

Service-Oriented Architectures
for Safety-Critical Systems

Abdulaziz Abdulrahman Al-Humam

PhD

University of York
Computer Science

September 2015

2

Abstract
Many organisations in the safety-critical domain are service-oriented,

fundamentally centred on critical services provided by systems and operators.

Increasingly, these services rely on software-intensive systems, e.g. medical

health informatics and air traffic control, for improving the different aspects of

industrial practice, e.g. enhancing efficiency through automation and safety

through smart alarm systems. However, many services are categorised as high

risk and as such it is vital to analyse the ways in which the software-based

systems can contribute to unintentional harm and potentially compromise

safety. This thesis defines an approach to modelling and analysing Service-

Oriented Architectures (SOAs) used in the safety-critical domain, with

emphasis on identifying and classifying potential hazardous behaviour. The

approach also provides a systematic and reusable basis for defining how the

safety case for these SOAs can be developed in a modular manner. The

approach is tool-supported and is evaluated through two case studies, from the

healthcare and oil and gas domains, and industrial review.

3

List of Contents

Abstract .. 2

List of Contents .. 3

List of Figures ... 8

List of Tables .. 11

Acknowledgements ... 13

Author’s Declaration ... 14

1. Introduction ... 15

1.1. Service-Oriented Architectures (SOAs) ... 15

1.2. SOA and Safety .. 18

1.3. The Challenges of SOA in Safety-Critical Systems ... 19

1.4. Research Hypothesis ... 20

1.5. Thesis Structure ... 21

2. Survey of SOA and Safety .. 24

2.1. Introduction ... 24

2.2. SOA .. 24

2.2.1. SOA Definition ... 24

2.2.2. SOA Entities ... 25

2.2.3. SOA Characteristics ... 26

2.2.4. SOA Lifecycle ... 28

2.2.5. SOA Design Patterns.. 31

2.2.6. SOA Modelling ... 41

2.3. Safety and Certification ... 46

2.3.1. System Safety .. 46

2.3.2. Safety Certification .. 62

2.3.3. Safety Cases... 65

2.3.4. SOA and Safety .. 74

4

2.4. Chapter Summary .. 76

3. SOA Safety Assurance Framework .. 77

3.1 Introduction ... 77

3.2 Conceptual Framework .. 78

3.3 SOA Modelling ... 79

3.3.1 Modelling SOA Services in SoaML ... 81

3.3.2 Modelling SOA Processes in BPMN ... 82

3.3.3 Traceability between SoaML and BPMN Models .. 83

3.4 SOA Safety Analysis .. 84

3.4.1. Safety Analysis of Services .. 85

3.4.2. Safety Analysis of SOA Processes .. 86

3.4.3. Use of SOA Fault Taxonomies in SFA .. 87

3.5 SOA Safety Cases .. 87

3.5.1. Modular Safety Case Development for SOA ... 88

3.5.2. Pattern Catalogue for SOA Modular Safety Cases .. 89

3.6 Automated Support and Tooling ... 91

3.7 Summary .. 92

4. SOA Safety Analysis ... 94

4.1 Introduction ... 94

4.2 SOA Healthcare Case Study ... 95

4.2.1 Ambulance Services .. 96

4.2.2 EHR Services .. 97

4.2.3 Childbirth Services ... 97

4.3 Service Hazard Analysis (SHA) .. 98

4.3.1 Method .. 98

4.3.2 Healthcare Case study: SHA .. 102

4.4 Service Failure Analysis (SFA) ... 108

4.4.1 Method .. 109

4.4.2 SOA Fault Taxonomy used in SFA .. 112

4.4.3 Healthcare Case study: SFA ... 115

4.5 Tool Support .. 120

4.5.1 SoaML to BPMN Link ... 120

4.5.2 BPMN to SoaML Link ... 122

5

4.5.3 SLA Implementation .. 123

4.5.4 SHA Implementation ... 124

4.5.5 SFA Implementation .. 125

4.5.6 Model-Based Support ... 126

4.6 Summary .. 127

5. SOA Safety Cases ... 129

5.1 Introduction ... 129

5.2 Modular Safety Case Development for SOA .. 130

5.3 Modular SOA Safety Argumentation Approach ... 132

5.3.1 Overall Structure ... 132

5.3.2 Top Argument ... 134

5.3.3 Service Argument .. 134

5.3.4 SLA Argument Contract ... 134

5.3.5 Participant Argument .. 134

5.4 Relationship between SOA Modelling and Modular Safety Cases 135

5.5 Relationship between SOA Safety Analysis and Modular Safety Cases 136

5.5.1 Service Hazard Analysis (SHA) ... 137

5.5.2 Service Failure Analysis (SFA) .. 137

5.6 Managing SOA Safety Cases using GSN ... 138

5.6.1 Safety Case Patterns.. 138

5.6.2 GSN Pattern Extension .. 139

5.6.3 Documenting Safety Case Patterns in GSN ... 141

5.7 SOA Safety Argument Pattern Catalogue .. 143

5.7.1 Top Argument ... 143

5.7.2 Service Argument .. 147

5.7.3 SLA Contract Argument ... 153

5.7.4 Participant Argument .. 156

5.8 Healthcare Case study: SOA Safety Case ... 161

5.8.1 Ambulance Service System Safety Argument ... 162

5.8.2 Service Argument for the Dispatch Ambulance Service 163

5.8.3 SLA Contact Argument for the Dispatch Ambulance Service 165

5.8.4 Participant Argument for the Call-Center Participant 166

5.9 Summary: ... 168

6. Evaluation .. 169

6

6.1. Introduction ... 169

6.2. Research Hypothesis ... 169

6.3. Means of Evaluation .. 170

6.3.1. Case Studies .. 170

6.3.2. Semi-Structured Interviews .. 171

6.3.3. Peer Review ... 171

6.4. Industrial Case Study: Natural Gas Processing .. 172

6.4.1. Aim .. 172

6.4.2. System Description.. 173

6.4.3. Overview of Oil and Gas Safety ... 175

6.4.4. Accidents and Hazards Identification .. 176

6.4.5. SOA Modelling ... 178

6.4.6. SOA Safety Analysis ... 182

6.4.7. Safety Cases... 204

6.5. Questionnaire-based Evaluation ... 211

6.6. Evaluation of Thesis Contributions .. 214

6.6.1. SOA Modelling ... 214

6.6.2. SOA Safety Analysis ... 215

6.6.3. SOA Safety Cases ... 216

6.6.4. Tool Support .. 218

6.7. Hypothesis Revisited ... 219

6.7.1. Integration ... 219

6.7.2. Traceability .. 219

6.7.3. Consistency ... 220

6.7.4. Systematicness .. 220

6.7.5. Assurance .. 221

6.8. Threats to Validity ... 221

6.9. Chapter Summary .. 222

7. Conclusions ... 224

7.1 Thesis Contributions .. 224

7.1.1. SOA Modelling ... 225

7.1.2. SOA Safety Analysis ... 225

7.1.3. SOA Safety Case Development .. 226

7.1.4. Tool-support .. 226

7

7.2 Further work .. 226

7.2.1. Integration of Safety Analysis with Search-based Technologies................... 227

7.2.2. Further tool-support to implement model-based assurance cases for SOA

based on model weaving .. 227

7.2.3. Runtime Composition and Certification of SOA .. 227

7.2.4. Safety Case Pattern Catalogue for SOA as Generic Solution to Related

Systems Domains .. 228

7.3 Coda ... 228

Appendix A: Managing Child Birth and Caesarean ... 230

Appendix B. SHA for Healthcare Case Study ... 237

Appendix C. SFA for Healthcare Case Study .. 239

Appendix D. Safety Case for Healthcare Case Study: ... 241

Appendix E. Natural Gas Processing Case Study ... 245

Appendix F. Interviews ... 251

Appendix G. Weaving Model ... 304

Appendix H. Abbreviations and Acronyms ... 305

Bibliography .. 307

8

List of Figures
Figure 1: A Conceptual View of Healthcare Services (11) .. 17

Figure 2: Find-Bind-Execute Paradigm (20) .. 25

Figure 3: SOA Solution Lifecycle (30) ... 29

Figure 4: SOA Lifecycle Management Framework (32) ... 30

Figure 5: Dependability Tree (45) ... 37

Figure 6: Basic BPMN Elements (66) ... 44

Figure 7: ServicesArchitecture Diagram in SoaML .. 45

Figure 8: Interfaces Diagram in SoaML: UML Simple Unidirectional Interface . 45

Figure 9: shows a service interface and a bi-directional service interface 46

Figure 10: A “V” System Development Lifecycle (72) ... 47

Figure 11: Risk Management Cycle (81).. 59

Figure 12: Safety Tactics (50) .. 61

Figure 13: The Role of Safety Argument (14) .. 66

Figure 14: Principal Elements of GSN (14) ... 67

Figure 15: An Example Goal Structure ... 68

Figure 16: Activities in SAAM Analysis (102)... 71

Figure 17: SOA Safety Assurance Framework ... 78

Figure 18: Link between SoaML and BPMN Models ... 83

Figure 19: SOA and Modular Safety Case Correspondence. 89

Figure 20: SOA Argument Patterns Catalogue .. 90

Figure 21: Overview of SOA Safety Assurance Tools .. 92

Figure 22: SoaML Service Architectures Model for SOA Healthcare 103

Figure 23: SoaML ServicesArchitecture Model (Dispatch Ambulance) 103

Figure 24: Taxonomy of SOA-Specific Faults (146) ... 113

9

Figure 25: ‘No Valid Composition’ Failure Mode .. 114

Figure 26: Link between SoaML and BPMN Models .. 116

Figure 27: SoaML Service Interfaces Model with Operations 116

Figure 28: Tasks in BPMN Model .. 117

Figure 29: Link from SoaML ServicesArchitecture Model to BPMN Model 121

Figure 30: Link from SoaML Interfaces Model to BPMN Model 121

Figure 31: Link from BPMN to SoaML ServicesArchitecture Model 122

Figure 32: Link from BPMN model to SoaML Interface Model 123

Figure 33: Representing XML schema for SLA ... 124

Figure 34: SHA implementation .. 125

Figure 35: SFA implementation ... 126

Figure 36: Extended SoaML ServicesArchitecture Metamodel 126

Figure 37: Extended SoaML ServiceInterfaces Metamodel..................................... 127

Figure 38: Extended BPMN Metamodel .. 127

Figure 39: SOA Argument Patterns Catalogue ... 133

Figure 40: SOA and Modular Safety Case Correspondence 135

Figure 41 : Relation between SOA architecture and module safety cases 136

Figure 42: SOA safety analysis and structure of the SOA safety argument 137

Figure 43: Optionality/multiplicity extensions and entity abstractions (106)

 .. 140

Figure 44: GSN elements introduced to handle modularity 140

Figure 45: SOA Argument Patterns Catalogue ... 143

Figure 46: Top Argument Module for Dispatch Ambulance 162

Figure 47: Service Argument for Dispatch Ambulance .. 164

Figure 48: SLA contact Argument for Dispatch Ambulance 165

Figure 49: Participant Argument for Dispatch Ambulance 167

10

Figure 50 Overview of Gas Plant Processes (150) .. 173

Figure 51: SoaML Service Architectures Model for Gas Processing 178

Figure 52: Interfaces with Operations for the Supply Natural Gases Service .. 179

Figure 53: Interfaces with Operations for the Separate Gases Service 179

Figure 54: Interfaces with Operations for the Absorb Water Service 179

Figure 55: Interfaces with Operations for Heat Exchange and Separate Gas from

Liquid Services ... 179

Figure 56: Gas Processing BPMN Model .. 181

Figure 57: Schematic of a Typical Glycol Dehydrator Unit (159) 183

Figure 58: Gas-Liquid Separation, adapted from (159) ... 192

Figure 59: Top Argument Module ... 205

Figure 60: Service Argument for ‘Send Emergency Signal’ Service 207

Figure 61: SLA contact Argument for ‘Send Emergency Signal’ Service 208

Figure 62: Participant Argument for the Cooling Unit .. 210

Figure 63: the Medical Process for Child Birth Scenario .. 236

Figure 64: Top Argument Module ... 241

Figure 65: Service Argument for Retrieve Health Record 242

Figure 66: SLA contact Argument for Retrieve Health Record 243

Figure 67: Participant Argument for Retrieve Health Record 244

Figure 68: Top Argument Module for Absorb water ... 247

Figure 69: Service Argument for Absorb Water Service .. 248

Figure 70: SLA contact Argument for Absorb Water Service 249

Figure 71: Participant Argument for Absorb Water Service 250

Figure 72: Preliminary Weaving Model .. 304

11

List of Tables

Table 1: Sample Categorisation of Design Patterns by Intent (36) 33

Table 2: Outline Taxonomy of SOA Design Patterns (5) ... 35

Table 3: SLA Sample (54) .. 41

Table 4: FMEA Form (74) .. 50

Table 5: Example of Hazard Analysis Vehicle Speed Sensor Using FFA (69) 52

Table 6: Steps of HAZOP (69) ... 53

Table 7: HAZOP Guide Words (69) ... 54

Table 8: SHARD Process... 55

Table 9: Sample SHARD Output for a Computer Assisted Braking System (69) 57

Table 10: SHA Table Template .. 99

Table 11: SLA Template .. 104

Table 12: Dispatch Ambulance SLA .. 105

Table 13: Dispatch Ambulance SHA .. 106

Table 14: SLA for the Retrieve Health Record Service .. 107

Table 15: Retrieve Health Record SHA ... 108

Table 16: SFA Table Template .. 109

Table 17: SFA ‘Provide Patient Name’ to ‘Provide Patient Health Record’ 118

Table 18: SFA for Flow between ‘Dispatch Ambulance’ to ‘Receive Request’ . 120

Table 19: Top Argument ... 147

Table 20: Service argument Pattern .. 153

Table 21: SLA Contract Argument Pattern .. 156

Table 22: Participant Argument Pattern .. 161

Table 23: Absorb Water SLA .. 185

Table 24: Absorb Water SHA ... 186

12

Table 25: Consequence Categories (146) .. 187

Table 26: Example of Frequency Matrix (146) .. 187

Table 27: Risk Ranking Matrix (146) ... 188

Table 28: Interpretation of Letters used in the Risk Ranking Matrix (143) 188

Table 29: Heat Exchange SLA .. 190

Table 30: Heat Exchange SHA .. 191

Table 31: Separate gas from liquid SLA ... 194

Table 32: Separate Gas from Liquid SHA .. 195

Table 33: Send Emergency Signal SLA ... 196

Table 34: Send Emergency Signal SHA .. 197

Table 35: ‘Send Emergency Signal from’ to ‘Receive Signal the Status’ SFA ... 200

Table 36: ‘Exchange Heat’ to ‘Monitor and Send Signal by Transmitter’ 203

Table 37: Interview Questions ... 211

Table 38: A sample of SHA output for request ambulance service system 237

Table 39: A sample of SHA output for Update health record service system . 238

Table 40: A sample of SFA call ambulance and provide information request . 239

Table 41: A sample of SFA provide user name and password to authorize 240

Table 42: Measure sweet gas by analyser to confirm water content %1; 246

Table 43: Pump the liquid gas to receive liquid gas... 246

Table 45: Interview Questions ... 254

Table 46: Interview Questions and answer one .. 299

Table 47: Interview Questions and answer two .. 301

Table 48: Interview Questions and answer three ... 303

13

Acknowledgements
I would like to thank my supervisor Ibrahim Habli for his help, guidance and
support throughout my study.

Thanks must go to king Faisal University in Saudi Arabia for sponsoring me
during this research.

I would also like to thank my colleagues at University of York particularly:
Katrina Attwood, Tim Kelly, Dimitris Kolovos and Richard Hawkins for all their
assistance. For their friendship and support, I thank Bestoon Hussien and
Nasser Al Malki.

Finally, I would like to express my heartfelt gratitude to my parents and family,
in particular my brother Ibrahim Al-Humam, for their constant support during
my studies in the UK. I also thank my wife and sons Faisal and Nawaf.

14

Author’s Declaration
Some material presented in this thesis has previously been published in the
following paper:

Ibrahim Habli, Abdulaziz Al-Humam, Tim Kelly, Leila Fahel: Integrating Safety
Assessment into the Design of Healthcare Service-Oriented Architectures,
Medical Cyber Physical Systems Workshop, Berlin, Germany, April 2014.

All of the work contained within this thesis represents the original contribution
of the author.

This work has not previously been presented for an award at this, or any other,
University. All sources are acknowledged as References.

http://www-users.cs.york.ac.uk/~ihabli/Papers/2014Habli_MCPS.pdf
http://www-users.cs.york.ac.uk/~ihabli/Papers/2014Habli_MCPS.pdf

15

Chapter 1

1. Introduction

1.1. Service-Oriented Architectures (SOAs)

Many organisations are primarily focussed on providing services to their

customers. Notable service-based domains include banking, retail, healthcare

and transport. A service can be described as a function which is well defined, is

self-contained, and often does not have any internal dependency on the context

or status of any other functions (1). A service has been defined as a “value

delivered to another through a well-defined interface and available to a

community” (2).

One approach to designing and representing service-based systems, especially

for software-based services, is through Service-Oriented Architectures (SOAs).

SoAs provide “a paradigm for defining how people, organizations, and systems

provide and use services to achieve results” (2). SOA was introduced as a design

paradigm to minimise the gap between the business process requirements and

the IT services implementing and supporting these requirements. SOAs are

commonly designed with flexibility, dynamism and the capability to respond to

changes within a system’s operational environment (3).

SOA-based systems are typically constructed using patterns, which provide

reusable template solutions for common problems encountered within a given

domain. Patterns offer ‘road maps’ to build scalable applications, by breaking a

problem down into smaller solvable problems (4). Patterns are generally

16

refined and optimised, depending on the specific context of the system being

designed, to provide a possible solution for the problem being investigated (5).

One of the formal definitions of SOA was provided by the Organization for the

Advancement of Structured Information Standards (OASIS) group and the Open

Group as follows:

“[An SOA is] a paradigm for organizing and utilizing

distributed capabilities that may be under the control of

different ownership domains. It provides a uniform means to

offer, discover, interact with and use capabilities to produce

desired effects consistent with measurable preconditions and

expectations.” (6) (7).

SOAs have been lauded as a means to reduce the complexity required in the

infrastructure of a solution platform by transforming complex business

processes and complicated IT systems to a set of building blocks, i.e. services

(8).

Although there are different interpretations of SOA terminology and concepts

for different perspectives, most agree on a set of common characteristics. These

characteristics include loose coupling, service contracts, autonomy, reusability,

composability and discoverability. These are discussed in more detail in

Chapter 2.

SOA is increasingly being used in the development of enterprise systems (3).

From the business perspective, SOA aims to facilitate the design of applications

that are able to provide better services without increasing resource

consumption, since the service provider can provide the same service to

multiple clients concurrently. Consequently, more efficient systems with

improved response times are expected (9).

Within an SOA setting, service providers should have standardised

communication methodologies, which allow the various business services

provided by different vendors to communicate smoothly with each other. This

allows businesses to interact more efficiently, potentially reducing the cost and

time required to perform tasks as compared with traditional applications (10).

17

For some in the software engineering community, SOA is a way of thinking

which can help to prompt the design of dependable systems that address

flexibility, dynamicity and Quality of Service (QoS) as metrics to analyse

business processes (4). Among the important characteristics of SOA are loose

coupling and on-demand integration, which potentially allow organisations to

become more proactive and dynamic. However, this brings challenges

concerning the management and assurance of QoS, e.g. security, safety and

performance.

Figure 1: A Conceptual View of Healthcare Services (11)

Figure 1 shows a simplified example of an SOA-based system from the

healthcare domain (11). Two systems, Patient Management System and Payer

System, communicate and provide basic services within a private healthcare

setting, which are as follows:

 Register patient;

 Admit patient;

 Verify Eligibility;

 Find patient.

The above services support key care processes within a modern health

organisation. However, services can fail to achieve their intended behaviour

18

(e.g. providing incorrect patient information). When used in a safety-critical

setting, service failures can directly lead to hazards and potentially harm.

1.2. SOA and Safety

Safety is one of the most significant dependability qualities for modern

systems, since the consequences of hazardous failures can include harm to

people, damage to property or threats to the environment (12). The assurance

of safety requires specialised concepts, standards, methods and tools. Service-

based systems used in safety-critical applications have to satisfy their safety

requirements at each level of service to support clients and other composite

services and ensure that the safety risk posed by the system is acceptable. They

also have to comply with any applicable safety regulations or assurance

standards.

Safety risks can be categorised as resulting from failures by humans involved in

or interacting with the system, or failures due to system components and

interactions (12). Leveson introduces absolute safety as “freedom from

accidents or losses”. However, since this is not reasonable in the real world,

Leveson recommends the adoption of Lawrence’s definition of a “safe” system

as one in which the risks involved are deemed acceptable (13).

Understanding and controlling the complex relations between system

behaviour and the emergence of safety risks is a significant challenge.

Addressing this challenge at the structural and behavioural level requires

collaboration between the different technical and organisational stakeholders,

e.g. users, analysts and system engineers. Insufficient interaction between

domain experts and engineers remains a key difficulty in achieving effective

risk assessment.

An important aspect of the safety engineering process is providing assurance

that the risk of hazardous behaviours of the system (and its components),

which are identified in the risk assessment process, have been identified and

managed appropriately to ensure safe system behaviour. This assurance is

commonly communicated in the form of a safety or assurance case (14). Safety

cases provide a reasoned and structured argument to demonstrate why the

19

available evidence, generated from testing and analysis, supports the claims

made about system safety. In a complex environment, the overall safety case

might be compositional (15), integrating separate safety argument modules for

the various services, functions and sub-systems. In the context of such a

system, although services might in reality be provided by sub-systems

developed by different organisations, they are clearly interdependent and so

are their corresponding safety arguments (16).

1.3. The Challenges of SOA in Safety-Critical Systems

SOA is increasingly being adopted in high-criticality domains (16). In sectors

such as healthcare and aviation, many services are categorised as safety-

critical, and present various types of hazards and failures. An SOA designated

for use in a safety-critical application must be shown to satisfy its safety

requirements and developers and assessors must ensure that the safety risk

posed by the system is acceptable before it can enter service. However, there is

a lack of systematic techniques for generating safety requirements for SOA

from the application of safety analysis. There is also a lack of systematic

approaches for providing assurance that those requirements have been met for

the SOA. This can hamper the adoption of SOA as an approach to building large-

scale safety-critical systems.

The research presented in this thesis aims to address safety analysis and safety

cases for safety-critical SOA, focusing on both the individual services and their

associated interactions in order to identify hazardous behaviours associated

with the system. Specifically, the following challenges are addressed in this

research:

 There is a shortage of research on the use of SOAs for the development

of safety-critical systems;

 There is a lack of systematic safety assessment processes and methods

that address the special features of SOAs, such as composibility;

 There is a lack of safety assurance strategies to guide the development

of safety argumentation and evidence to justify why the use of SOAs in

safety-critical applications is acceptably safe.

20

1.4. Research Hypothesis

Following from the challenges described in the previous section, the hypothesis

proposed in this thesis is as follows:

Integrated architectural modelling and analysis of safety-critical service-

oriented systems provides a traceable, consistent and systematic means

for assuring the safety of these systems.

The following explains the key terms used in the thesis hypothesis:

• Integrated: safety analysis and design decisions evolve together;

• Traceable: forward and backward model-based traceability between

design and safety analysis is provided;

• Consistent: design features are reflected in the safety analysis and the

safety assurance and vice versa;

• Systematic: a methodical approach to performing safety assurance is

proposed;

• Assuring: the approach provides an explicit means for reasoning about

the safety properties and system behaviour.

The above terms define the basis for the criteria used for evaluation in Chapter

6. This hypothesis is supported by the following four contributions made as

part of this PhD research:

 Identification and configuration of SOA modelling notations based on

two criteria, namely coverage of the structure and behaviour of the

services that are deemed suitable for the safety analysis and assurance

of SOA.

 Development of safety analysis methods for SOA which can be used to

examine the hazardous failures of services and the failure behaviour of

lower-level implementations.

 Development of the concept of safety cases for the assurance of safety-

critical SOAs, supporting modularity and promoting correspondence

between the structure of the SOA and the organisation of the safety case.

21

This is defined in a SOA Safety Argument Pattern Catalogue, which

can be instantiated to produce safety arguments for specific SOA-based

systems.

 Implementation of tool-support that provides automated capabilities

for building the SOA models, applying the safety analysis and building

the safety case for the system.

The target audience of the approach comprises software and systems engineers

responsible for designing the architecture and for modelling the design. The

safety analysis and assurance activities will more likely be the focus of the

safety engineers. Of course this cannot be achieved without engaging the

domain experts (e.g. clinicians in healthcare or chemical engineers in oil and

gas). Therefore, the collaboration of domain experts and systems, software and

safety engineers is important for performing the analysis and assurance

activities in our proposed framework. In particular, the framework targets

early lifecycle activities, mainly requirements engineering and architectural

design (both in terms of structural and behavioural architecture) and their

integration with the safety activities, e.g. hazard analysis.

1.5. Thesis Structure

The thesis is divided into the following chapters:

Chapter 2 presents a survey of the published literature in relevant areas of the

SOA paradigm. The survey first looks at the core elements of SOA. This includes

a review of typical concept definitions, features and lifecycles of SOA and

covers SOA design patterns and modelling. Next, the chapter reviews safety and

certification. This includes an examination of the common elements of the

safety engineering process, such as safety analysis, risk assessment, risk

management, safety requirements and safety tactics. Next, the review considers

safety assurance and safety standards, with particular attention to the concept

of safety cases, including argument representation and modularity. Chapter 2

concludes with a review of literature concerning dependability and safety of

SOA and other related systems.

Chapter 3 introduces the conceptual basis for this research by presenting our

proposed SOA Safety Assurance Framework. The Framework defines how SOA

22

modelling, safety analysis, safety cases and tool support are performed in an

integrated way. The chapter introduces the modelling languages that we use to

specify the services and their underlying processes. It also introduces the

methods we developed and adapted for identifying service hazards and

potential failure behaviour in an SOA system design. The chapter proposes the

use of modular safety cases and patterns to define the different argument

structures for assuring services and their design and for constraining variation

in SOA safety cases. Finally, the chapter presents an overview of the automated

support developed and the tooling environment used in this research for the

modelling, safety analysis and assurance of SOA.

Chapter 4 explains the SOA safety analysis methods adapted and developed in

this thesis. These methods consider potential service hazards and failure

behaviours of services and tasks according to the ways in which these services

and tasks are defined in the SOA context. This in turn forms the basis for the

definition of safety requirements which can help influence or drive the design

processes. A healthcare case study is introduced to provide an illustration of

the application of the SOA safety analysis methods we have developed, and a

preliminary evaluation of their effectiveness. The last section describes the

implementation of the tool support that provides the capabilities for modelling,

safety analysis and traceability.

Chapter 5 develops a catalogue of safety argument patterns for justifying the

use of SOA in safety-critical applications. The overall safety argument pattern is

created in a modular manner to ensure a clear correspondence between the

structure of the safety reasoning and the organisation of the SOA design. These

argument patterns link the safety argument for the SOA with the results of the

modelling and safety analysis presented in Chapter 4. Finally, we illustrate the

application of the safety argument patterns to the services defined within the

healthcare case study and provide a preliminary evaluation of their

effectiveness.

Chapter 6 describes our evaluation methodology in detail. It also presents a

second case study, in which the SOA Safety Assurance Framework is applied to

an industrial system in the oil and gas domain. A safety argument is produced,

23

based upon the SOA modelling and safety analysis described in Chapter 4 and

the safety argument patterns presented in Chapter 5. Finally, Chapter 6

contains a critical evaluation of the results of this PhD research.

Chapter 7 presents the main conclusions of this research and discusses

potential areas of future research.

24

Chapter 2

2. Survey of SOA and Safety

2.1. Introduction

This chapter provides a survey of the published literature relating to the topic

of this thesis. The survey is split into three main sections. The first section

reviews current literature relating to the basic concepts of SOA, as well as to

architectural design and the notations commonly used in developing SOA-

based systems. The second section discusses the basic concepts relating to

system safety engineering. This includes the methods and analysis techniques

available to system developers. Finally, we explore the concept safety cases and

review literature relating to the development of safety arguments.

2.2. SOA

2.2.1. SOA Definition

Generally, in the context of software, a service can be defined as:

“One application or computer program performing some work for another

application or computer program. This work may include some functionality or

data sharing” (17).

The definition is richer in the context of SOA, where services are defined as

well-defined and self-contained functions. When services are combined to form

sets, there are policies to control their usage and relationships to each other

and whether dependability attributes are required (1). Generally, each service

in an architecture represents a high-level business concept (18).

The concept of SOA has been considered from several different perspectives

(19) (3) (4). For example, SOA can be regarded as a means for developing

25

systems based on flexible concepts, which are sufficient to guarantee the

operability of services within the system to meet business demands (3).

However, Josuttis stated that, regardless of the dissimilarities in defining SOA

found across the literature, the introduction of improved flexibility is an

advantage of SOA which is highlighted in all definitions (4). Moreover, Josuttis

pointed out that SOA is only a paradigm; when it is applied, specific decisions

should be taken, which differ according to the situation being investigated.

2.2.2. SOA Entities

Typically, an SOA system comprises six entities, namely: consumer, registry,

provider, contract, lease and proxy (20) (21). These entities interact with each

according to a predesigned paradigm to ensure adequate provision of defined

services. Figure 2 shows the find-bind-execute paradigm (20). Generally, the

find-bind-execute paradigm allows the consumer of a service to request a

third-party registry for the service which is compliant with its standard. When

the registry has acknowledged a service, it provides the consumer with a

contract specifying an endpoint address to the service. SOA has six entities that

are configured jointly to support the find-bind-execute paradigm, as we explain

in the following subsections (20).

Figure 2: Find-Bind-Execute Paradigm (20)

Service Consumer: A service consumer is any element that requires a service,

e.g. a software element, an application or other services. The service consumer

should have the required functionality to find the registry, bind to the service

26

provider and execute the required function(s). Communication with the

provider and the executed function(s) must comply with the service contract.

Service Provider: The service provider element is responsible for accepting

and executing the consumer requests. Prior to performing any functionality

within the system, the service provider should register its contracts with the

service registry.

Service Registry: The service registry is a directory that is located on the

network, and holds all contracts from the service providers and makes them

available for the service consumers.

Service Contract: The service contract defines the specification of the service,

which includes the specified formats for the consumer request and the

provider response, the QoS level, and the pre- and post-conditions of the

contract.

Service Proxy: The service proxy is typically a set of APIs, located on the

service consumer, and is responsible for finding the contract and the service

provider on the registry, and for performing the necessary communication with

the provider on behalf of the consumer.

Service Lease: The service lease defines the validity period of the contract,

starting at the time at which the registry offers the contract to the consumer.

2.2.3. SOA Characteristics

Most approaches to SOA design agree on a set of common characteristics. These

characteristics are as follows.

Loose Coupling: According to SOA, a system can be built using a composition

of different related but independent services. This will permit the services to be

managed individually (3). Consequently this will allow loosely-coupled

services, which will permit the development of flexible and dynamic

applications, which are formed by composing these services according to

predefined requirements (4).

Service Contract: Service providers will publish the contracts for the available

services on the service registry. Service consumers will use these contracts to

27

bind and execute the services. SOA adheres to contract design principles, to

ensure standardization of the service-providing mechanisms. The

standardization will enable consistency of view for the service (3) (22).

Autonomy: Although services are self-contained and independent and have

full control over the execution logic that they contain, when services are

combined to form compositions it is important that they are able to perform

the required tasks or processes. Thus, information exchanged between

services, using messages, should fulfil the necessary underlying requirements

that enable these compositions to perform the designed tasks (3).

Reusability: Business processes are typically decomposed into tasks, each of

which will be performed inside the system by a service. It is possible that a

single task will appear in different processes. Reusability is the concept of

developing a flexible service that can be integrated into different compositions

or business processes. This will allow for higher productivity of the

development team and minimise the time required to produce the

implementation required for these services, as the reusable service need only

be implemented and tested once (23).

Composability: By building services with enough capabilities to interact

effectively with the environment, compositions can be formed by integrating

the different services to provide a higher level service. This will allow faster

building of SOA applications, as composed services will inherit some functions

and attributes of the services inside the composition (24).

Discoverability: One of the main principles of the SOA design paradigm is to

introduce applications that can interact and respond to changes in the

environment. One of the main characteristics of SOA applications is their ability

to introduce within the system services that can be integrated and published in

the registry automatically, and discovered by the service consumer (24).

Therefore, new services, replicas of current services, and new versions of

current services can be introduced into the system according to the service

consumer’s demands.

28

The above characteristics make SOA a challenge for use in safety-critical

applications. More specifically, each service can be treated as a self-contained

element in a larger system (i.e. autonomy) and therefore it is important to

identify the hazards that it can pose (as an individual service). At the same

time, a service is part of larger system and therefore we need to understand the

nature and the safety impact of interactions between the different services and

the wider environment (i.e. contracts and loose coupling). These characteristics

are shared with conceptual paradigms such as Systems of Systems (25).

However, SOAs can be treated as a more specialised design framework, with its

own design features and structures, e.g. Service-Level Agreements and

Participants. Furthermore, unlike object-oriented technologies (26) or product

lines (27), which tend to be used at a more detailed design and implementation

levels, each service in an SOA-based system tend to be visible at the user-

interaction level and can be changed during the runtime phases on the SOA-

based system.

2.2.4. SOA Lifecycle

Traditionally, software is developed in well-defined stages, at each stage, a

certain set of tasks should be performed to help ensure that the final software

meets the business objectives (28). The development of software based on the

SOA paradigm is different, as it includes both the business and the IT vision

within the software. Thus it is reasonable to add extra levels of governance to

control the execution of the loosely coupled services (29). According to Cox and

Kreger, the SOA lifecycle is gradually evolving to a form in which more

integrated processes are clearer (30).

Figure 3 shows the SOA solution lifecycle according to Cox and Kerger (30). The

figure shows that the lifecycle is divided into two main stages, the

preproduction and production stages. The preproduction stage includes the

model definition and implementation; the production stage includes mapping

the model to the target infrastructure, monitoring the results and reacting to

issues which arise. Seeley also cites Manes, Research Director at Burton Group

Inc., who added that an initial stage including service identification and

commitment is also required (29).

29

Figure 3: SOA Solution Lifecycle (30)

Kumar (31) defined the different life cycles of the SOA application from the

Enterprise implementation perspective, defining the service lifecycle as part of

the enterprise SOA implementation lifecycle. Kumar asserts that the enterprise

SOA implementation lifecycle includes three stages: initiation, development of

the roadmap and execution plan. At each of these stages there are different

tasks to be performed, these tasks relate to the different lifecycle stages defined

using other perspectives.

A management framework for the SOA lifecycle was introduced by Gejnevall

(32) (shown in Figure 4). The framework divides the lifecycle into six broad

areas in each of which four distinct phases are identified. The six areas are

architecture, processes, information, solution, services and infrastructure. The

four phases are preparation, development, and delivery and governance. The

framework identifies the different tasks that should be performed during each

phase, for each of the 6 lifecycle areas.

An alternative way of representing the SOA design lifecycle is provided by

Ramollari (33). Here five lifecycle phases are identified: analysis and design,

construction, testing, deployment and governance. According to Ramollari,

some or all of these stages will be included in any SOA development.

30

Figure 4: SOA Lifecycle Management Framework (32)

Analysis and Design:

At this stage, the business requirements will be analysed. The required

business functionalities will be mapped to the underlying IT functions or

services. Also at this stage, the business objectives will be addressed by the SOA

design strategies. Part of this stage is defining the timelines and deliverables of

the SOA. The last activity at this stage is performing the modelling to the

designed architecture.

Construction

The input for this stage is the specification of the designed architecture. The

specification will be used to develop the implementation of the services and the

necessary environment in which to operate these services. This includes the

necessary protocols to allow the different services within the application to

interact and the required interfaces to allow other applications to connect to

the application and to perform their permitted services.

Testing

It is important to review the different functionalities implemented within the

application. Testing the functionalities and services which have been developed

is essential to ensure the provision of a reliable application that meets the

business requirements.

31

The diversity of the hardware infrastructure, operating systems and

applications that comprise the environment of the SOA application will

increase the complexity of the testing process (34). Moreover, this complexity

will increase because SOA software is flexible and can change according to the

target environment. Thus, it is important to ensure that the testing process can

correctly address the characteristics of the SOA software being tested and

produce accurate results that are readable and informative.

Deployment

Once the suitability of the developed application has been ensured, it is logical

to deploy the application within the targeted environment. This includes both

operating the SOA application as a standalone application and connecting the

application with other applications that are operating in the environment, to

test for correct behaviour and interactions.

Governance

Different activities should be investigated at this stage. Most important is the

development of a governance model which will allow control of the different

components of the SOA software. As well as this, it is important to identify the

business and IT transformations.

2.2.5. SOA Design Patterns

 Definition 2.2.5.1.

In software engineering, design patterns are often used to provide, and exploit,

reusable solutions for common problems encountered in software design. A

design pattern is a description or template to solve a general problem, which

can be used in different circumstances (35). The original idea of the design

pattern was created by an architect, Christopher Alexander, who named and

described common architectural and landscape planning problems and

discussed their solutions (36). Alexander asserts that:

"Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this

32

solution a million times over, without ever doing it the same way

twice." (37).

Drawing inspiration from Alexander’s work, (37) developed a pattern language

for software engineering. They suggested that communication between the

components of the environment should be achieved in order to undertake a

customised solution for the problem being investigated (37). Software design

patterns therefore identify and define the basics of a design structure, which is

common or context-specific. These design structures will be represented as

objects, and these objects will be reused to compose new design objects.

While Alexander indicated that the pattern should describe the core of the

solution, design of the real solution for any problem is should be based on

different factors, e.g. the current circumstances of the environment. This is

particularly important for design patterns specified for the software domain.

Further, Erl (5) in his definition of the design pattern mentioned that the

solution provided for any problem should be proven and individually

documented.

 Use of Design Patterns 2.2.5.2.

 Design patterns are very important for building high-quality applications,

since they allow the designer to reuse the different elements of the software,

instead of re-inventing the wheel for each element. Moreover, reusability of

elements should lead to reductions in the time required to introduce the

software, as it will enable the developers to use tested and certified solutions

which have been applied before.

 Design Pattern Elements 2.2.5.3.

For any pattern there are four essential elements: name, problem, solution and

consequences (38) (37).

Pattern Name: Unique naming of any element in the software domain will

make it easier to identify the pattern. It can be identified clearly in any

discussion, without confusion (38).

The Problem: This describes the problem and details of the circumstances of

the environment in which it occurs (37).

33

The Solution: The different elements, which when combined introduce the

design, are called the solution. Documentation of the solution requires well-

defined and clear descriptions for the elements, their responsibilities and all of

the relations and collaborations required between them.

The consequences: It is also important to document the trade-offs introduced

in applying the pattern, which are used to evaluate the different design

patterns, and select the most effective solution to the problem being

investigated (37).

 Design Pattern Categories 2.2.5.4.

Design patterns can be classified into categories based on the perspective

adopted by the author in proposing the pattern. Metsker and Wake (39)

defined five different categories of design patterns based on their primary

intent: interface, responsibility, construction, operations and extensions.

Table 1 gives examples of standard software engineering patterns in each of

these categories.

Intent Patterns

Interfaces Adapter, Facade, Composite, Bridge

Responsibility Singleton, Observer, Mediator, Proxy, Chain of Responsibility,
Flyweight

Construction Builder, Factory Method, Abstract Factory, Prototype, Memento

Operations Template Method, States, Strategy, Command, Interpreter

Extensions Decorator, Iterator, Visitor

Table 1: Sample Categorisation of Design Patterns by Intent (39)

Other authors categorise the design patterns according to the application areas

to which they can be applied. Most commonly, these areas are defined as:

creational, structural and behavioural patterns (40) (37).

 Design Patterns and SOA 2.2.5.5.

Design patterns existed within the software design domain before the

emergence of the SOA paradigm. For example, there are object-oriented,

Enterprise Application Architecture and Enterprise Integration Applications

(EIA) design patterns. Design patterns that fall within the SOA pattern

catalogue can be classified into new design patterns, existing design patterns or

34

design patterns that are intentionally similar to patterns in other catalogues

(5).

SOA design patterns have been defined in the following areas: service, service

composition, service inventory, and service-orientation enterprise

architectures (5). In structuring a taxonomy of SOA design patterns, each of

these four groupings can be further divided into sub-parts.

Table 2 shows an outline taxonomy for SOA design patterns, with examples of

the available design patterns for each group. The fourth group, service-

orientation enterprise architecture is a composition of the other three

architectures.

Architecture Design patterns

Service

Foundational service patterns Service -Identification Patterns

Functional Decomposition, Service Encapsulation

Service-Definition Patterns

Agnostic Context, Non- Agnostic Context, Agnostic
Capability

Service implementation patterns Service Facade, Redundant Implementation, Service
Data Replication, Partial State Deferral, Partial
Validation, UI Mediator,

Service security patterns Exception Shielding, Message Screening, Trusted
Subsystem, Service Perimeter Guard,

Service contract design patterns Decoupled Contract, Contract Centralization,
Contract De-normalization, Concurrent Contracts,
Validation Abstraction,

Legacy encapsulation Legacy Wrapper, Multi-Channel Endpoint, File
Gateway

Service governance patterns Compatible Change, Version Identification,
Termination Notification, Service Refactoring,
Service Decomposition, Proxy Capability,
Decomposed Capability, Distributed Capability

Service composition

Capability composition patterns Capability Composition, Capability Recomposition

Service messaging patterns Service Messaging, Messaging Metadata, Service
Agent, Intermediate Routing, State Messaging,
Service Callback, Service Instance Routing,
Asynchronous Queuing, Reliable Messaging, Event-
Driven Messaging

Composition implementation patterns Agnostic Sub-Controller, Composition Autonomy,
Atomic Service Transaction, Compensating Service
Transaction

35

Service interaction security patterns Data Confidentiality, Data Origin Authentication,
Direct Authentication, Brokered Authentication

Transformation patterns Data Model Transformation, Data Format
Transformation, Protocol Bridging

Service inventory

Foundational inventory patterns Inventory Boundary Patterns:

Enterprise Inventory, Domain Inventory,

Inventory Structure Patterns:

Service Normalization, Logic Centralization, Service
Layers,

Inventory Standardization Patterns:

Canonical Protocol, Canonical Schema

Logical inventory layer patterns Utility Abstraction, Entity Abstraction, Process
Abstraction.

Inventory centralization patterns Process Centralization, Schema Centralization,
Policy Centralization, Rules Centralization

Inventory implementation patterns Dual Protocols, Canonical Resources, State
Repository, Stateful Services, Service Grid,
Inventory Endpoint, Cross-Domain Utility Layer,

Inventory governance patterns Canonical Expression, Metadata Centralization,
Canonical Versioning

Table 2: Outline Taxonomy of SOA Design Patterns (5)

 SOA Design Pattern Considerations 2.2.5.6.

As already emphasised, SOA is a design paradigm for computer-based

applications, with defined goals and objectives for applications, which meet the

corresponding goals and objectives identified from the business perspective.

Design patterns should be selected, designed, refined and applied to allow SOA-

based applications to meet their goals and objectives.

The different elements that comprise the SOA application should be able to

interact with each other without requiring any intermediate transformation of

exchanged contents. Intermediate transformations would increase the

application’s complexity and the time required to perform any operation.

From the business perspective, Return-On-Investment (ROI) is a major factor

in selecting any solution or product. By developing services that are able to

support each other, which can be composed according to the requirements and

36

designed to meet the inventory architecture, an organisation can increase the

ROI for each of the services it provides or exploits.

There are other factors from either a business or IT perspective that are

important for the selection of a design pattern from the available alternatives,

e.g. vendor diversification, business and technology alignment and IT costs. The

ability of the IT solution to meet the business requirements will be directly

affected by these factors, so it is very important to prioritise them and develop

the SOA application based on that prioritisation (5).

 Dependability and SOA Design Patterns 2.2.5.7.

This thesis is particularly concerned with three attributes of dependability are

which need to be considered developing any SOA application for a safety-

critical domain: availability, safety, and security. Various design patterns have

been developed to address issues related to these attributes within the

different architectures of the SOA. Also, these dependability attributes can be

considered to as part of the general superset of Quality of Service (QoS)

attributes. Before we discuss dependability design patterns, we explore the

concept of dependability, and how it related to SOA, in the next subsection.

 Dependability 2.2.5.8.

Different factors that allow the development of more dependable computer

systems have been identified, for example availability, reliability, and

maintainability (41). More interest in the dependability of computer systems

was shown during the 1980s, as a result of increasing integration of these

systems into the business arena. The concept of dependability builds on several

related concepts, in particular reliability and fault-tolerance. Dependability can

be defined as “the trustworthiness of a computing system which allows reliance

to be justifiably placed on the service it delivers” (42).

As more IT technologies were introduced, two fundamental attributes of

dependable systems were added to the ones which had already been

highlighted: safety and security (43).

There are different perspectives on the attributes that inform dependability.

The total list of attributes comprises integrity, reliability, safety, security,

37

confidentiality, maintainability and availability. According to the point of view

adopted in the context of a particular system or domain, some of these

attributes may be eliminated or combined (44).

Avizienis, et al. (45) defined threats as the intentional or accidental events that

affect the provision of a correct service. Service failure, within a computer

system, is defined as the deviation of the delivered service from the correct

service due to the occurrence of an event. This may result in the external

systems interacting with the service to enter incorrect or unknown states,

which would be observed as anthe error. The presence of the error is due to the

presence of a fault in the system (45). It is therefore possible to define different

states that are based on the presence of error or failure in the service, as an

indication that the service is not performing correctly. For example, degraded,

slow, limited and emergency service modes can be defined to reflect the

severity of the failure within the system. Figure 5 shows one of the mostly

widely used dependability trees.

To attain and maintain the different attributes of the dependability, different

means have been developed. The means can be classified into four main

groups: fault prevention, tolerance, removal and forecasting. Fault prevention

and fault tolerance allow the system to provide a trusted service. More

confidence in this service will be achieved if it can also provide fault removal

and forecasting. Dependability attributes are targeted by tactics (46) that are

used to achieve a certain level for each attribute. Requirements for the

attributes will be derived, according to the architectural decisions resulting

from the application of the tactics.

