase which is solid can be calculated from the measured
ultrasound velocity in the emulsion. Every particle is assumed to be either wholly solid or
wholly liquid. Initially 50 % by weight of the dispersed phase is solid, and the rest is
liquid. This is achieved by dividing the emulsion into two equal parts, and freezing one
part so that all the oil crystallises. The parts are then remixed to make a partially
crystalline emulsion. The ultrasound velocity in the mixed emulsion is measured as a
function of time to determine the time dependence of the solid fat content and thereby

the crystallisation kinetics (McClements et al | 1993)

One possible mechanism for crystallisation in this mixed emulsion is a
heterogeneous process, involving collisions between solid and liquid dispersed particles
Other possibilities exist, such as homogeneous nucleation (Turnbull and Cormia,
1961), or a mechanism which is dependent on mass-transport of oil or fat due to
solubilisation by the emulsifier (Dickinson et al., 1996). For the purposes of the model,
the heterogeneous mechanism was assumed to be valid, since it had been shown to be

consistent with the previous crystallisation study (McClements et al, 1993). According
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to this mechanism, crystallisation of a liquid droplet occurs due to a collision with an
already crystalline droplet, which nucleates crystal growth in the liquid. Following
nucleation, the droplet rapidly solidifies completely. Not every such collision results in
the solidification of the liquid particle, however, due to an energy barrier (partly caused

by the protective layer of emulsifier around the droplet)

The heterogeneous crystallisation kinetics can be described in terms of a binary
collision process between solid and liquid particles. The rate equation includes both the
particle collision rate, and the proportion of collisions which result in crystallisation. In a
monodisperse sample, the rate of crystallisation can therefore be expressed in terms of
the proportions of solid and liquid droplets. If «, is the proportion of dispersed phase

droplets which are solid, the rate equation can be written as

d(l-a,)
i —Ka,(1-a,) [2.58]

where K is a rate constant (McClements et al, 1993. They use the symbol ¢ fora,)
The rate constant determined in the experiments (McClements et al., 1993) was specific
to the samples used (which were nearly monodisperse), and is particle size and
concentration dependent. In a polydisperse sample, the binary collision rate includes
contributions from collisions between particles of all different sizes. The rate of change
of the number density, 7, of liquid droplets of species (size fraction) i due to collisions

with solid particles of species (size fraction) j can be written as

dn,y A [2.59]
=—Is =, nn
T LI,

where ¢ is a collision efficiency factor (the proportion of collisions which result in

solidification of the liquid droplet) and /3, mn, is the binary collision rate between these

M,
species.

Interparticle collisions in an emulsion are the result of some form of relative motion
between the particles (Colbeck, 1994). The relative motion may be caused by a number
of different processes, but the predominant effects in the present work are due to
Brownian diffusion and creaming Brownian diffusion causes random particle collisions
in both monodisperse and polydisperse emulsions. In contrast, the effect of creaming on

the collision rate is only significant in a polydisperse emulsion. Although some collisions



—g8=

may occur in a monodisperse sample as a result of creaming, the particles all move, on
average, with the same velocity, and the collision rate is consequently low. However, in a
polydisperse emulsion, particles of different sizes move with different creaming velocities
and collisions are much more likely. The binary collision rate in the emulsion is,

therefore, the sum of the two contributing processes, so that the factor p,, can be

written
B =Bijaa + B, e [2.60]

where 3, o and 3, are the factors in the collision rates due to Brownian diffusion

and the relative particle creaming rates respectively. Short range hydrodynamic effects
are neqlected.
The binary collision process has been extensively investigated in the context of

flocculation and coalescence. Expressions for the collision rates have been obtained from
works on flocculation by Melik and Fogler (1984), Lawler (1993) and Abel et al (1994)
The collision rates for Brownian diffusion are based on the early work of Smoluchowski,

later extended to polydisperse systems. In this case, the collision factor is given by

Byam = 8”(1-)‘2&) (’7’2’) [2.61]
In a monodisperse sample, the collision rate is independent of particle size (for a given
particle number density). Smaller particles have a larger diffusion coefficient, being more
mobile, but their collision cross-section is small. Large particles are less mobile but have
a large collision area. Hence, the overall collision rate is independent of particle size. In a
polydisperse sample, the Brownian collision rate may be significantly increased due to
collisions between particles of different sizes (Colbeck, 1994). For example, a small, very
mobile particle is much more likely to collide with a larger particle (with a large collision
cross-section) than with a particle identical to itself The combination of the size-
dependent diffusion coefficients and collision areas leads to an increased collision rate in

a polydisperse system

The gravitationally-induced collision rate is proportional to the volume swept out
by the relative velocity of the two species of particle, and to the effective cross-sectional

area of the collision. Thus

Bijem= n(r, + rl)?lu, - uy| [2.62]
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Lawler (1993) has an extra factor of 0.5 in his expression. Melik and Fogler (1984)
discuss some modifications to the effective collision cross-section due to the
hydrodynamics of the fluid flow. However, for the purposes of the model, the binary
collision rate was taken in its simplest form, given above. It is clear that the degree of
polydispersity in an emulsion is a determining factor in the significance of the
gravitational contribution to the binary collision rate. In addition, the gravitational

collision rate is strongly particle size dependent.

Although the binary collision rates are most easily derived using the number
density of particles (as in the preceding equations), the phenomenological creaming
model (and the crystallisation study) uses the volume fraction of each species.
Remembering that a subscript of “2” represents the liquid dispersed phase, and a

subscript of “3™ the solid dispersed phase. equation 2 59 can be written as

déy,, _
dr

w4 Biyem)

s, [2.63]

By writing the volume fractions in terms of the proportion of the dispersed phase,
and comparing with the crystallisation rate (equation 2.58) given by McClements et al

(1993), it can be seen that the rate constant in the monodisperse case is given by

& (ﬁ:.,/.dﬂ + /}y._rrt-"-)

()
nr,

where ny is the number density of particles. Thus, the rate constant is itself dependent on

K=

B = E(ﬂl.r,di" t ﬂv.y,cm)”n [2.64]

the total concentration of dispersed phase and on particle size. However, the collision
efficiency can be assumed to be independent of these parameters and was derived in the
crystallisation study (McClements et al., 1993). The collision rate was calculated by
McClements et al using the monodisperse form of the diffusion collision frequency,
equation 2.61, neglecting the effect of the density change on solidification. The densities
of water, liquid hexadecane and solid hexadecane at 6 °C are 999.9, 7833 and
909.4 kg m™ respectively (Kaye and Laby, 1986, Allegra and Hawley, 1972). The
particle diameter with a Tween20 emulsifier had a value of d3,=0.36 pm (the volume-

surface average) when the particles are liquid. The contribution of relative creaming
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speeds in these emulsions was small and can be ignored. Thus, the collision efficiency

factor can be calculated from equation 2.61, and is approximately
£=80x10" [2.65]

This corresponds to an energy barrier of around 16k,7, as given by McClements et al
(1993).

Since the collision efficiency can be assumed to be relatively insensitive to particle
size and temperature, the crystallisation rate can be calculated in the model using
equation 2.63, with the value of equation 2.65. The crystallisation rate can therefore be
calculated for a polydisperse hexadecane in water emulsion, at any concentration. The
equations are not precisely valid at high concentrations because tertiary and higher
collisions would then become significant. The binary collision rates are given by
equations 2.61 and 2.62. The creaming speeds include the hydrodynamic hindrance. The
Brownian collision rate is determined by the diffusive motion of individual particles
within the medium. However, the diffusion coefficients used in the model are the
phenomenological mutual diffusion coefficients which describe the flux of particles in a
concentration gradient. These coefficients were used throughout, for simplicity, with the

concentration dependence previously detailed

2.9.2 Modelling of combined creaming and crystallisation

The computer program for modelling creaming and crystallisation is included in
Appendix Al The creaming and crystallisation behaviour of a 20 vol. % hexadecane in
water emulsion with a mixture of solid and liquid particles was determined at 8 °C using
the creaming model. This system was recently studied experimentally by Ma (1995) using
the ultrasound scanner (figure 1.1). The crystallisation rate in the absence of creaming
was initially measured, and it was found to be consistent with the results of McClements
et al. (1993) The physical properties of the constituent phases are shown in table 2.2
(Kaye and Laby, 1986, Allegra and Hawley, 1972). The particle size distribution
(obtained in the experimental samples) peaks at a diameter of 0.42 pm, with a width of
o, =05, when all particles are liquid. This is consistent with the volume-surface
diameter of dx,=0.36 um. The frequency used in the calculations of ultrasound velocity

was 1.6 MHz (as in the creaming experiments).
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Water Hexadecane | Hexadecane
(liquid) (solid)

Ultrasound velocity / m s™' 1439.1 1400.0 2200.0
Density / kg m™ 999 9 781.9 908 2
Shear viscosity / Pa s 0.0014 0.00385
Shear rigidity / Pa 7.0 x 108
Thermal conductivity /J m's'K" 0.572 0.140 0.185
Specific heat capacity at constant 4195 2092 2092
pressure / J kg K
Thermal expansivity / K”' 0.000075 [ 0.000895 0.00066

Table 2.2 Physical properties of hexadecane and water at 8 °C.

Results from the model for the concentration profiles after 2.5 days, of solid and
liquid phases and the total dispersed phase concentration are shown in figure 2.21. Very
little creaming has occurred after this time, but crystallisation is well advanced The
liquid volume fraction is very much reduced, whereas most of the dispersed phase is now
solid. After 5 days, the concentration of liquid oil is only approximately 1 % (1/10 of its
initial value). The crystallisation process is considerably faster than the creaming rate in
the ideal emulsion (in which the particles cream independently). This is clear from the
time scale of ideal creaming behaviour in the model (of the order of 200 days) compared
with the time scale of the crystallisation experiment by McClements et al. (1993), (500
hours). Therefore, crystallisation is almost complete before a significant amount of

creaming occurs, and all the dispersed phase is then solid

The creaming behaviour is therefore dominated by the solid dispersed phase. The
density difference between hexadecane particles and the continuous phase fluid is
considerably smaller for solid particles than for liquid particles. Hence, the solid particles
cream more slowly, and the creaming rate in the mixed emulsion is dramatically reduced
compared to the all-liquid ideal emulsion. Figure 2.22 shows the total concentration of

the dispersed phase after 30 days in the mixed emulsion (whose particles are practically
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Figure 2.21 Profiles of liquid, solid and total dispersed phase concentration after 2.5 days
of creaming in a mixed hexadecane in water emulsion at 8°C.

The dotted, dashed and solid lines correspond to the liquid, solid and total dispersed
phase respectively
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Figure 2 22 Profiles of total dispersed phase concentration after 30 days in mixed
solid/liquid and all-liquid hexadecane in water emulsions at 8°C

The dotted and solid lines correspond to the all-liquid and mixed emulsions respectively
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all solid at this time). The corresponding results for creaming in the all-liquid emulsion is
also shown for comparison. The profile in the mixed emulsion is indistinguishable from
the all-solid case. It is clear that the creaming rate in the mixed emulsion is determined

largely by the solid particles, and is considerably slower than in the all-liquid emulsion

The experimental creaming studies on the mixed solid/liquid hexadecane in water
system (Ma, 1995) were carried out using ultrasound velocity measurements. At each
measurement position in the sample there are two unknown quantities, the total
dispersed phase volume fraction, and the proportion of that volume which is solid. Since
only the ultrasound velocity is measured, the two quantities cannot be determined, and
the results are presented only as ultrasound velocity profiles. The ultrasound velocity
profiles obtained from the creaming model are shown in figure 2.23 for the mixed
emulsion after 2.5 and 30 days. The velocity of sound in solid hexadecane is much higher
than in water. In liquid hexadecane the velocity is slightly less than in water. Therefore,
in the all-liquid emulsion, the ultrasound velocity would be expected to decrease at high
oil concentration (in the cream) and increase in the serum. The opposite is true for the
all-solid dispersed phase emulsion — the velocity increases in the cream and decreases in
the serum. The larger velocity difference between the dispersed and continuous phases
for solid particles causes more pronounced velocity changes on creaming than for liquid

particles

In the mixed solid/liquid emulsion, the ultrasound velocity profiles are dominated
by the distribution of the solid dispersed phase. even when there is a substantial
proportion of liquid droplets. This is clearly the case after 2.5 days, as shown in figure
223 The velocity is reduced in the serum and increased in the cream (as for an all-solid
emulsion). However, the presence of the liquid droplets must reduce the changes in
ultrasound velocity at the extremes of the system, since the changes in velocity due to
creaming of solid and liquid droplets cancel out to some extent. The ultrasound velocity
profile for an all-liquid emulsion after 30 days is shown for comparison. Again, the
profile in the mixed emulsion after 30 days is indistinguishable from the all-solid case In
the central part of the emulsion, the total concentration of dispersed phases changes little
in the early stages of creaming. The variation with time of the ultrasound velocity in this
region corresponds entirely to the crystallisation of liquid particles. The crystallisation

rate in the system can therefore be calculated in such an ideal system using the same
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Figure 2 23 Ultrasound velocity profiles for the creaming and crystallisation model of a
hexadecane in water emulsion at 8°C

The dashed/dotted and solid lines are the profiles in the mixed solid/ liquid emulsion after
2.5 and 30 days respectively. The dotted line is for an all-liquid emulsion after 30 days

principles as in the crystallisation studies (McClements et al., 1993)

The experimental study examined the effects on the creaming behaviour due to the
presence of additional non-adsorbing polymer in the continuous phase. In the absence of
polymer, the creaming rate is so slow that the only observable effect over the time scale
of the experiment is the increase in velocity throughout the emulsion due to
crystallisation. This case corresponds qualitatively to the model results. It was observed
that the crystallisation rate was little different from that measured in the “static”
crystallisation experiments. In the creaming model it can also be seen that the
crystallisation kinetics (section 2.9.1), assuming a binary collision mechanism, are
dominated by the Brownian term (equation 2.61) rather than the sedimentation term
(equation 2.62) in this system. The addition of polymer causes the creaming rate to
increase dramatically in some cases, and to become negligible in others, depending on the
polymer concentration. Where the creaming rate is increased, crystallisation is no longer
complete before significant creaming occurs, as in the idealised emulsion. The ultrasound
velocity profile is then determined both by the modification due to creaming at the serum

and cream, and an increase in velocity corresponding to the crystallisation of the liquid
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droplets. Quantitative analysis of the creaming and crystallisation behaviour is not yet
possible in this case, but a comparison with the experimental creaming behaviour in all-
solid and all-liquid emulsions appears to indicate that neither the crystallisation rate nor
the creaming rate is strongly modified in the mixed system (Ma, 1995). The effect of
added polymer on creaming in the mixed solid/liquid emulsions is similar to its effect on
creaming in the all-liquid emulsions. The differences in the creaming profiles compared to
the ideal case are probably due to flocculation of the dispersed phase particles. The
influence of flocculation on the creaming behaviour of emulsions is considered in the

next section

2.10 Creaming and flocculation

The results generated by the phenomenological model of creaming behaviour were
compared in section 2 8.1 with experimental results on a near-ideal system (Fillery-Travis
et al, 1993) Qualitatively, the modelled concentration profiles compare well with
experimental results except in the cream region. Quantitatively, the hydrodynamic
hindrance used in the model seems to be overestimated, since the model predicts a
slower creaming rate than that observed. Deficiencies in the description of the
hydrodynamic interactions were also thought to explain the different concentration

profiles in the highly concentrated region.

However, the creaming behaviour of many experimental systems is quite dissimilar
to the predictions of the model. A recent study of the effect of the polysaccharide
xanthan on the creaming behaviour of emulsions (Dickinson et al., 1994, Ma, 1995)
produced concentration profiles with markedly different serum and cream profiles from
the “ideal” case. An example of the results is shown in figure 2.24. It is clear that,
although the sample is polydisperse, the concentration profile has a sharp serum interface
which develops rapidly. This interface does not move up the sample with time, but
remains in the same position. The influence of xanthan was also examined in the studies
of creaming and crystallisation (Ma, 1995) in hexadecane in water emulsions, and was
found to cause similar changes to the creaming profiles as occurred in the absence of
crystallisation. Recent creaming experiments with excess caseinate in the aqueous phase
have been carried out by Golding (as yet unpublished). In some cases, creaming was seen

completely to cease, following the development of a serum layer, and the whole sample
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Figure 2.24 Creaming behaviour of a 20 % sunflower oil in water emulsion with
0.03 wt. % xanthan in the aqueous phase at 30 °C (Ma, 1995)

The profiles corresponding to the squares, triangles and diamonds were taken after 0.5
hours, 1.5 hours and 10 days respectively

became solid-like. The work by Fillery-Travis et al. (1993), which was used to obtain an
example of an ideal emulsion, also includes other examples of creaming in the presence

of added polymer, producing a variety of forms of concentration profiles.

The common factor in these studies is thought to be the occurrence of flocculation
of the oil particles. The term flocculation refers to the sticking together (reversibly or
irreversibly) of two or more dispersed phase particles, which then behave as a single unit
Each droplet in the floc retains its individual identity, rather than coalescing with others
to form a single larger particle. As discussed in chapter 1, flocculation occurs due to the
existence of a favourable energy state when particles are close together. This may be
caused by a long-range attractive potential between particles, or by an attractive force

which is significant only when particles become close together, due to random collisions.

One short-range attraction which may cause flocculation is the depletion
interaction, proposed by Asakura and Oosawa (1954, 1958). Depletion flocculation

oceurs in the presence of large polymer molecules or micelles in the continuous phase.
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When two particles approach within a distance comparable to the size of the polymer
particles, polymer is excluded from the interparticle region and an osmotic pressure
gradient drives the particles together. In many of the experiments referred to in the
preceding paragraphs (Fillery-Travis, 1993, Dickinson et al., 1994), depletion is believed
to be the predominant flocculation mechanism. In each case, some non-adsorbing
substance was present in the continuous phase, which promotes flocculation. A second
flocculation mechanism is bridging, in which an adsorbing molecule may be attached to
the surfaces of two dispersed particles, forming a bridge between them. This tends to
oceur when there is insufficient of the adsorbing species to allow full surface coverage of
all dispersed particles. The bridging mechanism is not thought to be significant in most of
the systems quoted in the preceding paragraphs, but it can in some cases have an

influence on creaming behaviour

It is clear from the experimental studies of creaming discussed previously that
flocculation can have a very significant effect on creaming behaviour. In some cases,
floceulation caused a large increase in creaming rate. It may be suggested that this is due
to the faster creaming speed of flocs (due to their size), provided that they remain free to
move relatively unhindered. In other cases, the extent of flocculation is so great as to
produce a particle gel, in which creaming is greatly reduced, and the emulsion becomes
much more stable. Previously the creaming model has assumed that all particles are free
to move independently, and do not stick together. In fact, any particle interactions were
omitted. Since the effect of flocculation on creaming behaviour is so significant, and the
types of additives causing it are commonly present in food systems, an attempt was made

to include these effects in the phenomenological model

In the present phenomenological model, flocculation is irreversible: particles
remain stuck together once they have flocculated. Reversible flocculation is difficult to
implement in the phenomenological description, since no trace is kept of each individual
floc, only of the volume fraction of flocs of a given size (as was the case for single
particles). In order to allow particles to break off from a floc, its composition must be
known in terms of the size of each of the particles in the floc. When creaming occurs,
flocs of the same geometric size may have a different composition, depending on their
growth and creaming rate history. Hence there is no simple, unique means of recording

the particle size distribution in a floc. If floc break-up were then allowed, an assumption
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as to the sizes of the particles breaking off may lead to non-conservation of the single
particle size distribution in the emulsion as a whole Therefore, only irreversible
flocculation was included in the phenomenological model. Floc break-up in a
monodisperse system can, however, be modelled, as demonstrated by Hsu and Tsao

(1992), in the absence of creaming

The driving force for depletion flocculation is the presence of a non-adsorbing
species (such as a polymer) in the continuous phase. Its concentration is one determining
factor in the flocculation rate. As flocs form, the polymer is excluded, to some extent,
from the volume occupied by the floc. This floc volume includes a quantity of continuous
phase fluid since the flocs are sparse. Hence as flocs grow, the concentration of polymer
external to the flocs increases, because of the reduced “free” volume of continuous phase
fluid. This increase in concentration in turn affects the flocculation rate between other
particles or flocs. Polymer is likely to be completely excluded from a small, compact floc
However, as the flocs grow larger, and become more sparse, or even begin to form a

network, some polymer must be trapped within the flocs or network

A quantitative description of the polymer concentration and exclusion from flocs is
not simple. A model which assumed complete exclusion of polymer from flocs would be
unrealistic, since some polymer is likely still to be present when the flocs form a network
which fills the whole space. In the other extreme, if the polymer concentration is
assumed to be uniform throughout the continuous phase, including that incorporated into
flocs, no changes in polymer concentration (with height and time) will be observed. An
explicit description of the polymer was, therefore, omitted from the model. The
flocculation process was assumed rather to occur at the same rate throughout the
sample, with no account taken of variations in polymer concentration. So, the effect of
the polymer in inducing flocculation is modelled, without explicitly including the polymer

itself, except as a parameter in the flocculation rate.

There are three principal components to a phenomenological model of flocculation
and creaming. Firstly, the kinetics of flocculation must be defined in terms of local
characteristics such as the particle concentration. Secondly, the average structure of flocs
must be quantifiable by a small number of parameters. Finally, the average dynamic
properties of the flocs thus formed must be related to the floc characteristics, such as its

effective size. Since the model is a phenomenological one, the description of floc
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structure and the dynamic properties of flocs can only be a representational average over
many different possible configurations. These three components are considered in the

following sections

2.10.1 Flocculation kinetics

The kinetics of flocculation are based on identical principles to the heterogeneous
crystallisation mechanism described in section 2.9. 1. Flocculation occurs due to collisions
between two particles or flocs which then stick together. In the case of depletion
flocculation the components need not collide but only approach within a distance
comparable to the polymer size, which causes exclusion of the polymer from the space
between them. Since the radius of gyration of a typical polymer is considerably smaller
than most of the oil particles in the emulsions being studied, the contribution of the

polymer size to the collision cross-section has been neglected in the model

As in the crystallisation case, there are two factors determining the overall
flocculation rate, namely the frequency of collisions between particles or flocs, and the
probability of the components sticking together once they have collided. The rate of
binary collisions due to thermal diffusion, and to the relative creaming speeds of particles
of different sizes were given in section 2.9.1 (equations 2.61 and 2.62). These rate
equations are generalised in the model by attributing to flocs a diffusion coefficient,
creaming speed and geometric radius. The dynamic properties of flocs are discussed in
section 2.10.3, and the geometric size in section 2.10.2. Collision rates between any
combination of particles or flocs of different sizes can therefore be calculated using the
binary rate equations (2.61 and 2.62). The rate equation 2.59 now represents the loss of
particles (or flocs) of size fraction i due to flocculation with particles (or flocs) of size

fraction j.

The collision efficiency introduced for crystallisation is also applicable to
flocculation. In the case of crystallisation it represented the proportion of solid-liquid
encounters which resulted in the solidification of the liquid droplet. When applied to
flocculation it is equivalent to the proportion of particle encounters which result in the
component species sticking together. In the case of depletion flocculation, the sticking
probability is determined, in part, by the concentration of the non-adsorbing species

(polymer). Since this concentration was assumed, in the model, to be constant
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throughout the emulsion, the collision efficiency was simply retained as a variable
parameter. It is also assumed to be independent of particle size and concentration (as for
crystallisation). Where more information is available about the flocculating potential, a
more complex form for the sticking probability could be used, incorporating, for

example, the effects of particle size.

2.10.2 Floc structure

Flocs are not compact structures (unlike the droplets formed by coalescence), but
become less space-filling the larger they grow. The detailed structure of such a floc may
be very complex, but, on average, it may be parametrised by using the concept of fractal
geometry. A more detailed description of the fractal nature of flocculation and its effect
on creaming and diffusion rates can be found in the next chapter in the context of the
lattice model. At this stage, it is sufficient to state that the floc structure is characterised
by a fractal dimensionality, which describes the degree of sparsity as the floc increases in
size. Thus, the volume of oil in a floc with an effective geometric radius 7/, is given by

the expression
Va=rsrs [2.66]

where the parameter d; is the fractal dimension (or dimensionality). The fractal dimension
is less than or equal to three. A value of three (equal to the Euclidean dimension) is
equivalent to a random or homogeneous distribution of particles, and in this case the
density of particles in the floc is uniform. A fractal dimension substantially less than three
represents the increasingly sparse nature of the floc structure as the number of particles

in the floc increases

If the sample is monodisperse, and equation 2.66 is applied in the limit of a single

particle in the floc, the proportionality constant can be written
4
rp=3m [2.67]

where 7 is the radius of an individual particle. The fractal dimension has been determined
by experiment or by simulation for a number of different aggregates (Meakin, 1988,
Jullien, 1990). A value of 2.0 was found to be appropriate for many aggregates or flocs,

and this is the value used in the model
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2.10.3 Floc mobility

The creaming speed and diffusion coefficient of flocs are crucial in determining the
overall creaming characteristics of a flocculating emulsion. For the purposes of the
phenomenological model, these dynamic properties must be related to the geometric size
of the floc. Both the creaming speed and the diffusion coefficient are determined by the
mobility of the floc, or alternatively, the viscous drag force caused by the continuous
phase fluid. For single, isolated, spherical particles, this mobility was given by equation
2.30. As a first approximation, the mobility of an isolated floc may similarly be related to
its geometric radius. In practice, isolated floc mobility may better be determined by a
different, “hydrodynamic™ radius, rather than by its geometric dimensions. However, this
modification was neglected in the model, and any hydrodynamic effects on mobility were
combined with the concentration-dependent hydrodynamic interactions described in the

following paragraphs. The hydrodynamie mdius may be smaller than .

In the preceding section, the volume of oil in a floc of a given geometric radius was
related to the fractal dimension, which characterises the floc structure. Hence, the
average net buoyancy force on the floc (which is due only to the oil in the floc) can be
obtained directly. The modified “Stokes” creaming velocity and “Stokes-Einstein”

diffusion coefficient for a floc of geometric radius 7, were, therefore, defined as follows

(471)

r, Ap
u, , ~7,Lﬂ [2.68]
. 6rn
Dpo= L [2.69]
6,

The mobility of flocs and single particles in the flocculated emulsion is affected by
the hydrodynamic interactions, which are modified by the existence of flocs. In sections
223 and 224, the effect on particle mobility of hydrodynamic interactions in a non-
flocculated emulsion were expressed in terms of the local particle concentration. Since all
the particles in a floc move together, their combined effect on the flow field in the
surrounding fluid is different from their individual contributions if they existed separately
as single particles. Similarly, the floc cannot be considered as a solid sphere of radius
equal to the geometric radius of the floc, since some of the continuous phase fluid

incorporated in the floc remains free to move with the surrounding fluid
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The effect of flocs on the hydrodynamic interactions is, therefore, dependent on the
structure of the floc, particularly on the freedom of fluid to flow through or within the
floc. Modifications to the hydrodynamic interactions due to these effects have been
considered by Chhabra and Prasad (1991) They derived an expression for the viscous
drag, including hydrodynamic effects, on a sphere with a solid core and a permeable
shell. The cell model introduced by Happel was used to determine the hydrodynamic
effects, in spite of the demonstration by Batchelor (1972) of its doubtful validity. The
result is applicable for a monodisperse system of flocs, in which all particles are
flocculated, and all flocs are the same size. The extension of the expression to a diverse

suspension of flocs and single particles may be difficult. Bedenko et al. (1983) also

a5 |

considered the ation of flo d suspensions, in which most of the dispersed

phase was flocculated. The flocs were large and nearly monodisperse. The hydrodynamic
component in the sedimentation speed was, in this case, calculated by considering the

flocs as “solid” spheres, in which no fluid flows in or out

In the absence of a satisfactory phenomenological description of the hydrodynamic
effects in a flocculated emulsion, two limiting conditions were investigated in the
creaming model. In the first limit, the hydrodynamic hindrance factor (section 2.2.3) is
calculated using only the concentration of oil, as in the unflocculated emulsion. This
corresponds to the assumption that the flow field of the continuous phase fluid is
unchanged by the presence of flocs, and that the effect of trapped fluid inside flocs may
be neglected. In the other extreme, if the fluid incorporated into the floc is considered to
be completely bound to the floc, the hydrodynamic hindrance factor is determined by the
total concentration of flocs and particles (including the continuous phase fluid inside the
flocs). This was the formulation used in an early study by Michaels and Bolger (1962) for
dilute, flocculated suspensions, and also by Bedenko et al. (1983). In applying this
hydrodynamic condition to the flocculating emulsion, the effective total concentration
increases as the flocculation becomes more extensive, until no further movement is
possible. Both cases are simplifications of the true situation, which is dependent on the

details of floc structure and the flow field around flocs

2.10.4 Samples analysed

The computer program for the modelling of creaming and flocculation is given in

Appendix A2. The calculations on creaming and flocculation were carried out on smaller
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scale systems than those presented in the preceding sections. The binary collisions used
in the floceulation kinetics are computationally intensive and therefore the system size
was reduced to improve computation speed. The sample properties correspond to a
20 % (by volume) sunflower oil in water emulsion at 30 °C, whose properties were given
in table 2.1. The sample height was 40 mm, and the particle size distribution was

characterised by a modal diameter of 0.56 pm and width of o, =042 (giving a

maximum diameter of 2 pm). Only 11 size fractions were used in the initial distribution.
The flocculation characteristics are described by the parameters of the proportionality

constant
7, =42x10"m [2.70]

and the flocculation probability, which is variable. Flocs were allowed to grow to a
maximum diameter of 20 um, and 20 size fractions were used in the floc size
distribution. The value of the time interval is defined so as to ensure that the model does
not attempt to flocculate more particle or floc volume than is present in any layer, thus
conserving oil volume. At high flocculation efficiencies, a very small time interval must

be used and so the calculations become rather slow

2.10.5 Creaming and flocculation results

Creaming profiles predicted by the model for the sunflower oil in water emulsion
after 4 days are shown in figure 2.25. The hydrodynamic interactions in these results
were calculated using the total concentration of flocs and particles. The results of two
different flocculation probabilities are shown, along with the creaming profile in the
absence of flocculation. The emulsion with the larger flocculation probability hardly
develops a serum or cream before the whole emulsion is constrained in a particle
network structure which prevents further creaming. This condition is represented by a
large value of the total volume fraction, due to the presence of many space-filling flocs
Although the oil concentration is still low, particles are extensively connected and
movement of flocs is restricted. A reduction in the flocculation probability allows free
creaming to proceed, at least over the time period shown. However, the creaming profile
does not indicate an increase in creaming speed compared to the emulsion with no

flocculation. It would appear that when the hydrodynamic interactions are determined by
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Figure 225 Concentration profiles of flocculation and creaming after 4 days using
hydrodynamic interactions based on total floc concentration

The solid and dashed lines represent flocculation efficiencies of 107 and 10 respectively.
The open triangles are the results in the absence of flocculation
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Figure 2.26 Concentration profiles of flocculation and creaming after 5 days using
hydrodynamic interactions based on oil concentration only

The solid and dashed lines represent flocculation efficiencies of 107 and 10 respectively.
The open triangles are the results in the absence of flocculation
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the total volume fraction of flocs, the additional hindrance caused by the growth of many

flocs outweighs their increase in creaming speed due to their larger size

The alternative limiting condition for the hydrodynamic interactions is for the
hindrance to be a function only of the oil concentration, rather than the total
concentration of flocs. Creaming profiles under these conditions are shown in figure 2.26
for two different flocculation probabilities, after 5 days. The results in the absence of
flocculation are again included for comparison. At the lower flocculation efficiency,
creaming appears to be slightly slower than for single particles, whereas a marginal
increase in creaming rate is observed at a higher flocculation probability. Although the
flocs are still fairly free to move with the hydrodynamic factor applied in this case, the
total volume fraction nominally included in flocs at this stage is much greater than unity
A more appropriate description of the system is, therefore, as a particle network, rather
than as many individual flocs. The present hydrodynamic description allows greater
freedom of movement of flocs, compared with the use of the total concentration in the
hindrance factor. However, no dramatic increase in creaming rate has been observed,

even in this case (figure 2.26)

A comparison of the creaming profiles obtained using the two extreme
hydrodynamic descriptions is illustrated in figure 2.27. The flocculation probability (107)
was the same in both cases. The result obtained in the absence of flocculation is also
shown. When the hydrodynamic interactions are determined by the total concentration of
flocs and particles, creaming rapidly ceases, because of the growth of flocs to fill the
whole space. This condition is an approximate representation of the interlinking of flocs
into a particle gel, in which little particle movement will occur. The use only of the oil
concentration in the hindrance factor has no equivalent limiting state, and flocs remain

free to move, even when a networked structure is likely to have formed

An increase in creaming rate was not observed when the hydrodynamic interactions
were determined by the total floc concentration. This may be expected, since this
condition is likely to overestimate the hydrodynamic reduction in creaming rate caused
by the growth of flocs. However, the alternative hydrodynamic description also failed to
produce a significantly increased creaming rate In this case, the use of the oil
concentration in the hydrodynamic hindrance factor leads to an underestimate of the

effect of flocs on the hydrodynamic interactions. Hence, an increase in creaming rate
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Figure 227 Concentration profiles of flocculation and creaming after 8 days comparing
hydrodynamic interactions

The solid and dashed lines represent hydrodynamic interactions calculated using the oil
concentration, and the total concentration respectively. The open triangles are the results
in the absence of flocculation

might be expected in this case, due to the larger effective size of flocs compared with

individual particles

There are a number of possible reasons why a dramatic increase in creaming rate
has not been observed in the model. Firstly, the “Stokes™ creaming speed of a floc does
not increase as steeply with radius as it does for a single particle (equation 2.68). This is
because the proportion of oil in the floc decreases as the floc grows larger, so reducing
the additional buoyancy force caused by the increased floc volume. Hence, the creaming
speed of a moderately sized floc may not be as large as expected intuitively. For
example, a floc of diameter 5 pum has a (“Stokes”) creaming speed only three times larger
than the speed of a single particle of diameter 0.56 um. The Stokes creaming speed of
the largest flocs allowed in the model (r/~=10 pm) is identical to the speed of the largest
particles in the unflocculated emulsion. In the early stages of creaming, therefore, the
difference in creaming rate may not be immediately apparent in a polydisperse emulsion.
In such emulsions, the larger particles affect the creaming rate, especially in the early

stages. The time taken for the sample to flocculate delays the onset of the increase in
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creaming speed, since the model assumes that the emulsion is completely unflocculated
at the start of creaming. The creaming behaviour of a sample which has already

flocculated may show a more apparent increase in creaming rate

The results illustrated in the previous figures indicate that the description of
flocculation included in the phenomenological creaming model cannot reproduce the
creaming behaviour observed in practice. The significant features observed under some
conditions in flocculating emulsions are a rapid development of a serum layer, and a
cessation of creaming due to the formation of a particle network structure. Although the
creaming model was able to reproduce the constraint of particles by extensive
flocculation, in neither limiting case of the hydrodynamic interactions was there seen a

significant increase in the creaming rate in the early stages

The description of the flocculation and creaming behaviour used in the model is
inadequate for a partially flocculating emulsion. The early stages of flocculation in a
dilute emulsion may be reasonably well represented by the model, since flocs can form
but still remain free to move independently. The formation of a particle gel either by
extensive flocculation in a relatively dilute system, or by flocculation in a very
concentrated system may also be characterised. The model was able to represent this
condition through a limiting form of the hydrodynamic interactions. An alternative
description has been investigated by Buscall and White (1987) and Buscall (1990). They
modelled the evolution of the network of a strongly flocculated suspension in terms of
compressive stress, and of the continuous phase fluid draining from the network. A
similar, strongly-flocculated model has also been presented by Auzerais et al (1988)
However, the intermediate region between the “dilute” and “concentrated” (or
networked) limits is difficult to model satisfactorily. Flocs begin to fill the space, and
cease to behave as individual entities. Their dynamic properties lie somewhere between
those of isolated particles and those of a particle network. An appropriate
phenomenological description of the characteristic structure and behaviour of flocs in

this type of system has yet to be achieved

The phenomenological model has therefore been unable to reproduce even the
qualitative characteristics observed experimentally in some flocculating emulsions. This is
largely due to the lack of adequate phenomenological descriptions of creaming and

flocculation behaviour in partially flocculated emulsions. It seems likely that any
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successful model of creaming in flocculated systems will have to include a more detailed

structural description of the emulsion at the level of individual particles

2.11 Conclusions of model

The basic phenomenological creaming model includes no direct particle
interactions and therefore corresponds to an idealised emulsion. Within the limitations of

these assumptions, a number of significant conclusions could be drawn from the results

¢ The differential creaming rates of particles of different sizes causes strong variation in

the particle size distribution in the sample

The backflow of the continuous phase fluid can carry some of the smaller particles

with it so that they move downwards in the first stages of creaming

® The concentration profile in the cream is determined by the hydrodynamic interactions
at high concentrations. A description of the hydrodynamic effects in terms of the total
concentration is insufficient to model the size-distribution dependent packing of

particles in the cream

e Under some conditions the ultrasound velocity in the emulsion is dependent on
particle size distribution. The variation in particle size distribution, especially in the

cream, can mask the concentration dependence of the velocity.

Interpretation of ultrasound velocity measurements in these circumstances in terms

only of the total concentration of oil may produce misleading results

e Thermal diffusion does not have a strong effect on profiles of total oil concentration
for the particle sizes modelled, but may influence the particle size distribution, and

thereby the ultrasound velocity

e Crystallisation in an ideal hexadecane emulsion containing solid and liquid droplets
has little effect on creaming. Crystallisation is relatively rapid, and therefore the

creaming behaviour is characterised by the creaming of solid particles

o The concentration profiles in an ideal, modelled emulsion are very different from some

experimental systems in which flocculation is occurring
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* Modelling of combined flocculation and creaming behaviour was characterised by the

space-filling nature of extensive flocculation, which prevents further creaming

¢ No appropriate description of the hydrodynamics in flocculated systems was found to

accurately represent the creaming behaviour

The failure of the phenomenological model to predict the creaming behaviour of
flocculated emulsions has led to a different, smaller scale modelling approach to
combined flocculation and creaming. The next chapter describes a statistical model which
is designed to investigate the effect of flocculation characteristics on creaming profiles,
by simulating the system at the level of the individual particles rather than through a

phenomenological description.
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Chapter 3 : Lattice Modelling of Creaming and Flocculation

The creaming model presented in the previous chapter illustrated the qualitative
form of the concentration profiles which would be expected in an ideal emulsion
Initially, no direct particle interactions were included It was noted that many
experimental studies have observed markedly different profiles to those predicted by the
model. These differences are thought to be due to direct particle interactions, specifically
flocculation, which were omitted from the phenomenological model. While an attempt
was made to include the effects of flocculation in the model in a phenomenological
manner, the numerical results were not able to reproduce the concentration profiles
which have been observed in practice. The analysis indicated the difficulty of
incorporating into a phenomenological model a process which occurs at the level of

individual particles

For this reason, a model was developed to assess the effect of flocculation on
creaming behaviour by simulating these processes at the particulate scale. Inevitably,
such a model can only represent a very small sample, because of the large number of
particles contained in an emulsion. It can no longer represent the emulsion at the scale of
creaming experiments in the ultrasound scanner, but is intended to indicate the form of
concentration profiles expected in the presence of flocculation. The aim of the model is
to determine whether the creaming behaviour observed in experimental systems is
explicable solely in terms of particles sticking together to form flocs (and thereby

creaming more rapidly) or whether other processes are at work.

3.1 The fractal nature of flocculation

Fractal geometry has been shown to provide a useful, simple description of flocs
generated by a variety of means (Meakin, 1988, Jullien, 1990). The fractal dimension (or
dimensionality) can be applied to obtain the scaling relationships of properties such as the
creaming speed, or floc size, in terms of the number of particles in the floc. The fractal
dimension of an aggregate or floc also holds information on the degree of compactness

of any particle network which might be generated through flocculation. Before these
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techniques are described in relation to the lattice model, it is first necessary to provide a

brief introduction to the concept of fractal geometry

The term “fractal” was first introduced by Mandelbrot (1975) to describe ramified
structures which do not lend themselves to definition by Euclidean geometry. The need
for such a concept was indicated by the existence in nature of convoluted physical forms
such as coastlines, clouds, and aggregates. The Euclidean geometry of squares, triangles,
etc. comes nowhere near a proper description of such structures. Fractal structures are
those that can be characterised by a non-integer dimensionality (Mandelbrot, 1982,
Vicsek, 1989). This fractional (fractal) dimension can be defined in terms of the number
of small measuring units (of dimension equal to the Euclidean dimension of the
embedding space) which are required to cover the structure completely. This is a
measure of how space-filling the structure is. In a fractal object, the required number of

measuring units, 77;, scales with the size of the object, L, in the form
n, oc LY 3.1]

It is clear from this relationship that, if the fractal dimension d; is equal to the Euclidean
dimension of the embedding space, the object fills the space uniformly. In three
dimensions this may correspond to a homogeneous dispersion. A non-integer dimension
represents the sparse, convoluted nature of fractal objects. For example, a coastline is
embedded in (approximately) two-dimensional space, but may have a fractal dimension
between one and two. This represents its greater space-filling capability than a straight
line, but its inability to fully cover a two-dimensional surface. An aggregate grown in
three dimensions typically has a fractal dimension less than 3, indicating that it becomes
more sparse the larger it grows. In many real cases, the fractal scaling behaviour is not

universal, but applies over a limited range of length scales

Many fractals have a property called self-similarity, which arises from the scale-
invariant nature of equation 3.1 Self-similarity means that the structure of the fractal
object is invariant under an isotropic change of length scale. This quality applies precisely
in mathematically generated fractal structures, for example in the illustrations presented
by Mandelbrot (1982). In real, physical systems, however, self-similarity is only true
statistically, or on average. In other words, taking aggregation as an example, an
expanded view of one section of an aggregate will not exactly match the original

aggregate in structure. It does, however, correspond to the structure of an aggregate
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which could statistically have been produced by the same aggregation process. An
alternative type of fractal is one in which different fractal dimensions are required to
define the scaling behaviour in different co-ordinate directions. Such fractals are called

self-affine

In relation to flocculation, the results of fractal geometry have been shown to be
applicable to many aggregation phenomena in two and three dimensions. The suitability
of a fractal description of aggregates (or flocs) is evidenced both by the structure of
experimentally produced samples, and by computer simulations of their growth which
have demonstrated fractal scaling behaviour. Meakin (1988) presents an example of an
experimentally produced colloidal gold aggregate which exhibits self-similarity and for
which a fractal dimension can be calculated A substantial amount of work over the last
15 years has been devoted to computer simulation of aggregation growth phenomena. In
all cases, a fractal description of the aggregates was found to apply. Useful reviews of
the computational techniques and results for the fractal dimensions under various
conditions can be found in the works of Jullien (1990) and Meakin (1988) Many
different techniques have been used, relating to deposition of particles onto a surface, the
growth of an aggregate by the addition of single particles in turn, the aggregation of
particles into clusters and clusters into larger clusters, etc. The fractal dimension is
affected by the physical conditions represented by the computer simulation, and in some
cases by the spatial constraints of the model (for example, the shape of the lattice in
lattice models). However, the results of the computational studies indicate that fractal
geometry is a valid description of aggregating (or flocculating) systems, and is therefore

applicable to the present work

The fractal nature of flocculation is relevant to the lattice model of creaming and
flocculation in two respects. Firstly, the fractal dimension of the flocs can be used to
define the scaling behaviour of the creaming speed and diffusion coefficient with floc
mass. Fractal geometry is of great benefit in similar generalised descriptions of the
dependence of physical parameters of an aggregate with its size or mass. It does not
define the detailed structure of the individual floc, but acts as a description of the
statistical average of the properties of such aggregates. In the lattice model, a fractal
dimension of the flocs is assumed, based on previous results, in order to determine the

creaming and diffusion rates of flocs of varying sizes. Thus, the properties of the flocs
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are defined in a statistically averaged manner, rather than considering the structure of an
individual floc to assess the effect on its mobility The second use of the fractal
dimension in the model is to quantify the degree of compactness of any space-filling
particle network which may be formed. The fractal dimension was calculated over a

region of the sample, to compare the structures formed under different conditions

The flocs considered in this study are assumed to be self-similar, so that a single
fractal dimension is valid. It could be argued that in a creaming (or sedimenting) field,
preferential growth may occur in the vertical direction, resulting in a self-affine fractal
However, self-similarity and a single fractal dimension - assumed for the lattice model
The fractal relationship between the number of particles, N(R), within a sphere of radius

R is given by
4 R\
N(R) o R N(R)=| = 32]
=

For a single floc, the radius R is equivalent to the radius of the floc, 7, and N then
represents the number of particles in the floc. This applies to a floc which is composed of
many identical spheres. The second equality has been provided for consistency down to
the scale of a single particle (of radius 7). This need not always be true, but is convenient
for the lattice model. Equation 3.2 can be used as a simpler definition of the fractal
dimension in its application to flocculation. This relationship (equation 3.2) provides the
basis for the scaling behaviour of creaming and diffusion coefficients, which are
described in later sections. It is also the expression used to obtain the fractal dimension

of the particle networks generated by the flocculation and creaming processes

3.2 Overview of model

A very simple approach to the problem of creaming and flocculation has been
adopted for the small-scale model developed in this study. In order to enable a
reasonable size of system to be modelled, and for computational simplicity, a lattice
model was used, rather than a more complex continuum Brownian dynamics simulation
It was based on two previously published models of sedimentation (van der Knaap et al
1994, Huang and Somasundaran, 1988), both of which were in two dimensions, and only

one of which included flocculation (van der Knaap et al., 1994). The essence of a lattice
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model is that the positions of the particles are constrained to coincide with the nodes of
an imposed lattice structure. Particle movement is achieved by pseudo-random steps
between lattice sites, weighted according to the required physical rate of motion (for

example, the creaming speed or diffusion coefficient)

The model developed for the study of creaming and flocculation is three-
dimensional and is based on a cubic lattice. Figure 3.1 shows a schematic diagram of the
lattice model. The excluded volume of rigid particles is accounted for by choosing a
lattice spacing equal to the particle diameter The model is therefore restricted to
monodisperse systems. Each lattice site can only be occupied by a single particle at any
time. Initially, particles are assigned at random to positions on the lattice, up to the
required proportion of occupation. Particle movement is executed by selecting a particle
at random and moving it to a new site according to its predefined creaming and diffusion
rate. During each time interval, every particle is given the opportunity to move. No
hydrodynamic interactions are included other than the obstruction caused when a particle
attempts to move to an already occupied lattice site. Such movement is forbidden by the

single-occupancy criterion

i

D /

R R
[ i H' 1

Figure 3.1 Schematic diagram of lattice model of creaming and flocculation.

Creaming is always upwards and the speed is denoted by «. Diffusion occurs in any
direction, and the diffusion coefficient is denoted by /). The lengths of the arrows
represent the relative magnitudes of each motion for single particles and flocs
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The effects of floceulation are included in the model by allowing neighbouring
particles to stick together. The presence of polymer (which is the driving force for
depletion flocculation) is not included explicitly, but its effects are accounted for through
the formation of flocs, with an adjustable “bonding™ probability, Ppg. Once particles
have stuck together to form a floc, the floc moves as a single unit and is assigned its own
motion characteristics according to its size. It was expected intuitively that the greater
creaming velocity attributed to individual flocs would increase the overall creaming rate
in the system when flocculation was included. The break up of flocs is also included,
representing reversible flocculation in which the thermal energy is sufficient to separate
previously “bonded™ particles. The degree of reversibility is determined by a bond
breakage probability, Py The modelling procedure is very similar to that adopted by
Haw et al. (1995), in the study of gel formation, although creaming was not included in

their systems

3.3 Physical processes included in the model

For each type of particle motion, there are two parameters which define the
movement. These are the probability that the particle makes a movement during a single
time interval, and the displacement (in lattice units) of the particle each time it does
move. Each time the particle is selected, a random number is generated and is compared
with the movement probability. If the number is less than the probability, the particle
attempts to move a distance equal to its step length. Otherwise it does not move at all
This procedure is applied to each of the movement properties (creaming and diffusion).
For a process such as creaming, this probabilistic approach is equivalent, for a single
particle over a sufficient number of time intervals, to a uniform rate of motion. Diffusion
is essentially a random motion and this approach is equivalent to the random walk
description of diffusion (see section 2.2.2). In contrast, the phenomenological model
adopted the macroscopic description of diffusion in terms of its effect on concentration

gradients

3.3.1 Gravity (creaming)

The creaming process was described in section 2.2.1. It was shown that a particle
reaches a terminal, uniform velocity equal to the Stokes velocity (equation 2.7) in an

infinite medium in the absence of other particles. Hydrodynamic interactions reduced the
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average creaming speed by an amount dependent on the particle concentration

Hydrodynamic interactions are not included in the lattice model, except for the
obstruction of particle movement due to other particles occupying the destination lattice
site. In a monodisperse sample in which no flocculation occurs, the creaming speed is the
same for all particles. However, the presence of flocs causes the creaming speed to vary,
according to the size of the floc. It was shown in section 3.1 that the number of particles
in a fractal floc is related to its effective radius by equation 3.2 The effective density of
the floc can be calculated from this result, and thereby the net gravitational force on the
floc. If the “Stokes™ drag on the floc is proportional to the floc radius (just as it is
proportional to the radius of a rigid sphere), the force balance equation can be used to

show that the “Stokes” creaming speed of the floc is given by

;2 [1-2) [
s )l

9

Uy

[3.3]

where d, is the fractal dimension and u, is the Stokes velocity of a single particle of
radius 7. This relationship is valid for a fractal floc made up of N identical particles
Equation 3.3 is equivalent to the creaming velocity used for flocs in the
phenomenological creaming model (equation 2.68). The larger the floc, the faster its
creaming rate, in the absence of additional obstruction. A fractal dimension of 2 was
used in the calculation of creaming speeds for all flocs. This value is approximately that
obtained by computer simulations of aggregation under a variety of conditions. Many of
these values can be found in the review of Jullien (1990). Although the fractal dimension
is slightly different for different modes of aggregation, the effect of this variation on the

creaming speed is negligible compared to the dominant influence of floc size

Although the creaming process is not in essence a random one, it can be described
in terms of randomly generated motion in order to be compatible with the lattice model
The motion is described by a probability of movement during each time interval, and a
step length (in lattice units), which is the distance moved by the particle or floc when it
does make a movement. If the creaming speed is written in lattice units per time interval,
the relationship is given by

/ At

Peminteran = Uow o

[3.4]
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The lattice unit is equal to the particle diameter. The step length is chosen for each floc
size in order to keep the probability within predefined limits (it certainly cannot be
greater than unity). A maximum step length of six lattice units was specified When a
particle or floc is to be moved, a random number is generated If the number is less than
the creaming probability of the particle, pem, a displacement is attempted. The particle
tries to move a vertical distance equal to its step length /., (in lattice units) If this
displacement is obstructed by other particles, it moves as far as it can vertically, up to its

allowed step length.

3.3.2  Thermal diffusion

Thermal diffusion was discussed in section 2.2.2. The diffusion coefficient for a
single isolated particle in an infinite medium is given by the Stokes-Einstein equation
(equation 2.23). For flocs, the Stokes drag force is related to the radius of the floc,
which was expressed in terms of the number of particles in the floc by equation 3.2. Thus
the modified Stokes-Einstein diffusion coefficient for flocs can be written as

kel U N [3:5]

D=
N anr

where d is the fractal dimension and /), is the diffusion coefficient of a single particle.
The equation is again valid for a floc made up of N identical particles. The diffusion
coefTicient is reduced as more particles are added to the floc. The fractal dimension was
defined to be 2 for these calculations, for the reasons discussed in the previous section.

Rotational diffusion was neglected in this model

The description of diffusion in the lattice model is that of a random walk. This is in
contrast to the phenomenological model of creaming in which the only effect of diffusion
was to smooth out concentration gradients. The two parameters defining the diffusive
motion are again a probability of movement in each time step, and a step length (in lattice
units). The step length is the displacement of the particle or floc in any direction when it
makes a movement. The random walk result for the mean square displacement of an
object was derived by Einstein, and was presented in chapter 2 (equation 2.9). In terms

of the diffusion coefficient, it can be written as

(R™)= 6D [3.6]
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The lattice model requires the motion to be expressed in relation to the movement
probability and step length. Another random walk result is useful here. If an object
executes a random walk, with each step being the same length Ay, its mean square

displacement after m steps is given by

(R*) =1 ym [3.7]
In the lattice model, the object (particle or floc) has a constant step length, and the
number of steps executed in any time period is related to the movement probability
Therefore, the diffusion parameters can be expressed as

{
Law =lagy (27), M= Py N [38]

The units of length have been converted to the lattice spacing, which is equal to the
particle diameter. A comparison of equations 3.7 and 3.6 with these results shows that

the movement probability should be related to the diffusion coefficient by

D, At
Painx =6 — . L' [3.9]

2 2
(2") (’dill.‘\ )
The factor which includes the diffusion coefficient is equivalent to the diffusion

coefficient expressed in units of the lattice spacing and the time interval.

In the case of diffusion, the step length was restrained always to be equal to a
single lattice unit. This avoided difficulties relating to non-uniformity of concentration
profiles caused by particles making large steps near the edges of the system. A random
number is generated to determine whether the particle takes a step in the current time
interval. If the number is less than the diffusion probability, the particle or floc will move.
Its displacement is equally likely to be in any of the six co-ordinate directions, and is of a

size equal to one lattice unit (provided no obstruction is encountered)

It is important at this stage to highlight the differences in particle movement
between the present lattice model and previous models on which the work is based (van
der Knaap et al., 1994, Huang and Somasundaran, 1988). In each of the previous
models, the creaming and diffusion rates are characterised by a parameter representing
the ratio of creaming and diffusion probabilities. In the model of Huang and

Somasundaran, the probability of particle movement in each direction is determined
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according to the net effect of sedimentation and diffusion. Particles move by a single
lattice unit in the selected direction Flocculation was not included, and therefore the

movement probability and step length are the same for all particles

Van der Knaap et al (1994) simulated the effects of diffusion by selecting each
particle in turn and calculating its displacement according to the predetermined
probability, as in the present model. However, the creaming motion was executed for all
particles at the same time. On each time step, a single random number determines
whether a creaming step will be made in this interval (according to the creaming
probability), and all particles are moved by the appropriate distance This procedure
avoids the unphysical obstruction of particles which would otherwise cream at the same
speed, which can occur in the present model. The relative creaming and diffusion rates of
flocs of different sizes are controlled only through the step length in the model of van der
Knaap et al. (1994). The probability of movement by creaming or diffusion is the same
for flocs of all sizes, and creaming occurs for all flocs at the same time. However, the
distance moved by the floc depends on its size. A maximum step length of five lattice
units for creaming and three lattice units for diffusion were defined (van der Knaap et al ,
1994). Therefore, there are only five discrete creaming rates, and three discrete diffusion

rates, since particles can only move between lattice sites

In the present model, both the movement probability and the step length can be
varied according to floc size. Hence, a near-continuous range of creaming and diffusion
rates are permitted. Since the creaming probability is now different for each size of floc,
the model follows the method of Huang and Somasundaran for creaming movement
Each particle is moved in turn, as is the case for diffusion. Some obstruction of particles

with the same creaming speed will result, but the effect is expected to be small

3.3.3 Flocculation

Flocculation is the tendency of particles to stick together, when they touch or
approach within a certain distance of each other (see sections 1.1.2 and 2.10). In the case
of depletion flocculation, this mutual attraction is driven by the presence of polymer or
other entities (e.g. surfactant micelles) in the continuous phase. Although the lattice
model does not explicitly include such an additional species, its effects are simulated

through the sticking probability of particles. In many physical systems flocculation is
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reversible, in the sense that the thermal energy of some flocculated particles is sufficient
to pull them apart again. This feature can be characterised by the probability that a
flocculated “bond” will break apart. The two key parameters which determine
flocculation in the lattice model are therefore the bonding and break up probabilities,
Piont and Py respectively. The bonding probability, Py, is the likelihood that a bond
will form between neighbouring particles in each time interval. The break up probability,

Pieeat, is the probability that an existing bond will break during each time interval

Flocculation in the lattice model is only permitted between the nearest neighbours
on the lattice. Since a cubic lattice is used, there are six such neighbouring sites, each
separated from the central particle by one lattice unit. The next nearest neighbours are at
a distance of V2 times the lattice unit from the central particle; there are 12 such
neighbours. The limitation of bond formation to the nearest neighbours therefore
corresponds to a very short-range potential (which is the case for depletion flocculation)
The reversibility of flocculation relates to the breaking of each “bond™ rather to an
individual particle breaking off from a floc. A particle which is bonded to more than one
nearest neighbour in a floc is less likely to break off than a particle with a single
connection. Thus, a more compact structure is favoured in the model, not through an
attractive non-bonded potential between particles, but through the greater stability of

more closely structured flocs.

The bonding and break up probabilities can be interpreted in terms of an
interparticle potential. Figure 3.2 shows a schematic diagram of the interparticle potential
energy as a function of their separation, as represented in the lattice model. The plot is
not to scale. The spatial extent of the regions of negative and positive energy is negligible
in the lattice model, since particles can occupy neighbouring sites with or without being
flocculated, and a bond can break without particles moving away to another lattice site
At a separation of 2r, the potential tends to infinity, which corresponds to the volume
exclusion of the rigid particles. The other two notable features are the negative potential
well, and the positive energy barrier. The potential well represents the favourable energy
state of particles which are flocculated. However, particles at a larger separation must
overcome the energy barrier in order to reach the flocculated state. The probability of a

particle having sufficient energy to “cross™ the energy barrier can be written as a
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Figure 3.2 Schematic representation of interparticle potential as a function of distance
for the lattice model

Iyona is the energy barrier to flocculation, ey the depth of the potential minimum and
Fear the energy required to escape from the potential well

Boltzmann factor. This probability is equal to the bonding probability used in the lattice

model. Thus

Pyous = exp(f ’M) [3.10]
bond k" 7v

The limit of zero bonding probability corresponds to an infinite energy barrier, whereas a

probability of one is equivalent to no barrier to flocculation at all. The Boltzmann factor

relationship for the bonding probability is valid for this process if the energy barrier is

reasonably high (several k1), and narrow

The extent of reversibility of the flocculation is determined by the depth of the
potential well, as well as the height of the energy barrier. The energy required by a
particle to escape from the potential well is represented by Eica as shown in figure 3.2,

and is the sum of the well depth and the barrier height, thus

By = Eyoua + E, [3<14)

well
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The break up probability can again be related to the energy required to break the bond

through a Boltzmann factor

[3.12)

Py © exp[ -

An infinitely deep potential well represents completely irreversible flocculation, since
particles can not escape from the well, once flocculated It is clear from equations 3 11
and 3.12 that this situation corresponds to Ppes=0. The rate of flocculation is still
determined by the height of the energy barrier, and thus, in the model, through the

parameter Py

A shallower potential well represents a more loosely linked floc, in which particles
can break off relatively easily. As the well becomes shallower, the energy required to
separate flocculated particles decreases, and the probability of break up increases. The

condition at which the potential well vanishes, is equivalent to
P =B [3.13]

Although the flocculated energy state in this case is no longer favourable, the energy
barrier still prevents particles escaping once a bond is formed. The break up probabilities
studied in the lattice model were in the range from zero up to the bonding probability. If
the break up probability is larger than the bonding probability, the “flocculated” state is a
less favourable energy state for particles than a random distribution. Hence the energy
barrier to particles escaping from the “bonded” state is lower than the barrier to
formation of that state. This is not physically representative of most real flocculating

systems.

