
Enumeration of rooted constellations and hypermaps

through quantum matrix integrals

Jacob P. Dyer

PhD

University of York

Mathematics

September 2015

Abstract

We present a new method for enumeration of rooted constellations and other objects

these can represent, specifically rooted hypermaps and maps. We derive a closed-form

generating function enumerating rooted hypermaps with one face and a fixed number

of darts, partitioned by number of edges, and vertices. We derive an algorithmic

procedure for calculating generating functions enumerating all rooted hypermaps for

fixed number of darts, partitioning by number of edges, vertices and faces, as well as

an analogous procedure for enumerating rooted maps for fixed edge count. We also

look at the enumeration problem for general rooted constellations, but do not calculate

generating functions. Using these results we find recursion relations for calculating the

total number of rooted hypermaps, maps and constellations of any given degree.

This method is based on matrix integration tools originally developed in the study

of bipartite quantum systems, specifically in calculating mean properties of their

subsystems, where the averaging is over all possible pure states of the overall system.

We present this work first, studying the mean von Neumann entropy of entanglement

between the quantum system’s two subsystems. We look at an unproven entropy

approximation proposed by Lubkin (1978), derived from an infinite series expansion

of the entropy which was not known to be convergent. We prove that this series is

convergent if and only if the subsystem being studied is of dimension two, by deriving

closed-form expressions for the series terms and finding their limiting behaviour. In

light of this we examine the validity of Lubkin’s approximation rigorously, confirming

the limit in which it is valid, but deriving a more accurate approximation in the process.

2

Contents

Abstract 2

Contents 3

Acknowledgements 6

Declaration 7

I Introduction 8

1 Quantum theory and enumeration 9

2 Structure of this thesis 13

II Random states of bipartite quantum systems 15

3 Introduction 16

4 Preliminaries 18

4.1 Quantum states . 18

4.2 Bipartite systems . 19

4.2.1 The Schmidt decomposition . 20

5 Matrix integrals 23

5.1 The state vector integral . 23

5.1.1 Spherical integration . 24

5.2 The eigenvalue integral . 26

5.2.1 Evaluation . 28

6 Lubkin’s entropy 34

6.1 Series convergence . 35

6.1.1 Special case: m1 = m2 = 2 . 36

6.1.2 The general case . 38

6.2 Page’s formula . 41

6.2.1 Validating Lubkin . 42

3

CONTENTS CONTENTS

6.3 Divergent series . 44

6.3.1 The reason for divergence, and convergent alternatives 46

7 Conclusions 48

III Enumeration of rooted constellations 49

8 〈Tr[(ρ̂12
1)d]〉 as combinatorial functions 50

9 Basic concepts 54

9.1 Hypermaps and constellations . 54

9.1.1 Permutations . 54

9.1.2 Constellations . 55

9.1.3 Rooted constellations . 57

9.1.4 Hypermaps . 57

9.2 Generating functions . 61

10 One-face rooted hypermaps 63

10.1 Why matrix integration . 63

10.1.1 Enumerating permutations . 63

10.2 The generating function . 65

10.3 Evaluating Pd(m1,m2) . 68

10.3.1 Walsh’s method . 68

10.3.2 Direct enumeration by our method 69

10.3.3 Closed-form generating functions 70

10.3.4 Recursion relation . 71

10.3.5 Discussion . 73

11 General rooted hypermaps 74

11.1 The two-face case . 75

11.1.1 Constructing the generating functions 76

11.2 Enumerating all rooted hypermaps . 78

11.2.1 Eliminating over-counting . 79

11.2.2 Building the generating function 82

11.2.3 Evaluating F (m0,m1,m2;x) . 84

11.2.4 Evaluating H(m0,m1,m2;x) . 90

11.2.5 Implementation and Results . 92

11.2.6 Sums over subsets and equivalences 92

12 Further problems 97

12.1 Rooted maps . 98

12.1.1 Evaluation . 102

12.2 General constellations . 103

12.2.1 Deriving the matrix integrals . 104

4

CONTENTS CONTENTS

12.2.2 One-face constellations . 110

13 Enumeration discussion 112

Appendices 115

A Miscellaneous identities 116

B Exact evaluation of 〈S2,2〉 118

C Confirmation of Page’s entropy formula 120

D Some counts of rooted hypermaps 122

E Multiple counting of two-face rooted hypermaps 123

F Inner products of general orthogonal polynomials 124

G Confirmation of hypermap subgroup counting 127

Bibliography 129

5

Acknowledgements

I wish to thank my supervisor, Bernard Kay, for providing, and helping me with, the

initial problem my work started with, and for staying with me when I then took the

work off in a completely different direction. I particularly thank him for his assistance

during the process of writing and submitting my papers. I am grateful to Christopher

Hughes, also from my department, for introducing me to Zeilberger’s algorithm and the

fascinating book A=B. I also thank EPSRC for funding my research. I am grateful to

all of my family and friends, at home, at university and around the world, for providing

me with support and encouragement and helping keep me on track.

6

Declaration

I declare that the work presented in this thesis, unless otherwise stated, is based on my

own research and has not been submitted previously for a degree at this or any other

university. Parts of this work have been submitted for publication, and can be found

at:

• J. P. Dyer, Divergence of Lubkin’s series for a quantum subsystem’s mean entropy,

arXiv:1406.5776 (2014)

• J. P. Dyer, Matrix integrals and generating functions for permutations and

one-face rooted hypermaps, arxiv:1407.7774 (2014)

• J. P. Dyer, Matrix integrals and generating functions for enumerating rooted

hypermaps by vertices, edges and faces for a given number of darts,

arxiv:1411.3534 (2014)

7

Part I

Introduction

8

Chapter 1

Quantum theory and

enumeration

Over the years a number of interesting, sometimes surprising, mathematical results

have been obtained through the discovery of overlaps between otherwise disconnected

fields of mathematics, and one context in which this is particularly the case is the use of

combinatorics in quantum theory. A good example of this is the well-known Feynman

diagram method for modelling particle interactions in the Standard Model and other

related models [33, 14, 13, 25].

This example nicely demonstrates the reason why this link exists. When quantum

particles meet, e.g. in a particle accelerator, the likelihood of them interacting is given

by a scattering amplitude, a function of the particles’ momenta, which is expressed

as a Gaussian-weighted integral. In general these integrals cannot be solved exactly,

but they can be expanded as an infinite series where each of the terms is a simpler

Gaussian integral. Without going into the technical details of actual quantum scattering

amplitudes, a simple example of this principle is the integral

ˆ ∞
0

e−x
2+kxdx =

∞∑
n=0

kn

n!

ˆ ∞
0

xne−x
2
dx =

∞∑
n=0

Γ[(n+ 1)/2]

2n!
kn,

where

Γ[(n+ 1)/2] =

[(n− 1)/2]!, n odd
√
π(n−1)!!

2n/2
, n even

.

So, apart from the linear dependence of every other term on
√
π (which we can calculate

numerically to high accuracy), we can evaluate all of the terms in this series exactly in

finite time, despite the original integral having no closed-form solution1. This is useful

in the numerical calculation of scattering amplitudes, as it allows for approximations

of true amplitudes to be found by taking truncations of these series expansions.

Feynman diagrams then enter into the problem because each term in such a series

turns out to have a direct correspondence to a combinatorial diagram. These diagrams

1Note that the lower bound of integration is zero. The integral would have a much simpler solution
if the integral were unbounded in both directions.

9

Quantum theory and enumeration

all satisfy a well-defined set of rules governing their construction, and their properties

are determined by the nature of the interaction being modelled. As the correspondence

between series term and diagram is one-to-one, the task of generating the list of terms in

the series expansion is equivalent to the task of constructing all valid diagrams with the

required properties. From these diagrams the series terms can then be reconstructed

and summed together.

Feynman diagrams in particular also have the useful property that they can be

interpreted physically as representing classical trajectories of interacting particles. This

leads to the now-common interpretation of quantum interactions as an average over all

possible classical interactions matching the observed outcome.

What is less often studied, however, is the reverse of this sort of connection.

Combinatorics can be used to calculate approximate results in quantum theory, but

at the same time tools from quantum theory can in some cases be used to derive results

in combinatorics. What’s more, these results are often exact, not approximate.

This is particularly the case in enumerative combinatorics, where for instance

quantum procedures have been used to enumerate maps [39]. The parallel between

the two problems is clear, again as demonstrated by the Feynman diagram problem.

Combinatorial enumeration involves summing over all possible objects (e.g. maps)

with a specified set of properties (e.g. a given number of edges), while computation

of scattering amplitudes involves summation over all possible classical paths with a

specified initial and final condition, as represented by Feynman diagrams.

Mathematically, the reason is also clear. As has already been noted, Feynman

diagrams arise from expansion of Gaussian integral expressions, while the map

enumeration example also relies on Gaussian integrals [39]. It is through this shared

dependence on this one mathematical tool that the connection arises.

Our topic here is a new example of such a connection. Specifically we will look at

matrix integrals whose forms arise in the study of finite-dimensional bipartite quantum

systems, and we will show that they can be used in the enumeration of objects called

rooted constellations [20]. Due to links between constellations and a number of more

familiar combinatorial objects we will use this to derive results for rooted maps and

hypermaps [20] as well.

This task has many similarities with the Feynman diagram example. As was the

case there we will start by computing a property of a quantum system which is defined

as a mean over all possible configurations of the system. Specifically we will look at a

bipartite quantum system of finite dimension, and at the mean of the von Neumann

entropy of entanglement over all possible pure states of this system. As with Feynman

diagrams, the method we will use involves taking the integral which defines the mean,

expanding it as an infinite series of simpler integrals, each of which we can evaluate

explicitly.

Our initial motivation for studying this problem was purely quantum – we wished

to know if and when this series was convergent, and if a truncation of it could be used

as an approximation of the mean entropy. While we did solve this problem, showing

10

Quantum theory and enumeration

that the series only converged when one of the systems was two-dimensional, a much

more intriguing result ended up arising from the individual series terms themselves.

Each of these terms was a multi-dimensional Gaussian integral, and they evaluated

to rational functions of the dimensions of the quantum subsystems. Upon closer

inspection, the numerators of these rational functions turned out to be generating

functions (polynomials whose coefficients are equal to counts of combinatorial objects),

which enumerate rooted hypermaps with one face.

This link was discovered just by searching for other known occurrences of the

same set of integers, but the process of proving the connection revealed an underlying

combinatorial structure in the class of integrals we had been using, and more

importantly a way in which this structure could be further exploited in other cases.

Staying within the field of diagrams on two-dimensional surfaces initially, we found first

that the method could be extended to all rooted hypermaps, not just those with one

face, and then to rooted maps as well.

What’s more, the proofs of these facts relied on a particular representation of maps

and hypermaps – the aforementioned constellations. Constellations are in a sense a

purer form of combinatorial object, not dependent on any geometrical interpretation

(maps are defined as graphs embedded on two-dimensional orientable surfaces, and,

as a generalisation of maps, hypermaps have a similar interpretation), defined instead

as sets of permutations. Constellations can be generalised significantly beyond those

used to represent hypermaps, and sure enough, our matrix-integral methods can also

be applied to these more general objects.

Ultimately the reason why all of these methods work lies in the fact that all these

objects (hypermaps, maps) are specialised types of constellation, and conversely it

is the fact that constellations find use in a number of different topics that makes

these methods so versatile. It must be noted however that the power of these

methods varies considerably from problem to problem, with the more specialised cases

in general producing the most results. For instance, we are only able to explicitly

calculate generating functions in the cases of maps and hypermaps, and not for general

constellations. We are able to find some information in all cases, such as overall counts

for each type of object at each degree2, but still more information remains hidden

within intractable integral expressions.

Nonetheless, the generating functions we are able to calculate are themselves very

powerful. Prior work exists on rooted hypermap enumeration, but this has often

been restricted to specific genera of hypermap, such as planar [4] and toroidal [3]

hypermaps. A method for generating individual rooted hypermaps has been found,

allowing for them to be counted directly [35] (it is from this work that we originally

discovered the link), but as this relies on generating all of the hypermaps individually

it cannot tell us anything about the properties of the generating functions, such as

symmetries, recursions and other patterns. Our method allows for production of

generating functions for any degree of rooted hypermap, and, as was the case in the

2By degree we mean the number of edges in a map, and analogously the number of darts in a
hypermap. The meaning of these terms will be given in more detail in Chapter 4.

11

Quantum theory and enumeration

above references, the hypermaps are then partitioned by number of vertices, edges

and faces. Furthermore, as well as the benefits generating functions bring in allowing

for proofs of patterns and symmetries, this method is also much faster at computing

counts than Walsh’s method, simply because it doesn’t require listing the individual

hypermaps.

As our method arises from constellations, however, these generating functions are

not partitioned by the geometric genus of the maps and hypermaps, as the above

methods were. This is in fact beneficial as it means that a fundamental symmetry of

the set of hypermaps (under exchange of edges, vertices and faces) becomes immediately

apparent.

This is not to say that any information is lost, of course. While genus information

is not naturally apparent in the resulting generating functions, the Euler characteristic

formula directly links the genus of hypermaps to their edge/vertex/face counts, so this

information can still easily be extracted.

Ultimately, while we will explicitly go through the derivation of a number of specific

results in this thesis, for hypermaps, maps, and constellations, the main aim is to

provide a demonstration of the methods themselves and how they can be adapted to

suit a wide range of different enumeration problems. The hope is that these tools may

then find further use in new contexts, within enumerative combinatorics and beyond.

12

Chapter 2

Structure of this thesis

While the primary results of this thesis are almost entirely within combinatorics, the

story of their derivation is very much in two distinct parts, and this thesis is structured

to reflect this.

In Part II we begin with the the original quantum problem which motivated our

study. This work is stand-alone, with its own aims and conclusions, and we will treat

it as such. This problem, as we have briefly mentioned, is that of determining the

convergence properties of an infinite series expansion for the mean von Neumann

entropy of a bipartite quantum system. This question is tackled, and answered, in

Chapter 6.

This work makes considerable use of matrix integration, so before we can tackle this

problem, we first need to introduce the specific types of integrals we will be using, and

the methods we will use to manipulate and evaluate them. After a brief introduction

and summary of the quantum information concepts from which the integrals derive

(Chapters 3 and 4), we look at these methods in Chapter 5. It is in these integrals

that we begin to see combinatorial information appearing, so as well as looking at the

integral methods required to solve the entropy problem (Section 5.2) we also briefly

introduce a second method in Section 5.1, based on Gaussian integration, which we

will use extensively later on to provide the connection between these integrals and

combinatorial generating functions.

We then move on to combinatorial enumeration proper in Part III. We start

with a fairly qualitative look at the expressions derived in Part II, and describe how

their relevance to combinatorics was discovered, in Chapter 8, then give a general

introduction of the combinatorial concepts used throughout this part in Chapter 9,

including hypermaps and constellations. This provides us with an opportunity to

highlight which properties and interpretations of these various objects will be of most

importance to us, setting the ground-work for the rest of the part.

We then begin our enumeration work in Chapter 10 with our simplest example,

where we show that the expressions derived in Part II are in fact generating functions

for enumerating rooted hypermaps with one face. It is here that we first show

a definite connection between quantum theory and combinatorics by proving these

functions’ nature as generating functions, and the methods introduced in the proof of

13

Structure of this thesis

this provide the basis for proving later analogous results for rooted hypermaps, maps

and constellations.

We start the process of generalising this work in Chapter 11, taking the methods

from the one-face case and applying them first to rooted hypermaps with two faces in

Section 11.1. Then, from here, we move straight to enumerating rooted hypermaps with

any number of faces in the rest of the chapter. This generalisation introduces a number

of new complexities, and we demonstrate how to overcome these and unlock the full

potential of our methods. We also look at ways in which the generating functions being

produced may be manipulated to extract further information, such as overall counts of

rooted hypermaps of any given degree.

At this point we have most of our enumeration tools in place, so we move on to

demonstrations of how to apply these tools to further problems in Chapter 12. We

first look at rooted maps in Section 12.1, and the shared properties between maps and

hypermaps become apparent in that the two methods and results end up resembling

each other very closely. Again we find a method of computing generating functions, as

well as a way of counting all rooted maps with a given number of edges.

Following from this case, which is essentially a specialisation of the hypermap

method, we then move in the other direction and show how to generalise the method

to all rooted constellations in Section 12.2. This is where we find ourselves furthest

from our quantum starting point, and a number of the tools we have been using up

to this point no longer apply, leaving us unable to compute the generating functions

themselves as we have been able to before. We are still able to produce counts for the

total number of rooted constellations of a given degree, however.

14

Part II

Random states of bipartite

quantum systems

15

Chapter 3

Introduction

In this part we look at a question from quantum information theory, concerning

entanglement in finite-dimensional bipartite quantum systems. Mathematically, a

quantum system is described by a complex Hilbert space H , with a finite-dimensional

quantum system then having a Hilbert space isomorphic to Cm for some positive integer

m. In these terms, a bipartite quantum system is one whose Hilbert space has some

specified decomposition as a non-trivial tensor product

H = Cm1m2 = Cm1 ⊗ Cm2 .

The study of quantum systems is generally concerned with examining properties

of states of these systems. A state is described by a density operator ρ̂12, a positive

semidefinite Hermitian operator with unit trace acting on H , and this operator encodes

all of the physical properties of the overall system in the given state. In a bipartite

system ρ̂12 describes the state of the overall system, but we can also then give denisity

operators which just describe the states of the two subsystems; these are given by the

partial traces of ρ̂12,

ρ̂12
1 = TrCm2 [ρ̂12]

ρ̂12
2 = TrCm1 [ρ̂12],

and are referred to as reduced density operators. Using these we can compute properties

of the subsystems in isolation, just as we would use ρ̂12 to compute properties of the

overall system.

We are interested in one specific subsystem property, the von Neumann entropy1,

which for the first subsystem is defined as

S12
1 = −TrCm1 [ρ̂12

1 ln ρ̂12
1].

We can also define the entropy S12
2 of the second subsystem using the same formula,

and in general these two entropies will have different values. However, in the cases we

1As the von Neumann entropy is the only form of entropy we consider here, we will often refer to it
as just the entropy for short.

16

Introduction

will be studying here – pure states, where the associated ρ̂12 is a projection operator –

the two reduced density operators have the same eigenvalue spectrum, and as a result

the two entropies S12
1 and S12

2 are necessarily equal. This allows us to view the entropy

as a property of the overall system, and we can then use it as a measure of one of the

characteristic traits of quantum systems: entanglement.

Roughly speaking, entanglement describes how dependent the states of the two

subsystems of the system are on each other. In a completely disentangled state the two

subsystems would be independent, and ρ̂12 would just be the tensor product of ρ̂12
1 and

ρ̂12
2 . In more general states, however, the two subsystems’ states become intermixed,

and ρ̂12 stops being separable in this way.

The von Neumann entropy is then a measure of the level of this intermixing. As we

are taking ρ̂12 to be a projection operator, when there is no entanglement ρ̂12
1 and ρ̂12

2

must be projection operators as well, and the resulting entropy is zero. For entangled

states the entropy has a non-zero positive value, with higher values indicating greater

entanglement, up to a maximum value equal to the logarithm of the smallest of the two

dimensions m1 and m2. A state with this entropy is said to be maximally entangled.

Our work here begins with a question raised by Lubkin [22] while studying the value

of the entropy averaged over all possible pure states of a bipartite system. Unable to find

an exact expression for this mean, he was attempting to find a way of approximating

its value. He did so by writing a Taylor series expansion for the mean entropy (based

on the Taylor expansion of the logarithm), truncating after the first few terms and

evaluating it explicitly. His motivation for doing so was of course a physical one;

he wanted to show that a random pure state of a large bipartite quantum system

could with reasonable likelihood have subsystems with high entropy. His argument

was that, although the universe we observe has very high entropy, it would be much

more satisfying for the overall state of the universe to be pure, with the entropy we see

resulting from entanglement with some other subsystem beyond our observation.

While this physical problem provided the original basis for Lubkin’s work, the

details which we will be concerned with here are purely mathematical in nature; we

wish to determine if and when Lubkin’s series expansion for the mean entropy converges.

Lubkin acknowledged that he didn’t know if the series converged, and apart from some

qualitative arguments to say that it would, he left the question of whether or not it did

unanswered. His later conclusions are therefore based on an assumption, which we will

now address. We will find the condition for the series’ convergence by finding a general

closed-form expression for the series terms and looking at their asymptotic behaviour,

and we will in fact find that the series only converges when one of the subsystems is

two-dimensional, diverging rapidly otherwise (Theorem 6.1.1).

This is, however, a surprise, due to the fact that Lubkin’s approximation in fact

compares favourably with other expressions for the mean entropy which have been found

since [24, 16, 27, 30]. Given this, we will finish by comparing the relative accuracy of

these various approximations, validating Lubkin’s original conclusions, but also showing

that other available entropy approximations are nonetheless more accurate.

17

Chapter 4

Preliminaries

In this chapter we will give an overview of the basic principles of finite-dimensional

quantum systems, describing the features which we will be making use of in the rest of

this part and establishing various conventions of notation. We will look at the physical

interpretation of such systems only in passing, and put our focus mainly on their

mathematical definitions. This will be beneficial when we move on to combinatorial

applications in Part III, as in most of the enumeration problems we will look at there will

be no meaningful physical interpretation of the expressions being used, and attempting

to keep track of such things will only confuse matters.

4.1 Quantum states

A quantum system A is described mathematically by an associated Hilbert space, which

we will denote HA. This is a vector space, the elements of which correspond (up to

scaling and phase rotation) to pure states of A. We will denote these state vectors using

the bra-ket notation e.g. |ψ〉, with the corresponding Hermitian conjugate co-vector

being 〈ψ|. By convention vectors corresponding to physical states are normalised

(i.e. satisfying 〈ψ|ψ〉 = 1).

Our focus here will be restricted to quantum systems of finite dimension, i.e. systems

where the Hilbert space is a finite-dimensional complex vector space. For given

dimension m, any such Hilbert space is necessarily isomorphic to Cm, so without loss of

generality we will equate any m-dimensional quantum system with an abstract system

Am, and will denote its Hilbert space Hm ≡ Cm. As a simple example, consider a

system consisting of two q-bits, each of which can either be in a state |0〉 or |1〉 (or

superpositions thereof). The Hilbert space associated with this system is spanned by

the Bell states
|Φ+〉 = 1√

2
(|00〉+ |11〉)

|Φ−〉 = 1√
2
(|00〉 − |11〉)

|Ψ+〉 = 1√
2
(|01〉+ |10〉)

|Ψ−〉 = 1√
2
(|01〉 − |10〉),

(4.1.1)

so the system is equivalent to A4.

18

Preliminaries Bipartite systems

It is not satisfactory to represent states purely in terms of state vectors, however,

for two reasons. The first relates to how observable properties of quantum states

are measured: an observable O is represented by a Hermitian operator Ô, and the

expectation value for a measurement of this observable for a state vector |ψ〉 is given

by the inner product 〈O〉ψ = 〈ψ|Ô|ψ〉. Such inner products are invariant under phase

rotations of the state vector, however, meaning that any two state vectors which are

equivalent up to a change in phase are physically indistinguishable from each other.

Ideally, representations of quantum states should correspond uniquely to their physical

states, so it is for this reason that we represent pure states instead by density operators

ρ̂ = |ψ〉〈ψ|, which are invariant under phase rotation of the state vector and still contain

all of the same observable information through the identity Tr[ρ̂Ô] = 〈ψ|Ô|ψ〉 = 〈O〉ψ.

The second reason is because a state vector can only represent pure states, and

cannot represent what are called mixed states. What this means is best demonstrated

in conjunction with the discussion of bipartite quantum systems, however, so we will

introduce these next.

4.2 Bipartite systems

Consider the finite-dimensional quantum system Am1m2 where12 m2 ≥ m1 ≥ 2. The

Hilbert space associated with Am1m2 is Hm1m2 ≡ Cm1m2 , which is equivalent to the

tensor product space Cm1 ⊗ Cm2 ≡ Hm1 ⊗Hm2 . Such a system is called a bipartite

quantum system i.e. a quantum system which can be decomposed into two distinct

parts.

Physically this can be understood as follows: if the state vector |ψ1〉 ∈ Hm1

represents some pure state of the system Am1 , and the state vector |ψ2〉 ∈ Hm2

represents a pure state of Am2 , then the tensor product |ψ〉 = |ψ1〉 ⊗ |ψ2〉 is a vector

in Hm1m2 , and therefore represents a state of Am1m2 . So a bipartite quantum system

can be thought of as a physical union of the two smaller systems, with a state of the

overall system including the states of both subsystems.

Not all states of Am1m2 can be directly decomposed into the product of states of Am1

and Am2 , however. If we return to the example used in Section 4.1, the system of two

q-bits is a bipartite system which can be factored into two single q-bit systems (both

equivalent to A2). But none of the four Bell states given in (4.1.1) can be factorised

into a product of states of the two subsystems. Non-separable states like this are known

as entangled states.

How do we represent the state of a subsystem in an entangled state, then? We

have already said that a pure state of Am1m2 may be represented by a density operator

1We can take m2 ≥ m1 without loss of generality, as the subsystem Am1 will have the same
characteristics whether it’s thought of as the first subsystem of Am1m2 or the second subsystem of
Am2m1 . It is therefore not important which way round the two numbers are ordered, and we choose
the convention m2 ≥ m1.

2We do not consider systems where either of the subsystems are one-dimensional. This is because
a one-dimensional subsystem can always be trivially factored out of a superposition, only having one
state it can exist in. As a result no entanglement is able to occur, so there is no reason to consider
such a system as bipartite.

19

Bipartite systems Preliminaries

acting on Hm1m2 (which we will label ρ̂12). We can then modify this density operator

to produce a new reduced density operator (RDO) which acts only on e.g. Hm1 by

taking the partial trace of ρ̂12 over Hm2 .

The partial trace is best understood in terms of vector bases: for the two subsystem

Hilbert spaces Hm1 and Hm2 , we define orthonormal bases {|φ1
1〉, . . . , |φ1

m1
〉} and

{|φ2
1〉, . . . , |φ2

m2
〉}. Using these, we construct an orthonormal basis set {|φ1

a〉 ⊗ |φ2
b〉 :

1 ≤ a ≤ m1, 1 ≤ b ≤ m2} spanning Hm1m2 . In terms of this basis our density operator

can be written

ρ̂12 = ρa1b1a2b2 |φ1
a1〉〈φ

1
a2 | ⊗ |φ

2
b1〉〈φ

2
b2 |,

where ρa1b1a2b2 are complex numbers, and the convention of summation over repeated

indices is used (as it will be throughout). Then, taking the trace over Hm2 , we get the

RDO

ρ̂12
1 = ρa1ba2b|φ1

a1〉〈φ
1
a2 |.

The partial trace can be applied to completely general density operators, but, as

we will only be looking at cases where the bipartite system is in a pure state, we can

make some simplifications. A pure state, as stated in Section 4.1, can be represented

by a normalised state vector. Using the basis given above, we can write such a vector

as3

|ψ〉 = xab|φ1
a〉 ⊗ |φ2

b〉,

where xab are m1m2 complex numbers, normalised in the sense that x̄abxab = 1 (where

x̄ab is the complex conjugate of xab). The density operator is once more given by

ρ̂12 = |ψ〉〈ψ|, and if we take the partial trace we get the RDO

ρ̂12
1 = xa1bx̄a2b|φ1

a1〉〈φ
1
a2 |.

So far we have only defined the RDO for the subsystem Am1 , but we could also

look at Am2 if we wanted to. In this case the RDO would be ρ̂12
2 = xab1 x̄ab2 |φ2

b1
〉〈φ2

b2
|.

However, we will see in Section 4.2.1 that ρ̂12
1 and ρ̂12

2 always have the same spectrum of

eigenvalues when Am1m2 is in a pure state. All of the results we study here will depend

only on the eigenvalues of the RDO, so it in fact doesn’t matter which subsystem we

study as they will give the same results. By convention we will always choose to study

Am1 , with m1 ≤ m2 still.

4.2.1 The Schmidt decomposition

In Section 4.2 we looked at decompositions of state vectors for a bipartite quantum

system, using an arbitrary orthonormal basis. While we are free to choose any such

basis to work with, some bases reveal a lot more information about the nature of

the states then others. One particularly informative choice of basis is the Schmidt

3Again there is a phase degeneracy in the state vector, as a vector with components xab will give the
same density operator as one with components eiθxab for some real constant θ. This does not affect our
ability to construct states in this manner, however. We will discuss the significance of this degeneracy
further, and its effect (or lack thereof) on taking means over pure states, in Section 5.1.

20

Preliminaries Bipartite systems

decomposition [12, p 47], which in our notation can be described as follows:

Fact 4.2.1. For any given state vector |ψ〉 in Hm1m2 (with m1 ≤ m2), there exist

orthonormal bases {|φ1
1〉, . . . , |φ1

m1
〉} and {|φ2

1〉, . . . , |φ2
m2
〉} such that

|ψ〉 =

m1∑
a=1

√
pa|φ1

a〉 ⊗ |φ2
a〉, (4.2.1)

where the
√
pa are non-negative real numbers [12].

Proof. We construct such a basis by first choosing the basis |φ1
a〉 such that the RDO

ρ̂12
1 is diagonal (this is always possible as ρ̂12

1 is Hermitian), and then setting |φ2
a〉 to be

the relative states of |φ1
a〉 i.e.

|φ2
a〉 ∝ 〈φ1

a|ψ〉1

(where 〈φ1
a|ψ〉1 represents the inner product over Hm1 only). We then choose the

remaining |φ2
a〉 for m1 < a ≤ m2 such that the entire basis is orthonormal. The

coefficients
√
pa can always be made real and non-negative because we are free to

choose the relative phases of |φ1
a〉 and |φ2

a〉.

The main consequence of the Schmidt decomposition is that the two RDOs ρ̂12
1 and

ρ̂12
2 will always have the same eigenvalue spectrum if the overall state is pure. If we

take ρ̂12 = |ψ〉〈ψ| with |ψ〉 expressed as in (4.2.1), then

ρ̂12
1 =

m1∑
a=1

pa|φ1
a〉〈φ1

a|

ρ̂12
2 =

m1∑
a=1

pa|φ2
a〉〈φ2

a|.

Each pa is necessarily non-negative, and the normalisation of |ψ〉 ensures that their

sum is unity (because Σpa = Tr[ρ̂12
1] = Tr[ρ̂12] = 〈ψ|ψ〉 = 1). This reflects the

standard interpretation of the eigenvalues of the RDO as probabilities associated with

an ensemble of orthogonal states |φ1
a〉. In physical terms, if Am1m2 were prepared in

the state |ψ〉 and the subsystem Am1 subsequently observed, the probability of it being

observed in the state |φ1
a〉 would be pa.

The symmetry of the eigenvalues can be expressed in another way, which is

particularly relevant for our work in the following chapters:

Corollary 4.2.1. Let ρ̂12
1 and ρ̂12

2 be the reduced density matrices of the subsystems of

a system Am1m2 in a pure state. Let f be a function of one variable, analytic in the

neighbourhood of zero. Then

Tr[f(ρ̂12
1)] = Tr[f(ρ̂12

2)] =

m1∑
a=1

f(pa).

21

Bipartite systems Preliminaries

Proof. Consider the monomial case f(x) = xd for some non-negative integer d. We

have

(ρ̂12
1)d =

m1∑
a=1

pda|φ1
a〉〈φ1

a|

(ρ̂12
2)d =

m1∑
a=1

pda|φ2
a〉〈φ2

a|

due to the orthonormality of the two bases, so

Tr[(ρ̂12
1)d] = Tr[(ρ̂12

2)d] =

m1∑
a=1

pda.

We can then write more general f as a Maclaurin series

f(x) =
∞∑
d=0

fdx
d,

so

Tr[f(ρ̂12
1)] =

∞∑
d=0

fdTr[(ρ̂12
1)d] =

∞∑
d=0

fd

m1∑
a=1

pda =

m1∑
a=1

f(pa),

and the same holds for Tr[f(ρ̂12
2)].

This is a significant benefit to us, as all quantities we will be computing in the

remainder of this part depend only on traces of functions of the reduced density matrices

(monomial functions in most cases, in fact). Therefore, when we want to find the

mean value of such a quantity, we can do so by integrating over the space of possible

sets of eigenvalues, rather than over the entire matrix space. We will consider these

matrix integrals more carefully in Chapter 5, looking in particular at the integral over

eigenvalues in Section 5.2.

