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Abstract

Over the last two decades, Slow Slip Events (SSEs) have been observed across many

subduction zones, primarily through continuous GNSS networks. SSEs represent shear-

ing of two tectonic plates, at much slower rates than earthquakes but more rapidly than

plate motion. They are not dangerous in themselves, but change the stress field and can

potentially trigger devastating earthquakes. While highly valuable, GNSS networks at

most locations lack the spatial-resolution required to describe the spatial extent of the

slow slip at depth. A better constraint of slow slip at depth in combination with other

observations from seismology could be essential in addressing key research questions.

These include: “Why do slow slip events occurs in some regions and not others?”,

“What drives slow slip events?”, “Do slow slip events delay the occurrence of dev-

astating earthquakes?”, and “Can slow slip events trigger devastating earthquakes?”.

Interferometric Synthetic Aperture Radar (InSAR) is an established and attractive

technique to study surface displacements at high-spatial resolution. Until now, InSAR

has not been fully exploited for the study of SSEs. Here, I provide the necessary InSAR

methodology, and further demonstrate the use of InSAR for static and time-dependant

slow slip modelling. My developments have a direct benefit for various other applica-

tions such as earthquake cycle processes.

I Specifically address the following two challenges which limit the wide uptake of

InSAR: (1) Decorrelation noise introduced by changing backscattering properties of

the surface and a change in satellite acquisition geometry, making it difficult to cor-

rectly unwrap meaningful signal. I address this problem by applying existing advanced

time-series InSAR processing methods. (2) Atmospheric delays masking the smaller

slow slip signal. These are mainly due to spatial and temporal variations in pressure,

temperature, and relative humidity in the lower part of the troposphere, which result

in an apparent signal in the InSAR data. Different tropospheric correction methods

exist, all with their own limitations. Auxiliary data methods often lack the spatial and

temporal resolution, while the phase-based methods cannot account for a spatially-

varying troposphere. In response, I develop a phase-based power-law representation

of tropospheric delay that can be applied in the presence of deformation and which

accounts for spatial variation of tropospheric properties. I demonstrate its application

over Mexico, where it reduces tropospheric signals both locally (on average by ∼0.45

v



vi Abstract

cm for each kilometer of elevation) and the long wavelength components. Moreover, I

provide to the research community a Toolbox for Reducing Atmospheric InSAR Noise

(TRAIN), which includes all the state-of-the-art correction methods, implemented as

opensource matlab routines. When comparing these methods, I find spectrometers give

the largest reduction in tropospheric noise, but are limited to cloud-free and daylight

acquisitions. I also find that all correction methods perform ∼10-20% worse when there

is cloud cover. As all methods have their own limitations, future efforts should aim

at combining the different correction methods in an optimal manner. Additionally, I

apply my InSAR methodology and power-law correction method to the study of the

2006 Guerrero SSE, where I jointly invert cumulative GNSS and InSAR SSE surface

displacements. In Guerrero, SSEs have been observed in a “seismic gap”, where no

earthquakes have occurred since 1911, accumulating a seismic potential of Mw 8.0-8.4.

I find slow slip enters the seismogenic zone and the Guerrero Gap, with ∼5 cm slip

reaching depths as shallow as 12 km, and where the spatial extent of the slow slip col-

locates on the interface with a highly coupled inter-SSE region as found from an GNSS

study. In addition, slow slip decreased the total accumulated moment since the previous

SSE (4.7 years earlier) by ∼50%. Over time and while accounting for SSEs, the moment

deficit in the Guerrero Gap increases each year by Mw ∼6.8. Therefore I find that the

Guerrero Gap still has the potential for a large earthquake, with a seismic potential of

Mw ∼8.15 accumulated over the last century. Finally, I show the application to use

InSAR for time-dependant slow slip modelling. From a simulation of the 2006 SSE, I

demonstrate that InSAR is able to provide valuable information to constrain the spatial

extent of the slow slip signal. With a future perspective of continued high repeat acqui-

sitions of various SAR platforms, my expansion of the Network Inversion Filter with

InSAR will become a powerful tool for investigating the spatio-temporal correlation

between slow slip and other phenomena such as non volcanic tremor. Moreover, this

approach can apply to earthquake cycle processes. Studying the broader earthquake

cycle will further our knowledge of seismic hazard and increase our resilience to such

events.
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φtropo Tropospheric phase delay [rad]
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K∆φ, K
′
∆φ Constant relating the interferometric tropospheric phase to topog-

raphy

∆φtropo Interferometric tropospheric phase delay [rad]
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Chapter 1

Introduction

Since the year 2000, more than 800000 people have lost their lives due to the occur-

rence of earthquakes and tsunamis (USGS). Getting a better understanding “why” and

“when” earthquakes occur requires a better understanding of all the processes involved

in the earthquake cycle (e.g. Avouac, 2015). This includes interseismic loading, dur-

ing which the energy is built-up, coseismic events, in which energy is released through

instantaneous earthquakes, postseismic relaxation, consisting of multiple mechanisms

including viscous relaxation of the lower crust and upper mantle, pore-fluid flow, and

afterslip; as well as any other aseismic processes such as slow slip events, which further

release energy without generating significant seismic waves. All these processes change

the stress field and have implications for the occurrence of future earthquakes (e.g.

Segall , 2010).

We can’t solve problems by

using the same kind of thinking

we used when we created them.

ALBERT EINSTEIN

This thesis will focus on the use of Interferometric Synthetic Aperture Radar (In-

SAR) to observe slow slip events (SSEs). In fact, SSEs are one of most poorly under-

stood processes of the earthquake cycle, as they were only discovered two decades ago

from GNSS continuous observations (Hirose et al., 1999, Dragert et al., 2001). Unfor-

tunately, these GNSS networks often lack the spatial resolution to resolve the slow slip

extent on the subducting interface (e.g. Brudzinski et al., 2007, Beroza and Ide, 2011).

InSAR offers a potential alternative to address this major issue of spatial resolution,

but requires the development of novel methodologies and techniques to detect slow slip

surface displacements (e.g. Hooper et al., 2012). InSAR observations in combination

with GNSS, have the potential to provide unprecedented insight into the spatial extent

and temporal evolution of SSEs, and could reveal their true role in the earthquake

cycle.

1
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In this chapter I will provide background information on SSEs, the rationale and

challenges involved in using InSAR, as well as an overview of the selected study area

(i.e. Guerrero, Mexico). Finally, I present aims and objectives along with a roadmap

of this thesis.

1.1 Slow Slip Events

Slow Slip Events (SSEs) were discovered from GNSS time-series anomalies about two

decades ago in Bungo Channel in Japan by Hirose et al. (1999), and independently

in Cascadia by Dragert et al. (2001). Over time, and with further deployment of con-

tinuous GNSS stations, SSEs have been observed at many subduction zones including

Mexico (e.g. Lowry et al., 2001, Kostoglodov et al., 2003, Larson et al., 2007), Alaska

(e.g. Wei et al., 2012, Fu and Freymueller , 2013), New Zealand (e.g. Douglas et al.,

2005, Bartlow et al., 2014), Costa Rica (e.g. Jiang et al., 2012, Dixon et al., 2014),

but also away from subduction zones, along the San Andreas fault (e.g. Linde et al.,

1996, Wei et al., 2013) and in Hawaii (e.g. Cervelli et al., 2002, Brooks et al., 2006)

(see Figure 1.1).

Slow Slip Events like regular earthquakes release elastic energy, but differ in terms

of their duration. While earthquakes occur in seconds to minutes, SSEs can last from

a few days, to a week (e.g. Japan and Cascadia: Ito et al., 2013, Bartlow et al., 2011),

a month (e.g. Japan, New Zealand and Guerrero: Ito et al., 2013, Bartlow et al., 2014,

Frank et al., 2015b), a year (e.g. Japan and Guerrero: Hirose et al., 1999, Vergnolle

et al., 2010), or longer (e.g. 1.5 years in New Zealand (Wallace and Beavan, 2006),

3 years in Alaska (Fu and Freymueller , 2013), and potentially 15 years in Sumatra

(Tsang et al., 2015)). A detailed overview of global SSEs and their characteristics can

be found in Schwartz and Rokosky (2007), Beroza and Ide (2011).

Slow slip is also referred to as Episodic Tremor and Slip (ETS), in those occasions

when SSEs are accompanied by an increase of low frequency (< 5 Hz) seismic signals

(i.e. Non-Volcanic Tremor (NVT) or Tectonic Tremor (TT)). The main hypothesis for

NVT is that it relates to fluid migration as a result of slab dehydration (e.g. Obara,

2002). This is also supported from observations such as P and S wave tomography in

Japan (e.g. Shelly et al., 2006) and high reflection zones along the Cascadia margin

(e.g. Kao et al., 2005). While ETS has been observed in Japan (e.g. Obara et al., 2004)

and Cascadia (e.g. Rogers and Dragert , 2003, Kao et al., 2005, Bartlow et al., 2011),

other slow slip regions like those in New Zealand (Bartlow et al., 2014) and Guerrero

are updip from the NVT/TT region, and therefore only labelled SSEs.

Potentially, regions currently labeled as SSEs might actually be ETS events. A

longer observation period of SSEs worldwide is required as our list of SSEs and tremor

locations are likely to be incomplete due to limited observation sensitivity. For example,

recently Frank et al. (2015b) discovered a new and smaller set of Guerrero (Mexico)
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Japan
(        )

Hawaii
SAF

Figure 1.1: A geographic overview of slow slip regions around the world. While most SSEs
have been observed at subduction zones, observations have also been made along the San
Andreas Fault in California, and at the Kilauea volcano in Hawaii. Figure modified from
Beroza and Ide (2011).

SSEs (with duration of approximately a month and repeating every 3 months), which

occurs down-dip of the large SSEs and just updip of the tremor zone. These new

SSEs are too small to observe with the conventional geodetic techniques, and were only

uncovered after careful analysis of low frequency earthquakes and their correlation with

stacked GNSS observations. In addition, the Meso-America Subduction Experiment

(MASE) was operated from January 2005 to June 2007 (MASE , 2007), limiting the

ETS investigation to the period covering the 2006 Guerrero SSE. Other Guerrero SSEs

might exhibit a slightly different NVT pattern.

1.1.1 Slow Slip Events and their implications for earthquakes

The slip rate associated with a SSE is much lower than that of a regular earthquake. So

small in fact that it does not result in significant shaking of the Earth. While the SSE

in itself does not, therefore, pose a direct hazard to society, it will change the stress

field in the surrounding regions and potentially affect the timing of a real earthquake.

Over time SSEs can release as much energy as large magnitude earthquakes, e.g. Mw

7.4 in Mexico (e.g Larson et al., 2007).

Two end-member scenarios can be thought of for the relation between SSEs and

earthquakes. In scenario (1), a SSE occurs in the transition zone, downdip of the

seismogenic zone and above the free-slipping aseismic region. This changes the stress

field near the seismogenic zone, which could trigger a devastating earthquake (Dragert

et al., 2004). While no direct observation has been made of a large earthquake being

triggered by a SSE, studies of the 2011 Tohoku-Oki earthquake have shown that the
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Mw7.3 foreshock was preceeded by two SSEs of magnitude Mw ∼7 (e.g. Ito et al., 2013).

In Oaxaca, the 2011/2012 SSE has been reported to have migrated into the source region

of the 2012 Mw 7.4 Ometepec earthquake, ending a month before it occurred (Graham

et al., 2014). Graham et al. (2014) found small positive stress changes asociated with the

Oaxaca SSE for the source region of the Ometepec earthquake, supporting the scenario

of a SSE triggering an earthquake, but they found their results were insufficient to

test if this was merely a coincidence. In the Boso Peninsula in Japan, seismic swarms

with the largest magnitude Mw ∼5 have reported to occur during a SSE (Ozawa et al.,

2007).

For scenario (2), slow slip enters the seismogenic zone and releases stress, delay-

ing a future earthquake. In Guerrero, Mexico, SSEs have been reported to enter the

seismogenic zone (e.g. Radiguet et al., 2011). Radiguet et al. (2012) found that the

accumulated slip deficit where the SSEs enter the seismogenic zone to be 1/3 of those

without slow slip, indicating a clear release of energy due to SSEs. Also in Costa Rica

SSEs have been reported to extend into the seismogenic zone (e.g. Dixon et al., 2014).

Studies over both locations highlight the importance of SSEs decreasing the earthquake

potential and hence having a large impact on the earthquake cycle.

1.1.2 Why do Slow Slip Events occur?

SSEs are often observed in the transition zone between the seismogenic zone, which

is assumed to be velocity weakening, and the freely slipping aseismic zone, which is

assumed to be velocity strengthening (e.g. Dragert et al., 2001, Segall , 2010). Fric-

tion between the subducting and overiding plate decreases with increasing temperature

(depth) (e.g. Wech and Creager , 2011), as well as with increasing pore fluid pressures

(e.g. Audet et al., 2009). The latter can be the result of metamorphic slab dehydration

processes giving rise to fluids (e.g. Julian, 2002). It has been suggested that a per-

meability contrast across the Moho traps these dehydrated fluids in the mantle wedge

(e.g. Audet et al., 2009, Katayama et al., 2012), which increases pore-fluid pressure

and thus decreases the effective normal stress. Low effective normal stresses along the

plate interface in combination with a fault instability could result in repeated SSEs

(e.g. Katayama et al., 2012, Frank et al., 2015a), as also suggested from theoretical

rate and state friction modelling (e.g. Liu and Rice, 2007, Segall et al., 2010). In Mex-

ico, for example, SSEs are co-located with an Ultra Slow Velocity Layer (Song et al.,

2009), which is supported by observations of a large Vp/Vs ratio (Kim et al., 2010) and

findings from a local magnetotelluric study (Jödicke et al., 2006).

1.1.3 Scaling laws of SSEs and earthquakes compared

Scaling laws for SSEs can be useful as they help to understand the physical mechanism

involved and differences with earthquakes (Gao et al., 2012). Multiple studies of slow
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slip scaling laws have been developed over the last decade (e.g. Ide et al., 2007, Schwartz

and Rokosky , 2007, Brodsky and Mori , 2007, Meade and Loveless, 2009, Peng and

Gomberg , 2010, Obara, 2010, Gao et al., 2012). Gao et al. (2012) indicate a lack of

data for events ranging from minutes to a couple of days. The empirically derived

relationships will become better constrained with more observations of SSEs over time.