Figure 5: Dependability Tree (45)

38

Failures in dependable systems often result in losses. These losses can be

related to customers, sales, revenue and productivity. Moreover, there will be

an additional cost incurred in bringing the system back into normal operation

(47). When software is one of the system components, it is possible to have

failures within the system caused by the presence of the software. In such

cases, failures might be limited to the software component of the system, or

might cause the system as a whole to fail. Thus it is important to address safety

as part of every stage of the software lifecycle. As an example, in 2011, a

software failure in a Pak ‘n Save supermarket in New Zealand resulted in the

store’s doors opening automatically at a time where there were no employees

inside, allowing the public to leave with free groceries (48).

Security Related Design Patterns

Security is of great concern when exposing a local service to outside users.

External users can use services to hack the internal network or to manipulate

the resources managed by these services. The Service perimeter guard design

pattern addresses this issue by introducing an intermediate service at the

network perimeter, which can be used as an interface between the internal

service from one side and external users from the other side. In this case, the

intermediate service will be a secure contact point for the local network; thus,

the security threats related to this issue can be minimised (5).

Other design patterns have been defined to address other security issues and

threats. These patterns fall into two main groups. The first group, service

security patterns, addresses concerns in the service architecture. This group

includes the exception-shielding, message-screening, trusted subsystem

and service perimeter guard patterns. The second group, service interaction

security patterns, addresses concerns in the service-composition architecture.

Patterns in this group include data confidentiality, data origin

authentication, direct authentication and brokered authentication. For

more information please refer to the discussion of SOA design patterns in Erl

(5).

Availability Related Design Patterns

39

Some SOA design patterns provide solutions for the availability attribute. These

solutions can be selected according to the requirements of the service. For

example, in the group of service-implementation patterns, there is a

redundant implementation pattern which addresses the case of a heavily-

used service. In this case, the service can be considered as a potential source of

failure in the system, especially if it is being used in composition with other

services. Any fault the service faces will be implicated in all compositions that it

is part of. Based on this, the redundant implementation pattern provides the

use of redundant implementation or failover support as a solution to this

problem.

For more information about other SOA design patterns providing solutions for

the availability attribute please, refer to the discussion of SOA design patterns

catalogue introduced in Erl (5).

Safety Related Design Patterns

In order to ensure that a system’s safety requirements are satisfied

appropriately, it is important to ensure that the runtime behaviour of all

components within the system complies with their specifications at the design

and development stages. To help satisfy this, monitoring design patterns are

introduced. Monitoring design patterns help in building tools that are able to

monitor the components within the system and to measure to what extent the

specifications used at system development are respected at runtime (49).

Although safety is a key concern in ensuring the appropriate operation of the

different software applications within a safety-critical system, there has not

been a great deal of work on safety design patterns for SOA (50). Different

techniques have been developed to provide a certain level of system safety,

which are not specific to SOA. For example, partitioning allows the isolation of

different independent components of the software, to ensure that severe faults

that may occur in any component are contained. Generally, safety tactics are

designed and organized based on the fault-handling mechanism. There are

three handling mechanisms, failure avoidance, detection and containment (50).

40

For example, the Triple Modular Redundancy (TMR) pattern provides a

solution to avoid a single point of failure for a processing unit, by implementing

three processing units based on the same input, along with a voter that decides

which unit’s results will be transferred to the output (51). The voter will detect

failures occurring in any of the processing units and the final result will be

defined according to the results from the three processing units.

Different variations of the TMR pattern have been implemented to ensure the

avoidance of failure, for example, by implementing three independent inputs

for each processing unit and three voters, each of which takes input from the

three processing units. Logically, this will improve the system’s integrity in the

face of failure, as it reduces the likelihood of system failure due to a single

failure or a failure of any of its components.

Jackson (52) argued that current practices in developing software indirectly

address dependability attributes in general and safety in particular. This

appears to be true, since design patterns that provide specific solutions for

safety are very rare. Thus, as Jackson suggested, new tools or practices should

be developed to address safety-related issues directly. Kang and Jackson

discuss an approach to dependability analysis based on trust bases, which

offers a promising way to address dependability assurance more directly (53).

 Service Level Agreements 2.2.5.9.

A Service Level Agreement (SLA) is a document that can be used to define the

relationship between two parties: the provider (or producer) and the recipient

(or consumer) (54). This is an important item of documentation for both

parties. Its purpose is as follows:

 Identify and define the customer’s needs;

 Provide a framework for understanding;

 Simplify complex issues;

 Reduce areas of conflict;

 Encourage dialog in the event of disputes;

 Eliminate unrealistic expectations.

41

An SLA is a core part of a service contract, in which the specification and

quality of service are formally defined. An important role of an SLA is to

capture the non-functional aspects of the service so as to monitor the

performance of the service to ensure that it is used according to the contract

between different parties. According to (55), SLAs are used for the preservation

of service capacity. Increasingly, SLAs are used as a way to ensure delivery of

services in IT-based SOAs. During SLA discussions, all parties must agree on the

interface and the service provided by the provider. If the provider is providing

a service that was not originally assured or agreed upon, then we have a SLA

disagreement fault (56). One way of representing SLA is using a tabular format

as shown in Table 3 (57).

Table 3: SLA Sample (57)

2.2.6. SOA Modelling

After decisions regarding the architectural design have been reached and

agreed on, it is necessary to provide an unambiguous record of the decisions.

This is often carried out in the form of modelling (58). Modelling can be defined

as a description of some phenomenon of interest (59). In the case of SOA, the

http://en.wikipedia.org/wiki/Service_contract

42

phenomenon is the service to be provided. Kolovos asserted that models can be

classified into unstructured and structured:

“Unstructured models are descriptions that do not adhere to well-

defined syntactic or semantic rules. Examples of this type of model are

board drawings, informal sketches, natural language specifications etc.

Due to their lack of conformance to well-defined rules, unstructured

models are only useful for communication between humans. By

contrast, a structured model is an artefact that conforms to a set of

syntactic and semantic well-formedness constraints which is called its

modelling language or metamodel. Due to their rigorously defined

nature, except for human communication purposes, structured models

are also useful for mechanised processing”. (59).

The models used to describe a system are based on system characteristics such

size, complexity and heterogeneity (58).

 The system architecture model is the composition of the different

architectures that represent the system’s constituent elements and structures.

Viewpoints are system architecture models that are constructed according to

the perspective of the stakeholder. Viewpoints can be constructed using

Architectural Description Languages (ADLs) (60).

Software modelling can help developers better understand the system and

allows for effective and efficient organisation. Based on this understanding,

different design alternatives can be explored and considered based on their

importance.

Different ADLs are introduced to enable designers to build different

versions/aspects of the model and to help the development team to define

optimized code. Each modelling language represents a different point of view

on the system. Examples of these languages include the Unified Modelling

Language (UML) (61), the Systems Modelling Language (SysML) (62), the

Specification and Description Language (SDL), and the Business Process

Modelling Notation (BPMN) (63).

43

Different modelling languages are introduced to ensure proper modelling of

SOA solutions. Service-Oriented Modelling and Architecture (SOMA), Service-

Oriented Modelling Framework (SOMF) and Service-oriented Architecture

Modelling Language (SoaML) are examples of these languages.

SOMA was introduced by IBM as the first modelling language for SOA (64).

SOMA aids in the analysis and design of SOAs through the identification,

specification and realization of the services that are required to build the

system. SOMA also provides the ability to compose services from preliminary

services.

SOMF was introduced to provide modelling of SOAs; it is based on conceptions

and a universal language (65). Strategic business decisions can be used along

with IT tactics to design and provide solutions to enterprise problems.

According to the developer of SOMF, it can be used to provide modelling for

any application and include any business processes or technological services.

UML was introduced as a general modelling language, thus no capabilities were

introduced for SOA modelling. The OMG introduced SoaML, as a UML profile

and metadata that adds the required capabilities to allow precise modelling of

SOA based on UML.

In the next sections, we discuss two of the most commonly used modelling

languages and comment on their applicability to SOA.

2.2.6.1. BPMN

The BPMN standard (currently at version 2.0) was developed by the Business

Process Management Initiative (BPMI) (66). In May 2004, version 1.0 of the

specification of BPMN was released to the public and in February, 2006, BPMN

1.0 was adopted as an OMG standard. BPMN is a graphical modelling notation

for business processes in an organisation. White (66) discussed the context and

use of BPMN, considering the four main elements of BPMN: flow objects,

connecting objects, swim lanes, and artefacts. Figure 6 illustrates the graphical

elements of BPMN. Flow objects are displayed as a set of elements that include

different types of events, activities, and gateways. An event means “something

that occurs” as distinct from an activity which is defined as “something that is

44

done” (67). Gateways can be used to control the communication between the

flows of paths via splits and joints.

Connectors can be used to model the flow between objects. The connector

consists of sequence flows, message flows and associations objects. Sequence

flows can be used for ordering the activities that are performed in a process;

message flows can be used for sending and receiving messages across

businesses; and association can be used for linking information with flow

objects. Swim lanes can help in classifying and managing activities. There are

two types of swim lanes: pools and lanes. Artefacts can be used to add more

information to the model. Artefacts comprise data objects, text annotations,

and groups. The data object can be used to manage the input and output data

for activities, the text annotations can be used to describe the process, while

groups can be used for grouping certain activities (67).

Figure 6: Basic BPMN Elements (66)

2.2.6.2. SoaML

The OMG introduced SoaML as a UML profile which has the capability to model

SOA (68). The SoaML profile is structured around five SoaML diagrams, namely,

the Service Participant diagram, the Service Contract diagram, the

ServicesArchitecture diagram, the Service Interface diagram and the Service

Categorisation diagram. Each of these diagrams provides a different view to

define and understand services (68). For example, the ServicesArchitecture

diagram shown in Figure 7 allows for the definition of Participants and

45

Services, showing the collaboration between different organisations, and the

roles each Participant plays within each ServiceContract (collaborationUse).

The Service Interface diagram shows the different types of Interface which the

SoaML standard offers. Figure 8 shows a simple interface, which describes a

one-way service which does not require protocol, e.g. a service can be used

without knowing anything about the entity which calls it.

Figure 7: ServicesArchitecture Diagram in SoaML

Figure 8: Interfaces Diagram in SoaML: UML Simple Unidirectional Interface

As Figure 9 indicates, a service interface can also be defined for bi-directional

services. Here, the service includes communication between the consumer and

46

the provider of the service which may be required to complete the services.

Further information about UML simple Interface unidirectional, UML interface

bidirectional, and ServiceInterface, which is defined by understanding and

using UML simple interfaces, is provided in (69).

Figure 9: shows a service interface and a bi-directional service interface

2.3. Safety and Certification

This section introduces the concepts of safety, safety-related issues, and the

certification processes. Section 2.3.1 provides a review of safety in safety-

critical systems. A review of aspects relating to the certification of such systems

will be presented in Section 2.3.2

2.3.1. System Safety

Roland, et al. (70) defined system safety as applying special technical and

managerial methodologies to guarantee systematic and forward-looking

control of hazards during the lifecycle of the system being investigated. Roland

et al. suggested that safety analysis and hazard control activities should be

performed during the conceptual phase of the system, with further safety

actions defined for the lifecycle stages.

47

The concept of safety within the system is related to the physical context of the

system. A system can be considered unsafe if its effects are harmful for humans.

Logically, software components can cause harm to humans indirectly. Hazards

or accidents within the system occur because of three main sources: humans

who interact with the system, the system itself or the environment in which the

system operates. For example, an accident between two cars on a road could be

caused by human error (e.g. excessive speed), a failure in one of the cars (e.g.

sudden failure of the lights at night) or causes within the environment (e.g.

heavy fog).

In order to manage the definition and implementation of safety requirements

for a system, it is important to understand which of the safety activities should

be integrated within each stage of the lifecycle. Figure 10 shows a “V” system

development lifecycle, along with the safety activities related to each stage

(71). The figure shows the different stages of the development lifecycle:

requirements analysis and specification, architectural design, detailed design,

implementation, integration, testing and verification, and delivery and

commissioning. At each stage, the associated safety activities are integrated in

the development process. For example, hazard identification and risk

assessment, which is a continuous activity, is commonly performed as part of

requirements analysis and common cause/common mode and zonal analyses

are associated with the detailed design and implementation stages.

Figure 10: A “V” System Development Lifecycle (72)

48

2.3.1.1. Safety Processes

For safety-critical systems, it is important to perform an analysis of the

hazards, identify them, evaluate their effects and provide the necessary

measures to manage the hazards. Pumfrey defined a hazard as a “physical

situation, often following some initiating event that can lead to an accident”

(72). The hazard analysis determines the extent to which each hazard can lead

to an unsafe system status.

Safety analysis helps to define the necessary requirements that ensure the

system being developed is acceptably safe. Safety analysis should be carried out

as part of a safety management process, which will result in examining the

system safety level and whether the system can be deployed or not.

The safety process should be designed to address relevant factors within the

system and its environment, for example, the size of the company, the structure

of the system, the industry the system is operating in and the applications the

system is used for (12). Each stage should result in a detailed documentation of

the system safety process results.

2.3.1.2. Safety Analysis

A preliminary hazard list should be provided for safety-critical systems. Based

on the hazard analysis, a list of high-level safety requirements, specifying how

the hazards should be managed and controlled in design and operation of the

system, is typically generated. These requirements are then transformed into

detailed safety criteria. The system safety team should decompose these

detailed safety criteria into readable detailed requirements which can be used

by the design team to develop the system (73). Safety analysis should be

performed throughout the system lifecycle to identify the hazards and risks

posed by the system, assess each of these hazards or risks, and provide and

recommend solutions for managing the risks.

The safety analysis should be based on the milestones defined for the safety

processes and should comply with the milestones of the system development

process. The reporting of the analysis should address any challenges faced in

49

performing the analysis, such as lack of information or insufficient

recommendations.

Safety analysis techniques can be classified into two main categories, deductive

and inductive. Deductive analysis helps in answering the question, “How can

something occur?” Conversely, inductive analysis helps in understanding the

consequences of an event, which has either occurred or has been postulated.

Thus it helps in answering the question, “What if this happens?” (74). Some

techniques can be used either inductively or deductively, depending on the

context. Markov Analysis (MA) and Fault Propagation and Transformation

Calculus (FPTC) are examples of these types of technique (27).

Generally, failures in the system can be classified into either random or

systematic failures. Typically random failures occur in the system due to faults

in the hardware components. Such faults can be caused by different issues,

such as the age of a component. Systematic failures, on the other hand, are the

repeatable under the same system and environmental conditions, as a result of

a human error that could occur at any stage of the system lifecycle. However, a

fault due to an error of this kind will not occur unless the system is in an

appropriate state (75).

Due to their nature, random faults are often measured quantitatively, while

system failures are measured qualitatively.

Failure Modes and Effects Analysis (FMEA) is one of the main inductive safety

analysis techniques. Pumfrey (72) discussed the categorisation of the FMEA

analysis technique and techniques that have been developed using it as a basis.

Simply, starting from a certain event (which has either occurred or is

postulated) FMEA performs an analysis for the different consequences that

might be faced.

FMEA provides a basis for understanding how the requirements defined in the

preliminary stages of the development are implemented in the system, and of

whether the system actually meets these requirements.

To perform FMEA, a set of information needs to be collected. This information

can be identified and categorised according to the issue being addressed.

50

Information collection should be organised to ensure that the information

needed to satisfy the analysis requirements is assembled. Different forms have

been designed for data collection, such as the example shown in Table 3 (76).

Stamatis states that the information within the form can be categorised into

three parts. The first part is introductory and is essential to the analysis

process; however, none of the information in this part is mandatory. The

analysis is completely dependent on the information in part 2, thus all of the

items in this section are mandatory. More items can be added to the form or the

items in the form can be reorganized according to the analysis requirements,

but none of the items in the form can be removed. The third part contains the

signatures of the team performing the analysis. Although it is not mandatory, it

reflects the team’s responsibility. Stamatis numbers the parts according to the

analysis requirements performed. These numbers can be altered as required.

Table 4: FMEA Form (76)

2.3.1.3. Key Safety Activities

There are key issues that need to be investigated when analysing the safety of a

system. Firstly, it is important to understand possible hazards which might lead

to the presence of risks within the system. These risks should be assessed and

any necessary steps taken to manage them. In the following three subsections,

hazard analysis, risk assessment and risk management will be discussed.

Hazard Analysis

51

Pumfrey asserts that hazard identification, which implies locating the potential

hazards within the system in order to specify suitable management and control

measures, is the first step in the safety process.

Different systems pose different hazards. Some of these hazards can be

considered as generic, or common for all systems, whether computer-based or

not. Examples include environmental hazards, like floods, fog, storms and

earthquakes. However, possible failure of altitude measuring sensors is a

hazard specific to aircraft for example. However, whether the hazard is generic

or specific, the context of the system dictates the way in which it is handled. For

example, fog is a hazard for both aircraft and cars; however, in each system the

solutions will be designed differently.

The process of hazard analysis includes several steps that are designed to

address the goals of the analysis (12). Hazard analysis can be performed on

planned or existing systems. However, for most systems, complete elimination

of hazards is not feasible and therefore hazard control measures are used for

those hazards which cannot be eliminated.

Different techniques have been developed to perform hazard analysis. These

techniques use either quantitative or qualitative methods to evaluate the

hazard, based on hazard characteristics like hazard level (the degree to which

the hazard will affect the system) and likelihood.

Functional Failure Analysis (FFA), Hazard and Operability Analysis (HAZOP)

and Fault Hazard Analysis (FHA) are among the best known hazard analysis

techniques (12) (72). There are also other techniques, and variations of these

techniques which are designed to identify and analyse hazards. However,

Pumfrey argued that these techniques are not widely accepted in industry and

are limited to use within the research community, so we do not consider them

in detail here.

Functional Failure Analysis

Functional Failure Analysis (FFA) is an inductive technique which is intended

to derive the hazards from a functional description of the system (sometimes

referred to as Functional Hazard Analysis) (77). For each function of a system,

52

FFA examines all possible failure modes of the function that may contribute to

unsafe behaviour and provides suitable recommendations for mitigation in the

design (72). The FFA technique consists of four steps as described by Pumfrey:

 Identifying a function;

 Identifying the failure modes of the function, based on three potential

deviations: function not provided, functional provided when not

required and incorrect function;

 Assessing the effects of each failure mode at various abstract levels;

 Suggesting requirements and recommendations to improve the design.

Table 4 shows an example of hazard analysis of a vehicle speed sensor using

FFA. The results of FFA are commonly presented in a tabular format.

Table 5: Example of Hazard Analysis of a Vehicle Speed Sensor Using FFA (72)

HAZard and OPerability Studies (HAZOP)

Hazard and Operability Studies (HAZOP) is a predictive safety analysis

technique that was developed in the mid-1960s, to assist, assess and refine the

53

design of new process plants (78). HAZOP was originally developed at ICI, for

use in the chemical industry (79). The main focus of this method is on the flow

of chemical material and liquids between different components of a chemical

plant, Table 6 shows the steps of the HAZOP process. The process provides a

set of guide words to help the analyst to consider a variety of possible

deviations for each flow. Although the original HAZOP guide words were

designed for use in analysis of processes within chemical processing plants,

they are sufficiently generic to be applicable to other safety-related systems,

with some interpretation.

Step Description

1 Select a flow in a pipeline.

2 Identify important physical attributes of the flow, such as pressure, temperature, flow
rate, chemical composition etc.

3 Consider the deviations prompted by applying each guide word to each property for
this line section.

4 Determine the possible causes of each of these deviations.

5 Investigate the expected outcome (effect on the plant) of each deviation, taking into
consideration operating conditions and other causal factors where necessary, and
examining the contribution of protection mechanisms and other mitigation already
included in the design.

6 Decide which deviations are safety problems (i.e. those with both plausible causes and
hazardous effects).

7 For deviations which are not safety problems, record a justification (i.e. explain why
the design is acceptable as proposed.).

8 Consider changes to the plant that will remove, or reduce the probability or severity
of, hazardous deviations.

9 Determine whether the cost of the proposed changes is justified.

10 Agree actions and responsibilities.

11 Repeat steps 1 to 10 for all other lines in the plant.

12 Follow up to ensure necessary actions have been taken.

Table 6: Steps of HAZOP (72)

The standard guide words for process plant analysis (with example

interpretations) are shown in Table 7.

54

Table 7: HAZOP Guide Words (72)

HAZOP differs from the other safety techniques we have reviewed in that it is a

team-based activity. A HAZOP team typically comprises around six people who

are selected for different roles and interests, generally including the following:

 The plant design engineers;

 Commissioning or installation engineers;

 Operators and maintenance engineers;

 One or more independent experts;

 HAZOP leader;

 Recorder or secretary.

In its original form, HAZOP does not work well for systems where the flow

involves information. This fact has led to the development of Software Hazard

Analysis and Resolution in Design (SHARD) for the analysis of computer-based

applications (72).

Software Hazard Analysis and Resolution in Design (SHARD)

Pumfrey (72) proposed a technique called Software Hazard Analysis and

Resolution in Design (SHARD), which is a refinement of HAZOP intended to

address the requirements of safety analysis in computer systems (hardware

and software).

55

Table 8 shows the steps of the SHARD process. The process provides a set of

guide words to help the analyst to consider a variety of possible deviations for

each information flow.

Step Description
1 Identify and consistently label the flows in the diagram. For each flow, identify its

source (where the flow originates) and sink (destination). Assemble any additional
material from data dictionaries, timing diagrams etc. required to completely describe
the operation of the flow.

2 Review the design to ensure that the intended operation is clear.
3 Construct a table of guide words, interpreting the six major failure classifications for

the combinations of communications protocol and data type used in the design.
4 Work through the flows in a systematic order, using the combination of protocol and

data type to select a set of guide words from the table constructed in step 3, and
considering the deviations from intended behaviour suggested by each guide word.

5 Determine and record the potential causes of the suggested deviations. Note that
identifying the causes of a deviation will require study of the active component
(process) or data store that is the source of the flow

6 Determine and record the expected effects of the suggested deviations. Except at the
top (context) level of a design, the extent of identification of effects should be limited
to the active component (process) or data store which is the flow sink. Effects that
propagate beyond the immediate destination of the flow will be considered as part of
the analysis of further data paths that originate from this component.

7 Reduce the set of suggested deviations to a set of meaningful failure modes by
discarding those for which the potential causes are acceptably improbable, and those
for which no hazardous effects have been identified. Note that whenever a deviation is
discarded, a justification must be recorded

8 For each meaningful failure mode identified, suggest alternative management
strategies. These may take the form of design modifications to remove its causes or
limit its effects, or a set of requirements that must be satisfied by lower-level design
elaboration to achieve acceptable system-level safety properties.

9 Select of one of these strategies to pursue, and record a justification for the selection.
In the worst case, if no acceptable management strategy can be suggested, the only
acceptable course of action may be a redesign.

Table 8: SHARD Process

SHARD can be used for the analysis of information flows in a normal operation

and can also study the possibility of unintentional behaviour. The guide words

defined for SHARD (72) are as follows:

Omission:

There is no delivery of the service; no communication (service not provided).

Commission:

A service is provided when it is not required, the communication is unforeseen

(more services provided).

Early:

The service (communication) is provided earlier than required

56

Late:

The service (communication) is provided later than required

Value:

The service or data has the wrong value. Errors of this kind can be divided into

two classes: detectable (the problem can be detected and protected or

mitigated against) or undetectable (the problem cannot be found).

SHARD does not need a team to carry out each step of the analysis. The results

can be captured in a tabular format. The columns should include “Guide word,

Deviation, Possible causes, Detection and protection, Effects, and Justification

or design recommendations”. Table 9 shows a sample of SHARD outputs for a

computer-assisted braking system (72).

Risk Assessment

Once the hazards have been identified and recorded, the potential risks within

the system can be identified and analysed. Upon identifying the risks, it is

important to perform risk assessment and management. Risk assessment

includes different tasks. The first is a detailed interpretation of the identified

risks, such that risks can be classified into acceptable and unacceptable risks.

Second, reduction measures for the unacceptable risks should be proposed.

Typically, these measures should be selected to control the hazards involved.

During the risk assessment process, the system design will be revised, to

ensure that risks are reduced. For risks where it is not possible to eliminate the

hazards by changing the design, the measures will be proposed ensure that

these risks will be minimized to an acceptable level. Risk assessment

techniques can be quantitative or qualitative, depending on the requirements

of the assessment.

For example, the presence of fog will increase the risk of car accidents. Fog

limits visibility, making it difficult for drivers to the road or other vehicles

clearly. For a car at a speed of 40 miles per hour with visibility of 100 metres,

the risk of having an accident due to fog is limited, or can be classified as

acceptable. But for the same car with a visibility of 10 metres, the risk of having

an accident is high or unacceptable.

57

Table 9: Sample SHARD Output for a Computer Assisted Braking System (72)

58

Risk Management

The process of defining the hazards, analysing them, and performing

assessment on the risks caused by the hazards will result in a better

understanding of hazards, risks and potential losses arising from their

occurrence. Procedures for avoiding or minimising losses can then be

proposed.

Understanding of the risks inherent in a system will allow these risks to be

managed. The process of risk management is aimed at mitigating identified

risks and achieving the desired goals of the system (80). According to Hillson,

the success of risk management can be measured by the effectiveness of the

selected solutions in achieving the final goals.

Although effective risk management will increase the chances of avoiding the

risks within the systems, resulting in the best achievement of the objectives,

even in the presence of risk management, the system will have residual risks.

Hillson et al. argued that risk management processes, tools and techniques

should evolve over time to be able to address changes in the system and its

environment. They also defined three major period of evolution in the attitudes

to risk enshrined in standards, before 1997, from 1997 to 2000 and after 2000

(80).

 Before 1997: the concentration was on the negative side of the risk;

risk is equivalent to threat in this period.

 From 1997-2000: the definition of risk starts to add the positives or

opportunities along with the negatives.

 After 2000: all standards appearing after 2000 includes both threats

and opportunities as part of risk management.

Risk management includes the identification, communication and resolution of

possible risks within the system (81). It can be divided into two main steps.

The first is performing risk identification and assessment. The second is risk

control. Risk assessment has been discussed above, so only risk control will be

discussed here. Risk control is the process of planning risk resolution

techniques, providing solutions for potential risks within the system and finally

59

monitoring the applied solutions to ensure their effectiveness in resolving the

risks. Figure 11 shows the risk management cycle as proposed by Kasse

Initiatives (81).

Figure 11: Risk Management Cycle (81)

The processes, tools and techniques used when performing risk management

should be selected to suit the system and the risks being addressed. This will

ensure that resources are wisely consumed by the risk management process

and the risk management solutions will be practical and efficient.

Risk management can be implemented within the system using four different

approaches (82). These are:

 Inactive risk management: the system is assumed to work normally

and nothing will be done regarding the risk.

 Reactive risk management: no risk assessment is carried out in

advance; risk management will be performed based on the presence of

accidents.

 Interactive risk management: risks will be considered when they have

a high potential to occur, in other words, risks will be considered based

on the phase the system is currently in, as risks depend on the current

system status.

 Proactive risk management: risk identification, assessment and

solving will be performed completely in advance of the system

development. Thus, solutions for potential risk will be implemented as

part of the system design.

60

As the approaches change from the inactive to the proactive, the time and cost

overheads of risk management will increase. However, the possibility of

suffering loss due to risk will be minimized by the proactive approach.

2.3.1.4. Safety Requirements

One of the outputs from the risk assessment and management activities is a set

of recommended solutions for the expected risks in the system. These solutions

will be used to define and develop the safety requirements of the system.

It is important to ensure that the system is acceptably safe, by guaranteeing

that the system meets its safety requirements. Within each industry different

standards have been developed to help assure the safety of the products. For

example in aviation systems, Preliminary System Safety Assessment (PSSA)

uses the risk assessment and management to ensure that the system being

developed is acceptably safe (72). PSSA is applied at the design phase of the

system to guarantee a system that meets the safety requirements and

maintains refined safety requirements that are appropriate to the final design

of the system (83).

As discussed in the system development lifecycle, hazard identification and

analysis and risk assessment activities are performed during the first stage of

system development, which is requirements analysis. These activities will

define the safety requirements of the system. Risk management is the process

of integrating the safety solutions as part of each system development stage.

For example, the safety requirements relating to environmental hazards, like

lightning for an aircraft, will be defined during the system requirements

analysis. The design and operational solutions provided for these hazards will

be integrated in the aircraft system during the different stages of development,

for example to avoid crashing due to lightning, the aircraft body should include

metal which makes it operate as a conductor, this solution will be integrated as

part of the design and implementation stages.

2.3.1.5. Safety Design Tactics

The achievement of high quality and performance (e.g. design decisions) in

systems depends on many factors. So, we need a strategy to assist in recording

61

and examining the system design decisions. Tactics are strategies which help to

capture these design decisions. According to Bass et al. “A tactic is a design

decision that influences the control of a quality attribute response.” (46).

Safety is an important quality attribute for many computer systems. Different

architectural patterns can be used to build each component within the

computer system. Safety tactics are the foundational building blocks that define

which design patterns among those available can be selected to achieve the

attributes’ requirements. Wu (58) asserted that safety tactics can be used to

select the architectural design patterns that allow the safety requirements to be

met. Wu discussed the use of redundancy, voting and diversity tactics with the

Triple Modular Redundancy (TMR) pattern to avoid a single point of failure

and to increase the availability of the system, which guarantees a higher level

safe system. Figure 10 shows a taxonomy of safety tactics according to Kelly’s

and Wu’s classification.

Figure 12: Safety Tactics (50)

Safety is related to reducing the consequences of undesired accidents. It is best

to avoid failures and, in cases where failures occur, they should be detected and

managed. Safety Tactics can be classified into three groups: failure avoidance,

detection and containment tactics (84).

Failure avoidance is the best mechanism to handle failures: if a failure is

avoided, it cannot occur. Simplicity tactics are designed to help in designing

systems that can avoid failure. Logically, however, there is no failure-free

software. It is therefore important to ensure that tactics are provided to detect

62

and manage any failures which do occur, in order to avoid any further

consequences. Timestamp and sanity checking are examples of these tactics.

It is important to ensure that, where possible, the consequences of failures are

managed within the system to avoid any further drawbacks within the system.

The redundancy and recovery tactics help to achieve this.

One of the architectural techniques that explicitly exploits the concept of design

tactics is the Architecture Tradeoff Analysis Method (ATAM) (46). ATAM is a

structured method for understanding the tradeoffs inherent in the design of

architectures for software-intensive systems. This technique was developed as

a principled way to evaluate the fitness-for-purposed of software architectures,

with respect to many competing quality attributes such as security,

modifiability, availability and performance, (85). The technique can help to

provide reasoning about architectural decisions which affect quality attribute

interactions. Safety can be only one of the competing attributes covered by

ATAM and therefore the outcome of the safety analysis should form a core

input to ATAM when the method is used for the analysis of safety-critical

systems (considering safety but also other important systems and business

quality attributes) (58).

2.3.2. Safety Certification

System certification is a very important step and is usually required before the

deployment of safety-critical systems, especially if the system can lead to

accidents and human injury or death, where “it must be certified as adequately

safe according to applicable standards” (86). Ivan defined certification as a

process that is conducted by an independent party to assess whether a product,

method or service complies with a pre-defined set of requirements (87). The

result of the certification process is a written statement, in the form of a

certificate.

2.3.2.1. Standards

For most safety-critical domains, different institutions provide standards to

guide system development and operation. For example, in the aerospace

industry the European Space Agency (ESA) and the National Aeronautics and

63

Space Administration (NASA) define standards relating to their respective

areas. Generally, these institutions are located in different geographical

locations (88). The provided standards address safety issues within the system

as a whole or sometimes only the safety issues relating to a specific aspect or

component of the system (for example, software).

In the nuclear industry, IEC 60880 was introduced by the International Electro-

technical Commission subcommittee 54A (IEC SC 54A) to address safety issues

related to the introduction of software in current nuclear systems. Prior to that,

IEC 60880 addressed only hardware safety in nuclear plants (88). In the UK

Ministry of Defence (MoD), different standards have been developed at the

software and system levels. The DEF STAN 00-55 standard was developed for

software safety and DEF STAN 00-56 was developed for system safety (88).

Kelly (14), Habli (27) and Penny et al. (89) highlight an increased interest in

the goal-based approach over prescriptive approaches, based on the reports

and recommendations provided from different accidents (e.g. the Cullen report

for the Piper Alpha accident).

Generally, there are many standards introduced for the purpose of certifying

software safety (90). As discussed below, these standards can be classified

either as prescriptive /process-based or goal-based standards.

Prescriptive/process-based

Prescriptive or process-based safety standards define a set of requirements

and prescribe the specific means for compliance and the necessary evidence

(91). The prescriptive methodology is based on the accumulated experience

development and operation of a system in a certain environment.

Consequently, when the system is to be located in a new environment or in a

novel situation, it will not be adequate to apply the prescriptive methodology

(91) (89). Hereña asserts that this drawback will limit the extent to which the

standard will be useful.

Technological advances will affect the operations performed within the system.

Over time, this leads to new safety requirements, which may not be addressed

within the system. Thus, the prescriptive methodology is somewhat limited

64

when considering time as a factor in the system lifecycle (91) (89). The

addition of features and functions to maintain the ongoing safety of the system

will contribute to an increase in the cost of the installation and maintenance of

the system (91).

A very important issue to consider is legal responsibility. The provider of the

system should integrate the necessary safety requirements within the system,

and the regulator should ensure that these requirements are accurately

integrated. In the case where these requirements did not prevent the

occurrence of a certain accident, there is likely to be some dispute as to who is

responsible (91).

Goal-based Standards

Goal-based methodologies do not prescribe a process for the development of

safety-critical systems, but require developers and operators to provide

assurance that the system is safe. In many domains, this assurance is provided

in the form of safety arguments that are accompanied by evidence to indicate

that the system safety meets the requirements (92). By providing for different

arguments and their corresponding evidence, the goal-based approach

provides more freedom in developing technical solutions that can

accommodate different standards (89).

Kelly, et al. (93) addressed the challenges facing the goal-based approach.

Basically, the question that should be answered is “how to comply?”. In the

goal-based approach, developers produce a set of arguments and pieces of

evidence which address the safety issues within the system. One challenge is

how acceptable risks should be defined for the system and what is taken to be

the accepted level of risk. Another challenge, which is managerial rather than

technical, is program management and the costs of developing new systems.

As safety is integrated in the system using arguments and evidence. It is

important to establish which arguments and evidence are necessary to satisfy a

particular safety requirement (89). Penny et al. argued that the arguments and

evidence required are related to the significance of the individual system

functions.

65

2.3.3. Safety Cases

In order for the regulators to be able to certify any system, documentation for

the system safety should be presented to demonstrate how the system has met

its safety certification requirements. In general, the system developers should

define a set of safety goals that the system should meet. For each of these goals

(sometimes called claims) an argument and evidence should be presented to

support the goal (94). The collection of these arguments and their

corresponding evidence is called the safety case of the system (14).

Ideally, the development of the safety case should start as part of the

requirements analysis and it should be updated during the different stages of

system development. Any later changes in the system should result in a

revision of the safety case to assess the impact of those changes on the safety

case (89) (14).

A safety case can be defined as:

“A structured argument, supported by a body of evidence that provides a

compelling, comprehensible and valid case that a system is safe for a given

application in a given operating environment.” (95)

So the goals, arguments and evidence should address the target environment in

which the system is designed to operate.

Each system should have a set of goals or objectives that define its safety

requirements within the environment in which it will operate. These goals will

be identified based on different factors, mostly derived from the hazard

analysis and risk assessment process, as discussed above. As a result, it is

logical that these goals can be modified (new goals added or removed) if the

system is relocated to a different environment.

Claims about the achievement of safety objectives should be supported by

arguments and evidence. Figure 13 shows the role of a safety argument in

linking requirements and objectives with specific items of supporting evidence.

It explicitly links and justifies how the evidence substantiates the safety

requirements and objectives.

66

Figure 13: The Role of Safety Argument (14)

One of the aims of the safety case is to evaluate the extent to which the system

meets its safety requirements. It should be developed by the system provider

and audited by the regulator. Thus, it is important that both parties have a

common understanding of the safety case’s contents, i.e. the safety goals,

arguments and evidence. Given the size and complexity of modern integrated

systems, it is expected that safety cases will contain huge amounts of data

generated by analysis of the system. In order to ensure adequate presentation

of the safety case contents, and to effectively address the system safety

requirements, the safety case should be developed using systematic and

organised procedures. There is a strong challenge to provide a readable safety

case that can be easily interpreted by the regulator (14) (96). Cockram et al.

argued that with the huge amount of documentation provided in the safety

case, it might be possible to lose concentration on which arguments are

provided with which evidence, which makes it hard for the regulator to assess

the credibility of the safety case.

2.3.3.1. Safety Case Argument Representation

Safety case arguments can be presented either textually, graphically or in a

tabular format. Each of these has its own positives and negatives.

Goal Structuring Notation (GSN)

The Goal Structuring Notation (GSN) is the most widely graphical language in

industry for representing safety arguments. GSN was developed at the

University of York for defining safety arguments in a graphical format (97).

67

This notation is expressive and structured to develop safety arguments in a

methodical way through capturing the primary argumentation elements.

Figure 14: Principal Elements of GSN (14)

Figure 14 shows the basic elements of GSN such as goals, contexts, solutions,

justifications and assumptions and their relationships. An argument is created

by linking these elements using ‘supported by’ and ‘in context of’ relationships

to form a ‘goal structure (14)’. The goal structure (i.e. claims) can be

decomposed into sub-claims and the sub-claims can be further decomposed

until these can be satisfied by direct solutions (i.e. items of evidence).

The reasoning behind the decomposition is made clear in the GSN strategy

elements. Context elements are used to provide an explicit statement of the

context in which the claim is made. Justifications provide reasons why a

specific strategy is selected, or a particular claim or solution is used. A claim

(GSN ‘goal’) can be supported by quantitative or qualitative evidence,

depending on the nature of the claim. Common types of evidence (solutions)

include the results of the hazard identification or risk analysis. Figure 15 shows

an example goal structure in GSN, taken from (98).

68

Figure 15: An Example Goal Structure

2.3.3.2. Modular Safety Cases

The modular safety case approach (99) was developed in order to allow the

development of a baseline safety case which can be used to reflect additions to

or modifications of the system. The approach was developed as a means of

managing safety cases for modern, large-scale integrated systems.

Furthermore, the modular safety case aims to limit the size of changes in the

safety case that are due to the changes in the system structure. In the

conventional safety case approach, an independent safety case will be

developed for each configuration of the system, which will dramatically

increase the time and cost requirements of the certification process. In the

modular safety case approach, it is possible to have different variants of the

safety case. Each variant is related to one of the system configurations (99).

In the modular safety case approach, a safety case can be partitioned into

modules both vertically and horizontally. The partitioning will be based on the

top-down progression of the objectives-argument-evidence (100). In vertical

partitioning, certain argument claims can be used as objectives for another

safety argument, while in horizontal partitioning one argument can provide the

assumed context for another.

69

As different modules are inter-related with each other, it is important to define

the dependencies between these modules. Explicit interfaces can be defined

between safety case modules. The safety case module interface can be

represented as follows (99):

1. Objectives addressed by the module;

2. Evidence presented within the module;

3. Context defined within the module;

4. Arguments requiring support from other modules

Inter-module dependencies;

5. Reliance on objectives addressed elsewhere;

6. Reliance on evidence presented elsewhere;

7. Reliance on context defined elsewhere.

When developing a modular safety case, the argument contained within a

single argument may fail to support all the module claims. Thus, some

argument modules can be used provide arguments and evidence to support

claims that are recorded in other argument modules. However, within any

composition, objectives and arguments from different modules should

complement each other. Furthermore, the evidence in different modules should

not be contradictory, and the context of each module should be consistent with

the context of the other modules in the composition.

In compositions, the rely-guarantee approach is used to capture the modules’

behaviour within the composition. In the safety case module interface defined

above, item 1 will provide the guarantee and items 4-7 will provide the rely

conditions. Items 2 and 3 must hold as the composition is being developed.

Graphical extensions for GSN have been provided to handle the modularity of

the safety case (99). The first extension to GSN is the representation of the

modules, which is a package notation imported from UML. In the module

notation goals supported by other modules are represented as Away Goals

(101). Further extensions have been developed to allow the link between an

argument in a certain module and context and evidence that exist in another

70

module. To support these links the Away Context and Away Solution are

introduced.

In GSN, a safety case module interface is defined as follows (99):

1. Goals addressed by the module;

2. Solutions presented within the module;

3. Context defined within the module;

4. Goals requiring support from other modules.

Inter-module dependencies are captured by:

5. Away Goal references;

6. Away Solution references;

7. Away Context references.

The process of composing different modules to form a safe composition should

be carefully performed, to ensure that the resulting argument consists of well-

defined modules that are correctly connected and interdependent. Three main

steps for the composition of safety-case modules are identified by Kelly (99)..

These are: Goal matching, Consistency checks and Handling cross-references.

At each step, different related issues will be investigated to ensure proper

composition of the modules.

While performing the composition of the different modules, documentation for

the relations between the different modules should be developed as a safety-

case contract (99). This will help in understanding the relationships between

the different modules, and to assess whether the composition still holds if the

context changes, or if one of the modules is modified or substituted. The

contract must record all the away goal and solution references that had been

exploited by the composition (99).

The safety case architecture will be similar to the system architecture. The

main principles for this are: high cohesion/low coupling, supporting the

division of work and contractual boundaries, supporting future expansion, and

isolating change (100). Research into the development of Integrated Modular

Avionics (IMA)-based systems adapted safety case architectures based on the

71

modularity of the safety case, which corresponds to the modularity in the

system itself (99). Adopting this architecture, the safety case can be divided

into modules, and the cross-references between the modules can be

represented as well.

In modular safety cases, and based on the principle of isolating change,

arguments that are likely to change will be separated in standalone modules. In

the case of change, only those modules affected by the change require

reassessment; it is assumed that the other modules in the safety case are

unaffected. Although it might be possible for the interface of the module to

change (which requires changes to the contract to be made), the paths that

require revision in the safety case can be identified easily. The changes should

be limited to the specific module in which the change occurred and the

interfaces connected to other modules within the safety case.

The final architecture of the system and its corresponding safety case should be

evaluated to ensure that they meet the architectural quality attributes, such as

scalability, performance and modifiability. Different evaluation techniques have

been proposed, either for the system as a whole or for the software element of

the system. An example is the Software Architectural Analysis Method (SAAM)

(102).

Figure 16: Activities in SAAM Analysis (102)

SAAM proposed a systematic evaluation process for the system architecture

that is modular, as shown in Figure 16 (102). Each step in the method performs

the necessary evaluation for a certain module or set of modules within the

architecture, trying to identify the required changes to the architecture and the

effort required to enact these changes. Generally, changes will be at one of

72

three levels: local to a certain module within the architecture, for a set of

modules within the architecture, or for the architecture as a whole.

GSN: In our work we use GSN to develop SOA safety cases using the modular

and pattern extensions of the notation. We applied GSN for defining argument

modules and patterns which capture the different argument structures for

assuring services and their design and constrain variation in SOA safety cases.

Modular safety cases have been adapted for different applications. For example,

they have been used to provide assurance for Integrated Modular Avionics

(IMA) (103), for operating systems (104), for Objected-Oriented systems (26),

for COTS (105) (106), for Kernels (107) and for product lines (27).

2.3.3.3. Modular and Incremental Certification

The introduction of the modular safety cases technique inspired proposals to

concerning the adaptation of the certification process. By limiting the effects of

change within the safety case, and safety assurance work, modularity

theoretically allows for the limited certification of certain system elements: the

effort required to certify changes from a previously-certified baseline in a given

composition should be smaller than re-certifying the entire system. By

adopting the same modular and incremental approaches, the certification

process simulates the modularity of the safety case (108). Thus, in theory, the

re-certification of a system due to any change or addition to the system should

only require the assessment and evaluation of the changes, which will limit the

re-certification effort to the size of the changes, rather than to complete

recertification of a complex system.

Rushby (109) proposed an approach based on the concept of assume-

guarantee reasoning. By investigating the presence of failures, the approach

will extend from verification into certification. However, the approach requires

the use of partitioning, whereby a single module can be reused within the

system, or can be deployed in another system. This approach is based on the

modular certification process proposed for IMA (103), where certification of

the system can be performed based on a modular safety case, which facilitates

73

the certification of the changes in the system, by focussing on certification of

those modules involved in the change and their interfaces.

In traditional certification, the cost of the re-certification is related to the

system’s size and complexity, as recertification typically requires the

development of a new safety case, in total, in response to the system changes.

With the introduction of modular safety case and certification approaches, it

became possible to relate the cost of the re-certification to the size and

complexity of the changes, which will dramatically decrease the total cost of re-

certification, especially in the case of small changes to large systems (110).

The project conducted by IAWG investigated the construction of modular safety

cases and proposed a methodology for incremental certification in the UK

defence avionics domain. In the case of any changes to the system or its

proposed operating environment or use, evaluation of these changes will define

where changes are also required in modular safety case relating to the system.

In most certification regimes, any changes to the system safety case require a

re-certification process to be performed. In the case of modular safety cases,

the re-certification will be only performed on the parts of the safety case that

have actually changed, or which address aspects of the system design which

have changed. The process is called an incremental certification process. Fenn

et al. (108) assert that the incremental certification process is still immature.

The IAWG modular certification process defines a series of systematic steps to

assess where change is required in the safety case and what concerns must be

addressed. These steps start by identifying the change scenarios, then

performing optimisation for the safety case architecture, followed by

identifying the Dependency-Guarantee Relationships (DGR), and finally

building the safety-case arguments. These steps are discussed in detail in Fenn

et al. (108).

Although the modular and incremental certification processes are expected to

have benefits over traditional certification processes, these approaches cannot

be considered suitable in all cases. As part of the IAWG project, five key criteria

were identified to ensure that applying modular and incremental certification

approaches are likely to be beneficial in a given case. The five keys are: distilled

74

set of change scenarios, re-use, and modularity, use of COTS and vendor co-

operation, and size and complexity of the system (108).