22

Chapter 5

Matrix integrals

Now that we have introduced all of the necessary fundamental concepts for studying

bipartite quantum systems, we will in this look at expressions of the form 〈Tr[f(ρ̂12
1)]〉

i.e. mean values of the trace of the matrix expression f(ρ̂12
1), where ρ̂12

1 is the RDO

for the subsystem Am1 of the bipartite quantum system Am1m2 , and the mean is over

all pure states of Am1m2 (as before we will assume without loss of generality that

m1 ≤ m2).

Such means have been studied before by numerous authors [22, 24, 16, 27, 30].

Our ultimate aim in this part is to look specifically at the von Neumann entropy of

entanglement, given by 〈Sm1m2〉 = 〈Tr[−ρ̂12
1 ln ρ̂12

1]〉, first considered by Lubkin [22] (we

will look at this expression specifically in Chapter 6). However, in both this part and

the next we will need to be able to evaluate much more general means, so we will use

this chapter to investigate the general properties of these means and the methods for

evaluating them, focussing on the case when f is a monomial.

In Section 5.1 we will look at their interpretation as integrals over the space of state

vectors, building on the brief discussion given by Lubkin in his paper [22]. Then, in

Section 5.2, we will look at how the same integral can be given as an integral over the

space of eigenvalues of ρ̂12
1 , making use of work by Lloyd and Pagels [21], Page [24] and

others [16, 27, 30]. In the case of the eigenvalue integral, we will get as far as giving a

closed-form expression for the integral when f is a monomial.

5.1 The state vector integral

The mean 〈Tr[f(ρ̂12
1)]〉 is naturally expressed as an integral, as the space of pure states

of Am1m2 is continuous. We need to take care when choosing exactly what space to

integrate over, and how to weight the mean, however. Lubkin chose to integrate over

the sphere of unit state vectors |ψ〉 using the invariant volume element on this sphere,

and he gave a brief justification for his choice in his paper [22]. Here we will give a

more thorough explanation for the validity of his choice.

Our mean 〈. . .〉 can essentially be defined by three properties:

• Linearity – 〈A+B〉 = 〈A〉+ 〈B〉.

23

The state vector integral Matrix integrals

• Normalisation – 〈1〉 = 1.

• Unitary invariance – This reflects an underlying symmetry of the space of states:

if ρ̂12 is a the normalised density operator for a pure state of Am1m2 and Û is

a unitary operator acting on Hm1m2 , then Û ρ̂12Û † is also a normalised density

operator representing a pure state with the same RDO eigenvalue spectrum. Thus

we require that the mean itself be invariant under unitary transformations.

The requirement of invariance has a much clearer interpretation if the states are thought

of in terms of state vectors: if we choose a vector |ψ〉 such that ρ̂12 = |ψ〉〈ψ|, then the

transformation ρ̂12 → Û ρ̂12Û † is equivalent to |ψ〉 → Û |ψ〉. In other words, the space

of pure states is invariant under rotations of the unit sphere in Hm1m2 .

This unit sphere is isometric with S2m1m2−1, the unit sphere in R2m1m2 ; in

particular, they share the same invariant volume element, which we denote dΩ. The

two spheres are not equivalent in all respects as their symmetry groups (U(m1m2) and

O(2m1m2) respectively) are different, but we only require the volume element in order

to construct our integral (as Lubkin argued also [22]1), so for convenience we will refer

to both as S2m1m2−1 from now on.

We thus find that the mean which satisfies our three properties is

〈Tr[f(ρ̂12
1)]〉 =

1

Zm1m2

ˆ
S2m1m2−1

dΩTr[f(ρ̂12
1)], (5.1.1)

where the normalising factor

Zm1m2 =

ˆ
S2m1m2−1

dΩ =
2πm1m2

Γ(m1m2)

is the total “volume” of S2m1m2−1.

In Section 4.1 we argued that it was incorrect to represent pure states as state

vectors instead of density matrices, so it may seem strange to now write the mean

in terms of them. However, it is easy enough to see that (5.1.1) is equivalent to an

integral over the space of pure density matrices, as the integrand is dependent only on

ρ̂12. Integrating over the space of state vectors instead of the space of density matrices

results in some multiple counting, but the effect this has on the weighting is uniform

over all the possible states (for any state, the space of equivalent state vectors is just

a unit circle), and is thus cancelled by Zm1,m2 . Given this, and the fact that (5.1.1)

satisfies all three properties we require of our mean, this integral is clearly the one we

want.

5.1.1 Spherical integration

(5.1.1) is a spherical integral, so this immediately presents one method for evaluation.

This method is similar to one used by Folland for evaluating monomial functions over

the unit sphere [15]. It should be noted that this method will not be of use for studying

1He referred to the volume element as the “Haar measure”, by analogy with invariant volumes
defined on groups.

24

Matrix integrals The state vector integral

the von Neumann entropy in Chapter 6, but we will make considerable use of it in Part

III when we come to the combinatorial interpretation of these integrals.

As in Folland’s method, we consider only monomials i.e. f(ρ̂12
1) = (ρ̂12

1)d for some

non-negative integer d. The mean is then

〈Tr[(ρ̂12
1)d]〉 =

1

Zm1m2

ˆ
S2m1m2−1

dΩTr[(ρ̂12
1)d]. (5.1.2)

We will find this much easier to work with, however, if we choose a basis for

our vector space. As the mean is invariant under unitary rotations, we are free

to choose any orthonormal basis we wish, so let us choose some separable basis{
|φ1
a〉 ⊗ |φ2

a〉 : 1 ≤ a ≤ m1, 1 ≤ b ≤ m2

}
. In this basis, any |ψ〉 is represented by a

set of complex coefficients, which we denote xab, such that

|ψ〉 = xab|φ1
a〉 ⊗ |φ1

b〉.

The matrix components of the RDO are then [ρ̂12
1]a1a2 = xa1bx̄a2b. Written out in full,

(5.1.2) is

〈Tr[(ρ̂12
1)d]〉 =

1

Zm1m2

ˆ
S2m1m2−1

dΩxa1b1 x̄a2b1xa2b2 x̄a3b2 · · ·xadbd x̄a1bd . (5.1.3)

Now let us multiply this by

2

Γ(m1m2 + d)

ˆ ∞
0

λ2m1m2−1+2de−λ
2
dλ = 1 (5.1.4)

(this identity follows from the integral definition of the gamma function). The resulting

integral is very cumbersome, so we won’t write it out in full here, but consider what

it becomes after the substitution zab = λxab. As xab are the components of a unit

vector in Cm1m2 and λ ≥ 0, zab can be the coefficients of any arbitrary vector

in Cm1m2 , with λ = |z| =
√
zabz̄ab. The invariant volume element in Cm1m2 , when

expressed in Euclidean and spherical polar forms, is dm1m2zdm1m2 z̄ ≡ λ2m1m2−1dλdΩ,

so (5.1.3)× (5.1.4) is equivalent to

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

Γ(m1m2 + d)
π−m1m2

ˆ
Cm1m2

dm1m2zdm1m2 z̄e−|z|
2
za1b1 z̄a2b1 · · · zadbd z̄a1bd .

(5.1.5)

This trick deals with the problem of having to integrate over a sphere by converting

the integral into a Gaussian integral over a Euclidean complex space, which is much

simpler to evaluate. The results of this evaluation are not of immediate importance here

however, so we will leave the remaining steps for Chapter 10. For now we will move

on to a second method for evaluating (5.1.2), by interpreting it instead as a matrix

integral.

25

The eigenvalue integral Matrix integrals

5.2 The eigenvalue integral

In Section 5.1 we wrote the mean 〈Tr[(ρ̂12
1)d]〉 as an integral over state vectors, but we

also noted that this is equivalent to an integral over the space of pure density operators

ρ̂12. We can go a step further, however, by noting that the integrand Tr[(ρ̂12
1)d] in (5.1.1)

depends only on the RDO ρ̂12
1 , and, given Corollary 4.2.1, only on the eigenvalues of

ρ̂12
1 . Therefore, we can also express 〈Tr[(ρ̂12

1)d]〉 as an eigenvalue integral over the space

of RDOs. But first we need to identify what this space actually is.

Lemma 5.2.1. Let Dm be the space of unit-trace positive semidefinite Hermitian

operators acting on Hm. If and only if m1 ≤ m2, the space of possible RDOs ρ̂12
1

is Dm1.

Proof. Consider the operator M̂ given by

M̂ =

m1∑
a=1

pa|φ1
a〉〈φ1

a|,

where {|φ1
a〉, 1 ≤ a ≤ m1} is some orthonormal basis spanning Hm1 , and the numbers

pa are all non-negative and sum to unity. M̂ is therefore a member of Dm1 , and any

member of Dm1 can be written in this form by finding its eigenvector decomposition.

Furthermore, if m1 ≤ m2, there is guaranteed to be a pure state of Am1m2 which has

a RDO ρ̂12
1 equal to M̂ . We can always construct such a state simply by choosing an

arbitrary orthonormal basis {|φ2
b〉, 1 ≤ b ≤ m2} spanning Hm2 and defining the state

vector

|ψ〉 =

m1∑
a=1

√
pa|φ1

a〉 ⊗ |φ2
a〉.

Furthermore, for any such |ψ〉, its associated RDO is necessarily in Dm1 as it is a

unit-trace positive semidefinite Hermitian operator.

This construction only works if there are at least as many basis vectors on Hm2 as

there are on Hm1 . Fact 4.2.1 with m1 and m2 swapped shows that, if m2 < m1, ρ̂12
1

can have at most m2 non-zero eigenvalues. General M̂ in Dm1 can still have up to m1

non-zero eigenvalues, however.

Therefore, the set of RDOs ρ̂12
1 is Dm1 if and only if m1 ≤ m2.

This is in fact the reason why we have chosen to only use m1 ≤ m2; we can only

construct the eigenvalue integral when the dimensions are that way round.

Our mean thus has the form of an integral over the positive semidefinite unit-trace

Hermitian operators acting on Hm1 . There is already considerable work studying

integrals over ensembles of Hermitian matrices in the field of matrix integration;

for example, the Gaussian Unitary Ensemble (GUE) is an ensemble of Hermitian

matrices H with dimension m (without the requirement of being unit trace and positive

semidefinite), invariant under unitary transformations. If a function of H dependent

only on its eigenvalues (e.g. Tr(Hd)) is integrated over the entire GUE, the result is

26

Matrix integrals The eigenvalue integral

an integral over the possible combinations of eigenvalues {p1, . . . , pm} of H with joint

density function (JDF) [23, p 64]

P (p1, . . . , pm) =
1

ZGUE(m)

m∏
k=1

e−p
2
k

∏
1≤i<j≤m

(pj − pi)2 (5.2.1)

(where ZGUE(m) is a normalisation constant).

The GUE of course does not correspond exactly to the “ensemble” of RDOs, but

the JDF does share some similarities. This is not overly surprising, as both ensembles

have unitary invariance as a defining property.

The JDF of our ensemble is different to reflect the additional structure of our

ensemble, specifically:

• Positive semidefiniteness - in the GUE, the eigenvalues can be either sign, but

we are restricted to non-negative sign only.

• Unit trace - the eigenvalues must sum to unity; this will be reflected by a delta

function in the JDF.

• Multiple counting - this arises from the fact that the RDOs are partial traces of

higher-dimensional density operators, with multiple density operators potentially

giving rise to the same RDO.

Fortunately, the correct JDF is already known, having been computed by Lloyd and

Pagels [21] and further developed by Page [24], so to save a significant quantity of

computation we will simply state it here:

P (p1, . . . , pm1) =
1

Z∗m1,m2

δ

(
1−

m1∑
i=1

pi

)
m1∏
k=1

pm2−m1
k

∏
1≤i<j≤m1

(pj − pi)2 (5.2.2)

for eigenvalues p1, . . . , pm1 ≥ 0, with the normalising factor Z∗m1m2
fixed by the

condition ˆ
P (p1, . . . , pm1)dp1 · · · dpm1 = 1.

This integral is implicitly over the space Rm1
+ , where R+ is the non-negative real line. We

will omit this designation for the sake of readability, stating the domain of integration

explicitly on integrals whenever it differs.

(5.2.2) shares with (5.2.1) the product term∏
1≤i<j≤m1

(pj − pi)2 = ∆2(p1, . . . , pm1),

where

∆(p1, . . . , pm1) =
∏

1≤i<j≤m1

(pj − pi) =

∣∣∣∣∣∣∣∣∣∣∣

1 p1 · · · pm1−1
1

1 p2 · · · pm1−1
2

...
...

. . .
...

1 pm1 · · · pm1−1
m1

∣∣∣∣∣∣∣∣∣∣∣
27

The eigenvalue integral Matrix integrals

is known as the Vandermonde determinant. The Vandermonde determinant frequently

appears in JDFs for matrix ensembles, and the reason for its inclusion can be

understood geometrically: the space of matrices where pi 6= pj for any given i and j is

m1-dimensional, while the restricted space where pi = pj is only (m1− 1)-dimensional.

Therefore, the contribution to the integral of cases where any pi = pj is vanishingly

small, and so the JDF must go to zero in all such cases. The Vandermonde determinant

naturally enforces this as it vanishes when any two parameters are equal.

5.2.1 Evaluation

As with the state-vector integral in Section 5.1, we need to perform some additional

manipulation to make this JDF useful. Again, let us consider the mean 〈Tr[(ρ̂12
1)d]〉 as

an example without loss of generality. The eigenvalue integral is then

〈Tr[(ρ̂12
1)d]〉 =

1

Z∗m1,m2

ˆ
δ

(
1−

m1∑
i=1

pi

)
m1∏
k=1

pm2−m1
k dpk

∏
1≤i<j≤m1

(pj − pi)2
m1∑
a=1

pda.

(5.2.3)

In this section we will show that this expression actually has a remarkably simple (in

comparison at least) closed form representation as a finite hypergeometric series.

Theorem 5.2.1. For any non-integer d > 0 and integers m1,m2 ≥ 2,

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

dΓ(m1m2 + d)

∑
r≥0

(−1)r

r!Γ(d− r)
Γ(m1 + d− r)

Γ(m1 − r)
Γ(m2 + d− r)

Γ(m2 − r)
. (5.2.4)

Proof. Note that the theorem states this is true regardless of the order of m1 and m2.

As in previous sections, we will begin by considering only m1 ≤ m2, and note how to

extend the result to all cases at the end.

The first thing we wish to do to simplify (5.2.3) is remove the delta function; the

particular method for doing this is due to Page2 [24], and is analogous to what we

did in Section 5.1.1 to remove the restriction of integrating only on the unit sphere in

the state-vector integral. Notice that the integrand, including the volume element and

excluding the delta function, is of order m1m2 + d in the eigenvalues (m1(m2 − m1)

from the pm2−m1
k terms, m1 from the dpk, m1(m1−1) from the Vandermonde term and

d from the trace term). So, if we multiply (5.2.3) by the factor

1

Γ(m1m2 + d)

ˆ ∞
0

λm1m2+d−1e−λdλ = 1 (5.2.5)

(which follows from the definition of the gamma function) and use the substitution

2Page was actually working with the entropy integral 〈Tr[−ρ̂121 ln ρ̂121]〉, but the specific co-ordinate
substitution he uses is applicable here as well.

28

Matrix integrals The eigenvalue integral

qi = λpi, we get that

〈Tr[(ρ̂12
1)d]〉 =

1

Z∗m1,m2
Γ(m1m2 + d)

ˆ [ˆ ∞
0

δ

(
λ−

m1∑
i=1

qi

)
e−λdλ

]
m1∏
k=1

qm2−m1
k dqk

×
∏

1≤i<j≤m1

(qj − qi)2
m1∑
a=1

qda

=
1

Z∗m1,m2
Γ(m1m2 + d)

ˆ m1∏
k=1

qm2−m1
k e−qkdqk

∏
1≤i<j≤m1

(qj − qi)2
m1∑
a=1

qda.

(5.2.6)

Note that the scaling of the integrand is affected by the presence of the Dirac delta

function. For example,

ˆ ∞
0

δ(1− p)f(p)dp = f(1)

=

ˆ ∞
0

δ(λ− q)f(q/λ)dq

=

ˆ ∞
0

λδ(λ− q)f
(q
λ

) dq
λ
.

In the multidimensional case (with multiple pi and qi), this scaling can be expressed,

with some abuse of notation, as

δ

(
1−

m1∑
i=1

pi

)
= λδ

(
λ−

m1∑
i=1

qi

)
.

The additional λ factor this effectively produces then cancels with the λ−1 factor in

(5.2.5).

5.2.6 bears an even closer resemblance to the GUE, except it contains an exponential

term instead of a Gaussian term. This is linked to the fact that the qi are all strictly

non-negative, whereas the pi in (5.2.1) could be any real number.

In order to evaluate this integral, we wish to make it separable. To do this, we follow

the method used by Sen3 [30]. First we move the sum over a outside the integral:

〈Tr[(ρ̂12
1)d]〉 =

1

Z∗m1,m2
Γ(m1m2 + d)

m1∑
a=1

ˆ m1∏
k=1

qm2−m1
k e−qkdqk

∏
1≤i<j≤m1

(qj − qi)2qda.

Due to the symmetry of the integral under exchange of eigenvalues, the m1 different

terms in this sum are all equal to each other. Therefore

〈Tr[(ρ̂12
1)d]〉 =

m1

Z∗m1,m2
Γ(m1m2 + d)

ˆ m1∏
k=1

qm2−m1
k e−qkdqk

∏
1≤i<j≤m1

(qj−qi)2qd1 . (5.2.7)

Next we expand out the Vandermonde term. As Sen notes, the Vandermonde

determinant remains unchanged if multiples of its columns are added to each other (as

3As before, Sen was evaluating the entropy integral, but the method is still applicable in this case.

29

The eigenvalue integral Matrix integrals

is true for any determinant) [30]. Therefore, if Λk(q) are any set of monic polynomials

of order k, then

∆(q1, . . . , qm1) =

∣∣∣∣∣∣∣∣∣∣∣

Λ0(q1) Λ1(q1) · · · Λm1−1(q1)

Λ0(q2) Λ1(q2) · · · Λm1−1(q2)
...

...
. . .

...

Λ0(qm1) Λ1(qm1) · · · Λm1−1(qm1)

∣∣∣∣∣∣∣∣∣∣∣
. (5.2.8)

We could use any such polynomials if we wished, but one choice is particularly

useful; the qm2−m1
k e−qk terms in (5.2.7) are the weight functions with respect to which

the associated Laguerre polynomials Lm2−m1
k (q) are orthogonal. As such, if we use

these polynomials, defined as

Lαk (q) =
eq

qα
(−1)k

dk

dqk
(e−qqk+α)

(their normalisation here is such that they are monic) in place of Λk(q), many parts of

the expansion of (5.2.7) will be zero.

These polynomials satisfy the relations

Lαk (q) = k!

k∑
r=0

(
k + α

r + α

)
(−1)k−r

r!
qr, (5.2.9)

ˆ ∞
0

qαe−qLαi (q)Lαj (q)dq = i!(i+ α)!δij

and ˆ ∞
0

qα+be−qLαk (q)dq =
b!(α+ b)!

(b− k)!
(5.2.10)

(Equations 3, 4 and 5 in [30] respectively, rewritten in our notation and with a few

minor rearrangements).

We can write determinants such as (5.2.8) using the Levi-Civita symbol ε. By

expanding ∆2(q1, . . . , qm1) like this, we get

∏
1≤i<j≤m1

(qj − qi)2 = εi1i2...im1
εj1j2...jm1

m1∏
k=1

Lm2−m1
ik

(qk)L
m2−m1
jk

(qk)

(where 0 ≤ ik, jk < m1 for all k). Now, when we substitute this into (5.2.7),

each term in the Levi-Civita summation will be a separable m1-dimensional integral

over the various qk, where each qk-integral collects the corresponding two Laguerre

polynomials Lm2−m1
ik

(qk)L
m2−m1
jk

(qk). Furthermore, many of these terms will be zero,

as the orthogonality property causes all cases where {i2, . . . , im1} 6= {j2, . . . , jm} to

30

Matrix integrals The eigenvalue integral

vanish. Collecting only the remaining terms, we get

〈Tr[(ρ̂12
1)d]〉 =

m1 · (m1 − 1)!

Z∗m1,m2
Γ(m1m2 + d)

m1∏
k=1

ˆ ∞
0

qm2−m1e−q[Lm2−m1
k−1 (q)]2dq

×
m1∑
i=1

´∞
0 qm2−m1+d

1 e−q1 [Lm2−m1
i−1 (q1)]2dq1´∞

0 qm2−m1
1 e−q1 [Lm2−m1

i−1 (q1)]2dq1

=

m1−1∏
k=0

m1!k!(k +m2 −m1)!

Z∗m1,m2
Γ(m1m2 + d)

m1−1∑
i=0

´∞
0 qm2−m1+de−q[Lm2−m1

i (q)]2dq

i!(i+m2 −m1)!

(5.2.11)

The only integral which differs from the orthogonality relation in each case is the

q1 integral which contains an additional factor qd1 , hence the inclusion of that term

separately at the end, and the additional factor of (m1− 1)! in the scale term accounts

for all the possible orderings of the remaining (m1 − 1) integrals.

This is a convenient point to set the the normalisation constant Z∗m1,m2
. We do so

by looking at the d = 0 case, where

〈Tr[(ρ̂12
1)0]〉 = 〈m1〉 = m1.

In this case, (5.2.11) becomes

m1 =

m1−1∏
k=0

m1!k!(k +m2 −m1)!

Z∗m1,m2
Γ(m1m2)

m1−1∑
i=0

1

= m1

m1−1∏
k=0

m1!k!(k +m2 −m1)!

Z∗m1,m2
Γ(m1m2)

.

Thus,

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

Γ(m1m2 + d)

m1−1∑
i=0

´∞
0 qm2−m1+de−q[Lm2−m1

i (q)]2dq

i!(i+m2 −m1)!
.

We evaluate the remaining integral term

Id,α,i =

ˆ ∞
0

qα+de−q[Lαi (q)]2dq

by substituting in (5.2.9) and (5.2.10) to get

Id,α,i = i!

i∑
r=0

(
i+ α

r + α

)
(−1)i−r

r!

ˆ ∞
0

qα+d+re−rLαi (q)dq

= i!
i∑

r=0

(
i+ α

r + α

)
(−1)i−r

r!

(d+ r)!(α+ d+ r)!

(d+ r − i)!
,

31

The eigenvalue integral Matrix integrals

so

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

Γ(m1m2 + d)

m1−1∑
i=0

i∑
r=0

(−1)i−r

r!(i− r)!
(d+ r)!(m2 −m1 + d+ r)!

(d+ r − i)!(m2 −m1 + r)!
,

What remains is just manipulation of summations. First, we switch the order of

the summations and then replace i with i+ r, giving

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

Γ(m1m2 + d)

m1−1∑
r=0

m1−1∑
i=r

(−1)i−r

r!(i− r)!
(d+ r)!(m2 −m1 + d+ r)!

(d+ r − i)!(m2 −m1 + r)!

=
Γ(m1m2)

Γ(m1m2 + d)

m1−1∑
r=0

1

r!

(d+ r)!(m2 −m1 + d+ r)!

d!(m2 −m1 + r)!

m1−r−1∑
i=0

(
d

i

)
(−1)i.

We can now remove the sum over i using the fact that

a∑
i=0

(
d

i

)
(−1)i =

(
d− 1

a

)
(−1)a

(see Lemma A.0.1 in Appendix A), giving

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

Γ(m1m2 + d)

m1−1∑
r=0

1

r!

(d+ r)!(m2 −m1 + d+ r)!

d!(m2 −m1 + r)!

×
(

d− 1

m1 − r − 1

)
(−1)m1−r−1

=
Γ(m1m2)

dΓ(m1m2 + d)

m1−1∑
r=0

(−1)m1−r−1

(m1 − r − 1)!(d−m1 + r)!

× (d+ r)!

r!

(m2 −m1 + d+ r)!

(m2 −m1 + r)!
.

Finally, we replace r with m1 − r − 1:

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

dΓ(m1m2 + d)

m1−1∑
r=0

(−1)r

r!Γ(d− r)
Γ(m1 + d− r)

Γ(m1 − r)
Γ(m2 + d− r)

Γ(m2 − r)

=
Γ(m1m2)

dΓ(m1m2 + d)

∑
r≥0

(−1)r

r!Γ(d− r)
Γ(m1 + d− r)

Γ(m1 − r)
Γ(m2 + d− r)

Γ(m2 − r)
.

The final step here is simply an acknowledgement that the summand is zero for any

r ≥ m1 when d is a non-integer, meaning that we can write it equivalently as a sum

over all integers r.

Making this change highlights the fact that this expression is symmetric under

exchange of m1 and m2. From Fact 4.2.1 we also know that 〈Tr[(ρ̂12
1)d]〉 has the same

symmetry, so although we have only proven this identity explicitly for m1 ≤ m2, it

follows that it will also be true for m2 < m1.

The above theorem only considers 〈Tr[(ρ̂12
1)d]〉 for non-integers d, as in integer cases

32

Matrix integrals The eigenvalue integral

(5.2.4) can contain indeterminate terms. Fortunately, the integer cases can be evaluated

as well, by taking the limit of the non-integer case:

Corollary 5.2.1. For positive integers d, m1 and m2,

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

d!Γ(m1m2 + d)

∑
r≥0

(
d− 1

r

)
(−1)r(m1 − r)d(m2 − r)d,

where (a)d = a(a+ 1)(a+ 2) . . . (a+ d− 1) = Γ(a+ d)/Γ(a) is the Pochhammer symbol

for the rising factorial4 [1, p 256].

Proof. The limit of (5.2.4) as d tends towards a positive integer must exist, for the

following two reasons:

• 〈Tr[(ρ̂12
1)d]〉 is bounded for all d > 0, as 0 < Tr[(ρ̂12

1)d] < m1.

• For known integers m1 and m2, 〈Tr[(ρ̂12
1)d]〉 as given by (5.2.4) is a rational

function of d. Therefore it must either have a well-defined limit (given by

l’Hôpital’s rule in indeterminate cases) or a pole at any given d.

As 〈Tr[(ρ̂12
1)d]〉 is bounded for all d > 0, it can’t have poles at positive integers d.

Therefore, it must have a well-defined limit.

We need to take care with evaluating the limit, however, as the summand becomes

indeterminate when d is an integer. However, if we recognise that

lim
d→integer

Γ(a+ d)

Γ(a)
= a(a+ 1) . . . (a+ d− 1) = (a)d

(the Pochhammer symbol representing the rising factorial [1, p 256]), is a polynomial

in a, then we can substitute this into (5.2.4) to get the well-behaved expression

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

dΓ(m1m2 + d)

∑
r≥0

(−1)r

r!Γ(d− r)
(m1 − r)d(m2 − r)d

=
Γ(m1m2)

d!Γ(m1m2 + d)

∑
r≥0

(
d− 1

r

)
(−1)r(m1 − r)d(m2 − r)d.

This result is important. In particular, it allows us to evaluate 〈Tr[(ρ̂12
1)d]〉 exactly

as a function of m1 and m2 for known integer d. By extension, we can then use this to

study the behaviour of more general means through Taylor expansion, as we will when

we look at the entropy in the next chapter.

In addition, we will return to this result in Part III after we prove the relevance

of the integral (5.1.1) in enumerative combinatorics. Once we have shown that these

integrals have a combinatorial meaning, having the ability to evaluate them exactly

will be of great benefit.

4There is some inconsistency in existing literature regarding whether this symbol is used to represent
the rising factorial or the falling factorial a!/(a−d)!. We use it throughout to mean the rising factorial.

33

Chapter 6

Lubkin’s entropy

We can now turn our attention to the main question of this part, concerning the mean

von Neumann entropy of a random pure state of a bipartite quantum system Am1m2 .

We have stated in Section 4.2 that the state of a subsystem Am1 of a bipartite

quantum system Am1m2 in a pure state can be represented using a reduced density

operator (RDO) ρ̂12
1 , and that in general this state will be mixed. In terms of this

operator, the subsystem has a von Neumann entropy given by the expression [5, p 301]

S12
1 = −Tr[ρ̂12

1 ln ρ̂12
1].

This expression is dependent only on the eigenvalue spectrum {p1, . . . , pm1} of ρ̂12
1 , i.e.

S12
1 = −

m1∑
a=1

pa ln pa,

and we have seen in Section 4.2.1 that the RDOs of Am1 and Am2 always have

the same eigenvalue spectrum if Am1m2 is in a pure state. As a result, S12
1 and

S12
2 = −Tr[ρ̂12

2 ln ρ̂12
2] are equal to each other. Because of this symmetry, we will tend

to think of the entropy as a property of the overall system instead of just associating

it with one subsystem. In this manner, the entropy is often used as a measure of

the entanglement of the two subsystems [6]. For convenience we will use the symbol

Sm1m2 = S12
1 = S12

2 to label the entropy from now on to reflect this symmetry.

As we have said, Lubkin chose to study the mean value 〈Sm1m2〉 of this entropy

over all pure states [22]. Lubkin was unable to find a closed-form expression for the

mean entropy, but he did propose a method for computing it using the Taylor series

expansion

〈Sm1m2〉 = lnm1 +
∞∑
k=1

mk
1

k(k + 1)
(−1)k〈Tr[(ρ̂12

1 − ρ̂1)k+1]〉, (6.0.1)

where ρ̂1 = 1
m1

Î, although he left the question of whether or not this series was

convergent unanswered [22]. He was also unable to evaluate general terms in this

series explicitly, but he suggested truncating the series at the k = 1 term (which he

34

Lubkin’s entropy Series convergence

was able to evaluate) to give the following approximation for the entropy:

〈Sm1m2〉 ≈ lnm1 −
1

2

m2
1 − 1

m1m2 + 1
. (6.0.2)

This approximation nicely supports Lubkin’s arguments, as it indicates that, when

m2 � m1, the mean entropy will be very close to lnm1, which is in fact the maximum

obtainable entropy for states of Am1m2 when m2 ≥ m1. His conclusions were based on

the assumption that (6.0.1) is convergent, however.

In this chapter we will address this assumption, with mixed results: while we will

show that (6.0.1) is in fact divergent for all m1 > 2, we will also show that (6.0.2) is

nonetheless a good approximation when m2 is large. Based on this we will also argue

that (6.0.1) is in fact an asymptotic expansion of the entropy.

It should be noted however that (6.0.2) is not the best known approximation for

〈Sm1m2〉, as we will show in Section 6.2.1. As well as this, more recent work by other

authors has found other methods of evaluating the entropy, both approximately and

exactly [24, 16, 27, 30]. We will look at these results briefly in Section 6.2, after first

looking at the series convergence problem in Section 6.1.

6.1 Series convergence

We will now determine the convergence properties of Lubkin’s series (6.0.1); specifically

we will show that it is convergent if and only if m1 = 2. We will do this by finding

a closed-form expression for the terms in the series; Lubkin was only able to calculate

the first term in his paper [22], but with the results from Section 5.2.1, we now

have everything we need to find a general expression for all the terms. We begin

by performing some additional manipulation of said results, in order to put them in a

more useful format.

Lemma 6.1.1. For integers d ≥ 1 and m1,m2 ≥ 2,

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)d!

Γ(m1m2 + d)

m1−1∑
r=0

(
d− 1

r

)(
m1

r + 1

)(
m2 + d− r − 1

m2 − 1

)
. (6.1.1)

Proof. We know from Corollary 5.2.1 that

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

d!Γ(m1m2 + d)

∑
r≥0

(
d− 1

r

)
(−1)r(m1 − r)d(m2 − r)d. (6.1.2)

We can rearrange this expression using the identity

(m1 − r)d =
Γ(m1 + d− r)

Γ(m1 − r)
=

∂d

∂ud
(−1)d

um1−r

∣∣∣∣
u=1

.

35

Series convergence Lubkin’s entropy

Substituting this into (6.1.2), and doing similar to (m2 − r)d, gives

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

d!Γ(m1m2 + d)

∑
r≥0

(
d− 1

r

)
(−1)r

∂d

∂ud
∂d

∂vd
1

um1−rvm2−r

∣∣∣∣
u,v=1

=
Γ(m1m2)

d!Γ(m1m2 + d)

∂d

∂ud
∂d

∂vd
(1− uv)d−1

um1vm2

∣∣∣∣
u,v=1

.