3.4 Time evolution

The evolution of the sample is modelled by executing particle motion in a series of
small time intervals. In each interval, every particle is selected once at random to execute
a displacement. The order in which particles are chosen to be moved is random from
within the set of particles which have not yet moved during this time step. Since flocs
include many particles, they are more likely to be moved first, because the probability is

equal for each particle, rather than for each unit (particle or floc, a floc counts as a single
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unit). However, each floc is only allowed one attempt to move during any one time

interval

Having selected the unit (particle or floc) to be moved. the displacement of the
particle or floc is determined by its probability and step length for each of the physical
processes included in the model (see sections 331 and 332) Having calculated the
required displacement (which is zero if the particle is not allowed to move in this
interval), the destination sites for all the particles in the floc are examined. If any of these
sites are already occupied by particles from a different unit (another floc or particle), the
displacement is refused. If the displacement was more than one lattice unit, an attempt is
made to achieve a smaller displacement without obstruction. It is clear that although
flocs have a faster creaming speed, they are also more likely to be obstructed than single
particles, because of their larger collision cross-section. After the unit’s displacement has
been determined, all neighbouring particles are examined. These may be new neighbours
due to the new position of the unit, or existing adjacent particles within the floc. Each
neighbouring pair which is not already bonded is allowed to bond, according to the
bonding probability. Each existing bond is given the opportunity to be severed, according

the break up probability

This process of displacement followed by flocculation is repeated with each
randomly selected particle or floc until all have had opportunity to move during this time
interval. A sequence of many such time steps simulates the evolution of the creaming and

flocculation behaviour

3.5 Boundary conditions

3.5.1 xand y periodic boundaries

Periodic boundary conditions are used in many simulations in order to model the
effect of a much larger system, whilst only in fact simulating the motion of a relatively
small number of particles. The two opposite boundary walls are made to “wrap-around™
so that any particle moving out of one side of the system appears at the other side
Instead of only looking at a single computational “box”, the system behaves like an
infinite array of identical “boxes” neighbouring each other. No new information is

contained in the other boxes, since they are identical, but the technique removes the need
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to impose containing walls on each side of the computational area, which would confine
the particles and influence their motion. Periodic boundaries were adopted in the lattice

model in the two horizontal directions (x and y).

3.5.2  z boundaries

The effects of creaming cannot be seen without an impenetrable boundary in the
vertical direction, corresponding to the top or bottom of the sample. Adoption of a
periodic boundary in the vertical direction would allow creaming, diffusion and
flocculation to continue, but the sample would remain essentially uniform A serum or
cream can only be observed in the presence of an impenetrable boundary. The lower limit
of the vertical co-ordinate (z) is simply treated like the bottom surface of an emulsion
No particles are supplied from below, so that when particles move up from the bottom,
the concentration of particles is reduced, just as in the development of a serum layer
Similarly, the top boundary of the system was treated like the top of an emulsion, that is,
no particles are allowed to move beyond the top boundary. Therefore, a more
concentrated region is expected to develop at the top of the sample. Periodic boundaries
were used in this model only to study diffusion limited and reaction limited aggregation,

since the effects of creaming were then removed (see section 3.9.1).

3.6 Calculation of fractal dimension

The fractal dimension is a useful parameter for describing aggregate structure, in
particular the degree of compactness of flocs. In many previous studies of aggregation
processes, the fractal dimension was calculated for a single floc, which was grown by
simulation or experiment. However, in a relatively concentrated system, such as that
simulated by the lattice model, the definition of individual flocs as fractal entities
becomes inappropriate, as the flocs link together and form a particle network. However,
a fractal (or scaling) dimension can still be specified for the structure as a whole, since it
is a characteristic of the particle density (equation 3.2). The particle distribution is
equally well defined for a particle network as for an individual floc. For any selected
particle, the dependence on distance of the number of particles within a given distance

can readily be calculated. These particles need not necessarily be connected. If a linear
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Figure 3.3 Calculation of the particle distribution function in the lattice model

A proportion of the volume of particle B, which is at a distance R from particle A, is
assigned to each of the spherical shells denoted by R, etc

region can be found in the relationship between log(N(R)) and log(R), the gradient of this

region is equal to the fractal (scaling) dimension of the structure (equation 3.2)

In the lattice model, the particle distribution is calculated using, as central points,
each of the particles which are present in a specified horizontal layer. For each of these
particles (for example particle A in figure 3.3) the distance from it of all other particles is
calculated. For example, particle B in figure 3.3 is at a distance R from particle A. The
particle distribution is then obtained by counting the numbers of particles within each
distance range, R, The distance ranges are equivalent to spherical shells, each of a
specified thickness, as shown in the diagram. The particle distribution is specified by the
number of particles within each shell. A sum of the distributions over all of the central
particles yields an average particle distribution function in the locality of the horizontal

layer.

Initially, the distribution was calculated by recording each particle at the position of
its lattice site (its centre of mass). However, it was found that this caused a significantly
lumpy distribution due to the existence of only discrete particle separations because of

the geometry of the cubic lattice. For example, in the close proximity of a particle,
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another particle can only be present at separations of 1. V2, V3 etc. (lattice units), which
are the closest neighbouring positions on the lattice. Refinement of the particle
distribution was achieved by assigning an appropriate proportion of the particle’s volume
to each of the intersecting spherical shells representing the consecutive distance ranges
from the central particle. This approach is illustrated in figure 3.3. The proportion of the
particle’s volume which is in each spherical shell can be calculated from simple

geometrical relationships

Although the use of this method smoothes the particle distribution function
considerably, the availability to particles of only discrete sites on the lattice still distorts
the distribution, especially at close range. A random distribution of particles with a
volume fraction of 0.524 would be expected to have on average an equivalent volume of
3.655 particles within a distance of | particle diameter of any other particle. However, a
fully occupied cubic lattice (which has the same volume fraction of 0.524) has only the
equivalent of 2.609 particles within this range. The uneven nature of the particle
distribution in the lattice model is to some extent smoothed out in the overall distribution
function N(R) especially at distances larger than a few diameters. However, to remove
some of the artificial effects of the lattice structure on the distribution function, all results
were scaled according to the distribution which would be obtained if the lattice were

fully occupied

In the fully occupied lattice, the numbers of particles in each distance range is a
measure of the maximum volume available to particles on the lattice within that range.
(o(R,) represents the number of particles (as an equivalent volume) on a fully occupied
cubic lattice in the distance range denoted by the argument R, The argument R,
represents the spherical shell between a distance of R, and R,.;, as shown in figure 3.3
The calculated number of particles in this distance range in another lattice simulation is
represented by G(R,). Therefore, the proportion of the available volume occupied by
particles in this shell is G(R,) Gio(R,). Hence the effective number of particles in this
range should be equal to this proportion, scaled by the actual spatial volume in the
spherical shell (which is the available volume if the particles were not restricted to lattice

sites). Thus

G(R,) 4ny,. 5
G4(R)==——=5—|R,, - R; 314
o ( n) Gy(R) 3 1 ..] [ ]
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The total number of particles N(R) is obtained by summation over all the distance ranges
(shells) up to the required distance. The fractal dimension itself is determined from the

gradient of a linear fit to the logarithmic relationship of N(R)

In the lattice simulations, the fractal dimension is calculated over the range four to
ten particle diameters, which was found to obey fractal scaling in all cases. At smaller
length scales, the floc structure causes fluctuations in the particle distribution, and a
fractal scaling description is invalid. At long distances, the particle distribution becomes
homogeneous, and the fractal dimension approaches 3. The fractal dimension over the
chosen length scale is characteristic of the scaling properties of the structure in the
locality of the horizontal slice used for the central particles. It is only meaningful in a
region in which the particle concentration is approximately constant, since in the
presence of a concentration gradient, the particle distribution is affected by the changes
in average concentration as well as by the structure of the dispersion. Therefore, the
fractal dimension was only calculated in the region of the sample between the serum and

cream regions, where the concentration is reasonably uniform

3.7 Computer requirements

The lattice model program was written in FORTRAN 77, and was executed using
the Sun SPARCenter 2000 and Silicon Graphics Challenge XL servers at the University
of Leeds. Random number generation was achieved using the Numerical Algorithms
Group FORTRAN Library subroutines (mark 15). A single pseudo-random number
sequence was used for each program run. A flow diagram of the program is shown in
figure 3.4, and the code is given in Appendix A3. An expanded flow diagram of the
flocculation section which forms and breaks bonds is shown in figure 3.5. The model is
CPU-intensive, and the size of the system and number of particles were tailored to the
available resources. A typical simulation of 100,000 particles, with 2400 time steps takes
up to 5 days of CPU time to run when floc break up is included. The program requires

approximately 24 Mbytes of memory
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| Place N particles randomly on lattice l

Flocculate any neighbours l

I Calculate creaming and diffusion properties I
A |

Select a particle|

Figure 3.4 Flow diagram of lattice model program of creaming and flocculation
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First neighbouring pair

bonds this step

Make two flocs

Next N If
neighbouring Jast pair
pair
X

Figure 3.5 Flow diagram of the flocculation section of the lattice model program

3.8 Samples analysed

It was chosen to model the creaming and flocculation behaviour of a hypothetical
sample with similar properties to those of a real sunflower oil in water emulsion at 30 °C
The relevant densities and viscosities of the component phases can be found in table 2.1
The creaming rate and diffusion coefficients are determined by the particle size, which is
largely fixed by computational limitations. In the phenomenological model, the effects of
diffusion were only significant in the presence of a concentration gradient, and were

found to be relatively small. However, individual particles of colloidal size are very
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diffusive, executing extensive random walk motion. The lattice model incorporates this
random walk motion and therefore requires a large amount of computational resources
to model the diffusion, for only a small development of creaming behaviour. A relatively
large particle size was chosen, therefore, so that the creaming properties of the system
could be observed without excessive computation of diffusive motion. The particle

diameter used in the calculations was 1.2 pm, and this also defines the lattice spacing

Equations 3.4 and 3.9 define the movement probability and step length for particles
and flocs. Since the movement probability for each process (creaming and diffusion)
must be less than unity, the time step is constrained by the limiting displacement allowed
for each movement. The fastest creaming speed is for the largest flocs, whereas the
largest diffusion coeflicient is for single particles. The step length for creaming is
permitted to be as much as six lattice units. However, the diffusive displacement was
defined to be a single lattice unit in all cases, due to inconsistencies in the concentration
profiles when this was not the case. The time interval is therefore determined by the
diffusion probability for single particles. A time step of 0.25 seconds was chosen for the

modelling of the sunflower oil in water system.

The number of particles in the sample is determined by the proportion of lattice
sites which are occupied. In the systems analysed, an initial occupancy of 10 % was used
This corresponds to a volume fraction of 0.052 (due to the volume of a sphere compared
with its circumscribing cube). An occupancy of 100 % is therefore equivalent to a
volume fraction of only 52 %, so the high concentrations observed in some creams are
not possible in the model. The dimensions of the lattice were usually taken to be
70x70x200. The calculation of fractal dimension takes an average over all particles in a
single layer, so that each determination is an average of approximately 490 particle
distribution functions. In order to obtain good statistical averages of all the system
properties, five simulations were carried out for each set of parameters. For the diffusion
limited and reaction limited aggregation, different lattice dimensions and volume

fractions were used, and these are defined in section 3.9.1



3.9 Results

3.9.1  Diffusion limited and reaction limited aggregation

Two cases of the growth of aggregates under different limiting conditions are well-
established: diffusion limited aggregation and reaction limited aggregation. Both of these
conditions have previously been simulated in the absence of a gravitational field, with
particle motion determined by diffusive random walks. The two conditions correspond to
different limiting values of the bonding probability. In the diffusion limited case, the
bonding probability is unity, so that as soon as one particle touches another particle, they
stick together. The aggregation process is therefore characterised by the dynamics of
particle motion. In the other extreme, if the bonding probability is very low, as in the
reaction limited case, particles must collide many times before a bond is formed. This is
equivalent to a significant energy barrier which must be overcome to stick particles
together. The characteristics of particle motion are secondary to the size of the energy

barrier in determining flocculation in this case

In the lattice model, these two conditions were simulated to calculate the fractal
dimension for comparison with previous work. Periodic boundary conditions were
imposed on the top and bottom boundaries in the vertical direction for these simulations,
and the lattice dimensions were 100x100x100. All creaming speeds were set to zero, to
represent the absence of a gravitational field. The samples were extremely dilute, as was
the case in previous simulations, with a lattice occupation of 0.005, or 5000 particles. No
break up of flocs was permitted, and the system was allowed to evolve until all particles
had aggregated into a single cluster. For the diffusion limited case, the bonding
probability was unity, and for reaction limited kinetics a bonding probability of 0.001 was
used. Ten simulations were carried out for each set of parameters. The calculations of
the particle distribution N(R) were carried out using every particle in turn as the centre

for the distribution, so in each case the distribution is an average over 5000 particles.

The fractal dimension was determined over the range 4 to 10 particle diameters
from the gradient of the logarithmic plot of the particle distribution function (figure 3.6).
The fractal dimension obtained in the diffusion limited case was 1.8 and for the reaction
limited conditions 1.9, although the difference in gradient can not be identified visually

Quoted results in the literature are 1.8 and 2.1. for the diffusion and reaction limited
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Figure 3.6 Number of particles N(R) within a distance R for diffusion limited and
reaction limited aggregation

0 is for diffusion limited aggregation and ¢ for reaction limited aggregation. The lines
are the best straight-line fits

conditions respectively. The lattice model result for diffusion limited aggregation is
therefore in agreement with previous work. The reaction limited value is rather low for
the lattice model, but it is at least larger than the diffusion limited case. It may be that the
bonding probability used (0.001) is not sufficiently small to obtain the limiting fractal
dimension at low bonding probability. A lower probability takes too long to simulate (the
lattice model is not optimised for this type of simulation) and was not attempted. In
addition, the concentration of particles may be too great to allow the isolated growth of
small flocs before these link together to form a single aggregate. The spatial restriction
on floc growth would influence the fractal dimension obtained. As flocs become larger,
the fractal dimension in the reaction limited case approaches the diffusion limited value

anyway. The results indicate sufficient confidence in the lattice model to draw

conclusions from the calculations of fractal di ion in creaming and flocculation
studies. It is likely that the differences in fractal dimension obtained under various

flocculation conditions are of most interest, rather than their absolute values



3.9.2  Single particles

The creaming behaviour of single particles according to the lattice model was
examined by using a bonding probability of zero. The concentration profiles calculated
by the lattice model in this case are shown in figure 3.7. The concentration is defined as
the proportion of lattice sites which are occupied in any horizontal plane. The profiles
include the expected development of an oil rich (cream) region at the top of the sample
and an oil deficient region at the bottom. The concentration in the cream increases with
time, as was seen at the macroscopic scale (section 2 8.1), although it does not reach the
maximum possible value. In the lattice model, a fully occupied cubic lattice corresponds
to a volume fraction of only 52 %, and therefore the maximum random packing fraction

of 63 % for monodisperse systems cannot be achieved

The serum region in the lower half of the sample is characterised by a rather
gradual increase in concentration with height A monodisperse, non-diffusive emulsion
would be expected, at the macroscopic level, to show a sharp serum interface, between
an oil deficient region (serum) and the uniform emulsion (see for example, the results of
section 2.8.1). The concentration profiles from the lattice model in the absence of
diffusion are shown in figure 3 8. A comparison of figures 3.7 and 3.8 demonstrates that
the spreading of the serum interface is caused by the effects of thermal diffusion This
may be somewhat surprising considering the size of particles used (diameter 1.2 jim)
The macroscopic results (section 2.8.1) showed that the effect of diffusion was very
small for more diffusive particles of diameter 0.56 pm. The apparently strong influence
of diffusion is due to two effects. Firstly, the spreading of a step change in concentration
due to diffusion was shown in section 2.2.2 to be most rapid in the early stages. Hence,
although the interface has spread significantly over the time scale observed in the lattice
model, the rate of spreading will slow down considerably at later times Secondly, the
samples analysed are only 200 particle diameters in vertical extent. The width of the
serum interface is therefore only of the order of a few tens of micrometers. On the scale
of the model, this appears to be significant, but its width is negligible on the macroscopic
scale. If the spreading rate of the interface reduces with time, the interface width can be

expected to be reasonable at the macroscopic level
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The main interest in the creaming profiles for single particles is as a comparison
with the results obtained when flocculation is included These results are presented in the

following sections

3.9.3  Variation of bonding probab

The creaming and flocculation behaviour of an emulsion was simulated using the
lattice model, with a range of different bonding probabilities. In the first part of the
study, the bond breakage probability was set to zero, so that floc break up was
prohibited. Concentration profiles for a range of non-zero bonding probabilities are
shown in figures 3.9 to 3.12. The profiles should be compared with figure 3.7, which

showed the results in the absence of flocculation

A number of characteristic features can be seen in all the cases which include
flocculation. In the early stages, the concentration profiles have the same qualitative form
as for single particles. This is true only at very short times at high bonding probability,
but at lower bonding probability the profiles are similar to the single particle case for
some time. After a certain time, however, the creaming rate slows considerably, and the
position of the serum interface no longer changes significantly Instead, the interface
becomes more sharply defined and the serum region below it gradually decreases in
concentration. Creaming ceases altogether when no particles are left in the serum. The
cream region at the top of the sample also initially develops in the same way as in the
single particle case. As flocculation proceeds, the concentration profile in the cream is
“frozen” into its final configuration. Two other features which occur when flocculation is
included are the peak in concentration just above the serum interface, and the dip in

concentration at the top of the cream

The overall creaming behaviour of the flocculated emulsion is explicable in terms
of the size development of flocs in the sample. Initially, all particles move independently
In the early stages of creaming, small flocs form, which themselves move as independent
entities. At this stage, the creaming speed of the flocs is greater than for single particles,
because the increase in their “Stokes” velocity outweighs the increased obstruction due
to their larger cross-sectional area. Thus, flocs move more rapidly upwards, and the
lower region is left with a higher proportion of single particles and the smallest flocs. As

flocculation proceeds, and flocs become larger, they experience more interference from
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Figure 3.11 Proportion of lattice sites occupied as a function of height, with a bonding probability of 0.005, and no floc break up
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one another. Flocs link together to form more extensively bonded regions, which have
significantly reduced mobility, and which eventually become a single space-filling particle
network. The serum has a lower concentration and includes smaller flocs and single
particles. due to the relative creaming rates. Hence, it is the region above the serum
interface which becomes extensively linked to form a network. The single particles and
small flocs in the lower region are still relatively mobile and continue to cream until they
meet and bond to the underside of the network structure. The peak in concentration
above the serum interface is caused by the smaller, faster moving flocs and particles
catching up with and penetrating into the slower networked flocs, thereby forming an

accumulation of particles

In the early stages of flocculation, the production of flocs causes an increase in the
creaming rate due to the faster “Stokes™ velocity of larger flocs. This can be seen by
comparison with the single particle case. Figure 3.13 shows a series of comparisons of
concentration profiles in flocculating and non-flocculating systems. After 2 minutes, the
concentration profile for a bonding probability of 0.005 shows that creaming is more

advanced than for single particles after the same time. Similarly, faster creaming has
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Figure 3.13 Comparison of concentration profiles in flocculated and non-flocculated
systems illustrating the change in creaming rate

Squares represent the profiles after 2 minutes for Py,,q=0.005 (open squares) and for
single particles (closed squares). After 5 minutes, the open circles are for Pyy,y=0.002 and
closed circles for single particles. Triangles are for the profiles after 10 minutes of a
sample with Py,,q=0.001 (open triangles) and for single particles (closed triangles)
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occurred for a bonding probability of 0.002 after 5 minutes than for single particles. A
marked increase in creaming rate can be seen for the sample with a bonding probability
of 0.001 after 10 minutes, compared with single particles, also after 10 minutes. At high
bonding probability, it is only at very short times that the increased rates can be seen
The difference between the flocculated and non-flocculated systems is more pronounced

at later times, provided the system is still free to move

Flocculation causes the concentration in the cream to be reduced compared to the
single particle case (figures 3.9 to 3.12). Particles which are linked together in flocs
cannot adopt the most compact packing structure, and therefore the concentration is
lower. The dip in concentration at the top of the system is caused by the prevention of
flocs or particles penetrating above the top boundary. An approximately spherical floc,
which has an extent larger than a single lattice unit, can only move vertically until its
uppermost point reaches the top boundary. Hence, the top layer contains a smaller
proportion of particles than exists lower down, nearer the centre of mass of the floc. This
reduced concentration will only extend one or two particle diameters from the top of the

sample, and is therefore not likely to be observed at the macroscopic level

Having discussed the general features of the creaming and flocculation results
predicted by the lattice model, it is of interest to examine the effect of the bonding
probability on the concentration profiles (figures 3.9 to 3.12). As the bonding probability
increases, flocculation occurs more rapidly, since a higher proportion of touching or
collision events results in bond formation between particles. The formation of a particle
network, which slows further movement, therefore occurs after a shorter time. In the
samples analysed, a network which covered the entire lateral extent of the system had
developed after 1.5, 2.5, 4, and 5 minutes for bonding probabilities of 0.01, 0.005, 0.002
and 0.001 respectively. It is clear from the concentration profiles that there is a sufficient
number of free particles to allow some degree of creaming after this time, although these

eventually join the network and become immobile

The extent to which a serum or cream is formed in the sample is reduced as the
bonding probability increases, because of the shorter time available before the particles
are immobilised in the network. The limited time which is available for particles to cream
relatively unhindered affects the concentration reached in the cream region As the

bonding probability increases, the concentration of the cream decreases, since it is
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formed over a shorter period, before its configuration is “frozen-in™ by flocculation. The
concentration in the cream may also be affected by the size of the flocs which initially
formed it. At low bonding probabilities, the initial creaming behaviour is characterised by
smaller flocs and single particles, which are more compact. At higher bonding
probabilities, flocs grow to a larger, and therefore more sparse, size before significant
creaming can occur, and therefore pack less efficiently in the cream Hence, the space-
filling character of the flocs which formed the cream determinesits concentration. The
same effect was observed in two-dimensional simulations of van der Knaap et al. (1994)
A relationship between sediment porosity and the form of the interparticle potential was

also demonstrated by Ansell and Dickinson (1986)

The time period over which creaming occurs relatively freely also affects the final
position of the serum interface, which represents the lower limit of the particle network
At a higher bonding probability, flocculation occurs more rapidly, and therefore the final
position of the serum interface is closer to the bottom of the sample. This is clear from a
comparison of the concentration profiles, figures 3.9 to 3.12. Although particle
movement has not completely ceased at the lowest bonding probabilities simulated, the
serum position is still clearly defined in this case. Only a further reduction in the

concentration of the serum is yet to occur in these samples.

The variation of the height of the serum interface with bonding probability is
shown in figure 3.14. A comparable dependence was demonstrated in two-dimensions by
van der Knaap et al. (1994). A functional relationship can be derived between the two
parameters of serum interface height and bonding probability. The correct limiting
conditions must be obtained at the two extreme values of bonding probability (zero and
unity) For single particles (a bonding probability of zero), the height of the interface
tends to infinity, since, if the sample is infinitely high, the interface continues to move
with a uniform creaming speed. In the other extreme, a bonding probability of unity
causes very rapid flocculation. However, the extent of serum formation before
networking occurs depends on the initial concentration of particles. At high
concentrations, all particles are initially likely to be touching at least one other particle,
and therefore linkage occurs immediately and no creaming is possible At low
concentrations, creaming may develop significantly before sufficient contact is achieved

to prevent further movement. Hence the limiting condition on the serum height at a
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bonding probability of unity is concentration dependent, although at the concentrations

used in the simulations it is likely to be very small

In order to relate the serum position to the flocculation rate, it is more convenient
to use the height of the energy barrier as the flocculation parameter, rather than the
bonding probability. Zero bonding probability represents an infinitely high barrier,
whereas a bonding probability of unity corresponds to the absence of an energy barrier
This semi-infinite range for the energy makes derivation of a relationship with serum
height simpler. An appropriate function with the correct limiting dependence was found
to be a linear relationship between the energy barrier and the logarithm of serum height

The best fit for this set of data was found to be

In(h,

‘serum

/2r) = 03475+ 05806(E, . /K, T) [3.15]

where /1. is the height of the serum interface relative to the bottom of the sample. The
curve generated from this equation is included in figure 3.14. For the systems studied in
the lattice model, the bonding probabilities used correspond to a range of the energy

barrier from 4.5 to 7 kzT’
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Figure 3.14 The serum interface position as a function of bonding probability in the
absence of floc break up.

Open squares are the simulation results, and the solid line is the best fit (equation 3.15)
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The final position of the serum interface in a system with irreversible flocculation is
specific to the dynamic properties of the particles in the system. These are dependent on
both the material properties and on particle size. However, the parameters used in the
model are not dissimilar to real experimental systems Extrapolation of the relationship
calculated from the lattice modelling results to a macroscopic scale may be of dubious
value. However, assuming that a sample is completely unflocculated at the start of
creaming, a serum height of 10 mm, corresponds to an energy barrier to flocculation of
the order of 15 kz7, according to equation 3.15. This is certainly not an unreasonable
value for a real system. The relationship is of course logarithmic, and therefore a large
change in serum position relates to a rather small increase in the energy barrier. The
determination of the serum interface position in irreversibly flocculated samples may
perhaps be used as an indication of the energy barrier to flocculation under various

conditions

The values of the fractal dimension in the creaming and flocculating samples
provides information on the nature of the flocculated structure formed In these systems,
the fractal dimension is a scaling parameter characterising the particle distribution, and is
a property of the local network structure, rather than of an individual floc. The value of
the fractal dimension was calculated in each system, for the distance range 4 to 10
particle diameters, as a function of height and time. An example of the particle
distribution plots used to calculate the fractal dimension is shown in figure 3.15. The
calculated fractal dimension results, for a bonding probability of 0.002, are shown in
figure 3.16. Similar plots are obtained for the other values of bonding probability. The
fractal dimension is uniform with height at each time, except at the extremes of the plots.
At these limits, the particle concentration varies with height (compare with the
concentration profiles in figure 3.10). This affects the particle distribution, and the fractal
dimension can only be considered to be a valid parameter over the region in which the

concentration is uniform

Having demonstrated the uniformity of fractal dimension with height in a certain
region, a single (average) value can be used to characterise the structure at any time
Figure 3.17 shows the variation in fractal dimension with time, for each of the
irreversibly flocculating systems simulated in the lattice model. In each case, the fractal
dimension decreases with time from its initial value of 3 (equal to the dimension of the

space). At first, the fractal dimension decreases gradually, but later rather more steeply,
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Figure 3.15 Plot of number of particles N(R) within a distance R used to calculate the
fractal dimension

o is the distribution after 2. minutes and @ after 10 minutes. The bonding probability was
0.005, and the distribution was calculated at a height of 100 diameters
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Figure 3.16 Fractal dimension as a function of height and time for a bonding probability
of 0.002
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Figure 3.17 Fractal dimension in the uniform region as a function of time for different
values of the bonding probability.

The bonding probabilities are® 0.01,4 0.005,% 0.002 ando 0.001

until it reaches a limiting value. In the present samples, no floc break up was allowed,
and therefore no further rearrangement of the structure is possible. The initial random
distribution of single particles corresponds to a fractal dimension of 3. A reduction in the
fractal dimension over the distance range used demonstrates that the structure becomes
more sparse in this region. The formation of flocs is associated with a greater number of
particles at very short length scales (the compact inner core of the floc). This increase in
the number of particles at short range is associated with a corresponding reduction in the
number of particles in the intermediate distance range. Hence the fractal dimension over
this length scale is seen to decrease. At large distance scales, the structure appears
homogeneous and the dimension approaches 3 again. The reduction in fractal dimension
over the distance scale analysed, demonstrates, therefore, the development of compact
flocs which later link together into a network. The decrease in fractal dimension becomes
more rapid after the initial gradual decline, due to the greater capture efficiency of sparse
flocs. The limiting value of the fractal dimension characterises the final structure in the

systems in which no break up is permitted
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The effect of bonding probability on the time-dependence and limiting value of the
fractal dimension can be clearly seen in figure 3.17. As the bonding probability decreases,
the time taken for the fractal dimension to decrease significantly is much longer
However, the limiting fractal dimension of the particle network is also lower It should
be noted that the fractal dimension at the lowest bonding probability shown in figure 3.17
has not yet reached its limiting value. The lower fractal dimension of the network for
lower bonding probability indicates that flocs have more freedom to form into compact
structures before linking together. At higher bonding probability, particles have such a
strong tendency to stick together that the particle distribution undergoes little

rearrangement from a random distribution before the particles are all linked

The limiting fractal dimensions obtained in the lattice simulations are significantly
greater than the value (2.0) used for the dynamic properties of single flocs, and than the
standard values for diffusion limited and reaction limited aggregation at infinite dilution
It has previously been noted that at finite particle concentrations the fractal dimension
can vary significantly from these values. Van Garderen et al. (1995) studied the effect of
concentration on fractal dimension and concluded that at very short range, the dilute
limit is obtained. However, in the intermediate and long ranges, the fractal dimension
gradually increased towards the spatial dimension. Hence values of fractal dimension
significantly higher than the dilute limit could be obtained. Similarly high dimensions
were found in the simulations of Bijsterbosch et al. (1995), which included an attractive
potential between particles. The work includes a useful discussion of the factors which
influence the fractal dimension. The relatively large fractal dimension obtained in the
intermediate distance range was attributed to interpenetration of the smaller flocs before
the structure is “frozen™ by the extensive cross-linking. This does not occur in very dilute
systems. Although the fractal dimension of the network structure is larger than 2.0, this
value may still be applied to the local formation of individual flocs and therefore to the

creaming and diffusion properties of the flocs

3.9.4  Variation of break up probabili

The effect of floc break up on the creaming behaviour of flocculated dispersions
was investigated by varying the floc break up probability. Simulations were carried out
for a bonding probability of 0.005, with no floc break up, and with break up probabilities

0f 0.001 and 0.002. The concentration profiles are shown in figures 3.18 and 3.19. These
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Figure 3.18 Proportion of lattice sites occupied as a function of height, with a bonding probability of 0.005, and a break up probability of 0.001
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should be compared with the results of figure 3.11, in which there was no floc break up
The concentration profiles indicate that the break up of flocs delays the formation of a
particle network which prevents further movement. The position of the serum interface
in figure 3.18 is higher up and takes longer to form than in the absence of bond breakage
(figure 3.11). At a higher break up probability (figure 3.19). the final serum interface
position is not defined during the simulation period, since not all particles have linked
into the network. The concentration of the cream region increases as the break up
probability increases, indicating the reduced floc growth rate and the delay in “freezing”
of the structure due to cross-linking. The creaming rate is again seen to increase in

comparison with the single particle case

The concentration profiles obtained when flocculation is reversible demonstrate
that creaming behaviour proceeds more freely than for irreversible flocculation with the
same bonding probability. It might be expected, therefore, that the profiles would bear a
closer resemblance to the results for irreversible flocculation with a lower bonding
probability. This is indeed the case, as a comparison between figures 3.18 and 3 10 (with
a bonding probability of 0.002 and no floc break up) shows. There is however, an
important difference. The break up probability can only affect bonds which have already
formed. It does not prevent bonds forming, as a reduction in bonding probability would
Hence, a significant degree of floc growth occurs before a noticeable effect of
reversibility is observed. Floc growth can be initially quite rapid, but when flocs reach a
certain size, the growth rate is reduced by bond breakage Hence the formation of a
network is delayed in a reversibly flocculating system. This effect can be seen by
comparing the concentration profiles of figures 3.18, 3.19 and figure 3.10. After 6
minutes, the concentration profiles in figures 3.10 and 3.19 have a very similar form,
with the reversible case showing the preliminary shape of the serum interface. However,
in the reversibly flocculated system, the floc breakage is sufficiently strong to limit the
floc growth and enable free particle movement for a significant time. The irreversibly
flocculating system simply forms a network and creaming ceases. This is also true for the
reduced break up probability (figure 3.18). At a sufficiently high break up probability,
flocs may remain mobile, without the formation of a particle network (at least until the

concentration increases, due to creaming)
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The lattice simulation does not explicitly favour formation of more compact
structures, as would be the case with an attractive interparticle potential. However, the
inclusion of the breakage of bonds implicitly attributes greater stability to more compact
configurations. A particle which is connected to a floc by a single bond is more likely to
break off from that floc than one which has, for example, three connections to other
particles in the floc. Since each bond has equal probability of breaking, the probability of
any particle breaking off from the floc is equal to the bond breakage probability raised to
the power of the number of bonds connected to the particle. Thus

Nbonds

Po=P) = exp(~ Nbonds x I, [k, T) [3.16]

where Nbonds is the number of bonds between the particle and its neighbours. This is a
very steep function of the number of connections, and therefore more compact structures
(in which particles are connected to a number of other particles, rather than only one)
should be more favourable. The effect of the breakage probability has been investigated
by Haw et al. (1995) with lattice simulations carried out using a bonding probability of
unity (the diffusion limited case). A larger break up probability was shown to produce
more compactly structured flocs on a short length scale. The competition between short
range compactification of the flocs (by bond breakage) and linkage of neighbouring flocs
into a network can result in rather different structural forms. If the rearrangement of
flocs into a more compact form is more rapid than the space-filling growth of the floc,
the flocs may not grow sufficiently to cause cross-linking into a networked structure
(Haw et al., 1995). This was observed in the present lattice model, in the relatively free
creaming behaviour at higher break up probability, demonstrating that the flocs are still

mobile

The fractal dimension is plotted as a function of time in figure 3 20, for each of the
break up probabilities simulated. As discussed in the previous section, a reduction in the
fractal dimension over the length scale used here is indicative of a more compact
structure at short length scales, and correspondingly sparse structure in the distance
range used. When flocculation is irreversible (Pye=0), the fractal dimension decreases
until it reaches a limiting value. No rearrangement of the structure into a more compact
form is possible after all the particles are linked together. As the break up probability is
increased it is clear from figure 3.20 that the fractal dimension decreases at a much

slower rate. It does not reach a limiting value when an extensive network is formed, but
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Figure 3 20 Fractal dimension as a function of time, for variable break up probability,
with a bonding probability of 0.005

The profiles are for break up probabilities of ® 0.0, 4 0.001 and ® 0.002.

continues to decrease. This is because the breakage of bonds allows rearrangement of
particles into a more stable, compact configuration, resulting in a smaller fractal
dimension in the intermediate length range It is clear, however, that reversible
flocculation leads to a structure with a lower fractal dimension than irreversible
flocculation with the same bonding probability. The fractal dimension reached in the
simulation period for reversible flocculation is also lower than for the irreversibly

flocculated structures formed at the lower bonding probabilities analysed (figure 3.17).

A comparison of figures 3.20 (for reversible flocculation) and 3.17 (irreversible
flocculation) indicates the difference between the effect of bond breakage, and the effect
of the rate of bond formation. As the bonding probability is decreased, in the absence of
floc break up (figure 3.17), the fractal dimension takes longer to decrease from the initial
plateau. However, an increase in break up probability, at the same bonding probability
(figure 3.20) does not significantly change the very early variation in fractal dimension
This is because the initial formation of flocs is solely determined by the bonding

probability. The rate of bond breakage only becomes significant in the presence of a
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substantial number of bonds. Afler the initial development of flocs, an increase in
breakage probability has a notable slowing effect on the decrease in fractal dimension
Bond breakage causes floc growth to be restricted, delaying the formation and linkage of
large sparse flocs. However, the fractal dimension continues to decrease at a significant
rate after the creaming process has slowed considerably (compare with the concentration
profiles in figure 3.18) Hence, the later reduction in the fractal dimension is caused

largely by structural rearrangement to form more compact regions

The results of the lattice model for varying break up probability indicate that the
reversibility of flocculation may have a very significant effect on emulsion behaviour
This can be seen both in the creaming rate and in the compactness and rearrangement of
the structures formed. Bond breakage restricts the growth of flocs so that the system
remains mobile for a longer period. However, the flocs formed have a larger creaming
speed than single particles, and therefore an increase in the creaming rate should be
observed. A speed up of creaming was also observed for irreversible flocculation, but the
networking of flocs as they continue to grow causes the earlier onset of immobility. A
lower bonding probability delays this process, but creaming is then determined by smaller
flocs which cream more slowly. Rearrangement of the structure due to reversibility of
flocculation allows more compact packing, and may permit further movement of

particles, and the collapse of the network

The difference in particle network structure produced under different flocculation
conditions can be seen in figures 3.21-3.23. Each picture is a section of the lattice in the
height range 80-100 diameters. In each case, the structure is shown at the end of the
simulation period. The structures look somewhat unnatural because of the geometry of
the lattice, which constrains the possible particle positions. For irreversible flocculation
with a high bonding probability (figure 3.21) the structure is characterised by many small
clumps of particles which are cross-linked. At lower bonding probability (irreversible),
figure 322 shows that larger, more compact regions have formed. Reversible
flocculation at the same bonding probability (figure 3 22) is characterised by only a few
regions of densely packed particles. However, many single particles are still present in
this case because the network was not fully developed by the end of the simulation run

These visual images are consistent with the interpretation of the fractal dimension results.
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Figure 3.21 Pictorial representation of the particle network structure formed with a
bonding probability of 0.01 and no floc break up

The section corresponds to a height range of 80-100 particle diameters after 10 minutes

Figure 3.22 Pictorial representation of the particle network structure formed with a
bonding probability of 0.005 and no floc break up

The section corresponds to a height range of 80-100 particle diameters after 17 minutes



Figure 3.23 Pictorial representation of the particle network structure formed with a
bonding probability of 0.005 and a break up probability of 0.002

The section corresponds to a height range of 80-100 particle diameters after 14 minutes

3.9.5 Comparison with experimental results

A comparison of the lattice model concentration profiles for flocculated systems
with experimental results (for example. figure 2.24) shows that some qualitative
agreement exists between the simulated and real results. The lattice model reproduces
the well-defined serum interface, whose formation is followed by a gradual reduction in
the concentration of the serum region below the interface. The model predicts the
cessation of creaming in the bulk of the system due to the extensive linkage of particles
in a networked structure. This initial creaming behaviour followed by almost entire

immobility of the dispersed particles has been observed experimentally

A particular feature of some experimental studies has been the very rapid formation
of a serum interface, whose position does not change significantly after it is formed
Although a noticeable increase in the creaming rate was observed in the flocculation
simulations of the lattice model (see figure 3.13), this does not appear to be sufficient to
explain the rapid serum development observed on a macroscopic scale. In addition, the
experimental results shown in figure 224 show that the cream region continues to

develop extensively after the serum interface has been formed. The concentration in the
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bulk of the system also decreases gradually, in spite of the immobility of the serum
interface. These features indicate that the mobility of some particles in the system is still
sufficient to allow creaming in some parts of the system. The reversible nature of
flocculation may contribute to these processes, in terms of allowing some particle
movement due to restricted floc growth. However, the complex nature of these

experimental results is not explicable by the simple lattice model

3.10 Conclusions of lattice model
The three-dimensional lattice simulations of the creaming behaviour of flocculating
emulsions have produced a number of interesting features

e The presence of irreversible flocculation causes the development of a well-defined

serum interface and the cessation of creaming due to the formation of a network

The height of the serum interface is related to the bonding probability, or to the height

of the energy barrier to flocculation

Reversibility of flocculation delays the formation of a particle network, allowing flocs
to remain mobile for longer. Creaming may continue at a reduced rate after a network

is formed.
e An increase in creaming rate is observed in both reversible and irreversible

flocculating systems before the system is fully networked. This is due to the more

rapid movement of flocs of moderate size

The fractal dimension of the developing particle network is influenced by both
bonding and break up probabilities. More compact structures are formed with

reversible flocculation, since rearrangement is permitted

The results of the lattice model are qualitatively consistent with experimental
observations of the development of a sharp serum interface, followed by almost complete
cessation of creaming. Although an increase in creaming rate in the early stages was seen
in the simulations, it is difficult to conclude that this is sufficient to explain the very rapid
formation of the serum which has been observed in practice. Hence, the simple model of
creaming and flocculation adopted by the lattice simulation does explain some features of
real emulsions. Nevertheless, the rapid movement of oil in the early stages of creaming

probably requires an alternative mechanism to fully account for the experimental results
Chetruckion of larger flocs by smaller flocs in the model may uncealistically reduce creaming ate.
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Chapter 4 : Theory of Ultrasound Propagation

4.1 Aims of theoretical ultrasound work

Low power ultrasound can be used as a non-destructive probe of dispersed
systems, such as emulsions (see section 13) The two measurable quantities
characterising the ultrasound propagation in the sample are its velocity and attenuation,
and these can be related to useful physical properties of the sample being measured. This
relationship between velocity and attenuation and a quantity such as the dispersed phase
volume fraction or solid fat content is the key to the value of the ultrasound technique
The ultrasound scanner (figure 1.1), used to study creaming in emulsions, relies on the
ultrasound velocity being directly related to the volume fraction of oil at any point in the
sample. Concentration profiles of the emulsion can therefore be determined as creaming
progresses. Similarly, investigations of crystallisation rates in emulsions utilise the
difference in ultrasound velocity between the solid and liquid oil droplets. The measured
ultrasound velocity in the sample can be related to the proportion of the dispersed phase
which is solid. Measurements of sound speed in the crystallising emulsion are therefore a

means of studying the crystallisation kinetics

The main ultrasound applications used at Leeds are based on velocity (or speed)
measurements. Attenuation measurements have been made for a number of different
applications, but the error in attenuation measurements was found to be considerably
higher than for the velocity measurements. Attenuation measurements suffer more
strongly from effects such as dispersion (which affects the shape of the waveform),
diffraction and probe variation, and therefore velocity measurements are both more
accurate and more reproducible. Other workers have used attenuation measurements to
some degree of success. The majority of the discussion in the following sections and in
the next chapter is therefore directed towards the relationship between ultrasound

velocity and the system parameters, rather than the attenuation

The aim of the ultrasound work was to evaluate various ways of interpreting
ultrasound measurements, particularly of creaming, flocculation and crystallisation in

emulsions. Hence, the focus of the study was initially the theory of ultrasound
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propagation in such systems. This chapter considers the basic ultrasound theories which
are commonly used to interpret measurements in dispersed systems. The important
special cases of the theory are discussed, along with the circumstances under which each
of these cases can be applied. A number of practical techniques for obtaining the
relationship between ultrasound velocity and the dispersed phase concentration are

developed in chapter 5

4.2 Homogeneous descriptions of dispersed systems

The speed at which a sound wave propagates through an isotropic, homogeneous

fluid is given by the equation

e [4.1]
NED
(Wood, 1964, p. 261, and earlier editions), where v is the ultrasound velocity, «, is the
compressibility of the fluid and p, its density. In most cases, sound wave propagation is
adiabatic and therefore the adiabatic compressibility is usually used. Under conditions of
isothermal propagation, the isothermal compressibility should be used instead. In some
circumstances the propagation is neither adiabatic nor isothermal, in which case the
velocity falls somewhere between the two limiting speeds. A discussion of this problem

can be found in Pierce (1981, p. 34-36)
Urick (1947) suggested that, in a dispersion in which the dispersed particles are

much smaller than the wavelength of the sound wave, the density and compressibility in

equation 4.1 should be replaced by the terms

Po =0, +(1-9)p,

Ko = ¢, +H(1-9)x, [42]
where subscripts 1 and 2 denote the continuous and dispersed phases respectively, and ¢
is the dispersed phase volume fraction. These quantities are the volume-averaged values
of the density and compressibility of the suspension. Equation 4.2 had already been used
for fluid mixtures (Wood, 1941, p. 361), sincep, and «, are the overall density and

compressibility of the system. Urick proposed that a suspension in which the particles

were much smaller than the wavelength of sound should be treated in the same way. The
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equation was found by Urick to agree with experimental measurements on xylene in
water emulsions. It was then used to determine the compressibility of the oil droplets in

an emulsion

This approach is a homogeneous description of the system, considering the
suspension itself as a homogeneous fluid, with a modified density and compressibility
corresponding to the volume-averaged values for the suspension. It does not consider the

interaction of the sound wave with the individual particles

4.3 Ultrasound scattering theory

The theory of ultrasound propagation on which much of this work has been based
is scattering theory. The term scattering may be used to describe any effect which
removes energy from the sound wave and makes it unavailable to the propagating
acoustic field. In an emulsion, scattering is caused by the presence of the individual
dispersed phase particles, which disturb the propagating wave. Energy is lost from the
forward direction of the wave by being scattered in all directions and also by thermal and
viscous dissipation around the particle. The wave also undergoes a phase shift which is
apparent in the change in velocity of the propagating wave. The basis of scattering
theory as applied to acoustic propagation in an emulsion is that the particles can be
considered as independent scattering centres, each affecting the sound wave separately
from the other particles. Other approaches to the acoustic problem were introduced in
chapter 1. There have been several reviews of different solutions to acoustic propagation
in dispersed systems, to which the reader is referred (Harker and Temple, 1988), and

these alternative theories will not be considered further

The scattering theory method provides some intuitive understanding of the physical
processes which occur at the particles. It appears to be particularly appropriate in the
long wavelength limit, in which the wavelength of the propagational acoustic wave is
much larger than the particle radius (this is also known as the Rayleigh limit, after Lord
Rayleigh who investigated the scattering of sound by small particles in this limit). Under
these conditions, the effect of the emulsion on the sound wave can be described by a
series of different scattering modes. In the long wavelength regime this series may
usually be terminated above the first order mode (dipole scattering). At higher

frequencies, the effect involves many higher order scattering modes and other
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approaches to the acoustic problem then become more suitable. In addition, in the long
wavelength region, only “single” and “double” (scattering by two particles) scattering
effects need normally be taken into account. Therefore, the multiple scattering theory
description of sound propagation is most appropriate in the long wavelength limit. The
use of ultrasound signals of the order of MHz to characterise emulsions with particle
sizes of the order of jum, means that the long wavelength condition is valid. Therefore
the scattering theory description of ultrasound propagation is suitable for the study of

emulsions and was used as the basis for this work

The groundwork of the theories of ultrasound propagation are well-established
Lord Rayleigh considered the effect of a sound wave on a spherical obstacle in the long
wavelength limit, arriving at the famous theory that attenuation is proportional to the
fourth power of frequency (Strutt, 1872, 1896). Since then, numerous attempts have
been made to improve and extend the knowledge of the modification to the sound wave
caused by a particle, for example by including thermal effects (Epstein and Carhart,
1953), or a shell-like coating on the particle (Anson and Chivers, 1993) Considerable
effort has also been expended in determining the effect of the whole set of particles
which exist in an emulsion, each having their own scattering properties. These two
aspects still remain the crucial elements of the scattering theory technique. Firstly, to
determine the effect of a planar sound wave on a single, isolated particle, and secondly to
determine the effect of the ensemble of particles in the dispersion on the sound wave (in
terms of the scattering properties of the individual particles). The following sections
describe the methods for each of these stages. The details may be found in the references,
but sufficient information is given for an understanding of the subsequent discussions and

developments.

4.3.1 General theory of sound propagation

The propagation of a sound wave in a medium can be defined by a single complex
value called the wavenumber which is related to the two measurable parameters — the
velocity and attenuation. The acoustic field properties, such as pressure or displacement,

are oscillatory and include a factor of
exp{i(k r —ml)} [4.3]

where k is the wavevector and its modulus, &, the wavenumber. The time variation,
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exp(-im1), is omitted from all the following equations, since it appears in every field

quantity. It can be seen that the wavenumber is in general given by
k=—1dic [4.4]

where @ is the angular frequency. vis the speed at which the wave propagates and a is
the attenuation. The detectable acoustic mode is called the propagational mode, because
the wave’s energy can travel over considerable distances in this mode. In a homogeneous
fluid the velocity of the propagational mode is the normal sound speed in the medium,

and a the measured attenuation

In addition to the propagational mode, a medium can support two other modes of
acoustic wave motion: thermal and shear waves. Thermal waves are compressional
waves which arise due to thermal conduction. Shear waves are transverse waves which
occur because of viscous effects. The equations of motion and the thermodynamic
relations in the medium determine the wavenumbers of the various modes to be
Ikt

e = ﬂ;{l —i(e, + m)i[l —2ie, - 2if,(y —2) - (e, —x{,)T } [4.5]

where v is the sound speed of the propagational mode and ¢; and /; are given by

A(n+u/2)o (t
U] L. LR (46]
3 pv v
N
k. =(1+i),[=— 47
= )\/2” [47)

where 77/p is the kinematic viscosity (Epstein and Carhart, 1953). A full list of symbols

is given at the end of this thesis. A very good approximation for the thermal mode is
k, :(I+i)‘/£ (48]
20

where o is the thermometric conductivity. It can be seen from equations [4.7] and [4.8]
that both the thermal and shear modes are dissipative (i.e. the real part of the
wavenumber is equal to the imaginary part). The consequence of this is that both of these
modes are strongly attenuated over a distance of only a few wavelengths. The thermal

mode represents energy lost through thermal conduction processes, and the shear mode
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the work done against viscous forces in the fluid or solid. Because of their dissipative
nature, they are only present in the region around the interface where they are produced
and do not contribute to the acoustic field over a long range. They are produced at
interfaces where the properties of the medium changes and are therefore present when

scattering occurs at the emulsion particles.

4.3.2  Plane wave incident on a single particle

The first stage in the scattering theory approach is to consider the effect of a plane
wave incident on a single isolated particle. The key work on this problem was carried out
by Epstein and Carhart (1953) and Allegra and Hawley (1972). The two papers give
approximations at different stages, for example in the wavenumbers, or in the
relationship between the potential and the temperature. For the purpose of completeness
the fullest solution was used in each case in this work. These equations may therefore
look slightly different from either of the two cited works, but are in fact an amalgamation

of the most detailed results from each

The incident wave is a propagational mode, but at the particle surface waves of the
other modes are also produced, both inside and outside the particle. The acoustic field
observed far from the particle is the sum of the incident wave and the outgoing
propagational wave produced at the particle surface. A change of sound velocity is
observed because the addition of these two waves produces an apparent phase change in
the (originally) plane wave. Attenuation occurs because of the energy dissipated in the
thermal and shear modes inside and outside the particle, and also because the energy in
the scattered propagational mode is radiated in all directions, rather than being focused in

the propagation direction of the incident wave
The equations of motion in a fluid are satisfied by a fluid velocity, given by
v=-Vp+VxA [4.9)

where @ is a scalar potential, and A is a vector potential. The acoustic motion can be
described in terms of such potentials: scalar potentials for the compressional modes, and
a vector potential for the shear mode It should be noted that the vector v and its
components refer to the local velocity of the fluid. The scalar quantity v refers to the
speed (loosely also termed velocity) at which the sound wave propagates through the

medium. The determination of the effects of scattering consists of finding appropriate
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potentials which satisfy the boundary conditions at the particle surface. This process is
assisted by the use of partial wave analysis, in which each wave potential is described by
a sum of wave motions having different angular dependencies (spherical, dumb-bell etc.)
Spherical co-ordinates are used with the origin at the centre of the particle, which is
assumed to be spherical at this stage to simplify the symmetry of the problem. The
appropriate radial and angular functions required to construct the wave potentials are the
spherical Bessel functions and the Legendre polynomials. A single frequency is

considered. If the time variation is omitted, the incident plane wave can be written as
Po =" =3i"(2n +1)j,(kR) P, (cosp) [4.10]
n=0

the z-axis being the propagation direction.

A constant factor representing the actual amplitude of the sound wave, which is
related to the acoustic intensity, is omitted for convenience. The acoustic intensity in a
plane wave is equal to the sound speed multiplied by the acoustic energy density (Pierce,
1981, p. 39). This energy density is twice the kinetic energy per volume due to the sound
field. With the use of equations 4.9 and 4.10, the omitted amplitude factor can therefore

be expressed as

[4.11]

where / is the acoustic intensity. The intensity is equivalent to a power per unit area
normal to the propagation direction. All parameters which are proportional to the
incident scalar potential should be multiplied by this factor

The waves produced at the particle by the incident plane wave, can similarly be
written as sums of the radial and angular functions, with unknown coefficients The
planar symmetry of the problem reduces the vector potential of the shear wave to a
single component in the azimuthal direction, written A, = A The amplitude factor is

again omitted in each case. Thus

Pp = ii"(Zn +1) 4,5, (kR) P, (cos0) [4.12]

=

@, = 2.i"(2n+1)B,h,(k,R)P,(cosO) [4.13]
"
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A= ;:‘"(2110 1)C, 1, (k,R) ) (cos6) [4.14]
¢ = ii"(Zn )4,/ (K R)P,(cos ) [4.15]
0, = "Z';‘i"(Zn +1)B, /,(kR)P, (cos ) [4.16]
A'= ﬂz"i"(ZH +1)C, 7, (K R)P) (cos) [4.17]

where j, and /1, are the spherical Bessel and Hankel functions, and 72 and 7' are the

Legendre and associated Legendre polynomials respectively. Primed symbols refer to the

interior of the particle

The terms in the series represent different modes of scattering, defined by their
angular dependence. The zero order mode is spherically symmetric, caused by pulsation
of the particle, whereas the first order mode represents dipole radiation, caused by
particle movement forwards and backwards along the incident wave direction. Strutt
(1896) showed that a disturbance of compressibility acted as a zero-order source of
waves (that is, spherically symmetric), whereas a disturbance of density acted as a dipole
source. In the long wavelength limit, the lower order scattering modes are most
significant and the series can usually be truncated above the first order mode. Hence, the
partial wave analysis scattering approach lends itself to a description of ultrasound
propagation in the long wavelength regime. At higher frequencies the higher order

scattering modes become more significant and all the terms in the series are important

The effect of the spherical particle on the sound wave is encapsulated in the
coefficients of the scattered waves, particularly in the scattered propagational mode,
which will be present at large distances from the particle. The coefficients A, are called
the single particle scattering coeflicients for this reason. These coefficients describe how
the sound wave is modified by the presence of the particle The coefficients are
determined by applying boundary conditions at the particle surface, R = . It has been
shown, however, that the equations are identical if the displacement of the particle
surface is also taken into account (Chow, 1964). The six boundary conditions which

must be satisfied at the particle surface are the continuity of velocity, stress, temperature
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and heat flux. The velocity and stress conditions each include three components, but the

azimuthal symmetry due to the planar incident wave reduces this to two in each case

The boundary equations for fluid particles were given by Epstein and Carhart
(1953) and later converted for solid particles by Allegra and Hawley (1972). The
conversion is simple — the fluid's viscosity is replaced by a modified bulk modulus for the
solid, thus

)

= (~m71) [4.18]

All terms for the solid material are also multiplied by a factor of ~i@ . This factor arises
from the use of a displacement potential in the solid case, whereas a velocity potential is
used in a fluid (equation 4.9) All time derivatives are equivalent to multiplication by this

factor. The details are given by Allegra and Hawley (1972)

In applying the boundary conditions at the particle surface, the physical quantities
of temperature, stress etc. must be related to the wave potentials. The velocity is simply
derived from equation 4.9, with equations 4.10 to 4.17. The relationship between
temperature and the wave potential can be derived from the energy equation and
thermodynamic relations, and is found only to be related to the scalar potentials. The
shear mode does not contribute to any temperature change in the medium, so only the
thermal and propagational modes involve heat terms. If the symbol 7" denotes the

deviation in temperature from the ambient value, then this change is related to the scalar

potential by
T=Go [4.19]
where
~ik*(y -1
Go_—®r=1) [4.20]

: 2
mﬂ[l + ot ]
@
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The stress component P, is made up of two terms: the pressure and the viscous stress
For the scalar modes, which contribute to the hydrostatic pressure, these terms combine
to give
g
Jri = (imﬁ - 2:]/(7)(/v -2 o [4.21]
a

The shear mode only includes viscous stress terms

9 2 Al
=l [sin A +1(1J [422]

sin@ A9 R RA

The other stress component, 7,4, is given by

é(e I(“vﬂ)
P.=2 v,(*? LX) 423
=T\ RaR 2

for the compressional modes and

24 A\ |1 ﬂ( 1@y )
PR 16707 ) T X G 424
”{(R’ FR’) 26\ sng 261" ] e

for the transverse (shear) mode

Boundary conditions must be applied at the surface of the particle, which is a
sphere of radius 7. It is clear that the omitted amplitude in each wave function is a
common factor in each equation, and therefore has no effect on the solution for the
coefficients. The boundary conditions for fluid particles in a fluid medium are therefore
(in the order: radial velocity, temperature, heat flux, the /’,, stress component, tangential

velocity and the 7, stress component)
i (a) + A,ah a) + Bh(B) - Cn(on + i ()

= A j(a)+Bb ()~ Cn(n+1)j,(c) [4.25]
G,j(@)+G,Ah(a)+GBh,(0)=G,4,],(a)+GB,j(5) [4.26]

n'ln

oG @i, (@) + G, A,ahi(a) + G,Bph (b)) = (G, A0, (a') + B (b)) [427]
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[(Imp 217k")v/,‘ (a)—2nk’ j, (u)] + 4, [(imp - 27//(’)/1” (a) - 21]/(’/1,:((1)]

‘lh,"’, (");h». (:)]

4B, |(i0p 2k Y, (8) ~ 20k} (5)] + 2000 + i, [

= Al 2087 fa) - 2087 ()]

B [(ar ~20k)1, () - 20k 11 (b )]

ol [fL’?'ﬂ‘izgﬁ(‘J e
Jua) s A (@) + B ()~ C, [, (c) + ch(o)]

= A7) e B) - L) e )] [429]
(@)~ 1, @)] + na,[ah @) b, (a)] + B, [, (5) - 1 (8)]

[+ (o n-2)n (o)
= Afasfa) i) e nB i) - 0e)]
S AC[iE) e =2)s ()] 430]

where (5, and G, are the thermal factors calculated from equation 420 for the
propagational and thermal modes respectively. A primed function represents a spatial

derivative. Otherwise, prime denotes the dispersed phase inside the particle

The solution of this set of equations for each mode (denoted by 1) produces a
value for the single particle scattering coefficient, A,, of that mode. The fifth and sixth of
these equations (for the tangential velocity and the stress P,) are invalid for the zero
order mode, because the angular function factor which was cancelled throughout is zero
in this case. No shear waves are produced in the zero order mode. Although analytical
results can be obtained in special cases, the general solution for the scattering coefficients
is calculated numerically. A discussion of the special limiting cases of the single particle

scattering properties is reserved for a later section
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4.3.3  Effect of many scattering centres : single and multiple scattering

Having determined the coefficients of the scattered waves generated when a plane
acoustic wave impinges on a particle, it is necessary to consider the effect of an assembly
of such particles (for example in an emulsion) on the velocity and attenuation of the
wave. It is these quantities which can be measured, and can provide information on the

properties of the system

Strutt (1872, Baron Rayleigh), estimated the energy lost from a sound wave by
comparing the amplitude of the scattered and incident fields at large distances from the
particle. For small particles he found that the scattered intensity was proportional to the
inverse of the fourth power of the wavelength. He used this result to explain why the sky
is blue. However, this was only for a single particle, and he neglected thermal and shear
waves. In their work on scattering in dispersed systems, Epstein and Carhart (1953) and
Allegra and Hawley (1972) similarly defined the attenuation of the wave by calculating
the energy in the scattered propagational mode at a large distance. At this distance, both
the thermal and shear modes have fully dissipated and contribute a negligible amount
These studies each assumed that the effect of the particles was additive, so that the total
energy lost was proportional to the number of particles. Thus, their attenuation result
might be called a single scattering theory, since scattering by one particle is considered to

have no effect on other particles. The result for the attenuation coefficient is

36 N\
R 2n+1)Re A, 431
21(( r ( ) l !
=)
These authors were only concerned with attenuation and did not derive expressions for

the velocity in the suspension

A sound wave propagating through an emulsion will of course interact with more
than one particle. The acoustic field surrounding a particle is the sum of the incident
plane wave and the scattered fields from all other particles. The single scattering
approaches used by Epstein and Carhart (1953) and Allegra and Hawley (1972) are
limited to dilute dispersions or to very weak scattering. In these circumstances, the
proportion of the acoustic field incident on a particle which is due to scattering at other
particles is negligible. As the concentration of particles in the sample increases, the

scattered field due to all other scatterers becomes a significant proportion of the acoustic
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field incident on a given particle. Analysis of the propagation characteristics in this case

is called multiple scattering theory

There have been various approaches to the multiple scattering problem in a
dispersed system. An early multiple scattering model was applied by Urick and Ament
(1949). They used a "thin slab approximation” to obtain the effective wavenumber of an
emulsion in terms of the single particle scattering amplitudes. They calculated the
forward and backward scattered wave amplitudes from a thin slice of dispersion (much
smaller than the wavelength) in terms of the scattering coefficients. These were then
compared with the reflected and transmitted waves which would be obtained from a
homogeneous slice of fluid with a given wavenumber. Thus the apparent wavenumber of

the dispersion was determined. Their result, to zero and first order scattering modes is

K _(,_3i¢ B
[k,z) D (l kr Anj(l k'r? A‘j (52

The scattering calculation assumed that each particle in the slice experienced the same
acoustic field, so neglecting the influence of the scattered waves transverse to the
propagation direction. In other words, only longitudinal multiple scattering is allowed,
not transverse multiple scattering. The result given by Urick and Ament (1949) therefore

omits some terms included by later workers.

