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Abstract 
Many organisations in the safety-critical domain are service-oriented, 

fundamentally centred on critical services provided by systems and operators. 

Increasingly, these services rely on software-intensive systems, e.g. medical 

health informatics and air traffic control, for improving the different aspects of 

industrial practice, e.g. enhancing efficiency through automation and safety 

through smart alarm systems. However, many services are categorised as high 

risk and as such it is vital to analyse the ways in which the software-based 

systems can contribute to unintentional harm and potentially compromise 

safety. This thesis defines an approach to modelling and analysing Service-

Oriented Architectures (SOAs) used in the safety-critical domain, with 

emphasis on identifying and classifying potential hazardous behaviour. The 

approach also provides a systematic and reusable basis for defining how the 

safety case for these SOAs can be developed in a modular manner. The 

approach is tool-supported and is evaluated through two case studies, from the 

healthcare and oil and gas domains, and industrial review. 
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Chapter 1 

 

1. Introduction 
 

1.1. Service-Oriented Architectures (SOAs) 

Many organisations are primarily focussed on providing services to their 

customers. Notable service-based domains include banking, retail, healthcare 

and transport. A service can be described as a function which is well defined, is 

self-contained, and often does not have any internal dependency on the context 

or status of any other functions (1). A service has been defined as a “value 

delivered to another through a well-defined interface and available to a 

community” (2).  

One approach to designing and representing service-based systems, especially 

for software-based services, is through Service-Oriented Architectures (SOAs). 

SoAs provide “a paradigm for defining how people, organizations, and systems 

provide and use services to achieve results” (2). SOA was introduced as a design 

paradigm to minimise the gap between the business process requirements and 

the IT services implementing and supporting these requirements. SOAs are 

commonly designed with flexibility, dynamism and the capability to respond to 

changes within a system’s operational environment (3).  

SOA-based systems are typically constructed using patterns, which provide 

reusable template solutions for common problems encountered within a given 

domain. Patterns offer ‘road maps’ to build scalable applications, by breaking a 

problem down into smaller solvable problems (4). Patterns are generally 
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refined and optimised, depending on the specific context of the system being 

designed, to provide a possible solution for the problem being investigated (5).  

One of the formal definitions of SOA was provided by the Organization for the 

Advancement of Structured Information Standards (OASIS) group and the Open 

Group as follows: 

“[An SOA is] a paradigm for organizing and utilizing 

distributed capabilities that may be under the control of 

different ownership domains. It provides a uniform means to 

offer, discover, interact with and use capabilities to produce 

desired effects consistent with measurable preconditions and 

expectations.” (6) (7). 

SOAs have been lauded as a means to reduce the complexity required in the 

infrastructure of a solution platform by transforming complex business 

processes and complicated IT systems to a set of building blocks, i.e. services 

(8).  

Although there are different interpretations of SOA terminology and concepts 

for different perspectives, most agree on a set of common characteristics. These 

characteristics include loose coupling, service contracts, autonomy, reusability, 

composability and discoverability. These are discussed in more detail in 

Chapter 2. 

SOA is increasingly being used in the development of enterprise systems (3). 

From the business perspective, SOA aims to facilitate the design of applications 

that are able to provide better services without increasing resource 

consumption, since the service provider can provide the same service to 

multiple clients concurrently. Consequently, more efficient systems with 

improved response times are expected (9). 

Within an SOA setting, service providers should have standardised 

communication methodologies, which allow the various business services 

provided by different vendors to communicate smoothly with each other. This 

allows businesses to interact more efficiently, potentially reducing the cost and 

time required to perform tasks as compared with traditional applications (10). 
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For some in the software engineering community, SOA is a way of thinking 

which can help to prompt the design of dependable systems that address 

flexibility, dynamicity and Quality of Service (QoS) as metrics to analyse 

business processes (4). Among the important characteristics of SOA are loose 

coupling and on-demand integration, which potentially allow organisations to 

become more proactive and dynamic. However, this brings challenges 

concerning the management and assurance of QoS, e.g. security, safety and 

performance.  

 

Figure 1: A Conceptual View of Healthcare Services (11) 

Figure 1 shows a simplified example of an SOA-based system from the 

healthcare domain (11). Two systems, Patient Management System and Payer 

System, communicate and provide basic services within a private healthcare 

setting, which are as follows: 

 Register patient; 

 Admit patient; 

 Verify Eligibility; 

 Find patient. 

The above services support key care processes within a modern health 

organisation. However, services can fail to achieve their intended behaviour 
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(e.g. providing incorrect patient information). When used in a safety-critical 

setting, service failures can directly lead to hazards and potentially harm. 

1.2. SOA and Safety 

Safety is one of the most significant dependability qualities for modern 

systems, since the consequences of hazardous failures can include harm to 

people, damage to property or threats to the environment (12). The assurance 

of safety requires specialised concepts, standards, methods and tools. Service-

based systems used in safety-critical applications have to satisfy their safety 

requirements at each level of service to support clients and other composite 

services and ensure that the safety risk posed by the system is acceptable. They 

also have to comply with any applicable safety regulations or assurance 

standards. 

Safety risks can be categorised as resulting from failures by humans involved in 

or interacting with the system, or failures due to system components and 

interactions (12). Leveson introduces absolute safety as “freedom from 

accidents or losses”. However, since this is not reasonable in the real world, 

Leveson recommends the adoption of Lawrence’s definition of a “safe” system 

as one in which the risks involved are deemed acceptable (13).  

Understanding and controlling the complex relations between system 

behaviour and the emergence of safety risks is a significant challenge. 

Addressing this challenge at the structural and behavioural level requires 

collaboration between the different technical and organisational stakeholders, 

e.g. users, analysts and system engineers. Insufficient interaction between 

domain experts and engineers remains a key difficulty in achieving effective 

risk assessment.  

An important aspect of the safety engineering process is providing assurance 

that the risk of hazardous behaviours of the system (and its components), 

which are identified in the risk assessment process, have been identified and 

managed appropriately to ensure safe system behaviour. This assurance is 

commonly communicated in the form of a safety or assurance case (14). Safety 

cases provide a reasoned and structured argument to demonstrate why the 
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available evidence, generated from testing and analysis, supports the claims 

made about system safety. In a complex environment, the overall safety case 

might be compositional (15), integrating separate safety argument modules for 

the various services, functions and sub-systems. In the context of such a 

system, although services might in reality be provided by sub-systems 

developed by different organisations, they are clearly interdependent and so 

are their corresponding safety arguments (16).  

1.3. The Challenges of SOA in Safety-Critical Systems  

SOA is increasingly being adopted in high-criticality domains (16). In sectors 

such as healthcare and aviation, many services are categorised as safety-

critical, and present various types of hazards and failures. An SOA designated 

for use in a safety-critical application must be shown to satisfy its safety 

requirements and developers and assessors must ensure that the safety risk 

posed by the system is acceptable before it can enter service. However, there is 

a lack of systematic techniques for generating safety requirements for SOA 

from the application of safety analysis. There is also a lack of systematic 

approaches for providing assurance that those requirements have been met for 

the SOA. This can hamper the adoption of SOA as an approach to building large-

scale safety-critical systems. 

The research presented in this thesis aims to address safety analysis and safety 

cases for safety-critical SOA, focusing on both the individual services and their 

associated interactions in order to identify hazardous behaviours associated 

with the system. Specifically, the following challenges are addressed in this 

research: 

 There is a shortage of research on the use of SOAs for the development 

of safety-critical systems; 

  There is a lack of systematic safety assessment processes and methods 

that address the special features of SOAs, such as composibility; 

 There is a lack of safety assurance strategies to guide the development 

of safety argumentation and evidence to justify why the use of SOAs in 

safety-critical applications is acceptably safe.  
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1.4. Research Hypothesis 

Following from the challenges described in the previous section, the hypothesis 

proposed in this thesis is as follows: 

Integrated architectural modelling and analysis of safety-critical service-

oriented systems provides a traceable, consistent and systematic means 

for assuring the safety of these systems. 

The following explains the key terms used in the thesis hypothesis: 

• Integrated: safety analysis and design decisions evolve together; 

• Traceable: forward and backward model-based traceability between 

design and safety analysis is provided; 

• Consistent: design features are reflected in the safety analysis and the 

safety assurance and vice versa; 

• Systematic: a methodical approach to performing safety assurance is 

proposed;  

• Assuring: the approach provides an explicit means for reasoning about 

the safety properties and system behaviour. 

The above terms define the basis for the criteria used for evaluation in Chapter 

6. This hypothesis is supported by the following four contributions made as 

part of this PhD research:  

 Identification and configuration of SOA modelling notations based on 

two criteria, namely coverage of the structure and behaviour of the 

services that are deemed suitable for the safety analysis and assurance 

of SOA. 

 Development of safety analysis methods for SOA which can be used to 

examine the hazardous failures of services and the failure behaviour of 

lower-level implementations.  

 Development of the concept of safety cases for the assurance of safety-

critical SOAs, supporting modularity and promoting correspondence 

between the structure of the SOA and the organisation of the safety case. 



21 
 

This is defined in a SOA Safety Argument Pattern Catalogue, which 

can be instantiated to produce safety arguments for specific SOA-based 

systems. 

 Implementation of tool-support that provides automated capabilities 

for building the SOA models, applying the safety analysis and building 

the safety case for the system.  

The target audience of the approach comprises software and systems engineers 

responsible for designing the architecture and for modelling the design. The 

safety analysis and assurance activities will more likely be the focus of the 

safety engineers. Of course this cannot be achieved without engaging the 

domain experts (e.g. clinicians in healthcare or chemical engineers in oil and 

gas). Therefore, the collaboration of domain experts and systems, software and 

safety engineers is important for performing the analysis and assurance 

activities in our proposed framework. In particular, the framework targets 

early lifecycle activities, mainly requirements engineering and architectural 

design (both in terms of structural and behavioural architecture) and their 

integration with the safety activities, e.g. hazard analysis. 

1.5. Thesis Structure   

The thesis is divided into the following chapters: 

Chapter 2 presents a survey of the published literature in relevant areas of the 

SOA paradigm. The survey first looks at the core elements of SOA. This includes 

a review of typical concept definitions, features and lifecycles of SOA and 

covers SOA design patterns and modelling. Next, the chapter reviews safety and 

certification. This includes an examination of the common elements of the 

safety engineering process, such as safety analysis, risk assessment, risk 

management, safety requirements and safety tactics. Next, the review considers 

safety assurance and safety standards, with particular attention to the concept 

of safety cases, including argument representation and modularity. Chapter 2 

concludes with a review of literature concerning dependability and safety of 

SOA and other related systems. 

Chapter 3 introduces the conceptual basis for this research by presenting our 

proposed SOA Safety Assurance Framework. The Framework defines how SOA 
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modelling, safety analysis, safety cases and tool support are performed in an 

integrated way. The chapter introduces the modelling languages that we use to 

specify the services and their underlying processes. It also introduces the 

methods we developed and adapted for identifying service hazards and 

potential failure behaviour in an SOA system design. The chapter proposes the 

use of modular safety cases and patterns to define the different argument 

structures for assuring services and their design and for constraining variation 

in SOA safety cases. Finally, the chapter presents an overview of the automated 

support developed and the tooling environment used in this research for the 

modelling, safety analysis and assurance of SOA.  

Chapter 4 explains the SOA safety analysis methods adapted and developed in 

this thesis. These methods consider potential service hazards and failure 

behaviours of services and tasks according to the ways in which these services 

and tasks are defined in the SOA context. This in turn forms the basis for the 

definition of safety requirements which can help influence or drive the design 

processes. A healthcare case study is introduced to provide an illustration of 

the application of the SOA safety analysis methods we have developed, and a 

preliminary evaluation of their effectiveness. The last section describes the 

implementation of the tool support that provides the capabilities for modelling, 

safety analysis and traceability.  

Chapter 5 develops a catalogue of safety argument patterns for justifying the 

use of SOA in safety-critical applications. The overall safety argument pattern is 

created in a modular manner to ensure a clear correspondence between the 

structure of the safety reasoning and the organisation of the SOA design. These 

argument patterns link the safety argument for the SOA with the results of the 

modelling and safety analysis presented in Chapter 4. Finally, we illustrate the 

application of the safety argument patterns to the services defined within the 

healthcare case study and provide a preliminary evaluation of their 

effectiveness. 

Chapter 6 describes our evaluation methodology in detail. It also presents a 

second case study, in which the SOA Safety Assurance Framework is applied to 

an industrial system in the oil and gas domain. A safety argument is produced, 
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based upon the SOA modelling and safety analysis described in Chapter 4 and 

the safety argument patterns presented in Chapter 5. Finally, Chapter 6 

contains a critical evaluation of the results of this PhD research. 

Chapter 7 presents the main conclusions of this research and discusses 

potential areas of future research. 
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Chapter 2 
 

2. Survey of SOA and Safety 

 

2.1. Introduction  

This chapter provides a survey of the published literature relating to the topic 

of this thesis. The survey is split into three main sections. The first section 

reviews current literature relating to the basic concepts of SOA, as well as to 

architectural design and the notations commonly used in developing SOA-

based systems. The second section discusses the basic concepts relating to 

system safety engineering. This includes the methods and analysis techniques 

available to system developers. Finally, we explore the concept safety cases and 

review literature relating to the development of safety arguments. 

2.2. SOA 

2.2.1. SOA Definition   

Generally, in the context of software, a service can be defined as: 

“One application or computer program performing some work for another 

application or computer program. This work may include some functionality or 

data sharing” (17). 

The definition is richer in the context of SOA, where services are defined as 

well-defined and self-contained functions. When services are combined to form 

sets, there are policies to control their usage and relationships to each other 

and whether dependability attributes are required (1). Generally, each service 

in an architecture represents a high-level business concept (18). 

The concept of SOA has been considered from several different perspectives 

(19) (3) (4). For example, SOA can be regarded as a means for developing 
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systems based on flexible concepts, which are sufficient to guarantee the 

operability of services within the system to meet business demands (3). 

However, Josuttis stated that, regardless of the dissimilarities in defining SOA 

found across the literature, the introduction of improved flexibility is an 

advantage of SOA which is highlighted in all definitions (4). Moreover, Josuttis 

pointed out that SOA is only a paradigm; when it is applied, specific decisions 

should be taken, which differ according to the situation being investigated.  

2.2.2. SOA Entities 

Typically, an SOA system comprises six entities, namely: consumer, registry, 

provider, contract, lease and proxy (20) (21). These entities interact with each 

according to a predesigned paradigm to ensure adequate provision of defined 

services. Figure 2 shows the find-bind-execute paradigm (20). Generally, the 

find-bind-execute paradigm allows the consumer of a service to request a 

third-party registry for the service which is compliant with its standard. When 

the registry has acknowledged a service, it provides the consumer with a 

contract specifying an endpoint address to the service. SOA has six entities that 

are configured jointly to support the find-bind-execute paradigm, as we explain 

in the following subsections (20). 

 

Figure 2: Find-Bind-Execute Paradigm (20) 

Service Consumer: A service consumer is any element that requires a service, 

e.g. a software element, an application or other services. The service consumer 

should have the required functionality to find the registry, bind to the service 
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provider and execute the required function(s). Communication with the 

provider and the executed function(s) must comply with the service contract.  

Service Provider: The service provider element is responsible for accepting 

and executing the consumer requests. Prior to performing any functionality 

within the system, the service provider should register its contracts with the 

service registry.  

Service Registry: The service registry is a directory that is located on the 

network, and holds all contracts from the service providers and makes them 

available for the service consumers. 

Service Contract: The service contract defines the specification of the service, 

which includes the specified formats for the consumer request and the 

provider response, the QoS level, and the pre- and post-conditions of the 

contract. 

Service Proxy: The service proxy is typically a set of APIs, located on the 

service consumer, and is responsible for finding the contract and the service 

provider on the registry, and for performing the necessary communication with 

the provider on behalf of the consumer.   

Service Lease: The service lease defines the validity period of the contract, 

starting at the time at which the registry offers the contract to the consumer. 

2.2.3. SOA Characteristics 

Most approaches to SOA design agree on a set of common characteristics. These 

characteristics are as follows. 

Loose Coupling: According to SOA, a system can be built using a composition 

of different related but independent services. This will permit the services to be 

managed individually (3). Consequently this will allow loosely-coupled 

services, which will permit the development of flexible and dynamic 

applications, which are formed by composing these services according to 

predefined requirements (4). 

Service Contract: Service providers will publish the contracts for the available 

services on the service registry. Service consumers will use these contracts to 
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bind and execute the services. SOA adheres to contract design principles, to 

ensure standardization of the service-providing mechanisms. The 

standardization will enable consistency of view for the service (3) (22). 

Autonomy: Although services are self-contained and independent and have 

full control over the execution logic that they contain, when services are 

combined to form compositions it is important that they are able to perform 

the required tasks or processes. Thus, information exchanged between 

services, using messages, should fulfil the necessary underlying requirements 

that enable these compositions to perform the designed tasks (3).     

Reusability: Business processes are typically decomposed into tasks, each of 

which will be performed inside the system by a service. It is possible that a 

single task will appear in different processes. Reusability is the concept of 

developing a flexible service that can be integrated into different compositions 

or business processes. This will allow for higher productivity of the 

development team and minimise the time required to produce the 

implementation required for these services, as the reusable service need only 

be implemented and tested once (23). 

Composability: By building services with enough capabilities to interact 

effectively with the environment, compositions can be formed by integrating 

the different services to provide a higher level service. This will allow faster 

building of SOA applications, as composed services will inherit some functions 

and attributes of the services inside the composition (24). 

Discoverability: One of the main principles of the SOA design paradigm is to 

introduce applications that can interact and respond to changes in the 

environment. One of the main characteristics of SOA applications is their ability 

to introduce within the system services that can be integrated and published in 

the registry automatically, and discovered by the service consumer (24). 

Therefore, new services, replicas of current services, and new versions of 

current services can be introduced into the system according to the service 

consumer’s demands. 
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The above characteristics make SOA a challenge for use in safety-critical 

applications. More specifically, each service can be treated as a self-contained 

element in a larger system (i.e. autonomy) and therefore it is important to 

identify the hazards that it can pose (as an individual service). At the same 

time, a service is part of larger system and therefore we need to understand the 

nature and the safety impact of interactions between the different services and 

the wider environment (i.e. contracts and loose coupling). These characteristics 

are shared with conceptual paradigms such as Systems of Systems (25). 

However, SOAs can be treated as a more specialised design framework, with its 

own design features and structures, e.g. Service-Level Agreements and 

Participants. Furthermore, unlike object-oriented technologies (26) or product 

lines (27), which tend to be used at a more detailed design and implementation 

levels, each service in an SOA-based system tend to be visible at the user-

interaction level and can be changed during the runtime phases on the SOA-

based system.   

2.2.4. SOA Lifecycle 

Traditionally, software is developed in well-defined stages, at each stage, a 

certain set of tasks should be performed to help ensure that the final software 

meets the business objectives (28). The development of software based on the 

SOA paradigm is different, as it includes both the business and the IT vision 

within the software. Thus it is reasonable to add extra levels of governance to 

control the execution of the loosely coupled services (29). According to Cox and 

Kreger, the SOA lifecycle is gradually evolving to a form in which more 

integrated processes are clearer (30).  

Figure 3 shows the SOA solution lifecycle according to Cox and Kerger (30). The 

figure shows that the lifecycle is divided into two main stages, the 

preproduction and production stages. The preproduction stage includes the 

model definition and implementation; the production stage includes mapping 

the model to the target infrastructure, monitoring the results and reacting to 

issues which arise. Seeley also cites Manes, Research Director at Burton Group 

Inc., who added that an initial stage including service identification and 

commitment is also required (29). 
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Figure 3: SOA Solution Lifecycle (30) 

Kumar (31) defined the different life cycles of the SOA application from the 

Enterprise implementation perspective, defining the service lifecycle as part of 

the enterprise SOA implementation lifecycle. Kumar asserts that the enterprise 

SOA implementation lifecycle includes three stages: initiation, development of 

the roadmap and execution plan. At each of these stages there are different 

tasks to be performed, these tasks relate to the different lifecycle stages defined 

using other perspectives. 

A management framework for the SOA lifecycle was introduced by Gejnevall 

(32) (shown in Figure 4). The framework divides the lifecycle into six broad 

areas in each of which four distinct phases are identified. The six areas are 

architecture, processes, information, solution, services and infrastructure. The 

four phases are preparation, development, and delivery and governance. The 

framework identifies the different tasks that should be performed during each 

phase, for each of the 6 lifecycle areas.  

An alternative way of representing the SOA design lifecycle is provided by 

Ramollari (33). Here five lifecycle phases are identified:  analysis and design, 

construction, testing, deployment and governance.  According to Ramollari, 

some or all of these stages will be included in any SOA development. 
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Figure 4: SOA Lifecycle Management Framework (32) 

Analysis and Design: 

At this stage, the business requirements will be analysed. The required 

business functionalities will be mapped to the underlying IT functions or 

services. Also at this stage, the business objectives will be addressed by the SOA 

design strategies.  Part of this stage is defining the timelines and deliverables of 

the SOA. The last activity at this stage is performing the modelling to the 

designed architecture.  

Construction 

The input for this stage is the specification of the designed architecture. The 

specification will be used to develop the implementation of the services and the 

necessary environment in which to operate these services. This includes the 

necessary protocols to allow the different services within the application to 

interact and the required interfaces to allow other applications to connect to 

the application and to perform their permitted services.    

Testing 

It is important to review the different functionalities implemented within the 

application. Testing the functionalities and services which have been developed 

is essential to ensure the provision of a reliable application that meets the 

business requirements. 
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The diversity of the hardware infrastructure, operating systems and 

applications that comprise the environment of the SOA application will 

increase the complexity of the testing process (34). Moreover, this complexity 

will increase because SOA software is flexible and can change according to the 

target environment. Thus, it is important to ensure that the testing process can 

correctly address the characteristics of the SOA software being tested and 

produce accurate results that are readable and informative. 

Deployment 

Once the suitability of the developed application has been ensured, it is logical 

to deploy the application within the targeted environment. This includes both 

operating the SOA application as a standalone application and connecting the 

application with other applications that are operating in the environment, to 

test for correct behaviour and interactions. 

Governance 

Different activities should be investigated at this stage. Most important is the 

development of a governance model which will allow control of the different 

components of the SOA software. As well as this, it is important to identify the 

business and IT transformations. 

2.2.5. SOA Design Patterns 

 Definition 2.2.5.1.

In software engineering, design patterns are often used to provide, and exploit, 

reusable solutions for common problems encountered in software design. A 

design pattern is a description or template to solve a general problem, which 

can be used in different circumstances (35). The original idea of the design 

pattern was created by an architect, Christopher Alexander, who named and 

described common architectural and landscape planning problems and 

discussed their solutions (36). Alexander asserts that: 

"Each pattern describes a problem which occurs over and over 

again in our environment, and then describes the core of the 

solution to that problem, in such a way that you can use this 
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solution a million times over, without ever doing it the same way 

twice." (37). 

Drawing inspiration from Alexander’s work, (37) developed a pattern language 

for software engineering. They suggested that communication between the 

components of the environment should be achieved in order to undertake a 

customised solution for the problem being investigated (37). Software design 

patterns therefore identify and define the basics of a design structure, which is 

common or context-specific. These design structures will be represented as 

objects, and these objects will be reused to compose new design objects. 

While Alexander indicated that the pattern should describe the core of the 

solution, design of the real solution for any problem is should be based on 

different factors, e.g. the current circumstances of the environment. This is 

particularly important for design patterns specified for the software domain. 

Further, Erl (5) in his definition of the design pattern mentioned that the 

solution provided for any problem should be proven and individually 

documented. 

 Use of Design Patterns 2.2.5.2.

 Design patterns are very important for building high-quality applications, 

since they allow the designer to reuse the different elements of the software, 

instead of re-inventing the wheel for each element. Moreover, reusability of 

elements should lead to reductions in the time required to introduce the 

software, as it will enable the developers to use tested and certified solutions 

which have been applied before. 

 Design Pattern Elements  2.2.5.3.

For any pattern there are four essential elements: name, problem, solution and 

consequences (38) (37). 

Pattern Name: Unique naming of any element in the software domain will 

make it easier to identify the pattern. It can be identified clearly in any 

discussion, without confusion (38). 

The Problem: This describes the problem and details of the circumstances of 

the environment in which it occurs (37). 
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The Solution: The different elements, which when combined introduce the 

design, are called the solution. Documentation of the solution requires well-

defined and clear descriptions for the elements, their responsibilities and all of 

the relations and collaborations required between them.  

The consequences: It is also important to document the trade-offs introduced 

in applying the pattern, which are used to evaluate the different design 

patterns, and select the most effective solution to the problem being 

investigated (37). 

 Design Pattern Categories 2.2.5.4.

Design patterns can be classified into categories based on the perspective 

adopted by the author in proposing the pattern. Metsker and Wake (39) 

defined five different categories of design patterns based on their primary 

intent: interface, responsibility, construction, operations and extensions.   

Table 1 gives examples of standard software engineering patterns in each of 

these categories. 

Intent Patterns 

Interfaces Adapter, Facade, Composite, Bridge 

Responsibility Singleton, Observer, Mediator, Proxy, Chain of Responsibility, 
Flyweight 

Construction Builder, Factory Method, Abstract Factory, Prototype, Memento 

Operations Template Method, States, Strategy, Command, Interpreter 

Extensions Decorator, Iterator, Visitor 

Table 1: Sample Categorisation of Design Patterns by Intent (39) 

Other authors categorise the design patterns according to the application areas 

to which they can be applied. Most commonly, these areas are defined as: 

creational, structural and behavioural patterns (40) (37). 

 Design Patterns and SOA 2.2.5.5.

Design patterns existed within the software design domain before the 

emergence of the SOA paradigm. For example, there are object-oriented, 

Enterprise Application Architecture and Enterprise Integration Applications 

(EIA) design patterns. Design patterns that fall within the SOA pattern 

catalogue can be classified into new design patterns, existing design patterns or 
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design patterns that are intentionally similar to patterns in other catalogues 

(5). 

SOA design patterns have been defined in the following areas: service, service 

composition, service inventory, and service-orientation enterprise 

architectures (5). In structuring a taxonomy of SOA design patterns, each of 

these four groupings can be further divided into sub-parts.  

Table 2 shows an outline taxonomy for SOA design patterns, with examples of 

the available design patterns for each group. The fourth group, service-

orientation enterprise architecture is a composition of the other three 

architectures.  

Architecture Design patterns 

Service 

Foundational service patterns Service -Identification Patterns 

Functional Decomposition, Service Encapsulation 

Service-Definition Patterns 

Agnostic Context, Non- Agnostic Context, Agnostic 
Capability 

Service implementation patterns Service Facade, Redundant Implementation, Service 
Data Replication, Partial State Deferral, Partial 
Validation, UI Mediator,  

Service security patterns Exception Shielding, Message Screening, Trusted 
Subsystem, Service Perimeter Guard, 

Service contract design patterns Decoupled Contract, Contract Centralization, 
Contract De-normalization, Concurrent Contracts, 
Validation Abstraction,  

Legacy encapsulation Legacy Wrapper, Multi-Channel Endpoint, File 
Gateway 

Service governance patterns Compatible Change, Version Identification, 
Termination Notification, Service Refactoring, 
Service Decomposition, Proxy Capability, 
Decomposed Capability, Distributed Capability 

Service composition 

Capability composition patterns Capability Composition, Capability Recomposition 

Service messaging patterns Service Messaging, Messaging Metadata, Service 
Agent, Intermediate Routing, State Messaging, 
Service Callback, Service Instance Routing, 
Asynchronous Queuing, Reliable Messaging, Event-
Driven Messaging 

Composition implementation patterns Agnostic Sub-Controller, Composition Autonomy, 
Atomic Service Transaction, Compensating Service 
Transaction 
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Service interaction security patterns Data Confidentiality, Data Origin Authentication, 
Direct Authentication, Brokered Authentication 

Transformation patterns Data Model Transformation, Data Format 
Transformation, Protocol Bridging 

Service inventory 

Foundational inventory patterns Inventory Boundary Patterns:  

Enterprise Inventory, Domain Inventory,  

Inventory Structure Patterns:  

Service Normalization, Logic Centralization, Service 
Layers,  

Inventory Standardization Patterns:  

Canonical Protocol, Canonical Schema 

Logical inventory layer patterns Utility Abstraction, Entity Abstraction, Process 
Abstraction. 

Inventory centralization patterns Process Centralization, Schema Centralization, 
Policy Centralization, Rules Centralization 

Inventory implementation patterns Dual Protocols, Canonical Resources, State 
Repository, Stateful Services, Service Grid, 
Inventory Endpoint, Cross-Domain Utility Layer,  

Inventory governance patterns Canonical Expression, Metadata Centralization, 
Canonical Versioning 

Table 2: Outline Taxonomy of SOA Design Patterns (5) 

 SOA Design Pattern Considerations 2.2.5.6.

As already emphasised, SOA is a design paradigm for computer-based 

applications, with defined goals and objectives for applications, which meet the 

corresponding goals and objectives identified from the business perspective. 

Design patterns should be selected, designed, refined and applied to allow SOA-

based applications to meet their goals and objectives. 

The different elements that comprise the SOA application should be able to 

interact with each other without requiring any intermediate transformation of 

exchanged contents. Intermediate transformations would increase the 

application’s complexity and the time required to perform any operation.  

From the business perspective, Return-On-Investment (ROI) is a major factor 

in selecting any solution or product. By developing services that are able to 

support each other, which can be composed according to the requirements and 
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designed to meet the inventory architecture, an organisation can increase the 

ROI for each of the services it provides or exploits. 

There are other factors from either a business or IT perspective that are 

important for the selection of a design pattern from the available alternatives, 

e.g. vendor diversification, business and technology alignment and IT costs. The 

ability of the IT solution to meet the business requirements will be directly 

affected by these factors, so it is very important to prioritise them and develop 

the SOA application based on that prioritisation (5). 

 Dependability and SOA Design Patterns 2.2.5.7.

This thesis is particularly concerned with three attributes of dependability are 

which need to be considered developing any SOA application for a safety-

critical domain: availability, safety, and security. Various design patterns have 

been developed to address issues related to these attributes within the 

different architectures of the SOA. Also, these dependability attributes can be 

considered to as part of the general superset of Quality of Service (QoS) 

attributes. Before we discuss dependability design patterns, we explore the 

concept of dependability, and how it related to SOA, in the next subsection. 

 Dependability 2.2.5.8.

Different factors that allow the development of more dependable computer 

systems have been identified, for example availability, reliability, and 

maintainability (41). More interest in the dependability of computer systems 

was shown during the 1980s, as a result of increasing integration of these 

systems into the business arena. The concept of dependability builds on several 

related concepts, in particular reliability and fault-tolerance. Dependability can 

be defined as “the trustworthiness of a computing system which allows reliance 

to be justifiably placed on the service it delivers” (42). 

As more IT technologies were introduced, two fundamental attributes of 

dependable systems were added to the ones which had already been 

highlighted: safety and security (43).  

There are different perspectives on the attributes that inform dependability. 

The total list of attributes comprises integrity, reliability, safety, security, 
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confidentiality, maintainability and availability. According to the point of view 

adopted in the context of a particular system or domain, some of these 

attributes may be eliminated or combined (44). 

Avizienis, et al. (45) defined threats as the intentional or accidental events that 

affect the provision of a correct service. Service failure, within a computer 

system, is defined as the deviation of the delivered service from the correct 

service due to the occurrence of an event. This may result in the external 

systems interacting with the service to enter incorrect or unknown states, 

which would be observed as anthe error. The presence of the error is due to the 

presence of a fault in the system (45). It is therefore possible to define different 

states that are based on the presence of error or failure in the service, as an 

indication that the service is not performing correctly. For example, degraded, 

slow, limited and emergency service modes can be defined to reflect the 

severity of the failure within the system. Figure 5 shows one of the mostly 

widely used dependability trees.  

To attain and maintain the different attributes of the dependability, different 

means have been developed. The means can be classified into four main 

groups: fault prevention, tolerance, removal and forecasting. Fault prevention 

and fault tolerance allow the system to provide a trusted service. More 

confidence in this service will be achieved if it can also provide fault removal 

and forecasting. Dependability attributes are targeted by tactics (46) that are 

used to achieve a certain level for each attribute.  Requirements for the 

attributes will be derived, according to the architectural decisions resulting 

from the application of the tactics. 

 

Figure 5: Dependability Tree (45) 
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Failures in dependable systems often result in losses. These losses can be 

related to customers, sales, revenue and productivity. Moreover, there will be 

an additional cost incurred in bringing the system back into normal operation 

(47).  When software is one of the system components, it is possible to have 

failures within the system caused by the presence of the software. In such 

cases, failures might be limited to the software component of the system, or 

might cause the system as a whole to fail. Thus it is important to address safety 

as part of every stage of the software lifecycle. As an example, in 2011, a 

software failure in a Pak ‘n Save supermarket in New Zealand resulted in the 

store’s doors opening automatically at a time where there were no employees 

inside, allowing the public to leave with free groceries (48).  

Security Related Design Patterns 

Security is of great concern when exposing a local service to outside users. 

External users can use services to hack the internal network or to manipulate 

the resources managed by these services. The Service perimeter guard design 

pattern addresses this issue by introducing an intermediate service at the 

network perimeter, which can be used as an interface between the internal 

service from one side and external users from the other side. In this case, the 

intermediate service will be a secure contact point for the local network; thus, 

the security threats related to this issue can be minimised (5). 

Other design patterns have been defined to address other security issues and 

threats. These patterns fall into two main groups. The first group, service 

security patterns, addresses concerns in the service architecture. This group 

includes the exception-shielding, message-screening, trusted subsystem 

and service perimeter guard patterns. The second group, service interaction 

security patterns, addresses concerns in the service-composition architecture. 

Patterns in this group include data confidentiality, data origin 

authentication, direct authentication and brokered authentication. For 

more information please refer to the discussion of SOA design patterns in Erl 

(5). 

Availability Related Design Patterns 
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Some SOA design patterns provide solutions for the availability attribute. These 

solutions can be selected according to the requirements of the service. For 

example, in the group of service-implementation patterns, there is a 

redundant implementation pattern which addresses the case of a heavily-

used service. In this case, the service can be considered as a potential source of 

failure in the system, especially if it is being used in composition with other 

services. Any fault the service faces will be implicated in all compositions that it 

is part of. Based on this, the redundant implementation pattern provides the 

use of redundant implementation or failover support as a solution to this 

problem. 

For more information about other SOA design patterns providing solutions for 

the availability attribute please, refer to the discussion of SOA design patterns 

catalogue introduced in Erl (5). 

Safety Related Design Patterns 

In order to ensure that a system’s safety requirements are satisfied 

appropriately, it is important to ensure that the runtime behaviour of all 

components within the system complies with their specifications at the design 

and development stages. To help satisfy this, monitoring design patterns are 

introduced. Monitoring design patterns help in building tools that are able to 

monitor the components within the system and to measure to what extent the 

specifications used at system development are respected at runtime (49).  

Although safety is a key concern in ensuring the appropriate operation of the 

different software applications within a safety-critical system, there has not 

been a great deal of work on safety design patterns for SOA (50). Different 

techniques have been developed to provide a certain level of system safety, 

which are not specific to SOA. For example, partitioning allows the isolation of 

different independent components of the software, to ensure that severe faults 

that may occur in any component are contained. Generally, safety tactics are 

designed and organized based on the fault-handling mechanism. There are 

three handling mechanisms, failure avoidance, detection and containment (50).  
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For example, the Triple Modular Redundancy (TMR) pattern provides a 

solution to avoid a single point of failure for a processing unit, by implementing 

three processing units based on the same input, along with a voter that decides 

which unit’s results will be transferred to the output (51). The voter will detect 

failures occurring in any of the processing units and the final result will be 

defined according to the results from the three processing units. 

Different variations of the TMR pattern have been implemented to ensure the 

avoidance of failure, for example, by implementing three independent inputs 

for each processing unit and three voters, each of which takes input from the 

three processing units. Logically, this will improve the system’s integrity in the 

face of failure, as it reduces the likelihood of system failure due to a single 

failure or a failure of any of its components. 

Jackson (52) argued that current practices in developing software indirectly 

address dependability attributes in general and safety in particular. This 

appears to be true, since design patterns that provide specific solutions for 

safety are very rare. Thus, as Jackson suggested, new tools or practices should 

be developed to address safety-related issues directly. Kang and Jackson 

discuss an approach to dependability analysis based on trust bases, which 

offers a promising way to address dependability assurance more directly (53). 

 Service Level Agreements 2.2.5.9.

A Service Level Agreement (SLA) is a document that can be used to define the 

relationship between two parties: the provider (or producer) and the recipient 

(or consumer) (54). This is an important item of documentation for both 

parties. Its purpose is as follows: 

 Identify and define the customer’s needs;  

 Provide a framework for understanding;  

 Simplify complex issues; 

 Reduce areas of conflict; 

 Encourage dialog in the event of disputes;  

 Eliminate unrealistic expectations. 
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An SLA is a core part of a service contract, in which the specification and 

quality of service are formally defined. An important role of an SLA is to 

capture the non-functional aspects of the service so as to monitor the 

performance of the service to ensure that it is used according to the contract 

between different parties. According to (55), SLAs are used for the preservation 

of service capacity. Increasingly, SLAs are used as a way to ensure delivery of 

services in IT-based SOAs. During SLA discussions, all parties must agree on the 

interface and the service provided by the provider. If the provider is providing 

a service that was not originally assured or agreed upon, then we have a SLA 

disagreement fault (56). One way of representing SLA is using a tabular format 

as shown in Table 3 (57). 

 

Table 3: SLA Sample (57) 

2.2.6. SOA Modelling 

After decisions regarding the architectural design have been reached and 

agreed on, it is necessary to provide an unambiguous record of the decisions. 

This is often carried out in the form of modelling (58). Modelling can be defined 

as a description of some phenomenon of interest (59). In the case of SOA, the 

http://en.wikipedia.org/wiki/Service_contract
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phenomenon is the service to be provided. Kolovos asserted that models can be 

classified into unstructured and structured: 

“Unstructured models are descriptions that do not adhere to well-

defined syntactic or semantic rules. Examples of this type of model are 

board drawings, informal sketches, natural language specifications etc. 

Due to their lack of conformance to well-defined rules, unstructured 

models are only useful for communication between humans. By 

contrast, a structured model is an artefact that conforms to a set of 

syntactic and semantic well-formedness constraints which is called its 

modelling language or metamodel. Due to their rigorously defined 

nature, except for human communication purposes, structured models 

are also useful for mechanised processing”. (59). 

The models used to describe a system are based on system characteristics such 

size, complexity and heterogeneity (58). 

 The system architecture model is the composition of the different 

architectures that represent the system’s constituent elements and structures. 

Viewpoints are system architecture models that are constructed according to 

the perspective of the stakeholder. Viewpoints can be constructed using 

Architectural Description Languages (ADLs) (60). 

Software modelling can help developers better understand the system and 

allows for effective and efficient organisation. Based on this understanding, 

different design alternatives can be explored and considered based on their 

importance.  

Different ADLs are introduced to enable designers to build different 

versions/aspects of the model and to help the development team to define 

optimized code. Each modelling language represents a different point of view 

on the system. Examples of these languages include the Unified Modelling 

Language (UML) (61), the Systems Modelling Language (SysML) (62), the 

Specification and Description Language (SDL), and the Business Process 

Modelling Notation (BPMN) (63).  
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Different modelling languages are introduced to ensure proper modelling of 

SOA solutions. Service-Oriented Modelling and Architecture (SOMA), Service-

Oriented Modelling Framework (SOMF) and Service-oriented Architecture 

Modelling Language (SoaML) are examples of these languages.  

SOMA was introduced by IBM as the first modelling language for SOA (64). 

SOMA aids in the analysis and design of SOAs through the identification, 

specification and realization of the services that are required to build the 

system. SOMA also provides the ability to compose services from preliminary 

services. 

SOMF was introduced to provide modelling of SOAs; it is based on conceptions 

and a universal language (65). Strategic business decisions can be used along 

with IT tactics to design and provide solutions to enterprise problems. 

According to the developer of SOMF, it can be used to provide modelling for 

any application and include any business processes or technological services. 

UML was introduced as a general modelling language, thus no capabilities were 

introduced for SOA modelling. The OMG introduced SoaML, as a UML profile 

and metadata that adds the required capabilities to allow precise modelling of 

SOA based on UML.  

In the next sections, we discuss two of the most commonly used modelling 

languages and comment on their applicability to SOA. 

2.2.6.1. BPMN 

The BPMN standard (currently at version 2.0) was developed by the Business 

Process Management Initiative (BPMI) (66). In May 2004, version 1.0 of the 

specification of BPMN was released to the public and in February, 2006, BPMN 

1.0 was adopted as an OMG standard. BPMN is a graphical modelling notation 

for business processes in an organisation. White (66) discussed the context and 

use of BPMN, considering the four main elements of BPMN: flow objects, 

connecting objects, swim lanes, and artefacts. Figure 6 illustrates the graphical 

elements of BPMN. Flow objects are displayed as a set of elements that include 

different types of events, activities, and gateways. An event means “something 

that occurs” as distinct from an activity which is defined as “something that is 
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done” (67). Gateways can be used to control the communication between the 

flows of paths via splits and joints.  

Connectors can be used to model the flow between objects. The connector 

consists of sequence flows, message flows and associations objects. Sequence 

flows can be used for ordering the activities that are performed in a process; 

message flows can be used for sending and receiving messages across 

businesses; and association can be used for linking information with flow 

objects. Swim lanes can help in classifying and managing activities. There are 

two types of swim lanes: pools and lanes. Artefacts can be used to add more 

information to the model. Artefacts comprise data objects, text annotations, 

and groups. The data object can be used to manage the input and output data 

for activities, the text annotations can be used to describe the process, while 

groups can be used for grouping certain activities (67). 