We now re-expand the derivatives, starting with the v-derivative:

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

d!Γ(m1m2 + d)

∂d

∂ud
1

um1

d−1∑
r=0

(
d

r

)
∂r

∂vr
(1− uv)d−1 ∂

d−r

∂vd−r
1

vm2

∣∣∣∣∣
u,v=1

=
Γ(m1m2)

Γ(m1m2 + d)

d−1∑
r=0

(
d− 1

r

)
(−1)d

(d− r)!
(m2)d−r

∂d

∂ud
(1− u)d−r−1

um1−r

∣∣∣∣∣
u=1

(note that we put d − 1 as the upper limit of the summation in the product-rule

expansion, because (1 − uv)d−1 differentiated d times is zero, so the final term can

automatically be neglected). Now we do the same with the u-derivative, but in this case

we only need to consider one term in the product-rule expansion, as the kth derivative

of (1−u)d−r−1 goes to zero at u = 1 in all cases except when k = d− r− 1. Therefore,

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)d!

Γ(m1m2 + d)

d−1∑
r=0

(
d− 1

r

)
(m2)d−r(m1 − r)r+1

(d− r)!(r + 1)!

=
Γ(m1m2)d!

Γ(m1m2 + d)

d−1∑
r=0

(
d− 1

r

)(
m1

r + 1

)(
m2 + d− r − 1

m2 − 1

)
.

Finally, we wish to change the limit of the summation so that it’s independent of d,

to make it easier to insert into the binomial expansion of 〈Tr[(ρ̂12
1 − ρ̂1)k]〉 later. This

is easy enough; looking at the summand, we can see that it is zero if r > d − 1 or

r > m1 − 1. Therefore, we get equivalently that

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)d!

Γ(m1m2 + d)

m1−1∑
r=0

(
d− 1

r

)(
m1

r + 1

)(
m2 + d− r − 1

m2 − 1

)
.

6.1.1 Special case: m1 = m2 = 2

Before we try the general case, let us try testing for convergence of (6.0.1) in the simplest

case m1 = m2 = 2. This will serve as a useful demonstration of how the general-case

proof given in the next section works.

Substituting m1 = m2 = 2 into (6.1.1) we get

〈Tr[(ρ̂12
1)d]〉 =

6d!

(d+ 3)!
(d2 + d+ 2).

36

Lubkin’s entropy Series convergence

We can now use this to evaluate 〈Tr[(ρ̂12
1 − ρ̂1)k]〉 through its binomial expansion:

〈Tr[(ρ̂12
1 − ρ̂1)k]〉 =

k∑
d=0

(
k

d

)
(−1)k−d

mk−d
1

〈Tr[(ρ̂12
1)d]〉

=

k∑
d=0

(
k

d

)
(−1)k−d

2k−d
6d!

(d+ 3)!
(d2 + d+ 2).

We then use the identity(
k

d

)
d!

(d+N)!
=

k!

(k +N)!

(
k +N

d+N

)
to move the factorial terms outside the summation:

〈Tr[(ρ̂12
1 − ρ̂1)k]〉 =

6k!

(k + 3)!

k∑
d=0

(
k + 3

d+ 3

)
(−1)k−d

2k−d
(d2 + d+ 2)

=
6k!

(k + 3)!

k+3∑
d=3

(
k + 3

d

)
(−1)k+3−d

2k+3−d (d2 − 5d+ 8).

If we replace (d2 − 5d+ 8) with(
∂2

∂u2
− 4

∂

∂u
+ 8

)
ud
∣∣∣∣
u=1

,

we can then simplify this by recognising that the summation is an incomplete binomial

expansion:

〈Tr[(ρ̂12
1 − ρ̂1)k]〉 =

6k!

(k + 3)!

(
∂2

∂u2
− 4

∂

∂u
+ 8

) k+3∑
d=3

(
k + 3

d

)
(−1)k+3−d

2k+3−d ud

∣∣∣∣∣
u=1

=
6k!

(k + 3)!

(
∂2

∂u2
− 4

∂

∂u
+ 8

)((
u− 1

2

)k+3

−
2∑
d=0

(
k + 3

d

)
(−1)k+3−d

2k+3−d ud

)∣∣∣∣∣
u=1

.

Note in particular that we have now removed all k-dependence in the limits of the

summation. this makes the problem of determining the asymptotic behaviour for large

k significantly easier.

We now expand out the remaining derivatives and set u = 1. As a result we get

that

〈Tr[(ρ̂12
1 − ρ̂1)k]〉 =

3[1 + (−1)k]

2k(k + 3)
.

37

Series convergence Lubkin’s entropy

Substituting this into (6.0.1), we have

〈S2,2〉 = ln 2−
∞∑
k=1

3[1− (−1)k]

2k(k + 1)(k + 4)
.

This can easily be seen to converge absolutely, as∣∣∣∣ 3[1− (−1)k]

2k(k + 1)(k + 4)

∣∣∣∣ < 3

k3

for all k ≥ 1, and
∞∑
k=1

3

k3
= 3ζ(3)

where ζ is the Riemann zeta function. Furthermore, we can evaluate this series exactly

(see Appendix B) to get

〈S2,2〉 =
1

3
.

This agrees with Page’s explicit formula [24] which we describe in Section 6.2.

6.1.2 The general case

Now that we have seen the method in action, we can apply it to the general case.

Ultimately we will just be using the comparison test again to determine when the series

converges, but in order to be able to do this we must first find an explicit expression

for the terms in Lubkin’s series so that we can determine their limiting behaviour. The

majority of the proof will consist of the necessary manipulations required for this.

Theorem 6.1.1. Lubkin’s series (6.0.1) converges if and only if m1 = 2.

Proof. In order to compute terms in Lubkin’s series, we need to know 〈Tr[(ρ̂12
1 − ρ̂1)k]〉.

By taking its binomial expansion and substituting in (6.1.1) we get

〈Tr[(ρ̂12
1 − ρ̂1)k]〉 =

k∑
d=0

(
k

d

)
(−1)k−d

mk−d
1

〈Tr[(ρ̂12
1)d]〉

=
(−1)k

mk
1

a0 +
k∑
d=1

(
k

d

)
(−1)k−d

mk−d
1

Γ(m1m2)d!

Γ(m1m2 + d)

m1−1∑
r=0

(
d− 1

r

)
×
(
m1

r + 1

)(
m2 + d− r − 1

m2 − 1

)
(note also that we need to handle the d=0 term separately as (6.1.1) breaks down in

this case; for this purpose we define the value a0 = 〈Tr[(ρ̂12
1)0]〉 = min(m1,m2)). Then,

using the fact that (
k

d

)
d!

(d+N)!
=

k!

(k +N)!

(
k +N

d+N

)
,

38

Lubkin’s entropy Series convergence

this becomes

〈Tr[(ρ̂12
1 − ρ̂1)k]〉 =

(−1)k

mk
1

a0 +
Γ(m1m2)k!

Γ(m1m2 + k)

k∑
d=1

(
k +m1m2 − 1

d+m1m2 − 1

)
(−1)k−d

mk−d
1

×
m1−1∑
r=0

(
d− 1

r

)(
m1

r + 1

)(
m2 + d− r − 1

m2 − 1

)

=
(−1)k

mk
1

a0 +
Γ(m1m2)k!

Γ(m1m2 + k)

k+m1m2−1∑
d=m1m2

(
k +m1m2 − 1

d

)
(−1)k−d+m1m2−1

mk−d+m1m2−1
1

×
m1−1∑
r=0

(
d−m1m2

r

)(
m1

r + 1

)(
m2 + d−m1m2 − r

m2 − 1

)
.

Now, as in Section 6.1.1, we need to replace the polynomial dependence on d in the

final terms with a derivative expression. For this we use the identity

1

(m2 − 1)!

∂m2−1

∂um2−1

(
um2

r!

∂r

∂ur
ud−m1m2

)∣∣∣∣
u=1

=

(
d−m1m2

r

)(
m2 + d−m1m2 − r

m2 − 1

)
.

If we substitute this in and again note that the sum over d is an incomplete binomial

expansion, we get

〈Tr[(ρ̂12
1 − ρ̂1)k]〉 =

(−1)k

mk
1

a0 +
Γ(m1m2)k!

Γ(m1m2 + k)

1

(m2 − 1)!

∂m2−1

∂um2−1

(
um2

m1−1∑
r=0

(
m1

r + 1

)

× 1

r!

∂r

∂ur

[
u−m1m2

(
u− 1

m1

)k+m1m2−1

−
m1m2−1∑
d=0

(
k +m1m2 − 1

d

)
(−1)k−d+m1m2−1

mk−d+m1m2−1
1

ud−m1m2

])∣∣∣∣∣
u=1

.

Evaluating the derivatives at this point is a fairly tedious process, and the result is

〈Tr[(ρ̂12
1 − ρ̂1)k]〉 =

(−1)k

mk
1

a0 +

m1−1∑
r=0

(
m1

r + 1

)
(−1)r

r!Γ(m2)

m2−1∑
q=0

(
m2 − 1

q

)
m2!(−1)q

(q + 1)!

×

q+r∑
j=0

(
q + r

j

)
(−1)j

k!Γ(q + r +m1m2 − j)
Γ(k +m1m2 − j)

×
(

1− 1

m1

)k+m1m2−j−1

−
m1m2−1∑
d=0

(
m1m2 − 1

d

)

×k!Γ(q + r +m1m2 − d)

Γ(k +m1m2 − d)

(−1)k−d+m1m2−1

mk−d+m1m2−1
1

]
.

Note in particular the new sums over q and j, which arise from expanding derivatives

of products. From this we get the exact form of the terms in Lubkin’s expansion (which

39

Series convergence Lubkin’s entropy

we will label Tm1,m2

k for simplicity), given by

Tm1m2
k =

(−1)kmk
1

k(k + 1)
〈Tr[(ρ̂12

1 − ρ̂1)k+1]〉.

The full expansion is very long and almost identical to the previous equation, so we

don’t need to write it all out again.

With this expression we have all the necessary tools to determine convergence, which

we will do through the limit comparison test. The number of terms being summed over

in the above expression for Tm1m2
k is fixed (i.e. independent dependent of k – specifically,

there are 1 + 1
2m1m2(m1 +m2 + 2m1m2) terms in total), so in order to determine the

limiting behaviour of Tm1m2
k as k becomes large we just need to determine the limiting

behaviour of all the individual terms and find the dominant ones. Each term contains

a rational function of k and/or an exponential term, so we need to look for limiting

behaviour for each in the form kαAk. After that it will be easy to see which dominates

(i.e. which has the largest A, and which has largest α if multiple terms share the largest

A).

When m1 = 2, all terms in the series are at most O(k−2). The summation

∞∑
k=1

1

k2
=
π2

6

converges, and therefore 〈S2,m2〉 converges absolutely. When m1 > 2 however, the

limiting behaviour is dominated by the exponentially increasing (m1 − 1)k term. The

overall limiting term is the (r = m1 − 1, q = m2 − 1, j = q + r) term, which gives

Tm1m2
k ∼ (m1 − 1)k

k(m1−1)(m2−1)+2
,

which diverges.

Therefore, we have that Lubkin’s series is convergent if m1 = 2, and divergent

otherwise.

The only cases where Lubkin’s series converges are the simplest cases where m1 = 2

(i.e. where the system being studied is equivalent to a single q-bit), and even in this

case the convergence is fairly slow. For all other cases the series diverges exponentially

in the limit.

This raises a question, however: specifically why Lubkin’s proposed approximation

actually appears to be a good approximation, judging by how it compares to the

approximation derived by Page [24] (see Section 6.2). One possible explanation is

that Lubkin’s series may actually be an asymptotic expansion for the entropy. We will

examine this possibility in Section 6.3.

40

Lubkin’s entropy Page’s formula

6.2 Page’s formula

In Section 5.2 we demonstrated a method of calculating means over the space of pure

bipartite states, using a joint density function for the eigenvalues of the reduced density

operator derived by Lloyd and Pagels [21]. We used it here to find means of the trace of

powers of the reduced density operator, but the authors who previously developed this

method had in fact used it to evaluate the entropy itself directly [24, 30]. We will discuss

their results and compare them to Lubkin’s proposed approximation here, before using

them to provide a now-rigorous argument for the validity of Lubkin’s approximation.

Page was the first to attempt to use this method to evaluate the entropy. While he

did not prove a general formula, he did manage to evaluate the special cases m1 = 2

and m1 = 3, giving

〈S2,m2〉 =

2m2−1∑
k=m2+1

1

k
and 〈S3,m2〉 =

3m2∑
k=m2+1

1

k
− 1

m2
.

Based on these two cases, within which some patterns can be noticed (the harmonic

sum in particular), he conjectured the general formula

〈Sm1m2〉 =

m1m2∑
k=m2+1

1

k
− m1 − 1

2m2
, (6.2.1)

which he later found to also hold when m1 = 4 and m1 = 5 [24].

It was then proven a few years later by a number of authors that this formula is

correct in general [16, 27, 30]. Each of these proofs used a slightly different method,

but all were based on the eigenvalue integral Page began his investigation with. As we

noted in Section 5.2.1, the method we used to prove Theorem 5.2.1 follows the method

used by Sen [30]; it should be no surprise, then, that we are able to use our result from

Theorem 5.2.1 to verify Page’s formula via a parallel method (See Appendix C).

The existence of this general formula does not invalidate Lubkin’s search for an

approximation, however. While (5.2.6) has the distinct advantage of being closed-form

(such that 〈Sm1m2〉 can be computed exactly in finite time for given m1 and m2), it

has the disadvantage that it is not a smooth function of m1 or m2, so looking at how

the entropy varies as the dimensions change is not easy. (6.2.1) can be recast in a form

that allows such a smooth continuation, i.e.

〈Sm1m2〉 = ψ(m1m2 + 1)− ψ(m2 + 1)− m1 − 1

2m2
,

where ψ(z) = d
dz ln Γ(z) is the digamma function, but this is still reliant on special

functions so is not ideal. Lubkin’s proposed approximation has the distinct advantage

of being a particularly simple function of m1 and m2. It also includes the term lnm1,

thus relating the mean entropy visibly to the system’s maximum entropy.

For this reason, Page also aimed to find an approximate form for the entropy (he

41

Page’s formula Lubkin’s entropy

was unaware of Lubkin’s prior work initially), and he showed that

〈Sm1m2〉 ' lnm1 −
m1

2m2

is a good approximation when 1� m1 ≤ m2. As Page noted, this agrees with Lubkin’s

approximation where the two regions of validity overlap (i.e. when 1� m1 � m2) [24].

6.2.1 Validating Lubkin

We can go further, however, and gain a rigorous understanding of the validity Lubkin’s

approximation using Page’s explicit formula. We are even able to get a clear idea of

how large the error is. We do this by proving another approximation first:

Theorem 6.2.1.

〈Sm1m2〉 = lnm1 −
m2

1 − 1

2m1m2
+O

(
1

m2
2

)
(6.2.2)

for arbitrary m1 and m2.

Proof. We start by writing (6.2.1) as

〈Sm1m2〉 = Hm1m2 −Hm2 −
m1 − 1

2m2
, (6.2.3)

where Hn is the nth harmonic number. Hn has the known asymptotic expansion

Hn = lnn+ γ +
1

2n
+O

(
1

n2

)
,

where γ is the Euler-Mascheroni constant [8]. If we substitute this into (6.2.3), we get

〈Sm1m2〉 = ln(m1m2)− lnm2 +
1

2m1m2
− 1

2m2
− m1 − 1

2m2
+O

(
1

m2
1m

2
2

)
+O

(
1

m2
2

)
= lnm1 −

m2
1 − 1

2m1m2
+O

(
1

m2
2

)
.

In addition to the exact formula, Page mentions in the same paper an asymptotic

formula for the entropy [24]. It should be noted that if we were to include further terms

from the asymptotic expansion of Hn above, we would reproduce this same expansion.

If we do this, including one more term, we get that the error in the approximation

(6.2.2) is

δ = 〈Sm1m2〉 − lnm1 +
m2

1 − 1

2m1m2
=

m2
1 − 1

12m2
1m

2
2

+O
(

1

m3
2

)
. (6.2.4)

This suggests that |δ| ≤ 1/(12m2
2), and numerical calculation of all cases with

m1,m2 ≤ 100 supports this guess, with δ apparently tending toward 1/(12m2
2) as m1

and m2 increase (see Figure 6.2.1).

42

Lubkin’s entropy Page’s formula

Figure 6.2.1: A graph demonstrating the closeness of the error δ associated with the entropy
approximation (6.2.2) to the postulated upper bound 1/(12m2

2) (see (6.2.4)). The fact that
the plot is apparently monotonic decreasing in both m1 and m2 implies that the error tends
towards 1/(12m2

2) as the dimensions become large.

This approximation has a clear similarity in form to Lubkin’s approximation (6.0.2),

although they are not exactly the same. We can use one to prove the other, however,

through a simple bit of manipulation.

Theorem 6.2.2.

〈Sm1m2〉 = lnm1 −
1

2

m2
1 − 1

m1m2 + 1
+O

(
1

m2
2

)
for all m1 and m2.

Proof. From Theorem 6.2.1 we have that

〈Sm1,m2〉 = lnm1 −
m2

1 − 1

2m1m2
+O

(
1

m2
2

)
.

We also know from the binomial expansion that

1

m1m2 + 1
=

1

m1m2
+O

(
1

m2
1m

2
2

)
when m1,m2 ≥ 2. Therefore, we have also that

〈Sm1,m2〉 = lnm1 −
1

2

m2
1 − 1

m1m2 + 1
+O

(
m2

1 − 1

m2
1m

2
2

)
+O

(
1

m2
2

)
= lnm1 −

1

2

m2
1 − 1

m1m2 + 1
+O

(
1

m2
2

)
.

43

Divergent series Lubkin’s entropy

We therefore have confirmation of the validity of Lubkin’s approximation. However,

the difference between this and (6.2.2) is

|∆| = m2
1 − 1

2m1m2
− 1

2

m2
1 − 1

m1m2 + 1

≈ m2
1 − 1

2m2
1m

2
2

≈ 1

2m2
2

,

which is approximately six times larger than the error of (6.2.2), so while Lubkin’s

approximation is valid according to the above proof, it is in general going to be worse

than (6.2.2), potentially by a factor of six. Thus, while this method does confirm

Lubkin’s approximation, it does so only by first providing a better alternative.

6.3 Divergent series

The fact that Lubkin’s approximation is actually valid, as shown in Theorem 6.2.2,

despite being based of an in-general divergent series expansion, raises questions about

the exact nature of the series (6.0.1). One possibility is that it is an asymptotic

expansion of the entropy:

Definition 6.3.1. A sequence of functions φk(z) is an asymptotic expansion for f(z)

around z0 (z0 can be infinite) if [11]

φk+1(z) = o(φk(z))

for all k and, for any K,

f(z) =
K∑
k=1

φk(z) + o(φK(z)) as z → z0, (6.3.1)

where u(z) = o(v(z)) implies

lim
z→z0

u(z)

v(z)
= 0.

In this context we are looking at the series

〈Sm1m2〉 = lnm1 +
∞∑
k=1

Tm1m2
k ,

where

Tm1m2
k =

mk
1

k(k + 1)
(−1)k〈Tr[(ρ̂12

1 − ρ̂1)k+1]〉,

and there is some evidence to indicate that this is an asymptotic expansion in the limit

m2 → ∞. While we have not been able to determine the general behaviour of the

44

Lubkin’s entropy Divergent series

Tm1m2
k in this limit, explicit computation of individual terms gives that

lim
m2→∞

m
bk/2c+1
2 Tm1m2

k =

1
2(m2

1 − 1) k = 1

− 1
6m1

(m2
1 − 1)(m2

1 − 4) k = 2

1
12m1

(m2
1 − 1)(2m2

1 − 3) k = 3

− 1
4m2

1
(m2

1 − 1)(m2
1 − 2)(m2

1 − 4) k = 4

1
6m2

1
(m2

1 − 1)(m4
1 − 3m2

1 + 3) k = 5

− 1
6m3

1
(m2

1 − 1)(m2
1 − 4)(3m4

1 − 10m2
1 + 15) k = 6

1
8m3

1
(m2

1 − 1)(2m6
1 − 8m4

1 + 15m2
1 − 15) k = 7

· · ·

.

If we assume that this pattern continues for all k, we’d get that Tm1m2
k = O(m

−bk/2c−1
2)

and Tm1m2
k = o(m

−bk/2c
2). The sequence Tm1,m2

k would thus not immediately be

asymptotic, but if consecutive terms with the same order in m2 (e.g. Tm1m2
2 and Tm1m2

3)

were paired together, then it would be, as e.g. Tm1m2
6 + Tm1m2

7 = o(Tm1m2
4 + Tm1m2

5).

This would still not prove that (6.0.1) is specifically an asymptotic expansion of the

entropy, however. This would require showing that all possible truncations of the series

tend asymptotically to the entropy according to (6.3.1). Again, there is some evidence

to support this. In addition to the fact that the series was derived directly from the

entropy, we also have the fact that the series is Borel summable, and its Borel sum is

exactly the entropy. Borel summation is a method of assigning values to infinite series

which is guaranteed to agree with the correct value for convergent series, but is also

able to give finite values in some cases where the series diverges:

Theorem 6.3.1. The Borel sum of the series (6.0.1) exists and equals the entropy

〈Sm1m2〉.

Proof. We start by defining the formal power series

〈Sm1m2(w)〉 = lnm1 +
∞∑
k=1

mk
1w

k−1

k(k + 1)
(−1)k〈Tr[(ρ̂12

1 − ρ̂1)k+1]〉,

which is equivalent to Lubkin’s series when w = 1. The Borel transform of this (given

by replacing wk with tk/k!) is

〈BSm1m2(t)〉 = lnm1 +
∞∑
k=1

mk
1t
k−1

(k + 1)!
(−1)k〈Tr[(ρ̂12

1 − ρ̂1)k+1]〉

= lnm1 −
〈Tr[exp{−m1t(ρ̂

12
1 − ρ̂1)} − Î +m1t(ρ̂

12
1 − ρ̂1)]〉

m1t2

= lnm1 −
et〈Tr[exp(−m1tρ̂

12
1)]〉 −m1

m1t2
.

In terms of the Borel transform, the Borel sum of (6.0.1) (which we evaluate through

45

Divergent series Lubkin’s entropy

integration by parts) is

ˆ ∞
0

e−t〈BSm1m2(t)〉dt = lnm1 −
1

m1

ˆ ∞
0

(〈Tr[exp(−m1tρ̂
12
1)]〉 −m1e

−t)
dt

t2

= lnm1 +
1

m1

ˆ ∞
0

d2

dt2
(〈Tr[exp(−m1tρ̂

12
1)]〉 −m1e

−t) ln tdt

= lnm1 +
1

m1

ˆ ∞
0

(m2
1〈Tr[(ρ̂12

1)2 exp(−m1tρ̂
12
1)]〉 −m1e

−t) ln tdt.

This integral will converge, as can be seen by writing the mean out in terms of the

eigenvalues of ρ̂12
1 , which are necessarily non-negative. Using the fact that

ˆ ∞
0

ae−at ln tdt = −γ − ln a

where γ is the Euler-Mascheroni constant (see Lemma A.0.2 in Appendix A), we get

ˆ ∞
0

e−t〈BSm1m2(t)〉dt = lnm1 − 〈Tr[ρ̂12
1 (γ + ln(m1ρ̂

12
1)]〉+ γ.

Most terms cancel, due to the fact that

〈Tr(ρ̂12
1)〉 = 1,

and all that remains is

ˆ ∞
0

e−t〈BSm1m2(t)〉dt = −〈Tr(ρ̂12
1 ln ρ̂12

1)〉 = 〈Sm1m2〉.

This provides a second meaningful identification between (6.0.1) and the entropy,

supporting the assertion that it is an asymptotic expansion of the entropy, although

this does not constitute a proof in itself.

6.3.1 The reason for divergence, and convergent alternatives

The Borel summation process used above provides some additional insight into the

reasons why Lubkin’s series converges if and only if m1 = 2. Consider the mean

entropy as an integral with integrand

−
m1∑
k=1

pk ln pk,

where pk are again the eigenvalues of ρ̂12
1 . Lubkin’s method involved expanding each

term in this integrand as a Taylor series around pk = 1/m1, and the resulting infinite

series is guaranteed to converge if all pk lie within radius 1/m1 of 1/m1 (due to the

branch points that appear when any pk = 0). Given that all the pk are real, we can

46

Lubkin’s entropy Divergent series

equivalently state the domain of convergence as1 0 ≤ pk ≤ 2/m1 ∀ k.

In the case m1 = 2, the domain of convergence is 0 ≤ pk ≤ 1, which covers the

entire domain of the integral. This allows Lubkin’s series to converge in these cases.

When m1 > 2, however, the domain of the integral starts to include regions where the

summation diverges, so the convergence of the resulting series is no longer guaranteed.

Lubkin’s hypothesis was based on the idea that the divergences may in a sense cancel

each other out in these cases. We have now seen that this is not the case, however.

Borel summation is able to circumvent this problem, though. Borel summation

works by taking an expression which is convergent on some finite interval and extending

its domain of convergence to the entire positive real line. Applying Borel summation to

our integrand here therefore gives an expression which is convergent within the entire

domain of the integral. The result, however, tells us nothing new, as the result we get

back is merely the defining expression of the entropy that we began with.

This analysis does suggest the possibility of alternative series expansions, however,

which may be constructed in such a way as to ensure convergence. We simply need to

expand around some point α ≥ 1/2, giving

〈Sm1m2〉 = m1α− lnα− 1 +

∞∑
k=1

(−1)k

k(k + 1)αk
〈Tr[(ρ̂12

1 − αÎ)k+1]〉. (6.3.2)

This series of course has a very similar form to (6.0.1), and the two become equivalent

if we set α = 1/m1.

While we have defined this series to have the useful property of being convergent,

it should be noted that it is not useful as an approximation. Lubkin and Page’s

approximations have the distinct advantage that their zeroth-order terms are lnm1,

and are thus asymptotic to the entropy at large dimensions. Our constant α is

defined independently of the two dimensions, however, giving a zeroth-order asymptotic

behaviour which does not at all resemble that of the entropy. So while we conjectured in

Section 6.3 that (6.0.1) may be an asymptotic expansion, it is clear that (6.3.2) is not.

We show it here purely as a demonstration of the principles behind the convergence

properties of (6.0.1); it is of little use in the actual evaluation of the entropy, given the

other available options that we have already considered.

1We give a closed interval here because the entropy has a well-defined limit at both ends of the
interval.

47

Chapter 7

Conclusions

In summary, we have proven that Lubkin’s series expansion for the mean von Neumann

entropy of a finite-dimensional bipartite quantum system in a pure state [22] is divergent

when the dimension of the subsystem being studied is greater than 2. We determined

this by finding closed-form expressions for the individual series terms, from which

their asymptotic behaviour could be derived. This showed that the convergence was

dependent on m1, the dimension of the subsystem being observed, with the series

converging slowly (as k−3) when m1 = 2, and diverging exponentially otherwise.

We also showed that the approximate formula Lubkin proposed was, in spite of

having been derived from this series, a valid approximation of the entropy for large

dimensions. This implies that the series expansion may be an asymptotic expansion of

the entropy, though we don’t know if this is true to all orders.

It must also be noted that, while we proved the validity of Lubkin’s approximation,

we at the same time showed that better approximations exist, such as (6.2.2), which is

both a simpler expression and numerically closer to the correct value. In fact we were

only able to establish the validity of Lubkin’s approximation by comparing it to this

one.

The more important results from this part, however, lie in the methods we used to

prove the above results, in particular the matrix-integral methods we used to evaluate

the expressions 〈Tr[(ρ̂12
1)d]〉 in closed form. These expressions, and in a broader sense

the methods themselves, have a lot of significance in enumerative combinatorics, as

we will see in the next part. Specifically they can be used for evaluating generating

functions for enumerating rooted hypermaps, and related expressions can then be used

for counting rooted maps and constellations. This will be the focus of the next part,

so we will leave detailed discussion of these results until then. In the next chapter,

however, we will begin by taking a clear look at 〈Tr[(ρ̂12
1)d]〉 in particular, to see how

their properties originally led to the discovery of their combinatorial meaning.

48

Part III

Enumeration of rooted

constellations

49

Chapter 8

〈Tr[(ρ̂121)d]〉 as combinatorial

functions

From this point onwards we will leave quantum theory behind, moving instead into the

field of enumerative combinatorics. We have discussed how it is already known that

these two fields overlap with each other in places. We know that, in some cases, mean

properties of quantum systems can be expressed as summations over combinatorial

objects [33, 14, 13, 25]. We also know that, conversely, quantum expressions can be

used as generating functions for enumerating combinatorial objects [7, 39]. Now we

will look at how these principles apply to our expressions from Part II.

Let us take a closer look at these expressions, specifically

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

d!Γ(m1m2 + d)

∑
r≥0

(
d− 1

r

)
(−1)r(m1 − r)d(m2 − r)d,

defined for positive integers d (see Corollary 5.2.1). For any given d, this is a function

of m1 and m2 only, and by inspection we see that it is a rational function of m1 and

m2, with a denominator of the form1

Γ(m1m2 + d)

Γ(m1m2)
= m1m2(m1m2 + 1) · · · (m1m2 + d− 1).

The numerator is then everything else, and we define the functions

Pd(m1,m2) =
Γ(m1m2 + d)

Γ(m1m2)
〈Tr[(ρ̂12

1)d]〉 (8.0.1)

=
1

d!

∑
r≥0

(
d− 1

r

)
(−1)r(m1 − r)d(m2 − r)d (8.0.2)

to be these numerators. While it is not immediately obvious from this definition,

especially given the 1/d! factor, these functions are polynomials with integer coefficients

1Strictly speaking this is not actually the simplest form the of the denominator in general, as the
numerator will turn out to be a multiple of m1m2 as well. However, when we proceed to look at these
expressions as generating functions, it will be important to leave the m1m2 factor in the numerator, so
we choose not to factor it out of the denominator for that reason.

50

〈Tr[(ρ̂12
1)d]〉 as combinatorial functions

(the fact that the coefficients are integers can be inferred from Theorem 10.2.1), and

if we evaluate the first few cases explicitly (note that we can do this easily as only the

first d terms in the summation are non-zero) we get

P1(m1,m2) = m1m2

P2(m1,m2) = m1m
2
2 +m2

1m2

P3(m1,m2) = (m1m
3
2 + 3m2

1m
2
2 +m3

1m2) +m1m2

P4(m1,m2) = (m1m
4
2 + 6m2

1m
3
2 + 6m3

1m
2
2 +m4

1m
2
2) + (5m1m

2
2 + 5m2

1m2)

P5(m1,m2) = (m1m
5
2 + 10m2

1m
4
2 + 20m3

1m
3
2 + 10m4

1m
2
2 +m5

1m2)

+ (15m1m
3
2 + 40m2

1m
2
2 + 15m3

1m2) + 8m1m2

...

Although no general form is forthcoming beyond the existing summation form, we

can already note a number of general trends. For instance, Pd(m1,m2) appears to be

of order (d + 1), odd2 when d is even and vice versa. Also, there are some noticeable

patterns in the individual terms such as the coefficient of m2
1m

d−1
2 appearing to be

1
2d(d − 1). One of the most telling, however, is that if we set m1 = m2 = 1 (i.e. if we

sum over all the coefficients in each function), we get Pd(1, 1) = d!. This is particularly

indicative of some combinatorial meaning.

Another interesting fact about these functions, again which hints at a combinatorial

interpretation, is that they satisfy a recursion relation. This arises from the fact that

(8.0.2) is a hypergeometric series with a finite number of non-zero terms, and it is

known that a fixed-order recursion relation will always exist for such a series [26, p 64].

Theorem 8.0.2. The sequence of functions Pd(m1,m2) satisfy

(d+ 3)Pd+2(m1,m2) = (2d+ 3)(m1 +m2)Pd+1(m1,m2)

+ d[(d+ 1)2 − (m1 −m2)2]Pd(m1,m2) (8.0.3)

for all d ≥ 1.

Proof. Let us rewrite (8.0.2) in the form

Pd(m1,m2) =
∑
r≥0

F (d, r)

where

F (d, r) =
1

d!

(
d− 1

r

)
(−1)r(m1 − r)d(m2 − r)d.

We have omitted the parameters m1 and m2 here purely for the sake of readability and

2Odd in the sense that, if the signs of all the parameters are changed, the overall sign of the
function changes i.e. Pd(−m1,−m2) = −Pd(m1,m2). Similarly, Pd(−m1,−m2) = Pd(m1,m2) for an
even function.