2.3.4. SOA and Safety

For an SOA system that is considered to be safety-critical, or has any safety-

related impact on humans in particular or on the environment in general, a

certification process is often conducted to ensure that the system is safe to

operate in its designated context.

In Section 2.2, we discussed SOA designs. The discussion included the SOA

lifecycle, tactics, design patterns and system modelling. In Section 2.3, we

discussed the different issues related to the safety of the system. This includes

defining the safety requirements, developing the system safety case and the

certification process.

The aim of this section is to discuss published work related to SOA safety. In the

following, a review will be carried out on existing work on SOA applications for

safety-critical systems and safety assessment.

Existing work on SOA has lacked sufficient consideration of potential safety

applications. Only one paper could be found in the literature (16) on the use of

modular safety certification for SOA. However, there is published work which

touches on some safety aspects of SOA.

Donini et al work focused on testing safety-critical SOA-based systems through

the adoption of a classical SOA to build an environment for safety-critical

control systems (111). They provided indications on the integration of SOA

system architecture components with existing centralised testing

environments by addressing concrete test objectives. Specifically, they

provided a test framework where automated functional testing is presented in

an external simulated environment based on SOAs. They also conducted

functional system testing via simulated environments which can be an

approach to minimising test sets. The test sets defined were representative of

an actual operational usage profile for a railway interlocking control system.

Rychlý has created an approach to representing the behaviour of services

within SOA and their implementation through algebra π-calculus (112). This is

75

represented by using the case study of Donini et al (111) based on a railway

interlocking control system which is driven by an SOA design (113). Detailed

description of the SOA and all its services is introduced in (112).

The researchers in (114) proposed a framework for using SOA in non-critical

parts of safety-critical embedded systems. This allowed the use of Smart Sensor

Interfaces (SSI) and Smart Sensor Protocol (SSP). SSI can facilitate the

integration of the payload on a UAV represented by sensors. SSP can be used to

exchange information to decide the requirements for mission accomplishment

(114). Based on an SOA design, the paper demonstrates that the real-time

performance is compulsory and has to be guaranteed under different

circumstances.

In (115), the authors proposed a Knowledge-Based Framework for

Dynamically Changing Applications. The framework uses the dynamic

definition of web services, based on a specific system configuration, the

availability of the web service component and the database with predefined

context information. The framework allows the monitoring of the information

to generate services with different levels of security, reliability as well as

performance, in a dynamic way. Nevertheless, the implications of SOA systems

for safety certification are not well explored.

The above pieces of work are different from our work. Although they consider

safety-critical systems, they do not cover any aspects of safety analysis and

safety cases.

The researchers in (116) have developed a methodology for risk management

within SOA to address risks, threats and vulnerabilities, through using the

Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE),

National Institute of Standards and Technology (NIST) and Factor Analysis of

Information Risk (FAIR). These techniques can be used to provide assurance to

changes within safety requirements (116). Similar to our work, they produce

safety requirements at different stages of development. They present a

development model based on five SOA layers where each layer is composed of

phases. These phases have activities, which can be subdivided into tasks, which

are the subject of the safety analysis. Their work is similar to our work as far as

76

safety analysis is concerned. However, it does not cover any aspects of safety

cases or any interfaces between design and modelling, and safety analysis.

Brown et al have addressed the issue of assuring SOA designs using modular

safety cases. Similar to our work, they used GSN to create these safety cases

(16). They have raised some challenges to safety when using an SOA style.

These are related to:

 System/service requirements

 System safety certification

 Safety certification throughout the system development lifecycle.

They introduce the problems and propose a high-level methodology for

creating a safety case within the military aviation domain. Brown’s argument is

meant to support the flexibility of compositional features in SOA, while

simplifying the safety certification and accreditation of SOA-style systems (16).

However, their work was limited in scope, focusing on an example application

rather than creating an integrated framework for modelling, analysing and

assuring the safety of SOA in safety-critical applications.

2.4. Chapter Summary

In this chapter, we reviewed the definitions, features and lifecycles of SOAs. We

discussed the SOA system architecture and gave an overview of the core

elements of SOA covering the SOA design patterns and notations used for SOA

modelling. We introduced the concept of system safety, and introduced safety-

related issues and certification processes and discussed the most common

elements of concern in system safety engineering, such as the overall system

safety process, safety analysis, risk assessment, risk management, safety

requirements and safety tactics. In addition, we explained techniques which are

commonly applied to address these elements. Then we moved on to discuss

safety certification and safety standards. We considered the concept of safety

cases in some detail addressing approaches to safety-case development,

challenges for the safety-case approach, and argument representation

techniques. Finally, we reviewed the concept of modular safety cases and its

application for modular and incremental certification.

77

Chapter 3

3. SOA Safety Assurance

Framework

3.1 Introduction

The literature review in Chapter 2 covered key issues related to the

development and assessment of SOA. In particular, it considered the safety and

dependability properties of SOA and related architectures, such as cloud

computing and SoS, used in critical industries. Based on the review of current

literature concerning SOAs and safety-critical systems, the following

observations can be drawn:

 There is a shortage of research on the use of SOAs for the development

of safety-critical systems.

 There is a lack of systematic safety assessment processes and methods

that address the special features of SOAs such as composibility.

 There is a lack of safety assurance strategies in the form of safety

argumentation and evidence to justify why the use of SOAs in safety-

critical applications is acceptably safe.

In this chapter, we introduce and define a conceptual framework for SOA safety

assurance. This framework is discussed in the context of architectural

modelling, safety analysis, safety certification and tool support, and methods to

support the framework are proposed. These methods are explained in more

detail in Chapter 4 (SOA Safety Analysis) and Chapter 5 (SOA Safety Cases).

78

3.2 Conceptual Framework

The main aim of the SOA safety assurance framework presented in this chapter

is to provide a systematic means to understand and analyse how SOA can

contribute to safety and hazards and how safety justifications can be provided

by means of structured and explicit safety cases. The framework is summarised

in Figure 1.

Figure 17: SOA Safety Assurance Framework

Figure 17 shows the four aspects that have been considered and developed in

order to address key concerns about SOA safety: modelling, safety analysis,

safety cases and automated support and tooling:

 Modelling is used to represent the structure and behaviour of the

service-based system, developed against a variety of design styles. This

covers the design of the services, contracts and interactions and the

specific tasks and flow of information used for realising the SOA design.

 Safety analysis results are used for understanding the failure behaviour

of the SOA and specifying safety requirements and design tactics to

control the risk of any hazardous failures. The framework adapts and

develops two safety analysis techniques for understanding service

79

hazards and examining how the system failure behaviour can contribute

to the occurrence of these hazards. In early safety analysis, engineers

designing services used in safety-critical applications need to define

safety requirements that address the risk of any hazardous behaviour

posed by these services and ensure that the design of the SOA explicitly

meets these requirements.

 Justification of the safety of the service-based system is communicated

through the development of an explicit safety case. A safety case is a

structure that comprises an argument and evidence that present the

reasoning for why that system is safe for a given application in a given

environment (99). In our framework, the safety case is based on the

results generated from the SOA models and safety analyses.

 The tool-support environment provides automated capabilities for

building the SOA models, applying the safety analysis and developing

the safety case for the system. The tool environment, developed during

this PhD research, also provides means for ensuring traceability

between the modelling, safety analysis and safety case artefacts.

In short, the SOA safety assurance framework proposed in this thesis provides

a methodical basis for integrated design and analysis of service-based systems,

with explicit consideration of hazardous behaviour and safety justification.

3.3 SOA Modelling

This section introduces the modelling languages that are used in our

framework for specifying the services and the dynamic processes for SOA-

based systems. These modelling languages are employed in order to provide a

holistic view of the design elements of the SOA within the system, considering

structure and behaviour which are important for the safety analysis, and to

generate models which can be understood by stakeholders with different levels

of technical background.

In terms of the structure of the SOA, the types of concern covered by our

modelling include:

 Services

http://en.wikipedia.org/wiki/Modeling_language

80

 Interfaces

 Contracts

 Operations

 Actors

The modelling language we use for specifying the above structures is SoaML

(117), which was reviewed in Section 1.7. SoaML models are based on a

modular description of the SOA in which related Contracts, Interfaces and

Operations are encapsulated in, and provided by, self-contained Services. SoaML

allows for the specification and analysis of the requirements for each Service,

including the safety requirements, which is an important feature of the

language for dealing with safety-critical services. Further, SoaML can provide

an explicit description of Services in terms of actors, or Participants, which

realise and implement these Services.

The proposed framework models SOA behaviour, including behaviour that can

lead to hazardous events, using BPMN to describe the processes and the

information flows in the SOA design. BPMN captures the dynamic Tasks and

Flows implemented in the SOA design. BPMN allows the modeller to

communicate and represent internal procedures, based on processes, in a

graphical and structured notation. In our framework, BPMN is used to

understand and analyse the detailed failure behaviour in a service-based

system and how this can contribute to service hazards. However, the

conceptual framework can be seen as a notation-independent solution. Any

notation which has sufficient power to model the structural definition of

services and their behavioural implementation could be used as part of the

framework. There are many alternative languages which could reasonably be

used: each modelling language will have subtly different approaches, but the

concepts required by our framework are sufficiently generic that the choice of

language does not affect the application of the framework. In this thesis, SoaML

and BPMN are used as the two main modelling languages in order to illustrate

more concretely the concepts and the methods that are developed as part of

the framework, and to show how traceability can be achieved between the

81

structure and behaviour of the SOA design (as an input for the safety analysis

and safety case methods).

3.3.1 Modelling SOA Services in SoaML

As stated above, SoaML is intended to model the structure of the services that

comprise an SOA-based system in terms of Participants (Consumers and

Providers), Services Architecture, Service Contracts, Service Interfaces and

internal Operations. It is focused on the integration of Participants into the

Services Architecture model using Service Contracts, which capture the Service-

Level Agreements (SLAs). In our framework, this level of detail is important for

understanding how services can be hazardous and how Contracts, Interfaces

and Participants can contribute to service hazards.

In addition, SoaML can help identify and specify policies for providing and

using the services and classification schemes. We use this to support the

definition of severity classification schemes when applying SOA safety analysis

and their effects on the safe operation of the system.

The SoaML specification describes the services provided by the architecture,

including different areas that can be useful for safety analysis. Participants are

used to model the service Providers and Consumers within the system. This can

help in understanding how service Providers and Consumers can potentially

deviate from the intended behaviour and contribute to unsafe failures. The

interactions between Participants are through service Contracts. Service

Contracts are used to explain the interaction among service entities. Like

Participant failures, communication failures can also contribute to unsafe

failure behaviour, via deviations from the intended Contracts.

Service Interfaces are used to define the Operations that are offered by

Providers and are available for Consumers in an SOA. The technical Interfaces

include signatures of Operations that include the names of the Operations, the

parameter types and the return types of the Operations. Since Interfaces are

used to specify the input and output values for the processes, failures such as

the loss of data or the provision of incorrect descriptions of data via these

Operations could lead to unsafe behaviour of the system. These failures could

82

also delay the Operations within the system and might contribute to service

hazards.

Services Architectures are the diagrams used to describe the main components

and communications within the system and how Participants work together

using Services. Contracts are used to display the relationships between

Participants and Services. These relationships can help to identify the effects of

failures within the Services and Participants, clarifying the level of severity and

deriving the safety requirements that are specific to the Services.

In summary, SoaML provides a structured basis for modelling the high-level

services and their interactions, including interfaces. This is necessary to

perform hazard analysis on service-based systems.

3.3.2 Modelling SOA Processes in BPMN

The framework uses BPMN as the modelling notation for specifying dynamic

processes in the SOA design. The BPMN model specifies the behaviour of the

processes underlying the services and identifies Tasks, such as Script Tasks and

User Tasks, as well as Sub-Processes, Gateways, Sequence Flows, Pools and Lanes.

It also describes how messages are exchanged and coordinated between

Participants. The diagram describes the execution of processes within an SOA

system and provides a key input for understanding both the intended and

failure behaviour of the system. This is a key prerequisite for performing

detailed safety analysis of the low-level behaviour of services and their

interactions.

A key concern in SOA safety is understanding how interaction failures can lead

to hazards. BPMN models focus on the orchestration of tasks that implement

high-level services in business processes. This includes specification of the

choreography and collaboration between interacting processes. Defining and

understanding these interacting processes is key for analysing the failure

behaviour of the services.

Another area of concern for understanding the safety of system behaviour is

the flow of information and control within the SOA. Service-based systems tend

to be information-intensive: key decisions are based on the information

83

processed by the system and provided by different services and participants.

Analysing the failure modes associated with information flows is necessary for

analysis of the safety of the SOA system, and BPMN provides a structured

means for capturing the flow of information and understanding the

consequences of any potential deviations.

The BPMN process defined in our framework can help engineers to focus their

analysis of the low-level service behaviour under different situations and

timing conditions. Each process captures the tasks that should be done by the

identified service Participants and the coordination between them. The timing

of messages between processes has to be scheduled, in order to clarify the

overall duration for each process, or the worst-case timing behaviour. This

enables the analyst to see how timing failures can contribute to service failures.

Some of these failures might be hazardous.

In summary, BPMN provides a detailed representation of the execution

mechanisms underlying the high-level services and is used as a basis for the

detailed failure analysis of the service-based system behaviour.

3.3.3 Traceability between SoaML and BPMN Models

In our framework, the SoaML models, used for defining the services, and the

BPMN model, used for specifying low-level behaviour, are linked explicitly at

the model level.

Figure 18: Link between SoaML and BPMN Models

84

 As illustrated in Figure 2, Services in SoaML interact through defined

Contracts. These Contracts have explicit Interfaces that offer a number of

Operations. We link each of these Operations to a Task in BPMN, thus enabling

traceability between the different models at different abstraction levels.

Further, we represent every Participant in SoaML as a Swimlane in the BPMN

model. A link between two BPMN Tasks should capture the information flow in

terms of inputs, outputs, data, sequence and timing. The explicit traceability

between the various SoaML and BPMN models is necessary for assuring

consistency in the SOA safety analysis and safety cases. The interaction

between the SoaML and BPMN models is explored in detail in the next section.

3.4 SOA Safety Analysis

This section introduces the two safety analysis techniques we propose for use

in hazard and failure analysis for SOA-based systems. In the design phase,

safety analysis is used to derive the necessary safety requirements that define

the basis for ensuring that the SOA system developed is acceptably safe. Safety

analysis is carried out as part of a safety management process, which forces

explicit consideration of the system safety level and the system deployment.

The analysis allows for identification of the system-level hazards associated

with the services and their interactions and of the potential failure modes that

can contribute to these hazards.

The consideration of hazards and failures is a fundamental issue for service-

based applications used in the safety-critical domain. It is important to

implement the analysis of the hazards, identify them, evaluate their effects,

identify the severity of the hazards and then provide the necessary measures to

manage the service hazards. The service hazard analysis technique proposed in

this thesis helps to identify the top-level conditions that may lead to unsafe

system events.

The safety process should be designed to address factors within the system and

its environment which potentially affect the design and operation of the

service, e.g. the size of the company, the structure of the system, the industry

the system is operating in and the applications the system is used for (Leveson,

1995). A safety process will have different activities, depending on the SOA

85

system that is being investigated, with specific reporting requirements for each

activity. Each activity will result in a detailed documentation of results.

Applying safety analysis to an SOA system should determine the safety

requirements for the services and processes and provide evidence for the

processes of assuring that the system is acceptably safe. In addition, safety

analysis will affect the ability of the system to be deployed.

The framework uses and adapts two existing safety analysis techniques,

namely Functional Hazard Assessment (FHA) (118) and Software Hazard

Analysis and Resolution in Design (SHARD) (72) and tailors them to the

analysis of individual services and SOA processes. The aim of these techniques

is to provide a systematic basis for identifying and analysing hazardous

behaviour associated with the SOA system (e.g. hazards due to lack of

information, or due to incorrect, information). The system safety team can thus

decompose high-level safety criteria into readable and detailed subsets, which

can be used by the design team to develop the SOA system (73). Safety analysis

should also be performed to assess the risk associated with each of these

service hazards and to identify measures for managing the risk.

The rest of this section considers the safety analysis of both services and their

underlying behavioural processes, considering service hazards and the failure

modes that can contribute to these hazards.

3.4.1. Safety Analysis of Services

The framework proposes to perform safety analysis for services modelled in

SoaML, through adapting FHA as a means for identifying and classifying service

hazards. A service hazard is a condition associated with the service, or its

interactions, that can lead to an accident. This thesis defines an adapted FHA

technique for identifying and analysing service hazards, which we have called

Service Hazard Analysis (SHA). SHA addresses individual services, considering

their associated hazards, the effects of these hazards at different levels and the

severity classification of these effects. Based on these factors, SHA provides

suitable actions or recommendations for creating safety requirements for the

service.

86

In terms of the “V” safety lifecycle model discussed in Chapter 2, we adopt this

technique to consider early lifecycle hazard and risk assessment. At this stage

of the conceptual design, the analyst has to consider broad hypothetical failure

types, since the system has not yet been implemented and detailed hazard

analysis is therefore not possible. These failure types are generic and consider

issues such as the complete absence of the service, unintended service

provision or incorrect service operation. Each of these failure types will have to

be interpreted and classified in the specific context in which the system is used.

In summary, in our framework, SHA provides a list of service hazards, their

safety classification and a set of requirements needed for managing those

hazards through subsequent design, development and deployment activities.

SHA is described in detail in Chapter 4.

3.4.2. Safety Analysis of SOA Processes

In order to identify and assess the design failure modes that can contribute to

service hazards, we have adapted the SHARD technique to provide a means for

understanding detailed service failures. We call this technique Service Failure

Analysis (SFA).

SHARD, which provides the basis for SFA, is one of several software and

hardware safety analysis techniques which address information and control

flow and intended behaviour and how failures within information flows in

particular can be lead to hazards (72). SHARD is a variant of the hazard and

operability study (HAZOP) technique (119). In our framework, SHARD has

been adapted to analyse the flow of information between the Tasks

represented within the SOA processes (captured in the BPMN models). The

analysis identifies a series of failure modes, and is driven by the application of a

set of guidewords to each information flow. The guidewords are omission,

commission, early, late and value. These guidewords are used to define the

types of failure modes that may occur during the execution of the SOA process.

Each of these failure modes is then associated with specific service faults linked

to existing SOA fault taxonomies (i.e. potential causes). It then identifies the

effects of the flow failures. The output of this analysis is a set of derived safety

requirements.

87

More specifically, SFA starts by defining the deviations that could potentially be

exhibited in behavioural SOA processes. These deviations are identified by

applying and interpreting the abovementioned guidewords against information

flows defined between the Tasks modelled in BPMN. To make the analysis

specific to SOA failures, the causes of each potential deviation is linked to a

specific type of fault as defined in the SOA fault taxonomy used in this thesis

(Chapter 4). Next, the impact of each flow deviation is assessed in terms of the

contributions that it could make to the service hazards (i.e. as identified in

SHA). Finally, SFA produces detailed safety requirements and design measures

for potentially meeting these requirements i.e. in the form of specific SOA

design tactics. These tactics are based on existing safety tactics in the software

architecture literature or SOA-specific dependability tactics (e.g. which are

centred on the use of service redundancy, diversity, graceful degradation,

monitoring and containment) (120).

3.4.3. Use of SOA Fault Taxonomies in SFA

A typical SOA has five major steps in its execution, namely: service publishing,

service discovery, service composition, service binding and service execution.

Each of these steps may be exposed to faults when running an SOA-based

system. If faults are not detected, they may lead to failures at the service and

system level (some of which are hazardous). The SOA literature covers ranges

of faults identified and categorised by the community (i.e. SOA-specific faults

rather than general system faults). One of the most thorough fault taxonomies

for SOA was defined by Bruning, Weissleder and Malek (121). This taxonomy is

well structured and categorises faults based on the SOA lifecycle phase. Fault

types in the fault taxonomy are used in our framework as prompts or hints for

safety analysts when performing SFA rather than as an exhaustive list of all

possible SOA faults.

3.5 SOA Safety Cases

Safety certification often requires a safety case to be constructed in parallel to

the development of a safety-critical system (14). In this section, we discuss the

approach we developed to constructing SOA safety cases using the modular

and pattern extensions of GSN (99). We use the Goal Structuring Notation

88

(GSN) (97) to define modules and patterns which capture the different

argument structures for assuring services and their design and constrain

variation in SOA safety cases. The modular safety case and catalogue of

argument patterns we have developed for SOA are introduced in the next two

sections and described in detail in Chapter 5.

3.5.1. Modular Safety Case Development for SOA

The SOA safety case architect plays an important role to put together

information regarding the safety conditions and safety requirements, based on

the SOA safety analysis described in Section 3.4 above, in order to capture the

safety reasoning and provide assurance about the safe behaviour of the SOA-

based system. In order to improve traceability, it is desirable for a safety case

to have a clear correspondence with the design of the system. Essentially, an

SOA is a modular architecture, where each service represents a separate high-

level module with defined interactions. In this thesis, we adopt the notion of

modular safety cases and examine how modularity in the assurance case can

correspond to the modularity in the design of the SOA.

More specifically, the Goal Structuring Notation (GSN) is used to represent a

series of safety argument modules (93). A GSN argument module is a self-

contained structure which represents the argument relating to a specific aspect

of the safety of the system and the evidence which supports the argument. A

modular safety case comprises several linked argument modules, each

concerned with a discrete element of the system, which combine to provide

assurance for the system as a whole. Modularity in the definition of services in

SOAs lends itself to the concept of modular safety cases. Services and

participants are self-contained system elements that interact through

predefined interfaces (e.g. provided through SLAs). Service owners or

producers often rely on other services when guaranteeing and providing their

own services (122). Similarly, claims in certain argument modules can only be

said to be substantiated (the guarantee clause) if claims or evidence are

available in other argument modules to offer sufficient support (the rely

clause).

89

Figure 19: SOA and Modular Safety Case Correspondence.

Figure 19 gives an overview of the key modules in the design and safety case of

an SOA, as considered in this thesis. We enforce a traceable relationship

between the high-level SOA design, as captured in SoaML

(ServicesArchitectures), and the overall SOA safety case, as defined in modular

GSN. For each service in the SOA, we create a service argument that addresses

the hazards posed by the service (based on the results of SHA), i.e. the

argument provides a justification for how the service hazards have been

managed. Similarly, for each participant, we create a safety argument that

justifies the contributions that the participant makes to service hazards (based

on the results of SFA). Furthermore, participants interact through defined SLAs

in order to provide and consume services. These interactions between

participants can contribute to safety and therefore their assurance is addressed

in explicit safety argument contracts.

3.5.2. Pattern Catalogue for SOA Modular Safety Cases

As outlined in Section 3.4, the safety analysis of SOA follows a structured,

though implicit, line of reasoning: an SOA-based system is acceptably safe

because all credible service hazards have been identified and managed. This is

supported by the evidence from the analysis of services and their interactions

provided by SHA. Furthermore, this line of reasoning is supported at a lower

level through the analysis of the technical failures that contribute to the service

SOA Design
Structure

Services

SLAs

Participants

SOA Modular
Safety Case

Service
Arguments

Safety
Argument
Contracts

Participant
Arguments

90

hazards. This is supported by the results of the analysis of tasks and flows

provided by SFA.

In this thesis, we propose a set of argument patterns to capture this line of

reasoning (123). The main objectives are to ensure consistency across modular

arguments and to allow the safety analyst to reuse the argument patterns as a

basis for the safety assurance of different SOA-based systems. The argument

patterns catalogue we propose for SOA safety cases (99) is presented in

Chapter 5.

The SOA safety argument patterns catalogue provides framework argument

structures to address aspects of the safety of using an SOA system within a

specific safety application. Although the argument patterns in the catalogue are

separately defined, they are directly related to each other to inform the

development of an overall modular argument structure. Therefore, the SOA

argument patterns catalogue includes rules for pattern composition and

traceability to the architectural design (i.e. SoaML and BPMN models) and

analysis (i.e. SHA and SFA).

Figure 20: SOA Argument Patterns Catalogue

The SOA safety argument pattern catalogue developed in this thesis consists of

three individual arguments and one argument contract (Figure 4). These

patterns are established according to an overall hazard-directed argument

(Top Argument), which is supported by a number of Service Arguments, SLA

Argument Contracts and Participant Arguments. These patterns are composed

91

together to form a complete justification regarding the safety of the overall SOA

system design. The pattern we have defined enable us to present the argument

regarding the safety of the SOA system from the perspectives of both the

Services and the Participants. The SOA safety argument pattern catalogue is

explained in detail in Chapter 5.

3.6 Automated Support and Tooling

This section presents an overview of the automated support that was

developed for the safety analysis and assurance of SOA and the tolling

environment used to implement it. This covers the three main elements of our

SOA safety assurance framework: modelling, safety analysis and safety cases.

Figure 5 shows an overview of the integrated tools that have been used to

support our SOA safety assurance framework. The main capabilities of the

tooling environment are as follows:

1. Create SoaML and BPMN models

2. Create and integrate SLAs into the SoaML models

3. Integrate BPMN and SoaML models

4. Execute BPMN models

5. Embed SHA results into the SoaML models

6. Embed SFA results into the BPMN models

7. Create GSN-based arguments and patterns

In order to represent SOA, we implemented most of the models in Eclipse

(124). Eclipse is an open source Integrated Development Environment (IDE)

platform that provides support for creating, deploying and managing software,

and which can be extended in terms of frameworks, runtimes or tools. For

service modelling, the SoaML plugin is the tool used to model SoaML inside

Eclipse. It was extended from Papyrus (125), which is an Eclipse plugin for

creating UML models such as SysML, UML and UML profile. For BPMN

modelling, Activiti Business Process Management (BPM) was selected. Activiti

BPM is an open source and lightweight workflow platform for BPMN that

supports BPMN 2.0 specification for modelling and execution. (126).

92

Figure 21: Overview of SOA Safety Assurance Tools

To create a business process, Activiti BPM provides solutions based on an

Eclipse plugin and a web-based modeller called Activiti Modeller. The Activiti

Engine can be used to make the business process executable. Moreover, Activiti

has an Activiti Explorer which is a web application for testing or simulating

instances of business processes. These executable features are useful for the

analysis of the dynamic processes underlying the SOA architecture.

In order to support the SOA Safety Assurance Framework presented in this

thesis, we implemented an integration basis between SoaML and BPMN models

in order to improve the traceability between the design of the services (mainly

structure) and their underlying processes (mainly behavioural). We also

extended the Activiti modelling environment with capabilities to support the

documentation of the SLAs for services and the results of SHA and SFA by

providing automated means for displaying the safety analysis for both services

and flows between tasks.

3.7 Summary

In this chapter, we introduce a conceptual framework for SOA safety assurance

and the tooling we have developed to support it. The framework defines how

SOA system modelling, safety analysis and safety certification captured in such

a way that they can be integrated with each other. The chapter introduces the

modelling languages and approaches that the framework uses for specification

of the services and dynamic processes in SOA-based systems. It introduces

methods for identifying service hazards and potential failure behaviour in an

93

SOA system design. It also proposes the use of GSN modules and patterns to

define the different argument structures for assuring services and their design

and constrain variation in SOA safety cases. The last section presents an

overview of the automated support that was developed and the tooling

environment that was used for the safety analysis and assurance of SOA.

Subsequent chapters of this thesis examine the elements of the framework in

more detail. In the next chapter, we consider the two SOA safety analysis

techniques that this thesis has adapted: SHA and SFA.

94

Chapter 4

4. SOA Safety Analysis

4.1 Introduction

In this chapter, we propose a process for the safety analysis of SOA that is

integrated within the engineering of service-based systems. The safety analysis

techniques presented here capture and examine hazards and failure

behaviours relating to services and tasks, respecting the ways in which these

services and tasks are defined in the SOA context. The techniques are

illustrated using a real-world case study from the healthcare domain.

The SOA safety analysis is an essential stage in the definition of the SOA safety

requirements. Similarly, producing these requirements successfully can

provide useful input to an integrated and verifiable approach to assuring the

safety of the SOA system.

This chapter presents two safety analysis techniques for examining an SOA

design and generating the necessary safety requirements: Service Hazard

Analysis (SHA) and Service Failure Analysis (SFA). The safety requirements

generated from this analysis provide the basis for integrating safety

considerations into the design of the system. For example, issues raised during

the analysis can be used to inform the choice of of architectural tactics used in

design. The analysis also emphasises the interactions between services and

tasks in order to identify failures in the behaviour of the interactions which

could contribute to service hazards within the service-based system, and thus

potentially to accidents. The results of these safety analyses should help

prevent the occurrence of failures and hazards by defining and enforcing a set

95

of Service Safety Requirements (SSRs) at the service level and Derived Service

Safety Requirements (DSSRs) at the more detailed design level (e.g. tasks and

flows implementing services).

As described in Chapter 3, this thesis proposes a framework for modelling the

design and analysing the safety of SOA systems and for providing assurance

that the system is acceptably safe. In this chapter, we consider the

identification of potential safety deviations that are of interest in an SOA-based

system and suggest suitable mitigation design measures for addressing these

deviations.

This chapter is organised as follows. Section 4.2 introduces a case study, which

is used to illustrate and evaluate the SOA analysis methods we propose. Section

4.3 provides a detailed explanation of SHA, with reference to its application in

the case study. Section 4.4 discusses SFA and how it has been applied in the

case study. Section 4.5 describes the implementation of these SOA safety

analysis techniques in the tool-suite developed in this research.

4.2 SOA Healthcare Case Study

An SOA provides a “paradigm for defining how people, organizations, and

systems provide and use services to achieve results” (2). For healthcare services,

the SOA paradigm can assist in the assessment of patient safety, in which

accidents predominantly occur as a result of a combination of human,

technological and organisational failures (127). SOA-based systems can lead to

people being harmed or property being damaged. For example, patients might

be harmed due to loss of their health records.

The first case study undertaken for this thesis was the analysis of part of an

ambulance system. The case study includes a general overview of the

ambulance and Electronic Health Record (EHR) services in the healthcare

domain. The system focuses on one medical pathway that considers the

processes and services that are used to transport pregnant women. These

processes and services were adapted from the UK National Health Service

(NHS) Map of Medicine (128). The ambulance system is based on the

description provided in (129) (130). In this study, we have performed

96

additional modelling beyond that presented in in this Chapter (please see

Appendix A). Also, we have not covered other medical processes which are out

of the scope, e.g. childbirth services.

The objective of this case study is to provide rapid feedback on the techniques

we have developed, and to also illustrate the application of the safety analysis

methods and safety case approach. The case study is concerned with three

categories of service: ambulance, electronic health records and childbirth

services. These have been used to provide 10 detailed services within the

system, which are as follows:

 Request Ambulance

 Dispatch Ambulance

 Update Status

 Request Record

 Provide Patient Record

 Update Health Record

 Retrieve Health Record

 Pick up Patient

 Examine Patient

 Drop off Patient.

The following subsections provide an overview of the three main categories of

service used in this case study.

4.2.1 Ambulance Services

Ambulance services can be used to help people with serious and life-

threatening medical conditions. They can provide a range of urgent healthcare

and transport services, including acute care of patients who require help

without a previous medical appointment. The crews within the Ambulance

service include a range of medical staff, e.g., emergency care assistants and

paramedics (131). Ambulance services often use a range of vehicles to respond

to an emergency in the quickest possible time (132).

In our case study, we assume that initial medical emergency calls are dealt with

by ambulance service operators (133). The call centre records the call and

97

captures the following information: name of patient, contact telephone number,

address of patient, destination address and brief details of the patient’s

condition. This information is then transmitted to the ambulance region

nearest to the patient for an ambulance to be dispatched. The regional

ambulance centre receives the request and sends a vehicle and a crew to the

patient, having selected the most appropriate service level: Immediate (i.e. life-

threatening) and Urgent (i.e. serious but not life-threatening) (134). Next, the

system specifies the location of the patient on a map and monitors the vehicle’s

progress towards the destination via online messages transmitted by each

vehicle every 13 seconds (with the potential for the use of radio

communication as a backup measure). The ambulance crew confirms that the

vehicle is on its way. At the same time, the ambulance crew requests that the

patient record be retrieved through the EHR service.

4.2.2 EHR Services

EHR services play a very important role in modern healthcare. Their main

function is to capture, store and supply patients’ records, including personal

and medical information (e.g. data related to treatments and

medication). There are a number of definitions for EHR. The US Institute of

Standards and Technology defines an EHR a “longitudinal collection of patient-

centric health care information available across providers, care settings, and

time. It is a central component of an integrated health information system” (135).

One of the benefits of EHR is to enable healthcare providers to share, store and

update patient information in order to capture care history (136).

In our case study, the risks associated with EHR are mainly related to retrieving

and updating patient information. This service can help users access the system

and retrieve patient's EHR and update their records. The risks relate to

conditions such as lack of information, incorrect information or late arrival of

information.

4.2.3 Childbirth Services

Our case study is concerned with the transportation of pregnant women by the

Ambulance Service. Every pregnancy is different and there is a wide variation

in the length of labour (137). For first-time mothers, labour often takes

98

between 10 and 20 hours. For some, however, it lasts much longer, while for

others it may be over much sooner. Labour generally progresses more quickly

for women who already have children.

In our case study, there are risks associated with the transport of pregnant

women in urgent cases. The principal risks are concerned with timing. In the

first place, the fact that the emergency services have been contacted suggests

that the delivery time is very close and there is a medical emergency. The

ambulance station schedules a vehicle to go and collect the patient and take her

to the hospital. The crew retrieves the patient information from EHR service.

They examine the patient, check the maternal and foetal condition and

transport the patient to the labour ward.

4.3 Service Hazard Analysis (SHA)

In this section, we introduce and describe SHA as the main safety analysis

method for examining services in SOA and generating the necessary safety

requirements. We also show how SHA has been applied to our healthcare case

study.

4.3.1 Method

Safety analysis processes are centred on identifying, analysing and managing

hazards. For SOA, identifying the hazards associated with the services is

essential for defining the service safety requirements, which should influence

and potentially drive the architectural design. In this section, the identification

and classification of hazardous service failures is carried out by applying SHA

to a high-level representation of the SOA in SoaML. Table 10 shows a tabular

representation of the output of the analysis. The goal of SHA is to identify and

clarify each failure mode associated with a service based on the defined

deviations.

For each failure mode, SHA also identifies the potential effects of failure and

determines the severity of these effects. The last two columns in Table 10

provide the final output of the SHA which is the starting point to generate and

provide recommendations for the Service Safety Requirements (SSRs) to

99

mitigate the potential failures, and to allocate them to services, tasks and

participants.

Service Failure Mode

a) not
provided

b) provided
when not
required

c) provided
incorrectly

Effect Severity SSR Mitigation

Service
name

The specific
failure modes
associated with
the service based
on the defined
deviations

The specific
effects
associated
with the
failure mode

The
severity of
each
service
failure
mode
effect

Definition of
service safety
requirements

Suitable
recommendati
ons for service
safety
requirements

Table 10: SHA Table Template

SHA consists of six steps:

(1) Identify a service;

(2) Identify the service failure modes;

(3) Determine the safety effects of each service failure mode;

(4) Determine the safety severity and classification of each service failure

mode;

(5) Provide service safety requirements;

(6) Identify potential mitigation measures for meeting the service safety

requirements.

Step 1 - Identify a service. High-level services are captured in SoaML

ServicesArchitecture models. The SoaML ServicesArchitecture model describes

both Participants and Services and their interactions. A SoaML

ServicesArchitecture model describes how Participants collaborate by

providing and consuming Services to achieve goals. These collaborations can be

captured in service Contracts. In this context, a service Contract is defined by

means of an SLA, which describes a mutual agreement between two or more

parties (138). These agreements are captured in the form of SoaML

ServiceInterfaces between Participants.

100

Step 2 - Identify the service failure modes. For each service (identified from

the SoaML ServicesArchitecture), the analyst considers the effects of three

broad hypothetical failure modes:

 Service not provided when required;

 Service provided when not required;

 Incorrect service.

The service can be considered as a potential source of hazards in the SOA

system and for every failure mode it is necessary to consider more than one

interpretation (72). For instance, the first failure mode ‘service not provided’ is

easily interpreted for responsive services (such as for requesting ambulances

or allocating drivers to ambulances). From the perspective of on-going or

regular services (such as monitoring the condition of patients or tracking

ambulance locations), the ‘service not provided when required’ failure mode

requires a more specific interpretation, e.g. failing to monitor the condition of

patients every 3 minutes or failing to update ambulance locations every 5

seconds.

The failure mode ‘service provided when not required’ deals with

uncommanded requests, e.g. requesting an ambulance when not required.

From the perspective of on-going or regular services (e.g. maintaining available

call centres), this failure mode might not be applicable or might be hard to

interpret.

The third failure mode (incorrect service) covers a diverse set of behaviour.

Possible explanations include wrong timing (i.e. too late or too early),

incompleteness, asymmetry or undesirable side effects.

Eventually, these failure modes should be defined with enough detail in order

to enable the generation of the service safety requirements and potential

mitigation measures (e.g. by providing enough contextual information to make

a specific interpretation).

Step 3 - Determine the safety effects of each service failure mode. The

adverse consequences of the failure modes should be determined, taking

different context-relevant factors into consideration. In terms of determining

101

the effects of service failures, a useful feature of the SoaML

ServicesArchitecture models is that they include a representation of service

interaction and the Participants that use these services, which makes it easier

for the analyst to trace the effects of a particular failure mode. The analyst has

to consider the effects of the failure modes on the system and on its

environment. The analyst should consult people with operational experience to

assist in classifying the failure mode effects.

In the case of the system level SHA, the effects of failure modes may be

observed within the system level, or the analyst may have to consider

combined effects of systems with their environment in order to determine the

effect of the system failure mode.

Step 4 - Determine the safety severity and classification of each service

failure mode. We determine the severity and classification of the identified

failure modes by analysing accident and incident data, reviewing regulatory

guidance material, using previous design experience, and consulting with

system developers and operators.

The process of analysing and classifying the failure modes should be careful

documented, and supporting materials (analyses, studies, tests, etc.) used

should be preserved to ensure traceability for future reference. The safety

classification should be defined (e.g. ‘Catastrophic’, ‘Severe-Major/Hazardous’,

‘Major’, ‘Minor’ and ‘No Safety Effect’), typically based on Hazard/Risk Matrices

(HRM) defined in the system’s domain standards and regulations (139).

Step 5 -Provide Service Safety Requirements (SSRs). Based on the identified

failure modes and their classification, recommendations should be generated.

Preferably, these recommendations should take the form of SSRs, where the

rigor/integrity with which the requirements need be met should be

proportionate to the severity of the failures (i.e. higher degrees of severity

require more stringent integrity requirements and more rigorous processes)

(140).

Step 6 - Identify potential mitigation measures for meeting the SSRs. In

order to help influence the design process, mitigation measures should be

102

identified that have the potential for meeting the SSRs identified in the

previous step. For example, in order to ensure that hazardous behaviour is

detected and controlled, the system might be designed to include active

monitoring and cross-checking of the state of a service. Mitigations should

build on best practice in safety and dependability design, e.g. existing work on

tactics for fault tolerant services (120).

4.3.2 Healthcare Case study: SHA

In this section, we show how we applied the SHA method to the healthcare case

study that we introduced briefly in Section 4.2. The aim of the case study is to

illustrate the use of the method, understand how the SSRs can be developed in

a systematic and traceable manner and provide a preliminary evaluation.

4.3.2.1 System Overview

This description of the system and all of the other information presented about

the system and its design, including all design diagrams, are based on (128).

The system architecture model in Figure 1 shows the structural architecture of

the system. It basically covers the services used (i.e. produced and consumed)

from the point at which a phone call is made to request an ambulance (for a

pregnant woman) to the point at which the patient is admitted to a hospital

(labour ward). Another set of models was created to capture subsequent

stages in the patient’s treatment e.g. foetal monitoring, first and second stages

of labour, caesarean section and postnatal care. These models and documented

in Appendix A for the sake of completeness, but are not analysed further in this

thesis.

In Figure 1, we provide a design of the system which focuses on the

interactions between services and Participants. Specifically, the scenario

focuses on the Ambulance System architecture, and identifies five Participants

connected by ten SoaML Collaboration Uses, i.e. services. These Collaboration

Uses are defined in terms of service contracts, which are: Request Ambulance,

Dispatch Ambulance, Update Status, Request Record, Provide Patient Record,

Update Health Record, Retrieve Health Record, Pick up Patient, Examine

Patient and Drop off Patient. In this section, we show how SHA has been

103

applied to two of the services: Dispatch Ambulance and Retrieve Health Record.

The analysis of additional services is documented in Appendices B and C.

Figure 22: SoaML Service Architectures Model for SOA Healthcare

The Ambulance System architecture extract presented in Figure 23 shows how

the Dispatch Ambulance Collaboration Use is defined to provide the service.

Two Participants, Call_centre and Ambulance crew, have been specified,

connected by the Dispatch Ambulance service contract. These two Participants

represent the roles that are connected to this service.

Figure 23: SoaML ServicesArchitecture Model (Dispatch Ambulance)

The description of the Dispatch Ambulance service is provided by means of a

Service Level Agreement (SLA). The SLA is defined using the template, shown

in Table 11, which has been adapted from (141).

104

Attribute Description Source

Name The name of the SLA artefact, defined during
SoaML service modelling

SoaML Service Contract
Architecture

Provider A person, department or organization that
provides the service

SoaML Participants
Architecture

Consumer A person, department or organisation that uses
the service

SoaML Participants
Architecture

Start time The start time of the SLA validity period SoaML
ServicesArchitecture

Due time The end time of the SLA validity period SoaML
ServicesArchitecture

Duration The length of time that the service should last for SoaML
ServicesArchitecture

 (Pre-
condition)

The condition that must be fulfilled before the
service can start

SoaML Service Contract
Architecture

 (Post-
condition)

 The condition that must be fulfilled after the
service is completed

SoaML Service Contract
Architecture

Contribution
to Safety

Required to complete an incident report SHA

Table 11: SLA Template

Table 12 presents the SLA for the Dispatch Ambulance service. For instance,

the Participants, Call_centre and Ambulance crew, represent the consumer and

provider for the service.

Attribute Description Source

Name Dispatches Ambulance SoaML Service Contract
Architecture for the
ambulance system

Provider The Ambulance crew department that
provides the service

SoaML Participants
Architecture for the
ambulance system

Consumer The Call_centre that uses the service SoaML Participants
Architecture for the
ambulance system

Start time Requesting an ambulance by the Call_centre
(e.g. 11:00:00 AM)

SoaML
ServicesArchitecture for
the ambulance system

Due time Dispatching of the ambulance (e.g. 11:00:30
AM)

SoaML
ServicesArchitecture for
the ambulance system

Duration 30 seconds SoaML
ServicesArchitecture for
the ambulance system

105

 (Pre-
condition)

Call_centre has received the ambulance
request information including the patient’s
name, contact telephone number, address of
the patient, destination address and brief
details of the patient’s condition.

SoaML Service Contract
Architecture for the
ambulance system

 (Post-
condition)

The nearest available ambulance has been
dispatched and the Call_centre has received
an expected arrival time

SoaML Service Contract
Architecture for the
ambulance system

Contribution
to Safety

Overall severity is major (see SHA Table 4) SHA

Table 12: Dispatch Ambulance SLA

Table 13 shows an extract from the SHA analysis for the Dispatch Ambulance

service. The analysis establishes the potential safety criticality of the Dispatch

Ambulance service, based on the severity of the worst credible effects of the

identified failure modes. The ‘SSR’ column details the stringent safety

requirements which are allocated to the service as a result of the analysis, and

the ‘Mitigation’ column indicates design and operational measures which are

proposed to satisfy these requirements.

Service Failure
Mode

Effect Severity SSR Mitigation

Dispatch
Ambulance

Context:
the patient
has given
birth before
the
ambulance
arrives, and
is actively
bleeding
following
the birth

Ambulance
not
dispatched

Death Major

The failure mode
‘ambulance not
dispatched’ shall
be prevented or
mitigated

Active
monitoring and
cross checking
between
requested and
dispatched
ambulances

Ambulance
dispatched
when not
required

N/A

No direct safety
effects but
waste for
critical services

N/A

None. None.

Ambulance
dispatched
later than
intended

Severe
morbidity
(hypovolaemia,
renal failure,
cardiac arrest,
disseminated
intravascular
coagulopathy…)

Major The failure mode
‘ambulance
dispatched later
than intended’
shall be
prevented or
mitigated

Active
monitoring of
timing targets
and strategies
for recovery
from timing-
related failures

Ambulance
dispatched
to the
wrong
address

Severe
morbidity
(hypovolaemia,
renal failure,
cardiac arrest,
disseminated
intravascular

Major The failure mode
‘ambulance
dispatched to the
wrong address’
shall be
prevented or
mitigated

Early address
cross-checking
and confirmation
between
requested and
dispatched
ambulances

106

coagulopathy…)

Table 13: Dispatch Ambulance SHA

The first failure mode, ‘ambulance not dispatched’, is straightforward as this

service is responsive in nature, i.e. a demand for an ambulance vehicle

provided by an ambulance crew. The worst credible effect here as estimated by

the medical expert, consulted in the process of this case study, is death and the

severity is major as defined in the Health and Social Care Information Centre

standard used for Health IT safety assurance in the NHS (142).

The defined SSR specifies the need to eliminate or mitigate this failure mode

given its potential severity. The mitigation here, i.e. active monitoring and

crosschecking, is considered appropriate, considering the identified potential

effects of the failure (i.e. patient death) and the classification (Major).

Another failure mode that may occur is, ‘ambulance dispatched when not

required’. In this case there are no safety effects within the scope of the case

study scenario (potentially the fact that an ambulance is unnecessarily

occupied on this call means that it is unavailable for an emergency elsewhere).

A third potential hazardous failure mode is ‘ambulance dispatched later than

intended’, which could arise from a timing-related failure and will result in

delays to the patient’s medical treatment. The potential effects, as identified by

our clinical expert, are severe morbidities such as hypovolaemia, renal failure,

cardiac arrest and disseminated intravascular coagulopathy. The severity is

classified as major and the mitigation is active monitoring of timing targets and

strategies for recovery from timing-related failures.