 

Figure 6: Basic BPMN Elements  (66) 

2.2.6.2. SoaML 

The OMG introduced SoaML as a UML profile which has the capability to model 

SOA (68). The SoaML profile is structured around five SoaML diagrams, namely, 

the Service Participant diagram, the Service Contract diagram, the 

ServicesArchitecture diagram, the Service Interface diagram and the Service 

Categorisation diagram. Each of these diagrams provides a different view to 

define and understand services (68). For example, the ServicesArchitecture 

diagram shown in Figure 7 allows for the definition of Participants and 
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Services, showing the collaboration between different organisations, and the 

roles each Participant plays within each ServiceContract (collaborationUse). 

The Service Interface diagram shows the different types of Interface which the 

SoaML standard offers. Figure 8 shows a simple interface, which describes a 

one-way service which does not require protocol, e.g. a service can be used 

without knowing anything about the entity which calls it. 

 

Figure 7: ServicesArchitecture Diagram in SoaML 

 

Figure 8: Interfaces Diagram in SoaML: UML Simple Unidirectional Interface 

As Figure 9 indicates, a service interface can also be defined for bi-directional 

services. Here, the service includes communication between the consumer and 
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the provider of the service which may be required to complete the services. 

Further information about UML simple Interface unidirectional, UML interface 

bidirectional, and ServiceInterface, which is defined by understanding and 

using UML simple interfaces, is provided in (69). 

 

Figure 9: shows a service interface and a bi-directional service interface 

2.3. Safety and Certification 

This section introduces the concepts of safety, safety-related issues, and the 

certification processes. Section 2.3.1 provides a review of safety in safety-

critical systems. A review of aspects relating to the certification of such systems 

will be presented in Section 2.3.2 

2.3.1. System Safety 

Roland, et al. (70) defined system safety as applying special technical and 

managerial methodologies to guarantee systematic and forward-looking 

control of hazards during the lifecycle of the system being investigated. Roland 

et al. suggested that safety analysis and hazard control activities should be 

performed during the conceptual phase of the system, with further safety 

actions defined for the lifecycle stages. 
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The concept of safety within the system is related to the physical context of the 

system. A system can be considered unsafe if its effects are harmful for humans. 

Logically, software components can cause harm to humans indirectly. Hazards 

or accidents within the system occur because of three main sources: humans 

who interact with the system, the system itself or the environment in which the 

system operates. For example, an accident between two cars on a road could be 

caused by human error (e.g. excessive speed), a failure in one of the cars (e.g. 

sudden failure of the lights at night) or causes within the environment (e.g. 

heavy fog). 

In order to manage the definition and implementation of safety requirements 

for a system, it is important to understand which of the safety activities should 

be integrated within each stage of the lifecycle. Figure 10 shows a “V” system 

development lifecycle, along with the safety activities related to each stage 

(71). The figure shows the different stages of the development lifecycle: 

requirements analysis and specification, architectural design, detailed design, 

implementation, integration, testing and verification, and delivery and 

commissioning. At each stage, the associated safety activities are integrated in 

the development process. For example, hazard identification and risk 

assessment, which is a continuous activity, is commonly performed as part of 

requirements analysis and common cause/common mode and zonal analyses 

are associated with the detailed design and implementation stages.  

 

Figure 10:  A “V” System Development Lifecycle (72) 

 



48 
 

2.3.1.1. Safety Processes 

For safety-critical systems, it is important to perform an analysis of the 

hazards, identify them, evaluate their effects and provide the necessary 

measures to manage the hazards. Pumfrey defined a hazard as a “physical 

situation, often following some initiating event that can lead to an accident” 

(72). The hazard analysis determines the extent to which each hazard can lead 

to an unsafe system status.  

Safety analysis helps to define the necessary requirements that ensure the 

system being developed is acceptably safe. Safety analysis should be carried out 

as part of a safety management process, which will result in examining the 

system safety level and whether the system can be deployed or not. 

The safety process should be designed to address relevant factors within the 

system and its environment, for example, the size of the company, the structure 

of the system, the industry the system is operating in and the applications the 

system is used for (12). Each stage should result in a detailed documentation of 

the system safety process results.  

2.3.1.2. Safety Analysis  

A preliminary hazard list should be provided for safety-critical systems. Based 

on the hazard analysis, a list of high-level safety requirements, specifying how 

the hazards should be managed and controlled in design and operation of the 

system, is typically generated. These requirements are then transformed into 

detailed safety criteria. The system safety team should decompose these 

detailed safety criteria into readable detailed requirements which can be used 

by the design team to develop the system (73). Safety analysis should be 

performed throughout the system lifecycle to identify the hazards and risks 

posed by the system, assess each of these hazards or risks, and provide and 

recommend solutions for managing the risks. 

The safety analysis should be based on the milestones defined for the safety 

processes and should comply with the milestones of the system development 

process. The reporting of the analysis should address any challenges faced in 
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performing the analysis, such as lack of information or insufficient 

recommendations. 

Safety analysis techniques can be classified into two main categories, deductive 

and inductive. Deductive analysis helps in answering the question, “How can 

something occur?” Conversely, inductive analysis helps in understanding the 

consequences of an event, which has either occurred or has been postulated. 

Thus it helps in answering the question, “What if this happens?” (74). Some 

techniques can be used either inductively or deductively, depending on the 

context. Markov Analysis (MA) and Fault Propagation and Transformation 

Calculus (FPTC) are examples of these types of technique (27). 

Generally, failures in the system can be classified into either random or 

systematic failures. Typically random failures occur in the system due to faults 

in the hardware components. Such faults can be caused by different issues, 

such as the age of a component. Systematic failures, on the other hand, are the 

repeatable under the same system and environmental conditions, as a result of 

a human error that could occur at any stage of the system lifecycle. However, a 

fault due to an error of this kind will not occur unless the system is in an 

appropriate state (75). 

Due to their nature, random faults are often measured quantitatively, while 

system failures are measured qualitatively.  

Failure Modes and Effects Analysis (FMEA) is one of the main inductive safety 

analysis techniques. Pumfrey (72) discussed the categorisation of the FMEA 

analysis technique and techniques that have been developed using it as a basis. 

Simply, starting from a certain event (which has either occurred or is 

postulated) FMEA performs an analysis for the different consequences that 

might be faced.  

FMEA provides a basis for understanding how the requirements defined in the 

preliminary stages of the development are implemented in the system, and of 

whether the system actually meets these requirements. 

To perform FMEA, a set of information needs to be collected. This information 

can be identified and categorised according to the issue being addressed. 
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Information collection should be organised to ensure that the information 

needed to satisfy the analysis requirements is assembled. Different forms have 

been designed for data collection, such as the example shown in Table 3 (76). 

Stamatis states that the information within the form can be categorised into 

three parts. The first part is introductory and is essential to the analysis 

process; however, none of the information in this part is mandatory. The 

analysis is completely dependent on the information in part 2, thus all of the 

items in this section are mandatory. More items can be added to the form or the 

items in the form can be reorganized according to the analysis requirements, 

but none of the items in the form can be removed. The third part contains the 

signatures of the team performing the analysis. Although it is not mandatory, it 

reflects the team’s responsibility. Stamatis numbers the parts according to the 

analysis requirements performed. These numbers can be altered as required. 

 

Table 4: FMEA Form (76) 

2.3.1.3. Key Safety Activities 

There are key issues that need to be investigated when analysing the safety of a 

system. Firstly, it is important to understand possible hazards which might lead 

to the presence of risks within the system. These risks should be assessed and 

any necessary steps taken to manage them. In the following three subsections, 

hazard analysis, risk assessment and risk management will be discussed. 

Hazard Analysis 
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Pumfrey asserts that hazard identification, which implies locating the potential 

hazards within the system in order to specify suitable management and control 

measures, is the first step in the safety process.  

Different systems pose different hazards. Some of these hazards can be 

considered as generic, or common for all systems, whether computer-based or 

not. Examples include environmental hazards, like floods, fog, storms and 

earthquakes. However, possible failure of altitude measuring sensors is a 

hazard specific to aircraft for example. However, whether the hazard is generic 

or specific, the context of the system dictates the way in which it is handled. For 

example, fog is a hazard for both aircraft and cars; however, in each system the 

solutions will be designed differently. 

The process of hazard analysis includes several steps that are designed to 

address the goals of the analysis (12). Hazard analysis can be performed on 

planned or existing systems. However, for most systems, complete elimination 

of hazards is not feasible and therefore hazard control measures are used for 

those hazards which cannot be eliminated.  

Different techniques have been developed to perform hazard analysis. These 

techniques use either quantitative or qualitative methods to evaluate the 

hazard, based on hazard characteristics like hazard level (the degree to which 

the hazard will affect the system) and likelihood. 

Functional Failure Analysis (FFA), Hazard and Operability Analysis (HAZOP) 

and Fault Hazard Analysis (FHA) are among the best known hazard analysis 

techniques (12) (72). There are also other techniques, and variations of these 

techniques which are designed to identify and analyse hazards. However, 

Pumfrey argued that these techniques are not widely accepted in industry and 

are limited to use within the research community, so we do not consider them 

in detail here.  

Functional Failure Analysis  

Functional Failure Analysis (FFA) is an inductive technique which is intended 

to derive the hazards from a functional description of the system (sometimes 

referred to as Functional Hazard Analysis) (77). For each function of a system, 
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FFA examines all possible failure modes of the function that may contribute to 

unsafe behaviour and provides suitable recommendations for mitigation in the 

design (72). The FFA technique consists of four steps as described by Pumfrey: 

  Identifying a function; 

 Identifying the failure modes of the function, based on three potential 

deviations: function not provided, functional provided when not 

required and incorrect function; 

 Assessing the effects of each failure mode at various abstract levels;  

 Suggesting requirements and recommendations to improve the design.  

Table 4 shows an example of hazard analysis of a vehicle speed sensor using 

FFA. The results of FFA are commonly presented in a tabular format. 

 

Table 5:  Example of Hazard Analysis of a Vehicle Speed Sensor Using FFA (72) 

HAZard and OPerability Studies (HAZOP)  

Hazard and Operability Studies (HAZOP) is a predictive safety analysis 

technique that was developed in the mid-1960s, to assist, assess and refine the 
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design of new process plants (78). HAZOP was originally developed at ICI, for 

use in the chemical industry (79). The main focus of this method is on the flow 

of chemical material and liquids between different components of a chemical 

plant, Table 6 shows the steps of the HAZOP process. The process provides a 

set of guide words to help the analyst to consider a variety of possible 

deviations for each flow. Although the original HAZOP guide words were 

designed for use in analysis of processes within chemical processing plants, 

they are sufficiently generic to be applicable to other safety-related systems, 

with some interpretation. 

Step Description 

1 Select a flow in a pipeline. 

2 Identify important physical attributes of the flow, such as pressure, temperature, flow 
rate, chemical composition etc. 

3 Consider the deviations prompted by applying each guide word to each property for 
this line section. 

4 Determine the possible causes of each of these deviations. 

5 Investigate the expected outcome (effect on the plant) of each deviation, taking into 
consideration operating conditions and other causal factors where necessary, and 
examining the contribution of protection mechanisms and other mitigation already 
included in the design. 

6 Decide which deviations are safety problems (i.e. those with both plausible causes and 
hazardous effects). 

7 For deviations which are not safety problems, record a justification (i.e. explain why 
the design is acceptable as proposed.). 

8 Consider changes to the plant that will remove, or reduce the probability or severity 
of, hazardous deviations. 

9 Determine whether the cost of the proposed changes is justified. 

10 Agree actions and responsibilities. 

11 Repeat steps 1 to 10 for all other lines in the plant. 

12 Follow up to ensure necessary actions have been taken. 

Table 6:  Steps of HAZOP (72) 

The standard guide words for process plant analysis (with example 

interpretations) are shown in Table 7. 
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Table 7:  HAZOP Guide Words (72) 

HAZOP differs from the other safety techniques we have reviewed in that it is a 

team-based activity. A HAZOP team typically comprises around six people who 

are selected for different roles and interests, generally including the following:  

 The plant design engineers; 

 Commissioning or installation engineers;  

 Operators and maintenance engineers; 

 One or more independent experts; 

 HAZOP leader; 

 Recorder or secretary. 

In its original form, HAZOP does not work well for systems where the flow 

involves information. This fact has led to the development of Software Hazard 

Analysis and Resolution in Design (SHARD) for the analysis of computer-based 

applications (72). 

Software Hazard Analysis and Resolution in Design (SHARD) 

Pumfrey (72) proposed a technique called Software Hazard Analysis and 

Resolution in Design (SHARD), which is a refinement of HAZOP intended to 

address the requirements of safety analysis in computer systems (hardware 

and software).  
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Table 8 shows the steps of the SHARD process. The process provides a set of 

guide words to help the analyst to consider a variety of possible deviations for 

each information flow. 

Step Description 
1 Identify and consistently label the flows in the diagram. For each flow, identify its 

source (where the flow originates) and sink (destination). Assemble any additional 
material from data dictionaries, timing diagrams etc. required to completely describe 
the operation of the flow. 

2 Review the design to ensure that the intended operation is clear. 
3 Construct a table of guide words, interpreting the six major failure classifications for 

the combinations of communications protocol and data type used in the design. 
4 Work through the flows in a systematic order, using the combination of protocol and 

data type to select a set of guide words from the table constructed in step 3, and 
considering the deviations from intended behaviour suggested by each guide word. 

5 Determine and record the potential causes of the suggested deviations. Note that 
identifying the causes of a deviation will require study of the active component 
(process) or data store that is the source of the flow 

6 Determine and record the expected effects of the suggested deviations. Except at the 
top (context) level of a design, the extent of identification of effects should be limited 
to the active component (process) or data store which is the flow sink. Effects that 
propagate beyond the immediate destination of the flow will be considered as part of 
the analysis of further data paths that originate from this component. 

7 Reduce the set of suggested deviations to a set of meaningful failure modes by 
discarding those for which the potential causes are acceptably improbable, and those 
for which no hazardous effects have been identified. Note that whenever a deviation is 
discarded, a justification must be recorded 

8 For each meaningful failure mode identified, suggest alternative management 
strategies. These may take the form of design modifications to remove its causes or 
limit its effects, or a set of requirements that must be satisfied by lower-level design 
elaboration to achieve acceptable system-level safety properties. 

9 Select of one of these strategies to pursue, and record a justification for the selection. 
In the worst case, if no acceptable management strategy can be suggested, the only 
acceptable course of action may be a redesign. 

Table 8: SHARD Process 

SHARD can be used for the analysis of information flows in a normal operation 

and can also study the possibility of unintentional behaviour. The guide words 

defined for SHARD (72) are as follows: 

Omission: 

There is no delivery of the service; no communication (service not provided). 

Commission: 

A service is provided when it is not required, the communication is unforeseen 

(more services provided). 

Early: 

The service (communication) is provided earlier than required 
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Late: 

The service (communication) is provided later than required 

Value: 

The service or data has the wrong value. Errors of this kind can be divided into 

two classes: detectable (the problem can be detected and protected or 

mitigated against) or undetectable (the problem cannot be found). 

SHARD does not need a team to carry out each step of the analysis. The results 

can be captured in a tabular format. The columns should include “Guide word, 

Deviation, Possible causes, Detection and protection, Effects, and Justification 

or design recommendations”. Table 9 shows a sample of SHARD outputs for a 

computer-assisted braking system (72). 

Risk Assessment 

Once the hazards have been identified and recorded, the potential risks within 

the system can be identified and analysed. Upon identifying the risks, it is 

important to perform risk assessment and management. Risk assessment 

includes different tasks. The first is a detailed interpretation of the identified 

risks, such that risks can be classified into acceptable and unacceptable risks. 

Second, reduction measures for the unacceptable risks should be proposed. 

Typically, these measures should be selected to control the hazards involved.  

During the risk assessment process, the system design will be revised, to 

ensure that risks are reduced. For risks where it is not possible to eliminate the 

hazards by changing the design, the measures will be proposed ensure that 

these risks will be minimized to an acceptable level. Risk assessment 

techniques can be quantitative or qualitative, depending on the requirements 

of the assessment. 

For example, the presence of fog will increase the risk of car accidents. Fog 

limits visibility, making it difficult for drivers to the road or other vehicles 

clearly. For a car at a speed of 40 miles per hour with visibility of 100 metres, 

the risk of having an accident due to fog is limited, or can be classified as 

acceptable. But for the same car with a visibility of 10 metres, the risk of having 

an accident is high or unacceptable. 
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Table 9: Sample SHARD Output for a Computer Assisted Braking System (72) 
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Risk Management 

The process of defining the hazards, analysing them, and performing 

assessment on the risks caused by the hazards will result in a better 

understanding of hazards, risks and potential losses arising from their 

occurrence.  Procedures for avoiding or minimising losses can then be 

proposed. 

Understanding of the risks inherent in a system will allow these risks to be 

managed. The process of risk management is aimed at mitigating identified 

risks and achieving the desired goals of the system (80). According to Hillson, 

the success of risk management can be measured by the effectiveness of the 

selected solutions in achieving the final goals.  

Although effective risk management will increase the chances of avoiding the 

risks within the systems, resulting in the best achievement of the objectives, 

even in the presence of risk management, the system will have residual risks. 

Hillson et al. argued that risk management processes, tools and techniques 

should evolve over time to be able to address changes in the system and its 

environment. They also defined three major period of evolution in the attitudes 

to risk enshrined in standards, before 1997, from 1997 to 2000 and after 2000 

(80).  

 Before 1997: the concentration was on the negative side of the risk; 

risk is equivalent to threat in this period. 

 From 1997-2000: the definition of risk starts to add the positives or 

opportunities along with the negatives. 

 After 2000: all standards appearing after 2000 includes both threats 

and opportunities as part of risk management. 

Risk management includes the identification, communication and resolution of 

possible risks within the system (81). It can be divided into two main steps. 

The first is performing risk identification and assessment. The second is risk 

control. Risk assessment has been discussed above, so only risk control will be 

discussed here. Risk control is the process of planning risk resolution 

techniques, providing solutions for potential risks within the system and finally 
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monitoring the applied solutions to ensure their effectiveness in resolving the 

risks. Figure 11 shows the risk management cycle as proposed by Kasse 

Initiatives (81).  

 

Figure 11: Risk Management Cycle (81) 

The processes, tools and techniques used when performing risk management 

should be selected to suit the system and the risks being addressed. This will 

ensure that resources are wisely consumed by the risk management process 

and the risk management solutions will be practical and efficient. 

Risk management can be implemented within the system using four different 

approaches (82). These are: 

 Inactive risk management: the system is assumed to work normally 

and nothing will be done regarding the risk. 

 Reactive risk management: no risk assessment is carried out in 

advance; risk management will be performed based on the presence of 

accidents. 

 Interactive risk management: risks will be considered when they have 

a high potential to occur, in other words, risks will be considered based 

on the phase the system is currently in, as risks depend on the current 

system status. 

 Proactive risk management: risk identification, assessment and 

solving will be performed completely in advance of the system 

development. Thus, solutions for potential risk will be implemented as 

part of the system design. 
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As the approaches change from the inactive to the proactive, the time and cost 

overheads of risk management will increase. However, the possibility of 

suffering loss due to risk will be minimized by the proactive approach. 

2.3.1.4. Safety Requirements 

One of the outputs from the risk assessment and management activities is a set 

of recommended solutions for the expected risks in the system. These solutions 

will be used to define and develop the safety requirements of the system. 

It is important to ensure that the system is acceptably safe, by guaranteeing 

that the system meets its safety requirements. Within each industry different 

standards have been developed to help assure the safety of the products. For 

example in aviation systems, Preliminary System Safety Assessment (PSSA) 

uses the risk assessment and management to ensure that the system being 

developed is acceptably safe (72). PSSA is applied at the design phase of the 

system to guarantee a system that meets the safety requirements and 

maintains refined safety requirements that are appropriate to the final design 

of the system (83).  

As discussed in the system development lifecycle, hazard identification and 

analysis and risk assessment activities are performed during the first stage of 

system development, which is requirements analysis. These activities will 

define the safety requirements of the system. Risk management is the process 

of integrating the safety solutions as part of each system development stage. 

For example, the safety requirements relating to environmental hazards, like 

lightning for an aircraft, will be defined during the system requirements 

analysis. The design and operational solutions provided for these hazards will 

be integrated in the aircraft system during the different stages of development, 

for example to avoid crashing due to lightning, the aircraft body should include 

metal which makes it operate as a conductor, this solution will be integrated as 

part of the design and implementation stages.   

2.3.1.5. Safety Design Tactics 

The achievement of high quality and performance (e.g. design decisions) in 

systems depends on many factors. So, we need a strategy to assist in recording 
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and examining the system design decisions. Tactics are strategies which help to 

capture these design decisions. According to Bass et al. “A tactic is a design 

decision that influences the control of a quality attribute response.” (46). 

Safety is an important quality attribute for many computer systems. Different 

architectural patterns can be used to build each component within the 

computer system. Safety tactics are the foundational building blocks that define 

which design patterns among those available can be selected to achieve the 

attributes’ requirements. Wu (58) asserted that safety tactics can be used to 

select the architectural design patterns that allow the safety requirements to be 

met. Wu discussed the use of redundancy, voting and diversity tactics with the 

Triple Modular Redundancy (TMR) pattern to avoid a single point of failure 

and to increase the availability of the system, which guarantees a higher level 

safe system. Figure 10 shows a taxonomy of safety tactics according to Kelly’s 

and Wu’s classification.

 

Figure 12: Safety Tactics (50) 

Safety is related to reducing the consequences of undesired accidents. It is best 

to avoid failures and, in cases where failures occur, they should be detected and 

managed. Safety Tactics can be classified into three groups: failure avoidance, 

detection and containment tactics (84). 

Failure avoidance is the best mechanism to handle failures: if a failure is 

avoided, it cannot occur. Simplicity tactics are designed to help in designing 

systems that can avoid failure. Logically, however, there is no failure-free 

software. It is therefore important to ensure that tactics are provided to detect 
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and manage any failures which do occur, in order to avoid any further 

consequences. Timestamp and sanity checking are examples of these tactics. 

It is important to ensure that, where possible, the consequences of failures are 

managed within the system to avoid any further drawbacks within the system. 

The redundancy and recovery tactics help to achieve this.  

One of the architectural techniques that explicitly exploits the concept of design 

tactics is the Architecture Tradeoff Analysis Method (ATAM) (46). ATAM is a 

structured method for understanding the tradeoffs inherent in the design of 

architectures for software-intensive systems. This technique was developed as 

a principled way to evaluate the fitness-for-purposed of software architectures, 

with respect to many competing quality attributes such as security, 

modifiability, availability and performance, (85). The technique can help to 

provide reasoning about architectural decisions which affect quality attribute 

interactions.  Safety can be only one of the competing attributes covered by 

ATAM and therefore the outcome of the safety analysis should form a core 

input to ATAM when the method is used for the analysis of safety-critical 

systems (considering safety but also other important systems and business 

quality attributes) (58).  

2.3.2. Safety Certification 

System certification is a very important step and is usually required before the 

deployment of safety-critical systems, especially if the system can lead to 

accidents and human injury or death, where “it must be certified as adequately 

safe according to applicable standards” (86). Ivan defined certification as a 

process that is conducted by an independent party to assess whether a product, 

method or service complies with a pre-defined set of requirements (87).  The 

result of the certification process is a written statement, in the form of a 

certificate.  

2.3.2.1. Standards 

For most safety-critical domains, different institutions provide standards to 

guide system development and operation. For example, in the aerospace 

industry the European Space Agency (ESA) and the National Aeronautics and 
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Space Administration (NASA) define standards relating to their respective 

areas. Generally, these institutions are located in different geographical 

locations (88). The provided standards address safety issues within the system 

as a whole or sometimes only the safety issues relating to a specific aspect or 

component of the system (for example, software). 

In the nuclear industry, IEC 60880 was introduced by the International Electro-

technical Commission subcommittee 54A (IEC SC 54A) to address safety issues 

related to the introduction of software in current nuclear systems. Prior to that, 

IEC 60880 addressed only hardware safety in nuclear plants (88). In the UK 

Ministry of Defence (MoD), different standards have been developed at the 

software and system levels. The DEF STAN 00-55 standard was developed for 

software safety and DEF STAN 00-56 was developed for system safety (88).  

Kelly (14), Habli (27) and Penny et al. (89) highlight an increased interest in 

the goal-based approach over prescriptive approaches, based on the reports 

and recommendations provided from different accidents (e.g. the Cullen report 

for the Piper Alpha accident). 

Generally, there are many standards introduced for the purpose of certifying 

software safety (90). As discussed below, these standards can be classified 

either as prescriptive /process-based or goal-based standards.  

Prescriptive/process-based  

Prescriptive or process-based safety standards define a set of requirements 

and prescribe the specific means for compliance and the necessary evidence 

(91). The prescriptive methodology is based on the accumulated experience 

development and operation of a system in a certain environment. 

Consequently, when the system is to be located in a new environment or in a 

novel situation, it will not be adequate to apply the prescriptive methodology 

(91) (89). Hereña asserts that this drawback will limit the extent to which the 

standard will be useful.  

Technological advances will affect the operations performed within the system. 

Over time, this leads to new safety requirements, which may not be addressed 

within the system. Thus, the prescriptive methodology is somewhat limited 
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when considering time as a factor in the system lifecycle (91) (89). The 

addition of features and functions to maintain the ongoing safety of the system 

will contribute to an increase in the cost of the installation and maintenance of 

the system (91). 

A very important issue to consider is legal responsibility. The provider of the 

system should integrate the necessary safety requirements within the system, 

and the regulator should ensure that these requirements are accurately 

integrated. In the case where these requirements did not prevent the 

occurrence of a certain accident, there is likely to be some dispute as to who is 

responsible (91). 

Goal-based Standards 

Goal-based methodologies do not prescribe a process for the development of 

safety-critical systems, but require developers and operators to provide 

assurance that the system is safe.  In many domains, this assurance is provided 

in the form of safety arguments that are accompanied by evidence to indicate 

that the system safety meets the requirements (92). By providing for different 

arguments and their corresponding evidence, the goal-based approach 

provides more freedom in developing technical solutions that can 

accommodate different standards (89). 

Kelly, et al. (93) addressed the challenges facing the goal-based approach. 

Basically, the question that should be answered is “how to comply?”. In the 

goal-based approach, developers produce a set of arguments and pieces of 

evidence which address the safety issues within the system. One challenge is 

how acceptable risks should be defined for the system and what is taken to be 

the accepted level of risk. Another challenge, which is managerial rather than 

technical, is program management and the costs of developing new systems.  

As safety is integrated in the system using arguments and evidence. It is 

important to establish which arguments and evidence are necessary to satisfy a 

particular safety requirement (89). Penny et al. argued that the arguments and 

evidence required are related to the significance of the individual system 

functions.   
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2.3.3. Safety Cases 

In order for the regulators to be able to certify any system, documentation for 

the system safety should be presented to demonstrate how the system has met 

its safety certification requirements.  In general, the system developers should 

define a set of safety goals that the system should meet.  For each of these goals 

(sometimes called claims) an argument and evidence should be presented to 

support the goal (94). The collection of these arguments and their 

corresponding evidence is called the safety case of the system (14).  

Ideally, the development of the safety case should start as part of the 

requirements analysis and it should be updated during the different stages of 

system development. Any later changes in the system should result in a 

revision of the safety case to assess the impact of those changes on the safety 

case (89) (14). 

A safety case can be defined as: 

“A structured argument, supported by a body of evidence that provides a 

compelling, comprehensible and valid case that a system is safe for a given 

application in a given operating environment.” (95) 

So the goals, arguments and evidence should address the target environment in 

which the system is designed to operate. 

Each system should have a set of goals or objectives that define its safety 

requirements within the environment in which it will operate. These goals will 

be identified based on different factors, mostly derived from the hazard 

analysis and risk assessment process, as discussed above. As a result, it is 

logical that these goals can be modified (new goals added or removed) if the 

system is relocated to a different environment. 

Claims about the achievement of safety objectives should be supported by 

arguments and evidence. Figure 13 shows the role of a safety argument in 

linking requirements and objectives with specific items of supporting evidence. 

It explicitly links and justifies how the evidence substantiates the safety 

requirements and objectives. 
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Figure 13: The Role of Safety Argument (14) 

One of the aims of the safety case is to evaluate the extent to which the system 

meets its safety requirements. It should be developed by the system provider 

and audited by the regulator. Thus, it is important that both parties have a 

common understanding of the safety case’s contents, i.e. the safety goals, 

arguments and evidence. Given the size and complexity of modern integrated 

systems, it is expected that safety cases will contain huge amounts of data 

generated by analysis of the system. In order to ensure adequate presentation 

of the safety case contents, and to effectively address the system safety 

requirements, the safety case should be developed using systematic and 

organised procedures. There is a strong challenge to provide a readable safety 

case that can be easily interpreted by the regulator (14) (96). Cockram et al. 

argued that with the huge amount of documentation provided in the safety 

case, it might be possible to lose concentration on which arguments are 

provided with which evidence, which makes it hard for the regulator to assess 

the credibility of the safety case. 

2.3.3.1. Safety Case Argument Representation 

Safety case arguments can be presented either textually, graphically or in a 

tabular format. Each of these has its own positives and negatives.  

Goal Structuring Notation (GSN) 

The Goal Structuring Notation (GSN) is the most widely graphical language in 

industry for representing safety arguments. GSN was developed at the 

University of York for defining safety arguments in a graphical format (97). 
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This notation is expressive and structured to develop safety arguments in a 

methodical way through capturing the primary argumentation elements.  

 

Figure 14: Principal Elements of GSN (14) 

Figure 14 shows the basic elements of GSN such as goals, contexts, solutions, 

justifications and assumptions and their relationships. An argument is created 

by linking these elements using ‘supported by’ and ‘in context of’ relationships 

to form a ‘goal structure (14)’. The goal structure (i.e. claims) can be 

decomposed into sub-claims and the sub-claims can be further decomposed 

until these can be satisfied by direct solutions (i.e. items of evidence). 

The reasoning behind the decomposition is made clear in the GSN strategy 

elements.  Context elements are used to provide an explicit statement of the 

context in which the claim is made. Justifications provide reasons why a 

specific strategy is selected, or a particular claim or solution is used. A claim 

(GSN ‘goal’) can be supported by quantitative or qualitative evidence, 

depending on the nature of the claim. Common types of evidence (solutions) 

include the results of the hazard identification or risk analysis. Figure 15 shows 

an example goal structure in GSN, taken from (98).  
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Figure 15: An Example Goal Structure 

2.3.3.2. Modular Safety Cases 

The modular safety case approach  (99) was developed in order to allow the 

development of a baseline safety case which can be used to reflect additions to 

or modifications of the system. The approach was developed as a means of 

managing safety cases for modern, large-scale integrated systems. 

Furthermore, the modular safety case aims to limit the size of changes in the 

safety case that are due to the changes in the system structure. In the 

conventional safety case approach, an independent safety case will be 

developed for each configuration of the system, which will dramatically 

increase the time and cost requirements of the certification process. In the 

modular safety case approach, it is possible to have different variants of the 

safety case. Each variant is related to one of the system configurations (99). 

In the modular safety case approach, a safety case can be partitioned into 

modules both vertically and horizontally. The partitioning will be based on the 

top-down progression of the objectives-argument-evidence (100). In vertical 

partitioning, certain argument claims can be used as objectives for another 

safety argument, while in horizontal partitioning one argument can provide the 

assumed context for another. 
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As different modules are inter-related with each other, it is important to define 

the dependencies between these modules. Explicit interfaces can be defined 

between safety case modules. The safety case module interface can be 

represented as follows (99): 

1. Objectives addressed by the module; 

2. Evidence presented within the module; 

3. Context defined within the module; 

4. Arguments requiring support from other modules 

Inter-module dependencies; 

5. Reliance on objectives addressed elsewhere; 

6. Reliance on evidence presented elsewhere; 

7. Reliance on context defined elsewhere. 

When developing a modular safety case, the argument contained within a 

single argument may fail to support all the module claims. Thus, some 

argument modules can be used provide arguments and evidence to support 

claims that are recorded in other argument modules. However, within any 

composition, objectives and arguments from different modules should 

complement each other. Furthermore, the evidence in different modules should 

not be contradictory, and the context of each module should be consistent with 

the context of the other modules in the composition. 

In compositions, the rely-guarantee approach is used to capture the modules’ 

behaviour within the composition.  In the safety case module interface defined 

above, item 1 will provide the guarantee and items 4-7 will provide the rely 

conditions.  Items 2 and 3 must hold as the composition is being developed. 

Graphical extensions for GSN have been provided to handle the modularity of 

the safety case  (99). The first extension to GSN is the representation of the 

modules, which is a package notation imported from UML.  In the module 

notation goals supported by other modules are represented as Away Goals 

(101). Further extensions have been developed to allow the link between an 

argument in a certain module and context and evidence that exist in another 
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module. To support these links the Away Context and Away Solution are 

introduced. 

In GSN, a safety case module interface is defined as follows (99): 

1. Goals addressed by the module; 

2. Solutions presented within the module; 

3. Context defined within the module; 

4. Goals requiring support from other modules. 

Inter-module dependencies are captured by: 

5. Away Goal references; 

6. Away Solution references; 

7. Away Context references. 

The process of composing different modules to form a safe composition should 

be carefully performed, to ensure that the resulting argument consists of well-

defined modules that are correctly connected and interdependent. Three main 

steps for the composition of safety-case modules are identified by Kelly (99).. 

These are: Goal matching, Consistency checks and Handling cross-references. 

At each step, different related issues will be investigated to ensure proper 

composition of the modules. 

While performing the composition of the different modules, documentation for 

the relations between the different modules should be developed as a safety-

case contract  (99). This will help in understanding the relationships between 

the different modules, and to assess whether the composition still holds if the 

context changes, or if one of the modules is modified or substituted.  The 

contract must record all the away goal and solution references that had been 

exploited by the composition (99). 

The safety case architecture will be similar to the system architecture. The 

main principles for this are: high cohesion/low coupling, supporting the 

division of work and contractual boundaries, supporting future expansion, and 

isolating change (100). Research into the development of Integrated Modular 

Avionics (IMA)-based systems adapted safety case architectures based on the 
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modularity of the safety case, which corresponds to the modularity in the 

system itself  (99). Adopting this architecture, the safety case can be divided 

into modules, and the cross-references between the modules can be 

represented as well. 

In modular safety cases, and based on the principle of isolating change, 

arguments that are likely to change will be separated in standalone modules. In 

the case of change, only those modules affected by the change require 

reassessment; it is assumed that the other modules in the safety case are 

unaffected. Although it might be possible for the interface of the module to 

change (which requires changes to the contract to be made), the paths that 

require revision in the safety case can be identified easily. The changes should 

be limited to the specific module in which the change occurred and the 

interfaces connected to other modules within the safety case. 

The final architecture of the system and its corresponding safety case should be 

evaluated to ensure that they meet the architectural quality attributes, such as 

scalability, performance and modifiability. Different evaluation techniques have 

been proposed, either for the system as a whole or for the software element of 

the system. An example is the Software Architectural Analysis Method (SAAM)  

(102).  

 

Figure 16: Activities in SAAM Analysis  (102) 

SAAM proposed a systematic evaluation process for the system architecture 

that is modular, as shown in Figure 16 (102). Each step in the method performs 

the necessary evaluation for a certain module or set of modules within the 

architecture, trying to identify the required changes to the architecture and the 

effort required to enact these changes.  Generally, changes will be at one of 
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three levels: local to a certain module within the architecture, for a set of 

modules within the architecture, or for the architecture as a whole. 

GSN: In our work we use GSN to develop SOA safety cases using the modular 

and pattern extensions of the notation. We applied GSN for defining argument 

modules and patterns which capture the different argument structures for 

assuring services and their design and constrain variation in SOA safety cases.  

Modular safety cases have been adapted for different applications. For example, 

they have been used to provide assurance for Integrated Modular Avionics  

(IMA) (103), for operating systems (104), for Objected-Oriented systems (26), 

for COTS (105) (106), for Kernels (107) and for product lines (27).  

2.3.3.3. Modular and Incremental Certification  

The introduction of the modular safety cases technique inspired proposals to 

concerning the adaptation of the certification process. By limiting the effects of 

change within the safety case, and safety assurance work, modularity 

theoretically allows for the limited certification of certain system elements: the 

effort required to certify changes from a previously-certified baseline in a given 

composition should be smaller than re-certifying the entire system. By 

adopting the same modular and incremental approaches, the certification 

process simulates the modularity of the safety case (108). Thus, in theory, the 

re-certification of a system due to any change or addition to the system should 

only require the assessment and evaluation of the changes, which will limit the 

re-certification effort to the size of the changes, rather than to complete 

recertification of a complex system. 

Rushby (109) proposed an approach based on the concept of assume-

guarantee reasoning. By investigating the presence of failures, the approach 

will extend from verification into certification. However, the approach requires 

the use of partitioning, whereby a single module can be reused within the 

system, or can be deployed in another system. This approach is based on the 

modular certification process proposed for IMA  (103), where certification of 

the system can be performed based on a modular safety case, which facilitates 
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the certification of the changes in the system, by focussing on certification of 

those modules involved in the change and their interfaces. 

In traditional certification, the cost of the re-certification is related to the 

system’s size and complexity, as recertification typically requires the 

development of a new safety case, in total, in response to the system changes. 

With the introduction of modular safety case and certification approaches, it 

became possible to relate the cost of the re-certification to the size and 

complexity of the changes, which will dramatically decrease the total cost of re-

certification, especially in the case of small changes to large systems (110). 

The project conducted by IAWG investigated the construction of modular safety 

cases and proposed a methodology for incremental certification in the UK 

defence avionics domain. In the case of any changes to the system or its 

proposed operating environment or use, evaluation of these changes will define 

where changes are also required in modular safety case relating to the system.  

In most certification regimes, any changes to the system safety case require a 

re-certification process to be performed. In the case of modular safety cases, 

the re-certification will be only performed on the parts of the safety case that 

have actually changed, or which address aspects of the system design which 

have changed. The process is called an incremental certification process. Fenn 

et al. (108) assert that the incremental certification process is still immature. 

The IAWG modular certification process defines a series of systematic steps to 

assess where change is required in the safety case and what concerns must be 

addressed. These steps start by identifying the change scenarios, then 

performing optimisation for the safety case architecture, followed by 

identifying the Dependency-Guarantee Relationships (DGR), and finally 

building the safety-case arguments. These steps are discussed in detail in Fenn 

et al. (108). 

Although the modular and incremental certification processes are expected to 

have benefits over traditional certification processes, these approaches cannot 

be considered suitable in all cases. As part of the IAWG project, five key criteria 

were identified to ensure that applying modular and incremental certification 

approaches are likely to be beneficial in a given case. The five keys are: distilled 
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set of change scenarios, re-use, and modularity, use of COTS and vendor co-

operation, and size and complexity of the system (108). 

2.3.4. SOA and Safety 

For an SOA system that is considered to be safety-critical, or has any safety-

related impact on humans in particular or on the environment in general, a 

certification process is often conducted to ensure that the system is safe to 

operate in its designated context.  

In Section 2.2, we discussed SOA designs. The discussion included the SOA 

lifecycle, tactics, design patterns and system modelling. In Section 2.3, we 

discussed the different issues related to the safety of the system. This includes 

defining the safety requirements, developing the system safety case and the 

certification process. 

The aim of this section is to discuss published work related to SOA safety. In the 

following, a review will be carried out on existing work on SOA applications for 

safety-critical systems and safety assessment.  

Existing work on SOA has lacked sufficient consideration of potential safety 

applications. Only one paper could be found in the literature (16) on the use of 

modular safety certification for SOA. However, there is published work which 

touches on some safety aspects of SOA. 

Donini et al work focused on testing safety-critical SOA-based systems through 

the adoption of a classical SOA to build an environment for safety-critical 

control systems (111). They provided indications on the integration of SOA 

system architecture components with existing centralised testing 

environments by addressing concrete test objectives. Specifically, they 

provided a test framework where automated functional testing is presented in 

an external simulated environment based on SOAs. They also conducted 

functional system testing via simulated environments which can be an 

approach to minimising test sets. The test sets defined were representative of 

an actual operational usage profile for a railway interlocking control system.  

Rychlý has created an approach to representing the behaviour of services 

within SOA and their implementation through algebra π-calculus (112). This is 
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represented by using the case study of Donini et al (111) based on a railway 

interlocking control system which is driven by an SOA design (113). Detailed 

description of the SOA and all its services is introduced in (112).  

The researchers in (114) proposed a framework for using SOA in non-critical 

parts of safety-critical embedded systems. This allowed the use of Smart Sensor 

Interfaces (SSI) and Smart Sensor Protocol (SSP). SSI can facilitate the 

integration of the payload on a UAV represented by sensors. SSP can be used to 

exchange information to decide the requirements for mission accomplishment 

(114). Based on an SOA design, the paper demonstrates that the real-time 

performance is compulsory and has to be guaranteed under different 

circumstances.  

In (115), the authors proposed a Knowledge-Based Framework for 

Dynamically Changing Applications. The framework uses the dynamic 

definition of web services, based on a specific system configuration, the 

availability of the web service component and the database with predefined 

context information. The framework allows the monitoring of the information 

to generate services with different levels of security, reliability as well as 

performance, in a dynamic way. Nevertheless, the implications of SOA systems 

for safety certification are not well explored.  

The above pieces of work are different from our work. Although they consider 

safety-critical systems, they do not cover any aspects of safety analysis and 

safety cases.  

The researchers in (116) have developed a methodology for risk management 

within SOA to address risks, threats and vulnerabilities, through using the 

Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE), 

National Institute of Standards and Technology (NIST) and Factor Analysis of 

Information Risk (FAIR). These techniques can be used to provide assurance to 

changes within safety requirements (116). Similar to our work, they produce 

safety requirements at different stages of development. They present a 

development model based on five SOA layers where each layer is composed of 

phases. These phases have activities, which can be subdivided into tasks, which 

are the subject of the safety analysis. Their work is similar to our work as far as 
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safety analysis is concerned. However, it does not cover any aspects of safety 

cases or any interfaces between design and modelling, and safety analysis.  

Brown et al have addressed the issue of assuring SOA designs using modular 

safety cases. Similar to our work, they used GSN to create these safety cases 

(16). They have raised some challenges to safety when using an SOA style. 