51

〈Tr[(ρ̂12
1)d]〉 as combinatorial functions

consistency with [26]. This function satisfies the relation

G(d, r + 1)−G(d, r) = (d+ 3)F (d+ 2, r)− (2d+ 3)(m1 +m2)F (d+ 1, r)

− d[(d+ 1)2 − (m1 −m2)2]F (d, r) (8.0.4)

where

G(d, r)

F (d, r)
=
d!(d− r − 1)!dr(m1 + d− r)(m2 + d− r)

(d+ 2)!(d− r + 1)!
[2d3 − 3d2r − dm1m2 + dr2 + 7d2

− dm1 − dm2 − 7dr − 3m1m2 +m1r +m2r + r2 + 8d−m− n− 4r + 3].

This fact was derived using Zeilberger’s algorithm [26, 38], and can be verified through

substitution and cancellation.

We then sum (8.0.4) over all r ≥ 0. On the left hand side the F terms sum give

Pd(m1,m2) etc. while the right hand side telescopes out to limr→∞G(d, r) − G(d, 0).

But G(d, 0) = 0, and G(d, r) = 0 for all r > (d + 1), so the right hand side is zero in

the limit. Therefore, the result of this summation is that

(d+ 3)Pd+2(m1,m2) = (2d+ 3)(m1 +m2)Pd+1(m1,m2)

+ d[(d+ 1)2 − (m1 −m2)2]Pd(m1,m2).

This recursion relation, along with the initial cases P1(m1,m2) = m1m2 and

P2(m1,m2) = m1m2(m1 +m2), give us all of the functions in the sequence. In addition,

it allows us to prove some of the properties which we guessed previously:

Corollary 8.0.1. For all d ≥ 1, Pd(m1,m2) is a polynomial of order (d+ 1), which is

odd if d is even and even if d is odd.

Proof. Assume this holds up to d = δ, for some δ ≥ 2. (8.0.3) then gives that

Pδ+1(m1,m2) =
2δ + 1

δ + 2
(m1 +m2)Pδ(m1,m2) + (δ − 1)

δ2 − (m1 −m2)2

δ + 2
Pδ−1(m1,m2).

The right hand side is then a polynomial of order δ + 2, as expected, and it is even

if and only if (δ + 1) is odd. We know that Pd(m1,m2) has the desired properties for

d ≤ 2, so it follows by induction that it is true for all d ≥ 1.

Corollary 8.0.2. Pd(1, 1) = d! for all d ≥ 1.

Proof. Again, assume this is true up to d = δ for some δ ≥ 2. When m1 = m2 = 1,

52

〈Tr[(ρ̂12
1)d]〉 as combinatorial functions

(8.0.3) becomes

Pδ+1(1, 1) = 2
2δ + 1

δ + 2
Pδ(1, 1) +

δ2

δ + 2
Pδ−1(1, 1)

= 2
2δ + 1

δ + 2
δ! +

δ2(δ − 1)

δ + 2
(δ − 1)!

= (δ + 1)!.

It is easy to see that it’s true for d ≤ 2, so it is true for all d ≥ 1 by induction.

All of this hints at some deeper meaning to these functions, but none of it says

what this meaning actually is. We can identify this meaning, however, by evaluating

the coefficients at various orders (see Appendix D) and comparing them to prior

enumeration work. As it turns out, all the coefficients up to d = 12 can be found

in Appendix B of [35], which gives the results of enumerating rooted hypermaps. By

comparing these two sets of results we find that Pd(m1,m2) is a generating function

enumerating rooted hypermaps with d darts and one face, partitioning them by number

of edges and vertices.

While we can state this fairly confidently in light of the agreement over the first

twelve orders, this is far from a proof. We do have all the necessary tools to prove it,

however, as we will in Chapter 10. We will then examine these tools further in the

following chapters, seeing how they can be used to enumerate all rooted hypermaps

(Chapter 11) as well as rooted maps and constellations (Chapter 12).

First, however, we need to properly introduce and define these various terms. This

is the purpose of Chapter 9.

53

Chapter 9

Basic concepts

In this chapter we will give an introduction to a number of combinatorial concepts which

will see heavy use in the following chapters, in particular constellations, hypermaps

and generating functions. This chapter is purely an explanation of existing concepts

and does not introduce any new results, although it does serve to highlight which

properties/interpretations will be most relevant to the following work. For instance, in

the case of hypermaps, which have multiple equivalent interpretations, we will focus

on interpreting them as 3-constellations, as opposed to the geometric interpretation of

diagrams on orientable surfaces, as the former is much more useful for our purposes.

9.1 Hypermaps and constellations

9.1.1 Permutations

One of the fundamental concepts of combinatorics is the the permutation, i.e. a bijective

function mapping from a finite ordered set to itself. In this context we will define a

permutation as follows:

Definition 9.1.1. A d-permutation is a bijective function from some set D with d

elements to itself. We will call d the permutation’s degree, for consistency with the

terminology we use for hypermaps.

Definition 9.1.2. The symmetric group Symd is the group consisting of all

permutations acting on the set [1 . . . d].

We have defined permutations here as acting on arbitrary sets. However, the group

of all permutations acting on any given set of size d is isomorphic to Symd, so in

many cases we will identify d-permutations as simply being those acting on [1 . . . d] for

simplicity. We will encounter permutations acting on other defined sets later, though,

where hypermaps involve permutations acting on the set of darts in the hypermap, so

it is helpful to bear this more general definition in mind.

54

Basic concepts Hypermaps and constellations

We will represent permutations here using cycle notation. For example, the

5-permutation g = (143)(25) maps 1 to 4, 4 to 3, 3 to 1, and 2 and 5 to each other.

The two bracketed sets of values are known as cycles (so g has two cycles).

Another way of representing this permutation would be

g :

1

2

3

4

5

→

4

5

1

3

2

 .

While many different equivalent representations for permutations exist, the cycle

representation will be of most use to us as it is the cycles of each permutation which

we are interested in; when we look at hypermaps, we will see that cycles correspond to

geometric features of the hypermaps, specifically edges, vertices and faces. We denote

the number of cycles in a permutation g as cyc(g).

Permutations can be composed together to produce permutations of higher degree

through the direct sum ⊕:

Definition 9.1.3. Given permutations {g1, g2, . . . , gN} acting respectively on the

disjoint sets {D1, D2, . . . , DN}, their direct sum g = g1 ⊕ g2 ⊕ . . . ⊕ gN is defined

on D1 ∪D2 ∪ · · · ∪DN such that

g(x) =

g1(x), x ∈ D1

g2(x), x ∈ D2

...

gN (x), x ∈ DN

.

The direct sum provides a useful method of decomposing permutations into

subpermutations. The direct sum preserves cycles in each of the subpermutations,

so the maximum number of parts any given permutation can be decomposed into is

equal to the number of cycles it contains e.g. (136)(25)(4) = (136) ⊕ (25) ⊕ (4). Thus

the only permutations which can’t be decomposed are one-cycles. We will revisit direct

sums and decompositions when looking at constellations, as they provide a simple

way of understanding the transitivity property of constellations (see the next section),

which is very useful for understanding the process of computing generating functions

of general hypermaps in Chapter 11.

9.1.2 Constellations

Definition 9.1.4. A k-constellation acting on a set D of size d is a sequence [g1, . . . , gk]

of d-permutations with the following two properties:

• Transitivity : The group generated by [g1, . . . , gk] acts transitively on the set D,

55

Hypermaps and constellations Basic concepts

• Closure: The product g1g2 · · · gk equals the identity.

The number k is the constellation’s length, and d its degree. [20, p 8].

At its simplest, a constellation is an ordered set of permutations. As is seen in the

above definition, however, some additional structure is required of the permutations.

These properties, which we refer to here as transitivity and closure, have the interesting

result of making 1- and 2-constellations trivial, as any 2-constellation is just [g, g−1]

for some 1-cycle g, while there is only one 1-constellation, [I1] where I1 = (1) is the

degree-one identity permutation. [20, p 9]. Thus we will only be studying constellations

of length three or more here, with the case k = 3 being equivalent to hypermaps, as we

shall see later.

The transitivity property in particular imposes a sort of connectedness on a

hypermap, by requiring that any element of D can be mapped to any other element of

D just through sequential application of the permutations g1, . . . , gk. If a sequence of

permutations did not satisfy this property, then it would be possible to decompose it

into a direct sum of constellations of lower degree i.e. (123)(4)(5)

(13)(2)(45)

(1)(23)(45)

 =

 (123)

(13)(2)

(1)(23)

⊕
 (4)(5)

(45)

(45)

 .
Thus, in the same way that 1-cycles are permutations which cannot be decomposed

into a direct sum of smaller permutations, a constellation is a closed sequence of

permutations which cannot be decomposed into a direct sum of sequences of lower

degree.

While any sequence of permutations satisfying these properties is a constellation,

some constellations with different representations are isomorphic to each other. This

is the case when two permutations have the same structure except for a relabelling of

the elements in the set the permutations act on. For instance, (123)(4)(5)

(13)(2)(45)

(1)(23)(45)

 and

 (143)(2)(5)

(13)(4)(25)

(1)(43)(25)

are isomorphic, the only difference being the swapping of the labels 2 and 4. We can

express this more formally:

Definition 9.1.5. Two k-constellations of degree d, [g1, . . . , gk] and [h1, . . . , hk], acting

respectively on sets D and D′, are isomorphic if there exists a bijection p : D → D′

such that [20, p 9]

[pg1p
−1, . . . , pgkp

−1] = [h1, . . . , hk].

In the enumerative work of the following chapters we will be concerned specifically

with enumeration of isomorphism classes of constellations, rather than enumeration of

56

Basic concepts Hypermaps and constellations

distinct representations. This has been the general practice of previous authors as well

[34, 3, 35], as typically it is only the structure which is important, so counting cases

which behave in exactly the same way as each other is redundant.

9.1.3 Rooted constellations

We will not be looking at isomorphism classes under the very general type of

isomorphisms given in Definition 9.1.5, however, but at a more restricted type of

isomorphism class called a rooted constellation. We define these as follows:

Definition 9.1.6. A rooted k-constellation C of degree d is an isomorphism class of

k-constellations acting a given set D such that, for any two constellations c1 and c2 in

C there exists a permutation p which maps c1 to c2 and preserves a specified element

x of D, called the root .

So, as a given set D has a set of constellation isomorphism classes associated with

it, a pair (D,x) consisting of a set D and a single distinguished element x ∈ D is

associated with a set of rooted constellation equivalence classes. The isomorphism

for general constellations imposes the idea that all the elements of D are equivalent to

each other, so exchanging them doesn’t change the structure of the constellation. In the

rooted case x is now considered distinct from the other elements, so any reordering of

the elements only preserves the rooted constellation’s structure if the root is preserved

(i.e. if p(x) = x).

When we look at rooted k-constellations acting on [1, . . . , d], we will by convention

take the root to be x = 1.

9.1.4 Hypermaps

While we will eventually proceed to derive enumeration results for rooted constellations

of arbitrary length, the focus of most of this work will be on the simplest non-trivial

case, 3-constellations, which are equivalent to hypermaps:

Definition 9.1.7. A hypermap is a 2-cell embedding of a hypergraph on an orientable

surface O; a hypergraph (V,E) consists of a set V of vertices and a family E of families

of vertices from V , called edges. A 2-cell embedding means that the complement of

the hypergraph O on the surface is a disjoint union of regions homeomorphic to the

open disc (see Figures 9.1.1 and 9.1.2 for a visualisation of the process of embedding a

hypergraph in a surface).

To understand how a hypergraph may be embedded in a surface to produce a

hypermap, it is helpful to consider the hypergraph as a set of points representing the

vertices, with the edges a number of groupings of these vertices (see Figure 9.1.1a).

Note that edges are specifically families so that an edge can contain particular vertices

57

Hypermaps and constellations Basic concepts

(a) (b)

Figure 9.1.1: (a) A hypergraph and (b) the equivalent bipartite graph representation, showing
how edges can contain vertices more than once, and how multiple edges can be equivalent. This
hypergraph cannot form a hypermap as it is disjoint, so cannot form a 2-cell embedding.

Figure 9.1.2: A hypermap with seven vertices, seven edges, six faces and twenty darts, embedded
in a genus-one surface. This satisfies Euler’s characteristic equation, which for a hypermap is
v + e+ f − d = 2− 2g.

multiple times. Similarly E is a family such that the hypergraph can contain multiple

edges with the same connectivity. These are a generalisation of the concept of graphs

(vertices connected pairwise by lines, called edges) where the edges are no longer

restricted to connecting to two vertices, but can instead connect to any positive number

of vertices.

To understand the embedding process, however, it is helpful to use a particular

representation of hypergraphs as bipartite bicoloured graphs (see Figure 9.1.1b). Here

we replace each edge by a new point, labelled in white, and then connect it to each of

the vertices it contains by a line, which we refer to as a dart [36]. If an edge contains

a vertex more than once, then they are connected by more than one dart.

Given this, the process of embedding a hypergraph in an orientable surface is

equivalent to the process of embedding a bipartite graph. Embedding a graph produces

a map, so we say that embedding a hypergraph produces a hypermap. An example of

a hypermap is shown in Figure 9.1.2, where the vertices and edges are represented

by points on the surface, and the darts as lines connecting them. Again, all of

58

Basic concepts Hypermaps and constellations

Figure 9.1.3: The actions of the three permutations g1, g2 and g3 on darts in a hypermap,
demonstrating how the composition g1g2g3 maps darts to themselves.

the faces (connected regions in the complement of the hypermap) are required to be

homeomorphic to the open disc.

As with constellations, we can consider isomorphism classes of hypermaps. If we

have two hypermaps embedded on two surfaces, then they are said to be isomorphic if

there is a homeomorphism between the two surfaces which exactly maps the vertices,

edges, faces and darts of one hypermap onto the vertices, edges, faces and darts of

the other. Given this fact, if we consider only isomorphism classes of hypermaps, then

the exact shape of the surface onto which they’re embedded is not relevant. The only

properties of the surface which have any impact on the hypermap are the genus and

orientability, both of which are preserved under homeomorphisms.

Given this, it is useful to be able to define hypermaps in a geometry-independent

manner, and constellations provide a means of doing so. For the remainder of our

discussion of hypermaps we will supersede Definition 9.1.7 with the following:

Definition 9.1.8. A hypermap is a 3-constellation [20, p 43].

We can see that these two definitions are equivalent by the following argument.

Consider a geometric hypermap, and extract from it the set D containing its darts.

Each dart can be associated uniquely to a single vertex, edge and face (the choice of

vertex and edge are easy as the dart is connected to only one of each; by convention

we will associate a dart to the first face you encounter moving anticlockwise around

its adjacent vertex). We define three permutations, g1, g2 and g3 acting on D such

that they permute the darts anticlockwise around their associated faces, edges and

vertices respectively. These permutations are transitive on D as hypermaps are always

connected, so any dart can be moved to any other dart just by repeatedly rotating them

59

Hypermaps and constellations Basic concepts

round their adjacent vertices and edges. They also satisfy g1g2g3 = 1, as can be seen

geometrically from their actions (see Figure 9.1.3). By Definition 9.1.4, the sequence

[g1, g2, g3] is therefore a 3-constellation.

Conversely, a geometric hypermap can be constructed from a 3-constellation

[g1, g2, g3] as follows: first, associate the elements in the set D that the constellation

acts on with line segments (darts). Then, taking each dart in turn and, repeatedly

applying g3 followed by g2, construct a set of open surfaces (faces) such that the darts,

in the order they are encountered, form their boundaries in a clockwise direction (when

multiple darts result in faces with the same boundary, as will be the case whenever a

face has more than one vertex adjacent to it, keep only one such face). Once all possible

faces have been constructed, join them together wherever their boundaries share a dart.

The result is a closed, orientable surface with a hypermap embedded in it.

Therefore, geometric hypermaps and 3-constellations are equivalent to each other,

so we are free to directly associate the two. The concept of isomorphism also maps

over naturally, as both hypermap isomorphism and constellation isomorphism amount

to mapping the darts of one hypermap onto the darts of another. We also carry the

concept of rooting over:

Definition 9.1.9. A rooted hypermap is a rooted 3-constellation.

Geometrically this means specifying one of the darts to be distinct from the others;

this dart is the hypermap’s root.

An important point relating to the connection between hypermaps and

constellations is the interpretation of cycle structure within the constellations. g3

rotates darts anticlockwise around their adjacent vertices, so if g3 is applied repeatedly,

all darts will eventually do a complete cycle around their adjacent vertex and return

to their starting point. Therefore the cycles in g3 correspond directly to the vertices in

the hypermap, and the set of darts in each cycle is exactly the set of darts connected to

the corresponding vertex. Similarly, cycles in g2 correspond to edges and cycles in g1

to faces. This has the nice result that, if we wish to know the number of vertices, edges

and faces in a hypermap, we simply need to count the cycles in its 3-constellation.

This also allows us to prove another interesting result relating to counting of

hypermaps:

Lemma 9.1.1. Let Nd,v,e,f be the number of rooted hypermaps with d darts, v vertices,

e edges and f faces. Then

Nd,v,e,f = Nd,e,v,f = Nd,v,f,e,

along with all other such permutations of v, e and f .

Proof. Consider the set of all rooted hypermaps [g1, g2, g3] with v vertices, e

edges, f faces and d darts. The mapping T1 : [g1, g2, g3] → [g−1
1 , g−1

3 , g−1
2]

60

Basic concepts Generating functions

is an isomorphism-preserving bijection between such rooted hypermaps and those

that instead have e vertices and v edges. Therefore the two sets are the

same size, i.e. Nd,v,e,f = Nd,e,v,f . By the same argument, the bijection

T2 : [g1, g2, g3]→ [g−1
2 , g−1

1 , g−1
3] gives that Nd,v,e,f = Nd,v,f,e. All other equalities

follow from sequential application of these two.

This result will manifest itself when we start computing generating functions, where

we will find that the generating functions are always symmetric in their arguments.

9.2 Generating functions

One final concept which we will be making considerable use of is that of generating

functions. These are a very simple concept, however, so we will only give a brief

introduction in order to clarify the terminology we will be using in the following

chapters.

Consider some sequence of numbers ak for all 0 ≤ k < K (K may be infinity). This

sequence has an associated generating function A defined as

A(x) =

K−1∑
k=0

akx
k,

i.e. a function (specifically a polynomial if K is finite) with the sequence as the

coefficients in its Maclaurin series expansion. In some infinite cases this series will

diverge for finite x, in which case we will have to think of A(x) instead as a formal

power series, although we will still refer to it as a generating function. In cases like this

it is sometimes useful to instead use an alternating generating function

B(x) =
∞∑
k=0

(−1)kbkx
k.

Generating functions are of great use in enumerative combinatorics. For example,

let us say that the number of k-permutations with n disjoint cycles is Nk,n. For any

given k there will be k such values to describe the partition of the k! such permutations.

We can simplify this information considerably, however, by combining these all into a

single generating function

pk(x) =
k∑

n=1

Nk,nx
n.

We say that this generating function enumerates the set of k-permutations by number

of cycles. As it happens, this function has a simple closed form:

pk(x) = (x)k =
Γ(x+ k)

Γ(x)
.

where (x)k is the rising factorial [10, p 213]. Generating functions with closed forms

61

Generating functions Basic concepts

such as this are very useful as they can reveal much more information about the objects

being enumerated than the individual counts can. In this case, for instance, setting

x = 1 gives us that

pk(1) =
k∑

n=1

Nk,n = k!

i.e. there are k! k-permutations. This is, of course, well known, but we will make a fair

amount of use of this particular principle (setting a parameter to unity to sum over

various possibilities) when dealing with hypermaps and constellations.

62

Chapter 10

One-face rooted hypermaps

In this chapter we will prove the fact that our functions Pd(m1,m2) (defined in Chapter

8) are in fact generating functions for enumerating one-face rooted hypermaps by

number of edges and vertices. This is our first new result in enumerative combinatorics,

and the methods we develop here provide the groundwork for everything which follows

in later chapters for enumeration of general rooted hypermaps, maps and constellations.

10.1 Why matrix integration

When evaluating Pd(m1,m2) in Chapter 5, we made considerable use of matrix

integration. It is interesting, and indeed instructive, to consider why this particular

topic, and the particular types of matrix integrals we will be using, should have such a

close connection to combinatorics.

As we have noted, this work is not the first time a connection between matrix

integration and combinatorics has been encountered, or even the first time such

a connection has arisen from work in quantum theory. For example, work in

two-dimensional quantum gravity has produced methods of enumerating maps via

computation of matrix integrals [39]. There are many thematic similarities between

this procedure and ours – both use Gaussian integrals and integration over spaces of

Hermitian matrices, for instance, and both give integrals which can be evaluated to

give closed-form generating functions.

As will be seen from the results in this chapter, it is no surprise that two methods

involving Gaussian integration over complex matrices would produce combinatorial

results. This arises from two facts: a Gaussian-weighted integral over a polynomial can

be re-expressed as a multi-derivative expression, and evaluation of these multi-derivative

expressions involves summation over permutation groups. We will look at the case of

enumerating permutations as a way to illustrate these principles.

10.1.1 Enumerating permutations

As we stated in Section 9.2, the generating function for enumerating k-permutations

by number of cycles is already known, so this is not an attempt to derive new

63

Why matrix integration One-face rooted hypermaps

results. Rather it is a demonstration of the principles which link matrix integrals

to combinatorics, and in particular the specific tools which we will be making use of in

the following chapters.

Consider the integral

pk(m) =
1

πm

ˆ
Cm

dmvdmv̄e−v·v(v · v)k, (10.1.1)

where v is an m-dimensional complex vector. This integral can be evaluated by

switching to spherical polar coordinates. If we let r =
√
v · v and integrate out the

angular part, we get

pk(m) =
2

Γ(m)

ˆ ∞
0

e−r
2
r2k+2m+1dr

=
Γ(m+ k)

Γ(m)
,

which is already known to be the generating function for enumerating permutations

by cycle count. This integral provides us with a new method for proving this fact,

however:

Theorem 10.1.1. The integral (10.1.1) is the generating function for enumerating

k-permutations by number of cycles.

Proof. Let α and β be two real m-vectors. We choose some orthonormal basis for Rm

such that these and v can be written in terms of their components in this basis. Then,

in terms of these components, we write (10.1.1) (using the convention of summing over

repeated indices) as

pk(m) =
1

πm

ˆ
Cm

dmvdmv̄e−|v|
2+αvi+βiv̄i(viv̄i)

k

∣∣∣∣
α,β=0

=
1

πm
∂

∂αi1

∂

∂βi1
· · · ∂

∂αik

∂

∂βik

ˆ
Cm

dmvdmv̄e−|v|
2+αivi+βiv̄i

∣∣∣∣
α,β=0

=
∂

∂αi1

∂

∂βi1
· · · ∂

∂αik

∂

∂βik
eαiβi

∣∣∣∣
α,β=0

=
∂

∂αi1
· · · ∂

∂αik
(αi1 · · ·αik)

∣∣∣∣
α=0

. (10.1.2)

Here we have used our ability to replace vi with ∂/∂αi and v̄i with ∂/∂βi to

remove the polynomial part (viv̄i)
k from the Gaussian integral in order to simplify

its evaluation. This leaves us with a multi-derivative expression involving α and β, and

after performing all of the β-derivatives we are left with a kth derivative of a kth order

monomial of α.

The process of performing the α-derivatives is trickier, but can be done

combinatorially. When we expand the derivative out fully we get a total of k! terms,

one for each pairing of derivatives to α terms (each α is paired with only one derivative

64

One-face rooted hypermaps The generating function

as differentiating it twice would take it to zero). This is equivalent to a sum over all

k-permutations, each permutation corresponding to one of these pairings. Given that

∂

∂αi
αj = δ[i, j],

where δ[i, j] is the m-dimensional Kronecker delta, we can write this sum of pairings as

pk(m) =
∑

g∈Symk

δ[i1, ig(1)] · · · δ[ik, ig(k)].

For each g, the product of deltas contracts completely, and each cycle in g contracts

to a single factor of m (i.e. a cycle (152) would give a term δ[i1, i5]δ[i5, i2]δ[i2, i1] =

δ[i1, i1] = m). Therefore

pk(m) =
∑

g∈Symk

mcyc(g),

which is exactly the generating function for enumerating k-permutations by number of

cycles.

We can now see much more clearly why Gaussian integrals such as this can produce

generating functions. Of particular importance is the fact that the monomial function

in the integrand is a complete contraction (all indices appear exactly twice and are

summed over), and v terms are always paired with v̄ terms in this contraction. This

means that, when we perform the integration-differentiation process which leads to

(10.1.2), what results is a sum of completely contracted products of Kronecker deltas,

which themselves produce monomial functions of the dimensions of the matrix.

The integrals used in this example bear a similarity to those discussed in Section

(5.1.1), so naturally the proof in the next section follows a very similar procedure to

the one above. We are thus ready to proceed to the main purpose of this chapter:

enumeration of one-face hypermaps.

10.2 The generating function

In the previous section we showed how to convert a matrix integral into a sum over

permutations. We will now use this to show how to enumerate one-face rooted

hypermaps. It is easy to see that this is equivalent to summing over permutations,

for the following reason:

Lemma 10.2.1. There is a bijection between the set of rooted hypermaps with d darts

and one face, and the set Symd of d-permutations.

Proof. A hypermap with d darts is a 3-constellation of degree d, where the number

of cycles in the first permutation corresponds to the number of faces (Definition

9.1.8). Any hypermap with one face can therefore be written, up to isomorphism, as

[σ, g, (σg)−1], where σ = (12 . . . d) and g is some other permutation. Furthermore,

65

The generating function One-face rooted hypermaps

(a) (b)

Figure 10.2.1: (a) The hypergraph corresponding to the genus one one-face hypermap
{(123456), (143)(256), (125)(3)(46)}, and (b) the corresponding ladder diagram. For clarity
the two subcomponents – the backbone in grey, and the overlaid permutation in black – have
been separated out.

when we consider only rooted hypermaps, there are no non-trivial isomorphisms

available which preserve this particular normal form (the only isomorphisms which

would preserve the given σ correspond to the action of permutations p = σk for some

integer k, and the only case like this which preserves the root is when p = 1). We

therefore see that no two hypermaps written in this form with different g can be in

the same rooted hypermap isomorphism class. Thus, this representation provides a

bijection between d-permutations and one-face rooted hypermaps with d darts.

Keeping in mind our goal of showing that Pd(m1,m2) is a generating function for

counting one-face rooted hypermaps, this lemma implies the result of Corollary 8.0.2 –

that Pd(1, 1) = d! – as Pd(1, 1) should equal the total number of d-permutations, which

we know to be d!.

This correspondence given above can be represented diagrammatically, using what

we will refer to here as ladder diagrams. Consider, for example, the permutation g =

(143)(256). Through Lemma 10.2.1 this corresponds to a genus one rooted hypermap,

whose hypergraph is shown in Figure 10.2.1a. We build its ladder diagram as follows:

1. Draw two rows of d points (two rows of six in this example), and join them

pairwise between the rows by solid vertical lines.

2. Draw six dashed lines which represent σ = (12 . . . d) mapping from the bottom

row to the top row. These along with the d vertical lines are called the backbone

of the diagram.

3. Draw six double lines (half solid, half dashed) which represent g mapping from

the top to the bottom.

66

One-face rooted hypermaps The generating function

𝜕

𝜕𝛼𝑎 1𝑏1

𝜕

𝜕𝛼𝑎 2𝑏2

𝜕

𝜕𝛼𝑎 3𝑏3

𝜕

𝜕𝛼𝑎 4𝑏4

𝜕

𝜕𝛼𝑎 5𝑏5

𝜕

𝜕𝛼𝑎 6𝑏6

𝛼𝑎 2𝑏1
𝛼𝑎 3𝑏2

𝛼𝑎 4𝑏3
𝛼𝑎 5𝑏4

𝛼𝑎 6𝑏5
𝛼𝑎 1𝑏6

Figure 10.2.2: One of the Kronecker delta contractions involved in the expansion of P6(m1,m2).
This diagram corresponds to the term δ[a1, aσg(1)]δ[b1, bg(1)] · · · δ[a6, aσg(6)]δ[b6, bg(6)] with g =
(143)(256), and the diagram of contraction pairs visibly matches Figure 10.2.1b.

The ladder diagram for g = (143)(256) is shown in Figure 10.2.1b.

This ladder method gives a quick method of extracting the hypermap’s properties

from g. If we follow the solid lines through the ladder diagram, moving up on the

backbone then down on the double lines, and repeat this over and over, this corresponds

simply to repeated applications of g to the top row. As such, each closed loop of solid

lines is a cycle in g, so the number of solid loops equals the number of edges in the

hypermap. Doing the same with the dashed lines corresponds to repeated applications

of σg, and so by the same argument the number of dashed loops equals the number of

vertices. This visualisation will make the following proof somewhat simpler to follow.

Theorem 10.2.1. Pd(m1,m2) is a generating function enumerating one-face rooted

hypermaps with d darts by number of vertices and edges.

Proof. We have from (8.0.1) and (5.1.5) that

Pd(m1,m2) =
Γ(m1m2 + d)

Γ(m1m2)
〈Tr[(ρ̂12

1)d]〉

=
1

πm1m2

ˆ
Cm1m2

dm1m2zdm1m2 z̄e−|z|
2
za1b1 z̄a2b1 · · · zadbd z̄a1bd ,

where zab are components of an m1 × m2-dimensional complex matrix. The method

used in Theorem (10.1.1) for evaluating Gaussian integrals applies equally well here; we

just need to define our dummy variables α and β as m1×m2-dimensional real matrices.

We then get that

Pd(m1,m2) =
∂

∂αa1b1

∂

∂βa2b1
· · · ∂

∂αadbd

∂

∂βa1bd
eαabβab

∣∣∣∣
α,β=0

=
∂

∂αa1b1
· · · ∂

∂αadbd
(αa2b1αa3b2 · · ·αa1bd)

∣∣∣∣
α=0

.

As before, this expression is equivalent to a sum over permutations. We can write

the terms in this sum entirely in terms of m1- and m2-dimensional Kronecker deltas,

but for clarity we will represent them diagrammatically, as seen for example in Figure

10.2.2. This diagram represents all the individual contractions arising in the term

corresponding to a particular permutation g matching the derivatives to the α terms.

67

Evaluating Pd(m1,m2) One-face rooted hypermaps

Single solid lines represent contractions over matching b-indices, while single dashed

lines represent contractions over matching a-indices. The double lines correspond

to the derivative pairings, each of which produces a δ[ai, aσg(i)] and a δ[bi, bg(i)].

Therefore, in each term the m1-dimensional Kronecker deltas with a-indices contract

along the dashed lines, producing a factor of m1 for each closed dashed loop, and the

m2-dimensional deltas with b-indices contract over the solid loops, producing a factor

of m2 for each loop.

These contraction diagrams clearly correspond to the ladder diagrams we discussed

previously. We have already shown that there is one such ladder diagram for

each one-face rooted hypermap with d darts, and we have here that there is

one such diagram for each contraction term in Pd(m1,m2). Therefore, there is

a one-to-one correspondence between the contraction terms and one-face rooted

hypermaps. Furthermore, by comparing the interpretations of the loops in the two

types of diagrams we see that the exponent of m1 in each term is the number of vertices

in the corresponding hypermap and the exponent of m2 the number of edges. Thus,

Pd(m1,m2) is exactly the generating function enumerating one-face rooted hypermaps

with d darts by number of vertices and edges.

10.3 Evaluating Pd(m1,m2)

We have now shown explicitly that Pd(m1,m2) is the generating function enumerating

one-face rooted hypermaps with d darts by number of vertices and edges. Thus, by

computing these functions exactly and finding their coefficients, we are able count

how many of the corresponding types of rooted hypermap there are. The question

is what benefits this new method brings. As we have seen, there already exists a

method by Walsh for enumerating rooted hypermaps by generating all of the hypermaps

individually [35], so we do have something to compare these results to.

One way we could compare these two methods is by looking at the amount of time

it takes to compute any given value or set of counts, and how this increases with d, but

the difference between the two methods is somewhat more fundamental than just speed;

while our method is built on generating functions, which essentially give us a short-cut

to the result, Walsh’s method is based on individually generating each hypermap and

computing their properties. Which method is preferable therefore really depends on

what you need – the hypermaps themselves or just the counts.

10.3.1 Walsh’s method

Let us consider Walsh’s method, and the principles it is based on, first. This

method generates each hypermap individually and then computes its properties. Direct

generation of combinatorial objects is by no means simple, of course. Taking the simpler

example of permutations, it is very easy to generate an individual permutation (simply

take a finite, ordered set and randomly shuffle the elements). One can generate any

permutation this way of course, but this is not the same as enumerating them. We

68

One-face rooted hypermaps Evaluating Pd(m1,m2)

would have to store all of the previously-generated permutations in order to check if

each new one had been counted already, and the fact that this method is random

in nature means we’d never know for certain if we had found all cases. In order to

overcome these two issues, what is needed is a systematic method for generating each

case which is not reliant on checking for uniqueness, and which halts when all cases

have been found. Algorithms of this form exist for permutations, with one of the better

known – and most efficient – being Heap’s algorithm [18, 29].