Part of the current observation gap is related to a lack of sensitivity in our observation

methods. The surface deformation associated with a SSE needs to be large enough

to be observed from geodesy, and therefore often relates to larger and longer lasting

SSEs. Alternative observations from strain and tilt meters can bridge this, but they

are typically more challenging to install and maintain, and therefore are a more sparse

dataset. Seismology on the other hand does not provide further direct observations for

SSEs, as no significant seismic waves are radiated. However, one can use the spatial and

temporal observations from NVT (Bartlow et al., 2014) or LFEs (Frank et al., 2015b)

to investigate in their potential collocation with SSEs. Until now, numerical modeling

of SSEs through rate and state friction laws (Tse and Rice, 1986) have not been used

to expand the catalogue of SSE observations, as further validation is required with

geodetic observations of SSEs (Gao et al., 2012) for the different friction mechanisms:

velocity weakening (e.g. Liu and Rice, 2007), velocity cutoff (e.g. Hawthorne and Rubin,

2013), and velocity weakening with dilatant strengthening (e.g. Segall et al., 2010).

Figure 1.2 provides an overview of the worldwide SSE and earthquake observations

together with the fitted empirical relations. Key points include:

• The relation between the fault length, L, and the width, W, affected during

regular earthquakes is similar to that of SSEs (L ∼ 2W), Figure 1.2(a).

• The relation between the seismic moment and the stress-drop, ∆σ, is found

to be nearly constant for both regular earthquakes and SSEs. However, for SSEs,

the stress-drop is 1-2 orders of magnitude smaller than for regular earthquakes,

Figure 1.2(b).

• In case of conventional earthquakes the seismic moment, Mo, is proportional

to the duration, T , cubed (Mo ∼ T3) (Furumoto and Nakanishi , 1983). This is

different for SSEs, where the duration is linearly related to seismic moment (Mo

∼ T), Figure 1.2(c).

• As expected the seismic moment and the average event rupture propagation

velocity, Vrp, behave different for SSEs and earthquakes. The average rupture

propagation velocity for SSEs are found to range from tens of km/day to hundreds

of m/day (LogVrp ∼ (−0.5± 0.05) LogMo), versus 1-10 km/s for earthquakes,

Figure 1.2(d).

• Event duration, T, was found to be less than three times the event rise time,

τ , for SSEs. For earthquakes this is much larger than 3, Figure 1.2(e). The event
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rise size was defined to be 95% of the total event deformation (Gao et al., 2012).

1.2 Interferometric Synthetic Aperture Radar

Surface displacements associated with SSEs are primarily observed using networks of

continuous GNSS stations. The spatial resolution at which the slow slip signal is re-

solved is limited by the station distribution. Interferometric Synthetic Aperture Radar

(InSAR) has the potential to provide worldwide observations of slow slip surface dis-

placements at high spatial resolution (every few meters), assuming a coherent signal is

maintained.

InSAR refers to the phase difference between two Synthetic Aperture Radar (SAR)

acquisitions over the same region but which were acquired at different times. Typically

the first acquisition is referred to as master, while the second acquisition is labeled

slave. As the SAR data is defined as a complex number, the InSAR operation becomes

a multiplication between the master and the complex conjugate of the slave. Prior to

InSAR computation, the slave SAR images needs to be aligned with that of the master.

This is achieved through a two-step coregistration procedure (e.g. Brown, 1992, Gabriel

and Goldstein, 1988, Hanssen, 2001). During coarse-coregistration, large correlation

windows are used to estimate the slave image translation offsets with respect to the

master (accuracy up to few pixels). This is followed by a fine-coregistration in which the

slave is resampled to the master grid using subpixel offset estimation and a polynomial

transformation.

To extract the change in surface displacements, the phase contribution from the

“flat-earth” and terrain needs to be accounted for (e.g. Hanssen, 2001). The flat-earth

refers to the phase signal introduced by reference surface (e.g. WGS84) and change

in viewing geometry between the master and slave. It is estimated using the precise

satellite orbit information and the formulation of the reference surface. The terrain is

accounted for by radar-coding a Digital Terrain Model (DEM), e.g. the Shuttle Radar

Topography Mission (SRTM) DEM (Farr et al., 2007), and combining this with the

satellite viewing geometry to compute the phase signal related to a change in elevation.

Different InSAR processors are available to perform the steps described above such

as ROI PAC (Rosen et al., 2004), GAMMA, and DORIS (Kampes et al., 2003). I used

the latter throughout my thesis to compute interferograms.

Historically, two major challenges have prevented the widespread uptake of InSAR:

(1) decorrelation noise, introduced by a change in satellite acquisition geometry and

surface scattering properties (e.g. Zebker , 1992), and (2) atmospheric noise signals (e.g.

Zebker et al., 1997, Hanssen, 2001). The latter include noise from the ionosphere, intro-

duced by free electron concentration variations, and for the troposphere, introduced by

water vapour, pressure and temperature variations. Atmospheric noise typically masks

the much smaller slow slip surface displacements (e.g. Hooper et al., 2012, Cavalié
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(a)                                      (b)

(c)                                      (d)                                    

)

(e)

Figure 1.2: A comparison of SSE and earthquake empirical scaling relationships, figures taken
from Gao et al. (2012). Logarithmic scaling laws are estimated from a global ensemble SSEs
(see legend for locations) and earthquakes. (a) gives the relationship between fault width and
fault length, (b) seismic moment and fault area, (c) seismic moment and duration, (d) seismic
moment and rupture propagation velocity, and (e) seismic moment and the ratio between event
duration and rise time.
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Figure 1.3: Simulation of the phase in case of (a) a distributed scatterer pixel, and (b) a
Persistent Scatterer (PS) pixel. For the PS pixel, a dominent scatter over time results in a
stable phase over time. This figure has been taken from Hooper et al. (2007).

et al., 2013). Therefore, a critical step in the InSAR processing chain lies in reducing

atmospheric noise.

Below I elaborate on these individual challenges and how they can be overcome.

1.2.1 Decorrelation noise

One drawback to InSAR measurements is the level of measurement error. This can be

reduced by applying state-of-the-art time series InSAR methods, which are typically

split into the Persistent Scatterer methods (e.g. Hooper et al., 2004, Perissin and Fer-

retti , 2007, Hooper et al., 2007), and the Small Baselines methods (e.g. Berardino et al.,

2002, Lanari et al., 2004, Hooper , 2008, Biggs et al., 2007), or a combination of both

(Hooper , 2008).

These time-series methods go back to the definition of the phase for each pixel,

being the coherent sum of all scatterers within the ground resolution cell. When the

scattering characteristics vary within this ground cell over time, the coherent sum of

the phase will also appear random, and the pixel will appear to be decorrelated (e.g.

Hooper et al., 2007), see the simulation of a distributed scatterer pixel in Figure 1.3(a).

However in the case of a bright scatterer - such as a building, tree-trunk, or large

rock - the phase value will be dominated by the phase of this bright scatterer and will

not appear random over time (e.g. Hooper et al., 2007), simulation in Figure 1.3(b).

Such a pixel is referred to as a Persistent Scatterer (PS) pixel. The aim of time-series

InSAR is to find the subset of these PS pixels, such the effects of decorrelation noise

can be reduced. Therefore a time-series interferogram will have fewer pixels than that

of conventional InSAR.

Throughout my thesis, I apply the Stanford Method for Persistent Scatterer (StaMPS)

(e.g. Hooper , 2008, Hooper et al., 2012). A detailed description of the StaMPS PS ap-

proach can be found in Hooper et al. (2004). StaMPS selects the PS pixels based on the

phase noise characteristics over time. To limit the computation effort and processing
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Figure 1.4: Comparing InSAR and time-series InSAR. This example shows 2 Envisat inter-
ferograms (a) and (b) processed using the conventional InSAR approach. Strong decorrelation
noise can be observed in (b). By performing a time-series analysis (StaMPS) of 19 interfer-
ograms, were interferograms are combined over time to select only those pixels with stable
phase-characteristics, the noise can be decreased significantly (b’). For (a) which was less sub-
jected for decorrelation, the improvement by applying time-series InSAR (a’) is less significant.

time, the interferograms are first split into patches with an initial PS candidate selec-

tion based on the amplitude dispersion threshold. The phase noise for each candidate is

then estimated using an iterative approach. Once completed, a further reduction of the

candidates is made by keeping only a percentage of random pixels per area, controlled

through the density random threshold. The PS selection on the candidates follows

after the weeding procedure, where the phase noise of neighboring candidate pixels are

compared. Those pixels for which the noise standard deviation with its neighbors does

not meet the weed standard deviation are rejected. In addition, also candidates with

noise levels that exceeds the weed maximum noise threshold will be rejected. Lastly,

the different patches are merged back together, either at full resolution or at a preferred

merge resolution. When specifying a coarse merge resolution, additional weeding can

be done when the noise standard deviation of the resampled PS pixel fails the merge

standard deviation threshold. At the same time as the merging step an estimate of the

DEM errors are removed. These are errors that correlate with the perpendicular base-

line. Some residual spatially-correlated DEM errors will remain due to inaccuracy of

the estimation procedure (Hooper et al., 2004). However, these residuals can be further

reduced after the unwrapping procedure, during the time-series inversion by estimating

a component that correlates with the perpendicular baseline. An example comparing

conventional InSAR and time-series InSAR is shown in Figure 1.4. Interferogram (b)

which shows large signs of decorrelation is improved significantly by combining 19 in-

terferograms over time using the StaMPS PS-InSAR approach. This dataset has been

processed using the parameters described in table 4.2.

1.2.2 Tropospheric noise

Variations of temperature, pressure, and relative humidity lead to a spatially vary-

ing tropospheric delay signal, which partly correlates with topography. A phase delay
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through the troposphere can be characterized by the refractivity, Ntropo, (Smith and

Weintraub, 1953, Thayer , 1974, Davis et al., 1985), and is typically split into a hy-

drostatic, wet, and liquid components. Below I neglect the liquid component, as it is

expected to be small and will only become significant in case of a saturated atmosphere

(Hanssen, 2001).

Ntropo =

(
k1
P

T

)
hydr

+
(
k′2
e

T
+ k3

e

T 2

)
wet

, (1.1)

where P indicates total atmospheric pressure, T the temperature and e the partial

pressure of water vapour. The coefficients k1, k′2 and k3 are constants estimated in

literature as k1= 77.6 KhPa−1, k′2= 23.3 KhPa−1 and k3= 3.75·105 K2hPa−1 (Smith

and Weintraub, 1953, Thayer , 1974). The tropospheric phase delay (2-way), φtropo, at

a specific height, h = h1, corresponds to the integration of the tropospheric refractivity

between h1 and the top of the troposphere htop along the radar line-of-sight (Hanssen,

2001).

dtropo = 10−6 (cosθ)−1
∫ h=htop

h=h1

Ntropo(h)dh (1.2)

φtropo =
−4π

λ
dtropo (1.3)

where dtropo is the tropospheric delay (1-way), θ the incidence angle, λ the radar wave-

length, and −4π/λ a conversion factor to convert from pseudorange increase to phase

delay.

Sounding measurements made during ascents of large inflated hydrogen or helium

balloons provide a detailed vertical profile of atmospheric properties (e.g. pressure,

temperature, relative humidity, and wind speed), which can be used to calculate re-

fractivity, and when integrated according to equation (1.2) gives the tropospheric delay

(Figure 1.5(a)). It can be observed that delays increase at lower altitudes as the sig-

nal has travelled further through the troposphere. With an interferogram being the

phase difference between two SAR acquisitions, the atmospheric delay depends on the

change in refractivity rather than the total refractivity. Figure 1.5(b) shows the rel-

ative tropospheric delays, i.e. the difference between all pairs of tropospheric delays

shown in Figure 1.5(a), with the darker color indicating more overlapping delay curves.

Variations in interferograms in flat regions, are mainly due to the wet component of

the refractivity, i.e. the water vapour; the hydrostatic component often appears as a

smooth signal due to the large spatial scale of high and low pressure fields (Hanssen,

2001). In regions with significant topography, the hydrostatic component will also cause

a correlation between the phase and topography (Elliott et al., 2008).

Different approaches have been documented to estimate the tropospheric noise in

InSAR data, for example by using weather models (e.g. Wadge et al., 2002, Liu et al.,
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Figure 1.5: (a) Tropospheric delays dtropo computed from balloon sounding data for 24 days
(12 UTC) between Jan-Feb 2014 in Southern Mexico. Delays are computed by integrating
the refractivity from height h upwards (to 9 km) and projecting to the Envisat radar line-of-
sight, with the black solid line indicating the mean delay. Only few soundings extend above 9
km. (b) Relative tropospheric delays ∆dtropo, showing all (276) possible combinations of the
difference between tropospheric delay at two different days. The darker the color, the more the
curves overlap, i.e. black all 276 relative delays overlap. All sounding data is provided by the
department of Atmospheric Science of the University of Wyoming.

2009, Doin et al., 2009, Jolivet et al., 2011, Grandin et al., 2012, Walters et al., 2014,

Jolivet et al., 2014), GNSS data (e.g. Onn and Zebker , 2006, Williams et al., 1998),

multi-spectral observations (e.g. from the Medium Resolution Imaging Spectrometer

(MERIS) onboard the Envisat satellite; or the Moderate Resolution Imaging Spectro-

radiometer (MODIS) onboard the Terra and Aqua satellites) (Li et al., 2006, 2009a,b),

or GNSS in combinations with spectrometer data (e.g. Li et al., 2005, Puysseégur et al.,

2007). While all of these techniques can, under certain conditions, reduce the tropo-

spheric signal, they are often limited by the lower spatial resolution of the auxiliary

data. Alternatively, tropospheric signals can be estimated from the correlation be-

tween the interferometric phase and the topography over the whole interferogram (e.g.

Cavalié et al., 2008), in a non-deforming area (Wicks et al., 2002), a spatial frequency

band insensitive to deformation (Lin et al., 2010), or by removing a preliminary es-

timate of the deformation displacements prior to the estimation (Elliott et al., 2008).

The assumption of a single relationship between phase and topography over the whole

interferogram does not account for the spatial variation of the tropospheric properties.

This can be significant over large areas (>10s of km), especially when the area includes

different climatic zones. All the above methods are corrections applied to individual

interferograms. In the presence of a time series of interferograms, other approaches

can be used as well, either stand-alone or in combination with those described earlier.