Later work on multiple scattering has approached the problem in very different
ways. The two theories which are widely used for the analysis of ultrasound
measurements and have formed the basis for this work are by Lloyd, Berry and Ziman
(Ziman, 1966, Lloyd, 1967a, 1967b, Lloyd and Berry, 1967) and by Waterman, Truell
and Fikioris (Waterman and Truell, 1961, Fikioris and Waterman, 1964) Waterman and
Truell (1961) determined the wavenumber in a dispersion by using the hierarchy method
and ensemble averaging to obtain the acoustic field. These methods were introduced by
earlier workers (Foldy, 1945 and Lax, 1951, 1952). The ensemble averaging processes
involves an average over all possible configurations of particle positions. The hierarchy is
formed from the relationship between the ensemble average with n particles in fixed
positions to the ensemble average with n+ / particles fixed. The total field which would

be observed is the ensemble average with no particle positions fixed
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Waterman and Truell calculated the acoustic field present in the region of a
scatterer, due to the incident wave and to the scattered fields from all other particles. The
termination of the resulting hierarchy of equations in order to obtain a solution can only
practically be done at the first level — the exciting field at a scatterer is considered to be
equal to the total field there (although the total field would include the contribution from
the scattered field from the same particle). The exciting field at a particle at position ry is

therefore the sum of the incident wave and the scattered fields from all particles. Thus

((/r" (r|r| )) = @o(r) + J.dr'n(r')T(r'Km" (r]r» [4.33]

using the notation of Waterman and Truell (1961). The superscript /= denotes the
exciting field at a particle. The scattering operator, 7. defines the scattered wave
produced at the particle in terms of the exciting wave. In the partial wave formulation, it

can be described by the transformation
1(r, )_/'"(k|r = r,|)l’"[cosl9(r -1 )] = A"h"(lr|r - r,])l’"[cosﬁ(r —f; )] [4.34]

The case of a plane wave incident on a dispersed medium of randomly distributed
spherical point-like scatterers is obtained by writing the total field (or exciting field) in
the region of a particle in a form similar to those used to calculate the scattering

coefficients
<(p" (rfr, )> = Z E,(2,) . (k]r - r,|)2, (cosO(r -, ) [435]

The solution proceeds by assuming a planar form for the acoustic field in the propagation

direction, so that
L, (z,) = I exp(iKz,) [4.36]

where K is the effective wavenumber of the dispersion. Equations 4.10, and 4 35-4.36
are substituted into equation 4.33. Following the spatial integration over the dispersion,
the wavenumber is calculated by matching the coefficients of the plane wave solutions in

the unperturbed wavenumber k and the effective wavenumber of the medium K .

The first attempt by Waterman and Truell (1961) produced a wavenumber which
agreed with the single scattering attenuation derived by Epstein and Carhart (1953) and

Allegra and Hawley (1972). It also agreed with the thin-slab approximation of Urick and
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Ament (1949). However, a later determination of the integration stages of the calculation
by Fikioris and Waterman (1964) corrected an earlier error in the exclusion of particle
interpenetration. They obtained an infinite series of equations to be solved for the
wavenumber and for the amplitudes of the modes of the exciting field An explicit
solution for the wavenumber can be obtained by terminating the series above the required
scattering mode, for example to include only zero and first order scattering modes. In
this case the wavenumber is given by
(k‘l)flf i,’ﬁ(Aﬂ +34,)- %f’; (4,4, +247) [4.37]
1

The work of Lloyd and Berry (1967) provides a different approach to the problem
of calculating the wavenumber of a dispersion in terms of the single particle scattering
amplitudes. It forms part of a series of papers (Ziman, 1966, Lloyd, 1967a, 1967b and
Lloyd and Berry, 1967) concerned with the density of energy states in a medium and in
deriving the refractive index (which is proportional to the wavenumber). The acoustic
problem was found to be closely related and the calculation of the effective wavenumber
is produced almost as a side issue. It has been found to produce reliable results in many
systems, and has been widely adopted as the correct form of the multiple scattering
theory result. The series is terminated here after the second-order scattering terms, since
these are in most cases sufficient to describe the propagation. The wavenumber in the

dispersion is given by
K’) 3ig ( > )
— | =l—== 2n +1)A
(5)1- 24 (Zene mm,

. 27¢7
kfr®

(A‘.A,Jr?/i,,A, +2A,’+IIA,A2+%A;) [438]

The result agrees with the Fikioris and Waterman (1964) result, equation 4.37, to the
first order scattering mode. Higher orders have not been compared. Lloyd and Berry
(1967) includes many references to earlier work on scattering, including the many

different approaches to the multiple scattering problem

Equations 4.37 and 438 form the basis for the theories of interpretation of
ultrasound measurements in this work. Although the Lloyd and Berry and Fikioris and

Waterman results agree, the approach used by the latter workers is much more
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straightforward and easy to understand. The Lloyd and Berry methodology is rather
opaque to those not familiar with their particular field of work, and therefore any
modification of their theory to include additional effects would be difficult. The
Waterman and Truell approach offers the possibility to generalise the theory to
compensate for some of the effects discussed in the next section, such as a non-random
particle distribution. Such modifications have not, however, been attempted in the

present work

4.4 Assumptions of scattering theory

As with any theory, the single particle scattering theory and the multiple scattering
theories make a number of assumptions about the system in order to obtain a result for
the wavenumber in a dispersion. It is in these assumptions that the restrictions of
applicability of the theory may be found, but also the possibility of modification in order
to obtain a more general result. Some of the basic assumptions were discussed by the
original authors of the work presented in the previous sections. The assumptions listed
by Epstein and Carhart (1953) are that the momentum equation is used in the Navier-
Stokes form, thermal stresses are neglected, the gradual changes in temperature and
pressure caused by the wave are neglected, no phase changes are allowed (vaporisation
or crystallisation), the equations are linearised with respect to the oscillatory variations in
the field quantities (velocity, pressure etc.), and that the temperature variation of the
viscosity and heat conduction is neglected. These preliminary assumptions pose no real
problem to the application of the work to emulsions. However, other restrictions are
applied which do have implications for the applicability of the theory. In this section,
those assumptions which have a bearing on the application of ultrasound measurements
in food systems are examined, especially those relating to the multiple scattering theory

formulation

4.4.1  Scattering is weak

Most scattering theories rely on the premise that the scattered wave amplitude is
small compared with the incident wave. For food systems, this is usually satisfied unless

resonant scattering occurs, such as in the presence of bubbles
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4.4.2  System is static

Each particle is assumed not to move during the sound wave oscillation other than
in the acoustic field, otherwise its movement will affect the way it interacts with the
sound wave. The characteristic times for creaming and diffusion (the dominant kinetic
processes in a colloidal dispersion) are typically much longer than the duration of the
ultrasound pulse used to probe the emulsion (a few microseconds). Therefore the

particles may be considered to be stationary

4.43  Particles are spherical

The boundary conditions for the single particle scattering coefficients are applied at
the surface of a sphere. Many emulsion droplets which have a coating of emulsifier or
stabiliser on their surface are approximately spherical. However, the effect of the coating
itself is usually ignored, simply treating the particle as purely of the dispersed phase
substance. Some analyses have attempted to include the “shell” around the particle
(Anson and Chivers, 1993), but it is rather difficult to define the material properties of
such an adsorbed layer. The problem of non-sphericity also occurs in crystallised
emulsion droplets, in which the fat crystals may be needle-shaped rather than spherical
However, experimental measurements on such systems seem to indicate that even in this
case the assumption of sphericity can produce good results. The determination of the
scattering coefficients experimentally, as described in the next chapter, overcomes this
problem, since the actual scattering properties of the system are measured, rather than

predicted theoretically.

4.4.4 Infinite time irradiation

The multiple scattering theories appear to assume that the sample has been
irradiated with a continuous ultrasound signal for ever. This is implicit in the inclusion of
the influence of scattered waves from all other particles at any distance from a scatterer,
regardless of the time taken for those waves to reach it. The “exciting field” at a scatterer
used by Waterman and Truell (1961) is integrated over the complete half-space, so
including scattering from particles an infinite distance away. In reality, a short ultrasound
pulse is used to stimulate the emulsion, and therefore multiple scattering will only be
possible on a very local basis. Delayed multiple scattering from more and more widely

separated scatterers will be received at later and later times. The real samples are also
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finite in extent, rather than infinite as assumed in the model The Lloyd and Berry (1967)
approach is more difficult to describe in these terms, but they also seem to consider a
“soup™ of acoustic field in the medium, almost in a long-time steady-state model In
principle, it must be possible to include a time-delay factor in the scattered fields, in a
similar way to the modifications of electromagnetic theory for relativistic effects. The
influence of these assumptions on the scattering theory results is difficult to assess
However, it is likely that the strongest influence on multiple scattering occurs due to the
particles which are closest together. Therefore the correction for finite samples and short
pulses is likely to be small and to affect only the multiple scattering term (single

scattering is unaffected)

4.4.5 Point-like particles

The analytical multiple scattering results for the wavenumber (equations 4.37 and
4.38) were obtained by assuming a random particle distribution and point-like particles
This considerably simplifies the integration steps of the problem and reduces the number
of parameters required to describe the system. The scattering properties of the individual
particles, incorporated in the single particle scattering coefficients, do include the effects
of particle size. It is the determination of the combined effect of a dispersion of such
scatterers which assumes them to be point-like, for the purposes of the spatial

integration.

Real particles obviously have a finite size, and therefore other particles are
excluded from the region inside and immediately around the particle. However. if the
particle distribution is random, apart from the excluded volume of the particle itself, then
the approximation will not be overly restrictive. This is because the single particle
scattering will still depend approximately on the number density of particles. The effect
of the excluded volume will again influence the multiple scattering effects, which are

significantly weaker than the dominant single-scattering effects

4.4.6 Random particle distribution

As described in the previous section the particle distribution is assumed to be
completely random, although the multiple scattering analyses do retain the generality of
an arbitrary distribution for as long as possible. In a flocculated emulsion, the particle

distribution is not random, and particles are more likely to be closer together than in a
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non-flocculated emulsion. Modification to the single scattering terms can only arise due
to a difference in the summation of the scattered waves from non-randomly distributed
particles. Multiple scattering is influenced by the greater proximity of particles to each
other, probably leading to stronger multiple scattering. The quantitative effect of the
non-randomness of the particle distribution is not known, nor whether it is likely to be a
significant effect in flocculated systems. Its determination is probably only possible
through numerical solution of the general analytical equations provided by workers such
as Waterman and Truell (1961) before resorting to the random, point-like assumption. A
calculation of the magnitude of the correction, especially for the single scattering result,

is required in order to indicate the significance of this effect in flocculated systems

4.4.7  No overlap of thermal and shear waves

The multiple scattering theories assume that the thermal and shear waves produced
at the particle surface have no influence on nearby particles. Multiple scattering only
occurs due to the scattered propagational modes. This is certainly valid at high
frequencies or very low concentrations where the dissipation length (skin depth) of both
thermal and shear waves is much shorter than the average distance between particles
However, for many emulsions this is not the case, and it is possible for a substantial
amplitude of the thermal or shear waves produced by one particle to be present at the
surface of another particle. The effect on the velocity and attenuation occurs through the
conversion of the thermal or shear component back into a propagational mode on
scattering by another particle. This is clearly a multiple (not single) scattering effect but
its magnitude is not known. It will be most significant when flocculation occurs, since the
particles are more likely to be closer together and therefore the waves overlap to a
greater extent. Waterman and Truell (1961) invoked symmetry arguments (the incident
wave is planar) to suggest that the shear waves will have no effect on multiple scattering
It is necessary to extend the analysis to include thermal waves in the "exciting field"
incident on a particle (which consists of the incident wave and the scattered waves from
all other particles). It may only be possible to quantify the effect of thermal wave overlap

through numerical simulation
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4.4.8 No interactions between particles

Each particle is assumed to be free to move independently of the other particles. In
multiple scattering theory, the scattering properties of a single particle are used to
characterise the sample. If there are connections between particles, their movement in
response to the sound wave may become more co-operative, so that the scattering
properties are determined by the whole dispersion or local arrangement of particles,
rather than by each particle individually. This may occur in a flocculated system, in which
the sound wave is scattered by a floc, rather than by the component particles. However,
the "bonds" between weakly flocculated particles tend to be rather loose and may be
insignificant in terms of the particles' response to the sound wave. There may also be
some interaction between the oscillatory energy supplied in the acoustic field and the
breaking and reforming of such connections in a floc. This is another unquantified effect

on the ultrasound propagation, but it is only likely to be relevant in flocculated systems.

4.49 No phase changes

The particles are assumed to be solid, or fluid, but are not allowed to undergo a
phase transition during the passage of a sound wave. This was mentioned by Epstein and
Carhart (1953) for the vaporisation of liquid droplets in a fog. It is also relevant to
crystallising or melting droplets in an oil in water emulsion. The theory assumes that each
droplet is either completely solid or completely liquid and that its phase is unaffected by
the sound wave. Whilst this is true in most cases, it is conceivable that, if the energy
barrier to the phase change is of the order of the fluctuation in thermal energy caused by
the sound wave, the oscillation of heat in and out of the particle may involve a phase
change of the particle. In this case, the scattering coefficient must include an additional
term due to the heat involved with the phase change. This effect may be a way of

observing the dynamic crystallisation of the droplets themselves.

From the assumptions which are discussed above, it can be seen that, in a non-
flocculated emulsion, multiple scattering theory provides a reasonable basis for a
description of ultrasound propagation. The effects of flocculation on the propagation
characteristics are largely unquantified as yet, although there is some experimental

evidence that it can have a marked effect on velocity and attenuation (McClements,
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1994). Theoretically, this may be due to the overlap of thermal waves, to the non-
random particle distribution, to the co-operative movement of particles in a floc, or to
dissipation in the forces between flocculated particles. As yet, no adequate theoretical
description exists of ultrasound propagation in a flocculated dispersion. Future analysis
may require numerical simulation of flocs in a sound field in order to make progress in
this area The issue of melting or crystallisation caused by the ultrasound wave has also

not yet been quantified

4.5 Numerical calculations using scattering theory

The results of sections 432 and 4.33 illustrate that the determination of
ultrasound velocity and attenuation in an emulsion is a non-trivial problem. Although
analytical solutions exist in the long wavelength region for the single particle scattering
coefficients of section 4.3.2, a general solution for polydisperse emulsions, with solid or
liquid droplets is only practicable by numerical calculation. A computer program has
therefore been written to obtain the velocity and attenuation in an emulsion using the
boundary equations of section 4.3.2 to obtain the single particle scattering coefTicients,
and equation 4.38 for the complex wavenumber according to multiple scattering theory

The velocity and attenuation in the emulsion are directly obtained from equation 4.4

A flow chart of the computer program is shown in figure 4.1, and the program
code is given in Appendix A4. This program calculates the ultrasound velocity and
attenuation for a set of input parameters, which includes the oil concentration and
particle size distribution as well as the properties of the component phases. An interface
exists by which this calculation links with the model of creaming (chapter 2), or with a
another, “front-end” computer program, to obtain the required data. An example of such
a program which determines the variation of the ultrasound parameters with particle size
and frequency is given in Appendix AS. The program was written in FORTRAN 77, and
uses the Numerical Algorithms Group FORTRAN Library subroutines (mark 15) to
calculate the Bessel functions and to obtain the matrix solution of the complex boundary
equations. The calculations were carried out on the University of Leeds Sun

SPARCenter 2000 and Silicon Graphics Challenge XL servers
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Figure 4 1 Flow chart of the computer program to calculate ultrasound velocity and
attenuation in emulsions, according to scattering theory.
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A few specific points about the numerical calculations need to be considered
Although the formulation of the multiple scattering problem is applicable over a range of
frequency (if sufficient terms are included in the series), the numerical calculation is
restricted to the low frequency region by the spherical Bessel functions. As the frequency
increases, the imaginary part of the argument of the Bessel functions increases for the
thermal and shear waves. Since the Bessel functions are periodic, it becomes impossible
to obtain an accurate result for their value. A consideration of how to extend such
calculations beyond the low frequency region is presented by Anson and Chivers (1993)
and other workers. The majority of ultrasound applications in the colloid field satisfy the
long wavelength condition, and it is also in the long wavelength limit that the simplified
relationships developed in the next chapter are applicable. Therefore, the formulation of
the previous sections was used directly, without recourse to special numerical techniques

to avoid these difficulties

The computer program is able to calculate the single particle scattering
coefficients, 4,, for any scattering mode, n (the operator can choose which modes to
include). For the purposes of this study only coefficients up to the second order mode
were calculated. The complex wavenumber of the emulsion is determined using equation
438, up to second order in particle concentration. One numerical detail is that for the

first order scattering mode, the terms in the boundary condition 4.30 for P, are
modified, using the relationship
aj,(a) - jy(a) = ~ai, (a) 4391
for both the Bessel and the Hankel functions. For small arguments, the difference on the
left hand side of this equation is very small, and so is more accurately calculated from the
second order function

The wavenumber derived from multiple scattering theory assumes that all particles

(scatterers) are identical (the same size and material). It is relatively straightforward to

show that. in a dispersion which includes different scattering species, the terms

M‘A [4.40]

r

in equation 4.38, should be replaced by
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$,4,
Py [4.41]

where the sum is over the different scattering species. Equation 441 is an average
according to the number density of scatterers. This is relevant to dispersions in which
there are particles of different sizes (polydisperse) or some solid and some liquid
particles. The single particle scattering coefficient must be determined for each species of
scatterer separately: for each size of particle and for solid and liquid particles. The
scattering coefficients for solid scatterers are obtained by converting the equations 4 25
to 430 in the way specified by Allegra and Hawley (1972). The shear viscosity of the
fluid is replaced by the bulk modulus of the solid in the form given in equation 4.18. In
addition, all the terms in the boundary equations relating to the solid droplets must be
multiplied by a factor of —i@ . In the computer program, the solid droplets are assumed
to be of the same material (solidified) as the liquid droplets, so that the particle size
distribution is simply converted for solid droplets using the ratio of the solid to liquid
densities. The proportion of particles which are solid at each radius must also be
specified. The computer program calculates the combined scattering coefficient, given

the particle size distribution, and the proportion of particles which are solid

A numerical solution for the ultrasound propagation parameters of velocity and
attenuation can therefore be calculated for any polydisperse, mixed solid/liquid emulsion
This allows the comparison and development of ultrasound theories applicable for the
interpretation of experimental measurements on emulsions. The interpretation of
ultrasound velocity measurements of creaming in emulsions was of particular interest,
such as those obtained from the equipment shown in figure 1.1. These emulsions are
generally polydisperse and the particle size distribution at any height varies with time
Therefore it was vital to be able to calculate the predicted ultrasound velocity for any
given oil concentration and particle size distribution. This work was aided by the
computer modelling of creaming which is described in chapter 2. The model enabled the
construction of fully characterised data on particle size distribution and concentration
profiles which could then be used to compare ultrasound theories and help to develop
new simplified ways of interpreting ultrasound measurements. To this end, the numerical
scattering theory calculations were integrated into the creaming model described in
chapter 2, allowing the calculation of the ultrasound velocity and attenuation predicted

by multiple scattering theory for the constructed creaming emulsions. The benefit of the
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computer model is that all of the system parameters are known, whereas in an
experimental system, the particle size distribution is not known as a function of height
and time, and the concentration is only extracted from the measured ultrasound velocity
Therefore, with the computer model and the ultrasound theory calculations, accurate
assessment can be made of the applicability of various ultrasound models in interpreting

the ultrasound data.

The ability to calculate ultrasound parameters for solid and liquid particles in an
emulsion assists in the study of the applicability of simplified scattering theories for
crystallisation experiments in emulsions. Measurements of ultrasound velocity have been
used to calculate the proportion of the dispersed phase droplets which are solid (the solid
fat content) and thereby examine crystallisation kinetics (Dickinson et al, 1993b). The
interpretation of ultrasound measurements in both creaming and crystallising systems is

discussed specifically in chapter 5

4.6 Important limiting solutions of scattering theory

The formulation described in the preceding sections allows numerical calculation of
the ultrasound velocity and attenuation in an emulsion, whose properties are known
These calculations are not convenient for routine use in interpreting ultrasound
measurements. In some cases, however, simplified forms of the velocity and attenuation
exist, which may be more appropriate and more easily implemented. The numerical
calculations were used to investigate the limiting forms of the scattering theory results, to
establish simpler expressions, and to determine the conditions under which these might

be applied

The applications of ultrasound measurements in colloid science are usually in the
long wavelength limit (the wavelength of the sound wave is much larger than the particle
size). The wavelength of sound in pure water at 30 °C is approximately 1.5 mm at
1 MHz, compared with the colloidal particle sizes of approximately 1 pm. It is in this
region that the useful simplified theories of ultrasound propagation can be applied. At
higher frequencies the variation of velocity and attenuation with frequency can be very
strong and is more difficult to predict. Therefore, all the further work on ultrasound
propagation is restricted to the long wavelength region. This limit is sometimes called the

Rayleigh limit, after Lord Rayleigh who first investigated the scattering of sound by
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obstacles, and determined the scattered intensity under the long wavelength condition
(Strutt, 1872, 1896). The definition of the long wavelength limit is given by
kr <1 [4.42]
or in terms of the wavelength, and defining the inequality
2 1 [4.43]
A 10

In the long wavelength limit, the ultrasound velocity and the attenuation per
wavelength (a4 ) vary with the parameter ;Ji which is proportional to the thermal and
shear wavelengths. The limit of the long wavelength region can be written in terms of
this parameter as

1 <= [4.44]

20

showing that at smaller particle sizes the limit occurs at smaller values of the scaling
parameter. Conversely, at higher frequencies but with the same particle size, the long
wavelength limit applies for a smaller range of the scaling parameter r\/7 Thus the
velocity and attenuation variation discussed in the following sections, which apply in the
long wavelength region, must be truncated at the limit defined by equation 4.44. For
smaller particle sizes, some of the features at large values of the scaling parameter may
be absent, because they would occur outside the long wavelength region.

The ultrasound velocity and attenuation over a range of frequency and particle size
were calculated numerically for a nominal 20 vol. % sunflower oil in water emulsion at
30 °C, and are shown in figures 4.2 and 4 3. The particle radius used for the calculations
was 50 pm in order to obtain a large range of the scaling parameter r\/7 within the long
wavelength region. The physical data of the component phases which is required for the
ultrasound scattering calculations is shown in table 4 1. These are identical to the

emulsion properties used in the modelling of creaming behaviour (chapter 2)



Ultrasound speed / m s

~l7d=

Inertial limit,

1495 A no thermal effects
e v
1490 Viscous limit, < ale
© Inertial limit.
no thermal effects swith thermal
g effects
1485

h g
Numerical solution
1480

Viscous limit,

1475 A with thermal effects

1470

r % mg'?

Figure 4.2 Ultrasound velocity as a function of the scaling parameter I‘/i for a

20 vol.% sunflower oil in water emulsion at 30 °C

Attenuation per wavelength o). / dB

I Viscous limit.

with thermal effects o © Inertial limit. with

thermal effects

/
Numerical solution

10
o
10”4 :
e Inertial limit.
10" v N no thermal effects
//

i
5 7 i imi
10 P Viscous limit,
no thermal effects

|
10"

Figure 43 Ultrasound attenuation per wavelength as a function of the scaling parameter

ry/f for a 20 vol % sunflower oil in water emulsion at 30 °C



=175 -

Water Sunflower oil
Ultrasound velocity / m s 1509.127 143786
Density / kg m™ 995 .65 9129
Shear viscosity / Pa s 0.0007973 0.054
Thermal conductivity / J m™" s' K™ 0.6032 0.170
Specific heat capacity (at constant 41782 1980.0
pressure) / J kg K!
Thermal expansivity / K™ 0.000301 0.0007266

Table 4.1 Physical properties for sunflower oil and pure water at 30 °C

The data for water were taken from Kaye and Laby (1986). The properties of sunflower
oil were given by McClements (1988)

There are three clearly defined regions. At the low frequency (small particle size)
limit, the velocity is independent of frequency and particle size, and the attenuation scales
with the square of the frequency. At much higher frequencies (or larger particles), but
still within the long wavelength limit, the velocity varies only weakly with frequency, and
the attenuation now scales with the square root of frequency. In the intermediate region,
the velocity and attenuation vary in a non-simple way with frequency and particle size. It
is informative to investigate the limits of this scattering behaviour, as it will assist in

developing simplified methods of ultrasound interpretation

In the regions of relatively straight-forward variation of velocity and attenuation,
simplified analytical results exist for the single particle scattering coefficients. In order to
understand the relationship of these analytical forms to the velocity and attenuation, it is
necessary to derive a more accessible form for the wavenumber of the dispersion. Using
a modified scattering parameter, the multiple scattering theory result, equation 4.37 can

be used to show that

K:k,[Hg-(an +3¢1,)7%l—(a; ~6a,a, —15a7) [4.45)
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g [4.46]

whence the dominant terms in the velocity give

Lo il ? nola? >
=—{1+ ERe(a“ +3a,) - ?Re(u" ~6aya, —15a;) [4.47]

v v,
1
and for the attenuation

| 2 )
o= 5 tg Im(n,, ¥ 3a,) f% Im(a,f - 6aya, — 15a; )'

2
ra,| 14 gRe(a,, +3a,) - %Re(n,f 6a,a, - |Sa,’)‘ [4.48]

Alternatively, the velocity can be written in the form

—= IAZ[I + ¢ Re(a, +3a,) + ¢’(3Reao Rea, + G(Reu,)?)] [4.49]

v |'|
or, equivalently

L. l[(nmean)(l+3¢Rea|)+6¢’(Rea,)’] [4.50]

2
1

An additional term in the velocity equations was neglected, since the attenuation in the
continuous phase is small, and the imaginary part of the modified scattering coefficients
(4.46) are also much smaller than their real part. The second term in the attenuation of
equation 4.48 is often neglected, especially if only the first order in concentration is of
interest. However, the first order contribution to the second term may not be negligible
compared with the second order contribution to the first term. Therefore both terms have

been given here.

It is clear from equations 447 and 448 that the first order effects (in
concentration) on the velocity are related to the real part of the modified scattering
coefficients (4.46), and on the attenuation to the imaginary part of these coefficients. In
order to understand the variation of the velocity and attenuation with particle size and
frequency, the special cases of the modified scattering coefficients must be found.

Simplified results for the single particle scattering coefficients can be obtained by making
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a number of assumptions about the properties of the materials Table 4 2 defines the
conditions used to obtain the limiting analytical cases of the coefficients for fluid particles
in a fluid medium. In the long wavelength limit, all of these conditions are valid for most

fluids

Condition Description

hr <1, k'r <1 Propagational wavelength much larger than particle radius

(Rayleigh limit)

k? Thermal wavelengths much smaller than the propagational
240 [P

-«
k; wavelengths

2 Shear wavelengths much smaller than the propagational
S 1
k! wavelengths

, @ ., @ |Attenuationinbulk phases negligible

Table 42 Criteria applied to obtain limiting values of single particle scattering
coefficients for fluid particles

The zero order scattering mode represents spherically symmetric scattering. In the
long wavelength limit, the zero order scattering coefficient for fluid particles in a fluid

medium is given by

N G
An:’f"—'{”_",l)uk:- —"[I s [451]
3 \pk G, K
where
-y
o h®) o ) sl

b)) 7 b (b))

(Epstein and Carhart, 1953 and Allegra and Hawley, 1972). The coefficient consists of

two terms, and can be written as



- 178 -

Ay = Ao+ Ay, [453]

The limiting analytical values of these terms under various conditions are given in table

43

The first term of equation 4.51 can be simplified by substituting the propagational
wavenumber (4 4), and using the Wood equation 4.1 for sound speed. The real part of
the modified scattering coefficient (equation 4.46) is therefore proportional to the
difference in compressibility between the two phases, as shown in the table. This result
was obtained by Rayleigh (Strutt, 1872, 1896) (although Rayleigh incorrectly converted
the sound speed, density and compressibility relationship). He considered the problem in
the absence of thermal and viscous effects (no thermal or shear waves were included, no
shear stress was present and the thermal boundary conditions were neglected) Thus the
only waves to be considered were the incident, internal and scattered propagational
modes. The continuity condition at the boundary was imposed on the radial velocity and
the pressure. This illustrates that the first part of the zero order scattering coeflicient is

not influenced by thermal effects

An examination of the radial velocity and pressure in the long wavelength limit for
the incident wave and the propagational wave inside the particle, shows that the ratio of
these properties for the two modes is in proportion to the compressibility. By definition,
the compressibility of a material defines the fractional change in volume caused by a
given pressure. For a spherical surface, this volume change is directly proportional to the
radial velocity at the surface. The propagational wave inside the particle produces a
different radial velocity for the same pressure from that caused by the incident wave
because of the compressibility difference between the two materials. Therefore, a
scattered propagational wave must be produced to maintain the continuity of radial
velocity as well as pressure. Thus the amplitude of the scattered wave is proportional to

the difference in compressibility of the internal and external materials

The radial velocity of the propagational modes in the absence of thermal waves is
in phase with the incident wave (this is the case considered by Rayleigh, but he also
neglected shear stress). However, the phase of the radial stress for the scattered
propagational mode varies with frequency, as shown in figure 4 4. At low frequencies the
viscous stress dominates in the scattered propagational wave, but the pressure term is

predominant in the incident and internal propagational waves At the high frequency
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Table 4.3
The criteria in table 4.2 must also be satisfied.

Limiting analytical expressions for the zero order single particle scattering coefficient for fluid particles.
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Figure 4.4 Phase angle of the stress at the particle surface for the zero order mode of
20 vol % sunflower oil in water at 30 °C in the absence of thermal effects

o is the incident wave, and the scattered propagational mode.

limit, the pressure is most important in the radial stress for the scattered wave, and
therefore the stress is in phase with the incident and internal waves. This variation due to
the viscous stress does not have a significant effect on the modified scattering coeflicient,

since the stress is dominated by the incident and internal wave modes

Comparison of the first term of the zero order coefficient in table 4.3 with
equations 447 and 4.48 shows that its effect on the velocity and attenuation (to first
order in concentration) is independent of frequency. The attenuation must be determined
carefully, since in this case both terms in equation 4.48 must be included. This is in
contradiction to Allegra and Hawley (1972) who used the form of equation 431 to
calculate attenuation, which omits some significant terms in this case. For the other
scattering coefficients Allegra and Hawley's and Epstein and Carhart's expression for
attenuation (4.31) is an acceptable approximation, because the losses due to the

scattering mechanisms are much larger than the attenuation of the bulk phase

The second term in the zero order scattering coefficient (equations 4.51 and 4.53)

incorporates the thermal effects. For fluid particles this is due to the difference in the
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temperature-pressure coupling in the different materials. For a given pressure, the
temperature generated by the incident wave or the propagational mode inside the particle

is proportional to the parameter

[3-, [4.54]
PC,

for each material in the long wavelength limit (equations 4.19, 4.20, 4.10, 4.15). This
parameter also represents the factors in the heat flux in the material. The effects of shear
stress on the zero order mode can be neglected for the incident and internal
propagational modes in fluids, so the pressure is the only contribution to the stress. For
solid particles, the shear terms in the stress are more significant and so the shape
deformation plays a part in the temperature difference. The contributions to the
scattering coefficient are more difficult to isolate when thermal effects are included,
because there are four waves generated at the particle surface, and four boundary
conditions to be satisfied However, it is clear that the thermal waves must be generated
to maintain the continuity of temperature at the particle surface, given that the incident
wave and the propagational wave inside the particle produce a different temperature
change for the same pressure field. The differing heat flow properties inside and outside

the particle also contribute to the magnitude and phase of the generated waves

The value of the thermal term varies with frequency and particle size, and is
determined by the magnitude of the thermal wavelength in the two materials. The form
of the scattering coefficient contribution due to thermal effects is given in table 4.3
When the thermal wavelength is much larger than the particle size (low frequency) the
term takes the first form in the table. The contribution to the velocity (compare equation
4.47) is independent of frequency in this region, and the attenuation (equation 4 .48)
varies as the square of frequency. If the thermal wavelength is much shorter than the
particle size (“high™ frequency), the thermal effect in the scattering coefficient takes the
second form of table 4 3. The effect on the velocity is much smaller in this region and
decreases as the frequency (or particle size) increases. The thermal effects become
negligible at sufficiently high frequency. This may, however, no longer be in the long
wavelength region for which the analytical results are valid. The thermal attenuation in

the short thermal wavelength region varies as the square root of frequency
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The contributions of the two components (compressibility and thermal differences)
of the zero order mode to the scattering amplitude can be illustrated by examining the
phase of the different wave modes at the surface of the particle. Figures 4.5 to 4.8 show
the phase of the radial velocity, stress, temperature and heat flux at the particle surface
for each of the wave modes inside and outside the particle. The presence of the thermal
waves modifies the scattered wave so that its radial velocity is no longer always in phase
with the incident wave. It is clear that the magnitude of the thermal wavelength relative
to the particle size has an effect on the form of the heat flow, radial velocity, stress and
temperature relationship to the incident wave Most noteworthy is that the thermal
effects on ultrasound velocity at low frequency correspond to the temperature in the
thermal waves oscillating 90° out of phase with the other waveforms. At higher
frequencies the temperature oscillations in all waves gradually come into phase with each
other, manifested in the “high frequency” form of the thermal contribution to velocity
The attenuation still increases with frequency because of the greater energy in the

thermal waves at higher frequency.
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Figure 4.5 Phase angle of the radial velocity at the particle surface for the zero order
mode of a 20 vol.% sunflower oil in water emulsion at 30 °C.

O is the incident wave, —— the scattered propagational mode, a the thermal mode, and
- - - - the internal thermal mode.
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Figure 4.6 Phase angle of the stress component 7’,, at the particle surface for the zero
order mode for a 20 vol % sunflower oil in water emulsion at 30 °C

o is the incident wave, the scattered propagational mode, & the thermal mode,
and - - - - the internal thermal mode.
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Figure 47 Phase angle of the temperature at the particle surface for the zero order
mode for a 20 vol % sunflower oil in water emulsion at 30 °C

o is the incident wave, the scattered propagational mode,A the thermal mode.
and - - - - the internal thermal mode
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Figure 4 8 Phase angle of the heat flux at the particle surface for the zero order mode
for a 20 vol % sunflower oil in water emulsion at 30 °C

o is the incident wave, the scattered propagational mode, A the thermal mode,
and- - - - the internal thermal mode.

Analysis of the first order scattering mode is more complicated due to the
contributions of the shear waves generated at the particle surface. Shear waves are
absent from the spherically symmetric, zero-order mode. Two further boundary
conditions are now applied (tangential velocity and the stress component 7,4). In the long
wavelength limit, for fluid particles in a fluid medium, the first order scattering

coefficient is given by

2 ""[ﬂ— |]L [4.55]
’ 35 D LD
where
L =h()0(c) - gch, (@) [4.56]

P n\p

D= Q(c'){s;,”? hy(c) + 2(3 - 1)/1u (‘-).\ - l( ity Z)L'h|(c)jz () [457)
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o) = i)~ 2(1 3 ,’}’;),/,(v') [458]

(Epstein and Carhart, 1953, Allegra and Hawley, 1972)

The angular dependence of the first order mode has a dipole form, corresponding
to the displacement of the particle backwards and forwards with the sound field. It is
easy to see that there are two factors which will affect particle movement relative to the
surrounding fluid — its inertia, and the viscous drag of the fluid The particle’s inertia
determines how fast (and how far) the particle will move in response to the applied
pressure of the incident field. The viscous stress determines the restorative drag force
exerted by the fluid on the particle. In general, both of these effects influence the
scattered field Their relative contributions are determined by the frequency and particle
size, and the scattering coefficient is therefore frequency dependent. However, two

important limits exist in which either the inertial or viscous effects dominate

When the wavelength of shear waves is much shorter than the particle size (“high”
frequency), the effect of the inertia of the particle is much stronger than the viscous drag
The motion of the particle caused by the incident pressure is different from the motion of
the fluid (because of their different density). The viscous drag is insufficient to force the
particle to move with the surrounding fluid, so the particle moves out of phase with it
The fluid then appears to the sound wave to have an additional inertia due to the
presence of the particle. The scattering coefficient takes the second form given in table
4.4, if the particle is very viscous. A more general result is complicated. The additional
inertia due to the particle is contained in the factor
zﬂpf 3 [4.59]
This may be called the inertial limit. Rayleigh considered this problem in the absence of
viscous drag from the surrounding fluid, by neglecting the shear waves. Thus the term
represents the limit of negligible continuous phase viscosity compared with inertial
forces. Thermal waves were also neglected by Rayleigh, but in the long wavelength limit
the coupling between thermal and viscous effects in fluids is negligible anyway. The
contribution of the inertial effect to velocity is independent of frequency (equation 4.47),
but the attenuation in this region varies with the square root of frequency (equation

4.48).



Scattering coefficient

Condition

Description

[kr| <1, | < 1

Shear wavelength much larger

d= L 1’2) o
! 3 (2p-p)‘ r\op (pr-p)‘

n >0

e il Ap}l 2 wpr’ Ap | than particle radius
(g S - e e >
¥ ple 9 a7 pl el Particle very viscous
Viscous effects dominate over
inertial effects
k> 1, lkrl> 1 Shear wavelength much shorter
wr (P -p) [ n (P -p) 1 than particle radius

Particle very viscous

Inertial effects dominate over

viscous effects

Table 44 Limiting analytical expressions for the first order single particle scattering coefficient for fluid particles.

The criteria in table 4.2 must also be satisfied.

- 981 -
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When the shear wavelength is much larger than the particle size (low frequency),
the effect of the viscous drag of the surrounding fluid is much stronger than the inertial
forces on the particle. The particle is forced by the viscous drag to move in phase with
the surrounding fluid. In some cases, if the density difference between dispersed and
continuous phases is very large, the inertial effects still dominate in this region However,
for most food systems and for the emulsions studied in this work the density difference is
relatively small, and the viscous stress is most significant. The scattering coefficient is
therefore dependent only on the density difference between particle and fluid, and takes
the form given in table 4.4 for very viscous particles. Lamb (1932, p. 514) obtained the
same limiting results for the first order mode for rigid solid particles (no waves inside the
particle) in the absence of thermal effects. Therefore, these limiting conditions are
determined simply by the particle’s motion in the surrounding fluid, and not by the

response of the material inside the particle to the sound wave

The phase angles of the critical quantities at the particle surface are shown in
figures 4.9 to 4.14. Although the variation of the relative contributions for each of the
seven wave modes is very complicated, a significant variation in the phase of the
scattered propagational mode appears only to occur in the stress component 7, (figure
4.11). At low frequencies the stress due to the scattered wave is 90° out of phase with
the incident wave, but at “high” frequencies it is in anti-phase. In the other stress
component (figure 4.12) it may be noticed that the internal and external shear waves are
90° out of phase at low frequencies, but at higher frequencies their shear stress becomes
in phase with each other. It is difficult to draw conclusions from the individual wave
motions as to the movement of the particle itself (partly due to the fact that the wave
solutions are in spherical co-ordinates, whereas the particle motion is one-dimensional
and along the incident wave propagation direction). The simpler approaches of Lamb and
Rayleigh are more informative in this regard, as described above, since they illustrate the
two limiting solutions for the visco-inertial scattering in terms of the particle motion

relative to the surrounding fluid
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Figure 4.9 Phase angle of the radial velocity at the particle surface for the first order
mode for a 20 vol % sunflower oil in water emulsion at 30 °C

o is the incident wave, —— the scattered propagational mode, A the thermal mode,
- - - - the internal thermal mode.o the shear mode, and — — — the internal shear mode
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Figure 4.10 Phase angle of the tangential velocity at the particle surface for the first order

mode for a 20 vol % sunflower oil in water emulsion at 30 °C.

o is the incident wave, — the scattered propagational mode. A the thermal mode,
- - - - the internal thermal mode, © the shear mode, and — — — the internal shear mode
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Figure 4.11 Phase angle of the stress component 7, at the particle surface for the first
order mode for a 20 vol.% sunflower oil in water emulsion at 30 °C

o is the incident wave, the scattered propagational mode, 4 the thermal mode,
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Figure 4.12 Phase angle of the stress component 7,5 at the particle surface for the first
order mode for a 20 vol. % sunflower oil in water emulsion at 30 °C

o is the incident wave, the scattered propagational mode,A the thermal mode,
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Figure 4.13 Phase angle of the temperature at the particle surface for the first order mode
for a 20 vol % sunflower oil in water emulsion at 30 °C

o is the incident wave, the scattered propagational mode, A the thermal mode,
- - - - the internal thermal mode
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Figure 4.14 Phase angle of the heat flux at the particle surface for the first order mode for
a 20 vol.% sunflower oil in water emulsion at 30 °C

o is the incident wave, the scattered propagational mode, 4 the thermal mode,
- - - - the internal thermal mode.
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Having established the special cases of the scattering coefficients and the
relationship of the coefficients to the velocity, it is helpful to relate these scattering
theory results with previous theories for ultrasound velocity. The “Urick equation™ was
presented in section 4.2 as a homogeneous theory of ultrasound propagation. Multiple
scattering theory shows that the velocity is given by equation 4.50 If the density
difference between the two phases is small (as is the case in many food emulsions) the
extra term in the square of the first order coefficient is negligible. It is then clear from the
results of tables 4.3 and 4 4 that at low frequencies, and in the absence of thermal effects,
the multiple scattering theory model reduces to the Urick equation for ultrasound

velocity 4.1 and 4.2

L '_Z(] . ,/,A’i)(, ; ¢é/ZJ [4.60]
v vy K P

Urick and Ament (1949) recognised that this equation was a special case of scattering
theory, but omitted thermal effects in their analysis. They used the "thin slab
approximation” described in the previous section, along with the results of Lamb (1932)
for the first order scattering coefficients. The Urick velocity from this equation is shown
for the sunflower oil in water emulsion in figure 4.2 It is clear that in this case thermal
effects do have a strong influence on the velocity at low frequencies. Since the thermal
contribution to the velocity is constant in the low frequency region, the results in table

4.3 can be used to demonstrate that the Urick equation may simply be modified by the

substitution
1
42
,A" = _Af } (7 - ])C.vﬁ G L [4.61]
K K PC,

%)

(McClements, 1988, p.27). Thus, if the properties of the two phases are known, it is still
possible in the low frequency region to use a simple relationship between ultrasound
velocity and dispersed phase concentration. The low frequency result for the velocity and

attenuation using the limiting values of table 4.3 are shown in figures 4.2 and 4.3.

In the high frequency region within the long wavelength limit, the second set of

results in tables 4.3 and 4.4 are valid If the thermal term were neglected, and if the
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densities of the two phases were again similar, the "Urick" equation would take another

modified form

vl_,: %(1» ¢iif‘ )[1+¢(2;_Af’7)J [4.62]
This result was also presented by Urick and Ament (using their thin slab approximation
for multiple scattering), in the absence of thermal effects. This "inertial limit" is shown in
figures 4.2 and 4.3 for the sunflower oil in water emulsion. It is worth noting that when
the densities of the two phases are very similar, the density term in the inertial limit
approaches the viscous limit expression. In other words, the difference between the
results of equations 4.60 and 4 62 may be within experimental error in velocity. It is clear
even for sunflower oil in water (figure 4 2), that the inertial and viscous limits in the

absence of thermal effects are very similar

The thermal effect on velocity at the high frequency end of the long wavelength
limit is more troublesome, because it is frequency dependent (table 4.3). It can obviously
be included explicitly using the previous quoted results but removes a degree of
simplicity from the velocity relationship. However, the magnitude of this term may not be
very great. Figure 4.2 shows that for a wide range of frequency, its contribution is no
greater than the difference between the viscous and inertial limits for the first order
scattering mode. It is reasonable, therefore, to omit the thermal term for the purposes of
obtaining a simple relationship between velocity and concentration. Were the thermal
term to be very significant in this region, it would render the frequency range less
suitable for use in polydisperse systems in which the size distribution is unknown or
varying. For this purpose, it is necessary to have very little variation of velocity with
particle size, and thus the low frequency limit is more appropriate. This point is discussed
in greater detail in the next chapter, in which alternative methods for obtaining a

velocity-concentration dependence are presented
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4.7 Summary of scattering theory results

The investigation of scattering theory was intended to determine the usefulness and
applicability of various theoretical formulations to the interpretation of ultrasound

measurements in emulsions. The main points of the chapter are as follows:

e Multiple scattering theory allows a physical understanding of the interaction of a

sound wave with the particles in an emulsion

The multiple scattering formulation is particularly suitable in the long wavelength

regime, in which many emulsion measurements are made

o The scattering properties of particles, and the velocity and attenuation in an emulsion,
can be calculated numerically, provided that the physical properties of the constituent

phases are known

Some ranges of frequency and particle size exist for which simplified, analytical
solutions are possible for ultrasound velocity. The limiting solutions are presented in

tables 4.3 and 4.4

e The limiting conditions of scattering theory can be related to previously used

velocity-concentration formulae.

In summary, the multiple scattering theory formulation is an appropriate theoretical
basis for interpreting ultrasound measurements. Although a general solution requires
numerical techniques, some simpler expressions exist which can be applied in an
experimental situation. However, the physical properties of the materials in an emulsion
are often not known, and the calculation of scattering characteristics is then difficult. In
chapter 5, a number of practical solutions are presented for the determination of the
scattering properties of emulsions, without recourse to a full scattering theory

calculation
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Chapter 5 : Methods for Interpreting Ultrasound Measurements

In the previous chapter, the theory of ultrasound propagation in dispersed systems
was discussed. In principle, the results presented there can be used to calculate
ultrasound velocity and attenuation in any well-characterised emulsion, subject to the
criteria of section 4.4. By ‘well-characterised” is meant a knowledge of the particle size
(and size distribution), the concentration of dispersed phase, the frequency, and all the
relevant physical properties of the constituent phases.! Conversely, if all of these
parameters are known except for the dispersed phase concentration, a measurement of
ultrasound velocity can be used to determine this quantity. The results of multiple
scattering theory have been used to calculate the ultrasound velocity in a variety of well-
characterised emulsions, and these have been found to agree well with experimental
measurements (McClements, 1992, McClements and Povey, 1989). However, some
workers have found significant discrepancies between the predictions of this theory and
their experimental results on other dispersions (Holmes and Challis, 1993, Holmes et al ,
1993, 1994) This may be due to the violation of some of the fundamental assumptions
of the theory, such as the absence of particle interactions or flocculation, as discussed in
chapter 4. Alternatively it may be that the values of the physical properties used for the
phases (e.g. viscosity, thermal conductivity) do not correspond exactly to the real values
of the system being measured. The differences may be due to experimental uncertainties
in the values or to variation in the materials. Holmes et al. (1993) studied the effect of
uncertainties in a number of parameters on the calculation of ultrasound velocity and
attenuation. In some cases, the effects were very significant. The errors involved in
making attenuation measurements were found at Leeds to be much greater than for
measurement of sound speed, although other workers have made accurate attenuation
measurements. Thus, most of this work has concentrated on ultrasound velocity rather

than attenuation.

Assuming that all the system parameters are known and that scattering theory does

provide an accurate prediction of ultrasound velocity, a full scattering theory calculation

! An example of the data required is shown in table 5.1. later in this chapter.
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could be used for concentration determination. However, it does not lend itself to this
technique, because the determination of the scattering coefficients is a complex numerical
problem which would need to be carried out for each sample used Some, simpler
analytical solutions exist under various limiting conditions (see section 4.6), for example
the Urick equation. However, even these simplified expressions may require a substantial
amount of physical data for the system being measured. The paucity of such data for
many food components, particularly their thermal properties, causes a problem for the
use of scattering theory. In addition, the application of the theory to some systems has
been found to be inaccurate and therefore it cannot be relied upon to produce acceptable

results

The aim of the present work is to develop simple methods of finding the
relationship between measured ultrasound velocity and dispersed phase concentration (or
solid fat content). To be valuable for routine use, these methods must avoid the need for
an inconvenient scattering theory calculation and the difficulties and restrictions
associated with it. The results presented in this chapter are concerned with ultrasound
velocity and attenuation measurements in emulsions, particularly creaming and
crystallisation. Several techniques are discussed for determination of the ultrasound

velocity-concentration relationship from experimental measurements in these systems

5.1 Experimental determination of scattering coefficients

The central result of multiple scattering theory is an equation for the square of the
wavenumber of the dispersion in the form of a series in ascending powers of particle
concentration (or volume fraction of dispersed phase). The velocity may be calculated
from the wavenumber, and hence from the scattering coefficients, as given by equations
447 and 449. The latter will be the preferred form for this chapter because of its

similarity with the Urick equation. Thus the velocity, v, may be written as

~ L 1opreg +O(¢) [5.1]

Subscript 1 represents the continuous phase in this context, and ¢ is the volume fraction

The coefficients are related to the Urick equation by
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and to the modified scattering coefficients (see equation 4.46) by
1

&= Re(a, +3a,), &= LZ[.IRenﬂ Rea, +6(Reu,)1] [5.3]
|" |"

where Ax and Ap are the differences in compressibility and density between the
dispersed and continuous phases respectively, and a, are the modified scattering
coefficients. Since it is the velocity which is measured, and the concentration to be

determined, we can write

¢=5, (A1) v e, (A1) [5.4]

where

Al/v? [5.5]
and

1 £
(s‘fg 5‘.7757‘ [56]

The coefficients of the equations (5.1 and 5.4) are related to the scattering
coefficients of the particles, and may be calculated using the results of the previous
chapter if all the system properties are known. However, the form of equations 5.1 or 5.4
is exactly the approach which would be taken if an empirical relationship were to be
found between velocity and concentration. A linear relationship would be attempted to fit
experimental data, then a quadratic relationship, and so on. Following such an empirical
procedure in this case is effectively a determination of the scattering characteristics of the
particles in the sample, or the scattering properties of the collective dispersion (if
flocculation is present, for example). The violations of the scattering theory assumptions
may be incorporated into a modification of the scattering properties. If these scattering
characteristics are determined directly for the system of interest these modifications are
taken into account. Such modifications might include non-sphericity, particle

interactions, or flocculation.
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Therefore, measurements to find the relationship between ultrasound velocity or
attenuation and dispersed phase concentration can be thought of as a determination of
the scattering characteristics, not necessarily of the individual particles, but of the
collective properties of the system. Experimental methods for obtaining the scattering
properties for a sample also avoid the difficulties associated with finding the physical
data for the materials. The scattering coefficients are related to the experimental velocity

coefficients when there is a single dispersed component by

2
Rea, = ~"_;L(| +35) [5.7)
Sv?
Rea, :%(u +5) [5.8]
where
—
S=l-——5 59
J 35%y] (591

True correspondence with scattering theory, and with the dipole and monopole
characteristics of the scattering modes, requires the choice of the "minus" solution of

these equations.

The results of this chapter are designed to enable the determination of the
scattering properties of a sample from experimental data, in a variety of applications.
These build on the principles of scattering theory, and aim to produce simple and

convenient methods along the lines of the popular Urick equation

5.2 Particle size and frequency dependence

The principal applications of this work are concerned with a velocity—
concentration relationship. It was seen in chapter 4 that the ultrasound velocity in a
scattering system varies with particle size and frequency (figures 4.2 and 4.3). In some
regions this variation may be quite strong, whereas in other frequency ranges the velocity
is independent of frequency and particle size. These limiting conditions of scattering
theory were discussed in chapter 4. The implication of this dependence is that any
velocity—concentration relationship is valid only for the frequency and particle size (and

size distribution) for which it was determined. A change in the size distribution or the
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frequency may cause the velocity relationship to become invalid. In the scattering theory
formulation, this is equivalent to the scattering properties being functions of frequency
and particle size, and their values being only applicable to a specific particle size and

frequency

Computer modelling of creaming in emulsions (chapter 2) has demonstrated that in
a polydisperse sample there can be strong size fractionation especially in the cream layer
The particle size distribution may vary strongly with height in the sample, and at any
point may be quite different from the size distribution in the initial uniform sample. This
can clearly cause a problem for the interpretation of ultrasound velocity measurements
The ultrasound velocity profiles predicted from multiple scattering theory for the results
of the computer model show that velocity variation in the cream takes quite a different
form from the concentration dependence (section 2.8.3). If velocity measurements on
this system were interpreted using a constant velocity-concentration relationship the
volume fraction profiles would look quite different from the true profile. Figure 5.1
shows the result of applying the renormalisation method (described in section 54) to
these velocity profiles. The velocity-concentration relationship has been assumed
constant for the entire system, and has been calculated by ensuring that the total volume
of oil in the sample remains constant. The renormalisation coefficients were calculated
using the initial emulsion and the velocity profile after 500 days. It is clear that the
concentration profile calculated by renormalisation is far from the true profile (figure
5.1), because the particle size variation in the cream has the opposite influence on the
velocity to the concentration variation. This clearly illustrates the difficulties of particle
size dependence of velocity measurements, especially when the particle size distribution
is so strongly varying The computer modelling results for ultrasound velocity in a

creaming emulsion are discussed in more detail section 2.8 3

The computer model enables us to make such comparisons which are not possible
with experimental data because the concentration and particle size variation with height
are unknown, and only the ultrasound velocity is measured. The model results can be
used in both ways — to examine the velocity profiles predicted from different theories,
and to compare the model's predicted concentration profiles with those which would be
obtained from the ultrasound data if standard velocity-concentration relationships were

applied. Multiple scattering theory is taken as the benchmark in these cases
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Figure 5.1 Comparison of renormalised concentration profiles with the actual profiles,
generated by the computer model (section 2.8 3)

The sample is 20 vol % sunflower oil in water at 30 °C, and the profiles are after S00
days (squares) and 1000 days (triangles). Open symbols represent the actual
concentration and closed symbols the concentration calculated by renormalisation.

The particle size dependence clearly does not cause a problem in a monodisperse
sample, since there can be no changes in particle size distribution. In a polydisperse
sample, however, it is necessary to ensure that the velocity does not vary significantly
over the range of particle size distributions in the system. If this is true, the fractionation
in the cream will not affect the velocity-concentration relationship. This can be achieved
either by reducing the degree of polydispersity in the sample, to avoid variations of
particle size, or by choosing the particle size and frequency range so that the velocity is
relatively insensitive to differences in particle size. In chapter 4, the velocity was shown
to have two limiting conditions in the long wavelength region in which it varies little with
particle size (section 4.6). The "high frequency" limit may not be present in the long
wavelength region when the particle size is small. The low frequency region is therefore
recommended for creaming experiments. A quantitative restriction on the application of
a constant velocity—concentration relationship in a creaming experiment might be written

as
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P e ) = V(B s Vi) < B [5.10]

where Av_is the experimental error in velocity measurements. Essentially, this means

that any variation in ultrasound velocity caused by particle size changes must be less than
the experimental error. Thus, all changes in velocity can be attributed to oil
concentration. The condition is obviously satisfied either by having a very small degree

of size variation, or by having a velocity that is not affected by changes in particle size

The frequency dependence of ultrasound velocity means that the relationship
determined between the velocity and concentration is specific to the ultrasonic
transducers used Probes of the same nominal frequency often include frequency
components over a range of frequencies which may differ between probes. Therefore, the
determination of the velocity-concentration relationship for a creaming experiment, for
example, must be carried out using the probes which are to be used for the creaming

experiment itself

5.3 Calibration

Previous creaming experiments for which the Urick equation was found to be
invalid, were interpreted by a calibration technique (for example, Dickinson et al., 1994)
A series of emulsions of known composition was made with a range of dispersed phase
concentration. The ultrasound velocity was measured in each case, and a regression fit of
velocity as a function of concentration was calculated. In this way, the concentration of
oil could be determined from measured velocity profiles in subsequent creaming
experiments. In the light of multiple scattering theory analysis, it is clear that this method
is an experimental determination of the scattering properties of the sample. Although the
velocity—concentration relationship has been written in terms of the inverse square of the
velocity (equations 5.1 or 54), the principles apply equally well to a direct
correspondence between the velocity and a power series in concentration. The
calibration curve must of course be measured using the same ultrasound probes as used
for the experiment. The method is not restricted to creaming experiments, but could be
used to determine concentration in any samples, provided that a set of well-characterised

emulsions can be made, in order to "calibrate" the velocity relationship
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The restrictions on the particle size distribution variation and on the dependence of
velocity with particle size, as described in the previous section, must be applied for the
calibration method to be valid. A test of the validity of the technique in creaming
experiments is to calculate the total volume fraction of oil in the whole sample, as
determined from the calibrated velocity measurements. The calculated volume fraction
averaged over the height of the sample should remain equal to the initial volume fraction
of oil in the uniform emulsion, which is usually known. A deviation of this quantity from
the initial value is an indication that the velocity-concentration relationship is changing
with time, or is not constant with height in the sample. In other words, the fractionation
effect is influencing the ultrasound velocity, and the calibration curve does not apply over

the whole sample

The calibration technique was applied to recent measurements on a 20 vol %
sunflower oil in water sample at 30 °C, with a variety of concentrations of xanthan gum
added to the aqueous phase. These measurements were made by Jian Guo Ma using the
ultrasound scanner illustrated in figure 1.1 (Ma, 1995) The effect of xanthan on the
ultrasound velocity in the aqueous phase was found to be negligible at the concentrations
used (Dickinson et al., 1994). However, the effect of unadsorbed Tween20 in the water
does have a significant effect on velocity, and all emulsions were made so that the
concentration in the aqueous phase was | wt. % Tween20. A calibration curve was
constructed using measurements made with the ultrasound scanner (operating at
1.19 MHz) and also with the Ultrasound Velocity Meter (UVMI) (operating at
2.25 MHz). The volume-surface average particle size, dx, was 0.56 pm. The measured
velocity as a function of oil concentration in each case is shown in figure 52 The
difference between the two curves indicates that for these emulsions the particle size and
frequency fall in the range in which ultrasound velocity does vary with these parameters.
Therefore, the determination of concentration profiles using the calibration curve
depends on the size distribution not varying so strongly in the cream that the curve

becomes invalid

The calibration curve measured in the ultrasound scanner was used to calculate the
volume fraction profiles in creaming experiments on these emulsions. The resulting
profiles for a 20 vol.% sunflower oil in water emulsion with 2 wt% Tween20 and

0.03 wt % xanthan are shown in figure 5.3. After 10 days the total volume fraction in the
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Figure 5.2 Calibration curyes of ultrasound velocity as a function of oil concentration
for emulsions of sunflower oil in water at 30 °C (Ma, 1995)
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Figure 5.3 Calibrated oil volume fraction against height for a 20 vol % sunflower oil in
water emulsion with 2 wt.% Tween20 and 0.03 wt % xanthan at 30 °C (Ma, 1995).