These are related to: 

 System/service requirements 

 System safety certification 

 Safety certification throughout the system development lifecycle.  

They introduce the problems and propose a high-level methodology for 

creating a safety case within the military aviation domain.  Brown’s argument is 

meant to support the flexibility of compositional features in SOA, while 

simplifying the safety certification and accreditation of SOA-style systems (16). 

However, their work was limited in scope, focusing on an example application 

rather than creating an integrated framework for modelling, analysing and 

assuring the safety of SOA in safety-critical applications.  

2.4. Chapter Summary 

In this chapter, we reviewed the definitions, features and lifecycles of SOAs. We 

discussed the SOA system architecture and gave an overview of the core 

elements of SOA covering the SOA design patterns and notations used for SOA 

modelling. We introduced the concept of system safety, and introduced safety-

related issues and certification processes and discussed the most common 

elements of concern in system safety engineering, such as the overall system 

safety process, safety analysis, risk assessment, risk management, safety 

requirements and safety tactics. In addition, we explained techniques which are 

commonly applied to address these elements. Then we moved on to discuss 

safety certification and safety standards. We considered the concept of safety 

cases in some detail addressing approaches to safety-case development, 

challenges for the safety-case approach, and argument representation 

techniques. Finally, we reviewed the concept of modular safety cases and its 

application for modular and incremental certification.  
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Chapter 3 
 

3. SOA Safety Assurance 

Framework 
 

3.1 Introduction 

The literature review in Chapter 2 covered key issues related to the 

development and assessment of SOA. In particular, it considered the safety and 

dependability properties of SOA and related architectures, such as cloud 

computing and SoS, used in critical industries. Based on the review of current 

literature concerning SOAs and safety-critical systems, the following 

observations can be drawn: 

 There is a shortage of research on the use of SOAs for the development 

of safety-critical systems. 

  There is a lack of systematic safety assessment processes and methods 

that address the special features of SOAs such as composibility. 

 There is a lack of safety assurance strategies in the form of safety 

argumentation and evidence to justify why the use of SOAs in safety-

critical applications is acceptably safe.  

In this chapter, we introduce and define a conceptual framework for SOA safety 

assurance. This framework is discussed in the context of architectural 

modelling, safety analysis, safety certification and tool support, and methods to 

support the framework are proposed. These methods are explained in more 

detail in Chapter 4 (SOA Safety Analysis) and Chapter 5 (SOA Safety Cases). 
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3.2 Conceptual Framework 

The main aim of the SOA safety assurance framework presented in this chapter 

is to provide a systematic means to understand and analyse how SOA can 

contribute to safety and hazards and how safety justifications can be provided 

by means of structured and explicit safety cases. The framework is summarised 

in Figure 1.  

 
 

Figure 17: SOA Safety Assurance Framework 

Figure 17 shows the four aspects that have been considered and developed in 

order to address key concerns about SOA safety: modelling, safety analysis, 

safety cases and automated support and tooling:  

 Modelling is used to represent the structure and behaviour of the 

service-based system, developed against a variety of design styles. This 

covers the design of the services, contracts and interactions and the 

specific tasks and flow of information used for realising the SOA design.  

 Safety analysis results are used for understanding the failure behaviour 

of the SOA and specifying safety requirements and design tactics to 

control the risk of any hazardous failures. The framework adapts and 

develops two safety analysis techniques for understanding service 
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hazards and examining how the system failure behaviour can contribute 

to the occurrence of these hazards. In early safety analysis, engineers 

designing services used in safety-critical applications need to define 

safety requirements that address the risk of any hazardous behaviour 

posed by these services and ensure that the design of the SOA explicitly 

meets these requirements. 

 Justification of the safety of the service-based system is communicated 

through the development of an explicit safety case. A safety case is a 

structure that comprises an argument and evidence that present the 

reasoning for why that system is safe for a given application in a given 

environment (99). In our framework, the safety case is based on the 

results generated from the SOA models and safety analyses.  

 The tool-support environment provides automated capabilities for 

building the SOA models, applying the safety analysis and developing 

the safety case for the system. The tool environment, developed during 

this PhD research, also provides means for ensuring traceability 

between the modelling, safety analysis and safety case artefacts.  

In short, the SOA safety assurance framework proposed in this thesis provides 

a methodical basis for integrated design and analysis of service-based systems, 

with explicit consideration of hazardous behaviour and safety justification.  

3.3 SOA Modelling  

This section introduces the modelling languages that are used in our 

framework for specifying the services and the dynamic processes for SOA-

based systems. These modelling languages are employed in order to provide a 

holistic view of the design elements of the SOA within the system, considering 

structure and behaviour which are important for the safety analysis, and to 

generate models which can be understood by stakeholders with different levels 

of technical background.  

In terms of the structure of the SOA, the types of concern covered by our 

modelling include: 

 Services 

http://en.wikipedia.org/wiki/Modeling_language
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 Interfaces 

 Contracts 

 Operations 

 Actors 

The modelling language we use for specifying the above structures is SoaML 

(117), which was reviewed in Section 1.7. SoaML models are based on a 

modular description of the SOA in which related Contracts, Interfaces and 

Operations are encapsulated in, and provided by, self-contained Services. SoaML 

allows for the specification and analysis of the requirements for each Service, 

including the safety requirements, which is an important feature of the 

language for dealing with safety-critical services. Further, SoaML can provide 

an explicit description of Services in terms of actors, or Participants, which 

realise and implement these Services.  

The proposed framework models SOA behaviour, including behaviour that can 

lead to hazardous events, using BPMN to describe the processes and the 

information flows in the SOA design. BPMN captures the dynamic Tasks and 

Flows implemented in the SOA design. BPMN allows the modeller to 

communicate and represent internal procedures, based on processes, in a 

graphical and structured notation. In our framework, BPMN is used to 

understand and analyse the detailed failure behaviour in a service-based 

system and how this can contribute to service hazards. However, the 

conceptual framework can be seen as a notation-independent solution. Any 

notation which has sufficient power to model the structural definition of 

services and their behavioural implementation could be used as part of the 

framework. There are many alternative languages which could reasonably be 

used: each modelling language will have subtly different approaches, but the 

concepts required by our framework are sufficiently generic that the choice of 

language does not affect the application of the framework. In this thesis, SoaML 

and BPMN are used as the two main modelling languages in order to illustrate 

more concretely the concepts and the methods that are developed as part of 

the framework, and to show how traceability can be achieved between the 
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structure and behaviour of the SOA design (as an input for the safety analysis 

and safety case methods). 

3.3.1 Modelling SOA Services in SoaML  

As stated above, SoaML is intended to model the structure of the services that 

comprise an SOA-based system in terms of Participants (Consumers and 

Providers), Services Architecture, Service Contracts, Service Interfaces and 

internal Operations. It is focused on the integration of Participants into the 

Services Architecture model using Service Contracts, which capture the Service-

Level Agreements (SLAs). In our framework, this level of detail is important for 

understanding how services can be hazardous and how Contracts, Interfaces 

and Participants can contribute to service hazards. 

In addition, SoaML can help identify and specify policies for providing and 

using the services and classification schemes. We use this to support the 

definition of  severity classification schemes when applying SOA safety analysis 

and their effects on the safe operation of the system. 

The SoaML specification describes the services provided by the architecture, 

including different areas that can be useful for safety analysis. Participants are 

used to model the service Providers and Consumers within the system. This can 

help in understanding how service Providers and Consumers can potentially 

deviate from the intended behaviour and contribute to unsafe failures. The 

interactions between Participants are through service Contracts. Service 

Contracts are used to explain the interaction among service entities. Like 

Participant failures, communication failures can also contribute to unsafe 

failure behaviour, via deviations from the intended Contracts. 

Service Interfaces are used to define the Operations that are offered by 

Providers and are available for Consumers in an SOA. The technical Interfaces 

include signatures of Operations that include the names of the Operations, the 

parameter types and the return types of the Operations. Since Interfaces are 

used to specify the input and output values for the processes, failures such as 

the loss of data or the provision of incorrect descriptions of data via these 

Operations could lead to unsafe behaviour of the system. These failures could 
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also delay the Operations within the system and might contribute to service 

hazards.   

Services Architectures are the diagrams used to describe the main components 

and communications within the system and how Participants work together 

using Services. Contracts are used to display the relationships between 

Participants and Services.  These relationships can help to identify the effects of 

failures within the Services and Participants, clarifying the level of severity and 

deriving the safety requirements that are specific to the Services. 

In summary, SoaML provides a structured basis for modelling the high-level 

services and their interactions, including interfaces. This is necessary to 

perform hazard analysis on service-based systems.  

3.3.2 Modelling SOA Processes in BPMN 

The framework uses BPMN as the modelling notation for specifying dynamic 

processes in the SOA design. The BPMN model specifies the behaviour of the 

processes underlying the services and identifies Tasks, such as Script Tasks and 

User Tasks, as well as Sub-Processes, Gateways, Sequence Flows, Pools and Lanes. 

It also describes how messages are exchanged and coordinated between 

Participants. The diagram describes the execution of processes within an SOA 

system and provides a key input for understanding both the intended and 

failure behaviour of the system. This is a key prerequisite for performing 

detailed safety analysis of the low-level behaviour of services and their 

interactions. 

A key concern in SOA safety is understanding how interaction failures can lead 

to hazards. BPMN models focus on the orchestration of tasks that implement 

high-level services in business processes. This includes specification of the 

choreography and collaboration between interacting processes. Defining and 

understanding these interacting processes is key for analysing the failure 

behaviour of the services.  

Another area of concern for understanding the safety of system behaviour is 

the flow of information and control within the SOA. Service-based systems tend 

to be information-intensive: key decisions are based on the information 
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processed by the system and provided by different services and participants. 

Analysing the failure modes associated with information flows is necessary for 

analysis of the safety of the SOA system, and BPMN provides a structured 

means for capturing the flow of information and understanding the 

consequences of any potential deviations.   

The BPMN process defined in our framework can help engineers to focus their 

analysis of the low-level service behaviour under different situations and 

timing conditions. Each process captures the tasks that should be done by the 

identified service Participants and the coordination between them. The timing 

of messages between processes has to be scheduled, in order to clarify the 

overall duration for each process, or the worst-case timing behaviour. This 

enables the analyst to see how timing failures can contribute to service failures. 

Some of these failures might be hazardous. 

In summary, BPMN provides a detailed representation of the execution 

mechanisms underlying the high-level services and is used as a basis for the 

detailed failure analysis of the service-based system behaviour.  

3.3.3 Traceability between SoaML and BPMN Models 

In our framework, the SoaML models, used for defining the services, and the 

BPMN model, used for specifying low-level behaviour, are linked explicitly at 

the model level. 

 

Figure 18: Link between SoaML and BPMN Models 



84 
 

 As illustrated in Figure 2, Services in SoaML interact through defined 

Contracts. These Contracts have explicit Interfaces that offer a number of 

Operations. We link each of these Operations to a Task in BPMN, thus enabling 

traceability between the different models at different abstraction levels. 

Further, we represent every Participant in SoaML as a Swimlane in the BPMN 

model. A link between two BPMN Tasks should capture the information flow in 

terms of inputs, outputs, data, sequence and timing. The explicit traceability 

between the various SoaML and BPMN models is necessary for assuring 

consistency in the SOA safety analysis and safety cases.  The interaction 

between the SoaML and BPMN models is explored in detail in the next section. 

3.4 SOA Safety Analysis 

This section introduces the two safety analysis techniques we propose for use 

in hazard and failure analysis for SOA-based systems. In the design phase, 

safety analysis is used to derive the necessary safety requirements that define 

the basis for ensuring that the SOA system developed is acceptably safe. Safety 

analysis is carried out as part of a safety management process, which forces 

explicit consideration of the system safety level and the system deployment. 

The analysis allows for identification of the system-level hazards associated 

with the services and their interactions and of the potential failure modes that 

can contribute to these hazards.  

The consideration of hazards and failures is a fundamental issue for service-

based applications used in the safety-critical domain. It is important to 

implement the analysis of the hazards, identify them, evaluate their effects, 

identify the severity of the hazards and then provide the necessary measures to 

manage the service hazards. The service hazard analysis technique proposed in 

this thesis helps to identify the top-level conditions that may lead to unsafe 

system events.   

The safety process should be designed to address factors within the system and 

its environment which potentially affect the design and operation of the 

service, e.g. the size of the company, the structure of the system, the industry 

the system is operating in and the applications the system is used for (Leveson, 

1995). A safety process will have different activities, depending on the SOA 
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system that is being investigated, with specific reporting requirements for each 

activity. Each activity will result in a detailed documentation of results. 

Applying safety analysis to an SOA system should determine the safety 

requirements for the services and processes and provide evidence for the 

processes of assuring that the system is acceptably safe. In addition, safety 

analysis will affect the ability of the system to be deployed.  

The framework uses and adapts two existing safety analysis techniques, 

namely Functional Hazard Assessment (FHA) (118) and Software Hazard 

Analysis and Resolution in Design (SHARD) (72) and tailors them to the 

analysis of individual services and SOA processes. The aim of these techniques 

is to provide a systematic basis for identifying and analysing hazardous 

behaviour associated with the SOA system (e.g. hazards due to lack of 

information, or due to incorrect, information). The system safety team can thus 

decompose high-level safety criteria into readable and detailed subsets, which 

can be used by the design team to develop the SOA system (73). Safety analysis 

should also be performed to assess the risk associated with each of these 

service hazards and to identify measures for managing the risk. 

The rest of this section considers the safety analysis of both services and their 

underlying behavioural processes, considering service hazards and the failure 

modes that can contribute to these hazards. 

3.4.1. Safety Analysis of Services  

The framework proposes to perform safety analysis for services modelled in 

SoaML, through adapting FHA as a means for identifying and classifying service 

hazards. A service hazard is a condition associated with the service, or its 

interactions, that can lead to an accident. This thesis defines an adapted FHA 

technique for identifying and analysing service hazards, which we have called 

Service Hazard Analysis (SHA). SHA addresses individual services, considering 

their associated hazards, the effects of these hazards at different levels and the 

severity classification of these effects. Based on these factors, SHA provides 

suitable actions or recommendations for creating safety requirements for the 

service. 



86 
 

In terms of the “V” safety lifecycle model discussed in Chapter 2, we adopt this 

technique to consider early lifecycle hazard and risk assessment. At this stage 

of the conceptual design, the analyst has to consider broad hypothetical failure 

types, since the system has not yet been implemented and detailed hazard 

analysis is therefore not possible. These failure types are generic and consider 

issues such as the complete absence of the service, unintended service 

provision or incorrect service operation. Each of these failure types will have to 

be interpreted and classified in the specific context in which the system is used.  

In summary, in our framework, SHA provides a list of service hazards, their 

safety classification and a set of requirements needed for managing those 

hazards through subsequent design, development and deployment activities. 

SHA is described in detail in Chapter 4. 

3.4.2. Safety Analysis of SOA Processes  

In order to identify and assess the design failure modes that can contribute to 

service hazards, we have adapted the SHARD technique to provide a means for 

understanding detailed service failures. We call this technique Service Failure 

Analysis (SFA). 

SHARD, which provides the basis for SFA, is one of several software and 

hardware safety analysis techniques which address information and control 

flow and intended behaviour and how failures within information flows in 

particular can be lead to hazards (72). SHARD is a variant of the hazard and 

operability study (HAZOP) technique (119). In our framework, SHARD has 

been adapted to analyse the flow of information between the Tasks 

represented within the SOA processes (captured in the BPMN models). The 

analysis identifies a series of failure modes, and is driven by the application of a 

set of guidewords to each information flow. The guidewords are omission, 

commission, early, late and value. These guidewords are used to define the 

types of failure modes that may occur during the execution of the SOA process. 

Each of these failure modes is then associated with specific service faults linked 

to existing SOA fault taxonomies (i.e. potential causes). It then identifies the 

effects of the flow failures. The output of this analysis is a set of derived safety 

requirements.  
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More specifically, SFA starts by defining the deviations that could potentially be 

exhibited in behavioural SOA processes. These deviations are identified by 

applying and interpreting the abovementioned guidewords against information 

flows defined between the Tasks modelled in BPMN. To make the analysis 

specific to SOA failures, the causes of each potential deviation is linked to a 

specific type of fault as defined in the SOA fault taxonomy used in this thesis 

(Chapter 4). Next, the impact of each flow deviation is assessed in terms of the 

contributions that it could make to the service hazards (i.e. as identified in 

SHA). Finally, SFA produces detailed safety requirements and design measures 

for potentially meeting these requirements i.e. in the form of specific SOA 

design tactics. These tactics are based on existing safety tactics in the software 

architecture literature or SOA-specific dependability tactics (e.g. which are 

centred on the use of service redundancy, diversity, graceful degradation, 

monitoring and containment) (120). 

3.4.3. Use of SOA Fault Taxonomies in SFA 

A typical SOA has five major steps in its execution, namely: service publishing, 

service discovery, service composition, service binding and service execution. 

Each of these steps may be exposed to faults when running an SOA-based 

system. If faults are not detected, they may lead to failures at the service and 

system level (some of which are hazardous). The SOA literature covers ranges 

of faults identified and categorised by the community (i.e. SOA-specific faults 

rather than general system faults). One of the most thorough fault taxonomies 

for SOA was defined by Bruning, Weissleder and Malek (121). This taxonomy is 

well structured and categorises faults based on the SOA lifecycle phase. Fault 

types in the fault taxonomy are used in our framework as prompts or hints for 

safety analysts when performing SFA rather than as an exhaustive list of all 

possible SOA faults. 

3.5 SOA Safety Cases 

Safety certification often requires a safety case to be constructed in parallel to 

the development of a safety-critical system (14). In this section, we discuss the 

approach we developed to constructing SOA safety cases using the modular 

and pattern extensions of GSN (99). We use the Goal Structuring Notation 
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(GSN) (97) to define modules and patterns which capture the different 

argument structures for assuring services and their design and constrain 

variation in SOA safety cases. The modular safety case and catalogue of 

argument patterns we have developed for SOA are introduced in the next two 

sections and described in detail in Chapter 5. 

3.5.1. Modular Safety Case Development for SOA 

The SOA safety case architect plays an important role to put together 

information regarding the safety conditions and safety requirements, based on 

the SOA safety analysis described in Section 3.4 above, in order to capture the 

safety reasoning and provide assurance about the safe behaviour of the SOA-

based system. In order to improve traceability, it is desirable for a safety case 

to have a clear correspondence with the design of the system. Essentially, an 

SOA is a modular architecture, where each service represents a separate high-

level module with defined interactions. In this thesis, we adopt the notion of 

modular safety cases and examine how modularity in the assurance case can 

correspond to the modularity in the design of the SOA. 

More specifically, the Goal Structuring Notation (GSN) is used to represent a 

series of safety argument modules (93). A GSN argument module is a self-

contained structure which represents the argument relating to a specific aspect 

of the safety of the system and the evidence which supports the argument. A 

modular safety case comprises several linked argument modules, each 

concerned with a discrete element of the system, which combine to provide 

assurance for the system as a whole. Modularity in the definition of services in 

SOAs lends itself to the concept of modular safety cases. Services and 

participants are self-contained system elements that interact through 

predefined interfaces (e.g. provided through SLAs). Service owners or 

producers often rely on other services when guaranteeing and providing their 

own services (122). Similarly, claims in certain argument modules can only be 

said to be substantiated (the guarantee clause) if claims or evidence are 

available in other argument modules to offer sufficient support (the rely 

clause). 
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Figure 19: SOA and Modular Safety Case Correspondence. 

 

Figure 19 gives an overview of the key modules in the design and safety case of 

an SOA, as considered in this thesis. We enforce a traceable relationship 

between the high-level SOA design, as captured in SoaML 

(ServicesArchitectures), and the overall SOA safety case, as defined in modular 

GSN. For each service in the SOA, we create a service argument that addresses 

the hazards posed by the service (based on the results of SHA), i.e. the 

argument provides a justification for how the service hazards have been 

managed. Similarly, for each participant, we create a safety argument that 

justifies the contributions that the participant makes to service hazards (based 

on the results of SFA). Furthermore, participants interact through defined SLAs 

in order to provide and consume services. These interactions between 

participants can contribute to safety and therefore their assurance is addressed 

in explicit safety argument contracts.  

3.5.2. Pattern Catalogue for SOA Modular Safety Cases 

As outlined in Section 3.4, the safety analysis of SOA follows a structured, 

though implicit, line of reasoning: an SOA-based system is acceptably safe 

because all credible service hazards have been identified and managed. This is 

supported by the evidence from the analysis of services and their interactions 

provided by SHA. Furthermore, this line of reasoning is supported at a lower 

level through the analysis of the technical failures that contribute to the service 
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hazards.  This is supported by the results of the analysis of tasks and flows 

provided by SFA. 

In this thesis, we propose a set of argument patterns to capture this line of 

reasoning (123). The main objectives are to ensure consistency across modular 

arguments and to allow the safety analyst to reuse the argument patterns as a 

basis for the safety assurance of different SOA-based systems. The argument 

patterns catalogue we propose for SOA safety cases (99) is presented in 

Chapter 5. 

The SOA safety argument patterns catalogue provides framework argument 

structures to address aspects of the safety of using an SOA system within a 

specific safety application. Although the argument patterns in the catalogue are 

separately defined, they are directly related to each other to inform the 

development of an overall modular argument structure. Therefore, the SOA 

argument patterns catalogue includes rules for pattern composition and 

traceability to the architectural design (i.e. SoaML and BPMN models) and 

analysis (i.e. SHA and SFA). 

 

Figure 20: SOA Argument Patterns Catalogue 

The SOA safety argument pattern catalogue developed in this thesis consists of 

three individual arguments and one argument contract (Figure 4). These 

patterns are established according to an overall hazard-directed argument 

(Top Argument), which is supported by a number of Service Arguments, SLA 

Argument Contracts and Participant Arguments. These patterns are composed 
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together to form a complete justification regarding the safety of the overall SOA 

system design. The pattern we have defined enable us to present the argument 

regarding the safety of the SOA system from the perspectives of both the 

Services and the Participants. The SOA safety argument pattern catalogue is 

explained in detail in Chapter 5. 

3.6 Automated Support and Tooling  

This section presents an overview of the automated support that was 

developed for the safety analysis and assurance of SOA and the tolling 

environment used to implement it. This covers the three main elements of our 

SOA safety assurance framework: modelling, safety analysis and safety cases. 

Figure 5 shows an overview of the integrated tools that have been used to 

support our SOA safety assurance framework. The main capabilities of the 

tooling environment are as follows: 

1. Create SoaML and BPMN models 

2. Create and integrate SLAs into the SoaML models 

3. Integrate BPMN and SoaML models 

4. Execute BPMN models 

5. Embed SHA results into the SoaML models 

6. Embed SFA results into the BPMN models 

7. Create GSN-based arguments and patterns 

In order to represent SOA, we implemented most of the models in Eclipse 

(124). Eclipse is an open source Integrated Development Environment (IDE) 

platform that provides support for creating, deploying and managing software, 

and which can be extended in terms of frameworks, runtimes or tools. For 

service modelling, the SoaML plugin is the tool used to model SoaML inside 

Eclipse. It was extended from Papyrus (125), which is an Eclipse plugin for 

creating UML models such as SysML, UML and UML profile. For BPMN 

modelling, Activiti Business Process Management (BPM) was selected. Activiti 

BPM is an open source and lightweight workflow platform for BPMN that 

supports BPMN 2.0 specification for modelling and execution. (126).  
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Figure 21: Overview of SOA Safety Assurance Tools 

To create a business process, Activiti BPM provides solutions based on an 

Eclipse plugin and a web-based modeller called Activiti Modeller. The Activiti 

Engine can be used to make the business process executable. Moreover, Activiti 

has an Activiti Explorer which is a web application for testing or simulating 

instances of business processes. These executable features are useful for the 

analysis of the dynamic processes underlying the SOA architecture.  

In order to support the SOA Safety Assurance Framework presented in this 

thesis, we implemented an integration basis between SoaML and BPMN models 

in order to improve the traceability between the design of the services (mainly 

structure) and their underlying processes (mainly behavioural). We also 

extended the Activiti modelling environment with capabilities to support the 

documentation of the SLAs for services and the results of SHA and SFA by 

providing automated means for displaying the safety analysis for both services 

and flows between tasks.  

3.7 Summary  

In this chapter, we introduce a conceptual framework for SOA safety assurance 

and the tooling we have developed to support it. The framework defines how 

SOA system modelling, safety analysis and safety certification captured in such 

a way that they can be integrated with each other. The chapter introduces the 

modelling languages and approaches that the framework uses for specification 

of the services and dynamic processes in SOA-based systems. It introduces 

methods for identifying service hazards and potential failure behaviour in an 
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SOA system design.  It also proposes the use of GSN modules and patterns to 

define the different argument structures for assuring services and their design 

and constrain variation in SOA safety cases. The last section presents an 

overview of the automated support that was developed and the tooling 

environment that was used for the safety analysis and assurance of SOA.  

Subsequent chapters of this thesis examine the elements of the framework in 

more detail. In the next chapter, we consider the two SOA safety analysis 

techniques that this thesis has adapted: SHA and SFA. 
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Chapter 4 

 

4. SOA Safety Analysis 
 

 

4.1 Introduction 

In this chapter, we propose a process for the safety analysis of SOA that is 

integrated within the engineering of service-based systems. The safety analysis 

techniques presented here capture and examine hazards and failure 

behaviours relating to services and tasks, respecting the ways in which these 

services and tasks are defined in the SOA context. The techniques are 

illustrated using a real-world case study from the healthcare domain. 

The SOA safety analysis is an essential stage in the definition of the SOA safety 

requirements. Similarly, producing these requirements successfully can 

provide useful input to an integrated and verifiable approach to assuring the 

safety of the SOA system. 

This chapter presents two safety analysis techniques for examining an SOA 

design and generating the necessary safety requirements: Service Hazard 

Analysis (SHA) and Service Failure Analysis (SFA). The safety requirements 

generated from this analysis provide the basis for integrating safety 

considerations into the design of the system. For example, issues raised during 

the analysis can be used to inform the choice of of architectural tactics used in 

design. The analysis also emphasises the interactions between services and 

tasks in order to identify failures in the behaviour of the interactions which 

could contribute to service hazards within the service-based system, and thus 

potentially to accidents. The results of these safety analyses should help 

prevent the occurrence of failures and hazards by defining and enforcing a set 
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of Service Safety Requirements (SSRs) at the service level and Derived Service 

Safety Requirements (DSSRs) at the more detailed design level (e.g. tasks and 

flows implementing services). 

As described in Chapter 3, this thesis proposes a framework for modelling the 

design and analysing the safety of SOA systems and for providing assurance 

that the system is acceptably safe. In this chapter, we consider the 

identification of potential safety deviations that are of interest in an SOA-based 

system and suggest suitable mitigation design measures for addressing these 

deviations.  

This chapter is organised as follows. Section 4.2 introduces a case study, which 

is used to illustrate and evaluate the SOA analysis methods we propose. Section 

4.3 provides a detailed explanation of SHA, with reference to its application in 

the case study. Section 4.4 discusses SFA and how it has been applied in the 

case study. Section 4.5 describes the implementation of these SOA safety 

analysis techniques in the tool-suite developed in this research. 

4.2 SOA Healthcare Case Study 

An SOA provides a “paradigm for defining how people, organizations, and 

systems provide and use services to achieve results” (2). For healthcare services, 

the SOA paradigm can assist in the assessment of patient safety, in which 

accidents predominantly occur as a result of a combination of human, 

technological and organisational failures (127).  SOA-based systems can lead to 

people being harmed or property being damaged. For example, patients might 

be harmed due to loss of their health records.  

The first case study undertaken for this thesis was the analysis of part of an 

ambulance system. The case study includes a general overview of the 

ambulance and Electronic Health Record (EHR) services in the healthcare 

domain. The system focuses on one medical pathway that considers the 

processes and services that are used to transport pregnant women. These 

processes and services were adapted from the UK National Health Service 

(NHS) Map of Medicine (128). The ambulance system is based on the 

description provided in (129) (130). In this study, we have performed 
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additional modelling beyond that presented in in this Chapter (please see 

Appendix A). Also, we have not covered other medical processes which are out 

of the scope, e.g. childbirth services.  

The objective of this case study is to provide rapid feedback on the techniques 

we have developed, and to also illustrate the application of the safety analysis 

methods and safety case approach. The case study is concerned with three 

categories of service: ambulance, electronic health records and childbirth 

services. These have been used to provide 10 detailed services within the 

system, which are as follows:  

 Request Ambulance 

 Dispatch Ambulance 

 Update Status 

 Request Record 

 Provide Patient Record 

 Update Health Record 

 Retrieve Health Record 

 Pick up Patient 

 Examine Patient  

 Drop off Patient.  

The following subsections provide an overview of the three main categories of 

service used in this case study. 

4.2.1 Ambulance Services 

Ambulance services can be used to help people with serious and life-

threatening medical conditions. They can provide a range of urgent healthcare 

and transport services, including acute care of patients who require help 

without a previous medical appointment. The crews within the Ambulance 

service include a range of medical staff, e.g., emergency care assistants and 

paramedics (131). Ambulance services often use a range of vehicles to respond 

to an emergency in the quickest possible time (132).    

In our case study, we assume that initial medical emergency calls are dealt with 

by ambulance service operators (133).  The call centre records the call and 
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captures the following information: name of patient, contact telephone number, 

address of patient, destination address and brief details of the patient’s 

condition. This information is then transmitted to the ambulance region 

nearest to the patient for an ambulance to be dispatched. The regional 

ambulance centre receives the request and sends a vehicle and a crew to the 

patient, having selected the most appropriate service level: Immediate (i.e. life-

threatening) and Urgent (i.e. serious but not life-threatening) (134). Next, the 

system specifies the location of the patient on a map and monitors the vehicle’s 

progress towards the destination via online messages transmitted by each 

vehicle every 13 seconds (with the potential for the use of radio 

communication as a backup measure). The ambulance crew confirms that the 

vehicle is on its way. At the same time, the ambulance crew requests that the 

patient record be retrieved through the EHR service.  

4.2.2 EHR Services 

EHR services play a very important role in modern healthcare. Their main 

function is to capture, store and supply patients’ records, including personal 

and medical information (e.g. data related to treatments and 

medication).  There are a number of definitions for EHR. The US Institute of 

Standards and Technology defines an EHR a “longitudinal collection of patient-

centric health care information available across providers, care settings, and 

time. It is a central component of an integrated health information system” (135). 

One of the benefits of EHR is to enable healthcare providers to share, store and 

update patient information in order to capture care history (136).  

In our case study, the risks associated with EHR are mainly related to retrieving 

and updating patient information. This service can help users access the system 

and retrieve patient's EHR and update their records. The risks relate to 

conditions such as lack of information, incorrect information or late arrival of 

information.  

4.2.3 Childbirth Services 

Our case study is concerned with the transportation of pregnant women by the 

Ambulance Service. Every pregnancy is different and there is a wide variation 

in the length of labour (137). For first-time mothers, labour often takes 
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between 10 and 20 hours. For some, however, it lasts much longer, while for 

others it may be over much sooner. Labour generally progresses more quickly 

for women who already have children. 

In our case study, there are risks associated with the transport of pregnant 

women in urgent cases. The principal risks are concerned with timing. In the 

first place, the fact that the emergency services have been contacted suggests 

that the delivery time is very close and there is a medical emergency. The 

ambulance station schedules a vehicle to go and collect the patient and take her 

to the hospital. The crew retrieves the patient information from EHR service. 

They examine the patient, check the maternal and foetal condition and 

transport the patient to the labour ward. 

4.3 Service Hazard Analysis (SHA) 

In this section, we introduce and describe SHA as the main safety analysis 

method for examining services in SOA and generating the necessary safety 

requirements. We also show how SHA has been applied to our healthcare case 

study. 

4.3.1 Method 

Safety analysis processes are centred on identifying, analysing and managing 

hazards. For SOA, identifying the hazards associated with the services is 

essential for defining the service safety requirements, which should influence 

and potentially drive the architectural design. In this section, the identification 

and classification of hazardous service failures is carried out by applying SHA  

to a high-level representation of the SOA in SoaML. Table 10 shows a tabular 

representation of the output of the analysis. The goal of SHA is to identify and 

clarify each failure mode associated with a service based on the defined 

deviations.  

For each failure mode, SHA also identifies the potential effects of failure and 

determines the severity of these effects. The last two columns in Table 10 

provide the final output of the SHA which is the starting point to generate and 

provide recommendations for the Service Safety Requirements (SSRs) to 
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mitigate the potential failures, and to allocate them to services, tasks and 

participants.  

Service  Failure Mode 

a) not 
provided 

b) provided 
when not 
required 

c) provided 
incorrectly 

Effect Severity SSR Mitigation 

Service 
name  

The specific 
failure modes 
associated with 
the service based 
on the defined 
deviations 

The specific 
effects 
associated 
with the 
failure mode  

The 
severity of 
each 
service 
failure 
mode 
effect 

 

Definition of 
service safety 
requirements 

 

Suitable 
recommendati
ons for service 
safety 
requirements  

Table 10: SHA Table Template 

SHA consists of six steps:    

(1) Identify a service; 

(2) Identify the service failure modes; 

(3) Determine the safety effects of each service failure mode; 

(4) Determine the safety severity and classification of each service failure 

mode; 

(5) Provide service safety requirements; 

(6) Identify potential mitigation measures for meeting the service safety 

requirements. 

Step 1 - Identify a service. High-level services are captured in SoaML 

ServicesArchitecture models. The SoaML ServicesArchitecture model describes 

both Participants and Services and their interactions. A SoaML 

ServicesArchitecture model describes how Participants collaborate by 

providing and consuming Services to achieve goals. These collaborations can be 

captured in service Contracts. In this context, a service Contract is defined by 

means of an SLA, which describes a mutual agreement between two or more 

parties (138). These agreements are captured in the form of SoaML 

ServiceInterfaces between Participants.  
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Step 2 - Identify the service failure modes. For each service (identified from 

the SoaML ServicesArchitecture), the analyst considers the effects of three 

broad hypothetical failure modes: 

 Service not provided when required; 

 Service provided when not required; 

 Incorrect service. 

The service can be considered as a potential source of hazards in the SOA 

system and for every failure mode it is necessary to consider more than one 

interpretation (72). For instance, the first failure mode ‘service not provided’ is 

easily interpreted for responsive services (such as for requesting ambulances 

or allocating drivers to ambulances). From the perspective of on-going or 

regular services (such as monitoring the condition of patients or tracking 

ambulance locations), the ‘service not provided when required’ failure mode 

requires a more specific interpretation, e.g. failing to monitor the condition of 

patients every 3 minutes or failing to update ambulance locations every 5 

seconds.  

The failure mode ‘service provided when not required’ deals with 

uncommanded requests, e.g. requesting an ambulance when not required. 

From the perspective of on-going or regular services (e.g. maintaining available 

call centres), this failure mode might not be applicable or might be hard to 

interpret.  

The third failure mode (incorrect service) covers a diverse set of behaviour. 

Possible explanations include wrong timing (i.e. too late or too early), 

incompleteness, asymmetry or undesirable side effects. 

Eventually, these failure modes should be defined with enough detail in order 

to enable the generation of the service safety requirements and potential 

mitigation measures (e.g. by providing enough contextual information to make 

a specific interpretation). 

Step 3 - Determine the safety effects of each service failure mode. The 

adverse consequences of the failure modes should be determined, taking 

different context-relevant factors into consideration. In terms of determining 
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the effects of service failures, a useful feature of the SoaML 

ServicesArchitecture models is that they include a representation of service 

interaction and the Participants that use these services, which makes it easier 

for the analyst to trace the effects of a particular failure mode. The analyst has 

to consider the effects of the failure modes on the system and on its 

environment. The analyst should consult people with operational experience to 

assist in classifying the failure mode effects.  

In the case of the system level SHA, the effects of failure modes may be 

observed within the system level, or the analyst may have to consider 

combined effects of systems with their environment in order to determine the 

effect of the system failure mode. 

Step 4 - Determine the safety severity and classification of each service 

failure mode. We determine the severity and classification of the identified 

failure modes by analysing accident and incident data, reviewing regulatory 

guidance material, using previous design experience, and consulting with 

system developers and operators.  

The process of analysing and classifying the failure modes should be careful 

documented, and supporting materials (analyses, studies, tests, etc.) used 

should be preserved to ensure traceability for future reference. The safety 

classification should be defined (e.g. ‘Catastrophic’, ‘Severe-Major/Hazardous’, 

‘Major’, ‘Minor’ and ‘No Safety Effect’), typically based on Hazard/Risk Matrices 

(HRM) defined in the system’s domain standards and regulations (139).       

Step 5 -Provide Service Safety Requirements (SSRs). Based on the identified 

failure modes and their classification, recommendations should be generated. 

Preferably, these recommendations should take the form of SSRs, where the 

rigor/integrity with which the requirements need be met should be 

proportionate to the severity of the failures (i.e. higher degrees of severity 

require more stringent integrity requirements and more rigorous processes) 

(140).  

Step 6 - Identify potential mitigation measures for meeting the SSRs. In 

order to help influence the design process, mitigation measures should be 
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identified that have the potential for meeting the SSRs identified in the 

previous step. For example, in order to ensure that hazardous behaviour is 

detected and controlled, the system might be designed to include active 

monitoring and cross-checking of the state of a service. Mitigations should 

build on best practice in safety and dependability design, e.g. existing work on 

tactics for fault tolerant services (120). 

4.3.2 Healthcare Case study: SHA 

In this section, we show how we applied the SHA method to the healthcare case 

study that we introduced briefly in Section 4.2. The aim of the case study is to 

illustrate the use of the method, understand how the SSRs can be developed in 

a systematic and traceable manner and provide a preliminary evaluation.    

4.3.2.1 System Overview      

This description of the system and all of the other information presented about 

the system and its design, including all design diagrams, are based on (128). 

The system architecture model in Figure 1 shows the structural architecture of 

the system. It basically covers the services used (i.e. produced and consumed) 

from the point at which a phone call is made to request an ambulance (for a 

pregnant woman) to the point at which the patient is admitted to a hospital 

(labour ward).  Another set of models was created to capture subsequent 

stages in the patient’s treatment e.g. foetal monitoring, first and second stages 

of labour, caesarean section and postnatal care. These models and documented 

in Appendix A for the sake of completeness, but are not analysed further in this 

thesis.  

In Figure 1, we provide a design of the system which focuses on the 

interactions between services and Participants. Specifically, the scenario 

focuses on the Ambulance System architecture, and identifies five Participants 

connected by ten SoaML Collaboration Uses, i.e. services. These Collaboration 

Uses are defined in terms of service contracts, which are: Request Ambulance, 

Dispatch Ambulance, Update Status, Request Record, Provide Patient Record, 

Update Health Record, Retrieve Health Record, Pick up Patient, Examine 

Patient and Drop off Patient. In this section, we show how SHA has been 
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applied to two of the services: Dispatch Ambulance and Retrieve Health Record. 

The analysis of additional services is documented in Appendices B and C. 

 

Figure 22: SoaML Service Architectures Model for SOA Healthcare  

The Ambulance System architecture extract presented in Figure 23 shows how 

the Dispatch Ambulance Collaboration Use is defined to provide the service. 

Two Participants, Call_centre and Ambulance crew, have been specified, 

connected by the Dispatch Ambulance service contract. These two Participants 

represent the roles that are connected to this service. 

 

Figure 23: SoaML ServicesArchitecture Model (Dispatch Ambulance) 

The description of the Dispatch Ambulance service is provided by means of a 

Service Level Agreement (SLA). The SLA is defined using the template, shown 

in Table 11, which has been adapted from (141).  
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Attribute Description Source 

Name The name of the SLA artefact, defined during 
SoaML service modelling 

SoaML Service Contract 
Architecture  

Provider  A person, department or organization that 
provides the service 

SoaML Participants 
Architecture  

Consumer  A person, department or organisation that uses 
the service 

SoaML Participants 
Architecture  

Start time The start time of the SLA validity period SoaML 
ServicesArchitecture  

Due time   The end time of the SLA validity period SoaML 
ServicesArchitecture  

Duration The length of time that the service should last for  SoaML 
ServicesArchitecture   

 (Pre-
condition) 

The condition that must be fulfilled before the 
service can start 

SoaML Service Contract 
Architecture 

 (Post-
condition) 

 The condition that must be fulfilled after the 
service is completed 

SoaML Service Contract 
Architecture 

Contribution 
to Safety  

Required to complete an incident report SHA 

Table 11: SLA Template 

Table 12 presents the SLA for the Dispatch Ambulance service. For instance, 

the Participants, Call_centre and Ambulance crew, represent the consumer and 

provider for the service. 

Attribute Description Source 

Name Dispatches Ambulance  SoaML Service Contract 
Architecture for the 
ambulance system 

Provider   The Ambulance crew department that 
provides the service 

SoaML Participants 
Architecture for the 
ambulance system 

Consumer  The Call_centre that uses the service SoaML Participants 
Architecture for the 
ambulance system 

Start time Requesting an ambulance by the Call_centre 
(e.g. 11:00:00 AM) 

SoaML 
ServicesArchitecture for 
the ambulance system 

Due time Dispatching of the ambulance (e.g. 11:00:30 
AM) 

SoaML 
ServicesArchitecture for 
the ambulance system  

Duration 30 seconds SoaML 
ServicesArchitecture for 
the ambulance system  
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 (Pre-
condition) 

 

Call_centre has received the ambulance 
request information including the patient’s 
name, contact telephone number, address of 
the patient, destination address and brief 
details of the patient’s condition. 

SoaML Service Contract 
Architecture for the 
ambulance system 

 (Post-
condition) 

The nearest available ambulance has been 
dispatched and the Call_centre has received 
an expected arrival time 

SoaML Service Contract 
Architecture for the 
ambulance system 

Contribution 
to Safety 

Overall severity is major (see SHA Table 4) SHA 

Table 12: Dispatch Ambulance SLA 

Table 13 shows an extract from the SHA analysis for the Dispatch Ambulance 

service. The analysis establishes the potential safety criticality of the Dispatch 

Ambulance service, based on the severity of the worst credible effects of the 

identified failure modes. The ‘SSR’ column details the stringent safety 

requirements which are allocated to the service as a result of the analysis, and 

the ‘Mitigation’ column indicates design and operational measures which are 

proposed to satisfy these requirements. 