 The fourth failure mode is ‘ambulance dispatched to the wrong address’, which

may lead to delays in treatment. The effects identified and the severity

classification are similar to those in the previous step but the mitigation is early

address cross-checking and confirmation between requested and dispatched

ambulances.

Table 14 and Table 15 show the SLA and the SHA results for the ‘Retrieve

Health Record’ service. For this service, the two Participants are the EHR and

Ambulance crew and the duration of the service is 20 seconds.

107

Attribute Description Source

Name Retrieve Health Record SoaML Service Contract
Architecture for the
ambulance system

Provider The EHR provides the service SoaML Participants
Architecture for the
ambulance system

Consumer The ambulance crew uses the service SoaML Participants
Architecture for the
ambulance system

Start time The point at which a request for information
is sent by the ambulance crew (e.g. 11:00:00
PM)

SoaML ServicesArchitecture
for the ambulance system

Due time The point at which the requested
information is received by the ambulance
crew (e.g. 11:00:20 PM)

SoaML ServicesArchitecture
for the ambulance system

Duration 20 seconds SoaML ServicesArchitecture
for the ambulance system

 (Pre-
condition)

The system contains the correct patient
details

SoaML Service Contract
Architecture for the
ambulance system

 (Post-
condition)

Correct health records for the patient have
been received by the ambulance crew

SoaML Service Contract
Architecture for the
ambulance system

Contribution
to safety

Overall severity is considerable (see SHA
table 6)

SHA

Table 14: SLA for the Retrieve Health Record Service

Although the potential severity of failures of the Retrieve Health Record service

is considerable, the worst credible consequence is not patient death, as it is

assumed that the ambulance crew can recover from the failure modes

associated with the Retrieve Health Record service. Also, in order to mitigate

the inability to retrieve health records through the electronic system, the

service relies on other communication means, e.g. radio communication.

Services

Failure
mode

Effect Severity

SSRs

Mitigation

Retrieve
Health
Record

EHR not
retrieved

Delay in
treatment and
increased
complication

Considerable The failure
mode ‘EHR
not
retrieved’
shall be
prevented or
mitigated.

Use of
redundancy
through fitting
an additional
flow to
provide
patient
information
from another
source

108

EHR
retrieved
when not
required

N/A

No direct effect
on safety but
waste for
critical services

N/A None None

EHR
retrieved
later than
intended

Delay in
treatment and
increased
complication

Considerable The failure
mode ‘EHR
retrieved
later than
intended’
shall be
prevented or
mitigated.

Active
monitoring of
timing targets
and strategies
for recovery
from timing-
related
failures

Incorrect
record
retrieved

Incorrect
treatments and
medicines
provided

Considerable The failure
mode
‘inaccurate
records
retrieved’
shall be
prevented or
mitigated.

Active
monitoring
and cross-
checking of
the
information
retrieved

Table 15: Retrieve Health Record SHA

4.4 Service Failure Analysis (SFA)

In this section, we introduce and describe SFA as the safety analysis method for

examining the flow of the Tasks that implement the SOA behavioural process

and for generating the safety requirements relating to task flows. More

specifically, the objective of SFA is to examine the detailed flow between the

service tasks and identify how failures, specifically interaction failures, can

contribute to service hazards. We also show how SFA is applied to our

healthcare case study. SFA extends SHARD (Section 2.3.1.3.) with three main

aspects:

- It provides a traceable relationship between the causes of the failures

and existing SOA fault taxonomies. This is discussed in Section 4.4.2.

- It provides an explicit means for defining derived service safety

requirements as explained in Section 4.4.1. (Step 5).

- Finally, it offers a way for capturing tactics and design decisions for

potentially meeting these derived safety requirements in the context of

the SOA design. This is discussed is more detail in Section 4.4.1. (Step 6).

109

4.4.1 Method

SFA is centred on defining the deviations that can be exhibited in service tasks

and understanding the causes and safety effects of those deviations. Based on

these causes and the severity of the effects, SFA generates a set of safety

requirements and recommends design patterns for mitigating the task

deviations and therefore influences the detailed architectural design of the

system. In SFA, BPMN models are used for representing the low-level design of

the SOA. In particular, these models show the interactions of the system

behaviour in the form of information flow between service tasks.

Based on the BPMN models, SFA uses a set of guidewords to consider potential

deviations from the intended behaviour, i.e. failure modes, in the flows between

tasks. The guidewords help ensure coverage of the potential failure modes in

the context of the detailed design of the behavioural aspects of the SOA. When

examining the causes of the deviations, SFA uses the SOA fault taxonomy

developed by (143). This fault taxonomy is well structured and categorises

service faults based on the SOA lifecycle phase in which they are generated, e.g.

specific faults related to service execution and composition.

SFA results are represented in a tabular format as shown in Table 16. The

columns should include ID (Flow), Guide word, Deviations, Possible Causes,

Effects, Derived Service Safety Requirements (DSSRs) and Mitigations.

ID
Flow

Guide
Word

Deviation
Failure
Mode

Possible
Causes

Effects DSSRs Mitigation

The
flow
link

These
describe the
potential
deviations
from the
intended
behaviour in
the flows
between
tasks

The
specific
flow
failure
modes
associated
with the
task, based
on the
fault
taxonomy

The
potential
causes of
each flow
failure
mode of
the
specific
tasks
associated
with the
flow

The
specific
effects
associated
with the
task, based
on the
fault
taxonomy

Definition
of DSSRs

Recommendations
for design patterns
and tactics for
meeting the DSSRs

Table 16: SFA Table Template

110

SFA consists of six steps:

(1) Identify a flow between two tasks;

(2) Identify flow failure modes;

(3) Determine the potential causes of each flow failure mode;

(4) Determine the potential effects of each flow failure mode;

(5) Define DSSRs; and

(6) Identify potential mitigation measures for meeting the DSSRs.

Step 1 -Identify a flow between two tasks. We use a behavioural model of the

SOA as represented in BPMN (68) to identify the flows. BPMN provides the

capability to communicate and represent internal procedures, based on

Processes, in a graphical and structured notation. Typically, these Processes

represent workflows of connected Tasks (i.e. atomic Activities), grouped into

Swimlanes (i.e. a container for organising Activities). Further, each Participant

in the model is represented as a Swimlane in BPMN. This step in SFA involves

the selection of a link between two BPMN Tasks that captures a flow in terms of

inputs, outputs, data, sequence and timing.

Step 2 -Identify flow failure modes. This step uses a number of guidewords,

based on the SHARD guidewords, to determine the ways in which the selected

flow can deviate from its intended usage. The failures derived from the use of

each of these guide words need to be presented in the context of the detailed

SOA design. The generic guidewords are taken from (72), but require some re-

interpretation for use in the context of SOA:

 Omission: no delivery through the flow between the tasks (no

communication);

 Commission: delivery through the flow between the tasks when not

required (unintended communication);

 Early: delivery through the flow between the tasks earlier than intended

(early communication);

 Late: delivery through the flow between the tasks later than intended

(late communication);

111

 Value: wrong delivery of information through the flow between the

tasks.

Step 3 - Determine the potential causes of each flow failure mode. Failures

in flows can be caused by a variety of technical, human and organisational

events or conditions, or by combinations of such events or conditions. For

technical causes in particular, we use the SOA fault taxonomy developed by

(56). This fault taxonomy is well structured and categorises faults based on the

SOA lifecycle phase in which they can emerge: (1) publishing, (2) discovery, (3)

composition, (4) binding and (5) execution. The advantage of using these fault

types is that they are SOA-specific. However, these fault types should be used as

prompts or hints for safety analysts rather than as an exhaustive list of all

possible SOA faults.

Step 4 - Determine the potential effects of each flow failure mode. The

potential effects associated with the failure types should be recorded and

examined in terms of the contribution that they can make to the service

hazards, identified in the SHA, or to a new hazard (i.e. hazards missed during

SHA).

Step 5 - Provide DSSRs. Based on the identified failure modes and their

causes, recommendations should be generated. Preferably, these

recommendations should be in the form of DSSRs, where the rigor/integrity

with which the requirements need be met should be proportionate to the

failures (i.e. higher degrees of severity require more stringent integrity

requirements and more rigorous processes) (140). Where a failure mode

contributes to one or more hazards, one or more safety requirements should be

defined to address the failure mode.

Step 6 - Identify potential mitigation measures for meeting the DSSRs.

Design recommendations should be made for addressing the failure modes

which have been identified during the analysis. These recommendations could

be based on existing safety tactics in the software architecture literature (e.g.

(50) and (58)). Importantly, in our approach, we select design approaches

including detection of, containment of and recovery from identified classes of

112

failure. More specifically, for SFA, we adopt the following categories of design

tactics (120):

1. Redundancy - Invokes one or more copy of the same mechanism;

2. Diversity - Invokes one or more copy of a particular mechanism that

performs the same function;

3. Monitoring - Checks the system continuously to identify failures and sends

alerts;

4. Diagnosis - Identifies the source of failure;

5. Masking - Hides the effects of a failure;

6. Containment - confines a failure to stop its propagation;

7. Recovery - Erases failure and restores normal operation.

4.4.2 SOA Fault Taxonomy used in SFA

In this section, we introduce the SOA fault taxonomy that we use to support the

choice of mitigation measures in SFA. This SOA fault taxonomy is based on the

types of fault defined in (144) and (145). As shown in Figure 24, these faults are

categorised based on the lifecycle phase in which they can occur: Publishing,

Discovery, Composition, Binding, and Execution. These faults provide the

analyst with a generic list of potential causes and should be treated as guidance

rather than as a complete list of all possible causes.

4.4.2.1 Publishing Faults

During the publishing phase, faults can occur due to issues related to service

task description or deployment.

Faults relating to the service task description occur when problems arise when

defining the characteristics of the service. Either the service is not completely

described, or the defined service task. These types of faults may lead to

problems either during the discovery phase or during the execution phase.

Faults might also occur when the description of the file is wrong. Format faults

can occur when the format of a file is incorrect. For example, an XML file might

not be well formed due to missing tags.

Faults can also occur when the deployment of a service is incorrect (service

task deployment faults). For example, a service task deployment fault might

113

occur when the service is deployed without the required resources being

available.

Figure 24: Taxonomy of SOA-Specific Faults (146)

4.4.2.2 Discovery Faults

In the discovery phase, three possible types of fault may occur, namely:

 Service not found;

 Wrong service found; and

 Time out.

The first of these is the most likely to occur, i.e. the required service task does

not exist. This can be due to incorrect search criteria being used, or to the task

not being listed in the lookup service. The second fault type, wrong service

found, is difficult to detect in this phase but is more likely to be detected in the

execution phase.

114

The time out fault is a common fault in the discovery, composition, binding, and

execution phases. Time out is typically caused by the server crashing as a result

of hardware, software or communication errors.

4.4.2.3 Composition Faults

During the composition phase, faults can occur because of invalid composition

due to missing parts or timed out attempts. Figure 25 provides an example of

compatible service task failure in which a ‘no valid composition’ fault occurs

due either to incompatible components or to missing components.

More importantly for services, composition faults can result from an inability to

meet contract conditions: pre-conditions, post-conditions and invariants. In our

work, these conditions are explicitly defined in SLAs (initially defined at the

service level in the SoaML models and considered in the SHA).

Figure 25: ‘No Valid Composition’ Failure Mode

4.4.2.4 Binding Faults

In this phase, the service task consumer and provider negotiate conditions

needed to execute the task. Types of faults which can arise during the binding

phase include:

 Binding denied;

 Bound to the wrong service task; and

 Time out.

The ‘binding denied’ fault can occur when the authorisation for use has not

been granted by the authorisation component. The ‘bound to wrong service’

task is tightly linked to service description faults that occur during the

publishing phase.

115

4.4.2.5 Execution Faults

Execution faults occur when the outcome of a service task does not match the

result expected by the participant. Relevant failure types here include:

 Incorrect result;

 Service task crashed; and

 Time out.

During execution, the service is run and an incorrect result might occur if the

wrong service task has been selected. The ‘incorrect result’ fault might arise

either due to a software fault (service faulty) or to an incorrect input. Incorrect

inputs may be caused by conversion faults or by the input range being

exceeded.

In the SFA method, the SOA fault taxonomy discussed above (Section 4.4.2) is

principally used for identifying the causes of the flow failure modes identified

in Step 2 of the SFA. These causes are linked to a specific type of faults

identified in the SOA fault taxonomy. The flow failure modes are assessed in

terms of the contributions that they make to the service hazard failures (i.e. as

identified in SHA).

4.4.3 Healthcare Case study: SFA

In this section, we show how we applied the SFA method to the healthcare case

study that we introduced in Section 4.2. The objective of the case study is to

illustrate the use of the method and to provide a preliminary evaluation.

4.4.3.1 Representing Tasks and Information Flows in the SOA Design

The modelling presented in this section builds on the results of the SoaML

modelling in Section 4.3.2.1. We have already specified the Service Contracts

for the healthcare case study, using SoaML, and have refined these into Service

Interfaces in the system architecture design in Figure 27. The Service Interfaces

offer a number of Operations that specify the interactions between the

Participants of the architecture. In our approach, and in order to integrate the

SoaML models and BPMN models of the SOA design as shown in Figure 26, we

link SoaML Operations with BPMN Tasks, enabling traceability between the

116

different models at different abstraction levels (i.e. structural services and

behavioural service tasks and interactions).

Figure 26: Link between SoaML and BPMN Models

Figure 27: SoaML Service Interfaces Model with Operations

For example, the Retrieve Health Record service can be divided into a number

of operations within the SoaML interface model and has been linked to the

BPMN Tasks, which are as follows:

 Provide user name and password;

 Authorise and authenticate;

 Provide patient name; and

 Provide patient health record.

117

Figure 28: Tasks in BPMN Model

Figure 28 presents a more detailed BPMN model of the SOA design, with more

emphasis on the SOA behavioural processes. BPMN Tasks in these processes

are mapped into the Operations in the Interfaces provided by each SoaML

Service, while BPMN Swimlanes are mapped onto the SoaML Participants. SFA

was applied to every flow between Tasks in the BPMN model. An example is

shown in Table 17, which shows the results of the analysis of the penultimate

flow in the BPMN model, from ‘Provide patient name’ to ‘Provide patient health

record’ (in the context of admission to the labour ward). The example shows

how a lack of patient information from the EHR, and more seriously the

provision of incorrect information, can potentially lead to adverse patient

complications.

ID
(Flow)

Guide
Word

Deviation Possible
Causes

Effects DSSRs Mitigation

Flow
between
‘Provide
patient
name’
and
‘Provide
patient
health
record’

Omission No record
available

Authentication
failure or
request timed
out (server
crashed)

Incomplete
history and
background

Anaphylaxis-
unknown
allergy
status

The failure
mode ‘no
record
available’
shall be
prevented
or
mitigated.

Use of redundancy
in data sources for
health records

118

Commission Patient
record
provided
when not
requested

False
messages

Description
incorrect or
mismatch

Execution
fault
(Incorrect
result)

No direct
safety effects

 The failure
mode
‘patient
record
provided
when not
requested’
shall be
prevented
or
mitigated.

Monitoring of
uncommanded
requests

Early N/A N/A N/A N/A N/A

Late Record
arrived
later than
intended

Failure in
scheduling

Time out
related to
clock time
with ripple
effects on all
processes

Overloading
due to
dealing with
backlog
requests

The failure
mode
‘record
arrived
later than
intended’
shall be
prevented
or
mitigated.

Monitoring of time
delays and
recovery by giving
more priority for
delayed requests

Value Incorrect
record
retrieved

Incorrect
input or
conversion
fault

Corruption
message
execution fault
incorrect
result or
service crash

Anaphylaxis-
unknown
allergy
status

The failure
mode
‘incorrect
record
retrieved’
shall be
prevented
or
mitigated.

Data entry cross-
checking, online
monitoring and
fault containment

Table 17: SFA for the Flow between ‘Provide Patient Name’ to ‘Provide Patient Health

Record’

The first identified failure mode (omission) is ‘no record available when

requested’. Possible causes, as generated from the SOA fault taxonomy, are

authentication failures and request time out (i.e. due to a server crash). The

effects might be incomplete history and background, which could result in the

patient’s suffering anaphylaxis due to unknown allergy status. The mitigation

for this failure mode is the provision of redundancy in data sources for health

records. Another failure mode that may occur is revealed through the

application of the guideword ‘commission’: a record could be sent even though

it had not been requested. Possible causes for this are false messages, incorrect

data description, mismatch or incorrect result. Here there are no direct safety

effects and the mitigation suggested is monitoring the arrival and reporting of

uncommanded requests.

119

Application of the guideword ‘late’ reveals a possible failure mode in which the

patient’s record is received later than intended. Possible causes include failures

in the scheduling system or the clock time on all processes (i.e. timed out

processes). The effect that the system is likely to become overloaded with a

backlog of delayed requests. The mitigation suggested is monitoring of time

delays and recovery of the system by giving delayed requests a higher priority.

The guideword ‘value’ reveals a potential failure mode ‘incorrect record

retrieved’ which can result in the patient’s suffering anaphylaxis due to the

medical staff having no data of a relevant allergy. The mitigation measures

suggested for this failure mode are cross-checking of data entries, online

monitoring and fault containment.

ID (Flow) Guide
Word

Deviation Possible
Causes

Effects DSSRs Mitigation

Flow
between
‘Dispatch
ambulance
and
‘Receive
request’

Omission No request for
ambulance
received

Deployment
fault (Request
resource
missing)

Service/server
incompatible

Task crashed

Ambulance
not
dispatched

The failure
mode ‘no
request
for
ambulance
received’
shall be
prevented
or
mitigated.

Use of
redundancy
in data
sources by Fit
addition flow
to the request

Commission Uncommanded
request for
ambulance
received

False request,
incorrect
request

Execution fault
(Incorrect
result)

No safety
effect

 N/A N/A

Early N/A N/A N/A N/A N/A

Late Request
arrived later
than intended

Failure in
scheduling/
synchronisation

Time out
related to clock
time with
effects on other
tasks

Ambulance
dispatched
later than
intended

The failure
mode
‘request
arrived
later than
intended’
shall be
prevented
or
mitigated.

Monitoring
for timing
failure and
developing
recovery
strategies

Value Incorrect
request

Incorrect input
or conversion
fault

execution fault,

Delay in
the
treatment

The failure
mode
‘incorrect
request’
shall be

Diversity via
programming
solutions to
detect and
reject

120

incorrect result
or servicer
crash

prevented
or
mitigated.

improper
values and
fault
containment

Table 18: SFA for Flow between ‘Dispatch Ambulance’ to ‘Receive Request’

Table 18 shows another example of the use of SFA for examining the flow

between the ‘Dispatch Ambulance and ‘Receive Request’ tasks. An important

issue to note here is that two of the effects highlighted by the analysis,

‘ambulance not dispatched’ and ‘ambulance dispatched later than intended’,

are the direct causes of the service hazards identified in the SHA analysis in

Table 13. This shows the continuity of the safety analysis between SHA, at the

service level, and SFA, at the detailed design level.

4.5 Tool Support

This section describes the implementation of the tool support for the SOA

modelling and safety analysis which has been described in this chapter, and

presents the metamodels on which it is based. The tool support environment

provides the following the capabilities:

 Create SoaML and BPMN models;

 Create and integrate SLAs into the SoaML models;

 Integrate BPMN and SoaML models;

 Embed SHA results into the SoaML models;

 Embed SFA results into the BPMN models.

These capabilities are intended to support the design and safety analysis of the

SOA system at the high (i.e. services) and low (tasks) levels of the design. The

following subsections illustrate the implementation and use of these

capabilities.

4.5.1 SoaML to BPMN Link

In this thesis, we implemented most of the models in Eclipse (124) using the

SoaML and Activiti BPM plug-ins (125) and (126). We have extended the

SoaML plug-in to perform the traceability with the BPMN models. Figure 29

shows the implementation of the SoaML-BPMN link within the SoaML

ServicesArchitecture model through the selection of an appropriate file for the

121

BPMN Model. Then, the specific notation element and the ID are chosen, in

order to determine the precise Tasks within the BPMN model that are linked to

the SoaML model.

Figure 29: Link from SoaML ServicesArchitecture Model to BPMN Model

Figure 30: Link from SoaML Interfaces Model to BPMN Model

122

Once the traceability between the SoaML and BPMN models is established, each

of the Operations within the SoaML Interfaces model can be linked to a specific

Task in the BPMN model as shown in Figure 30.

4.5.2 BPMN to SoaML Link

Traceability between the SoaML and BPMN models can also be established.

Figure 31 shows the traceability between lower-level design models (BPMN)

and high-level service models (SoaML ServicesArchitecture model). The link is

established first within the BPMN model by selecting a SoaML File. Then, the

specific model (e.g. ServicesArchitecture model), the Stereotype for the model

(e.g. Participant or CollaborationUse or ServicesArchitecture) and the Name of

the chosen element are linked to the precise service in the SoaML models. The

example in Figure 10 shows the link between the ‘Dispatch Ambulance’ Task in

the BPMN model and the ‘Dispatch Ambulance’ service in the SoaML

ServicesArchitecture model.

Figure 31: Link from BPMN to SoaML ServicesArchitecture Model

As before, once the traceability between the SoaML and BPMN models is

established, Tasks described in the BPMN model can be linked with Operations

captured in the SoaML Interface model.

123

Figure 32: Link from BPMN model to SoaML Interface Model

For example, in Figure 32, the ‘Dispatch Ambulance’ Task is linked with the

‘Dispatch Ambulance’ operation in the SoaML Interface model.

4.5.3 SLA Implementation

In this section, SLA is represented as part of the SoaML service contract. The

example presented in Figure 33 shows the creation of an SLA description and

the recording of the pre- and post-conditions for the service and the required

information for SLA.

124

 Figure 33: Representing XML schema for SLA

4.5.4 SHA Implementation

This section describes the tool support for SHA as integrated into the SoaML

models. Figure 34 shows the SHA user interface for populating the service

safety data. When the user clicks on a service, the SHA results relating to that

service are displayed and can also be edited. More specifically, in the example,

the tool displays the data corresponding to the Dispatch Ambulance service

failure mode ‘ambulance dispatched later than intended’, its effects

(hypovolaemia, renal failure, cardiac arrest, disseminated intravascular

coagulopathy…), the severity of the effects (major), proposed mitigations

(active monitoring of timing targets and strategies for recovery from timing-

related failures) and SSRs (e.g. “ambulance dispatched later than intended shall

be prevented or mitigated”).

125

Figure 34: SHA implementation

4.5.5 SFA Implementation

This section describes the tool support for SFA as integrated into the BPMN

models. Figure 35 shows the SFA user interface for populating the service

safety data. When the user clicks on a flow link, the SFA results relating to the

selected flow are displayed and can also be edited. More specifically, in the

example, the tool shows the data corresponding to the flow between ‘Dispatch

ambulance’ and ‘Receive request’ for the guideword ‘Omission’. The deviation

identified is ‘no request for ambulance received’, the possible causes are

‘Deployment fault (Request resource missing), Task/server incompatible and

Task crashed’, the effect is ‘Ambulance not dispatched’, the DSSR is “the failure

mode ‘no request for ambulance received’ shall be prevented or mitigated” and

the proposed mitigation is “use of redundancy in data sources by fitting an

additional flow”.

126

Figure 35: SFA implementation

4.5.6 Model-Based Support

This section describes the models and metamodels used to support the tool

implementation. Figure 36 shows the extension of part of the SoaML

metamodel by adding BPMN hyperLinks to link the SoaML models with the

BPMN models, SoaML table to capture the SHA data, and SLA to capture SLA

pre- and post-conditions.

Figure 36: Extended SoaML ServicesArchitecture Metamodel

Figure 37 another extension of the SoaML metamdel to create and support the

link between SoaML participants and BPMN tasks (BPMN hyperlinks).

127

Figure 37: Extended SoaML ServiceInterfaces Metamodel

Figure 38 shows the extended BPMN metamodel, with the addition of the

Hyperlinks (to link to the SoaML metamodel) and Bpmntable (to capture the

SFA results).

Figure 38: Extended BPMN Metamodel

4.6 Summary

In this chapter, we have presented an SOA safety analysis process that is

integrated with the modelling of the SOA design. The safety analysis captures

and examines the hazards and failure behaviours relating to services and tasks

128

according to the way in which these services and tasks are defined in the SOA

context. This in turn forms the basis for defining the safety requirements and

for recommendations for satisfaction of the requirements, which should

influence and drive the design process. Producing these requirements can lead

to an integrated and verifiable approach to assuring the safety of the SOA

system. We have also introduced a detailed case study from the healthcare

domain. The case study provides an illustration of the SOA safety analysis

techniques used (SHA and SFA) and how they are applied and allows for

evaluation of the techniques defined. Finally, we discussed the implementation

of the tool support that provides capabilities for SOA modelling, safety analysis

and traceability management. The information generated from the SOA safety

analysis process forms the basis for assuring the system by means of safety

cases as described in the next chapter.

129

Chapter 5

5. SOA Safety Cases

5.1 Introduction

In Chapter 2, we discussed the background to safety, various safety-related

issues and certification processes. Safety certification was described as an

important step in assuring the safety of a system, and the safety case was

introduced as a means of recording the arguments and evidence necessary for

assurance and – in some domains – for certification. The role of the safety case

is to present a clear and defensible argument that the system is acceptably safe

to operate within a specific application and to indicate the evidence on which

the argument depends. Modular GSN (99) has been developed as a notation to

represent safety arguments for modular systems. In this chapter, modular GSN

will be the basis for our structuring and representation of SOA safety cases.

Chapter 3 introduced an overview of the SOA safety assurance framework that

we have developed to assess how an SOA system can meet its safety

requirements and can be assured by providing an explicit safety case. Chapter 4

described the detailed safety analysis methods that we adapted for SOA,

namely SHA and SFA.

In this chapter, we develop an approach to the justification of safety-critical

service-based systems, using modular GSN to represent the compositional

structure of the safety case. This chapter explores the relationship between the

service architecture and the safety case architecture. We identify the

similarities and differences between both architectures. For example, the

130

structure of the SOA system should ideally correspond to the safety case

structure to help ensure that they meet architectural attributes such as

maintainability (i.e. by incorporating maintainability in the SOA system design,

we should be able to achieve corresponding maintainability in the safety case,

reducing the impact of system change on assurance). In particular, contracts

which are defined to enforce the relationships between the safety argument

modules will be based on the SLA between the actual services.

In this chapter, the information used to structure and the evidence used to

support the safety case will be based on the results of the modelling SoaML for

services and BPMN for tasks and flows as well as on the safety analysis

outcomes generated from SHA and SFA.

Finally, the general structure of the safety arguments for SOA will be captured

in the form of GSN patterns. These patterns will be organised in modules that

correspond to the overall SOA structure, e.g. services, SLAs and participants,

and explicitly linked to the results of the SOA modelling and safety analysis. The

argument patterns are presented at a generic level, and can be instantiated to

form argument structures relating to the assurance of specific SOA systems.

This chapter is organised as follows. In section 5.2, we introduce modular

safety case development for SOA as a means for improving design and

assurance traceability. Section 5.3 presents the elements of our SOA safety

argument approach. Sections 5.4 and 5.5 describe the relationship between the

SOA safety argument approach and the results of the SOA modelling and safety

analysis described in the preceding chapters, and give practical guidance on

how to create SOA safety arguments based on a pattern catalogue. Finally,

Section 5.8 presents the instantiation of the approach based on our healthcare

case study.

5.2 Modular Safety Case Development for SOA

In many safety-critical industries, it is regarded as best practice to construct a

safety case in parallel with the system development, and to use the safety

requirements to drive the design and development processes in such a way as

to generate claims and evidence for the safety case. Because of the nature of

131

SOA systems, which may contain several interacting services, developed and

operated by different service providers, establishing and justifying an

acceptable level of confidence in the overall safety of SOA-based systems will

often require integration of different safety arguments and evidence generated

by different service owners or providers. One approach to representing this

compositionality of the overall safety case for service-based systems is through

modular GSN (97). Modular GSN supports the definition of the high-level safety

case as a composition of different, yet mostly interrelated, argument modules,

each of which addresses some aspect of the overall system. In order to improve

flexibility and maintainability and support reconfigurability, some argument

modules are connected using contracts (15). A contract is a special kind of GSN

argument module which “contains a definition of the relationships between two

modules, defining how a claim in one supports the argument in the other” (97),

hence promoting loose coupling between argument modules and minimising

the impact of change.

In order to improve traceability in the design and assurance processes, it is

desirable for a safety case to have a clear correspondence with the design of the

system. Essentially, an SOA is mainly a modular architecture, where each

service represents a separate high-level module with defined intentions,

interactions, inputs and outputs.

This modularity in the definition of services lends itself to the concept of

modular safety cases, where there are explicit reply-guarantee relationships

between the different safety argument modules (147).

A GSN argument module provides justifications relating to a specific aspect of

the safety case (93). SOA-systems are modular in nature, i.e. individual services

can be treated as individual modules (99). In our approach, each of the services

in the overall system architecture will have a corresponding safety argument

module and the overall safety case will address the composition of these safety

argument modules. The same will apply for detailed design elements such as

participants. Contracts between the safety argument modules will be based on

the SLAs (Brown, Fenn, & Menon, 2010) that are defined between the actual

services.

132

Services and participants are self-contained system elements that interact

through predefined interfaces (e.g. those provided through SLAs). Service

owners or producers often rely on other services when guaranteeing and

providing their own services (122). Similarly, claims in certain argument

modules can only be said to be substantiated (the guarantee clause) if claims or

evidence are available in other argument modules that offer sufficient support

(the rely clause).

5.3 Modular SOA Safety Argumentation Approach

This section briefly introduces the elements of our SOA safety argumentation

approach, how it is applied and how it relates to the results of the SOA

modelling and safety analysis described in Chapter 4.

5.3.1 Overall Structure

This section considers the overall organisation of the modular safety cases that

we developed for SOA-based systems and discusses how the safety case

argument relates to the structure of the SOA and the safety analysis. The

purpose of the arguments is to justify the safety of the SOA design. This is done

by arguing that the system safety requirements, which arise from the safety

analysis, have been addressed through the selected design mitigations and

provide for a sufficient level of safety.

Our SOA safety analysis follows a structured, though implicit, line of reasoning:

an SOA-based system is acceptably safe because all credible service hazards

have been identified and mitigated. This is supported by the safety analysis of

services and their interactions provided by SHA which identifies relevant

service hazards to be addressed in the argument. Furthermore, this line of

reasoning is supported at a lower level through the analysis of the technical

failures that could potentially contribute to the service hazards. This is

supported by the safety analysis of tasks and flows provided by SFA.

We capture this reasoning through an argument pattern (123) to ensure

consistency across the modular argument and allow the safety analyst to reuse

the argument pattern as a basis for the assurance of different SOA-based

systems (99). We have developed a catalogue of SOA safety argument patterns,

which provides a framework in which an argument regarding the safety of

133

using an SOA system within a specific safety application can be developed. The

argument patterns in the catalogue are defined separately, but are directly

related to each other to form the overall argument structure. The SOA

argument pattern catalogue includes rules for pattern composition and

traceability to the architectural design (i.e. SoaML and BPMN models) and

analysis (i.e. SHA and SFA).

The SOA safety argument pattern catalogue consists of templates for three

individual arguments and one argument contract Figure 39. These patterns are

structured to form overall hazard-directed argument for the SOA (Top

Argument), which is supported by a number of Service Hazard Arguments, SLA

Argument Contracts and Participant Arguments. These patterns can be

composed together to form a complete argument regarding the safety of the

SOA system design.

Figure 39: SOA Argument Patterns Catalogue

Within the pattern catalogue, we have provided means to represent the

argument regarding the safety of the SOA system from the perspectives of both

the Services and the Participants. The SOA safety argument pattern catalogue is

explained in detail in Section 5.7. In the following subsections, we summarise

each of the template safety argument modules in the SOA safety argument

pattern catalogue Figure 39. The SOA safety argument pattern catalogue follows

a top-down chain of reasoning from the Top Argument module through to the

134

Participant Argument module. The instantiation of each pattern provides the

necessary contextual information for the next pattern.

5.3.2 Top Argument

This module contains a hazard-directed argument, which covers the main high-

level safety claims concerning adequate mitigation of the identified service

hazardous failures. These claims are supported by arguments and evidence

provided in the Service Arguments – safety argument modules defined to

address the safety assurance of services that comprise the SOA.

5.3.3 Service Argument

Each Service Argument module contains mitigation arguments for the hazards

posed by a given service and its interactions. These claims are supported by the

SLA Argument Contract modules defined to address the safety assurance

related to participants (producers and consumers of services).

5.3.4 SLA Argument Contract

The SLA Argument Contract modules include the detailed SLA Contract

argument concerning the relationship between services and participants

within the modular safety case. The contracts between safety argument

modules are based on the SLA, which can help to identify the

interdependencies that exist between services and participants and their

corresponding safety case modules. These contracts are supported by post-

conditions, relating to the services, and pre-conditions, relating to the

participants, which specify relevant issues required from the supporting

modules to provide safety assurance for the services.

5.3.5 Participant Argument

Participant Argument modules address assurance concerns associated with

SOA participants. These modules are intended to provide sufficient support for

the SLA argument contact modules. This includes providing the detailed

arguments concerning the tasks relating to the relevant participant and

interactions based on the pre-conditions allocated to the participant.

135

5.4 Relationship between SOA Modelling and Modular Safety

Cases

The key modules in the design and safety case of an SOA are shown in Figure

40.

Figure 40: SOA and Modular Safety Case Correspondence

We force a traceable relationship between the high-level SOA design, in SoaML

(ServicesArchitectures) and the overall SOA safety case, in modular GSN. For

each service defined in the SOA, we create a Service Argument that addresses

the hazards posed by the service (based on the results of the SHA analysis), i.e.

the argument provides a justification for how the service hazards have been

mitigated. In the same way, for each participant, we create a Participant

Argument that justifies the contributions that the participant makes to service

hazards (based on the analysis results of SFA). Moreover, participants interact

through defined SLAs in order to provide and consume services. These

interactions between participants can contribute to safety and therefore their

assurance is addressed in explicit safety argument contracts (SLA Contract

Arguments).

Before we present the definition of SOA safety arguments (Section 5.7), it is

important to discuss the relationship between the SOA structure and the

modular structure of the safety case argument. More specifically, this section

explores the relationships between the modelling of the services, contracts and

participants that comprise an SOA and the structure of the modular safety case

argument for the system.

SOA Design
Structure

Services

SLAs

Participants

SOA Modular
Safety Case

Service
Arguments

Safety
Argument
Contracts

Participant
Arguments

136

Figure 41 : Relation between SOA architecture and module safety cases

Figure 41 illustrates the potential relationship between the SOA organisation

and the modular safety case structure outlined above. SoaML

ServicesArchitectures models are used to describe the main components and

communications within the system, the relationships between services and

participants and how they work together. The modular safety case captures the

structure of the service safety argument.

In Figure 41, each service, represented as a SoaML CollaborationUse, has a

corresponding Service Argument module. Contracts between the argument

modules are based on the SLA between the actual services as defined in the

SoaML model (ServicesArchitectures). Each SLA will have a corresponding SLA

Argument Contract module. Similarly, each participant will have its

corresponding Participant Argument module and is linked to the BPMN pool

that models the tasks and flows between tasks that define the behaviour of the

participant.

5.5 Relationship between SOA Safety Analysis and Modular

Safety Cases

In this section, the discussion focuses on how the nature of the SOA safety

analysis (described in Chapter 4) relates to the overall structure of the SOA

safety argument. Figure 42 illustrates the relationship between the SOA safety

analyses, SHA and SFA, and the overall SOA safety case. In our argumentation

approach, the main sources of reasoning and evidence are generated from the

SHA and SFA results.

http://en.wikipedia.org/wiki/Argument

137

Figure 42: SOA safety analysis and structure of the SOA safety argument

5.5.1 Service Hazard Analysis (SHA)

SHA results play a significant role in defining the overall structure of the SOA

safety argument patterns, specifically the high-level argument. For each service

in the SOA which is related to safety, our approach requires the instantiation of

an argument, based on the Service Argument pattern, in order to justify the

claim that potential hazardous failures of the service are appropriately

mitigated or managed. The argument approach is driven by the SHA results.

These results support claims about the nature of the hazardous failures and

how they are mitigated, based on a set of service safety requirements whose

stringency depends on the criticality of the failures with regard to overall

service safety. The claims made about the mitigation of the failures depend on

how the mitigation measures are satisfied by the participants involved in

provision and consumption of the service. These measures are modelled using

SLAs in the SOA models. In our SOA safety case approach, we discuss the

adequacy of the mitigation provided in a corresponding safety argument

contract, where the claims relate to post-conditions based on the

recommended mitigation measures generated from the SHA results.

5.5.2 Service Failure Analysis (SFA)

The pre-conditions of the SLAs, discussed in the previous section, are allocated

to participants that are expected to implement the services in terms of specific

138

tasks and interactions. The aim of the Participant Argument pattern is to

provide assurance that all the task flows have met the safety contract pre-

conditions arising from SLA argument pattern. Therefore, the second half of the

overall SOA safety argument pattern is influenced by the SFA results, which are

organised according to deviations in the flows from the intended behaviour

allocated to the participants involved in the provision of a service. This is

captured in the Participant Argument pattern. This pattern captures the

justification for the management of potential failures in the provision and

consumption of tasks allocated to a participant. The definition of these failures

is generated from the SFA analysis and the strategies chosen to manage their

causes are justified in the context of different categories of failure modes

defined in the SOA fault taxonomy, as discussed in Chapter 4. The pattern also

shows that for each flow between participant tasks, the mitigations suggested

by the DSSRs have been deployed and are sufficient to guarantee the required

behaviour.

5.6 Managing SOA Safety Cases using GSN

In this section, we review the concept of safety case patterns and techniques

which have been developed to allow them to be represented graphically. We

also introduce our approach for SOA safety. The Goal Structuring Notation

(GSN) has been used to present the structure and contents of our SOA safety

argument pattern catalogue. The catalogue uses both the patterns and modular

extensions of GSN (97).

5.6.1 Safety Case Patterns

The safety case pattern concept was originally developed by Kelly (123) based

upon the work of the architect Christopher Alexander (36). Alexander’s

challenge was to try to discover a technique for town planning and structural

engineering that could be reused to solve planning problems in multiple

contexts. In his book, The Timeless Way of Building, Alexander shows how

patterns can be used to abstract away from the details of specific buildings and

environments, and can capture fundamental aspects of the design that can be

applied elsewhere. Alexander asserts that:

139

"Each pattern describes a problem which occurs over and over again in

our environment, and then describes the core of the solution to that

problem, in such a way that you can use this solution a million times over,

without ever doing it the same way twice." (36).

Kelly in (123) adopted Alexander’s principles concerning the use of patterns

for documenting recurring problems, solutions and contexts, and developed

the concept of patterns for GSN safety arguments. Kelly defined a safety case

pattern as “a means of documenting and reusing successful safety argument

structures”. (123)

The Goal Structuring Notation (GSN) was initially developed for the description

of concrete safety arguments for specific systems and contexts. Kelly extended

the original GSN technique with elements that provide the ability to represent

an argument in a more generic format, i.e. as an abstract argument pattern, so

that it can be applied to construct new safety arguments for different systems

and contexts.

5.6.2 GSN Pattern Extension

GSN provides a means for capturing safety arguments and referencing the

available evidence. GSN can be used to represent a specific safety argument for

a given system or capability. Nevertheless, to be able to apply the notation in a

more generalised way, GSN provides an extension for creating patterns and

supporting abstraction, namely optionality, multiplicity extensions and entity

abstractions. The pattern extension is illustrated in Figure 43 (adapted from

(123) and (106)). The core elements of the GSN notation and methodology

were introduced in Chapter 2. Here, we restrict our discussion to the

extensions to support pattern definitions. These extensions rely on two types

of abstraction (Figure 43):

 Structural Abstraction – supporting generalised n-ary, optional and

alternative relationships between GSN elements (Multiplicity

Extensions - Optionality Extension)

 Entity Abstraction – supporting generalisation/specialisation of GSN

elements (Entity Abstraction Extensions).

140

Figure 43: Optionality/multiplicity extensions and entity abstractions (106)

GSN has been also extended explicitly to allow support for the concepts of

modular safety case construction (99). Figure 44 shows the key elements

supporting modularity.

Figure 44: GSN elements introduced to handle modularity

The Argument Module is an explicit representation of a self-contained

argument structure and is used a container for the elements used to capture

that argument. The Away Goal element is used in order to be able to refer to

141

goals (claims) presented in one argument module which are satisfied by

argument and/or evidence contained within other modules. Away Contexts and

Away Solutions are used in order to make reference from the argument of one

safety case module to context and evidence that exist within the boundary of

another. Argument Contract symbols can be used to preserve the overall

integrity of the modular safety case when the internal details of one or more

argument modules are modified. The modular and pattern extensions of GSN

are discussed in more detail in (97).

5.6.3 Documenting Safety Case Patterns in GSN

In this thesis, we use the template developed by (14) in order to document

safety case patterns. The template requires the following categories of

information (taken from Kelly, 1998):

Pattern Name

The pattern name should briefly convey the essence of the pattern. This should

communicate the central argument being presented through the safety argument

pattern. This will be the label by which people will identify this pattern.

Intent

This statement should answer the question “what the pattern is trying to

achieve/do?”

Also Known As

This is used if there are other names by which the pattern could be described or

recognised.

Motivation

This section gives a brief account of why the pattern was constructed. This usually

includes scenarios that show a safety issue / process and how the elements of the

GSN solve the problem.

The scenarios help understand the more abstract description of the pattern that

follows.

Applicability (Necessary Context)

This section records under what circumstances the argument can and should be

applied. Any assumptions and principles underlying the argument pattern are

142

identified in this section. For example, what are the circumstances in which the

safety case pattern can be applied? What information is required (necessary

inputs to the pattern) to be successful? How can you recognise circumstances in

which the pattern can be deployed?

Structure

A graphical representation of the structure of the argument pattern is presented

using GSN.

Participants

This section provides more description of the argument pattern structure,

including a description of each of the elements of the safety case pattern (i.e. the

goals, the contexts, the strategies and the solutions). The element descriptions

make clear their function within the overall argument pattern. These elements

should also state whether the element requires development or instantiation

when the pattern is deployed.

Collaborations

This section describes how the different elements of the pattern work together to

achieve the desired effect of the pattern. This section also explicitly identifies

where links between elements exist that are not communicated by the argument

structure.

Consequences

This section identifies what work remains after having applied the argument

pattern.

Implementation

This section should communicate how the application of the pattern should be

carried out, including any hints or techniques which would ease successful

application of the pattern. It should also highlight possible problems (or pitfalls)

in applying the pattern as well as common misinterpretations of the terms or

concepts.

Example Applications

This section provides examples that illustrate the instantiation of the pattern.

Known Uses

This section describes known uses of the form of argument presented in the

pattern.

143

Related Patterns

This section identifies any other safety case patterns that are related to the

pattern.

5.7 SOA Safety Argument Pattern Catalogue

Figure 45 shows the overall organisation of the argument pattern catalogue we

have defined for the justification of SOA safety. The following sections contain a

detailed explanation and documentation of the argument patterns.

Figure 45: SOA Argument Patterns Catalogue

5.7.1 Top Argument

This pattern provides the top-level decomposition for the argument structured

over the services. Table 19 shows the documentation of the pattern in GSN. The

instantiation of this pattern starts with the G_SOA goal, which is the claim of

overall safety for the SOA system. The structure of the pattern is driven by the

architecture of the services within the system, starting from the SOA system

and identifying how the services within the system can contribute to safety.

The top-level claim is made in the context of the description of the SOA system

and the environment in which it will be deployed. The strategy adopted is to

partition the argument over all of the identified services, considering each

service in turn. The context for this is based on the service specification in

SoaML. For each service, the argument contains a claim that the service is

acceptably safe. This is made in the context of the SOA design (this is taken

144

from the SoaML model). In order to show that any service hazards have been

mitigated, an away goal is defined to argue separately that there are measures

in place to address the safety of the service (this claim is substantiated in the

Service Argument Module).

Top Argument

Author Abdulaziz Al-Humam

Created 08/07/2014 Last Modified 04/07/2015

Intent The intent of this pattern is to provide the high level

and overarching argument to justify the safety of the

SOA-based system, taking into account, explicitly, the

services comprising the system.

Also Known As SOA Top Argument Pattern

Motivation SOAs are increasingly used within safety-critical

applications. The safety of an SOA system must be

justified, to which end a safety argument should be

provided as part of the system safety case. This pattern

was developed to provide a structured top-level

argument for the safety of an SOA system used within

safety-critical applications.

Structure

145

Participants G_SOA The overall objective of the

argument is to provide

sufficient support for the

claim that the use of {SOA

System} in the intended

context is acceptably safe.

{SOA System} is instantiated

from the SoaML

ServicesArchitecture. The

link to this model is

important to provide a

specific and traceable

description of the system

that is the subject of the

safety argument.

C_SOA This context provides a

description of the SOA

system, including all services

within the system. This is

146

provided by the SoaML

ServicesArchitecture.

C_SOA_Env This considers the scope of

the SOA system by defining

the boundary of it,

explaining the domain of the

system. It also captures the

assumptions about the

behaviour of the

environment that are made

by the SOA system. Unless

this behaviour can be

guaranteed, the SOA’s

behaviour cannot be

guaranteed. This is often

stated in terms of

requirements on the

environment (e.g. in the

form of user manuals).

St_Top This presents the strategy

(the decomposition of the

argument into claims about

each service) adopted to

support G_SOA.

G_Service_Hz_Service

Argument Module

This claim argues the safety

of each service and is

captured as an away goal.

This claim references the top

claim made and supported in

a separate argument module

relating to the relevant

service: i.e. the Service

Argument Module for that

service.

Collaborations C_SOA and C_SOA_Env provide necessary context

for the understanding of the system and its

environment.

 C_Top_Hz provides the link with the safety analysis,

147

SHA, used for the identification of the hazardous

contribution of the SOA.

Applicability This is a general pattern and, as such, has a wide

applicability. This pattern is applicable wherever

safety arguments need to be established for the use of

services within a safety-critical application. However, it

assumes that systematic SOA modelling and safety

analysis have been performed, based on SoaML and

SHA.