This includes stacking (e.g. Zebker et al., 1997), spatial and temporal filtering (e.g.

Hanssen, 2001), and time-series methods (e.g. Hooper et al., 2012, Elliott et al., 2008,

Doin et al., 2015). Both the stacking and filtering methods assume the atmosphere to

be spatially correlated and random in time. The challenges for all these methods lie in

separating the atmospheric noise from other signal contributions such as deformation,
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orbit errors, and DEM errors.

1.2.3 Ionospheric noise

Ionospheric phase noise in InSAR is introduced when the radar interacts with free

electrons in the ionosphere (between 100 and 1000 km altitude). The interaction be-

tween the radar signal and the free electrons can be described through the ionospheric

refractivity as (Hanssen, 2001):

Niono = −4.028× 107ne
f2
, (1.4)

where ne is the electron content, and f is the radar frequency. The ionospheric phase

delay (2-way), φiono, corresponds to the integration of the ionopsheric refractivity along

the travelled path as:

diono = 10−6 (cosθ)−1
∫
Nionodh = −40.28 (cosθ)−1 TEC

f2
(1.5)

φiono =
−4π

λ
diono (1.6)

where diono is the ionospheric delay (1-way), θ is the radar look angle, λ the radar

wavelength, TEC the Total Electron Content for a square meter vertical column, and

−4π/λ a conversion factor to convert from pseudorange increase to phase delay. The

TEC varies with latitude, time of day, orientation of the earth magnetic field, and solar

activity (e.g Snoeij et al., 2001).

The ionospheric delay is inversely proportional to the radar frequency f and cor-

related with the Total Electron Content (TEC) in the ionosphere. Therefore L-band

SARs (λ=23 cm), such as ALOS 1/2 and the future US-India NISAR mission, are

more subjected to ionospheric delays than C-band SARs (λ=5.6 cm), such as ERS 1/2,

Envisat, and the RADARSAT constellation.

Ionospheric noise artefacts can be estimated from auxiliary data like GNSS (e.g.

Misra and Enge, 2010) and potentially from ionospheric weather models, but these

are often limited by their low spatial resolution (tens of km to hundreds of km) in

comparison with high-resolution InSAR data.

Alternatively, relative TEC variations can be estimated from the radar data using

azimuth shift (e.g. Meyer et al., 2006) or split-spectrum methods (e.g. Rosen et al.,

2010). For the azimuth shift method, azimuth displacements from offset tracking, or

more accurately from Spectral Diversity (also known as Multi-Aperture Interferometry)

(e.g. Jung et al., 2013, Jung and Lee, 2015), are related to the azimuth derivative of

the ionospheric effects. For the range split-spectrum methods, the dispersive relation is

used to separate ionospheric noise from a non-dispersive component (troposphere and

tectonic signals). Both approaches require a coherent interferogram, and have their
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own limitations. The azimuth shift method assumes negligible azimuth deformation

compared to the ionospheric delay (up to 5 m) and works well when there are no isolated

regions in the interferogram. The split spectrum method is applied to unwrapped

interferograms, and requires a high degree of smoothing due to strong noise scaling.

1.3 Mexico study area

The study area of my PhD research is Guerrero in Southern Mexico, Figure 1.6. Here,

the Cocos plate subducts beneath the North American plate at a rate of ∼6.1 cm/year

(DeMets et al., 2010), leading to sporadic large thrust earthquakes (gray shaded poly-

gons). Although seismicity is observed over a large depth range, large devastating

thrust earthquakes in Guerrero are mainly observed in the locked seismogenic zone

between 10-25 km depths, where the subducting and overriding plates are strongly

coupled (Kostoglodov et al., 2001, Larson et al., 2004). A Mw 8.0 earthquake in 1985

caused more than 10,000 deaths in Mexico City and 3-4 billion U.S. dollars of damage

(USGS). However, there is a region with a seismic gap (Figure 1.6, red line between

101.2◦W - 99.2◦W) where no earthquake has occurred since the Mw=7.6 earthquake in

1911 (e.g. Kostoglodov et al., 2003). The largest slip deficit is assumed to be located

on the northwestern section of the Gap (dashed red line between 101.2◦W - 100.4◦W)

(Kostoglodov et al., 1996), as some slip is thought to have been released on the south-

eastern section by the Mw 7.7 earthquake in 1957, and the Mw 7.1 and 7.0 earthquakes

in 1962 (Ortiz et al., 2000). Singh and Mortera (1991) estimated that a rupture of the

Guerrero Gap today could result in an earthquake of Mw 8.2-8.4.

Considering the seismic potential of the Guerrero Gap, the region has been a focus of

much research effort. Through repeat leveling observations, Kostoglodov et al. (2001)

observed an opposite sense of tilting inside compared to outside the Guerrero Gap.

They suggested that this could be caused by a change in the geometry of the locked

zone and perhaps the occurrence of a SSE, as discovered in Cascadia and Japan (Hirose

et al., 1999, Dragert et al., 2001). In the same year, Lowry et al. (2001) confirmed the

occurrence of the 1998 Guerrero SSE, by using the observations of a single continuous

GNSS site, close to the coast (CAYA), and a few campaign sites.

Puzzled by this interesting observation, further questions arose regarding SSEs,

including (1) what is their recurrence, (2) what is their spatial extent on the subducting

interface, (3) what is their relation with the Guerrero Gap, (4) how do they fit in with

the earthquake cycle, and (5) how do they impact the seismic hazard for the surrounding

cities and the densely populated capital of Mexico? Even now, two decades later, a lot

of opportunities exist to make future contributions to these questions.

The following sections provide information on the Guerrero subduction zone, current

SSE observations and modelling results, as well as the latest view on how slow slip events

occur and interplay with tremor in the Guerrero region.
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Figure 1.6: Overview of the Guerrero subduction zone. (a) Tectonic setting of Guerrero. The
gray arrows indicate the MORVEL relative plate motion of the Cocos and the North America
Plate (DeMets et al., 2010), with depth contours of the subducting slab indicated every 20 km
(Pardo and Suárez , 1995, Melgar and Pérez-Campos, 2011, Pérez-Campos and Clayton, 2014).
Gray polygons represent rupture areas of major earthquakes (Kostoglodov et al., 2003). The
rupture of the 1985 earthquake is indicated, as well as the recent 2014 Guerrero earthquakes
(stars), which occurred on the western edge of the gap. The red shaded polygon gives the
approximate location of the large SSEs, repeating approximately every 4 years, and where the
polygon represents the 10 cm slip contour of the 2006 SSE (Radiguet et al., 2011). The yellow
shaded polygon shows the location of the small SSEs that repeat every 3 months, and where
the polygon gives an average location of the 4 mm slip contour of all the small SSEs together
(Frank et al., 2015b). Plotted GNSS displacements corresponds to the surface displacements of
the 2006 SSE (Vergnolle et al., 2010), with error bars representing 2σ. The dotted black line
represents the transect of the subduction interface as shown in (b) and assumed in many of the
Guerrero SSE studies (e.g. Radiguet et al., 2012, Cavalié et al., 2013). Topography information
as well as the GNSS stations locations (black square markers) are plotted with respect to the
distance to the coastal ACAP GNSS station, located in Acapulco. Interface as determined
from Receiver Function tomography of teleseismic earthquakes using the MASE network (Kim
et al., 2010; blue dashed line in (a)) is shown by the green markers, while gray markers show
the seismicity. After Frank et al. (2015b), large and small magnitude SSEs are shown on
the subducting interface, together with the approximate location of increased activity of Low
Frequency Earthquakes (LFE) and Non Volcanic Tremor (NVT). Ocean bottom topography
data has been extracted from the GEBCO 08 Grid (version 20091120, http://www.gebco.net),
while for the elevations I made use of the SRTM DEM.
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1.3.1 The Guerrero subduction zone

The structure of the Guerrero subduction interface is interesting, being different from

most subduction zones, as it has a sub-horizontal stage (Figure 1.6(b)). The Pacific

plate subducts beneath the North America plate about 66 km south-southwest off

the coastal city of Acapulco with a dip angle of 15◦ and becomes sub-horizontal at a

depth of 40 km, approximately 80 km north-northeast from Acapulco. The interface

remains horizontal until about 230-250 km from the coast, after which it dips steeply

below the Trans-Mexican Volcanic Belt, at an angle of 75◦ (Kim et al., 2010, Chen

and Clayton, 2012). The interface geometry has been estimated from a variety of data,

including seismicity and focal mechanics (Singh and Pardo, 1993, Pardo and Suárez ,

1995), geologic records and volcanic features (Ferrari , 2004), and from the analysis of

the MASE broadband seismic network (Pérez-Campos et al., 2008, Kim et al., 2010).

1.3.2 Slow slip events in Guerrero

Analyses of GNSS data have indicated the Mexican subduction zone to be very active

in terms of SSEs, with a repeat interval of approximately 3-5 years. SSEs have been

documented to occur in 1995 (Larson et al., 2004, Vergnolle et al., 2010), 1998 (Lowry

et al., 2001, Larson et al., 2004, Vergnolle et al., 2010), 2001/2002 (Kostoglodov et al.,

2003, Iglesias et al., 2004, Vergnolle et al., 2010), 2006 (Larson et al., 2007, Correa-

Mora et al., 2009, Vergnolle et al., 2010, Radiguet et al., 2011, Bekaert , 2011, Hooper

et al., 2012, Cavalié et al., 2013), 2009/2010 (Walpersdorf et al., 2011), and recently in

2014/2015 (Vladimir Kostoglodov and Erwan Pathier, personal communication, Octo-

ber 2014).

The slow slip surface displacements are the largest near the coast (average accu-

mulated uplift of ∼4-5 cm), and extend from the coast to Mexico City, 300 km inland.

Typically, the surface displacements decrease inland with GNSS sites at ∼100-130 km

distance from the coast showing a subsidence signal, and with displacements decreasing

to zero beyond 250-300 km. The cumulative horizontal displacements for most of the

sites are in a southwesterly direction.

Slip modelling shows that SSEs reach an average peak slip of ∼15-20 cm, located

just up-dip of the sub horizontal stage (e.g. Kostoglodov et al., 2003, Vergnolle et al.,

2010; Figure 1.6(a) red polygon). The Guerrero SSEs are some of the largest observed

around the world (Cotte et al., 2009) with equivalent earthquake magnitudes between

Mw 7-7.5 (e.g. Kostoglodov et al., 2003, Larson et al., 2004, Vergnolle et al., 2010). Most

of the slow slip occurs along the subducting interface within the transition zone (25-40

km depths). However, some slow slip is found to enter the locked part of the seismogenic

zone (< 25 km) where typically large thrust earthquakes occur (e.g. Radiguet et al.,

2012). Radiguet et al. (2012) found that over a 12-year period SSEs reduced the slip

deficit within the Guerrero Gap to 1/4 the slip deficit outside the Gap. While SSEs
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decrease the seismic potential in the Guerrero Gap, the question arises to what extend

slow slip modifies the stresses at the edges of the slow slip region. This question is

under investigation after two earthquakes (Mw 6.4 and 7.2) occurred on the western

edge of the Guerrero Gap, blue and green star in Figure 1.6, during the most recent

2014 SSE.

In the last year, a set of smaller magnitude SSEs were discovered by Frank et al.

(2015b), which have an average magnitude Mw ∼6.4, a duration of about a month, and

repeat every 3 months. These SSEs were not observed using the typical GNSS methods,

but were revealed by aligning and stacking of GNSS observations with the occurrence

of Low Frequency Earthquakes. Modelling results show that these smaller magnitude

SSEs, Figure 1.6(a) yellow polygon, occur on the subhorizontal stage, down-dip of the

region with the large SSEs, and just up-dip of the NVT “Sweet Spot”, Figure 1.6(a)

blue polygon. The average accumulated slip is ∼6 mm, with associated horizontal

surface displacements of maximum ∼1.5 mm near the coast (Frank et al., 2015b).

1.3.3 Explaining the occurence of slow slip in Guerrero

The hypothesis on the occurrence of SSEs in Mexico fits in well with the general idea as

provided in section 1.1.2. Elevated pore-fluid pressure as a result of slab dehydration

decreases the effective normal stress. Those regions of the fault interface with low

effective normal stresses can therefore slip when small shear stresses are introduced

(Colella et al., 2013). In Mexico, the spatial extent of the slow slip co-locates with an

Ultra Slow Velocity Layer (USVL) (Song et al., 2009), supported by observations of a

large Vp/Vs ratio (Kim et al., 2010) and findings from a local magnetotelluric study

(Jödicke et al., 2006). Kim et al. (2013) suggests that the USVL is mainly composed

of talc and serpentinites, which can develop a strong anisotropic permeability under

shearing (e.g. Frank et al., 2015a). In other regions around the world, such as in

Cascadia, NVT and slow slip are correlated in space and time. This is not the case in

Mexico, where NVT (Husker et al., 2012) is found down-dip of the slow slip region in a

area labeled the NVT “Sweet Spot”, Figure 1.6(b). Frank et al. (2013) discovered that

within this region also Low Frequency Earthquakes (LFEs) occur. The observational

catalogue of NVT and LFEs in Mexico is limited in time by the operational period

of the MASE network (blue dashed line in Figure 1.6(a) MASE , 2007). Therefore is

it only possible to compare NVT activity with the 2006 SSE, for which no increased

activity is observed in the Sweet Spot. With the discovery of the smaller magnitude

SSEs (Frank et al., 2015b) the spatial gap between the Sweet Spot and slow slip region

is further reduced, as illustrated in Figure 1.6(b).

Frank et al. (2014) discovered a new cluster of LFEs in the transition zone, for which

the activity correlates in space and time with that of the 2006 SSE. In another study

Frank et al. (2015a) provides a hypothesis which integrates the occurrence of NVT

in the Sweet spot, LFEs in the transition zone and its correlation with SSEs. Their
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proposed scenario describes how fluids introduced by slab dehydration are trapped

within the Sweet Spot due to the USVL permeability anisotropy, which gives rise to

the occurrence of continuous NVT activity. During the occurrence of a slow slip event,

shear stresses increase within the LFE transition zone, increasing the LFE activity.

The increase in shear stress also re-activates faults, which changes the permeability

allowing for fluid migration along the reactivated faults from the Sweet Spot in the

updip direction. Once these fluids have moved past the LFE region in the transition

zone, the effective normal is increased again decreasing the LFE activity again.