Similar principles apply with hypermaps. We could easily generate all 3-sequences

of permutations using Heap’s algorithm (taking the last one to be the inverse of the

product of the others to ensure they multiply to unity), but we would then have to

check each case for transitivity, wasting a lot of time generating cases which aren’t

actually hypermaps. Then we would also have to store all previously-generated cases

in order to check that new ones weren’t isomorphic to them, requiring significant time

and memory.

Walsh overcame both of these problems by using an alternate representation of

hypermaps, whereby each hypermap is represented by a code string. This originated

from a similar code for rooted plane trees, which was then generalised by Lehman

to a code for rooted maps [34]. By enforcing certain conditions on these codes they

could be made to correspond only to bipartite, bicoloured maps, thus allowing their

use for generating hypermaps as well. The enumeration process then requires just

generating all codes satisfying these conditions, as the nature of the codes ensures that

they are nonisomorphic [35], much as our ladder-diagram representation for one-face

rooted hypermaps ensured that all the cases generated were nonisomorphic.

The exact nature of the codes is not important for our work here, but one property

they have is that, as is the case with the constellation representation of hypermaps,

it is possible to extract the number of vertices, edges and faces from each code with

ease. Thus the hypermaps can be partitioned by these characteristics after generation,

allowing individual counts of each type to be made. Walsh provides such counts for

rooted hypermaps up to 12 darts, noting that the time taken is roughly proportional

to the number of hypermaps counted, and the memory requirements are just the

memory required to store a single hypermap code, along with that needed for the

counts themselves [35].

This is as efficient as a direct enumeration algorithm can be, making it ideal for

applications which require the actual structure of the individual hypermaps, but in

terms of absolute speed it is nonetheless quite slow, simply because of how many rooted

hypermaps there are. The number of rooted hypermaps with d darts grows as at least

d!, after all.

10.3.2 Direct enumeration by our method

If we are only interested in one-face rooted hypermaps, the first improvement on

Walsh’s method we can make is a new direct enumeration process which is slightly

more optimised for the one-face case, based on Lemma 10.2.1. As they stand, Walsh’s

69

Evaluating Pd(m1,m2) One-face rooted hypermaps

codes can encode any number of faces, so extracting only the one-face cases with an

unmodified version of his algorithm would involve generating all rooted hypermaps and

filtering the results. But as we have shown, each one-face rooted hypermap is equivalent

to a permutation on d elements, and these can be enumerated extremely efficiently using

Heap’s algorithm. From these permutations we construct constellations, which gives

us the structure of the hypermaps including vertex/edge counts.

As with Walsh’s method, the memory requirements of this process grows linearly

with the size of the hypermap and the time taken grows with the number of hypermaps.

This method is thus only an improvement if we are only looking at one-face cases, where

it saves looking at unnecessary cases. This method is not applicable beyond those cases

unfortunately.

However, to see the real benefits of our new method, we must move beyond direct

enumeration.

10.3.3 Closed-form generating functions

In Theorem 10.2.1 we showed that the generating function Pd(m1,m2) can be expressed

as a Gaussian matrix integral. Evaluation of this integral gives us the direct

enumeration method described above, but its real value lies in its connection to the

quantum work discussed in Part II, as this work allows us to write Pd(m1,m2) in closed

form. As we stated in (8.0.2),

Pd(m1,m2) =
1

d!

∑
r≥0

(
d− 1

r

)
(−1)r(m1 − r)d(m2 − r)d.

While we have chosen to write this as an indefinite summation, we note as before

that the binomial coefficient ensures that the summand is zero for all r ≥ d. The two

rising-factorial terms (m1 − r)d and (m2 − r)d produce finite-order polynomials in m1

and m2, and as such this expression can be used to compute Pd(m1,m2) exactly as

a finite-order polynomial, from which the coefficients (the hypermap counts) can be

extracted.

To compare this result quantitatively to the direct enumeration methods above,

including Walsh’s, we computed these functions individually in Mathematica, timing

how long it took to calculate each one. It is difficult to find a theoretical expression

for the computational complexity for this process, as the numbers used during the

calculation rise rapidly (at least as d!) so any algorithm intending to compute these

functions at high order must necessarily make use of variable-size integer storage, adding

an additional layer of complexity. However, based on the results of a run going up

to order 100 the time-dependence appears to be approximately polynomially bounded,

with the shown cases fitting roughly toO(d3.3) (see Figure 10.3.1). This is in comparison

to the algorithms taking constant time per hypermap, which would run in O(d!).

70

One-face rooted hypermaps Evaluating Pd(m1,m2)

Figure 10.3.1: A log-log plot showing the time taken to compute Pd(m1,m2) up to d = 100
in Mathematica on a Dell XPS 12 with an Intel Core i7-3537U CPU. The fitted line is T =
(1.755× 10−6)d3.285.

10.3.4 Recursion relation

There is one more method we can use to calculate these generating functions, which

can in fact provide an even more significant speed boost than the generating-function

method above: recursion relations. This method is really just an extension of the

generating-function method, however, as the recursion relation’s proof follows directly

from the form of the hypergeometric series (8.0.2), and then gives a new method of

computing these functions in terms of functions of lower order.

We have already proven the relevant recursion relation in Theorem 8.0.2 – as (8.0.3)

states,

(d+ 3)Pd+2(m1,m2) = (2d+ 3)(m1 +m2)Pd+1(m1,m2)

+ d[(d+ 1)2 − (m1 −m2)2]Pd(m1,m2)

for any d ≥ 1 – and we have already seen how this recursion can be used to prove

inductively a number of facts, such as the fact that Pd(m1,m2) is symmetric, and

that Pd(1, 1) = d!. Additionally, we can rewrite (8.0.3) as a recursion relation for the

hypermap counts themselves:

Corollary 10.3.1. Let Nd,v,e be the number of rooted hypermaps with d darts, v vertices

and e edges. Then

(d+ 3)Nd+2,v,e = (2d+ 3)(Nd+1,v−1,e +Nd+1,v,e−1)

+ d[(d+ 1)2Nd,v,e −Nd,v−2,e + 2Nd,v−1,e−1 −Nd,v,e−2]. (10.3.1)

71

Evaluating Pd(m1,m2) One-face rooted hypermaps

Figure 10.3.2: The time taken to compute Pd(m1,m2) via its recursion relation up to d =
30, assuming no prior knowledge of the lower-degree generating functions in each case, in
Mathematica on a Dell XPS 12 with an Intel Core i7-3537U CPU. The fitted line is to T =
(1.574 × 10−17)d12.07. Lower values of d were omitted from the fit as their times are visibly
rounded up due to the CPU clock’s finite resolution.

Proof. Write

Pd(m1,m2) =

∞∑
v=1

∞∑
e=1

Nd,v,em
v
1m

e
2

and substitute this into (8.0.3). Collecting together the mv
1m

e
2 terms then gives (10.3.1).

Of course, we can also come up with an explicit formula for Nd,v,e by expanding

(8.0.2), using the fact that the rising factorial has the expansion

(a)k =

k∑
n=0

(−1)k−ns(k, n)an,

with s(k, n) being the Stirling numbers of the first kind. However, the Stirling numbers

are themselves computed recursively, so this method has little added benefit over using

(10.3.1).

It’s difficult to compare this method to the generating-function method in Section

10.3.3 in terms of time complexity, in that the two methods are designed to be used in

different contexts. The generating-function method is able to compute the functions

in isolation, without any knowledge of functions of lower order, so it is not surprising

that, in this context, it is more efficient. Figure 10.3.2 shows the time taken to compute

each Pd(m1,m2) recursively, assuming no prior knowledge of lower-degree generating

functions at each step, and it can be seen that the times rise much more rapidly than

in Figure 10.3.1.

The recursive method, however, is by far the most efficient method to use if the

72

One-face rooted hypermaps Evaluating Pd(m1,m2)

prior cases are already known, where the time to compute each case is only affected

by the amount of time it takes to perform the various integer/polynomial arithmetic

operations required to evaluate (8.0.3), the number of such steps being performed not

depending on d. The recursive method is also more suited to the task of proving

patterns and trends in the generating functions, particularly through inductive proofs.

10.3.5 Discussion

So, while our enumeration methods based on calculating Pd(m1,m2) cannot provide

as much information about the individual hypermaps as Walsh’s method can, it is

clear that our methods have definite advantages. If we just want to know the overall

numbers of different sizes of rooted hypermaps, it is much faster to get these from

the generating functions than it is to count the hypermaps themselves. In addition,

generating functions and recursion relations are ideally suited to proving patterns and

trends in the counts.

It should be noted that some prior work, which we were initially unaware of, has

dealt with and evaluated functions equivalent to Pd(m1,m2) – a survey of several

methods for doing so is given in [28]. These methods arose from a combinatorial problem

equivalent to the one addressed in this chapter, namely the problem of enumerating

factorisations of the permutation (12 . . . d) into a product of two permutations.

Each such factorisation g1g2 = (12 . . . d) has a one-to-one correspondence to the

one-face rooted hypermap [(12 . . . d), g−1
2 , g−1

1], so these two enumeration problems are

equivalent, and thus result in the same generating function.

The various generating function expressions discussed in [28] have a number of

similarities with our expression (8.0.2) for Pd(m1,m2), particularly in the use of

hypergeometric series, though the exact forms differ in each case. However, what

is important for the purposes of the rest of this thesis is not the form or value of

the functions themselves but the method we used to derive (8.0.2). This method is

applicable beyond the one-face rooted hypermap case studied in this chapter, and we

will begin to explore this in the next chapter by extending our method to cover all

rooted hypermaps, showing how to overcome the one-face restriction. After passing

this hurdle we will then find that the methods can be used on still broader problems,

such as enumerating rooted maps and constellations (see Chapter 12).

73

Chapter 11

General rooted hypermaps

In the previous chapter we looked exclusively at the enumeration of rooted hypermaps

with one face, and showed that we were able to find closed-form expressions for the

generating functions enumerating them by number of edges and vertices. As is often

the case, this special case has a much simpler solution than the general case will have,

but that doesn’t mean that the general case doesn’t have a solution. In this chapter

we will look at this general case: enumeration of all rooted hypermaps1. The solution

we will find here is nowhere near as neat as in the one-face case, but it is still in a

form which allows us to compute generating functions (and therefore rooted hypermap

counts) algorithmically.

One potential way to proceed to other numbers of faces would be to adjust the

method shown in the last chapter to count rooted hypermaps with other numbers of

faces. The two-face case is reasonably easy to do (see Section 11.1), but the method

gets progressively more complex as the number of faces increases.

However, the fact that the functions Pd(m1,m2) are symmetric (as a result of

Lemma 9.1.1) hints at a simpler method. Let P
(f)
d (m1,m2) be the generating function

for f -face rooted hypermaps with d darts, with P
(1)
d (m1,m2) ≡ Pd(m1,m2). If we sum

over all these we get a new generating function

Hd(m0,m1,m2) =

d∑
f=1

mf
0P

(f)
d (m1,m2),

which enumerates all rooted hypermaps with d darts at once. Lemma 9.1.1 again

means that this function will be symmetric in all three of its parameters. This suggests

that it may itself have a reasonably simple form – at least simpler than the individual

P
(f)
d (m1,m2) terms are.

The final result of this chapter will be a method of computing these global generating

functions. Unlike in the one-face case, however, the method for computing these

necessarily involves the use of recursion relations, each generating function being

dependent on all those for lower dart counts.

1We will look at an even more general case, enumeration of all rooted constellations, in the next
chapter.

74

General rooted hypermaps The two-face case

Figure 11.1.1: The ladder diagram for the hypermap {(12)(3456), (143)(256), (16425)(3)}. This
is the same basic diagram as in Figure 10.2.1b, with the only difference being in the backbone
(grey), which now has two cycles of length 2 and 4.

11.1 The two-face case

We will nonetheless look at the two-face case on its own first, as it demonstrates the

general process through which the methods in the previous chapter are generalised to

multiple faces. As in the previous chapter we will represent hypermaps using ladder

diagrams (see Figure 11.1.1). The exact same construction principle is used here: we

start off by representing our rooted hypermap as [σ, g, (σg)−1], where σ is a two-cycle

with all indices in its cycle notation in the correct order (e.g. (12)(3456), (123)(456)).

In the previous chapter we showed how one can then sum over all possible

permutations g and produce a Gaussian integral expression for a generating function

which enumerates the associated ladder diagrams. The exact same principle applies here

– as we labelled the expression associated with a one-cycle of length d as Pd(m1m2), we

will label the expression for a 2-cycle σ with cycles of length i and j as Pi,j(m1,m2).

For a given permutation g, the associated term in Pi,j(m1,m2) is

δ[a1, aσg(1)]δ[b1, bg(1)] · · · δ[ad, aσg(d)]δ[bd, bg(d)],

exactly as it was in the one-face case (with the only change being the definition of σ),

and this produces a monomial in m1 and m2 with the exponents being the number of

solid and dashed loops in the associated ladder diagram, as we want. The difference

here is how the above converts into a derivative expression when we sum over all g. As

an example, when σ = (12)(3456) i.e. when i = 2 and j = 4, we get

P2,4(m1,m2) =
∂

∂αa1b1
· · · ∂

∂αa6b6
(αa2b1αa1b2αa4b3αa5b4αa6b5αa3b6)

∣∣∣∣
α=0

(note that the a-indices on the α terms have been permuted by σ), and the Gaussian

75

The two-face case General rooted hypermaps

integral corresponding to this is

P2,4(m1,m2) =
1

πm1m2

ˆ
Cm1m2

dm1m2zdm1m2 z̄e−|z|
2
za1b1 z̄a2b1za2b2 z̄a1b2

× za3b3 z̄a4b3za4b4 z̄a5b4za5b5 z̄a6b5za6b6 z̄a3b6 .

As in the one-face case, we wish to convert this integral into an eigenvalue integral in

order to make it useful. First, we convert the Gaussian integral to a spherical integral,

through a reverse of the process used in Section 5.1.1. This gives us

P2,4(m1,m2) =
Γ(m1m2 + 6)

2πm1m2

ˆ
S2m1m2−1

dΩxa1b1 x̄a2b1xa2b2 x̄a1b2

× xa3b3 x̄a4b3xa4b4 x̄a5b4xa5b5 x̄a6b5xa6b6 x̄a3b6 ,

and using (ρ̂12
1)a1a2 = xa1bx̄a2b we have

P2,4(m1,m2) =
Γ(m1m2 + 6)

2πm1m2

ˆ
S2m1m2−1

dΩTr[(ρ̂12
1)2]Tr[(ρ̂12

1)4].

Following the same procedure through in the general case, we find that

Pi,j(m1,m2) =
Γ(m1m2 + i+ j)

2πm1m2

ˆ
S2m1m2−1

dΩTr[(ρ̂12
1)i]Tr[(ρ̂12

1)j]. (11.1.1)

Each of the Tr[(ρ̂12
1)i] terms in the integrand corresponds directly to a cycle of length

i in σ (just as the Tr[(ρ̂12
1)d] term in the one-face case corresponds to a one-cycle of

length d), while the prefactor depends only on the integrand’s order in ρ̂12
1 , which is

i+ j.

We could continue all the way through, evaluating this integral in closed form

using the method of Lloyd, Pagels, Page and Sen [21, 24, 30]. However, the resulting

expression is less useful to us than the one-face case was, and all the results it could

give us will be obtainable from the general case as well. So we will not bother with this

here, and instead move on to how we use Pi,j(m1,m2) to build generating functions.

11.1.1 Constructing the generating functions

The functions Pi,j(m1,m2) which we defined in the previous section are not themselves

hypermap generating functions, for a number of reasons.

• They include non-transitive cases. The summation over permutations which

defines Pi,j(m1,m2) places no restrictions on the permutation g, so cases where

[σ, g, (σg)−1] is non-transitive (and is therefore not a hypermap) are included in

the sum.

• Some of the counted hypermaps are isomorphic to each other. As in the one-face

case, the fact that we are counting rooted hypermaps ensures that we don’t need

to consider isomorphisms which cycle the indices of the first cycle in σ – although

such isomorphisms still give hypermaps with the same σ, they do not preserve the

76

General rooted hypermaps The two-face case

root. However, in the two-face case, isomorphisms which only cycle the indices in

the second cycle of σ do preserve the root, so must be considered. These result in

each valid rooted hypermap being counted j times (see Appendix E for the proof

of this).

Neither of these points were issues in the one-face case, but now we are moving to more

general cases we need to account for them. This is fortunately not too difficult. The

non-transitive cases can be accounted for by using the fact that the non-transitive cases

can be decomposed a direct sums of transitive cases, and the multiple counting is easy

to account for as the size of each hypermap’s isomorphism class only depends on the

cycle structure of σ, and not on g.

Theorem 11.1.1. The generating function P
(2)
d (m1,m2) for enumerating two-face

rooted hypermaps with d darts by number of vertices and edges is

P
(2)
d (m1,m2) =

d−1∑
j=1

1

j
[Pd−j,j(m1,m2)− Pd−j(m1,m2)Pj(m1,m2)] .

Proof. We start with the function Pd−j,j(m1,m2), where we use i = d − j to fix the

overall dart count at d. j must be between 1 and d− 1 inclusive, as both of the cycles

in σ must be of non-zero length.

We first need to subtract the non-transitive cases. Each such case is a direct sum

of two transitive one-face cases, one of length d − j and the other of length j, so the

generating function for these is simply the product of two one-face generating functions.

Subtracting this away gives

Pd−j,j(m1,m2)− Pd−j(m1,m2)Pj(m1,m2),

which is a sum only over valid hypermaps. This still contains multiple counting, but as

each hypermap is in an isomorphism class of size j, we can account for this by simply

dividing by j. We then sum over all possible values of j, with the resulting generating

function being

P
(2)
d (m1,m2) =

d−1∑
j=1

1

j
[Pd−j,j(m1,m2)− Pd−j(m1,m2)Pj(m1,m2)] .

This example demonstrates the basic principles of generalising to all rooted

hypermaps, demonstrating the types of degeneracies which need to be accounted for.

We could, if we wished, apply the same methods to higher numbers of faces, but

the resulting expressions, even without explicitly evaluating the integrals, will become

impractical very quickly, so we will at this point move on to looking at the general case.

77

Enumerating all rooted hypermaps General rooted hypermaps

11.2 Enumerating all rooted hypermaps

In the previous section we built the generating function for two faces by first defining

the function Pi,j(m1,m2). This function is itself a generating function, but instead

of hypermaps it counts ladder diagrams, which are related to hypermaps but do not

require the transitivity property. For our general case we now need to generalise these

functions further.

Pi,j(m1,m2) is defined entirely by the backbone of the ladder diagrams, the

permutation σ, with the indices i and j being the lengths of the cycles in σ. When

σ has more than two cycles i.e. N cycles with lengths d1, . . . , dN , then the obvious

generalisation of Pi,j(m1,m2) as given in (11.1.1) is

Pd1,...,dN (m1,m2) =
Γ(m1m2 + d)

2πm1m2

ˆ
S2m1m2−1

dΩ

N∏
r=1

Tr[(ρ̂12
1)dr], (11.2.1)

where d = ΣN
r=1dr. It is fortunately reasonably easy to prove that this is correct.

Lemma 11.2.1. Let σ be the permutation on [1 . . . d] with cycle lengths d1, . . . , dN ,

such that the indices in its cycle representation are in the correct order, e.g. if

{d1, d2, d3} = {3, 2, 4} then σ = (123)(45)(6789). Then Pd1,...,dN (m1,m2) as given in

(11.2.1) is a generating function enumerating all ladder diagrams with σ as their

backbone, partitioning them by number of solid and dashed loops.

Proof. This proof works in much the same way as that for Theorem 10.2.1. First we

need to convert (11.2.1) into a Gaussian integral using the method from Section 5.1.1.

As was the case there, the integrand in our spherical integral is a monomial of order

d in the components of ρ̂12
1 , or equivalently a monomial of order 2d in the unit vector

components xab and their complex conjugates, so all of the same basic steps work here.

First we rewrite (11.2.1) using the fact that [ρ̂12
1]a1a2 = xa1bx̄a2b. It is most

convenient to express the integral as

Pd1,...,dN (m1,m2) =
Γ(m1m2 + d)

2πm1m2

ˆ
S2m1m2−1

dΩ

d∏
i=1

xaibi x̄aσ(i)bi .

With the way σ is defined, this product reproduces the product of traces seen in (11.2.1).

Now we multiply this by the Gaussian factor

2

Γ(m1m2 + d)

ˆ ∞
0

λ2m1m2−1+2de−λ
2
dλ = 1

78

General rooted hypermaps Enumerating all rooted hypermaps

and substitute in zab = λxab to get

Pd1,...,dN (m1,m2) =
1

πm1m2

ˆ
Cm1m2

dm1m2zdm1m2 z̄e−|z|
2

d∏
i=1

zaibi z̄aσ(i)bi

=
∂

∂αa1b1

∂

∂βaσ(1)b1
· · · ∂

∂αadbd

∂

∂βaσ(d)bd
eα·β

∣∣∣∣∣
α,β=0

=
∂

∂αa1b1
· · · ∂

∂αadbd
(αaσ(1)b1 · · ·αaσ(d)bd)

∣∣∣∣
α=0

.

This last step should look familiar from Theorem 10.2.1. As we did there, we

now evaluate this expression by expanding out the multi-derivative. Each pairing of

derivatives to α terms – one for each d-permutation g in Symd – produces a product

of Kronecker deltas:

Pd1,...,dN (m1,m2) =
∑

g∈Symd

δ[a1, aσg(1)]δ[b1, bg(1)] · · · δ[ad, aσg(d)]δ[bd, bg(d)]. (11.2.2)

Each such term then contracts down to a monomial in m1 and m2, where the exponent

of m1 is the number of cycles in σg and the exponent of m2 is the number of cycles in

g.

But we know that these terms can also be represented in terms of ladder diagrams.

The generalisation of the ladder diagrams used in Theorem 10.2.1 is simple, as it was in

Figure 11.1.1; we just replace the dashed “backbone” lines with those given by our new,

multi-cycled σ. The number of dashed loops then equals the number of cycles in σg,

and the number of solid loops equals the number of cycles in g. There is a one-to-one

correspondence between d-permutations g and ladder diagrams with backbone σ, so

Pd1,...,dN (m1,m2) is a generating function enumerating them by number of solid and

dashed loops.

This lemma gives us what we need to be able to evaluate these generating functions,

as it relates the Pd1,...,dN (m1,m2) to matrix integrals of the type we used in Part II,

and we have already looked at how to evaluate such integrals in Chapter 5. Of course

it is the generating functions for rooted hypermaps that we are after, not those for

ladder diagrams, so we will save this evaluation work for later. Next we will see how

to construct the hypermap generating functions themselves using Pd1,...,dN (m1,m2).

11.2.1 Eliminating over-counting

Any rooted hypermap can be represented as a ladder diagram. This can be seen quite

easily through construction: represent the hypermap as the constellation [σ, g, (σg)−1],

then make a ladder diagram with σ as the backbone and g as the permutation. The

number of vertices is the number of dashed loops in the diagram, the number of

edges the number of solid loops, and the number of faces the number of cycles in the

backbone. Summing over all rooted hypermaps is not as simple as summing over all

79

Enumerating all rooted hypermaps General rooted hypermaps

ladder diagrams, however, as we have already seen in Section 11.1. There are effectively

three factors which cause over-counting:

• Cyclic degeneracy of non-rooted cycles – We saw in the two-face case that there is

a degeneracy caused by isomorphisms which cycle the indices in the second cycle

of σ (Appendix E). With higher face counts, the same is true for each non-rooted

cycle in σ (all except the first, as we are still using the convention of associating

the root with the label 1), so if the cycle lengths are d1, . . . , dN , the degeneracy

is d2d3 · · · dN .

• Ordering degeneracy of non-rooted cycles – Isomorphisms which simply reorder

the non-rooted cycles produce a second degeneracy. For instance, any rooted

hypermap counted in Pd1,d2,d3(m1,m2) will also be counted in Pd1,d3,d2(m1,m2).

In a rooted hypermap (where the ladder diagram is connected) the cycles of

σ must be linked together fully by lines coming from g, and as no two lines

can connect to the same cycle at the same point all of these inter-cycle links

are distinguishable from each other. Thus, any non-trivial reordering of the

non-rooted cycles will result in a distinct ladder diagram, meaning that the

degeneracy in each case is (N − 1)!, the number of orderings of the non-rooted

cycles.

• Non-transitive cases – In the two-face case we saw that the function Pi,j(m1,m2)

counts non-transitive cases (corresponding to disconnected ladder diagrams).

These by definition are not hypermaps, but we were able to subtract them away

by treating disconnected ladder diagrams as products of two smaller connected

diagrams. The same principle applies with higher face counts.

We must account for the non-transitive cases first. We again do so by factoring and

subtracting out the disconnected ladder diagrams, but to do so for general face counts

we use a recursive method:

Lemma 11.2.2. Let P̄d1,...,dN (m1,m2) be a generating function corresponding to the

same sum over ladder diagrams as Pd1,...,dN (m1,m2), but only including connected

ladder diagrams. Then for any N and d1, . . . , dN ,

Pd1,...,dN (m1,m2) =
∑

u⊂{d2,...,dN}

P̄d1,u1,u2,...(m1,m2)Pū1,ū2,...(m1,m2), (11.2.3)

where the sum is over all subsets u of {d2, . . . , dN} including the empty set and

{d2, . . . , dN} itself, and ū is the complement of u. When ū is empty, we define the

special case P (m1,m2) = 1.

Proof. This is a simple factorisation of the sum over ladder diagrams. We divide

each ladder into two parts – a connected ladder which contains the rooted cycle

and a (potentially disconnected, potentially empty) ladder containing everything else.

The P̄d1,u1,u2,...(m1,m2) term enumerates the possible configurations of the connected,

rooted part, while the Pū1,ū2,...(m1,m2) term enumerates the rest.

80

General rooted hypermaps Enumerating all rooted hypermaps

This relation is rather cumbersome, particularly given the nature of the summation.

However, for our purposes it can be simplified massively, by defining three helper

functions:

Definition 11.2.1.

Π
(N)
d (m1,m2;x) =

∞∑
d1=1

xd1

d1
· · ·

∞∑
dN=1

xdN

dN
Pd,d1,...,dN (m1,m2)

Π̄
(N)
d (m1,m2;x) =

∞∑
d1=1

xd1

d1
· · ·

∞∑
dN=1

xdN

dN
P̄d,d1,...,dN (m1,m2) (11.2.4)

Σ(N)(m1,m2;x) =
∞∑
d1=1

xd1

d1
· · ·

∞∑
dN=1

xdN

dN
Pd1,...,dN (m1,m2), (11.2.5)

with the special cases Π
(0)
d (m1,m2;x) = Π̄

(0)
d (m1,m2;x) = Pd(m1,m2) and

Σ(0)(m1,m2;x) = 1.

Lemma 11.2.3.

Π
(N)
d (m1,m2;x) =

N∑
k=0

(
N

k

)
Π̄

(k)
d (m1,m2;x)Σ(N−k)(m1,m2;x). (11.2.6)

Proof. To arrive at this identity, first we perform a slight relabelling of the indices in

(11.2.3):

Pd,d1,...,dN (m1,m2) =
∑

u⊂{d1,...,dN}

P̄d,u1,u2,...(m1,m2)Pū1,ū2,...(m1,m2).

Now we sum over each of the di, with an additional factor of xdi/di in each sum.

The left hand side simply becomes Π
(N)
d (m1,m2;x), and if u has k elements in it, the

summand in the right hand side becomes Π̄
(k)
d (m1,m2;x)Σ(N−k)(m1,m2;x). As this

only depends on k and not the specific makeup of u, we can collect together all possible

u with the same length, of which there are
(
N
k

)
. Therefore,

Π
(N)
d (m1,m2;x) =

N∑
k=0

(
N

k

)
Π̄

(k)
d (m1,m2;x)Σ(N−k)(m1,m2;x).

This recursion relation is much simpler than (11.2.3). While it contains less

information (you cannot reconstruct P̄d1,...,dN (m1,m2) from Π̄
(k)
d (m1,m2;x)), it does

contain all the information required to build generating functions for rooted hypermaps,

as we will see in the next section. The fact that these helper functions are connected

through a recursion relation is a clear indicator of the fact that our final generating

functions will also be defined using recursions.

81

Enumerating all rooted hypermaps General rooted hypermaps

11.2.2 Building the generating function

While our stated aim was to calculate the functions Hd(m0,m1,m2) enumerating rooted

hypermaps for fixed dart count, it is actually a lot easier to define and work with

the global generating function H(m0,m1,m2;x) which enumerates all dart counts

simultaneously. This is hinted at by the form of the helper functions we defined in

the last section, which feature terms like xd1+···+dN (the exponent here corresponds to

a dart count on a hypermap). Having defined P̄d1,...,dN (m1,m2), we now have all the

tools necessary to state an expression for this function. We will then return to the

Hd(m0,m1,m2) in Section 11.2.4.

Let us define H(m0,m1,m2;x) as a function which enumerates all rooted

hypermaps, partitioning them by number of faces, edges, vertices and darts.

Additionally, we shall say that it is an alternating generating function in x (the

parameter which partitions by number of darts), as this will help make the resulting

integral expressions converge. This function is given by

H(m0,m1,m2;x) =
∞∑
N=1

mN
0

(N − 1)!

∞∑
d1=1

(−x)d1

×
∞∑
d2=1

(−x)d2

d2
· · ·

∞∑
dN=1

(−x)dN

dN
P̄d1,...,dN (m1,m2). (11.2.7)

This includes the term (−x)d1+...+dN to enumerate by dart count and mN
0 to enumerate

by face count, and is divided by the factor (N − 1)!d2 · · · dN to account for the two

types of degeneracy associated with the unrooted cycles. By comparing the above with

(11.2.4) we see that

H(m0,m1,m2;x) =
∞∑
N=1

mN
0

(N − 1)!

∞∑
d1=1

(−x)d1Π̄
(N−1)
d1

(m1,m2;−x)

=
∞∑
N=0

mN+1
0

N !

∞∑
d=1

(−x)dΠ̄
(N)
d (m1,m2;−x).

Now that we have H(m0,m1,m2;x) in terms of our helper functions, we can use

(11.2.6) to eliminate the dependence on the transitive-only functions Π̄
(N)
d (m1,m2;x)

and P̄d1,...,dN (m1,m2) in favour of the easier-to-calculate non-transitive equivalents.

Theorem 11.2.1. Let

F (m0,m1,m2;x) =
∞∑
N=0

mN
0

N !
Σ(N)(m1,m2;−x). (11.2.8)

Then

H(m0,m1,m2;x)F (m0,m1,m2;x) = x
∂

∂x
F (m0,m1,m2;x). (11.2.9)

82

General rooted hypermaps Enumerating all rooted hypermaps

Proof. First, consider the right hand side.

x
∂

∂x
F (m0,m1,m2;x) = x

∂

∂x

∞∑
N=0

mN
0

N !
Σ(N)(m1,m2;−x)

= x
∂

∂x

∞∑
N=0

mN
0

N !

∞∑
d1=1

(−x)d1

d1
· · ·

∞∑
dN=1

(−x)dN

dN
Pd1,...,dN (m1,m2)

= N

∞∑
N=0

mN
0

N !

∞∑
d1=1

(−x)d1

×
∞∑
d2=1

(−x)d2

d2
· · ·

∞∑
dN=1

(−x)dN

dN
Pd1,...,dN (m1,m2).

The factor of N comes from the fact that any of the N different summations could

be moved to the front and differentiated first. Using our helper functions we can now

simplify this expression again:

x
∂

∂x
F (m0,m1,m2;x) =

∞∑
N=0

mN
0

(N − 1)!

∞∑
d1=1

(−x)d1Π
(N−1)
d (m1,m2;−x)

=

∞∑
N=0

mN+1
0

N !

∞∑
d=1

(−x)dΠ
(N)
d (m1,m2;−x).

Now consider the left hand side of (11.2.9). When we expand it in terms of helper

functions, we get

H(m0,m1,m2;x)F (m0,m1,m2;x) =
∞∑
k=0

mk+1
0

k!