Consequences

After instantiating this pattern away goals will be

instantiated in the Service Argument Modules.

The Service Argument Module for SOA Safety

Argument pattern can be used to decompose this goal.

Implementation Top Argument Module should be fully developed and

instantiated. Possible problems include lack of

understanding of the environment or lack of

knowledge of safety engineering concerns in the

domain of the system (e.g. healthcare or aviation).

Examples See the two case studies in this thesis.

Known Uses See examples above.

Related Patterns: Service argument Pattern.

Table 19: Top Argument

5.7.2 Service Argument

This pattern provides justification of the mitigations used to manage the

hazardous failures associated with a service, and is structured according to the

results of the SHA. The top-level claim is made in the context of the description

of the current service and the identified service failure modes that have safety

effects. The strategy adopted is to argue the safety of the service by appealing

to the adequacy of the mitigations provided for the hazardous service failures,

in terms of meeting the service safety requirements. The argument considers

each service failure mode that has safety effects in turn. The strategy adopted is

to argue that the mitigation is sufficient to achieve the required integrity. The

achievement of the mitigation is based on, and supported by, the output or

post-condition of an SLA. This is defined in the form of a safety case contract

148

that mediates the relationship between the Service Argument module and the

Participant Argument module.

Service Argument Pattern

Author Abdulaziz Al-Humam

Created 08/07/2014 Last Modified 04/07/2015

Intent The intent of this pattern is to provide an argument to justify

the mitigation measures used to manage the hazardous

failures for a service and to demonstrate how the reasoning is

supported via an SLA Contract Argument.

Also Known As N/A.

Motivation The contribution of each service to overall service safety

needs to be justified. This pattern was created in order to

provide this justification, in terms the mitigation of any

hazardous contribution from the service.

Structure

149

C_Service_Desc

{Service: SoaML
CollaborationUse}

St_Service_Hz

Argument structured based
on mitigating service
hazardous failures

C_Service_Hz

{Service hazardous
failures: service failure
modes with safety
effects: SHA}

G_Service_Mitg

{Mitigation} is satisfied to
the required integrity

C_Service_Mitg

{Mitigation: SHA}

C_Service_Class

Required integrity
based on {Severity:
SHA}

St_Service_SLA

Argument by
enforcing {Mitigation}
in the {SLA}

J

J_Service_SLA

Mitigation is allocated to
the SLA post-condition

G_Service_SLA_Postcondition
s

{SLA post-condition} is
satisfied

Spinal

SLA Contract

Description SLA
Contract

G_Service_D_Hz

{Failure mode with safety
effects} is mitigated to satisfy
the Service Safety
Requirement

St_Service_Mitg

Argument based on
{Mitigation}

{For each service failure mode with safety
effects}

G_Service_HZ

{Service} is acceptably
safe

C_Service_SLA

{SLA: SoaML}

C_Service_Hz_SSRs

{Service Safety
Requirement: SHA}

150

Participants G_Service_Hz The top-level claim considers

the safety of a specific service.

The Service description is

provided by the SoaML

Service Contract Architecture.

C_Service_Desc This context node provides a

description of the service

within the system. This is

provided by the SoaML

Service Contract Architecture.

C_Service_Hz This context node provides a

description of the service

failure modes that have safety

effects.

St_Service_Hz This node presents the

strategy adopted to support

G_Service_Hz (i.e. mitigation

of service hazards)

C_Service_Hz_SSRs Definition of the service

safety requirements

associated with the service.

This is provided from the

{SSRs: SHA}.

G_Service_D_Hz This claim is generated for

each failure mode with

hazardous effects that has

been identified in SHA. This is

provided by the {Failure

Modes: SHA}.

St_Service_Mitg This node presents the

strategy adopted to support

G_Service_D_Hz, considering

the specific mitigation

measures used to address a

specific hazardous failure.

This is provided by the

151

{Mitigation_SHA: SHA}.

C_Service_Mitg This context defines the list of

mitigations for a specific

hazardous failure. This is

provided by the SHA results.

G_Service_Mitg This claim considers the need

to achieve mitigation to the

level of rigour required,

depending on the severity of

the failure event. This is

provided by the SHA results.

C_Service_Class This context node refers to

the interpretation of the

standard’s requirements for

integrity level which has been

produced for this service. .

This is provided in the SHA

results.

St_Service_SLA The achievement of the

mitigation measures is

provided by the Participants.

This is captured via an SLA in

which the post-conditions

define the achievement of the

mitigation measures.

J_Service_SLA The use of SLA post-

conditions must be satisfied

to enable the mitigation to be

achieved and assured.

C_Service_SLA This context node provides a

reference to the SLA used.

This is provided in the SoaML

Service Contract Architecture

{SLA}.

G_Service_SLA_Postconditio

ns

This claim argues that the SLA

post-conditions

corresponding to the

152

mitigation are satisfied.

Evidence for this is provided

by the SoaML Service

Contract Architecture {SLA

post-conditions}.

SLA_Contract The contract can be used to

record the interdependencies

that exist between the

arguments containing the

claims about post-conditions

and pre-conditions of the SLA.

This is provided by the SoaML

Service Contract Architecture

{SLA post /pre-conditions}.

Collaborations C_Service_Hz provides the necessary context for the

identification of the safety hazards associated with the

service.

 G_Service_D_Hz makes a mitigation claim based on the

hazardous events described in C_Service_Hz from

different perspectives (Service not provided when

required; Service provided when not required and

incorrect service).

 C_Service_Hz_SSRs and C_Service_Class provide necessary

context for identifying suitable mitigations of the hazards

associated with the service based on the severity level.

 G_Service_SLA_Postconditions defines the SLA post

condition corresponding to the mitigation within the

contract.

Applicability This pattern is applicable wherever a service is associated

with failures than have safety effects (i.e. hazardous failures).

Consequences

After instantiating this pattern, the contract module should be

developed. The SLA Contract Argument Module for SOA

Safety Argument pattern can be used to structure this

contract.

Implementation Hazard Argument Module should be fully developed and

instantiated. Possible problems include attempting to apply

the pattern to a system which is not based on SOA, and

153

attempting to apply the pattern without having defined safety

contract interfaces.

Examples See the two case studies in this thesis.

Known Uses See examples above.

Related Patterns SLA Contract Argument Pattern.

Table 20: Service argument Pattern

5.7.3 SLA Contract Argument

It Chapter 4, we explained how safety analysis can help identify the safety

requirements for each service. The SLAs for each service can specify the pre-

and post-conditions that are necessary to ensure that these requirements are

met. The SLAs define the basis for argument contract pattern in our SOA safety

argumentation approach. Table 21 shows the documentation of the pattern.

The top goal of the pattern is an away goal which claims that the SLA post-

conditions from Service Argument Pattern are satisfied. The strategy adopted is

to argue over SLA pre-conditions. The justification for this is based on meeting

the SLA pre-conditions allocated to participants. Away goals are used to argue

that one or more participants satisfy the SLA pre-conditions.

SLA Contract Argument Pattern

Author Abdulaziz Al-Humam

Created 08/07/2014 Last Modified 04/07/2015

Intent The intent of this argument contract pattern is to provide

the justification that is needed to link the claims about the

services and those about the participants consuming and

providing these services.

This pattern can be used to record and justify the

interdependencies that exist between post-conditions and

pre-conditions for the services and their associated

participants.

Also Known As SOA Safety Case Contract

Motivation Just as SLAs are used to record interdependencies between

services within SOA design, safety case contract modules

154

are used to represent rely-guarantee relationships between

modules in modular safety case applications. This pattern

was developed to exploit the correspondences between the

structure of the SOA design and the organisation of the

safety case and therefore improve clarify and

maintainability.

Structure

Participants G_Service_SLA_postconditions_

Service Argument Module

The top-level claim states

that the SLA post

condition is satisfied. The

claim referenced in the

away goal here originates

in the Service Argument

Module. It is used to

show sufficient support

to satisfy the

requirements for

mitigation. The

information to instantiate

this goal is provided by

155

the SoaML Service

Contract Architecture

{SLA post-conditions}.

St_SLA_Contract This node presents the

strategy of

decomposition of the

argument over the SLA

pre-conditions that must

be satisfied by the

participants.

J_SLA_Contract This node justifies the

decomposition strategy

by claiming that the use

of SLA pre-conditions –

satisfied by the

participants – is sufficient

to enable the

achievement of the SLA

post-conditions.

G_Participant_Participant

Argument

This claim states that the

pre-condition is satisfied

by a participant. This is

made in the form of an

away goal that references

a goal supported by

argument and evidence

within a Participant

Argument. This is

provided by the SoaML

SLA pre-conditions.

Collaborations G_Service_SLA_postconditions_Service Argument

Module and G_Participant_participant Argument are

away goals that provide the post/pre conditions

necessary to satisfy the safety requirements (contract)

within the SLA service of an SOA system.

 J_SLA_Contract provides the justification for the

satisfaction of the pre-conditions allocated to

participants as a means for meeting the SLA post-

156

conditions.

Applicability This pattern is applicable wherever safety arguments need

to be established for the use of SLA within an SOA safety

application. It assumes that both post- and pre- conditions

are explicitly defined for the SLA.

Consequences

After instantiating this pattern, the goals referenced in the

away goals will be developed within the Participant

Argument Module (G_Participant_H).

Implementation Possible problems include attempting to apply the SLA

contract pattern to a system which is not based on SOA,

attempting to apply the SLA contract pattern without

having defined safety contracts and attempting to apply the

SLA contract pattern without sufficient SLA information

from the SoaML/BPMN models.

Examples See the two case studies in this thesis.

Known Uses See examples above.

Related Patterns Participant Argument Pattern.

Table 21: SLA Contract Argument Pattern

5.7.4 Participant Argument

This pattern provides the justification basis for the behaviour of a Participant

in meeting SLA pre-conditions allocated to it. Table 22 shows the

documentation of the Participant Argument pattern in GSN. The instantiation of

this pattern starts with the goal G_Participant_H, which is a claim that the

participant meets its allocated pre-conditions. The structure of the pattern is

driven by the results of the SFA. The claim in G_Participant_H is made in the

context of the Participant definition (specified in BPMN) and the allocated SLA

pre-conditions (in the SoaML model). The strategy adopted is to argue over

each SLA pre-condition allocated to the participant. The sub-claims

demonstrate how the allocated SLA pre-conditions referenced in the SLA

Contract Argument Pattern (G_Participant _Participant away goal) are satisfied.

The strategy adopted here is to argue over the identified Participant failure

modes which are associated with tasks and their flow interactions. This is made

in the context of the description of the Tasks and their interactions form BPMN

157

model and the Participant failure modes (from the SFA results). A Participant is

defined in the form of a BPMN pool that includes tasks and flows. The rest of

the argument is used to show how the participant failure modes are mitigated

by appealing to the results of the SFA.

Participant Argument Pattern

Author Abdulaziz Al-Humam

Created 08/07/2014 Last Modified 04/07/2015

Intent The intent of this pattern is to provide justification for the

participant behaviour and to create an argument regarding

the safety of the flow between the tasks implemented by a

participant in an SOA system. The safety of the participant’s

behaviour is argued from the perspectives of both the SLA

pre-conditions and the participant interaction flow.

Also Known As Interaction behaviour pattern

Motivation The motivation for this pattern is the need to justify the

behaviour of a participant, as implemented in the form of

tasks and flows, and to demonstrate how it satisfies its

allocated SLA pre-conditions.

Structure

158

Participants G_Participant_H The objective of the argument

is to provide sufficient support

for the claim that the

{Participant} fulfils its {SLA

pre-conditions}. The

information is provided by the

BPMN model (pool) and the

159

SoaML model (SLA pre-

conditions).

C_Participant This context node defines the

by the BPMN model: pool.

C_Participant_Precon This context node provides a

description of the SLA pre-

conditions allocated to the

Participant. This is provided

by the SoaML model.

J_Participants_Tasks This explains that a Participant

is defined in the form of a

BPMN pool.

St_Participant The argument strategy is

based on addressing all of the

pre-conditions allocated to the

Participant.

G_Participant This claim is instantiated for

each pre-condition, and states

that a pre-condition allocated

to the participant as a safety

requirement is satisfied. This

is provided by the SoaML: SLA

pre-conditions.

St_Participant_Tasks This node describes the

mitigation strategies for the

identified failure modes of the

{Participant}. This is provided

by the BPMN model.

C_Participant_FM This context node provides a

description of the failure

modes associated with the

Participant. This is provided

by SFA: failure modes.

G_Participant_FM This node provides a claim

that each failure mode is

sufficiently mitigated. This is

160

provided by SFA: deviation.

C_Participant_Hz_DSSRs This node refers to the safety

requirements associated with

the Failure mode that

contributes to service

hazardous failures. This is

provided by {DSSRs: SFA}.

St_Task_Mitg This node describes an

argument strategy by which

the adequacy of each

mitigation is demonstrated.

The mitigations are

implemented from SFA:

mitigation.

G_Participant_Task_Mitg This claim considers the

adequacy of the selected

mitigation from SFA: Failure

modes.

C_Participant_Tasks_Mitg This context node defines the

list of tactics to provide

suitable mitigation for a

specific failure mode: e.g high-

integrity, redundancy,

diversity and

monitoring/checking.

This information is provided

by SFA: mitigation of SFA.

Collaborations C_Participant and C_Participant_Precon provide

necessary context for the system’s interaction with the

Participant, specifically for SLA pre-conditions.

 G_Participant_H and G_Participant argue that the pre-

conditions relating to {Participant} have been satisfied.

 C_Participant_FM provide necessary context for

identifying the interaction and the failure modes

associated with the Participant.

 G_Participant_Task_Mitg considers the suitable

mitigations used for addressing Participant failure

161

modes.

Applicability This pattern is applicable wherever participant safety

arguments need to be established for the use of a SOA-

based safety critical system.

Consequences

After instantiating this pattern, one undeveloped goal will

remain: G_Participant_Task_Mitg. The argument supporting

this must be developed, based on more detailed

implementation information.

Implementation Possible problems include attempting to apply the pattern

without sufficient design information (implementation)

from the SoaML/BPMN models.

Examples See the two case studies in this thesis.

Known Uses See examples above.

Related Patterns None provided at this stage.

Table 22: Participant Argument Pattern

5.8 Healthcare Case study: SOA Safety Case

This section presents the results of applying the SOA safety argument pattern

catalogue outlined in the previous section to the healthcare case study

introduced in Chapter 4. The purpose of this part of the case study is to

examine how the SOA safety argument pattern catalogue can help in

communicating the justification for the safety of the ambulance system and its

associated services. It also shows how the analysis process applied to the

healthcare case study in Chapter 4 relates to the overall structure of the SOA

safety argument. The case study will also be used to illustrate how the safety

requirements and mitigations arising from the analysis can be used to define

the safety argument contracts based on the SLAs defined during the design.

The description of the system and the system design including all design

models are taken directly from the Health and Social Care Information Centre

(148) which was presented in Chapter 4. This section considers the safety

arguments for one specific service: Dispatch Ambulance. Additional safety

arguments are described in Appendix D.

162

5.8.1 Ambulance Service System Safety Argument

The safety case for the Ambulance Service System starts with an instantiation of the Top Argument pattern. The Top Argument includes

a service-directed argument, which covers the main safety claims concerning the ambulance service system services.

Figure 46: Top Argument Module for Dispatch Ambulance

163

The results of the instantiation are shown Figure 46. G_SOA presents the claim

about the overall safety of the Ambulance Service System in the context of the

use case, i.e. the transportation of pregnant women (C_SOA_Env) and the list of

services covered (C_SOA). The strategy decomposes the argument over all the

identified services within the system, based on the SOA specification defined in

SoaML. For each service, the argument makes a claim that the service is

acceptably safe. This is done by means of creating an away goal for each service

which references the corresponding Service Argument module. In this section,

we only focus on the argument for the Dispatch Ambulance service.

5.8.2 Service Argument for the Dispatch Ambulance Service

The argument structure in Figure 47 shows the instantiation of the Service

Argument pattern for the Dispatch Ambulance service. The instantiation is

based on the result of the SHA analysis of the Dispatch Ambulance service we

presented in Chapter 4. The top-level claim for the Dispatch Ambulance states

that the service is acceptably safe, in the context of the SOA specification

defined in SoaML CollaborationUse. The strategy argues over all the identified

service hazards within the service based on the analysis carried out in the SHA.

This strategy is presented in the context of the results of the modelling and SHA

for this service.

The argument focuses on three failure modes which have hazardous effects,

which have been generated from the SHA results, namely:

 Ambulance not dispatched;

 Ambulance dispatched later than intended;

 Ambulance dispatched to the wrong address.

The argumentation strategy adopted for each failure mode is to argue that the

failure mode has been mitigated to the required level of integrity. For example,

the failure ‘Ambulance not dispatched’ is mitigated by active monitoring and

cross-checking between requested and dispatched ambulances. The mitigation

claim is then defined in the form of a safety contract post-condition that is

supported by the SLA Contract Argument.

164

C_Service_Desc

Dispatch ambulance:
SoaML
CollaborationUse

St_Service_Hz

Argument structured based
on mitigating service
hazardous failures

C_Service_Hz

Service hazardous failures: SHA
- Ambulance not dispatched
- Ambulance dispatched later than
intended
- Ambulance dispatched to the wrong
address

G_Service_N_Hz

Ambulance not dispatched is
mitigated to satisfy the
Service Safety Requirement

J

J_Service_N_SLA

Mitigation is allocated to
the SLA post-condition

G_Service_N_SLA_Postconditions

Active monitoring and cross-
checking between requested and
dispatched ambulances is satisfied

G_Service_W_Mitg

Early address cross-checking and
confirmation between requested
and dispatched ambulances is
satisfied to the required integrity

G_Service_I_Mitg

Active monitoring of timing
targets and strategies for recovery
from timing-related failures is
satisfied to the required integrity

G_Service_N_Mitg

Active monitoring and cross-
checking between requested and
dispatched ambulances is satisfied to
the required integrity

 G_Service_I_Hz

Ambulance dispatched later
than intended is mitigated to
satisfy the Service Safety
Requirement

G_Service_W_Hz

Ambulance dispatched to the
wrong address is mitigated to
satisfy the Service Safety
Requirement

St_Service_N_Mitg

Argument based on active
monitoring and cross-
checking between requested
and dispatched ambulances

St_Service_I_Mitg

Argument based on active
monitoring of timing targets
and strategies for recovery
from timing-related failures

St_Service_W_Mitg

Argument based on early
address cross-checking and
confirmation between requested
and dispatched ambulances

C_Service_N_Mitg

Mitigation: SHA
Active monitoring and cross-
checking between requested
and dispatched ambulances

C_Service_I_Mitg

Active monitoring of timing
targets and strategies for
recovery from timing-
related failures

C_Service_W_Mitg

Early address cross-
checking and confirmation
between requested and
dispatched ambulances

C_Service_N_Class

Required integrity
based on Major
severity

C_Service_I_Class

Required integrity
based on Major
severity

C_Service_W_Class

Required integrity
based on Major
severity

St_Service_N_SLA
Argument by enforcing active
monitoring and cross-checking
between requested and
dispatched ambulances in SLA
1

St_Service_I_SLA

Argument by enforcing active
monitoring of timing targets and
strategies for recovery from
timing-related failures in the SLA
2

St_Service_W_SLA

Argument by enforcing Early
address cross-checking and
confirmation between requested
and dispatched ambulances in the
SLA 3J

J_Service_I_SLA

Mitigation is allocated to
the SLA post-condition

J

J_Service_W_SLA

Mitigation is allocated to
the SLA post-condition

G_Service_I_SLA_Postconditions

Active monitoring of timing
targets and strategies for
recovery from timing-related
failures is satisfied

G_Service_W_SLA_Postconditions

Early address cross-checking and
confirmation between requested
and dispatched ambulances is
satisfied

Spinal

SLA Contract1

SLA of Active monitoring and
cross-checking between requested
and dispatched ambulances

Spinal

SLA Contract2

SLA of active monitoring of timing
targets and strategies for
recovery from timing-related
failures

Spinal

SLA Contract3

SLA of early address cross-
checking and confirmation
between requested and
dispatched ambulances

C_Service_I_Hz_SSRs

Service Safety Requirement:
The failure mode “ambulance
dispatched later than
intended” shall be prevented
or mitigated

G_Service_Hz

Dispatch Ambulance is
acceptably safe

C_Service_N_Hz_SSRs

Service Safety Requirement: SHA
The failure mode “ambulance not
dispatched” shall be prevented or
mitigated.

C_Service_N_SLA

SLA 1

C_Service_W_Hz_SSRs

Service Safety Requirement:
The failure mode “ambulance
dispatched to the wrong
address” shall be prevented or
mitigated.

C_Service_I_SLA

SLA 2

C_Service_W_SLA

SLA 3

Figure 47: Service Argument for Dispatch Ambulance

165

5.8.3 SLA Contact Argument for the Dispatch Ambulance Service

Figure 48: SLA contact Argument for Dispatch Ambulance

Figure 48 shows the instantiation of the SLA Contract Argument pattern for the

Dispatch Ambulance service. The top-level away goal states that active

monitoring and cross-checking between requested and dispatched ambulances

are satisfied. These correspond to the post-conditions of the SLA associated

with the Dispatch Ambulance service. The argument strategy is to argue over

the satisfaction of the set of SLA pre-conditions. This takes the form of away

goals that reference claims stated in the Participant Argument for the

participants satisfying the SLA pre-conditions. For example, the away goal

which points to the Call-Center argument module references a claim in that

module which states that the Call-centre sends a request to the ambulance

crew and then monitors its status.

166

5.8.4 Participant Argument for the Call-Center Participant

Figure 49 shows the instantiation of the Participant Argument pattern for the

Call-Center Participant. The argument is based on the satisfaction of the pre-

conditions allocated to the Call-Center Participant via the SLA in which the

Participant is involved; namely, that the Call-Center sends a request to

ambulance crew and monitors its status. The argument then provides a

justification for how the above claims are supported based on the results of the

SFA and modelling in BPMN.

167

G_Participant_H

Call_center fulfils its
SLA pre-conditions

C_Participant

Call_ centre:
BPMN Pool

St_Participant

Argument by addressing
SLA pre-conditions
allocated to the participant

C_Participant_Preco
n
Call_center SLA pre-
conditions: SoaML
SLA

G_Participant_FM

No request for ambulance
received is mitigated to
satisfy the allocated DSSRs

St_N_Participant_Tasks

Argument based on
identified participant
failure modes

J

J_N_Participants_Tasks

A participant is defined as
a BPMN pool that includes
tasks and flows

G_Participant_FM_late

Request arrived later than
intended is mitigated to
satisfy the allocated DSSRs

St_Tasks_Mitg_late

Argument based on
monitoring of timing
targets and strategies for
recovery

C_Participant_Task_Mitg_la
te

Monitoring for timing
failure and developing
recovery strategies

G_Participant_Task_Mitg_late

Monitoring for timing failure and
developing recovery strategies
provides adequate mitigation to
request arrived later than intended

G_N_Participant

Call-center requesting an
ambulance and monitoring its
status are satisfied

St_Tasks_Mitg1

Argument based on use of
redundancy in data sources
by fitting an additional flow
to the request

C_Participant_Hz_DSSRs

DSSR:The failure mode “no
request for ambulance
received” shall be
prevented or mitigated.

G_Participant_Task_Mitg

Use of redundancy in data sources by
fitting an additional flow to the request
provides adequate mitigation to no
request for ambulance received

G_Participant_FM_value

Incorrect request is
mitigated to satisfy the
allocated DSSRs

St_Tasks_Mitg_value

Argument based on applying
diversity via programming
solutions to detect and reject
improper values and fault
containment

G_Participant_Task_Mitg_value

Applying diversity via programming
solutions to detect and reject
improper values and fault
containment provides adequate
mitigation to incorrect request

C_N_Participant_FM

Participant failure modes: SFA
- No request for ambulance received
- Uncommanded request for
ambulance received
- Request arrived later than intended
- Incorrect request

C_Participant_Hz_DSSRs_Late

DSSR: The failure mode
“request arrived later than
intended” shall be prevented
or mitigated.

C_Participant_Task_Mitg

Use of redundancy in data
sources by fitting an
additional flow to the
request

C_Participant_Task_Mitg_value

Applying diversity via
programming solutions to
detect and reject improper
values and fault containment

C_Participant_Hz_DSSRs_
value
DSSR: The failure mode
“incorrect request” shall
be prevented or
mitigated.

Figure 49: Participant Argument for Dispatch Ambulance

168

5.9 Summary:

In this chapter, we have presented a catalogue of safety argument patterns for

justifying the use of SOA in safety-critical applications. The overall safety

argument is created in a modular manner to ensure a clear correspondence

between the structure of the safety argument and the organisation of the SOA

design. These argument patterns link the safety argument for the SOA with the

results of the modelling in SoaML and BPMN and the results of the safety

analysis on SHA and SFA. Finally, we illustrate the use of the safety argument

patterns for one of the services within the healthcare case study.

169

Chapter 6

6. Evaluation

6.1. Introduction

This chapter presents the results of the evaluation of the SOA Safety Assurance

Framework developed in this research. It revisits the research hypothesis and

explains the means for evaluation used in this thesis. Further, the chapter

provides the details of the second case study we performed and the results of

the evaluation with respect to the research contributions.

6.2. Research Hypothesis

The hypothesis proposed in this thesis is as follows:

Integrated architectural modelling and analysis of safety-critical service-

oriented systems provides a traceable, consistent and systematic means for

assuring the safety of these systems.

Below is an explanation of the main terms used in the hypothesis.

• Integrated: safety analysis and design decisions evolve together;

• Traceable: forward and backward model-based traceability between

design and safety analysis is provided;

• Consistent: design features are reflected in the safety analysis and the

safety assurance and vice versa;

• Systematic: a methodical approach to performing safety assurance is

proposed;

170

• Assuring: the approach provides an explicit means for reasoning about

the safety properties and system behaviour.

The above terms define the basis for the criteria used for evaluation of the SOA

Safety Assurance Framework.

This hypothesis is supported by the following four contributions made as part

of this PhD research:

 Identification and configuration of SOA modelling notations, namely

SoaML and BPMN, based on two criteria: coverage of the structure and

behaviour of the services which is deemed suitable for the safety

analysis of SOA.

 Development of safety analysis techniques for SOA, namely SHA and

SFA, which can be used to examine the hazardous failures of services

and the failure behaviour of lower-level implementations.

 Development of the concept of modular safety cases for the assurance of

safety-critical SOAs, promoting correspondence between the structure

of the SOA and the organisation of the modular safety case. This generic

argument approach is defined in the form of an SOA Safety Argument

Pattern Catalogue, which can be instantiated to produce safety

arguments for specific SOA-based systems.

 Implementation of tool-support that provides automated capabilities for

building the SOA models, applying the safety analysis and building the

safety case for the system.

6.3. Means of Evaluation

Two case studies have been carried out during this research. The first case

study, which was presented in Chapters 4 and 5, is based on the healthcare

domain. The second, which is presented later in this chapter, is based on the oil

and gas domain. The research was also evaluated through a peer-reviewed

publication and semi-structured interviews with practitioners.

6.3.1. Case Studies

The two case studies provided the primary means for evaluating the technical

criteria related to the research hypothesis, namely that the proposed approach

171

should be ‘integrated’, ‘traceable’, ‘consistent’, ‘systematic’ and ‘assuring’. These

are qualitative criteria and the results of examining these criteria are discussed

in Section 6.6. The second case study in particular provides the basis for

evaluating the feasibility of the SOA Safety Assurance Framework developed in

this thesis.

The two domains of the case studies, healthcare and oil and gas, are typically

categorised as safety-critical and tend to be structured around services.

Nevertheless, they have important differences. Safety in Oil and Gas is well

established and is heavily regulated. The environment also tends to be

relatively well understood. Safety in healthcare on the other hand presents

different kinds of challenges. The environment is harder to control and safety

as a discipline, especially for IT systems, is not well defined (149). The concept

of engineering risk in healthcare is not typically subjected to systematic safety

analysis, as compared to Oil and Gas. Each case study provides a different

treatment of risk associated with services in the corresponding domain. In

healthcare for example, safety analysis tends to be high level and not as

detailed as in a traditional safety-intensive domain such as Oil and Gas.

6.3.2. Semi-Structured Interviews

In order to provide an independent evaluation of our approach, we conducted

semi-structured interviews with domain experts from both the healthcare and

oil and gas domains. The results of this evaluation are discussed in section 6.5

below.

6.3.3. Peer Review

The technical accuracy of the research was also evaluated through a peer-

reviewed publication published in the Medical Cyber Physical Systems

Workshop, 2014.

The work was also evaluated by means of presentations and interactions with

members of the High-Integrity Systems Engineering (HISE) research group at

York.

172

6.4. Industrial Case Study: Natural Gas Processing

This section introduces our second case study, in which the SOA Safety

Assurance Framework was used to model an industrial service-based system.

The case study was intended to demonstrate the application and feasibility of

the safety analysis methods and safety case approach defined in this thesis.

6.4.1. Aim

The main aim of this industrial case study, based on an example from the oil

and gas domain, is to examine the feasibility of applying our SOA Safety

Assurance Framework in the light of the technical criteria identified in the

research hypothesis, namely: ‘integration’, ‘traceability’, ‘consistency’,

‘systematicness’ and ‘assurance’. The results of the application of the SOA

Safety Assurance Framework will be compared to the traditional safety

analysis approach based on HAZOP, the primary safety analysis technique used

in the oil and gas industry.

173

6.4.2. System Description

Figure 50 Overview of Gas Plant Processes (150)

The case study is based on part of a system that is used to produce liquid gas in

a Natural Gas Processing Plant. Natural Gas Processing is a commercially

sensitive activity, and although this case study was developed in collaboration

with a chemical engineer from the oil and gas domain, the system and plant

used in this case study do not refer to any actual industrial systems. Some of

the system descriptions and analyses used in this case study are based on

information in the published literature, mainly (150) and (151).

Figure 50 describes the Natural Gas Processing system, which comprises seven

main services. These have been used to provide the detailed organisation of the

SOA system:

(1) Supply Natural Gases;

174

(2) Separate Gases;

(3) Absorb Water;

(4) Heat Exchange;

(5) Separate Gas from Liquid;

(6) Send Emergency Signal;

(7) Call Emergency Number.

The Gas Processing Plant contains many processing units that provide facilities

to receive the natural gas, filter it, separate it, cool it, and store the gas and

liquids in a tank for shipment. The functions of the Plant comprise primary

processes such as gas treatment, dehydration, acid gas removal, as well as

heating and cooling media such as steam, cooling water and chilled water.

The gas is provided from the wells to a treatment unit. The treatment unit

separates the gas into acid and sweet gas. The acid gas contains hydrogen

sulphide (H2S) and carbon dioxide (CO2). The sweet gas contains C1, C2, C3, C4,

C5 and H2O in gas phases. The gas stream enters the dehydration unit at a

temperature of 120°F where it first goes to dehydration unit. This unit contains

a chemical catalyst that helps in removing the water from the gas. The objective

is to avoid freezing the gas stream inside the pipe. The performance of the

dehydration unit is monitored by a pressure transmitter. A transmitter is a

device that converts measurements from a sensor to a signal which is received

when the high pressure inside the unit results in changes to the catalysis

process. After the water is removed, the gas goes to a cooling unit where it is

cooled from 120°F to –40°F. The change in temperature is monitored by

temperature transmitters. A transmitter (pressure or temperature) should

send a signal to the control operator inside the control room, allowing him to

monitor the pressure or temperature changes. For any change above or below

a pre-defined limit, the control operator should call a supervising operator to

decide on any remedial action needed. On leaving the cooling unit, the gas is

passed to a separator unit to separate the gas from the liquid. The drop in

temperature helps to condense the gas into liquid form. The liquid stream is

called liquid gas. After processing, the liquid gas is shipped to an

175

external chemical manufacturing company, whereas the gas is supplied to an

electricity company.

The performance of the unit as a whole is monitored by a human control

operator, who monitors indications of pressure and temperature levels in the

gas and liquid gas which are sent through transmitter instrument devices from

the processing area to the operator’s computer. The control operator is

responsible for detecting process changes and for advising the outside operator

accordingly through a radio communication channel.

In the event of a gas leak, the control operator is expected to detect a

sharp increase in the temperature based on the cooler’s indicating that no gas

is passing through. The upstream emergency isolation valve should close

automatically, since it has a logic where any sharp increase in temperature

should lead to the valve closing. This is to avoid the continuation of gas leakage

from the source. The leaking gas is a fuel and any spark of ignition is likely to

result in a fire. Next, the control operator should call the emergency centre,

notifying the fire, medical and security services. The fire services are on

continuous standby, and should be ready to extinguish any potential fire

resulting from the leak. Similarly, the ambulance team should be ready to

provide the necessary medical support, since there is a potential for people to

inhale toxic gas which could result in death or health complications. The

security team are responsible for traffic control and for ensuring that

authorized people can access the emergency location (where the leak took

place) (150).

6.4.3. Overview of Oil and Gas Safety

Before applying our SOA Safety Assurance Framework to the natural gas

processing system, we will use this section to introduce the key safety factors

of the oil and gas domain.

An early activity in any typical safety analysis is the identification of hazards.

The COMAH Safety Report Assessment Manual (SRAM) (152) provides some

indication of the types of hazards relevant to the oil and gas industry and

methods used to identify them. The principal methods they identify are:

 Hazard and operability studies (HAZOP);

176

 Safety review and studies of the causes of past major accidents and

incidents’

 Industry standards or bespoke checklists for hazard identification;

 Failure mode and effect analysis (FMEA);

 Job safety analysis (e.g. task analysis);

 Human error identification methods.

According to the SRAM, the analysis should first develop a clear understanding

of the domain (site operations), the materials involved and the process

conditions. Secondly, it must identify the hazards to people on-site and off-site

and to the environment. Finally, there must be an analysis of different ways in

which the hazards can be eliminated, reduced in scale, realised and controlled

(153).

6.4.4. Accidents and Hazards Identification

It is a high-level safety requirement for the process that the hazard

identification exercise should identify all foreseeable major accidents. In order

to make the risk assessment feasible, it is possible to group potential accident

scenarios together for analysis. If this is the case, the grouping should be

conservative in terms of the risk associated with each group, and should

include worst-case scenarios. We apply this principle in our case study by

identifying and classifying the accidents, hazards and failure modes. The main

types of accident in this domain are: Explosion, Serious Damage, Major Leak

and Fire.

6.4.4.1 Accident Identification in the Oil and Gas Domain

Explosion can be defined as a quick increase in volume and release of energy in

an extreme manner, generally with the generation of high temperatures or

overpressure and the release of gases or liquids (154). Large explosions are

capable of causing immediate critical damage, e.g. BP Deepwater Horizon Oil

Spill and offshore drilling in the Gulf of Mexico (155).

Accidents of the serious damage type can happen when corrosive chemicals are

used in equipment which is not designed to tolerate them. Corrosion is a

condition which means that an agent that can destroy and damage other

substances when it comes into contact with them, e.g. mixing incompatible

http://en.wikipedia.org/wiki/Volume
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Temperatures
http://en.wikipedia.org/wiki/Gas

177

chemicals because of pressure reversal (incompatible materials may be mixed

with each other, leading to corrosion of the vessel containing them).

Major fire is defined as a quick oxidation of a material in the exothermic

chemical process of combustion, releasing heat, light, and various reactive

products (154). One recent example of a major fire accident is the fire at the

Gregory natural gas plant in Texas in 2013, which resulted in a large blaze and

operational loss (156).

In the gas domain, ‘Major Leak’ is defined as an escape of natural gas from a

pipeline or other containments to a living area or any other where the gas must

not be present (154). For example, the Bhopal disaster was a leak of gas and

other chemicals which took place at a plant in India in 1984, resulting in the

exposure of up to 15,000 people to an extremely harmful chemical.

6.4.4.2 Hazard Identification

Explosions may occur in many different ways. The contributory hazards can

typically be classified in terms of factors such as High pressure and Blockage.

Failure modes can occur in many different environments and configurations

(157):

 chemical reaction inside the vessel, blocked outlets (blocked-in pump

and blocked-in compressor);

 loss of cooling capacity (failure of air-cooled heat exchanger, failure of

water-cooled heat exchanger);

 abnormal heat input (excessive heat added);

 electrical power failure (electrical power may lead to high pressure e.g.

loss of power will cause the vapours to pass thought the condenser

without being cooled or condensed, thus creating a high-pressure

situation and control failure or valve failure).

One noteworthy cause of high pressure is close instantaneous evaporation of

liquid through contact with hotter liquid, which can result in an explosion. This

may occur if liquid gas comes into contact with water in areas where there is a

potential ignition source (a key focus in our case study). The very high liquid

gas pressure can lead to an explosion. Such an event might occur during liquid

gas transfer between an onshore terminal and the liquid gas carrier (157).

http://en.wikipedia.org/wiki/Oxidation
http://en.wikipedia.org/wiki/Exothermic
http://en.wikipedia.org/wiki/Combustion
http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Product_%28chemistry%29

178

Serious damage may be caused by hazards such as incorrect valve closure or a

failure to close valves when required (mainly human error). Another potential

example is the supply line containing water that is either not flowing or is

flowing very slowly. In this case, an ambient temperature of below freezing

point can cause the water in the line to freeze. This may create serious damage

within the line where the flow is stopped.

Major fire can also be caused in many different ways. The hazards associated

with fire can be classified based on the flammability of the gas/liquid mixtures.

If air enters a process involving flammable hydrocarbons and/or reducing

chemicals then a serious accident could happen, or could occur afterwards as a

in the presence of an ignition source. For example, if air enters the process

through open lines and vessels, this could result in unwanted oxidation

processes and air ingress, leading to formation of an explosive mixture (157).

6.4.5. SOA Modelling

In this section, we apply SoaML and BPMN to modelling the structure and

behaviour of the Gas Processing system. The diagram in Figure 51 provides a

structural description of the system in terms of its services and participants.

This is defined using the SoaML Services Architecture diagram. Specifically, it

focuses on the Natural Gas Processing System architecture with eight

participants that are connected together by seven services.

Figure 51: SoaML Service Architectures Model for Gas Processing

179

Figures 3 to 6 show the different types of interface that the SoaML standard

(158) provides for gas modelling (Consumers/Providers). It shows the

interfaces associated with the services. The consumer and provider participant

roles are modelled based on the defined interfaces. This provides detailed

traceability between the SoaML models and the behavioural model in BPMN

where each SoaML interface operation is mapped into a BPMN task.

Figure 52: Interfaces with Operations for the Supply Natural Gases Service

Figure 53: Interfaces with Operations for the Separate Gases Service

Figure 54: Interfaces with Operations for the Absorb Water Service

Figure 55: Interfaces with Operations for Heat Exchange and Separate Gas from Liquid

Services

Figure 56 presents a more detailed behavioural model of the SOA design using

BPMN, with the core activities and execution flow shown as processes. For

180

example, eight BPMN pools are created to capture the tasks allocated to the

participants in the SoaML model in Figure 51. Furthermore, the BPMN model

describes in more detail the treatment of sweet gas through providing liquid

gas and steam gas.

In the next section, we describe how the SoaML and BPMN models provide the

basis for performing the SOA safety analysis using SHA and SFA.

181

Figure 56: Gas Processing BPMN Model

182

6.4.6. SOA Safety Analysis

In this section, we show how we applied the SHA and SFA methods to the

Natural Gas Processing case study that we introduced in Section 6.4.2. The

objective of this part of the case study is to illustrate the use of the methods

and provide an evaluation of the feasibility of the analysis approach.

6.4.6.1. SHA

In this section, we provide an overview of the four main services used in the

case study with their SLAs and describe how SHA is applied to the services

within the system. The services used in the case study are as follows:

 Absorb Water;

 Heat Exchange;

 Separate Gas from Liquid;

 Send Emergency Signal.

The following subsections provide an overview of these services and of the

analysis results.

Absorb Water Service

In its gaseous form, natural gas contains H2O. When converting to a liquid, the

H2O levels in natural gas should be decreased to less than 1% in a physical

absorption process in which the gas is contacted through a liquid that

preferentially absorbs the water vapour. The liquid solvent must have the

following properties in order for the absorption process to be completed

(150):

 a high affinity for water and a low affinity for hydrocarbons;

 a low volatility at the absorption temperature to reduce vaporisation

losses;

 a low viscosity for ease of pumping and good contact between the gas

and liquid phases;

 a good thermal stability to prevent decomposition during regeneration;

and

 a low potential for corrosion.

183

In practice, glycols such as ethylene glycol (EG), diethylene glycol (DEG),

triethylene glycol (TEG), tetraethylene glycol (TREG) and propylene glycol are

the most commonly used absorbents. Triethylene glycol is the glycol of choice

in most instances.

Figure 57: Schematic of a Typical Glycol Dehydrator Unit (159)

Figure 57 shows an example of the use of glycol for H2O absorption. The wet

gas passes through an inlet scrubber to remove solids and free liquids, and

then enters the bottom of the glycol dehydrator. Gas flows upward in the

dehydrator, while lean glycol solution (glycol with little or no water) flows

down over the trays. Rich glycol absorbs water and leaves at the bottom of the

column while dry gas exits at the top. The rich glycol flows through a heat

exchanger at the top of the still where it is heated and provides the coolant for

the still condenser. Then the warm solution goes to a flash tank, where the

dissolved gas is removed. The rich glycol from the flash tank is further heated

by heat exchange with the still bottoms, and then becomes the feed to the still.

The still produces water at the top and a lean glycol at the bottom, which goes

to a surge tank before being returned to the contactor (150).

The catalyst works like a sponge (known for their exceptional ability to absorb

water). The gas stream enters the dehydration unit at a temperature of 120 °F

and first goes to dehydration unit. This unit contains a catalyst that helps to

184

remove the water from the gas. The water is removed is to avoid freezing the

gas stream inside the pipe. The performance of the dehydration unit is

monitored through a pressure transmitter, where the high pressure will result

in changing the catalysis reaction inside the unit. After the water is removed,

the gas will pass by the analyser to measure that there is no water through the

pipe. An analyser is an instrument which conducts chemical analysis on

samples or sample streams. When the gas has less than 1% water content, the

system can accept it. The gas will leave the analyser at a temperature of 120°F

passing through the pipe to the cooling unit, where it is cooled from 120 to -40

°F. The change in temperature is monitored through a temperature

transmitter.

The Natural Gas Processing System architecture in Figure 51 shows where the

Absorb Water service is used. Two Participants, the Dehydration Unit and

Cooling Unit, have been specified, their interactions captured by the Absorb

Water service contract. These two participants represent the roles that are

connected to this service. Table 23 shows the SLA for the Absorb Water

service. For instance, the Participants, Cooling Unit and Dehydration Unit,

respectively represent the consumer and provider for the service.

Attribute Description Source

Name Absorb Water SoaML Service Contract
Architecture for the natural gas
processing system

Provider The Dehydration Unit that provides
the service

SoaML Participants
Architecture for the natural gas
processing system

Consumer The Cooling Unit that uses the service SoaML Participants
Architecture for the natural gas
processing system

Start time The point at which the Dehydration
Unit is requested to Absorb Water
(e.g. 9:00:00 AM)

SoaML ServicesArchitecture for
the natural gas processing
system

Due time The end time of the requested
Absorption process (e.g. 9:00:30 AM)

SoaML ServicesArchitecture for
the natural gas processing
system

Duration 30 seconds SoaML ServicesArchitecture for
the natural gas processing
system

 (Pre-
condition)

Receiving the requested information
including the amount of water,
percentage removal required, and

SoaML Service Contract
Architecture for the natural gas

185

 brief details of the condition of the
sweet gas.

processing system

 (Post-
condition)

Water absorbed and content less than
1%. Signal sent by transmitter at the
expected arrival time

SoaML Service Contract
Architecture for the natural gas
processing system

Contribution
to Safety

Overall severity is very severe (see
SHA results)

SHA

 Table 23: Absorb Water SLA

Table 24 shows an extract from the SHA results for the ‘Absorb Water’ service.

The analysis establishes the potential safety criticality of the ‘Absorb Water’

service, based on the severity of the worst credible effects of the identified

failure modes. As a result of the analysis, stringent safety requirements

allocated are defined and allocated to the ‘Absorb Water’ service.

Service Failure
Modes

Effects Severity SSRs Mitigation

Absorb
water

Context:
Absorption
service
means
removing
the water in
gas
dehydration
processes

Water not
removed
(i.e. water
content is
more than
1%)

Blockage
in the
pipeline;
Damaged
pipelines;
Explosion

(Very
Severe, 4)

The failure mode
“water not
removed” shall
be prevented or
mitigated.

Active monitoring
and cross-
checking between
removing water
and measuring
sweet gas through
the analyser. Also,
checking the
catalyst inside the
dehydration drum
to ensure it is
within its service
life e.g. needs to be
replaced every 5
years.

Water
removed
when not
required

N/A N/A None. None.

Water
removed
later than
intended

Freezing
inside the
pipeline;
Blockage
in the
pipeline;
Damaged
pipelines;
Explosion

(Very
Severe, 4)

The failure mode
“water removed
later than
intended” shall
be prevented or
mitigated.

Active monitoring
of timing targets
and strategies for
recovery from
timing-related
failures through
analyser.

Water
removed
earlier
than
intended

N/A N/A None. None.

186

Inaccurate
percentag
e of water
removed
(i.e. water
content is
less than
1%)

N/A

No direct
safety
effects

The
system
can
handle
that
without
any effect

N/A None. None.

Table 24: Absorb Water SHA

The Absorb Water service has two potential hazardous failure modes, namely:

1- Water not removed (i.e. water content is more than 1%);

2- Water removed later than intended.

In the SHA, the failure modes are intended to act as prompts for the analyst,

and it may be necessary to consider more than one interpretation. For

example, the first case, “water not removed” (i.e. water content is more than

1%), the service is not provided, which may lead to a large amount of water

flooding into the pipeline toward the cooling unit. This water may then freeze

inside the pipeline, which would block the pipeline and prevent the flow of

gas. Ultimately, this could lead to damaged pipelines or an explosion. The level

of severity is measured and classified based on a risk matrix (154). In the oil

and gas domain, risk is commonly analysed and managed using three risk

matrices. They are as follows:

 Consequence Matrix;

 Frequency Matrix; and

 Risk Matrix.