Service  Failure 
Mode 

Effect Severity SSR Mitigation 

Dispatch 
Ambulance  

 

Context: 
the patient 
has given 
birth before 
the 
ambulance 
arrives, and 
is actively 
bleeding 
following 
the birth 

 

Ambulance 
not 
dispatched 

Death Major  

 

The failure mode 
‘ambulance not 
dispatched’ shall 
be prevented or 
mitigated 

Active 
monitoring and 
cross checking 
between 
requested and 
dispatched 
ambulances 

Ambulance 
dispatched 
when not 
required 

N/A  

No direct safety 
effects but 
waste for 
critical services 

N/A 

 

None. None. 

Ambulance 
dispatched 
later than 
intended 

Severe 
morbidity 
(hypovolaemia, 
renal failure, 
cardiac arrest, 
disseminated 
intravascular 
coagulopathy…) 

Major The failure mode 
‘ambulance 
dispatched later 
than intended’ 
shall be 
prevented or 
mitigated  

Active 
monitoring of 
timing targets 
and strategies 
for recovery 
from timing-
related failures  

Ambulance 
dispatched 
to the 
wrong 
address 

Severe 
morbidity 
(hypovolaemia, 
renal failure, 
cardiac arrest, 
disseminated 
intravascular 

Major The failure mode 
‘ambulance 
dispatched to the 
wrong address’ 
shall be 
prevented or 
mitigated 

Early address 
cross-checking 
and confirmation 
between 
requested and 
dispatched 
ambulances 
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coagulopathy…) 

Table 13:  Dispatch Ambulance SHA 

The first failure mode, ‘ambulance not dispatched’, is straightforward as this 

service is responsive in nature, i.e. a demand for an ambulance vehicle 

provided by an ambulance crew. The worst credible effect here as estimated by 

the medical expert, consulted in the process of this case study, is death and the 

severity is major as defined in the Health and Social Care Information Centre 

standard used for Health IT safety assurance in the NHS (142).  

The defined SSR specifies the need to eliminate or mitigate this failure mode 

given its potential severity. The mitigation here, i.e. active monitoring and 

crosschecking, is considered appropriate, considering the identified potential 

effects of the failure (i.e. patient death) and the classification (Major).  

Another failure mode that may occur is, ‘ambulance dispatched when not 

required’. In this case there are no safety effects within the scope of the case 

study scenario (potentially the fact that an ambulance is unnecessarily 

occupied on this call means that it is unavailable for an emergency elsewhere).  

A third potential hazardous failure mode is ‘ambulance dispatched later than 

intended’, which could arise from a timing-related failure and will result in 

delays to the patient’s medical treatment. The potential effects, as identified by 

our clinical expert, are severe morbidities such as hypovolaemia, renal failure, 

cardiac arrest and disseminated intravascular coagulopathy. The severity is 

classified as major and the mitigation is active monitoring of timing targets and 

strategies for recovery from timing-related failures. 

 The fourth failure mode is ‘ambulance dispatched to the wrong address’, which 

may lead to delays in treatment. The effects identified and the severity 

classification are similar to those in the previous step but the mitigation is early 

address cross-checking and confirmation between requested and dispatched 

ambulances. 

Table 14 and Table 15 show the SLA and the SHA results for the ‘Retrieve 

Health Record’ service. For this service, the two Participants are the EHR and 

Ambulance crew and the duration of the service is 20 seconds. 
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Attribute Description Source 

Name Retrieve Health Record SoaML Service Contract 
Architecture for the 
ambulance system 

Provider   The EHR provides the service  SoaML Participants 
Architecture for the 
ambulance system 

Consumer  The ambulance crew uses the service  SoaML Participants 
Architecture for the 
ambulance system 

Start time The point at which a request for information 
is sent by the ambulance crew (e.g. 11:00:00 
PM) 

SoaML ServicesArchitecture 
for the ambulance system 

Due time   The point at which the requested 
information is received by the ambulance 
crew (e.g. 11:00:20 PM) 

SoaML ServicesArchitecture 
for the ambulance system  

Duration 20 seconds SoaML ServicesArchitecture 
for the ambulance system  

 (Pre-
condition) 

 

The system contains the correct patient 
details 

SoaML Service Contract 
Architecture for the 
ambulance system 

 (Post-
condition) 

Correct health records for the patient have 
been received by the ambulance crew  

SoaML Service Contract 
Architecture for the 
ambulance system 

Contribution 
to safety  

Overall severity is considerable (see SHA 
table 6) 

SHA 

Table 14: SLA for the Retrieve Health Record Service  

Although the potential severity of failures of the Retrieve Health Record service 

is considerable, the worst credible consequence is not patient death, as it is 

assumed that the ambulance crew can recover from the failure modes 

associated with the Retrieve Health Record service. Also, in order to mitigate 

the inability to retrieve health records through the electronic system, the 

service relies on other communication means, e.g. radio communication. 

Services 

 

Failure 
mode 

Effect Severity 

  

SSRs 

 

Mitigation 

Retrieve 
Health 
Record  

EHR not 
retrieved  

Delay in 
treatment and 
increased 
complication  

 

Considerable The failure 
mode ‘EHR 
not 
retrieved’ 
shall be 
prevented or 
mitigated.  

Use of 
redundancy   
through fitting 
an additional 
flow to 
provide 
patient 
information 
from another 
source 
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EHR 
retrieved 
when not 
required 

N/A  

No direct effect 
on safety but 
waste for 
critical services 

N/A None None 

EHR 
retrieved     
later than 
intended 

Delay in 
treatment and 
increased 
complication  

Considerable The failure 
mode ‘EHR 
retrieved     
later than 
intended’ 
shall be 
prevented or 
mitigated.  

Active 
monitoring of 
timing targets 
and strategies 
for recovery 
from timing-
related 
failures 

Incorrect 
record 
retrieved 

Incorrect 
treatments and 
medicines 
provided 

Considerable The failure 
mode 
‘inaccurate 
records 
retrieved’ 
shall be 
prevented or 
mitigated.  

Active 
monitoring 
and cross-
checking of 
the 
information 
retrieved 

Table 15: Retrieve Health Record SHA 

4.4 Service Failure Analysis (SFA) 

In this section, we introduce and describe SFA as the safety analysis method for 

examining the flow of the Tasks that implement the SOA behavioural process 

and for generating the safety requirements relating to task flows. More 

specifically, the objective of SFA is to examine the detailed flow between the 

service tasks and identify how failures, specifically interaction failures, can 

contribute to service hazards. We also show how SFA is applied to our 

healthcare case study. SFA extends SHARD (Section 2.3.1.3.) with three main 

aspects:  

- It provides a traceable relationship between the causes of the failures 

and existing SOA fault taxonomies. This is discussed in Section 4.4.2. 

-  It provides an explicit means for defining derived service safety 

requirements as explained in Section 4.4.1. (Step 5). 

- Finally, it offers a way for capturing tactics and design decisions for 

potentially meeting these derived safety requirements in the context of 

the SOA design. This is discussed is more detail in Section 4.4.1. (Step 6). 
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4.4.1 Method 

SFA is centred on defining the deviations that can be exhibited in service tasks 

and understanding the causes and safety effects of those deviations. Based on 

these causes and the severity of the effects, SFA generates a set of safety 

requirements and recommends design patterns for mitigating the task 

deviations and therefore influences the detailed architectural design of the 

system. In SFA, BPMN models are used for representing the low-level design of 

the SOA. In particular, these models show the interactions of the system 

behaviour in the form of information flow between service tasks.  

Based on the BPMN models, SFA uses a set of guidewords to consider potential 

deviations from the intended behaviour, i.e. failure modes, in the flows between 

tasks. The guidewords help ensure coverage of the potential failure modes in 

the context of the detailed design of the behavioural aspects of the SOA. When 

examining the causes of the deviations, SFA uses the SOA fault taxonomy 

developed by (143). This fault taxonomy is well structured and categorises 

service faults based on the SOA lifecycle phase in which they are generated, e.g. 

specific faults related to service execution and composition. 

SFA results are represented in a tabular format as shown in Table 16. The 

columns should include ID (Flow), Guide word, Deviations, Possible Causes, 

Effects, Derived Service Safety Requirements (DSSRs) and Mitigations.  

ID 
Flow 

Guide 
Word 

Deviation 
Failure 
Mode 

Possible 
Causes 

Effects DSSRs Mitigation 

The 
flow 
link 

These 
describe the 
potential 
deviations 
from the 
intended 
behaviour in 
the flows 
between 
tasks  

The 
specific 
flow 
failure 
modes 
associated 
with the 
task, based 
on the 
fault 
taxonomy 

The 
potential 
causes of 
each flow 
failure 
mode of 
the 
specific 
tasks 
associated 
with the 
flow 

The 
specific 
effects 
associated 
with the 
task, based 
on the 
fault 
taxonomy 

Definition 
of DSSRs 

Recommendations 
for design patterns 
and tactics for 
meeting the DSSRs 

Table 16: SFA Table Template 
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SFA consists of six steps:  

(1) Identify a flow between two tasks;  

(2) Identify flow failure modes; 

(3) Determine the potential causes of each flow failure mode;  

(4) Determine the potential effects of each flow failure mode;  

(5) Define DSSRs; and  

(6) Identify potential mitigation measures for meeting the DSSRs. 

Step 1 -Identify a flow between two tasks. We use a behavioural model of the 

SOA as represented in BPMN (68) to identify the flows. BPMN provides the 

capability to communicate and represent internal procedures, based on 

Processes, in a graphical and structured notation. Typically, these Processes 

represent workflows of connected Tasks (i.e. atomic Activities), grouped into 

Swimlanes (i.e. a container for organising Activities). Further, each Participant 

in the model is represented as a Swimlane in BPMN.  This step in SFA involves 

the selection of a link between two BPMN Tasks that captures a flow in terms of 

inputs, outputs, data, sequence and timing. 

Step 2 -Identify flow failure modes. This step uses a number of guidewords, 

based on the SHARD guidewords, to determine the ways in which the selected 

flow can deviate from its intended usage. The failures derived from the use of 

each of these guide words need to be presented in the context of the detailed 

SOA design. The generic guidewords are taken from (72), but require some re-

interpretation for use in the context of SOA:  

 Omission: no delivery through the flow between the tasks (no 

communication); 

 Commission: delivery through the flow between the tasks when not 

required (unintended communication); 

 Early: delivery through the flow between the tasks earlier than intended 

(early communication); 

 Late: delivery through the flow between the tasks later than intended 

(late communication); 
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 Value: wrong delivery of information through the flow between the 

tasks.  

Step 3 - Determine the potential causes of each flow failure mode. Failures 

in flows can be caused by a variety of technical, human and organisational 

events or conditions, or by combinations of such events or conditions. For 

technical causes in particular, we use the SOA fault taxonomy developed by 

(56). This fault taxonomy is well structured and categorises faults based on the 

SOA lifecycle phase in which they can emerge: (1) publishing, (2) discovery, (3) 

composition, (4) binding and (5) execution. The advantage of using these fault 

types is that they are SOA-specific. However, these fault types should be used as 

prompts or hints for safety analysts rather than as an exhaustive list of all 

possible SOA faults. 

Step 4 - Determine the potential effects of each flow failure mode. The 

potential effects associated with the failure types should be recorded and 

examined in terms of the contribution that they can make to the service 

hazards, identified in the SHA, or to a new hazard (i.e. hazards missed during 

SHA). 

Step 5 - Provide DSSRs. Based on the identified failure modes and their 

causes, recommendations should be generated. Preferably, these 

recommendations should be in the form of DSSRs, where the rigor/integrity 

with which the requirements need be met should be proportionate to the 

failures (i.e. higher degrees of severity require more stringent integrity 

requirements and more rigorous processes) (140). Where a failure mode 

contributes to one or more hazards, one or more safety requirements should be 

defined to address the failure mode. 

Step 6 - Identify potential mitigation measures for meeting the DSSRs. 

Design recommendations should be made for addressing the failure modes 

which have been identified during the analysis. These recommendations could 

be based on existing safety tactics in the software architecture literature (e.g. 

(50) and (58)). Importantly, in our approach, we select design approaches 

including detection of, containment of and recovery from identified classes of 
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failure. More specifically, for SFA, we adopt the following categories of design 

tactics (120): 

1. Redundancy - Invokes one or more copy of the same mechanism; 

2. Diversity - Invokes one or more copy of a particular mechanism that 

performs the same function; 

3. Monitoring - Checks the system continuously to identify failures and sends 

alerts; 

4. Diagnosis - Identifies the source of failure; 

5. Masking - Hides the effects of a failure; 

6. Containment - confines a failure to stop its propagation; 

7. Recovery - Erases failure and restores normal operation. 

4.4.2 SOA Fault Taxonomy used in SFA 

In this section, we introduce the SOA fault taxonomy that we use to support the 

choice of mitigation measures in SFA. This SOA fault taxonomy is based on the 

types of fault defined in (144) and (145). As shown in Figure 24, these faults are 

categorised based on the lifecycle phase in which they can occur: Publishing, 

Discovery, Composition, Binding, and Execution. These faults provide the 

analyst with a generic list of potential causes and should be treated as guidance 

rather than as a complete list of all possible causes. 

4.4.2.1 Publishing Faults   

During the publishing phase, faults can occur due to issues related to service 

task description or deployment. 

Faults relating to the service task description occur when problems arise when 

defining the characteristics of the service. Either the service is not completely 

described, or the defined service task. These types of faults may lead to 

problems either during the discovery phase or during the execution phase. 

Faults might also occur when the description of the file is wrong. Format faults 

can occur when the format of a file is incorrect. For example, an XML file might 

not be well formed due to missing tags.  

Faults can also occur when the deployment of a service is incorrect (service 

task deployment faults). For example, a service task deployment fault might 
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occur when the service is deployed without the required resources being 

available. 

 

Figure 24: Taxonomy of SOA-Specific Faults (146) 

4.4.2.2 Discovery Faults   

In the discovery phase, three possible types of fault may occur, namely:  

 Service not found;  

 Wrong service found; and  

 Time out. 

The first of these is the most likely to occur, i.e. the required service task does 

not exist. This can be due to incorrect search criteria being used, or to the task 

not being listed in the lookup service. The second fault type, wrong service 

found, is difficult to detect in this phase but is more likely to be detected in the 

execution phase.  
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The time out fault is a common fault in the discovery, composition, binding, and 

execution phases. Time out is typically caused by the server crashing as a result 

of hardware, software or communication errors.  

4.4.2.3 Composition Faults   

During the composition phase, faults can occur because of invalid composition 

due to missing parts or timed out attempts. Figure 25 provides an example of 

compatible service task failure in which a ‘no valid composition’ fault occurs 

due either to incompatible components or to missing components.  

More importantly for services, composition faults can result from an inability to 

meet contract conditions: pre-conditions, post-conditions and invariants. In our 

work, these conditions are explicitly defined in SLAs (initially defined at the 

service level in the SoaML models and considered in the SHA).  

  

Figure 25: ‘No Valid Composition’ Failure Mode 

4.4.2.4 Binding Faults 

In this phase, the service task consumer and provider negotiate conditions 

needed to execute the task. Types of faults which can arise during the binding 

phase include: 

 Binding denied; 

 Bound to the wrong service task; and  

 Time out. 

The ‘binding denied’ fault can occur when the authorisation for use has not 

been granted by the authorisation component. The ‘bound to wrong service’ 

task is tightly linked to service description faults that occur during the 

publishing phase.  
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4.4.2.5 Execution Faults 

Execution faults occur when the outcome of a service task does not match the 

result expected by the participant. Relevant failure types here include:  

 Incorrect result;    

 Service task crashed; and  

 Time out.   

During execution, the service is run and an incorrect result might occur if the 

wrong service task has been selected. The ‘incorrect result’ fault might arise 

either due to a software fault (service faulty) or to an incorrect input.  Incorrect 

inputs may be caused by conversion faults or by the input range being 

exceeded.  

In the SFA method, the SOA fault taxonomy discussed above (Section 4.4.2) is 

principally used for identifying the causes of the flow failure modes identified 

in Step 2 of the SFA. These causes are linked to a specific type of faults 

identified in the SOA fault taxonomy. The flow failure modes are assessed in 

terms of the contributions that they make to the service hazard failures (i.e. as 

identified in SHA).  

4.4.3 Healthcare Case study: SFA 

In this section, we show how we applied the SFA method to the healthcare case 

study that we introduced in Section 4.2. The objective of the case study is to 

illustrate the use of the method and to provide a preliminary evaluation.  

4.4.3.1 Representing Tasks and Information Flows in the SOA Design 

The modelling presented in this section builds on the results of the SoaML 

modelling in Section 4.3.2.1. We have already specified the Service Contracts 

for the healthcare case study, using SoaML, and have refined these into Service 

Interfaces in the system architecture design in Figure 27. The Service Interfaces 

offer a number of Operations that specify the interactions between the 

Participants of the architecture. In our approach, and in order to integrate the 

SoaML models and BPMN models of the SOA design as shown in Figure 26, we 

link SoaML Operations with BPMN Tasks, enabling traceability between the 
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different models at different abstraction levels (i.e. structural services and 

behavioural service tasks and interactions).  

 

Figure 26: Link between SoaML and BPMN Models 

 

Figure 27: SoaML Service Interfaces Model with Operations 

For example, the Retrieve Health Record service can be divided into a number 

of operations within the SoaML interface model and has been linked to the 

BPMN Tasks, which are as follows:  

 Provide user name and password; 

 Authorise and authenticate; 

 Provide patient name; and 

 Provide patient health record.   
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Figure 28: Tasks in BPMN Model 

Figure 28 presents a more detailed BPMN model of the SOA design, with more 

emphasis on the SOA behavioural processes. BPMN Tasks in these processes 

are mapped into the Operations in the Interfaces provided by each SoaML 

Service, while BPMN Swimlanes are mapped onto the SoaML Participants. SFA 

was applied to every flow between Tasks in the BPMN model. An example is 

shown in Table 17, which shows the results of the analysis of the penultimate 

flow in the BPMN model, from ‘Provide patient name’ to ‘Provide patient health 

record’ (in the context of admission to the labour ward).  The example shows 

how a lack of patient information from the EHR, and more seriously the 

provision of incorrect information, can potentially lead to adverse patient 

complications.  

ID 
(Flow) 

 

Guide 
Word 

Deviation Possible 
Causes 

Effects DSSRs Mitigation 

Flow 
between 
‘Provide 
patient 
name’ 
and 
‘Provide 
patient 
health 
record’ 

Omission No record 
available 

Authentication 
failure or 
request timed 
out (server 
crashed) 

 

Incomplete 
history and 
background  

 

Anaphylaxis- 
unknown 
allergy 
status 

 

The failure 
mode ‘no 
record 
available’ 
shall be 
prevented 
or 
mitigated. 

Use of redundancy 
in data sources for 
health records 
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Commission Patient 
record 
provided 
when not 
requested  

False 
messages 

Description 
incorrect or 
mismatch 

Execution 
fault 
(Incorrect 
result) 

No direct 
safety effects 

 The failure 
mode 
‘patient 
record 
provided 
when not 
requested’ 
shall be 
prevented 
or 
mitigated. 

Monitoring of 
uncommanded 
requests 

Early N/A N/A N/A N/A N/A 

Late Record 
arrived 
later than 
intended 

Failure in 
scheduling 

Time out 
related to 
clock time 
with ripple 
effects on all 
processes  

Overloading 
due to 
dealing with 
backlog 
requests 

The failure 
mode 
‘record 
arrived 
later than 
intended’ 
shall be 
prevented 
or 
mitigated. 

Monitoring of time 
delays and 
recovery by giving 
more priority for 
delayed requests 

Value   Incorrect 
record 
retrieved 

Incorrect 
input or 
conversion 
fault   

Corruption 
message 
execution fault 
incorrect 
result or 
service crash 

Anaphylaxis- 
unknown 
allergy 
status 

 

The failure 
mode 
‘incorrect 
record 
retrieved’ 
shall be 
prevented 
or 
mitigated. 

Data entry cross-
checking, online 
monitoring and 
fault containment 

Table 17: SFA for the Flow between ‘Provide Patient Name’ to ‘Provide Patient Health 

Record’ 

The first identified failure mode (omission) is ‘no record available when 

requested’. Possible causes, as generated from the SOA fault taxonomy, are 

authentication failures and request time out (i.e. due to a server crash). The 

effects might be incomplete history and background, which could result in the 

patient’s suffering anaphylaxis due to unknown allergy status. The mitigation 

for this failure mode is the provision of redundancy in data sources for health 

records. Another failure mode that may occur is revealed through the 

application of the guideword ‘commission’: a record could be sent even though 

it had not been requested. Possible causes for this are false messages, incorrect 

data description, mismatch or incorrect result. Here there are no direct safety 

effects and the mitigation suggested is monitoring the arrival and reporting of 

uncommanded requests.  
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Application of the guideword ‘late’ reveals a possible failure mode in which the 

patient’s record is received later than intended. Possible causes include failures 

in the scheduling system or the clock time on all processes (i.e. timed out 

processes). The effect that the system is likely to become overloaded with a 

backlog of delayed requests. The mitigation suggested is monitoring of time 

delays and recovery of the system by giving delayed requests a higher priority. 

The guideword ‘value’ reveals a potential failure mode ‘incorrect record 

retrieved’ which can result in the patient’s suffering anaphylaxis due to the 

medical staff having no data of a relevant allergy. The mitigation measures 

suggested for this failure mode are cross-checking of data entries, online 

monitoring and fault containment. 

ID (Flow) Guide 
Word 

Deviation Possible 
Causes 

Effects DSSRs Mitigation 

Flow 
between 
‘Dispatch 
ambulance 
and 
‘Receive 
request’  

Omission No request for 
ambulance 
received 

Deployment 
fault (Request 
resource 
missing) 

Service/server 
incompatible 

Task crashed  

Ambulance 
not 
dispatched 

The failure 
mode ‘no 
request 
for 
ambulance 
received’ 
shall be 
prevented 
or 
mitigated. 

Use of 
redundancy 
in data 
sources by Fit 
addition flow 
to the request 

Commission Uncommanded 
request for 
ambulance 
received 

False request, 
incorrect 
request 

Execution fault 
(Incorrect 
result) 

 

No safety 
effect 

 N/A N/A 

Early N/A N/A N/A N/A N/A 

Late Request 
arrived later 
than intended 

Failure in 
scheduling/ 
synchronisation 

Time out 
related to clock 
time with 
effects on other 
tasks  

Ambulance 
dispatched 
later than 
intended 

The failure 
mode 
‘request 
arrived 
later than 
intended’ 
shall be 
prevented 
or 
mitigated. 

Monitoring 
for timing 
failure and 
developing 
recovery 
strategies  

 

Value   Incorrect 
request 

 

Incorrect input 
or conversion 
fault   

execution fault, 

Delay in 
the 
treatment  

The failure 
mode 
‘incorrect 
request’ 
shall be 

Diversity via 
programming 
solutions to 
detect and 
reject 
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incorrect result 
or servicer 
crash 

prevented 
or 
mitigated. 

improper 
values and 
fault 
containment 

Table 18: SFA for Flow between ‘Dispatch Ambulance’ to ‘Receive Request’ 

Table 18 shows another example of the use of SFA for examining the flow 

between the ‘Dispatch Ambulance and ‘Receive Request’ tasks. An important 

issue to note here is that two of the effects highlighted by the analysis, 

‘ambulance not dispatched’ and ‘ambulance dispatched later than intended’, 

are the direct causes of the service hazards identified in the SHA analysis in 

Table 13. This shows the continuity of the safety analysis between SHA, at the 

service level, and SFA, at the detailed design level. 

4.5 Tool Support  

This section describes the implementation of the tool support for the SOA 

modelling and safety analysis which has been described in this chapter, and 

presents the metamodels on which it is based. The tool support environment 

provides the following the capabilities: 

 Create SoaML and BPMN models; 

 Create and integrate SLAs into the SoaML models; 

 Integrate BPMN and SoaML models; 

 Embed SHA results into the SoaML models; 

 Embed SFA results into the BPMN models. 

These capabilities are intended to support the design and safety analysis of the 

SOA system at the high (i.e. services) and low (tasks) levels of the design. The 

following subsections illustrate the implementation and use of these 

capabilities. 

4.5.1 SoaML to BPMN Link 

In this thesis, we implemented most of the models in Eclipse (124) using the 

SoaML and Activiti BPM plug-ins (125) and (126). We have extended the 

SoaML plug-in to perform the traceability with the BPMN models. Figure 29 

shows the implementation of the SoaML-BPMN link within the SoaML 

ServicesArchitecture model through the selection of an appropriate file for the 
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BPMN Model. Then, the specific notation element and the ID are chosen, in 

order to determine the precise Tasks within the BPMN model that are linked to 

the SoaML model.  

 

Figure 29: Link from SoaML ServicesArchitecture Model to BPMN Model 

 

Figure 30: Link from SoaML Interfaces Model to BPMN Model 
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Once the traceability between the SoaML and BPMN models is established, each 

of the Operations within the SoaML Interfaces model can be linked to a specific 

Task in the BPMN model as shown in Figure 30. 

4.5.2 BPMN to SoaML Link  

Traceability between the SoaML and BPMN models can also be established. 

Figure 31 shows the traceability between lower-level design models (BPMN) 

and high-level service models (SoaML ServicesArchitecture model). The link is 

established first within the BPMN model by selecting a SoaML File. Then, the 

specific model (e.g. ServicesArchitecture model), the Stereotype for the model 

(e.g. Participant or CollaborationUse or ServicesArchitecture) and the Name of 

the chosen element are linked to the precise service in the SoaML models. The 

example in Figure 10 shows the link between the ‘Dispatch Ambulance’ Task in 

the BPMN model and the ‘Dispatch Ambulance’ service in the SoaML 

ServicesArchitecture model. 

 

Figure 31: Link from BPMN to SoaML ServicesArchitecture Model 

As before, once the traceability between the SoaML and BPMN models is 

established, Tasks described in the BPMN model can be linked with Operations 

captured in the SoaML Interface model.  
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Figure 32: Link from BPMN model to SoaML Interface Model  

For example, in Figure 32, the ‘Dispatch Ambulance’ Task is linked with the 

‘Dispatch Ambulance’ operation in the SoaML Interface model. 

4.5.3 SLA Implementation 

In this section, SLA is represented as part of the SoaML service contract. The 

example presented in Figure 33 shows the creation of an SLA description and 

the recording of the pre- and post-conditions for the service and the required 

information for SLA.  
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 Figure 33: Representing XML schema for SLA 

4.5.4 SHA Implementation 

This section describes the tool support for SHA as integrated into the SoaML 

models. Figure 34 shows the SHA user interface for populating the service 

safety data. When the user clicks on a service, the SHA results relating to that 

service are displayed and can also be edited. More specifically, in the example, 

the tool displays the data corresponding to the Dispatch Ambulance service 

failure mode ‘ambulance dispatched later than intended’, its effects 

(hypovolaemia, renal failure, cardiac arrest, disseminated intravascular 

coagulopathy…), the severity of the effects (major), proposed mitigations 

(active monitoring of timing targets and strategies for recovery from timing-

related failures) and SSRs (e.g. “ambulance dispatched later than intended shall 

be prevented or mitigated”). 
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Figure 34: SHA implementation 

4.5.5 SFA Implementation 

This section describes the tool support for SFA as integrated into the BPMN 

models. Figure 35 shows the SFA user interface for populating the service 

safety data. When the user clicks on a flow link, the SFA results relating to the 

selected flow are displayed and can also be edited. More specifically, in the 

example, the tool shows the data corresponding to the flow between ‘Dispatch 

ambulance’ and ‘Receive request’ for the guideword ‘Omission’. The deviation 

identified is ‘no request for ambulance received’, the possible causes are 

‘Deployment fault (Request resource missing), Task/server incompatible and 

Task crashed’, the effect is ‘Ambulance not dispatched’, the DSSR is “the failure 

mode ‘no request for ambulance received’ shall be prevented or mitigated” and 

the proposed mitigation is “use of redundancy in data sources by fitting an 

additional flow”. 
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Figure 35: SFA implementation 

4.5.6 Model-Based Support 

This section describes the models and metamodels used to support the tool 

implementation. Figure 36 shows the extension of part of the SoaML 

metamodel by adding BPMN hyperLinks to link the SoaML models with the 

BPMN models, SoaML table to capture the SHA data, and SLA to capture SLA 

pre- and post-conditions. 

 

Figure 36: Extended SoaML ServicesArchitecture Metamodel 

Figure 37 another extension of the SoaML metamdel to create and support the 

link between SoaML participants and BPMN tasks (BPMN hyperlinks). 



127 
 

 

Figure 37: Extended SoaML ServiceInterfaces Metamodel 

Figure 38 shows the extended BPMN metamodel, with the addition of the 

Hyperlinks (to link to the SoaML metamodel) and Bpmntable (to capture the 

SFA results). 

 

Figure 38: Extended BPMN Metamodel 

4.6 Summary  

In this chapter, we have presented an SOA safety analysis process that is 

integrated with the modelling of the SOA design. The safety analysis captures 

and examines the hazards and failure behaviours relating to services and tasks 
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according to the way in which these services and tasks are defined in the SOA 

context. This in turn forms the basis for defining the safety requirements and 

for recommendations for satisfaction of the requirements, which should 

influence and drive the design process. Producing these requirements can lead 

to an integrated and verifiable approach to assuring the safety of the SOA 

system.  We have also introduced a detailed case study from the healthcare 

domain. The case study provides an illustration of the SOA safety analysis 

techniques used (SHA and SFA) and how they are applied and allows for 

evaluation of the techniques defined. Finally, we discussed the implementation 

of the tool support that provides capabilities for SOA modelling, safety analysis 

and traceability management. The information generated from the SOA safety 

analysis process forms the basis for assuring the system by means of safety 

cases as described in the next chapter. 
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Chapter 5 

 

5. SOA Safety Cases  

 

5.1 Introduction 

In Chapter 2, we discussed the background to safety, various safety-related 

issues and certification processes. Safety certification was described as an 

important step in assuring the safety of a system, and the safety case was 

introduced as a means of recording the arguments and evidence necessary for 

assurance and – in some domains – for certification. The role of the safety case 

is to present a clear and defensible argument that the system is acceptably safe 

to operate within a specific application and to indicate the evidence on which 

the argument depends. Modular GSN (99) has been developed as a notation to 

represent safety arguments for modular systems. In this chapter, modular GSN 

will be the basis for our structuring and representation of SOA safety cases. 

Chapter 3 introduced an overview of the SOA safety assurance framework that 

we have developed to assess how an SOA system can meet its safety 

requirements and can be assured by providing an explicit safety case. Chapter 4 

described the detailed safety analysis methods that we adapted for SOA, 

namely SHA and SFA.  

In this chapter, we develop an approach to the justification of safety-critical 

service-based systems, using modular GSN to represent the compositional 

structure of the safety case. This chapter explores the relationship between the 

service architecture and the safety case architecture. We identify the 

similarities and differences between both architectures. For example, the 
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structure of the SOA system should ideally correspond to the safety case 

structure to help ensure that they meet architectural attributes such as 

maintainability (i.e. by incorporating maintainability in the SOA system design, 

we should be able to achieve corresponding maintainability in the safety case, 

reducing the impact of system change on assurance). In particular, contracts 

which are defined to enforce the relationships between the safety argument 

modules will be based on the SLA between the actual services. 

In this chapter, the information used to structure and the evidence used to 

support the safety case will be based on the results of the modelling SoaML for 

services and BPMN for tasks and flows as well as on the safety analysis 

outcomes generated from SHA and SFA.  

Finally, the general structure of the safety arguments for SOA will be captured 

in the form of GSN patterns. These patterns will be organised in modules that 

correspond to the overall SOA structure, e.g. services, SLAs and participants, 

and explicitly linked to the results of the SOA modelling and safety analysis. The 

argument patterns are presented at a generic level, and can be instantiated to 

form argument structures relating to the assurance of specific SOA systems.  

This chapter is organised as follows. In section 5.2, we introduce modular 

safety case development for SOA as a means for improving design and 

assurance traceability. Section 5.3 presents the elements of our SOA safety 

argument approach. Sections 5.4 and 5.5 describe the relationship between the 

SOA safety argument approach and the results of the SOA modelling and safety 

analysis described in the preceding chapters, and give practical guidance on 

how to create SOA safety arguments based on a pattern catalogue. Finally, 

Section 5.8 presents the instantiation of the approach based on our healthcare 

case study. 

5.2 Modular Safety Case Development for SOA 

In many safety-critical industries, it is regarded as best practice to construct a 

safety case in parallel with the system development, and to use the safety 

requirements to drive the design and development processes in such a way as 

to generate claims and evidence for the safety case. Because of the nature of 
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SOA systems, which may contain several interacting services, developed and 

operated by different service providers, establishing and justifying an 

acceptable level of confidence in the overall safety of SOA-based systems will 

often require integration of different safety arguments and evidence generated 

by different service owners or providers. One approach to representing this 

compositionality of the overall safety case for service-based systems is through 

modular GSN (97). Modular GSN supports the definition of the high-level safety 

case as a composition of different, yet mostly interrelated, argument modules, 

each of which addresses some aspect of the overall system. In order to improve 

flexibility and maintainability and support reconfigurability, some argument 

modules are connected using contracts (15). A contract is a special kind of GSN 

argument module which “contains a definition of the relationships between two 

modules, defining how a claim in one supports the argument in the other” (97), 

hence promoting loose coupling between argument modules and minimising 

the impact of change. 

In order to improve traceability in the design and assurance processes, it is 

desirable for a safety case to have a clear correspondence with the design of the 

system. Essentially, an SOA is mainly a modular architecture, where each 

service represents a separate high-level module with defined intentions, 

interactions, inputs and outputs.  

This modularity in the definition of services lends itself to the concept of 

modular safety cases, where there are explicit reply-guarantee relationships 

between the different safety argument modules (147).  

A GSN argument module provides justifications relating to a specific aspect of 

the safety case (93). SOA-systems are modular in nature, i.e. individual services 

can be treated as individual modules (99). In our approach, each of the services 

in the overall system architecture will have a corresponding safety argument 

module and the overall safety case will address the composition of these safety 

argument modules. The same will apply for detailed design elements such as 

participants. Contracts between the safety argument modules will be based on 

the SLAs (Brown, Fenn, & Menon, 2010) that are defined between the actual 

services.  
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Services and participants are self-contained system elements that interact 

through predefined interfaces (e.g. those provided through SLAs). Service 

owners or producers often rely on other services when guaranteeing and 

providing their own services (122). Similarly, claims in certain argument 

modules can only be said to be substantiated (the guarantee clause) if claims or 

evidence are available in other argument modules that offer sufficient support 

(the rely clause). 

5.3 Modular SOA Safety Argumentation Approach 

This section briefly introduces the elements of our SOA safety argumentation 

approach, how it is applied and how it relates to the results of the SOA 

modelling and safety analysis described in Chapter 4.  

5.3.1 Overall Structure 

This section considers the overall organisation of the modular safety cases that 

we developed for SOA-based systems and discusses how the safety case 

argument relates to the structure of the SOA and the safety analysis. The 

purpose of the arguments is to justify the safety of the SOA design. This is done 

by arguing that the system safety requirements, which arise from the safety 

analysis, have been addressed through the selected design mitigations and 

provide for a sufficient level of safety. 

Our SOA safety analysis follows a structured, though implicit, line of reasoning: 

an SOA-based system is acceptably safe because all credible service hazards 

have been identified and mitigated. This is supported by the safety analysis of 

services and their interactions provided by SHA which identifies relevant 

service hazards to be addressed in the argument. Furthermore, this line of 

reasoning is supported at a lower level through the analysis of the technical 

failures that could potentially contribute to the service hazards. This is 

supported by the safety analysis of tasks and flows provided by SFA. 

We capture this reasoning through an argument pattern (123) to ensure 

consistency across the modular argument and allow the safety analyst to reuse 

the argument pattern as a basis for the assurance of different SOA-based 

systems (99). We have developed a catalogue of  SOA safety argument patterns, 

which provides a framework in which an argument regarding the safety of 
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using an SOA system within a specific safety application can be developed. The 

argument patterns in the catalogue are defined separately, but are directly 

related to each other to form the overall argument structure. The SOA 

argument pattern catalogue includes rules for pattern composition and 

traceability to the architectural design (i.e. SoaML and BPMN models) and 

analysis (i.e. SHA and SFA). 

The SOA safety argument pattern catalogue consists of templates for three 

individual arguments and one argument contract Figure 39. These patterns are 

structured to form overall hazard-directed argument for the SOA (Top 

Argument), which is supported by a number of Service Hazard Arguments, SLA 

Argument Contracts and Participant Arguments. These patterns can be 

composed together to form a complete argument regarding the safety of the 

SOA system design.  

  

Figure 39: SOA Argument Patterns Catalogue 

Within the pattern catalogue, we have provided means to represent the 

argument regarding the safety of the SOA system from the perspectives of both 

the Services and the Participants. The SOA safety argument pattern catalogue is 

explained in detail in Section 5.7. In the following subsections, we summarise 

each of the template safety argument modules in the SOA safety argument 

pattern catalogue Figure 39. The SOA safety argument pattern catalogue follows 

a top-down chain of reasoning from the Top Argument module through to the 
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Participant Argument module. The instantiation of each pattern provides the 

necessary contextual information for the next pattern. 

5.3.2 Top Argument  

This module contains a hazard-directed argument, which covers the main high-

level safety claims concerning adequate mitigation of the identified service 

hazardous failures. These claims are supported by arguments and evidence 

provided in the Service Arguments – safety argument modules defined to 

address the safety assurance of services that comprise the SOA.   

5.3.3 Service Argument 

Each Service Argument module contains mitigation arguments for the hazards 

posed by a given service and its interactions. These claims are supported by the 

SLA Argument Contract modules defined to address the safety assurance 

related to participants (producers and consumers of services).   

5.3.4 SLA Argument Contract 

The SLA Argument Contract modules include the detailed SLA Contract 

argument concerning the relationship between services and participants 

within the modular safety case. The contracts between safety argument 

modules are based on the SLA, which can help to identify the 

interdependencies that exist between services and participants and their 

corresponding safety case modules. These contracts are supported by post-

conditions, relating to the services, and pre-conditions, relating to the 

participants, which specify relevant issues required from the supporting 

modules to provide safety assurance for the services.   

5.3.5 Participant Argument 

Participant Argument modules address assurance concerns associated with 

SOA participants. These modules are intended to provide sufficient support for 

the SLA argument contact modules. This includes providing the detailed 

arguments concerning the tasks relating to the relevant participant and 

interactions based on the pre-conditions allocated to the participant.  
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5.4 Relationship between SOA Modelling and Modular Safety 

Cases 

The key modules in the design and safety case of an SOA are shown in Figure 

40. 

 

Figure 40: SOA and Modular Safety Case Correspondence 

We force a traceable relationship between the high-level SOA design, in SoaML 

(ServicesArchitectures) and the overall SOA safety case, in modular GSN. For 

each service defined in the SOA, we create a Service Argument that addresses 

the hazards posed by the service (based on the results of the SHA analysis), i.e. 

the argument provides a justification for how the service hazards have been 

mitigated. In the same way, for each participant, we create a Participant 

Argument that justifies the contributions that the participant makes to service 

hazards (based on the analysis results of SFA). Moreover, participants interact 

through defined SLAs in order to provide and consume services. These 

interactions between participants can contribute to safety and therefore their 

assurance is addressed in explicit safety argument contracts (SLA Contract 

Arguments). 

Before we present the definition of SOA safety arguments (Section 5.7), it is 

important to discuss the relationship between the SOA structure and the 

modular structure of the safety case argument. More specifically, this section 

explores the relationships between the modelling of the services, contracts and 

participants that comprise an SOA and the structure of the modular safety case 

argument for the system.  

SOA Design 
Structure 

Services 

SLAs 

Participants 

SOA Modular 
Safety Case 

Service 
Arguments 

Safety 
Argument 
Contracts 

Participant 
Arguments 
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Figure 41 : Relation between SOA architecture and module safety cases 

Figure 41 illustrates the potential relationship between the SOA organisation 

and the modular safety case structure outlined above. SoaML 

ServicesArchitectures models are used to describe the main components and 

communications within the system, the relationships between services and 

participants and how they work together. The modular safety case captures the 

structure of the service safety argument.  

In Figure 41, each service, represented as a SoaML CollaborationUse, has a 

corresponding Service Argument module. Contracts between the argument 

modules are based on the SLA between the actual services as defined in the 

SoaML model (ServicesArchitectures). Each SLA will have a corresponding SLA 

Argument Contract module. Similarly, each participant will have its 

corresponding Participant Argument module and is linked to the BPMN pool 

that models the tasks and flows between tasks that define the behaviour of the 

participant.  

5.5 Relationship between SOA Safety Analysis and Modular 

Safety Cases  

In this section, the discussion focuses on how the nature of the SOA safety 

analysis (described in Chapter 4) relates to the overall structure of the SOA 

safety argument. Figure 42 illustrates the relationship between the SOA safety 

analyses, SHA and SFA, and the overall SOA safety case. In our argumentation 

approach, the main sources of reasoning and evidence are generated from the 

SHA and SFA results. 

http://en.wikipedia.org/wiki/Argument
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Figure 42: SOA safety analysis and structure of the SOA safety argument 

5.5.1 Service Hazard Analysis (SHA) 

SHA results play a significant role in defining the overall structure of the SOA 

safety argument patterns, specifically the high-level argument. For each service 

in the SOA which is related to safety, our approach requires the instantiation of 

an argument, based on the Service Argument pattern, in order to justify the 

claim that potential hazardous failures of the service are appropriately 

mitigated or managed. The argument approach is driven by the SHA results. 