0O is the first scan, and® after 10 days
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sample, according to the calibrated results is within 0.01 of the initial known
concentration (0.20). Thus, the fractionation in the cream is not so strong as to cause the
velocity-concentration relationship to deviate significantly from the measured values for

the initial emulsion

5.4 Renormalisation

The renormalisation method is designed to calculate the velocity—concentration
relationship in ultrasound creaming experiments. The equipment in figure 1.1 is used to
obtain profiles of ultrasound velocity as a function of height at various time intervals
during creaming. The calibration method described in the previous section has often been
used when the Urick equation was found not to apply. However, in some instances, it is
not possible or convenient to produce a calibration curve. This might be because the
precise components of the sample are not known, and so it would not be possible to
make corresponding emulsions with different oil concentrations. Emulsions with a lower
oil concentration could be made by dilution from the emulsion of interest, provided there
were no components in the continuous phase which affected ultrasound velocity
However, it is necessary to have points on the calibration curve at reasonably high
concentrations to ensure accurate interpretation of measured velocities in the cream.

Hence, in some cases it is not possible to achieve a satisfactory result by calibration

An alternative method has been developed of obtaining the velocity-concentration
relationship for the emulsion during a creaming experiment. This technique has been
called renormalisation (Pinfield et al | 1995). The results of the calibration method were
checked by calculating the total volume of oil in the sample which, in most cases, is
known. The renormalisation method is based on the use of this information to calculate
the coefficients in the velocity equation 5.4 directly from the measured velocity profiles

Thus, for all scans, the calculated volume fraction must satisfy the equation
(@) =4 (5.11]
where (¢ );._, is the calculated volume fraction averaged over the height of the sample at

time 7 and @, is the initial volume fraction of oil in the emulsion. This criterion, applied

to equation 5.4 (the velocity-concentration relationship) enables the determination of the
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coefficients of the velocity equation from the measured velocity profiles. The procedure

is described in the following sections

5.4.1 Linear renormalisation

On the first scan of a creaming experiment, the sample tends to be still reasonably
uniform, and there is very little cream (high concentration of oil). If the sample is not too
concentrated it is likely that the quadratic term in equation 5.4 will be negligibly small on
this scan. This is equivalent to the neglect of multiple scattering at the concentration of
the initial sample. The application of equation 5.11 to equation 5.4 on the first scan leads

to an estimate for the linear renormalisation coefficient

&t o [5.12]
Al/V?)
b0

The application of equation 5 4 in this case leads to a result

o
1/

¢ =5,A(1/v) [5.13]

for the volume fraction at any position. This result can be used as the linearly

renormalised estimate for oil concentration on the first and subsequent scans

The linear renormalisation method was applied to the results of creaming
experiments referred to in the previous section (Ma, 1995). For the first scan, the linearly
renormalised volume fraction profile is shown in figure 5.4. There is no formation of a
cream on this scan, so the neglect of the quadratic term is probably reasonable at the
relatively low concentration in the sample. Figure 54 also shows the volume fraction
profile calculated from the Urick equation (equations 4.1 and 4.2) and from the
calibration curve which was discussed in the previous section, and was shown in figure
5.2. The linearly renormalised and calibrated results agree to within 0.015 in volume
fraction, although the average volume fraction calculated from the calibrated results was

only 0.187. 1t is clear that in this case, the Urick equation is invalid

On later scans, as a cream layer develops, the linear approximation becomes less
accurate because the quadratic terms in equation 5.4 become more significant, especially
in the cream. A further application of the renormalisation principle is required in order to

obtain the quadratic renormalisation coefficient
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Figure 5.4 Renormalised oil volume fraction against height for the first scan of the
20 vol % sunflower oil in water emulsion

# is the linearly renormalised volume fraction, o the calibration curve results, and
A the Urick equation result

5.4.2 Quadratic renormalisation

When more concentrated regions develop in the emulsion (cream forms), or if
multiple scattering is particularly significant even at the initial concentration, the
quadratic terms of equation 5.4 must be included. There are then two coefficients to be
determined. The renormalisation condition 5.11 can be applied to each scan, and

therefore two significantly different scans are required to calculate the two coefficients

The first order coefficient can be estimated from the first scan, in which the second
order effects can usually be neglected, as seen in section 54.1. The estimate for the
linear renormalisation coefficient is given in equation 5 12, and the linearly renormalised
volume fraction profiles are calculated using equation 5.13. On later scans, the quadratic
terms can be calculated when the linearly renormalised concentrations produce an
average volume fraction (over the height of the sample) which deviates from the true
concentration by more than, say, 0.01. The linearly renormalised results no longer satisfy

equation 5.11. When this occurs, the quadratic renormalisation coefficient can be
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calculated by the application of equations 5.11 and 5.4 to this scan, substituting for the

linear coefficient from equation 5 12. The result for the quadratic coefficient is

L s, g, (), -

<(/\I "!)’>h,, ((a1 r")’)m (arv), ,

The term in brackets shows that an accurate value for the quadratic coefficient can only

be obtained when the average linearly renormalised concentration deviates significantly
from the initial concentration. Alternatively, the average of the inverse square velocities

must have changed significantly, usually because of the formation of some cream

In some cases, the initial emulsion may be relatively concentrated, or multiple
scattering is significant even at the initial concentration of oil. The quadratic terms in the
velocity-concentration relationship cannot then be neglected on the first scan. This is
easily demonstrated by substituting the estimate for the quadratic renormalisation
coefficient (5.14) into equation 5.4 for the first scan. The quadratic term should be much
smaller than the initial concentration, if the above estimates for the linear and quadratic
coefTicients are accurate. If this is not the case, then the quadratic term must be included
for the first scan, and the two coefficients must both be calculated from the data from

two significantly different scans. In this case, the linear and quadratic coefficients are

given by the equations

[5.15]

[5.16]

[5.17]
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These might be called the “exact” solutions. Again, accurate results can only be obtained
when a significant change has taken place relative to the first scan, otherwise the
bracketed terms are too similar and poor solutions are obtained. The values for the
coeficients calculated by equations 512 and 5.14 or by equations 5.15 and 516 are
valid for all scans of the same sample. The best solutions for the coefficients are obtained
when the difference between the scans is greatest (for example, using the first and last

scans to calculate the coefficients)

The quadratically renormalised concentration profiles for the sunflower oil in water
emulsions investigated by Ma (1995) are shown in figure 5.5 This calculation was made
using the “estimated” solutions (equations 512 and 514) to determine the
renormalisation coefficients, using the first scan, and the scan after 10 days. These were
substituted into equation 54 to obtain the volume fraction. The linearly renormalised
profile is also shown, illustrating the significance of the quadratic terms in the cream
layer. The linearly renormalised volume fraction on this scan still gave an average volume
fraction of oil in the whole sample of 0 206. The results of the calibration curve and the
Urick equation are also shown for comparison. The quadratic renormalisation and the

calibration results agree on oil volume fraction to within 0.01
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Figure 5.5 Quadratically renormalised oil volume fraction against height for the
20 vol % sunflower oil in water emulsion after 10 days

x is the quadratically renormalised volume fraction, ¢ the linearly renormalised volume
fraction the calibration curve results and A the Urick equation result
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Section 5.2 discussed the restrictions on the applications of techniques such as
renormalisation due to particle size dependence of the ultrasound velocity. This is
especially relevant in creaming experiments in which there may a strong variation of
particle size, especially in the cream Should any particle size variation in the sample
cause a significant change in the coefficients of the velocityconcentration relationship
(equation 5.4), the renormalisation method would become inappropriate. It should be
possible to detect any such discrepancies, by testing the average volume fraction of oil in
the sample on each scan. The renormalisation coeflicients are calculated from the first
scan and one later scan. When these values are applied to calculate the volume fraction
on all other scans, the results should yield the correct value for the average concentration
(equal to the initial value) in all cases. If this does not occur, it is an indication that the
parameters in equation 5.4 are different for the different scans. In other words, there is a
significant change in the velocity—concentration relationship with time, usually caused by

variation in particle size distribution from the initial emulsion

The results of this section can be used to obtain the relationship between
ultrasound velocity and oil concentration directly from the measured velocity profiles
The only information which is necessary to achieve this is the initial concentration of oil
in the uniform emulsion, and the ultrasound velocity in the continuous phase. In fact, if
the initial oil concentration is not known, the concentration profiles may still be
calculated as a proportion of the initial concentration. This is clear from the form of the
renormalisation coefficients, which each include a factor of the initial oil concentration
The technique is an indirect method of determining the scattering properties of an
emulsion during a creaming experiment, using only a small piece of knowledge based on

the conservation of oil volume

5.5 Multiple dispersed phases

Many food systems contain dispersed or solubilised components other than a single
emulsified oil phase. For example, it is common for oil in water emulsions to have some
polymer present in the aqueous phase. Studies of crystallisation in emulsions can also be
considered as having two different dispersed phases — solid and liquid particles. In order
to develop practical approaches for the interpretation of ultrasound measurements in

these systems, it is first expedient to consider the general theoretical results for samples
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with multiple dispersed phases. The basis of the development of a theory for mixed
systems is multiple scattering theory, as described in chapter 4. Each dispersed
component must satisfy the conditions discussed in section 4.4. This precludes
interactions between different components or between similar components (such as
flocculation). Each component entity must act independently and be randomly
distributed. The imaginary parts of the modified scattering coefficients (equation 4 46)

are neglected throughout the following analysis

For each component phase, the velocity is given by equation 5.1. In the combined
system, the scattering coefficients are calculated by summing the coefficients for each
phase in proportion to their number density. The combined coefficient is given by
equation 4 41, just as for a polydisperse sample (each size fraction can be treated as a
separate dispersed phase component). Explicitly, the velocity in the combined system can

be written as follows

’,13 i:] +> (¢, Rea,, + 34, Rea,,)

2
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where i represents a dispersed phase species. Using the relationship between the
individual scattering coefficients and the velocity equation for each phase separately

(equations 5.1 and 5.3), this can be simplified to

+ Z((w, vedl) ZZr,_,M, [5.19]

(Ren,,, Rea, +Rea, Rea, +4Rea, Reu,') [5.20]

Single scattering effects in the inverse square velocity equation are simply additive
Multiple scattering is not so straightforward. In this case only double scattering events
are included. A double scattering event might be scattering from two particles of the
same component, or scattering from two different species. The former effects are again

additive in this equation. The final term in equation 5.19 accounts for the effects of
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scattering from two different components. This is the only term in the equation which
cannot be directly determined from the experimental coefficients without further
rearrangement or assumptions. However, if the scattering coeflicients can be written in

the form of equations 5.7 and 58, the extra term can be simplified, giving

o

L '2}1','5,6,(1 -55)) [521]

where the scattering factor S is given in equation 5.9

The attenuation calculated by multiple scattering theory was given in equation
4.48 It is clear that the solution in a multiphase system will follow the same dependence
as for the velocity. The quadratic terms in attenuation are often negligible, but their
relationship to the scattering coeflicients is difficult to determine in the multiphase case
because of the many terms involved. Also it is not known which terms of equation 4.48
must be included. However, the form of the attenuation relationship can be written

directly

a= Y (udrsh)r DD G, [5:22]

All the terms in the attenuation which are quadratic in concentration may be negligible

The Urick equation in a multiple phase system produces similar results for the
ultrasound velocity, but it differs in the "cross-term" due to the omission of one of the

multiple scattering terms (see section 4.6). Thus we have

LI N
T, = o 5.6,(1-SuSu,) [5.23]
where the Urick scattering parameter is now given by

: 4,
Sy = JI = 5;.5 [5.24]
3 ~%

The results of this section can be applied to specific examples of multi-phase
systems which are relevant in the study of food emulsions. Two such applications are

discussed in the following sections



5.6 Polymer/oil systems

Many food emulsions contain polymer dissolved or dispersed in the continuous
phase. This may be for the purposes of modifying the rheological properties of the food
for texture or stability reasons (for example a gum), or it may be present naturally (casein
in milk). The presence of the additional dissolved or dispersed component may or may
not influence significantly the ultrasonic properties of the system. If it does have an
effect, this must be taken into account when applying techniques to determine the
concentration of oil, such as those discussed in the preceding sections. The first
consideration is how the properties of the multi-phase system are related to the
properties of samples containing each dispersed phase independently. This will be of use
in determining the volume fraction of oil in a sample with an added polymer or other
component, when the effect of the additional component in water alone is already

known

For the polymer dispersion in the continuous phase, in the absence of oil

E 8 i e B it [5.25]

&= Z et +6 pot P [5.26)
and for the emulsion in the absence of polymer

R I [527)
1

@= ¥ b + o B [5.28]

It is usually possible to determine all of these coefficients experimentally using a range of
well-characterised emulsions and dispersions. The concentration used in these equations
is expressed as a volume fraction. For polymers or other molecules, their volume may be
difficult to define, and it is more usual to measure concentration as a percentage weight,
or as a weight in a specified volume. For the purposes of scattering theory, the relevant
quantity is the number of scattering centres per unit volume of the sample. In the case of
emulsion particles, this is proportional to the volume fraction (at a specified particle
size). For the polymer, any measure of concentration must be specified as a proportion

of a volume of the sample. The quantity used may be a weight or mass, but it must be in
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relation to a volume of sample, not to the continuous phase only. For example the
concentration may take the units of kg m™. Alternatively, the number of molecules in a
given volume could be used. Whatever the measure, it must be proportional to the

number of scattering centres per volume of the sample

For the combined system, the results of section 5.5 are directly applicable
Equations 5.19 and 520 or 521 can be used for velocity and equation 522 for
attenuation. Hence the multi-phase system can be characterised simply, so that the
velocity and attenuation for any concentration of oil or polymer can be calculated
Conversely, if the polymer concentration is known, the oil concentration can be
determined The combined scattering term in the velocity and attenuation (equations
5.19-5.21 and 5.22) may be difficult to calculate accurately, either from the theoretical
scattering coeflicients or from the experimentally determined parameters. The quadratic
experimental coefficient of the velocity is often a relatively small contribution to the
overall variation with concentration, and its error from a regression fit may be significant
This leads to uncertainty in the value of the combined scattering term in the velocity
Also, the form of this combined scattering effect depends on the relationship of the
experimental parameters to the scattering coeflicients (equation 5.3). If some of the
assumptions of scattering theory are not applicable, this correspondence may not be
exact, although the form of the velocity and attenuation dependence is still valid
Therefore the combined scattering term should be approached with some care A
sensible, practical solution to the problem would simply be to calibrate this combined
term using an ultrasound measurement for a single multi-phase system in which all the

other parameters are known (the concentrations of polymer and oil in this case)

Previously, the effect of the added component in creaming experiments was
accounted for by calibrating the ultrasound velocity as a function of oil concentration
with the known quantity of polymer already present in the aqueous phase. This was the
approach taken for the sunflower oil in water emulsions studied by Ma (1995), in which
there was an excess of the emulsifier Tween20. The emulsions were produced so that the
concentration of Tween20 dispersed in the aqueous phase was the same in all cases, and
the oil calibration was carried out at this concentration of emulsifier. This approach is
entirely appropriate when the concentration of the additional dispersed phase can be kept

constant. A more general approach is needed when the concentration of the added



-213 -

component may also vary (although its value may be known). It is impractical to
calibrate the ultrasound parameters (velocity and attenuation) for every combination of
oil and polymer concentration. The equations presented above allow calibration as a
function of oil concentration in the absence of polymer, and calibration as a function of
polymer concentration in the absence of oil. A calibration point for a single sample of
known polymer and oil concentration may also be necessary to obtain an accurate value
for the combined scattering term. From these data, the ultrasound parameters in any

combined system of these two components can be determined

The discussion thus far has been directed towards the determination of oil
concentration when the concentration of polymer is known, usually using ultrasound
velocity measurements. However, since there are two ultrasound parameters which can
be measured (velocity and attenuation), it should be possible to apply the results to the
determination of both polymer and oil concentration. This is particularly relevant to the
study of creaming in emulsions containing polymer in the continuous phase. The oil in
water emulsion and polymer solution may undergo some degree of phase-separation,
with the polymer being driven in the opposite direction to the natural creaming of the oil
droplets. Thus the concentration of polymer (or other additive) in the aqueous phase may
not be constant throughout the sample. A higher concentration may occur in the serum
region, and a lower concentration in the cream. This variation is over and above that
created by the change in volume fraction of the aqueous phase itself. The polymer
concentration within the continuous phase can change, as well as its concentration as a
proportion of the emulsion locally. Useful information would be obtained on the phase
separation process if it were possible to determine the concentration profiles of both the
oil and the polymer during creaming Although such a phase separation may be
accompanied by flocculation, whose effect on the ultrasound signal has not been
quantified, a first step would be to determine the concentration profiles without

accounting for flocculation.

The equipment shown in figure 1.1 is currently used to obtain ultrasound velocity
profiles as creaming progresses. The results of the present and the previous chapters
show how these may be converted into oil concentration profiles. If the equipment were
modified to measure ultrasound attenuation accurately, as well as velocity, the results of
this section could be used to calculate the polymer and oil concentration. The inversion

of the equations for velocity and attenuation to solve for the concentration of each
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component can only be carried out numerically as they stand. However, at the
concentrations used in many creaming experiments, the polymer has a negligible effect
on attenuation. Thus, the only significant terms in the attenuation are likely to be (from

equation 5.22)

A=Yl +Saabon [5.29]
The oil concentration should therefore be calculated directly from the attenuation. This
value is likely to be significantly less accurate than the results obtained from ultrasound
velocity measurements, when the polymer concentration is constant. The polymer
concentration can then be calculated from the velocity. The quadratic terms in polymer
concentration are often (but not always) negligible in experiments. They are retained here
for completeness

1 I 2 2 .
5= "‘7‘ +6 b +Eubo (s.m|¢,...| + H'\o‘¢"¥u| +1 nll.pul(gudls’mld’nil¢’\nl [5.30]
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The coefficient of the combined scattering term, I is determined experimentally or

.uil,pnh
from the theoretical expressions given earlier (equations 5.20 or 521). These results
open the way to study the changes in polymer concentration alongside the changes in oil
concentration during creaming. The renormalisation method could in principle also be
applied to these equations to obtain the concentration profiles when it is not possible to

characterise the two component systems separately

5.7 Crystallisation

The second example of the application of ultrasound measurements in systems with
multiple dispersed phases is the study of crystallisation in oil in water emulsions
containing both solid and liquid particles. The two dispersed phases are now the solid
and liquid particles. The measurement of ultrasound velocity has been used as a non-
destructive technique to probe the crystallisation kinetics of the oil droplets (McClements
et al., 1990a, Dickinson et al., 1991, McClements et al., 1993, Dickinson, et al., 1993b)
The results can be compared with theories of crystallisation to improve understanding of
how crystallisation or melting is occurring, and what effects surfactants and other
components have on the process. The use of ultrasound velocity measurements in this

area relies on the existence of a relationship between the velocity and the proportion of
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the dispersed phase particles which are solid (the volume fraction of the solid particles in
the whole system is usually called the solid fat content). It is this relationship which is

discussed in this section

The Urick equation (which is a limiting solution of multiple scattering theory) takes
a very simple form when the densities of the constituent phases are similar. In the
crystallisation problem there are three phases in the system: the continuous phase
(liquid), fully liquid dispersed phase particles (oil) and fully solid dispersed phase
particles (fat). Partially crystallised droplets may sometimes also be present, but these are
not accounted for in this analysis. If the densities of the three phases are equal, the Urick
equation reduces to the form
A Y

= 531
v? v (5:31)
=1

where v is the ultrasound velocity in the emulsion, but the other velocities are those in
the pure phases. The sum includes the continuous phase (i=1). Application of this
equation to the case in which all the particles are liquid and all the particles are solid,
followed by some rearrangement leads to the following expression for the solid volume

fraction
[5.32]

The ultrasound velocities v, and v, are now the velocities in the emulsion when all the
dispersed phase is liquid and all solid respectively. These are not the velocities in the bulk
oil or fat. ® is the total dispersed phase volume fraction when all of the dispersed phase
is solid. The densities of all three phases are assumed to be identical in deriving this

equation

Equation 532 for the solid volume fraction has been found to work well
experimentally, even in samples in which scattering of ultrasound was known to occur
Although Dickinson et al. (1991) gave a brief explanation of why this should be so, it
warrants a closer investigation. A sound theoretical basis for the equation, or an

extension to it to include scattering effects, would allow the use of a simple equation to
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analyse the kinetics of crystallisation in a variety of emulsions. Intuitively, it is clear that
the scattering properties of the liquid particles are included in the velocity measured
when all the dispersed phase is liquid. Similarly the scattering properties of the solid
particles are included in the velocity measured when all the dispersed phase is solid. The
results of section 5.5 showed that the single scattering effects were additive in the inverse
square of velocity. Hence, it may be that the form of equation 532 allows the
cancellation of some of the effects of scattering, which would otherwise invalidate the

Urick equation

Since the semi-crystalline emulsion contains two dispersed phases, equation 5.18
can be applied directly to obtain the ultrasound velocity. In this case, however, two
further pieces of information greatly simplify the problem. The total mass of dispersed
phase remains constant (this is not a creaming problem in which the concentration can
change locally). The mass is related to the total volume fraction when all the dispersed
phase is solid, ®, and this can therefore be used as a reference. The volume of a liquid
droplet is related to its volume when solid through the ratio of the densities of the two
phases. Therefore, the volume fraction of droplets which are liquid can be written as

1
u(’lu )q:] 5331
V2]

The velocity of the combined sample is given by equation 5. 18, thus

b= 020, -4)
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The velocities in the all-liquid and all-solid case are given by

[1+6,®, +2,9]] [5.35]

.
= —v';[l +80 45,0} [5.36]

where @, is the volume fraction when all the dispersed phase is liquid. These equations

(5.33 to 5.36) together with equation 5.3 produce the result for solid volume fraction
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where the scattering factor is given by
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The first term of equation 5.37 is the same as the Urick equation result 5.32. Single

£=Re

scattering effects are all accounted for in the first term. The additional term represents
the effects of multiple scattering, including the residual effects not accounted for in the
separate all-liquid and all-solid systems. The second term may be called a “scattering
correction” for this reason. In fact, the correction depends on the difference in the
scattering properties between the liquid and solid phases. The major difference occurs
through their difference in compressibility, which affects the zero order scattering mode
When the densities of the solid and liquid dispersed phases are similar, the effect of the
scattering correction is much reduced because of its dependence on the visco-inertial
scattering properties, which are small in this case. For many food emulsions therefore,
the additional term is negligible and the first term of equation 537 can be used on its

own without significant error.
At constant total oil concentration, the scattering correction varies quadratically in

the solid volume fraction, and is maximum when the solid volume fraction is half of the

total volume fraction if the dispersed phase were all solid, i.e.
¢ =—F [5.39]

The leading term in the denominator of the scattering correction is proportional to the
total solid volume fraction @ . Thus, the peak value of the scattering correction varies
approximately with the square of this total solid volume fraction. This is a favourable
result since many crystallisation studies are carried out at volume fractions < 0.5. The

scattering term is considerably reduced in this case.

The magnitude and form of the “scattering correction™ has been investigated for a

hexadecane in water emulsion at 8 °C. The physical properties of the constituent phases



218

are shown in table 5.1. These properties correspond to the system which was studied in
previous crystallisation and creaming experiments (Ma, 1995), and also in the modelling
of combined crystallisation and creaming (section 2.9) The particle diameter was 1.0 jm
and the frequency 1 MHz. The correction term was calculated for a range of values of
total concentration, and for each of these a range of solid volume fraction was used. The
results are shown in figure 5.6. The theoretical value of the scattering correction was
calculated using the known value of the solid volume fraction. However, in an
experiment the solid volume fraction is the quantity which is to be determined. Its value
can be estimated from the first term of equation 5.37, and substituted into the scattering
correction to obtain an estimate of the correction An example of this estimated

scattering correction is also shown in figure 5.6, for a total concentration of 0.7

The results in figure 56 clearly show the quadratic dependence of the scattering
correction on solid volume fraction (at constant total volume fraction). The increase in
its peak value with increasing total volume fraction is also apparent. Thus the neglect of
the scattering correction becomes considerably more appropriate at lower
concentrations. For this system, an accuracy of 0.005 in volume fraction could be

achieved using only the first term of equation 5.37 for a total concentration in the range
®, <034 [5.40]

An accuracy of 0.01 (or 1%) in volume fraction without using the scattering correction is

possible in the range
D, <048 541
s

The peak value of the scattering correction is not negligible for all concentrations
In such cases, a determination of the solid volume fraction would require the inclusion of
the scattering correction term in equation 5.37. The "estimated" and "theoretical" values
of the scattering correction for a total concentration of 0.7 can be compared in figure
5.6. The difference between the estimated correction and the exact value for this system
is everywhere less than 0.0009, and it is therefore satisfactory to use the estimated
correction. An iterative procedure could be used to obtain a better value for the solid
volume fraction, but this would not be necessary in this case. A single repeat of the
substitution of the corrected solid volume fraction back into the scattering correction
would show whether the result was within the required error. Equation 537 is a

quadratic equation in solid volume fraction which could be solved directly. However, the
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Water Hexadecane | Hexadecane
(liquid) (solid)

Ultrasound velocity / m s 1439.1 1400.0 2200.0
Density / kg m™ 9999 7819 9082
Shear viscosity / Pa s 0.0014 000385
Shear rigidity / Pa 7.0 % 108
Thermal conductivity /J m's'K' 0.572 0.140 0.185
Specific heat capacity at constant 4195 2092 2092
pressure / J kg’ K'
Thermal expansivity / K 0.000075 | 0.000895 0.00066

Table 5.1  Physical properties of water, and liquid and solid hexadecane at 8 °C
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Figure 5.6 Plot of scattering correction in solid volume fraction determination for

hexadecane in water at 8 °C

The lines are for different values of total volume fraction ® ranging from 0.1 to 0.7

The curves represents the estimated correction calculated using an estimate of solid
volume fraction from the first term of equation 5.37
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simplified method of using the scattering correction to adjust the first estimate where
required is recommended. The error in the "exact" calculation of the correction term due
to the neglect of the attenuation in the derivation of the equation, was everywhere less

than 3x10°

As shown from the above calculations, it is possible to use multiple scattering
theory to determine the scattering factor. However, the same problems are encountered
as exist for the use of multiple scattering theory in other applications. The physical data
for the constituent phases can be difficult to find or determine, and the theoretical
scattering coefficient may not be exactly equal to its real apparent value The particle
sizes or size distribution may also be unknown. The scattering factor (equation 5.38)
requires only a single determination as it is itself independent of the solid volume
fraction. This allows the use of an experimental technique to determine the scattering
factor, using a well-characterised semi-crystalline emulsion. An emulsion can be made,
split into two quantities, half of which is frozen (so that all the oil crystallises), and half is
not. The semi-crystalline emulsion is produced by mixing the two emulsions in
appropriate proportions, so that the total volume fraction (if all the oil were solid) @
and the actual solid volume fraction ¢ are known. If the ultrasound velocity in this
emulsion is then measured, and the parameters substituted into equation 537, the
scattering factor can be determined directly, without the need for a numerical scattering

theory calculation

The result for the solid fat content, equation 5.37, was derived for a monodisperse
system The same equation is valid in a polydisperse sample, if the particle size
distribution of the solid and liquid droplets are identical (apart from the changes due to
the density difference). In other words, the same proportion of particles are solid for all
particle sizes. Equation 5.33 must hold for each particle size separately, i.e

1

e ?(d’"" ¢,x)l1+(!;’4 IJCDT} [5.42]

where the index i now represents a single particle size and @ is the total volume
fraction of all particle sizes when all are solid. However, in reality the crystallisation rate
is a function of particle size In particular, in the case of homogeneous  nucleation, the

crystallisation rate is proportional to the volume of the oil droplet. Thus it is likely that a
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higher proportion of the larger particles will be solid at any time. It is important to
remember that the theory requires that each particle must be completely solid or
completely liquid. The scattering properties used are for solid or liquid particles, not for
a partially crystalline droplet. The result of equation 537 is not precisely valid for
polydisperse systems. However, the discrepancy will depend on the degree of
polydispersity in the sample, and on the sensitivity of the scattering correction to particle
size. This is comparable with the validity criterion for the use of calibration and
renormalisation techniques in creaming experiments. In that situation, both the variation
in particle size distribution in the cream and the sensitivity of the ultrasound velocity to
changes in particle size were relevant, and a combined criterion could be written in the

form of equation 5.10

The variation of the scattering correction with particle size is shown in figure 5.7 in
the long wavelength region, at a frequency of 1 MHz. Although the curve appears rather
steep, the overall variation is less than 0.003 in volume fraction over the range of particle
size 0.01-10.0 pm. This is an encouraging result for the application of the equation 5.37
to polydisperse systems. When the crystallisation rate is a function of particle size, there
will be an added contribution to the correction term due to the imbalance of the size
distribution for solid and liquid particles. This effect may outweigh the dependence of the

monodisperse scattering correction on particle size

The effect of the imbalance of the solid and liquid size distribution was calculated
for the hexadecane in water system, using the most skewed case possible. All particles
larger than a given size are solid, and all the smaller particles are liquid. The particle size
at which the cut-off occurs is determined by the solid volume fraction. The particle size
distribution was log-normal, as defined in section 2.1. The peak of the distribution was at
a particle diameter of 1 jum, and the width of the size distribution was determined by the
value of . The quantity of interest is the error in applying equation 5.37 to determine

solid volume fraction, as a function of the degree of polydispersity

The difference between the actual solid volume fraction and the value calculated
from the first term of equation 5.37 was first calculated as a function of solid volume
fraction for the most polydisperse system. It was found that the maximum difference still
occurred when half of the dispersed phase was solid (equation 539), although the

difference is now skewed. Further calculations were therefore carried out under this
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Figure 5.7 Variation of the scattering correction for solid fat content with particle size
for a monodisperse hexadecane in water emulsion at 8 °C, and | MHz

The total volume fraction was 0.5 (when all solid), and the solid volume fraction 0.25
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Figure 5.8 Error in determination of solid fat content as a function of polydispersity in
the worst case for a hexadecane in water emulsion at 8 °C

The solid volume fraction is half the total. The curves are for different total solid volume
fraction from 0.1 to 0.6
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condition. The maximum error in applying the full form of equation 5.37 to calculate the
solid volume fraction was determined for a range of polydispersity and total
concentration. The results are shown in figure 5.8. It is clear that sufficient accuracy in
solid volume fraction can be obtained for quite a wide range of total volume fraction, and
for reasonably polydisperse emulsions. For example the error is less than 0.005 over the
full range of polydispersity for concentrations below 0.24. An accuracy of 0.01 in solid
volume fraction can be obtained at a total concentration of 0.6, up to a size distribution
width of 0.9. This is very significant, since it means that equation 537 can be applied
accurately for polydisperse emulsions unless the concentration is very high. The
scattering factor is to be determined experimentally in a single well-characterised

emulsion.

The results of this section have shown that the solid fat content of an emulsion can
be determined from ultrasound velocity measurements, using equation 5.37. In many
cases, especially where the constituent phases have similar densities, the relationship can
be further simplified by neglecting the second (scattering correction) term. Where the
scattering correction is significant, it can be determined experimentally using a single
well-characterised partially crystalline emulsion. Equation 537 strictly applies to
monodisperse samples, or where the crystallisation rate is independent of particle size
However, numerical calculations have shown that it is still applicable over a wide range
of concentrations for polydisperse samples in which crystallisation is strongly dependent
on particle size. This sim{ﬂiﬁed theory allows straightforward experimental studies of

.. jsomemodel
crystallisation |nLemu|5|ons

5.8 Summary of ultrasound methods

The approaches explored in this chapter are designed as practical methods of
interpreting ultrasound measurements in emulsions. Multiple scattering theory has been
used as the theoretical basis for the development of alternative techniques of ultrasound
interpretation which are more suited to routine experimental use. Scattering theory
results require complex numerical calculation, and the knowledge of many physical
properties of the emulsion, which are often difficult to determine. The results presented
in this chapter have to some extent overcome these difficulties. The essential points of

the chapter are as follows:
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* The theoretical formulation of scattering theory may be applied to emulsions, but with

experimental determination of the scattering properties of the system being measured

o Simplified techniques of ultrasound measurement interpretation are applicable only in

the absence of particle size or frequency efTects on the scattering properties.

e Standard calibration techniques to determine the relationship between ultrasound
velocity and oil concentration are essentially measurements of the scattering

characteristics of the sample

* The renormalisation method can be applied to creaming studies of emulsions to obtain
the velocity-concentration relationship directly from the measured ultrasound velocity

profiles

The ultrasound velocity and attenuation in a multiple phase system can be related to
the properties of the corresponding single phase systems. Measurements of both

ultrasound parameters can be used to determine the concentration of two phases

A simple relationship can be used to calculate the solid fat content in an emulsion
which contains both solid and liquid particles. A scattering correction term has been

shown to be small in many circumstances

The techniques described in this chapter are particularly applicable to creaming and
crystallisation measurements in emulsions. Although closely related to scattering theory,
the methods do not rely on numerical calculations, nor on a knowledge of many physical
properties of the component phases. They are more widely applicable than the theoretical
results of scattering theory, since they are based on the actual properties of the
experimental systems being used, rather than on theoretical assumptions. The
developments discussed in this chapter allow the continued and increased use of
ultrasound as a probe of emulsion stability. However, the influence of flocculation on
ultrasound measurements is not understood, and the techniques presented here may or
may not be applicable in such cases. Expenmental results indicate fhat the methods

are valid in the concenkrated. cream lmy,r.



Chapter 6 : Conclusions

In the introduction to this thesis, the main purpose of the work was stated to be the
acquisition of increased understanding of the interdependent processes of creaming,
flocculation and crystallisation, and the development of improved ways to interpret the
ultrasound measurements which are currently used to study these processes. The first of
these general aims has been addressed through the use of computer modelling of the
dynamic evolution of emulsions. The results of the models, in conjunction with an
investigation of the theory of ultrasound propagation in dispersions, have been used to
address the second aim. The purpose of this final chapter is briefly to draw together the
specific conclusions of the different parts of the study, and to present recommendations
based on the results of the whole work. Suggestions for areas of future work are also

made

The phenomenological model of creaming in idealised emulsions was shown to be
a good representation of real emulsions in the absence of particle interactions. The
concentration profiles predicted by the model were compared with the results from an
experimental system which was thought not to include flocculation or other interactions
(chapter 2). Good agreement was found except in the cream, in which the hydrodynamic
description used in the model was too simplified to represent the true complexity of
particle flow. The correspondence between model and experiment is evidence that the
results of the model can be used as representative data of real emulsions which are
studied experimentally using the ultrasound technique. Thus the application to creaming
experiments of various theories for the interpretation of ultrasound measurements can be

investigated using these results.

The model of creaming demonstrated that a significant degree of particle size
fractionation occurs, especially in the cream region at the top of the sample. Although
the predicted variation may not be exact, it is a clear indication that particle size
distribution changes may occur in a creaming emulsion. The results of ultrasound
scattering theory and experimental observations have shown that the ultrasound velocity

in an emulsion varies with particle size, in some circumstances. The Urick equation,
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which is commonly used to interpret ultrasound measurements, does not include any
influence of particle size on the sound speed. The phenomenological creaming model
showed that the variation of ultrasound velocity with height in the cream (according to
scattering theory) could be the reverse of that expected if the effect of particle size
variation were neglected (for example, using the Urick equation). Thus, an interpretation
of ultrasound measurements based solely on the concentration dependence of sound

speed is incorrect

The results indicate that the use of ultrasound velocity measurements to determine
concentration profiles should only be considered under conditions in which the sound
speed is insensitive to particle size. A guide to the range of particle size and frequency
for which this is the case can be obtained from scattering theory calculations (chapter 4)
A determination of the apparent total oil concentration in the emulsion can be used to
check whether particle size variation does have an influence on the interpretation of
measurements in a particular creaming experiment (see chapter 5). The difference in
ultrasound velocity predicted by the Urick equation and scattering theory is very large in
the system modelled. These results indicate that the Urick equation should not be applied

“blind” to any emulsion, since it may be inapplicable in the system of interest

Multiple scattering theory has a sound theoretical basis for ultrasound propagation
in emulsions systems. Measurements are usually made in the long wavelength limit, in
which the analysis is simplified, and only the lowest order scattering modes need be
considered. Although multiple scattering theory has been used as the benchmark in this
study, the predictions of scattering theory have been shown to be inexact for a number of
experimental systems (Holmes et al., 1993, 1994). In addition, a substantial amount of
physical data is required for the calculations, and these data are often difficult to obtain.
Hence, the direct application of scattering theory to interpret ultrasound measurements is
impractical. Some simpler limiting solutions are available (the Urick equation being one
of these) which are applicable under certain strictly specified conditions (chapter 4). In
this study, new methods of interpreting ultrasound measurements have been developed.
These adopt the theoretical basis of scattering theory, but the scattering characteristics of
a particular system are determined experimentally (see chapter 5). Thus, instead of a
reliance on a number of different theoretical formulations for the scattering properties of
a system, these properties are determined directly. The difficulty of applying the

scattering theory formulation to the interpretation of ultrasound measurements have,
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therefore, largely been overcome. The limits of the applicability of these techniques are

closely related to the effects of particle size variation seen in the creaming model

The experimental determination of the scattering properties of an emulsion can be
carried out through calibration, which is relevant to many applications of ultrasound
measurements. The relationship between ultrasound velocity and oil concentration is
found from measurements on a number of emulsions for which the oil concentration is
already known. For creaming experiments, the renormalisation method is proposed for
the determination of the sound speed-concentration relationship. The renormalisation
technique uses the knowledge of the total volume of oil in the whole emulsion to

calculate the unknown scattering parameters.

The use of the theoretical basis of scattering theory, but with experimental
determination of the scattering properties, is also applicable to two-phase systems such
as oil in water emulsions with polymer in the aqueous phase Crystallisation experiments
in emulsions with a mixture of solid and liquid droplets also fall into this category. The
relationship between the ultrasound velocity in the mixed system and the concentrations
of the individual components is derived from scattering theory. This relationship can,
however, be written in terms of the measured ultrasound properties in the single
component systems (for example an oil in water emulsion in the absence of polymer, or a
polymer solution). Hence, the properties of the combined system can be determined
experimentally. In crystallisation experiments, the additional knowledge of the total oil
concentration when it is all liquid is applied to obtain a simplified relationship which can

be used to determine solid fat content

The application of ultrasound theory to these two-phase systems has indicated that
a measurement of two ultrasound parameters, for example velocity and attenuation,
could be used to obtain two properties of the emulsion This is relevant for the
determination of the concentration of both of the phases in the mixed system as
described. It may be particularly applicable to the creaming of emulsions containing
polymer in solution, in which the oil tends to float to the top, but the polymer becomes
more concentrated at the bottom of the emulsion. Similarly, in creaming experiments of
crystallising emulsions, both the solid fat and liquid oil content are varying with height
The proposed relationships for this technique have not been tested, however, and the

influences of flocculation may undermine the theoretical basis in these systems.
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The study of the interpretation of ultrasound measurements has shown that an
awareness must exist of the restrictions of the technique. For example, in creaming
experiments, the dependence of ultrasound velocity on particle size must be avoided for
successful determination of concentration profiles. Within the restrictions which have
been detailed, a number of techniques have been presented, each with a sound theoretical
basis These techniques are practical methods for using and interpreting ultrasound
measurements in a variety of systems. An important conclusion is that the application of
the Urick equation, or of scattering theory, without proper consideration of the particular

system being studied, is unwise

Having modelled creaming behaviour in emulsions in the absence of particle
interactions, the effects of flocculation and crystallisation on the creaming process were
investigated. The inclusion of crystallisation in the creaming model illustrated the effect
of a heterogeneous crystallisation process on the ‘ideal’ creaming behaviour. The
predominant effect on the creaming rate was found to be the density change which
occurred when particles crystallised. Since the crystallisation rate in the idealised
emulsion was much more rapid than creaming, the creaming process was dominated by
solid droplets. Experimentally, no dramatic effect of crystallisation on creaming rate has
been observed (Ma, 1995). The rates of crystallisation and creaming may become
comparable when flocculation is significant, since flocculation has been shown to cause
rapid creaming in some cases. The combined effects of flocculation, crystallisation and
creaming have not yet been modelled, but the experimental results have not indicated a

significant effect either on crystallisation rate or on creaming and flocculation behaviour

Flocculation by non-adsorbing polymer has been seen experimentally to cause
dramatic changes in the creaming behaviour of some emulsions. One particularly
noticeable feature has been the large increase in creaming rate in the early stages, and the
development of a sharp serum layer interface. Attempts to include the effect of
flocculation in the phenomenological model of creaming were unsuccessful (chapter 2)
The limited description of floc formation and their dynamic properties was unable to
reproduce the characteristic features observed in practice. The small-scale lattice model
of flocculation and creaming is also a very simplified model of particle behaviour, but it
was able qualitatively to demonstrate some of the experimentally observed features

(chapter 3). A sharp serum interface was produced in the model, and creaming was
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prevented after formation of a network structure. The position of the serum interface
was shown to be an indicator of the height of the energy barrier against flocculation, a
relationship which may be applicable in practice. Nevertheless, the increase in creaming
rate observed in the lattice model due to flocs does not appear to be sufficient to explain
the dramatic serum separation observed in some experimental systems. The modelling of
creaming has therefore shown good agreement with experimental results in the absence
of flocculation. The effects of flocculation on creaming behaviour can to some extent be
described by a very simplified model of floc formation. However, this simplified model is
insufficient to explain the dramatic increase in creaming rate observed in some systems,

and the richness and complexity of creaming behaviour in flocculating emulsions

The computer modelling of creaming in emulsions has been successful in the
absence of particle interactions. A phenomenological model of flocculation, and its effect
on creaming behaviour, was unable to reproduce the features observed in experimental
systems. A simplified model of flocculation at the level of individual particles achieved
some success in demonstrating the effects of flocculation on concentration profiles
However, this model is unable to predict creaming behaviour on the scale of
experimental systems. Modelling of emulsion behaviour in direct correspondence to
experimental observation in the presence of particle interactions is therefore not fully
developed. Some conclusions may be drawn from particle simulations such as the lattice
model, but, as yet, such simulations cannot make predictions of macroscopic features or

parameters characterising emulsion creaming behaviour

The interpretation of ultrasound measurements can be carried out using multiple
scattering theory techniques. The application of the theoretical results requires numerical
calculations and the knowledge of a large number of physical properties of the system
However, these difficulties may largely be overcome by the use of simplified limiting
forms of the theory, or through the techniques developed for the experimental
determination of the scattering properties of the system The scattering theory analysis
assumes randomly distributed particles, and that there are no particle interactions. Hence,
the reliability of applying these methods to systems of interacting particles, or to non-
random distributions of particles (e.g. in flocs), is uncertain. The general theoretical

problem of sound wave propagation through a flocculated emulsion, or conversely, the
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issue of how to interpret ultrasound measurements made on such a system, is, as yet,

unsolved

The two aspects of the present work, namely computer modelling of emulsion
behaviour, and the interpretation of ultrasound measurements on emulsions, are therefore
limited by the current understanding of the effect of particle interactions, in particular
flocculation, in emulsions. The computer models have in part accounted for the effect of
flocculation on creaming behaviour. However, future development may require the use
of small-scale models to predict macroscopic properties of the emulsion, which can be
used in understanding experimentally observed behaviour. Predictions from small-scale
models may be used in a phenomenological model to improve the simulation of
flocculation and creaming behaviour. Such simulation is required to improve the
understanding of the, as yet, unexplained creaming behaviour in flocculating systems
Similarly, the effect of flocculation on ultrasound propagation is unquantified. Further
work is required to develop techniques for interpreting ultrasound measurements in such

systems.
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List of Symbols

English symbols

A vector potential of shear wave mode

A azimuthal component of shear wave potential

A, coefficient of #'th order scattered propagational mode

Ay Ay, two terms of the zero order scattering coefficient (equation 4.53)
a =kr

a, modified 7'th order scattering coefficient (equation 4.46)

a, coefficient in creaming speed (equation 2.39)

B, coeflicient of #'th order scattered thermal mode

b =kr

(5, coefficient of #'th order scattered shear mode

G, specific heat capacity at constant pressure

¢ =kr

D diffusion coefficient

D factor in first order scattering coefficient (equations 4.55-4.58)

D, diffusion coefficient at infinite dilution (Stokes-Einstein coefTicient)
d, fractal dimension

dyy volume-surface average particle diameter

E, spatially varying coefficient of #'th order of exciting field at particle
B coefficient of n'th order of exciting field at particle (equation 4.36)
E energy
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parameter in wavenumber (equation 4.6)
factor in zero order scattering coefficient (equations 4.51-4.52)
viscous drag force

gravitational force

force applied to particle

frequency

parameter in wavenumber (equation 4.6)

coefficient of temperature variation of sound wave (equations 4.19-4.20)
number of particles in the spherical shell denoted by R,

acceleration due to gravity

hydrodynamic hindrance factor

spherical Hankel function of order »

the final height of the serum interface relative to the bottom of the sample
acoustic intensity

J=1

particle flux

spherical Bessel function of order 7

wavenumber of dispersion (chapter 4)

crystallisation rate constant (chapter 2)

wavevector

wavenumber

Boltzmann constant

size of an object (chapter 2)

factor in first order scattering coefficient (equations 4.55-4.58)

step length moved by floc of N particles
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step length in a random walk

mobility

number of steps taken in a random walk

number of particles within a distance R

number of particles in floc

number of bonds connecting a particle to its neighbours
scattering mode (integer)

particle number density

number of measuring units needed to cover an object of size /.

probability of bond formation or breakage in any time step

components of stress tensor
Legendre polynomial of order n
associated Legendre polynomial of order n

probability of a particle breaking off from a floc in any time step
pressure

probability of a floc of N particles moving in any time step
factor in first order scattering coefficient (equations 4.55-4.58)
parameter in hydrodynamic hindrance factor (equation 2.42)
spherical polar co-ordinates

denotes a spherical shell at a given distance

position vector

particle radius

floc radius

scattering parameter of dispersion (equation 5.9)

average interparticle spacing
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/i absolute temperature

T deviation of temperature from ambient due to sound wave (chapter 4)
n ambient temperature (ultrasound theory)

1(r) scattering operator

1 time

U velocity of a particle under a steady force

u creaming speed

1, creaming speed at infinite dilution (Stokes velocity)

v fluid velocity

v ultrasound velocity (usually of propagational mode)

w natural logarithm of diameter in micrometres
x).z rectilinear co-ordinates
Z reduced variable (equation 2.18)
Greek symbols

a ultrasound attenuation (imaginary part of wavenumber)

a arbitrary fraction of concentration or time interval (chapter 2)
a, volume proportion of dispersed phase particles which are solid
i) thermal expansivity

B, coefficient in binary collision rate between species 7 and j

) cross-scattering coefficient in velocity (equations 5.19-5.20)

% ratio of specific heat capacities

7y parameter defining the volume of oil in a floc (equation 2.66)
8 coefficient of velocity-concentration relationship (equation 5.1)

5 coefficient of concentration—velocity relationship (equation 5.4)
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u
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coefficient of velocity-concentration relationship (equation 5.1)
proportion of collisions causing crystallisation or flocculation (chapter 2)
coefficient of concentration-velocity relationship (equation 5.4)

cross-scattering coefficient in attenuation (equation 5.22)

shear viscosity

polar angle

compressibility (usually adiabatic)

volume averaged compressibility

ultrasound wavelength (propagational mode)

coefficient of compressional viscosity (liquid)

bulk modulus (solid)

chemical potential per particle (chapter 2)

renormalisation parameter (equations 5.15-5.17)

scattering factor in solid volume fraction (equations 5.37-5.38)
osmotic pressure

density

volume averaged density

thermometric conductivity, = 7/,

width of particle size distribution (log-normal)

coefficient of attenuation-concentration relationship (equation 5.22)
thermal conductivity

volume (in spatial integration, equation 4.33)

dispersed phase volume fraction when all dispersed phase is liquid
dispersed phase volume fraction when all dispersed phase is solid

volume fraction of dispersed phase
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@, volume fraction of liquid dispersed phase

[ maximum packing fraction

b volume fraction of solid dispersed phase

[ scalar potential for compressional acoustic modes

Py scalar potential for incident ultrasound wave

X coefficient of attenuation-concentration relationship (equation 5.22)
14 azimuthal angle

@ angular frequency = 27f

Miscellaneous symbols

Ah layer thickness in phenomenological computer model
Ar time step in computer models
Avep experimental error in ultrasound velocity measurement
Ap?) L1
vl
Az difference in a quantity z between dispersed and continuous phases
=z -z=2,-1
Ag change in volume fraction in one time step
(2)s average of the quantity z over the height of the sample at time

Subscripts and superscripts

Where a symbol with its subscript or superscript does not appear in the preceding
sections, the subscript or superscript has the meaning given in the following list:
0 value at zero time

0,1,2 scattering mode
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continuous phase, liquid and solid dispersed phase respectively
bond formation

bond breakage

creaming or diffusion respectively

exciting acoustic field at a particle

effective value

relating to a floc

value just above or just below the height / respectively
different species or size fractions of dispersed phase
emulsion when all dispersed phase is liquid, or all solid respectively
maximum value

floc of N particles

scattering mode

relating to oil

relating to polymer

propagational ultrasound wave modes

scattered propagational mode

components in R and @ co-ordinate directions

shear ultrasound wave modes

thermal ultrasound wave modes

relating to the Urick equation

potential well for flocculation

component in the z-coordinate direction

relative to continuous phase

derivative

dispersed phase (scattering theory); no prime represents continuous phase
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Appendix Al : Computer Program for Phenomenological Model of
Creaming and Crystallisation

Phenomenological model of creaming and crystallisation

of oil in water emulsions

by Valerie Pinfield.  1993-1995

Crystallisation rate equations using binary collision mechanism

annNnan

PROGRAM CRMCRS

INTEGER ND.NH
DOUBLE PRECISION DELH.G.TOTPHI,PHILIM,MEANZ, SIGMAZ.SOLPHI.COLEFF
LOGICAL CRYST
C z=In(diameter), totphi=volume fraction, solphi=proportion solid. coleff=collision efficiency
PARAMETER ( ND=101.MEANZ=-0 868D0,SIGMAZ=0.5D0,
& NH=500.DELH=0.5D-3.G=9.81D0,
& TOTPHI=0.2D0.PHILI 0Do,
& SOLPHI=0.0D0.CRYST=FALSE..COLEFF=8 0D-8)
INTEGER JTOP2(1:ND).JTOP3(1:ND).JBOT2(1:ND).JBOT3(1:ND)
CHARACTER*50 FLNAME.DFNAME
DOUBLE PRECISION RADIUS(1:ND).STOK V2(1:ND).STOKV3(1:ND).
& DIFF2(1:ND).DIFF3(1:ND),DIFFR(ND,ND) DELVR(ND.ND).
& Q(3).RHO(3).ETA(3).MU(3). TOR(3).CP(3).GAMMA(3),
& BETA(3).ALPHA(3).SIGMA(3). TEMP.ANGFREQ.
&
&

PHITOT(1:NH).PHI2(1:ND.1:NH),PHI3(1:ND.1:NH).
HTOP2(1:ND),HBOT2(1:ND).HTOP3(1:ND),HBOT3(1:ND).DELT,RECORD MAXT
DELT=600.0D0
RECORD=216000.0D0
MAXT=2.592D6
ANGFREQ=1.6D6*6.283185307D0
FLNAME="crm09a.xls"
DFNAME="hex8"
OPEN(UNIT=20,ACCESS="SEQUENTIAL" FILE=FLNAME)
WRITE(20,300)FLNAME.DFNAME
300 FORMAT("Creaming_profile_results ".A12." Data_file ".A12)
WRITE(20.301)
301 FORMAT("CRMCRS F")
WRITE(20.302)ANGFREQ
302 FORMAT("Angular_frequency ".E15 5E3)
C *** Read material properties from data file
CALL MTDATA(Q.RHO.ETA MU.TOR.CP.GAMMA BETA . ALPHA SIGMA.
& ANGFREQ.TEMP,DFNAME)
C *** Set up particle size distribution, creaming and diffusion rates
CALL INITIALISE(ND.NH.RADIUS STOK V2. STOK V3 DIFF2 DIFF3,
& DIFFR,DELVR.RHO.ETA. TEMP.G MEANZ, SIGMAZ,
& CRYST,SOLPHI, TOTPHI.PHILIM.PHI2.PHI3 PHITOT,
& JTOP2.JBOT2,JTOP3.JBOT3 . HTOP2, HBOT2 HTOP3, HBOT3,DELT DELH)
C *** Calculate creaming process
CALL SEQUENCE(ND.NH,RADIUS,STOKV2,STOK V3.DIFF2.DIFF3,DIFFR,DELVR,
& Q.RHO.ETA MU.TOR.GAMMA BETA.SIGMA ANGFREQ,
& CRYST.COLEFF.PHILIM.PHI2,PHI3.PHITOT,
& JTOP2,JBOT2,JTOP3.JBOT3 . HTOP2, HBOT2.HTOP3,HBOT3,
& RECORD.MAXT.DELT.DELH)
END
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(o3
SUBROUTINE INITIALISE(ND.NH.RADIUS STOK V2.STOK V3.DIFF2. DIFF3.
& DIFFR DELVR.RHO.ETA. TEMP.G MEANZ SIGMAZ,
& CRYST,SOLPHI, TOTPHI,PHILIM,PHI2 PHI3 PHITOT,
& JTOP2,JBOT2.JTOP3.JBOT3 HTOP2, HBOT2 . HTOP3 . HBOT3.DELT.DELH)
c
C *** Initialise the particle size distribtion and concn profiles

C *** Initialise creaming and diffusion rates

INTEGER ND,NH.JTOP2(1:ND).JBOT2(1:ND).JTOP3(1:ND).JBOT3(1:ND)

DOUBLE PRECISION RADIUS(1:ND).STOKV2(1:ND).STOKV3(1:ND).
DIFF2(1:ND).DIFF3(1:ND).DIFFR(ND.ND).DELVR(ND.ND).
RHO(3).ETA(3).TEMP.G.SOLPHL.SOLRAD,
TOTPHI.PHILIM.PHI2(1:ND.1:NH).PHI3(1:ND, I:NH).PHITOT(1:NH).
HTOP2(1:ND).HBOT2(1:ND).HTOP3(1:ND)HBOT3(1:ND).
RATIO.SUM.DEL.FRACT(1:101),MEANZ.SIGMAZ.DZ.DENOM.SHIFTZ,
DELT.DELH.K.PI

LOGICAL CRYST

PARAMETER(K=1.3807D-23. PI=3.141592654D0)

INTEGER L.J

R

SUM=0.0D0O
DEL=RHO(2)/RHO(3)
IF (ND.EQ.1) THEN
C *** Monodisperse emulsion
RADIUS(1)=0.5D-6*DEXP(MEANZ)
SOLRAD=RADIUS(1)*(DEL**0.3333333333D0)
C *** Stokes creaming speed, Stokes-Einstein diffusion coefficient
STOK V2(1)=2. 0DO*DABS(RHO(2)-RHO(1))* G*RADIUS(1)*RADIUS(1)
/(9.0DO*ETA(1))
STOK V3(1)=2.0D0*DABS(RHO(3)-RHO(1))*G*RADIUS(1)*RADIUS(1)*
(DEL**(0.666666666667D0))/(9.0DO*ETA(1))
DIFF2(1)=K*TEMP/(6.0DO*PI*ETA(1)*RADIUS(1))
DIFF3(1)=K*TEMP/(6 0DO*PI*ETA(1)*RADIUS(1)*(DEL**0.3333333D0))
C *** Binary collision rates for crystallisation
DIFFR(1.1)=1.5D0*(DIFF2(1)+DIFF3(1)*(RADIUS(1)+SOLRAD)/
*(SOLRAD**3.0D0)
DELVR(1,1)=0.75D0*DABS(STOK V2(1)-STOKV3(1))*(RADIUS(1)+SOLRAD)
& *RADIUS(1)+SOLRAD)/(SOLRAD**3.0D0)
JTOP2(1)=NH
JBOT2(1)=1
HTOP2(1)=1.0D0
HBOT2(1)=0.0D0
JTOP3(1)=NH
JBOT3(1)=1
HTOP3(1)=1.0D0
HBOT3(1)=0.0D0
DO 104 J=1.NH
C *** Uniform emulsion. Initial proportion of oil is solid
PHI2(1.J)=(1.0D0-SOLPH)*TOTPHI
PHI3(1.J)=SOLPHI*TOTPHI*DEL
PHITOT(J)=PHI2(1,))+PHI3(1.])
104 CONTINUE
ELSE
C **# Polydisperse. log-normal distribution when plotting volume/size
C *** Z = LN (D/microns) Natural logarithm of diameter
DZ=6.0D0*SIGMAZ/(DBLE(ND)-1.0D0)
DENOM=2.0D0*SIGMAZ*SIGMAZ
DO 101 1=1.
SHIFTZ = (-3.0D0*SIGMAZ)+ DBLE(I-1)*DZ
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RADIUS(1)=0.5D0*1.0D-6*DEXP(MEANZ + St 1IFTZ)
FRACT(I)=DEXP(-(SHIFTZ*SHIFTZ)/DENOM)
SUM=SUM +FRACT(I)

C *** Stokes creaming speed. Stokes-Einstein diffusion coefficient

&

&

101

STOKV2(1)=2. 0D0*DABS(RHO(2)-RHO(1))*G*RADIUS(1)*RADIUS(I)
/(9.0DO*ETA(1))

STOKV3(1)=2 0D0*DABS(RHO(3)-RHO(1))*G*RADIUS(1)* RADIUS(I)*
(DEL**(0.666666666667D0))/(9.0D0*ETA(1))

DIFF2(I)=K*TEMP/(6 0DO*PI*ETA(1)*RADIUS(I))

DIFF3(1)=K*TEMP/(6.0D0*PI*ETA(1)*RADIUS(I)*
(DEL**0.3333333D0))

JTOP2(1)=NH

JBOT2(1)=1

HTOP2(1)=1.0D0

HBOT2(1)=0.0D0

ITOP3(1)=NH

JBOT3(1)=1

HTOP3(I)=1.0D0

HBOT3(1)=0.0D0

CONTINUE

C *** Binary collision rates for crystallisation

R P

103
102

DO 102 I=1.ND
DO 103 J=1.ND
DIFFR(L.J)=1.5D0*(DIFF2(1)+DIFF3(J))*(RADIUS(I)+
RADIUS())*(DEL**0.333333333D0))/
(DEL*(RADIUS(1)**3.0D0))
DELVR(LJ)=0.75D0*DABS(STOK V2(I)-STOK V3(J))*
(RADIUS(+(RADIUS(J)*(DEL**0.3333333333D0)))*
(RADIUS()HRADIUS(J)*(DEL**0.3333333333D0)))/
(DEL*(RADIUS(J)**3.0D0))
CONTINUE
CONTINUE
RATIO=TOTPHI/SUM
DO 110 J=1.NH
PHITOT(1)=0.0D0
DO 111 [=1.ND

C *** Uniform emulsion. Initial proportion of oil is solid

11
110

PHI2(1.1)=(1.0DO-SOLPHI)*RATIO*FRACT(I)
PHI3(L.))=SOLPHI*RATIO*FRACT(1)*DEL
PHITOT(J)=PHITOTU)+PHI2(1.))+PHI3(L.))
CONTINUE
CONTINUE
END IF

C *** Set time interval according to creaming speed

300

301

k=

IF (DELT.GT.(0.5D0*DELH/STOK V2(ND))) THEN
DELT=0.5DO*DELH/STOKV2(ND)

END IF

IF (CRYST AND DELT.GT (0.5DO*DELH/STOK V3(ND))) THEN
DELT=0.5D0*DELH/STOK V3(ND)

END IF

WRITE(20,300)DELT

FORMAT("Time interval ".E15.5E3)

WRITE(20,301) NH.DELH. TOTPHIL.PHILIM

FORMAT(I4." layers of,E9.2,"m : inital volume fraction ".F5.2
" packing fraction ".F5.2)