1.4 Aims and objectives

Until now, observations of SSEs have been primarily made from continuous GNSS

networks. The spatial resolution of these slow slip surface observations are therefore

typically limited by the GNSS station distribution. In many cases this has led to

a poorly constrained slow slip solution at the subduction interface. Interferometric

Synthetic Aperture Radar (InSAR) can be used to address this problem. Where good

coherence is maintained InSAR can provide an observation every ∼30 m. However,

InSAR has its own limitations as was already described in section 1.2.

The aim of my thesis is to get a better understanding of slow slip events by using

observations from InSAR. To achieve this I have defined the following objectives.

• Develop and redefine tropospheric correction methods for InSAR.

• Develop a method to extract slow slip surface displacements from InSAR.

• Develop a method to invert static GNSS and InSAR observations of slow slip

surface displacements to model slow slip on the subduction interface.

• Develop a joint inversion method of GNSS and InSAR observations to retrieve

the slow slip evolution on the subduction interface.

Together these objectives allow for the development of InSAR as an observation tool

for slow slip, and its combination with GNSS for high-resolution slip modelling. This

will be of particular interest in constraining the spatial and temporal extent of slow

slip. Together with observations of seismology this might provide more insight into

what causes these slow slip events and how they impact the stress field.

1.5 Thesis Roadmap

In chapter 2, I developed a power-law tropospheric correction method for InSAR,

which is estimated empirically from the high resolution InSAR data itself (published as

Bekaert et al., 2015a). This method is an improvement above the traditionally applied

linear method, as it allows for a spatial variation in tropospheric properties. Here
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I present the developed methodology, and present a test-case over Southern Mexico,

where I compare the power-law methods with that of the linear method. This chapter

is in support of my 1st objective as set within my thesis.

In chapter 3, I perform a statistical analysis of the state-of-the-art tropospheric

correction methods for InSAR over Southern Mexico, Italy and El Hierro (published as

Bekaert et al., 2015b). Besides my newly developed power-law method, this includes

the tropospheric corrections estimated from spectrometers (MERIS and MODIS), a

low and high spatial-resolution weather model (ERA-I and WRF), and the conven-

tional linear empirical method. This chapter completes the 1st objective as set within

my thesis. Together with the publication of this manuscript, I also released the Tool-

box for Reducing Atmospheric InSAR Noise (TRAIN) which can be downloaded at

http://www.davidbekaert.com/#links). With this toolbox I aim to support the In-

SAR community and make tropospheric corrections a standard practice in the InSAR

processing chain.

In chapter 4, I develop and demonstrate the combined usage of InSAR and GNSS

to model the cumulative slip as result of the 2006 Guerrero SSE (published as Bekaert

et al., 2015c). This includes the correction of tropospheric delays using the power-law

method, as developed in chapter 2, the development of the methodology and estimation

of the InSAR slow slip surface displacements, and the slow slip modelling by combining

GNSS and InSAR together using full variance-covariance information. This chapter

therefore complements the 2nd and 3rd objective as set within my thesis.

In chapter 5, I provide the methodology for the time-dependent slip modelling

of earthquake cycle processes such as interseismic, coseismic, postseismic and aseis-

mic slip; combining geodetic observations from GNSS and InSAR. This chapter is a

manuscript currently under review in the Journal of Geophysical Research. It contains

an application of the developed methodology to a simulation of the 2006 Guerrero SSE.

This is different from chapter 4, which was a static inversion. The developed method

supports the 4th objective as set within my thesis.

http://www.davidbekaert.com/#links
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tions of stratified tropospheric delays in SAR interferometry: Validation with
global atmospheric models, Journal of Applied Geophysics, 69 (1), 35 – 50,
doi:10.1016/j.jappgeo.2009.03.010. 1.2.2

http://dx.doi.org/http://dx.doi.org/10.1016/j.epsl.2006.03.035
http://dx.doi.org/10.1111/j.1365-246X.2007.03542.x
http://dx.doi.org/http://dx.doi.org/10.1016/j.epsl.2008.07.057
http://dx.doi.org/10.1016/j.epsl.2013.02.020
http://dx.doi.org/10.1038/4151014a
http://dx.doi.org/10.1029/2012JB009233
http://dx.doi.org/10.1002/grl.50984
http://dx.doi.org/10.1029/2008GC002211
http://dx.doi.org/10.1029/2009EO210002
http://dx.doi.org/10.1029/RS020i006p01593
http://dx.doi.org/10.1111/j.1365-246X.2009.04491.x
http://dx.doi.org/10.1073/pnas.1412299111
http://dx.doi.org/10.1016/j.jappgeo.2009.03.010


References 21

Doin, M.-P., C. Twardzik, G. Ducret, C. Lasserre, S. Guillaso, and S. Jianbao (2015),
InSAR measurement of the deformation around Siling Co Lake: Inferences on
the lower crust viscosity in central Tibet, J. Geophys. Res., 120 (7), 5290 – 5310,
doi:10.1002/2014JB011768. 1.2.2

Douglas, A., J. Beavan, L. Wallace, and J. Townend (2005), Slow slip on the north-
ern Hikurangi subduction interface, New Zealand, Geophys. Res. Lett., 32 (16),
doi:10.1029/2005GL023607. 1.1

Dragert, H., K. Wang, and T. James (2001), A Silent Slip Event on the Deeper Cascadia
Subduction Interface, science, 292 (5521), 1525 – 1528, doi:10.1126/science.1060152.
1, 1.1, 1.1.2, 1.3

Dragert, H., K. Wang, and G. Rogers (2004), Geodetic and seismic signatures of
episodic tremor and slip in the northern Cascadia subduction zone, Earth, Plan-
ets and Space, 56 (12), 1143 – 1150, doi:10.1186/BF03353333. 1.1.1

Elliott, J., J. Biggs, B. Parsons, and T. Wright (2008), InSAR slip rate determination
on the Altyn Tagh Fault, northen Tibet, in the presence of topographically correlated
atmopsheric delays, Geophys. Res. Lett., 35 (12), doi:10.1029/2008GL033659. 1.2.2,
1.2.2

Farr, T., P. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller,
E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner,
M. Oskin, D. Burbank, and D. Alsdorf (2007), The Shuttle Radar Topography Mis-
sion, Reviews of Geophysics, 45 (2), doi:10.1029/2005RG000183. 1.2

Ferrari, L. (2004), Slab detachment control on mafic volcanic pulse and mantle hetero-
geneity in central Mexico, Geology, 32 (1), 77 – 80, doi:10.1130/G19887.1. 1.3.1

Frank, W., N. Shapiro, A. Husker, M. Campillo, J. Payero, and G. Prieto (2013),
Low-frequency earthquakes in the Mexican sweet spot, Geophys. Res. Lett., 40, 2661
2666, doi:10.1002/grl.50561. 1.3.3

Frank, W., N. Shapiro, A. Husker, V. Kostoglodov, A. Romanenko, and M. Campillo
(2014), Using systematically characterized low-frequency earthquakes as a fault probe
in Guerrero, Mexico, J. Geophys. Res., 119, 7686 7700, doi:10.1002/2014JB011457.
1.3.3

Frank, W., N. Shapiro, A. Husker, V. Kostoglodov, H. Bhat, and M. Campillo (2015a),
Along-fault pore-pressure evolution during a slow-slip event in Guerrero, Mexico,
Earth and Planetary Science Letters, 413, 135 – 143, doi:10.1016/j.epsl.2014.12.051.
1.1.2, 1.3.3

Frank, W. B., M. Radiguet, B. Rousset, N. M. Shapiro, A. L. Husker, V. Kos-
toglodov, N. Cotte, and M. Campillo (2015b), Uncovering the geodetic signature
of silent slip through repeating earthquakes, Geophys. Res. Lett., 42 (8), 2774 – 2779,
doi:10.1002/2015GL063685. 1.1, 1.1, 1.1.3, 1.6, 1.3.2, 1.3.3

Fu, Y., and J. T. Freymueller (2013), Repeated large Slow Slip Events at the southcen-
tral Alaska subduction zone, Earth and Planetary Science Letters, 375, 303 – 311,
doi:10.1016/j.epsl.2013.05.049. 1.1

Furumoto, M., and I. Nakanishi (1983), Source times and scaling relations of large
earthquakes, J. Geophys. Res., 88 (B3), 2191 – 2198, doi:10.1029/JB088iB03p02191.
1.1.3

Gabriel, A., and R. Goldstein (1988), Crossed orbit interferometry: theory and exper-
imental results from SIR-B, International Journal of Remote Sensing, 9 (5), 857 –
872, doi:10.1080/01431168808954901. 1.2

http://dx.doi.org/10.1002/2014JB011768
http://dx.doi.org/10.1029/2005GL023607
http://dx.doi.org/10.1126/science.1060152
http://dx.doi.org/10.1186/BF03353333
http://dx.doi.org/10.1029/2008GL033659
http://dx.doi.org/10.1029/2005RG000183
http://dx.doi.org/10.1130/G19887.1
http://dx.doi.org/10.1002/grl.50561
http://dx.doi.org/10.1002/2014JB011457
http://dx.doi.org/10.1016/j.epsl.2014.12.051
http://dx.doi.org/10.1002/2015GL063685
http://dx.doi.org/10.1016/j.epsl.2013.05.049
http://dx.doi.org/10.1029/JB088iB03p02191
http://dx.doi.org/10.1080/01431168808954901


22 References

Gao, H., D. Schmidt, and R. Weldon (2012), Scaling Relationships of Source Parameters
for Slow Slip Events, Bulletin of the Seismological Society of America, 102 (1), 352 –
360, doi:10.1785/0120110096. 1.1.3, 1.2

Graham, S. E., C. DeMets, E. Cabral-Cano, V. Kostoglodov, A. Walpersdorf,
N. Cotte, M. Brudzinski, R. McCaffrey, and L. Salazar-Tlaczani (2014), GPS con-
straints on the 20112012 Oaxaca slow slip event that preceded the 2012 March
20 Ometepec earthquake, southern Mexico, Geophys. J. Int., 197 (3), 1593–1607,
doi:10.1093/gji/ggu019. 1.1.1

Grandin, R., M.-P. Doin, L. Bollinger, B. Pinel-Puysségur, G. Ducret, R. Jolivet, and
S. N. Sapkota (2012), Long-term growth of the Himalaya inferred from interseismic
InSAR measurement, Geology, 40 (12), 1059–1062, doi:10.1130/G33154.1. 1.2.2

Hanssen, R. F. (2001), Remote Sensing and Digital Image Processing, in Radar Interfer-
ometry: Data interpretation and error analysis, Earth and Environmental Science,
vol. 2, edited by F. van der Meer, Kluwer Academic Plublishers, Dordrecht, The
Netherlands. 1.2, 1.2.2, 1.2.2, 1.2.2, 1.2.2, 1.2.3

Hawthorne, J. C., and A. M. Rubin (2013), Tidal modulation and back-
propagating fronts in slow slip events simulated with a velocity-weakening to
velocity-strengthening friction law, J. Geophys. Res., 118 (3), 1216 – 1239,
doi:10.1002/jgrb.50107. 1.1.3

Hirose, H., K. Hirahara, F. Kimata, N.Fujii, and S. Miyazaki (1999), A slow thrust slip
event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel,
southwest Japan, J. Geophys. Res., 26 (21), 3237 – 3240, doi:10.1029/1999GL010999.
1, 1.1, 1.3

Hooper, A. (2008), A multi-temporal InSAR method incorporating both per-
sistent scatterer and small baseline approaches, Geophys. Res. Lett., 35 (16),
doi:10.1029/2008GL034654. 1.2.1, 1.2.1

Hooper, A., H. Zebker, P. Segall, and B. Kampes (2004), A new method for mea-
suring deformation on volcanoes and other natural terrains using InSAR persistent
scatterers, Geophys. Res. Lett., 31 (23), doi:10.1029/2004GL021737. 1.2.1, 1.2.1

Hooper, A., P. Segall, and H. Zebker (2007), Persistent scatterer interferometric syn-
thetic aperture radar for crustal deformation analysis, with application to Volcán
Alcedo, Galápagos, J. Geophys. Res., 112 (B7), doi:10.1029/2006JB004763. 1.3, 1.2.1

Hooper, A., D. Bekaert, K. Spaans, and M. Arikan (2012), Recent advances in SAR in-
terferometry time series analysis for measuring crustal deformation, Tectonophysics,
514517, 1 – 13, doi:http://dx.doi.org/10.1016/j.tecto.2011.10.013. 1, 1.2, 1.2.1, 1.2.2,
1.3.2

Husker, A., V. Kostoglodov, V. Cruz-Atienza, D. Legrand, N. Shapiro, J. Payero,
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Abstract

Microwave signals travelling through the troposphere are subject to delays. These de-

lays are mainly described by spatial and temporal variations in pressure, temperature,

and relative humidity in the lower part of the troposphere, resulting in a spatially-

varying tropospheric signal in interferometric synthetic aperture radar (InSAR). Tro-

pospheric correction techniques rely either on external data, often limited by spatial and

temporal accuracy, or can be estimated from the high-resolution interferometric phase

itself. However, current phase-estimated correction techniques do not account for the

spatial variability of the tropospheric properties and fail to capture tropospheric signals

over larger regions. Here we propose and test a novel power-law correction method that

accounts for spatial variability in atmospheric properties and can be applied to interfer-

ograms containing topographically-correlated deformation. The power-law model has

its reference fixed at the relative top of the troposphere and describes, through a power-

law relationship, how the phase delay varies with altitude. We find the power-law model

reduces tropospheric signals both locally (on average by ∼0.45 cm for each kilometer

of elevation in Mexico) and the long wavelength components, leading to an improved

fit to independent GNSS data. The power-law model can be applied in presence of

29
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deformation, over a range of different time-periods and in different atmospheric condi-

tions, and potentially allows for the detection of smaller magnitude crustal deformation

signals with InSAR.