These results support claims about the nature of the hazardous failures and 

how they are mitigated, based on a set of service safety requirements whose 

stringency depends on the criticality of the failures with regard to overall 

service safety. The claims made about the mitigation of the failures depend on 

how the mitigation measures are satisfied by the participants involved in 

provision and consumption of the service. These measures are modelled using 

SLAs in the SOA models. In our SOA safety case approach, we discuss the 

adequacy of the mitigation provided in a corresponding safety argument 

contract, where the claims relate to post-conditions based on the 

recommended mitigation measures generated from the SHA results. 

5.5.2 Service Failure Analysis (SFA) 

The pre-conditions of the SLAs, discussed in the previous section, are allocated 

to participants that are expected to implement the services in terms of specific 
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tasks and interactions. The aim of the Participant Argument pattern is to 

provide assurance that all the task flows have met the safety contract pre-

conditions arising from SLA argument pattern. Therefore, the second half of the 

overall SOA safety argument pattern is influenced by the SFA results, which are 

organised according to deviations in the flows from the intended behaviour 

allocated to the participants involved in the provision of a service. This is 

captured in the Participant Argument pattern. This pattern captures the 

justification for the management of potential failures in the provision and 

consumption of tasks allocated to a participant. The definition of these failures 

is generated from the SFA analysis and the strategies chosen to manage their 

causes are justified in the context of different categories of failure modes 

defined in the SOA fault taxonomy, as discussed in Chapter 4. The pattern also 

shows that for each flow between participant tasks, the mitigations suggested 

by the DSSRs have been deployed and are sufficient to guarantee the required 

behaviour.  

5.6 Managing SOA Safety Cases using GSN 

In this section, we review the concept of safety case patterns and techniques 

which have been developed to allow them to be represented graphically. We 

also introduce our approach for SOA safety. The Goal Structuring Notation 

(GSN) has been used to present the structure and contents of our SOA safety 

argument pattern catalogue. The catalogue uses both the patterns and modular 

extensions of GSN (97). 

5.6.1 Safety Case Patterns 

The safety case pattern concept was originally developed by Kelly (123) based 

upon the work of the architect Christopher Alexander (36). Alexander’s 

challenge was to try to discover a technique for town planning and structural 

engineering that could be reused to solve planning problems in multiple 

contexts. In his book, The Timeless Way of Building, Alexander shows how 

patterns can be used to abstract away from the details of specific buildings and 

environments, and can capture  fundamental aspects of the design that can be 

applied elsewhere. Alexander asserts that: 
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"Each pattern describes a problem which occurs over and over again in 

our environment, and then describes the core of the solution to that 

problem, in such a way that you can use this solution a million times over, 

without ever doing it the same way twice." (36). 

Kelly in (123) adopted Alexander’s principles concerning the use of patterns 

for documenting recurring problems, solutions and contexts, and developed 

the concept of patterns for GSN safety arguments. Kelly defined a safety case 

pattern as “a means of documenting and reusing successful safety argument 

structures”. (123) 

The Goal Structuring Notation (GSN) was initially developed for the description 

of concrete safety arguments for specific systems and contexts. Kelly extended 

the original GSN technique with elements that provide the ability to represent 

an argument in a more generic format, i.e. as an abstract argument pattern, so 

that it can be applied to construct new safety arguments for different systems 

and contexts.  

5.6.2 GSN Pattern Extension 

GSN provides a means for capturing safety arguments and referencing the 

available evidence. GSN can be used to represent a specific safety argument for 

a given system or capability. Nevertheless, to be able to apply the notation in a 

more generalised way, GSN provides an extension for creating patterns and 

supporting abstraction, namely optionality, multiplicity extensions and entity 

abstractions. The pattern extension is illustrated in Figure 43 (adapted from 

(123) and (106)). The core elements of the GSN notation and methodology 

were introduced in Chapter 2. Here, we restrict our discussion to the 

extensions to support pattern definitions.  These extensions rely on two types 

of abstraction (Figure 43): 

 Structural Abstraction – supporting generalised n-ary, optional and 

alternative relationships between GSN elements (Multiplicity 

Extensions - Optionality Extension) 

 Entity Abstraction – supporting generalisation/specialisation of GSN 

elements (Entity Abstraction Extensions). 
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Figure 43:  Optionality/multiplicity extensions and entity abstractions (106)  

GSN has been also extended explicitly to allow support for the concepts of 

modular safety case construction (99). Figure 44 shows the key elements 

supporting modularity.  

 

  

Figure 44: GSN elements introduced to handle modularity 

The Argument Module is an explicit representation of a self-contained 

argument structure and is used a container for the elements used to capture 

that argument. The Away Goal element is used in order to be able to refer to 
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goals (claims) presented in one argument module which are satisfied by 

argument and/or evidence contained within other modules. Away Contexts and 

Away Solutions are used in order to make reference from the argument of one 

safety case module to context and evidence that exist within the boundary of 

another. Argument Contract symbols can be used to preserve the overall 

integrity of the modular safety case when the internal details of one or more 

argument modules are modified. The modular and pattern extensions of GSN 

are discussed in more detail in (97). 

5.6.3 Documenting Safety Case Patterns in GSN 

In this thesis, we use the template developed by (14) in order to document 

safety case patterns. The template requires the following categories of 

information (taken from Kelly, 1998): 

 

Pattern Name 

The pattern name should briefly convey the essence of the pattern. This should 

communicate the central argument being presented through the safety argument 

pattern. This will be the label by which people will identify this pattern.  

Intent 

This statement should answer the question “what the pattern is trying to 

achieve/do?” 

Also Known As 

This is used if there are other names by which the pattern could be described or 

recognised. 

Motivation 

This section gives a brief account of why the pattern was constructed. This usually 

includes scenarios that show a safety issue / process and how the elements of the 

GSN solve the problem.  

The scenarios help understand the more abstract description of the pattern that 

follows. 

Applicability (Necessary Context) 

This section records under what circumstances the argument can and should be 

applied. Any assumptions and principles underlying the argument pattern are 
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identified in this section. For example, what are the circumstances in which the 

safety case pattern can be applied? What information is required (necessary 

inputs to the pattern) to be successful? How can you recognise circumstances in 

which the pattern can be deployed? 

Structure 

A graphical representation of the structure of the argument pattern is presented 

using GSN. 

Participants 

This section provides more description of the argument pattern structure, 

including a description of each of the elements of the safety case pattern (i.e. the 

goals, the contexts, the strategies and the solutions). The element descriptions 

make clear their function within the overall argument pattern. These elements 

should also state whether the element requires development or instantiation 

when the pattern is deployed. 

Collaborations 

This section describes how the different elements of the pattern work together to 

achieve the desired effect of the pattern. This section also explicitly identifies 

where links between elements exist that are not communicated by the argument 

structure. 

Consequences 

This section identifies what work remains after having applied the argument 

pattern. 

Implementation 

This section should communicate how the application of the pattern should be 

carried out, including any hints or techniques which would ease successful 

application of the pattern. It should also highlight possible problems (or pitfalls) 

in applying the pattern as well as common misinterpretations of the terms or 

concepts. 

Example Applications 

This section provides examples that illustrate the instantiation of the pattern. 

Known Uses 

This section describes known uses of the form of argument presented in the 

pattern. 
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Related Patterns 

This section identifies any other safety case patterns that are related to the 

pattern. 

5.7 SOA Safety Argument Pattern Catalogue 

Figure 45 shows the overall organisation of the argument pattern catalogue we 

have defined for the justification of SOA safety. The following sections contain a 

detailed explanation and documentation of the argument patterns.  

  

Figure 45: SOA Argument Patterns Catalogue 

5.7.1 Top Argument  

This pattern provides the top-level decomposition for the argument structured 

over the services. Table 19 shows the documentation of the pattern in GSN. The 

instantiation of this pattern starts with the G_SOA goal, which is the claim of 

overall safety for the SOA system. The structure of the pattern is driven by the 

architecture of the services within the system, starting from the SOA system 

and identifying how the services within the system can contribute to safety. 

The top-level claim is made in the context of the description of the SOA system 

and the environment in which it will be deployed. The strategy adopted is to 

partition the argument over all of the identified services, considering each 

service in turn. The context for this is based on the service specification in 

SoaML. For each service, the argument contains a claim that the service is 

acceptably safe. This is made in the context of the SOA design (this is taken 
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from the SoaML model). In order to show that any service hazards have been 

mitigated, an away goal is defined to argue separately that there are measures 

in place to address the safety of the service (this claim is substantiated in the 

Service Argument Module).  

Top Argument  

Author Abdulaziz Al-Humam 

Created 08/07/2014 Last Modified 04/07/2015 

Intent The intent of this pattern is to provide the high level 

and overarching argument to justify the safety of the 

SOA-based system, taking into account, explicitly, the 

services comprising the system. 

Also Known As SOA Top Argument Pattern 

Motivation SOAs are increasingly used within safety-critical 

applications. The safety of an SOA system must be 

justified, to which end a safety argument should be 

provided as part of the system safety case. This pattern 

was developed to provide a structured top-level 

argument for the safety of an SOA system used within 

safety-critical applications.  

Structure 
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Participants G_SOA The overall objective of the 

argument is to provide 

sufficient support for the 

claim that the use of {SOA 

System} in the intended 

context is acceptably safe. 

{SOA System} is instantiated 

from the SoaML 

ServicesArchitecture. The 

link to this model is 

important to provide a 

specific and traceable 

description of the system 

that is the subject of the 

safety argument. 

C_SOA This context provides a 

description of the SOA 

system, including all services 

within the system. This is 
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provided by the SoaML 

ServicesArchitecture. 

C_SOA_Env This considers the scope of 

the SOA system by defining 

the boundary of it, 

explaining the domain of the 

system. It also captures the 

assumptions about the 

behaviour of the 

environment that are made 

by the SOA system. Unless 

this behaviour can be 

guaranteed, the SOA’s 

behaviour cannot be 

guaranteed. This is often 

stated in terms of 

requirements on the 

environment (e.g. in the 

form of user manuals). 

St_Top This presents the strategy 

(the decomposition of the 

argument into claims about 

each service) adopted to 

support G_SOA.  

G_Service_Hz_Service 

Argument Module 

This claim argues the safety 

of each service and is 

captured as an away goal. 

This claim references the top 

claim made and supported in 

a separate argument module 

relating to the relevant 

service: i.e. the Service 

Argument Module for that 

service. 

Collaborations  C_SOA and C_SOA_Env provide necessary context 

for the understanding of the system and its 

environment. 

 C_Top_Hz provides the link with the safety analysis, 
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SHA, used for the identification of the hazardous 

contribution of the SOA. 

Applicability This is a general pattern and, as such, has a wide 

applicability. This pattern is applicable wherever 

safety arguments need to be established for the use of 

services within a safety-critical application. However, it 

assumes that systematic SOA modelling and safety 

analysis have been performed, based on SoaML and 

SHA. 

Consequences 

 

After instantiating this pattern away goals will be 

instantiated in the Service Argument Modules. 

The Service Argument Module for SOA Safety 

Argument pattern can be used to decompose this goal. 

Implementation Top Argument Module should be fully developed and 

instantiated. Possible problems include lack of 

understanding of the environment or lack of 

knowledge of safety engineering concerns in the 

domain of the system (e.g. healthcare or aviation). 

Examples  See the two case studies in this thesis. 

Known Uses  See examples above. 

Related Patterns:  Service argument Pattern. 

Table 19: Top Argument 

5.7.2 Service Argument 

This pattern provides justification of the mitigations used to manage the 

hazardous failures associated with a service, and is structured according to the 

results of the SHA. The top-level claim is made in the context of the description 

of the current service and the identified service failure modes that have safety 

effects. The strategy adopted is to argue the safety of the service by appealing 

to the adequacy of the mitigations provided for the hazardous service failures, 

in terms of meeting the service safety requirements. The argument considers 

each service failure mode that has safety effects in turn. The strategy adopted is 

to argue that the mitigation is sufficient to achieve the required integrity. The 

achievement of the mitigation is based on, and supported by, the output or 

post-condition of an SLA. This is defined in the form of a safety case contract 
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that mediates the relationship between the Service Argument module and the 

Participant Argument module. 

 

Service Argument Pattern  

Author Abdulaziz Al-Humam  

Created 08/07/2014 Last Modified 04/07/2015 

Intent The intent of this pattern is to provide an argument to justify 

the mitigation measures used to manage the hazardous 

failures for a service and to demonstrate how the reasoning is 

supported via an SLA Contract Argument. 

Also Known As N/A. 

Motivation The contribution of each service to overall service safety 

needs to be justified. This pattern was created in order to 

provide this justification, in terms the mitigation of any 

hazardous contribution from the service. 

Structure 
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C_Service_Desc

{Service: SoaML 
CollaborationUse}

St_Service_Hz

Argument structured based 
on mitigating service 
hazardous failures

C_Service_Hz

{Service hazardous 
failures: service failure 
modes with safety 
effects: SHA}

G_Service_Mitg

{Mitigation} is satisfied to 
the required integrity

C_Service_Mitg

{Mitigation: SHA} 

C_Service_Class

Required integrity 
based on {Severity: 
SHA}

St_Service_SLA

Argument by 
enforcing {Mitigation} 
in the {SLA}

J

J_Service_SLA

Mitigation is allocated to 
the SLA post-condition

G_Service_SLA_Postcondition
s

{SLA post-condition} is 
satisfied

Spinal

SLA Contract

Description SLA 
Contract

G_Service_D_Hz

{Failure mode  with safety 
effects} is mitigated to satisfy 
the Service Safety 
Requirement

St_Service_Mitg

Argument based on 
{Mitigation} 

{For each service failure mode with safety 
effects}

G_Service_HZ

{Service} is acceptably 
safe

C_Service_SLA

{SLA: SoaML}

C_Service_Hz_SSRs

{Service Safety 
Requirement: SHA}
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Participants G_Service_Hz The top-level claim considers 

the safety of a specific service. 

The Service description is 

provided by the SoaML 

Service Contract Architecture. 

C_Service_Desc This context node provides a 

description of the service 

within the system. This is 

provided by the SoaML 

Service Contract Architecture.  

C_Service_Hz This context node provides a 

description of the service 

failure modes that have safety 

effects.  

St_Service_Hz This node presents the 

strategy adopted to support 

G_Service_Hz (i.e. mitigation 

of service hazards)  

C_Service_Hz_SSRs Definition of the service 

safety requirements 

associated with the service. 

This is provided from the 

{SSRs: SHA}. 

G_Service_D_Hz This claim is generated for 

each failure mode with 

hazardous effects that has 

been identified in SHA. This is 

provided by the {Failure 

Modes: SHA}.  

St_Service_Mitg This node presents the 

strategy adopted to support 

G_Service_D_Hz, considering 

the specific mitigation 

measures used to address a 

specific hazardous failure. 

This is provided by the 
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{Mitigation_SHA: SHA}.    

C_Service_Mitg This context defines the list of 

mitigations for a specific 

hazardous failure. This is 

provided by the SHA results.    

G_Service_Mitg This claim considers the need 

to achieve mitigation to the 

level of rigour required, 

depending on the severity of 

the failure event. This is 

provided by the SHA results.  

C_Service_Class This context node refers to 

the interpretation of the 

standard’s requirements for 

integrity level which has been 

produced for this service. . 

This is provided in the SHA 

results. 

St_Service_SLA The achievement of the 

mitigation measures is 

provided by the Participants. 

This is captured via an SLA in 

which the post-conditions 

define the achievement of the 

mitigation measures.  

J_Service_SLA The use of SLA post-

conditions must be satisfied 

to enable the mitigation to be 

achieved and assured. 

C_Service_SLA This context node provides a 

reference to the SLA used. 

This is provided in the SoaML 

Service Contract Architecture 

{SLA}. 

G_Service_SLA_Postconditio

ns 

This claim argues that the SLA 

post-conditions 

corresponding to the 
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mitigation are satisfied. 

Evidence for this is provided 

by the SoaML Service 

Contract Architecture {SLA 

post-conditions}. 

SLA_Contract The contract can be used to 

record the interdependencies 

that exist between the 

arguments containing the 

claims about post-conditions 

and pre-conditions of the SLA. 

This is provided by the SoaML 

Service Contract Architecture 

{SLA post /pre-conditions}. 

Collaborations  C_Service_Hz provides the necessary context for the 

identification of the safety hazards associated with the 

service. 

 G_Service_D_Hz makes a mitigation claim based on the 

hazardous events described in C_Service_Hz from 

different perspectives (Service not provided when 

required; Service provided when not required and 

incorrect service). 

 C_Service_Hz_SSRs and C_Service_Class provide necessary 

context for identifying suitable mitigations of the hazards 

associated with the service based on the severity level.   

  G_Service_SLA_Postconditions defines the SLA post 

condition corresponding to the mitigation within the 

contract. 

Applicability This pattern is applicable wherever a service is associated 

with failures than have safety effects (i.e. hazardous failures). 

Consequences 

 

After instantiating this pattern, the contract module should be 

developed. The SLA Contract Argument Module for SOA 

Safety Argument pattern can be used to structure this 

contract. 

Implementation Hazard Argument Module should be fully developed and 

instantiated. Possible problems include attempting to apply 

the pattern to a system which is not based on SOA, and 
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attempting to apply the pattern without having defined safety 

contract interfaces. 

Examples  See the two case studies in this thesis. 

Known Uses  See examples above. 

Related Patterns SLA Contract Argument Pattern. 

Table 20: Service argument Pattern 

5.7.3 SLA Contract Argument 

It Chapter 4, we explained how safety analysis can help identify the safety 

requirements for each service. The SLAs for each service can specify the pre- 

and post-conditions that are necessary to ensure that these requirements are 

met. The SLAs define the basis for argument contract pattern in our SOA safety 

argumentation approach. Table 21 shows the documentation of the pattern. 

The top goal of the pattern is an away goal which claims that the SLA post-

conditions from Service Argument Pattern are satisfied. The strategy adopted is 

to argue over SLA pre-conditions. The justification for this is based on meeting 

the SLA pre-conditions allocated to participants. Away goals are used to argue 

that one or more participants satisfy the SLA pre-conditions. 

 

SLA Contract Argument Pattern  

Author Abdulaziz Al-Humam  

Created 08/07/2014 Last Modified 04/07/2015 

Intent The intent of this argument contract pattern is to provide 

the justification that is needed to link the claims about the 

services and those about the participants consuming and 

providing these services. 

This pattern can be used to record and justify the 

interdependencies that exist between post-conditions and 

pre-conditions for the services and their associated 

participants. 

Also Known As SOA Safety Case Contract 

Motivation Just as SLAs are used to record interdependencies between 

services within SOA design, safety case contract modules 
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are used to represent rely-guarantee relationships between 

modules in modular safety case applications. This pattern 

was developed to exploit the correspondences between the 

structure of the SOA design and the organisation of the 

safety case and therefore improve clarify and 

maintainability. 

Structure 

  

Participants G_Service_SLA_postconditions_ 

Service Argument Module 

The top-level claim states 

that the SLA post 

condition is satisfied. The 

claim referenced in the 

away goal here originates 

in the Service Argument 

Module. It is used to 

show sufficient support 

to satisfy the 

requirements for 

mitigation. The 

information to instantiate 

this goal is provided by 
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the SoaML Service 

Contract Architecture 

{SLA post-conditions}. 

St_SLA_Contract This node presents the 

strategy of 

decomposition of the 

argument over the SLA 

pre-conditions that must 

be satisfied by the 

participants. 

J_SLA_Contract This node justifies the 

decomposition strategy 

by claiming that the use 

of SLA pre-conditions – 

satisfied by the 

participants – is sufficient 

to enable the 

achievement of the SLA 

post-conditions.  

G_Participant_Participant 

Argument  

This claim states that the 

pre-condition is satisfied 

by a participant. This is 

made in the form of an 

away goal that references 

a goal supported by 

argument and evidence 

within a Participant 

Argument. This is 

provided by the SoaML 

SLA pre-conditions.  

Collaborations  G_Service_SLA_postconditions_Service Argument 

Module and G_Participant_participant Argument are 

away goals that provide the post/pre conditions 

necessary to satisfy the safety requirements (contract) 

within the SLA service of an SOA system.  

  J_SLA_Contract provides the justification for the 

satisfaction of the pre-conditions allocated to 

participants as a means for meeting the SLA post-



156 
 

conditions. 

Applicability This pattern is applicable wherever safety arguments need 

to be established for the use of SLA within an SOA safety 

application. It assumes that both post- and pre- conditions 

are explicitly defined for the SLA. 

Consequences 

 

After instantiating this pattern, the goals referenced in the 

away goals will be developed within the Participant 

Argument Module (G_Participant_H).  

Implementation Possible problems include attempting to apply the SLA 

contract pattern to a system which is not based on SOA, 

attempting to apply the SLA contract pattern without 

having defined safety contracts and attempting to apply the 

SLA contract pattern without sufficient SLA information 

from the SoaML/BPMN models. 

Examples  See the two case studies in this thesis. 

Known Uses See examples above. 

Related Patterns  Participant Argument Pattern. 

Table 21: SLA Contract Argument Pattern 

5.7.4 Participant Argument 

This pattern provides the justification basis for the behaviour of a Participant 

in meeting SLA pre-conditions allocated to it. Table 22 shows the 

documentation of the Participant Argument pattern in GSN. The instantiation of 

this pattern starts with the goal G_Participant_H, which is a claim that the 

participant meets its allocated pre-conditions. The structure of the pattern is 

driven by the results of the SFA. The claim in G_Participant_H is made in the 

context of the Participant definition (specified in BPMN) and the allocated SLA 

pre-conditions (in the SoaML model). The strategy adopted is to argue over 

each SLA pre-condition allocated to the participant. The sub-claims 

demonstrate how the allocated SLA pre-conditions referenced in the SLA 

Contract Argument Pattern (G_Participant _Participant away goal) are satisfied. 

The strategy adopted here is to argue over the identified Participant failure 

modes which are associated with tasks and their flow interactions. This is made 

in the context of the description of the Tasks and their interactions form BPMN 



157 
 

model and the Participant failure modes (from the SFA results). A Participant is 

defined in the form of a BPMN pool that includes tasks and flows. The rest of 

the argument is used to show how the participant failure modes are mitigated 

by appealing to the results of the SFA. 

 

Participant Argument Pattern  

Author Abdulaziz Al-Humam  

Created 08/07/2014 Last Modified 04/07/2015 

Intent The intent of this pattern is to provide justification for the 

participant behaviour and to create an argument regarding 

the safety of the flow between the tasks implemented by a 

participant in an SOA system. The safety of the participant’s 

behaviour is argued from the perspectives of both the SLA 

pre-conditions and the participant interaction flow. 

Also Known As Interaction behaviour pattern 

Motivation The motivation for this pattern is the need to justify the 

behaviour of a participant, as implemented in the form of 

tasks and flows, and to demonstrate how it satisfies its 

allocated SLA pre-conditions. 

Structure  
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Participants G_Participant_H The objective of the argument 

is to provide sufficient support 

for the claim that the 

{Participant} fulfils its {SLA 

pre-conditions}. The 

information is provided by the 

BPMN model (pool) and the 
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SoaML model (SLA pre-

conditions). 

C_Participant This context node defines the 

by the BPMN model: pool. 

C_Participant_Precon This context node provides a 

description of the SLA pre-

conditions allocated to the 

Participant. This is provided 

by the SoaML model. 

J_Participants_Tasks This explains that a Participant 

is defined in the form of a 

BPMN pool. 

St_Participant The argument strategy is 

based on addressing all of the 

pre-conditions allocated to the 

Participant.  

G_Participant This claim is instantiated for 

each pre-condition, and states 

that a pre-condition allocated 

to the participant as a safety 

requirement is satisfied. This 

is provided by the SoaML: SLA 

pre-conditions. 

St_Participant_Tasks This node describes the 

mitigation strategies for the 

identified failure modes of the 

{Participant}. This is provided 

by the BPMN model.  

C_Participant_FM This context node provides a 

description of the failure 

modes associated with the 

Participant. This is provided 

by SFA: failure modes.  

G_Participant_FM This node provides a claim 

that each failure mode is 

sufficiently mitigated. This is 
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provided by SFA: deviation. 

C_Participant_Hz_DSSRs This node refers to the safety 

requirements associated with 

the Failure mode that 

contributes to service 

hazardous failures. This is 

provided by {DSSRs: SFA}. 

St_Task_Mitg This node describes an 

argument strategy by which 

the adequacy of each 

mitigation is demonstrated. 

The mitigations are 

implemented from SFA:  

mitigation. 

G_Participant_Task_Mitg This claim considers the 

adequacy of the selected 

mitigation from SFA: Failure 

modes. 

C_Participant_Tasks_Mitg This context node defines the 

list of tactics to provide 

suitable mitigation for a 

specific failure mode: e.g high-

integrity, redundancy, 

diversity and 

monitoring/checking.  

This information is provided 

by SFA:  mitigation of SFA. 

Collaborations  C_Participant and C_Participant_Precon provide 

necessary context for the system’s interaction with the 

Participant, specifically for SLA pre-conditions. 

 G_Participant_H and G_Participant argue that the pre-

conditions relating to {Participant} have been satisfied.  

 C_Participant_FM provide necessary context for 

identifying the interaction and the failure modes 

associated with the Participant. 

 G_Participant_Task_Mitg considers the suitable 

mitigations used for addressing Participant failure 
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modes.  

Applicability This pattern is applicable wherever participant safety 

arguments need to be established for the use of a SOA-

based safety critical system.  

Consequences 

 

After instantiating this pattern, one undeveloped goal will 

remain: G_Participant_Task_Mitg. The argument supporting 

this must be developed, based on more detailed 

implementation information. 

Implementation Possible problems include attempting to apply the pattern 

without sufficient design information (implementation) 

from the  SoaML/BPMN models. 

Examples  See the two case studies in this thesis. 

Known Uses  See examples above. 

Related Patterns  None provided at this stage. 

Table 22: Participant Argument Pattern 

5.8 Healthcare Case study: SOA Safety Case 

This section presents the results of applying the SOA safety argument pattern 

catalogue outlined in the previous section to the healthcare case study 

introduced in Chapter 4. The purpose of this part of the case study is to 

examine how the SOA safety argument pattern catalogue can help in 

communicating the justification for the safety of the ambulance system and its 

associated services. It also shows how the analysis process applied to the 

healthcare case study in Chapter 4 relates to the overall structure of the SOA 

safety argument. The case study will also be used to illustrate how the safety 

requirements and mitigations arising from the analysis can be used to define 

the safety argument contracts based on the SLAs defined during the design.  

The description of the system and the system design including all design 

models are taken directly from the Health and Social Care Information Centre 

(148) which was presented in Chapter 4. This section considers the safety 

arguments for one specific service: Dispatch Ambulance. Additional safety 

arguments are described in Appendix D. 
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5.8.1 Ambulance Service System Safety Argument 

The safety case for the Ambulance Service System starts with an instantiation of the Top Argument pattern. The Top Argument includes 

a service-directed argument, which covers the main safety claims concerning the ambulance service system services.  

 

Figure 46: Top Argument Module for Dispatch Ambulance 
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The results of the instantiation are shown Figure 46. G_SOA presents the claim 

about the overall safety of the Ambulance Service System in the context of the 

use case, i.e. the transportation of pregnant women (C_SOA_Env) and the list of 

services covered (C_SOA). The strategy decomposes the argument over all the 

identified services within the system, based on the SOA specification defined in 

SoaML. For each service, the argument makes a claim that the service is 

acceptably safe. This is done by means of creating an away goal for each service 

which references the corresponding Service Argument module. In this section, 

we only focus on the argument for the Dispatch Ambulance service. 

5.8.2 Service Argument for the Dispatch Ambulance Service 

The argument structure in Figure 47 shows the instantiation of the Service 

Argument pattern for the Dispatch Ambulance service. The instantiation is 

based on the  result of the SHA analysis of the Dispatch Ambulance service we 

presented in Chapter 4. The top-level claim for the Dispatch Ambulance states 

that the service is acceptably safe, in the context of the SOA specification 

defined in SoaML CollaborationUse. The strategy argues over all the identified 

service hazards within the service based on the analysis carried out in the SHA. 

This strategy is presented in the context of the results of the modelling and SHA 

for this service. 

The argument focuses on three failure modes which have hazardous effects, 

which have been generated from the SHA results, namely: 

 Ambulance not dispatched;  

 Ambulance dispatched later than intended;  

 Ambulance dispatched to the wrong address.  

The argumentation strategy adopted for each failure mode is to argue that the 

failure mode has been mitigated to the required level of integrity. For example, 

the failure ‘Ambulance not dispatched’ is mitigated by active monitoring and 

cross-checking between requested and dispatched ambulances. The mitigation 

claim is then defined in the form of a safety contract post-condition that is 

supported by the SLA Contract Argument. 
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C_Service_Desc

Dispatch ambulance: 
SoaML 
CollaborationUse

St_Service_Hz

Argument structured based 
on mitigating service 
hazardous failures

C_Service_Hz

Service hazardous failures: SHA
- Ambulance not dispatched
- Ambulance dispatched later than 
intended
- Ambulance dispatched to the wrong 
address

G_Service_N_Hz

Ambulance not dispatched is 
mitigated to satisfy the 
Service Safety Requirement

J

J_Service_N_SLA

Mitigation is allocated to 
the SLA post-condition

G_Service_N_SLA_Postconditions

Active monitoring and cross-
checking between requested and 
dispatched ambulances is satisfied   

G_Service_W_Mitg

Early address cross-checking and 
confirmation between requested 
and dispatched ambulances is 
satisfied to the required integrity

G_Service_I_Mitg

Active monitoring of timing 
targets and strategies for recovery 
from timing-related failures is 
satisfied to the required integrity

G_Service_N_Mitg

Active monitoring and cross-
checking between requested and 
dispatched ambulances is  satisfied to 
the required integrity 

 G_Service_I_Hz

Ambulance dispatched later 
than intended is mitigated to 
satisfy the Service Safety 
Requirement

G_Service_W_Hz

Ambulance dispatched to the 
wrong address is mitigated to 
satisfy the Service Safety 
Requirement

St_Service_N_Mitg

Argument based on active 
monitoring and cross-
checking between requested 
and dispatched ambulances

St_Service_I_Mitg

Argument based on active 
monitoring of timing targets 
and strategies for recovery 
from timing-related failures

St_Service_W_Mitg

Argument based on early 
address cross-checking and 
confirmation between requested 
and dispatched ambulances

C_Service_N_Mitg

Mitigation: SHA 
Active monitoring and cross-
checking between requested 
and dispatched ambulances

C_Service_I_Mitg

Active monitoring of timing 
targets and strategies for 
recovery from timing-
related failures

C_Service_W_Mitg

Early address cross-
checking and confirmation 
between requested and 
dispatched ambulances

C_Service_N_Class

Required integrity 
based on Major 
severity 

C_Service_I_Class

Required integrity 
based on Major 
severity 

C_Service_W_Class

Required integrity 
based on Major 
severity 

St_Service_N_SLA
Argument by enforcing active 
monitoring and cross-checking 
between requested and 
dispatched ambulances in SLA 
1

St_Service_I_SLA

Argument by enforcing active 
monitoring of timing targets and 
strategies for recovery from 
timing-related failures in the SLA 
2

St_Service_W_SLA

Argument by enforcing Early 
address cross-checking and 
confirmation between requested 
and dispatched ambulances in the 
SLA 3J

J_Service_I_SLA

Mitigation is allocated to 
the SLA post-condition

J

J_Service_W_SLA

Mitigation is allocated to 
the SLA post-condition

G_Service_I_SLA_Postconditions

Active monitoring of timing 
targets and strategies for 
recovery from timing-related 
failures is satisfied   

G_Service_W_SLA_Postconditions

Early address cross-checking and 
confirmation between requested 
and dispatched ambulances is 
satisfied   

Spinal

SLA Contract1

SLA of Active monitoring and 
cross-checking between requested 
and dispatched ambulances

Spinal

SLA Contract2

SLA of active monitoring of timing 
targets and strategies for 
recovery from timing-related 
failures

Spinal

SLA Contract3

SLA of early address cross-
checking and confirmation 
between requested and 
dispatched ambulances

C_Service_I_Hz_SSRs

Service Safety Requirement: 
The failure mode “ambulance 
dispatched later than 
intended” shall be prevented 
or mitigated 

G_Service_Hz

Dispatch Ambulance is 
acceptably safe

C_Service_N_Hz_SSRs

Service Safety Requirement: SHA 
The failure mode “ambulance not 
dispatched” shall be prevented or 
mitigated.

C_Service_N_SLA

SLA 1

C_Service_W_Hz_SSRs

Service Safety Requirement: 
The failure mode “ambulance 
dispatched to the wrong 
address” shall be prevented or 
mitigated. 

C_Service_I_SLA

SLA 2

C_Service_W_SLA

SLA 3

 

Figure 47: Service Argument for Dispatch Ambulance 
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5.8.3 SLA Contact Argument for the Dispatch Ambulance Service  

 

 

Figure 48: SLA contact Argument for Dispatch Ambulance 

Figure 48 shows the instantiation of the SLA Contract Argument pattern for the 

Dispatch Ambulance service. The top-level away goal states that active 

monitoring and cross-checking between requested and dispatched ambulances 

are satisfied. These correspond to the post-conditions of the SLA associated 

with the Dispatch Ambulance service. The argument strategy is to argue over 

the satisfaction of the set of SLA pre-conditions. This takes the form of away 

goals that reference claims stated in the Participant Argument for the 

participants satisfying the SLA pre-conditions. For example, the away goal 

which points to the Call-Center argument module references a claim in that 

module which states that the Call-centre sends a request to the ambulance 

crew and then monitors its status. 
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5.8.4 Participant Argument for the Call-Center Participant 

Figure 49 shows the instantiation of the Participant Argument pattern for the 

Call-Center Participant. The argument is based on the satisfaction of the pre-

conditions allocated to the Call-Center Participant via the SLA in which the 

Participant is involved; namely, that the Call-Center sends a request to 

ambulance crew and monitors its status. The argument then provides a 

justification for how the above claims are supported based on the results of the 

SFA and modelling in BPMN.  
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G_Participant_H

Call_center fulfils its 
SLA pre-conditions

C_Participant

Call_ centre: 
BPMN Pool

St_Participant

Argument by addressing 
SLA pre-conditions 
allocated to the participant 

C_Participant_Preco
n
Call_center SLA pre-
conditions: SoaML 
SLA

G_Participant_FM

No request for ambulance 
received is mitigated to 
satisfy the allocated DSSRs

St_N_Participant_Tasks

Argument based on 
identified participant 
failure modes 

J

J_N_Participants_Tasks

A participant is defined as 
a BPMN pool that includes 
tasks and flows

G_Participant_FM_late

Request arrived later than 
intended is mitigated to 
satisfy the allocated DSSRs

St_Tasks_Mitg_late

Argument based on 
monitoring of timing 
targets and strategies for 
recovery

C_Participant_Task_Mitg_la
te

Monitoring for timing 
failure and developing 
recovery strategies 

G_Participant_Task_Mitg_late

Monitoring for timing failure and 
developing recovery strategies 
provides adequate mitigation to 
request arrived later than intended

G_N_Participant

Call-center requesting an 
ambulance and monitoring its 
status are satisfied

St_Tasks_Mitg1

Argument based on use of 
redundancy in data sources 
by fitting an additional flow 
to the request

C_Participant_Hz_DSSRs

DSSR:The failure mode “no 
request for ambulance 
received” shall be 
prevented or mitigated.

G_Participant_Task_Mitg

Use of redundancy in data sources by 
fitting an additional flow to the request 
provides adequate mitigation to no 
request for ambulance received 
  

G_Participant_FM_value

Incorrect request is 
mitigated to satisfy the 
allocated DSSRs

St_Tasks_Mitg_value

Argument based on applying 
diversity via programming 
solutions to detect and reject 
improper values and fault 
containment

G_Participant_Task_Mitg_value

Applying diversity via programming 
solutions to detect and reject 
improper values and fault 
containment provides adequate 
mitigation to incorrect request

C_N_Participant_FM

Participant failure modes: SFA 
- No request for ambulance received
- Uncommanded request for 
ambulance received
- Request arrived later than intended
- Incorrect request

C_Participant_Hz_DSSRs_Late

DSSR: The failure mode 
“request arrived later than 
intended” shall be prevented 
or mitigated.

C_Participant_Task_Mitg

Use of redundancy in data 
sources by fitting an 
additional flow to the 
request

C_Participant_Task_Mitg_value

Applying diversity via 
programming solutions to 
detect and reject improper 
values and fault containment

C_Participant_Hz_DSSRs_
value
DSSR: The failure mode 
“incorrect request” shall 
be prevented or 
mitigated.

 

Figure 49: Participant Argument for Dispatch Ambulance  
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5.9 Summary: 

In this chapter, we have presented a catalogue of safety argument patterns for 

justifying the use of SOA in safety-critical applications. The overall safety 

argument is created in a modular manner to ensure a clear correspondence 

between the structure of the safety argument and the organisation of the SOA 

design. These argument patterns link the safety argument for the SOA with the 

results of the modelling in SoaML and BPMN and the results of the safety 

analysis on SHA and SFA. Finally, we illustrate the use of the safety argument 

patterns for one of the services within the healthcare case study. 
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Chapter 6 

 

6. Evaluation 
 

 

6.1. Introduction 

This chapter presents the results of the evaluation of the SOA Safety Assurance 

Framework developed in this research. It revisits the research hypothesis and 

explains the means for evaluation used in this thesis. Further, the chapter 

provides the details of the second case study we performed and the results of 

the evaluation with respect to the research contributions.  

6.2. Research Hypothesis 

The hypothesis proposed in this thesis is as follows: 

Integrated architectural modelling and analysis of safety-critical service-

oriented systems provides a traceable, consistent and systematic means for 

assuring the safety of these systems. 

Below is an explanation of the main terms used in the hypothesis.  

• Integrated: safety analysis and design decisions evolve together; 

• Traceable: forward and backward model-based traceability between 

design and safety analysis is provided; 

• Consistent: design features are reflected in the safety analysis and the 

safety assurance and vice versa; 

• Systematic: a methodical approach to performing safety assurance is 

proposed;  
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• Assuring: the approach provides an explicit means for reasoning about 

the safety properties and system behaviour. 

The above terms define the basis for the criteria used for evaluation of the SOA 

Safety Assurance Framework. 

This hypothesis is supported by the following four contributions made as part 

of this PhD research:  

 Identification and configuration of SOA modelling notations, namely 

SoaML and BPMN, based on two criteria: coverage of the structure and 

behaviour of the services which is deemed suitable for the safety 

analysis of SOA. 

 Development of safety analysis techniques for SOA, namely SHA and 

SFA, which can be used to examine the hazardous failures of services 

and the failure behaviour of lower-level implementations.  

 Development of the concept of modular safety cases for the assurance of 

safety-critical SOAs, promoting correspondence between the structure 

of the SOA and the organisation of the modular safety case. This generic 

argument approach is defined in the form of an SOA Safety Argument 

Pattern Catalogue, which can be instantiated to produce safety 

arguments for specific SOA-based systems. 

 Implementation of tool-support that provides automated capabilities for 

building the SOA models, applying the safety analysis and building the 

safety case for the system.  

6.3. Means of Evaluation 

Two case studies have been carried out during this research. The first case 

study, which was presented in Chapters 4 and 5, is based on the healthcare 

domain. The second, which is presented later in this chapter, is based on the oil 

and gas domain. The research was also evaluated through a peer-reviewed 

publication and semi-structured interviews with practitioners. 

6.3.1. Case Studies 

The two case studies provided the primary means for evaluating the technical 

criteria related to the research hypothesis, namely that the proposed approach 
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should be ‘integrated’, ‘traceable’, ‘consistent’, ‘systematic’ and ‘assuring’. These 

are qualitative criteria and the results of examining these criteria are discussed 

in Section 6.6. The second case study in particular provides the basis for 

evaluating the feasibility of the SOA Safety Assurance Framework developed in 

this thesis. 

The two domains of the case studies, healthcare and oil and gas, are typically 

categorised as safety-critical and tend to be structured around services. 

Nevertheless, they have important differences. Safety in Oil and Gas is well 

established and is heavily regulated. The environment also tends to be 

relatively well understood. Safety in healthcare on the other hand presents 

different kinds of challenges. The environment is harder to control and safety 

as a discipline, especially for IT systems, is not well defined (149). The concept 

of engineering risk in healthcare is not typically subjected to systematic safety 

analysis, as compared to Oil and Gas. Each case study provides a different 

treatment of risk associated with services in the corresponding domain. In 

healthcare for example, safety analysis tends to be high level and not as 

detailed as in a traditional safety-intensive domain such as Oil and Gas. 

6.3.2. Semi-Structured Interviews 

In order to provide an independent evaluation of our approach, we conducted 

semi-structured interviews with domain experts from both the healthcare and 

oil and gas domains. The results of this evaluation are discussed in section 6.5 

below. 

6.3.3. Peer Review 

The technical accuracy of the research was also evaluated through a peer-

reviewed publication published in the Medical Cyber Physical Systems 

Workshop, 2014. 

The work was also evaluated by means of presentations and interactions with 

members of the High-Integrity Systems Engineering (HISE) research group at 

York. 
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6.4. Industrial Case Study: Natural Gas Processing 

This section introduces our second case study, in which the SOA Safety 

Assurance Framework was used to model an industrial service-based system. 

The case study was intended to demonstrate the application and feasibility of 

the safety analysis methods and safety case approach defined in this thesis. 

6.4.1. Aim 

The main aim of this industrial case study, based on an example from the oil 

and gas domain, is to examine the feasibility of applying our SOA Safety 

Assurance Framework in the light of the technical criteria identified in the 

research hypothesis, namely: ‘integration’, ‘traceability’, ‘consistency’, 

‘systematicness’ and ‘assurance’. The results of the application of the SOA 

Safety Assurance Framework will be compared to the traditional safety 

analysis approach based on HAZOP, the primary safety analysis technique used 

in the oil and gas industry. 
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6.4.2. System Description 

 

Figure 50 Overview of Gas Plant Processes (150) 

The case study is based on part of a system that is used to produce liquid gas in 

a Natural Gas Processing Plant. Natural Gas Processing is a commercially 

sensitive activity, and although this case study was developed in collaboration 

with a chemical engineer from the oil and gas domain, the system and plant 

used in this case study do not refer to any actual industrial systems. Some of 

the system descriptions and analyses used in this case study are based on 

information in the published literature, mainly (150) and (151).  