IF(CRYST)THEN
WRITE(20.302)SOLPHI
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302 FORMAT("Proportion of volume which is solid".F5 2)
ENDIF
WRITE(20.303)
303 FORMAT("Initial distribution, radius. volume fraction")
DO 112 I=1.ND
IF(CRYST)THEN
WRITE(20.305)RADIUS(1),PHI2(I,NH),PHI3(1,NH)
305 FORMAT(3E14.6)
ELSE
WRITE(20,304)RADIUS(1).PHI2(I,NH)
304 FORMAT(2E14.6)
ENDIF
12 CONTINUE
WRITE(20,306)TOTPHL(1.0D0-SOLPHD*TOTPHI.SOLPHI*DEL*TOTPHI
306 FORMAT("Total_vol_fracts".3F8.4)
END
c
SUBROUTINE SEQUENCE(ND,NH.RADIUS.STOK V2 STOK V3.DIFF2,DIFF3,
& DIFFR.DELVR.Q RHO.ETA. MU. TOR.GAMMA.BETA SIGMA. ANGFREQ.
& CRYST.COLEFF PHILIM.PHI2 PHI3.PHITOT.
& JTOP2 JBOT2,JTOP3,.JBOT3.HTOP2. HBOT2.HTOP3 HBOT3,
& RECORDMAXT.DELT,DELH)
C
€ Control the sequence of time steps for the calculation of the
C  development of concentration profiles

101

&
&

Po Po Po o o Po

Po Po R PoPo e

INTEGER ND.NH.LJ.T,
JTOP2(1:ND).JBOT2(1:ND),JTOP3(1:ND).JBOT3(1:ND),
JPTOP2(1:101).JPBOT2(1:101).JPTOP3(1:101).JPBOT3(1:101)

DOUBLE PRECISION RADIUS(1:ND).STOKV2(1:ND).STOKV3(1:ND),
DIFF2(1:ND).DIFF3(1:ND).DIFFR(ND.ND). DELVR(ND.ND),
Q(3).RHO(3).ETA(3).MU(3).TOR(3).
GAMMA(3),BETA(3).SIGMA(3).DEL23. ANGFREQ.PHILIM.COLEFF.
PHI2(1:ND.1:NH).PHI3(1:ND,1:NH),PHITOT(1:NH).
HTOP2(1:ND),HBOT2(1:ND).HTOP3(1:ND).HBOT3(1:ND).
MAXT.RECORD.DELT.DELH

DOUBLE PRECISION MEANV2(1:101).MEANV3(1:101),
VTOP2(1:101).VBOT2(1:101). VTOP3(1:101).VBOT3(1:101),
DIFHIN,CRMHIN.PHIUP2(1:101),PHIUP3(1:101).PHITUP.
TMPHI2(1:101).TMPHI3(1:101).PHIT2.PHIT3,
HPTOP2(1:101).HPBOT2(1:101).HPTOP3(1:101).HPBOT3(1:101).
TDIVH. TDIVH2. TIME.N.DEL.
SSVTH.SSVVI.SSVEL.SSATT.MSVEL.MSATT.ATTL.URICK2

LOGICAL CRYST

DEL=RHO(1)/RHO(2)
DEL23=RHO(2)/RHO(3)
TDIVH=DELT/DELH
TDIVH2=TDIVH/DELH

DO 101 I=1.ND
HPTOP2(I)=HTOP2(I)
HPBOT2(I)=HBOT2(I)
HPTOP3(I)=HTOP3(I)
HPBOT3(I)=HBOT3(1)

CONTINUE
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T=0
201 IF(TIME.LE MAXT) THEN
C *** Increment time by one step
T=T+
TIME=DELT*DBLE(T)

C *** Initialise arrays at top of sample
DO 102 I=1,ND
IF(JBOT2(1). EQ NH)THEN
PHIUP2(1)=PHI2(I,NH)*(1. 0D0-HBOT2(1))
ELSEIF (JTOP2(I) EQ NH)THEN
PHIUP2(1)=PHI2(LNH)*HTOP2(I)
ELSE
PHIUP2(1)=PHI2(1.NH)
END IF
IF(CRYST)THEN
IF(JBOT3(I).EQ.NH)THEN
PHIUP3(1)=PHI3(INH)*(1.0D0-HBOT3(I))
ELSEIF (JTOP3(I).EQ NH)THEN
PHIUP3(I)=PHI3(I.NH)*HTOP3(I)
ELSE
PHIUP3(I)=PHI3(I.NH)
END IF
ENDIF
102 CONTINUE
PHITUP=PHITOT(NH)

C *** Calculate velocity of upper and lower boundaries of each size
CALL BDRYVEL(ND.NH.STOK V2, STOK V3. VTOP2.VBOT2.VTOP3,VBOT3,

& DIFF2.DIFF3 PHILIM,PHI2.PHI3 PHITOT,
& JTOP2 JBOT2.JTOP3.JBOT3. HTOP2. HBOT2 HTOP3,HBOT3.
& TIME.DELT.CRYST)

C *** Start with top layer and work downwards.
DO 103 J=NH-1,1.-1
C **x Calculate the velocity of each size fraction at J/J+1 interface
CALL CALVEL(J.ND.NH.STOKV2.STOK V3 MEANV2 MEANV3,
& DIFHIN.CRMHIN,PHILIM,PHI2.PHI3.
JTOP2.JBOT2.JTOP3 JBOT3 . HTOP2. HBOT2.HTOP3 . HBOT3.CRYST)

C *** Calculate the oil volume moving across the J/J+1 layer interface

CALL FLUX(J.ND.NH.STOKV2,STOKV3.MEANV2 MEANV3,
VTOP2,VBOT2.VTOP3.VBOT3 DIFF2 DIFF3,
DIFFR.DELVR.DIFHIN,CRMHIN.COLEFF DEL23,
PHILIM.PHI2 PHI3 . PHITOT PHITUP,PHIUP2 PHIUP3,
JTOP2.JBOT2.JTOP3, JBOT3.HTOP2. HBOT2 HTOP3.HBOT3,
JPTOP2,JPBOT2,JPTOP3,JPBOT3.
HPTOP2,HPBOT2 HPTOP3 HPBOT3.
DELT.TDIVH.TDIVH2.CRYST)

P Po PoPo P e P

103 CONTINUE
C *** Reset the arrays and variables

PHITOT(1)=PHITUP

DO 104 I=1,ND
JTOP2(I)=JPTOP2(I)
IBOT2(I)=JPBOT2(I)
HTOP2(1)=HPTOP2(I)
HBOT2(1)=HPBOT2(I)
JTOP3(1)=JPTOP3(1)
JBOT3()=JPBOT3(I)
HTOP3(I)=HPTOP3(I)
HBOT3(1)=HPBOT3(I)
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C *** Check for problems and underflow
IF(HBOT2(1).GT.1.0D0YTHEN
WRITE(20.321)HBOT2(1)
321 FORMAT("HBOT.GT.1"E15 5E3)
GOTO 202
END IF
IF(HBOT3(1).GT.1.0DO)THEN
WRITE(20,322)HBOT3(1), TIME.JBOT3(1),HBOT3(1)
322 FORMAT("HBOT GT.1".2E15 SE3.15.E15.5E3)
GOTO 202
END IF
DO 105 I=1.NH
IF(PHI2(I.J).LT.1.0D-15)THEN
PHI2(1.)=0.0D0O
END IF
IF(PHI3(1.J).LT.1.0D-15)THEN
PHI3(1.1)=0.0D0
END IF
IF(PHITOT(J).LT 1.0D-15)THEN
PHITOT(1)=0.0D0
END IF
105 CONTINUE
104 CONTINUE
C *** If this is a recording step. write out results
N=TIME/RECORD
IF(N.GT.0.5D0.AND.DABS(TIME-(RECORD*DNINT(N))) LE
& DELT/2.0D0)THEN
WRITE(20.301)TIME/86400.0D0
301 FORMAT("time".F8.2." days")
WRITE(20,302)
302 FORMAT("Height  Tot vol fract phi(liquid)
& Urick vel ~ S.S.vel M.S. vel S.S Atten M.S
atten")
C *** Generate and write out concentration and velocity profiles
DO 106
PHIT.
PHIT3=0.0D0O
DO 107 I=1.ND
C *** Calculate the local concentration at the layer interface
IF(J NE_JBOT2(I).OR (HBOT2(I) LE.0.01D0)) THEN
PHIT2=PHIT2+PHI2(1.])
TMPHI2(I)=PHI2(L.J)
ELSE
TMPHI2(1)=0.0D0
ENDIF
IF(J.NE.JBOT3(I).OR.(HBOT3(I).LE 0.01D0)) THEN
PHIT3=PHIT3+PHI3(LJ)
TMPHI3(1)=PHI3(1.J)
ELSE
TMPHI3(1)=0.0D0
ENDIF
107 CONTINUE
C *** Calculate ultrasound velocity
CALL USVELS(2.ND.RADIUS, TMPHI2, TMPHI3. ANGFREQ.
& SSVTH,SSVVISSVEL.SSATT MSVEL MSATT.ATTL.
& Q.RHO.ETA.MU.TOR.GAMMA BETA.SIGMA)
URICK2=1.0DO/((PHIT2*(DEL+PHIT2*(1.0D0-DEL))/
& (Q2)*Q(2))*+((1.0DO-PHIT2)*(1.0D0-PHIT2*
& (1.0D0-1.0DO/DEL)A(Q(1)*Q(1))))
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C *** Output results
IF(CRYST)THEN
WRITE(20.303) 1 OE3*J*DELH.PHIT2.PHIT3 PHITOT(J).
& (PHI2(LJ).PHI3(I.J).1=1.ND.20)
& DSQRT(URICK2).SSVEL.MSVEL.SSATT MSATT
303 FORMAT (F7.2.15E11 4E2 3F8.2.2F12 4E2)
ELSE
WRITE(20.304) 1.0E3*J*DELH,PHIT2.PHITOT(J).
(PHI2(LJ).I=1.ND.10)
DSQRT(URICK2), SSVEL.MSVEL.SSATT.MSATT
304 FORMAT (F7.2.13E11 4E2.3F8 2. 2E12 4E2)
ENDIF
106 CONTINUE
WRITE(20.305)(JTOP2(1).1=1.ND, 10)
WRITE(20.306)(HTOP2(I).1=1.ND, 10)
WRITE(20.307)(JBOT2(1).1=1,ND. 10)
WRITE(20.308)(HBOT2(1).1=1.ND.10)
IF(CRYST)THEN
WRITE(20.305)(JTOP3(1).1=1.ND,10)
WRITE(20.306)(HTOP3(I),1=1,ND.10)
WRITE(20.307)(JBOT3(I).1=1.ND.10)
WRITE(20.308)(HBOT3(I).I=1.ND.10)
ENDIF
305 FORMAT("ITOP".130.10115)
306 FORMAT("IBOT".130.10115)
307 FORMAT("HTOP".E30.5E3.10E15 5E3)
308 FORMAT("HBOT".E30.5E3.10E15.5E3)

e

C *** Write out the particle size distribution
IF(DABS((N)-(5.0D0*DNINT(N/5.0D0))) LT.0.01D0)THEN
DO 108 I=1.ND.2
WRITE(20.309)RADIUS(I),PHI2(1.1).

& (PHI2(1.J).J=50.350.,50).(PHI2(1.]),]=400,500.10)
309 FORMAT(E12.6E2.19E11 4E2)
108 CONTINUE
END IF
END IF
€ *** Next time step
GOTO 201
END IF
202 END
[¢!
SUBROUTINE CALVEL(I.ND.NH.STOK V2.STOK V3, MEANV2 MEANV3.
& DIFHIN.CRMHIN.PHILIM_PHI2 PHI3,
& JTOP2.JBOT2.JTOP3.JBOT3. HTOP2 HBOT2 HTOP3 HBOT3.CRYST)
(2

C *** Calculate velocity for each size fraction at J/J+1 interface.
C *** Barnea-Mizrahi (1973) hindrance factor. Zimmels (1988) polydisper
C *** Carnahan-Starling equation for thermodynamic factor of diffusion
INTEGER I.J.ND.NH,
& JTOP2(1:ND).JBOT2(1:ND).JTOP3(1:ND).JBOT3(1:ND)
DOUBLE PRECISION BARNEA
DOUBLE PRECISION STOKV2(1:ND).STOKV3(1:ND),
MEANV2(1:101).MEANV3(1:101).DIFHIN.CRMHIN,
PHILIM,PHI2(1:ND.1:NH).PHI3(1:ND. 1:NH),
HTOP2(1:ND).HBOT2(1:ND),HTOP3(1:ND).HBOT3(1:ND),
PHIABV.PHIBEL.SUMABV.SUMBEL.PHL.SUM.FAC
LOGICAL CRYST

Popope
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C *** Calculate total concn just above and just below layer interface

101

PHIABV=0.0D0
PHIBEL=0.0D0
SUMABV=0.0D0
SUMBEL=0.0D0
DO 101 I=1.ND
IF (1NE.JTOP2(I)).OR ((1.0D0O-HTOP2(I)) LE.0 01D0)) THEN
PHIBEL=PHIBEL+PHI2(1.J)
SUMBEL=SUMBEL+PHI2(I.J)*STOK V2(I)
END IF
IF (((J+1).NE.JBOT2(1)).OR. (HBOT2(I).LE.0.01D0)) THEN
PHIABV=PHIABV+PHI2(I.J+1)
SUMABV=SUMABV+PHI2(I.]+1)*STOK V2(1)
END IF
IF(CRYST)THEN
IF ((JNE.JTOP3(I)).OR ((1.0D0-HTOP3(1)). LE.0.01D0)) THEN
PHIBEL=PHIBEL+PHI3(I.J)
SUMBEL=SUMBEL+PHI3(I.J)*STOK V3(I)
END IF
IF (((J+1).NE.JBOT3(I)) OR. (HBOT3(1).LE.0.01D0)) THEN
PHIABV=PHIABV+PHI3(1.J+1)
SUMABV=SUMABV+PHI3(.J+1)*STOK V3(I)
END IF
ENDIF
CONTINUE

C ** Average concn used in hind: factor for ing and diffusi

&

PHI=0.5D0*(PHIABV+PHIBEL)

FAC=BARNEA(PHI)

SUM=0.5D0*(SUMABV+SUMBEL)

DIFHIN=FAC*((1.0D0+2.0DO0*PHI)*(1.0D0+2.0DO*PHI) +((PHI**3)*
(PHI-4.0D0))/((1.0D0-PHI)**3)

CRMHIN=FAC

C *** Calculate creaming velocity of each size fraction

102

DO 102 I=1,ND
MEANV2(1)=FAC*(STOK V2(I)-SUM)
MEANV3(I)=FAC*STOK V3(1)-SUM)

CONTINUE

END

PR

SUBROUTINE FLUX(J.ND.NH.STOK V2, STOK V3, MEANV2. MEANV3,
VTOP2,VBOT2.VTOP3.VBOT3.DIFF2,DIFF3,
DIFFR.DELVR.DIFHIN.CRMHIN,COLEFF.DEL23.
PHILIM,PHI2 PHI3 . PHITOT .PHITUP.PHIUP2 PHIUP3.

JTOP2.JBOT2 JTOP3,JBOT3. HTOP2 HBOT2 HTOP3. HBOT3.
JPTOP2.JPBOT2.JPTOP3,JPBOT3 HPTOP2, HPBOT2 HPTOP3 HPBOT3.
DELT.TDIVH, TDIVH2.CRYST)

&

C *** Calculate volume of oil which moves across the layer interface

&

&
&
&
&

INTEGER LJJILND.NH,
JTOP2(1:ND).JBOT2(1:ND).JTOP3(1:ND).JBOT3(1:ND),
JPTOP2(1:101),JPBOT2(1:101). JPTOP3(1:101),JPBOT3(1:101)

DOUBLE PRECISION STOKV2(1:ND).STOKV3(1:ND),
VTOP2(1:101).VBOT2(1:101).VTOP3(1:101).VBOT3(1:101),
MEANV2(1:101).MEANV3(1:101),DIFF2(1:ND).DIFF3(1:ND).

DIFF DIFFR(ND.ND).DELVR(ND.ND),DIFHIN.CRMHIN.DEL23.COLEFF,
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PHILIM.PHI2(1:ND.1:NH),PHI3(1:ND,1:NH),PHITOT(1:NH).
PHITUP.PHIUP2(1:101),PHIUP3(1:101),
PHU3(1:101).PHII2(1:101),PHITI2(1:101),PHII13(1:101),
HTOP2(1:ND).HBOT2(1:ND).HTOP3(1:ND).HBOT3(1:ND).
HPTOP2(1:101),HPBOT2(1:101)HPTOP3(1:101),HPBOT3(1:101),
DELT, TDIVH, TDIVH2 PHIMOV.PHISUM.
DVOL21,DPHI2(101).DPHI21(101).DPHI3(101).DPHI3 1(101).0VRLAP
LOGICAL CRYST

Re Pe Po Po o Po P

IF (PHITOT(J+1).LT PHILIM)THEN
PHISUM=0.0D0
DO 101 I=1.ND
PHIJ12(1)=PHI2(I.J+1)
PHIR2(1)=PHI2(L.])
PHIJI3(I=PHI3(1.J+1)
PHIJ3(D=PHI3(L.T)
DIFF=DIFF2(1)*DIFHIN
C *** Calculate amount of (liquid) oil of this size crossing interface
CALL FLOW(I NHMEANV2(I),VTOP2(1), VBOT2(1).DIFF,
PHI2(L1),PHI2(1.J+1),PHIJ12(1),PHIUP2(1).PHI2(I).
PHIMOV.JTOP2(1).JBOT2(I), HTOP2(1), HBOT2(I).
JPTOP2(1),JPBOT2(I).HPTOP2(1).HPBOT2(1).
TDIVH.TDIVH2)
PHISUM=PHISUM + PHIMOV
IF(CRYST)THEN
DIFF=DIFF3(I)*DIFHIN
C *** Calculate amount of (solid) fat of this size crossing interface
CALL FLOW(J.NH.MEANV3(I). VTOP3(I).VBOT3(I). DIFF.
PHI3(1.1),PHI3(1.J+1).PHIJI3(1).PHIUP3 (1), PHII3(I).
PHIMOV.JTOP3(1).JBOT3(1), HTOP3(1), HBOT3(I).
JPTOP3(1).JPBOT3(1),HPTOP3(1) HPBOT3(1).
TDIVH.TDIVH2)
PHISUM=PHISUM +PHIMOV
ENDIF
101 CONTINUE
PHITOT(J+1)=PHITUP+PHISUM
PHITUP=PHITOT(J)-PHISUM
ELSE
C *** No movement if layer is full. Reset arrays
DO 102 I=1.ND
PHIJ12(1)=PHI2(1.J+1)
PHIJ13(1)=PHI3(L.J+1)
PHIJ2(H)=PHI2(L])
PHII3(1)=PHI3(L.J)
IF(J.EQIBOT2(I)) THEN
PHIUP2(1)=PHI2(1.J)*(1.0D0-HBOT2(I))
ELSEIF (J.EQJTOP2(1)) THEN
PHIUP2(1)=PHI2(L.))*HTOP2(1)
ELSE
PHIUP2(I)=PHI2(1.))
END IF
IF(CRYST)THEN
IF(J.EQ.JBOT3(I) THEN
PHIUP3(I)=PHI3(1.))*(1.0D0-HBOT3(1))
ELSEIF (J.EQ.JTOP3(I)) THEN
PHIUP3(I)=PHI3(1L1)*HTOP3(I)
ELSE
PHIUP3()=PHI3(L))
END IF

PR

P po PR
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ENDIF
102 CONTINUE
PHITUP=PHITOT(J)
END IF
C *** Calculate the amount of oil (liquid) converted to fat (solid)
IF(CRYST)THEN
DO 103 I=1.ND
IF(J+1.LEQJPTOP2(1)) THEN
DVOL21=0.0D0
DO 104 11=1.ND
IF(J+1.EQ.JPTOP3(11)) THEN
OVRLAP=DMINI(HPTOP2(1). HPTOP3(11))
ELSE
OVRLAP=HPTOP2(I)
ENDIF
DVOL2I=DVOL21+PHII 13(11)*OVRLAP
& *(DIFHIN*DIFFR(LIN + CRMHIN*DELVR(1.11))
104 CONTINUE
DVOL2I=DELT*COLEFF*PHIJ12(1)*DVOL21
DPHI2(I)=-DVOL2I/HPTOP2(1)
C *** Protect against crystallising more liquid than is available
IF(DABS(DPHI2(1)) GT.PHIJ12(1)) THEN
DPHI2(I)=-PHIT12(I)
DVOL2I=-DPHI2(I)*HPTOP2(I)
ENDIF
ELSEIF(J+1 EQ JPBOT2(1)) THEN
DVOL2I=0.0D0
DO 105 II=1.ND
IF(J+1.LEQ.JPBOT3(I1)) THEN
OVRLAP=DMINI(1.0D0-HPBOT2(I).1.0DO-HPBOT3(11))
ELSE
OVRLAP=1.0D0-HPBOT2(I)
ENDIF
DVOL2I=DVOL2I+PHITI3(I1)*OVRLAP
& *(DIFHIN*DIFFR(L11)+ CRMHIN*DELVR(I,11))
105 CONTINUE
DVOL2I=DELT*COLEFF*PHII12(1)*DVOL21
DPHI2(1)=-DVOL21/(1 0DO-HPBOT2(1))
IF(DABS(DPHI2(1)) GT PHII12(1)) THEN
DPHI2()=-PHII12(T)
DVOL2I=-DPHI2(I)*(1.0D0-HPBOT2(I))
ENDIF
ELSE
DVOL2I=0.0D0
DO 106 TI=1.ND
IF(J+1. EQ JPTOP3(I1)) THEN
OVRLAP=HPTOP3(II)
ELSEIF(J+1.EQ JPBOT3(11)) THEN
OVRLAP=1.0D0-HPBOT3(IT)
ELSE
OVRLAP=1.0D0
ENDIF
DVOL2I=DVOL2I+PHII13(I))*OVRLAP
& *(DIFHIN*DIFFR(LI1)+ CRMHIN*DELVR(LII))
106 CONTINUE
DVOL2I=DELT*COLEFF*PHIJ12(1)*DVOL21
DPHI2(I)=-DVOL21
IF(DABS(DPHI2(1)). GT.PHIJ12(1)) THEN
DVOL21=-DPHI2(T)
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ENDIF
ENDIF
IF(J+1 EQ.JPTOP3(I)) THEN
DPHI3(I)=DEL23*DVOL2I/HPTOP3(1)
ELSEIF(J+1. EQ.JPBOT3(1)) THEN
DPHI3(I)=DEL23*DVOL21/(1.0DO-HPBOT3(1))
ELSE
DPHI3(1)=DEL23*DVOL21
ENDIF
PHITOT(J+1)=PHITOT(J+1)-DVOL21*(1.0D0-DEL23)
103 CONTINUE
C *** Same crystallisation for layer J=1
IF(J.EQ. 1)THEN
DO 107 I=1.ND
IF(JPBOT2(I). EQ. 1) THEN
DVOL21=0.0D0
DO 108 1I=1.ND
IF(JPBOT3(I1).EQ. 1) THEN
OVRLAP=DMINI(1.0D0-HPBOT2(1),1.0D0-HPBOT3(11))
ELSE
OVRLAP=1.0D0-HPBOT2(I)
ENDIF
DVOL21=DVOL2I+PHI3(I*OVRLAP
& *(DIFHIN*DIFFR(LI1)+ CRMHIN*DELVR(L11))
108 CONTINUE
DVOL2I=DELT*COLEFF*PHII2(1)*DVOL2I
DPHI21()=-DVOL21/(1.0D0-HPBOT2(1))
C *** Protect against crystallising more liquid than is available
IF(DABS(DPHI2(1)).GT PHIJ2(1)) THEN
DPHI21(D)=-PHII2(T)
DVOL21=-DPHI2 I(I)*(1.0D0-HPBOT2(1))
ENDIF
ELSE
DVOL21=0.0D0
DO 109 11I=1.ND
IFJPBOT3(1).EQ. 1) THEN
OVRLAP=1.0D0-HPBOT3(1I)
ELSE
OVRLAP=1.0D0
ENDIF
DVOL21=DVOL21+PHII3(IN*OVRLAP
& *(DIFHIN*DIFFR(LIN+CRMHIN*DELVR(LII))
109 CONTINUE
DVOL2I=DELT*COLEFF*PHII2()*DVOL21
DPHI21(1)=-DVOL2I
IF(DABS(DPHI2 1(1). GT.PHII2(1) THEN
DPHI2 1(1)=-PHIJ2(1)
DVOL2I=-DPHI21(I)
ENDIF
ENDIF
IFJPBOT3().EQ. 1N THEN
DPHI3 [(1)=DEL23*DVOL21/(1.0D0-HPBOT3(1))
ELSE
DPHI3 1()=DEL23*DVOL2I
ENDIF
PHITOT(1)=PHITOT(1)-DVOL2I*(1.0D0-DEL23)
107 CONTINUE
ENDIF
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C *** Set the new values of concentration in the layer
DO 110 I=1.ND
PHI2(LJ+1)=PHIJ12(1)+ DPHI2(I)
PHI3(LJ+1)=PHIJ13(1)+DPHI3(I)
IF(J.EQ 1)THEN
PHI2(1.J)=PHLI2(I)+ DPHI21(I)
PHI3(1.1)=PHII3(I)+DPHI3 1 (1)
ELSE
PHI2(1.1)=PH1J2(T)
PHI3(L.))=PHII3(I)
ENDIF
110 CONTINUE
ELSE
DO 111 I=1L.ND
PHI2(LJ+1)=PHII12(1)
PHI2(L.J)=PHLI2(T)
PHI3(L1)=PHIJ3(I)
1 CONTINUE
ENDIF
END

C rx

SUBROUTINE FLOW(J NH.MEANV.VTOP.VBOT.DIFF,

& PHILL.PHIIJT.PHIJ1 PHIUP,PHI.PHIMOV.,

& JTOP,JBOT HTOP.HBOT JPTOP.JPBOT. HPTOP HPBOT.

& TDIVH.TDIVH2)

C *** Calculate the amount of oil of given size fraction and speed
C *** which crosses between the layers
INTEGER JNH.JTOP.JBOT.JPTOP.JPBOT
DOUBLE PRECISION MEANV. VTOP,VBOT.DIFF,
& PHIII,PHILI 1 PHIJ1.PHL,PHIUP.PHIMOV.
& HTOP.HBOT.HPTOP.HPBOT.
& CREAM.DIFFUS TDIVH. TDIVH2

C *** Special cases near lower and upper boundaries
IF (J LT.(JBOT-1))THEN
IF(J. EQ.(JBOT-2)) THEN
PHIJ1=PHIUP/(1.0DO-HPBOT)
PHIUP=0.0D0
END IF
PHIMOV=0.0D0
ELSE IF (J.GT.JTOP)THEN
PHIUP=0.0D0
PHIMOV=0.0DO
ELSE
IF (JEQ.JBOT) THEN
IF(VBOT.LT.0.0DO)THEN
C *** Lower boundary moves downwards (case 1)
IF(MEANV.GT 0.0D0) THEN
CREAM=PHIHI*MEANV*TDIVH
ELSE
CREAM=PHIIJI*MEANV*TDIVH
END IF
DIFFUS=DIFF*(PHIIJ-PHILI1)*TDIVH2/
& (1.0D0-0.5DO*HBOT)
PHIMOV=CREAM+DIFFUS
PHIJ1=PHIUP+PHIMOV
PHIUP=PHIIJ*(1.0D0-HBOT)-PHIMOV



IF(J.EQ. 1) THEN
HPBOT=HBOT+VBOT*TDIVH
IPBOT=1
IF(HPBOT.LT.0.0D0)THEN
HPBOT=0.0D0
END IF
PHI=PHIUP/(1.0D0-HPBOT)
END IF
ELSE
C *** Lower boundary moves upwards
IF(VBOT*TDIVH GE.(0.99D0-HBOT)) THEN
C *** Lower boundary crosses layer interface (Case 2)
HPBOT=HBOT+VBOT*TDIVH-1.0D0
IF(HPBOT.LT.0.0DO)THEN
HPBOT=0.0D0
END IF
JPBOT=1+1
PHIMOV=(1.0D0-HBOT)*PHII]
PHIJT=(PHIUP+PHIMOV)/(1.0D0-HPBOT)
PHIUP=0.0D0
IF(JEQ. HTHEN
PHIJ=0.0D0
END IF
ELSE
C *** Lower boundary does not cross interface (Case 3)
IF(MEANV.GT.0.0D0) THEN
CREAM=PHIIJ*MEANV*TDIVH
ELSE
CREAM=PHIIJI*MEANV*TDIVH
END IF
DIFFUS=DIFF*(PHIII-PHILIT)*TDIVH2/
& (1.0D0-0.5DO*HBOT)
PHIMOV=CREAM+DIFFUS
PHIJ1=PHIUP+PHIMOV
PHIUP=PHIIJ*(1.0D0-HBOT)-PHIMOV
HPBOT=HBOT+VBOT*TDIVH
IPBOT=]
IF(J.EQ.1)THEN
PHIJ=PHIUP/(1.0D0-HPBOT)
END IF
END IF
END IF
ELSE IF (1EQ.JTOP) THEN
[F(VTOP.LT 0.0D0O)THEN
C *** Upper boundary moves downwards (case 4)
PHIJ1=0.0DO
PHIUP=PHIIJ*HTOP
PHIMOV=0.0D0
IF(J. EQ.1)THEN
HPBOT=HBOT+VTOP*TDIVH
JPBOT=1
IF(HPBOT.LT 0.0DO)THEN
HPBOT=0.0D0
END IF
PHIJ=PHIUP/HPTOP
END IF
ELSE
C *** Upper boundary moves upwards
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IF(VTOP*TDIVH.GE (1 01D0-HTOP)) THEN
C *** Upper boundary crosses layer interface (Case 5)
HPTOP=HTOP+VTOP*TDIVH-1.0D0
JPTOP=J+1
PHIJ1=PHIL]
PHIUP=PHIIJ*(HTOP-HPTOP)
IF(J.EQ.1)THEN
PHU=PHIUP/HPBOT
END IF
PHIMOV=PHIIJ*HPTOP
ELSE
C *** Upper boundary does not cross layer interface (Case 6)
PHIJ1=0.0D0
PHIMOV=0.0D0
HPTOP=HTOP+VTOP*TDIVH
IF(HPTOP.GT.1.0D0)THEN
HPTOP=1.0D0
END IF
JPTOP=]
PHIUP=PHIIJ*HTOP
IF(J EQ.1)THEN
PHU=PHIUP/HPTOP
END IF
END IF
END IF
ELSEIF ((J+1).EQ.JBOT)THEN
IF(VBOT.GT.0.0D0)THEN
C *** Lower boundary moves upwards (Case 7)
IF (JEQ.NH-1)THEN
HPBOT=HBOT+VBOT*TDIVH
JPBOT=NH
IF(HPBOT.GT.1.0DO)THEN
HPBOT=1.0D0
END IF
END IF
PHIJ1=PHIUP/(1.0D0-HPBOT)
PHIUP=0.0D0
IF(J.EQ.1)THEN
PHIJ=0.0D0
END IF
PHIMOV=0.0D0
ELSE
C *** Lower boundary moves downwards
IF((HBOT+VBOT*TDIVH).LE.-0.01D0)THEN
C *** Lower boundary crosses layer interface (Case 8)
HPBOT=1.0D0+HBOT+VBOT*TDIVH
JPBOT=]
PHIMOV=-PHILJ1*(1.0DO-HPBOT)
PHIJ1=PHIUP+PHIMOV
PHIUP=-PHIMOV
IF(J.EQ.1)THEN
PHIJ=PHIUP/(1.0D0-HPBOT)
END IF
ELSE
C Lower boundary does not cross layer interface (Case 9)
HPBOT=HBOT+VBOT*TDIVH
IF(HPBOT.LT.0.0D0)THEN
HPBOT=0.0D0
END IF
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JPBOT=1J+1
PHIMOV=0.0D0
PHIJI=PHIUP/(1.0DO-HPBOT)
PHIUP=0.0D0
IF(J EQ.1)THEN
PHII=0.0D0
END IF
END IF
END IF
ELSEIF((J+1).EQJTOP)THEN
IF(VTOP.GT.0.0D0)THEN
C *** Upper boundary moves upwards (Case 10)
IF (JJEQ.NH-1)THEN
HPTOP=HTOP+VTOP*TDIVH
JPTOP=NH
IF(HPTOP.GT. 1.0D0)THEN
HPTOP=1.0D0
END IF
END IF
IF(MEANV.GT.0.0D0) THEN
CREAM=PHII*MEANV*TDIVH
ELSE
CREAM=PHILII*MEANV*TDIVH
END IF
DIFFUS=DIFF*(PHIIJ-PHILI1)*TDIVH2/
& (0.5DO*(1.0DO+HTOP))
PHIMOV=CREAM+DIFFUS
PHUI=(PHII I*HTOP+PHIMOV)/HPTOP
PHIUP=PHIIJ-PHIMOV
IF(J.EQ.1)THEN
PHU=PHIUP
END IF
ELSE
C *** Upper boundary moves downwards
IF((HTOP+VTOP*TDIVH).LE.0.01D0) THEN
C *** Upper boundary crosses layer (Case 11)
PHIMOV=-PHIIJ1*HTOP
PHITI=0.0DO
PHIUP=PHIII-PHIMOV
HPTOP=HTOP+VTOP*TDIVH+1.0D0
IF(HPTOP.GT.1.0DO)THEN
HPTOP=1.0D0
END IF
JPTOP=]
IF(J.EQ.1)THEN
PHIJ=PHIUP/HPTOP
END IF
ELSE
C *** Upper boundary does not cross layer (Case 12)
IF(MEANV.GT.0.0D0) THEN
CREAM=PHIIJ*MEANV*TDIVH
ELSE
CREAM=PHIIJI*MEANV*TDIVH
END IF
DIFFUS=(DIFF*(PHILI-PHIII1)*TDIVH2/
& (0.5D0*(1.0DO+HTOP))
PHIMOV=CREAM+DIFFUS
PHIUP=PHIIJ-PHIMOV
HPTOP=HTOP+VTOP*TDIVH
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JPTOP=]+1
PHUI=(PHIIIT*HTOP+ PHIMOV)/HPTOP
IF(J. EQ.1)THEN
PHIJ=PHIUP
END IF
END IF
END IF
ELSE
C *** Normal flux calculation
IF(MEANV.GT.0.0D0) THEN
CREAM=PHIIJ*MEANV*TDIVH
ELSE
CREAM=PHIIII*MEANV*TDIVH
END IF
DIFFUS=DIFF*(PHILI-PHIII1)*TDIVH2
PHIMOV=CREAMDIFFUS
PHIJI=PHIUP+PHIMOV
PHIUP=PHIIJ-PHIMOV
IF(J EQ.1)THEN
PHI=PHIUP

END IF
END IF
END IF
END
C
DOUBLE PRECISION FUNCTION BARNEA(PHI)
€

C Barnea and Mizrahi function for the relative velocity in a given
C volume fraction.
DOUBLE PRECISION PHLFAC.CONTFR
CONTFR=(1.0D0-PHI)
FAC=CONTFR/(1.0D0+PHI**0.3333333333D0)
IF(PHL.GE.0.999D0)THEN
BARNEA=0.0DO
ELSE
BARNEA=FAC*DEXP(-1 666666667D0*PHI/CONTFR)
ENDIF
RETURN
END

ol ek s
SUBROUTINE BDRY VEL(ND.NH,STOK V2, STOKV3.VTOP2.VBOT2.VTOP3.VBOT3,
& DIFF2, DIFF3,PHILIM.PHI2,PHI3.PHITOT,
& JTOP2,JBOT2.JTOP3.JBOT3 . HTOP2 HBOT2. HTOP3 HBOT3,
& TIME.DELT.CRYST)

€

C *** Calculate velocities of upper and lower boundaries of each size

INTEGER ND.NH,LJTOP2(1:ND).JBOT2(1:ND).JTOP3(1:ND).JBOT3(1:ND)

DOUBLE PRECISION STOKV2(1:ND).STOKV3(1:ND),
VTOP2(1:101),VBOT2(1:101).VTOP3(1:101).VBOT3(1:101).
DIFF2(1:ND).DIFF3(1:ND),
PHILIM.PHI2(1:ND.1:NH).,PHI3(1:ND.1:NH),PHITOT(1:NH).
HTOP2(1:ND),HBOT2(1:ND).HTOP3(1:ND).HBOT3(1:ND).
TIME,DELT

LOGICAL CRYST

Ro P RoPo o
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DO 101 I=1.ND

CALL TOPVEL(ND.NH.JTOP2(I)-1, HTOP2(1),STOK V2(I).DIFF2(I).
VTOP2(I),STOK V2 STOK V3,
PHILIM.PHITOT(JTOP2(1)),PHI2,PHI3,
JTOP2,JBOT2,JTOP3,JBOT3 HTOP2, HBOT2.HTOP3 . HBOT3,
TIME.DELT.CRYST)

CALL BOTVEL(ND.NH,JBOT2(1). HBOT2(1).STOK V2(1).DIFF2(I).
VBOT2(1).STOKV2.STOK V3,
PHILIM.PHITOT(JBOT2(1)+1),PHI2,PHI3.
JTOP2,JBOT2,JTOP3,JBOT3 HTOP2, HBOT2, HTOP3,HBOT3,
TIME.DELT.CRYST)

IF(CRYST)THEN

CALL TOPVEL(ND.NH_JTOP3(1)-1, HTOP3(1),STOK V3(1).DIFF3(I),
VTOP3(1),STOKV2.STOK V3.
PHILIM.PHITOT(JTOP3(1)).PHI2.PHI3.

JTOP2 JBOT2.JTOP3.JBOT3 . HTOP2 HBOT2 HTOP3.HBOT3.
TIME.DELT.CRYST)

CALL BOTVEL(ND.NH.JBOT3(I). HBOT3(I).STOK V3(1),DIFF3(I).
VBOT3(1),STOKV2,STOK V3.
PHILIM,PHITOT(JBOT3(I)+1).PHI2.PHI3,
JTOP2,JBOT2.JTOP3 JBOT3 HTOP2 HBOT2 HTOP3.HBOT3,
TIME.DELT,CRYST)

ENDIF

CONTINUE
END

&
&
&

SUBROUTINE BOTVEL(ND.NH.J.H.STOKV.DIFF,VBDRY,

STOKV2.STOKV3.PHILIM, TOTPHI.PHI2 PHI3,
JTOP2,JBOT2.JTOP3.JBOT3 . HTOP2 HBOT2 HTOP3, HBOT?3,
TIME.DELT.CRYST)

C *** Calculate the velocity of the lower boundary

&
&
&
&
&

EXTERNAL BARNEA
INTEGER I.JND.NH,

JTOP2(1:ND).JBOT2(1:ND),JTOP3(1:ND).JBOT3(1:ND)

DOUBLE PRECISION STOKV2(1:ND),STOKV3(1:ND),.STOKV,VBDRY.

DIFF.PHILIM. TOTPHI.PHI2(1:ND.1:NH).PHI3(1:ND. 1 :NH).
HTOP2(1:ND).HBOT2(1:ND).HTOP3(1:ND).HBOT3(1:ND).H.
SUMABYV.PHIABV,PHIBEL.SUMBEL,PHL.SUM.FAC HIN,
TIME.DELT MEANV.DIFFH

DOUBLE PRECISION BARNEA
LOGICAL CRYST

C *** Calculate concn at nearest layer interface

PHIABV=0.0D0
PHIBEL=0.0D0
SUMABV=0.0D0
SUMBEL=0.0D0
DO 101 I=1.ND

IF ((J.NE.JTOP2(1)).OR ((1.0D0-HTOP2(1)).LE 0.01D0)) THEN
PHIBEL=PHIBEL+PHI2(I.J)
SUMBEL=SUMBEL+PHI2(1.))*STOKV2(I)

END IF

IF (((J+1).NE JBOT2(1)). OR. (HBOT2(1).LE.0.01D0)) THEN
PHIABV=PHIABV+PHI2(I,J+1)
SUMABV=SUMABV+PHI2(LJ+1)*STOKV2(I)

END IF



-268 -

IF(CRYST)THEN
IF ((JNE.JTOP3(I)).OR ((1.0D0-HTOP3(1)).LE.0.01D0)) THEN
PHIBEL=PHIBEL+PHI3(1.J)
SUMBEL=SUMBEL+PHI3(I,1)*STOK V3(I)
END IF
IF ((J+1).NE_JBOT3(1)).OR. (HBOT3(I).LE.0.01D0)) THEN
PHIABV=PHIABV+PHI3(I.J+1)
SUMABV=SUMABV+PHI3(IJ+1)*STOK V3(I)
END IF
ENDIF
101 CONTINUE

C *** Use average concentraion in velocity and diffusion
PHI=0.5D0*(PHIABV+PHIBEL)
FAC=BARNEA(PHI)
SUM=0.5D0*(SUMABV+SUMBEL)
HIN=FAC*((1.0D0+2.0DO*PHI*(1.0D0+2. 0DO*PHI) +((PHI**3)*
& (PHI-4.0D0)))/((1.0DO-PHI)**3)
DIFFH=DIFF*HIN
MEANV=FAC*(STOK V-SUM)
C *** Velocity of boundary including creaming and diffusion
VBDRY=MEANV-0.95D0*DSQRT(DIFFH)*(DSQRT(TIME)-DSQRT(TIME-DELT))
& /DELT

IF((VBDRY .GT.0.0D0). AND.(TOTPHI.GT.PHILIM)) THEN
VBDRY=0.0D0

END IF

END

SUBROUTINE TOPVEL(ND,NH_J.H,STOKV.DIFF.VBDRY.
& STOKV2,STOKV3.PHILIM, TOTPHIL.PHI2 PHI3,
& JTOP2,JBOT2.JTOP3.JBOT3 HTOP2, HBOT2 HTOP3 HBOT3,
& TIME.DELT,CRYST)

C *** Calculate velocity of upper boundary
EXTERNAL BARNEA
INTEGER LJ.ND.NH,
& JTOP2(1:ND),JBOT2(1:ND) JTOP3(1:ND).JBOT3(1:ND)
DOUBLE PRECISION STOKV2(1:ND).STOKV3(1:ND).STOKV,VBDRY.
& DIFF,PHILIM, TOTPHI,PHI2(1:ND.1:NH).PHI3(1:ND. I:NH).
& HTOP2(1:ND),HBOT2(1:ND).HTOP3(1:ND).HBOT3(1:ND).H,
& PHIABV.SUMABV.SUMBEL PHIBEL PHI.FAC.SUM.HIN.
& TIME,DELT.MEANV.DIFFH
DOUBLE PRECISION BARNEA
LOGICAL CRYST

C *** Calculate concn at nearest layer interface
PHIABV=0.0DO
PHIBEL=0.0DO
SUMABV=0.0D0)
SUMBEL=0.0D0
DO 101 I=1.ND
IF ((J.NE.JTOP2(I)).OR ((1.0D0-HTOP2(I)). LE.0.01D0)) THEN
PHIBEL=PHIBEL+PHI2(L])
SUMBEL=SUMBEL+PHI2(1.1)*STOKV2(I)
END IF
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IF (((J+1).NEJBOT2(1) OR. (HBOT2(1).LE 0.01D0)) THEN
PHIABV=PHIABV+PHI2(1,J+1)
SUMABV=SUMABV+PHI2(I.J+1)*STOK V2(I)
END IF
IF(CRYST)THEN
IF (JNE.JTOP3(1)). OR.((1. 0DO-HTOP3(1)). LE.0.01D0)) THEN
PHIBEL=PHIBEL+PHI3(1.])
SUMBEL=SUMBEL+PHI3(I.J)*STOK V3(I)

END IF

IF (((J+1).NE.JBOT3(I)).OR. (HBOT3(I). LE.0.01D0)) THEN
PHIABV=PHIABV+PHI3(L.J+1)
SUMABV=SUMABV+PHI3(1J+1)*STOK V3(I)

END IF

ENDIF
101 CONTINUE

C *** Usc average concentraion in velocity and diffusion
PHI=0.5D0%(PHIABV+PHIBEL)
FAC=BARNEA(PHI)
SUM=0.5D0*(SUMABV+SUMBEL)
HIN=FAC*((1.0D0+2.0DO*PHI)*(1.0D0+2.0D0*PHI)+((PHI**3)*
& (PHI-4.0D0)))/((1.0DO-PHI)**3)
DIFFH=DIFF*HIN
MEANV=FAC*(STOKV-SUM)
C *** Velocity of boundary including creaming and diffusion
VBDRY=MEANV+0.95D0*DSQRT(DIFFH)*(DSQRT(TIME)-DSQRT(TIME-DELT))
& /DELT

IF((VBDRY .LT.0.0D0).AND. (TOTPHI.GT.PHILIM))THEN
VBDRY=0.0D0
END IF

END
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Appendix A2 : Computer Program for Phenomenological Model of

Creaming and Flocculation

C Ph ical model of ing and ati
C  of oil in water emulsions
C by Valerie Pinfield.  1993-1995
€ Hydrodynamics using total concn of flocs and particles
c
PROGRAM FLOC
&

INTEGER ND.NH NFL
DOUBLE PRECISION DELH.G. TOTPHI,PHILIM,MEANZ SIGMAZ. FLCPHI.
& RFLMAX.RADGYR.FRDIM. ADCRIT.FLCPRB
C z=In(diameter). totphi=vol fract. flcphi=prop const. rflmax=max floc radius. frdim=fractal dimension
PARAMETER ( ND=11.MEANZ=-0.5798D0.SIGMAZ=0.42D0.
& NH=80.DELH=0.5D-3.G=9.81D0,
& TOTPHI=0.2D0.PHILIM=1.0D0,
& NFL=20.FLCPHI=4 2D-7 RFLMAX=10.0D-6.FRDIM=2.0D0,
& RADGYR=5.0D-9. ADCRIT=0.0D-4. FLCPRB=1.0D-6)
C *** Number of pair interactions determines the size of arrays
C *** = ND(ND+1)/2+ND.NFL+NFL(NFL+1)/2
INTEGER JTOP2(1:ND).JBOT2(1:ND).FLSIZE(11476)
CHARACTER*50 FLNAME.DFNAME
DOUBLE PRECISION RADIUS(ND).FRAD(NFL),STOK V2(ND).STOKFL(NFL).
DIFF2(ND).DIFFLC(NFL).
DIFFPR(11476).DELVPR(11476) RFLOC3(11476).
Q(3).RHO(3).ETA(3),MU(3).TOR(3),CP(3). GAMMA(3),
BETA(3).ALPHA(3).SIGMA(3). TEMP.ANGFREQ.
PHITOT(NH),PHI2(ND.NH), PHISM2(NH).
FLC2(NFL.NH).FLC(NFL.NH).ADD(NH).
HTOP2(1:ND).HBOT2(1:ND). VOLP(ND), VOLF(NFL).VOLF2(NFL),
DELT.RECORD.MAXT.RMIN.DELR
DELT=120.0D0
RECORD=1200.0D0
MAXT=1200.0D0
ANGFREQ=1.0D6*6.283185307D0
FLNAME="flctst xIs"
DFNAME="sun30"
OPEN(UNIT=20.ACCESS="SEQUENTIAL" FILE=FLNAME)
WRITE(20,300)FLNAME. DFNAME
300 FORMAT("Creaming,_profile_results ".A12." Data_file ".A12)
WRITE(20.301)
301 FORMAT("FLOCT F")
WRITE(20,302)ANGFREQ
302 FORMAT(" Angular frequency ".E15.5E3)
WRITE(20,303)FLCPRB.FLCPHI.FRDIM
303 FORMAT("Flocculation_parameters. prob. const.dimen”.3E15.5E3)
C *** Read material properties from data file
CALL MTDATA(Q_RH().ETA.MU.TOR.('RGAMMA.BETA.ALP]lA.SlGMA.
ANGFREQ.TEMP.DFNAME)
C *** Set up particle size distribution, creaming and di ion rates
CALL INITIALISE(ND,NFL.NH.RADIUS, FRAD.STOK V2. STOKFL.DIFF2.DIFFLC.
& DIFFPR.DELVPR RFLOC3.FLSIZE.FLCPRB.
& RHO.ETA TEMP.G.MEANZ.SIGMAZ RFLMAX RMIN.DELR FRDIM,
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PHILIM.FLCPHIL. TOTPHI.PHI2. FLC.FLC2.PHITOT.PHISM2,
JTOP2 JBOT2.HTOP2.HBOT2.VOLP.VOLF.VOLF2,
DELT.DELH.ADD)

C *** Calculate creaming process

PP oo

CALL SEQUENCE(ND,NFL,NH,RADIUS.FRAD.STOK V2. STOKFL.DIFF2. DIFFLC,
DIFFPR,DELVPR RFLOC3.FLSIZE.FLCPRB,
Q.RHO.ETA MU. TOR. GAMMA BETA.SIGMA.ANGFREQ.ADCRIT.
RFLMAX.RMIN.DELR.RADGYR.FRDIM.
PHILIM.FLCPHI.PHI2, PHITOT PHISM2 FLC.FLC2,
JTOP2 JBOT2.HTOP2, HBOT2.VOLP.VOLF,VOLF2,
DELT.DELH.ADD.RECORD.MAXT)

END

&
&
&
&

SUBROUTINE INITIALISE(ND.NFL.NH,RADIUS FRAD.STOK V2, STOKFL.
DIFF2 DIFFLC.DIFFPR.DELVPR.RFLOC3 FLSIZE. FL.CPRB.
RHO,ETA TEMP,G.MEANZ.SIGMAZ RFLMAX ,RMIN.DELR.FRDIM,
PHILIM FLCPHLTOTPHI.PHI2.FLC FLC2,PHITOT PHISM2.
JTOP2.JBOT2. HTOP2. HBOT2.VOLP.VOLF.VOLF2.DELT.DELH.ADD)

(&

C*** Ini

ialise the particle size distribtion and concn profiles

C *** Initialise creaming and diffusion rates

PoPoRo PP e e e

INTEGER ND.NFL.NH.NPAIRS FLSIZE(11476).JTOP2(1:ND).JBOT2(1:ND)
DOUBLE PRECISION RADIUS(ND).FRAD(NFL).STOK V2(ND).STOKFL(NFL),
DIFF2(ND).DIFFLC(NFL),
DIFFPR(11476).DELVPR(11476).RFLOC3(11476),
RHO(3).ETA(3). TEMP.G,FRDIM.DIFHMX ,FLCPRB,
TOTPHI.PHILIM.FLCPHI.PHI2(ND,NH).PHITOT(NH),PHISM2(NH).
FLC2(NFL.NH),FLC(NFL.NH).VOLP(ND), VOLF(NFL), VOLF2(NFL),
HTOP2(1:ND). HBOT2(1:ND).
RATIO.SUM.DEL.FRACT(101),MEANZ SIGMAZ.DZ DENOM.SHIFTZ,
DELR.RMIN.RFLMAX.DR32.SUMP(101).SUMFLC(50),
DELT.DELH,ADD(1:NH).K PI.PI43.VOLPI.VOLPIL.VLF21,VOIL.MAX
PARAMETER(K=1.3807D-23. PI=3.141592654D0.PI43=4.188790205D0)
INTEGER L1LII

SUM=0.0D0
DIFHMX=1.6D0
DEL=RHO(2)/RHO(3)
IF (ND.EQ.1) THEN

C *** Monodisperse emulsion

RADIUS(1)=0.5D-6*DEXP(MEANZ)
VOLP(1)=PI43*(RADIUS(1)**3)

C *** Stokes creaming speed. Stokes-Einstein diffusion coefficient

&

STOKV2(1)=2.0D0*DABS(RHO(2)-RHO(1))*G*RADIUS(1)*RADIUS(1)
/(9.0DO*ETA(1))

DIFF2(1)=K*TEMP/(6.0DO*PI*ETA(1)*RADIUS(1))

JTOP2(1)=NH

IBOT2(1)=1

HTOP2(1)=1.0D0

HBOT2(1)=0.0D0

DO 121 J=1.NH

C *** Uniform emulsion.

121

PHI2(1.))=TOTPHI
PHITOT(J)=PHI2(1.))
PHISM2(J)=PHI2(1.))
ADD(J)=1.0D-3
CONTINUE



-272-

ELSE
C *** Polydisperse. log-normal distribution when plotting volume/size
€ *¥* Z = LN (D/microns) Natural logarithm of diameter
DZ=6.0D0*SIGMAZ/(DBLE(ND)-1.0D0)
DENOM=2 0D0*SIGMAZ*SIGMAZ
DO 101 I=1.ND
SHIFTZ = (-3.0D0*SIGMAZ)+DBLE(I-1)*DZ
RADIUS(1)=0.5D0*1.0D-6*DEXP(MEANZ+SHIFTZ)
VOLP()=PI43*(RADIUS(1)**3)
FRACT(1)=DEXP(-(SHIFTZ*SHIFTZ)/DENOM)
SUM=SUM+FRACT(I)
C *** Stokes creaming speed. Stokes-Einstein diffusion coefficient
STOKV2(1)=2.0D0*DABS(RHO(2)-RHO(1))*G*RADIUS(D*RADIUS(T)
& /(9.0DO*ETA(1))
DIFF2(I)=K*TEMP/(6.0DO*PI*ETA(1)*RADIUS(I))
JTOP2(I)=NH
IBOT2(1)=1
HTOP2(1)=1.0D0
HBOT2(1)=0.0D0
SUMP(I)=0.0D0
101 CONTINUE
RATIO=TOTPHI/SUM
DO 102 J=1.NH
PHITOT(J)=0.0D0
PHISM2(J)=0.0D0
ADD(1)=1.0D-3
DO 103 I=1.ND
C *** Uniform emulsion
PHI2(1.)=RATIO*FRACT(I)
PHITOT(J)=PHITOT(J)+PHI2(1.J)
PHISM2(J)=PHISM2(J)+PHI2(L])

103 CONTINUE
102 CONTINUE
END IF

C *** [nitialise the size fractions for flocs
RMIN=DLOG(RADIUS(1))
DELR=(DLOG(RFLMAX)-RMIN)/(DBLE(NFL-1.0D0))
DR32=(DEXP(1.5DO*DELR))

DO 111 I=1.NFL
FRAD(I)=DEXP(RMIN+DBLE(I-1)*DELR)
VOLF(I)=PI43*FRAD(1)**3
VOLF2(1)=FLCPHI*(FRAD(1)**FRDIM)

C *** Modified Stokes creaming speed. Stokes-Einstein diffusion coefl

STOKFL(I)=FLCPHI*DABS(RHO(2)-RHO(1))*G*

& (FRAD(I)**(FRDIM-1 0D0))/(6.0DO*PI*ETA(1))
DIFFLC(1)=K*TEMP/(6 0DO*PI*ETA(1 )*FRAD(1))
SUMFLC(I)=0.0D0
DO 112 J=1.NH

C *** Initially unflocculated

FLC(1,))=0.0D0
FLC2(1.J)=0.0D0
112 CONTINUE
1 CONTINUE

C *** Binary collision rates for flocculation
NPAIRS=0
DO 131 I=1.ND

VOLPI=VOLP(I)
DO 132 [I=LND
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C *** Particle-particle collision

P

132

NPAIRS=NPAIRS+1

VOLPI=VOLP(I1)

DIFFPR(NPAIRS)=2. 0DO*PI*(DIFF2(1)+ DIFF2(11))*
(RADIUS(T)+RADIUS(I1))/(VOLPI*VOLPII)

DELVPR(NPAIRS)=PI*DABS(STOK V2(1)-STOK V2(I1))*

(RADIUS(1)+RADIUS(11)*(RADIUS(1)+RADIUS(11))/

(VOLPI*VOLPIT)
VOIL=VOLPI+VOLPII
RFLOC3(NPAIRS)=(VOIL/FLCPHI)**(3.0DO/FRDIM)
FLSIZE(NPAIRS)=INT(1.5D0+(DLOG(RFLOC3(NPAIRS))/3.0D0
-RMIN)/DELR)
SUMP(I)=SUMP(I)+ VOLP(I)*(DIFHMX*DIFFPR(NPAIRS)
+DELVPR(NPAIRS))
SUMP(ID)=SUMP(11)+ VOLP(I)*(DIFHMX*DIFFPR(NPAIRS)
+DELVPR(NPAIRS))
CONTINUE
DO 133 [I=1.NFL.