2.1 Introduction

Radar signals propagating through the atmosphere are affected by the medium in which

they travel, which can result in a phase delay or advance. This is a major limiting fac-

tor when using Interferometric Synthetic Aperture Radar (InSAR) (e.g. Wright et al.,

2001, Hooper et al., 2012, Cavalié et al., 2013). A phase delay through the atmosphere

can be characterized by the refractivity, N , (Smith and Weintraub, 1953, Thayer , 1974,

Davis et al., 1985), which can be split into a hydrostatic, wet, liquid and ionospheric

components. For the troposphere, variations of temperature, pressure, and relative

humidity lead to a spatially-varying tropospheric phase delay, which partly correlates

with topography. We focus only on the hydrostatic and wet components of the refrac-

tivity, N , as (Hanssen, 2001) the liquid component is expected to be small and will

only become significant in case of a saturated atmosphere, and the ionospheric delays

are assumed to be small for C-band, leading to:

N =

(
k1
P

T

)
hydr

+
(
k′2
e

T
+ k3

e

T 2

)
wet

, (2.1)

where P indicates total atmospheric pressure, T the temperature and e the partial

pressure of water vapour. The coefficients k1, k′2 and k3 are constants estimated in

literature as k1= 77.6 KhPa−1, k′2= 23.3 KhPa−1 and k3= 3.75·105 K2hPa−1 (Smith

and Weintraub, 1953, Thayer , 1974) . The tropospheric phase delay (2-way), φtropo, at

a specific height, h = h1, corresponds to the integration of the refractivity between h1

and the top of the troposphere htop along the radar line-of-sight (Hanssen, 2001).

dtropo = 10−6 (cosθ)−1
∫ h=htop

h=h1

N(h)dh (2.2)

φtropo =
−4π

λ
dtropo (2.3)

where dtropo is the tropospheric delay (1-way), θ the incidence angle, λ the radar wave-

length, and −4π/λ a conversion factor to convert from pseudorange increase to phase

delay.

Sounding measurements made during ascents of large inflated hydrogen or helium

balloons provide a detailed vertical profile of atmospheric properties (e.g. pressure, tem-

perature, relative humidity, and wind speed). How often these balloons are released, the

measurement accuracy and sampling, and the maximum height vary strongly depending

on location and operator (Parker et al., 2008). We use balloon sounding data provided
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Figure 2.1: (a) Tropospheric delays dtropo computed from balloon sounding data for 24 days
(12 UTC) between Jan-Feb 2014. Delays are computed by integrating the refractivity from
height h upwards (to 9 km) and projecting to the radar line-of-sight, with the black solid line
indicating the mean delay. Only few soundings extend above 9 km. (b) Relative tropospheric
delays ∆dtropo, showing all (276) possible combinations of the difference between tropospheric
delay at two different days. The darker the color, the more the curves overlap, i.e. black all
276 relative delays overlap. Empirically it can be seen that at a specific altitude h0 the relative
delays converge to zero. We set h0 to the altitude for which the standard deviation of the
relative delays is smaller than 0.5 cm. (c) A log-log plot of the mean tropospheric delay dtropo
and the topography (h0-h) for the topographic height range (0-4 km) (black solid line), shows
a near-linear behavior, indicating a power-law relationship. The red dashed line shows the best
linear fit of the mean tropospheric delay in the log-log domain. All sounding data (Acapulco
station) is provided by the department of Atmospheric Science of the University of Wyoming
(http://weather.uwyo.edu/upperair/sounding.html).

by the University of Wyoming over Acapulco, to calculate refractivity, which when in-

tegrated according to equation (2.2) gives the tropospheric delay (Figure 2.1(a)). It can

be observed that delays increase at lower altitudes as the signal has travelled further

through the troposphere. With an interferogram being the phase difference between

two SAR acquisitions, the atmospheric delay depends on the change in refractivity

rather than the total refractivity. Figure 2.1(b) shows the relative tropospheric delays,

i.e. the difference between all pairs of tropospheric delays shown in Figure 2.1(a), with

the darker color indicating more overlapping delay curves. Variations in interferograms

in flat regions, are mainly due to the wet component of the refractivity, i.e. the water

vapour; the hydrostatic component often appears as a smooth signal due to the large

spatial scale of high and low pressure fields (Hanssen, 2001). In regions with significant

topography, the hydrostatic component will also cause a correlation between the phase

and topography (Elliott et al., 2008).

Different approaches have been documented to estimate the tropospheric signal in

InSAR data, e.g. by using weather models (Pinel et al., 2011, Wadge et al., 2002, Wal-

ters et al., 2014), GNSS data (Onn and Zebker , 2006, Williams et al., 1998), spectrom-

eter measurements (Li et al., 2006), or by combining weather models and spectrometer

data (Walters et al., 2013), or GNSS and spectrometer measurements (Li et al., 2009,

Puysseégur et al., 2007). While all of these techniques can, under certain conditions,

reduce the tropospheric signal, they are often limited by the lower spatial resolution of
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the auxiliary data. Alternatively, tropospheric signals can be estimated from the corre-

lation between the interferometric phase and the topography, in a non-deforming area

(Cavalié et al., 2007, Wicks et al., 2002), or by filtering the InSAR data in space and

time (e.g. Hooper et al., 2012). The former method assumes a linear relation between

the interferometric tropospheric delay and the topography (∆φtropo = K∆φh + ∆φ0),

estimated from data in the non-deforming region. K∆φ is a constant relating the inter-

ferometric tropospheric phase to topography, and is used to compute the tropospheric

signal throughout the full interferogram. ∆φ0 can be neglected as it merely represents

a constant shift applied to the whole interferogram.

There are two limitations to this linear height correction technique. Firstly, a non-

deforming region is required. To overcome this, Lin et al. (2010) developed a multi-scale

approach, which also assumes a linear relation, but which can be applied in a deform-

ing region by using a spatial frequency band insensitive to deformation. This method

makes use of the fact that the linear relationship holds for all spatial frequencies, but

the deformation may only be significant in a certain frequency range. Alternatively,

Elliott et al. (2008) remove a preliminary estimate of the deformation displacements

prior to estimating K∆φ. The second limitation follows from the assumption of a single

relationship between phase and topography over the whole interferogram, as this does

not account for the spatial variation of the tropospheric properties. This can be signifi-

cant over large areas (>10s of km), especially when the area includes different climatic

zones. When applying a linear estimation over multiple small windows, ∆φ0 will vary

and cannot be neglected. However, ∆φ0 is biased by other phase contributions and

cannot be estimated from a spatial band insensitive to deformation. An exception may

exist for the longest wavelength band, provided it is not contaminated by deformation,

but this is not usually the case in areas of tectonic deformation.

In this paper we present a new tropospheric correction technique that can be applied

to deforming regions and which allows for a spatially-varying relationship between phase

and topography. We apply our power-law methodology to correct the interferograms in

a tectonic case study over Mexico, where slow slip deformation is present at the longer

spatial wavelengths (∼150 km), and where the tropospheric signals mask the tectonic

signal. The tectonic implications of the results are presented in a companion paper

(Bekaert et al., 2015).

2.2 Power-law tropospheric correction

Figure 2.2 shows a simplified schematic of the tropospheric delays computed from

weather balloon data, shown in Figure 2.1(a) and (b). While the tropospheric de-

lay keeps on decreasing with increasing height, the relative tropospheric variations of

the delay curve are important up to a certain altitude h0, typically around 7-13 km,

after which the relative delays do not differ significantly (σ <0.5 cm) and converge to
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φ φ
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Figure 2.2: Schematic of the tropospheric delay curve. The black line represents the mean
delay, while the gray lines show delays at arbitrary times. At h0 the relative tropospheric delays
between different acquisitions converges to zero, while the delay itself continues to decrease with
increasing height. This can be observed empirically from the tropospheric delays computed from
balloon sounding measurements as shown in Figure 2.1(a) and (b).

zero. Consequently, the interferometric tropospheric phase at this reference height is

approximately zero. In other words it is only necessary for the interferometric delays

to describe the delay curve up to h0, as any delay accumulated at this height φc will

cancel out in the interferometric computation.

By plotting the loglog relationship between the mean tropospheric delay and the

topography constrained by the reference height (h0 − h) (black solid line in Figure

2.1(c)), we find the fit to be approximately linear indicating a power-law relationship.

We can find the power-law exponent, α, from the slope of this linear fit. We can

therefore approximate the tropospheric phase delay φtropo as

φtropo = K
′
φ (h0 − h)α + φc for h < h0, (2.4)

where φc is the phase delay at h0, α a constant describing the power-law decay estimated

from balloon sounding data, and K
′
φ a coefficient that relates phase to topography and

which varies spatially and from acquisition to acquisition. Equation (2.4) is defined for

an individual SAR acquisition. The interferometric phase delay, ∆φtropo, is the phase

difference at the time of the master acquisition φmtropo and the slave acquisition φstropo,

results in:

∆φtropo = φmtropo − φstropo (2.5)

So we can rewrite equation (2.4) as,

∆φtropo = K
′
∆φ (h0 − h)α , with K

′
∆φ = K

′
φm −K

′
φs , and h < h0 (2.6)

where K
′
∆φ is a spatially-varying and unknown coefficient, describing the relation be-

tween topography and tropospheric phase. Both h0 and α can be estimated empirically

from balloon sounding data or weather model data, and are assumed to be constant

for a given area. In time, seasonal and long-term variations can be observed for both
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Figure 2.3: Seasonal variation of the reference height h0, and the power-law coefficient α.
Both coefficients were estimated based on a one month time-window of sounding data. We set
h0 to the altitude for which the standard deviation of the relative delays is smaller than 0.5 cm.
All sounding data (Acapulco station) is provided by the department of Atmospheric Science of
the University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html).

h0 and α, shown in Figure 2.3 for Acapulco in Mexico. In this study an average over

the whole time-period is assumed, alternatively each interferogram can be evaluated

using the average h0 and α for the master and slave acquisition dates. The success

of the power-law method is limited to the cases in which the relative delays can be

reasonably approximated by a power-law function. From a regional analysis of weather

model data for our test region in Mexico (Supplemental Figure A.1), we found that on

average ∼80% of the relative delay curves can be fit by a power-law function with a

correlation coefficient larger than 0.9.

The interferometric phase is a superposition of multiple signals including deforma-

tion, tropospheric and ionospheric delays, and errors due to, for example, incorrect

orbits and unwrapping errors. Estimating K
′
∆φ from an interferogram where all these

signals are present is not trivial. However, following Lin et al. (2010), we can take

advantage of the fact that the tropospheric signal is present at all wavelength scales to

estimate K
′
∆φ from a spatial frequency band relatively insensitive to these other signals.

In other words, we can estimate K
′
∆φ by applying equation (2.6) to band-filtered phase

and topography, where the band should be selected such that the contribution from

the other signals is negligible. We allow lateral variability by splitting the study area

into multiple small windows and estimating K
′
∆φ locally.

Figure 2.4 shows a step-by-step example of the tropospheric delay estimation for an

interferogram over Mexico spanning 31 Dec 2004 - 16 Dec 2005. We used a mean power-

law decay, α, of 1.4 and a reference height, h0, of 7 km, estimated from sounding data at

Acapulco between 2004 and 2010 (http://weather.uwyo.edu/upperair/sounding.html),

to scale the topography (step 1). We found the mean of h0 and α estimated at Acapulco

to be consistent with estimates of multiple sounding stations at distances up to 1000

km from Acapulco, with h0 in the range 6.89± 0.02 km and α in the range 1.35± 0.02.
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This supports our simplification of using a single mean value for h0 and α over our

InSAR region. A 2-8 km bandfilter was chosen to avoid contamination of the tectonic

slow slip deformation signal (step 2, Figure 2.4), which from an initial InSAR and

GNSS analysis we found to be around 150 km wavelength (Bekaert et al., 2015). We

estimate K
′
∆φ locally in approximately 50 km square windows that overlap by 50%. An

example of the K
′
∆φ estimation for an individual window is shown in the scatterplot

(step 2, Figure 2.4), where K
′
∆φ corresponds to the slope of the red dashed line. Once

K
′
∆φ is estimated for each window we interpolate to all points of the interferogram

(step 3, Figure 2.4); the interpolated value for each point is calcuated as the weighted

average of the estimated K
′
∆φ values, with the weighting being inversely proportional

to the uncertainty of the K
′
∆φ estimate and the distance of the window to the point.

The tropospheric signal is then calculated by re-substituting the estimated values into

equation (2.6), (step 3, Figure 2.4). Note that in this example the polarity of K
′
∆φ

switches between the center of the image compared to the North and the South. A

single K∆φ, estimated over the whole interferogram (i.e. the linear method), would not

be capable of capturing this variation in space.

2.3 Results

We tested the power-law correction individually on 17 Envisat (C-band) interferograms

acquired over Mexico (Figure 2.5), for which the perpendicular, temporal, and Doppler

centroid baselines are summarized in Table 2.1; and the unwrapped time-series interfer-

ograms are shown in Figure 2.6(a). All SAR data has been focussed using the ROI PAC

software (Rosen et al., 2004). Interferometric processing was done using the DORIS

software (Kampes et al., 2003). We applied time-series InSAR processing using the

StaMPS software (Hooper , 2008, Hooper et al., 2012) to reduce noise and estimate a

DEM correction. Note that time-series processing is not required, as the power-law

correction method is applied to individual interferograms. A summary of the applied

processing parameters are contained in Table 2.2.
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Figure 2.4: Tropospheric delay estimation for the 31 Dec 2004 - 16 Dec 2005 interferogram.
(step 1) The original interferometric phase ∆φ and the power-law scaled heights (h0 − h)

α
.

(step 2) shows (step 1) after bandfiltering in the 2-8 km spatial wavelength with a window
over which K

′

∆φ is estimated locally, represented by the slope of the red dashed line. (step 3)

Shows the spatial map of K
′

∆φ obtained after estimation in local windows and extrapolation to
all points, and the corresponding tropospheric delay. The last window shows the tropospheric
delay estimate when assuming a linear relationship. The input interferogram and the estimated
tropospheric delay are referenced with respect to the mean of the whole region.
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Figure 2.5: Overview of the power-law study region in Guerrero, Mexico. Horizontal (black)
and vertical (red) GPS displacements from the 2006 slow slip event are from Vergnolle et al.
(2010). The thick arrows indicate the MORVEL (Mid-Ocean Ridge VELocity) relative plate
motion of the Cocos and the North America Plate (DeMets et al., 2010). The green solid
line indicates the extent of our SAR data. The SAR sensor is most sensitive to displacements
perpendicular to the satellite flight direction. As most of the horizontal displacements are in
the flight direction, the SAR is mainly sensitive to the vertical displacement component. The
red, blue, and green markers give the location of individual presented InSAR point time-series
in Figure 2.8, and P1 refers to the profile in Figure 2.7 and 2.9.