The consequence/severity matrix we use in this case study is depicted in

Table 25 and is based on four types of potential consequence: worker safety,

public safety, environment and economic (154).

 Worker Safety Public Safety Environment Economic
(Annual)

Low, 1 Reportable or
equivalent.

None. Limited impact
that is readily
corrected

$10.000 to
$100.00

187

Moderate, 2 Hospitalization
or lost-time
injury.

Minor medical
attention.

Report to agencies
and take remedial
action.

$100.000 to
$1 million

Severe, 3 Single
disabling.

Hospitalization
or serious injury.
Some local
reporting.

Irreversible
damage to low-
quality land. Or
clean-up of
environmentally
sensitive areas
requires

$1 million
to $ 10
million

Very severe, 4 Fatality or
multiple
serious injuries.

Fatality or
multiple serious
injuries. Massive
negative
publicity.

Months of clean-
up work needed in
environmentally
sensitive areas

≥ $10
million

 Table 25: Consequence Categories (154)

Once the consequences associated with an incident have been identified, the

next step is to estimate the frequency with which the incident might occur. An

example matrix is shown in Table 26.

 Frequency Comments

Low, 1 < 1 in 1.000 years Essentially impossible: “ Once in a blue
moon “ or “meteor falling out of the sky”

Moderate, 2 1 in 100 years to 1 in 1.000
years

Conceivable – has never happened in the
facility being analysed but has probably
occurred in a similar facility somewhere
else.

High, 3 1 in years to 1 in 100 years Might happen once in an engineer’s
career

Very High,
4

> 1 in 10 years It is likely that the event has occurred at
the site if the facility is more than a few
years old.

 Table 26: Example of Frequency Matrix (154)

Table 27 shows the Risk Ranking Matrix that is used to categorise the level of

severity/consequences and frequency. The colours should be interpreted as

follows: red means very high risk, orange means high risk, yellow means

medium risk and green means low risk.

 Consequence

Frequency Low, 1 Moderate, 2 Severe, 3 Very severe, 4

Low, 1 D D C C

Moderate, 2 D C C B

High, 3 C C B A

Very High, 4 C B A A

188

Table 27: Risk Ranking Matrix (154)

Table 28 explains the meaning of the four letters used in the Risk Ranking

Matrix in Table 27 (154).

A (Red) Very
High

This Level of risk requires prompt action: money is no object, and doing
nothing is not an option. An “A” risk is urgent. On an operation facility,
management must implement Immediate Temporary Controls (ITC),
while longer-term solutions are being investigated. If effective ITCs
cannot be found, then the operation must be stopped. During the design
phases of a project, immediate corrective action must be taken in
response to an “A” finding, regardless of the impact on the schedule and
budget.

B (Orange) High Risk must be reduced, but there is time to conduct more detailed analyses
and investigations. Remediation is expected within, say 90 days. If the
resolution is expected to take longer than this, then an ITC must be put in
place.

C (Yellow)
Moderate

The risk is significant. However, cost considerations can be factored into
the final action taken, as can normal scheduling constraints such as
availability of spare parts or the timing of facility turnarounds.
Resolution of the finding must occur within, say, 18 months. An ITC may
or may not be required.

D (Green) Low Requires action but is of low importance. In spite of their low-risk
ranking, “D” level; risks must be resolved and recommendations
implemented according to a schedule: they cannot be ignored. (Some
companies do allow very low-risk ranked findings to be ignored on the
grounds that they are within the bounds of acceptable risk.)

If the hazard is associated with a change to an existing process, it is not
always necessary to conduct a full risk ranking, particularly if the change
does not make a fundamental alteration to the process itself. In these
cases, it is enough just to check that the risk value does not shift from one
square to another if it does not then no further evaluation is needed.

Table 28: Interpretation of the Letters used in the Risk Ranking Matrix (151)

In the example of the “water not removed” failure condition, the likelihood of

there being a problem with the catalyst is low. Nevertheless, the potential

effects are very high. As a result, the level of impact is considered very severe.

This is because the whole plant will need to be shut down in order to fix the

damaged pipe or to explore ways to remove the freezing water.

Having identified the failure mode and assessed the effect and level of risk, we

must prevent or mitigate the failure mode “water not removed”. The

mitigation used is active monitoring and cross-checking between removing

water and measuring the flow of sweet gas through the analyser. Also,

monitoring of the level of catalyst inside the dehydration drum is used, e.g. it

needs to be checked every 5 years which is a typical service life for catalysis.

This is identified from the design representation for the dehydration drum.

189

Another failure mode is when water is removed later than intended. This may

lead to water passing within the pipeline, freezing inside the pipeline, blocking

the pipeline and thus preventing the flow of gas (151). A level catalyst needs to

be fitted with the level of water. Another possible case is damaged pipelines or

explosion. The level of the impact considered is very severe. The mitigation

used is active monitoring of timing targets and strategies for recovery from

timing-related failures through the analyser. This is used in order to avoid any

delay in the process flow.

Heat Exchange (Cooling) Service

The Heat Exchange service is provided by the Cooling Unit which reduces the

gas temperature from 120°F to -40°F. If the temperature does not reach the

intended temperature, it is clear that the gas is not passing to the Cooling Unit.

This in turn indicates that a gas leak has happened in the pipe. On receiving an

over-temperature indication, the system should generate an automatic signal

to shut down the cooling unit.

Most heat exchangers operating in a gas plant are conventional shell-and-tube

types and are ideal for steam and hot oil systems where fouling occurs. They

are relatively inexpensive and easy to maintain because the tube bundle can

be removed and tubes cleaned or replaced as needed. (150).

The Engineering Data Book (159) provides extensive details of the exchangers

used in gas processing. Where the fluids are clean and fouling does not occur,

such as in gas−gas exchangers, compact heat exchangers are ideal. Wadekar

(2000) provides a good overview of the more common types.

In the event of gas leak case, the leak might occur at the beginning of the unit,

in which case the control operator should notice a sharp increase in the

temperature after the cooler indicates that no gas is passing through the

cooler. The upstream emergency isolation valve should close automatically,

since it has a logic where any sharp increase in temperature is detected and

the valve closed in response. This is to avoid continuous gas leaking from the

faulty location. The leaking gas is considered as a fuel and any spark of ignition

will result in fire.

190

Here we apply SHA for the analysis of the Heat Exchange service. The SLA for

the service is shown in Table 29 in which the Cooling Unit and the Customer

respectively represent the consumer and the provider for the service.

Attribute Description Source

Name Heat Exchange SoaML Service Contract
Architecture for the natural gas
processing system

Provider Cooling Unit that provides the
service

SoaML Participants Architecture for
the natural gas processing system

Consumer The Customer that uses the
service

SoaML Participants Architecture for
the natural gas processing system

Start time Point at which the request for
cooling is sent to the Cooling Unit
(1:00:00 PM)

SoaML ServicesArchitecture for the
natural gas processing system

Due time The end time of the gas cooling
process (1:00:30 PM)

SoaML ServicesArchitecture for the
natural gas processing system

Duration 30 seconds SoaML ServicesArchitecture for the
natural gas processing system

 (Pre-
condition)

The Cooling Unit has received the
requested information including
the amount of gas, percentage of
cooling, and brief details of the
condition of the gas situation

SoaML Service Contract
Architecture for the natural gas
processing system

 (Post-
condition)

Gas is cooled to the requested
temperature and signal sent by
the transmitter indicating the
expected arrival time for
Separation

SoaML Service Contract
Architecture for the natural gas
processing system

Contribution
to Safety

Overall severity is very severe
(see SHA results)

SHA

 Table 29: Heat Exchange SLA

Table 30 shows an extract from the SHA results for the ‘Heat Exchange’

service. The analysis establishes the potential safety criticality of the ‘Heat

Exchange’ service, based on the severity of the worst credible effects of the

identified failure modes. As a result of the analysis, stringent safety

requirements are defined for and allocated to the ‘Heat Exchange’ service.

Service Failure
Modes

Effects Severity SSRs Mitigation

Heat
exchange

Gas not
cooling

Gas leak
within
pipelines

(Very
Severe, 4)

The failure
mode “gas not
cooling” shall
be prevented
or mitigated.

Active monitoring
and cross-
checking the
transmitter to
control the liquid
level in the

191

 cooling by
establishing
setting point in
the system at -40
°F and pressure is
400 psig

Gas cooling
when not
required

N/A N/A None. None.

Gas cooling
later than
intended

N/A N/A None. None.

Gas cooling
earlier than
intended

N/A N/A None. None.

Inaccurate
percentage
of gas
cooling

Gas leak
within
pipelines
since no gas
is passing
through
cooler

 (Very
Severe, 4)

The failure
mode
“inaccurate
percentage of
gas cooling”
shall be
prevented or
mitigated.

Early
temperature
cross-checking of
the transmitter
and confirmation
that the setting
point in the DCS
that the cooling
unit is -40 °F and
pressure is 400
psig

Table 30: Heat Exchange SHA

The Heat Exchange service has two potentially hazardous failure modes:

1- Gas not cooling Water;

2- Inaccurate percentage of gas cooling.

The first failure mode may lead to a gas leak the within pipelines, since no gas

is passing through the cooler. The level of impact of this failure mode is

classified as Very Severe (4).

In this service, the transmitter plays an important role in setting the point in

the Natural Gas Processing system at -40°F, which is essential to cool the gas.

The proposed mitigation is active monitoring and crosschecking in order to

deal proactively with this potentially dangerous failure mode.

Another failure mode is “inaccurate percentage of gas cooling” which may lead

to a gas leak within the pipeline, since no gas is passing through the cooler.

The potential frequency of this failure mode is assessed as High (3) and the

impact is considered Very Severe (4). The risk matrix can help identify the

resulting level of risk, which is identified as very high. The mitigation here is

192

early crosschecking of the transmitter and a confirmation of the setting point

in the DCS. This can ensure that no more leaking gas goes into the atmosphere.

In the event of the above failure modes, the unit needs to be shut down to

ensure that no more gas leaks to the atmosphere. In principle, the failure

modes identified for the system described in this example could lead to the

same problems as those encountered during the Bhopal Plant Disaster in

1984. At Bhopal, there were gas leaks and problems with the pressure gauge

(160). The leak was running quite slowly and the pressure indicator

instrument did not function as intended.

Separate Gas from Liquid

The Gas-Liquid Separation function is provided by the Cooling Unit. A

Separator is designed to separate intermittent large volumes of liquids from a

gas stream. It may take the form of vessels or a manifold pipe system. Figure 9

shows the basic structure of a vessel-based gas-liquid separation system.

Figure 58: Gas-Liquid Separation, adapted from (159)

193

The separation vessel can be orientated vertically or horizontally. Vertical

separators are usually used while gas flow rates are low or the liquid-to-gas

ratio is low. They are preferred offshore as they occupy less space.

Nevertheless, gas flow in vertical systems is upwards and opposes the flow of

liquid droplets. Vertical separators are bigger and cost more than horizontal

separators. The inlet suction scrubbers used by compressor stations are

commonly vertical. Horizontal separators, on the other hand, are favoured for

large volumes of liquid or in situations where the liquid-to-gas ratio is high.

Lower gas flow rates and increased residence times can help provide better

liquid dropout. The larger area offers better degassing and also more stable

liquid levels. This is can be seen in Figure 58 (161).

After cooling, the gas is passed to the separation unit in order for the gas to be

separated from the liquid. The drop in temperature helps condensed gas to

liquefy. The liquid stream is called liquid gas. After separation, the liquid gas

is sent to a Chemical Manufacturing Company while the gas goes to an

Electricity Company.

We now apply SHA to the Separate Gas from Liquid service, defined in in the

SLA shown in Table 31.

Attribute Description Source

Name Separate gas from liquid SoaML Service Contract
Architecture for the natural gas
processing system

Provider Cooling Unit that provides the
service

SoaML Participants Architecture
for the natural gas processing
system

Consumer The Customer that uses the service SoaML Participants Architecture
for the natural gas processing
system

Start time Requesting Separation by the
Cooling Unit (e.g. 11:00:00 AM)

SoaML ServicesArchitecture for
the natural gas processing
system

Due time The end time of the gas-separation
process (e.g. 11:00:30 AM)

SoaML ServicesArchitecture for
the natural gas processing
system

Duration 30 seconds SoaML ServicesArchitecture for
the natural gas processing
system

 (Pre-
condition)

Receiving the request information
including the amount of gas,
percentage of separation, and brief

SoaML Service Contract
Architecture for the natural gas
processing system

194

 details of the condition of the gas
situation.

 (Post-
condition)

Gas is separated and send signal by
transmitter and the expected arrival
time to Customer

SoaML Service Contract
Architecture for the natural gas
processing system

Contribution
to Safety

Overall severity is very severe (see
SHA results)

SHA

 Table 31: Separate gas from liquid SLA

Table 32 shows an extract from the SHA results for the ‘Separate Gas from

Liquid’ service. In the example, the required separation level to be transmitted

should be 80% for liquid gas and 20% for gas: a higher level than this may lead

to wrong separation. There are two potentially dangerous failure modes,

namely:

1- Gas not Separated;

2- Inaccurate percentage of gas separated.

The first failure mode is “gas not separated” which may lead to a mixing of the

gases. The customer would receive a product does not correspond to the

specification, which might have a negative impact on the customer’s handling

materials and lead to pipe rupture. The severity of this failure mode is

assessed as Moderate (2). In the example, this failure mode is mitigated by

monitoring that the level of liquid is maintained at 80%.

Service Failure
Modes

Effects Severity SSRs Mitigation

Separate
gas from
liquid
service

Gas not
Separated

Damage to the
equipment in
customer
plant

(Moderate,
2)

The failure
mode “gas
not
separated”
shall be
prevented
or
mitigated.

Active
monitoring and
cross-checking
by installing
level
transmitter at
80% to control
the liquid level
in the DCS

Gas
separated
when not
required

N/A N/A None. None.

Gas
separated
later than
intended

N/A
No direct
safety effects

N/A None. None.

Gas
separated
earlier than
intended

N/A N/A None. None.

Inaccurate Damage to the (Moderate, The failure Early address

195

percentage
of gas
separated

equipment in
customer
plant

2) mode
“inaccurate
percentage
of gas
separated”
shall be
prevented
or
mitigated.

crosschecking
transmitter
level and
confirmation of
separation of
the gas to avoid
sending mixed
gases.

Table 32: Separate Gas from Liquid SHA

Send Emergency Signal from Cooling Unit to Responder

In the event of an emergency, the control operator should call an emergency

number, alerting the fire, hospital and security agencies to the situation. A

response action should follow. Each of these agencies has a different

responsibility in the emergency situation. Fire fighters are on continuous

standby and should be ready to extinguish any fire that could result during a

leak.

The ambulance team should provide the necessary medical support, since

there is potential for people to inhale toxic gas, which could result in serious

medical complications. The security team are responsible for emergency

traffic control and also for ensuring that only authorised people can access the

emergency location.

We have applied SHA to the ‘Send Emergency Signal’ service. The example

below explains the use of SHA, considering the corresponding SLA as defined

in Table 33.

Attribute Description Source

Name Send Emergency Signal SoaML Service Contract
Architecture for the natural gas
processing system

Provider Responder that provides the service SoaML Participants
Architecture for the natural gas
processing system

Consumer Cooling Unit uses the service SoaML Participants
Architecture for the natural gas
processing system

Start time The point at which the Cooling Unit
sends the emergency signal (11:00:00
PM)

SoaML ServicesArchitecture for
the natural gas processing
system

Due time The end time of the Receive
Emergency Signal request (11:00:10
PM)

SoaML ServicesArchitecture for
the natural gas processing
system

196

Duration 10 seconds SoaML ServicesArchitecture for
the natural gas processing
system

 (Pre-
condition)

Send the signal including the current
situation and location

SoaML Service Contract
Architecture for the natural gas
processing system

 (Post-
condition)

Receiving the signal SoaML Service Contract
Architecture for the natural gas
processing system

Contribution
to Safety

Overall severity is Very Severe SHA

 Table 33: Send Emergency Signal SLA

Table 34 shows an extract from the SHA results for the ‘Send Emergency

Signal’ service. The analysis establishes the potential safety criticality of the

‘Send Emergency Signal’ service, based on the severity of the worst credible

effects of the identified failure modes. As a result of the analysis, stringent

safety requirements are developed and allocated to the ‘Send Emergency

Signal’ service.

Service Failure
Modes

Effects Severity SSRs Mitigation

Send
emergency
signal

Signal not
sent

Damaged
pipeline

Explosion

Fire

(Very
Severe, 4)

The failure
mode “signal
not sent” shall
be prevented
or mitigated.

Use of
redundancy by
transmitter to
confirm the
signal has been
received

Signal sent
when not
required

N/A N/A None. None.

Signal sent
later than
intended

Damaged
pipeline

Explosion

Fire

(Very
Severe, 4)

The failure
mode “signal
sent later than
intended” shall
be prevented
or mitigated.

Active
monitoring of
timing targets
and strategies for
recovery from
timing-related
failures.

Signal sent
earlier than
intended

N/A N/A None. None.

Inaccurate
signal sent

(Wrong
respond)

(Wrong
reading)

Damaged
pipeline

Explosion

Fire

(Very
Severe, 4)

The failure
mode
“inaccurate
signal sent”
shall be
prevented or
mitigated.

Early
crosschecking by
maintenance
technician to
confirm that
correct the signal
has been
received.

197

Table 34: Send Emergency Signal SHA

The first failure mode is ‘signal not sent’ which may lead to a damaged

pipeline, an explosion or a fire. The level of impact is assessed as Very Severe

(4). In the example, the suggested mitigation for this failure mode is the use of

redundancy by the transmitter to confirm that the signal has been received.

6.4.6.2. SFA

In this section, we show how SFA is applied to two primary flows in the BPMN

model for the Natural Gas Processing systems, which are as follows:

 Flow between ‘Send emergency signal’ (Cooling Unit) to ‘Receive signal

and check the status’ (Responder);

 Flow between ‘Exchange heat from 120°F to -40°F at pressure 400 psig’

to ‘Monitor that the temperature is at -40 °F, the pressure is at 400 psig

and send signal by transmitter’.

Flow from ‘Send Emergency Signal’ to ‘Receive Signal and Check the

Status’

The performance of the Cooling Unit is monitored to detect any gas leakage:

the control operator should notice a sharp increase in temperature after the

cooler indicating that no gas is passing through the cooler. The upstream

emergency isolation valve should close automatically. This is to avoid

continuous gas leaking from the leak location.

The SFA here considers 4 main types of deviation, suggested by the following

guidewords (Table 35):

 Omission;

 Commission;

 Late;

 Value.

Omission may be total or partial. Total omission is when the signal is not

communicated at all. This may be due to a conversion fault (Incorrect input or

server crashed), which could result in the lack of an emergency request signal.

The mitigation suggested here is redundancy in sending sources to ensure

accurate communication. Partial omission, in which part of a communication is

198

missing, may be due to the required resource being missing or service/server

incompatibility, which could result in an inconsistent signal. The proposed

mitigation is to ensure accurate communication through checking and

monitoring API functions to describe all the valid messages that one program

can accept. Another example is related to commission failure modes

(repetition or spurious communication). Repetition of the signal with

additional output may lead to a redundant description (due to incorrect input

or server crashed), which could result in a wrong response, wrong reading of

the signal and receipt of a conflicting request. The proposed mitigation is to

ensure safe communication through the use of high-integrity components

between participants to detect incorrect signals.

199

ID
(Flow)

Guide
Word

Deviation Possible Causes Effects DSSRs Mitigation

1.1 Omission
(no
communicat
ion within
the signal)

No output
signal is sent

Conversion fault
(Incorrect input) (server
crashed)

No request received The failure mode “no
output signal is sent”
shall be prevented or
mitigated.

Use of redundancy in sending
sources

Omission
(Incomplete
signal)

Part of output
signal is
missing

Required resource
missing

Service/server
incompatible

Inconsistent signal The failure mode “part
of output signal is
missing” shall be
prevented or mitigated.

Checking and monitoring APIs
function and fault
containment

1.2 Commission
(Repetition)

Additional
output signal
sent

Redundant description

(Incorrect input)

(Server crashed)

Conflicting request
received

Wrong response

Wrong reading signal

The failure mode
“additional output
signal sent” shall be
prevented or mitigated.

Use of high-integrity
components between
participants to detect
incorrect signal with sufficient
reliability and accuracy

Commission
(Spurious)

The
communication
is unintended

Conversion fault
(Incorrect input) (server
crashed)

Only affected when
the message is valid

The failure mode “the
communication is
unintended” shall be
prevented or mitigated.

Use of high-integrity
components between
participants to detect
incorrect signal with sufficient
reliability and accuracy

1.3 Early N/A N/A N/A N/A Just: the output cannot be
produced

1.4 Late Unacceptable
response time
to change in
demands

Execution fault

Time out (severe crash or
communication failure)

Overloading signal

The failure mode
“Unacceptable response
time to change in
demands” shall be
prevented or mitigated.

Active monitoring by
transmitter of timing targets
and strategies for recovery
from timing-related failures

200

Table 35: ‘Send Emergency Signal from Cooling Unit’ to ‘Receive Signal and Check the Status’ SFA

1.5 Value One
component of
output is not
proportional to
demand

Incompatible
components

(Composition fault)

False signal

Hard to detect from
flow of wrong advice
through radio
communication
channel as well

The failure mode “One
component of output is
not proportional to
demand” shall be
prevented or mitigated.

Applying diversity in the flow
and fault containment to
detect and reject incorrect
signal

201

In the case of spurious communication, the communication is unintended

which may lead to a conversion fault (Incorrect input or server crashed). The

proposed mitigation is again to ensure adequate communication through the

use of high-integrity components between the participants. If the flow occurs

later than intended, this may lead to unacceptable response times, to changes

in demand and to a ‘failure in execution fault’ or time out (severe crash or

communication failure). The potential effect is to overload the signal and the

proposed mitigation is to provide active monitoring by the transmitter of

timing targets and strategies for recovery from timing-related failures. The

potential deviation uncovered by application of the guide word ‘value’ is that

one component of output is not proportional to the demand received due to

incompatible components (composition fault). The effect is transmission of a

false signal, which is hard to detect from the flow resulting in the wrong advice

through the radio communication channel. The proposed mitigation is to

ensure accurate communication by applying diversity in the flow and fault

containment strategies to detect and reject incorrect signals.

Flow from ‘Exchange Heat from 120°F to -40°F at Pressure 400 psig’ to

‘Monitor that the Temperature is at -40 °F, the Pressure is 400 psig and

Send Signal by Transmitter’

The SFA here considers 3 main types of deviation, suggested by the following

guidewords (Table 36):

 Omission;

 Commission;

 Value.

One important aspect of the analysis generated from SFA in this case study is

the commonality in the use of the types of mitigation, which should help to

simplify the detailed design by focusing on a limited set of high-quality

mitigation measures (mainly redundancy and reliance on high-integrity

components) that can potentially address the identified failure modes.

202

ID Guide Word Deviation Possible Causes Effects DSSRs Justification/Design
Recommendations

1.1 Omission (no
communication
within the flow)

No output process
is sent

conversion fault
(Incorrect input)
(server crashed)

Request not
received

The failure mode
“no output process
is sent” shall be
prevented or
mitigated.

 Use of redundancy in
sending sources

Omission
(Incomplete
communication)

Part of output
signal is missing

Required resource
missing

Service/server
incompatible

Inconsistent
temperature

The failure mode
“part of output
signal is missing”
shall be prevented
or mitigated.

Checking and monitoring
APIs function and fault
containment

1.2 Commission
(Repetition)

Additional output
process sent.

Description
incorrect or
mismatching

Execution fault
(Incorrect result)

Unwanted
change

Only effected
when the flow is
valid

The failure mode
“Additional output
process sent. No
change is required”
shall be prevented
or mitigated.

Use of high-integrity
components between
participants to detect
incorrect signal
temperature indications

Commission
(Spurious)

The communication
is unintended

Conversation fault
(Incorrect input)
(server crashed)

Accounting
problems

Only effected
when the
message is valid

The failure mode
“the communication
is unintended” shall
be prevented or
mitigated.

Use high-integrity
components among
participants to ensure the
message received is exactly
the same as the message
that was sent

1.3 Early N/A N/A N/A Just: the output cannot be
produced

1.4 Late N/A N/A N/A N/A

203

Table 36: ‘Exchange Heat from 120 to -40 °F at Pressure 400 psig’ to ‘Monitor that the Temperature is at -40 °F, the Pressure is 400 psig and Send

Signal by Transmitter’

1.5 Value One component of
output is not
proportional to
demand

Undetected failure
in any process.
Corruption
message

(Execution fault
incorrect result- or
servicer crash)

False temperate

Can be detected
from flow (Gas
leak) or
temperature
degree

The failure mode
“One component of
output is not
proportional to
demand” shall be
prevented or
mitigated.

Applying diversity in the
flow and early cross-
checking and fault
containment

204

6.4.7. Safety Cases

This section presents the results of applying the SOA safety argument pattern

catalogue defined in Chapter 5 to the Natural Gas Processing case study

introduced in this Chapter. The purpose of this part of the case study is to

examine how the SOA safety argument pattern catalogue can help in

communicating the justification for the safety of the Natural Gas Processing

system and its associated services. It also shows how the analysis process, as

applied to the case study, relates to the overall structure of the SOA safety

argument. The case study will also be used to evaluate how the safety

requirements and mitigation arising from the analysis can be used to define the

safety argument contracts based on the SLAs defined during the design.

6.4.7.1. Gas Service System Safety Argument

The safety case for the Gas Service System starts with an instantiation of the

Top Argument pattern. The Top Argument includes a services-directed

argument, which covers the main safety claims concerning the Natural Gas

Processing System. The results of the instantiation are shown Figure 59

G_SOA presents the claim for the overall safety of the Natural Gas Processing

System in the context of the use case, i.e. the list of services covered (C_SOA).

The strategy decomposes the argument over all of the identified services within

the system, based on the SOA specification defined in SoaML. For each service,

the argument makes a claim that the service is acceptably safe. This is done by

means of creating an away goal for each service , which references the

corresponding Service Argument module. In this section, we only focus on the

argument for the ‘Send Emergency Signal’ service. This service is enacted in the

event of a gas leak occurring at the beginning of the Cooling unit; the control

operator is expected to detect a sharp increase in temperature based on the

cooler indicating that no gas is passing through. The upstream emergency

isolation valve should close automatically. The leaking gas is a fuel and any

spark of ignition will result in fire. Additional safety arguments are described in

Appendix E.

205

Figure 59: Top Argument Module

206

6.4.7.2. Service Argument for Send Emergency Signal

The argument structure in Figure 60 shows the instantiation of the Service Argument

pattern for the ‘Send Emergency Signal’ service. The instantiation is based on the result

of the SHA analysis of the ‘Send Emergency Signal’ service presented in section 6.4.6.1.

The top-level claim for the Send Emergency Signal states that the service is acceptably

safe, in the context of the SOA specification defined in SoaML CollaborationUse. The

strategy argues over all the identified service hazards within the service based on the

analysis carried out in the SHA. This is made in the context of the results of the

modelling and SHA for this service.

The argument focuses on three failure modes, which have hazardous effects, which have

been generated from the SHA results, namely:

 Signal not sent;

 Signal sent later than intended;

 Inaccurate signal sent.

The argumentation strategy adopted for each failure mode is to argue that the failure

mode has been mitigated to the required level of integrity. For example, the failure

mode ‘Signal not sent’ is mitigated by use of redundancy in the transmitter to confirm

that the signal has been received. The mitigation claim is then defined in the form of a

safety contract post-condition that is supported by the SLA Contract Argument.

207

C_Service_Desc

Send emergency signal:
SoaML
CollaborationUse

St_Service_Hz

Argument structured
based on mitigating
service hazardous failures

C_Service_Hz

Signal not sent
Signal sent later than
intended
Inaccurate signal sent

G_Service_N_Hz

Signal not sent is mitigated to
satisfy the Service Safety
Requirement

G_Service_N_SLA_Postcondi
tions

Active redundancy is
satisfied

G_Service_W_Mitg

Early cross-checking by maintenance
technician to confirm that correct the
signal has been received is satisfied to
the required integrity

G_Service_I_Mitg

Active monitoring of timing targets
and strategies for recovery from
timing-related failures. is satisfied to
the required integrity

G_Service_N_Mitg
Use of redundancy by
transmitter to confirm the
signal has been received is
satisfied to the required
integrity

 G_Service_I_Hz

Signal sent later than intended
is mitigated to satisfy the
Service Safety Requirement

G_Service_W_Hz

Inaccurate signal sent is
mitigated to satisfy the Service
Safety Requirement

St_Service_N_Hz_Mit
g

Argument based on
redundancy

St_Service_I_Hz_Mitg

Argument based on Active
monitoring by transmitter of timing
targets and strategies for recovery
from timing-related failures.

St_Service_W_Hz_Mitg

Argument based on Early address
cross-checking transmitter by
maintenance technician to
confirmation the signal has been
received

C_Service_Hz_N_Mitg

Use of redundancy by
transmitter to confirm the
signal has been received

C_Service_Hz_I_Mitg

Active monitoring by
transmitter of timing targets
and strategies for recovery
from timing-related failures.

C_Service_Hz_W_Mitg

Early address cross-checking
transmitter by maintenance
technician to confirmation
the signal has been received

C_Service_N_Class

Required integrity
based on very high
severity

C_Service_I_Class

Required integrity
based on very high
severity

C_Service_W_Class

Required integrity
based on very high
severity

St_Service_N_SLA

Argument by enforcing
redundancy by transmitter to
confirm the signal has been
received in the SLA 1

St_Service_I_SLA

Argument by enforcing active
monitoring by transmitter of timing
targets and strategies for recovery
from timing-related failures in the
SLA 2

St_Service_W_SLA

Argument by enforcing Early
address cross-checking transmitter
by maintenance technician to
confirmation the signal has been
received in the SLA 3

J

J_Service_I_SLA

Mitigation is allocated to
the SLA post-condition

J

J_Service_W_SLA

Mitigation is allocated to
the SLA post-condition

G_Service_I_SLA_Postconditions

SSR for active redundancy of
timing targets and strategies for
recovery from timing-related
failures are satisfied

G_Service_W_SLA_Postconditions

SSR for Early address cross-checking
and redundancy by transmitter to
confirmation the signal has been
received are satisfied Spinal

SLA 1

Redundancy

Spinal

SLA2

active redundancy of timing
targets and strategies for recovery
from timing-related failures

Spinal

SLA 3

Early address cross-checking and
redundancy by transmitter to
confirmation the signal has been
received

G_Service_Hz

Send Emergency Signal is
acceptably safe

C_Service_N_Hz_SSRs

Service Safety Requirement:
The failure mode “signal not
send” shall be prevented or
mitigated.

C_Service_I_Hz_SSRs

Service Safety Requirement:
The failure mode “signal
send later than intended”
shall be prevented or
mitigated.

C_Service_W_Hz_SSRs

Service Safety Requirement:
The failure mode “inaccurate
signal sent” shall be
prevented or mitigated.

C_Service_N_SLA

SLA 1

C_Service_I_SLA

SLA 2

C_Service_W_SLA

SLA 3

J

J_Service_N_SLA

Mitigation is allocated to
the SLA post-condition

Figure 60: Service Argument for ‘Send Emergency Signal’ Service

208

6.4.7.3. SLA Contact Argument for Send Emergency Signal Service

Figure 61 shows the instantiation of the SLA Contract Argument pattern for the ‘Send

Emergency Signal’ service. The top-level away goal states that the mitigation

requirement for active redundancy is satisfied. This corresponds to the post-conditions

of the SLA associated with the ‘Send Emergency Signal’ service. The argument strategy

is to argue over the satisfaction of the set of SLA pre-conditions. This takes the form of

away goals that references claims stated in the Participant Arguments for the

participants satisfying the SLA pre-conditions. For example, the away goal which points

to the Cooling Unit argument module references a claim in that module which states

that the Cooling Unit sends a signal to the Responder and monitors to check that the

signal has been received within 60 second. If the Responder does not receive it, the

Cooling Unit backup should send another signal to the Responder after 60 seconds.

G_Service_N_SLA_Postconditions_Se
nd Emergency Signal Argument
Module

Active redundancy is satisfied

Send Emergency Signal Argument Module

St_SLA_N_Contract

Argument over SLA
pre-conditionsJ

J_SLA_N_Contract

Argument is satisfied by
meeting the SLA pre-
conditions allocated to
participants

G_N _Cooling unit_Cooling unit_Cooling
unit

Cooling unit sends sweet gas and monitors
the status are satisfied

Cooling unit

G_N_Responder_Responder_Responde
r

Responder receives signal and checks
the status are satisfied

Responder

G_N_Cooling unit backup_Cooling unit
backup_Cooling unit backup

Cooling unit sends signal is satisfied
‘backup’

Cooling unit backup

Figure 61: SLA contact Argument for ‘Send Emergency Signal’ Service

209

6.4.7.4. Participant Argument for the Cooling Unit Participant

Figure 62 shows the instantiation of the Participant Argument pattern for the Cooling

Unit Participant. The argument is based on the satisfaction of the pre-conditions

allocated to the Cooling unit Participant via the SLA in which the Participant is involved;

namely, that the Cooling Unit sends a signal to the Responder. The argument then

provides a justification for how the above claims are supported based on the results of

the SFA and modelling in BPMN.

210

G_Participant_H

Cooling unit fulfils its
safety requirements

C_Participant_Preco

Cooling unit SLA pre-
conditions: SoaML SLA

C_Participant

Cooling unit: BPMN
Pool

St_Participant
Argument by addressing
SLA pre-conditions
allocated to the
participant

G_Participant_FM

 No output signal send is
mitigated to satisfy the
allocated DSSRs

St_N_Participant_Tasks

Argument based on
identified participant
failure modes

G_Participant_FM2

Part of output signal missing is
mitigated to satisfy the
allocated DSSRs

St_Tasks_Mitg2

Argument based on checking
and monitoring APIs function
and fault containment

C_Participant_Task_Mit
g2
Checking and
monitoring APIs
function and fault
containment

G_Participant_Task_Mitg2

Checking and monitoring APIs
function and fault containment to
provides adequate mitigation of
part of output signal is missing

J

J_N_Participants_Tasks

A participant is defined as a
BPMN pool that includes
tasks and flows

G_Participant_FM4

Unacceptable response time to
change in demands is
mitigated to satisfy the
allocated DSSRs

St_Tasks_Fms_Mitg4

Argument based on Active monitoring
of timing targets and strategies for
recovery from timing-related failures
through analyse’

C_Participant_Hz_Mitg4

Active monitoring by
transmitter of timing
targets and strategies for
recovery from timing-
related failures

G_Participant_Task_check4

Active monitoring by transmitter of
timing targets and strategies for recovery
from timing-related failuresto provides
adequate mitigation to unacceptable
response time to change in demands

St_Tasks_Mitg

Argument based on use of
redundancy in sending
sources

C_Participant_Task_Mi
tg

Use of redundancy in
sending sources

G_Participant_Task_Mitg

Use of redundancy in sending
sources provides adequate
mitigation of no output signal is
sent

G_Participant_interactions5

One component of output is not
proportional to demand is
mitigated to satisfy the allocated
DSSRs

St_Participant_Tasks_Fms_Mitg
5

Argument based on applying
diversity in the flow and fault
containment to detect and reject
incorrect signal

Applying diversity in the flow
and fault containment to detect
and reject incorr

 Applying diversity in the flow
and fault containment to detect
and reject incorrect signal

G_Participant_Task_check5

Applying diversity in the flow and early address
cross-checking fault containment to detect and
reject incorrect value and fault containment to
provides adequate mitigation to one
component of output is not proportional to
demand

C_Participant_Tasks

No output signal is sent
Part of output signal is missing
With additional output signal sent
The communication is unintended
Unacceptable response time to change in demands
One component of output is not proportional to
demand

C_Participant_Hz_DSSRs

DSSR: The failure mode
“no output signal is sent”
shall be prevented or
mitigated.

G_Participant_FM3

With additional output signal
sent is mitigated to satisfy the
allocated DSSRs

St_Tasks_Mitg3

Argument based on the
application high-integrity
among participants to consider
sufficiently incorrect signal

C_Participant_Task_Mit
g3
Apply high-integrity
among participants to
consider sufficiently
incorrect signal

G_Participant_Task_Mitg3

Checking and monitoring APIs
function and fault containment to
provides adequate mitigation of
with additional output signal sent

G_N _Cooling unit_Cooling
unit

Cooling unit sends sweet gas
and monitors the status are
satisfied

Figure 62: Participant Argument for the Cooling Unit

211

6.5. Questionnaire-based Evaluation

In order to provide an independent evaluation of our approach, we conducted

semi-structured interviews with two engineers1 from the Oil and Gas industry

and one senior safety engineer from the healthcare domain.

The interviews started with an explanation of the interview protocol using the

forms shown in Appendix F, which highlight the voluntary nature of the

exercise and the fact that the confidentiality of the participants will be

maintained. The presentations recorded in Appendix F were used to explain

the background to and the main contributions of the research and each of the

case studies respectively.

This was followed by a set of open questions addressing the three key

contributions of this thesis. The questions are shown in Table 37.

Date:

Areas of expertise of the interviewee:

1- What do you think about the overall approach?
2- Do you think that the modelling approach improve the understanding of the

system?
a. What aspects in particular did you find useful?
b. What aspects in particular did you find hard to use?

3- Do you think that the safety analysis methods, SHA and SFA, can provide a
systematic approach to analysing services?

a. What aspects do you think have the potential to improve practice?
b. What aspects do you think are infeasible to use?

4- Do you think that the safety case used improve the justification for the safety
of the service-based system?

a. What aspects do you think have the potential to improve practice?
b. What aspects do you think are infeasible to use?

5- Do you think that the modelling, safety analysis and safety case artefacts are
clearly integrated?

6- Can you provide suggestions for areas that can improve the framework?

Table 37: Interview Questions

The answers to the interview questions are listed in Appendix F. Below is our

analysis of the outcome of the interviews.

1 Please note that one of these engineers was involved in the development of the Natural Gas

Processing Case Study. Nevertheless, the views of this participant concerning the evaluation of the
proposed approach, though not fully independent, provided considerable insights concerning the
effectiveness of the approach.

212

Question 1: What do you think about the overall approach?

All of the participants agreed that the proposed approach was useful for their

particular domain and for service-based systems. One participant mentioned

that it could provide a strong basis for risk assessment.

Question 2: Do you think that the modelling approach improves the

understanding of the system?

All of the participants agreed that the modelling approach improved the clarity

of the system description. One participant highlighted the fact that focusing on

services rather than functions was useful, particularly for non-experts. They all

emphasised the benefits of the separation between structure and behaviour

enforced by the approach.

Question 2a: What aspects in particular did you find useful?

Ease of use was a feature of interest to the participants. Representing the

system graphically was also mentioned as a useful aspect by one of the

participants.

Question 2b: What aspects in particular did you find hard to use?

The process of generating the models is manual, and two engineers highlighted

the need for additional automated modelling functions. One engineer

emphasised the need for initial training (mainly for non-engineers).

Question 3: Do you think that the safety analysis methods, SHA and SFA,

can provide a systematic approach to analysing services?

All participants agreed on the benefits of the systematic nature of the analysis,

highlighting the clear step-by-step process. One participant highlighted the

benefits of adapting existing safety analysis techniques, which should already

be familiar to many safety engineers.

Question 3a: What aspects do you think have the potential to improve

practice?

The clear integration between analysis and modelling was mentioned in

addition to the potentially repeatable nature of the analysis.

213

Question 3b: What aspects do you think are infeasible to use?

This was a hard question for the participants to answer, since they did not have

experience of fully applying the approach in practice. One participant

highlighted possible language inconsistencies, e.g. mapping between what

some call ‘fault’ and others ‘failure’ (though this is a problem which can be

observed in many safety analysis techniques).

Question 4: Do you think that the safety case used in the approach

improves the justification of the safety of the service-based system?

Having a safety case pattern was highlighted as a useful feature. The modular

nature of the justification was mentioned as a positive aspect, particularly in

showing the big picture for the safety argumentation.

Question 4a: What aspects do you think have the potential to improve

practice?

The explicit link between the analysis and the safety case was highlighted as an

advantage, showing how the safety case is built on the results of SHA and SFA

and therefore improving traceability.

Question 4b: What aspects do you think are infeasible to use?

Again, this was a hard question to answer as the engineers did not apply the

framework in a real world context. However, one participant was sceptical of

the benefits of, or the need for, the detailed arguments and how they are going

to be perceived in terms of effort.

Question 5: Do you think that the modelling, safety analysis and safety

case artefacts are clearly integrated?

All of the participants agreed that the integration between the different

elements of the approach was clear.

Question 6: Can you provide suggestions for areas that can improve the

framework?

Two participants were keen that the model-based weaving approach be

implemented (an area for future work in this thesis as discussed in Chapter 7).

One engineer highlighted the importance of addressing a practical concern:

214

how much details can be considered enough in terms of depth, e.g. can we stop

at the SLA level, abstracting the details about participants?

6.6. Evaluation of Thesis Contributions

This thesis focuses on four contributions made during the development of this

research, namely:

 SOA Modelling;

 SOA Safety Analysis;

 SOA Safety Cases;

 Tool Support.

Each of these contributions has been evaluated and the results of this

evaluation are discussed in the next four sections. Safety is a qualitative

attribute and as such the results generated by this research, in terms of

“improving safety analysis” are qualitative in nature, mostly based on our two

qualitative case studies.

6.6.1. SOA Modelling

During this research, we developed design models of two case study systems

based on information directly generated from the domain of interest,

specifically healthcare and oil and gas. Domain knowledge is key in high-risk

industries, since safety is a domain- and context-specific property. Evidence

shows that a poor understanding of the domain of the system is a major

contributor to safety accidents and incidents, especially for computer-based

systems (162).

Here, the main contribution of this research is in showing how SoaML and

BPMN can be used systematically in the design and assurance of safety-critical

SOA. Based on feedback from the case studies, the following evaluation

observations can be made:

 SoaML and BPMN representation is considered important to

understanding the safety of resulting design: Since SoaML represents

the system structure and BPMN represents the system behaviour:

modelling both of these aspects using structured modelling languages

215

has helped in providing a holistic understanding of the design of the

system. This reflects the fact that hazards can arise from the system

structure as well as its behaviour.

 Integrated modelling and analysis offers greater transparency: The

way in which the SOA system models and analyses are developed

provides an integrated approach to modelling and a clearer basis for

safety analysis. This means that the results of the analysis can clearly

show which parts of the system could potentially have contributed to

hazardous failures.

 Traceable integration between system design and safety analysis:

Building on the previous point concerning integration, the clearly

defined architecture of the proposed SOA system, based on SoaML and

BPMN, forms the basis for a model-based integration between the

design and safety analysis. This model-based integration improves

traceability and supports maintenance of the safety case and the safety

analyses when they are generated in SOA development.

One drawback of our work is the lack of coverage of all potential SoaML design

diagram types (e.g. capabilities) which might reveal further contributions to

safety. These additional SoaML diagrams could have helped us provide more

detailed safety analyses, e.g. of lower-level system failures. The reason for this

was that it was not within the scope of our work, which mainly focused on

safety at the requirements and architecture levels. Another limitation is that we

have not implemented all the features of BPMN modelling, particularly model

execution and simulation, which could have been useful in showing even more

sources of hazardous behaviours or more detailed execution failure modes.

6.6.2. SOA Safety Analysis

During the analysis stage, we performed multiple analyses of the systems

under consideration using the SHA and SFA methods we developed. The

following evaluation observations can be made:

 Systematic consideration of safety analysis: SHA and SFA provided a

systematic means for examination of the hazards posed by services and

216

for understanding how the detailed failure behaviour of these services

can contribute to hazards. These safety analysis methods provided step-

by-step processes for carrying out the SOA analysis. SHA and SFA

extended FFA and SHARD by adding additional guidance, steps and data

so that the results could be applicable and compatible with SOA specific

characteristics (e.g. the notion of services, participants and tasks). As

indicated by the interviews, practitioners found the focus on services

and the associated SHA results more focused than the use of the

conventional and potentially generic HAZOP technique.

 SHA and SFA offer explicit means for generating service safety

requirements: This is one of the most important outputs of any safety

analysis technique. Safety requirements are vital in driving the design

by clearly specifying what criteria need to be taken into account by the

architects so that the identified service hazards and detailed failure

modes are eliminated or mitigated. This will help realise the demands of

best practice for achieving assurance-based development (163).

One drawback of our analysis methods is the potential generation of too many

SHA and SFA tables with little automated support. For example, for each

service and flow we had to create a detailed analysis table and we ended up

with a large volume of data: this was a labour intensive activity. Another

limitation of this work is the limited integration between failure modes and the

recommended types of suitable design tactics. This is an area where predefined

rules connecting the types of failure modes and the categories of tactics could

be defined in advance in order to provide proactive recommendations for the

architects of safety-critical SOA, building on current best practice in SOA design

and the published literature.

6.6.3. SOA Safety Cases

Safety cases have become a fundamental requirement in many safety-critical

domains. Nevertheless, there is still very little research on how they can be

applied to services and SOA. In this research, we have provided a systematic

approach to generating a safety case for an SOA in a traceable and clear

manner. The following evaluation observations can be made:

217

 SOA safety case patterns: This research developed safety case patterns

for justifying the design of SOA which can be reused by the architects

and analysts of services in isolation of any particular domain. In our

case, we focused on healthcare and oil and gas. However, these safety

case patterns are domain-independent and are not limited to these two

domains.

 Safety case traceability: Safety case patterns were traceable, at the

model-level, to the sources of information (i.e. in the SoaML, BPMN, SHA

and SFA models). This has helped in showing how each feature of the

design is justified in the safety case based on the existing design

descriptions and analysis evidence.

 Safety case structure mirroring the system design: This mirroring

has improved the representation of system safety reasoning by

clarifying the relationship between the design and safety evidence. By

looking at the organisation of the argument and the structure of the

system design, we can more clearly understand the correspondence

between them.

 Separation of concerns: This is enforced via argument contracts based

on SLAs (i.e. concerns about hazards versus concerns about failures).