C *** Particle-floc collision

=g

&
133
131

NPAIRS=NPAIRS+1

DIFFPR(NPAIRS)=2.0DO*PI*(DIFF2(I)+ DIFFLC(IT)*(RADIUS(1) +
FRAD(11)/(VOLP(1)*VOLF(11))

DELVPR(NPAIRS)=PI*DABS(STOK V2(1)-STOKFL(I1))*
(RADIUS(I)+FRAD(I)*(RADIUS(I)+ FRAD(11))/
(VOLP(1)*VOLF(11))

VOIL=VOLPI+VOLF2(Il)

RFLOC3(NPAIRS)=(VOIL/FLCPHI)**(3 0DO/FRDIM)

FLSIZE(NPAIRS)=INT(1.5D0 +(DLOG(RFLOC3(NPAIRS))/3.0D0
-RMIN)/DELR)

SUMP(I)=SUMP(1)+ VOLP(I)*(DIFHMX* DIFFPR(NPAIRS)
+DELVPR(NPAIRS))

SUMFLC(I)=SUMFLC(I1)+ VOLF(I1)*(DIFHMX*DIFFPR(NPAIRS)
+DELVPR(NPAIRS))

CONTINUE

CONTINUE
DO 134 I=1.NFL

VLF21=VOLF2(I)
DO 135 1I=L.NFL

C *** Floc-floc collision

&

&
&

135
134

NPAIRS=NPAIRS+1

DIFFPR(NPAIRS)=2.0D0*PI*(DIFFLC(I)+DIFFLC(IN)*(FRAD(I)+
FRAD(I1)/(VOLF(I)*VOLF(I1))

DELVPR(NPAIRS)=PI*DABS(STOKFL(I)-STOKFL(I1)*
(FRAD(1)+ FRAD(I1)*(FRAD(I)+FRAD(I1))/
(VOLF(I)*VOLF(I1))

VOIL=VLF2I+VOLF2(1l)

RFLOC3(NPAIRS)=(VOIL/FLCPHI)**(3.0DO/FRDIM)

FLSIZE(NPAIRS)=INT(1.5D0+(DLOG(RFLOC3(NPAIRS))/3.0D0
-RMIN)/DELR)

SUMFLC(1)=SUMFLC(I)+ VOLF(1)*(DIFHMX*DIFFPR(NPAIRS)
+DELVPR(NPAIRS))

SUMFLC(11)=SUMFLC(I1)+ VOLF(I*(DIFHMX*DIFFPR(NPAIRS)
+DELVPR(NPAIRS))

CONTINUE

CONTINUE

C *** Calculate maximum conversion of floc volume

MAX=0.0D0
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DO 136 I=1.ND
IF(SUMP(1). GT. MAX)THEN
MAX=SUMP(I)
ENDIF
CONTINUE
DO 137 I=1.NFL
IF(SUMFLC(1).GT MAX)THEN
MAX=SUMFLC(I)
ENDIF
CONTINUE

€ *** Set time interval according (o creaming speed and floce. rate

300

301

302

303
202

IF (DELT.GT (0.5D0*DELH/STOKFL(NFL))) THEN
DELT=0.5DO*DELH/STOKFL(NFL)
WRITE(20.*)DELT

END IF

IF(FLCPRB.GT.0.0D0.AND.
(DELT.GT.(0.5D0/(ADD(NH)*FLCPRB*MAX)))) THEN
DELT=0.5D0/(ADD(NH)*FLCPRB*MAX)

ENDIF

WRITE(20.300)DELT

FORMAT("Time interval ".E

E3)

WRITE(20.301) NH.DELH. TOTPHI.PHILIM
FORMAT(114."layers of . 1E9.2."m : inital volume fraction ", 1F5.2
." packing fraction ".1F5.2)

WRITE(20.302)

FORMAT("Initial distribution. radius. volume fraction")

DO 202 I=1.ND
WRITE(20,303)RADIUS(I).PHI2(.NH), STOK V2(1)
FORMAT(3E14.6)

CONTINUE

END

PR

SUBROUTINE SEQUENCE(ND.NFL,NH.RADIUS . FRAD.STOK V2.STOKFL.
DIFF2 DIFFLC DIFFPR,DELVPR.RFLOC3 FLSIZE,
FLCPRB.Q.RHO.ETA.MU.TOR,GAMMA BETA.SIGMA.ANGFREQ.ADCRIT.
RFLMAX RMIN.DELR. RADGYR.FRDIM,
PHILIM.FLCPHI,PHI2 PHITOT PHISM2 FLC.FLC2,

JTOP2.JBOT2, HTOP2. HBOT2.VOLP.VOLF,VOLF2,
DELT.DELH.ADD.RECORD.MAXT)

€

C  Control the sequence of time steps for the calculation of the
€ development of concentration profiles

&

PR

INTEGER ND,NFL.NH.LJ. T.JTOP2(1:ND).JBOT2(1:ND),
JPTOP2(1:101),JPBOT2(1:101).FLSIZE(11476)

DOUBLE PRECISION RADIUS(ND).FRAD(NFL).STOK V2(ND).STOKFL(NFL),
DIFF2(ND).DIFFLC(NFL),
DIFFPR(11476),DELVPR(11476).RFLOC3(11476),
Q(3),RHO(3).ETA(3).MU(3). TOR(3).
GAMMA(3).BETA(3).SIGMA(3).DEL23. ANGFREQ,
RFLMAX,RMIN.DELR. RADGYR,ADCRIT.PHILIM,FLCPHI,FRDIM.FLCPRB.
PHI2(ND.NH).FLC(NFL.NH),FLC2(NFL,NH) PHITOT(NH),PHISM2(NH).
HTOP2(ND),HBOT2(ND), VOLP(ND).VOLF(NFL), VOLF2(NFL).
MAXT,RECORD.DELT.DELH.ADD(NH)
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DOUBLE PRECISION MEANV2( 101).VELFLC(50).VTOP2( 101).VBOT2(101)
DIFHIN.(‘RMHINPH!UPZ(IOI)FLUP(SU),FI.(‘ZUP(SO). :
PHITUP.PHSZUP_PHITZ_TMPHIZ( 101),

HPTOP2(101).HPBOT2(101).
TDIVH. TDIVH2 TIME.N.
TOTAL.TOT. TOTA. TOTB.ADDUP.DEL

R Pofofo e

DEL=RHO(1)/RHO(2)
DEL23=RHO(2)/RHO(3)
TDIVH=DELT/DELH
TDIVH2=TDIVH/DELH
DO 101 I=1.ND
HPTOP2(I)=HTOP2(1)
HPBOT2(1)=HBOT2(1I)
101 CONTINUE
T=0
201 IF(TIME LE.MAXT) THEN
C *** Increment time by one step
T=T+1
TIME=DELT*DBLE(T)

C *** Initialise arrays at top of sample
DO 102 I=1.ND
IFJBOT2(1).EQ.NH)THEN
PHIUP2(I)=PHI2(L.NH)*(1.0D0-HBOT2(I))
ELSEIF (JTOP2(I). EQ NH)THEN
PHIUP2(1)=PHI2(I.NH)*HTOP2(I)
ELSE
PHIUP2(I)=PHI2(I.NH)
END IF
102 CONTINUE
DO 103 I=1.NFL
FLUP()=FLC(I,NH)
FLC2UP(I)=FLC2(1.NH)
103 CONTINUE
PHITUP=PHITOT(NH)
PHS2UP=PHISM2(NH)
ADDUP=ADD(NH)
€ *** Calculate velocity of upper and lower boundaries of each size
CALL BDRY VEL(ND.NFL,NH.STOK V2.STOKFL.VTOP2, VBOT2,
& DIFF2.DIFFLC.PHILIM,FLCPHI,PHI2,PHITOT FLC.
& JTOP2.JBOT2.HTOP2.HBOT2, TIME.DELT)
C *** Start with top layer and work downwards
DO 104 J=NH-1.1.-1
C **** Calculate the velocity of each size fraction at J/J+1 interface
CALL CALVEL(J.ND,NFL.NH,STOK V2 MEANV2 STOKFL.VELFLC.
& DIFHIN.CRMHIN,PHILIM.FLCPHI.PHI2 FLC.
JTOP2,JBOT2.HTOP2. HBOT?2)
C *** Calculate the oil volume moving across the J/J+1 layer interface
CALL FLUX(J.ND.NFL.NH.RADIUS FRAD.STOK V2 MEANV2.
STOKFL.VELFLC.VTOP2,VBOT2 DIFF2,DIFFLC,
DIFFPR.DELVPR.RFLOC3 FLSIZE.
FLCPRB.DIFHIN.CRMHIN,FRDIM,
DEL23. RFLMAX . RMIN.DELR.RADGYR, ADCRIT.
PHILIM.FLCPHI.PHI2. FLC.FLC2,PHITOT.PHISM2,
PHIUP2.FLUP.FLC2UP.PHITUP PHS2UP,
JTOP2.JBOT2.HTOP2, HBOT2,JPTOP2.JPBOT2 HPTOP2 HPBOT2.
VOLP.VOLF.VOLF2. TIME. DELT. TDIVH. TDIVH2. ADD,ADDUP)

R

104 CONTINUE
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C *** Reset the arrays and variables
PHITOT(1)=PHITUP
PHISM2(1)=PHS2UP
ADD(1)=ADDUP
DO 105 I=1.ND

JTOP2(I)=IPTOP2(1)
JBOT2(I)=JPBOT2(I)
HTOP2(1)=HPTOP2(I)
HBOT2(1)=HPBOT2(1)

C *** Check for problems and underflow

IF(HBOT2(1).GT.1.0D0OYTHEN
WRITE(20,321)HBOT2(1)
321 FORMAT("HBOT.GT 1" E15 SE3)
GOTO 202
END IF
DO 106 J=1.NH
TF(PHI2(LJ).LT 1 0E-15)THEN
PHI2(1.1)=0.0D0O
END IF
IF(PHITOT(J).LT.1.0E-15)THEN
PHITOT(1)=0.0D0

END IF
106 CONTINUE
105 CONTINUE
DO 107 I=1,NFL

DO 108 J=1,NH

IF(FLC(LJ).LT.1.0E-15)THEN
FLC(L.1)=0.0D0

END IF

IF(FLC2(1.J).LT.1.0D-15)THEN
FLC2(1.1)=0.0D0

ENDIF

IF(PHISM2(J).LT.1.0E-15)THEN
PHISM2(J)=0.0D0

END IF
108 CONTINUE
107 CONTINUE

C *** I this is a recording step. write out results
N=TIME/RECORD
IF(N.GT.0.5 AND. ABS(TIME-(RECORD*DNINT(N))).LE.

& DELT/2.0)THEN
WRITE(20.30 DTIME/86400.0D0
301 FORMAT("time" F8.2." days")
WRITE(20.302)
302 FORMAT("Height  Tot vol fract phi(liquid)

& Urickvel S.S.vel MS vel SSAtten MS
& atten")
C *** Check conservation of oil volume
TOTB=0.0D0
TOTAL=0.0DO
TOTA=0.0DO
TOT=0.0DO
DO 109 J=1.NH
TOTAL=TOTAL+PHITOT(J)/NH
TOTB=TOTB+ADD()*(1.0D0-PHITOT(J))/NH
109 CONTINUE
WRITE(20,303)TOTAL. TOTB.PHITOT(50).ADD(50)
303 FORMAT("Total" 4E15.5E3)
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C *** Generate and write out concentration and velocity profiles
DO 110 J=1.NH.|
PHI 0.0D0
TOT=0.0D0
DO 111 I=1.ND
€ *** Calculate the local concentration at the layer interface
IFJ.EQ JBOT2(1)) THEN
TOT=TOT+PHI2(I1)*(1 0DO-HBOT2(I))
TOTA=TOTA+PHI2(I.1)*(1 0DO-HBOT2(1))
ELSEIF(J. EQ JTOP2(I) THEN
TOT=TOT+PHI2(1.J)*HTOP2(1)
TOTA=TOTA+ PHI2(L.)*HTOP2(1)
ELSE
TOT=TOT+PHI2(1.J)
TOTA=TOTA+PHI2(1.])
ENDIF

IF (J EQ.IBOT2(I)) THEN
TMPHI2(1)=PHI2(1.1)*(1.0D0-HBOT2(1))
ELSEIF(J. EQ JTOP2(1)) THEN
TMPHI2(1)=PHI2(1.J)*HTOP2(I)
ELSE
TMPHI2(I)=PHI2(1.))
END IF
PHIT2=PHIT2+TMPHI2(I)
11 CONTINUE
DO 112 I=1.NFL
TOT=TOT+FLC2(1.J)
TOTA=TOTA+FLC2(1.))
112 CONTINUE

C *** Output results
WRITE(20.304)1 OE3*J*DELH.PHITOT(J).TOT.ADD(J).
& (PHI2(L]).1=1.ND.20),(FLC(1.J),1=4.NFL-6.8)
304 FORMAT(F5.1,15E12 5E2)
110 CONTINUE

WRITE(20,306)TOTA/NH
306 FORMAT("TOTAL".F12.6)

WRITE(20.307)(JTOP2(1).I=1.ND.10)
WRITE(20.308)(HTOP2(1).1=1,ND.10)
WRITE(20.309)(JBOT2(1).1=1.ND, 10)
WRITE(20.310)(HBOT2(1).1=1.ND.10)

307 FORMAT("JTOP".130.10115)
308 FORMAT("JBOT".130,10115)
309 FORMAT("HTOP".E30.5E3, 10E15.5E3)

310 FORMAT("HBOT".E30.5E3.10E15.5E3)

C *** Write out the particle size distribution

IF (DABS(DBLE(N)-(5.0DO*DNINT(N/5.0D0))) LT.0.01DO)THEN

DO 113 I=1.ND.1
WRITE(20.311)RADIUS(I),PHI2(I.1)
31 FORMAT(2E12 4E3)
13 CONTINUE

DO 114 I=1.NFL.I
WRITE(20.31)FRAD(I).FLC(L.1)
114 CONTINUE
END IF
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END IF
GOTO 201
END IF
202 END

o
SUBROUTINE CALVEL(J.ND.NFL.NH.STOK V2 MEANV2.STOKFL.VELFLC.
& DIFHIN.CRMHIN,PHILIM FLCPHI.PHI2.FLC,
& JTOP2.JBOT2. HTOP2. HBOT2)
C

C *** Calculate velocity for each size fraction at J/J+1 interface
C *** Barnea-Mizrahi (1973) hindrance factor. Zimmels (1988) polydisper
C *** Carnahan-Starling equation for thermodynamic factor of diffusion
INTEGER [.JJ1.ND.NFL.NH.JTOP2(ND).JBOT2(ND)
DOUBLE PRECISION BARNEA
DOUBLE PRECISION STOKV2(ND).STOKFL(NFL).
& MEANV2(ND). VELFLC(NFL).DIFHIN.CRMHIN,
& PHILIM.FLCPHI,PHI2(ND.NH).FLC(NFL.NH).
& HTOP2(ND).HBOT2(ND),
& PHIABV.PHIBEL.SUMABV.SUMBEL.PHL.SUM.FAC
C *** Calculate total concn just above and just below layer interface
J1=1+1
PHIABV=0.0D0
PHIBEL=0.0D0
SUMABV=0.0D0
SUMBEL=0.0D0
DO 101 I=1.ND
IF ((J.NE.JTOP2(1)).0OR ((1.0D0-HTOP2(1)) LE.0.01D0)) THEN
PHIBEL=PHIBEL+PHI2(L.J)
SUMBEL=SUMBEL+PHI2(I.J)*STOKV2(I)
END IF
1F (((J1) NE JBOT2(1)).OR. (HBOT2(I).LE.0.01D0)) THEN
PHIABV=PHIABV+PHI2(1.J1)
SUMABV=SUMABV+PHI2(I.J1)*STOKV2(I)
END IF
101 CONTINUE
C *** Include contribution of flocs to hydrodynamic hindrance
DO 102 I=1.NFL
PHIBEL=PHIBEL+FLC(1.J)
SUMBEL=SUMBEL+FLC(LJ)*STOKFL(I)
PHIABV=PHIABV+FLC(LJ1)
SUMABV=SUMABV+FLC(1.J1)*STOKFL(I)
102 CONTINUE
C ** Average concn used in hindrance factor for creaming and diffusion
PHI=0.5D0*(PHIABV+PHIBEL)
FAC=BARNEA(PHI)
SUM=0.5D0*(SUMABV+SUMBEL)
DIFHIN=FAC*((1.0D0+2.0D0*PHD*(1 0D0+2. 0DO*PHI+((PHI**3)*
& (PHI-4.0D0)))/((1.0D0-PHI)**3)
CRMHIN=FAC
C *** Calculate creaming velocity of each size fraction
DO 103 I=1.ND
MEANV2(1)=FAC*(STOKV2(1)-SUM)
103 CONTINUE
DO 104 1=1,NFL.
VELFLC(I)=FAC*STOKFL()-SUM)
104 CONTINUE
END
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SUBROUTINE FLUX(J.ND.NFL,NH.RADIUS FRAD.STOKV2 MEANV2.
STOKFL,VELFLC.VTOP2,VBOT2 DIFF2.DIFFLC,
DIFFPR.DELVPR.RFLOC3.FLSIZE.FLCPRB,
DIFHIN.CRMHIN.FRDIM.DEL23 RFLMAX.RMIN.DELR RADGYR. ADCRIT,
PHILIM.FLCPHI.PHI2 FLC.FLC2 PHITOT PHISM2.

PHIUP2 FLUP.FLC2UP_PHITUP,PHS2UP.
JTOP2.JBOT2. HTOP2 HBOT2.JPTOP2.JPBOT2 HPTOP2. HPBOT2.
VOLP.VOLF.VOLF2 TIME.DELT. TDIVH.TDIVH2.ADD.ADDUP)

PR

C

C *** Calculate volume of oil which moves across the layer interface

INTEGER J.ND.NFL.NH.JTOP2(ND).JBOT2(ND).JPTOP2(ND).JPBOT2(ND).
LJL.FLSIZE(11476)

DOUBLE PRECISION RADIUS(ND).FRAD(NFL).STOK V2(ND).STOKFL(NFL).
VTOP2(ND),VBOT2(ND). MEANV2(ND).VELFLC(NFL).
DIFF2(ND).DIFFLC(NFL).DIFHIN.CRMHIN.FRDIM.
DIFFPR(11476).DELVPR(11476).RFLOC3(11476).
RFLMAX,RMIN.DELR.RADGYR.ADCRIT.DEL23.FLCPRB,
PHILIM.FLCPHI.PHI2(ND.NH).PHITOT(NH),PHISM2(NH).
FLC2(NFL.NH).FLC(NFL.NH). ADD(NH).
PHIUP2(ND).FLUP(NFL).FLC2UP(NFL).PHITUP.PHS2UP.ADDUP.
VOLP(ND). VOLF(NFL). VOLF2(NFL).
HTOP2(ND).HBOT2(ND).HPTOP2(ND). HPBOT2(ND)

>

R

DOUBLE PRECISION PHIUPT,SUMUP2, ADDUPT.PHIMOV.PHI2MV. PHISUM.PHIS2,
PHITMP.PHITM2, ADDTMP.MOVADD.MASMOV. DELPHI.DELIPH.DIFF.
PHII2(101),PHIJI2(101).FAC2(101).

FLCI1(50).FLCJ(50).FLC2J1(50).FLC2)(50).
DELTA2(101),DELTAF(50).DELTF2(50).
DELTI2(101).DELTIF(50).DELIJF2(50).
TDIVH, TDIVH2. TIME . DELT COLEFF

PoPofe R

J1=1+1
DO 101 I=1.ND
DELTA2(1)=0.0D0
DELTI2(1)=0.0D0
101 CONTINUE
DO 102 I=1.NFL
DELTAF(1)=0.0D0
DELTIF(1)=0.0D0
DELTF2(1)=0.0D0
DELJF2(1)=0.0D0
102 CONTINUE

IF (PHITOT(J1) LT PHILIM)THEN
( +** Determine creaming and flocculation in layer 141
PHISUM=0.0D0
PHIS2=0.0D0
DELPHI=0.0D0
DELJPH=0.0D0
DO 103 I=1.ND
PHIJ12(1)=PHI2(1.J1)
PHIJ2(1)=PHI2(L.D)
DIFF=DIFF2(1)*DIFHIN
C **+ Calculate amount of oil of this size crossing interface
CALL FLOW(J.NHAMEANVZ(l)AVTOPZ(l),VBOTZ(l).DlFFA
& PHIZ(I.J).PH[Z(I_Jl).PHlJlZ(I)API||UP2(I)APHUZ(I)A
& PHIMOV.ADD(J)).ADD(I1).
& JTUPZ(I).JBOTZ([LHTOPZ(I).HB()TZ([).
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& JPTOP2(1),IPBOT2(1). HPTOP2(1). HPBOT2(1), TDIVI 1.TDIVH2)
PHISUM=PHISUM+PHIMOV
PHIS2=PHIS2+PHIMOV
103 CONTINUE

DO 104 I=1 NFL
FLCINM=FLC(LI1)
FLCI=FLC(1.J)
FLC2J1(I)=FLC2(1.11)
FLC2J(=FLC2(1.J)
DIFF=DIFFLC(I)*DIFHIN
C *** Calculate amount of flocs of this size crossing interface
CALL FLOCFLOW(J.VELFLC(I).DIFF.

& FLC(L).FLC(LI1).FLCI(1).FLUP(1),FLCI().
& FLC2(1J).FLC2(LI1).FLC2)1(1) FLC2UP(I).FLC2J(1).
& PHIMOV.PHI2MV.TDIVH. TDIVH2)

PHISUM=PHISUM+PHIMOV
PHIS2=PHIS2+PHI2MV
104 CONTINUE

C *** Calculate the amount of polymer (additive) crossing interface
IF (PHISUM.GT.0.0D0)THEN
G MASMOV=-PHISUM*ADD(J1)
MASMOV=-PHIS2*ADD(J1)
ELSE
C MASMOV=-PHISUM*ADD(J)
MASMOV=-PHIS2*ADD(J)
END IF
C *** Additive can be excluded from the continuous phase within focs
MOVADD=MASMOV
PHITMP=PHITUP+PHISUM
C  ADDTMP=(ADDUP*(1.0D0-PHITUP)+MOVADD)/(1.0DO-PHITMP)
PHIUPT=PHITOT(J)-PHISUM
C  ADDUPT=(ADD(J)*(1.0DO-PHITOT(J))-MOVADD)/(1,0D0-PHIUPT)
PHITM2=PHS2UP+PHIS2
ADDTMP=(ADDUP*(1.0D0-PHS2UP)+MOVADD)/(1.0D0-PHITM2)
SUMUP2=PHISM2(J)-PHIS2
ADDUPT=(ADD(J)*(1.0D0-PHISM2(1))-MOVADD)/(1.0D0-SUMUP2)

DO 105 I=1.ND
C *** Calculate the proportion of the layer occupied by particles
1F((J1).EQ.JPTOP2(1)) THEN
FAC2(I)=HPTOP2(I)
ELSEIF((J1).EQ.JPBOT2(1)) THEN
FAC2(1)=1.0D0-HPBOT2(1)
ELSE
FAC2(1)=1.0D0
ENDIF
105 CONTINUE
C *** Calculate the flocculation in layer J+1
COLEFF=FLCPRB*(ADDTMP-ADCRIT)*DELT
CALL FLOCFLOC(ND.NFL.J1.
DIFFPR.DELVPR.RFLOC3.FLSIZE,
DIFHIN.CRMHIN. FRDIM.RMIN.DELR FLCPHL.COLEFF.
JPTOP2.JPBOT2,VOLP.VOLF VOLF2,FAC2,
PHIJ12.FLCJ1.FLC2J1.DELTA2 DELTAF.DELTF2.DELPHI)

P Bofo e
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IF(J. EQ.1)THEN
C *** At the bottom of the sample - calculate concn changes in J=1
COLEFF=FLCPRB*(ADDUPT-ADCRIT)*DELT
DO 106 I=1.ND
IF(JPTOP2(1).EQ. 1) THEN
FAC2(1)=HPTOP2(I)
ELSEIF(JPBOT2(1).EQ.1)THEN
FAC2(1)=1.0D0-HPBOT2(1)
ELSE
FAC2(I)=1.0D0
ENDIF
106 CONTINUE
C *** Calculate flocculation in layer J=1
CALL FLOCFLOC(ND.NFL, I,
DIFFPR.DELVPR.RFLOC3.FLSIZE,
DIFHIN,CRMHIN FRDIM.RMIN,DELR FLCPHI.COLEFF,
JPTOP2.JPBOT2.VOLP.VOLF.VOLF2.FAC2.
PHIJ2,FLCJ.FLC2J.DELTJ2. DELTIF DELIF2.DELIPH)

P Pofe Pe

END IF

C *** Reset parameters for layer J+1
(o] ADD(I1)=(ADDTMP*(1.0D0-PHITMP))/(1. 0DO-PHITMP-DELPHI)
@ ADDUP=(ADDUPT*(1.0D0-PHIUPT))/(1.0D0-PHIUPT-DELJPH)
ADD(J1)=ADDTMP
ADDUP=ADDUPT
PHITOT(J1)=PHITMP+DELPHI
PHISM2(J1)=PHITM2
PHITUP=PHIUPT+DELJPH
PHS2UP=SUMUP2
ELSE
C *** Layer J+1 is full. no movement. no flocculation
C *** Reset paramelers
DO 107 I=I.ND
PHII12(1)=PHI2(1.J1)
PHII2(1)=PHI2(1.J)
IF(J.EQ.JBOT2()) THEN
PHIUP2(1)=PHI2(L.1)*(1.0D0-HBOT2(I))
ELSEIF (J.EQJTOP2(I)) THEN
PHIUP2(1)=PHI2(LJ)*HTOP2(I)
ELSE
PHIUP2()=PHI2(L.J)
END IF
107 CONTINUE
DO 108 1=1.NFL
FLCII(I)=FLC(I.11)
FLCI(1)=FLC(L))
FLUP(=FLC(L.))
FLC2J1(1)=FLC2(L.J1)
FLC2)(1)=FLC2(L.))
FLC2UP()=FLC2(1.))

108 CONTINUE
PHITUP=PHITOT(J)
PHS2UP=PHISM2(J)
ADDUP=ADD(J)
END IF 1 )
C *** Modify ion of each size ding to

DO 109 1=1.ND
PHI2(1.J1)=PHI 12(1)+ DELTA2(I)
PHI2(1.J)=PHI2(1)+ DELTI2(1)
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IF(PHI2(L.11).LT.0.0DO)THEN
WRITE(Z().}OI)TIME‘I,JLPHUIZ(I).PHIZ(LJl).l)F,LTAZ(I)
PHI2(L.J1)=0.0D0

301 FORMAT("PHI2 negative” E15.5E2.214.3E15 5E3)

ENDIF

109 CONTINUE

DO 110 I=1.NFL
FLC(LID=FLCII(I)+DELTAF(I)
FLC2(LJ1)=FLC2J1(1)+DELTF2(I)
FLC(LN)=FLCI()*+DELTIF(I)
FLC2(1.)=FLC2J(1)+DELJF2(1)

IF(FLC(.J1).LT.0.0D0O)THEN
WRITE(20.302)LJ1.FLC(1.J1),DELTAF(I)
FLC(LJ1)=0.0D0

302 FORMAT("FLC negative",214,2E15 5E3)

ENDIF

110 CONTINUE

END

SUBROUTINE FLOW(J.NH.MEANV_VTOP.VBOT DIFF,
& PHIL.PHITJ1.PHIJ1 PHIUP,PHIJ,PHIMOV.ADDJ,ADDI 1,
& JTOP.JBOT HTOP.HBOT.JPTOP.JPBOT HPTOP.HPBOT. TDIVH.TDIVH2)

c
C *** Calculate the amount of oil of given size fraction and speed
C *** which crosses between the layers
INTEGER J.JTOP,JBOT JPTOP.JPBOT.NH
DOUBLE PRECISION HTOP.HBOT.HPTOP.HPBOT.VTOP, VBOT MEANV.DIFF,
& PHIL.PHILI 1, PHI1.PHII,PHIUP.PHIMOV.ADDJ.ADDJ1.
& CREAM.DIFFUS. TDIVH. TDIVH2

C *** Special cases near lower and upper boundaries
IF (J LT.(JBOT-1))THEN
IF(J.EQ.(JBOT-2))THEN
PHU1=PHIUP/(1.0D0-HPBOT)
PHIUP=0.0D0
END IF
PHIMOV=0.0D0
ELSE IF (J.GT.JTOP)THEN
PHIUP=0.0D0
PHIMOV=0.0D0
ELSE
IF (J.EQ.JBOT) THEN
IF(VBOT.LT.0.0D0)THEN
C *** Lower boundary moves downwards (casc 1)
IF(MEANV.GT.0.0D0) THEN
CREAM=PHIIJ*MEANV*TDIVH
ELSE
CREAM=PHIIJI*MEANV*TDIVH
END IF
DIFFUS=DIFF*(PHIL-PHILI1)*TDIVH2/(1.0D0-0. SDO*HBOT)
PHIMOV=CREAM+DIFFUS
PHIJ1=PHIUP+PHIMOV
PHIUP=PHIIJ*(1.0D0-HBOT)-PHIMOV
IF(J.EQ.1)THEN
HPBOT=HBOT+VBOT*TDIVH



JPBOT=1

IF(HPBOT LT .0.0D0)THEN
HPBOT=0.0D0

END IF

PHI=PHIUP/(1.0D0-HPBOT)

END IF

C *** Lower boundary moves upwards

O #ex |

IF(VBOT*TDIVH.GE (0 99D0-HBOT))THEN
Lower boundary crosses layer interface (Case 2)

HPBOT=HBOT+VBOT*TDIVH-1 0D0

IF(HPBOT.LT.0.0DO)THEN
HPBOT=0.0D0
END IF
JPBOT=J+1
PHIMOV=(1.0D0-HBOT)*PHI1J
PHIJI=(PHIUP+PHIMOV)/(1.0D0-HPBOT)
PHIUP=0.0D0
IF(JEQ.1)THEN
PHII=0.0D0
END IF

ELSE

C *** Lower boundary does not cross interface (Casec 3)

IF(MEANV.GT.0.0D0) THEN
CREAM=PHII*MEANV*TDIVH
ELSE
CREAM=PHIIJI*MEANV*TDIVH
END IF
DIFFUS=DIFF*(PHIL-PHIII1)* TDIVH2/(1.0D0-0 5D0O*HBOT)
PHIMOV=CREAM+DIFFUS
PHIJI=PHIUP+PHIMOV
PHIUP=PHIIJ*(1.0D0-HBOT)-PHIMOV
HPBOT=HBOT+VBOT*TDIVH
JPBOT=]
IF(J.EQ.1)THEN
PHIJ=PHIUP/(1.0D0-HPBOT)
END IF

END IF
END IF
ELSE IF (J.EQ.JTOP) THEN
IF(VTOP.LT 0.0D0)THEN

C *** Upper boundary moves downwards (case 4)

PHIJ1=0.0DO
PHIUP=PHILJ*HTOP
PHIMOV=0.0D0
IF(J.EQ.)THEN

HPBOT=HBOT+VTOP*TDIVH

JPBOT=1

IF(HPBOT.LT.0.0D0O)THEN
HPBOT=0.0D0

END IF

PHIJ=PHIUP/HPTOP

END IF

C *** Upper boundary moves upwards

IF(VTOP*TDIVH.GE.(1.01D0-HTOP)) THEN

C *** Upper boundary crosses layer interface (Case 5)

HPTOP=HTOP+VTOP*TDIVH-1.0D0
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JPTOP=J+1
PHIJ1=PHILJ
PH!UP=PIllU'(HT()P-Hl’]'()P)
IF(J.EQ.1)THEN
PHU=PHIUP/HPBOT
END IF
PHIMOV=PHILJ*HPTOP
ELSE
€ *** Upper boundary does not cross layer interface (Case 6)
PHII1=0.0D0
PHIMOV=0.0D0
HPTOP=HTOP+VTOP*TDIVH
IF(HPTOP.GT.1.0DOYTHEN
HPTOP=1.0D0
END IF
JPTOP=]
PHIUP=PHII*HTOP
IF(J EQ.1)THEN
PHIJ=PHIUP/HPTOP
END IF
END IF
END IF
ELSEIF ((J+1).EQ.JBOT)THEN
IF(VBOT.GT 0.0DO)THEN
C *** Lower boundary moves upwards (Case 7)
IF (J.EQ.NH-1)THEN
HPBOT=HBOT+VBOT*TDIVH

JPBOT=NH
IF(HPBOT GT.1.0D0)THEN
HPBOT=1.0D0
END IF
END IF

PHIJI=PHIUP/(1 0DO-HPBOT)
PHIUP=0.0D0
IF(J.EQ.1)THEN
PHIJ=0.0DO
END IF
PHIMOV=0.0D0
ELSE
C *** Lower boundary moves downwards
IF((HBOT+VBOT*TDIVH) LE.-0.01D0)THEN
C *** Lower boundary crosses layer interface (Case 8)
HPBOT=1.0D0+HBOT+VBOT*TDIVH
JPBOT=]
PHIMOV=-PHIJI*(1.0DO-HPBOT)
PHIJI=PHIUP+PHIMOV
PHIUP=-PHIMOV
IF(J EQ.1)THEN
PHIJ=PHIUP/(1.0D0-HPBOT)
END IF
ELSE
C Lower boundary does not cross layer interface (Case 9)
HPBOT=HBOT+VBOT*TDIVH
IF(HPBOT.LT.0.0D0)THEN
HPBOT=0.0D0
END IF
JPBOT=J+1
PHIMOV=0.0D0
PHIJ1=PHIUP/(1.0D0-HPBOT)
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PHIUP=0,0D0
IF(J.EQ.1)THEN
PHIJ=0.0D0
END IF
END IF
END IF
ELSEIF((J+1).EQ.JTOP)THEN
IF(VTOP.GT.0 0DO)THEN
C *** Upper boundary moves upwards (Case 10)
IF (J.EQ.NH-1)THEN
HPTOP=HTOP+VTOP*TDIVH
JPTOP=NH
IF(HPTOP.GT.1.0DO)THEN
HPTOP=1.0D0
END IF
END IF
IF(MEANV.GT.0.0D0) THEN
CREAM=PHII*MEANV*TDIVH
ELSE
CREAM=PHIII*MEANV*TDIVH
END IF
DIFFUS=DIFF*(PHILJ-PHIII1)*TDIVH2/
& (0.5D0*(1.0DO+HTOP))
PHIMOV=CREAM+DIFFUS
PHII=(PHIIJI*HTOP+PHIMOV)/HPTOP
PHIUP=PHIIJ-PHIMOV
IF(J.EQ.1)THEN
PHIJ=PHIUP
END IF
ELSE
C *** Upper boundary moves downwards
IF((HTOP+VTOP*TDIVH).LE 0.01DOYTHEN
C *** Upper boundary crosses layer (Case 11)
PHIMOV=-PHIIJ 1 *HTOP
PHIJ1=0.0D0
PHIUP=PHIIJ-PHIMOV
HPTOP=HTOP+VTOP*TDIVH+1.0D0
IF(HPTOP.GT.1.0D0O)THEN
HPTOP=1.0D0
END IF
JPTOP=]
IF(J.EQ.1)THEN
PHII=PHIUP/HPTOP
END IF
ELSE
C *** Upper boundary does not cross layer (Case 12)
IF(MEANV.GT.0.0D0) THEN
CREAM=PHIII*MEANV*TDIVH
ELSE
CREAM=PHIIJI*MEANV*TDIVH
END IF
DIFFUS=DIFF*(PHII-PHIII1)* TDIVH2/
& (0.5D0*(1.0DO+HTOP))
PHIMOV=CREAM+DIFFUS
PHIUP=PHIIJ-PHIMOV
HPTOP=HTOP+VTOP*TDIVH
JPTOP=J+1
PHIJI=(PHIL I *HTOP+PHIMOV)/HPTOP
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IF(J EQ.1)THEN
PHI=PHIUP
END IF
END IF
END IF
ELSE
C *** Normal flux calculation
IF(MEANV.GT 0.0D0) THEN
CREAM=PHIIJ*MEANV*TDIVH
ELSE
CREAM=PHIIJ I*MEANV*TDIVH
END IF
DIFFUS=DIFF*(PHII-PHILI 1)*TDIVH2
PHIMOV=CREAM+DIFFUS
PHIJ1=PHIUP+PHIMOV
PHIUP=PHIII-PHIMOV
IF(J.EQ.1)'THEN
PHII=PHIUP
END IF
END IF
END IF
END

SUBROUTINE FLOCFLOW(J.MEANV DIFF.FLCI].FLCU1,FLCJ1.FLCUP,FLCJ,
& FLC21J.FL21J1,FLC2J1.FLC2UP.FLC2J.PHIMOV.PHI2MV,
& TDIVH, TDIVH2)

C *** Calculate the amount of oil in flocs which crosses between layers
C *** No upper/lower boundaries for flocs
INTEGER J
DOUBLE PRECISION MEANV DIFF,
& FLCI.FLCIJ1,FLCJ1.FLCUP.FLCJ.
& FLC21J.FL21J1,FLC2J1.FLC2UP,FLC2],
& PHIMOV.PHI2MV, TDIVH, TDIVH2, CRMFLC.CRMFL2 DIFFLC DIFFL2

IF(MEANV.GT.0.0D0) THEN
CRMFLC=FLCIJ*MEANV*TDIVH
CRMFL2=FLC2II*MEANV*TDIVH

ELSE
CRMFLC=FLCIJI*MEANV*TDIVH
CRMFL2=FL2IJ1*MEANV*TDIVH

END IF

DIFFLC=DIFF*(FLCU-FLCIJ1)*TDIVH2

DIFFL2=DIFF*(FLC21J-FL21J1)*TDIVH2

PHIMOV=CRMFLC+DIFFLC

PHI2MV=CRMFL2+DIFFL2

FLCJ1=FLCUP+PHIMOV

FLCUP=FLCIJ-PHIMOV

FLC2J1=FLC2UP+PHI2MV

FLC2UP=FLC21J-PH2MV

IF(J.EQ.1) THEN
FLCJ=FLCUP
FLC2J=FLC2UP

END IF

END
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c
SUBROUTINE FLOCFLOC(ND.NFL_JJ.DIFFPR DELVPR.RFLOC3.FLSIZE,
& DIFHIN.CRMHIN, FRDIM.RMIN.DELR FLCPHI.COLEFF,
& JTOP.JBOT.VOLP,VOLF,VOLF2,FAC2,
& PHIJ2 FLCJ.FLC2J.DELTA2 DELTAF, DELTF2,DELPHI)
€

C *** Calculate the flocculation due to binary collisions
INTEGER LILJJND.NFLJTOP(ND).JBOT(ND),NPAIRS.
& MSIZE FLSIZE(11476)

DOUBLE PRECISION DIFFPR(11476),DELVPR(11476),

RFLOC3(11476).
DIFHIN.CRMHIN,FRDIM RMIN.DELR . FLCPHI.COLEFF,
PHIJ2(ND).FLCJ(NFL).FLC2J(NFL),
VOLP(ND), VOLF(NFL).VOLF2(NFL).FAC2(ND).
DELTA2(ND),DELTAF(NFL).DELTF2(NFL).DELPHI,
VOLPI.VOLFLVLF2L,JTOPLJBOTI.FAC21.PHIJI,
VOLPIIL.VLF2I1,VOLFILPLPI43. OVRLAP,
DELTAA.DF2I.VOIL.DVOL

PARAMETER(PI43=4.0D0*3.141592654D0/3.0D0 PI=3.141592654D0)

PoRoPo oo e

DELPHI=0,0D0
DO 101 I=1.ND
DELTA2(1)=0.0D0
101 CONTINUE
DO 102 I=1,NFL
DELTAF(1)=0.0D0
DELTF2(1)=0.0D0
102 CONTINUE
NPAIRS=0
DO 103 1=1,ND
C *** Each size fraction interacts with all others
VOLPI=VOLP(I)
JTOPI=ITOP(I)
JBOTI=JBOT(I)
FAC2I=FAC2(I)
PHIJI=PHLI2(I)
DELTAA=0.0DO
DO 104 I=IND
C *** Particle-particle flocculation
NPAIRS=NPAIRS+1
MSIZE=FLSIZE(NPAIRS)
IF(MSIZE.GT .NFL)THEN
GOTO 104
ENDIF
VOLPII=VOLP(IT)
VOIL=VOLPI+VOLPII
 *** Shared layer volume between the two specics
' IF(((JJ.EQJTOPI) AND.(JL.EQ JBOT(11)).0OR
& ((J1.EQ.JBOTT) AND.(JLEQ JTOP(11))) THEN
OVRLAP=DDIM(FAC2I+FAC2(ID).1.0D0)
ELSE
OVRLAP=DMINI(FAC2LFAC2(I))
ENDIF 0 -
o8 wo species due to flocculation
‘ ia ChaD“\%gL‘Z:)lFH’;‘T:‘JC‘DIFFPR(NPAlRSHCRMHIN‘DELVPR(NPAIRS))'
& OVRLAP'PHIJI‘PHIJZ(ll)'COLEFF
DELTAA:DELTAA'DVOL‘VOI;%()LH|/FA(‘2(|[)
~DELTA2(11)-DVOL
ggt¥2;}‘3$PZE)=DE:J')AF (MSIZE)+ DVOL*PI43*RFLOC3(NPAIRS)



- 288 -

DELTF2(MSIZE)-DELTF2(MSIZE)+DVOL*VOIL
DELPHI=DELPHI+DVOL*(PI43*RFLOCI(NPAIRS)-VOIL)
104 CONTINUE
OVRLAP=FAC21
DO 105 11=1 NFL
C *** Particle-floc flocculation
NPAIRS=NPAIRS +1
MSIZE=FLS]ZE(NPA|RS)
IF(MSIZE GT NFL)THEN
GOTO 105
ENDIF
VOLFII=VOLF(I1)
VLF211=VOLF2(I1)
VOIL=VOLPI+VLF2Il
C *** Volume changes of two species due to flocculation
DVOL:(DIFHIN’DIFFPR(NPAIRS)4('RMIIIN‘DELVPR(NPAIRS))'
& OVRLAP*PHIII*FLCI(11)*COLEFF
DELTAA=DELTAA-DVOL*VOLPI
DELTAF(I=DELTAF(I1)-DVOL*VOLFII
DELTF2(I=DELTF2(I)-DVOL*VLF2II
DELTAF(MSIZE)=DELTAF(MSIZE) +DVOL*PI43*RFLOC3(NPAIRS)
DELTF2(MSIZE)=DELTF2(MSIZE)+DVOL*VOIL
DELPH|=DELPHI6DV()L‘(PI-U‘RF[,(X“(NPAIRS)—VOLPI-VOLF!I)
105 CONTINUE
DELTA2(I)=DELTA2(I)+DELTAA/FAC2I
103 CONTINUE
OVRLAP=1.0D0
DO 106 I=1.NFL
C *** Each size of floc interacts with all other specics
VOLFI=VOLF(I)
VLF2I=VOLF2(l)
PHIJI=FLC()
DELTAA=0.0DO
DF21=0.0D0
DO 107 11=I.NFL
C *** Floc-floc flocculation
NPAIRS=NPAIRS+1
MSIZE=FLSIZE(NPAIRS)
IF(MSIZE.GT.NFL)THEN
GOTO 107
ENDIF
VOLFII=VOLF(II)
VLF211=VOLF2(IT)
VOIL=VLF2I+VLF2Il
C *** Volume changes of two species
DVOL=(DIFHIN*DIFFPR(NPAIRS)+ CRMHIN*DELVPR(NPAIRS))*
& OVRLAP*PHUI*FLCI(11)*COLEFF
DELTAA=DELTAA-DVOL*VOLF1
DF2I=DF2I-DVOL*VLF2I
DELTAF(I)=DELTAF(I1)-DVOL*VOLFII
DELTF2(I1)=DELTF2(1)-DVOL*VLF2I1
DELTAF(MSIZE)=DELTAF(MSIZE)+DVOL*PI43*RFLOC3(NPAIRS)
DELTF2(MSIZE)=DELTF2(MSIZE)+DVOL*VOIL
DELPHI=DELPHI+DVOL*(PI43*RFLOC3(NPAIRS)-VOLFI-VOLFII)
107 CONTINUE
DELTAF(I)=DELTAF(I)+DELTAA
DELTF2(I)=DELTF2(I)+DF2I
106 CONTINUE
END
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C
DOUBLE PRECISION FUNCTION BARNEA(PHI)

C
C Barnca and Mizrahi function for the relative velocity (hydrodyn)
DOUBLE PRECISION PHLFAC.CONTFR
CONTFR=(1.0D0-PHI)
FAC=CONTFR/(1.0D0+PHI**) 3333333333D0)
IF(PHI.GE.0.999D0)THEN
BARNEA=0.0D0

ELSE
BARNEA=FAC*DEXP(-1 666666667D0*PHI/CONTFR)
ENDIF
RETURN
END
G
SUBROUTINE BDRY VEL(ND,NFL.NH,STOK V2,STOKFL.VTOP2, VBOT?2.
& DIFF2.DIFFLC PHILIM,FLCPHI.PHI2, TOTPHIFLC,
& F10P2 JBOT2.HTOP2. HBOT2. TIME DELT)
c

C *** Calculate velocities of upper and lower boundaries of cach size
INTEGER ND.NFL.NH.LITOP2(ND).JBOT2(ND)
DOUBLE PRECISION STOK V2(ND),VTOP2(ND).VBOT2(ND).STOKFL(NFL),
& DIFF2(ND).DIFFLC(NFL),
& PHILIM,FLCPHI.PHI2(ND.NH), TOTPHI(NH).FLC(NFL.NH).
& TIME.DELT HTOP2(ND).HBOT2(ND)

DO 101 I=1.ND

CALL TOPVEL(ND.NFL.NH.JTOP2(1)-1,STOK V2(1).DIFF2(I),
VTOP2(I),STOKV2.STOKFL,
PHILIM.FLCPHI, TOTPHI(JTOP2(1)).PHI2 FLC,
JTOP2.JBOT2.HTOP2 HBOT2. TIME.DELT)

CALL BOTVEL(ND.NFL.NH.JBOT2(1),STOK V2(I). DIFF2(I).
VBOT2(1).STOKV2.STOKFL,
PHILIM.FLCPHIL. TOTPHI(JBOT2(I)+1).PHI2.FLC,
JTOP2,JBOT2.HTOP2, HBOT2 TIME.DELT)

R PR

101 CONTINUE
END

SUBROUTINE BOTVEL(ND.NFL.NH.J STOKV.DIFF,VBDRY .STOK V2. STOKFL.
& PHILIM.FLCPHL.TOTPHLPHI2 FLC.
& JTOP2.JBOT2.HTOP2.HBOT2, TIME.DELT)

(¢
C *** Calculate the velocity of the lower boundary
EXTERNAL BARNEA
INTEGER ND,NFL,NH,LIITOP2(ND). JBOT2(ND)
DOUBLE PRECISION STOK V2(ND).STOKFL(NFL),STOKV,VBDRY .DIFF.
& PHILIM. TOTPHI,FLCPHI.PHI2(ND.NH).FLC(NFL.NH),
& HTOP2(ND).HBOT2(ND).PHIABV PHIBEL.SUMABV,SUMBEL.
& PHI.SUM,FAC HIN.DIFFH.MEANV, TIME DELT
DOUBLE PRECISION BARNEA

C *** Calculate concn at nearest layer interface
PHIABV=0.0DO
PHIBEL=0.0D0O
SUMABV=0.0D0
SUMBEL=0.0D0
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DO 101 I=1,ND
IF (LNE.JTOP2(1)).OR ((1.0D0-HTOP2(1)). LE 0.01D0)) THEN
PHIBEL=PHIBEL+PHI2(1.J)
SUMBEL=SUMBEL+PHI2(I.1)*STOK V2(1)
END IF
IF (((J+1).NEJBOT2(1)) OR. (HBOT2(I).LE.0 01D0)) THEN
PHIABV=PHIABV+PHI2(I,J+1)
SUMABV=SUMABV-+PHI2(11+1)*STOK V2(I)
END IF
101 CONTINUE
DO 102 1=1,NFL
PHIBEL=PHIBEL+FLC(1.J)
SUMBEL=SUMBEL+FLC(1.J)*STOKFL(I)
PHIABV=PHIABV+FLC(I.J+1)
SUMABV=SUMABV+FLC(I.J+1)*STOKFL(I)
102 CONTINUE

C *** Use average concentraion in velocity and diffusion
PHI=0.5D0*(PHIABV+PHIBEL)
FAC=BARNEA(PHI)
SUM=0.5D0*(SUMABV+SUMBEL)
HIN=FAC*((1.0DO0+2.0DO*PHI)*(1.0D0+2 0DO*PHI)+((PHI**3)*
& (PHI-4.0D0)))/((1.0DO-PHI)**3)
DIFFH=DIFF*HIN
MEANV=FAC*(STOKV-SUM)
C *** Velocity of boundary including creaming and diffusion
VBDRY=MEANV-0.95D0*DSQRT(DIFFH)*(DSQRT(TIME)-DSQRT(TIME-DELT))
& /DELT

IF((VBDRY GT.0.0D0) AND (TOTPHL.GT PHILIM))THEN
VBDRY=0.0D0

END IF

END

SUBROUTINE TOPVEL(ND,NFL.NH.J.STOKV.DIFF.VBDRY ,STOK V2.STOKFL,
& PHILIM.FLCPHLTOTPHI.PHI2.FLC.
& JTOP2.JBOT2 HTOP2 HBOT2. TIME.DELT)

C *** Calculate velocity of upper boundary
EXTERNAL BARNEA
INTEGER ND,NFL,NH.LJ.JTOP2(ND).JBOT2(ND)
DOUBLE PRECISION STOK V2(ND).STOKFL(NFL).STOKV.VBDRY.DIFF.
& PHILIM, TOTPHL.FLCPHI.PHI2(ND,NH) FLC(NFL.NH).
& HTOP2(ND).HBOT2(ND),PHIABV.PHIBEL.SUMABYV. SUMBEL,
& PHIL.SUM.FAC HIN,DIFFH.MEANV.TIME DELT
DOUBLE PRECISION BARNEA

C *** Calculate concn at nearest layer interface
PHIABV=0.0D0O
PHIBEL=0.0DO
SUMABV=0.0D0
SUMBEL=0.0D0
DO 101 I=1.ND
IF ((J.NE.JTOP2(1)) OR.((1.0DO-HTOP2(1)).LE.0.01D0)) THEN
PHIBEL=PHIBEL+PHI2(L.J)
SUMBEL=SUMBEL+PHI2(LJ)*STOKV2(1)
END IF
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IF (((J+1).NE.JBOT2(1)).OR. (HBOT2(I).LE.0.01D0)) THEN
PHIABV=PHIABV+PHI2(I.J+1)
SUMABV=SUMABV-+PHI2(IJ+ 1)*STOK V2(I)

END IF

101 CONTINUE

DO 102 1=1,NFL
PHIBEL=PHIBEL+FLC(I.J)
SUMBEL=SUMBEL +FLC(I.J)*STOKFL(I)
PHIABV=PHIABV+FLC(I.J+1)
SUMABV=SUMABV+FLC(LJ+1)*STOKFL(I)
102 CONTINUE

C *** Use average concentraion in velocity and diffusion
PHI=0.5D0*(PHIABV+PHIBEL)
FAC=BARNEA(PHI)
SUM=0.5D0*(SUMABV+SUMBEL)
HIN=FAC*((1.0D0+2.0DO*PHI)*(1.0D0+2.0DO*PHI)+((PHI**3)*
& (PHI-4.0D0)))/((1.0D0-PHI)**3)
DIFFH=DIFF*HIN
MEANV=FAC*STOKV-SUM)
C *** Velocity of boundary including creaming and diffusion
VBDRY=MEANV+0.95D0*DSOQRT(DIFFH)*(DSQRT(TIME)-DSQRT(TIME-DELT))
& /DELT

IF((VBDRY LT.0.0D0). AND. (TOTPHI.GT PHILIM)) THEN
VBDRY=0.0D0

END IF

END
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Appendix A3 : Computer Program for Lattice Model of

Creaming and Flocculation

C  Lattice model of creaming and flocculation of emulsions
C by Valerie Pinfield.  1993-1995

G

PROGRAM LATTICE

INTEGER NX.NY.NZNYZNXYZMAXPTS.MAXCL.MAXORD,CLPTS,
& NPARTS.NLOST,NSTEPS NZ2 NLAYS.INSTEP.RECSTP.WR3D

CHARACTER*S0 FILGEN.FILPHLFILEGR FILE2D,FILE3D

DOUBLE PRECISION PHI.RSTEP.BONDPR.BREAK ,DELT

LOGICAL TOPCRM

C *** X.Y.Z dimensions. bonding and breaking probabilities

PARAMETER ( NX=70.NY=70,NZ=200.NXYZ=980000,
& MAXPTS=99000.MAXCL=28000.PHI=0.1D0.
& RSTEP=0.1D0, NSTEPS=11.NZ2=121 NLAYS=0,
& INSTEP=2400.RECSTP=480.DELT=0.25D0, WR3D=0,
& BONDPR=0.005D0,BREAK=0.002D0,
& TOPCRM=TRUE.)
&
&
&
&

INTEGER XCOORD(NXYZ),YCOORD(NXYZ).ZCOORD(NXYZ),
OCCUPY(NXYZ),LOCATE(MAXPTS).CPARTS(MAXPTS).CLUSTR(MAXPTS),
SIZE(MAXCL),POINTR(MAXCL).CORDER(MAXCL).CNUM(MAXCL).
DFSTEP(MAXPTS).CRSTEP(MAXPTS) MMIN(NZ2) MMAX(NZ2).
VOL(NZ).INVPOS(6)

LOGICAL BONDED(MAXPTS,6).INIT

DOUBLE PRECISION DIFFCL(MAXPTS).CRMCL(MAXPTS).GG(NZ2.NSTEPS)

FILGEN="/home/cifl_a/prc6vp/lattice/results/rl111c gen"
FILPHI="/home/cif1_a/prc6vp/lattice/results/rl1 11c.phi”
FILEGR="/home/cifl_a/prc6vp/lattice/results/rl111c gR"
FILE2D="/home/cifl_a/pre6vp/lattice/results/rl1 11c.2D"
OPEN(UNIT=20.ACCESS="SEQUENTIAL" FILE=FILGEN)
OPEN(UNIT=30.ACCES! EQUENTIAL".FILE=FILPHI)
OPEN(UNIT=40,ACCESS="SEQUENTIAL" FILE=FILEGR)
OPEN(UNIT=50, ACCESS="SEQUENTIAL" FILE=FILE2D)
IF(WR3D EQ.1)THEN

FILE3D="/home/cifl_a/pre6vp/lattice/results/r111¢.3D"

OPEN(UNIT=60.ACCESS="SEQUENTIAL" FILE=FILE3D)
ENDIF

C *** Recorded run parameters in output files

301

302

INIT="TRUE
NPARTS=NINT(DINT(PHI*DBLE(NXYZ)))
WRITE(20.301)NPARTS PHI
WRITE(30,301)NPARTS PHI
WRITE(40,301)NPARTS.PHI
WRITE(50,301)NPARTS,PHI

FORMAT("No parts ".110." phi "F15.4)
WRITE(20,302)BONDPR BREAK
WRITE(30.302)BONDPR BREAK
WRITE(40,302)BONDPR.BREAK
WRITE(50,302)BONDPR BREAK
FORMAT("Bond prob ".F10.4." Break prb".F15.4)
WRITE(20.303)2*NLAYS+1INSTEP
WRITE(30.303)2*NLAYS+ LINSTEP



WRITE(40,303)2*NLAYS+1 INSTE
WRITE(50.303)2*NLAYS+1.INSTEP
303 FORMAT("NLayers av".110." NSteps ".115)
IF(WR3D.EQ.1)THEN
WRITE(60.301)NPARTS_PHI
WRITE(60.302)BONDPR BREAK
WRITE(60.303)2*NLAYS+1.INSTEP
ENDIF
C *** Initialise random number generator. NAG library, Mark 15
CALL GO5CCF
C *** Initialise variables
CALL INITARRAYS(NY.NZ NYZNXYZ MAXPTS.MAXCL.
& MAXORD NLOST,CLPTS,
& OCCUPY,CLUSTR SIZE POINTR.CORDER, CNUM.,
& VOL.BONDED.INVPOS)
C *** Set up lattice and assign particles at random
CALL LATCOORDS(NX.NY NZ.NXYZ.XCOORD,YCOORD.ZCOORD)
CALL INITPARTICLES(NXYZ MAXPTS.NPARTS. OCCUPY LOCATE)
C *** Flocculate initial neighbouring particles
CALL INITCLUSTERS(NX.NY NZ.NYZ NXYZMAXPTS MAXCL.
& NPARTS, XCOORD.YCOORD.ZCOORD,.LOCATE, OCCUPY,
& MAXORD,CLPTS,CLUSTR.CPARTS SIZE.POINTR.CORDER CNUM,
& BONDPR.BONDED.INVPOS)
C *** Calculate creaming and diffusion rates of all floc sizes
CALL INITRATES(MAXPTS DIFFCL.DFSTEP.CRMCL.CRSTEP.DELT)
C *** Exccute creaming and flocculation sequence
CALL STEPS(NX.NY ,NZ.NYZ,NXYZ NZ2 .NSTEPS.MAXPTS NPARTS OCCUPY,
& LOCATE.XCOORD,YCOORD,ZCOORD.MAXORD,MAXCL.CPARTS.CLUSTR.
& SIZE,CLPTS.POINTR.CORDER.CNUM.NLOST.
& DIFFCL.DFSTEP.CRMCL.CRSTEP PHL.BONDPR.BREAK . VOL.RSTEP,
& MMIN.MMAX.GG.NLAYS.INSTEP,RECSTP, WR3D.BONDED.INVPOS. TOPCRM)
END

SUBROUTINE STEPS(NX.NY.NZNYZNXYZ.NZ2 NSTEPS.MAXPTS NPARTS.
OCCUPY.LOCATE.XCOORD,YCOORD.ZCOORD,MAXORD MAXCL.CPARTS,
CLUSTR.SIZE.CLPTS.POINTR.CORDER.CNUM.NLOST,DIFFCL.
DFSTEP,CRMCL,CRSTEP,PHL.BONDPR.BREAK ,VOL RSTEP,
MMIN.MMAX.GG.NLAYS INSTEP.RECSTP.WR3D.BONDED.INVPOS TOPCRM)

Pepoepe

C *** Execute ing and i ]

INTEGER NX,NY,NZ NXY.NYZ NXYZMAXPTS.NPARTS.
MAXORD.MAXCL.CLPTS.OCCUPY(NXYZ).LOCATE(MAXPTS),
XCOORD(NXYZ),YCOORD(NXYZ).ZCOORD(NXYZ).
CPARTS(MAXPTS).CLUSTR(MAXPTS).SIZE(MAXCL),
POINTR(MAXCL).CORDER(MAXCL).CNUM(MAXCL).
DFSTEP(MAXPTS).CRSTEP(MAXPTS).VOL(NZ),

ZINT,NZ2 NSTEPS MMIN(NZ2).MMAX(NZ2).NLAYS,INVPOS(6).
LILILIVIX. TLOST.TSINGL, TOTCL.NN,NLOST.CLLOST,
WR3D_INSTEP.RECSTP.NSINGL NCLUST.CL(2000).

1IX.1TY 11Z.POS.IP.JJ1.J11.X(100).POINT,
X01.X10.SIZEX.Y01.Y10.SIZEY.Z01.Z10.SIZEZ.Y (100).Z(200).
AVEX.AVEY.AVEZ MAXXY.NUMC.NUMR(20).SIZER

LOGICAL BONDED(MAXPTS.6) TOPCRM.ONES

REAL AVEN(200)

DOUBLE PRECISION DIFFCL(MAXPTS).CRMCL(MAXPTS).PHI.BONDPR,

& BREAK RSTEP,GG(NZ2.NSTEPS)

DOUBLE PRECISION GOSCAF
EXTERNAL GOSCAF

PR
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DO 101 NI=1.NZ
VOL(IH)=0
101 CONTINUE
NXY=NX*NY

C *** Set up the paramelers to calculate particle distrib function

C

C

NnoNOANnOOONn0n

C

CALL INITDENSDISTRIB(NZ2,NSTEPS. RSTEP.MMIN. MMAX,GG)
DO 102 1IX=1.1
DO 103 IV=LINSTEP
*** Increment time
I=(IX-1)*INSTEP+IV
CALL MOVES(NX.NY NZNYZNXYZ MAXPTS NPARTS.OCCUPY .LOCATE,
& XCOORD.YCOORD.ZCOORD.MAXORD.MAXCL.CPARTS.CLUSTR.SIZE.
& CLPTS.POINTR,CORDER.CNUM.NLOST. DIFFCL.DFSTEP.CRMCL.
& CRSTEP.PHI.BONDPR.BREAK.BONDED.INVPOS, TOPCRM)
DO 104 1I=1. MAXORD
IF(CRMCL(SIZE(CNUM(I1))). GE. 1. 0DO)THEN
WRITE(20,30 DILCNUM(II), SIZE(CNUM(ID)).
& CRMCL(SIZE(CNUM(II)))

301 FORMAT("Abort. cluster too large " 318, E12 3E3)

GOTO 202
ENDIF
104 CONTINUE
**+ Section for aggregation - run until all particles in one cluster
TSINGL=0
TOTCL=0
DO 105 11I=1,NPARTS
IF(CLUSTR(111) EQ.0)THEN
TSINGL=TSINGL+1
ELSE
TOTCL=TOTCL+1
ENDIF
105 CONTINUE
IF(TSINGL.EQ 0. AND MAXORD.EQ.1) THEN
IF(MOD(.RECSTP). EQ.0).OR ((1.LT.NINT(REAL(INSTEP)/3.0))
& AND.(MOD(I.NINT(REAL(RECSTP)/2.0)) EQ.0)) THEN
*** Record results every RECSTP number of steps
WRITE(20.302)1
WRITE(30.302)1
WRITE(40.302)1
WRITE(50.302)1

302 FORMAT("Step ".115)

c

NN=0
DO 106 11=1.NXYZ
IF(OCCUPY (I1).NE.0)THEN
NN=NN+1
ENDIF
106 CONTINUE
*#+% Calculate numbers of particles lost. single or in clusters
TLOST=0
TSINGL=0
TOTCL=0
DO 107 11I=1.NPARTS
IF(LOCATE(II.EQ 0)THEN
TLOST=TLOST+1
ELSEIF(CLUSTR(11). EQ.0)THEN
TSINGL=TSINGL+1
ELSE
TOTCL=TOTCL+I
ENDIF
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107 CONTINUE
€ *** Particles in clusters which are lost
CLLOST=0

DO 108 11I=1.CLPTS
IF(LOCATE(CPARTS(111)). EQ.0)THEN
CLLOST=CLLOST+1
ENDIF
108 CONTINUE
WRITE(30,303)NN
WRITE(20,303)NN
303 FORMAT("Parts left".110)
WRITE(30,304)NLOST.TLOST
WRITE(20.304)NLOST TLOST
304 FORMAT("Parts lost".2110)
WRITE(30.305)MAXORD
WRITE(20,305)MAXORD
305 FORMAT("NClusters ".110)
WRITE(30.306)TSINGL
WRITE(20.306)TSINGL
306 FORMAT("Sings left".110)
WRITE(30.307)TOTCL
WRITE(20,307)TOTCL
307 FORMAT("clpts left".110)
WRITE(30.308)CLPTS
WRITE(20.308)CLPTS
308 FORMAT("Clpts ~ ".110)
WRITE(30.309)CLLOST
WRITE(20,309)CLLOST
309 FORMAT("Clpts lost".110)
C *** Calculate an average cluster size at each height
DO 109 11Z=1.NZ
NSINGL=0
NCLUST=0
DO 110 IY=1.NY
DO 111 IX=1.NX
POS=HZ+(I1Y-1)*NZ+NZ*NY*(II1X-1)
IF(OCCUPY(POS).NE.O)THEN
JOL(1Z)+1
STR(OCCUPY(POS)). EQ.0)THEN
NSINGL=NSINGL+1
ELSE
DO 112 IP=I.NCLUST
IF(CL(IP).EQ CLUSTR(OCCUPY(POS))) THEN
GOTO 201
ENDIF
12 CONTINUE
NCLUST=NCLUST+I
CL(NCLUST)=CLUSTR(OCCUPY (POS))

201 CONTINUE
ENDIF
ENDIF
11 CONTINUE
110 CONTINUE
AVEN(1Z)=REAL(VOL(I1Z))/REAL(NSINGL+NCLUST)
109 CONTINUE

C *** Calculate the position of the defined serum interface
CALL CALCINTERFACE(NXY.NZ.VOL,PHLZINT)
WRITE(40.310)ZINT
310 FORMAT("The interface is at".120)
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C *** Calculate the density distribution function G(R). for fractalD
CALL DENSITYDISTRIB(NX.NY NZ.NYZ NXYZ.NZ2 MAXPTS.NPARTS
& NSTEPS.OCCUPY .LOCATE.XCOORD.,YCOORD.ZCOORD.
& CLUSTR.ZINT.GG.RSTEP.PHLMMIN.MMAX NLAYS)
C *** Output the concentration and cluster size as function of height
DO 113 11I=1,NZ
WRITE(30.3 1 DIILDBLE(VOL(I))/DBLE(NX*NY).