Figure 50 describes the Natural Gas Processing system, which comprises seven 

main services. These have been used to provide the detailed organisation of the 

SOA system:   

(1) Supply Natural Gases;  
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(2) Separate Gases;  

(3) Absorb Water;  

(4) Heat Exchange;    

(5) Separate Gas from Liquid;   

(6)  Send Emergency Signal; 

(7) Call Emergency Number. 

 

The Gas Processing Plant contains many processing units that provide facilities 

to receive the natural gas, filter it, separate it, cool it, and store the gas and 

liquids in a tank for shipment. The functions of the Plant comprise primary 

processes such as gas treatment, dehydration, acid gas removal, as well as 

heating and cooling media such as steam, cooling water and chilled water.  

The gas is provided from the wells to a treatment unit. The treatment unit 

separates the gas into acid and sweet gas. The acid gas contains hydrogen 

sulphide (H2S) and carbon dioxide (CO2). The sweet gas contains C1, C2, C3, C4, 

C5 and H2O in gas phases. The gas stream enters the dehydration unit at a 

temperature of 120°F where it first goes to dehydration unit. This unit contains 

a chemical catalyst that helps in removing the water from the gas. The objective 

is to avoid freezing the gas stream inside the pipe. The performance of the 

dehydration unit is monitored by a pressure transmitter. A transmitter is a 

device that converts measurements from a sensor to a signal which is received 

when the high pressure inside the unit results in changes to the catalysis 

process. After the water is removed, the gas goes to a cooling unit where it is 

cooled from 120°F to –40°F. The change in temperature is monitored by 

temperature transmitters.  A transmitter (pressure or temperature) should 

send a signal to the control operator inside the control room, allowing him to 

monitor the pressure or temperature changes. For any change above or below 

a pre-defined limit, the control operator should call a supervising operator to 

decide on any remedial action needed. On leaving the cooling unit, the gas is 

passed to a separator unit to separate the gas from the liquid. The drop in 

temperature helps to condense the gas into liquid form. The liquid stream is 

called liquid gas. After processing, the liquid gas is shipped to an 
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external chemical manufacturing company, whereas the gas is supplied to an 

electricity company.   

The performance of the unit as a whole is monitored by a human control 

operator, who monitors indications of pressure and temperature levels in the 

gas and liquid gas which are sent through transmitter instrument devices from 

the processing area to the operator’s computer. The control operator is 

responsible for detecting process changes and for advising the outside operator 

accordingly through a radio communication channel. 

In the event of a gas leak, the control operator is expected to detect a 

sharp increase in the temperature based on the cooler’s indicating that no gas 

is passing through. The upstream emergency isolation valve should close 

automatically, since it has a logic where any sharp increase in temperature 

should lead to the valve closing. This is to avoid the continuation of gas leakage 

from the source. The leaking gas is a fuel and any spark of ignition is likely to 

result in a fire. Next, the control operator should call the emergency centre, 

notifying the fire, medical and security services. The fire services are on 

continuous standby, and should be ready to extinguish any potential fire 

resulting from the leak. Similarly, the ambulance team should be ready to 

provide the necessary medical support, since there is a potential for people to 

inhale toxic gas which could result in death or health complications. The 

security team are responsible for traffic control and for ensuring that 

authorized people can access the emergency location (where the leak took 

place) (150). 

6.4.3. Overview of Oil and Gas Safety 

Before applying our SOA Safety Assurance Framework to the natural gas 

processing system, we will use this section to introduce the key safety factors 

of the oil and gas domain. 

An early activity in any typical safety analysis is the identification of hazards. 

The COMAH Safety Report Assessment Manual (SRAM) (152) provides some 

indication of the types of hazards relevant to the oil and gas industry and 

methods used to identify them. The principal methods they identify are: 

 Hazard and operability studies (HAZOP); 
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 Safety review and studies of the causes of past major accidents and 

incidents’ 

 Industry standards or bespoke checklists for hazard identification; 

 Failure mode and effect analysis (FMEA); 

 Job safety analysis (e.g. task analysis); 

 Human error identification methods. 

According to the SRAM, the analysis should first develop a clear understanding 

of the domain (site operations), the materials involved and the process 

conditions. Secondly, it must identify the hazards to people on-site and off-site 

and to the environment. Finally, there must be an analysis of different ways in 

which the hazards can be eliminated, reduced in scale, realised and controlled 

(153). 

6.4.4. Accidents and Hazards Identification 

It is a high-level safety requirement for the process that the hazard 

identification exercise should identify all foreseeable major accidents. In order 

to make the risk assessment feasible, it is possible to group potential accident 

scenarios together for analysis. If this is the case, the grouping should be 

conservative in terms of the risk associated with each group, and should 

include worst-case scenarios. We apply this principle in our case study by 

identifying and classifying the accidents, hazards and failure modes. The main 

types of accident in this domain are: Explosion, Serious Damage, Major Leak 

and Fire.  

6.4.4.1 Accident Identification in the Oil and Gas Domain 

Explosion can be defined as a quick increase in volume and release of energy in 

an extreme manner, generally with the generation of high temperatures or 

overpressure and the release of gases or liquids (154). Large explosions are 

capable of causing immediate critical damage, e.g. BP Deepwater Horizon Oil 

Spill and offshore drilling in the Gulf of Mexico (155).  

Accidents of the serious damage type can happen when corrosive chemicals are 

used in equipment which is not designed to tolerate them. Corrosion is a 

condition which means that an agent that can destroy and damage other 

substances when it comes into contact with them, e.g. mixing incompatible 

http://en.wikipedia.org/wiki/Volume
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Temperatures
http://en.wikipedia.org/wiki/Gas
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chemicals because of pressure reversal (incompatible materials may be mixed 

with each other, leading to corrosion of the vessel containing them).  

Major fire is defined as a quick oxidation of a material in the exothermic 

chemical process of combustion, releasing heat, light, and various reactive 

products (154). One recent example of a major fire accident is the fire at the 

Gregory natural gas plant in Texas in 2013, which resulted in a large blaze and 

operational loss (156).   

In the gas domain, ‘Major Leak’ is defined as an escape of natural gas from a 

pipeline or other containments to a living area or any other where the gas must 

not be present (154). For example, the Bhopal disaster was a leak of gas and 

other chemicals which took place at a plant in India in 1984, resulting in the 

exposure of up to 15,000 people to an extremely harmful chemical.  

6.4.4.2 Hazard Identification 

Explosions may occur in many different ways. The contributory hazards can 

typically be classified in terms of factors such as High pressure and Blockage. 

Failure modes can occur in many different environments and configurations 

(157):  

 chemical reaction inside the vessel, blocked outlets (blocked-in pump 

and blocked-in compressor); 

 loss of cooling capacity (failure of air-cooled heat exchanger, failure of 

water-cooled heat exchanger); 

 abnormal heat input (excessive heat added); 

 electrical power failure (electrical power may lead to high pressure e.g. 

loss of power will cause the vapours to pass thought the condenser 

without being cooled or condensed, thus creating a high-pressure 

situation and control failure or valve failure).  

One noteworthy cause of high pressure is close instantaneous evaporation of 

liquid through contact with hotter liquid, which can result in an explosion. This 

may occur if liquid gas comes into contact with water in areas where there is a 

potential ignition source (a key focus in our case study). The very high liquid 

gas pressure can lead to an explosion. Such an event might occur during liquid 

gas transfer between an onshore terminal and the liquid gas carrier (157). 

http://en.wikipedia.org/wiki/Oxidation
http://en.wikipedia.org/wiki/Exothermic
http://en.wikipedia.org/wiki/Combustion
http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Product_%28chemistry%29
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Serious damage may be caused by hazards such as incorrect valve closure or a 

failure to close valves when required (mainly human error). Another potential 

example is the supply line containing water that is either not flowing or is 

flowing very slowly. In this case, an ambient temperature of below freezing 

point can cause the water in the line to freeze. This may create serious damage 

within the line where the flow is stopped.  

Major fire can also be caused in many different ways. The hazards associated 

with fire can be classified based on the flammability of the gas/liquid mixtures. 

If air enters a process involving flammable hydrocarbons and/or reducing 

chemicals then a serious accident could happen, or could occur afterwards as a 

in the presence of an ignition source. For example, if air enters the process 

through open lines and vessels, this could result in unwanted oxidation 

processes and air ingress, leading to formation of an explosive mixture (157). 

6.4.5. SOA Modelling 

In this section, we apply SoaML and BPMN to modelling the structure and 

behaviour of the Gas Processing system. The diagram in Figure 51 provides a 

structural description of the system in terms of its services and participants. 

This is defined using the SoaML Services Architecture diagram. Specifically, it 

focuses on the Natural Gas Processing System architecture with eight 

participants that are connected together by seven services.  

 

Figure 51: SoaML Service Architectures Model for Gas Processing  
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Figures 3 to 6 show the different types of interface that the SoaML standard 

(158) provides for gas modelling (Consumers/Providers). It shows the 

interfaces associated with the services. The consumer and provider participant 

roles are modelled based on the defined interfaces. This provides detailed 

traceability between the SoaML models and the behavioural model in BPMN 

where each SoaML interface operation is mapped into a BPMN task. 

 

Figure 52: Interfaces with Operations for the Supply Natural Gases Service 

 

Figure 53: Interfaces with Operations for the Separate Gases Service 

 

Figure 54: Interfaces with Operations for the Absorb Water Service 

 

 

Figure 55: Interfaces with Operations for Heat Exchange and Separate Gas from Liquid 

Services 

Figure 56 presents a more detailed behavioural model of the SOA design using 

BPMN, with the core activities and execution flow shown as processes. For 
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example, eight BPMN pools are created to capture the tasks allocated to the 

participants in the SoaML model in Figure 51. Furthermore, the BPMN model 

describes in more detail the treatment of sweet gas through providing liquid 

gas and steam gas.   

In the next section, we describe how the SoaML and BPMN models provide the 

basis for performing the SOA safety analysis using SHA and SFA. 
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Figure 56:  Gas Processing BPMN Model 
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6.4.6. SOA Safety Analysis 

In this section, we show how we applied the SHA and SFA methods to the 

Natural Gas Processing case study that we introduced in Section 6.4.2. The 

objective of this part of the case study is to illustrate the use of the methods 

and provide an evaluation of the feasibility of the analysis approach. 

6.4.6.1. SHA 

In this section, we provide an overview of the four main services used in the 

case study with their SLAs and describe how SHA is applied to the services 

within the system. The services used in the case study are as follows:  

 Absorb Water; 

 Heat Exchange; 

 Separate Gas from Liquid; 

 Send Emergency Signal. 

The following subsections provide an overview of these services and of the 

analysis results. 

Absorb Water Service 

In its gaseous form, natural gas contains H2O. When converting to a liquid, the 

H2O levels in natural gas should be decreased to less than 1% in a physical 

absorption process in which the gas is contacted through a liquid that 

preferentially absorbs the water vapour. The liquid solvent must have the 

following properties in order for the absorption process to be completed 

(150):  

 a high affinity for water and a low affinity for hydrocarbons; 

 a low volatility at the absorption temperature to reduce vaporisation 

losses; 

 a low viscosity for ease of pumping and good contact between the gas 

and liquid phases; 

 a good thermal stability to prevent decomposition during regeneration; 

and 

 a low potential for corrosion. 
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In practice, glycols such as ethylene glycol (EG), diethylene glycol (DEG), 

triethylene glycol (TEG), tetraethylene glycol (TREG) and propylene glycol are 

the most commonly used absorbents. Triethylene glycol is the glycol of choice 

in most instances.  

 

Figure 57: Schematic of a Typical Glycol Dehydrator Unit (159) 

Figure 57 shows an example of the use of glycol for H2O absorption. The wet 

gas passes through an inlet scrubber to remove solids and free liquids, and 

then enters the bottom of the glycol dehydrator. Gas flows upward in the 

dehydrator, while lean glycol solution (glycol with little or no water) flows 

down over the trays. Rich glycol absorbs water and leaves at the bottom of the 

column while dry gas exits at the top. The rich glycol flows through a heat 

exchanger at the top of the still where it is heated and provides the coolant for 

the still condenser. Then the warm solution goes to a flash tank, where the 

dissolved gas is removed. The rich glycol from the flash tank is further heated 

by heat exchange with the still bottoms, and then becomes the feed to the still. 

The still produces water at the top and a lean glycol at the bottom, which goes 

to a surge tank before being returned to the contactor (150).  

The catalyst works like a sponge (known for their exceptional ability to absorb 

water).  The gas stream enters the dehydration unit at a temperature of 120 °F 

and first goes to dehydration unit. This unit contains a catalyst that helps to 



184 
 

remove the water from the gas. The water is removed is to avoid freezing the 

gas stream inside the pipe. The performance of the dehydration unit is 

monitored through a pressure transmitter, where the high pressure will result 

in changing the catalysis reaction inside the unit. After the water is removed, 

the gas will pass by the analyser to measure that there is no water through the 

pipe. An analyser is an instrument which conducts chemical analysis on 

samples or sample streams. When the gas has less than 1% water content, the 

system can accept it. The gas will leave the analyser at a temperature of 120°F 

passing through the pipe to the cooling unit, where it is cooled from 120 to -40 

°F. The change in temperature is monitored through a temperature 

transmitter.  

The Natural Gas Processing System architecture in Figure 51 shows where the 

Absorb Water service is used. Two Participants, the Dehydration Unit and 

Cooling Unit, have been specified, their interactions captured by the Absorb 

Water service contract. These two participants represent the roles that are 

connected to this service. Table 23 shows the SLA for the Absorb Water 

service. For instance, the Participants, Cooling Unit and Dehydration Unit, 

respectively represent the consumer and provider for the service.  

Attribute Description Source 

Name Absorb Water SoaML Service Contract 
Architecture for the natural gas 
processing system 

Provider   The Dehydration Unit  that provides 
the service 

SoaML Participants 
Architecture for the natural gas 
processing system 

Consumer  The Cooling Unit that uses the service SoaML Participants 
Architecture for the natural gas 
processing system 

Start time The point at which the Dehydration 
Unit is requested to Absorb Water 
(e.g. 9:00:00 AM) 

SoaML ServicesArchitecture for 
the natural gas processing 
system 

Due time The end time of the requested 
Absorption process (e.g. 9:00:30 AM) 

SoaML ServicesArchitecture for 
the natural gas processing 
system 

Duration 30 seconds SoaML ServicesArchitecture for 
the natural gas processing 
system 

 (Pre-
condition) 

Receiving the requested information 
including the amount of water, 
percentage removal required, and 

SoaML Service Contract 
Architecture for the natural gas 
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 brief details of the condition of the 
sweet gas. 

processing system 

 (Post-
condition) 

Water absorbed and content less than 
1%.  Signal sent by transmitter at the 
expected arrival time 

SoaML Service Contract 
Architecture for the natural gas 
processing system 

Contribution 
to Safety 

Overall severity is very severe (see 
SHA results) 

SHA 

 Table 23:  Absorb Water SLA 

Table 24 shows an extract from the SHA results for the ‘Absorb Water’ service. 

The analysis establishes the potential safety criticality of the ‘Absorb Water’ 

service, based on the severity of the worst credible effects of the identified 

failure modes. As a result of the analysis, stringent safety requirements 

allocated are defined and allocated to the ‘Absorb Water’ service. 

Service Failure 
Modes 

Effects Severity SSRs Mitigation 

Absorb 
water 

 

Context: 
Absorption 
service 
means 
removing 
the water in 
gas 
dehydration 
processes 

 

Water not 
removed 
(i.e. water 
content is 
more than 
1%) 

Blockage 
in the 
pipeline; 
Damaged 
pipelines; 
Explosion  

(Very 
Severe, 4) 

The failure mode 
“water not 
removed” shall 
be prevented or 
mitigated. 

Active monitoring 
and cross-
checking between 
removing water 
and measuring 
sweet gas through 
the analyser. Also, 
checking the 
catalyst inside the 
dehydration drum 
to ensure it is 
within its service 
life e.g. needs to be 
replaced every 5 
years. 

Water 
removed 
when not 
required 

N/A N/A None. None. 

Water 
removed 
later than 
intended 

Freezing 
inside the 
pipeline; 
Blockage 
in the 
pipeline; 
Damaged 
pipelines; 
Explosion  

(Very 
Severe, 4) 

The failure mode 
“water removed 
later than 
intended” shall 
be prevented or 
mitigated. 

Active monitoring 
of timing targets 
and strategies for 
recovery from 
timing-related 
failures through 
analyser.  

Water 
removed 
earlier 
than 
intended 

N/A N/A None. None. 
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Inaccurate 
percentag
e of water 
removed 
(i.e. water 
content is 
less than 
1%) 

N/A 

No direct 
safety 
effects 

The 
system 
can 
handle 
that 
without 
any effect  

N/A None. None. 

Table 24:  Absorb Water SHA 

The Absorb Water service has two potential hazardous failure modes, namely: 

1- Water not removed (i.e. water content is more than 1%); 

2- Water removed later than intended.          

In the SHA, the failure modes are intended to act as prompts for the analyst, 

and it may be necessary to consider more than one interpretation. For 

example, the first case, “water not removed” (i.e. water content is more than 

1%), the service is not provided, which may lead to a large amount of water 

flooding into the pipeline toward the cooling unit. This water may then freeze 

inside the pipeline, which would block the pipeline and prevent the flow of 

gas. Ultimately, this could lead to damaged pipelines or an explosion. The level 

of severity is measured and classified based on a risk matrix (154). In the oil 

and gas domain, risk is commonly analysed and managed using three risk 

matrices. They are as follows:  

 Consequence Matrix; 

 Frequency Matrix; and  

 Risk Matrix. 

The consequence/severity matrix we use in this case study is depicted in 

Table 25 and is based on four types of potential consequence:  worker safety, 

public safety, environment and economic (154). 

 Worker Safety  Public Safety  Environment Economic 
(Annual) 

Low, 1 Reportable or 
equivalent. 

None. Limited impact 
that is readily 
corrected 

$10.000 to 
$100.00 
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Moderate, 2 Hospitalization 
or lost-time 
injury. 

Minor medical 
attention. 

Report to agencies 
and take remedial 
action. 

$100.000 to 
$1 million 

Severe, 3 Single 
disabling. 

Hospitalization 
or serious injury. 
Some local 
reporting. 

Irreversible 
damage to low-
quality land. Or 
clean-up of 
environmentally 
sensitive areas 
requires 

$1 million 
to $ 10 
million 

Very severe, 4 Fatality or 
multiple 
serious injuries. 

Fatality or 
multiple serious 
injuries. Massive 
negative 
publicity. 

Months of clean-
up work needed in 
environmentally 
sensitive areas 

≥ $10 
million 

 Table 25: Consequence Categories (154) 

Once the consequences associated with an incident have been identified, the 

next step is to estimate the frequency with which the incident might occur. An 

example matrix is shown in Table 26. 

 Frequency Comments 

Low, 1 < 1 in 1.000 years Essentially impossible: “ Once in a blue 
moon “ or “meteor falling out of the sky” 

Moderate, 2 1 in 100 years to 1 in 1.000 
years 

Conceivable – has never happened in the 
facility being analysed but has probably 
occurred in a similar facility somewhere 
else.  

High, 3 1 in years to 1 in 100 years Might happen once in an engineer’s 
career 

Very High, 
4 

> 1 in 10 years It is likely that the event has occurred at 
the site if the facility is more than a few 
years old. 

 Table 26: Example of Frequency Matrix (154) 

Table 27 shows the Risk Ranking Matrix that is used to categorise the level of 

severity/consequences and frequency. The colours should be interpreted as 

follows: red means very high risk, orange means high risk, yellow means 

medium risk and green means low risk.  

 Consequence 

Frequency  Low, 1 Moderate, 2 Severe, 3 Very severe, 4 

Low, 1 D D C C 

Moderate, 2 D C C B 

High, 3 C C B A 

Very High, 4 C B A A 
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Table 27: Risk Ranking Matrix (154) 

Table 28 explains the meaning of the four letters used in the Risk Ranking 

Matrix in Table 27 (154). 

A (Red) Very 
High 

This Level of risk requires prompt action: money is no object, and doing 
nothing is not an option. An “A” risk is urgent. On an operation facility, 
management must implement Immediate Temporary Controls (ITC), 
while longer-term solutions are being investigated. If effective ITCs 
cannot be found, then the operation must be stopped. During the design 
phases of a project, immediate corrective action must be taken in 
response to an “A” finding, regardless of the impact on the schedule and 
budget. 

B (Orange) High Risk must be reduced, but there is time to conduct more detailed analyses 
and investigations. Remediation is expected within, say 90 days. If the 
resolution is expected to take longer than this, then an ITC must be put in 
place. 

C (Yellow) 
Moderate 

The risk is significant. However, cost considerations can be factored into 
the final action taken, as can normal scheduling constraints such as 
availability of spare parts or the timing of facility turnarounds. 
Resolution of the finding must occur within, say, 18 months. An ITC may 
or may not be required. 

D (Green) Low  Requires action but is of low importance. In spite of their low-risk 
ranking, “D” level; risks must be resolved and recommendations 
implemented according to a schedule: they cannot be ignored. (Some 
companies do allow very low-risk ranked findings to be ignored on the 
grounds that they are within the bounds of acceptable risk.) 

If the hazard is associated with a change to an existing process, it is not 
always necessary to conduct a full risk ranking, particularly if the change 
does not make a fundamental alteration to the process itself. In these 
cases, it is enough just to check that the risk value does not shift from one 
square to another if it does not then no further evaluation is needed.  

Table 28: Interpretation of the Letters used in the Risk Ranking Matrix (151) 

In the example of the “water not removed” failure condition, the likelihood of 

there being a problem with the catalyst is low. Nevertheless, the potential 

effects are very high. As a result, the level of impact is considered very severe. 

This is because the whole plant will need to be shut down in order to fix the 

damaged pipe or to explore ways to remove the freezing water.     

Having identified the failure mode and assessed the effect and level of risk, we 

must prevent or mitigate the failure mode “water not removed”. The 

mitigation used is active monitoring and cross-checking between removing 

water and measuring the flow of sweet gas through the analyser. Also, 

monitoring of the level of catalyst inside the dehydration drum is used, e.g. it 

needs to be checked every 5 years which is a typical service life for catalysis. 

This is identified from the design representation for the dehydration drum. 
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Another failure mode is when water is removed later than intended. This may 

lead to water passing within the pipeline, freezing inside the pipeline, blocking 

the pipeline and thus preventing the flow of gas (151). A level catalyst needs to 

be fitted with the level of water. Another possible case is damaged pipelines or 

explosion. The level of the impact considered is very severe. The mitigation 

used is active monitoring of timing targets and strategies for recovery from 

timing-related failures through the analyser. This is used in order to avoid any 

delay in the process flow.  

Heat Exchange (Cooling) Service  

The Heat Exchange service is provided by the Cooling Unit which reduces the 

gas temperature from 120°F to -40°F. If the temperature does not reach the 

intended temperature, it is clear that the gas is not passing to the Cooling Unit. 

This in turn indicates that a gas leak has happened in the pipe. On receiving an 

over-temperature indication, the system should generate an automatic signal 

to shut down the cooling unit.   

Most heat exchangers operating in a gas plant are conventional shell-and-tube 

types and are ideal for steam and hot oil systems where fouling occurs. They 

are relatively inexpensive and easy to maintain because the tube bundle can 

be removed and tubes cleaned or replaced as needed. (150). 

The Engineering Data Book (159) provides extensive details of the exchangers 

used in gas processing. Where the fluids are clean and fouling does not occur, 

such as in gas−gas exchangers, compact heat exchangers are ideal. Wadekar 

(2000) provides a good overview of the more common types.  

In the event of gas leak case, the leak might occur at the beginning of the unit, 

in which case the control operator should notice a sharp increase in the 

temperature after the cooler indicates that no gas is passing through the 

cooler. The upstream emergency isolation valve should close automatically, 

since it has a logic where any sharp increase in temperature is detected and 

the valve closed in response. This is to avoid continuous gas leaking from the 

faulty location. The leaking gas is considered as a fuel and any spark of ignition 

will result in fire. 
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Here we apply SHA for the analysis of the Heat Exchange service. The SLA for 

the service is shown in Table 29 in which the Cooling Unit and the Customer 

respectively represent the consumer and the provider for the service.  

Attribute Description Source 

Name Heat Exchange SoaML Service Contract 
Architecture for the natural gas 
processing system 

Provider  Cooling Unit that provides the 
service 

SoaML Participants Architecture for 
the natural gas processing system 

Consumer  The Customer that uses the 
service 

SoaML Participants Architecture for 
the natural gas processing system 

Start time Point at which the request for 
cooling is sent to the Cooling Unit 
(1:00:00 PM) 

SoaML ServicesArchitecture for the 
natural gas processing system 

Due time The end time of the gas cooling 
process (1:00:30 PM) 

SoaML ServicesArchitecture for the 
natural gas processing system 

Duration 30 seconds SoaML ServicesArchitecture for the 
natural gas processing system 

 (Pre-
condition) 

 

The Cooling Unit has received the 
requested information including 
the amount of gas, percentage of 
cooling, and brief details of the 
condition of the gas situation 

SoaML Service Contract 
Architecture for the natural gas 
processing system 

 (Post-
condition) 

Gas is cooled to the requested 
temperature and signal sent by 
the transmitter indicating the 
expected arrival time for 
Separation 

SoaML Service Contract 
Architecture for the natural gas 
processing system 

Contribution 
to Safety 

Overall severity is very severe 
(see SHA results) 

SHA 

 Table 29:  Heat Exchange SLA 

Table 30 shows an extract from the SHA results for the ‘Heat Exchange’ 

service. The analysis establishes the potential safety criticality of the ‘Heat 

Exchange’ service, based on the severity of the worst credible effects of the 

identified failure modes. As a result of the analysis, stringent safety 

requirements are defined for and allocated to the ‘Heat Exchange’ service. 

Service Failure 
Modes 

Effects Severity SSRs Mitigation 

Heat 
exchange  

Gas not 
cooling 

Gas leak 
within 
pipelines  

(Very 
Severe, 4) 

The failure 
mode “gas not 
cooling” shall 
be prevented 
or mitigated. 

Active monitoring 
and cross-
checking the 
transmitter to 
control the liquid 
level in the 
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 cooling by 
establishing 
setting point in 
the system at -40 
°F and pressure is 
400 psig 

Gas cooling 
when not 
required  

N/A N/A None. None. 

Gas cooling 
later than 
intended 

N/A N/A None. None. 

Gas cooling 
earlier than 
intended 

N/A N/A None. None. 

Inaccurate 
percentage 
of gas 
cooling 

Gas leak 
within 
pipelines 
since no gas 
is passing 
through 
cooler  

 (Very 
Severe, 4) 

The failure 
mode 
“inaccurate 
percentage of 
gas cooling” 
shall be 
prevented or 
mitigated.  

Early 
temperature 
cross-checking of 
the transmitter 
and confirmation 
that the setting 
point in the DCS 
that the cooling 
unit is -40 °F and 
pressure is 400 
psig 

Table 30:  Heat Exchange SHA 

The Heat Exchange service has two potentially hazardous failure modes: 

1- Gas not cooling Water;    

2- Inaccurate percentage of gas cooling. 

The first failure mode may lead to a gas leak the within pipelines, since no gas 

is passing through the cooler. The level of impact of this failure mode is 

classified as Very Severe (4).  

In this service, the transmitter plays an important role in setting the point in 

the Natural Gas Processing system at -40°F, which is essential to cool the gas. 

The proposed mitigation is active monitoring and crosschecking in order to 

deal proactively with this potentially dangerous failure mode. 

Another failure mode is “inaccurate percentage of gas cooling” which may lead 

to a gas leak within the pipeline, since no gas is passing through the cooler. 

The potential frequency of this failure mode is assessed as High (3) and the 

impact is considered Very Severe (4). The risk matrix can help identify the 

resulting level of risk, which is identified as very high. The mitigation here is 
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early crosschecking of the transmitter and a confirmation of the setting point 

in the DCS. This can ensure that no more leaking gas goes into the atmosphere.  

In the event of the above failure modes, the unit needs to be shut down to 

ensure that no more gas leaks to the atmosphere. In principle, the failure 

modes identified for the system described in this example could lead to the 

same problems as those encountered during the Bhopal Plant Disaster in 

1984. At Bhopal, there were gas leaks and problems with the pressure gauge 

(160). The leak was running quite slowly and the pressure indicator 

instrument did not function as intended.  

Separate Gas from Liquid  

The Gas-Liquid Separation function is provided by the Cooling Unit. A 

Separator is designed to separate intermittent large volumes of liquids from a 

gas stream. It may take the form of vessels or a manifold pipe system. Figure 9 

shows the basic structure of a vessel-based gas-liquid separation system. 

 

Figure 58: Gas-Liquid Separation, adapted from (159) 
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The separation vessel can be orientated vertically or horizontally. Vertical 

separators are usually used while gas flow rates are low or the liquid-to-gas 

ratio is low. They are preferred offshore as they occupy less space. 

Nevertheless, gas flow in vertical systems is upwards and opposes the flow of 

liquid droplets. Vertical separators are bigger and cost more than horizontal 

separators. The inlet suction scrubbers used by compressor stations are 

commonly vertical. Horizontal separators, on the other hand, are favoured for 

large volumes of liquid or in situations where the liquid-to-gas ratio is high. 

Lower gas flow rates and increased residence times can help provide better 

liquid dropout. The larger area offers better degassing and also more stable 

liquid levels. This is can be seen in Figure 58 (161).   

After cooling, the gas is passed to the separation unit in order for the gas to be 

separated from the liquid. The drop in temperature helps condensed gas to 

liquefy.  The liquid stream is called liquid gas. After separation, the liquid gas 

is sent to a Chemical Manufacturing Company while the gas goes to an 

Electricity Company.  

We now apply SHA to the Separate Gas from Liquid service, defined in in the 

SLA shown in Table 31.  

Attribute Description Source 

Name Separate gas from liquid SoaML Service Contract 
Architecture for the natural gas 
processing system 

Provider  Cooling Unit that provides the 
service 

SoaML Participants Architecture 
for the natural gas processing 
system 

Consumer  The Customer that uses the service SoaML Participants Architecture 
for the natural gas processing 
system 

Start time Requesting Separation by the 
Cooling Unit (e.g. 11:00:00 AM) 

SoaML ServicesArchitecture for 
the natural gas processing 
system 

Due time The end time of the gas-separation 
process (e.g. 11:00:30 AM) 

SoaML ServicesArchitecture for 
the natural gas processing 
system 

Duration 30 seconds SoaML ServicesArchitecture for 
the natural gas processing 
system 

 (Pre-
condition) 

Receiving the request information 
including the amount of gas, 
percentage of separation, and brief 

SoaML Service Contract 
Architecture for the natural gas 
processing system 
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 details of the condition of the gas 
situation. 

 (Post-
condition) 

Gas is separated and send signal by 
transmitter and the expected arrival 
time to Customer 

SoaML Service Contract 
Architecture for the natural gas 
processing system 

Contribution 
to Safety 

Overall severity is very severe (see 
SHA results) 

SHA 

 Table 31:  Separate gas from liquid SLA 

Table 32 shows an extract from the SHA results for the ‘Separate Gas from 

Liquid’ service. In the example, the required separation level to be transmitted 

should be 80% for liquid gas and 20% for gas: a higher level than this may lead 

to wrong separation. There are two potentially dangerous failure modes, 

namely: 

1- Gas not Separated; 

2- Inaccurate percentage of gas separated. 

The first failure mode is “gas not separated” which may lead to a mixing of the 

gases. The customer would receive a product does not correspond to the 

specification, which might have a negative impact on the customer’s handling 

materials and lead to pipe rupture. The severity of this failure mode is 

assessed as Moderate (2). In the example, this failure mode is mitigated by 

monitoring that the level of liquid is maintained at 80%. 

Service Failure 
Modes 

Effects Severity SSRs Mitigation 

Separate 
gas from 
liquid 
service 

Gas not 
Separated 

Damage to the 
equipment in 
customer 
plant 
 

(Moderate, 
2) 

The failure 
mode “gas 
not 
separated” 
shall be 
prevented 
or 
mitigated. 

Active 
monitoring and 
cross-checking 
by installing 
level 
transmitter at 
80% to control 
the liquid level 
in the DCS 

Gas 
separated 
when not 
required  

N/A N/A None. None. 

Gas 
separated 
later than 
intended 

N/A 
No direct 
safety effects 

N/A None. None. 

Gas 
separated 
earlier than 
intended 

N/A N/A None. None. 

Inaccurate Damage to the (Moderate, The failure Early address 
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percentage 
of gas 
separated 

equipment in 
customer 
plant 
  

2) mode 
“inaccurate 
percentage 
of gas 
separated” 
shall be 
prevented 
or 
mitigated.  

crosschecking 
transmitter 
level and 
confirmation of 
separation of 
the gas to avoid 
sending mixed 
gases.   

Table 32:  Separate Gas from Liquid SHA 

Send Emergency Signal from Cooling Unit to Responder 

In the event of an emergency, the control operator should call an emergency 

number, alerting the fire, hospital and security agencies to the situation. A 

response action should follow. Each of these agencies has a different 

responsibility in the emergency situation. Fire fighters are on continuous 

standby and should be ready to extinguish any fire that could result during a 

leak.  

The ambulance team should provide the necessary medical support, since 

there is potential for people to inhale toxic gas, which could result in serious 

medical complications. The security team are responsible for emergency 

traffic control and also for ensuring that only authorised people can access the 

emergency location. 

We have applied SHA to the ‘Send Emergency Signal’ service. The example 

below explains the use of SHA, considering the corresponding SLA as defined 

in Table 33. 

Attribute Description Source 

Name Send Emergency Signal SoaML Service Contract 
Architecture for the natural gas 
processing system 

Provider   Responder that provides the service SoaML Participants 
Architecture for the natural gas 
processing system 

Consumer  Cooling Unit uses the service SoaML Participants 
Architecture for the natural gas 
processing system 

Start time The point at which the Cooling Unit 
sends the emergency signal (11:00:00 
PM) 

SoaML ServicesArchitecture for 
the natural gas processing 
system 

Due time The end time of the Receive 
Emergency Signal request (11:00:10 
PM) 

SoaML ServicesArchitecture for 
the natural gas processing 
system 
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Duration 10 seconds SoaML ServicesArchitecture for 
the natural gas processing 
system 

 (Pre-
condition) 

 

Send the signal including the current 
situation and location 

SoaML Service Contract 
Architecture for the natural gas 
processing system 

 (Post-
condition) 

Receiving the signal  SoaML Service Contract 
Architecture for the natural gas 
processing system 

Contribution 
to Safety 

Overall severity is Very Severe SHA 

 Table 33:  Send Emergency Signal SLA 

Table 34 shows an extract from the SHA results for the ‘Send Emergency 

Signal’ service. The analysis establishes the potential safety criticality of the 

‘Send Emergency Signal’ service, based on the severity of the worst credible 

effects of the identified failure modes. As a result of the analysis, stringent 

safety requirements are developed and allocated to the ‘Send Emergency 

Signal’ service. 

Service Failure 
Modes 

Effects Severity SSRs Mitigation 

Send 
emergency 
signal 

Signal not 
sent 

Damaged 
pipeline   

Explosion  

Fire   

(Very 
Severe, 4) 

The failure 
mode “signal 
not sent” shall 
be prevented 
or mitigated. 

Use of 
redundancy by 
transmitter to 
confirm the 
signal has been 
received  

Signal sent 
when not 
required  

N/A N/A None. None. 

Signal sent 
later than 
intended 

Damaged 
pipeline   

Explosion  

Fire   

(Very 
Severe, 4) 

The failure 
mode “signal   
sent later than 
intended” shall 
be prevented 
or mitigated. 

Active 
monitoring of 
timing targets 
and strategies for 
recovery from 
timing-related 
failures.  

Signal   sent 
earlier    than 
intended  

N/A N/A None. None. 

Inaccurate 
signal sent  

(Wrong 
respond)   

(Wrong 
reading) 

Damaged 
pipeline   

Explosion  

Fire   

(Very 
Severe, 4) 

The failure 
mode 
“inaccurate 
signal sent” 
shall be 
prevented or 
mitigated.  

Early 
crosschecking by 
maintenance 
technician to 
confirm that 
correct the signal    
has been 
received. 



197 
 

Table 34:  Send Emergency Signal SHA 

The first failure mode is ‘signal not sent’ which may lead to a damaged 

pipeline, an explosion or a fire. The level of impact is assessed as Very Severe 

(4). In the example, the suggested mitigation for this failure mode is the use of 

redundancy by the transmitter to confirm that the signal has been received.   

6.4.6.2. SFA 

In this section, we show how SFA is applied to two primary flows in the BPMN 

model for the Natural Gas Processing systems, which are as follows:  

 Flow between ‘Send emergency signal’ (Cooling Unit) to ‘Receive signal 

and check the status’ (Responder); 

 Flow between ‘Exchange heat from 120°F to -40°F at pressure 400 psig’ 

to ‘Monitor that the temperature is at -40 °F, the pressure is at 400 psig 

and send signal by transmitter’. 

Flow from ‘Send Emergency Signal’ to ‘Receive Signal and Check the 

Status’ 

The performance of the Cooling Unit is monitored to detect any gas leakage: 

the control operator should notice a sharp increase in temperature after the 

cooler indicating that no gas is passing through the cooler. The upstream 

emergency isolation valve should close automatically. This is to avoid 

continuous gas leaking from the leak location.  

The SFA here considers 4 main types of deviation, suggested by the following 

guidewords (Table 35): 

 Omission; 

 Commission;  

 Late; 

 Value.     

Omission may be total or partial. Total omission is when the signal is not 

communicated at all. This may be due to a conversion fault (Incorrect input or 

server crashed), which could result in the lack of an emergency request signal. 

The mitigation suggested here is redundancy in sending sources to ensure 

accurate communication. Partial omission, in which part of a communication is 



198 
 

missing, may be due to the required resource being missing or service/server 

incompatibility, which could result in an inconsistent signal. The proposed 

mitigation is to ensure accurate communication through checking and 

monitoring API functions to describe all the valid messages that one program 

can accept. Another example is related to commission failure modes 

(repetition or spurious communication). Repetition of the signal with 

additional output may lead to a redundant description (due to incorrect input 

or server crashed), which could result in a wrong response, wrong reading of 

the signal and receipt of a conflicting request. The proposed mitigation is to 

ensure safe communication through the use of high-integrity components 

between participants to detect incorrect signals. 
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ID 
(Flow) 

Guide 
Word 

Deviation Possible Causes Effects DSSRs Mitigation 

1.1  Omission 
(no 
communicat
ion within 
the signal) 

No output 
signal is sent 

Conversion fault 
(Incorrect input) (server 
crashed) 

No request received  The failure mode “no 
output signal is sent” 
shall be prevented or 
mitigated. 

Use of redundancy in sending 
sources  

Omission 
(Incomplete 
signal) 

Part of output 
signal   is 
missing 

    

Required resource 
missing  

Service/server 
incompatible 

Inconsistent signal  The failure mode “part 
of output signal   is 
missing” shall be 
prevented or mitigated. 

Checking and monitoring APIs 
function and fault 
containment 

1.2 Commission 
(Repetition) 

Additional 
output signal 
sent  

Redundant description 

(Incorrect input)  

(Server crashed)  

  

Conflicting request   
received  

Wrong response  

Wrong reading signal 

The failure mode  
“additional output 
signal sent” shall be 
prevented or mitigated. 

Use of high-integrity 
components between 
participants to detect 
incorrect signal with sufficient 
reliability and accuracy 

Commission 
(Spurious) 

The 
communication 
is unintended 

Conversion fault 
(Incorrect input) (server 
crashed) 

Only affected when 
the message is valid  

The failure mode “the 
communication is 
unintended” shall be 
prevented or mitigated. 

Use of high-integrity 
components between 
participants to detect 
incorrect signal with sufficient 
reliability and accuracy  

1.3 Early N/A N/A N/A N/A Just: the output cannot be 
produced  

1.4 Late Unacceptable 
response time 
to change in 
demands 

Execution fault 

Time out (severe crash or 
communication failure) 

Overloading signal  

  

The failure mode 
“Unacceptable response 
time to change in 
demands” shall be 
prevented or mitigated. 

Active monitoring by 
transmitter of timing targets 
and strategies for recovery 
from timing-related failures 
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Table 35:  ‘Send Emergency Signal from Cooling Unit’ to ‘Receive Signal and Check the Status’ SFA 

1.5 Value   One 
component of 
output is not 
proportional to 
demand 

Incompatible 
components  

(Composition fault) 

False signal  

Hard to detect from 
flow of wrong advice 
through radio 
communication 
channel as well 

The failure mode “One 
component of output is 
not proportional to 
demand” shall be 
prevented or mitigated. 

Applying diversity in the flow 
and fault containment to 
detect and reject incorrect 
signal 
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In the case of spurious communication, the communication is unintended 

which may lead to a conversion fault (Incorrect input or server crashed). The 

proposed mitigation is again to ensure adequate communication through the 

use of high-integrity components between the participants. If the flow occurs 

later than intended, this may lead to unacceptable response times, to changes 

in demand and to a ‘failure in execution fault’ or time out (severe crash or 

communication failure). The potential effect is to overload the signal and the 

proposed mitigation is to provide active monitoring by the transmitter of 

timing targets and strategies for recovery from timing-related failures. The 

potential deviation uncovered by application of the guide word ‘value’ is that 

one component of output is not proportional to the demand received due to 

incompatible components (composition fault). The effect is transmission of a 

false signal, which is hard to detect from the flow resulting in the wrong advice 

through the radio communication channel.  The proposed mitigation is to 

ensure accurate communication by applying diversity in the flow and fault 

containment strategies to detect and reject incorrect signals. 

Flow from ‘Exchange Heat from 120°F to -40°F at Pressure 400 psig’ to 

‘Monitor that the Temperature is at -40 °F, the Pressure is 400 psig and 

Send Signal by Transmitter’  

The SFA here considers 3 main types of deviation, suggested by the following 

guidewords (Table 36): 

 Omission; 

 Commission;  

 Value.   