Table 2.1: Dataset baseline information. Perpendicular (Bperp), temporal (T) and absolute
Doppler centroid (∆fDC) baselines. All interferograms are relative to the master of 16 Dec
2005.

Date Bperp T ∆fDC Date Bperp T ∆fDC
[m] [days] [Hz] [m] [days] [Hz]

26 Nov 2004 210 -385 23.4 7 Oct 2005 -110 -70 -4.0
31 Dec 2004 134 -350 24.6 11 Nov 2005 690 -35 0.1
4 Feb 2005 -120 -315 25.9 20 Jan 2006 -864 35 -4.1
11 Mar 2005 283 -280 17.3 24 Feb 2006 -282 70 -1.8
15 Apr 2005 561 -245 21.4 5 Jan 2007 430 385 5.8
20 May 2005 123 -210 26.7 9 Feb 2007 86 420 1.8
24 Jun 2005 700 -175 25.4 16 Mar 2007 349 455 -3.5
29 Jul 2005 305 -140 25.4 9 May 2008 138 875 5.4
2 Sep 2005 652 -105 26.0

Table 2.2: Applied InSAR processing parameters. DORIS (D) (Kampes et al., 2003) and
StaMPS (S) (Hooper et al., 2012).

Parameter Value Parameter Value

SRTM DEM (D) 90 m Density random (S) 20 %
Multi-look factor (D) 1x1 Weed max noise (S) inf
Oversample (D) no Weed σ (S) 1
Dispersion threshold (S) 0.4 Unwrap grid size (S) 1000 m
number of patches (S) 144 Merge resample size (S) 1000 m
Processing method (S) Density Merge σ (S) 0.45 rad
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Figure 2.6: Unwrapped (a) time-series InSAR interferograms corrected for DEM errors, con-
taining interseismic and slow slip displacements, (b) the estimated tropospheric delays assuming
a linear relation between phase and topography, (c) the estimated maps of K

′

∆φ, (d) the esti-
mated tropospheric delays, and (e) the unwrapped interferogram corrected for DEM errors and
the tropospheric delays. The master date (16 Dec 2005) and the slow slip event are indicated by
the dashed and solid red line, while the center of the reference area is indicated by the star. A
change of 2π radians corresponds to a 2.8 cm displacement in the line-of-sight (LOS). Positive
values represent displacements in the LOS direction. The interferograms on 11 Mar 2005 and
16 Mar 2007 show strong spatial correlation with the surface topography, Figure 2.5.
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(e) Unwrapped interferograms corrected for the estimated power-law tropospheric delays 

LOS
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100 km

(d) Estimated tropospheric delays using the power-law method
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Figure 2.6: (Continued)

Tropospheric delays introduced by water vapour variations in the lower part of

the troposphere and topographic variations, up to ∼3.5 km elevation within our test

region, mask the much smaller tectonic slow slip displacement signal (Hooper et al.,

2012), which should be visible in images acquired after Dec 2006. Figure 2.7 shows the

relationship between the unwrapped phase and the topography, with K∆φ estimated in

50 km segments along the satellite flight direction. The relationship varies spatially, and

reverses in sign in some cases, indicating the need for a spatially-varying tropospheric

correction.

On average we find a strong local relationship |K∆φ| of 2.8 rad/km (1.5 cm/km).

The conventional linear tropospheric correction as shown in Figure 2.6(b), was esti-

mated assuming a simple phase-topography relationship for each interferogram, and

therefore does not allow for spatial variability. After applying the linear correction, we

find that 5 out of 17 interferograms show a decrease in local correlation with topog-

raphy ∆|K∆φ| (blue solid line in Figure 2.7). A maximum reduction of 2.5 rad/km

(∼1.13 cm/km) can be observed for 15 Apr 2005, for example. While the linear cor-

rection can work well in specific situations, we find that on average it increases the

local correlation with topography by ∼0.4 rad/km (∼0.18 cm/km). While the local

correlation increases, the correlation based on the full interferogram and the topogra-
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phy on average decreases from 3.3 rad/km before correction to -0.7 rad/km after the

linear correction. The increase in local correlation is due to the spatial variation of the

troposphere, which cannot be accounted for using the linear method. By applying the

power-law correction method locally we are able to account for spatial variation, as can

be seen from the variation in the spatial maps of K
′
∆φ shown in Figure 2.6(c).

The corresponding power-law tropospheric signal we estimate for each interferogram

is shown in Figure 2.6(d). For interferograms after tropospheric correction using the

power-law method (Figure 2.6(e)), we find an average reduction in local correlation

with topography of 1 rad/km (∼0.45 cm/km) (red solid line in Figure 2.7), about 1/3

of the signal, with the strongest reductions for our 11 Mar 2005 (2.7 rad/km or 1.2

cm/km) and 31 Dec 2004 (2.4 rad/km or 1.1 cm/km) interferograms. In total we find

a decrease for 15 interferograms (average decrease of 1.2 rad/km or 0.5 cm/km), while

for 2 interferograms a small increase can be observed (average increase of 0.25 rad/km

or 0.1 cm/km), outperforming the conventional linear correction method. Based on

the whole interferogram, we find the power-law to decrease the correlation with the

topography to an average of -0.2 rad/km, 0.5 rad/km better than the linear method.

We find that the power-law method does not capture the full signal near the coast, which

is possibly due to the smaller topographic height range available to estimate the linear

relation between the interferometric phase and the power-law scaled heights. Also, in

the north of our study region, rapid subsidence of Mexico City contains deformation in

the spatial band of 2-8 km that could contaminate the tropospheric estimates.

After tropospheric correction we find that the Root Mean Square (RMS) resid-

ual between the displacements and those predicted by the time-series model decrease

(Figure 2.8 with the locations indicated in Figure 2.5), where the time-series model is

defined as a linear trend due to interseismic loading, and a jump dSSE at the time of

the slow slip event. A detailed description is included in Bekaert et al. (2015). Close

to the reference area, A, we find minimal change, as expected, with a slight RMSE

increase of ∼0.1 cm; further away we find a strong decrease in RMSE of ∼0.6 cm and

∼1 cm for regions B and C respectively. During the tropospheric correction, we make

no a-priori assumptions about the form of the time-series model.

Figure 2.9 (left and middle panel) compares the LOS GNSS and InSAR slow slip

estimates from the time-series model along the P1 profile before and after tropospheric

correction. With respect to our estimated slow slip displacement signal, we find the

gradient αSSE between the slow slip displacements and the topography to decrease

on average by 1.1 cm/km (Figure 2.9(c)), where dSSE = αSSEh+ constant, especially

towards the center and north of our InSAR study region.
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Figure 2.7: Comparing the local slope K∆φ, where ∆φ = K∆φh + constant, between the
interferograms and the topography, along profile P1 in 50 km segments, using all data. K∆φ

is estimated before (black solid line) and after correction for tropospheric signals using both
a linear (blue solid line) and power-law (red solid line) correction method (Figure 2.6). For
the linear method, 5 out of 17 interferograms show a decrease in local slope ∆|K∆φ|, with a
maximum reduction of 2.5 rad/km (∼1.13 cm/km) on 15 Apr 2005. For the power-law method,
15 out of 17 interferograms show a decrease in slope, with a maximum reduction of 2.7 rad/km
(∼1.2 cm/km) for the 11 Mar 2005 interferogram. On average the linear correction does worse
than the power-law with an increase in local slope of ∼0.4 rad/km (∼0.18 cm/km) compared
to a decrease in local slope of 1 rad/km (∼0.45 cm/km). A-D shows the scatter plots for the
local correlation between phase and topography before and after correction for the linear and
power-law methods.
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Figure 2.8: InSAR line-of-sight surface displacement time-series for individual locations, as
shown in Figure 2.5, before and after the tropospheric correction is applied. Residual master
atmosphere and DEM errors are removed. The displacement in time is modelled as an interseis-
mic rate plus a slow slip step (black solid line). Positive displacements refer to motion towards
the satellite, comprising mostly of vertical uplift. Offsets on the y-axis are chosen arbitrarily
for clarity.
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Figure 2.9: Comparison of the estimated slow slip surface displacements, accumulated over
8-9 months, before and after tropospheric correction (left and middle panel) with the esti-
mates from GPS (red 2σ error bars). The right panel gives the local gradient αSSE , where
dSSE = αSSEh + constant, between the slow slip deformation signal and topography before
and after tropospheric correction, estimated in 50 km segments along profile P1, using all data.
Before correction, the estimated slow slip surface displacements are strongly correlated with
topography, especially in the middle and north of the InSAR study region. After correction,
this local correlation is decreased, with on average a reduction of 1.1 cm/km. Light markers
(middle panel) indicate the region around Mexico City, where subsidence contaminates the
tropospheric correction estimates at the selected spatial frequency band of 2-8 km, which was
chosen to avoid contamination of the long wavelength (∼150 km) slow slip signal.
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2.4 Discussion

Our time-series estimate of the slow slip deformation signal after tropospheric correction

compares well with another InSAR study by Cavalié et al. (2013). While the same

InSAR track is explored, Cavalié et al. (2013) applied a different processing strategy

with a stacking of 8 interferograms, spanning the slow slip event, to reduce tropospheric

effects. Stacking is limited by the number of independent interferograms, and how

uniform the acquisitions are sampled in time; it assumes that the random component

of the atmosphere is reduced by averaging of interferograms, with a noise reduction

approximately ∼
√
n for n independent interferograms (Zebker et al., 1997).

We define the power-law reference height h0 to be the lowest height above which

the relative delays do not differ significantly (σ <0.5 cm). A tighter constraint of σ

increases the altitude of h0. For example, when using σ <0.05 cm we find h0 and

α to be respectively 9 km and 1.5. We investigated the impact of wrongly assumed

power-law coefficients, by comparing the estimated power-law delay used in this study

(h0=7 km and α= 1.4) with that estimated from coefficients with a tighter constraint

(h0=9 and α= 1.5). We found the impact to be small, with an average RMS difference

between the two corrections of 2 rad or ∼0.9 cm, similar to the ∼1 cm line-of-sight

accuracy of MERIS (Walters et al., 2013).

In order to generalize the proposed power-law relationship for performing tropo-

spheric corrections in InSAR data (individual or time-series) in other study regions,

both the reference height, h0, and the power-law coefficient, α, should be re-estimated

as they might vary somewhat depending on the climate, season, and time of day. While

sounding data gives an accurate representation of the atmosphere, it might not always

be available near a given study region for a given day. Alternatively, weather model

data like the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-I

or the North American Regional Reanalysis (NARR) product can be used. This would

also allow for spatial variation of the power-law coefficient, which could further improve

the tropospheric delay estimation.

To separate deformation and tropospheric signals, a frequency band insensitive to

deformation is required. As the troposphere is present at all spatial wavelength scales, a

potential option is to perform a statistical analysis of multiple spatial bands to identify

those bands that are consistent and likely to represent the troposphere. Alternatively,

one can compare the delay maps as estimated from power-law for each spatial band

with an independent estimate from MERIS or weather models to identify the best bands

that represent the troposphere. Once identified the bands can be applied throughout

the whole dataset. Failing to select a correct frequency band could cause deformation

to leak into the estimated atmospheric correction.

The selection of the window size is a balance between spatial variability of the tropo-

sphere properties and the reliability of the estimate for K
′
∆φ. Smaller windows are likely
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Figure 2.10: Impact of varying window size (a) and topographic relief (b) on the power-
law performance. (a) shows that the “optimal” window size is a balance between a window
small enough to allow for a spatially varying K

′

∆φ, while large enough to provide a reliable

estimate of K
′

∆φ. (b) gives the delays assuming a fixed window size of ∼90 km and shows that
RMSE decreases with increasing topographic range. As input we use a simulated interferogram
containing only the tropospheric delay computed from the Weather Research and Forecasting
model, at the acquisition time of the 16 Mar 2007 interferogram.

to have a smaller topographic range, making it more difficult to get a robust estimate

of K
′
∆φ, while a too large window will not allow K

′
∆φ to vary in space. The selection of

the window size will therefore be specific depending on the region of application. We

tested the sensitivity to window size over our study region, by simulating the relative

delay for the 16 Mar 2007 interferogram using the Weather Research and Forecasting

(WRF) model, and then by estimating the delay from the simulated interferogram us-

ing different window sizes. The RMSE between the estimated and simulated delay is

plotted in Figure 2.10(a), showing a minimum for a window size of ∼90 km. Figure

2.10(b) shows the RMSE when the window size is held constant at 90 km, and the

topographic range is allowed to vary instead. An increased RMSE can be observed

with decreasing topographic range. Note that we assumed the same spatial variability

of atmospheric conditions for all topographic ranges, whereas in reality, topography

influences the weather conditions.

We did not find clear trends with respect to the band filter size. In general, the

largest bandwidth limit is limited by the spatial extent of the study region, while the

smallest bandwidth limit is limited by the resolution of the data. In Mexico, the delay

differences are dominated by the wet component, which are on average 9.4 cm in the

radar line of sight, compared to 0.8 cm for the hydrostatic component. In other regions,

it may be possible to include a more complex function that accounts for different scale

heights and exponents for the hydrostatic and wet components. This will be at the cost

of adding additional degrees of freedom. In doing so, both components would need to

be untangled as each of them partially correlate with the topography, and we suspect

that this would be challenging in most circumstances.

We compared the power-law with the conventional linear method and found the
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power-law to reduce the local correlation with the topography by on average 1 rad/km

(∼0.45 cm/km), compared to an increase of ∼0.4 rad/km (∼0.18 cm/km) for the linear

method. While different tropospheric correction methods exist, each with its own lim-

itations, the integration of multiple tropospheric observations or correction techniques

can be used to complement each other. For example, by using the temporal informa-

tion certain observations can be used to constrain the others. In case of Envisat, GNSS

observations and measurements from the Medium Resolution Imaging Spectrometer

onboard Envisat can be used to constrain weather models and phase correction meth-

ods, while in return the phase-based methods could be used to cope with cloud cover.

Alternatively a weighted inversion of the different observations can be used to esti-

mate the tropospheric properties (pressure, temperature, humidity), or a base pressure

and an integrated quantity like precipitable water vapour, which then can be used to

compute the tropospheric delay.