& AVEN(IIT)
VOL(I1H)=0
113 CONTINUE
311 FORMAT(110.F10.5F10.4)

C *** Output a 2D slice. scatter plot of particle position
DO 114 1I=1.NYZ
IF(OCCUPY (I1).NE 0)THEN
IF(CLUSTR(OCCUPY (I1)) NE 0)THEN
WRITE(50,312)Y COORD(I1).ZCOORD(I),
& OCCUPY(I).SIZE(CLUSTR(OCCUPY(I1)))
ELSE
WRITE(50.312)YCOORD(11).ZCOORD(II).
& OCCUPY(IN.0
ENDIF
312 FORMAT(3110.115)
ENDIF
114 CONTINUE
C **** Find out the spatial extent of each cluster (is it a gel?)
NUMC=0
AVEX=0
AVEY=0
AVEZ=0
MAXXY=0
DO 115 1=1.20
NUMR())=0
115 CONTINUE
DO 116 J=1 MAXORD
DO 117 JJ=1.NX
X(nH=0
17 CONTINUE
DO 118 JI=L.NY
Y(IH)=0
118 CONTINUE
DO 119 JJ=1.NZ
Z(H=0
119 CONTINUE
POINT=POINTR(I)
SIZER=1 *lNT(}_‘)‘J‘)‘)Q‘J‘LO(il(l(RE/\L(SIZE(CNUM(J)))))
NUMR(SIZER)=NUMR(SIZER)+1
DO 120 111=0.SIZE(CNUM())-1
POS=LOCATE(CPARTS(POINT+J11))
X(XCOORD(POS))=1
Y(YCOORD(POS)=1
Z(ZCOORD(POS))=1
120 CONTINUE
X10=NX+1

Y10=NY+1
YOI=NY+1

Al
Z01=NZ+1



121

192

123
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IF(X(1).EQ. 1) THEN
ONES=TRUE
ELSE
ONES=FALSE.
ENDIF
DO 121 JJ=1.NX
IF(ONES)THEN
IF(X(J]). EQ 0)THEN
X10=1J
ONES=FALSE
ENDIF
ELSE
IF(X(1).EQ.HTHEN
X01=1)
ONES=TRUE
ENDIF
ENDIF
CONTINUE
IF(Y(1).EQ 1) THEN
ONES=TRUE
ELSE
ONES=FALSE
ENDIF
DO 122 JJ=1.NY
IF(ONES)THEN
IF(Y(JJ).EQ.0)THEN
Y10=1J
ONES=FALSE.
ENDIF
ELSE
IF(Y(J)).EQ.1)THEN
YO01=1)
ONES=TRUE.
ENDIF
ENDIFE
CONTINUE
1F(Z(1).EQ.1)THEN
ONES="TRUE
ELSE
ONES=FALSE
ENDIF
DO 123 11=1.NZ
IF(ONES)THEN
IF(Z(JJ).EQ0)THEN
Z10=1]
ONES= FALSE.
ENDIF
ELSE
IF(Z(1)).EQ.1)THEN
Z01=11
ONES=TRUE.
ENDIF
ENDIF
CONTINUE
IF(X(1).EQ.1)THEN
SIZEX=NX-(X01-X10)
ELSE
SIZEX=X10-X01
ENDIF



-298 -

IF(Y(1). EQ 1) THEN
SIZEY=NY~(Y01-Y10)
ELSE
SIZEY=Y10-Y01
ENDIF
IF(Z(1).EQ.1)THEN
SIZEZ=NZ~Z01-Z10)
ELSE
SIZEZ=7.10-Z01
ENDIF
IF(SIZEX.EQ NX OR SIZEY EQNY)THEN
C *** This cluster does span the whole box
WRITE(20.31 3)SIZE(CNUM(1)).SIZEX SIZEY SIZEZ
313 FORMAT("Cluster spans whole lattice” 418)
ELSE
C *** Take an average cluster size of all others
NUMC=NUMC+1
AVEX=AVEX+SIZEX
AVEY=AVEY+SIZEY
AVEZ=AVEZ+SIZEZ
IF(SIZEX.GT MAXXY)THEN
MAXXY=SIZEX
ELSEIF(SIZEY. GT MAXXY)THEN
MAXXY=SIZEY
ENDIF
ENDIF
16 CONTINUE
C *** Output cluster span, and size distribution
WRITE(20.3149)MAXXY
WRITE(20.315)REAL(AVEX)/REAL(NUMC)
WRITE(20.316)REAL(AVEY)/REAL(NUMC)
WRITE(20.317)REAL(AVEZ)/REAL(NUMC)

314 FORMAT("Max. x-y size".17)
315 FORMAT("ave sizeX".F11.3)
316 FORMAT("ave sizeY".F11.3)
317 FORMAT("ave sizeZ".F11.3)
NUMR(1)=TSINGL
DO 124 J=1.20
WRITE(20.318)0.125+(J-1)*0.25 NUMR(J)
318 FORMAT(F10.3.18)
124 CONTINUE
IF(NLOST.GT.INT(2.0*REAL(NPARTS)/3.0)) THEN
GOTO 202
C *** STOP if most particles have been lost
ENDIF
ENDIF
103 CONTINUE

C *** Initialise the random number generator every INSTEP steps
CALL GOSCCF
102 CONTINUE
C *** Output a 3D slice of particle positions
202 IF(WR3D.EQ.1)THEN
WRITE(60.302)1
DO 125 1I=1.NXYZ
IF(XCOORD(IN).LE.50. AND.YCOORD(II).LE.50) THEN
IF(OCCUPY (11).NE.0O)THEN
IF(CLUSTR(OCCUPY (11)).NE.0O)THEN
WRITE(60.319)XCOORD(I1). Y COORD(II),
& ZCOORD(IN).OCCUPY (I1).CLUSTR(OCCUPY (1)),
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& SIZE(CLUSTR(OCCUPY(I1)))
ELSE
WRITE(60.319)XCOORD(I1),Y COORD(11),
& ZCOORD(I1),OCCUPY(11),0.0
ENDIF
319 FORMAT(619)
ENDIF
ENDIF
125 CONTINUE
ENDIF
END
C -
SUBROUTINE MOVES(NX.NY.NZNYZNXYZ MAXPTS.NPARTS.OCCUPY LOCATE,
& XCOORD,YCOORD.ZCOORD,MAXORD.MAXCL.CPARTS,CLUSTR,
& SIZE,CLPTS,POINTR.CORDER . CNUM,NLOST. DIFFCL.DFSTEP.
& CRMCL,CRSTEP.PHL.BONDPR BREAK .BONDED.INVPOS TOPCRM)
C

C *** Exccute particle movement on the lattice

Pe Po P Ro Po oo e

INTEGER NX.NY NZNYZ.NXYZMAXPTS.NPARTS MAXORD MAXCL.CLPTS.
OCCUPY(NXYZ).LOCATE(MAXPTS).
XCOORD(NXYZ).YCOORD(NXYZ).ZCOORD(NXYZ),
CPARTS(MAXPTS).CLUSTR(MAXPTS).SIZE(MAXCL).
POINTR(MAXCL).CORDER(MAXCL).CNUM(MAXCL).
DFSTEP(MAXPTS).CRSTEP(MAXPTS),
PART(110000).LBL(110000).NEWPOS(110000). TEMPCL(110000),
LITOP,NLOST.NLEFT.PICKED.LTEMP,IFOCUS.CFOCUS,POS.
SIZECL,IFOC.POINT.PT_1.CORD,INVPOS(6)

LOGICAL BONDED(MAXPTS.6). MOVE INIT. TOPCRM

DOUBLE PRECISION DIFFCL(MAXPTS).CRMCL(MAXPTS),PHI.BONDPR. BREAK

DOUBLE PRECISION DRANDS.CRANDS . GO5CAF.DUMM

EXTERNAL GOSCAF

INIT=FALSE
ITOP=1
NLEFT=NPARTS
DO 101 I=1.NPARTS

C *** Remove from the selection set particles lost over top bdry

101

202

IF(LOCATE(I).EQ 0)THEN
PART(NLEFT)=I
LBL(I)=NLEFT
NLEFT=NLEFT-1

ELSE
PART(ITOP)=1
LBL()=ITOP
ITOP=ITOP+1

ENDIF

CONTINUE
ITOP=0
IF(NLEFT.EQ.0)THEN
GOTO 201
ENDIF
PICKED=1+DINT((NLEFT)*GOSCAF(DUMM))

€ *** Select which particle to move and random number for move or not

IFOCUS=PART(PICKED)
DRANDS=G05CAF(DUMM)
CRANDS=G0SCAF(DUMM)
IF(CLUSTR(IFOCUS).NE.0)THEN

C *** Particle belongs to a cluster



-300 -

CFOCUS=CLUSTR(IFOCUS)
CORD=CORDER(CFOCUS)
POINT=POINTR(CORD)
PT_1=POINT-|
SIZECL=SIZE(CFOCUS)
DO 102 I=1.SIZECL

C *** Remove all particles in this cluster from selection set

IFOC=CPARTS(PT_1+1)

TEMPCL(1)=IFOC

LTEMP=LBL(IFOC)

IF(LTEMP LE NLEFT)THEN
PART(LTEMP)=PART(NLEFT)
LBL(PART(LTEMP))=LTEMP
PART(NLEFT)=IFOC
LBL(IFOC)=NLEFT
NLEFT=NLEFT-1

ENDIF

102 CONTINUE
C *** Generate the displacement for the cluster
CALL NEWPOSITION(NX.NY ,NZ NYZ.NXYZMAXPTS NPARTS.MAXORD.,

& CLPTS.OCCUPY.LOCATE, CLUSTR. XCOORD.YCOORD,ZCOORD.
& DFSTEP(SIZECL).CRSTEP(SIZECL).
& DIFFCL(SIZECL).CRMCL(SIZECL),
& PHI.CFOCUS.SIZECL. TEMPCL.NEWPOS,
& DRANDS.CRANDS MOVE.TOPCRM)
IF(MOVE)THEN

C *** The cluster as a whole moves to new position
CALL MOVECLUSTER(NXYZ.NPARTS.MAXPTS.MAXORD.MAXCL.CLPTS.

& NLOST.OCCUPY LOCATE.CPARTS.CLUSTR SIZE.POINTR.
& CORDER.CNUM.NEWPOS. TEMPCL,
& CORD.CFOCUS POINT.PT_1.SIZECL)

ENDIF

C *** Bond any neighbours or break any bonds
CALL BONDS(NX NY ,NZNYZ.NXYZNPARTS MAXPTS MAXORD.MAXCL.

& CLPTS.XCOORD.YCOORD,ZCOORD.OCCUPY .LOCATE,
& CPARTS.CLUSTR SIZE POINTR.CORDER.CNUM.
& BONDPR.BREAK BONDED.INVPOS,
& TEMPCL.SIZECL.INIT)
c
ELSE
c

C *** Just a particle. Remove it from selection set
PART(PICKED)=PART(NLEFT)
LBL(PART(PICKED))=PICKED
PART(NLEFT)=IFOCUS
LBL(IFOCUS)=NLEFT
NLEFT=NLEFT-1
TEMPCL(1)=IFOCUS
POS=LOCATE(IFOCUS)
C *** Generate the displacement for the particle
CALL NEWPOSITION(NX.NY NZ.NYZ.NXYZMAXPTS.NPARTS.MAXORD.

& CLPTS.0OCCUPY LOCATE.CLUSTR. XCOORD.YCOORD,ZCOORD.
& DFSTEP(1).CRSTEP(1),DIFFCL(1).CRMCL(1).
& PHI0.1. TEMPCL.NEWPOS,
& DRANDS.CRANDS.MOVE. TOPCRM)
IF(MOVE)THEN

C *** The particle moves to a new position
IF(NEWPOS(1). EQ.0)THEN
C *** Particle is lost over top boundary
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LOCATE(IFOCUS)=0
OCCUPY(POS)=0
NLOST=NLOST+1
ELSE
LOCATE(IFOCUS)=NEWPOS( 1)
OCCUPY (POS)=0
OCCUPY(NEWPOS(1))=IFOCUS
C *** Bond any neighbours or break any bonds
CALL BONDS(NXNY.NZ.NYZ.NXYZANPARTS.MAXPTS.MAXORD

& MAXCL.CLPTS XCOORD,YCOORD.ZCOORD,OCCUPY LOCATE.
& CPARTS.CLUSTR SIZE,POINTR.CORDER.CNUM.,
& BONDPR BREAK.BONDED,INVPOS,
& TEMPCL, LINIT)
ENDIF
ELSE

C *¥* Bond any neighbours or break any bonds
CALL BONDS(NX.NY NZ.NYZNXYZ,NPARTS. MAXPTS MAXORD,
MAXCL.CLPTS XCOORD,YCOORD.ZCOORD,OCCUPY.LOCATE.
CPARTS,CLUSTR SIZE.POINTR CORDER.CNUM,
BONDPR BREAK .BONDED, INVPOS,
TEMPCL. 1.INIT)
ENDIF
ENDIF
C *** Pick the next particle to be moved
203 IF(NLEFT.GT.0)THEN
GOTO 202
ENDIF
201 END

P

SUBROUTINE NEWPOSITION(NX.NY.NZ NYZ.NXYZ MAXPTS NPARTS,
& MAXORD,CLPTS.OCCUPY.LOCATE.CLUSTR,XCOORD,YCOORD.ZCOORD.
& DFSTEP.CRSTEP.DIFFCL.CRMCL,PHI,
& CFOCUS,SIZECL.TEMPCL.NEWPOS,
& DRANDS.CRANDS MOVE, TOPCRM)

C

C *** Generate particle or cluster displacement, and is it obstructed?

INTEGER NX.NY NZNYZNXYZMAXPTS,NPARTS MAXORD,CLPTS,
OCCUPY(NXYZ).LOCATE(MAXPTS).CLUSTR(MAXPTS),
XCOORD(NXYZ).YCOORD(NXYZ).ZCOORD(NXYZ),
DX.DY.DZ.DDX.DDY,DDZ.DZDIFF DZCRM.NEWX.NEWY .NEWZ,
DFSTEP.CRSTEP.SIZECL.CFOCUS,
TEMPCL(110000).NEWPOS(110000).

IFOCUS.DNUM,POS. DESTIN,NMISS

DOUBLE PRECISION DIFFCL.CRMCL.PHI.DUMM.HINFAC PHIEFF.AVEN

DOUBLE PRECISION GO5CAF.DRANDS.CRANDS.DRAND.HINDPR

EXTERNAL GOSCAF

LOGICAL MOVE.CRFRST, TOPCRM

PP pepe R

C *** Hindrance for clusters part-lost over top boundary (topcrm=fal)
HINFAC=0.55D0+0.45D0/(SIZECL**0.68D0)
IF(SIZECL.EQ.1) THEN

HINDPR=PHI
ELSE
HINDPR=HINFAC*PHI
ENDIF

C *** Initialise zero displacement
DX=0
DY=0
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DZ=0
DZDIFF=0
C *** If diffusion step. can move in any of six directions
IF(DRANDS LT DIFFCL)THEN
DNUM=1+DINT(6.0DO*DRANDS/DIFFCL)
IF(DNUM.EQ.1)THEN
DX=DFSTEP
ELSEIF(DNUM EQ.2)THEN
DX=-DFSTEP
ELSEIF(DNUM.EQ.3)THEN
DY=DFSTEP
ELSEIF(DNUM .EQ 4)THEN
DY=-DFSTEP
ELSEIF(DNUM EQ.5)THEN
DZ=DFSTEP
DZDIFF=DFSTEP
ELSE
DZ=-DFSTEP
DZDIFF=-DFSTEP
ENDIF
ENDIF
DZCRM=0
C *** Creaming step - always upwards
IF(CRANDS LE.CRMCL)THEN
DZ=DZ+CRSTEP
DZCRM=CRSTEP
ENDIF
C *** Special cases of lost over top boundary (topcrm=false)
IF((IABS(DZDIFF)+DZCRM).GT.0.AND.
& GO5CAF(DUMM). LE (DZCRM/(DZCRM+IABS(DZDIFF)))) THEN
C *** Cream first, then diffuse
CRFRST=TRUE.
ELSE
CRFRST=FALSE.
ENDIF
C *** End of special case
MOVE=TRUE
IF((DX.EQ.0). AND.(DY_.EQ.0).AND.(DZ EQ.0)
& AND . (DZDIFF EQ.0.OR (.NOT.CRFRST))) THEN
C *** No displacement at all
MOVE= FALSE.
GOTO 202
ELSE
201 NMISS=0
DO 101 1=1.SIZECL
C *** Determine displacement and obstruction for each particle
IFOCUS=TEMPCL(I)
POS=LOCATE(IFOCUS)
IF(POS.EQ.0)THEN
NMISS=NMISS+1
IF(DZDIFF LT.0)THEN
C *** Don't allow downwards diffusion if particles are already lost
DZ=DZ-DZDIFF
DZDIFF=0
GOTO 201
ENDIF
GOTO 101
ENDIF
C *** Generate the new position of this particle
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DDX=DX

DDY=DY

DDZ=DZ
NEWZ=ZCOORD(POS)+DDZ
IF(NEWZ.GT NZ)THEN

C *** Particle attemplts 1o cross the top boundary
IF(TOPCRM)THEN
C *** Impenetrable top boundary - No particles leave
DZ=NZ-ZCOORD(POS)
IF(DX.EQ.0.AND.DY EQ.0.AND.DZ EQ.0)THEN
MOVE=FALSE.
GOTO 202
ELSE
GOTO 201
ENDIF
ELSE
C *** Particle lost over top boundary. but with obstruction
DRAND=GOSCAF(DUMM)
IF(CRFRST)THEN
C *** Cream then diffuse
IF(NEWZ-DZDIFF LE.NZ)THEN
DZDIFF=DZDIFF+NZ-NEWZ
DZ=DZ+NZ-NEWZ
GOTO 201
ELSEIF(DRAND.GT HINDPR)THEN
NEWPOS(1)=0
ELSE
C *** Movement obstructed. but try smaller displacement
IF(DZ.GT 1)THEN
DZ=DZ-1
GOTO 201
ELSEIF(DZ LT.-1)THEN
DZ=DZ+1
GOTO 201
ELSEIF(DX.GT.1)THEN
DX=DX-1
GOTO 201
(DX.LT.-1)THEN
DX=DX+1
GOTO 201
ELSEIF(DY GT.1)THEN
DY=DY-1
GOTO 201
ELSEIF(DY LT -1)THEN
DY=DY #1
GOTO 201
ENDIF
C *** No smaller displacement - cluster or particle can not move
MOVE=FALSE
GOTO 202
ENDIF
ELSE
C *** Diffuse then cream

EL!

IF(DZCRM.GT.0)THEN
IF(DRAND GT HINDPR)THEN
NEWPOS(1)=0
ELSE
LR t d. but try smaller disp
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IF(DZ.GT.1)THEN
DZ=Dz-1
GOTO 201
ELSEIF(DZ LT -1)THEN
DZ=DZ+1
GOTO 201
ELSEIF(DX GT.1)THEN
DX=DX-1
GOTO 201
ELSEIF(DX LT -1)THEN
DX=DX+1
GOTO 201
ELSEIF(DY.GT.1)THEN
DY=DY-1
GOTO 201
ELSEIF(DY LT -1)THEN
DY=DY+I
GOTO 201
ENDIF
C *** No smaller displacement - cluster or particle can not move
MOVE=FALSE
GOTO 202
ENDIF
ELSE
MOVE=FALSE
GOTO 202
ENDIF
ENDIF
ENDIF
ELSE

(¢
C *** Particle does not cross top boundary
IF(CRFRST AND.(NEWZ-DZDIFF) GT .NZ)THEN
C *** Creaming makes it cross boundary, but ends inside box
IF(TOPCRM)THEN
C *** Top bdry - allow diffusion (downwards) only
DZ=DZDIFF
GOTO 201
ELSE
C *** No top bdry - if lost by creaming. can't diffuse back in
DZ=DZ-DZDIFF
DZDIFF=0
GOTO 201
ENDIF
ENDIF
C *** Particle trics to cross bottom boundary
IF(NEWZ.LT.1)THEN
DZ=1-ZCOORD(POS)
GOTO 201
ENDIF
C *** Special case - periodic boundaries top and bottom
IF(NEWZ LT.1)THEN
DDZ=DDZ+NZ
ELSEIF(NEWZ.GT.NZ)THEN
DDZ=-NZ+DDZ
ENDIF
**% Apply periodic boundaries to x and y
NEWY=YCOORD(POS)+DDY

C
(o3
o
C
G
€



IF(NEWY LT.1)THEN
DDY=NY+DDY
ELSEIF(NEWY GT.NY)THEN
DDY=-NY+DDY
ENDIF
NEWX=XCOORD(POS)+DDX
IF(NEWX.LT.1)THEN
DDX=NX+DDX
ELSEIF(NEWX.GT NX)THEN
DDX=-NX+DDX
ENDIF
NEWPOS(I)=POS+DDX*NYZ+DDY*NZ+DDZ
C *** Reject movement if destination site is occupied
DESTIN=OCCUPY(NEWPOS(I))
IF((DESTIN.NE.0)) THEN
IF((CFOCUS.NE.0). AND (CLUSTR(DESTIN) EQ.CFOCUS))THEN
C *** This position has a part from the same cluster-no obstruction
LSE
IF(DZ GT.1)THEN
C *** Movement obstructed. but try smaller displacement
DZ=DZ-1
GOTO 201
ELSEIF(DZ.LT -1)THEN
DZ=DZ+1
GOTO 201
ELSEIF(DX.GT.1)THEN
DX=DX-1
GOTO 201
ELSEIF(DX LT.-1)THEN
DX=DX+I1
GOTO 201
ELSEIF(DY.GT 1)THEN
DY=DY-1
GOTO 201
ELSEIF(DY .LT.-1)THEN
DY=DY+I
GOTO 201
ENDIF
C *** No smaller displacement - cluster or particle can not move
MOVE=FALSE
GOTO 202
ENDIF
ENDIF
ENDIF
C *** Check the next particle in the cluster
101 CONTINUE
C *** Obstruction of clusters part-lost over top boundary
IF(MOVE.AND.NMISS GT.0)THEN
AVEN=DBLE(NPARTS)/(DBLE(MAXORD+NPARTS-CLPTS))
PHIEFF=(0.038D0/(SIZECL**0.92D0))+(0.068/(AVEN**
& (0.65D0-(0.2DO/SIZECL))))
1F(GOSCAF(DUMM). GT.((1.0DO-PHIEFF*HINFAC)**NMISS)) THEN
MOVE=FALSE.
ENDIF
ENDIF
ENDIF
202 END



G
SUBROUTINE MOVECLUSTER(NXYZ.NPARTS MAXPTS. MAXOI
: AL A S.MAXPTS, RD.MAXCL.CLPTS,
& NLOST.OCCUPY -LOCATE CPARTS.CLUSTR SIZE, POINTR,
& CORDER.CNUM.NEWPOS TEMPCL.,
& (‘ORDA(‘FO(‘US.POINT,PI'_I_SIZE(‘L)
c

C *** Execute displacement of cluster to new position

INTEGER NXYZ NPARTS MAXPTS, MAXORD.MAXCL CLPTS,NLOST.
O(‘('UPYlNXYZ).LO(‘ATE(MAXPI‘S).(‘PAR'I‘S(MAXPTS)ACLUSTR(MAXWSL
SIZE(MAX(‘L).POINT'R(MAX(‘L)_(‘ORDER(MAXCL).CNUM(MAX(‘L).
NEWPOS(110000). TEMPCL(110000),
I.NBROKE.lFOCUS‘P()S.(‘FOCUS.SIZE('L.POINT.(‘OR[).PT_l

P Po e o

NBROKE=0
DO 101 1=1.SIZECL
IFOCUS=TEMPCL(I)
POS=LOCATE(IFOCUS)
IF(POS.NE.0)THEN
IF(OCCUPY(POS) EQ.IFOCUS)THEN
OCCUPY(POS)=0
ENDIF
IF(NEWPOS(I). EQ.0)THEN
LOCATE(IFOCUS)=0
NLOST=NLOST+1
ELSE
LOCATE(IFOCUS)=NEWPOS(I)
OCCUPY(NEWPOS(I)=IFOCUS
ENDIF
ENDIF
101 CONTINUE
END

SUBROUTINE BONDS(NX.NY.NZNYZ.NXYZ NPARTS. MAXPTS MAXORD.MAXCL,
& CLPTS XCOORD,YCOORD.ZCOORD.OCCUPY .LOCATE,
& CPARTS,CLUSTR.SIZE . POINTR.CORDER,CNUM,
& BONDPR.BREAK.BONDED.INVPOS,
& TEMPCL.SIZECL.INIT)

(34
C *** Bond formation and breakage with all neighburs
INTEGER NX.NY.NZ NYZNXYZMAXPTS,NPARTS MAXORD.MAXCL.CLPTS.
& XCOORD(NXYZ).YCOORD(NXYZ).ZCOORD(NXYZ),
& OCCUPY (NXYZ).LOCATE(MAXPTS),CPARTS(MAXPTS),CLUSTR(MAXPTS).
& SIZE(MAXCL).POINTR(MAXCL).CORDER(MAXCL).CNUM(MAXCL).
& TEMPCL(110000),CFOCUS.SIZECL,
& 1.IPOS_POS.INEIGH.IFOCUS.IMINM.IMINP.DELTA(6).INVPOS(6)
DOUBLE PRECISION BONDPR.BREAK.GOSCAF. DUMM
LOGICAL BONDED(MAXPTS.6),INIT
EXTERNAL GO5CAF
IFOCUS=TEMPCL(1)
CFOCUS=CLUSTR(IFOCUS)
POS=LOCATE(IFOCUS)
DO 101 I=1,SIZECL
C *** Find positions of neighbours of each particle in cluster
IFOCUS=TEMPCL(I)
POS=LOCATE(IFOCUS)
IF(POS.NE.O)THEN
IF(ZCOORD(POS). EQ NZ)THEN
C *** Miss out +z check
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IMINP=3
IMINM=2
ELSEIF(ZCOORD(POS) EQ 1) THEN
IMINP=1
IMINM=4
C *** Miss out -z check
ELSE
IMINP=1
IMINM=2
ENDIF
DELTA(1)=1
DELTA(2)=-1
C *** Periodic z-boundaries
C  IF(ZCOORD(POS) EQ.NZ)THEN
C  DELTA(1)=1-NZ
C ELSE
C  DELTA(1)=1
C ENDIF
C  IF(ZCOORD(POS).EQ.1)THEN
C DELTA(2)=-1+NZ
€ ELSE
C  DELTA(2)=-I
C ENDIF
C *** Periodic z-boundaries - end
IF(YCOORD(POS). EQ NY)THEN
DELTA(3)=NZ-NYZ
ELSE
DELTA(3)=NZ
ENDIF
IF(YCOORD(POS).EQ. 1) THEN
DELTA(4)=-NZ+NYZ
ELSE
DELTA(4)=-NZ
ENDIF
IF(XCOORD(POS). EQ.NX)THEN
DELTA(5)=NYZ-NXYZ
ELSE
DELTA(5)=-NYZ
ENDIF
IF(XCOORD(POS).EQ. 1) THEN
DELTA(6)=-NYZ+NXYZ
ELSE
DELTA(6)=-NYZ
ENDIF
DO 102 [POS=IMINP.6.2
C *** Check +z,+y.+x neighbours for form/break bonds
CFOCUS=CLUSTR(IFOCUS)
INEIGH=OCCUPY (POS+DELTA(IPOS))
IF(BONDED(IFOCUS.IPOS))THEN
IF(GOSCAF(DUMM) LT BREAK)THEN
C *** [f bonded to this neighbour. break bond
BONDED(IFOCUS.IPOS)= FALSE.
BONDED(INEIGH,INVPOS(IPOS))=FALSE.
€ *** Split the cluster if this bond held it together
CALL SPLITCLUSTER(NX.NY.NZ.NYZNXYZMAXPTS,
MAXORD.MAXCL.OCCUPY LOCATE . XCOORD.YCOORD.
ZCOORD,CLPTS,CPARTS CLUSTR.
SIZE.POINTR.CORDER,CNUM.
[FOCUS.CFOCUS.INEIGH.BONDED)

Po Po P Re
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ENDIF
ELSE
IF(INEIGH.NE 0)THEN
IF(CLUSTR(IFOCUS).NE.0' AND.
(CLUSTR(INEIGH). EQ CLUSTR(IFOCUS))) THEN
IF(GOSCAF(DUMM) LT BONDPR)THEN
C *** Form a bond between particles in same cluster
BONDED(IFOCUS.IPOS)= TRUE.
BONDE[)(INEIGIUNVPOSlIPOS)F TRUE
ENDIF
ELSE
IF(GOSCAF(DUMM) LT BONDPR)THEN
C *** Form a bond and merge clusters/particles
BONDED(IFOCUS.IPOS)=TRUE
BONDED(INEIGH LINVPOS(IPOS))=TRUE
CALL BONDNEIGHBOURS(IFOCUS, INEIGH.MAXPTS.

&

& MAXCL,CLUSTR.CPARTS,SIZE MAXORD.CLPTS,
& POINTR.CORDER.CNUM)
ENDIF
ENDIF
ENDIF
ENDIF
102 CONTINUE

IF(.NOT INIT)THEN
DO 103 IPOS=IMINM.6.2
C *** Check -z.-y.-x for new neighbours only
C *** Don't do this for initialisation - then checking ALL particles
INEIGH=OCCUPY(POS+DELTA(IPOS))
IF((INEIGH.NE.0). AND (CLUSTR(INEIGH).NE.CLUSTR
& (IFOCUS)).AND.(GOSCAF(DUMM) LT. BONDPR)) THEN
C *** Form a bond and merge clusters/particles
BONDED(IFOCUS.IPOS)= TRUE
BONDED(INEIGH.INVPOS(IPOS))=TRUE.
CALL BONDNEIGHBOURS(IFOCUS.INEIGH.MAXPTS,
& MAXCL.CLUSTR.CPARTS,SIZE MAXORD,CLPTS.
& POINTR.CORDER.CNUM)
ENDIF
103 CONTINUE
ENDIF
ENDIF
101 CONTINUE
END

SUBROUTINE BONDNEIGHBOURS(IPART.INEIGH.MAXPTS MAXCL,CLUSTR.
& CPARTS.SIZE, MAXORD,CLPTS POINTR.CORDER.CNUM)

C

C *** Make a bond between two particles - in same cluster or different

INTEGER MAXORD,MAXPTS MAXCL,CLPTS.
CPARTS(MAXPTS).CLUSTR(MAXPTS).SIZE(MAXCL).
POINTR(MAXCL).CORDER(MAXCL).CNUM(MAXCL).
IPART INEIGH,CNEIGH.CPART,CLNUM.ORDNXT.ORDNELORDPT,
FIRST.NPART.PPART.PTNXT ,NEINXT PNEIGH.NNEIGH,
I,POINT 1, TP, TEMP(0:110000)

PR R

CNEIGH=CLUSTR(INEIGH)
CPART=CLUSTR(IPART)
IF(CPART.EQ.0)THEN

C *** The particle is single. not in a cluster



-309 -

IF(CNEIGH.NE.0)THEN

C *** The neighbouring particle belongs to a cluster

101

102

ORDNXT=CORDER(CNEIGH)+1
POINTI=POINTR(ORDNXT)
DO 101 I=CLPTS POINT -1
CPARTS(I+1)=CPARTS(I)
CONTINUE
DO 102 IFORDNXT.MAXORD+1
POINTR(I)=POINTR(I)+1
CONTINUE
CLPTS=CLPTS+1
CLUSTR(IPART)=CNEIGH
CPARTS(POINT1)=IPART
SIZE(CNEIGH)=SIZE(CNEIGH)+ 1
ELSE

C *** The neighbour is a single particle

MAXORD=MAXORD+1
CLNUM=CNUM(MAXORD)
SIZE(CLNUM)=2
CPARTS(CLPTS+1)=IPART
CPARTS(CLPTS+2)=INEIGH
CLPTS=CLPTS+2
POINTR(MAXORD*+1)=CLPTS+1
CLUSTR(IPART)=CLNUM
CLUSTR(INEIGH)=CLNUM
CORDER(CLNUM)=MAXORD
ENDIF

ELSE

C *** The particle is in a cluster

C *** The neighbouring particle is in a different cluster or single

ORDPT=CORDER(CPART)
IF(CNEIGH.NE .0)THEN

C *** The neighbour is in a cluster

C *** The particle's cluster is higher in the array list. Sort arrays

103

104

105

106

ORDNEI=CORDER(CNEIGH)
IF(ORDPT LT ORDNEITHEN

PTNXT=ORDPT+]
FIRST=POINTR(PTNXT)
PNEIGH=POINTR(ORDNEI)
NNEIGH=SIZE(CNEIGH)
DO 103 [=0.NNEIGH-1
TEMP(I)=CPARTS(PNEIGH 1)
CONTINUE
DO 104 I=PNEIGH-1.FIRST.-1
CPARTS(I+NNEIGH)=CPARTS(I)
CONTINUE
DO 105 1=0.NNEIGH- 1
TP=TEMP(I)
CPARTS(FIRST+)=TP
CLUSTR(TP)=CPART
CONTINUE
DO 106 I=PTNXT,ORDNEI-1
POINTR()=POINTR(I)+NNEIGH
CONTINUE
MAXORD=MAXORD-1
DO 107 I=ORDNELMAXORD
TP=CNUM(I+1)
CNUM()=TP
CORDER(TP)=1



107
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POINTR()=POINTR(I+ 1)
CONTINUE
POINTR(MAXORD+1)=CLPTS+1
CNUM(MAXORD+1)=CNEIGH
SIZE(CNEIGH)=0
SIZE(CPART)=SIZE(CPART)+NNEIGH

ELSE

C *** The neighbours cluster is higher in the array list. Sort arrays

PNEIGH=POINTR(ORDNEI)
PPART=POINTR(ORDPT)
NEINXT=ORDNEI+1|
NPART=SIZE(CPART)
NNEIGH=SIZE(CNEIGH)

C *** Extract the particles in the particle's cluster, then shunt down

108

109

110

1

112

113

DO 108 1=0,NNEIGH-1
CLUSTR(CPARTS(PNEIGH+1))=CPART
CONTINUE
DO 109 I=0.NPART-1
TEMP(I)=CPARTS(PPART+1)
CONTINUE
DO 110 I=PPART-1.PNEIGH.-1
CPARTS(I+NPART)=CPARTS(I)
CONTINUE
DO 111 I=0.NPART-1
CPARTS(PNEIGH +1)=TEMP(I)
CONTINUE
CORDER(CPART)=ORDNEI
CNUM(ORDNED=CPART
DO 112 I=NEINXT.ORDPT-1
POINTR(I)=POINTR(I)+NPART
CONTINUE
MAXORD=MAXORD-1
DO 113 I=ORDPT.MAXORD
TP=CNUM(I+1)
CNUM(D)=TP
CORDER(TP)=I
POINTR(=POINTR(I+1)
CONTINUE
POINTR(MAXORD+1)=CLPTS+1
CNUM(MAXORD+1)=CNEIGH
SIZE(CNEIGH)=0
SIZE(CPART)=NPART+NNEIGH
ENDIF
ELSE

C *** The neighbour is a single particle

114

FIRST=POINTR(ORDPT+1)

DO 114 I=CLPTS FIRST.-1
CPARTS(1+1)=CPARTS(I)

CONTINUE

DO 115 I=ORDPT+1.MAXORD+1
POINTR()=POINTR()#1

CONTINUE

CLPTS=CLPTS+1

CPARTS(FIRST)=INEIGH

CLUSTR(INEIGH)=CPART

SIZE(CPART)=SIZE(CPART)+1

ENDIF

ENDIF
END



SUBROUTINE SPLITCLUSTER(NX.NY NZ.NYZ.NXYZMAXPT:! ]

< i STE NY.NZ.NYZNXYZMAXPTS MAXORD,MAXCL,
& OCCUPY LOCATE XCOORD,YCOORD.ZCOORD.CLPTS.CPARTS CLUSTR,

& SIZE.POINTR.CORDER.CNUM,

& IFOCUS.CFOCUS.INEIGH,BONDED)

C *** Docs the cluster split when a bond has been broken?

INTEGER NX.NY.NZNYZNXYZMAXORD MAXPTS MAXCL.CLPTS,
OCCUPY(NXYZ).LOCATE(MAXPTS).
XCOORD(NXYZ).YCOORD(NXYZ).ZCOORD(NXYZ).
CPARTS(MAXPTS).CLUSTR(MAXPTS).SIZE(MAXCL),
POINTR(MAXCL).CORDER(MAXCL).CNUM(MAXCL).
IFOCUS,INEIGH.NN.NP.P(110000).NCL.PT_1,CFOCUS,
1LIILCLNUM.CORD.POINT FIRST.PPP.TEMP

LOGICAL BONDED(MAXPTS,6).DISCON.NOLNKN.NOLNKP

PofoPofoRe e

CORD=CORDER(CFOCUS)
POINT=POINTR(CORD)
PT_I1=POINT-1
NCL=POINTR(CORD+1)-POINTR(CORD)
IF(NCL.EQ.2)THEN
C *** The cluster will split into two single particles
CLPTS=CLPTS-2
CLUSTR(CPARTS(POINT))=0
CLUSTR(CPARTS(POINT+1))=0
DO 101 [I=POINT.CLPTS
CPARTS(11)=CPARTS(11+2)
101 CONTINUE
MAXORD=MAXORD-1
DO 102 [I=CORD.MAXORD
CNUM(IDH=CNUM(IT+1)
CORDER(CNUM(I)=IT
POINTR(I1)=POINTR(I1+1)-2
102 CONTINUE
POINTR(MAXORD+ 1)=CLPTS+1
CNUM(MAXORD+1)=CFOCUS
SIZE(CFOCUS)=0
ELSE
€ *** Find out how many and which particles are connected to INEIGH
CALL ATI‘A(‘IIEDPAR'I'S(NX.NY.NZ.NYZ.NXYZ.MAXPI'S.MAX(‘L.

& ()CCUPY,LOCATE.X(‘OORD_YCOORI).Z('OORDCLUS'I'RABONI)ED,
& INEIGH.IFOCUS.P.NN.0.CFOCUS MAXCL* 1.DISCON.NOLNKN)
IF(DISCON)THEN

€ *** [NEIGH is no longer connected to all the particles in cluster
C *** Unless it is by a bridge above the top boundary )
CALL ATTACHEDPARTS(N X.NY4NZ.NYZ.NXYZAMAXP'I‘S.MAX(‘LA
& oce UPY.LOCATE,XCOORD,Y C OORD.ZCOORD.C! LUSTR.BONDED,
& IFOCUSJNEIGHARNPANN.CFOCUS.MAX(‘L+Z,D!S(‘ON.NOLNKP)
lF(NOLNKN.OKNOLNKP)TIIEN
C *** Exclude breakage if may be Jinked above top boundary
IF(NOLNKN.AND.NN EQ.1)THEN
C *** The single particle INEIGH breaks off
CLUSTR(INEIGH)=0
CLPTS=CLPTS-1
DO 103 [1=POINT POINT+NCL-1
IF(INEIGH. EQ CPARTS(11) THEN
FIRST=11
GOTO 201
ENDIF



103
201

104

105

106

CONTINUE

DO 104 I=FIRST.CLPTS
CPARTS(I1)=CPARTS(11+1)

CONTINUE

SIZE(CFOCUS)=SIZE(CFOCUS)-1

DO 105 II=1.NP
CLUSTR(P(NN+1))=CFOCUS

CONTINUE

DO 106 I=CORD+1,MAXORD+ |
POINTR(I1)=POINTR(I1)-1

CONTINUE

ELSEIF(NOLNKP.AND NP EQ.1)THEN

C *** The single particle IPART breaks off

107
202

108

109

110

CLUSTR(IFOCUS)=0
CLPTS=CLPTS-1
DO 107 II=POINT.POINT+NCL-1
IF(IFOCUS EQ CPARTS(II)THEN
FIRST=11
GOTO 202
ENDIF
CONTINUE
DO 108 [I=FIRST.CLPTS
CPARTS(I1)=CPARTS(I1+1)
CONTINUE
SIZE(CFOCUS)=SIZE(CFOCUS)-1
DO 109 [I=1.NN
CLUSTR(P(11)=CFOCUS
CONTINUE
DO 110 [I=CORD+1, MAXORD+1
POINTR(I1)=POINTR(II)-1
CONTINUE
ELSE

C *** The cluster breaks into two clusters

1

MAXORD=MAXORD+1
CLNUM=CNUM(MAXORD)
POINTR(MAXORD+1)=CLPTS+1
DO 111 I=MAXORD,CORD+2.-1
CNUMID=CNUM(II-1)
POINTR(1)=POINTR(II-1)
CORDER(CNUM(II)=II
CONTINUE
CNUM(CORD)=CLNUM

CORDER(CLNUM)=CORD
CORDER(CFOCUS)=CORD*1
IF(NOT .NOLNKP)THEN

C *** Lost particles are attached to IFOCUS

FIRST=POINT
DO 112 [1=1.NN
PPP=P(I1)
CLUSTR(PPP)=CLNUM
DO 113 11I=POINT,POINT+NCL-1
IF(PPP.EQ CPARTS(I) THEN
TEMP=CPARTS(FIRST)
CPARTS(FIRST)=PPP
CPARTS(II)=TEMP
FIRST=FIRST+1
GOTO 112
ENDIF
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113 CONTINUE
112 CONTINUE
DO 114 11=1 NP
CLUSTR(P(NN+I1))=CFOCUS
114 CONTINUE

SIZE(CLNUM)=NN
SIZE(CFOCUS)=NCL-NN
POINTR(CORD+1 )=POINTR(CORD)+NN
ELSEIF(NOT.NOLNKN)THEN
C *** Lost particles belong to INEIGH
FIRST=POINT
DO 115 11=1.NP
PPP=P(NN+1I)
CLUSTR(PPP)=CLNUM
DO 116 1I=POINT.POINT+NCL-1
IF(PPP EQ.CPARTS(II)) THEN
TEMP=CPARTS(FIRST)
CPARTS(FIRST)=PPP
CPARTS(II=TEMP
FIRST=FIRST+1

GOTO 115
ENDIF
116 CONTINUE
115 CONTINUE
DO 117 I=1.NN
CLUSTR(P(I1))=CFOCUS
117 CONTINUE

SIZE(CLNUM)=NP
SIZE(CFOCUS)=NCL-NP
POINTR(CORD+1)=POINTR(CORD)+NP
ELSE
C *** No particles are lost in this cluster (normal. for topcrm=true)
DO 118 1I=1.NP
CPARTS(PT_1+11)=P(NN+II)
CLUSTR(P(NN+I1))=CLNUM
118 CONTINUE
SIZE(CLNUM)=NP
DO 119 1I=1.NN
CPARTS(PT_1+11+NP)=P(Il)
CLUSTR(P(11))=CFOCUS
19 CONTINUE
SIZE(CFOCUS)=NCL-NP
POINTR(CORD+1)=POINTR(CORD)+ NP
ENDIF
ENDIF
ELSE
C *** [FOCUS and INEIGH are connected above top boundary
DO 120 1I=1.NN
CLUSTR(P(I1))=CFOCUS
120 CONTINUE
DO 121 [I=1.NP
CLUSTR(P(NN+11))=CFOCUS
121 CONTINUE
ENDIF
ELSE
C *** Particle and neighbour are still connected
DO 122 [I=1.NN
CLUSTR(P(1)=CFOCUS
122 CONTINUE
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ENDIF
ENDIF
END

SUBROUTINE ATTACHEDPARTS(NX,NY NZNYZNXYZMAXPTS.MAXCL,
& OCCUPY LOCATE.XCOORD.YCOORD.ZCOORD,CLUSTR.BONDED,
& IFOCUS.IOBJ.P.N.LASTEL.CFOCUS,CLNUM.DISCON.NOLINK)

&
C *** Find all the particles which are bonded to this particle
C *** 10 determine whether the cluster splits when bond breaks
INTEGER NX.NY NZNYZNXYZMAXPTS MAXCL,
& OCCUPY(NXYZ).LOCATE(MAXPTS),
& XCOORD(NXYZ).YCOORD(NXYZ).ZCOORD(NXYZ).CLUSTR(MAXPTS).
& IFOCUS,I0BJ.CFOCUS.P(110000).N.CLNUM,
& LILIPART.IMIN.POS NOLD ,NNEW.DELTA(6).LASTEL
LOGICAL NEW.BONDED(MAXPTS,6).DISCON,NOLINK

DISCON=TRUE.

NOLINK=TRUE

NOLD=1

NNEW=1

P(LASTEL+1)=IFOCUS

CLUSTR(IFOCUS)=CLNUM

N=1

201 NEW=FALSE.

DO 101 I=NOLD.NNEW
IPART=P(LASTEL+I)
POS=LOCATE(IPART)

C *** Periodic boundaries top and bottom - code removed
C *** Generate relative positions of neighbours
IF(YCOORD(POS).EQ NY)THEN
DELTA(3)=NZ-NYZ
ELSE
DELTA(3)=NZ
ENDIF
IF(YCOORD(POS).EQ 1) THEN
DELTA(4)=-NZ+NYZ
ELSE
DELTA(4)=-NZ
ENDIF
IF(XCOORD(POS). EQNX)THEN
DELTA(5)=NYZ-NXYZ
ELSE
DELTA(5)=NYZ
ENDIF
IF(XCOORD(POS).EQ. 1) THEN
DELTA(6)=-NYZ+NXYZ
ELSE
DELTA(6)=-NYZ
ENDIF
C *** Check for bonds at z boundarics
IMIN=1
DELTA(1)=1
DELTA(2)=-1 QyTHEN
POS).EQ.1)
IF(ZI}%(;((;‘:I][))(ED([:’ART. 1).AND.CLUSTR(OCC UPY(POS+DELTA(D)))
& _NE.CLNUM)THEN
C **+ The particle is bonded and hasn't been counted already
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NEW=TRUE.
N=N+1
CLUSTR(OCCUPY (POS+ DELTA(1)))=CLNUM
P(LASTEI..*N):O(‘('UPY(POS tDELTA(1))
IF(P(LASTEL+N) EQIOBJ)THEN
C *** It is definitely connected 1o the other particle
DISCON=FALSE
GOTO 202
ENDIF
ENDIF
IMIN=3
ELSEIF(ZCOORD(POS) EQ.NZ)THEN
IMIN=2
IF(BONDED(IPART. 1)) THEN
C *** A bond crossing the top boundary
NOLINK=FALSE
ENDIF
ENDIF
DO 102 II=IMIN.6
C *** Check each neighbour to see if it is attached
IF(BONDED(IPART.11). AND.CLUSTR(OCCUPY (POS +DELTA(I1)))
& NE.CLNUM)THEN
NEW=TRUE
N=N+1
CLUSTR(OCCUPY (POS+DELTA(I1)))=CLNUM
P(LASTEL+N)=OCCUPY(POS+DELTA(II))
IF(P(LASTEL+N).EQ.IOB])THEN
C *** It is definitely connected to the other particle
DISCON=FALSE

GOTO 202
ENDIF
ENDIF
102 CONTINUE
101 CONTINUE
IF(NEW)THEN

C *** The last set found new particles which are attached
C *** Repeat to check their neighbours
NOLD=NNEW+1
NNEW=N
GOTO 201
ENDIF
202 END

(&
SUBROUTINE CALCINTERFACE(NXY.NZ.VOL.PHLZINT)

(o
C *** Calculate the serum layer interface position
C *** Based on definition of a "uniform" region of const vol fract

INTEGER NZ,ZINT.VOL(NZ).ZZNXY

DOUBLE PRECISION PHL.VV

0 =2.NZ-1
DOJVL[Z)éLzE(VOLlZZHVOL(ZZ-l 4+ VOL(ZZ+1))/(3.0DO*NXY)
IF(VV.GT.0.9D0*PHI) THEN

101 CONTINUE
201 END
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SUBROUTINE DENSITYDISTRIB(NX.NY.NZ NYZ NXYZ NZ2 MAXPTS NPARTS,
& NSTEPS, OCCUPY LOCATE. XCOORD.YCOORD,ZCOORD,CLUSTR.
& ZINT,GG,RSTEP.PHLMMIN MMAX.NLAYS)

C *** Calculate density distribution G(R) of particles in spherical

C *** shells (R)-(R+dR)

INTEGER NX.NY.NZ NYZ.NXYZMAXPTS.NPARTS,
XCOORD(NXYZ),YCOORD(NXYZ),ZCOORD(NXYZ),
OCCUPY(NXYZ),LOCATE(MAXPTS).CLUSTR(MAXPTS).
ZINT.NZ2 NSTEPS.NLAYS.N(2500).MMIN(NZ2).MMAX(NZ2).
XC.YC.ZC,DELX,DELY DELZ.POS POSC,XYPOS,XPOS.
LILIMID,IZ.IG.NC,NAVE NUM.NCOORD,NCOUNT NL.MAXR MAXR2,
IR2.ZMID.ZMDBOT.ZMDTOP.MIN MAX . ZMIN ZMAX.LOW.HIGH,
IP.CL(5000),NPTS,NSINGL NCLUST.NMID.ZMD(20).NBOT,NTOP

DOUBLE PRECISION ROUT.DD.RSTEP.RSTEP2.PHI,
G(500).SUMG.GG(NZ2 NSTEPS)

LOGICAL FRSTP

P R

RSTEP2=RSTEP*RSTEP
NL=NLAYS
DO 101 I=1.500
G(1)=0.0D0
101 CONTINUE
DO 102 I=1.NZ2
N()=0
102 CONTINUE
€ *** Only calc in the uniform concentration region - define limits
205 ZMID=NINT(REAL(NZ+ZINT)/2.0)
MAXR=11
MAXR2=MAXR*MAXR
MAX=l+lNT(().99999[)1)‘DBLE(MAXR-l)/RS'I'EP)
NBOT=(1+INT(0.9999*REAL(ZINT-1+(MAXR-1 Y+NLAYS)/5.0))
ZMDBOT=5*NBOT
NTOP=INT(1.0000 1 *REAL(NZ-(MAXR-1 )-NLAYS-10)/10.0)
ZMDTOP=10*NTOP .
C *** Calculate the heights to calculate distrib - in uniform region
IF(MOD(NBOT.2).EQ 0)THEN
C *** Bottom one is a multiple of 10
NMID=1
ZMD(1)=ZMDBOT
DO 103 1=2.NTOP+1
ZMD(1)=ZMD(I-1)+10
IF@ZMD(1).GT ZMDTOP)THEN
GOTO 201
ELSE
NMID=NMID+1
ENDIF
103 CONTINUE
201 CONTINUE
ELSE
C *** Bottom one is a multiple of 5
NMID=1
ZMD(1)=ZMDBOT
ZMDBOT=ZMDBOT-5
DO 104 [=2.NTOP+1
ZMD(I)—ZMDBOT*(l—l)'W
IF(ZMD(I).GT.ZMDTOP)THEN
GOTO 202




-317-

ELSE
NMID=NMID+|
ENDIF
104 CONTINUE
202 CONTINUE
ENDIF
C *** Calculate an average coordination number (100 random particles)
NCOORD=0
NUM=0
NAVE=100
DO 105 I=1 NPARTS
POS=LOCATE(l)
IF(POS.NE.0.AND (ZCOORD(POS) LT NZ). AND.
& (ZCOORD(POS).GT. 1)) THEN
CALL COUNTNEIGHBOURS(POS NX.NY ,NZ NYZ.
& NXYZ,XCOORD.,YCOORD.ZCOORD.OCCUPY NCOUNT)
NCOORD=NCOORD+NCOUNT
NUM=NUM+1
IF(NUM.GE NAVE)THEN
GOTO 203
ENDIF
ENDIF
105 CONTINUE
203 WRITE(40,301)NAVE DBLE(NCOORD)/DBLE(NAVE)
301 FORMAT("Ave coord number of ".I3." parts ".F16.3)
C *** Take averages of N(R) at 10d intervals over the height of system
DO 106 IMID=1.NMID
1Z=ZMD(IMID)
NL=NLAYS
LOW=IZ-NL
HIGH=1Z+NL
NC=0
WRITE(40.302)1Z
302 FORMAT("Height ".113)
FRSTP=TRUE
DO 107 XC=1.NX
XPOS=(XC-1)*NYZ
DO 108 YC=1,NY
XYPOS=XPOSH+NZ*(YC-1)
DO 109 ZC=LOW. HIGH
POSC=XYPOS+ZC
IF(OCCUPY (POSC).NE.O)THEN
C *** A particle in the central layer
IF(FRSTP)THEN
NPTS=1
IF(CLUSTR(OCCUPY (POSC)). EQO)THEN
NSINGL=1
NCLUST=0
ELSE
NSINGL=0
NCLUST=1
CL(1)=CLUSTR(OCCUPY (POSC))
ENDIF
ENDIF
NC=NC+1
ZMIN=ZC-MAXR
ZMAX=ZC+MAXR
DO 110 [1=1 NPARTS )
C *** For each particle in the central region. find all others in slab
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POS=LOCATE(IT)
IF(POS.NE 0)THEN
IF(ZCOORD(POS). GE.ZMIN.AND. ZCOORD(POS).LE.
ZMAX AND POS NE POSC)THEN
IF(FRSTP)THEN
C *** Count the particles in the section
NPTS=NPTS+|
IF(CLUSTR(I1). EQ 0) THEN
NSINGL=NSINGL+1
ELSE
DO 111 IP=I NCLUST
IF(CL(IP). EQ.CLUSTR(I1)) THEN

&

GOTO 204
ENDIF

11 CONTINUE

NCLUST=NCLUST+1

CL(NCLUST)=CLUSTR(I1)
204 CONTINUE

ENDIF
ENDIF

C *** Is this particle within the slab?
DELX=IABS(XCOORD(POS)-XC)
IF(DELX.GT.MAXR)THEN
DELX=DELX-NX
ENDIF
DELY=IABS(YCOORD(POS)-YC)
IF(DELY.GT MAXR)THEN
DELY=DELY-NY
ENDIF
DELZ=1ABS(ZCOORD(POS)-ZC)
IR2=(DELX*DELX+DELY*DELY+DELZ*DELZ)
IF(IR2 LE MAXR2)THEN
N(IR2)=N(IR2)+1
C *** If particle is close. count it at its relative position

NDIF
ENDIF
ENDIF
10 CONTINUE
FRSTP=FALSE
ENDIF
109 CONTINUE
108 CONTINUE
107 CONTINUE
IF(NC EQ.0)THEN
C *** No particles found in central layers
NL=NL+1
GOTO 205

ENDIF
DO 112 IR2=1.MAXR2
MIN=MMIN(IR2)
IF(MIN.LE.MAX)THEN
DO 113 IGEMIN.MMAX(IR2)
C * ulat icle volumes in each shell
e G(IG)<G(IG)+DBLE(N(IRZ))‘GG(IRZ.IG-MIN+I)

113 CONTINUE
ENDIF
112 CONTINUE

C *** Write results
SUMG=0.0D0
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WRITE(40,303)NPTS

FORMAT("Particles in slice" 127)

WRITE(40,304)NSINGL

FORMAT("Singles in slice",127)

WRITE(40.305)NCLUST

FORMAT("Clusters in slice” 127)

WRI'l'E(40,}()6)REAL(NP'TS)/RF_AL(NSINGL‘N('LUST)

FORMAT("Average unit size in slice".F17 5)

WRITE(40,307)NC.NL

FORMAT("No central parts for g(R) ave " 2115)

WRITE(40,308)

FORMAT("Mid-step Rout log(Rout) averageG
averageN")

C *** Qutput the distribution at this height

309

114
106

DO 114 1=6,MAX
DD=(DBLE(I)-0.5D0)*RSTEP
ROUT=DBLE(I)*RSTEP
SUMG=SUMGH(G(1)/DBLE(NC))
WRITE(40.309)DD.ROUT.DLOG 10(ROUT).G(1)/NC.SUMG
FORMAT(2F13,F10.5,2F15.5)
G(1)=0
CONTINUE
CONTINUE
END

SUBROUTINE INITDENSDISTRIB(NZ2.NSTEPS RSTEP.MMIN.MMAX.GG)

C *** Calculate the assigment of the particle volume to the G(R)shells
C *** according to particle position

102
101

INTEGER NZ2.NSTEPS.MMIN(NZ2),MMAX(NZ2),L.ILIG.ILAST MAX.MIN
DOUBLE PRECISION R.RSTEP.L1.L.2,V.V0.DIST,RR2, GG(NZ2 NSTEPS)

DO 101 I=1,NZ2
DO 102 1I=1.NSTEPS
GG(LIN=0.0DO
CONTINUE
CONTINUE
MAX=NINT(DSQRT(DBLE(NZ2))/RSTEP)
DO 103 I=1.NZ2

C *** For each relative position. minimum and maximum shells occupied

R=DSQRT(DBLE(1)) »
MMIN(D)=1+INT(1.000001D0*(R-0. SDOYRSTEP)
MMAX(1)=1+INT(1.00000 1DO*(R+0 5DO)/RSTEP)

C *** Calculate proportion of particle’s volume within a distance

MIN=MMIN(I)
IF(MIN.LE. MAX)THEN
V0=0.0D0
RR2=(R-0.5D0)*(R-0.5D0)
ILAST=MINO(NSTEPS-1. MAX-MIN+1)
DO 104 IG=1.ILAST
DIST=DBLE(MIN+IG-1)*RSTEP
L1=((DIST*DIST)-RR2)/(2.0D0*R)
1.2=(0.25D0~(R-DIST)*(R-DIST))/(2.0D0*R)
V=2A1)D0‘(LI‘LI‘(I.SDO-LI)+L2‘LZ‘("‘.()DO‘DIST»LZ))

C *** V is proportion of sphere within DIST.
C *** G is proportion between DIST and the previous distance

GG(LIG)=V-VO
Vo=V



104 CONTINUE
IF(MMAX(I).LE MAX)THEN
GG(LMMAX(1)-MMIN(1)+1)=1.0D0-V0
ELSE
MMAX()=MAX
ENDIF
ENDIF
103 CONTINUE
END

SUBROUTINE COUNTNEIGHBOURS(POS.NX.NY.NZNYZNXYZ,
& XCOORD.YCOORD.ZCOORD.OCCUPY NCOORD)

INTEGER NX.NY ,NZ NYZ.NXYZ POS,NCOORD.
& XCOORD(NXYZ).YCOORD(NXYZ).ZCOORD(NXYZ) OCCUPY(NXYZ).
& DELP(3).DELM(3).1.1.K.L.N.DEL(26)
C *** Count the number of neighbours around a particle
DELP(1)=1
DELM(1)=-1
C *** Find ncighbouring positions
TF(YCOORD(POS). EQ NY)THEN
DELP(2)=NZ-NYZ
ELSE
DELP(2)=NZ
ENDIF
IF(YCOORD(POS).EQ. 1) THEN
DELM(2)=-NZ+NYZ
ELSE
DELM(2)=-NZ
ENDIF
IF(XCOORD(POS). EQ NX)THEN
DELP(3)=NYZ-NXYZ
ELSE
DELP(3)=NYZ
ENDIF
IF(XCOORD(POS).EQ. 1) THEN
DELM(3)=-NYZ+NXYZ
ELSE
DELM(3)=-NYZ
ENDIF
N=0
C *** generate 26 neighbouring positions on the cube
DO 101 1=1.3
N=N+1
DEL(N)=DELP(I)
N=N+1
DEL(N)=DELM(I)
DO 102 J=1+1.3
N=N+1
DEL(N)=DELP(D)+DELP(J)
N=N+1
DEL(N)=DELP(I)+DELM())
N=N+1
DEL(N)=DELM(l)+DELP(J)
N=N+1
DEL(N)=DELM(I)+DELM())
DO 103 K=J+1.3
DO 104 L=3.6



104
103
102
101

N=N+1
DEL(N)=DEL(L)+DELP(K)
N=N+1

DEL(N)=DEL(L)+DELM(K)
CONTINUE
CONTINUE
CONTINUE
CONTINUE

C *** Count the number of neighbours

105

NCOORD=0
DO 105 J=1.26
IF(OCCUPY(POS+DEL())) NE.O)THEN
NCOORD=NCOORD+1
ENDIF
CONTINUE
END

&
&
&

SUBROUTINE INITARRAYS(NY NZNYZNXYZMAXPTS MAXCL,
MAXORD.NLOST.CLPTS,
OCCUPY.CLUSTR.SIZE . POINTR.CORDER.CNUM.
VOL,BONDED.INVPOS)

C *** Set up the arrays

101

103
102

104

105

&
&
&

INTEGER NY.NZNYZ NXYZMAXPTS MAXCL MAXORD,CLPTS NLOST.
OCCUPY(NXYZ).CLUSTR(MAXPTS), SIZE(MAXCL),
POINTR(MAXCL).CORDER(MAXCL).CNUM(MAXCL),
VOL(NZ).INVPOS(6).L.11

LOGICAL BONDED(MAXPTS.6)

NYZ=NY*NZ

NLOST=0

MAXORD=0

CLPTS=0

DO 101 =1, NXYZ
OCCUPY(1)=0

CONTINUE

DO 102 1=1, MAXPTS
CLUSTR(1)=0
DO 103 11=1.6

BONDED(111)= FALSE
CONTINUE

CONTINUE

INVPOS(1)=2

INVPOS(2)=1

INVPOS(3)=4

INVPOS(4)=3

INVPOS(5)=6

INVPOS(6)=5

DO 104 1=1,MAXCL
SIZE(1)=0
POINTR(1)=1
CORDER(1)=0
CNUM(D)=I

CONTINUE

DO 105 I=1.NZ
VOL()=0

CONTINUE

END



-322-

C AR

SUBROUTINE LATCOORDS(NX.NY

LR

NZNXYZ, XCOORD,YCOORD.ZCOORD)

EEEE

C *** Set up and store the x.y.z coordinates of the lattice poi
G 1 ']’X)I"}S
2 l‘&ﬁf\{’-:‘l]:‘(_NY.NZ.NXYZAXCOORD(NXY Z).YCOORD(NXYZ),ZCOORD(NXYZ).
1=0
DO 101 IX=1,NX
DO 102 IY=1.NY
DO 103 1Z=1 Nz
I=1+1
XCOORD(I)=IX
YCOORD(I)=1Y
ZCOORD(I)=1Z
103 CONTINUE
102 CONTINUE
101 CONTINUE
END
iC i
SUBROUTINE INIT I’/\R’I'I('I.ES(NXYZ.MA.\'PTS.Nl’l\RTS.()('(‘UPY.LU("/\‘I‘E)

¢
C *** Set the initial random positions of the particles
INTEGER NXYZ.MAXPTS. OCCUPY(NXYZ).LOCATE(MAXPTS).NPARTS.J.NJ
DOUBLE PRECISION DUMM.GO5CAF.FAC
EXTERNAL GOSCAF
FAC=0.9999999999D0*DBLE(NXYZ)
DO 101 J=1,NPARTS
201 NI=1+DINT(FAC*G0OSCAF(DUMM))
IF(OCCUPY(NJ).NE.0O)THEN
GOTO 201
ELSE
LOCATE(J)=NJ
OCCUPY(N))=J
ENDIF
101 CONTINUE
END
c *
SUBROUTINE INITCLUSTERS(NX,NY.NZNYZNXYZMAXPTS.MAXCL,
NPARTS.XCOORD.YCOORD.ZCOORD.LOCATE. OCCUPY,
MAXORD.CLPTS CLUSTR.CPARTS SIZE . POINTR,CORDER.CNUM,
BONDPR.BONDED.INVPOS)

&
&
&
Q
C *** Set up the initial clusters
INTEGER NX.NY NZ NYZNXYZMAXPTS NPARTS MAXORD.MAXCL.CLPTS,

& XCOORD(NXYZ).YCOORD(NXYZ).ZCOORD(NXYZ).
& OCCUPY(NXYZ).LOCATE(MAXPTS),
& CPARTS(MAXPTS).CLUSTR(MAXPTS).SIZE(MAXCL).
& POINTR(MAXCL),CORDER(MAXCL).CNUM(MAXCL).
& INVPOS(6). TEMPCL(1).I

LOGICAL BONDED(MAXPTS.6).INIT

DOUBLE PRECISION BONDPR

INIT=TRUE,

DO 101 I=1.NPARTS

C *** Are any neighbours bonded initially?