∞∑
d=1

(−x)dΠ̄
(k)
d (m1,m2;−x)

×
∞∑
N=0

mN
0

N !
Σ(N)(m1,m2;−x)

=

∞∑
k=0

∞∑
N=k

mN+1
0

k!(N − k)!

∞∑
d=1

(−x)d

× Π̄
(k)
d (m1,m2;−x)Σ(N−k)(m1,m2;−x)

=

∞∑
N=0

mN+1
0

N !

∞∑
d=1

(−x)d
N∑
k=0

(
N

k

)
× Π̄

(k)
d (m1,m2;−x)Σ(N−k)(m1,m2;−x).

At this point the sum over k is exactly (11.2.6), so we can substitute this in, getting

H(m0,m1,m2;x)F (m0,m1,m2;x) =
∞∑
N=0

mN+1
0

N !

∞∑
d=1

(−x)dΠ
(N)
d (m1,m2;−x)

= x
∂

∂x
F (m0,m1,m2;x).

83

Enumerating all rooted hypermaps General rooted hypermaps

F (m0,m1,m2;x) depends only on the non-transitive functions Σ(N)(m1,m2;x),

which are much better suited for evaluation that the transitive equivalent functions

would be, as we will see in the next section. Thus we see that the best way for us to

evaluate H(m0,m1,m2;x) is to first evaluate F (m0,m1,m2;x) and infer it from that

using (11.2.9).

It’s worth noting that we can write (11.2.9) as

H(m0,m1,m2;x) = x
∂

∂x
ln[F (m0,m1,m2;x)],

but we will find as we evaluate F (m0,m1,m2;x) that it is not easy to take the logarithm

of the resulting expression. The most appropriate method for evaluating these functions

is in fact to treat them both as formal power series in x, and use (11.2.9) to relate the

terms in these series to each other recursively, as we will discuss in Section 11.2.4.

11.2.3 Evaluating F (m0,m1,m2;x)

To evaluate F (m0,m1,m2;x), we now go back to the functions Pd1,...,dN (m1,m2) defined

in (11.2.1), in terms of which all the functions used in the previous few sections

have been defined. We initially defined Pd1,...,dN (m1,m2) using matrix integrals before

proving their combinatorial interpretations, and we can now use them to find an integral

expression for F (m0,m1,m2;x).

To do this we need to return again to methods we used in Part II for manipulating

such matrix integrals. We have already used the Gaussian integration methods

introduced in Section 5.1 in proving Lemma 11.2.1, but this one of two approaches

we’ve used, the other being the eigenvalue-integral method from Section 5.2. This

method allowed us to evaluate the one-face rooted hypermap generating functions in

closed form, and it will be similarly useful here.

Theorem 11.2.2. For fixed m1 and m2,

F (m0,m1,m2;x) ∝
ˆ m1∏

k=1

qm2−m1
k e−qkdqk
(1 + qkx)m0

∏
1≤i<j≤m1

(qj − qi)2.

Proof. We begin by with (11.2.1):

Pd1,...,dN (m1,m2) =
Γ(m1m2 + d)

2πm1m2

ˆ
S2m1m2−1

dΩ

N∏
r=1

Tr[(ρ̂12
1)dr],

noting that the integrand here is order d in ρ̂12
1 , and can be expressed entirely in terms

of the eigenvalues of ρ̂12
1 . As we saw in Section 5.2, we can write this as an integral

over these eigenvalues [21]:

Pd1,...,dN (m1,m2) =
Γ(m1m2 + d)

Γ(m1m2)

ˆ
dp1 · · · dpm1P (p1, . . . , pm1)

N∏
r=1

(
m1∑
ar=1

pdrar

)
,

84

General rooted hypermaps Enumerating all rooted hypermaps

where the normalised joint density function P (p1, . . . , pm1) is defined in 5.2.2. Note

the prefactor, which comes from the fact that the normalised volume element for the

spherical integral is Γ(m1m2)
2πm1m2 dΩ. Furthermore we can use Page’s rescaling method to

simplify this further [24] (see Section 5.2.1):

Pd1,...,dN (m1,m2) =
1

Z∗m1,m2
Γ(m1m2)

ˆ m1∏
k=1

qm2−m1
k e−qkdqk

×
∏

1≤i<j≤m1

(qj − qi)2
N∏
r=1

(
m1∑
ar=1

qdrar

)

=
1

Λ

ˆ m1∏
k=1

qm2−m1
k e−qkdqk

×
∏

1≤i<j≤m1

(qj − qi)2
N∏
r=1

(
m1∑
ar=1

qdrar

)
. (11.2.10)

Z∗m1,m2
is the same normalising factor that appeared in Section 5.2.1, but from now on

for the sake of readability we adopt the symbol Λ to collect up the entire x-independent

prefactor, as this term will appear in a lot of places in the following work. In this case

the normalisation is such that P0,...,0(m1,m2) = mN
1 , as follows from (11.2.1).

Now we substitute this into (11.2.5). Each sum over dr gets paired with the sum

over ar in (11.2.10). The resulting N double sums are indistinguishable from each other

so can be grouped together:

Σ(N)(m1,m2;x) =
1

Λ

ˆ m1∏
k=1

qm2−m1
k e−qkdqk

∏
1≤i<j≤m1

(qj − qi)2

(∞∑
d=1

xd

d

m1∑
a=1

qda

)N
.

Substituting this into (11.2.8), we get

F (m0,m1,m2;x) =
1

Λ

ˆ m1∏
k=1

qm2−m1
k e−qkdqk

∏
1≤i<j≤m1

(qj − qi)2

×
∞∑
N=0

mN
0

N !

(∞∑
d=1

(−x)d

d

m1∑
a=1

qda

)N
.

We have to be careful with our manipulation of these summations, as they don’t

converge for all possible values of q1, . . . , qm1 . However, Lemma A.0.3 in Appendix

A gives us that, when treated as formal power series in x,

∞∑
N=0

mN
0

N !

(∞∑
d=1

(−x)d

d

m1∑
a=1

qda

)N
≡

m1∏
a=1

1

(1 + qax)m0
.

Therefore,

F (m0,m1,m2;x) =
1

Λ

ˆ m1∏
k=1

qm2−m1
k e−qkdqk
(1 + qkx)m0

∏
1≤i<j≤m1

(qj − qi)2. (11.2.11)

85

Enumerating all rooted hypermaps General rooted hypermaps

This eliminates the non-convergence problem entirely, as the resultant integrals

converge absolutely as long as x is positive2.

We now want to evaluate this expression in a closed form, as we did in Section 5.2.1.

We have to depart slightly from the method used there, however. Previously we used

a method developed by Sen, where we rewrote the Vandermonde discriminant term∏
1≤i<j≤m1

(qj − qi)2

in terms of associated Laguerre polynomials, allowing us to separate out them1 different

integrals and evaluate each separately [30]. That method relied on the fact that the

integrals were weighted by qm2−m1
k e−qk , the weight function for the associated Laguerre

polynomials; it was due to the orthogonality of the polynomials that the integrals

became separable.

In (11.2.11), however, the weight functions are now

qm2−m1
k e−qk

(1 + qkx)m0
.

We can still use Sen’s basic method, but as the weight function has changed, the

required set of orthogonal polynomials will also be different. It is incredibly difficult to

evaluate these polynomials in any exact form, but as it happens we are able to infer

all of their necessary properties (see Appendix G). Using these results, we can now

evaluate the integrals in (11.2.11).

Theorem 11.2.3. When expressed as a formal power series in x,

F (m0,m1,m2;x) =
∞∑
k0=0

· · ·
∞∑

km1−1=0

∏
1≤i<j≤m1

(
1− kj − ki

j − i

)
m1−1∏
a=0

(m0)ka(m2 − a)ka
ka!

(−x)ka . (11.2.12)

Proof. For known m0, m1, m2 and x, let

w(q) =
qm2−m1e−q

(1 + qx)m0
.

Treating this as a weight function on the interval [0,∞), its moments, expressed as

2This requirement is why we defined H(m0,m1,m2;x) to be an alternating power series in x – so
that the domain in which the integral converges would be the positive-x domain.

86

General rooted hypermaps Enumerating all rooted hypermaps

power series in x, are

µn =

ˆ ∞
0

qn
qm2−m1e−q

(1 + qx)m0
dq

=

∞∑
k=0

Γ(m0 + k)

k!Γ(m0)
(−x)k

ˆ ∞
0

qm2−m1+n+ke−qdq

=
∞∑
k=0

(m2 −m1 + n+ k)!Γ(m0 + k)

k!Γ(m0)
(−x)k. (11.2.13)

Let us define the orthogonal polynomials Kn(q) as order-n monic polynomials in q,

satisfying the orthogonality relation

ˆ ∞
0

Ki(q)Kj(q)w(q)dq = Iiδi,j

where

In =

ˆ ∞
0

[Kn(q)]2w(q)dq.

As Sen remarks [30], we can write the Vandermonde discriminant in terms of these

polynomials:

∏
1≤i<j≤m1

(qj − qi)2 =

∣∣∣∣∣∣∣∣∣∣∣

K0(q1) K1(q1) · · · Km1−1(q1)

K0(q2) K1(q2) · · · Km1−1(q2)
...

...
. . .

...

K0(qm1) K1(qm1) · · · Km1−1(qm1)

∣∣∣∣∣∣∣∣∣∣∣

2

.

When we substitute this into (11.2.11) and expand the determinants out, we get

F (m0,m1,m2;x) =
εi1···im1

εj1···jm1

Λ

m1∏
k=1

ˆ ∞
0

Kik(qk)Kjk(qk)w(qk)dqk,

where we sum over each of the i and j indices from 0 to m1−1, and ε is the Levi-Civita

symbol. The integrals are now exactly the orthogonality relation for our polynomials,

so only cases where ik = jk for all k contribute. Counting up all such cases we get that

F (m0,m1,m2;x) =
m1!

Λ

m1∏
k=1

ˆ ∞
0

Kk−1(q)Kk−1(q)w(q)dq

=
m1!

Λ

m1∏
k=1

Ik−1. (11.2.14)

Using Corollary F.0.1 from Appendix G this becomes

F (m0,m1,m2;x) =
m1!

Λ
|Mm1 |

87

Enumerating all rooted hypermaps General rooted hypermaps

where

Mm1 =

µ0 µ1 · · · µm1−1

µ1 µ2 · · · µm1

...
...

. . .
...

µm1−1 µm1 · · · µ2m1−2

 .

We now substitute (11.2.13) into this. By writing all the terms in the first column

as sums over the same variable, km1 , then all the terms in the second column sums over

km1−1 etc. we make it so that all of the k-sums can be factored out of the determinant.

This gives us

F (m0,m1,m2;x) =
m1!

Λ

∞∑
k1=0

Γ(m0 + k1)

k1!Γ(m0)
(−x)k1 · · ·

∞∑
km1=0

Γ(m0 + km1)

km1 !Γ(m0)
(−x)km1

×Φ(k1, . . . , km1) (11.2.15)

where

Φ(k1, . . . , km1
) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(α+ km1)! (α+ km1−1 + 1)! · · · (α+ k1 +m1 − 1)!

(α+ km1
+ 1)! (α+ km1−1 + 2)! · · · (α+ k

1
+m1)!

...
...

. . .
...

(α+ km1 +m1 − 2)! (α+ km1−1 +m1 − 1)! · · · (α+ k1 + 2m1 − 3)!

(α+ km1
+m1 − 1)! (α+ km1−1 +m1)! · · · (α+ k

1
+ 2m1 − 2)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
(11.2.16)

and α = m2 −m1.

We now simplify this determinant through a series of row operations. First we

subtract (α+ 1) times the first row from the second, (α+ 2) times the second row from

the third etc. to get

Φ(k1, . . . , km1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(α+ km1)! · · · (α+ k1 +m1 − 1)!

km1(α+ km1)! · · · (k1 +m1 − 1)(α+ k1 +m1 − 1)!
...

. . .
...

km1(α+ km1 +m1 − 3)! · · · (k1 +m1 − 1)(α+ k1 + 2m1 − 4)!

km1(α+ km1 +m1 − 2)! · · · (k1 +m1 − 1)(α+ k1 + 2m1 − 3)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Next we subtract (α+ 1) times the second row from the third, (α+ 2) times the third

from the fourth etc. We repeat this process a total of m1−1 times, reducing the number

of row operations in each step by one each time. When all the steps are finished we

have

Φ(k1, . . . , km1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

(α+ km1)! · · · (α+ k1 +m1 − 1)!

km1(α+ km1)! · · · (k1 +m1 − 1)(α+ k1 +m1 − 1)!
...

. . .
...

km1−2
m1

(α+ km1)! · · · (k1 +m1 − 1)m1−2(α+ k1 +m1 − 1)!

km1−1
m1

(α+ km1)! · · · (k1 +m1 − 1)m1−1(α+ k1 +m1 − 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
88

General rooted hypermaps Enumerating all rooted hypermaps

and therefore

Φ(k1, . . . , km1) = ∆(km1 , km1−1 + 1, . . . , k1 +m1 − 1)

×
m1∏
a=1

(m2 −m1 + km1+1−a + a− 1)!

=
∏

1≤j<i≤m1

(km1+1−i − km1+1−j + i− j)

×
m1∏
a=1

(m2 −m1 + km1+1−a + a− 1)!.

Finally we reverse the order of the products, by substituting a → m1 + 1 − a, i →
m1 + 1− i and j → m1 + 1− j. This gives

Φ(km1 , . . . , k1) =
∏

1≤i<j≤m1

(j − i+ ki − kj)
m1∏
a=1

(m2 + ka − a)!. (11.2.17)

We now substitute this into (11.2.15) to get

F (m0,m1,m2;x) =
m1!

Λ

∞∑
k1=0

Γ(m0 + k1)(m2 + k1 − 1)!

k1!Γ(m0)
(−x)k1

· · ·
∞∑

km1=0

Γ(m0 + km1)(m2 + km1 −m1)!

km1 !Γ(m0)
(−x)km1

×
∏

1≤i<j≤m1

(j − i+ ki − kj). (11.2.18)

We are able to fix the normalisation constant at this point. Choosing x = 0, (11.2.8)

becomes

F (m0,m1,m2; 0) =
∞∑
N=0

mN
0

N !
Σ(N)(m1,m2; 0) = 1 (11.2.19)

As the only Σ(N)(m1,m2;x) which doesn’t go to zero as x→ 0 is Σ(0)(m1,m2;x) = 1.

Putting this into (11.2.18) gives

1 =
m1!

Λ

m1∏
a=1

(m2 − a)!
∏

1≤i<j≤m1

(j − i).

This fixes Λ exactly, and gives

F (m0,m1,m2;x) =
∞∑
k1=0

· · ·
∞∑

km1=0

∏
1≤i<j≤m1

(
1− kj − ki

j − i

)

×
m1∏
a=1

(m0)ka(m2 − a+ 1)ka
ka!

(−x)ka .

89

Enumerating all rooted hypermaps General rooted hypermaps

For simplicity let us shift all of the k indices down by one:

F (m0,m1,m2;x) =
∞∑
k0=0

· · ·
∞∑

km1−1=0

∏
0≤i<j<m1

(
1− kj − ki

j − i

)

×
m1−1∏
a=0

(m0)ka(m2 − a)ka
ka!

(−x)ka .

This expression shares some similarities with the one-face generating functions

Pd(m1,m2) given in (8.0.2), in particular the rising factorials, which produce polynomial

functions in m0 and m2. However, there is a key difference. We were able to evaluate

the Pd(m1,m2) exactly as smooth functions of m1 and m2 – this was important as

the values we were interested in, representing counts of rooted hypermaps, were given

by the power-series coefficients of these functions. We can’t do this here, however, for

two reasons. The first is that (11.2.12) includes infinite sums, so we cannot evaluate

it in finite time. The second is that the limits of the products are dependent on m1,

meaning we can only evaluate them for integer values of m1 and can’t directly come

up with smooth functions.

Both of these problems can be dealt with, however, as we will see in the next section.

We can avoid the infinite sums simply by looking at the each power of x one at a time,

while the lack of continuity in m1 can be avoided by evaluating at a number of specific

values of m1 and interpolating, using the knowledge that the generating functions being

evaluated must have polynomial dependence on m1.

11.2.4 Evaluating H(m0,m1,m2;x)

This summation expression (11.2.12) for F (m0,m1,m2;x) is as close as we are going

to get to a simple explicit formula for H(m0,m1,m2;x). But while we may not be

able to find any simpler, more direct expressions for H(m0,m1,m2;x), like when we

found (8.0.2) for Pd(m1,m2), we can use what we have now to evaluate terms in

H(m0,m1,m2;x) and extract our hypermap counts from them. In this section we

will look in detail at the method for doing this.

Our first step is to break up the global generating function back up into the simpler

generating functionsHd(m0,m1,m2), corresponding to enumerating with fixed numbers

of darts. We first discussed these functions right at the start of the chapter, and they

relate to the global function through the identity

H(m0,m1,m2;x) =
∞∑
d=1

(−x)dHd(m0,m1,m2). (11.2.20)

This may seem like a step backwards, after having dealt with functions that count

all numbers of darts at the same time, but there is good reason for using both types of

functions in conjunction. The manipulations which led to (11.2.12) were only possible

90

General rooted hypermaps Enumerating all rooted hypermaps

because we dealt with all degrees at once; if we had limited ourselves to one degree at

a time the resulting expressions would have been prohibitively complicated. Now we

have these expressions, however, the functions Hd(m0,m1,m2) are much better suited

for the final evaluation steps as each one is a finite-order polynomial, the coefficients of

which we are able to compute in finite time.

To compute each Hd(m0,m1,m2) we need to break up F (m0,m1,m2;x) in a similar

manner, by saying that

F (m0,m1,m2;x) =
∞∑
d=0

(−x)dFd(m0,m1,m2).

Note that we have a zeroth-order term this time, unlike in (11.2.20), where the

zeroth-order term is absent due to the fact that there are no rooted hypermaps with

zero darts. We already know that F (m0,m1,m2) has a zeroth-order term, however,

from (11.2.19).

We now use the relation (11.2.9) to link these two sequences:

∞∑
d′=1

(−x)d
′
Hd′(m0,m1,m2)

∞∑
d=0

(−x)dFd(m0,m1,m2) = x
∂

∂x

∞∑
d=0

(−x)dFd(m0,m1,m2)

=

∞∑
d=1

d(−x)dFd(m0,m1,m2).

Matching together powers of (−x) on both sides we get

d∑
k=1

Hk(m0,m1,m2)Fd−k(m0,m1,m2) = dFd(m0,m1,m2). (11.2.21)

Thus, if we can calculate each Fd(m0,m1,m2), we can recursively calculate each

Hd(m0,m1,m2) as well.

Evaluating the Fd(m0,m1,m2) requires collecting together all terms in (11.2.12) of

the same order in (−x). The result is

Fd(m0,m1,m2) =
∑

k0, . . . , km1−1 ≥ 0

k0 + . . .+ km1−1 = d

∏
0≤i<j<m1

(
1− kj − ki

j − i

)

×
m1−1∏
a=0

(m0)ka(m2 − a)ka
ka!

, (11.2.22)

where the sum is over all partitions of d into m1 non-negative integers.

As we have already noted, this expression can only be evaluated for fixed positive

integers m1, although when m1 is known it can then be evaluated as a polynomial in m0

and m2. With the knowledge that Fd(m0,m1,m2) has a symmetric polynomial form3,

3We know that Hk(m0,m1,m2) has a symmetric polynomial form, and that F0(m0,m1,m2) = 1.
That all Fd(m0,m1,m2) are also symmetric polynomials then follows by induction from (11.2.21).

91

Enumerating all rooted hypermaps General rooted hypermaps

however, we can infer this form by evaluating Fd(m0,m1,m2) at a number of specific

values of m1 and then interpolating from these. We can infer the order in m1 by finding

the order in m0 – each term in the summation in (11.2.22) goes as md
0 for large m0, so

it is at most order d in m1 – and therefore it is sufficient to evaluate Fd(m0,m1,m2) at

all 0 ≤ m1 ≤ d.

Two special cases need to be accounted for, when the above summation scheme

breaks down. One is when m1 = 1, where we take the Vandermonde term to be unity

and get

Fd(m0, 1,m2) =
(m0)d(m2)d

d!
. (11.2.23)

The second is when m1 = 0. To evaluate this case we again make use of the known

symmetry of Fd(m0,m1,m2). Evaluating instead at m0 = 0, we get

Fd(0,m1,m2) =
∑

k0, . . . , km1−1 ≥ 0

k0 + . . .+ km1−1 = d

∏
1≤i<j<m1

(
1− kj − ki

j − i

)m1−1∏
a=0

δka,0(m2 − a)ka
ka!

=
∑

k0, . . . , km1−1 ≥ 0

k0 + . . .+ km1−1 = d

m1−1∏
a=0

δka,0 = δd,0.

Thus we infer that Fd(m0, 0,m2) = δd,0 as well.

11.2.5 Implementation and Results

We can implement this algorithm in any of a number of different software

packages. Mathematica is a suitable choice, and Algorithm 11.1 shows one possible

implementation. It uses the following steps:

1. Ftmp[d,m1] gives Fd(m0,m1,m2) as a polynomial in m0 and m2, for known d and

m1, by evaluating the summation expression (11.2.22) directly. Note the use of

Apply to construct the variable-dimension summation. The special cases m1 = 0

and m1 = 1 are evaluated separately; the d = 0 special case is not calculated as,

given that it equals unity, it is trivial to factor it out of the recursion relation.

2. F[d] gives Fd(m0,m1,m2) as as a polynomial in m0, m1 and m2, for known d. It

is computed by polynomial interpolation from Ftmp[d,m1], using Mathematica’s

built-in InterpolatingPolynomial function.

3. H[d] gives Hd(m0,m1,m2), using (11.2.21).

11.2.6 Sums over subsets and equivalences

The above results are somewhat lacking, in that they don’t allow us to derive exact

closed-form expressions for our generating functions. In Chapter 10 we had found closed

form summatory expressions for the one-faced-rooted-hypermap generating functions,

92

General rooted hypermaps Enumerating all rooted hypermaps

Algorithm 11.1 An implementation in Mathematica for computing the generating
functions Hd(m0,m1,m2).

Ftmp [d , m1] := Apply [
Sum, Prepend [

Table [
{k [i] , 0 , d − Sum[k [j] , { j , 0 , i − 1}]} , { i , 0 , m1 − 2}

] ,
Product [

1 − (k [j] − k [i]) /(j − i) , { j , 1 , m1 − 1} , { i , 0 , j − 1}
] Product [

Pochhammer [m0, k [a]] Pochhammer [m2 − a , k [a]] / k [a] ! ,
{a , 0 , m1 − 1}

] / . k [m1 − 1] :> (d − Sum[k [c] , {c , 0 , m1 − 2}])
]

] ;
Ftmp [d , 0] := 0 ;
Ftmp [d , 1] := Pochhammer [m0, d] Pochhammer [m2, d] / d ! ;
F [d] := F [d] = InterpolatingPolynomial [

Table [{mtmp, Ftmp [d , mtmp]} , {mtmp, 0 , d }] , m1
] ;

H[d] := H[d] = d F [d] − Sum[H[t] F [d − t] , { t , 1 , d − 1 }] ;

whereas here we can only evaluate the generating functions via an indirect, algorithmic

method.

That does not mean that we can’t find any closed-form results for general rooted

hypermaps, however. The only reason we can’t do so in general is because the

summatory expression (11.2.22) for Fd(m0,m1,m2) contains products and sums whose

ranges are dependent on the parameter m1. But as we noted previously, this means that

if we set m1 to a constant, what remains can be written in closed form. In particular,

we already noted in (11.2.23) that

Fd(m0, 1,m2) =
(m0)d(m2)d

d!
.

This particular case has a combinatorial meaning of its own – setting m1 to unity in

Hd(m0,m1,m2) gives us a generating function which enumerates all rooted hypermaps

with d darts by number of faces and vertices, with all possible numbers of edges summed

over. We now have a simple recursion relation for said generating functions:

Hd(m0, 1,m2) =
(m0)d(m2)d

(d− 1)!
−

d−1∑
k=1

(m0)d−k(m2)d−k
(d− k)!

Hk(m0, 1,m2), (11.2.24)

where we have simply substituted m1 = 1 into (11.2.21). We can also compute

Hd(1,m1,m2) and Hd(m0,m1, 1), using the fact that Hd(m0,m1,m2) is completely

symmetric.

We can perform further summations by setting additional parameters to unity. In

particular, we have the following result:

93

Enumerating all rooted hypermaps General rooted hypermaps

Theorem 11.2.4. Let Hd be the total number of rooted hypermaps with d darts. Then

Hd = d · d!−
d−1∑
k=1

(d− k)!Hk (11.2.25)

for all d > 1, with H1 = 1.

Proof. There is only one way to construct a rooted hypermap with one dart, so H1 = 1.

In general, we have that Hd = Hd(1, 1, 1). Substituting this into (11.2.24) gives the

above result.

The first few such values are 1, 3, 13, 71, 461, 3447 etc.

This is not the only context in which this sequence arises [31]4. Much like how we

inferred the fact that Pd(m1,m2) was a generating function by examining its coefficients,

this appearance of the same counts in other contexts allows us to infer a number

of properties and equivalences for rooted hypermaps. For example, we can derive a

generating function for the sequence Hd:

Theorem 11.2.5. The alternating generating function for the sequence Hd, for d ≥ 1,

is

H(x) = −
[

1 + x

x
+

1∑∞
n=0 n!(−x)n+1

]
=

e−1/x

Γ(0, 1/x)
− 1 + x

x
,

where Γ(n, z) =
´∞
z e−wwn−1dw is the incomplete gamma function.

Proof. Hd = a(d+ 1) for all d ≥ 1, where a(n) is defined in [31, 9]. We have from the

same source that, for n ≥ 1, the generating function for the sequence a(n) is

f(x) =

∞∑
n=1

(−x)na(n)

= 1− 1∑∞
n=0 n!(−x)n

(note that we have chosen to define this as an alternating generating function to match

H(m0,m1,m2;x); the only change from [31] is the sign of x). Thus, accounting for the

shift in index and the lack of term corresponding to a(1), we have that the sequence

Hd has the generating function

H(x) =
∞∑
d=1

(−x)da(d+ 1)

=
f(x) + x

−x

= −
[

1 + x

x
+

1∑∞
n=0 n!(−x)n+1

]
.

4See the FORMULA section for confirmation that this sequence is given by the recursion (11.2.25).

94

General rooted hypermaps Enumerating all rooted hypermaps

The summation is divergent for non-zero x, but we can find a non-summatory form

for it using Borel summation. Let

α(x) =
∞∑
n=0

n!(−x)n.

We define the Borel transform of this as

Bα(w) =
∞∑
n=0

n!(−w)n

n!
=

1

1 + w

when |w| ≤ 1. We then recover α(x) by analytically extending Bα(w) to the entire

positive real line, and using the definition of the Borel sum

α(x) =

ˆ ∞
0

e−wBα(wx)dw

=

ˆ ∞
0

e−w

1 + wx
dw

=

ˆ ∞
1/x

e−w+1/x

wx
dw

=
e1/x

x
Γ

(
0,

1

x

)
.

Thus,

H(x) = −
[

1 + x

x
− 1

xα(x)

]
=

e−1/x

Γ(0, 1/x)
− 1 + x

x
.

We can also infer a number of bijections from rooted hypermaps to other types of

object. For instance, [31] gives us that the set of rooted d-hypermaps is, for any d ≥ 1,

bijective with both the set of all connected (d+ 1)-permutations [19], and the set of all

(d+ 1)-permutations with no global descents [2].

In neither of these cases is there an immediately apparent reason for the connection

(the structures of these objects are not trivially equivalent to rooted hypermaps in any

of the representations we have used so far), but we know from their shared recursion

relations that the sets have the same cardinalities, which is all that’s required for a

bijection to exist.

We have one other bijection, though, where the reason is apparent, which again is

noted in [31]:

Theorem 11.2.6. There is a bijection between the set of rooted d-hypermaps and the

set of subgroups of index d in the free group of rank two.

95

Enumerating all rooted hypermaps General rooted hypermaps

Proof. That the number of index-d subgroups of the rank-two free group satisfies the

recursion 11.2.25 has been known since 1949 [17]. The proof of this relies on the fact

that each such subgroup can be represented by a pair of d-permutations g1 and g2

which generate a group transitive on [1 . . . d], and that any two such representations

are isomorphic if they can be obtained by replacing the indices (1, 2, . . . , d) with

(1, c2, . . . , cd) within g1 and g2 for some ordering (c2, . . . , cd) of (2, . . . , d).

Such a pair of permutations, given that they generate a transitive group, give

us a 3-constellation [g1, g2, (g1g2)−1], and the isomorphism given above is exactly the

same isomorphism we gave for defining rooted hypermaps. Therefore, there is a direct

equivalence between subgroups of the rank-two free group and rooted hypermaps, which

equates subgroup index with hypermap degree.

So this connection follows from the fact that the two types of object essentially

share a representation as rooted 3-constellations. Given this close connection, it’s not

surprising that we can use Hall’s method to re-derive our summation results from

this section (specifically (11.2.24) – see Appendix G). Hall’s method cannot reproduce

Hd(m0,m1,m2) or its functional identities in full however. This is because his method

only deals with the structure of the permutations g1 and g2, and cannot give any

information about the cycles in the third permutation (g1g2)−1.

An important feature of Hall’s proof is that it is applicable to higher-rank free

groups as well as those of rank two, and, as we shall see in Theorem 12.2.2, it shows

that there there is a correspondence between subgroups of the free group of rank k and

rooted (k + 1)-constellations.

Of course the same limitation still exists – this method cannot produce a full

generating function which partitions constellations by the cycle structure of all of its

permutations. However, we can derive properties of these full generating functions

by generalising the method we used for rooted hypermaps to rooted constellations of

higher length. We will look at this in the next chapter, along with doing the same for

enumerating rooted maps.

96

Chapter 12

Further problems

The work of the previous chapters, concerning the enumeration of rooted hypermaps,

covers all the fundamental principles of our matrix integration tools and how to use

them to solve enumeration problems. In Chapter 10 we introduced the matrix integrals

themselves, using a relatively simple case (one-face rooted hypermaps) to study their

manipulation and evaluation. Then in Chapter 11 we moved on to general rooted

hypermaps, and showed how to generalise the basic methods, in particular how to

avoid overcounting due to invalid and isomorphic cases.

This therefore covers the most general hypermap case that our method can study,

i.e. all hypermaps up to rooted isomorphism. We cannot go any further as the rooted

isomorphism is tied directly to the construction of the matrix integrals we used, so

unrooted hypermaps cannot be enumerated by this method.

This does not mean that we have reached the limit of what these methods can do,

however. There are two directions in which we can still move while maintaining the

rootedness condition: specialisation (enumerating sets of objects which are equivalent

to subsets of the rooted hypermaps) and generalisation (enumerating supersets of the

rooted hypermaps). In this chapter we will look at one example of each.

As an example of specialisation we will use the case of rooted maps. As we discussed

in Section 9.1.4, hypermaps can be thought of as bipartite maps, a specialisation of

maps, but conversely maps can be thought of as a specialisation of hypermaps where

each of the edges contains exactly two darts. We will make use of this fact in Section

12.1.

For generalisation, we will start from the fact that hypermaps are equivalent to

3-constellations, and look at how to generalise our methods to rooted constellations of

length greater than three in Section 12.2.

Together, these two problems will demonstrate some of the ways in which our basic

method can be extended and modified for use in other contexts. As we will see, the

methods we will use in these two examples are very similar to the hypermap case from

the last chapter, the modifications we need to make being much less significant than

those we made when moving from one-face hypermaps.

97

Rooted maps Further problems

12.1 Rooted maps

A rooted map is simply a rooted hypermap where each edge contains exactly two darts.

This fits with the familiar notion of a map as a set of vertices connected pairwise by

“edge” lines – these edges correspond to the hypermap’s edges, with the darts being

the edges’ two ends.

As we can describe maps as hypermaps, we can also describe them using ladder

diagrams. In order to do so we need to make one change to the conventions we’ve used

so far though. When we represented hypermaps as ladder diagrams in Chapters 10 and

11, we associated the permutation σ (which provides the ladder diagram’s backbone)

with the hypermaps’ faces. There is no specific reason why it should be this way,

though, as we have also established that the vertices, edges and faces of a hypermap

are essentially interchangeable (see Lemma 9.1.1). If we had associated σ with the

hypermaps’ edges instead the resulting generating functions, apart from having their

parameters reordered, would have been equivalent.