The SLA helps us create a separation between the justification of the

mitigation of the hazards which are important at the system level and

the design failure modes that can contribute to the these hazards at a

more detailed level.

One limitation of this work is the lack of automated support for argument

pattern instantiation from models and analyses. Although argument pattern

instantiation is predominantly manual, adding automated capabilities would

improve the efficiency of the process. In our work, we provide a preliminary

basis for weaving the argument patterns into the source design and analysis

models and metamodels (please see the preliminary weaving model in

Appendix G). However, this approach was not fully evaluated in the case

studies. Further work here includes the evaluation of this automated approach

via the case studies.

218

6.6.4. Tool Support

During this research, tooling and automated support was developed for

modelling and safety analysis for the SOA environment. This tooling comprises

the integrated Eclipse tool plugins that have been developed to support our

SOA safety assurance framework. The following evaluation observations can be

made:

 Implementing model-based integration of SOA system

structural and behavioural models: The integration of models in

this research offers greater transparency about how the models are

developed and how they relate to one another. The overlap provides

a specific emphasis on the relation between the structure of a service

and its behaviour. In the tooling, users can automatically navigate

between the different views of the SOA design, e.g. selecting a service

and being able to review the corresponding low-level behaviour

(detailed tasks and flows).

 Automated support for traceability: The use of SoaML and BPMN

allows services and tasks to be based on machine-checkable models.

This is implemented in a way that generates traceability links from

SoaML models to BPMN models to indicate how the BPMN process

implements the SoaML services and vice versa. This also provides

the ability to apply the safety analysis in a more interactive manner.

 Automated means for supporting SOA safety analysis: The tool-

support is extended to provide semi-automated configuration of the

system safety analysis methods. The extension of the modelling

environment is implemented to support SHA and SFA results by

providing automated means for capturing and displaying the safety

analysis for the services and the flow between tasks. This means that

the results of the analysis can clearly show which parts of the system

could have potentially contributed to hazardous failures.

 Automated means for supporting SLA: The tool also provides

semi-automated configurations of SLAs between a certain service

219

provider and its consumers. This creates and integrates SLAs into

the SoaML service contracts for the representation of the SLAs.

A limitation of this work, as mentioned earlier, is the lack of automated support

for argument pattern instantiation from SOA models and SHA and SFA results.

Partly, this is due to the use of different tool plugins, which do not offer clear

interfaces that support interoperability. These tools were useful for

demonstrating a proof of concept but could not easily be extended for a

complete and fully functional toolset. Revisiting the choice of tools and plugins

is an area for further work.

6.7. Hypothesis Revisited

The hypothesis made in this thesis is as follows:

Integrated architectural modelling and analysis of safety-critical

service-oriented systems provides a traceable, consistent and

systematic means for assuring the safety of these systems

In this section, we reflect on the results of the evaluation with respect to the

main terms used in the hypothesis.

6.7.1. Integration

Achieving integrated design and safety assurance is a key aim within the safety

domain. In this thesis, we address this aim for SOA engineering. The activities

for modelling, safety analysis and safety cases for SOA are integrated both at

the level of the methodology (e.g. a clear model in SoaML is a prerequisite for

instantiating the SOA patterns for safety cases) and also at the model level (e.g.

model features in SoaML and BPMN are linked to model elements, represented

in a tabular format, in the SHA and SFA). As a result, the SOA Safety Assurance

Framework provides a clear and structured basis for integrated design, safety

analysis and safety case development with explicit considerations of hazardous

behaviour and safety justification.

6.7.2. Traceability

In this thesis, forward and backward model-based traceability between the

design and safety analysis provided a seamless means of understanding and

220

checking the relationship between the SOA structure and behaviour and their

safety consequences. Ensuring traceability is a fundamental requirement for all

safety standards. The value of the safety analysis can easily be threated if its

relation to design is not well understood. During this research, this thesis also

considered a new way for linking the argument pattern instantiation with the

design modelling and analysis processes through a weaving model (164). The

weaving model in Appendix G provides a preliminary basis for automating

argument pattern instantiation based on the source design and analysis models

and metamodels.

6.7.3. Consistency

In the SOA Safety Assurance Framework, design features are reflected in the

safety analysis and assurance and vice versa. This helps assess the

completeness of how the different design features are covered by the safety

analysis and safety cases. Inconsistencies can either be detected through the

tool-supported traceability techniques implemented in this research or

through pattern instantiation, e.g. by assessing claims that cannot be

instantiated due to incomplete design structures or contracts or incomplete

safety analysis results.

6.7.4. Systematicness

One of the weaknesses identified in the current literature concerning SOAs and

safety-critical systems was the lack of a systematic method for assuring SOAs.

One of the aims of this thesis was to provide a coherent step by-step process,

by applying and adapting techniques available within SOA and safety domains.

For each step within the framework, it is clear which methods are being used

and which design models of are being analysed. This thesis uses the SOA

concept in order to provide the necessary modelling languages with clear

modelling steps. Next, the analysis is focussed on analysing individual services

and their associated interactions in order to identify hazardous behaviours

associated with the system, based on two well-defined processes (i.e. SHA and

SFA). This is followed by the definition of a set of reusable safety argument

patterns for generating the SOA safety case.

221

To illustrate how the framework may be applied in practice, the process was

applied to two realistic case studies. The results of the case studies were

validated by domain experts, who considered the approach to be potentially

helpful in the safety analysis processes used in their own systems and

environments, particularly due to the systematic and clear basis of the

assurance framework. One of the key features of the framework is that the

rationale for the approach is clear: each stage is performed for a specific reason

producing very concrete artefacts, e.g. design models, analysis results or

specific safety arguments.

6.7.5. Assurance

The SOA safety argument pattern catalogue created in this research follows a

reasoning chain from the Top Argument until the Participant Argument. It can

be instantiated for justification of the design and analysis for generating

trustworthy evidence regarding the safety of deploying an SOA-based system

within a specific safety application. These patterns are directly related to each

other. The SOA argument pattern catalogue includes rules for pattern

composition and traceability which are linked to the architectural design (i.e.

SoaML and BPMN models) and analyses (i.e. SHA and SFA). These patterns

were useful in showing how the results of modelling and analysis can support

the development of explicit SOA arguments.

6.8. Threats to Validity

In this section, we describe the main threats to the validity of the findings of

this thesis.

Firstly, although our modelling approach is biased towards the use of SoaML

and BPMN, the overall framework does not depend on the specific use of these

notations, as long as well-defined modelling languages are used for capturing

the structural and behavioural aspects of an SOA design. This can be seen as a

threat to external validity. However, for the sake of focused evaluation, it was

important to limit the modelling to two specific notations.

Secondly, the choice of the domains for evaluation was important. We chose

two different domains for the two case studies in order to evaluate the

222

capability of our framework against diverse challenges. Oil and Gas and

Healthcare are two conceptually different domains. The first has well-

established and detailed safety practices while the second only has high-level

safety processes, particularly for computer-based systems (see Section 6.3.1 for

a more detailed discussion). Due to the scale of the work, it was difficult to

apply our approach to all key safety-critical industries. However, the two case

studies cover the two main categories of domains in safety engineering, i.e.

traditional (Oil and Gas) and emerging (Healthcare).

Thirdly, there is a great interdependency between the modelling, safety

analysis and safety cases within the framework. This might affect the scalability

and wider applicability of the framework if any of the underlying notations and

techniques used are changed. That is if a different safety analysis techniques

was used it may not scale as well as the one which was used e.g. the use of FTA

rather than SFA. This is a limitation from a scalability point of view. However,

there is a tradeoff between the wider usefulness of the approach and ensuring

internal consistency between the different components of the framework.

Fourthly, the sample in the interviews is small (three interviewees). The

experts hold senior roles and have been involved in the engineering of large-

scale safety-critical services. Safety-critical information is hard to collect due to

the sensitivity of the domain. Therefore it was decided that one-one interviews

with experienced practitioners would allow us to evaluate the general validity

of the approach and the potential for scalability for use in actual industrial

contexts.

Finally, the proposed approach was implemented in the form of research

prototype tools. Although they were useful in the case studies, the effectiveness

and reliability of these tools for other uses cannot be demonstrated.

6.9. Chapter Summary

This chapter presented the results of the evaluation of the four main

contributions of the research presented in this thesis. It revisited the research

hypothesis and explained the means for evaluation used in this research. This

evaluation was carried out by means of case studies, semi-structured

223

interviews and peer review. These forms of evaluation produced results

supporting the hypothesis of the thesis which also highlighted potential

limitations and possible areas for future work. The final conclusions of the

research are presented in the next chapter.

224

Chapter 7

7. Conclusions

This chapter provides a summary of the main contributions of the research

presented in this thesis and proposes areas for further work.

7.1 Thesis Contributions

The overarching contribution of this research is the development of a model-

based assurance framework for SOA. This approach considers the architecture

of the SOA system, based on SOA services and the low-level behavioural tasks

that are relevant to safety, and features a model-based technique for

integrating the design activity and safety analysis. This technique improves

traceability and supports safety justification as well as facilitating the

maintenance of the safety case and safety analysis artefacts generated within

the SOA engineering process. In this thesis, we have focused on four main areas

of contribution, namely:

 Identification and adaptation of SOA modelling notations, namely SoaML

and BPMN, based on two criteria: the coverage of the structure and

behaviour of the services that are deemed suitable for the safety

assessment of an SOA design.

 Development of safety analysis techniques for SOA, namely SHA and

SFA, which can be used to examine the hazardous failures of services

and the failure behaviour of lower-level implementations.

 Development of the concept of modular safety cases for the assurance of

safety-critical SOAs, promoting correspondence between the structure

of the SOA and the organisation of the modular safety case. This generic

argument approach is defined in the form of an SOA Safety Argument

225

Pattern Catalogue, which can be instantiated to produce safety

arguments for specific SOA-based systems.

 Implementation of tool-support that provides automated capabilities for

building the SOA models, applying the safety analysis and building the

safety case for the system.

Concluding observations regarding these contributions are discussed in the

following sections. Finally, in Section 7.2, we suggest some areas for further

work.

7.1.1. SOA Modelling

In this thesis, we proposed a systematic, model-based approach to address SOA

safety, which is supported by tooling. We call this approach the SOA Safety

Assurance Framework. The Framework captures the essential relationships

between safety concerns and how they directly relate to SOA services, tasks

and flows. The SOA modelling pulls together SOA safety analyses and safety

cases in such a way that they are traceably linked during the engineering of

safety-critical service-based systems.

7.1.2. SOA Safety Analysis

A key contribution made by the safety analysis techniques developed during

our research is to provide structured step-by-step processes for the

examination of the design of an SOA. The clear system design models, in SoaML

and BPMN, facilitate the systematic integration of safety analysis in the SOA

design process, mainly by being fully traceable to the SOA architectural models.

In this thesis, we propose and demonstrate safety analysis techniques for

examining an SOA design and generating relevant safety requirements which

are focussed on the SOA’s structure and concerns. These safety requirements

provide the basis for integrating safety considerations into the design of the

system, by providing a clear rationale and steer for design decisions. This

analysis also emphasises the interactions between services and tasks in order

to identify failures in participant behaviour that could contribute to service

hazards within the SOA system. Our approach provides more transparency in

the generation of SOA system safety requirements than do traditional methods,

which typically force a distinction between safety and design.

226

7.1.3. SOA Safety Case Development

This thesis has developed a new approach to developing SOA safety cases

through safety case patterns, in order to address the need for explicit safety

assurance within SOA engineering. The safety argument patterns presented in

Chapter 5 demonstrate how a defensible argument for an SOA system can be

constructed by allowing the argument structure to mirror the SOA design,

thereby improving the clarity of the reasoning. Specifically, the patterns show

how the safety arguments have been structured to correspond directly to the

SOA design as defined in the structured architectural models.

7.1.4. Tool-support

The tools implemented in this research are used to support the capabilities of

the SOA Safety Assurance Framework. The tools provide a semi-automated

environment for supporting the system safety analysis methods and for

representing SLAs. They also provide a means for improving traceability

between the different SOA models, by linking structural models in SoaML with

behavioural models in BPMN.

7.2 Further work

During the course our research, we have identified a number of areas for future

work:

- Integration of safety analysis with search-based technologies (e.g.

simulation and model-checking);

- Further tool-support to implement model-based assurance cases for

SOA based on model weaving;

- Extending the work to cover runtime composition and certification of

SOA;

- Extending the SOA safety case pattern catalogue as a generic solution for

related domains.

The following sections provide a brief overview of these topics:

227

7.2.1. Integration of Safety Analysis with Search-based Technologies

One important technique with potential for supporting safety analysis of SOA

system, which we have not investigated as part of this thesis, is the search-

based approach. One beneficial area of future work would therefore be to

investigate different search-based technologies which could potentially provide

an automated reasoning basis for SOA safety analysis. This work could include

the development of a safety analysis approach based on model-checking, which

could on the one hand provide an automated proof that the system satisfies the

safety properties (assuming that they could be defined with a suitable

formalism) and on the other hand identify scenarios which lead to undesired

events. Similarly, simulation models could be built for an SOA during safety

analysis, allowing for dynamic exploration of the behaviour of the SOA under

different scenarios.

7.2.2. Further tool-support to implement model-based assurance

cases for SOA based on model weaving

Various tools have been extended over the course of this research. These tools

were developed within the Eclipse Integrated Development Environment

platform. We believe that there is scope to add automated capabilities that

would improve the efficiency of the argument pattern instantiation process

which has been developed based on the work of (164). This approach was not

fully evaluated in the case studies, but is a promising basis for future work on

model-based approaches to assurance case development. Further work here

includes the evaluation of this automated approach via further case studies

which would suggest further ways to integrate SOA modelling, safety analysis

and safety cases using model-based techniques.

7.2.3. Runtime Composition and Certification of SOA

This thesis has described a process for developing SOA safety cases that

demonstrates how a defensible argument for an SOA system can be structured

at design-time. One area that was not considered as part of the thesis was the

maintenance of the safety analyses and the safety case at runtime, specifically

the runtime composition of argument modules to produce a comprehensive

safety argument for an SOA. Runtime composition and certification was

228

explicitly outside of the scope of the research. However, there are key issues in

this area which are worthy of further investigation, particularly in terms of

their application to autonomous service-based systems. There is some scope

for exploring and constructing assurance cases for SOA to support runtime and

dynamic composition and certification (165).

7.2.4. Safety Case Pattern Catalogue for SOA as Generic Solution to

Related Systems Domains

In this thesis, we have developed an approach to evolving SOA safety cases

using the modular and pattern extensions of GSN. We have proposed a safety

case pattern catalogue which captures successful safety argument structures

which are not specific to any domain. One area for further work is to

investigate the applicability of the patterns for the justification of related

systems such as Systems of Systems, as discussed in the literature review

(Chapter2). Research should be done to investigate how systems composed of

different and independent elements can be justified through a generic set of

argument patterns.

7.3 Coda

The author hopes that the SOA Safety Assurance Framework created in this

thesis, supported by the evaluation and case studies, will deliver valuable and

valid insights both for future research and for industrial practice in the use of

SOA for safety-critical applications.

229

230

Appendix A: Managing Child Birth

and Caesarean
In this medical process, we have applied BPMN to do the modelling for the

business processes. The main target of using BPMN is to apply safety analysis

and assurance because of BPMN’s safety support tool (166).

Child birth scenario (137)

 Figure 63, in the beginning the woman contacts the ambulance, which

assumes the delivery time is very close.

 The ambulance station orders a vehicle to go and collect the patient and

take her to hospital.

 Check if the patient’s information is in the EHR system and add her

information if she is not in the system.

 Assess the patient, checking the maternal and foetal condition to

determine if she is ready to deliver. If not we stop the process,

otherwise, we start preparations for labour & care. At each stage, we

need to update the EHR system for the patient. As explained in Figure

Manage the stage of Labour with caesarean operation.

 We start the first stage as seen in Figure Manage the stage of labour with

caesarean operation 2.

 Then, start the examination as shown in Figure First stage of labour

 If there is any delay we apply the Figure of Delay in the First stage and

Delay in the First stage (2) Otherwise we move to the Figure second

stage of labour.

 In the second stage, we need to apply the Figure Second stage of labour

and if there is any delay, we apply the Figure Delay in the Second stage

of labour.

 If the second stage, passes successfully, we need to apply the Figure of

Third stage of labour and continue the demonstration of the process

until we get to figure stage of labour Care after birth, otherwise we will

231

move to Figure stage of consider caesarean section CS and apply the

Caesarean Figure.

P
a

ti
e

n
t

H
o

s
p

it
a

l

D
o

c
to

r
E

H
R

 S
y
s
te

m

A
m

b
u

la
n

c
e

Receive

Call

Order

Ambulance

Update

location

Contact

Ambulance

Vehicle

location

Send

Vehicle
Report

Update EHR

EHR

Vehicle at

location
Pick up to

Hospital

Check HER

to add

Patient

Retrieve info Receive Info Send Info

Receive Info
Assess the

maternal and fetal

Not yet to delivery

Inform the

patientReady to delivery

Manage the stage of Labour with caesarean operation

Receive

Info

Update EHR

232

P
a

ti
e

n
t

D
o

c
to

r
E

H
R

 S
y
s
te

m

H
o

s
p

it
a

l

Care after birth

First stage of
labour

Second stage

of labour

Third stage of
labour

Update EHR

Inform the

patient

Update EHR

Inform the

patient

Update EHR

Inform the

patient

Update EHR

Inform the

patient

Manage the stage of Labour with caesarean operation 2

 Caesarean
Section(CS)

P
a

ti
e

n
t

D
o

c
to

r
E

H
R

 S
y
s
te

m

H
o

s
p

it
a

l

Prepare the

labour &

care

Every 15

min check

fetal heart

rate(FHR)

Every 30 min

document the

contractions

Every hour

check pulse

Every 4 hours

check temperature,

blood pressure

(BP), and examine

the vaginal

Regularly

checkthe

bladder

emptying

Assess

progress

and woman

emotional

Every stage

should

update the

HER and

Inform the

patient

First stage of labour

Delay in the First

stage

233

P
a

ti
e

n
t

D
o

c
to

r
E

H
R

 S
y
s
te

m

H
o

s
p

it
a

l

Check the

women

Nulliparous <2

Parous<2

Examine

every 2 hour

later

Progress >

1 cm

Progress <

1 cm

Offer

support and

effective

pain relief

Membranes

ruptured

Membranes

intact

Progress <

1 cm

Progress >

1 cm

Delay in the First stage

First stage of

labour

First stage of

labour

P
a

ti
e

n
t

D
o

c
to

r
E

H
R

 S
y
s
te

m

H
o

s
p

it
a

l

Nulliparous:

(consider oxytocin)

Parous:(consider

oxytocin later)

Vaginal

exam 4

hours after

starting

oxytocin

Progress >

2 cm

Progress <

2 cm

Delay in the First stage(2)

Consider second

stage of labour

consider CS

234

P
a

ti
e

n
t

D
o

c
to

r
E

H
R

 S
y
s
te

m

H
o

s
p

it
a

l

Every 5 min

check fetal

heart

rate(FHR)

Every 30 min

document the

contractions

Every hour

check pulse

Every 4 hours

check temperature,

blood pressure

(BP), and examine

the vaginal

Regularly

checkthe

bladder

emptying

Assess

progress

and woman

emotional

Every stage

should

update the

HER and

Inform the

patient

Second stage of labour

Delay in the

second stage

P
a

ti
e

n
t

D
o

c
to

r
E

H
R

 S
y
s
te

m

H
o

s
p

it
a

l

offer vaginal

exam and

support

Birth with 1

hour

No birth

Delay in the Second stage

Go to Second

stage of labour

Go to Third stage of

labour

235

P
a

ti
e

n
t

H
o

s
p

it
a

l
E

H
R

 S
y
s
te

m

H
o

s
p

it
a

l

Observe

physical health

and

Check vaginal

loss

Active

management
> 30 min

> 1 hour

Third stage of labour

Physiological

management

Go to stage of

Care after birth

consider CS

P
a

ti
e

n
t

D
o

c
to

r
E

H
R

 S
y
s
te

m

H
o

s
p

it
a

l

Care after

birth

 stage of labour Care after birth

Woman

Baby

observe general

physical condition

 keep baby warm,

and skin-to-skin

contact between

woman and baby

236

P
a

ti
e

n
t

D
o

c
to

r
E

H
R

 S
y
s
te

m

Prepare the
labour & care

H
o

s
p

it
a

l

Managing

the pain

Fetal
monitoring

Assess the
complications

Refer to
specialist

Complications
During the

LabourLow risk

High risk

Emergence
caesarean

Update EHR

Failure to
progress

Presumed fetal
compromise

Breech
presentation

 Stage of consider Caesarean Section(CS)

P
a

ti
e

n
t

D
o

c
to

r
E

H
R

 S
y
s
te

m

Provide
procedure

H
o

s
p

it
a

l

Prepare for
operation

Update EHR

Receive
procedure

Provide form
of safety
checklist

Form to
Patient

Receive Form
Complete the

form
Send for to

EHR

Receive Form

Prepare for
operation

Anaesthesia

Prophylactic
antibiotics

Thromboprophylaxis

Reducing the risks and
consequences of

aspiration

Consider
operation
technique

Update EHR

Caesarean

Figure 63: the Medical Process for Child Birth Scenario

237

Appendix B. SHA for Healthcare

Case Study
This section considers the SHA for two services:

(1) Request ambulance;

(2) Update health record;

Service Failure
Modes

Effects Severity SSRs Mitigation

Request
ambulance

Ambulance
not requested

Delay in
treatment and
increased
complication

Major

The failure mode
“ambulance not
request” shall be
prevented or
mitigated.

Active monitoring
and cross-checking
between calling and
requesting
ambulances to
ensure the
communication is
applied successfully

Ambulance
provided
when not
required

N/A

No direct safety
effects but waste
for critical
services.

N/A

None. None.

Ambulance
required later
than intended

Delay in
treatment, and
increased
complication

Major

The failure mode
“ambulance required
later than intended”
shall be prevented or
mitigated.

Active monitoring of
timing targets and
strategies for
recovery from
timing-related
failures.

Ambulance
request
improper
information

Delay in
treatment, and
increased
complication

Major

The failure mode
“Ambulance request
improper
information” shall be
prevented or
mitigated.

Early checking
information and
confirmation
between calling and
requested
ambulances to
ensure the
information transfer
correctly through the
system

Table 38: A sample of SHA output for the request ambulance service system

238

Service Failure
Modes

Effects Severity SSRs Mitigation

Update
health
record

Loss of
Updating

Difficulty in assessing
condition

Considerable

The failure mode
“Loss of
Updating” shall
be prevented or
mitigated.

Use of
redundancy
through fitting an
addition flow to
provide patient
information from
the another source
of health record

Updating
provided
when not
required

Incorrect data leading
to wrong treatment

Major

The failure mode
“Updating
provided when
not required”
shall be
prevented or
mitigated.

Active cross-
checking and
interlocks

Updating
provide
later than
intended

Delay the treatment,
and increased
complication

Considerable The failure mode
“Updating
provide later
than intended”
shall be
prevented or
mitigated.

Active monitoring
of timing targets

Inaccurate
service
Updating

Incorrect treatments Major The failure mode
“Inaccurate
service
Updating” shall
be prevented or
mitigated.

Active monitoring
and cross-
checking to ensure
the record
updated correctly

Table 39: A sample of SHA output for the Update health record service system

239

Appendix C. SFA for Healthcare

Case Study
This section considers the SFA for other flows:

(1) From call ambulance and provide information to receive request;
(2) From authorize and authenticate to provide patient name;

ID
(Flow)

Guide Word Deviation Possible
Causes

Effects DSSRs Mitigation

1.1 Omission
(Incomplete
data)

no request
received

Deployment
fault (Request
resource
missing)

Service/server
incompatible

Task crashed

Incomplete
data, no
information
for the
request

The failure
mode “no
output
process is
sent” shall be
prevented or
mitigated.

Ensure
redundancy in
the system can
help to
duplicate the
task within the
system which
allows one or
more copies of
the same task

1.2 Commission
(Repetition-
Data
overrun)

With
additional
output

incorrect or
mismatching
messages

description

No safety
effect
Unwanted
change

N/A N/A

1.3 Early N/A N/A N/A N/A

1.4 Late Unacceptable
response
time

Failure in
scheduling
system

Time out of
the task

Overloading
in task in the
flow may
lead to delay
tasks

The failure
mode
“Unacceptable
response time
to change in
demands”
shall be
prevented or
mitigated.

Monitoring for
timing failure
and developing
recovery
strategies

1.5 Value Incorrect
request

Incorrect
input or
conversion
fault

execution
fault, incorrect
result or
servicer crash

Delay in the
treatment
and increase
complication

The failure
mode “One
component of
output is not
proportional
to demand”
shall be
prevented or
mitigated.

Diversity to
make sure
there is not
error
propagation
across system
boundaries.

Table 40: A sample of SFA output for flow from call ambulance and provide
information to receive request

240

ID
(Flow)

Guide Word Deviation Possible
Causes

Effects DSSRs Mitigation

1.1 Omission No access
available

authorization
and
authentication
failed

No patient
history and
background

The failure
mode “No
access
available”
shall be
prevented or
mitigated.

Use of redundancy
in data sources for
access the system

1.2 Commission unwanted
access

Failure of
output
process on the
system.

No direct
safety
effects

The failure
mode
“unwanted
access” shall
be prevented
or mitigated.

Monitoring of
access requests

1.3 Early N/A N/A N/A Just: the output
cannot be produced

1.4 Late Unacceptable
response
time

Failure in
scheduling

Overloading The failure
mode
“Unacceptable
response
time” shall be
prevented or
mitigated.

Monitoring of time
delays and recovery
by giving more
priority for delayed
requests

1.5 Incorrect
access the
system

Incorrect
output or
task crash

Undetected
failure in any
process.
insufficient
security

unknown
allergy
status

The failure
mode
“Incorrect
output or
task crash

” shall be
prevented or
mitigated.

Data entry cross-
checking, online
monitoring and
fault containment

Table 41: A sample of SFA output for flow from provide user name and password to
authorize and authenticate

241

Appendix D. Safety Case for Healthcare Case Study:
This section considers the safety arguments for another specific service: Retrieve Health Record. The safety arguments are described in

this Appendix.

G_Service_Hz_Retrieve Health Record
Argument Module

Retrieve Health Record is acceptably
safe

Retrieve Health Record Argument Module

G_SOA

Ambulance service system is
acceptably safe to operate in
pregnant women
transportation

C_SOA

 Ambulance service system: SoaML Services Architecture
- Request Ambulance Service
- Dispatch Ambulance Service
- Update Status Service
- Request Record Service
- Provide Patient Record Service
- Update Health Record Service
- Retrieve Health Record Service
- Pick up Patient Service
- Examine Patie

C_SOA_Env

Scope focus is on
pregnant women
transportation

St_Top

Argument structured
over each service of the
SOA system

G_Service_Hz_Dispatch Ambulance
Argument Module

Dispatch Ambulance is acceptably
safe

Dispatch Ambulance Argument Module

G_Service_Hz_Request Ambulance
Argument Module

Request Ambulance is acceptably
safe

Request Ambulance Argument Module

G_Service_Hz_Update Health Record
Argument Module

Update Health Record is acceptably
safe

Update Health Record Argument Module

G_Service_Hz_Pick up Patient
Argument Module

Pick up Patient is accptably safe

Pick up Patient Argument Module

G_Service_Hz_Examine Patient
Argumrnt Module

Examine Patient is acceptably safe

Examine Patient Argumrnt Module

G_Service_Hz_Drop off Patient
Argument Module

Drop off Patient is acceptably safe

Drop off Patient Argument Module

G_Service_Hz_Request Record
Argument Module

Request Record is acceptably safe

Request Record Argument Module

G_Service_HZ_Provide Patient Record
Argument Module

Provide Patient Record is acceptably
safe

Provide Patient Record Argument Module

G_Service_Hz_Update Status
Argument Module

Update Status is acceptably safe

Update Status Argument Module

Figure 64: Top Argument Module

242

C_Service_Desc

Retrieve Health Record:
SoaML
CollaborationUse

St_Service_Hz

Argument structured
based on mitigating
service hazardous failures

C_Service_Hz

Service hazardous failures: SHA
- EHR not retrieved
- EHR retrieved later than
intended
- Incorrect record retrieved

G_Service_N_Hz

EHR not retrieved is mitigated
to satisfy the Service Safety
Requirement

J

J_Service_N_SLA

Mitigation is allocated to
the SLA post-condition

G_Service_N_SLA_Postconditions

Use of redundancy through fitting
an addition flow to provide patient
information from another source
is satisfied

G_Service_W_Mitg

Active monitoring and cross-
checking of the information
retrieved is satisfied to the required
integrity

G_Service_I_Mitg

Active monitoring of timing targets
and strategies for recovery from
timing-related failures is satisfied to
the required integrity

G_Service_N_Mitg

Use of redundancy through fitting
an addition flow to provide patient
information from another source is
satisfied to the required integrity

 G_Service_I_Hz

 EHR retrieved later than intended
is mitigated to satisfy the Service
Safety Requirement

G_Service_W_Hz

 Incorrect record retrieved is
mitigated to satisfy the Service
Safety Requirement

St_Service_N_Hz_Mitg

Argument based on use of
redundancy through fitting an
addition flow to provide patient
information from another source.

St_Service_I_Hz_Mitg

Argument based on active
monitoring of timing targets
and strategies for recovery
from timing-related failures

St_Service_W_Hz_Mitg

Argument based on active
monitoring and cross-
checking of the information
retrieved

C_Service_Hz_N_Mitg

Mitigation: SHA
Use of redundancy through fitting
an addition flow to provide patient
information from another source

C_Service_Hz_I_Mitg

Mitigation: SHA
Active monitoring of timing
targets and strategies for
recovery from timing-related
failures

C_Service_Hz_W_Mitg

Mitigation: SHA
Active monitoring and cross-
checking of the information
retrieved

C_Service_N_Class

Required integrity
based on Considerable
severity

C_Service_I_Class

Required integrity
based on Considerable
severity

C_Service_W_Class

Required integrity
based on Considerable
severity

St_Service_N_SLA

Argument by enforcing use of
redundancy through fitting an
addition flow to provide patient
information from another sourcein
the SLA 1

St_Service_I_SLA

Argument by enforcing active
monitoring of timing targets and
strategies for recovery from
timing-related failuresin the SLA 2

St_Service_W_SLA

Argument by enforcing active
monitoring and cross-checking
of the information retrieved
in the SLA 3

J

J_Service_I_SLA

Mitigation is allocated to
the SLA post-condition

J

J_Service_W_SLA

Mitigation is allocated to
the SLA post-condition

G_Service_I_SLA_Postconditions

Active monitoring of timing
targets and strategies for recovery
from timing-related failures is
satisfied

G_Service_W_SLA_Postconditions

Active monitoring and cross-
checking of the information
retrieved is satisfied

Spinal

SLA Contract1

SLA of use of redundancy through
fitting an addition flow to provide
patient information from another
source

Spinal

SLA Contract2

SLA of active monitoring of timing
targets and strategies for
recovery from timing-related
failures

Spinal

SLA Contract3

SLA of active monitoring and
cross-checking of the information
retrieved

G_Service_Hz

Retrieve Health Record is
acceptably safe

C_Service_N_Hz_SSRs

Service Safety Requirement: SHA

The failure mode “EHR not
retrieved” shall be prevented or
mitigated

C_Service_I_Hz_SSRs

Service Safety Requirement:
The failure mode “EHR retrieved
later than intended” shall be
prevented or mitigated.

C_Service_W_Hz_SSRs

Service Safety Requirement:
The failure mode “inaccurate
records retrieved” shall be
prevented or mitigated.

C_Service_N_SLA

SLA 1

C_Service_I_SLA

SLA 2

C_Service_W_SLA

SLA 3

Figure 65: Service Argument for Retrieve Health Record

243

G_Service_N_SLA_Postconditions_Retrieve Health
Record Argument Module

Use of redundancy through fitting an addition flow to
provide patient information from another source
is satisfied

Retrieve Health Record Argument Module

St_SLA_N_Contract

Argument over SLA
pre-conditions

J

J_SLA_N_Contract

 Argument is satisfied by
meeting the SLA pre-
conditions allocated to
participants

G_N_Participant_Ambl- crew

Ambulance crew provide patient name
and monitoring the status are satisfied

Ambl- crew

G_N_Participant_EHR

EHR provides patient record and
update the state are satisfied

EHR

G_N_Participant_EHR backup

EHR backup provides patient record
and update the state are satisfied

EHR backup

Figure 66: SLA contact Argument for Retrieve Health Record

244

G_Participant_H

Ambulance-crew fulfils
its SLA pre-conditions

C_Participant

Ambulance-crew:
BPMN Pool

St_Participant
Argument by addressing
SLA pre-conditions
allocated to the
participant

C_Participant_Precon

Ambulance-crew SLA
pre-conditions: SoaML
SLA

G_Participant_FM

No record available is
mitigated to satisfy the
allocated DSSRs

C_N_Participant_FMs

Participant failure modes: SFA
- No record available
- Patient record provided when not
requested
- Record arrived later than intended
- Incorrect record retrieved

St_N_Participant_Task
s

Argument based on
identified participant
failure modes

G_Participant_FM2

Patient record provided when
not requested is mitigated to
satisfy the allocated DSSRs

St_Tasks_Mitg2

Argument based on
monitoring of
uncommanded requests

C_Participant_Task_
Mitg2
Monitoring of
uncommanded
requests

G_Participant_Task_check2

Monitoring of uncommanded
requests provides adequate
mitigation to patient record
provided when not requested

J

J_N_Participants_Tasks

A participant is defined as a
BPMN pool that includes
tasks and flows

Participants are defined in terms of the
interactions between internal and external
tasks (External =

interactions between BPMN pools; internal
= interactions between tasks in the same
pool)

G_Participant_FM3

Record arrived later than
intended is mitigated to satisfy
the allocated DSSRs

St_Tasks_Mitg3

Argument based on monitoring
of time delays and recovery by
giving more priority for delayed
requests

C_Participant_Task_Mitg3

Monitoring of time delays
and recovery by giving more
priority for delayed
requests

G_Participant_Task_check3

Monitoring of time delays and recovery
by giving more priority for delayed
requests provides adequate mitigation
to record arrived later than intended

St_Tasks_Mitg

Argument based on use of
redundancy in data
sources for health records

C_Participant_Task_
Mitg
Use of redundancy in
data sources for
health records

G_Participant_Task_check

Use of redundancy in data sources
for health records to provides
adequate mitigation to No record
available

G_Participant_FM4

Incorrect record retrieved is
mitigated to satisfy the
allocated DSSRs

St_Tasks_Mitg4

Argument based on data entry
cross-checking, online
monitoring and fault
containment

C_Participant_Task_Mitg4

Data entry cross-checking,
online monitoring and fault
containment

G_Participant_Task_check5

Data entry cross-checking, online
monitoring and fault containment
provides adequate mitigation to
incorrect record retrieved

G_N_Participant

Ambulance crew provide
patient name and monitoring
the status are satisfied

C_Participant_Hz_DSSRs_O
mission

DSSR:The failure mode “no
record available” shall be
prevented or mitigated.

C_Participant_Hz_DSSRs_Comm
ission

DSSR: The failure mode
“patient record provided when
not requested” shall be
prevented or mitigated.

C_Participant_Hz_DSSRs_Late

DSSR: The failure mode
“record arrived later than
intended” shall be prevented
or mitigated.

C_Participant_Hz_DSSRs_
value
DSSR: The failure mode
“incorrect record
retrieved” shall be
prevented or mitigated.

Figure 67: Participant Argument for Retrieve Health Record

245

Appendix E. Natural Gas

Processing Case Study
SFA

(1) Measure sweet gas by analyser to confirm water content is less than %1;

and

(2) Pump the liquid gas to receive liquid gas.

ID
(Flow)

Guide Word Deviation Possible
Causes

Effects Justification/Design
Recommendations

1.1 Omission (no
communication
within the
flow)

No output data
is sent

Description
incomplete or
incorrect input

Service
crashed

Incomplete
data

Use of redundancy in
data sources

Omission
(Incomplete
flow)

Part of output
signal is
missing

Required
resource
missing

Inconsistent
water
content

Checking integrity of
data and monitoring

1.2 Commission
(Repetition)

With additional
output process
sent. No
change is
required.

False flow

Execution fault
(Incorrect
result)

Conflicting
request
received
Unwanted
change

Use of interlock
mechanism

 Commission
(Spurious)

The
communication
is unintended

Conversation
fault (Incorrect
input) (server
crashed)

Conflicting
request
received
Unwanted
change

Use of interlock
mechanism

1.3 Early N/A N/A N/A N/A

1.4 Late Unacceptable
response time
to changes in
demands

Execution fault

Time out
(severe crash
or
communication
failure)

Late
detection of
safety
events

Active monitoring of
timing targets and
strategies for
recovery from
timing-related
failures through
analyser

246

1.5 Value One
component of
output is not
proportional to
demand

Require
resource
missing

Range
exceeded

(execution
fault incorrect
result- or
servicer crash)

False value

Unknown
value

Applying diversity in
the flow and early
cross-checking fault
containment to
detect and reject
incorrect value and
fault containment.

Table 42: Measure sweet gas by analyser to confirm water content is less than %1;

ID Guide Word Deviation Possible
Causes

Effects Justification/Design
Recommendations

1.1 Omission (no
communication
within the
flow)

no output
process is sent

Content fault
(conflicting
Content)

Liquid not
received

Use of redundancy
through providing
other sources

Omission
(Incomplete
flow)

part of output
signal is
missing

Required
resource
missing

Inconsistent
receiving of
liquid gas

Checking and
monitoring and fault
containment

1.2 Commission
(Repetition)

With additional
output process
sent. No
change is
required

Content fault
(Redundant
description)

Overloading Check high-integrity
among participants
to consider
sufficiency pump the
liquid

 Commission
(Spurious)

The
communication
is unintended

conversation
fault (Incorrect
input)

Overloading Apply high-integrity
among participants
to consider
sufficiently incorrect
pump liquid

1.3 Early N/A N/A N/A N/A

1.4 Late Unacceptable
response time
to change in
demands

Execution fault

Time out
communication
failure)

Delays in
production

Active monitoring
transmitter of timing
targets and
strategies for
recovery from
timing-related
failures

1.5 Value One
component of
output is not
proportional to
demand

Execution fault

Incorrect
level of
liquid gas

Increased
monitoring + fault
containment

Table 43: Pump the liquid gas to receive liquid gas

247

Example of Safety Case for Natural Gas Processing for the Absorb Water Service

Absorb water (Top)

G_SOA

Gas service system is acceptably
safe to operate in emergency
case for sweet gas processing

C_SOA

Gas service system: SoaML Services Architecture

- Supply natural gases

- Separate gases

- Absorb water

- Heat exchange

- The Separate gas from liquid

- Send emergency signal

- Call emergency number

C_SOA_Env

Scope focus in
emergency case for
sweet gas processing

St_Top

Argument structured over
each service of the SOA
system

G_Service_Hz_Send Emergency Signal
Argument Module

Send Emergency Signal is acceptably
safe

Send Emergency Signal Argument Module

G_Service_Hz_Supply Natural Gases
Argument Module

Supply Natural Gases is accaptably
safe

Supply Natural Gases Argument Module

G_Service_Hz_Separate Gases
Argument Module

Separate Gases is accaptably safe

Separate Gases Argument Module

G_Service_Hz_Absorb Water
Argument Module_Absorb Argument
Module

Absorb Water is accaptably safe

Absorb Argument Module

G_Service_Hz_Heat exchange
Argument Module

Heat Exchange is accaptably safe

Heat exchange Argument Module

G_Service_Hz_The Separate Gas from
Liquid Argument Module

The Separate Gas from Liquid is accaptable
safe

The Separate Gas from Liquid Argument Module

G_Service_HZ_Call Emergency Number
Argument Module

Call Emergency Number is accaptable
safe

Call Emergency Number Argument Module

Figure 68: Top Argument Module for Absorb water

248

Absorb water Service

C_Service_Desc

Absorb water is
described based in
SoaML Version1.0.1

St_Service_Hz

Argument structured
based on identified service
hazards

C_Service_Hz

Absorb water SHA

G_Service_N_Hz

Water not removed is
mitigated

J

J_Service_N_SLA

DSSR are specified as
SLA post-conditions

G_Service_N_SLA_Postcondit
ions

Active monitoring and cross-
checking are satisfied

G_Service_W_DSSR

Early address cross-checking by analyser (e.g.
analyser need to be checked every day)and
confirmation between removing water and
measure sweet gas (No direct safety effects)
are satisfied to the required integrity

G_Service_I_DSSR

Active monitoring of timing targets and
strategies for recovery from timing-
related failures bythrough analyser are
satisfied to the required integrity

G_Service_N_DSSR

Active monitoring and cross-checking between
removing water and measure sweet gas
through the analyser. Also, checking the
catalyst inside the dehydration drum e.g. needs
to be replaced every 5 years are satisfied to the
required integrity

 G_Service_I_Hz

Water removed later than
intended is mitigated

G_Service_W_Hz

Inaccurate percentage of
water removed is
mitigated

St_Service_N_Hz_Mitg

Argument based active
monitoring and cross-
checking

St_Service_I_Hz_Mitg

Argument based on
monitoring of timing targets
and strategies for recovery

St_Service_W_Hz_Mitg

Argument based on
early address cross-
checking

C_Service_Hz_N_Mitg

Active monitoring and
cross-checking

C_Service_Hz_I_Mitg

Active monitoring of
timing targets and
strategies for recovery

C_Service_Hz_W_Mitg

Early address cross-
checking

C_Service_N_Class

Severity is very
high

C_Service_I_Class

Severity is very
high

C_Service_W_Cla
ss

Severity is low

St_Service_N_SLA

Argument by enforcing
DSSR in the SLA

C_Service_N_DSSR

Active monitoring and cross-
checking between removing water
and measure sweet gas through the
analyser. Also, checking the catalyst
inside the dehydration drum e.g.
needs to be replaced every 5 years.

C_Service_I_DSSR

Active monitoring of timing
targets and strategies for
recovery from timing-
related failures bythrough
analyser

C_Service_W_DSSR

Early address cross-checking by
analyser (e.g. analyser need to be
checked every day)and confirmation
between removing water and
measure sweet gas (No direct safety
effects)

St_Service_I_SLA

Argument by enforcing
DSSR in the SLA

St_Service_W_SLA

Argument by enforcing
DSSR in the SLA

J

J_Service_I_SLA

DSSR are specified as
SLA post-conditions

J

J_Service_W_SLA

DSSR are specified as
SLA post-conditions

G_Service_I_SLA_Postconditions

Monitoring of timing targets and
strategies for recovery are
satisfied

G_Service_W_SLA_Postcondi
tions

Early address cross-checking
are satisfied

Spinal

SLA Contract

SLA of active monitoring
and cross-checking

Spinal

SLA Contract2

SLA of Argument based on
monitoring of timing targets and
strategies for recovery

Spinal

SLA Contract3

SLA of early address cross-
checking

G_Service_Hz_Absorb Water
Argument Module

Absorb Water is accaptably
safe

Figure 69: Service Argument for Absorb Water Service

249

SLA Contract

Figure 70: SLA contact Argument for Absorb Water Service

250

Participant

G_Participant_H

Dehydration unit fulfils
its safety requirements

C_Participant_Preco
n
Measure sweet gas
and monitoring the
status

C_Participant

Dehydration unit defined
based in SoaML
version1.0.1 and BPMN
version 2.0.2

St_Participant

Argument by addressing
SLA preconditions
allocated to participant

C_Participant_FMs1

Participant failure modes: SFA
- part of output signal is missing
- The communication is unintended
- Unacceptable response time to change in
demands
- One component of output is not
proportional to demand

St_Participant_Tasks_Fms_Mitg
2

Argument based on apply high-
integrity among participants to
consider sufficiently incorrect
signal

C_Participant_Hz_Mitg
2
Check high-integrity
among the processes to
consider sufficiently
incorrect water content

G_Participant_Task_check2

Apply high-integrity among
participants to consider sufficiently
incorrect signal to provides
adequate mitigation of Commission

C_Participant_Task_FMs_C
auses2

Required resource missing
Service/server incompatible

St_I_Participant_Tasks

Argument based on identified
service failure mode by dehydration
unit within monitor water content is
less than %1 and send signal by
transmitter

J

J_I_Participants_Tasks

Participants are defined in terms
of the interactions between
BPMN pools and tasks in the
same pool)

G_Participant_Fms

part of output signal is
missing is mitigated

G_Participant_Fms2

The communication is
unintended is mitigated

C_Participant_Task_FMs_Causes1

Description incomplete or incorrect
input
Service crashed

G_Participant__Fms3

Late cause is mitigated

C_Participant_Task_FMs_Cause
s3

Unacceptable response time to
change in demands

St_Participant_Tasks_Fms_Mitg3

Argument based on Active monitoring
of timing targets and strategies for
recovery from timing-related failures
through analyse

C_Participant_Hz_Mitg3

Active monitoring of timing
targets and strategies for
recovery from timing-
related failures through
analyser.

G_Participant_Task_check3

Active monitoring of timing targets
and strategies for recovery from
timing-related failures through
analyser to provides adequate
mitigation of late

St_Participant_Tasks_Fms_M
itg1

Argument based on Checking
and monitoring APIs function
and fault containment

C_Participant_Hz_Mitg1

Checking and
monitoring APIs function
and fault containment

G_Participant_Task_check1

Checking and monitoring APIs
function and fault containment
provides adequate mitigation of
omission

G_Participant_Fms5

Value cause is mitigated

C_Participant_Task_FMs_C
auses5

One component of output
is not proportional to
demand

St_Participant_Tasks_Fms_Mitg5
Argument based on applying
diversity in the flow and early
address cross-checking fault
containment to detect and reject
incorrect value and fault
containment.

C_Participant_Hz_Mitg5

Applying diversity in the flow
and early address cross-checking
fault containment to detect and
reject incorrect value and fault
containment.