TEMPCL(1)=1 }
CALL BONDS(NX,NY,NZNYZNXYZNPARTS. MAXPTS MAXORD.MAXCL.
& CLPTS.XCOORD, YCOORD.ZCOORD,OCCUPY LOCATE,
& CPARTS.CLUSTR.SIZE. POINTR,CORDER. CNUM.

& BONDPR.0.0D0,BONDED.INVPOS.
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& TEMPCL.LINIT)
101 CONTINUE
END

SUBROUTINE INITRATES(MAXPTS.DIFFCL.DFSTEP.CRMCL.CRSTEP.DELT)

C *** Calculate diffusion and creaming rates for all cluster sizes
INTEGER MAXPTS.CRSTEP(MAXPTS). DESTEP(MAXPTS),CRSTP.DESTP.I
DOUBLE PRECISION DIFFCL(MAXPTS).CRMCL(MAXPTS).DFRAT.D0.CO.DELT
CRSTP=+1
DFSTP=1
DFRAT=1.0D0

C *** The creaming vel and diffusion cocfT in lattice and time units
C0=0.0694579D0*DELT
D0=0.320847DO*DELT
WRITE(20.301)DELT
WRITE(30.301)DELT
WRITE(40.301)DELT
WRITE(50.301)DELT

301 FORMAT("Time step ".F10.2." secs particle diam 1.2 microns")
WRITE(20.302)C0.DO
WRITE(30.302)C0.D0
WRITE(40.302)C0.D0
WRITE(50.302)C0.DO
302 FORMAT("Cream coef".F10.5." Diff Coef".F15 5." at 30 deg C")
WRITE(20.303)
WRITE(30.303)
WRITE(40,303)
WRITE(50.303)
303 FORMAT("Diffcl  6DO(N-0.5 Creamcl CO(N0.5)/erstp")
DO 101 I=1.MAXPTS
C *** Set movement prob and step length
DIFFCL(1)=6.0D0*DO*(I**(-0 5D0))/(DFSTP*DFSTP)
CRMCL(I)=CO*(1**0.5D0)/CRSTP
IF((DIFFCL(1).LT.0.5D0*DFRAT) AND.(DFSTP.GT 1)) THEN
C *** Large movement prob - take next step length
DIFFCL(1)=DIFFCL(I)/DFRAT
DFESTP=DFSTP-1
DFSTEP(1)=DFSTP
DFRAT=DBLE(DFSTP-1 )*DBLE(DFSTP-1)/
& (DBLE(l)FSTP)"DBLE(DFS'l'P))
ELSE
DFSTEP()=DFSTP
ENDIF
IF((CRMCL(I).GT .0.5D0) AND,(CRSTP.LT 5))THEN
C *** Large movement prob - take nest step length
CRMCL(D)=CRMCL(I )*CRSTP/(CRSTP+1)
CRSTP=CRSTP+1
CRSTEP(I)=CRSTP
ELSEIF(CRMCL(1).GT .0 9DO)THEN
CRMCL(|)=CRM('L(I)"CRSTP/(CRSTP' 1)
CRSTP=CRSTP+1
CRSTEP(I)=CRSTP

ELSE
CRSTEP(1)=CRSTP
ENDIF
101 CONTINUE
END
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Appendix A4 : Computer Program for
Multiple Scattering Theory Calculations

Calculate wavenumber. velocity and attenuation of ultrasound
in a dispersion (solid or liquid or mixture droplets)

Multiple scattering theory. long wavelength limit

by Valerie Pinfield.  1993-1995

[o¥oNolaNe]

SUBROUTINE USVELS(N.NSIZES.RADIUS PHI.SFC.ANGFREQ.SSVTH,SSVVI.
& SSVEL.SSATT,
& MSVEL.MSATT.LBATTL.
& QRHO.ETAMU.TOR.GAMMA BETA.SIGMA)

INTEGER N,NSIZES.1Z

DOUBLE COMPLEX 1.COEFF(0:3),K(2.3).BULKK2.K11

DOUBLE PRECISION RADIUS(NSIZES).PHI(NSIZES).SFC(NSIZES). ANGFREQ,
& Q(3),RHO(3).ETA(3).MU(3). TOR(3). GAMMA(3). BETA(3).SIGMA(3).
& SOLRAD(101),SSVEL.SSATT.SSVTH,SSVVI,
& MSVELMSATT LBVEL.LBATT.LBATTL

PARAMETER (I=(0.0D0.1.0D0) )

C *** Requires previous CALL to subroutine MTDATA to get mat properties
DO 101 1Z=0.N
COEFF(1Z)=(0.00D0,0.00D0)
101 CONTINUE
DO 102 1Z=1NSIZES
SOLRAD(I1Z)=RADIUS(IZ)*(RHO(2)/RHO(3))**0.33333
102 CONTINUE
C *** Determine the single particle scattering coefficients for
C *** solid and liquid particles
CALL SCATTCOEFFS(N.NSIZES RADIUS PHI.SFC.0. ANGFREQ.K11.COEFF,

& Q.RHO.ETA MU.TOR.GAMMA BETA.SIGMA.K)

CALL SCATTCOEFFS(N.NSIZES. SOLRAD PHI.SFC.1. ANGFREQK1 1.COEFF,

& Q.RHO.ETA.MU.T()R.GAMMA.BETAASIGMA.K)

€ **+* Calculate wavenumber, velocity and atten from scatt coefTs

C *** Single scattering only
BULKK2=K 1 1*K11*(1.0D0-(3. 0D0*I*COEFF(0)/(K11**3)))
SSVTH=ANGFREQ/(DBLE(CDSQRT(BULKK2))
BULKK2=K11*K11*(1.0D0-(9 ODO*I*COEFF(1)/(K11*¥3)))
SSVVI=ANGFREQ/(DBLF.((‘DSQRT(BULKKZ)))
BULKK2=K11*K11-((3.0D0*I/K1 1)*(COEFF(0)+(3.0D0*COEFF(1))+(5.0D0*

& el DSQRT(BULKK2)))
SSVEL=ANGFREQ/(DBLE(C T(
SgATT:ZU,()DO’D(I)MAG(CDSQRT(BULKKl))‘DL()GI(Y(Z.7|821§lxlxl)0)

C *** Multiple scattering

IF(N EQ.1)THEN )
BUSKKZ:KI L#K 1143 0DO*I/K 11)*(COEFF(0)+(3.0DO*COEFF(1))

333333D0

& ~((27.0D0/(K1 |"4))‘(((()EFF(H;'(‘OEFF( 1)
& +(2.0DO*COEFF(1 )*COEFF(1)))
ELSE
BULKK2=K11*KI 1-((3.0D0* /K11 )*(COEFF(0)+
& (3.0DO*COEFF(1)) ’(iUDO‘COEFF(Z))H
& ~((27.0DO/K1 l“4))’(((‘OEFF((!)‘(‘OEFF(l)l

& +(5.0D0*COEFF(1)*COEFF(2))+(2 0D0*COEFF(l J*COEFF(1)



& +(10.0DO*COEFF(0)*COEFF(2)/3.0D0)

& H6.0DO*COEFF(1)*COEFF(2))

& +(230.0D0* COEFF(2)*COEFF(2)/21.0D0)))
ENDIF

LBVEL=ANGFREQ/(DBLE(CDSQRT(BULKK2)))

LBATTL=(2. 0D0*DIMAG(CDSQRT(BULKK2))*62.83 185D0/DBL/ .
&  DLOGI0(2.718281828D0) PHARRRELAR

LBATT=20.0D0*DIMAG(CDSQRT(BULKK2))*DLOG10(2.718281828D0)

MSVEL=LBVEL
MSATT=LBATT
END
G
SUBROUTINE SCATTCOEFFS(N.NSIZES.RADIUS,PHI.SFC.SOLID.ANGFREQ.
& K11.COEFF.Q.RHO.ETA MU TOR.GAMMA BETA.SIGMA K)
c

C *** Calculate the single particle scattering coefTicients
C *** Requires previous call to MTDATA for material parameters
INTEGER ISIZE.IZ N.NSIZES.SOLID
DOUBLE PRECISION RADIUS(NSIZES).PHI(NSIZES).SFC(NSIZES).PROPN.
& ANGFREQ.Q(3).RHO(3).ETA(3).MU(3). TOR(3). GAMMA(3).
& BETA(3).SIGMA(3)
DOUBLE COMPLEX LK(2.3).A(2,3).G(2.2).L(2.2).
& JN(2.3.0:3).INP(2.3.0:3).JNDP(2.3.0:3),
& HN(2,3,0:3).HNP(2.3.0:3).HNDP(2.3.0:3),
& ACOEFF(0:3.101).COEFF(0:3).K11
PARAMETER (1=(0.0D0,1.0D0) )

C *** Calculate wavenumber of each mode (propl. thermal. shear)
C *** in bulk materials
CALL WAVE(ANGFREQ.SOLID.K.G.L.Q.RHO.ETA MU.GAMMA BETA.SIGMA)
K11=K(1,1)
C *** For cach particle size, calculate scattering coefficients
DO 101 ISIZE=1.NSIZES
C *** Calculate spherical Bessel functions for each parameter
CALL SPHBES(RADIUS(ISlZE).N.K,A_JNJNPJNDP.HN.HNRHNDP)
IF (SOLID .EQ.1) THEN
PROPN=SFC(ISIZE)
ELSE
PROPN=PHI(ISIZE)
END IF
DO 102 1Z=0.N
C *** For each scaltering order, solve boundary equations at surface
CALL SOLVEEQUATIONS(IZ.RADIUS(ISIZE).ACOEFF(IZ.ISIZE).
& SOLID.ANGFREQ.K.A.G.L.ETAMU.TOR.
& JN.INP.INDP.HN.HNP.HNDP.RHO.SIGMA)
C #*+* Cumulative scattering coefficient (sum over sizes)
COEFF(IZ):(‘OEFF(IZ)fACOEFF(IZ.ISIZE)‘I’ROPN/
& (RADIUS(ISIZE)**3)
102 CONTINUE
101 CONTINUE
END
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SUBROUTINE SOLVEEQUA'I'I()NS(ORDER.RAI).COEFF.S()LI D.ANGFREQ,
& K.A.G.LETAML J.TORIN_INP,INDP_HN. | INP.HNDP.RHO,SIGMA)

C *** Matrix solution of six boundary equations at particle surface
C *** for the single scattering cocfficients
INTEGER ORDER.IPIV(6),INFO.11.SOLID.11.JJ
DOUBLE PRECISION ETA(3).MU(3). TOR(3). TOR21 ETAMU.
NFAC.NZFA(‘.RADAANGFREQ.RHO(1).SIGM/\(’(),
FERR(1).BERR(1) RWORK (12). ANORM.RCOND

DOUBLE COMPLEX LMATRIX(6.6).RHS(6.1),COEFF,IWFAC.ETA2.ETA21.
K(2.3).A(2.3).G(2.2).L(2.2) ETAMU2.
IN(2.3. JNP(2.3.
HN(2.3.0:3).HNP(2.3.(
AA(6.6).RA(6,1).WORK(12)

PARAMETER (I=(0.0D0,1.0D0))

EXTERNAL FO6UAF

DOUBLE PRECISION FOGUAF

NFAC=DBLE(ORDER*(ORDER+1))

N2FAC=DBLE(ORDER*ORDER +ORDER-2)

IF(SOLID.EQ.0)THEN

ETA2=ETA(2)
ELSE
ETA2=ETAQ3)/(-1* ANGFREQ)

END IF

TOR21=TOR(2+SOLID)/TOR(1)

ETA21=ETA2/ETA(1)

ETAMUI=2.0DO*(ETA(1)-MU(1))/3.0D0

ETAMU2=2.0DO*(ETA2-MU(2+SOLID))/3.0D0

C *** Set up matrix of boundary values

C *** See Epstein and Carhart (1953) or Allegra and Hawley (1972)

C *** Equation 1 is radial velocity
MATRIX(1.1)=A(1,1)*HNP(1.1.ORDER)
MATRIX(1.2)=A(1.2)*HNP(1.2,ORDER)
MATRIX(1.5)=-NFAC*HN(1.3.ORDER)
MATRIX(1.3)=-A(2.1)*JNP(2.1.ORDER)
MATRIX(1.4)=-A(2.2)*INP(2.2.ORDER)
MATRIX(1.6)=NFAC*JN(2.3.0RDER)

C *** Equation 5 is tangential velocity
MATRIX(5.1)=HN(1.1.ORDER)
MATRIX(5.2)=HN(1.2.ORDER)

~(HN(1.3.0RDER)+A(1.3)*HNP(1,3.0RDER))

PR R

MATRIX(5.6)=(JN(2.3.0RDER)+A(2.3)*JNP(2.3.ORDER))

C *** Equation 2 is temperature
MATRIX(2.1)=MATRIX(5.1)
MATRIX(2.2)=G(1.2)*MATRIX(5.2)
MATRIX(2.5)=0.0D0
MATRIX(2.3)=G(2.1)* MATRIX(5.3)
MATRIX(2.4)=G(2.2)*MATRIX(5.4)
MATRIX(2.6)=0.0D0

C *** Equation 3 is heat flux
MATRIX(3.1)=MATRIX(1.1)
MATRIX(3.2)=G(1.2)*MATRIX(1.2)
MATRIX(3.5)=0.0D0
MATRIX(3.3)=TOR21*G(2.1)*MATRIX(1.3)

OR21*G(2.2)*MATRIX(1.4)

MATRIX(3.6)=0.0D0
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*** Equation 4 is radial stress Prr

MATRIX(4.1)=HN(1.1 ORDER)-2 ODO*ETA()*K(1.1)*K(1.1)*

& (HNI)P(I.I.()RDERHHN(I_L()RDER))/L(I.I)
MATRIX(4.2)=(L(1.2)*HN( 1.2.0RDER)-2 0DO*ETA(1 J*K(1.2)*K(1.2)*

& (HNDP(1.2.ORDER )+HN( 1.2.0RDER)))/L(1.1)
MATRI.‘(H.?‘F»(L(E.I)‘JN(Z,I.ORDER)-l ODO*ETA2*K(2.1)*K(2.1)*

& (JNDP(2,1.ORDER)+IN(2.1.ORDER))A(1.1)
MA'I‘RIXH.-‘):-{L(Z.Z)‘JN(Z.Z.ORDER)-Z ODO*ETA2*K(2.2)*K(2.2)*

& (JNDP(2.2,0RDER)+JN(2.2,ORDER)))/L(1.1)
MATRIX(4.5)=2.0DO*ETA(1)*NFAC*(A( 1.3)*HNP(1.3 ORDER)-

& HN(1.3.0RDER))/(L(1.1)*RAD*RAD)
MATRIX(-l.(v):-Z.ODU’ETAZ‘NFA("(/\(Z_1)'JNP(2J.()RDER)-

& IN(2.3,ORDER))/(L(1,1)*RAD*RAD)

C *** Alternative according to Epstein and Carhart, 1953
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MATRIX(4. D=ETA(1)*((A(1.3)*A(1.3)*HN(1,1.ORDER)-2 ODO*A(I.1)*
& A(1,1)*HNDP(1.1.ORDER)))

MATRIX(4.2)=ETA(1)*(((1.0DO-2. 0DO*ETA(1)/(RHO( 1) *SIGMA(1))))*
& A(1.3)*A(1.3)*HN(1.2.0RDER))-(2.0DO*A(1.2)*A(1.2)*
& HNDP(1.2.0RDER)))

MATRIX(4.3)=-ETAQ)*((A(2.3)*A(2.3)*IN(2. LORDER)-2.0DO*A(2.1)*
& A(2.1)*JNDP(2.1.0RDER)))

MATRIX(4.49)=-ETAQ2)*(((1.0D0~2 ODO*ETA2)/(RHO2)*SIGMA(2))))*
& A(2.3)*A(2.3)*IN(2.2.0RDER))-(2.0DO*A(2.2)*A(2.2)*
& INDP(2.2.0RDER)))

MATRIX(4.5)=2 0DO*ETA(1)*NFAC*((A(1.3)*HNP(1.3.0RDER))-
& HN(1.3.ORDER))

MATRIX(4.6)=-2. 0DO*ETA(2)*NFAC*((A(2.3)*INP(2.3,ORDER))-
& JN(2.3.0RDER))

**+* Alternative according to Allegra and Hawley. 1972

MATRIX(4.1)=(HN(1.1.ORDER)*(A(1.3)*A(1.3)-2.0DO*A(1.1)*A(1.1))

& =2.0DO*A(L.1)*A(1.)*HNDP(1.1.ORDER))*ETA(1)

MATRIX(4.2)=(HN(1.2.ORDER)*(A(1.3)*A(1.3)-2. 0DO*A(1.2)*A(1.2))
=2.0DO*A(1.2)*A(1.2)*HNDP(1.2.ORDER)*ETA(1)

MATRIX(4.3)=(2.0DO*ETA3)*A(2.1)*A(2.1)*JNDP(2, 1 ORDER)-(ANGFREQ
*ANGFREQ*RHO(3)*RAD*RAD-2.0DO*ETA)*A(2.)*A2.1)*
IN(2.1.0RDER))/(-I*ANGFREQ)

MATRIX(4.4)=(2. 0DO*ETA(3)*A(2.2)*A(2.2)*INDP(2,2. ORDER)-
IN(2.2.0RDER)*(ANGFREQ*ANGFREQ*RHO(3)*RAD*RAD-2.0D0*
ETA(3)*A(2.2)*A(2.2)))/(-1*ANGFREQ)

MATRIX(4.5)=ETA(1)*2.0D0*NFAC*(A(1.3)*HNP(1.3 ORDER)-
HN(1,3.0RDER))

MATRIX(4.5)=2 0DO*ETA(1)*NFAC*(A(1.3)*HNP(1.3.0RDER)-

HN(1.3.0RDER))/(L(1.1)*RAD*RAD)

MATRIX(4.6)=-(ETA(3)*2 ODO*NFAC*(A(2.3)*INP(2.3.0RDER)-

& JN(2.3.ORDER)))/(-I* ANGFREQ)

*** Equation 6 is radial stress. Pr.theta

MATRIX(6.1 )=MATRIX(I.I)-MATRlz(z.AI')
MATRIX(6.2)=MATRIX(1.2)-MATRIX(5.2)
MATR}Xz(y,S:Z-‘“.ﬁD()‘((A( 1.3)*A(1.3)*HNDP(1,3.0RDER))

& +N2FAC*HN(1.3.0RDER))
MATRIX(6.3)=ETA2 I *(MATRIX( [.3)—M/\TRIX(5.‘)D
MATR[X(()_JFETAZI‘(MATRIX(I_4)-MAIRIX(5.4)) o
MATRIX(().(;):()SDO‘ETAZI‘((A(2.‘)'A(Z..‘)‘JNDP(ZJ.()RD )

& +N2FAC‘JN12,R.ORDE1R)) e

i ative according to Allegra and Hawley, § )

Allcl:/‘l‘l\TRlX((). 1 ):Eg'l'A( 1)*(A(1.1)*HNP(L.1 JORDER)-HN( l;gﬁggg;;
MATRIX(().ZFETA(I)'(A(I.ZD‘HNP([.Z.ORDERH lN(l-I bRDER))/(-I‘
MATRIX(()JF-ETA(])‘(A(Z.1)‘JNP(Z.I.ORDER)-JN(Z. A

& ANGFREQ)

RO R R >
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MATRIX(6,4)=-ETA(3)*(A(2.2)*JNP(2.2.ORDER)-IN(2.2, ORDER))/
*  (-I*ANGFREQ)
MATRIX(6,5)=-0. SDO*ETA(1)*(A(1.3)*A(1.3)*HNDP(1.3.ORDER )+ N2FAC*
HN(1.3.0RDER))
MATRIX(6.6)=0. SDO*ETA)*(A(2.3)*A(2.3)*INDP(2.3.0RDER)+N2FAC*
IN(2,3.0RDER))/(-I* ANGFREQ)
RHS(1.1)=-A(1.1)*INP(1.1.ORDER)
RHS(5.1)=-JN(1.1.ORDER)
RHS(2.1)=RHS(5.1)
RHS(3.1)=RHS(1.1)
RHS(4.1)=-IN(1.1.ORDER)+2. 0DO*ETA(1)*K(1.1)*K(1.1)*
& (JNDP(1.1,ORDER)+IN(1.1.ORDER))/L(1.1)
RHS(6.1)=RHS(1.1)-RHS(5.1)
C Alternatives E&C and A&H

annannn

(& RHS(4, D=-ETA(1)*((A(1.3)*A(1.3)*IN(1.1,ORDER))-(2.0DO*A(1, 1)
C & *A(L.1)*INDP(1.1,ORDER)))

@ RHS(4.)=-ETA(1)*(JN(1.1.ORDER)*(A(1.3)*A(1.3)-2.0D0*A(1.1)*
C & A(1.1)-2.0DO*A(L.1)*A(1.1)*INDP(1,1,ORDER))

iz RHS(6. 1)=-ETACI)*(A(1.1)*INP(1,1.ORDER)-IN(1,1.ORDER))

IF (ORDER NE.0) THEN
IF (ORDER EQ.1) THEN
C *** Convert to xFp(n)-F(n)=-xF(n+1) for n=1
MATRIX(6.1)=-A(1.1)*HN(1.1.2)
MATRIX(6.2)=-A(1.2)*HN(1.2.2)
MATRIX(6.3)=A(2.1)*IN(2.1. 2)*ETA21
MATRIX(6.4)=A(2.2)*IN(2.2.2)*ETA21
RHS(6.1)=A(1.1)*IN(1.1.2)
MATRIX(4.5)=-2. 0DO*ETA(1)*NFAC*A(1.3)*HN(1.3.2)

& NL(1.1)*RAD*RAD)
MATRIX(4.6)=2 0DO*ETA2*NFAC*A(2,3)*IN(2.3.2)
& /(L(1.1)*RAD*RAD)
CE&C
C MATRIX(4.5)=-2 0DO*ETA(1)*NFAC*A(1,3)*HN(1.3.2)
G MATRIX(4.6)=2. 0DO*ETA(2)*NFAC*A(2.3)*IN(2.3.2)
C A&H

C MATRIX(4.5)=-2.0DO*ETA(1)*NFAC*A(1,3)*HN(1.3.2)
G MATRIX(4.6)=2 0DOXETAG3)*NFAC*A(2.3)*IN(2.3.2)
C & /(-I*ANGFREQ)

C MATRIX(6.1)=ETA(1)*A(1.1)*HN(1.1.2)

G

c

c

MATRIX(6.2)=-ETA(1)*A(1.2)*HN(1.2.2)
MATRIX(6.3 ETA(})‘A(Z.|)'JN(Z.l.ZV(-l'/\NGFREQ)
MATRIX((LJ]:ETA(?)‘A(Z.Z)‘JN(Z.Z.Z)/(-I’ANGFREQ)
¢ RHS(6.1)=ETA(1)*A(1.1)*IN(1.1.2)
END IF
IF (SOLID .EQ.1) THEN
C *** Conversion of boundary cquation for solid particles
IWFAC=-I*ANGFREQ
DO 101 =16
M/\TRlX(UJ):IWFA("MATRIX(U.‘)
MATRIX(U.ﬂﬁlWFAC‘MATRIX(UJ)
MATRIX([J_G):IWFAC‘MATRIX(IJ.O)
101 CONTINUE
END IF
C *** Set up matrices for solution
DO 102 11=1.6
DO 103 1J1=1.6
AA(LIN=MATRIX(IL1))
RA(I1.1)=RHS(IL1)
103 CONTINUE



102 CONTINUE
C *** Factorisation of matrix NAG library Mark 15
CALL FO7ARF(6.6. MATRIX 6.IPIV,INFO)
C *** Check for NAG errors
IF (INFO .NE. 0) THEN
WRITE(20.201) INFO
201 FORMAT("ERROR IN FO7ARF, INFO=",14)
END IF
C *** Solution of the linear simultancous equations NAG Mark 15
CALL FOTASF('N'.6, 1 MATRIX 6.IPIV_RHS.6.INFO)
C *** Check for NAG errors
IF (INFO NE. 0) THEN
WRITE(20.202) INFO

202 FORMAT("ERROR IN FO7ASF, INFO="_14)
END IF
C *** Check matrix stability
INFO=0

ANORM=FO6UAF(I'.6.6,AA.6,RWORK)
CALL FOTAUF(1'6. MATRIX.6. ANORM.RCOND, WORK RWORK_INFO)
IF (INFO .NE. 0) THEN
WRITE(20,203) INFO
203 FORMAT("ERROR IN FOTAUF, INFO=".14)
END IF
INFO=0
CALL FOTAVF('N'6.1.AA.6.MATRIX.6.IPIV.RA.6.RHS.6.
& FERR.BERR. WORK RWORK_INFO)
IF (INFO NE. 0) THEN
WRITE(20.204) INFO
204 FORMAT("ERROR IN FOTAVF. INFO=".14)
END IF
ELSE
C *** Only four boundary equations for zero order mode
IF (SOLID .EQ.1) THEN
C *** Conversion for solid particles
IWFAC=-1*ANGFREQ
DO 104 11=1.6
MATRIX(1],3)=IWFAC*MATRIX(1.3)
MATRIX(1).4)=IWFAC*MATRIX(1J.4)
MATRIX(1).6)=IWFAC*MATRIX(1].6)
104 CONTINUE
END IF
€ *** Set up matrices for solution
DO 105 1I=1.6
DO 106 J1=1.6
AA(LI)=MATRIX(ILJ)
RA(IL1)=RHS(1L.1)
106 CONTINUE
105 CONTINUE
C *** Factorisation of matrix NAG library Mark 15 subroutine
CALL F()7ARF(4_4.MATRIX,(lelV.INFO)
C *** Check for NAG errors
IF (INFO .NE, 0) THEN
WRITE(20.201)INFO
END IF
€ *** Solution of the lincar simultancous equations NAG Mark 15
CALL FOTASF(N'4.1 MATRIX.6.IPIV.RHS.6.INFO)
C *** Check for NAG error
IF (INFO NE. 0) THEN
WRITE(20,205)INFO
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205 FORMAT("ERROR IN FO7ASF., INFO=".14)
END IF
C *** Check stability of matrix
INFO=0

l\NORM?F()(.[JAF('l'A_J.AA,(,.RWORK)
CALL F()7AUF(‘I'.4AMATRIX.6_ANORM.R(‘OND‘WORK.RWORK.INFO)
IF (INFO NE. 0) THEN
WRITE(20.206) INFO
206 FORMAT("ERROR IN FO7AUF, INFO=" 14)
END IF
INFO=0
CALL FOTAVF('N' 4.1.AA 6. MATRIX.6.IPIV,RA 6 RHS.6.
& FERR.BERR.WORK,RWORK_INFO)
IF (INFO .NE. 0) THEN
WRITE(20.207) INFO
207 FORMAT("ERROR IN FO7AVF, INFO="14)
END IF
END IF
COEFF=RHS(1.1)
C *** The single scattering coefficient is the first in the matrix

SUBROUTINE MTDATA(Q.RHO.ETA MU.TOR.CP.GAMMA BETA. ALPHA.SIGMA.
ANGFREQ.TEMP.DFNAME)

c
C *** Read the material parameters for the three phases from data file
DOUBLE PRECISION Q(3).RHO(3).ETA(3).MU(3). TOR(3).CP(3), GAMMA(3).
& BETA(3).ALPHA(3).SIGMA(3). ANGFREQ, TEMP
CHARACTER*50 DFNAME
DOUBLE COMPLEX |
PARAMETER (1=(0.0D0,1.0D0))

OPEN(UNIT=30,ACCESS="SEQUENTIAL" FILE=DFNAME)
READ(30.*)
READ(30.*)
READ(30.*)
READ(30.*)
READ(30.%)TEMP
WRITE(20.211)TEMP

211 FORMAT("Temperature ".E15,5E3)
READ(30.4)Q(1).0(2).Q03)
WRITE(20.212) Q(1).Q(2).Q(3)

212 FORMAT("Sound velocity " E15.5E3.2E15.5E3)
READ(30.#)RHO( 1).RHO(2).RHO(3)
WRITE(20.213) RHO(1).RHO(2).RHO(3)

213 FORMAT("Density " E15.5E3.2E15.5E3)
READ(30.*)ETA(1).ETAQ2).ETAG)
WRITE(20.214) ETA(1).ETAQ2).ETAG)

214 FORMAT("Viscosity " E15.5E3.2E15.5E3)
READ(30.%)MU(1),MU(2).MU(3)
MU(3)=0.0D0
WRITE(20,215) MU(D.MUQ).MUG)

215 FORMAT("Bulk viscosity " E15.5E3.2E15.5E3)
READ(30.%)TOR(1).TOR(2).TOR(3)
WRITE(20.216) TOR(1).TOR(2).TORG3) )

216 FORMAT("Conductivity " E15.5E3.2E15.5E3)
READ(30.*)CP(1),CP(2).CP(3)
WRITE(20.217) CP(1).CP(2).CP()



217

218

219

220
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FORMAT("Heal capacity " E15.5E3.2E15.5E3)
READ(30.*)BETA(1).BETA(2).BETA(3)
WRITE(20.218) BETA(1 ).BETA(2).BETA(3)
FORMAT("Thermal expansivity " E15 SE3.2E15.5E3)

GAMMA(1)=1.0DO+(TEMP*BETA(1)*B ETA*QU*Q(1)/CP(1))
GAMMA(2)=1.0D0+(TEMP*BETAQ)*BETA(2)*Q(2)*Q(2)/CP(2))
GAMMAQG)=1 (llXH(TEMP‘BET/\(])‘BETA(1)'()(1)*0(])/("’(\))
WRITE(20.219) GAMMA(1).GAMMA(2). GAMMA( 3)
FORMAT("Ratio heat capacity ".E15 5E3.2E15 5E3)
SIGMA(I=TOR(1)/(RHO(1)*CP(1))
SIGMA(2)=TOR(2)/(RHO(2)*CP(2))
SIGMA(3)=TOR(3)/(RHO(3)*CP(3))

WRITE(20,220) SIGMA(1).SIGMA(2).SIGMA(3)
FORMAT("Thermometric cond-y " E15.5E3,2E 15 5E3)

END

&

SUBROUTINE WAVE(ANGFREQ.SOLID.K.G.L.
Q.RHO.ETA MU.GAMMA BETA .SIGMA)

C

C *** Calculate the wavenumbers in each bulk medium
C *** Also pressure and temperature factors

&

&

&

&

INTEGER IMAT.JLIREF.SOLID

DOUBLE PRECISION ANGFREQ.VISCF.E.F RQW.GWB.PI.ALPHA(3).

Q(3).RHO(3).ETA(3).MU(3).GAMMA(3).BETA(3).SIGMA(3)

DOUBLE COMPLEX L.SQUARE.FAC,COMM.K2.82.G11.S2G.SKKW,
K(2.3).G(2.2).L(2.2)

PARAMETER (1=(0.0D0.1.0D0) . PI=3.141592654D0)

IREF=1
ALPHA(1)=23 0D-13* ANGFREQ*ANGFREQ/(4 0DO*PI*PI*20.0D0*DLOG 10(
2.718281828D0))
ALPHA(2)=24.0D-1 1*((ANGFREQ/(2.0D0*P1)**1.77)/(20.0D0*DLOG 10(
2.718281828D0))
DO 101 IMAT=1.2
VISCF=4.0D0*(1.0DOHMU(IREF)/(2. 0DO*ETA(IREF))))/3.0D0
E=VISCF*ETA(IREF)* ANGFREQ/(RHO(IREF)*Q(IREF)*Q(IREF))
IF (IREF. EQ.3)THEN
E=E/(-1*ANGFREQ)
END IF
F=SIGMA(IREF)* ANGFREQ/(Q(IREF)*Q(UREF))
SQUARE=(1.0D0)-(2. 0DO*E*1)-(1*2.0D0*F*(GAMMA(IREF)-2.0D0))
»((F.-GAMMA(IREF)*F)*(E-GAMMA(IREF)"F))
FAC=1* ANGFREQ*ANGFREQ/(2 ODO*Q(IREF)*Q(IREF)*F*
(1.0DO-I*E*GAMMA(IREF)))
COMM-=1-I*E-I*GAMMA(IREF)*F

C *** Modes 1.2.3 are propagational, thermal. shear modes

C *** Calculate the pressurc and temperature factors - exact

K(IMAT.1 )=CDSQRT(FA("1(‘OMM-CDSQRT(SQUARE)))
K( lMA'IZ2)=CDSQRT(FAC'(COMM*('DSQRT(SQUARE)))

IF (IREF.NE 3)THEN
K(IMAT.3)=(1.0D0+1)*DCMPLX( DSQRT(ANGFREQ*RHO(IREF)

/(2.0DO*ETA(IREF)))

ELSE
K(IMAT.3)=DCMPLX(DSQRT( ANGFREQ*ANGFRE

END IF

Q*RHO(IREF)/ETA(IREF)))

solutions

C *** () for pressure, G() for temperature

SKKW=1*SIGMA(IREF)ANGFREQ
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RQW:RHO(IREF)‘Q(IREF)‘Q(IRF.F)IANGFREQ

GWB=(GAMMA(IREF)-1.0D0)/BETA(IREF)

IF (IMAT.EQ.1) THEN
K2=K(1.1)*K(1.1)
G11=GWB*K2/(1.0DO+K2*SKK W*

e KW*GAMMA(IREF))

DO 102 J=1.2
K2=K(IMAT.))*K(IMAT.J)
S2=K2*SKKW
S2G=S2*GAMMAC(IREF)

C *** L is a pressure factor. G a temperature factor
LIMAT J)=I* ANGFREQ*RHO(IREF)
G(IMAT.J))=K2*GWB/((1.0D0+S2G))
G(IMAT J)=G(IMAT.J)/G11
C ** Take these G as factors of the material 1, propl mode
102 CONTINUE
G(1.1)=(1.0D0.0.0D0)
IREF=2+SOLID
101 CONTINUE
END

SUBROUTINE SPHBES(RSIZE.N.K.A.JN JNP.JNDP_HN.HNP.HNDP)

C
C *** Calculate spherical Bessel functions for surface parameters
DOUBLE PRECISION RSIZE.RTPI2,IM
INTEGER IFAIL.IMAT.J.N.IZNZMAXORD
DOUBLE COMPLEX 1.SPHER.JBESS(4). HBESS(4),
& IN(2,3,0:3),JNP(2.3.0:3).JNDP(2.3.0:3),
& HN(2.3.0:3).HNP(2.3.0:3).HNDP(2,3,0:3).
&  K(2.3).A2.3).DEX
PARAMETER (RTPI2=1.253314137D0, I=(0.0D0,1.0D0))

MAXORD=N+1
DO 101 IMAT=1.2
C *** Each material. use sound mode
DO 102 J=1.3
A(IMAT.J))=K(IMAT.))*RSIZE
SPHER=DCMPLX(RTPI2)/CDSQRT(A(IMAT.)
IM=DIMAG(A(IMAT.J))
IF(IM.GT.600.0D0O)THEN
C *** Calculate ordinary Bessel functions
JBESS(1 )=CDSIN(A(IMATJ))/(A(IMATJ)’SPHER)
JBESS(ZH(‘DSIN(A(IMATJ))/A(IMATJ)—CDCOS(
& A(IMAT.)))/(A(IMAT,J)*SPHER)
JBESS(3)=((3 ODO/AA(IMAT J)* AUMAT.J))-1.0D0)* )
& CDSIN(A(IMAT.))-(3 0D0*CDCOS(AUIMAT )/A(MAT.))
& Y(A(IMAT.J)*SPHER)
DEX=CDEXP(I*A(IMAT.J)) AT
—-1*(DEX)/(SPHER* A( .
oy 1,(000»(I/A(IMAT.J)))‘DEX/(SPHER‘A(IMAT.J))

HBESS(2)
HBESS(3)=(1.0D0+(3 l)Dﬂ’I/A(IMATJ))‘(3.()D()/(AUMATJ)‘
& A(IMATJ))))‘I’DEX/(SPHER'AUMATJ’)
ELSE
C *** Out of calculable range
IFAIL=0

CALL S1 7DEF((1_5l.)()_A(IMATJ).MAXORD+ 1,'U JBESS.NZ.IFAIL)

IF (IFAIL.NE. 0) THEN
WRITE(6.201) IFAIL



201

END IF
IFAIL=0
CALL S17DLF(1.0.5D0. A(IMAT. ‘U,
y s (IMAT.J).MAXORD+1.'lJ .HBESS,NZ,
IF (IFAIL.NE. 0) THEN
WRITE(6,201) IFAIL
FORMAT("ERROR IN BESSEL FUNCTIONS" 14)
END IF
END IF
DO 103 1Z=0.MAXORD-1

C *** Calculate spherical Bessel functions and derivatives

103
102
101

IN(IMAT.J.IZ)=JBESS(IZ+1)*SPHER
IN(IMAT.J.IZ+1)=IBESS(1Z+2)*SPHER
INP(IMAT J.1Z)=DBLE(1Z)*IN( IMAT LIZ)/A(IMAT.J)-
& IN(IMAT.11Z+1)
INDP(IMAT.J.1Z)=DBLE(1Z*(1Z-1 NYINIMAT.J1Z)/
(AUMAT J)*A(IMAT, 1))-IN(IMAT.J.1Z)
2.0DO*IN(IMAT.LI1Z+1)/A(IMAT.J)
HN(IMAT J1Z)=HBESS(IZ+1)*SPHER
HN(IMAT J1Z+1)=HBESS(1Z+2)*SPHER
HNP(IMAT.J1Z)=DBLE(IZ)*HN(IMAT. J1Z)/A(IMAT.J)-
& HN(IMAT.LIZ+1)
HNDP(IMAT.J.IZ)=DBLE(1Z*(1Z-1))*HN(IMAT.1.1Z)/
& (A(IMAT.J)*A(IMAT.J1))-HN(IMAT.1.12)+
& 2. 0DO*HN(IMAT LIZ+1)/A(IMAT J)
CONTINUE
CONTINUE
CONTINUE
END

P e

SUBROUTINE USVEFF(N.NSIZES RADIUS PHI.SFC.ANGFREQ.KAPEFF,
& RHOEFF THATT,VIATT.MSVEL MSATT.LBATTL.
& Q.RHO.ETAMU.TOR,.GAMMA BETA SIGMA)

C *** Calculate explicit solutions for scattering coefficients
C *** Use effective density and compressibility to obtain velocity

101

102

INTEGER N.NSIZES.1Z

DOUBLE COMPLEX I,COEFF(0:3).K11.K(2,3).BULKK2

DOUBLE PRECISION RADIUS(NSIZES).PHI(NSIZES). ANGFREQ.SFC(NSIZES).
& Q(3).RHO(3).ETA(3).MU(3).TOR(3).GAMMA(3).BETA(3).SIGMA(3).
& LBATTL,SOLRAD(101),VIATT.SSVTH.SSVVI.SSVEL.SSATT.
& MSVEL.MSATT.RHOEFF KAPEFF. THATT

PARAMETER (I=(0.0D0.1.0D0) )

DO 101 1Z=0.N
COEFF(12)=(0.00D0,0.00D0)
CONTINUE
DO 102 1Z=1.NSIZES
SOLRAD(IZ)=RADIUS(IZ)*(RHO(2)/RHO(3))**0.3333333333333D0
CONTINUE

C *** Determine the explicit solutions for single particle scatt coeffs

CALL EXPLSCATTCOEFFS(N.NSIZES.RADIUS.PHI,SF(‘.(LANGFREQ.KI 1.COEFF,
& QRHQETA.MU.TOR,GAMMA.BETA.SIGMA.!\) 7

CALL EXPLSCATTCOEFFS(N,NSIZES,SOLRAD.PHLSFC,
& Q.RHO.ETAAMU.TOR.GAMMAABETA.SIGMA.K)

1, ANGFREQ.K11.COEFF,

C *** Calculate wavenumber. velocity and atten from scatt cocfls
C *** Single scattering only

BULKK2=K11*K11*(1 0DO-(3.0D0*I*COEFF(0)/(K11 *%3))
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SSVTH‘ANGFREQ/(I)BLF,((‘I)SQRT(BULKK2)D)
BULKK2=K11*K11%(1 0DO-(9.0DO¥I*COEFF(1)/(K 1 1%+3)))
SS\I/JVI=/\NGFRF.()/(I)BLE1(‘DSQRT(BULKKz)))
BULKK2=K11*K11-((3.0D0*I/K11)*(COEFF *C

- e 1*(COEFF(0)+(3.0DO*COEFF(1))+(5.0D0*
SSVEL=ANGFREQ/(DBLE(CDSQRT(BULKK2)))
SSATT=20 0DO*DIMAG(CDSQRT(BULKK2))* DLOG10(2 718281828D0)

C *** Use effective density and compressibility
KAPEFF=DBLE(1.0D0-(3.0DO*I*COEFF(0)/(K 11**3)))/(RHO(1)*Q(1)*Q(1))
THATT=-1.5DO*DBLE(COEFF(0))/(K11*K11)
RHOEFF=RHO(1)*DBLE(1.0D0-(9.0D0*I* COEFF(1)/(K 11**3)))
VIATT=-4.5DO*DBLE(COEFF(1))/(K11¥K11)
MSVEL=1.0D0/(DSQRT(RHOEFF*K APEFF))

MSATT=THATT+VIATT

END
c
SUBROUTINE EXPLSCATTCOEFFS(N.NSIZES.RADIUS PHLSFC SOLID,ANGFREQ,
& K11.COEFF.Q.RHO.ETA MU.TOR. GAMMA BETA SIGMA.K)
€

C *** Calculate the single particle scattering cocfTicients

C *** Explicit long wavelength solutions

INTEGER ISIZE.N.NSIZES.SOLID

DOUBLE PRECISION RADIUS(NSIZES).PHI(NSIZES).SFC(NSIZES).PROPN,
ANGFREQ.Q(3).RHO(3).ETA(3).MU(3).TOR(3). GAMMA(3).
BETA(3).SIGMA(3)

DOUBLE COMPLEX LK(2.3).A(2.3).G(2.2).L(2.2).

:3).JNP(2.3.0:3).JNDP(2.3.0:3),

3).HNP(2,3.0:3).HNDP(2.3.0:3).
ACOEFF(0:3,101),COEFF(0:3).K11.QQ. TOP.BOTT.
HI,H2 H3.TL.T2.T3

PARAMETER (I=(0.0D0.1.0D0) )

PoPoPofRe P

C *** Calculate wavenumber of cach mode (propl. thermal, shear)
C *** in bulk materials
CALL WAVE(ANGFREQSOL|D.K.GAL.Q.RHOAETA.MU.GAMMA.BEI'A.SIGMA)
K11=K(1.1)
C *** For cach particle size, calculate scattering coefficients
DO 101 ISIZE=1.NSIZES
C *** Calculate spherical Bessel functions for each parameter
CALL SPHBES(RADIUS(ISlZE)\N.K.A.JN.JNP.JNDPJ{N.HNP,! INDP)
IF (SOLID .EQ.1) THEN
PROPN=SFC(ISIZE)
ELSE
PROPN=PHI(ISIZE)
END IF
OLID EQ.0)THEN
" (lsl :=A?lﬁ?*};N( 1.2.1)*(1.0DO-(TOR(1)*G(1 2)(TOR(2)*G(2.2))))
HZ=HN(I.2.(!)-(TOR(I)‘A(LZ)‘HN(LZ.I)‘JN(IZ.(II/(
i *A(2.2)*IN(2.2.1))

“ A(‘Ori(l):};(((zl.)lSléE)=)-I’A(L 1)*(ACLD*ACLD-RHO(*AQ.1)*
A(2.1)/RHO(2)))/3 0DO+H*A( 1.1)*G(1,1y*H1*(1.0D0-
(R.HO(l)‘G(Z.l)/(RHO(Z)‘G(IAI))))/(G(LZ)'HZ) " .

QQ=A(2.3)*IN(2.3.1)-2.0D0*(1 ODO-(ETA(/ETAQ)*IN2.3.2)

TOP=-I*(A(1.1)**3)*(RHO(1 /RHOQ2)-1.0D0)

TOP=TOP*(HN(1.3.2)*QQ-ETA(I *A(LH)*HN(1.3.1

# Bo’]‘[i'l-gg')::}_an‘RHO(l)‘HN(U-ZVRHO‘ZW

& (2.0D0*(RHO(1YRHO(2)-1.0D0)*HN(1.3.0))

el

)*IN2.3.2)/
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BOTT=BOTT-ETA(1)*A(1.3)*HN(1.3.1 JINQ.3.2)*
& (RHO(1)/RHO(2)+2.0D0)/ETA(2)

BOTT=BOTT*3 0D0

ACOEFF(LISIZE)=TOP/BOTT

ELSE

TOP=T*(A(1.1)**3)*(1 ODO-RHO(1)/RHO(3))*HN(1.3.2)

BOTT=2.0DO*(RHO(1)/RHO(3)-1.0D0)*HN(1.3.0)+3 ODO*RHO(1)
& /RHO(3))*HN(1.3.2)

ACOEFF(1ISIZE)=TOP/(3. 0DO*BOTT)

HI=A(1.2)*HN(1.2.1)%(1.0DO-TOR(1)*G(1 2)/(TOR()*G(2.2)))

H2=HN(1.2.0)-(TOR(1)*A(1.2)*HN(1.2.1)*IN(2.2.0)/
(TOR(3)*A(2.2)*IN(2.2.1)))

H3=ETA(I)*((A(1.3)*A(1.3)-2.0D0*A(1.2)* A(1.2))*HN( 1.2.0)-
2.0DO*A(1.2)*A(1.2)*HNDP(1.2.0))-
(TOR(D*G(1.2)*A(1.2)*HN(1.2. )/(TOR(3)*G(2.2)*
AQ.2)*INQ2.2.1)*(-I*ANGFREQ))) *((ANGFREQ*ANGFREQ
*RHO(3)*RADIUS(1)*RADIUS(1)-2.0D0O*ETA(3)*A(2.2)*
A(2.2)¥IN(2.2.0)-2. 0DO*ETAG)*A(2.2)*A(2.2)*
INDP(2.2.0))

TI=HI*((IFPANGFREQ*ETA(1)*G(2, /ETA(3)*G(1.2)))*((4.0D0-
ACL3I)*ACL3IN*VACL DAL ACL3)HGL 1) *(1.0D0O-
VAL 1)*(A(23)*A(2.3)-4.0DO*A(2.1)*A(2.1)/3.0D0)/
G(1.2)

T2=H2¥(I*(A(2,3)*A(2.3)-4. 0DO* A(2.1)*A(2.1)/3. 0DOY/A(1.1)
-(I*ANGFREQ*ETA(1)*A(2.1)*A(2.)/(ETA(3)*3.0D0))*
((4.0DO-A(L3)*A(LIN* VAL +A(1.3)*A(1.3)))

T3=H3*(I* ANGFREQ/ETAG)*(A2.1)*AQ2.)*G(1.1)*(1.0DO-1/
AL DY/(3.0DO*G(1.2)+G(2, ) *I/(A(1,1)*G(1.2)))

BOTT=TI+T2+T3

TI=HI*(G(2.1)*I*ANGFREQ*ETA(1)*A(1.3)*A(1.3)/(ETA(3)*G(1.2)
JHG(LD*(AR.3)*A(2.3)-4.0D0* A2, 1)* A(2.1)/3.0D0)/
G(1.2))

T2=H2*((4.0D0*A(2. 1) *A2.1)/3.0D0-A(2.3)*A(2.3)*A(1. )*
A(1.1)-I*ANGFREQ*ETA(1)*A(1.3)*A(1.3)*A(2.)*A2.1)
JETA(3))/3.0D0

T3=H3*(A2.1)*AQ2.D*G(1.1)/G(1.2)-A(1.D* AL D*G(2.1)
/G(1.2))*I* ANGFREQ/(3.0DO*ETA(3))

TOP=ATI1+T2+T3)

ACOEFF(0,ISIZE)=TOP/BOTT

END IF
COEFF(0)=COEFF(0)+ ACOEFF(0.ISIZE)*PROPN/
(RADIUS(ISIZE)**3)
COEFF(1)=COEFF(1)+ACOEFF(1.ISIZE)*PROPN/
(RADIUS(ISIZE)**3)
101 CONTINUE
END

B PR R RRRRERE
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Appendix A5 : Computer Program for

Ultrasound Velocity Calculations

C  Front-end for calculating ul velocity
€ asa function of radius and frequency. using uscatt f »
C by Valeric Pinfield. 1993-1995

PR P

PROGRAM USMAIN

INTEGER ND.MAXORD.IDEC IRF

CHARACTER*50 FLNAME DFNAME

DOUBLE PRECISION TOTPHI.PI2

PARAMETER ( ND=1.MAXORD=2,

TOTPHI=0.2D0)

DOUBLE PRECISION RAD(ND).PHI(ND).SFC(ND).RSQRTF FREQ, ANGFREQ.
Q(3).RHO(3).ETA(3).MU(3).TOR(3).CP(3). GAMMA(3).
BETA(3).ALPHA(3).SIGMA(3).FAC.
TEMP.SSVEL.SSVTH.SSVVL.SSATT.MSVEL MSATT.LBATTL

DOUBLE COMPLEX I

PARAMETER (I=(0.0D0.1.0D0).PI2=6.283185307D0)

DFNAME="/home/gps_19/prc6vp/scatt/data/sun30"
FLNAME="/home/gps_19/prc6vp/scatt/results/rrtf30.xIs"
OPEN(UNIT=20,ACCESS="SEQUENTIAL" FILE=FLNAME)

C *** Read material properties from data file

&

CALL MTDATA(Q.RHO.ETAMU.TOR.CP.GAMMA BETA, ALPHA SIGMA.
ANGFREQ.TEMP.DFNAME)

C *** Calculate the curve of velocity against r*sqri(f)
C *** for monodisperse system

301

302

e

303
102
101

RAD(1)=50.0D-6
PHI(1)=TOTPHI
SFC(1)=0.0D0
WRITE(20.30 )RAD(1)*1.0D6.PHI(I)
FORMAT("The radius used was".F6.2." microns with a yolume fraction
"F6.1)
WRITE(20.302)
FORMAT("r*sqr(f) frequency velocity attenuation (dB/m)")
FAC=1.0D-6
DO 101 IDEC=1.4
FAC=FAC*10.0D0
DO 102 IRF=1.18
RSQRTF=FAC*0.5D0*DBLE(IRF+1)
FREQ=(RSQRTF*RSQRTF/(RAD(1)*RAD(1)))
ANGFREQ=PI2*FREQ AT
"ALL USVELS(MAXORD. 1.RAD.PHLSFC,
(A;NGFREQ;SWH.SSVVI.SSVELSS/\TI‘.MSVEL.MSATT.LBAT]’L.
Q.RHO.ETA,MU.TOR.GAMMA.BETA.SIGMA)

WRI'I‘E(Z()_3().1)RSQRTF.FREQ.MSVEL,.MSATT
FORMAT(2E15.5E3.F10.3. E15.5E3)
CONTINUE
CONTINUE
END
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Appendix A6 : Publications and Presentations

A number of publications and presentations have arisen from the work discussed in

this thesis, and these are listed below

Publications

Pinfield, V. I, Dickinson, E. and Povey, M. J. W. (1994) Modeling of concentration
profiles and ultrasound velocity profiles in a creaming emulsion: importance of scattering

effects. Journal of Colloid and Interface Science, 166, 363-374

Dickinson, E., Ma, J. G, Povey, M. J. W._ and Pinfield, V. J (1995). Ultrasonic studies
of the creaming of concentrated emulsions. pp. 223-234. In Food Macromolecules and
Colloids: Proceedings of the Conference Organised by the Food Chemistry Group of
the Royal Society of Chemistry, ed. E. Dickinson and D. Lorient, Royal Society of
Chemistry, Cambridge

Pinfield, V. J., Povey, M. J. W. and Dickinson, E. (1995). The application of modified
forms of the Urick equation to the interpretation of ultrasound velocity in scattering

systems. Ultrasonics, 33, 243-251

Pinfield, V. 1., Povey, M. J. W. and Dickinson, E. (1996). Interpretation of ultrasound

velocity creaming profiles. Submitted to Ultrasonics

Presentations

Oral contributions

Dickinson, E., Ma, J. G, Povey, M. J. W and Pinfield, V. J. Ultrasonic studies of the

creaming of concentrated emulsions. Presented at Food Macromolecules and Colloids,

organised by the Food Chemistry Group of the Royal Society of Chemistry, Dijon,

March 1994

: ; i nted
Pinfield, V. J. Simulation of creaming in concentrated polydisperse emulsions. Prese

o orface Science. ised b
at Theoretical Modelling and Simulation in Colloid and Interface Science, organ ¥
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the Colloid and Interface Science Group of the Royal Society of Chemistry. Faraday

Division, Bristol, April 1994

Pinfield, V. J., Povey, M. J. W. and Dickinson, E. The interpretation of ultrasound
velocity in dispersions. Presented at Annual Review of Progress in Physical Acoustics
and Ultrasonics, organised by the Physical Acoustics Group of the Institute of Physics,
Telford, March 1995 ‘

Pinfield, V. J. Creaming of oil-in-water emulsions. Presented at 7he Third UK Colloid
and Interface Science Student Meeting, organised by the Colloid and Surface Chemistry
Group of the Society of Chemical Industry and the Colloid and Interface Science Group

of the Royal Society of Chemistry, Hull, July 1995

Poster

Pinfield, V. J. Modelling of creaming in emulsions. Presented at Chemistry Research for

Britain, sponsored by the Research Councils, London, November 1994
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