2.5 Conclusions

Previously, tropospheric corrections estimated from interferometric phase have been

estimated over a full interferogram, in local windows in a band insensitive to defor-

mation, or using a non-deforming region. While a local linear correction allows for

the estimation of the slope relating interferometric phase and topography, the inter-

cept will be biased by other signals. Failing to include this intercept will lead to an

incorrect estimate of the tropospheric delay. We have developed a power-law relation-

ship that can be applied locally, allowing us to estimate a spatially-varying signal from

the interferometric phase. Allowing for spatial variation in the tropospheric properties

becomes more important for larger spatial datasets (>10s of km) as pressure, tem-

perature, and relative humidity can change significantly over these length scales. We

tested the power-law technique over Mexico, where interseismic and slow-slip deforma-

tion occurs on a long wavelength (∼150 km). After correction, we find a reduction in

the topography-correlated signals, and an improved correlation between the GNSS and

InSAR estimated slow-slip surface displacements.
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Abstract

Correcting for tropospheric delays is one of the largest challenges facing the interfero-

metric synthetic aperture radar (InSAR) community. Spatial and temporal variations

in temperature, pressure, and relative humidity create tropospheric signals in InSAR

data, masking smaller surface displacements due to tectonic or volcanic deformation.

Correction methods using weather model data, GNSS and/or spectrometer data have

been applied in the past, but are often limited by the spatial and temporal resolution of

the auxiliary data. Alternatively a correction can be estimated from the interferometric

phase by assuming a linear or a power-law relationship between the phase and topog-

raphy. Typically the challenge lies in separating deformation from tropospheric phase

signals. In this study we performed a statistical comparison of the state-of-the-art

tropospheric corrections estimated from the MERIS and MODIS spectrometers, a low

and high spatial-resolution weather model (ERA-I and WRF), and both the conven-

tional linear and new power-law empirical methods. Our test-regions include Southern

Mexico, Italy, and El Hierro. We find spectrometers give the largest reduction in tro-

pospheric signal, but are limited to cloud-free and daylight acquisitions. We find the

Root Mean Square (RMS) residual after tropospheric correction of interferograms to

increase on average by ∼10-20% with increasing cloud cover consistent across methods.
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None of the other tropospheric correction methods consistently reduced tropospheric

signals over different regions and times. We have released a new software package

called TRAIN (Toolbox for Reducing Atmospheric InSAR Noise), which includes all

these state-of-the-art correction methods. We recommend future developments should

aim towards combining the different correction methods in an optimal manner.

3.1 Introduction

Interferometric Synthetic Aperture Radar (InSAR) is a geodetic tool that is well suited

to the observation of crustal deformation processes. However, the use of InSAR to mea-

sure small magnitude and long wavelength deformation signals, such as interseismic slip

(e.g. Fournier et al., 2011, Hooper et al., 2013, Béjar-Pizarro et al., 2013, Walters et al.,

2013), subduction zone slow slip events (e.g. Cavalié et al., 2013, Bekaert et al., 2015a),

and creep (e.g. Jolivet et al., 2012) is severely limited by atmospheric contamination

of the InSAR data. Separating deformation from atmospheric signals, introduced by

the variation of atmospheric properties in space and time, remains one of the major

challenges for InSAR (Hooper et al., 2013).

Atmospheric delays are typically split into ionospheric and tropospheric terms.

Ionospheric effects are caused by variations in free electrons along the travel path, re-

sulting in a phase advance of the radar signal that becomes more significant for larger

wavelengths, such as for P and L-band SAR (e.g. Gray et al., 2000). Tropospheric

effects are caused by variations in pressure, temperature, and relative humidity in the

lower part of the troposphere (<5 km), which cause signals in interferograms of up

to 15-20 cm in magnitude, and can often be much larger than the tectonic signals of

interest (e.g. Hooper et al., 2013, Bekaert et al., 2015a). In this study, we focus on the

testing and comparison of correction methods for tropospheric noise. Contamination

from ionospheric noise in our test-data is minimized as we use C and X-band SAR data

only.

The 2-way tropospheric phase delay, φtropo, at a specific height h = h1, corresponds

to the integration of the hydrostatic and wet component of the refractivity, N , between

h1 and the top of the troposphere, htop, along the radar line-of-sight as:

N =

(
k1
P

T

)
hydr

+
(
k′2
e

T
+ k3

e

T 2

)
wet

= Nhydr +Nwet (3.1)

φtropo =
−4π

λ

10−6

cosθ

∫ htop

h1

(Nhydr +Nwet) dh,

where P indicates total atmospheric pressure, T the temperature, e the partial pressure

of water vapor, θ the incidence angle, λ the radar wavelength, and −4π/λ a conver-

sion factor to convert from pseudo-range increase to phase delay (Hanssen, 2001). The

coefficients k1, k′2 and k3 are empirical constants which we take as k1= 77.6 KhPa−1,
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k′2= 23.3 KhPa−1 and k3= 3.75·105 K2hPa−1 (Smith and Weintraub, 1953). For In-

SAR, the interferometric tropospheric phase delay ∆φtropo (from now on referred to as

tropospheric phase delay) is the difference between tropospheric delay at the master

and slave acquisition times ∆φtropo = φslv
tropo − φmst

tropo, and thus depends on the change

in refractivity, rather than the total refractivity.

Tropospheric corrections can be calculated using auxiliary information from weather

models (e.g. Wadge et al., 2002, Liu et al., 2009, Doin et al., 2009, Jolivet et al., 2011,

Walters et al., 2014, Jolivet et al., 2014), GPS measurements (e.g. Williams et al., 1998,

Onn and Zebker , 2006, Li et al., 2006a, Löfgren et al., 2010), multi-spectral observations

(e.g. from the Medium Resolution Imaging Spectrometer (MERIS) onboard the Envisat

satellite; or the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard

the Terra and Aqua satellites) (Li et al., 2006b, 2009a,b), or GPS in combinations

with spectrometer data (e.g. Li et al., 2005, Puysseégur et al., 2007). The estimated

corrections are often limited by the spatial and temporal resolution, and the precision of

the auxiliary data. GPS stations are often absent or sparsely distributed in many areas

around the world. Spectrometers can only provide useful corrections under cloud-free

and daylight conditions. Weather models and spectrometer observations that are not

acquired simultaneously with SAR data need to be interpolated in time, which can also

introduce uncertainties. This is not required for MERIS in combination with Envisat

ASAR sensor, as both were operated simultaneously onboard Envisat.

Tropospheric corrections can also be calculated empirically directly from the inter-

ferogram. Tropospheric delays ∆φtropo for an individual interferogram can be estimated

by assuming a linear relation, ∆φtropo = K∆φh+ ∆φ0, between topography h and the

interferometric phase ∆φ in a non-deforming region (Wicks et al., 2002) or in a spatial

band insensitive to deformation (Lin et al., 2010), where K∆φ is the gradient to be es-

timated, and ∆φ0 is a constant that can be neglected as it merely represents a constant

shift applied to the whole interferogram. Elliott et al. (2008) used a modification of this

method and removed a preliminary estimate of the deformation displacements prior to

estimating K∆φ. Such phase-based methods have been effective in the reduction of

tropospheric signals, but are limited as they assume no spatial variability of the tropo-

spheric properties is present. Some authors have attempted to overcome this limitation

by applying a piece-wise slope (linear) correction over multiple windows (e.g. Béjar-

Pizarro et al., 2013). However, this method is technically flawed, as a laterally-varying

tropospheric signal requires a common reference between windows, and estimation of

the constant ∆φ0 within windows is not possible as other phase contributions bias the

estimate. Alternatively, Bekaert et al. (2015b) developed a power-law model, which

unlike the linear approach can account for a spatially-varying tropospheric signal in

the presence of deformation.

In this study, we perform a statistical analysis of several different tropospheric cor-

rection methods that can be used to correct an individual interferogram. This includes
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corrections estimated from (i) MERIS at ∼1.2 km spatial-resolution, (ii) MODIS at 1

km resolution, (iii) the archived European Center for Medium- Range Weather Fore-

casts (ECMWF) ERA-I weather model at 80 km resolution (Dee et al., 2011), (iv) a

locally run Weather Research and Forecasting Model (WRF) (Michalakes et al., 2004)

nested to a 7 km resolution, and the phase-based empirical (v) linear and (vi) power-

law corrections. All these methods are included in TRAIN, our open-source Toolbox

for Reducing Atmospheric InSAR Noise.

3.2 Tropospheric correction methods for InSAR

Tropospheric signals consist of a short-scale (few km) component, introduced by tur-

bulent as well as coherent dynamics in the troposphere, a longer-scale (10s of km)

component, introduced by lateral variation of pressure, temperature and humidity, and

a topography-correlated component due to changes of pressure, temperature, and rel-

ative humidity with height (e.g. Hanssen, 2001). Different correction techniques have

different sensitivities for these three components of the tropospheric delay. For exam-

ple, weather models often have timing issues, which render them unable to correctly

resolve the turbulent variation of water vapor (e.g. Liu et al., 2009). While the statis-

tical properties of the turbulent component can be representative for the region, the

location can be wrong, leading to an adverse effect when removing the estimated tro-

pospheric signal. Unlike water vapor, temperature and pressure are smooth in space,

leading to a better-resolved longer wavelength hydrostatic component. Spectrometer

measurements only produce an estimate for the wet component of the delay. While a

direct comparison is possible between the spectrometer correction and the wet delay

as estimated from weather models, the phase-based methods cannot produce separate

wet and hydrostatic components of the delay. As the linear and the power-law methods

only estimate a topography-correlated component of the delay, they explicitly cannot

account for the turbulent and coherent short-scale component.

In the following section we provide more information on the estimation procedure

of the different correction methods.

3.2.1 Tropospheric delays from weather models

The output (pressure, temperature, and relative humidity) from local or global weather

models can be used with equation (3.1) to compute both hydrostatic and wet tro-

pospheric delay (Doin et al., 2009, Jolivet et al., 2011). In this study we used the

freely available archived ERA-I global model, and also run our own local high spatial-

resolution model using the Weather Research and Forecasting (WRF) model (Micha-

lakes et al., 2004).

ERA-I outputs data at a spatial resolution of ∼80 km, at a 6 hours interval, and

on 37 pressure levels (Dee et al., 2011). We performed a lateral and vertical spline

https://groups.google.com/forum/#!forum/train_support
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interpolation of pressure, temperature, and relative humidity, after which we computed

the refractivity and the integration from the surface upwards. To match the SAR

acquisition time, we performed a linear interpolation in time.

We modified the WRF set-up to produce outputs at the same 37 pressure levels as

ERA-I. We set the boundary of the parent WRF domain using the National Center for

Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data

(Saha et al., 2010) and NCEP’s Global Forecast System analysis (GFS) (Unidata et al.,

2003). As GFS did not exist prior to 1 November 2006, we used the CFSR data instead

for those dates. The impact of changing between CFSR and GFS on the estimated

delays is small. We estimate negligible differences in slant total delay between the two

methods; the average RMS difference is <1 mm across 15 interferograms for which

CFSR and GFS corrections were both available.

3.2.2 Tropospheric delays from spectrometer observations

Both MERIS and MODIS provide products of Precipitable Water Vapor (PWV), the

vertically integrated water vapor content of the atmosphere. The MERIS estimate

for PWV is computed by comparing the radiance ratio between two closely-spaced

infrared frequency bands, of which only one is sensitive to water vapor (ESA, 2011).

A similar approach is used for MODIS but with five near-infrared bands instead (Gao

and Kaufman, 2003). PWV is defined as the equivalent column height of liquid water

when integrating all water vapor e from the surface h to the top of the atmosphere

(Bevis et al., 1992):

PWV =
1

ρwRv

∫ ∞
h

e

T
dh, (3.2)

where ρw is the density of water, Rv the specific gas constant of water vapor, and T

temperature. The MERIS PWV accuracy has been estimated from continuous GNSS

to be ∼1.1 mm, equivalent to ∼6.2 mm of zenith wet delay for each epoch (Li et al.,

2006b). For a difference between two epochs this increases by a factor of
√

2 to 8.8 mm.

This is equivalent to ∼1 cm in radar line-of-sight for Envisat with an incidence angle of

23◦, obtained by substituting PWV=8.8 mm in the computation of the spectrometer

delay, equation (3.5), provided below. We found that MODIS gives at best an accuracy

equal to that of MERIS, and at worst twice that of MERIS, further detailed in the

results section. MERIS has no bias in PWV retrieval, but MODIS tends to over-

estimate PWV on average by 5% (Li et al., 2003). For those SAR dates where PWV

from MERIS and MODIS have ≥50% mutual pixels after applying a cloud cover mask,

we estimated a MODIS recalibration factor αMODIS from a linear relation between both

the cloud-free MERIS and MODIS PWV. For the other SAR acquisitions we assumed

the calibration factor to be the weighted average of the estimated calibration factors,

where weights were estimated from bootstrapping.
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The tropospheric delay of equation (3.1) can be rewritten as:

φwet
tropo =

−4π

λ

10−6

cosθ

(
k′2

∫ htop

h1

e

T
dh+

k3

Tm

∫ htop

h1

e

T
dh

)
, (3.3)

where Tm is (Davis et al., 1985):

Tm =

∫∞
h e/Tdh∫∞
h e/T 2dh

. (3.4)

This can now be further rewritten in terms of the spectrometer delay as:

φwet
tropo =

−4π

λ

Π

cosθ
∗ PWV, (3.5)

where Π is a conversion factor (Bevis et al., 1992, Niell et al., 2001, Li et al., 2003,

2006b), typically around 6.2, that varies with the temperature of the troposphere, as:

Π = Rvρw10−6

(
k′2 +

k3

Tm

)
(3.6)

We estimate Π for individual SAR acquisitions using balloon sounding data, provided

by the Department of Atmospheric Science of the University of Wyoming.

3.2.3 Phase-based tropospheric delays

The interferometric tropospheric phase ∆φtropo can be estimated from the relationship

between the interferometric phase and the topography as:

∆φtropo = K∆φh+ ∆φ0, (3.7)

for the linear method, and

∆φtropo = K
′
∆φ (h0 − h)α , with h < h0 (3.8)

for the power-law method, where K∆φ and K
′
∆φ are coefficients relating phase to to-

pography. The power-law reference height, h0, and the power-law coefficient, α, are

constants estimated from balloon sounding data, or weather model data (Bekaert et al.,

2015b). Unlike the linear method, the power-law method can account for spatial vari-

ation of tropospheric properties by estimating K
′
∆φ over local windows.