G_Participant_Task_check5

Applying diversity in the flow and early
address cross-checking fault containment
to detect and reject incorrect value and
fault containment to provides adequate
mitigation of value

G_I_Participant_Participant_Dehydration
_Dehydration unit_Dehydration
unit_Dehydration unit_Dehydration unit

Dehydration unit measure sweet gas and
monitoring the status through timing targets
and strategies for recovery are satisfied

Figure 71: Participant Argument for Absorb Water Service

251

Appendix F. Interviews

INFORMATION SHEET

PhD PROJECT TITLE: Service-Oriented Architectures for Safety Critical

Systems

INVITATION

You are being asked to take part in a research study for a PhD project on the

safety assurance of service-oriented architectures.

WHAT WILL HAPPEN

In this study, you will be asked a set of predefined questions and your answers

will be recorded on paper at the time and written up on electronic media after

the interview.

TIME COMMITMENT

The study typically takes 20 minutes.

PARTICIPANTS’ RIGHTS

You may decide to stop being a part of the research study at any time without

giving an explanation. You have the right to ask that any data you have supplied

to that point be withdrawn/destroyed.

You have the right to omit or refuse to answer or respond to any question that

is asked of you.

You have the right to have your questions about the procedures answered

(unless answering these questions would interfere with the study’s outcome).

If you have any questions as a result of reading this information sheet, you

should ask the researcher before the study begins.

BENEFITS AND RISKS

There are no known benefits for me or risks for you in this study.

252

COST, REIMBURSEMENT AND COMPENSATION

Your participation in this study is voluntary.

CONFIDENTIALITY/ANONYMITY

The data I collect will not contain any personal information about you except

for you current role and your present and previous experience.

The results of the interview will be written up as part of my doctoral thesis.

They may also be published in academic outlets such as journals, conferences

or academic books. In all cases, the data will only be presented in summary

form and you will not be directly identifiable in any way.

FOR FURTHER INFORMATION

Abdulaziz Al-Humam will be glad to answer your questions about this study at

any time. He may be contacted as follows

Abdulaziz Al-Humam, aaah501@york.ac.uk

If you want to find out about the final results of this study, please let me know

now and I will email you the results upon completion.

mailto:aaah501@york.ac.uk

253

CONSENT FORM

PhD PROJECT TITLE: Service-Oriented Architectures for Safety Critical

Systems

Name of Researcher: Abdulaziz Al-Humam

Supervisors Ibrahim Habli

 Please initial box

1. I confirm that I have read and understand the
information sheet for the above study. I have had the
opportunity to consider the information, ask
questions and have had these answered satisfactorily.

2. I understand that my participation is voluntary and
that I am free to withdraw at any time, without giving
any reason.

3. I understand that any information given by me may be

used in future reports, articles or presentations by the
researcher.

4. I understand that my name will not appear in any

reports, articles or presentations.

5. I agree to take part in the above study.

________________________ ________________ ________________

Name of Participant Date Signature

_________________________ ________________ ________________

Researcher Date Signature

254

Date:

Areas of expertise of the interviewee:

7- What do you think about the overall approach?

8- Do you think that the modelling approach improve the
understanding of the system?

a. What aspects in particular did you find useful?

b. What aspects in particular did you find hard to use?

9- Do you think that the safety analysis methods, SHA and SFA, can
provide a systematic approach to analysing services?

a. What aspects do you think have the potential to improve
practice?

b. What aspects do you think are infeasible to use?

10- Do you think that the safety case used improve the justification
for the safety of the service-based system?

a. What aspects do you think have the potential to improve
practice?

b. What aspects do you think are infeasible to use?

11- Do you think that the modelling, safety analysis and safety case
artefacts are clearly integrated?

12- Can you provide suggestions for areas that can improve the
framework?

 Table 44: Interview Questions

255

The presentations of the case studies respectively (Healthcare - Natural

Gas Processing)

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

Date: 03/09/2015

Areas of expertise of the interviewee: Chemical engineers in the oil and

gas industry

1- What do you think about the overall approach?
I can say the overall approach can be very useful to be used in service-

based systems.

2- Do you think that the modelling approach improve the
understanding of the system?

Of course, Yes I think it helps making the system structure and behaviour

related hazards clearer and more visible through following the logical and

layered approach.

a. What aspects in particular did you find useful?
I can say that it could be the system design models, the systematic

procedure of the analysis and also make it appealing and easy to use. I

recommend this kind of approach to be utilized.

b. What aspects in particular did you find hard to use?
Most likely the way it requires to be configured, the tool and the

requirements of entering data manually, this area of improvement that

needs to be look at carefully. Also, the manual part is the most difficult

that needs to be looked carefully as this can reduce the usability and

usefulness of the tool.

3- Do you think that the safety analysis methods, SHA and SFA, can
provide a systematic approach to analysing services?

Yes, based on what I have seen,

Yes, they do help the safety engineers through using this easy to follow up

steps, clear methodology or process. We can enhance the engineers or the

process developers to follow and track easy.

a. What aspects do you think have the potential to improve
practice?

I will think the integration modelling safety analysis and safety case can

help a lot to improve the safety management. This pat need to be looked in

it carefully to added value to it.

b. What aspects do you think are infeasible to use?

299

I am not sure that I have not apply the approach extensively

So, this require more research, development and digging more to finalize

this infeasible area that cannot be use.

4- Do you think that the safety case used improve the justification
for the safety of the service-based system?

Yes, what we have seen and looked in it

Yes, using safety case patterns can help a lot to establish more structure

and logical safety case

a. What aspects do you think have the potential to improve
practice?

Applying what do you call it SHA, SFA and using their result together with

safety case patterns

I think can help and improve the practice as well

b. What aspects do you think are infeasible to use?
again, Not very sure

As I have not had the chance to apply the approach thoroughly and

extensively

I think, it require more research to be finalize

5- Do you think that the modelling, safety analysis and safety case
artefacts are clearly integrated?

Yes, what I have seen and looked it,

I think, Yes, This kind from overall system architecture, it is very clear how

the aspects are related and integrated

6- Can you provide suggestions for areas that can improve the
framework?

I think it would be better, if you implement and integrate the model –

based weaving approach in the framework. That is added value.

Table 45: Interview Questions and answer one

300

Date: 03/09/2015

Areas of expertise of the interviewee: Chemical engineers in the oil and

gas industry and overall in processing requirements

1- What do you think about the overall approach?
The overall approach of the system, I can say that is very useful and can

help be use in any service-based system with oil and gas domain industry.

The overall of the approach is very great.

2- Do you think that the modelling approach improve the
understanding of the system?

For the demonstration, I strongly believe that the system structure and

behaviour related hazards and failure modes in the system.

So, I believe the system is very clear, friendly to be used and can help a lot

meeting overall system objective requirements.

a. What aspects in particular did you find useful?
Typically, for the analysis models and system design models, I think the

system procedure of the analysis method make it more applicable and

easy to be used

b. What aspects in particular did you find hard to use?
The system design and analysis is very friendly, handy and can be easily

understand but I believe that the need for human interface in order to go

and enter the data manually can somehow, it will not be an accurate data

and infeasible. This in the only area need to be looked in it

3- Do you think that the safety analysis methods, SHA and SFA, can
provide a systematic approach to analysing services?

Yes, this will help the engineers overall to use the system, the systematic is

very easy to be followed steps are very clear and handy

a. What aspects do you think have the potential to improve
practice?

For new system, we need to analysis the system and the safety case and

also the integration model. I believe that will help improve the overall

system management. This aspect can help improve the practice

b. What aspects do you think are infeasible to use?

301

To be honest, I start with you from the beginning of the system and I have

already applied the approaches in one area of processing oil and gas

industry. I see is very useful but I think I need to dig more in order to get

the outcome what is an infeasible area.

4- Do you think that the safety case used improve the justification
for the safety of the service-based system?

I strongly believe that the safety case can be used to improve

Definitely, this will help in establish more structure and logical safety case

Overall, having safety case patterns for overall the system will improve

the justification

a. What aspects do you think have the potential to improve
practice?

Looking as the safety analysis methods Basically, SHA and SFA using their

result together with safety case. I think this will help improve the practice

of the system

b. What aspects do you think are infeasible to use?
As I highlighted earlier, it is area of more research and when we dig more

and more practice. The infeasible will appear and can figure out

5- Do you think that the modelling, safety analysis and safety case
artefacts are clearly integrated?

For sure, it is very clear for the framework that are integrated.

6- Can you provide suggestions for areas that can improve the
framework?

I think, If you can improve and integrated the mode –based weaving

This is definitely can help to approach the overall framework

Table 46: Interview Questions and answer two

302

Date: 26 August 2015

Areas of expertise of the interviewee: Senior Safety Engineering

(Healthcare domain)

1- What do you think about the overall approach?
I can see a lot of applications, especially in my domain, healthcare.

The modelling approach produces a strong basis for the risk assessment

2- Do you think that the modelling approach improve the
understanding of the system?

Focusing on services gives an easier way to manage and visualise the

systems for non-experts.

Services provide a clearer way of presenting the system as compared to

functions.

a. What aspects in particular did you find useful?
Producers and consumers and the relation between them (dependencies

between people and systems).

Richer than a textual narrative for complex situations.

Better than more complex models such as state machines.

b. What aspects in particular did you find hard to use?
Initial period for training and learning the language (but not for

engineers).

Not difficult for engineers because of the limited number of elements to

model.

3- Do you think that the safety analysis methods, SHA and SFA, can
provide a systematic approach to analysing services?

Yes, especially that they are built on familiar safety techniques.

a. What aspects do you think have the potential to improve
practice?

Not much a new element of re-learning.

Repeatable.

303

Keeps the relation between the hazards, services and tasks clear.

b. What aspects do you think are infeasible to use?
Language control: different people have different styles or use different

terminology: faults vs failures (hard to trace and map different

expressions of the same condition)

4- Do you think that the safety case used improve the justification
for the safety of the service-based system?

The modular view provides the right level of abstraction

The modular view provides value in showing the big picture.

a. What aspects do you think have the potential to improve
practice?

The link between the hazards and causes

Traceability between the hazards and the evidence

b. What aspects do you think are infeasible to use?
Detailed arguments (detailed pattern instantiation).

People are not trained to do it/perceived to take a lot of time.

5- Do you think that the modelling, safety analysis and safety case
artefacts are clearly integrated?

Yes, without a model you cannot do the analysis.

I understand how they interrelate from the framework.

6- Can you provide suggestions for areas that can improve the
framework?

Make sure to maintain a thread between the hazards and failures.

How much enough analysis is enough? How much details are needed?

When do we stop at the SLA level? (abstract how participants do)

Table 47: Interview Questions and answer three

304

Appendix G. Weaving Model
A preliminary weaving model, based on the work in (164), shown in Figure 72,

is used for defining the dependencies, mainly at the metamodel level between,

on the one hand, the SOA safety argument patterns and, on the other hand the

SoaML, BPMN, SLAs, SHA and SFA metamodels. This aims at improving

traceability and allowing the argument pattern instantiation to be

automatically executed. The instantiation program, developed in (164), runs on

the Eclipse platform. It identifies the required information from those

information models (SoaML and BPMN) and performs the instantiation.

Overall, the tool-support in this thesis offered a means for checking the

consistency and well-formedness of the models and metamodels defined in the

SOA safety assurance framework.

Figure 72: Preliminary Weaving Model

305

Appendix H. Abbreviations and

Acronyms
SOA Service-Oriented Architecture

BPMN Business Process Management Notation

SoaML Service oriented architecture Modeling Language

AADL Architecture Analysis and Design Language

COTS Commercial Off-The-Shelf

EHR Electronic Health Record

GSN Goal Structuring Notation

HAZOP Hazard and Operability Studies

HISE High-Integrity Systems Engineering

MoD Ministry of Defence (UK)

EMR Electronic Medical Record

FFA Functional Failure Analysis

FHA Functional Hazard Analysis

FMEA Failure Mode Effect Analysis

FTA Fault Tree Analysis

NHS National Health Service

OMG Object Management Group

SHARD Software Hazard Analysis and Resolution in Design

SFA Service Failure Analysis

SHA Service Hazard Analysis

UML Unified Modelling Language

SysML Systems Modelling Language

SLA Service Level Agreement

NASA National Aeronautics and Space Administration

ESA European Space Agency

OASIS Organization for the Advancement of Structured Information

Standards

QoS Quality of Service

EIA Enterprise Integration Applications

306

ROI Return-On-Investment

TMR Triple Modular Redundancy

SDL Specification and Description Language

SOMA Service-Oriented Modelling and Architecture

SOMF Service-Oriented Modelling Framework

BPMI Business Process Management Initiative

MA Markov Analysis

FPTC Fault Propagation and Transformation Calculus

PSSA Preliminary System Safety Assessment

ATAM Architecture Tradeoff Analysis Method

IEC SC 54A International Electro-technical Commission subcommittee 54A

IMA Integrated Modular Avionics

SAAM Software Architectural Analysis Method

DGR Dependency-Guarantee Relationships

IDE Integrated Development Environment

BPM Business Process Management

SSRs Service Safety Requirements

 DSSRs Derived Service Safety Requirements

EHR Electronic Health Record

CO2 Carbon Dioxide

H2S Yydrogen Sulphide

EG Ethylene Glycol

 DEG Diethylene Glycol

 TEG Triethylene Glycol

 TREG Tetraethylene Glycol

SRAM Safety Report Assessment Manual

307

Bibliography
1. Chen, Y. Service Oriented Architecture. IBM. [Online] 2006. [Cited: 12 Apr.

2011.] http://sei.pku.edu.cn/~huanggang/ibmcourse/2006/SOA.pdf.

2. Object Management Group. Service oriented architecture Modeling

Language (SoaML) Specification,. s.l. : Version 1.0.1 (May 2012)., 2012.

3. Erl, T. Service-oriented architecture: concepts, technology, and design. United

States. : Prentice Hall Professional Technical Reference, 2005. ISBN:

2005925019.

4. Josuttis, J. M. SOA in practice. USA : O'Reilly Media, Inc., 2007. ISBN:

9780596529550.

5. Erl, Thomas. SOA Design Patterns. United States : Prentice Hall, 2009. ISBN:

9780136135166.

6. OASIS. [Online] [Cited: 18 05 2012.] http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=soa-rm.

7. Open Group. [Online] [Cited: 2012 05 18.]

https://collaboration.opengroup.org/projects/soa/pages.php?gpid=442&actio

n=show&ggid=1574.

8. Endrei, M., et al., et al. Patterns: Service-Oriented Architecture and Web

Services . IBM website. [Online] 2004. [Cited: 6 May 2011.]

http://www.redbooks.ibm.com/redbooks/SG246303/wwhelp/wwhimpl/java

/html/wwhelp.htm.

9. Mohiuddin, S. A. The Business-Technology Drivers and Benefits of SOA.

BTTrends. [Online] 2007. [Cited: 1 May 2011.]

http://www.bptrends.com/publicationfiles/EIGHT%20BPTrends

BusTechDrivers%26BenfOfSOA-TelcoExecOverview-Final.pdf.

10. Glen, S. M. and Andexer, J. A practical application of SOACombine the

technology and business perspectives of SOA implementation. IBM. [Online] 4

Oct. 2007. [Cited: 23 Apr. 2011.]

https://www.ibm.com/developerworks/webservices/library/ws-soa-

practical/.

308

11. Juneja, G,, et al., et al. Improving Performance of Healthcare Systems with

Service Oriented Architecture. infoq. [Online] 2008 .

http://www.infoq.com/articles/soa-healthcare.

12. Leveson, N. G. Software system safety and computers. USA. : Addison

Wesley, 1995. ISBN: 0-201-11972-2.

13. Design Factors for Safety-Critical Software,. Lawrence, J.D. 1994,

NUREG/CR-6294, Lawrence NUREG/CR-6294, Lawrence.

14. Kelly, T. Arguing Safety - A Systematic Approach to Safety Case Management.

York : Department of Computer Science, University of York, 1998. DPhil Thesis.

15. Fenn, J,, et al., et al. Safety case composition using contracts – refinements

based on feedback from an industrial case study,. s.l. : 15th Safety-Critical

Systems Symposium (Bristol, UK,), 2007.

16. Brown, A., Fenn, J. and Menon, C. Issues and considerations for a modular

safety certification approach in a Service-Oriented Architecture . In 5th IET

International System Safety Conference. 2010, pp. 1 - 6 .

17. Roshen, W. SOA-based enterprise integration: a step-by-step guide to

services-based application integration. USA : McGraw Hill Professional, 2009.

ISBN: 9780071605526.

18. Krafzig, D., Banke, K. and Slama, D. Enterprise SOA: service-oriented

architecture best practices. USA : Prentice Hall PTR, 2005. ISBN:

9780131465756.

19. Güner, S. Architectural Approaches, Concepts and Methodologies of Service

Oriented Architecture. Hamburg : Technical University Hamburg Harburg,

2005.

20. McGovern, J., et al., et al. Java Web Services Architecture. s.l. : Sun

Microsystems, 2003. ISBN: 978-1558609006.

21. Silva, P. A., et al., et al. Extending SOA with Semantic Mediators. In

Advanced Internet Based Systems and Applications, Lecture Notes In Computer

Science, Springer-Verlag, Berlin, Heidelberg. 2009, Vol. 4879, pp. 362-371.

309

22. Jazequel, J.-M. and Meyer, B. Design by contract : the lessons of Ariane.

1997, Vol. 30, 1.

23. Cellary, W. and Strykowski, S. e-government based on cloud computing and

service-oriented architecture. New York, NY, USA : ACM, 2009.

24. Valipour, M.H., et al., et al. A brief survey of software architecture

concepts and service oriented architecture. Beijing : IEEE, 2009.

25. Alexander, R. Using Simulation for Systems of Systems Hazard Analysis. s.l. :

PhD thesis, Department of Computer Science, University of York., 2007.

26. Hawkins, R. D. Using Safety Contracts in the Development of Safety Critical

Object-Oriented Systems. York : Department of Computer Science, University of

York, 2006.

27. Habli, I. Model-Based Assurance of Safety-Critical Product Lines, PhD Thesis.

York : Department of Computer Science, University of York, 2009.

28. Higgins, John. ITIL and the Software Lifecycle: Practical Strategy and Design

Principles. s.l. : Van Haren Publishing, 2007. ISBN: 9789087530495.

29. Seeley, R. Understanding the SOA lifecycle. Search SOA. [Online] 24 Dec.

2007. [Cited: 6 May 2011.]

http://searchsoa.techtarget.com/tip/Understanding-the-SOA-lifecycle.

30. Cox, D. E. and Kreger, H. Management of the service-oriented-architecture

life cycle. IBM System Journal,. 2005, Vol. 44, 4, pp. 709-726.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5386697&abstractAc

cess=no&userType=inst.

31. Kumar, S. The Enterprise SOA Implementation Lifecycle Explained. India. :

SAP DEVELOPER NETWORK (sdn.sap.com), 2007.

32. Gejnevall, Mats. Open Group SOA Governance . SoA Lifecycle . [Online] 21

Aug. 2007. [Cited: 8 May 2011.] http://soalifecycle.blogspot.com/.

33. Ramollari, E., Dranidis, D. and Simons, A. A Survey of Service Oriented

Development Methodologies. Proc. Second European Young Researchers

Workshop on Service Oriented Computing. 2007.

310

34. Morris, E., et al., et al. Testing in Service-Oriented Environments. United

States : Carnegie Mellon University, 2010. CMU/SEI-2010-TR-011.

35. Fronckowiak, J. SOA Best Practices and Design Patterns: Key to Successful

Service Oriented Architecture Implementation. Oracle Corporation, 2008.

36. Alexander, C., Ishikawa,S.,Silverstein,M,. Jacobson, M., Fiksdahl-King, I.

and Angel, S. A Pattern Language: Towns, Buildings, Construction. Oxford :

Oxford University Press, 1977. 0195019199.

37. Gamma, E., Helm, R., Johnson,R. and Vlissides., J. Design Patterns:

Elements of Reusable Object-Oriented Software . USA : Addison-Wesley, 1994.

ISBN 0201633612.

38. Spool, J. The Elements of a Design Pattern. User Interface Engineering.

[Online] Jan 23, 2006. [Cited: May 02, 2011.]

http://www.uie.com/articles/elements_of_a_design_pattern/.

39. Metsker, S. and Wake, W. Design patterns in Java. USA : Addison-Wesley

Professional, 2006. ISBN: 9780321333025.

40. Cooper., J. Java design patterns: a tutorial. Massachusetts : Addison-Wesley

Professional, 2000. ISBN 9780201485394.

41. Laprie, J.C. Dependable Computing and Fault Tolerance: Concepts and

terminology. Highlights from Twenty-Five Years, Twenty-Fifth International

Symposium on Fault-Tolerant Computing. 1995.

42. IFIP. WG 10.4 on DEPENDABLE COMPUTING AND FAULT TOLERANCE.

INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING. [Online] 23

Jul. 2010. [Cited: 5 May 2011.] http://www.dependability.org/wg10.4/.

43. Avizienis, A., Laprie, J.-C. and Randell, B. Fundamental Concepts of

Dependability. Boston, Massachusetts, USA : In Proc. 3rd Information

Survivability Workshop,LAAS-CNRS, 2001. Research Report No 1145.

44. Despotou, G. Managing the Evolution of Dependability Cases for Systems of

Systems. York, United Kingdom : PhD Thesis, High Integrity Systems Research

Group, Department of Computer Science, University of York, 2007.

311

45. Avizienis, Algirdas, Laprie, Jean-Claude and Randell, Brian.

Dependability and its threats: a taxonomy. 18th IFIP World Computer Congress,

Building the Information Society. 2004, pp. 91-120.

46. Bass, Len, Clements, Paul and Kazman, Ric. Software architecture in

practice. Boston, United States. : Addison-Wesley, 2003. ISBN: 9780321154958.

47. Cigital. Software Certification. Cigital Software Confidence Achieved.

[Online] 2011. [Cited: 24 May 2011.]

http://www.cigital.com/labs/reliability/certification.php.

48. Chan, C. Supermarket Accidentally Opens When No Employees Working.

GIZMODO. [Online] 26 Apr. 2011. [Cited: 23 May 2011.]

http://www.gizmodo.com.au/2011/04/supermarket-accidentally-opens-

when-no-employees-working/.

49. Hallstrom, J. O., Soundarajan, N. and Tyler, B. Monitoring Design Pattern

Contracts. IOWA : IOWA State University, 2004. 04-09.

50. Wu, W. and Kelly, T. Safety Tactics for Software Architecture Design. In:

Proc. 28th Annual International Computer Software and Applications Conference

COMPSAC. 2004, Vol. 1, pp. 368 - 375.

51. Surhone, Lambert M., Tennoe, Mariam T. and Henssonow, Susan F.

Triple Modular Redundancy. s.l. : VDM Verlag Dr. Mueller AG & Co. Kg, 2010.

ISBN: 9786132988683.

52. Jackson, Daniel. A Direct Path to Dependable Software. Communications of

the ACM . 2009, Vol. 52, 4.

53. Kang, E. A Framework for Dependability Analysis of Software Systems with

Trusted Bases. Boston : Massachusetts Institute of Technology, 2010. Master

Thesis.

54. Kandukuri, BR,, Paturi, VR, and Rakshit, A. Cloud security issues. s.l. : IEEE

internationalconference on services computing, p. 517–20., 2009.

55. Ludwig, et al., et al. Template-Based Automated Service Provisioning -

Supporting the Agreement-Driven Service Life-Cycle. s.l. : In: Proc. Intl. Conf.

Service Oriented Computing, ICSOC’05, pp. 283--295, 2005.

312

56. Chan, M. K. S., et al., et al. A Fault Taxonomy for Web Service Composition.

Vienna, Austria, : In Proceedings of The Workshop on Engineering Service-

Oriented Applications: Analysis, Design and Composition (WE-SOA'2007),

2007.

57. Leopoldi, R. IT service management Service-level agreement. s.l. : Sample

Agreements, Reports, and. Checklists, White paper, 2002.

58. Wu, Weihang. Architectural Reasoning for Safety-Critical Software

Applications. York : University of York, 2007. Phd Thesis.

59. Kolovos, D. An Extensible Platform for Specification of Integrated Languages

for Model Management. York : Computer Science Department, University of

York, 2008.

60. Björnander, S, and Grunske, L. Architecture Description Languages for

Automotive Systems – A Literature Review . s.l. : Technical Report: Swinburne

University of Technology, Australia , 2008.

61. The United Modelling Language (UML) Specification. s.l. : Version 2.0 ed.

: The Object Management Group. , 2005.

62. SysML Specification. Systems Modeling Language (SysML) Specification v.

1.0. 2005.

63. Briol, P. BPMN, the Business Process Modeling Notation Pocket Handbook.

s.l. : Lulu.com, 2008. ISBN: 9781409202998.

64. Arsanjani, A. Service-oriented modeling and architecture: How to identify,

specify, and realize services for your SOA . IBM website. [Online] 9 Nov. 2004.

[Cited: 6 May 2011.] http://www.ibm.com/developerworks/library/ws-soa-

design1/.

65. Methodologies Corp. Introduction to SOMF. Methodologies Corp. [Online]

2011. [Cited: 22 May 2011.]

http://www.modelingconcepts.com/pages/download.htm.

66. White, S. A. Introduction to BPMN. s.l. : IBM Corporation, 2006.

http://www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf.

313

67. Pawar, S. BPMN tools---a comparative analysis to improve interoperability.

s.l. : College of Technology Masters Theses, Purdue University, 2011.

68. OMG. Documents Associated with Service oriented architecture Modeling

Language (SoaML). OMG website. [Online] Dec. 2009. [Cited: 6 May 2011.]

http://www.omg.org/spec/SoaML/1.0/Beta2/.

69. MINERVA. eclipse. eclipse. [Online] n.d.

http://alarcos.esi.uclm.es/MINERVA/TOOLS/soamlPlugin.htm.

70. Roland, Harold E. and Moriarty, Brian. System safety engineering and

management. s.l. : Wiley-IEEE, 1990. 9780471618164.

71. McDermid, J.A. and Rook, P. Software Development Process Models, in

Software Engineer's Reference Book. Butterworth-Heinemann, Oxford :

Butterworth-Heinemann Ltd, 1991.

72. Pumfrey, D. J. The Principled Design of Computer System Safety Anaylsis.

York : University of York, 1999.

73. FAA. Chapter 8: Safety Analysis/Hazard Analysis Tasks. FAA System Safety

Handbook.

http://www.atcvantage.com/docs/FAA_SystemSafetyHandbook.pdf : FAA,

2000.

74. Lambert, H. E. Use of Fault Tree Analysis for Automotive Reliability and

Safety Analysis. Detroit, Michigan : Lawrence Livermore National Laboratory,

2003. UCRL-JC-154905.

75. Baltus, B. Software quality: state of the art in management, testing, and

tools. Germany : Springer, 2001. ISBN: 9783540414414.

76. Stamatis, D. H. Failure mode and effect analysis: FMEA from theory to

execution, 2ed edition. s.l. : ASQ Quality Press, 2003. ISBN: 9780873895989.

77. SAE, ARP 4754. Guidelines and Methods for Conducting the Safety

Assessment Process on Civil Airborne Systems and Equipment. 1996. Society of

Automotive Engineers, Inc, Warrendale, PA..

314

78. CISHEC, A . Guide to Hazard and Operability Studies,. s.l. : The Chemical

Industry Safety and Health Council of the Chemical Industries Association Ltd.,

1977.

79. Kletz, T,. Hazop and Hazan: Identifying and Assessing Process Industry

Hazards. s.l. : Thirded, Institution of Chemical Engineers. ISBN 0-85295-285-6.,

1992.

80. Hillson, David and Murray-Webster, Ruth. Understanding and managing

risk attitude. England : Gower Publishing, Ltd., 2007. ISBN: 9780566087981.

81. Kasse Initiatives. Risk Management for Systems Engineering. Defense

Technical Information Centre. [Online] 2004. [Cited: 19 May 2011.]

http://www.dtic.mil/ndia/2004cmmi/CMMIT1Mon/Track1IntrotoSystemsEn

gineering/KISE09RiskManagementv2.pdf.

82. Beroggi, Giampiero E. G., Wallace, William A. and Zürich,

Eidgenössische Technische Hochschule. Computer supported risk

management. Amsterdam. : Springer, 1995. ISBN: 9780792333722.

83. SAE, ARP 4761. Guidelines and Methods for Conducting the Safety

Assessment Process on Civil Airborne Systems and Equipment . Warrendale, PA :

Society of Automotive Engineers, Inc., 1996.

84. Rehn, C. Software Architectural Tactics and Patterns for Safety and Security

. christian-rehn. [Online] 3 June 2010. [Cited: 6 May 2011.]

http://www.christian-rehn.de/downloads/.

85. Kazman, R, Klein, M, and Barbacci, M,. The Architecture Tradeoff Analysis

Method. s.l. : ICECCS, IEEE CS Press, pp. 68--78., 1998.

86. Alexander, Robert, Hall-May, Martin and Kelly, Tim. Certification of

Autonomous Systems. Edinburgh, : In Proceedings of the 2nd Systems

Engineering for Autonomous Systems (SEAS) Defence Technology Centre

(DTC) Annual Technical Conference, 2007.

87. IVAN, I., et al., et al. Supervising Software Certification Process. 2010.

http://www.contabilizat.ro/file/cursuri_de_perfectionare/informatica_econom

ica/software_2003/cap23.pdf.

315

88. Herrmann, D. S. Software safety and Reliability. California, United States :

Angela Burgess, 1999. ISBN: 0-7695-0299-7.

89. Penny, J., et al., et al. The practicalities of goal-based safety regulation. In:

Proceedings of the 9th safety-critical systems symposium. 2001, pp. 35–48 .

90. Squair, Matthew John. Issues in the Application of Software Safety

Standards. Sydney : In 10th Australian Workshop on Safety Related

Programmable Systems (SCS’05), 2005.

91. Hereña, Peter G. Supplementing Risk-Based Approaches with Prescriptive

Templates. s.l. : Kenexis, 2009. TM011.pgh.

92. Hamilton, V. Criteria for Safety Evidence: Goal-based standards require

evidence-based approaches. Safety Systems . 2006, Vol. 16, 1.

93. Kelly, T., McDermid, J. and Weaver, R. Goal-Based Safety Standards:

Opportunities and Challenges. in Proceedings of the 23rd International System

Safety Conference. 2005.

94. Bishop, P.G., Bloomfield, R. and Guerra, S. The Future of Goal-Based

Assurance Cases. London : In Proc. ICDSN Workshop on Assurance Cases, 2004.

pp. 390–395.

95. Defence, Ministry of. Defence Standard 00-56: Safety Management

Requirements for Defence Systems. UK : Ministry of Defence, 2007. DEF STAN

00-56.

96. Cockram, T. and Lockwood, B. Electronic Safety Case: Challenges and

Opportunities. s.l. : Praxis Critical Systems Limited and Raytheon Systems

Limited, 2003.

97. Goal Structuring Notation standard, (GSN). [Online] Available at

http://www.goalstructuringnotation.info.

98. Weaver, R., McDermid, J. and Kelly, T. Software safety arguments:

Towards a systematic categorisation of evidence. s.l. : In 20th International

System Safety Conference, 2002.

99. Kelly, T. P. Concepts and Principles of Composotional Safety Case. University

of York, York. : QinetiQ, 2001. COMSA/2001/1/1.

316

100. Bate, I. and Kelly, T. Architectural Considerations in the Certification of

Modular Systems. Berlin : Springer-Verlag, 2002. Reliability Engineering and

System Safety, vol. 81, Issue 3 Pages 303-324.

101. Hawkins, R. D. and Kelly, T. P. A systematic Approach for Developing

Software Safety Arguments. Huntsville AL, USA : In proceedings of the 27th

System Safety Society (SSS) International System Safety Conference (ISSC),

2009.

102. Kazman, R, et al., et al. SAAM: A Method for Analyzing the Properties of

Software Architectures. s.l. : In Proceedings of the 16th International Conference

on Software Engineering, Sorrento, Italy, pp. 81–90., 1994.

103. Hollow, Paul, Mcdermid, John and Nicholson, Mark. Approaches to

certification of reconfigurable IMA systems. York. : In Proceedings 10th

International Symposium of the International Coucil on Systems Engineering,

2000.

104. Conmy, P. M. Safety Analysis of Computer Resource Management Software.

York : Department of Computer Science, University of York, 2005.

105. Guerra, P., et al., et al. Integrating COTS Software Componentes Into

Dependable Software Architectures. Los Alamitos : In: Proceedings of the 6th

International Symposium on Object-Oriented Real-Time Distributed

Computing. IEEE Computer Society Press, 2003.

106. Ye, Fan. Justifying the use of COTS components within safety critical

applications. York : Department of Computer Science, University of York, 2005.

107. Rushby, John. Kernels for Safety? Glasgow, UK. : Blackwell Scientific

Publications, 1989. Safe and Secure Computing Systems, pp. 210-220.

108. Fenn, J., et al., et al. The Who, Where, How, Why and When of Modular and

Incremental Certification. London : in proceedings of the 2nd IET International

Conference on System Safety, 2007.

109. Rushby, J. CSL Technical Report: Modular Certification. Menlo Park, USA :

Computer Science Laboratory, 2001.

317

110. Wilson, A. and Preyssler, T. Incremental certification and Integrated

Modular Avionics. UK. : Aerospace and Electronic Systems Magazine, IEEE ,

vol.24, no.11, pp.10-15, 2009.

111. R. Donini, S,, et al., et al. Testing Complex Safety-Critical Systems in SOA

Context. s.l. : in Complex, Intelligent and Software Intensive Systems,

International Conference , 2008. vol., no., pp.87-93, 4-7 March 2008.

112. Rychlý, M. A case study on behavioural modelling of service-oriented

architectures. s.l. : In Software Engineering Techniques In Progress, pp. 79–92.

AGH University Press., 2009.

113. —. A Metamodel for Modelling of Component-Based Systems with Mobile

Architecture. s.l. : Department of Information Systems, Faculty of Information

Technology, Brno University of Technology, Boˇzetˇechova 2, 612 66 Brno,

Czech Republic, e-mail: rychly@fit.vutbr.cz, 2011.

114. Rodrigues, D and et al. Service-oriented architectures for complex

safetycritical embedded systems: A case study on uavs . s.l. : 1st Brazilian

Conference on Critical Embedded Systems (CBSEC), p. 130, , 2011 .

115. Rodrigues, D and al, et. Application of SOA in safety-critical embedded

systems. s.l. : n G. Lee, D. Howard, and D. Ślęzak, editors, Convergence and

Hybrid Information Technology, volume 206 of Communications in Computer

and Information Science, pages 345--354. Springer Berlin Heidelberg, , 2011.

116. Monteiro, E and Silva, P. A Risk Management Model for Service-Oriented

Architecture. s.l. : International Journal of Advanced Computer Technology

(IJACT). Page 53-61. ISSN:2319-7900., 2015.

117. OMG. Documents Associated With. OMG website. [Online] May. 2012.

[Cited: 6 June 2012.] http://www.omg.org/spec/SoaML/1.0.1/PDF.

118. SAE, ARP4761. Guidelines and Methods for Conducting the Safety

Assessment Process on Civil Airborne Systems and Equipment. Warrendale, PA :

Society of Automotive Engineers, Inc., 1996.

119. T. Kletz. Hazop and Hazan: Identifying and Assessing Process Industry

Hazards,. s.l. : Institution of Chemical Engineers, Third ed.,, 1992.

318

120. Buckley, I., et al., et al. Towards pattern-based reliability certification of

services. s.l. : On the Move to Meaningful Internet Systems, Hersonissos, Greece,,

2011.

121. Bruning, S., Weissleder, S. and Malek, M. A Fault Taxonomy for Service-

Oriented architecture. Systems Engineering Symposium, pages 367–368, : In

HASE ’07: Proceedings of the 10th IEEE High Assurance Systems Engineering

Symposium, pages 367–368,IEEE Computer Society., 2007.

122. Coleman, J., and Jones C. A structural proof of the soundness of

rely/guarantee rules. s.l. : Journal of Logic and Computation, 17,, 2007.

123. Kelly, T. Arguing Safety - A Systematic Approach to Safety Case

Management. York : Department of Computer Science, University of York, 1998.

DPhil Thesis.

124. eclipse. eclipse. [Online] n.d.

http://alarcos.esi.uclm.es/MINERVA/TOOLS/soamlPlugin.htm.

125. papyrus. papyrus. papyrus. [Online] n.d.

https://www.eclipse.org/papyrus/.

126. Activiti. Activiti. [Online] n.d. http://activiti.org/.

127. Reason, J.,. Human error: models and management. s.l. : BMJ, 320, 768

(March 2000), 2000.

128. NHS. NHS choices. s.l. :

http://healthguides.mapofmedicine.com/choices/map/index.html, 2011.

129. The Communications Directorate South West Thames Regional

Health Authority, . Report of the Inquiry Into The London Ambulance Service.

London : International Workshop on Software Specification and Design Case

Study, Original ISBN No: 0 905133 70 6, 1993.

130. Musick, E. The 1992 London Ambulance Service Computer Aided Dispatch

System Failure. s.l. : MSOE - SE-3811 - FORMAL METHODS, DR. WELCH, SPRING,

2006.

131. Health and Social Care Information Centre. Ambulance Services.

England : s.n., 2014.

319

132. NHSLA Risk Management Standards for Ambulance Services. NHS

Litigation Authority. s.l. : DNV Healthcare UK, 2012.

133. Finkelstein, A. Report of the Inquiry Into The London Ambulance Service.

London) : International Workshop on Software Specification and Design Case

Study,University College London, 1993.

134. Welsh Ambulance Service. Local Services Welsh Ambulance Service -

Frequently Asked Questions. nhsdirect.wales.nhs. [Online] [Cited: 2015 04 12.]

http://www.nhsdirect.wales.nhs.uk/localservices/welshambulanceservicefaq/

#request_an_emergency_.

135. US Institute of Standards & Technology. [Online] [Cited: 2014 04 13.]

http://www.itl.nist.gov/div897/docs/EHR.htm .

136. Black, et al., et al. The impact of eHealth on the quality and safety of health

care: a systematic overview. s.l. : PLoS Med2011;8:e1000387, 2011.

137. NHS. Intrapartum care: Care of healthy women and their babies during

childbirth. London : National Institute for Health and Clinical Excellence (NHS),

2007.

138. Oxford University Press. Oxford Dictionary of English. 2005.

139. SAE ARP 4761. Guidelines and Methods for Conducting the Safety

Assessment Process on Civil Airborne Systems and Equipment. s.l. : Society of

Automotive Engineers, Inc,Warrendale, PA., 1996.

140. Habli, I.,, Hawkins, . and Kelly, T. Software safety: relating software

assurance and software integrity. s.l. : International Journal of Critical

Computer-Based Systems (IJCCBS). 1, 4, (November 2010)., 2010.

141. Salles, G., et al., et al. A Contribution to Organizational and Operational

Strategic Alignment:Incorporating Business Level Agreements into Business

Process Modeling. s.l. : IEEE 10th International Conference on Services

Computing, 2013 .

142. Health and Social Care Information Centre, . Clinical Risk Management:

its Application in the Deployment and Use of Health IT Systems. s.l. : ISB 0160,

2013.

320

143. Bruning, S.,, Weissleder, S. and Malek, M. A fault taxonomy for service-

oriented architecture. Dallas, US : High Assurance Systems Engineering

Symposium, 2007.

144. Bruning, S., Weißleder, S. and Malek, M. Fault Taxonomy for Service-

Oriented Architecture. Germany : Humboldt-Universit¨ at zu Berlin, , 2007.

145. Jhumka, A. Dependability in Service-Oriented Computing. London : in

Editor (Ed.)∧(Eds.): 'Book Dependability in Service-Oriented Computing'

(Springer,edn.), pp. 141-160 , 2010.

146. Brown, A., Fenn, J. and Menon, C. Issues and considerations for a

modular safety certification approach in a Service-Oriented Architecture. In 5th

IET International System Safety Conference. 2010 йил, pp. 1 - 6.

147. Coleman, J, and Jones, C. A structural proof of the soundness of

rely/guarantee rules. s.l. : Journal of Logic and Computation, 17, 4, 2007.

148. Health and Social Care Information Centre, . Clinical Risk Management:

its Application in the Deployment and Use of Health IT Systems. s.l. : ISB 0160,

2013.

149. Seong, P. Reliability and Risk Issues in Large Scale Safety-critical Digital

Control Systems. s.l. : Springer Science & Business Media, 2008, 2008.

150. Arthur, J., et al., et al. Fundamentals of Natural Gas Processing. s.l. : CRC

Press,, 2006.

151. Taylor, J.R. Risk Analysis for Process Plant, Pipelines and Transport. s.l. :

Routledge, 2003.

152. The Offshore Installations (Safety Case) Regulations.

legislation.gov.uk. legislation. [Online] 2005. [Cited: 23 12 2014.]

www.legislation.gov.uk/uksi/2005/3117/contents/made.

153. Henderson, Jamie. Safety case use in the petrochemical industry. [Online]

[Cited: 17 12 2014.]

http://www.health.org.uk/media_manager/public/75/publications_pdfs/Safet

y%20cases_supplement%20E.pdf.

321

154. Sutton. and Ian. Process Risk and Reliability Management: Operational

Integrity Management. s.l. : Gulf Professional Publishing, Edition 2, 2014 .

155. De Wolf, D. and Mejri, M. Crisis communication failures: The BP Case

Study. s.l. : International Journal of Advances in Mangement and Economics,

VOL2(Issue.2),48-56., 2013.

156. kiiitv. kiiitv. Southcross Energy Investigating Cause of Natural Gas Plant

Fire. [Online] 2015. [Cited: 22 01 2015.]

http://www.kiiitv.com/story/27904949/southcross-energy-investigating-

cause-of-natural-gas-plant-fire.

157. Sutton, Ian. Process Risk and Reliability Management: Operational Integrity

Management. s.l. : Elsevier Inc., 2010.

158. Object Management Group (OMG). Service oriented architecture

Modeling Language (SoaML) Specification,. s.l. : Version 1.0.1, May 2012.

159. Engineering Data Book. Tulsa, OK, : Gas Processors SupplyAssociation,12th

ed., Sec. 2,, 2004.

160. Peterson, M.J. Case study: Bhopal Plant Disaste. s.l. : Science, Technology &

Society Initiative, University of Massachusetts Amherst., 2009.

161. Slettebø, E,. Separation of Gas from Liquids in. Norway : Master of Science

in Product Design and Manufacturing,Norwegian University of Science and

Technology Department of Energy and Process Engineering, 2009.

162. McDermid, J.A. Software Safety: Where's The Evidence? s.l. : Australian

Computer Society,, 2001. in Proceedings of the Sixth Australian Workshop on

Industrial Experience with Safety Critical Systems and Software, Brisbane,

Australia, published in Conferences in Research and Practice in Information

Technology Series, P. Lindsay (Ed.), vol. 3, pp.1-6,.

163. Graydon, Patrick J,, Knigh, John C., and Strunk, Elisabeth A. Assurance

Based Development of Critical Systems. s.l. : In: 37th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks., 2007.

322

164. Hawkins, R.,, et al., et al. Weaving an Assurance Case from Design: A

Model-Based Approach. Daytona Beach, Florida, USA, : 16th IEEE International

Symposium on High Assurance Systems Engineering,, 2015.

165. Denney, E.,, Pai, G., and Habli, I. Dynamic Safety Cases for Through-life

Safety Assurance. Florence, Italy : 37th International Conference on Software

Engineering (ICSE 2015), 2015.

166. Monakova, G., Brucker, A. and Schaad, A. Security and Safety of Assets in

Business Processes. Germany : ACM, 2012.

167. Enterprise architecture modeling with SoaML using BMM and BPMN - MDA

approach in practice. Sadovykh, A., et al., et al. 2010, Software Engineering

Conference (CEE-SECR), 2010 6th Central and Eastern European,, pp. pp.79-85,

13-15.

168. Bruning, S., Weissleder, S. and Malek, M. A Fault Taxonomy for Service-

Oriented architecture. Systems Engineering Symposium, pages 367–368, : In

HASE ’07: Proceedings of the 10th IEEE High Assurance Systems Engineering

Symposium, pages 367–368,IEEE Computer Society., 2007.

169. JBoss Community. jBPM. [Online] n.d. http://www.jboss.org/jbpm.

170. Delgado, A, et al., et al. A Model-Driven and Service Oriented Framework

for the Business Process Improvement. s.l. : CSSIJournal of Systems Integration,

vol. 1, no.3, pp. 45-56., 2010.

171. Activiti Components. Activiti. [Online]

http://activiti.org/components.html.

172. NHS, . NHS choices. s.l. :

http://healthguides.mapofmedicine.com/choices/map/index.html, 2011.

173. SAE. Guidelines and Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems and Equipment. s.l. : ARP4761, (December 1996).,

1996.

174. Health and Social Care Information Centre . Clinical Risk Management:

its Application in the Manufacture of Health IT Systems. s.l. : ISB 0129., 2013.

323

175. Health and Social Care Information Centre, . Clinical Risk Management:

its Application in the Deployment and Use of Health IT Systems. s.l. : ISB 0160.,

2013.

176. Fahadullah, M, and Khan, M,. Comparison of Hazard Analysis Methods

Using a Data Center Example. Sweden : Department of Computer and

Information Science at Linköping University, 2008.

177. Burns, J., and Pitblado, M. A Modified Hazop Methodology For Safety

Critical System Assessment. s.l. : in Proceedings of the First Safety Critical

Systems Symposium, Springer-Verlag Symposium, Springer-Verlag , 1993.

178. Chudleigh, M. Hazard Analysis Using Hazop: A Case Study. s.l. : Proceedings

of the 12th International Conference On Computer Safety,Reliability and

Security, ed. J. Gorski , 1993.

179. Earthy, V. Hazard and Operability Study As An Approach To Software Safety

Assessment. s.l. : Proceedings of the IEE Colloquium on Hazard Analysis , 1992.

180. Fenelon, P,, et al., et al. Towards integrated safety analysis and design. s.l. :

ACM Applied Computing Review, , 1994 .

181. McDermid, J,, et al., et al. Experience with the application of HAZOP to

computer-based systems. s.l. : In Proc 10th Annual Con} on Computer Assurance,

pages 37-48,, 1995.

182. CISHEC, . A Guide To Hazard And Operability Studies. s.l. : The Chemical

Industry Safety and Health Council of the Chemical Industries Association Ltd.,

1977.