Now that we are looking at maps, however, we do have reasons to make a specific

choice. We are constructing maps by taking hypermaps and applying a constraint to

their edges, which means that we now need to associate σ with the maps’ edges, as it

is only σ which we have a means of constraining.

Aside from this, the method for constructing generating functions for rooted maps is

very similar to the method we used for rooted hypermaps, with many of the steps being

identical. Because of this we will only sketch the proof of the result here, highlighting

the points where the two methods differ. As before, the process follows the following

steps:

1. Construct the generating function M(m1,m2;x) using the transitive

ladder-diagram generating functions P̄d1,...,dN (m1,m2) from Lemma 11.2.2,

taking into account any multiple counting.

2. Define a new function G(m1,m2;x) in terms of the non-transitive counting

functions Pd1,...,dN (m1,m2) (defined in (11.2.1)), and use Lemma 11.2.2 to find a

functional relation linking this to M(m1,m2;x).

3. Find a matrix-integral expression for G(m1,m2;x), and use this to find the terms

in its power series expansion in x.

Theorem 12.1.1. Let M(m1,m2;x) be the generating function (alternating in x)

enumerating rooted maps by number of vertices, faces and edges. This satisfies

M(m1,m2;x)G(m1,m2;x) = 2x
∂

∂x
G(m1,m2;x),

where

G(m1,m2;x) =
∞∑
k0=0

· · ·
∞∑

km1−1=0

∏
0≤i<j<m1

(
1− kj − ki

j − i

)m1−1∏
a=0

(m2 − a)2ka

ka!2ka
(−x)ka .

98

Further problems Rooted maps

Proof. A rooted map with k edges is represented by a ladder diagram with backbone

σ = (12)(34) · · · ((2k−1)(2k)). These ladder diagrams are enumerated by the generating

function

P̄2, . . . , 2︸ ︷︷ ︸
k

(m1,m2).

Isomorphisms under reordering/redirecting of the non-rooted edges mean that each

rooted map is counted (k − 1)!2k−1 times, so when we sum over all possible k, taking

this degeneracy into account, we get

M(m1,m2;x) =

∞∑
k=1

(−x)k

(k − 1)!2k−1
P̄2, . . . , 2︸ ︷︷ ︸

k

(m1,m2).

We define M(m1,m2;x) to be alternating in x, where x now partitions the maps by

number of edges.

Let

G(m1,m2;x) =
∞∑
k=0

(−x)k

k!2k
P2, . . . , 2︸ ︷︷ ︸

k

(m1,m2), (12.1.1)

where Pd1,...,dN (m1,m2) is defined in (11.2.1). If we multiply M(m1,m2;x) and

G(m1,m2;x) together, we get

M(m1,m2;x)G(m1,m2;x) =
∞∑
d=0

∞∑
k=1

(−x)k+d

(k − 1)!d!2k+d−1

× P̄2, . . . , 2︸ ︷︷ ︸
k

(m1,m2)P2, . . . , 2︸ ︷︷ ︸
d

(m1,m2)

=
∞∑
d=0

∞∑
k=d+1

(−x)k

(k − d− 1)!d!2k−1

× P̄2, . . . , 2︸ ︷︷ ︸
k−d

(m1,m2)P2, . . . , 2︸ ︷︷ ︸
d

(m1,m2)

=
∞∑
k=1

(−x)k

(k − 1)!2k−1

×
k−1∑
d=0

(
k − 1

d

)
P̄2, . . . , 2︸ ︷︷ ︸

k−d

(m1,m2)P2, . . . , 2︸ ︷︷ ︸
d

(m1,m2).

Substituting N = k and (d1, . . . , dN) = (2, 2, . . . , 2) into (11.2.3), we get

P2, . . . , 2︸ ︷︷ ︸
k

(m1,m2) =
k−1∑
d=0

(
k − 1

d

)
P̄2, . . . , 2︸ ︷︷ ︸

k−d

(m1,m2)P2, . . . , 2︸ ︷︷ ︸
d

(m1,m2),

99

Rooted maps Further problems

so

M(m1,m2;x)G(m1,m2;x) =

∞∑
k=1

(−x)k

(k − 1)!2k−1
P2, . . . , 2︸ ︷︷ ︸

k

(m1,m2)

= 2x
∂

∂x
G(m1,m2;x).

Note the factor of two, which did not appear in the equivalent identity (11.2.9) from

the rooted hypermap case. This is because x now partitions by edge count instead of

dart count, and for maps these two values differ by a factor of two.

This gives our functional identity, so next we need to evaluate G(m1,m2;x).

Starting with (11.2.10) we have that

P2, . . . , 2︸ ︷︷ ︸
k

(m1,m2) =
1

Λ

ˆ m1∏
k=1

qm2−m1
k e−qkdqk

∏
1≤i<j≤m1

(qj − qi)2

(
m1∑
a=1

q2
a

)k

for some normalisation factor Λ which depends only on m1 and m2. We substitute this

into (12.1.1) and sum over k, giving

G(m1,m2;x) =
1

Λ

ˆ m1∏
k=1

qm2−m1
k e−qkdqk

∏
1≤i<j≤m1

(qj − qi)2 exp

(
−x

2

m1∑
a=1

q2
a

)

=
1

Λ

ˆ m1∏
k=1

qm2−m1
k e−qk−q

2
kx/2dqk

∏
1≤i<j≤m1

(qj − qi)2.

We now need to use the same trick – breaking the Vandermonde product term into

orthogonal polynomials – that we used in Theorem 11.2.3 to make this integral

separable. This time our integrals resemble an inner product with weight function

w(q) = qm2−m1e−q−q
2x/2,

which has moments

µn =

ˆ ∞
0

w(q)qndq

=

ˆ ∞
0

qm2−m1+ne−qe−q
2x/2dq

=
∞∑
k=0

(−x)k

k!2k

ˆ ∞
0

qm2−m1+n+2ke−qdq

=

∞∑
k=0

(−x)k

k!2k
(m2 −m1 + n+ 2k)!. (12.1.2)

If we define monic polynomials Kn(q) orthogonal with respect to this weight function

100

Further problems Rooted maps

then, paralleling (11.2.14) we have

G(m1,m2;x) =
m1!

Λ

m1∏
k=1

ˆ ∞
0

Kk−1(q)Kk−1(q)w(q)dq

=
m1!

Λ

m1∏
k=1

Ik−1.

So, via Corollary F.0.1, we have that

G(m1,m2;x) =
m1!

Λ
|Mm1 |

where

Mm1 =

µ0 µ1 · · · µm1−1

µ1 µ2 · · · µm1

...
...

. . .
...

µm1−1 µm1 · · · µ2m1−2

 .
Therefore, by analogy with 11.2.15, when we substitute (12.1.2) into this we get

G(m1,m2;x) =
m1!

Λ

∞∑
k1=0

(−x)k1

k1!2k1
· · ·

∞∑
km1=0

(−x)km1

km1 !2km1
Φ(2k1, . . . , 2km1)

where Φ(k1, . . . , km1) is the same function as defined in (11.2.16). We substitute

(11.2.17) in here, getting

G(m1,m2;x) =
m1!

Λ

∞∑
k1=0

(m2 + 2k1 − 1)!

k1!2k1
(−x)k1 · · ·

∞∑
km1=0

(m2 + 2km1 −m1)!

km1 !2km1
(−x)km1

×
∏

1≤i<j≤m1

(j − i+ 2ki − 2kj).

We use the fact that G(m1,m2; 0) = 1 (see (12.1.1)) to fix the normalisation. This

gives us that

1 =
m1!

Λ

m1∏
a=1

(m2 − a)!
∏

1≤i<j≤m1

(j − i),

and therefore

G(m1,m2;x) =

∞∑
k1=0

· · ·
∞∑

km1=0

∏
1≤i<j≤m1

(
1− 2

kj − ki
j − i

) m1∏
a=1

(m2 + 2ka − a)!

(m2 − a)!2ka
(−x)ka

ka!

=

∞∑
k1=0

· · ·
∞∑

km1=0

∏
1≤i<j≤m1

(
1− 2

kj − ki
j − i

) m1∏
a=1

(m2 − a+ 1)2ka

ka!2ka
(−x)ka

=
∞∑
k0=0

· · ·
∞∑

km1−1=0

∏
0≤i<j<m1

(
1− 2

kj − ki
j − i

)m1−1∏
a=0

(m2 − a)2ka

ka!2ka
(−x)ka .

101

Rooted maps Further problems

12.1.1 Evaluation

As in Section 11.2.4, we can use this to evaluate M(m1,m2;x) by taking its power

series expansion

M(m1,m2;x) =

∞∑
e=1

Me(m1,m2)(−x)e,

with the Me(m1,m2) being polynomial generating functions which enumerate rooted

maps with e edges by number of vertices and faces. G(m1,m2;x) has a corresponding

expansion

G(m1,m2;x) =

∞∑
e=0

Ge(m1,m2)(−x)e

with coefficients

Ge(m1,m2) =
∑

k0, . . . , km1−1 ≥ 0

k0 + . . .+ km1−1 = e

∏
0≤i<j<m1

(
1− 2

kj − ki
j − i

)m1−1∏
a=0

(m2 − a)2ka

ka!2ka

for all e ≥ 0, and these are related to Me(m1,m2) by the identity

e∑
k=1

Mk(m1,m2)Ge−k(m1,m2) = 2eGe(m1,m2).

As was the case for rooted hypermaps, we can compute all of these functions by

evaluating at a number of specific values of m1 and interpolating. Ge(m1,m2) is of

order at most 2e in m2, and by symmetry will have the same order in m1, so we need

to evaluate it at 2e+ 1 different values of m1 before interpolating.

The first few generating functions produced by this method are

M1(m1,m2) = m2
1m2 +m1m

2
2

M2(m1,m2) = m1m2 + 2m3
1m2 + 5m2

1m
2
2 + 2m1m

3
2

M3(m1,m2) = 10m2
1m2 + 10m1m

2
2 + 5m4

1m2 + 22m3
1m

2
2 + 22m2

1m
3
2 + 5m1m

4
2,

which we see reproduce the results of Walsh and Lehman [37].

As in the hypermap case we can refine these results further. If we set m1 = 1 we

get generating functions which enumerate rooted maps by number of vertices, summing

over all face counts. After this substitution the summations and products in Ge(m1,m2)

all become trivial, leaving behind

Ge(1,m2) =
(m2)2e

e!2e
.

Therefore,
e∑

k=1

(m2)2(e−k)

(e− k)!2e−k
Mk(1,m2) =

(m2)2e

(e− 1)!2e−1
.

102

Further problems General constellations

Setting m2 = 1 as well gives a recursion relation for the total number of rooted maps

for a given edge count:

e∑
k=1

[2(e− k)]!

(e− k)!2e−k
Mk =

(2e)!

(e− 1)!2e−1
, (12.1.3)

or, simplifying further,

e∑
k=1

[2(e− k)− 1]!!Mk = 2e(2e− 1)!!

where (2e− 1)!! = 1× 3× 5× · · · × (2e− 1) is the double factorial. The sequence this

recurrence generates is the same as [32], starting at a(2).

This result in particular is interesting, as the intermediate terms

Ge(1, 1) = (2e− 1)!!

used in the recursion are already known to be the number of rooted maps with e

edges and one vertex [37, Equation 4], or equally those with e edges and one face. This

appearance of counts for one-face rooted maps is interesting as it is a close parallel to our

study of one-face rooted hypermaps in Chapter 10; the equivalent recursion for counting

all rooted hypermaps by dart count had intermediate expressions Fd(1, 1, 1) = d!, which

is likewise the number of rooted hypermaps with d darts and one face. It is not clear

how general a pattern this is, however, or in what other contexts it may apply, but we

will see in Section 12.2.2 that it applies to general rooted constellations as well, not

just hypermaps.

12.2 General constellations

The final example we will look at is that of general constellations. As noted in

Section 9.1, hypermaps are equivalent to 3-constellations – constellations containing

three permutations – but constellations can consist of any number of permutations

greater than this.

As a reminder, an k-constellation is a sequence of d-permutations [g1, g2, . . . , gk] for

some integer d, such that the product g1g2 · · · gk is the identity and the group generated

by [g1, g2, . . . , gk] acts transitively on [1 . . . d] (Definition 9.1.4). When k ≤ 2 these

rules give rise to sets too trivial to be of interest to us, but when k > 2 the problem of

enumeration becomes significantly more complicated. We have already done the k = 3

case with rooted hypermaps, and it should be no surprise that the methods we used,

which were strongly centred around the permutation structure of the constellations,

should also be applicable to rooted constellations of greater length.

It must be noted, however, that the usefulness of these methods diminishes

significantly in this more general case. We saw when we generalised the one-faced

rooted hypermap case to all rooted hypermaps that there was a significant decrease in

103

General constellations Further problems

usefulness of the resulting expressions: we went from having closed-form expressions

for individual generating functions to having a recursive procedure for evaluating

generating functions algorithmically. As we move to an even more general case now we

will find that the returns diminish even further; the best we will be able to get now is

a matrix-integral expression for the intermediate functions in the recursive procedure

(analogous to F (m0,m1,m2;x) from the hypermap case and G(m1,m2;x) from the

map case). We can’t evaluate these integrals using the methods we’ve already looked

at, because they involve integrals over multiple independent matrix spaces instead of

just one.

However we will be able to extract some simple results from these integrals in certain

special cases e.g. when one or more of the parameters of the function are set to unity,

as we did in the hypermap case (Section 11.2.6).We will also find a connection between

our results and subsets of free groups, as we did in Theorem 11.2.6.

12.2.1 Deriving the matrix integrals

Much like in the case with rooted maps, the solution for this problem very closely

mirrors that of the hypermap case. The main modification which we need to make

is in Lemma 11.2.1, where we established the ladder-diagram counting functions

Pd1,...,dN (m1,m2). Specifically, let us consider (11.2.2) again:

Pd1,...,dN (m1,m2) =
∑

g∈Symd

δ[a1, aσg(1)]δ[b1, bg(1)] · · · δ[ad, aσg(d)]δ[bd, bg(d)]

=
∂

∂αa1b1
· · · ∂

∂αadbd
(αaσ(1)b1 · · ·αaσ(d)bd)

∣∣∣∣
α=1

.

As a reminder, this connects to 3-constellations as follows: For a permutation σ with

cycle lengths d1, . . . , dN (defined using the convention stated in Lemma 11.2.1) and

arbitrary permutation g, define the permutation triple [σ, g, (σg)−1]. This is like a

3-constellation except that it is not necessarily transitive. For each g the Kronecker

delta terms in (11.2.2) contract down to an expression of the form m
cyc(σg)
1 m

cyc(g)
2

(where m1 and m2 are the dimensions of the a- and b-indices respectively), so the

sum over g then gives a generating function enumerating all triples with the same base

permutation σ.

The generalisation to k-permutations is then reasonably simple: we write each

k-constellation as [σ, g1, g2, . . . , gk−2, (σg1 · · · gk−2)−1] (with σ defined the same way)

and sum over all g1, . . . , gk−2. This produces a new generating function analogous

to Pd1,...,dN (m1,m2), again summing over all (potentially non-transitive) permutation

sequences with a given σ, so the rest of the derivation runs exactly the same as before.

Our Kronecker-delta expression has to be somewhat more complicated to deal with

104

Further problems General constellations

the new permutations, but we can construct a suitable expression as follows:

P
(k)
d1,...dN

(m1, . . . ,mk−1) =
∑

g1,...,gk−2

d∏
i=1

δ[ai, aσg1···gk−2(i)]δ[b
(1)
i , b

(1)
g1(i)] · · · δ[b

(k−2)
i , b

(k−2)
gk−2(i)],

(12.2.1)

where the b(j)-indices run from 1 to mj respectively and a-indices run from 1 to mk−1.

We can expand this further, by noting that

δ[a
(1)
i , a

(1)
σg1···gk−2(i)] = δ[a

(1)
i , a

(k−2)
gk−2(i)]δ[a

(k−2)
gk−2(i), a

(k−3)
gk−3gk−2(i)] · · · δ[a

(2)
g2···gk−2(i), a

(1)
σg1···gk−2(i)],

where all of the a(j)-indices run from 1 to mk−1. Furthermore, when we put this into

(12.2.1) the product over i allows us to freely substitute indices in each individual delta

without changing the result. Replacing i with g−1
k−2(i) in the second, i with g−1

k−2g
−1
k−3(i)

in the third etc. gives us

P
(k)
d1,...dN

(m1, . . . ,mk−1) =
∑

g1,...,gk−2

d∏
i=1

δ[a
(1)
i , a

(k−2)
gk−2(i)]δ[b

(k−2)
i , b

(k−2)
gk−2(i)]

× δ[a(k−2)
i , a

(k−3)
gk−3(i)]δ[b

(k−3)
i , b

(k−3)
gk−3(i)]

...

× δ[a(2)
i , a

(1)
σg1(i)]δ[b

(1)
i , b

(1)
g1(i)].

Now we can convert this into a multiderivative, as each Kronecker delta only includes

one of the summed permutations. As before these derivatives will be in terms of

matrix-valued dummy variables, but we now need to have more than one, one for each

permutation. We will call these α(j) for 1 ≤ j ≤ k − 2, where each one has dimensions

mk−1 ×mj . We get that

P
(k)
d1,...dN

(m1, . . . ,mk−1) =
∂

∂α
(1)

a
(2)
1 b

(1)
1

· · · ∂

∂α
(1)

a
(2)
d b

(1)
d

(α
(1)

a
(1)
σ(1)

b
(1)
1

· · ·α(1)

a
(1)
σ(d)

b
(1)
d

)

× ∂

∂α
(2)

a
(3)
1 b

(2)
1

· · · ∂

∂α
(2)

a
(3)
d b

(2)
d

(α
(2)

a
(2)
1 b

(2)
1

· · ·α(2)

a
(2)
d b

(2)
d

)

...

× ∂

∂α
(k−2)

a
(1)
1 b

(k−2)
1

· · · ∂

∂α
(k−2)

a
(1)
d b

(k−2)
d

(α
(k−2)

a
(k−2)
1 b

(k−2)
1

· · ·α(k−2)

a
(k−2)
d b

(k−2)
d

)

∣∣∣∣∣∣∣
α=0

,

105

General constellations Further problems

or equivalently

P
(k)
d1,...dN

(m1, . . . ,mk−1) =
∂

∂α
(1)

a
(2)
1 b

(1)
1

∂

∂β
(1)

a
(1)
σ(1)

b
(1)
1

· · · ∂

∂α
(1)

a
(2)
d b

(1)
d

∂

∂β
(1)

a
(1)
σ(d)

b
(1)
d

eα
(1)·β(1)

× ∂

∂α
(2)

a
(3)
1 b

(2)
1

∂

∂β
(2)

a
(2)
1 b

(2)
1

· · · ∂

∂α
(2)

a
(3)
d b

(2)
d

∂

∂β
(2)

a
(2)
d b

(2)
d

eα
(2)·β(2)

...

× ∂

∂α
(k−2)

a
(1)
1 b

(k−2)
1

∂

∂β
(k−2)

a
(k−2)
1 b

(k−2)
1

· · · ∂

∂α
(k−2)

a
(1)
d b

(k−2)
d

∂

∂β
(k−2)

a
(k−2)
d b

(k−2)
d

eα
(k−2)·β(k−2)

∣∣∣∣∣∣∣
α,β=0

,

where the β(j) again have dimensions mk−1 ×mj respectively. Note that all of the α

and β get taken to zero.

We can now reverse-engineer a matrix integral expression. First, we replace each

exponential by a Gaussian integral:

eα
(j)·β(j)

=
1

πmk−1mj

ˆ
Cmk−1mj

dmk−1mjz(j)dmk−1mj z̄(j) exp(−z(j) · z̄(j)

+ α(j) · z(j) + β(j) · z̄(j))

≡
ˆ
Dz(j) exp(−z(j) · z̄(j) + α(j) · z(j) + β(j) · z̄(j))

(the
´
Dz(1) notation, which incorporates the scale factor, is purely for convenience

as we will be dealing with a lot of these integrals). Then we perform the derivatives,

which results in the substitution

∂

∂α
(j)
a,b

→ z
(j)
a,b

∂

∂β
(j)
a,b

→ z̄
(j)
a,b .

When we take all the α and β to zero, we get the result

P
(k)
d1,...dN

(m1, . . . ,mk−1) =

ˆ k−2∏
j=1

Dz(j) exp(−z(j) · z̄(j))

d∏
i=1

z
(1)

a
(2)
i b

(1)
i

z̄
(1)

a
(1)
σ(i)

b
(1)
i

z
(2)

a
(3)
i b

(2)
i

z̄
(2)

a
(2)
i b

(2)
i

· · · z(k−2)

a
(1)
i b

(k−2)
i

z̄
(k−2)

a
(k−2)
i b

(k−2)
i

. (12.2.2)

106

Further problems General constellations

Finally, by defining matrices ρ(j) such that ρ
(j)
a1a2 = z

(j)
a1b
z

(j)
a2b

, we simplify the above to

P
(k)
d1,...dN

(m1, . . . ,mk−1) =

ˆ k−2∏
j=1

Dz(j)e−Tr(ρ(j))
d∏
i=1

ρ
(k−2)

a
(1)
i a

(k−2)
i

ρ
(k−3)

a
(k−2)
i a

(k−3)
i

· · · ρ(1)

a
(2)
i a

(1)
σ(i)

=

ˆ k−2∏
j=1

Dz(j)e−Tr(ρ(j))
d∏
i=1

[ρ(k−2) · · · ρ(1)]
a
(1)
i a

(1)
σ(i)

=

ˆ k−2∏
j=1

Dz(j)e−Tr(ρ(j))
N∏
r=1

Tr[(ρ(k−2) · · · ρ(1))dr]. (12.2.3)

This expression is very similar in form to Pd1,...,dN (m1,m2) in (11.2.1) – which is of

course just the k = 3 case. The only differences are the inclusion of multiple integrals

and the replacement of ρ̂ with ρ(k−2) · · · ρ(1). As a result, the proof for the following

theorem is almost exactly the same as that for Theorem 11.2.1. In particular the process

for eliminating non-transitive cases and multiple counting remains unchanged. Given

the similarities we will give only a sketch of the proof here, as many of the steps would

be almost word-for-word reproductions of our earlier work. We will make clear where

this happens, however.

Theorem 12.2.1. Let H(k)(m0,m1, . . . ,mk−1;x) be the generating function

(alternating in x) enumerating all rooted k-constellations, partitioned by the cycle

structures of the permutations and the permutations’ degree. Then

H(k)(m0,m1, . . . ,mk−1;x)F (k)(m0,m1, . . . ,mk−1;x) = x
∂

∂x
F (k)(m0,m1, . . . ,mk−1;x),

where

F (k)(m0,m1, . . . ,mk−1;x) =

ˆ k−2∏
j=1

Dz(j)e−Tr(ρ
(j)) det(1 + xρ(k−2) · · · ρ(1))−m0 .

Proof. As with (11.2.7), we have that

H(k)(m0,m1, . . . ,mk−1;x) =

∞∑
N=1

mN
0

(N − 1)!

∞∑
d1=1

(−x)d1

×
∞∑
d2=1

(−x)d2

d2
· · ·

∞∑
dN=1

(−x)dN

dN
P̄

(k)
d1,...,dN

(m1, . . . ,mk−1),

where P̄
(k)
d1,...,dN

(m1, . . . ,mk−1) is the same summation over permutation sequences

as P
(k)
d1,...,dN

(m1, . . . ,mk−1) in (12.2.1), but with only the transitive cases (the valid

constellations) included. This satisfies

P
(k)
d1,...,dN

(m1, . . . ,mk−1) =
∑

u⊂{d2,...,dN}

P̄
(k)
d1,u1,u2,...

(m1, . . . ,mk−1)P
(k)
ū1,ū2,...(m1, . . . ,mk−1)

(12.2.4)

107

General constellations Further problems

as in Lemma 11.2.2.

Thus, in clear parallel with the proof of Theorem 11.2.1, if we define

F (k)(m0,m1, . . . ,mk−1;x) =
∞∑
N=0

mN
0

N !

∞∑
d1=1

(−x)d1

d1
· · ·

∞∑
dN=1

(−x)dN

dN

× P (k)
d1,...,dN

(m1, . . . ,mk−1), (12.2.5)

(12.2.4) gives us that

H(k)(m0,m1, . . . ,mk−1;x)F (k)(m0,m1, . . . ,mk−1;x) = x
∂

∂x
F (k)(m0,m1, . . . ,mk−1;x).

We have our integral expression for P
(k)
d1,...,dN

(m1, . . . ,mk−1) in (12.2.3), and when

we substitute this into (12.2.5) we get

F (k)(m0,m1, . . . ,mk−1;x) =

ˆ k−2∏
j=1

Dz(j)e−Tr(ρ(j))
∞∑
N=0

mN
0

N !

×
N∏
r=1

∞∑
dr=1

(−x)dr

dr
Tr[(ρ(k−2) · · · ρ(1))dr]

=

ˆ k−2∏
j=1

Dz(j)e−Tr(ρ(j))
∞∑
N=0

mN
0

N !

×

(∞∑
d=1

(−x)d

d
Tr[(ρ(k−2) · · · ρ(1))d]

)N
. (12.2.6)

We simplify this in much the same manner as in Lemma (A.0.3); the summations

in the integrand converge anywhere where the absolute values of the eigenvalues of

ρ(k−2) · · · ρ(1) are all less than 1/x. In this domain the summations simplify to

∞∑
N=0

mN
0

N !

(∞∑
d=1

(−x)d

d
Tr[(ρ(k−2) · · · ρ(1))d]

)N
= e−m0Tr[ln(1+xρ(k−2)···ρ(1))]

= det(1 + xρ(k−2) · · · ρ(1))−m0 .

If we treat both sides of this equation as defining a formal power series in x, the fact that

they are equal over a finite neighbourhood of zero means that the series are equivalent.

Thus we can substitute this into (12.2.6), and we get

F (k)(m0,m1, . . . ,mk−1;x) =

ˆ k−2∏
j=1

Dz(j)e−Tr(ρ(j)) det(1 + xρ(k−2) · · · ρ(1))−m0 .

We can’t evaluate this expression any further, however, at least not using our current

108

Further problems General constellations

methods. This is due to the fact that the determinant cannot in general be written

purely as a function of the matrices’ eigenvalues, as it could when k = 3. What we can

do, however, is perform the same sub-summation trick from Section 11.2.6, this time by

setting mk−1 = 1. When we do this, each z(j) is reduced to a complex mj-dimensional

vector, with ρ(j) becoming its (scalar) squared modulus. The integrals become vector

integrals, which become radial integrals due to the integrand depending only on the

length of the vectors. Thus, if we denote |z(j)| as rj , we get

ˆ
Dz(j) ≡ 1

πmj

ˆ
Cmj

dmjz(j)dmj z̄(j)

→ 2

Γ(mj)

ˆ ∞
0

r
2mj−1
j drj ,

and the integral becomes

F (k)(m0, . . . ,mk−2, 1;x) =

ˆ k−2∏
j=1

Dz(j)e−r
2
j

1

(1 + xr2
1r

2
2 · · · r2

k−2)m0

=
∞∑
d=0

Γ(m0 + d)

d!Γ(m0)
(−x)d

k−2∏
j=1

2

Γ(mj)

ˆ ∞
0

r
2mj+2d−1
j e−r

2
j drj

=
∞∑
d=0

(−x)d

d!

k−2∏
j=0

Γ(mj + d)

Γ(mj)

=
∞∑
d=0

(−x)d

d!

k−2∏
j=0

(mj)d.

Thus, splitting H(k)(m0, . . . ,mk−1;x) up into degree-specific generating functions as

H(k)(m0, . . . ,mk−1;x) =
∞∑
d=1

(−x)dH
(k)
d (m0, . . . ,mk−1),

we get the recursion relation

H
(k)
d (m0, . . . ,mk−2, 1) =

1

(d− 1)!

k−2∏
j=0

(mj)d−
d−1∑
i=1

1

(d− i)!

k−2∏
j=0

(mj)d−iH
(k)
i (m0, . . . ,mk−2, 1).

Furthermore, if we set all the parameters to unity, defining H
(k)
d = H

(k)
d (1, . . . ,1),

we get

H
(k)
d = d · (d!)k−2 −

d−1∑
i=1

[(d− i)!]k−2H
(k)
i . (12.2.7)

This once more highlights the link between rooted constellations and subsets of free

groups [17], which we already noted in the k = 3 case in Theorem 11.2.6, and which

we can state more generally as follows:

109

General constellations Further problems

Theorem 12.2.2. There is a bijection between the set of rooted k-constellations with

degree d and the set of subgroups of index d in the free group of rank k − 1.

Proof. An index-d subgroup of the free group of rank k − 1 is represented by a set

of d-permutations P1, . . . , Pk−1 which generate a transitive group, and any two such

representations are isomorphic if they can be obtained from one another by replacing

the indices (1, 2, . . . , d) with (1, c2, . . . , cd) within the permutations for some ordering

(c2, . . . , cd) of (2, . . . , d). [17]. Such a set of permutations, when combined with

the inverse of their product, form a k-constellation with degree d, and the subgroup

isomorphism given is identical to the isomorphism for rooted constellations, so each

such subgroup corresponds uniquely to a rooted k-constellation with degree d.

12.2.2 One-face constellations

In Section 12.1.1 we noted an intriguing pattern. At that point we had two recursion

relations – (11.2.25) for giving Hd, the number of rooted hypermaps with d darts, and

(12.1.3) for giving Me, the number of rooted maps with e edges – and both of these

featured intermediate expressions, namely Fd(1, 1, 1) = d! and Ge(1, 1, 1) = (2e − 1)!!

respectively, which turn out to be respectively the number of rooted (hyper)maps with

one face. No reason for this was apparent, but the question remains of how general a

pattern this is. Here we will show that it at least applies to all other lengths of rooted

constellation as well.

We first need to define what a constellation with one face actually is, as the

geometric interpretation associated with hypermaps does not readily extend to other

constellations. There is a natural choice in this case, however: for hypermaps, having

one face is equivalent to the first permutation in its constellation representation being

a 1-cycle. We therefore also define a one-face constellation as one where its first

permutation is a one-cycle.

Enumerating only one-face rooted constellations is easy; just as was the case for

hypermaps, we already have their generating functions in P
(k)
d (m1, . . . ,mk−1). When

we set m1 = . . . = mk−1 = 1 in (12.2.2) we get

P
(k)
d (1, . . . , 1) =

ˆ ∞
0

2r1dr1e
−r21r2d

1 · · ·
ˆ ∞

0
2rk−1drk−1e

−r2k−1r2d
k−1

= (d!)k−1,

where ri = |z(i)|.
Therefore, there are a total of (d!)k−2 rooted one-face k-constellations with d darts.

As predicted, these values are equal to the intermediate values in the recursion (12.2.7)

for computing H
(k)
d , arising from the fact that

F (k)(1, . . . , 1;x) =
∞∑
d=0

(d!)k−2(−x)d.

Strangely, however, there is no obvious reason for this to be the case. Evaluating

110

Further problems General constellations

F (k)(1, . . . , 1;x) does not just trivially lead to the expression

∞∑
d=0

P
(k)
d (1, . . . , 1)(−x)d,

the values arise by some other route instead. The form of the recursions (12.2.7) and

(12.1.3) suggests that there could be some combinatorial interpretation of this fact, but

we can only give a very rough idea of what form this may take.

Proposition 12.2.1. There exists a mapping from pairs of rooted k-constellations

(A,B) – where A has exactly one face and the degrees of A and B sum to d – to rooted

k-constellations of degree d with one face, such that each such constellation is mapped

to in exactly d ways.

Proposition 12.2.2. There exists a mapping from pairs of rooted maps (A,B) – where

A has exactly one face and the edge counts of A and B sum to e – to rooted constellations

with e edges and one face, such that each such map is mapped to in exactly 2e ways.

These say nothing of what these mappings would be; they just assert their existence.

Given the way the counts match up, such a mapping is guaranteed to exist, even if it

is entirely arbitrary how the results correspond to the inputs. One can only hope that

there is a mapping with some clear, meaningful structure.

111

Chapter 13

Enumeration discussion

In summary, what we have presented here is a new method of enumerating certain

subsets of the rooted constellations, specifically rooted hypermaps and maps, as well

as the general rooted constellations themselves. The end result in each of these cases

is a matrix-integral expression in terms of which a generating function can be defined,

and these generating functions partition the objects being enumerated both by their

degree and by the cycle counts of their constituent permutations. By looking at these

three examples we have gained some idea of how broadly applicable the method is, and

have also encountered some of its limitations.