One important aspect of the analysis generated from SFA in this case study is 

the commonality in the use of the types of mitigation, which should help to 

simplify the detailed design by focusing on a limited set of high-quality 

mitigation measures (mainly redundancy and reliance on high-integrity 

components) that can potentially address the identified failure modes. 
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ID Guide Word Deviation Possible Causes Effects DSSRs Justification/Design 
Recommendations 

1.1 Omission (no 
communication 
within the flow) 

No output process 
is sent   

    

conversion fault 
(Incorrect input) 
(server crashed) 

Request not 
received 

 

  

The failure mode 
“no output process 
is sent” shall be 
prevented or 
mitigated. 

 Use of redundancy in 
sending sources  

 

Omission 
(Incomplete 
communication) 

Part of output 
signal is missing 

 

Required resource 
missing 

Service/server 
incompatible 

Inconsistent 
temperature 

The failure mode 
“part of output 
signal is missing” 
shall be prevented 
or mitigated. 

Checking and monitoring 
APIs function and fault 
containment 

1.2 Commission 
(Repetition) 

Additional output 
process sent.  

Description 
incorrect or 
mismatching 

Execution fault 
(Incorrect result) 

Unwanted 
change   

Only effected 
when the flow is 
valid   

The failure mode 
“Additional output 
process sent. No 
change is required” 
shall be prevented 
or mitigated. 

Use of high-integrity 
components between 
participants to detect 
incorrect  signal 
temperature indications 

Commission 
(Spurious) 

The communication 
is unintended 

Conversation fault 
(Incorrect input) 
(server crashed) 

Accounting 
problems 

Only effected 
when the 
message is valid  

The failure mode 
“the communication 
is unintended” shall 
be prevented or 
mitigated. 

Use high-integrity 
components among 
participants to  ensure the 
message received is exactly 
the same as the message 
that was sent  

1.3 Early N/A N/A N/A  Just: the output cannot be 
produced 

1.4 Late N/A N/A N/A  N/A 
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Table 36: ‘Exchange Heat from 120 to -40 °F at Pressure 400 psig’ to ‘Monitor that the Temperature is at -40 °F, the Pressure is 400 psig and Send 

Signal by Transmitter’ 

 

 

1.5 Value   One component of 
output is not 
proportional to 
demand 

Undetected failure 
in any process. 
Corruption 
message 

(Execution fault 
incorrect result- or 
servicer crash) 

False temperate 

Can be detected 
from flow (Gas 
leak) or 
temperature 
degree 

The failure mode 
“One component of 
output is not 
proportional to 
demand” shall be 
prevented or 
mitigated. 

Applying diversity in the 
flow and early cross-
checking and fault 
containment  
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6.4.7. Safety Cases 

This section presents the results of applying the SOA safety argument pattern 

catalogue defined in Chapter 5 to the Natural Gas Processing case study 

introduced in this Chapter. The purpose of this part of the case study is to 

examine how the SOA safety argument pattern catalogue can help in 

communicating the justification for the safety of the Natural Gas Processing 

system and its associated services. It also shows how the analysis process, as 

applied to the case study, relates to the overall structure of the SOA safety 

argument. The case study will also be used to evaluate how the safety 

requirements and mitigation arising from the analysis can be used to define the 

safety argument contracts based on the SLAs defined during the design.                      

6.4.7.1. Gas Service System Safety Argument 

The safety case for the Gas Service System starts with an instantiation of the 

Top Argument pattern. The Top Argument includes a services-directed 

argument, which covers the main safety claims concerning the Natural Gas 

Processing System. The results of the instantiation are shown Figure 59 

G_SOA presents the claim for the overall safety of the Natural Gas Processing 

System in the context of the use case, i.e. the list of services covered (C_SOA). 

The strategy decomposes the argument over all of the identified services within 

the system, based on the SOA specification defined in SoaML. For each service, 

the argument makes a claim that the service is acceptably safe. This is done by 

means of creating an away goal for each service , which references the 

corresponding Service Argument module. In this section, we only focus on the 

argument for the ‘Send Emergency Signal’ service. This service is enacted in the 

event of a gas leak occurring at the beginning of the Cooling unit; the control 

operator is expected to detect a sharp increase in temperature based on the 

cooler indicating that no gas is passing through. The upstream emergency 

isolation valve should close automatically. The leaking gas is a fuel and any 

spark of ignition will result in fire. Additional safety arguments are described in 

Appendix E. 
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Figure 59: Top Argument Module 
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6.4.7.2. Service Argument for Send Emergency Signal 

The argument structure in Figure 60 shows the instantiation of the Service Argument 

pattern for the ‘Send Emergency Signal’ service. The instantiation is based on the result 

of the SHA analysis of the ‘Send Emergency Signal’ service presented in section 6.4.6.1. 

The top-level claim for the Send Emergency Signal states that the service is acceptably 

safe, in the context of the SOA specification defined in SoaML CollaborationUse. The 

strategy argues over all the identified service hazards within the service based on the 

analysis carried out in the SHA. This is made in the context of the results of the 

modelling and SHA for this service. 

The argument focuses on three failure modes, which have hazardous effects, which have 

been generated from the SHA results, namely: 

 Signal not sent;  

 Signal sent later than intended;  

 Inaccurate signal sent. 

The argumentation strategy adopted for each failure mode is to argue that the failure 

mode has been mitigated to the required level of integrity. For example, the failure 

mode ‘Signal not sent’ is mitigated by use of redundancy in the transmitter to confirm 

that the signal has been received. The mitigation claim is then defined in the form of a 

safety contract post-condition that is supported by the SLA Contract Argument. 
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C_Service_Desc

Send emergency signal: 
SoaML 
CollaborationUse

St_Service_Hz

Argument structured 
based on mitigating 
service hazardous failures

C_Service_Hz

Signal not sent
Signal sent later than 
intended
Inaccurate signal sent

G_Service_N_Hz

Signal not sent is mitigated to 
satisfy the Service Safety 
Requirement

G_Service_N_SLA_Postcondi
tions

Active redundancy is 
satisfied   

G_Service_W_Mitg

Early cross-checking by maintenance 
technician to confirm that correct the 
signal has been received is satisfied to 
the required integrity 

G_Service_I_Mitg

Active monitoring of timing targets 
and strategies for recovery from 
timing-related failures. is satisfied to 
the required integrity 

G_Service_N_Mitg
Use of redundancy by 
transmitter to confirm the 
signal has been received is 
satisfied to the required 
integrity 

 G_Service_I_Hz

Signal sent later than intended 
is mitigated to satisfy the 
Service Safety Requirement

G_Service_W_Hz

Inaccurate signal sent is 
mitigated to satisfy the Service 
Safety Requirement

St_Service_N_Hz_Mit
g

Argument based on 
redundancy 

St_Service_I_Hz_Mitg

Argument based on Active 
monitoring by transmitter of timing 
targets and strategies for recovery 
from timing-related failures. 

St_Service_W_Hz_Mitg

Argument based on Early address 
cross-checking transmitter by 
maintenance technician to 
confirmation the signal has been 
received   

C_Service_Hz_N_Mitg

Use of redundancy by 
transmitter to confirm the 
signal has been received   

C_Service_Hz_I_Mitg

Active monitoring by 
transmitter of timing targets 
and strategies for recovery 
from timing-related failures. 

C_Service_Hz_W_Mitg

Early address cross-checking 
transmitter by maintenance 
technician    to confirmation 
the signal has been received   

C_Service_N_Class

Required integrity 
based on very high 
severity   

C_Service_I_Class

Required integrity 
based on very high 
severity   

C_Service_W_Class

Required integrity 
based on very high 
severity   

St_Service_N_SLA

Argument by enforcing 
redundancy by transmitter to 
confirm the signal has been 
received   in the SLA 1   

St_Service_I_SLA

Argument by enforcing active 
monitoring by transmitter of timing 
targets and strategies for recovery 
from timing-related failures in the 
SLA 2

St_Service_W_SLA

Argument by enforcing Early 
address cross-checking transmitter 
by maintenance technician to 
confirmation the signal has been 
received   in the SLA 3

J

J_Service_I_SLA

Mitigation is allocated to 
the SLA post-condition

J

J_Service_W_SLA

Mitigation is allocated to 
the SLA post-condition

G_Service_I_SLA_Postconditions

SSR for active redundancy of 
timing targets and strategies for 
recovery from timing-related 
failures are satisfied   

G_Service_W_SLA_Postconditions

SSR for Early address cross-checking 
and redundancy by  transmitter   to 
confirmation the signal    has been 
received   are satisfied   Spinal

SLA 1

Redundancy

Spinal

SLA2

active redundancy of timing 
targets and strategies for recovery 
from timing-related failures

Spinal

SLA 3

Early address cross-checking and 
redundancy by transmitter to 
confirmation the signal has been 
received

G_Service_Hz

Send Emergency Signal is 
acceptably safe   

C_Service_N_Hz_SSRs

Service Safety Requirement: 
The failure mode “signal not 
send” shall be prevented or 
mitigated.

C_Service_I_Hz_SSRs

Service Safety Requirement: 
The failure mode “signal   
send later than intended” 
shall be prevented or 
mitigated.

C_Service_W_Hz_SSRs

Service Safety Requirement: 
The failure mode “inaccurate 
signal sent” shall be 
prevented or mitigated. 

C_Service_N_SLA

SLA 1

C_Service_I_SLA

SLA 2

C_Service_W_SLA

SLA 3

J

J_Service_N_SLA

Mitigation is allocated to 
the SLA post-condition

  

Figure 60: Service Argument for ‘Send Emergency Signal’ Service 
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6.4.7.3. SLA Contact Argument for Send Emergency Signal Service  

Figure 61 shows the instantiation of the SLA Contract Argument pattern for the ‘Send 

Emergency Signal’ service. The top-level away goal states that the mitigation 

requirement for active redundancy is satisfied. This corresponds to the post-conditions 

of the SLA associated with the ‘Send Emergency Signal’ service. The argument strategy 

is to argue over the satisfaction of the set of SLA pre-conditions. This takes the form of 

away goals that references claims stated in the Participant Arguments for the 

participants satisfying the SLA pre-conditions. For example, the away goal which points 

to the Cooling Unit argument module references a claim in that module which states 

that the Cooling Unit sends a signal to the Responder and monitors to check that the 

signal has been received within 60 second. If the Responder does not receive it, the 

Cooling Unit backup should send another signal to the Responder after 60 seconds. 

 

 

G_Service_N_SLA_Postconditions_Se
nd Emergency Signal Argument 
Module

Active redundancy is satisfied   

Send Emergency Signal Argument Module

St_SLA_N_Contract

Argument over SLA 
pre-conditionsJ

J_SLA_N_Contract

Argument is satisfied by 
meeting the SLA pre-
conditions allocated to 
participants

G_N _Cooling unit_Cooling unit_Cooling 
unit

Cooling unit sends sweet gas and monitors 
the status are satisfied

Cooling unit

G_N_Responder_Responder_Responde
r

Responder receives signal and checks 
the status are satisfied

Responder

G_N_Cooling unit backup_Cooling unit 
backup_Cooling unit backup

Cooling unit  sends signal is satisfied 
‘backup’ 

Cooling unit backup

 

Figure 61: SLA contact Argument for ‘Send Emergency Signal’ Service 
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6.4.7.4. Participant Argument for the Cooling Unit Participant 

Figure 62 shows the instantiation of the Participant Argument pattern for the Cooling 

Unit Participant. The argument is based on the satisfaction of the pre-conditions 

allocated to the Cooling unit Participant via the SLA in which the Participant is involved; 

namely, that the Cooling Unit sends a signal to the Responder. The argument then 

provides a justification for how the above claims are supported based on the results of 

the SFA and modelling in BPMN.  
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G_Participant_H

Cooling unit  fulfils its 
safety requirements

C_Participant_Preco

Cooling unit SLA pre-
conditions: SoaML SLA

C_Participant

Cooling unit: BPMN 
Pool

St_Participant
Argument by addressing 
SLA pre-conditions 
allocated to the 
participant 

G_Participant_FM

 No output signal send is 
mitigated to satisfy the 
allocated DSSRs

St_N_Participant_Tasks

Argument based on 
identified participant 
failure modes 

G_Participant_FM2

Part of output signal missing is 
mitigated to satisfy the 
allocated DSSRs

St_Tasks_Mitg2

Argument based on checking  
and monitoring APIs function 
and fault containment

C_Participant_Task_Mit
g2
Checking  and 
monitoring APIs 
function and fault 
containment

G_Participant_Task_Mitg2

Checking  and monitoring APIs 
function and fault containment to 
provides adequate mitigation of 
part of output signal is missing

J

J_N_Participants_Tasks

A participant is defined as a 
BPMN pool that includes 
tasks and flows

G_Participant_FM4

Unacceptable response time to 
change in demands is 
mitigated to satisfy the 
allocated DSSRs

St_Tasks_Fms_Mitg4

Argument based on Active monitoring 
of timing targets and strategies for 
recovery from timing-related failures 
through analyse’

C_Participant_Hz_Mitg4

Active monitoring by 
transmitter   of timing 
targets and strategies for 
recovery from timing-
related failures

G_Participant_Task_check4

Active monitoring by transmitter of 
timing targets and strategies for recovery 
from timing-related failuresto provides 
adequate mitigation to unacceptable 
response time to change in demands

St_Tasks_Mitg

Argument based on use of 
redundancy in sending 
sources 

C_Participant_Task_Mi
tg

Use of redundancy in 
sending sources 

G_Participant_Task_Mitg

Use of redundancy in sending 
sources provides adequate 
mitigation of no output signal is 
sent

G_Participant_interactions5

One component of  output is not 
proportional to demand is 
mitigated to satisfy the allocated 
DSSRs

St_Participant_Tasks_Fms_Mitg
5

Argument based on applying 
diversity in the flow and fault 
containment to detect and reject 
incorrect signal

Applying diversity in the flow 
and fault containment to detect 
and reject incorr

 Applying diversity in the flow 
and fault containment to detect 
and reject incorrect signal

G_Participant_Task_check5

Applying diversity in the flow and early address 
cross-checking fault containment to detect and 
reject incorrect value and fault containment to 
provides adequate mitigation to one 
component of  output is not proportional to 
demand

C_Participant_Tasks

No output signal is sent
Part of output signal   is missing
With additional output signal sent  
The communication is unintended
Unacceptable response time to change in demands
One component of output is not proportional to 
demand

C_Participant_Hz_DSSRs

DSSR: The failure mode 
“no output signal is sent” 
shall be prevented or 
mitigated.

G_Participant_FM3

With additional output signal 
sent  is mitigated to satisfy the 
allocated DSSRs

St_Tasks_Mitg3

Argument based on the 
application high-integrity 
among participants to consider 
sufficiently incorrect signal   

C_Participant_Task_Mit
g3
Apply high-integrity 
among participants to 
consider sufficiently 
incorrect signal   

G_Participant_Task_Mitg3

Checking  and monitoring APIs 
function and fault containment to 
provides adequate mitigation of 
with additional output signal sent  

G_N _Cooling unit_Cooling 
unit

Cooling unit sends sweet gas 
and monitors the status are 
satisfied

 

Figure 62: Participant Argument for the Cooling Unit 
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6.5.  Questionnaire-based Evaluation 

In order to provide an independent evaluation of our approach, we conducted 

semi-structured interviews with two engineers1 from the Oil and Gas industry 

and one senior safety engineer from the healthcare domain.  

The interviews started with an explanation of the interview protocol using the 

forms shown in Appendix F, which highlight the voluntary nature of the 

exercise and the fact that the confidentiality of the participants will be 

maintained. The presentations recorded in Appendix F were used to explain 

the background to and the main contributions of the research and each of the 

case studies respectively.  

This was followed by a set of open questions addressing the three key 

contributions of this thesis. The questions are shown in Table 37.  

Date: 

Areas of expertise of the interviewee: 

 

1- What do you think about the overall approach? 
2- Do you think that the modelling approach improve the understanding of the 

system?  
a. What aspects in particular did you find useful?  
b. What aspects in particular did you find hard to use?  

3- Do you think that the safety analysis methods, SHA and SFA, can provide a 
systematic approach to analysing services?  

a. What aspects do you think have the potential to improve practice?  
b. What aspects do you think are infeasible to use?  

4- Do you think that the safety case used improve the justification for the safety 
of the service-based system?  

a. What aspects do you think have the potential to improve practice?  
b. What aspects do you think are infeasible to use?  

5- Do you think that the modelling, safety analysis and safety case artefacts are 
clearly integrated?  

6- Can you provide suggestions for areas that can improve the framework?  

Table 37: Interview Questions 

The answers to the interview questions are listed in Appendix F. Below is our 

analysis of the outcome of the interviews. 

                                                        

1 Please note that one of these engineers was involved in the development of the Natural Gas 

Processing Case Study. Nevertheless, the views of this participant concerning the evaluation of the 
proposed approach, though not fully independent, provided considerable insights concerning the 
effectiveness of the approach. 



212 
 

Question 1: What do you think about the overall approach? 

All of the participants agreed that the proposed approach was useful for their 

particular domain and for service-based systems. One participant mentioned 

that it could provide a strong basis for risk assessment. 

Question 2: Do you think that the modelling approach improves the 

understanding of the system? 

All of the participants agreed that the modelling approach improved the clarity 

of the system description. One participant highlighted the fact that focusing on 

services rather than functions was useful, particularly for non-experts. They all 

emphasised the benefits of the separation between structure and behaviour 

enforced by the approach.  

Question 2a: What aspects in particular did you find useful?                       

Ease of use was a feature of interest to the participants. Representing the 

system graphically was also mentioned as a useful aspect by one of the 

participants. 

Question 2b: What aspects in particular did you find hard to use?            

The process of generating the models is manual, and two engineers highlighted 

the need for additional automated modelling functions. One engineer 

emphasised the need for initial training (mainly for non-engineers). 

Question 3: Do you think that the safety analysis methods, SHA and SFA, 

can provide a systematic approach to analysing services? 

All participants agreed on the benefits of the systematic nature of the analysis, 

highlighting the clear step-by-step process. One participant highlighted the 

benefits of adapting existing safety analysis techniques, which should already 

be familiar to many safety engineers. 

Question 3a: What aspects do you think have the potential to improve 

practice?                                                                                                                                

The clear integration between analysis and modelling was mentioned in 

addition to the potentially repeatable nature of the analysis. 
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Question 3b: What aspects do you think are infeasible to use?                        

This was a hard question for the participants to answer, since they did not have 

experience of fully applying the approach in practice. One participant 

highlighted possible language inconsistencies, e.g. mapping between what 

some call ‘fault’ and others ‘failure’ (though this is a problem which can be 

observed in many safety analysis techniques). 

Question 4: Do you think that the safety case used in the approach 

improves the justification of the safety of the service-based system? 

Having a safety case pattern was highlighted as a useful feature. The modular 

nature of the justification was mentioned as a positive aspect, particularly in 

showing the big picture for the safety argumentation. 

Question 4a: What aspects do you think have the potential to improve 

practice?                                                                                                                                

The explicit link between the analysis and the safety case was highlighted as an 

advantage, showing how the safety case is built on the results of SHA and SFA 

and therefore improving traceability. 

Question 4b: What aspects do you think are infeasible to use?               

Again, this was a hard question to answer as the engineers did not apply the 

framework in a real world context. However, one participant was sceptical of 

the benefits of, or the need for, the detailed arguments and how they are going 

to be perceived in terms of effort.  

Question 5: Do you think that the modelling, safety analysis and safety 

case artefacts are clearly integrated? 

All of the participants agreed that the integration between the different 

elements of the approach was clear. 

Question 6: Can you provide suggestions for areas that can improve the 

framework? 

Two participants were keen that the model-based weaving approach be 

implemented (an area for future work in this thesis as discussed in Chapter 7). 

One engineer highlighted the importance of addressing a practical concern: 
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how much details can be considered enough in terms of depth, e.g. can we stop 

at the SLA level, abstracting the details about participants? 

6.6. Evaluation of Thesis Contributions 

This thesis focuses on four contributions made during the development of this 

research, namely:  

 SOA Modelling; 

 SOA Safety Analysis; 

 SOA Safety Cases; 

 Tool Support. 

Each of these contributions has been evaluated and the results of this 

evaluation are discussed in the next four sections. Safety is a qualitative 

attribute and as such the results generated by this research, in terms of 

“improving safety analysis” are qualitative in nature, mostly based on our two 

qualitative case studies. 

6.6.1. SOA Modelling 

During this research, we developed design models of two case study systems 

based on information directly generated from the domain of interest, 

specifically healthcare and oil and gas. Domain knowledge is key in high-risk 

industries, since safety is a domain- and context-specific property. Evidence 

shows that a poor understanding of the domain of the system is a major 

contributor to safety accidents and incidents, especially for computer-based 

systems (162).  

Here, the main contribution of this research is in showing how SoaML and 

BPMN can be used systematically in the design and assurance of safety-critical 

SOA. Based on feedback from the case studies, the following evaluation 

observations can be made: 

 SoaML and BPMN representation is considered important to 

understanding the safety of resulting design: Since SoaML represents 

the system structure and BPMN represents the system behaviour: 

modelling both of these aspects using structured modelling languages 
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has helped in providing a holistic understanding of the design of the 

system. This reflects the fact that hazards can arise from the system 

structure as well as its behaviour.  

 Integrated modelling and analysis offers greater transparency: The 

way in which the SOA system models and analyses are developed 

provides an integrated approach to modelling and a clearer basis for 

safety analysis. This means that the results of the analysis can clearly 

show which parts of the system could potentially have contributed to 

hazardous failures.  

 Traceable integration between system design and safety analysis: 

Building on the previous point concerning integration, the clearly 

defined architecture of the proposed SOA system, based on SoaML and 

BPMN, forms the basis for a model-based integration between the 

design and safety analysis. This model-based integration improves 

traceability and supports maintenance of the safety case and the safety 

analyses when they are generated in SOA development.  

One drawback of our work is the lack of coverage of all potential SoaML design 

diagram types (e.g. capabilities) which might reveal further contributions to 

safety. These additional SoaML diagrams could have helped us provide more 

detailed safety analyses, e.g. of lower-level system failures. The reason for this 

was that it was not within the scope of our work, which mainly focused on 

safety at the requirements and architecture levels. Another limitation is that we 

have not implemented all the features of BPMN modelling, particularly model 

execution and simulation, which could have been useful in showing even more 

sources of hazardous behaviours or more detailed execution failure modes.  

6.6.2. SOA Safety Analysis 

During the analysis stage, we performed multiple analyses of the systems 

under consideration using the SHA and SFA methods we developed. The 

following evaluation observations can be made: 

 Systematic consideration of safety analysis: SHA and SFA provided a 

systematic means for examination of the hazards posed by services and 
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for understanding how the detailed failure behaviour of these services 

can contribute to hazards. These safety analysis methods provided step-

by-step processes for carrying out the SOA analysis. SHA and SFA 

extended FFA and SHARD by adding additional guidance, steps and data 

so that the results could be applicable and compatible with SOA specific 

characteristics (e.g. the notion of services, participants and tasks). As 

indicated by the interviews, practitioners found the focus on services 

and the associated SHA results more focused than the use of the 

conventional and potentially generic HAZOP technique.  

 SHA and SFA offer explicit means for generating service safety 

requirements: This is one of the most important outputs of any safety 

analysis technique. Safety requirements are vital in driving the design 

by clearly specifying what criteria need to be taken into account by the 

architects so that the identified service hazards and detailed failure 

modes are eliminated or mitigated. This will help realise the demands of 

best practice for achieving assurance-based development (163).  

One drawback of our analysis methods is the potential generation of too many 

SHA and SFA tables with little automated support. For example, for each 

service and flow we had to create a detailed analysis table and we ended up 

with a large volume of data: this was a labour intensive activity. Another 

limitation of this work is the limited integration between failure modes and the 

recommended types of suitable design tactics. This is an area where predefined 

rules connecting the types of failure modes and the categories of tactics could 

be defined in advance in order to provide proactive recommendations for the 

architects of safety-critical SOA, building on current best practice in SOA design 

and the published literature. 

6.6.3. SOA Safety Cases 

Safety cases have become a fundamental requirement in many safety-critical 

domains. Nevertheless, there is still very little research on how they can be 

applied to services and SOA. In this research, we have provided a systematic 

approach to generating a safety case for an SOA in a traceable and clear 

manner. The following evaluation observations can be made: 
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 SOA safety case patterns: This research developed safety case patterns 

for justifying the design of SOA which can be reused by the architects 

and analysts of services in isolation of any particular domain. In our 

case, we focused on healthcare and oil and gas. However, these safety 

case patterns are domain-independent and are not limited to these two 

domains. 

 Safety case traceability: Safety case patterns were traceable, at the 

model-level, to the sources of information (i.e. in the SoaML, BPMN, SHA 

and SFA models). This has helped in showing how each feature of the 

design is justified in the safety case based on the existing design 

descriptions and analysis evidence.  

 Safety case structure mirroring the system design: This mirroring 

has improved the representation of system safety reasoning by 

clarifying the relationship between the design and safety evidence. By 

looking at the organisation of the argument and the structure of the 

system design, we can more clearly understand the correspondence 

between them.  

 Separation of concerns: This is enforced via argument contracts based 

on SLAs (i.e. concerns about hazards versus concerns about failures). 

The SLA helps us create a separation between the justification of the 

mitigation of the hazards which are important at the system level and 

the design failure modes that can contribute to the these hazards at a 

more detailed level. 

One limitation of this work is the lack of automated support for argument 

pattern instantiation from models and analyses. Although argument pattern 

instantiation is predominantly manual, adding automated capabilities would 

improve the efficiency of the process. In our work, we provide a preliminary 

basis for weaving the argument patterns into the source design and analysis 

models and metamodels (please see the preliminary weaving model in 

Appendix G). However, this approach was not fully evaluated in the case 

studies. Further work here includes the evaluation of this automated approach 

via the case studies.  
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6.6.4. Tool Support 

During this research, tooling and automated support was developed for 

modelling and safety analysis for the SOA environment. This tooling comprises 

the integrated Eclipse tool plugins that have been developed to support our 

SOA safety assurance framework. The following evaluation observations can be 

made: 

 Implementing model-based integration of SOA system 

structural and behavioural models: The integration of models in 

this research offers greater transparency about how the models are 

developed and how they relate to one another. The overlap provides 

a specific emphasis on the relation between the structure of a service 

and its behaviour. In the tooling, users can automatically navigate 

between the different views of the SOA design, e.g. selecting a service 

and being able to review the corresponding low-level behaviour 

(detailed tasks and flows). 

 Automated support for traceability: The use of SoaML and BPMN 

allows services and tasks to be based on machine-checkable models. 

This is implemented in a way that generates traceability links from 

SoaML models to BPMN models to indicate how the BPMN process 

implements the SoaML services and vice versa. This also provides 

the ability to apply the safety analysis in a more interactive manner. 

 Automated means for supporting SOA safety analysis: The tool-

support is extended to provide semi-automated configuration of the 

system safety analysis methods. The extension of the modelling 

environment is implemented to support SHA and SFA results by 

providing automated means for capturing and displaying the safety 

analysis for the services and the flow between tasks. This means that 

the results of the analysis can clearly show which parts of the system 

could have potentially contributed to hazardous failures.  

 Automated means for supporting SLA: The tool also provides 

semi-automated configurations of SLAs between a certain service 
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provider and its consumers. This creates and integrates SLAs into 

the SoaML service contracts for the representation of the SLAs.  

A limitation of this work, as mentioned earlier, is the lack of automated support 

for argument pattern instantiation from SOA models and SHA and SFA results. 

Partly, this is due to the use of different tool plugins, which do not offer clear 

interfaces that support interoperability. These tools were useful for 

demonstrating a proof of concept but could not easily be extended for a 

complete and fully functional toolset. Revisiting the choice of tools and plugins 

is an area for further work.  

6.7. Hypothesis Revisited 

The hypothesis made in this thesis is as follows: 

Integrated architectural modelling and analysis of safety-critical 

service-oriented systems provides a traceable, consistent and 

systematic means for assuring the safety of these systems 

In this section, we reflect on the results of the evaluation with respect to the 

main terms used in the hypothesis. 

6.7.1. Integration 

Achieving integrated design and safety assurance is a key aim within the safety 

domain. In this thesis, we address this aim for SOA engineering. The activities 

for modelling, safety analysis and safety cases for SOA are integrated both at 

the level of the methodology (e.g. a clear model in SoaML is a prerequisite for 

instantiating the SOA patterns for safety cases) and also at the model level (e.g. 

model features in SoaML and BPMN are linked to model elements, represented 

in a tabular format, in the SHA and SFA). As a result, the SOA Safety Assurance 

Framework provides a clear and structured basis for integrated design, safety 

analysis and safety case development with explicit considerations of hazardous 

behaviour and safety justification. 

6.7.2. Traceability  

In this thesis, forward and backward model-based traceability between the 

design and safety analysis provided a seamless means of understanding and 
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checking the relationship between the SOA structure and behaviour and their 

safety consequences. Ensuring traceability is a fundamental requirement for all 

safety standards. The value of the safety analysis can easily be threated if its 

relation to design is not well understood. During this research, this thesis also 

considered a new way for linking the argument pattern instantiation with the 

design modelling and analysis processes through a weaving model (164). The 

weaving model in Appendix G provides a preliminary basis for automating 

argument pattern instantiation based on the source design and analysis models 

and metamodels. 

6.7.3. Consistency 

In the SOA Safety Assurance Framework, design features are reflected in the 

safety analysis and assurance and vice versa. This helps assess the 

completeness of how the different design features are covered by the safety 

analysis and safety cases. Inconsistencies can either be detected through the 

tool-supported traceability techniques implemented in this research or 

through pattern instantiation, e.g. by assessing claims that cannot be 

instantiated due to incomplete design structures or contracts or incomplete 

safety analysis results. 

6.7.4. Systematicness 

One of the weaknesses identified in the current literature concerning SOAs and 

safety-critical systems was the lack of a systematic method for assuring SOAs. 

One of the aims of this thesis was to provide a coherent step by-step process, 

by applying and adapting techniques available within SOA and safety domains. 

For each step within the framework, it is clear which methods are being used 

and which design models of are being analysed. This thesis uses the SOA 

concept in order to provide the necessary modelling languages with clear 

modelling steps. Next, the analysis is focussed on analysing individual services 

and their associated interactions in order to identify hazardous behaviours 

associated with the system, based on two well-defined processes (i.e. SHA and 

SFA). This is followed by the definition of a set of reusable safety argument 

patterns for generating the SOA safety case.  
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To illustrate how the framework may be applied in practice, the process was 

applied to two realistic case studies. The results of the case studies were 

validated by domain experts, who considered the approach to be potentially 

helpful in the safety analysis processes used in their own systems and 

environments, particularly due to the systematic and clear basis of the 

assurance framework. One of the key features of the framework is that the 

rationale for the approach is clear: each stage is performed for a specific reason 

producing very concrete artefacts, e.g. design models, analysis results or 

specific safety arguments. 

6.7.5. Assurance  

The SOA safety argument pattern catalogue created in this research follows a 

reasoning chain from the Top Argument until the Participant Argument. It can 

be instantiated for justification of the design and analysis for generating 

trustworthy evidence regarding the safety of deploying an SOA-based system 

within a specific safety application. These patterns are directly related to each 

other. The SOA argument pattern catalogue includes rules for pattern 

composition and traceability which are linked to the architectural design (i.e. 

SoaML and BPMN models) and analyses (i.e. SHA and SFA). These patterns 

were useful in showing how the results of modelling and analysis can support 

the development of explicit SOA arguments. 

6.8. Threats to Validity 

In this section, we describe the main threats to the validity of the findings of 

this thesis.  

Firstly, although our modelling approach is biased towards the use of SoaML 

and BPMN, the overall framework does not depend on the specific use of these 

notations, as long as well-defined modelling languages are used for capturing 

the structural and behavioural aspects of an SOA design. This can be seen as a 

threat to external validity. However, for the sake of focused evaluation, it was 

important to limit the modelling to two specific notations. 

Secondly, the choice of the domains for evaluation was important. We chose 

two different domains for the two case studies in order to evaluate the 
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capability of our framework against diverse challenges. Oil and Gas and 

Healthcare are two conceptually different domains. The first has well-

established and detailed safety practices while the second only has high-level 

safety processes, particularly for computer-based systems (see Section 6.3.1 for 

a more detailed discussion). Due to the scale of the work, it was difficult to 

apply our approach to all key safety-critical industries. However, the two case 

studies cover the two main categories of domains in safety engineering, i.e. 

traditional (Oil and Gas) and emerging (Healthcare). 

Thirdly, there is a great interdependency between the modelling, safety 

analysis and safety cases within the framework. This might affect the scalability 

and wider applicability of the framework if any of the underlying notations and 

techniques used are changed. That is if a different safety analysis techniques 

was used it may not scale as well as the one which was used e.g. the use of FTA 

rather than SFA. This is a limitation from a scalability point of view. However, 

there is a tradeoff between the wider usefulness of the approach and ensuring 

internal consistency between the different components of the framework. 

Fourthly, the sample in the interviews is small (three interviewees). The 

experts hold senior roles and have been involved in the engineering of large-

scale safety-critical services. Safety-critical information is hard to collect due to 

the sensitivity of the domain. Therefore it was decided that one-one interviews 

with experienced practitioners would allow us to evaluate the general validity 

of the approach and the potential for scalability for use in actual industrial 

contexts.  

Finally, the proposed approach was implemented in the form of research 

prototype tools. Although they were useful in the case studies, the effectiveness 

and reliability of these tools for other uses cannot be demonstrated.   

6.9. Chapter Summary  

This chapter presented the results of the evaluation of the four main 

contributions of the research presented in this thesis. It revisited the research 

hypothesis and explained the means for evaluation used in this research. This 

evaluation was carried out by means of case studies, semi-structured 
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interviews and peer review. These forms of evaluation produced results 

supporting the hypothesis of the thesis which also highlighted potential 

limitations and possible areas for future work. The final conclusions of the 

research are presented in the next chapter. 
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Chapter 7 

 

7. Conclusions 
 

 

This chapter provides a summary of the main contributions of the research 

presented in this thesis and proposes areas for further work. 

7.1 Thesis Contributions 

The overarching contribution of this research is the development of a model-

based assurance framework for SOA. This approach considers the architecture 

of the SOA system, based on SOA services and the low-level behavioural tasks 

that are relevant to safety, and features a model-based technique for 

integrating the design activity and safety analysis. This technique improves 

traceability and supports safety justification as well as facilitating the 

maintenance of the safety case and safety analysis artefacts generated within 

the SOA engineering process. In this thesis, we have focused on four main areas 

of contribution, namely: 

 Identification and adaptation of SOA modelling notations, namely SoaML 

and BPMN, based on two criteria: the coverage of the structure and 

behaviour of the services that are deemed suitable for the safety 

assessment of an SOA design. 

 Development of safety analysis techniques for SOA, namely SHA and 

SFA, which can be used to examine the hazardous failures of services 

and the failure behaviour of lower-level implementations.  

 Development of the concept of modular safety cases for the assurance of 

safety-critical SOAs, promoting correspondence between the structure 

of the SOA and the organisation of the modular safety case. This generic 

argument approach is defined in the form of an SOA Safety Argument 
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Pattern Catalogue, which can be instantiated to produce safety 

arguments for specific SOA-based systems. 

 Implementation of tool-support that provides automated capabilities for 

building the SOA models, applying the safety analysis and building the 

safety case for the system.  

Concluding observations regarding these contributions are discussed in the 

following sections. Finally, in Section 7.2, we suggest some areas for further 

work. 

7.1.1. SOA Modelling  

In this thesis, we proposed a systematic, model-based approach to address SOA 

safety, which is supported by tooling. We call this approach the SOA Safety 

Assurance Framework. The Framework captures the essential relationships 

between safety concerns and how they directly relate to SOA services, tasks 

and flows. The SOA modelling pulls together SOA safety analyses and safety 

cases in such a way that they are traceably linked during the engineering of 

safety-critical service-based systems. 

7.1.2. SOA Safety Analysis  

A key contribution made by the safety analysis techniques developed during 

our research is to provide structured step-by-step processes for the 

examination of the design of an SOA. The clear system design models, in SoaML 

and BPMN, facilitate the systematic integration of safety analysis in the SOA 

design process, mainly by being fully traceable to the SOA architectural models. 

In this thesis, we propose and demonstrate safety analysis techniques for 

examining an SOA design and generating relevant safety requirements which 

are focussed on the SOA’s structure and concerns. These safety requirements 

provide the basis for integrating safety considerations into the design of the 

system, by providing a clear rationale and steer for design decisions. This 

analysis also emphasises the interactions between services and tasks in order 

to identify failures in participant behaviour that could contribute to service 

hazards within the SOA system. Our approach provides more transparency in 

the generation of SOA system safety requirements than do traditional methods, 

which typically force a distinction between safety and design. 
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7.1.3. SOA Safety Case Development  

This thesis has developed a new approach to developing SOA safety cases 

through safety case patterns, in order to address the need for explicit safety 

assurance within SOA engineering. The safety argument patterns presented in 

Chapter 5 demonstrate how a defensible argument for an SOA system can be 

constructed by allowing the argument structure to mirror the SOA design, 

thereby improving the clarity of the reasoning. Specifically, the patterns show 

how the safety arguments have been structured to correspond directly to the 

SOA design as defined in the structured architectural models. 

7.1.4. Tool-support 

The tools implemented in this research are used to support the capabilities of 

the SOA Safety Assurance Framework. The tools provide a semi-automated 

environment for supporting the system safety analysis methods and for 

representing SLAs. They also provide a means for improving traceability 

between the different SOA models, by linking structural models in SoaML with 

behavioural models in BPMN. 

7.2 Further work   

During the course our research, we have identified a number of areas for future 

work: 

- Integration of safety analysis with search-based technologies (e.g. 

simulation and model-checking);  

- Further tool-support to implement model-based assurance cases for 

SOA based on model weaving; 

-  Extending the work to cover runtime composition and certification of 

SOA; 

- Extending the SOA safety case pattern catalogue as a generic solution for 

related domains.  

The following sections provide a brief overview of these topics: 
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7.2.1. Integration of Safety Analysis with Search-based Technologies  

One important technique with potential for supporting safety analysis of SOA 

system, which we have not investigated as part of this thesis, is the search-

based approach. One beneficial area of future work would therefore be to 

investigate different search-based technologies which could potentially provide 

an automated reasoning basis for SOA safety analysis. This work could include 

the development of a safety analysis approach based on model-checking, which 

could on the one hand provide an automated proof that the system satisfies the 

safety properties (assuming that they could be defined with a suitable 

formalism) and on the other hand identify scenarios which lead to undesired 

events. Similarly, simulation models could be built for an SOA during safety 

analysis, allowing for dynamic exploration of the behaviour of the SOA under 

different scenarios.  

7.2.2. Further tool-support to implement model-based assurance 

cases for SOA based on model weaving 

Various tools have been extended over the course of this research. These tools 

were developed within the Eclipse Integrated Development Environment 

platform. We believe that there is scope to add automated capabilities that 

would improve the efficiency of the argument pattern instantiation process 

which has been developed based on the work of (164). This approach was not 

fully evaluated in the case studies, but is a promising basis for future work on 

model-based approaches to assurance case development. Further work here 

includes the evaluation of this automated approach via further case studies 

which would suggest further ways to integrate SOA modelling, safety analysis 

and safety cases using model-based techniques. 

7.2.3. Runtime Composition and Certification of SOA 

This thesis has described a process for developing SOA safety cases that 

demonstrates how a defensible argument for an SOA system can be structured 

at design-time. One area that was not considered as part of the thesis was the 

maintenance of the safety analyses and the safety case at runtime, specifically 

the runtime composition of argument modules to produce a comprehensive 

safety argument for an SOA. Runtime composition and certification was 
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explicitly outside of the scope of the research. However, there are key issues in 

this area which are worthy of further investigation, particularly in terms of 

their application to autonomous service-based systems. There is some scope 

for exploring and constructing assurance cases for SOA to support runtime and 

dynamic composition and certification (165). 

7.2.4. Safety Case Pattern Catalogue for SOA as Generic Solution to 

Related Systems Domains  

In this thesis, we have developed an approach to evolving SOA safety cases 

using the modular and pattern extensions of GSN. We have proposed a  safety 

case pattern catalogue which captures successful safety argument structures 

which are not specific to any domain. One area for further work is to 

investigate the applicability of the patterns for the justification of related 

systems such as Systems of Systems, as discussed in the literature review 

(Chapter2). Research should be done to investigate how systems composed of 

different and independent elements can be justified through a generic set of 

argument patterns. 

7.3 Coda 

The author hopes that the SOA Safety Assurance Framework created in this 

thesis, supported by the evaluation and case studies, will deliver valuable and 

valid insights both for future research and for industrial practice in the use of 

SOA for safety-critical applications.  
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Appendix A: Managing Child Birth 

and Caesarean 
In this medical process, we have applied BPMN to do the modelling for the 

business processes. The main target of using BPMN is to apply safety analysis 

and assurance because of BPMN’s safety support tool (166). 

Child birth scenario (137) 

 Figure 63, in the beginning the woman contacts the ambulance, which 

assumes the delivery time is very close.  

 The ambulance station orders a vehicle to go and collect the patient and 

take her to hospital. 

 Check if the patient’s information is in the EHR system and add her 

information if she is not in the system. 

 Assess the patient, checking the maternal and foetal condition to 

determine if she is ready to deliver. If not we stop the process, 

otherwise, we start preparations for labour & care.  At each stage, we 

need to update the EHR system for the patient. As explained in Figure 

Manage the stage of Labour with caesarean operation. 

 We start the first stage as seen in Figure Manage the stage of labour with 

caesarean operation 2. 

 Then, start the examination as shown in  Figure First stage of labour  

 If there is any delay we apply the Figure of Delay in the First stage and 

Delay in the First stage (2) Otherwise we move to the Figure second 

stage of labour. 

 In the second stage, we need to apply the Figure Second stage of labour 

and if there is any delay, we apply the Figure Delay in the Second stage 

of labour. 

 If the second stage, passes successfully, we need to apply the Figure of 

Third stage of labour and continue the demonstration of the process 

until we get to figure stage of labour Care after birth, otherwise we will 



231 
 

move to Figure stage of consider caesarean section CS and apply the 

Caesarean Figure. 
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Figure 63: the Medical Process for Child Birth Scenario 
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Appendix B. SHA for Healthcare 

Case Study 
This section considers the SHA for two services:  

(1) Request ambulance; 

(2) Update health record; 

 

Service Failure 
Modes 

Effects Severity SSRs Mitigation 

Request 
ambulance 

 

Ambulance 
not requested 

Delay in 
treatment and 
increased 
complication 

 

Major 

 

The failure mode 
“ambulance not 
request” shall be 
prevented or 
mitigated. 

Active monitoring 
and cross-checking 
between calling and 
requesting 
ambulances to 
ensure the 
communication is 
applied successfully 

Ambulance 
provided 
when not 
required 

N/A 

No direct safety 
effects but waste 
for critical 
services. 

N/A 

 

None. None. 

Ambulance 
required later 
than intended 

Delay in 
treatment, and 
increased 
complication 

 

Major 

 

The failure mode 
“ambulance required 
later than intended” 
shall be prevented or 
mitigated. 

Active monitoring of 
timing targets and 
strategies for 
recovery from 
timing-related 
failures. 

Ambulance 
request 
improper 
information 

Delay in 
treatment, and 
increased 
complication 

Major 

 

The failure mode 
“Ambulance request 
improper 
information” shall be 
prevented or 
mitigated. 

Early checking 
information and 
confirmation 
between calling and 
requested 
ambulances to 
ensure the 
information transfer 
correctly through the 
system 

Table 38:  A sample of SHA output for the request ambulance service system 
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Service Failure 
Modes 

Effects Severity SSRs Mitigation 

Update 
health 
record 

Loss of 
Updating 

Difficulty in assessing 
condition 

 

Considerable 

 

The failure mode 
“Loss of 
Updating” shall 
be prevented or 
mitigated. 

Use of   
redundancy   
through fitting an 
addition flow to 
provide patient 
information from 
the another source 
of health record 

Updating 
provided 
when not 
required 

Incorrect data leading 
to wrong treatment 

Major 

 

The failure mode 
“Updating 
provided when 
not required” 
shall be 
prevented or 
mitigated. 

Active cross-
checking and 
interlocks 

Updating 
provide 
later than 
intended 

Delay the treatment, 
and increased 
complication 

 

Considerable The failure mode 
“Updating 
provide later 
than intended” 
shall be 
prevented or 
mitigated. 

Active monitoring 
of timing targets 

Inaccurate 
service   
Updating 

Incorrect treatments Major The failure mode 
“Inaccurate 
service   
Updating” shall 
be prevented or 
mitigated. 

Active monitoring  
and cross-
checking to ensure 
the record 
updated correctly 

Table 39:  A sample of SHA output for the Update health record service system 
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Appendix C. SFA for Healthcare 

Case Study 
This section considers the SFA for other flows:  

(1) From call ambulance and provide information to receive request; 
(2) From authorize and authenticate to provide patient name;   
 
 

ID 
(Flow) 

Guide Word Deviation Possible 
Causes 

Effects DSSRs Mitigation 

1.1 Omission 
(Incomplete 
data) 

no request 
received 

 

Deployment 
fault (Request 
resource 
missing) 

Service/server 
incompatible 

Task crashed 

Incomplete 
data, no 
information 
for the 
request 

The failure 
mode “no 
output 
process is 
sent” shall be 
prevented or 
mitigated. 

Ensure 
redundancy in 
the system can 
help to 
duplicate the 
task within the 
system which 
allows one or 
more copies of 
the same task 

1.2 Commission 
(Repetition- 
Data 
overrun) 

With 
additional 
output  

incorrect or 
mismatching 
messages 

description 

No safety 
effect 
Unwanted 
change   

N/A N/A 

1.3 Early N/A N/A N/A  N/A  

1.4 Late Unacceptable 
response 
time  

Failure in  
scheduling 
system   

Time out of 
the task  

Overloading 
in task in the 
flow may 
lead to delay 
tasks 

The failure 
mode 
“Unacceptable 
response time 
to change in 
demands” 
shall be 
prevented or 
mitigated. 

Monitoring for 
timing failure 
and developing 
recovery 
strategies  

 

1.5 Value  Incorrect 
request 

 

Incorrect 
input or 
conversion 
fault   

execution 
fault, incorrect 
result or 
servicer crash 

Delay in the 
treatment  
and increase 
complication 

The failure 
mode “One 
component of 
output is not 
proportional 
to demand” 
shall be 
prevented or 
mitigated. 

Diversity to 
make sure 
there is not 
error 
propagation 
across system 
boundaries. 

 

Table 40: A sample of SFA output for flow from call ambulance and provide 
information to receive request 
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ID 
(Flow) 

Guide Word Deviation Possible 
Causes 

Effects DSSRs Mitigation 

1.1 Omission No access 
available 

authorization  
and 
authentication 
failed       

No patient 
history and 
background  

 

The failure 
mode “No 
access 
available” 
shall be 
prevented or 
mitigated. 

Use of redundancy 
in data sources for 
access  the system 

1.2 Commission unwanted  
access  

Failure of 
output  
process on the 
system.  

No direct 
safety 
effects 

The failure 
mode 
“unwanted  
access” shall 
be prevented 
or mitigated. 

Monitoring of 
access requests 

1.3 Early N/A N/A N/A  Just: the output 
cannot be produced  

1.4 Late Unacceptable 
response 
time  

Failure in  
scheduling 

Overloading The failure 
mode 
“Unacceptable 
response 
time” shall be 
prevented or 
mitigated. 

Monitoring of time 
delays and recovery 
by giving more 
priority for delayed 
requests 

1.5 Incorrect 
access the 
system 

Incorrect 
output  or 
task crash   

 

Undetected 
failure in any 
process. 
insufficient 
security 

unknown 
allergy 
status 

The failure 
mode 
“Incorrect 
output  or 
task crash   

” shall be 
prevented or 
mitigated. 

Data entry cross-
checking, online 
monitoring and 
fault containment 

Table 41: A sample of SFA output for flow from provide user name and password to 
authorize and authenticate
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Appendix D. Safety Case for Healthcare Case Study:  
This section considers the safety arguments for another specific service: Retrieve Health Record. The safety arguments are described in 

this Appendix. 

G_Service_Hz_Retrieve Health Record 
Argument Module

Retrieve Health Record is acceptably 
safe

Retrieve Health Record Argument Module

G_SOA

Ambulance service system is 
acceptably safe to operate in 
pregnant women 
transportation

C_SOA

 Ambulance service system: SoaML Services Architecture
- Request Ambulance Service
- Dispatch Ambulance Service
- Update Status Service
- Request Record Service
- Provide Patient Record Service
- Update Health Record Service
- Retrieve Health Record Service
- Pick up Patient Service
- Examine Patie

C_SOA_Env

Scope focus is on 
pregnant women 
transportation

St_Top

Argument structured 
over each service of the 
SOA system

G_Service_Hz_Dispatch Ambulance 
Argument Module

Dispatch Ambulance is acceptably 
safe

Dispatch Ambulance Argument Module

G_Service_Hz_Request Ambulance 
Argument Module

Request Ambulance is acceptably 
safe

Request Ambulance Argument Module

G_Service_Hz_Update Health Record 
Argument Module

Update Health Record is acceptably 
safe

Update Health Record Argument Module

G_Service_Hz_Pick up Patient 
Argument Module

Pick up Patient is accptably safe

Pick up Patient Argument Module

G_Service_Hz_Examine Patient 
Argumrnt Module

Examine Patient is acceptably safe

Examine Patient Argumrnt Module

G_Service_Hz_Drop off Patient 
Argument Module

Drop off Patient is acceptably safe

Drop off Patient Argument Module

G_Service_Hz_Request Record 
Argument Module

Request Record is acceptably safe

Request Record Argument Module

G_Service_HZ_Provide Patient Record 
Argument Module

Provide Patient Record is acceptably 
safe

Provide Patient Record Argument Module

G_Service_Hz_Update Status 
Argument Module

Update Status is acceptably safe 

Update Status Argument Module

 

Figure 64: Top Argument Module  
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C_Service_Desc

Retrieve Health Record: 
SoaML 
CollaborationUse

St_Service_Hz

Argument structured 
based on mitigating 
service hazardous failures

C_Service_Hz

Service hazardous failures: SHA
- EHR not retrieved
- EHR retrieved later than 
intended
- Incorrect record retrieved

G_Service_N_Hz

EHR not retrieved is mitigated 
to satisfy the Service Safety 
Requirement

J

J_Service_N_SLA

Mitigation is allocated to 
the SLA post-condition

G_Service_N_SLA_Postconditions

Use of redundancy through fitting 
an addition flow to provide patient 
information from another source
is satisfied   

G_Service_W_Mitg

Active monitoring and cross-
checking of the information 
retrieved is satisfied to the required 
integrity

G_Service_I_Mitg

Active monitoring of timing targets 
and strategies for recovery from 
timing-related failures is satisfied to 
the required integrity

G_Service_N_Mitg

Use of redundancy through fitting 
an addition flow to provide patient 
information from another source is 
satisfied to the required integrity

 G_Service_I_Hz

 EHR retrieved later than intended 
is mitigated to satisfy the Service 
Safety Requirement

G_Service_W_Hz

 Incorrect record retrieved is 
mitigated to satisfy the Service 
Safety Requirement

St_Service_N_Hz_Mitg

Argument based on use of 
redundancy through fitting an 
addition flow to provide patient 
information from another source. 

St_Service_I_Hz_Mitg

Argument based on active 
monitoring of timing targets 
and strategies for recovery 
from timing-related failures

St_Service_W_Hz_Mitg

Argument based on active 
monitoring and cross-
checking of the information 
retrieved

C_Service_Hz_N_Mitg

Mitigation: SHA 
Use of redundancy through fitting 
an addition flow to provide patient 
information from another source

C_Service_Hz_I_Mitg

Mitigation: SHA 
Active monitoring of timing 
targets and strategies for 
recovery from timing-related 
failures

C_Service_Hz_W_Mitg

Mitigation: SHA 
Active monitoring and cross-
checking of the information 
retrieved

C_Service_N_Class

Required integrity 
based on Considerable 
severity 

C_Service_I_Class

Required integrity 
based on Considerable 
severity 

C_Service_W_Class

Required integrity 
based on Considerable 
severity 

St_Service_N_SLA

Argument by enforcing use of 
redundancy through fitting an 
addition flow to provide patient 
information from another sourcein 
the SLA 1

St_Service_I_SLA

Argument by enforcing active 
monitoring of timing targets and 
strategies for recovery from 
timing-related failuresin the SLA 2

St_Service_W_SLA

Argument by enforcing active 
monitoring and cross-checking 
of the information retrieved
in the SLA 3

J

J_Service_I_SLA

Mitigation is allocated to 
the SLA post-condition

J

J_Service_W_SLA

Mitigation is allocated to 
the SLA post-condition

G_Service_I_SLA_Postconditions

Active monitoring of timing 
targets and strategies for recovery 
from timing-related failures is 
satisfied   

G_Service_W_SLA_Postconditions

Active monitoring and cross-
checking of the information 
retrieved is satisfied   

Spinal

SLA Contract1

SLA of use of redundancy through 
fitting an addition flow to provide 
patient information from another 
source

Spinal

SLA Contract2

SLA of active monitoring of timing 
targets and strategies for 
recovery from timing-related 
failures

Spinal

SLA Contract3

SLA of active monitoring and 
cross-checking of the information 
retrieved

G_Service_Hz

Retrieve Health Record is 
acceptably safe

C_Service_N_Hz_SSRs

Service Safety Requirement: SHA 

The failure mode “EHR not 
retrieved” shall be prevented or 
mitigated

C_Service_I_Hz_SSRs

Service Safety Requirement: 
The failure mode “EHR retrieved 
later than intended” shall be 
prevented or mitigated.

C_Service_W_Hz_SSRs

Service Safety Requirement: 
The failure mode “inaccurate 
records retrieved” shall be 
prevented or mitigated.

C_Service_N_SLA

SLA 1

C_Service_I_SLA

SLA 2

C_Service_W_SLA

SLA 3

 

Figure 65: Service Argument for Retrieve Health Record 
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G_Service_N_SLA_Postconditions_Retrieve Health 
Record Argument Module

Use of redundancy through fitting an addition flow to 
provide patient information from another source
is satisfied   

Retrieve Health Record Argument Module

St_SLA_N_Contract

Argument over SLA 
pre-conditions

J

J_SLA_N_Contract

 Argument is satisfied by 
meeting the SLA pre-
conditions allocated to 
participants

G_N_Participant_Ambl- crew

Ambulance crew provide patient name 
and monitoring the status are satisfied

Ambl- crew

G_N_Participant_EHR

EHR provides patient record  and 
update the state are satisfied

EHR

G_N_Participant_EHR backup

EHR backup provides patient record  
and update the state are satisfied

EHR backup

 

Figure 66: SLA contact Argument for Retrieve Health Record 
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G_Participant_H

Ambulance-crew fulfils 
its SLA pre-conditions

C_Participant

Ambulance-crew: 
BPMN Pool

St_Participant
Argument by addressing 
SLA pre-conditions 
allocated to the 
participant 

C_Participant_Precon

Ambulance-crew SLA 
pre-conditions: SoaML 
SLA

G_Participant_FM

No record available is 
mitigated to satisfy the 
allocated DSSRs

C_N_Participant_FMs

Participant failure modes: SFA 
- No record available
- Patient record provided when not 
requested
- Record arrived later than intended
- Incorrect record retrieved

St_N_Participant_Task
s

Argument based on 
identified participant 
failure modes 

G_Participant_FM2

Patient record provided when 
not requested is mitigated to 
satisfy the allocated DSSRs

St_Tasks_Mitg2

Argument based on 
monitoring of 
uncommanded requests

C_Participant_Task_
Mitg2
Monitoring of 
uncommanded 
requests

G_Participant_Task_check2

Monitoring of uncommanded 
requests provides adequate 
mitigation to patient record 
provided when not requested 

J

J_N_Participants_Tasks

A participant is defined as a 
BPMN pool that includes 
tasks and flows

Participants are defined in terms of the 
interactions between internal and external 
tasks (External = 

interactions between BPMN pools; internal 
= interactions between tasks in the same 
pool)

G_Participant_FM3

Record arrived later than 
intended is mitigated to satisfy 
the allocated DSSRs

St_Tasks_Mitg3

Argument based on monitoring 
of time delays and recovery by 
giving more priority for delayed 
requests

C_Participant_Task_Mitg3

Monitoring of time delays 
and recovery by giving more 
priority for delayed 
requests

G_Participant_Task_check3

Monitoring of time delays and recovery 
by giving more priority for delayed 
requests provides adequate mitigation 
to record arrived later than intended 

St_Tasks_Mitg

Argument based on use of 
redundancy in data 
sources for health records

C_Participant_Task_
Mitg
Use of redundancy in 
data sources for 
health records

G_Participant_Task_check

Use of redundancy in data sources 
for health records to provides 
adequate mitigation to No record 
available 

G_Participant_FM4

Incorrect record retrieved is 
mitigated to satisfy the 
allocated DSSRs

St_Tasks_Mitg4

Argument based on data entry 
cross-checking, online 
monitoring and fault 
containment

C_Participant_Task_Mitg4

Data entry cross-checking, 
online monitoring and fault 
containment

G_Participant_Task_check5

Data entry cross-checking, online 
monitoring and fault containment 
provides adequate mitigation to 
incorrect record retrieved 

G_N_Participant

Ambulance crew provide 
patient name and monitoring 
the status are satisfied

C_Participant_Hz_DSSRs_O
mission

DSSR:The failure mode “no 
record available” shall be 
prevented or mitigated.

C_Participant_Hz_DSSRs_Comm
ission

DSSR: The failure mode 
“patient record provided when 
not requested” shall be 
prevented or mitigated.

C_Participant_Hz_DSSRs_Late

DSSR: The failure mode 
“record arrived later than 
intended” shall be prevented 
or mitigated.

C_Participant_Hz_DSSRs_
value
DSSR: The failure mode 
“incorrect record 
retrieved” shall be 
prevented or mitigated.

 

Figure 67: Participant Argument for Retrieve Health Record
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Appendix E. Natural Gas 

Processing Case Study  
SFA 

(1) Measure sweet gas by analyser to confirm water content is less than %1; 

and 

(2) Pump the liquid gas to receive liquid gas. 

 
ID 
(Flow) 

Guide Word Deviation Possible 
Causes 

Effects Justification/Design 
Recommendations 

1.1  Omission (no 
communication 
within the 
flow) 

No output data 
is sent 

Description 
incomplete or 
incorrect input 

Service 
crashed 

Incomplete 
data  

  

Use of redundancy in 
data sources   

  

Omission 
(Incomplete 
flow) 

Part of output 
signal is 
missing 

 

Required 
resource 
missing 

Inconsistent  
water 
content 

Checking integrity of 
data and monitoring 

1.2 Commission 
(Repetition) 

With additional 
output process 
sent. No 
change is 
required. 

False flow 

Execution fault 
(Incorrect 
result) 

 

Conflicting  
request   
received        
Unwanted 
change     

Use of interlock 
mechanism 

 Commission 
(Spurious) 

The 
communication 
is unintended 

Conversation 
fault (Incorrect 
input) (server 
crashed) 

 

Conflicting  
request   
received        
Unwanted 
change     

Use of interlock 
mechanism 

1.3 Early N/A N/A N/A N/A  

1.4 Late Unacceptable 
response time 
to changes in 
demands 

Execution fault 

Time out 
(severe crash 
or 
communication 
failure) 

Late 
detection of 
safety 
events  

Active monitoring of 
timing targets and 
strategies for 
recovery from 
timing-related 
failures through 
analyser 
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1.5 Value   One 
component of  
output is not 
proportional to 
demand 

Require 
resource 
missing 

Range 
exceeded 

(execution 
fault incorrect 
result- or 
servicer crash) 

False value  

Unknown 
value 

Applying diversity in 
the flow and early 
cross-checking fault 
containment to 
detect and reject 
incorrect value and 
fault containment. 

 

Table 42: Measure sweet gas by analyser to confirm water content is less than %1; 

 

ID Guide Word Deviation Possible 
Causes 

Effects Justification/Design 
Recommendations 

1.1 Omission (no 
communication 
within the 
flow) 

no output 
process is sent 

    

Content fault 
(conflicting 
Content) 

Liquid not 
received 

 

Use of redundancy 
through providing 
other  sources 

 

Omission 
(Incomplete 
flow) 

part of output 
signal   is 
missing 

 

Required 
resource 
missing 

 

Inconsistent  
receiving of 
liquid gas 

Checking and 
monitoring and fault 
containment 

1.2 Commission 
(Repetition) 

With additional 
output process 
sent. No 
change is 
required 

Content fault 
(Redundant 
description) 

Overloading Check high-integrity 
among participants 
to consider 
sufficiency pump  the 
liquid  

 

 Commission 
(Spurious) 

The 
communication 
is unintended 

conversation 
fault (Incorrect 
input)  

Overloading Apply high-integrity 
among participants 
to consider 
sufficiently incorrect 
pump liquid  

1.3 Early N/A N/A N/A N/A 

1.4 Late Unacceptable 
response time 
to change in 
demands 

Execution fault 

Time out 
communication 
failure) 

Delays in 
production  

Active monitoring 
transmitter of timing 
targets and 
strategies for 
recovery from 
timing-related  
failures    

1.5 Value   One 
component of  
output is not 
proportional to 
demand 

Execution fault 

 

Incorrect 
level of  
liquid gas 

Increased 
monitoring + fault 
containment 

Table 43: Pump the liquid gas to receive liquid gas 
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Example of Safety Case for Natural Gas Processing for the Absorb Water Service 

Absorb water (Top) 

 

G_SOA

Gas service system is acceptably 
safe to operate in emergency 
case for sweet gas processing

C_SOA

Gas service system: SoaML Services Architecture 

- Supply natural gases 

- Separate gases 

- Absorb water 

- Heat exchange   

- The Separate gas from liquid  

- Send emergency signal

- Call emergency number

C_SOA_Env

Scope focus in 
emergency case for 
sweet gas processing

St_Top

Argument structured over 
each service of the SOA 
system

G_Service_Hz_Send Emergency Signal 
Argument Module

Send Emergency Signal is acceptably 
safe   

Send Emergency Signal Argument Module

G_Service_Hz_Supply Natural Gases 
Argument Module

Supply Natural Gases is accaptably 
safe

Supply Natural Gases Argument Module

G_Service_Hz_Separate Gases 
Argument Module

Separate Gases is accaptably safe

Separate Gases Argument Module

G_Service_Hz_Absorb Water 
Argument Module_Absorb Argument 
Module

Absorb Water is accaptably safe

Absorb Argument Module

G_Service_Hz_Heat exchange 
Argument Module

Heat Exchange is accaptably safe

Heat exchange Argument Module

G_Service_Hz_The Separate Gas from 
Liquid Argument Module

The Separate Gas from Liquid is accaptable 
safe 

The Separate Gas from Liquid Argument Module

G_Service_HZ_Call Emergency Number 
Argument Module

Call Emergency Number is accaptable 
safe  

Call Emergency Number Argument Module

 

Figure 68: Top Argument Module for Absorb water 
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Absorb water Service 

C_Service_Desc

Absorb water is 
described based in 
SoaML Version1.0.1

St_Service_Hz

Argument structured 
based on identified service 
hazards

C_Service_Hz

Absorb water SHA 

G_Service_N_Hz

Water not removed is 
mitigated

J

J_Service_N_SLA

DSSR are specified as 
SLA post-conditions

G_Service_N_SLA_Postcondit
ions

Active monitoring and cross-
checking are satisfied   

G_Service_W_DSSR

Early address cross-checking by analyser (e.g. 
analyser need to be checked every day)and 
confirmation between removing water and 
measure sweet gas (No direct safety effects) 
are satisfied to the required integrity 

G_Service_I_DSSR

Active monitoring of timing targets and 
strategies for recovery from timing-
related failures bythrough analyser are 
satisfied to the required integrity 

G_Service_N_DSSR

Active monitoring and cross-checking between 
removing water and measure sweet gas 
through the analyser. Also, checking the 
catalyst inside the dehydration drum e.g. needs 
to be replaced every 5 years are satisfied to the 
required integrity 

 G_Service_I_Hz

Water removed later than 
intended is mitigated

G_Service_W_Hz

Inaccurate percentage of 
water removed is 
mitigated

St_Service_N_Hz_Mitg

Argument based active 
monitoring and cross-
checking 

St_Service_I_Hz_Mitg

Argument based on 
monitoring of timing targets 
and strategies for recovery 

St_Service_W_Hz_Mitg

Argument based on 
early address cross-
checking  

C_Service_Hz_N_Mitg

Active monitoring and 
cross-checking 

C_Service_Hz_I_Mitg

Active monitoring of 
timing targets and 
strategies for recovery  

C_Service_Hz_W_Mitg

Early address cross-
checking 

C_Service_N_Class

Severity is very 
high

C_Service_I_Class

Severity is very 
high

C_Service_W_Cla
ss

Severity is low 

St_Service_N_SLA

Argument by enforcing 
DSSR in the SLA

C_Service_N_DSSR

Active monitoring and cross-
checking between removing water 
and measure sweet gas through the 
analyser. Also, checking the catalyst 
inside the dehydration drum e.g. 
needs to be replaced every 5 years.

C_Service_I_DSSR

Active monitoring of timing 
targets and strategies for 
recovery from timing-
related failures bythrough 
analyser

C_Service_W_DSSR

Early address cross-checking by 
analyser (e.g. analyser need to be 
checked every day)and confirmation 
between removing water and 
measure sweet gas (No direct safety 
effects) 

St_Service_I_SLA

Argument by enforcing 
DSSR in the SLA

St_Service_W_SLA

Argument by enforcing 
DSSR in the SLA

J

J_Service_I_SLA

DSSR are specified as 
SLA post-conditions

J

J_Service_W_SLA

DSSR are specified as 
SLA post-conditions

G_Service_I_SLA_Postconditions

Monitoring of timing targets and 
strategies for recovery are 
satisfied   

G_Service_W_SLA_Postcondi
tions

Early address cross-checking 
are satisfied   

Spinal

SLA Contract

SLA of active  monitoring 
and cross-checking

Spinal

SLA Contract2

SLA of Argument based on 
monitoring of timing targets and 
strategies for recovery

Spinal

SLA Contract3

SLA of early address cross-
checking

G_Service_Hz_Absorb Water 
Argument Module

Absorb Water is accaptably 
safe

 

Figure 69: Service Argument for Absorb Water Service 
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SLA Contract 

 

  

Figure 70: SLA contact Argument for Absorb Water Service
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Participant 

G_Participant_H

Dehydration unit fulfils 
its safety requirements

C_Participant_Preco
n
Measure sweet gas 
and monitoring the 
status 

C_Participant

Dehydration unit defined 
based in SoaML 
version1.0.1 and BPMN 
version 2.0.2

St_Participant

Argument by addressing 
SLA preconditions 
allocated to participant  

C_Participant_FMs1

Participant failure modes: SFA  
- part of output signal   is missing
- The communication is unintended
- Unacceptable response time to change in 
demands
- One component of output is not 
proportional to demand

St_Participant_Tasks_Fms_Mitg
2

Argument based on apply high-
integrity among participants to 
consider sufficiently incorrect 
signal     

C_Participant_Hz_Mitg
2
Check high-integrity 
among the processes  to 
consider sufficiently 
incorrect water content

G_Participant_Task_check2

Apply high-integrity among 
participants to consider sufficiently 
incorrect signal to provides 
adequate mitigation of Commission 

C_Participant_Task_FMs_C
auses2

Required resource missing
Service/server incompatible

St_I_Participant_Tasks

Argument based on identified 
service failure mode by dehydration 
unit within monitor water content is 
less than %1 and send signal by 
transmitter  

J

J_I_Participants_Tasks

Participants are defined in terms 
of the interactions between 
BPMN pools and tasks in the 
same pool)

G_Participant_Fms

part of output signal   is 
missing is mitigated

G_Participant_Fms2

The communication is 
unintended is mitigated

C_Participant_Task_FMs_Causes1

Description incomplete or incorrect 
input
Service crashed

G_Participant__Fms3

Late cause is mitigated

C_Participant_Task_FMs_Cause
s3

Unacceptable response time to 
change in demands

St_Participant_Tasks_Fms_Mitg3 

Argument based on Active monitoring 
of timing targets and strategies for 
recovery from timing-related failures 
through analyse

C_Participant_Hz_Mitg3 

Active monitoring of timing 
targets and strategies for 
recovery from timing-
related failures through 
analyser. 

G_Participant_Task_check3 

Active monitoring of timing targets 
and strategies for recovery from 
timing-related failures through 
analyser to provides adequate 
mitigation of late  

St_Participant_Tasks_Fms_M
itg1

Argument based on Checking  
and monitoring APIs function 
and fault containment

C_Participant_Hz_Mitg1

Checking  and 
monitoring APIs function 
and fault containment

G_Participant_Task_check1

Checking  and monitoring APIs 
function and fault containment 
provides adequate mitigation of 
omission

G_Participant_Fms5

Value cause is mitigated

C_Participant_Task_FMs_C
auses5

One component of  output 
is not proportional to 
demand

St_Participant_Tasks_Fms_Mitg5
Argument based on applying 
diversity in the flow and early 
address cross-checking fault 
containment to detect and reject 
incorrect value and fault 
containment.

C_Participant_Hz_Mitg5

Applying diversity in the flow 
and early address cross-checking 
fault containment to detect and 
reject incorrect value and fault 
containment.

G_Participant_Task_check5

Applying diversity in the flow and early 
address cross-checking fault containment 
to detect and reject incorrect value and 
fault containment to provides adequate 
mitigation of value  

G_I_Participant_Participant_Dehydration 
_Dehydration unit_Dehydration 
unit_Dehydration unit_Dehydration unit

Dehydration unit measure sweet gas and 
monitoring the status through timing targets 
and strategies for recovery are satisfied

 

Figure 71: Participant Argument for Absorb Water Service 



251  
 

Appendix F. Interviews 
 

INFORMATION SHEET  

PhD PROJECT TITLE:  Service-Oriented Architectures for Safety Critical 

Systems 

INVITATION 

You are being asked to take part in a research study for a PhD project on the 

safety assurance of service-oriented architectures. 

WHAT WILL HAPPEN 

In this study, you will be asked a set of predefined questions and your answers 

will be recorded on paper at the time and written up on electronic media after 

the interview. 

TIME COMMITMENT 

The study typically takes 20 minutes. 

PARTICIPANTS’ RIGHTS 

You may decide to stop being a part of the research study at any time without 

giving an explanation. You have the right to ask that any data you have supplied 

to that point be withdrawn/destroyed.  

You have the right to omit or refuse to answer or respond to any question that 

is asked of you. 

You have the right to have your questions about the procedures answered 

(unless answering these questions would interfere with the study’s outcome). 

If you have any questions as a result of reading this information sheet, you 

should ask the researcher before the study begins. 

BENEFITS AND RISKS 

There are no known benefits for me or risks for you in this study. 
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COST, REIMBURSEMENT AND COMPENSATION 

Your participation in this study is voluntary.  

CONFIDENTIALITY/ANONYMITY 

The data I collect will not contain any personal information about you except 

for you current role and your present and previous experience.  

The results of the interview will be written up as part of my doctoral thesis. 

They may also be published in academic outlets such as journals, conferences 

or academic books. In all cases, the data will only be presented in summary 

form and you will not be directly identifiable in any way. 

FOR FURTHER INFORMATION 

Abdulaziz Al-Humam will be glad to answer your questions about this study at 

any time. He may be contacted as follows 

Abdulaziz Al-Humam, aaah501@york.ac.uk  

If you want to find out about the final results of this study, please let me know 

now and I will email you the results upon completion. 

 

 

 

 

 

 

 

 

 

  

mailto:aaah501@york.ac.uk
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CONSENT FORM 

PhD PROJECT TITLE:  Service-Oriented Architectures for Safety Critical 

Systems 

Name of Researcher: Abdulaziz Al-Humam 

Supervisors Ibrahim Habli        

                                                                  Please initial box 

1. I confirm that I have read and understand the 
information sheet for the above study. I have had the 
opportunity to consider the information, ask 
questions and have had these answered satisfactorily. 

 

2. I understand that my participation is voluntary and 
that I am free to withdraw at any time, without giving 
any reason. 

 
3. I understand that any information given by me may be 

used in future reports, articles or presentations by the 
researcher. 

 
4. I understand that my name will not appear in any 

reports, articles or presentations. 

 

5. I agree to take part in the above study. 

 

________________________ ________________   ________________ 

Name of Participant Date                     Signature 

_________________________ ________________   ________________ 

Researcher Date                     Signature 
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Date: 

Areas of expertise of the interviewee: 

7- What do you think about the overall approach? 
 

8- Do you think that the modelling approach improve the 
understanding of the system? 
 

a. What aspects in particular did you find useful? 
 

b. What aspects in particular did you find hard to use? 
 

9- Do you think that the safety analysis methods, SHA and SFA, can 
provide a systematic approach to analysing services? 
 

a. What aspects do you think have the potential to improve 
practice? 

 

b. What aspects do you think are infeasible to use? 
 

10- Do you think that the safety case used improve the justification 
for the safety of the service-based system? 
 

a. What aspects do you think have the potential to improve 
practice? 
 

b. What aspects do you think are infeasible to use? 
 

11- Do you think that the modelling, safety analysis and safety case 
artefacts are clearly integrated? 
 

12- Can you provide suggestions for areas that can improve the 
framework? 

 

 Table 44: Interview Questions 
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The presentations of the case studies respectively (Healthcare - Natural 

Gas Processing) 
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Date: 03/09/2015 

Areas of expertise of the interviewee: Chemical engineers in the oil and 

gas industry 

1- What do you think about the overall approach? 
I can say the overall approach can be very useful to be used in service-

based systems.  

2- Do you think that the modelling approach improve the 
understanding of the system? 

Of course, Yes I think it helps making the system structure and behaviour 

related hazards clearer and more visible through following the logical and 

layered approach. 

a. What aspects in particular did you find useful? 
I can say that it could be the system design models, the systematic 

procedure of the analysis and also make it appealing and easy to use. I 

recommend this kind of approach to be utilized.  

b. What aspects in particular did you find hard to use? 
Most likely the way it requires to be configured, the tool and the 

requirements of entering data manually, this area of improvement that 

needs to be look at carefully. Also, the manual part is the most difficult 

that needs to be looked carefully as this can reduce the usability and 

usefulness of the tool. 

3- Do you think that the safety analysis methods, SHA and SFA, can 
provide a systematic approach to analysing services? 

Yes, based on what I have seen,  

Yes, they do help the safety engineers through using this easy to follow up 

steps, clear methodology or process. We can enhance the engineers or the 

process developers to follow and track easy.  

a. What aspects do you think have the potential to improve 
practice? 

I will think the integration modelling safety analysis and safety case can 

help a lot to improve the safety management. This pat need to be looked in 

it carefully to added value to it.  

b. What aspects do you think are infeasible to use? 
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I am not sure that I have not apply the approach extensively 

So, this require more research, development and digging more to finalize 

this infeasible area that cannot be use. 

4- Do you think that the safety case used improve the justification 
for the safety of the service-based system? 

Yes, what we have seen and looked in it  

Yes, using safety case patterns can help a lot to establish more structure 

and logical safety case 

a. What aspects do you think have the potential to improve 
practice? 

Applying what do you call it SHA, SFA and using their result together with 

safety case patterns 

I think can help and improve the practice as well   

b. What aspects do you think are infeasible to use? 
again, Not very sure  

As I have not  had the chance to apply the approach thoroughly and 

extensively 

I think, it require more research to be finalize 

5- Do you think that the modelling, safety analysis and safety case 
artefacts are clearly integrated? 

Yes, what I have seen and looked it,  

I think, Yes, This kind from overall system architecture, it is very clear how 

the aspects are related and integrated 

6- Can you provide suggestions for areas that can improve the 
framework? 

I think it would be better, if you implement and integrate the model –

based weaving approach in the framework. That is added value. 

 

Table 45: Interview Questions and answer one 
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Date: 03/09/2015 

Areas of expertise of the interviewee: Chemical engineers in the oil and 

gas industry and overall in processing requirements  

1- What do you think about the overall approach? 
The overall approach of the system, I can say that is very useful and can 

help be use in any service-based system with oil and gas domain industry. 

The overall of the approach is very great. 

2- Do you think that the modelling approach improve the 
understanding of the system? 

For the demonstration,  I strongly believe that the system structure and 

behaviour related hazards and failure modes in the system.  

So, I believe the system is very clear, friendly to be used and can help a lot 

meeting overall system objective requirements. 

 

a. What aspects in particular did you find useful? 
Typically, for the analysis models and system design models, I think the 

system  procedure of the analysis method make it more applicable and 

easy to be used   

b. What aspects in particular did you find hard to use? 
The system design and analysis is very friendly, handy and can be easily 

understand but I believe that the need for human interface in order to go 

and enter the data manually can somehow, it will not be an accurate data 

and infeasible. This in the only area need to be looked in it  

3- Do you think that the safety analysis methods, SHA and SFA, can 
provide a systematic approach to analysing services? 

Yes, this will help the engineers overall to use the system, the systematic is 

very easy to be followed steps are very clear and handy 

a. What aspects do you think have the potential to improve 
practice? 

For new system, we need to analysis the system and the safety case and 

also the integration model. I believe that will help improve the overall 

system management. This aspect can help improve the practice  

b. What aspects do you think are infeasible to use? 
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To be honest, I start with you from the beginning of the system and I have 

already applied the approaches in one area of processing oil and gas 

industry. I see is very useful but I think I need to dig more in order to get 

the outcome what is an infeasible area. 

4- Do you think that the safety case used improve the justification 
for the safety of the service-based system? 

I strongly believe that the safety case can be used to improve 

Definitely, this will help in establish more structure and logical safety case 

Overall, having  safety case patterns for overall the system will improve 

the justification   

a. What aspects do you think have the potential to improve 
practice? 

Looking as the safety analysis methods Basically, SHA and SFA using their 

result together with safety case. I think this will help improve the  practice 

of the system 

b. What aspects do you think are infeasible to use? 
As I highlighted earlier, it is area of more research and when we dig more 

and more practice. The infeasible will appear and can figure out  

5- Do you think that the modelling, safety analysis and safety case 
artefacts are clearly integrated? 

For sure, it is very clear for the framework that are integrated. 

6- Can you provide suggestions for areas that can improve the 
framework? 

I think, If you can improve and integrated the mode –based weaving 

This is definitely can help to approach the overall framework 

 

Table 46: Interview Questions and answer two 
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Date: 26 August 2015 

Areas of expertise of the interviewee: Senior Safety Engineering 

(Healthcare domain) 

1- What do you think about the overall approach? 
I can see a lot of applications, especially in my domain, healthcare. 

The modelling approach produces a strong basis for the risk assessment 

2- Do you think that the modelling approach improve the 
understanding of the system? 

Focusing on services gives an easier way to manage and visualise the 

systems for non-experts. 

Services provide a clearer way of presenting the system as compared to 

functions. 

a. What aspects in particular did you find useful? 
Producers and consumers and the relation between them (dependencies 

between people and systems). 

Richer than a textual narrative for complex situations. 

Better than more complex models such as state machines. 

b. What aspects in particular did you find hard to use? 
Initial period for training and learning the language (but not for 

engineers). 

Not difficult for engineers because of the limited number of elements to 

model. 

3- Do you think that the safety analysis methods, SHA and SFA, can 
provide a systematic approach to analysing services? 

Yes, especially that they are built on familiar safety techniques.  

a. What aspects do you think have the potential to improve 
practice? 

Not much a new element of re-learning. 

Repeatable. 
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Keeps the relation between the hazards, services and tasks clear. 

b. What aspects do you think are infeasible to use? 
Language control: different people have different styles or use different 

terminology: faults vs failures (hard to trace and map different 

expressions of the same condition) 

4- Do you think that the safety case used improve the justification 
for the safety of the service-based system? 

The modular view provides the right level of abstraction 

The modular view provides value in showing the big picture. 

a. What aspects do you think have the potential to improve 
practice? 

The link between the hazards and causes 

Traceability between the hazards and the evidence 

b. What aspects do you think are infeasible to use? 
Detailed arguments (detailed pattern instantiation). 

People are not trained to do it/perceived to take a lot of time. 

5- Do you think that the modelling, safety analysis and safety case 
artefacts are clearly integrated? 

Yes, without a model you cannot do the analysis. 

I understand how they interrelate from the framework. 

6- Can you provide suggestions for areas that can improve the 
framework? 

Make sure to maintain a thread between the hazards and failures. 

How much enough analysis is enough? How much details are needed? 

When do we stop at the SLA level? (abstract how participants do) 

 

Table 47: Interview Questions and answer three 
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Appendix G. Weaving Model 
A preliminary weaving model, based on the work in (164), shown in Figure 72, 

is used for defining the dependencies, mainly at the metamodel level between, 

on the one hand, the SOA safety argument patterns and, on the other hand the 

SoaML, BPMN, SLAs, SHA and SFA metamodels. This aims at improving 

traceability and allowing the argument pattern instantiation to be 

automatically executed. The instantiation program, developed in (164), runs on 

the Eclipse platform. It identifies the required information from those 

information models (SoaML and BPMN) and performs the instantiation. 

Overall, the tool-support in this thesis offered a means for checking the 

consistency and well-formedness of the models and metamodels defined in the 

SOA safety assurance framework. 

 

Figure 72: Preliminary Weaving Model  
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Appendix H. Abbreviations and 

Acronyms 
SOA   Service-Oriented Architecture 

BPMN  Business Process Management Notation  

SoaML  Service oriented architecture Modeling Language 

AADL   Architecture Analysis and Design Language 

COTS   Commercial Off-The-Shelf  

EHR   Electronic Health Record 

GSN   Goal Structuring Notation 

HAZOP  Hazard and Operability Studies  

HISE   High-Integrity Systems Engineering 

MoD   Ministry of Defence (UK) 

EMR   Electronic Medical Record 

FFA   Functional Failure Analysis 

FHA   Functional Hazard Analysis 

FMEA   Failure Mode Effect Analysis 

FTA   Fault Tree Analysis 

NHS   National Health Service 

OMG   Object Management Group  

SHARD  Software Hazard Analysis and Resolution in Design  

SFA   Service Failure Analysis  

SHA   Service Hazard Analysis  

UML   Unified Modelling Language  

SysML  Systems Modelling Language 

SLA   Service Level Agreement  

NASA   National Aeronautics and Space Administration 

ESA  European Space Agency 

OASIS   Organization for the Advancement of Structured Information 

Standards  

QoS   Quality of Service  

EIA   Enterprise Integration Applications  
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ROI   Return-On-Investment  

TMR   Triple Modular Redundancy  

SDL   Specification and Description Language  

SOMA   Service-Oriented Modelling and Architecture    

SOMF   Service-Oriented Modelling Framework   

BPMI    Business Process Management Initiative   

MA   Markov Analysis   

FPTC   Fault Propagation and Transformation Calculus   

PSSA    Preliminary System Safety Assessment   

ATAM   Architecture Tradeoff Analysis Method   

IEC SC 54A  International Electro-technical Commission subcommittee 54A  

IMA  Integrated Modular Avionics  

SAAM   Software Architectural Analysis Method  

DGR   Dependency-Guarantee Relationships  

IDE  Integrated Development Environment  

BPM   Business Process Management   

SSRs   Service Safety Requirements   

 DSSRs  Derived Service Safety Requirements  

EHR   Electronic Health Record   

CO2  Carbon Dioxide   

H2S   Yydrogen Sulphide   

EG   Ethylene Glycol   

 DEG   Diethylene Glycol   

 TEG   Triethylene Glycol  

 TREG  Tetraethylene Glycol  

SRAM   Safety Report Assessment Manual   
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