This method works by writing constellations in the form [σ, g1, g2, (σg1g2)−1] (using

4-constellations as an example), where σ, g1 and g2 are permutations. For a given σ

we then construct an integral expression for a generating function enumerating all such

constellations, using the fact that Gaussian matrix integrals can be evaluated as sums

over permutations, as we demonstrated in Chapter 10. We then sum these generating

functions over all possible cycle structures of σ.

In this final step we have the option of applying restrictions to the structure of σ.

For example, in Chapter 10 we set σ as a one-cycle to enumerate only rooted hypermaps

with one face, and in Chapter 12 we looked at cases where σ only had cycles of length

two in order to enumerate rooted maps. If other objects can be similarly expressed as

constrained rooted constellations, then our methods could also be applied to them.

The important feature of the resulting generating functions is that, as well as

partitioning the objects being enumerated by the number of cycles in σ and in

the various gi, it also partitions by the number of cycles in the final permutation,

(σg1 · · ·)−1. In the example of rooted hypermaps, this means that for each partition

we know how many vertices, edges and faces they have, as well as the number of darts.

Finding this information is not obviously easy to do, given that the number of cycles in

a product of permutations cannot be computed from the cycle counts of the constituent

permutations. However, it turns out that this information is already encoded in our

matrix integrals. Take, for example, the functions

Pd1,...,dN (m1,m2) =
Γ(m1m2 + d)

2πm1m2

ˆ
S2m1m2−1

dΩ

N∏
r=1

Tr[(ρ̂12
1)dr]

112

Enumeration discussion

used in the rooted hypermap/map cases. The integrand depends only on the cycle

structure of σ, given by the cycle lengths (d1, . . . , dN), and the summation over g then

arises from the process of evaluating the integral, but the interactions between the

various matrix elements in the integrand also introduces dependence on the product

σg, from which we obtain its cycle count. This fact applies to all the cases we have

looked at here, and it is clear in that any situation in which this method applies we

will again be able to extract all available cycle counts in the same way.

Once we have these generating functions, it is also possible to then sum over one or

more of the cycle counts, simply by setting parameters in the generating functions to

unity. Indeed, doing so often results in expressions which are much simpler than the

overall generating function, as we saw in Chapter 12.

This brings us on to one of the method’s limitations, however. While we are in

general able to find matrix integral expressions for our generating functions, our ability

to compute them is usually limited. The case of one-face rooted hypermaps is the

only case where we were able to find a simple closed-form expression for the generating

functions, allowing them to be directly expanded as polynomial functions. In the

general rooted hypermap and map cases, we had to define the generating functions

using a recursive procedure, in terms of other functions written as matrix integrals.

Furthermore, while we were able to evaluate these integrals in summation form, we

could not do so in a way that allowed us to directly expand them as polynomials, and

we had to use interpolation to gain their polynomial forms instead.

The worst offender, however, was the general constellation case, where we couldn’t

convert the matrix integrals to summations at all. This was due to the fact that the

integrals were now over multiple independent spaces of matrices, the number of matrices

involved being equal to the number of g-permutations. This then rendered all the tools

we had used previously ineffective. It did not prevent us from gaining any useful

information, however, as by setting one of the parameters in the generating function

to unity (summing over one of the cycle counts) we could reduce the dimensions of

the matrices to one, turning the matrix integrals into scalar integrals which could be

evaluated.

Another limitation is that there are some specific properties which the objects being

enumerated must have for these methods to apply. For one thing, in the case of maps

and hypermaps, they had to be orientable, as the construction of their constellation

representations is very dependent on them being embedded on orientable surfaces. The

other, broader point, which applies to general constellations as well, is that they have

to be rooted (i.e. isomorphism classes under transformations which preserve the root).

This ties in with the construction of the integral generating functions, and is needed to

make sure the summations over the various g-permutations resulting from said integrals

has a one-to-one correspondence to the isomorphism classes being enumerated. This is

not necessarily a problem even if one wishes to study a different type of isomorphism

class, as i.e. the existence of any rooted maps with a given set of properties implies,

and is implied by the existence of an unrooted map with the same properties. So

113

Enumeration discussion

these methods could be used for questions of existence, where the exact counts are

not important beyond their being non-zero. The counts themselves are only applicable

when specifically rooted objects are being considered though.

Beyond the question of the general applicability of these methods, we have also

found a number of specific results in the cases studied. One of the advantages of

enumerating via generating functions is that they can be used to prove general trends,

and we have managed to derive a number of such trends, such as calculating the total

number of objects of each type with a given number of darts (or equivalently by number

of edges for maps). In the one-face rooted hypermap case this comes out to there being

d! such hypermaps, reflecting their equivalence to permutations, and in the general

cases of hypermaps, maps and constellations, we were able to find recursion relations

for computing the overall counts. Many of these trends are proven in ways which

circumvent the limitations of our methods (i.e. by setting parameters in the generating

functions to unity, as mentioned earlier, such that the dimensions of sums and integrals

are reduced to one). It is this, and other such uses of generating functions, which give

these methods their power.

114

Appendices

115

Appendix A

Miscellaneous identities

Lemma A.0.1.
a∑
i=0

(
d

i

)
(−1)i =

(
d− 1

a

)
(−1)a (A.0.1)

for any integer d and a ≥ 0.

Proof. (A.0.1) is true for a = 0, as both sides equal unity. This holds for d ≤ 0 as well

as the binomial coefficients can be generalised using the reflection identity(
−d
i

)
= (−1)i

(
d+ i− 1

i

)
.

If we assume (A.0.1) is true for a = k, then when a = k + 1,

k+1∑
i=0

(
d

i

)
(−1)i =

k∑
i=0

(
d

i

)
(−1)i +

(
d

k + 1

)
(−1)k+1

=

(
d− 1

k

)
(−1)k −

(
d

k + 1

)
(−1)k

=

(
d− 1

k + 1

)
(−1)k+1.

Therefore, by induction, (A.0.1) holds for all a ≥ 0.

Lemma A.0.2. ˆ ∞
0

ae−at ln tdt = −γ − ln a

for a ≥ 0, where γ is the Euler-Mascheroni constant.

116

Miscellaneous identities

Proof. This integral is related to the integral definition of the gamma function:

ˆ ∞
0

ae−at ln tdt =
d

dz

ˆ ∞
0

ae−attz−1dt

∣∣∣∣
z=1

=
d

dz

(
1

az−1

ˆ ∞
0

e−ttz−1dt

)∣∣∣∣
z=1

=
d

dz

Γ(z)

az−1

∣∣∣∣
z=1

=
Γ(z)

az−1
(ψ(z)− ln a)

∣∣∣∣
z=1

where ψ(z) = Γ′(z)/Γ(z) is the digamma function. When we set z = 1, we use the fact

that Γ(1) = 1 and ψ(1) = −γ to get

ˆ ∞
0

ae−at ln tdt = −γ − ln a.

Lemma A.0.3. The two formal power series in x

A(q1, . . . , qN ;m0;x) =
∞∑
N=0

mN
0

N !

(∞∑
d=1

(−x)d

d

m1∑
a=1

qda

)N
(A.0.2)

and

B(q1, . . . , qN ;m0;x) =

m1∏
a=1

1

(1 + qax)m0
(A.0.3)

are equivalent.

Proof. (A.0.2) does not converge for all values of its parameters, but there is a domain

for which it does converge absolutely, namely when |qax| < 1 for all 1 ≤ a ≤ m1. To

show that these two formal power series are equivalent, it therefore suffices to show

that they equal each other in the range where they both converge absolutely.

When (A.0.2) does converge, we can simplify it as follows:

A(q1, . . . , qN ;m0;x) =
∞∑
N=0

mN
0

N !

(
−

m1∑
a=1

ln(1 + qax)

)N

=

∞∑
N=0

mN
0

N !

[
− ln

(
m∏
a=1

(1 + qax)

)]N

= exp

[
−m0 ln

(
m∏
a=1

(1 + qax)

)]

=

m1∏
a=1

1

(1 + qax)m0
,

which is exactly (A.0.3).

117

Appendix B

Exact evaluation of 〈S2,2〉

In this appendix we will exactly evaluate the summation

〈S2,2〉 = ln 2−
∞∑
k=1

3[1− (−1)k]

2k(k + 1)(k + 4)

derived in Section 6.1.1 of Part II.

We begin by expanding the summand out using partial fractions:

〈S2,2〉 = ln 2−
∞∑
k=1

3[1− (−1)k]

(
1

8k
− 1

6(k + 1)
+

1

24(k + 4)

)
.

This essentially splits the expression into three separate infinite summations. We cannot

separate them though, as they would be individually divergent. However, if we shift

the sums relative to each other, then many of the terms can be cancelled out:

〈S2,2〉 = ln 2−
∞∑
k=1

(
3[1− (−1)k]

8k
− 1 + (−1)k

2k
+

1− (−1)k

8k

)

+

4∑
k=1

1− (−1)k

8k

=
1

3
+ ln 2−

∞∑
k=1

(−1)k−1

k
. (B.0.1)

This shift does not affect the value of the summation by the following argument. If

we take the partial sums of the original and shifted series up to K terms, given by

Σ1 = ln 2−
K∑
k=1

3[1− (−1)k]

(
1

8k
− 1

6(k + 1)
+

1

24(k + 4)

)

Σ2 =
1

3
+ ln 2−

K∑
k=1

(−1)k−1

k
,

118

Exact evaluation of 〈S2,2〉

then the difference between them is

Σ2 − Σ1 =
K+1∑

k=K+1

(
− 1

2k
− (−1)k

2k

)
+

K+4∑
k=K+1

(
1

8k
− (−1)k

8k

)
= O(K−1),

so in the limit as K →∞, the partial sums tend to the same value.

The remaining summation in (B.0.1) is now recognisable as the Taylor expansion

of ln(1 + z) at z = 1, which converges to ln 2, so

〈S2,2〉 =
1

3
.

119

Appendix C

Confirmation of Page’s entropy

formula

In this appendix we re-prove Page’s exact formula (6.2.1) for the mean entropy of

entanglement of a bipartite quantum system in a pure state 〈Sm1m2〉. This proof

stands in addition to existing ones [16, 27, 30], but does not evaluate the entropy

integral directly as they did.

Theorem C.0.3. For any m1,m2 ≥ 2,

〈Sm1m2〉 =

m1m2∑
k=m2+1

1

k
− m1 − 1

2m2
.

Proof. For our proof here, we use the fact that

〈Sm1m2〉 = −〈Tr[ρ̂12
1 ln ρ̂12

1]〉 = − lim
d→1

∂

∂d
〈Tr[(ρ̂12

1)d]〉.

We already know from Theorem 5.2.1 in Section 5.2.1 of Part II that

〈Tr[(ρ̂12
1)d]〉 =

Γ(m1m2)

dΓ(m1m2 + d)

m1−1∑
r=0

(−1)r

r!Γ(d− r)
Γ(m1 + d− r)

Γ(m1 − r)
Γ(m2 + d− r)

Γ(m2 − r)
.

for any non-integer d > 0, and we also know the trivial special case that 〈Tr[(ρ̂12
1)1]〉 = 1.

Differentiating the above gives us that

− ∂

∂d
〈Tr[(ρ̂12

1)d]〉 =

(
1

d
+ ψ(m1m2 + d)

)
〈Tr[(ρ̂12

1)d]〉

− Γ(m1m2)

dΓ(m1m2 + d)

m1−1∑
r=0

(−1)r

r!Γ(d− r)
Γ(m1 + d− r)

Γ(m1 − r)

× Γ(m2 + d− r)
Γ(m2 − r)

(ψ(m1 + d− r)

+ψ(m2 + d− r)− ψ(d− r))

where ψ(z) = ∂
∂z ln Γ(z) is the digamma function.

120

Confirmation of Page’s entropy formula

We must now be careful as we take the limit d → 1. The Γ(d − r) term in the

summand means that most terms in the summation will vanish when r > 0, with the

exception of the term proportional to ψ(d−r)/Γ(d−r), which is indeterminate at d = 1

for integer r > 0. In these cases,

lim
d→1

ψ(d− r)
Γ(d− r)

= − lim
d→1

∂

∂d

1

Γ(d− r)
= − [resz=1−rΓ(z)]−1 = (−1)rΓ(r).

Therefore,

〈Sm1m2〉 = − lim
d→1

∂

∂d
〈Tr[(ρ̂12

1)d]〉

= 1 + ψ(m1m2 + 1)− ψ(m1 + 1)− ψ(m2 + 1) + ψ(1)

+
1

m1m2

m1−1∑
r=1

1

r
(m1 − r)(m2 − r)

= ψ(m1m2 + 1)− ψ(m1 + 1)− ψ(m2 + 1) + ψ(1)

+

m1∑
r=1

1

r
− m1 − 1

2m2
.

Given also the fact that [1, p 258]

ψ(N) = −γ +
N−1∑
k=1

1

k

for integers N ,

〈Sm1m2〉 =

m1m2∑
k=1

1

k
−

m1∑
k=1

1

k
−

m2∑
k=1

1

k
+

m1∑
k=1

1

k
− m1 − 1

2m2

=

m1m2∑
k=m2+1

1

k
− m1 − 1

2m2
.

121

Appendix D

Some counts of rooted

hypermaps

d = 1 d = 2 d = 3 d = 4
1 1 2 1 2 3 1 2 3 4

1 1 1 1 1 1 1 1 5 1
2 1 2 3 2 5 6

3 1 3 6
4 1

d = 5 d = 6
1 2 3 4 5 1 2 3 4 5 6

1 8 15 1 1 84 35 1
2 40 10 2 84 175 15
3 15 20 3 175 50
4 10 4 35 50
5 1 5 15

6 1
d = 12

1 2 3 4 5 6 · · ·
1 19 056 960 18 128 396 2 641 925

2 19 056 960 75 220 860 24 656 775 . .
.

3 75 220 860 66 805 310 8 654 646

4 18 128 396 66 805 310 19 324 305 . .
.

5 24 656 775 19 324 305 1 981 980

6 2 641 925 8 654 646 1 981 980 . .
.

7 1 585 584 990 990 60 984
8 88 803 235 950 32 670
9 23 595 9 075
10 715 1 210
11 66
12 1
d = 49

1 · · ·
1 496556623701442906834491561894935001540859454187110400000000 · · ·
3 4577891503208884472952882199105457309783499129634160640000000 · · ·
5 5202310457084388884858448388683318495756691504704887193600000 · · ·
...

...
. . .

Table D.0.1: Sample coefficients of various Pd(m1,m2), indexed by the exponents of m1and m2

(which exponent is which is unimportant, as all the functions are symmetric). The d = 12 case
in particular is given to aid comparison with Walsh’s enumeration [35], while a few values from
d = 49 are given to show the method’s usability even at high degree.

122

Appendix E

Multiple counting of two-face

rooted hypermaps

Here we prove that, using the normal form for rooted hypermaps associated with ladder

diagrams, each rooted two-face hypermap can be represented in exactly j distinct ways,

where j is the length of the second (non-rooted) cycle in the permutation σ.

Consider two-face rooted hypermaps of the form [σ, g, (σg)−1], where σ = (1 . . . i)(i+

1 . . . i+ j). For example, if i = 2 and j = 4 then σ = (12)(3456). As we are restricting

ourselves to this normal form, the number of isomorphisms we need to consider is also

restricted. Specifically we only need to look at isomorphisms given by permutations

p such that p(1) = 1 and pσp−1 = σ, and the only permutations which satisfy both

of these properties are integer powers of (1)(2) . . . (i)(i + 1 . . . i + j), i.e. permutations

which perform a cyclic reordering of the indices in the second cycle only. There are of

course j such permutations.

Now consider some given p of this form, and a particular rooted hypermap

[σ, g, (σg)−1]. Given that this hypermap is transitive, there must be a cycle in g (which

we will denote χ) which contains indices from both cycles of σ. When we apply the

isomorphism p to g and look at the effect it has on χ, we see that the indices from the

first cycle are preserved, while the indices from the second cycle are preserved if and

only if p is the identity, being mapped to a distinct index in the second cycle otherwise.

As a result, the image of χ after applying p will match to a cycle in g if and only if p is

the identity. Thus any non-trivial p maps the hypermap to a distinct representation of

an isomorphic rooted hypermap. The hypermap’s isomorphism class therefore contains

exactly j distinct representations, one for each possible p.

123

Appendix F

Inner products of general

orthogonal polynomials

Here we will look at a result relating to orthogonal polynomials for arbitrary inner

products.

Consider the inner product

〈a, b〉 =

ˆ ∞
0

a(q)b(q)w(q)dq,

defined on the space of polynomial functions, for some weight function w(q). This

weight function has an associated set of moments

µn =

ˆ ∞
0

qnw(q)dq.

We then define an associated set of monic polynomials Kn(q) each of order n, which

are orthogonal in the sense that 〈Ki,Kj〉 = 0 whenever i 6= j.

We are interested here in the constants In = 〈Kn,Kn〉. These are dependent only on

w(q), and we show here that they can be computed just from the moments µn without

having to evaluate the polynomials themselves.

Theorem F.0.4. The inner products

In = 〈Kn,Kn〉 =

µ0, n = 0

|Mn+1|/|Mn|, n > 0

where

Mn =

µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

...
. . .

...

µn−1 µn · · · µ2n−2

 .

124

Inner products of general orthogonal polynomials

Equivalently,

In =
M(n+ 1)

M(n)

for all n ≥ 0, where we define

M(n) =

1, n = 0

|Mn|, n > 0
.

Proof. The case when n = 0 is simple to prove; as the Kn(q) are monic, K0(q) = 1, so

I0 =

ˆ ∞
0

1 · w(q)dq = µ0.

When n > 0, the orthogonal polynomials can be written in terms of the moments:

Kn(q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µn

µ1 µ2 µ3 · · · µn+1

...
...

...
. . .

...

µn−1 µn µn+1 · · · µ2n−1

1 q q2 · · · qn

∣∣∣∣∣∣∣∣∣∣∣∣∣

/∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

...
. . .

...

µn−1 µn · · · µ2n−2

∣∣∣∣∣∣∣∣∣∣∣

=
1

|Mn|

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µn

µ1 µ2 µ3 · · · µn+1

...
...

...
. . .

...

µn−1 µn µn+1 · · · µ2n−1

1 q q2 · · · qn

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

To see that this is the correct polynomial, evaluate 〈qi,Kj〉 for any 0 ≤ i < j. For

example,

〈qi,Kj〉 ∝
ˆ ∞

0

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µn

µ1 µ2 µ3 · · · µn+1

...
...

...
. . .

...

µn−1 µn µn+1 · · · µ2n−1

qi+1 qi+2 qi+3 · · · qi+n

∣∣∣∣∣∣∣∣∣∣∣∣∣
w(q)dq

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µn

µ1 µ2 µ3 · · · µn+1

...
...

...
. . .

...

µn−1 µn µn+1 · · · µ2n−1

µi+1 µi+2 µi+3 · · · µi+n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For any 0 ≤ i < j two of the rows in this matrix are equal, so the determinant is zero.

Thus Kj(q) is orthogonal to all polynomials of order less than j, as expected.

Now consider In = 〈Kn,Kn〉. As Kn is orthogonal to all polynomials of order less

than n we can subtract away all lower-order terms from the left hand side until only

125

Inner products of general orthogonal polynomials

the leading term remains without changing the value. This means that

In = 〈qn,Kn〉

=
1

|Mn|

ˆ ∞
0

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µn

µ1 µ2 µ3 · · · µn+1

...
...

...
. . .

...

µn−1 µn µn+1 · · · µ2n−1

qn qn+1 qn+2 · · · q2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
w(q)dq

=
1

|Mn|

∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 · · · µn

µ1 µ2 µ3 · · · µn+1

...
...

...
. . .

...

µn−1 µn µn+1 · · · µ2n−1

µn µn+1 µn+2 · · · µ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
|Mn+1|
|Mn|

.

Corollary F.0.1. For any n > 0,

n∏
a=1

Ia−1 = |Mn|.

Proof. This follows from Theorem F.0.4:

n∏
a=1

Ia−1 = I0I1 · · · In−2In−1

=
M(1)

M(0)

M(2)

M(1)
· · ·M(n− 1)

M(n− 2)

M(n)

M(n− 1)

=
M(n)

M(0)

= |Mn|.

126

Appendix G

Confirmation of hypermap

subgroup counting

Here we confirm the result (11.2.24), by using the bijection proven in Theorem 11.2.6

between rooted hypermaps and subgroups of the rank 2 free group. This proof parallels

the proof of Theorem 5.2 in [17], but while Hall looked at the total number of subgroups

of a given index, we will now look at a generating function which partitions the

subgroups by the cycle structure of their permutation representations (i.e. by the

number of vertices and faces in the equivalent rooted hypermaps.

Theorem G.0.5. The set of rooted hypermaps with d darts is enumerated by the

generating function Hd(m0, 1,m2), where

Hd(m0, 1,m2) =
(m0)d(m2)d

(d− 1)!
−

d−1∑
k=1

(m0)d−k(m2)d−k
(d− k)!

Hk(m0, 1,m2)

and H1(m0, 1,m2) = m0m2, and the generating function partitions the hypermaps by

number of faces and vertices.

Proof. We have that each rooted d-hypermap is a 3-constellation [g1, (g2g1)−1, g2],

and that two such rooted hypermaps are isomorphic if they are equivalent under

rearrangement of the last d− 1 indices in the permutations g1 and g2. The number of

faces in each hypermap is the number of cycles in g1, and the number of vertices is g2.

For the sake of this proof we will just think of rooted hypermaps as the pair consisting

of g1 and g2.

The generating function

Γ(m0 + d)

Γ(m0)

Γ(m2 + d)

Γ(m2)
≡ (m0)d(m2)d

enumerates all pairs of d-permutations by cycle structure (see Theorem 10.1.1). This

counts cases where the group they generate is not transitive, however, so we need to

subtract all these cases to leave only those which are valid hypermaps.

127

Confirmation of hypermap subgroup counting

For a particular permutation pair (g1, g2), let (1, b2, . . . , bk) be the transitive

constituent which includes the identity (i.e. the actions of both g1 and g2 on

(1, b2, . . . , bk) are themselves permutations on that set, which generate a transitive

group). These transitive sub-permutation pairs are by definition enumerated by

Hk(m0, 1,m2), while the remaining part, which are just a pair of unconstrained

permutations on d− k elements, are enumerated by (m0)d−k(m2)d−k.

For any given k there are (d−1)!/(k−d)! possible choices for (1, b2, . . . , bk) i.e. k−1

elements chosen from d − 1 elements where their order matters. Thus, summing over

all possible variants, we get

(m0)d(m2)d =
d∑

k=1

(d− 1)!

(d− k)!
(m0)d−k(m2)d−kHk(m0, 1,m2). (G.0.1)

Rearranging and dividing by (d− 1)! gives

Hd(m0, 1,m2) =
(m0)d(m2)d

(d− 1)!
−

d−1∑
k=1

(m0)d−k(m2)d−k
(d− k)!

Hk(m0, 1,m2).

Finally, the special case H1(m0, 1,m2) = m0m2 follows from substituting d = 1 into

(G.0.1).

128

Bibliography

[1] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover

Publications, 1965.

[2] M. Aguiar, F. Sottile, Structure of the Malvenuto-Reutenauer Hopf algebra of

permutations, Adv. Math. (N. Y). 191 (2005) 225–275.

[3] D. Arquès, Hypercartes pointées sur le tore: Décompositions et dénombrements,

J. Comb. Theory, Ser. B 43 (1987) 275–286.

[4] D. Arquès, Relations fonctionnelles et dénombrement des cartes pointées sur le

tore, J. Comb. Theory, Ser. B 43 (1987) 253–274.

[5] I. Bengtsson, K. Zyczkowski, Geometry of quantum states: an introduction to

quantum entanglement, 1st Edition, Cambridge University Press, 2006.

[6] C. Bennett, D. DiVincenzo, J. Smolin, W. Wootters, Mixed-state entanglement

and quantum error correction, Phys. Rev. A 54 (1996) 3824–3851.

[7] D. Bessis, C. Itzykson, J. B. Zuber, Quantum field theory techniques in graphical

enumeration, Adv. Appl. Math. 1 (1980) 109–157.

[8] T. J. Bromwich, An Introduction to the Theory of Infinite Series, American

Mathematical Society, 1991.

[9] L. Comtet, Sur les coefficients de l’inverse de la serie formelle Sum n! tˆn, Comptes

Rend. Acad. Sci. Paris, A 275 (1972) 569–572.

[10] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Company, 1974.

[11] A. Erdélyi, M. Wyman, The asymptotic evaluation of certain integrals, Arch.

Ration. Mech. Anal. 14 (1963) 217–260.

[12] H. Everett, The theory of the universal wave function, in: many-worlds Interpret.

quantum Mech., Princeton University Press, 1973.

[13] R. P. Feynman, QED: The strange theory of light and matter, Princeton University

Press, 1985.

[14] R. P. Feynman, A. R. Hibbs, Quantum mechanics and path integrals, Dover

Publications, 1997.

129

http://dx.doi.org/10.1016/j.aim.2004.03.007
http://dx.doi.org/10.1016/j.aim.2004.03.007
http://dx.doi.org/10.1016/0095-8956(87)90003-7
http://dx.doi.org/10.1016/0095-8956(87)90002-5
http://dx.doi.org/10.1016/0095-8956(87)90002-5
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1016/0196-8858(80)90008-1
http://dx.doi.org/10.1016/0196-8858(80)90008-1
http://dx.doi.org/10.1007/BF00250704

BIBLIOGRAPHY BIBLIOGRAPHY

[15] G. B. Folland, How to Integrate a Polynomial over a Sphere, Am. Math. Mon. 108

(2001) 446.

[16] S. Foong, S. Kanno, Proof of Page’s conjecture on the average entropy of a

subsystem, Phys. Rev. Lett. 72 (1994) 1148–1151.

[17] M. Hall, Subgroups of finite index in free groups, Canad. J. Math 1 (1949) 187–190.

[18] B. R. Heap, Permutations by Interchanges, Comput. J. 6 (1963) 293–298.

[19] M. Klazar, Irreducible and connected permutations, Inst. Teor. Inform. 122.

[20] S. K. Lando, A. K. Zvonkin, Graphs on surfaces and their applications, Springer,

2004.

[21] S. Lloyd, H. Pagels, Complexity as thermodynamic depth, Ann. Phys. (N. Y). 188

(1988) 186–213.

[22] E. Lubkin, Entropy of an n-system from its correlation with a k-reservoir, J. Math.

Phys. 19 (1978) 1028.

[23] M. L. Mehta, Random Matrices, 2nd Edition, Academic Press Inc., 1991.

[24] D. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291–1294.

[25] R. Penco, D. Mauro, Perturbation theory via Feynman diagrams in classical

mechanics, Eur. J. Phys. 27 (2006) 1241–1249.

[26] M. Petkovšek, H. S. Wilf, D. Zeilberger, A= B, A K Peters Ltd, 1996.

[27] J. Sánchez-Ruiz, Simple proof of Page’s conjecture on the average entropy of a

subsystem, Phys. Rev. E 52 (1995) 5653.

[28] G. Schaeffer, E. Vassilieva, A bijective proof of Jackson’s formula for the number

of factorizations of a cycle, J. Comb. Theory, Ser. A 115 (6) (2008) 903–924.

[29] R. Sedgewick, Permutation Generation Methods, ACM Comput. Surv. 9 (1977)

137–164.

[30] S. Sen, Average Entropy of a Quantum Subsystem, Phys. Rev. Lett. 77 (1996)

1–3.

[31] N. J. A. Sloane, Number of connected permutations of [1..n].

URL https://oeis.org/A003319

[32] N. J. A. Sloane, R. Ehrenborg, G. Hetyei, A problem of configurations.

URL https://oeis.org/A000698

[33] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72

(1974) 461–473.

130

http://dx.doi.org/10.2307/2695802
dx.doi.org/10.1103/PhysRevLett.72.1148
dx.doi.org/10.1103/PhysRevLett.72.1148
dx.doi.org/10.1093/comjnl/6.3.293
http://dx.doi.org/10.1016/0003-4916(88)90094-2
http://dx.doi.org/10.1063/1.523763
http://dx.doi.org/10.1103/PhysRevLett.71.1291
http://dx.doi.org/10.1088/0143-0807/27/5/023
http://dx.doi.org/10.1088/0143-0807/27/5/023
http://dx.doi.org/10.1103/PhysRevE.52.5653
http://dx.doi.org/10.1103/PhysRevE.52.5653
http://dx.doi.org/10.1016/j.jcta.2007.12.002
http://dx.doi.org/10.1016/j.jcta.2007.12.002
http://dx.doi.org/10.1145/356689.356692
http://dx.doi.org/10.1103/PhysRevLett.77.1
https://oeis.org/A003319
https://oeis.org/A003319
https://oeis.org/A000698
https://oeis.org/A000698

BIBLIOGRAPHY BIBLIOGRAPHY

[34] T. R. Walsh, Generating nonisomorphic maps without storing them, SIAM J.

Algebr. Discret. Methods.

[35] T. R. Walsh, Generating nonisomorphic maps and hypermaps without storing

them (2012).

URL http://accueil.labunix.uqam.ca/{~}walsh{_}t/papers/

GENERATINGNONISOMORPHIC.pdf

[36] T. R. S. Walsh, Hypermaps versus bipartite maps, J. Comb. Theory, Ser. B 18

(1975) 155–163.

[37] T. R. S. Walsh, A. B. Lehman, Counting rooted maps by Genus. I, J. Comb.

Theory, Ser. B 13 (1972) 192–218.

[38] D. Zeilberger, Maple Programs Related to A=B.

URL http://www.math.rutgers.edu/{~}zeilberg/programsAB.html

[39] A. Zvonkin, Matrix integrals and map enumeration: An accessible introduction,

Math. Comput. Model. 26 (1997) 281–304.

131

http://dx.doi.org/10.1137/0604018
http://accueil.labunix.uqam.ca/{~}walsh{_}t/papers/GENERATING NONISOMORPHIC.pdf
http://accueil.labunix.uqam.ca/{~}walsh{_}t/papers/GENERATING NONISOMORPHIC.pdf
http://accueil.labunix.uqam.ca/{~}walsh{_}t/papers/GENERATING NONISOMORPHIC.pdf
http://accueil.labunix.uqam.ca/{~}walsh{_}t/papers/GENERATING NONISOMORPHIC.pdf
http://dx.doi.org/10.1016/0095-8956(75)90042-8
http://dx.doi.org/10.1016/0095-8956(72)90056-1
http://www.math.rutgers.edu/{~}zeilberg/programsAB.html
http://www.math.rutgers.edu/{~}zeilberg/programsAB.html
http://dx.doi.org/10.1016/S0895-7177(97)00210-0

	Abstract
	Contents
	Acknowledgements
	Declaration
	I Introduction
	Quantum theory and enumeration
	Structure of this thesis

	II Random states of bipartite quantum systems
	Introduction
	Preliminaries
	Quantum states
	Bipartite systems
	The Schmidt decomposition

	Matrix integrals
	The state vector integral
	Spherical integration

	The eigenvalue integral
	Evaluation

	Lubkin's entropy
	Series convergence
	Special case: m1=m2=2
	The general case

	Page's formula
	Validating Lubkin

	Divergent series
	The reason for divergence, and convergent alternatives

	Conclusions

	III Enumeration of rooted constellations
	"426830A Tr[(112)d]"526930B as combinatorial functions
	Basic concepts
	Hypermaps and constellations
	Permutations
	Constellations
	Rooted constellations
	Hypermaps

	Generating functions

	One-face rooted hypermaps
	Why matrix integration
	Enumerating permutations

	The generating function
	Evaluating Pd(m1,m2)
	Walsh's method
	Direct enumeration by our method
	Closed-form generating functions
	Recursion relation
	Discussion

	General rooted hypermaps
	The two-face case
	Constructing the generating functions

	Enumerating all rooted hypermaps
	Eliminating over-counting
	Building the generating function
	Evaluating F(m0,m1,m2;x)
	Evaluating H(m0,m1,m2;x)
	Implementation and Results
	Sums over subsets and equivalences

	Further problems
	Rooted maps
	Evaluation

	General constellations
	Deriving the matrix integrals
	One-face constellations

	Enumeration discussion

	Appendices
	Miscellaneous identities
	Exact evaluation of "426830A S2,2"526930B
	Confirmation of Page's entropy formula
	Some counts of rooted hypermaps
	Multiple counting of two-face rooted hypermaps
	Inner products of general orthogonal polynomials
	Confirmation of hypermap subgroup counting
	Bibliography