Lateral variation for the lower part of the troposphere is critically controlled by the

interaction of air parcels with topographic barriers (Markowski and Richardson, 2010).

Whether or not an air parcel will flow around or over a mountain is related to the

relative height, the slope of the mountain, the mountain aspect ratio, the horizontal

wind speed towards the mountain, and the static stability of the troposphere. The
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Figure 3.1: Fraction of consistent mountain blockage over time for (a) Mexico, (b) Italy,
and (c) El Hierro, using WRF wind velocities at the time and date of the SAR acquisitions.
Mountain blockage for individual SAR acquisitions is contained in Figures B.1-B.3 for the
different regions.

stagnation height, hstag, or the mountain height for which blockage occurs, can be

simplified as:

hstag =
vm

fbv
(3.9)

with vm horizontal wind speed towards the mountain, and fbv the Brunt-Väisälä fre-

quency (Markowski and Richardson, 2010), which we fixed to be 0.01 Hz.

The original power-law method (Bekaert et al., 2015b) splits the study region into

multiple rectangular windows, over which the local phase-topography relation is esti-

mated. This is then interpolated to all data points, by weighting the windows with

the distance to the data points, and with the window uncertainty of the estimate. We

modified the method to account for disconnected tropospheric regions by specifying a

physical boundary, identified from stagnation or mountain blockage, which is used to

limit the interpolation to the windows of the same tropospheric region only.

First, we computed the stagnation height for each SAR date using WRF, and

compared stagnation height with local topography to identify disconnected regions.

Figures B.1-B.3 give a binary representation for all SAR dates whether or not stagnation

occurs. Second, we combined the binary information of all SAR dates to compute the

fraction of consistent stagnation over time (Figure 3.1), which allows us to identify the

physical boundaries that act as barriers persistently through time.

3.3 InSAR processing

We processed InSAR data using ROI PAC to focus the raw data (Rosen et al., 2004),

DORIS to form interferograms (Kampes et al., 2003), and StaMPS to select stable

scatterer pixels (Hooper et al., 2007). While a time-series InSAR approach is not

required to estimate the tropospheric delay map for each individual interferogram,
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Figure 3.2: Overview map (center) with inserts of our study regions: Mexico, Italy, and El
Hierro. Map colors show the local topography from the Shuttle Radar Topography Mission,
saturated at 3 km elevation. Red polygons indicate the illuminated ground area of the de-
scending InSAR data. Solid blue lines define a border between different tropospheric regions,
as found from consistent wind stagnation over time due to local topography (Figure 3.1). To-
gether, blue solid and blue dashed lines define the local windows as used for the power-law
correction method, where windows within a tropospheric region constrain the delay estimation.
Black circular markers indicate the location of the ERA-I weather model data points, at ∼75
km spatial resolution. To avoid clutter, the high resolution WRF model points are not shown;
we used a spatial resolution of 7 km over Mexico and Italy, and 2 km over El Hierro.

it allowed us to increase the signal-to-noise ratio, helping the unwrapping process.

Moreover, when processed though a small baseline network, it allowed us to validate

the unwrapping process. Known phase contributions due to Envisat’s oscillator drift

are also removed according to Marinkovic and Larsen (2015).

3.4 Background of the test sites

We investigated the correction capability of the different tropospheric InSAR correction

methods over three test sites: Mexico, Italy, and El Hierro in the Canary Islands (Figure

3.2).

Over Mexico we generated a single master network of 19 descending Envisat interfer-

ograms (track 255, Table B.1), spanning the period from November 2004 until December

2009, and covering an area of ∼100 km by 340 km. While no significant earthquakes

occurred during our study, interferograms are subjected to long-wavelength (few 100s

km) tectonic displacements introduced by the 2006 Guerrero slow slip event, equivalent

to Mw ∼7.3 (Bekaert et al., 2015a), as well as interseismic deformation due to locking

on the subduction interface.

The topography ranges from sea-level up to 4.8 km elevation, and includes the

valley of Mexico City, and the surrounding Popocatépetl and Iztaccihuatl volcanoes.

A mountain range of ∼2 km elevation, just 100 km inland from the coast, acts as an

obstacle for air flow and thus can introduce different atmospheric conditions on either
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side of the mountain. Large tropospheric phase delays (>5 cm) have been observed

in previous InSAR studies of this region (e.g. Hooper et al., 2012, Cavalié et al., 2013,

Bekaert et al., 2015b).

Over Italy we generated a small baseline network of 49 descending Envisat inter-

ferograms (track 79, Table B.2), spanning December 2002 until February 2009. Our

study area extends from the western to eastern coastline of peninsular Italy (∼100 km

by 260 km), crossing the Apennines, with a maximum topographic height of ∼2 km

and ridges oriented parallel with the coastline. Within this region six earthquakes of

Mw ≥ 5 occurred, clustered around April 2009, of which the L’Aquila earthquake of

6 April was the largest with Mw 6.3 (e.g. Walters et al., 2009, Cheloni et al., 2014).

Tectonic contamination from long-wavelength (few 100s km) interseismic deformation

(extension rate of 6±2 mm/yr (D’Agostino et al., 2001)) is expected to be small, as hor-

izontal deformation is predominately perpendicular to the radar line-of-sight, in which

direction InSAR is insensitive.

Over El Hierro we generated a small baseline network of 78 descending TerraSAR-X

interferograms (track 79, Table B.3). El Hierro is much smaller (∼30 km by 25 km)

than our Mexico and Italy datasets, and as an island is completely surrounded by water.

The local topography is related to the volcanic nature of the island. A sharp cliff ∼1.5

km high, in combination with the surrounding ocean, allows for complex and highly

turbulent tropospheric delays. Our InSAR data covers the period from September

2011 until February 2012, and includes the 13 October 2011 submarine eruption (e.g.

González et al., 2013).

3.5 Results and discussion

Prior to the computation of the MODIS tropospheric delays, we performed a recalibra-

tion of MODIS PWV using MERIS as a reference. The left panel of Figure B.4 shows

the estimated calibration factors αMODIS for individual SAR acquisitions, with the un-

certainty estimated from 1200 bootstrap runs. The average uncertainty for αMODIS

is 0.001. The average weighted calibration factor amounts to ∼0.98 over Italy, based

on 13 samples, and ∼0.95 over Mexico, using only 14 samples, or when combining all

samples (Figure B.4 right panel). This value is in agreement with Li et al. (2003, 2005),

who found an average recalibration factor of 0.95 when comparing MODIS PWV with

GPS observations over Germany and Southern California. On average we found neg-

ligible differences between estimated tropospheric delays when applying an individual

estimated calibration factor or when assuming a fixed value of 0.95. Therefore we be-

lieve it will be sufficient for future studies to estimate a single calibration factor for

each region.

The power-law method can be applied in deforming regions by applying the esti-

mation in a spatial band insensitive to the deformation. However, other strong signal
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contamination from the turbulent troposphere and orbit errors should also be avoided.

While turbulent signals manifest at short spatial scales, and orbit errors are of long

wavelength, the selection of the non-deforming band is not always trivial, as it requires

a priori information about the spatial extent of deformation throughout time.

We selected the spatial band whose correction had the smallest Root Mean Square

Error (RMSE) after tropospheric correction of the unwrapped interferograms (Figure

B.5). To avoid contamination of deformation, we corrected the interferograms (left

panel) for a time-series estimate of tectonic deformation and DEM errors.

We found the mean RMSE to vary more strongly between spatial bands over Mexico

(σRMSE of 0.2 cm) and Italy (σRMSE of 0.3 cm), than over El Hierro (σRMSE < 1 mm).

The 8-16 km spatial band corresponded to the smallest RMSE over Mexico, 16-32 km

over Italy, and 4-16 km over El Hierro.

We modified the power-law method from Bekaert et al. (2015a) to allow for dis-

connected tropospheric regions separated by blue solid lines in Figure 3.2, which likely

have different tropospheric conditions. To identify these regions we used equation (3.9)

to compute the consistency of wind stagnation over time due to topography (Figure

3.1).

Mountain blockage occurs for more than 95% of the time over our Mexican study

area, except for the region within ∼10 km of the Mexican coast, dividing our study

area into multiple disconnected tropospheric regions. We did not enforce different

disconnected regions over Italy, as the western extent of our study region is only blocked

50-65% of the time. Over El Hierro this analysis is not applicable due to its smaller

extent. The identification of different disconnected tropospheric regions (Figure 3.2,

blue solid lines), in combination with local subdivision to allow for spatial variation of

tropospheric properties (blue dashed lines), leads to a total of eight power-law windows

over Mexico, three over Italy, and one over El Hierro.

Figure 3.3(a)-(c) shows two examples of the estimated tropospheric delays for the

different correction methods for each test-region. For each of these three regions, the

first example (Case 1) shows a scenario where the tropospheric delays are mainly

topography-correlated. We find that all methods show both a similar magnitude of

the estimated delay and a similar spatial pattern of the delay.

The second example (Case 2) demonstrates a more complex tropospheric delay, with

spatial variation of tropospheric properties and with a significant turbulent behavior

of the troposphere. Variation can be observed between the different estimated delays,

especially over Mexico and Italy. Both MERIS and MODIS estimated delays show a

strong resemblance to the original interferograms, whereas the weather model correction

shows delays of similar order of magnitude, but not always correctly located (e.g. over

Mexico). As the phase-based (linear and power-law) methods are estimated over a

region, they are incapable of matching the turbulent signals. Over El Hierro the effect of

long wavelength spatial variation is limited due to the small extent of the island, hence
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Figure 3.3: Example of tropospheric delay estimates for different correction methods over
Mexico, Italy, and El Hierro. Two examples are shown for each region. Case 1 (red) corre-
sponds to an example where the tropospheric delay is mainly correlated with the topography.
Case 2 (blue) represents an example with a more complex, turbulent and or spatially-varying
tropospheric signal. Columns give from left to right, the unwrapped interferogram, and the es-
timated tropospheric corrections using MERIS, MODIS, ERA-I, WRF, the linear method, and
when using the power-law method. Both MERIS and MODIS spectrometers also have a hydro-
static component of ERA-I included to allow for comparison with the phase-based correction
methods. All observations are converted to displacements in the radar line-of-sight.
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Figure 3.4: Statistical analysis between different tropospheric correction methods over (a)
Mexico, (b) Italy, and (c) El Hierro. Left panel, Root Mean Squared (RMS) of the tropospheric
signal of the reference technique, corresponding to the unwrapped interferograms corrected for
DEM errors and tectonic signals. Right panel, RMS Errors after correction of the reference
signal using tropospheric estimates of the power-law for different spatial bands (colored mark-
ers). Triangular markers corresponds to interferograms that are more than 80% cloud free,
circular markers to interferograms for which one of the SAR dates had more than 20% clouds,
and diamond markers where both SAR dates failed the cloud-free threshold. Small colored
markers represent individual interferograms, while the thicker marker represents the average of
all interferograms. The solid line gives the expected MERIS accuracy level. In the legend, wet
delay components are indicated by (w), and hydrostatic components by (h).

the main variation in the tropospheric signal results from the topography-correlated

signal and turbulence. While the high-resolution weather model (WRF) is capable of

capturing the correct spatial trend over the region, it cannot capture the high gradients

in the delay from turbulence (few km). Spectrometer estimates of MERIS and MODIS

were not included over El Hierro due to limited amount of data, but when they were

available their estimated delays were limited by their lower, ∼1 km, spatial resolution.

For each region we performed a statistical analysis where we compared all the

tropospheric techniques with respect to the unwrapped interferograms (Figure 3.4),

similar to the analysis used for the power-law spatial band selection. As before in Figure

B.5, the left panel gives the RMS of the unwrapped interferograms, while the right panel

gives the RMSE of the different tropospheric correction methods after subtracting the

corrections from the unwrapped interferograms.

Assuming the unwrapped interferograms are correctly compensated for signals other

than the troposphere, the maximum reduction in RMSE will be limited by the accu-

racy of the tropospheric correction method under consideration. For MERIS this cor-

responds to a RMSE level of ∼1 cm (black line), computed using the measured ∼1.1

mm PWV accuracy (Li et al., 2006b).

In order not to limit ourselves to cloud free interferograms only, we split our dataset
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into three classes: interferograms in which both SAR dates are cloud-free (triangular

markers), those in which one of the SAR dates fails our 80% cloud-free threshold (circu-

lar markers), and those where both SAR dates fails our cloud-free threshold (diamond

markers). By comparing the different classes, we observe all correction methods per-

form worse as cloud cover increases. On average we find a 22.5% RMSE increase for

each additional cloudy SAR date, for all the methods.

Over the different regions, we find MERIS consistently gives the largest RMSE

reduction, resulting in RMSE approximately equal to the MERIS ∼1 cm accuracy

level (black line). No uncertainty is introduced through temporal interpolation for

MERIS, unlike for MODIS. Over Italy and Mexico, we find MODIS acquisitions are

on average within ∼25 minutes (σ = 18 minutes) of our SAR acquisition times, with

a maximum time difference of around an hour. While both MERIS and MODIS have

similar sensitivities, MODIS does not perform as well over Mexico, reducing the RMSE

to only ∼2 cm (twice as bad as the MERIS accuracy), while over Italy MODIS performs

similarly to MERIS. While spectrometers are the preferred method in terms of RMSE

reduction, the success-rate is limited to cloud-free and daylight acquisitions only. This

excludes the use of spectrometer data for the correction of ascending SAR data for

satellite systems in a sun-synchronous orbit with night-time ascending acquisitions,

such as Envisat (ascending node at 22:00 local time at the equator), ERS 1/2 (22:28

at equator), ALOS (22.00 at equator), and ALOS2 (00:00 at equator). However, for

SAR systems which operate in a sun-synchronous dawn-dusk orbit, such as Sentinel

1, Radarsat, Radarsat 2, the future NISAR mission (ascending node at 18:00 for all),

and COSMO-SkyMed (ascending node at 06:00), spectrometer-derived corrections can

potentially be used for both ascending and descending acquisitions. The application to

ascending and descending tracks for these satellites is limited by variation in the length

of day over winter and summer seasons, and as such will also be strongly influenced by

the latitude of the target.

For Mexico and El Hierro, phase-based methods give a better RMSE reduction

than weather models, and in the case of Mexico are also better than the MODIS

spectrometer. Over Italy we find that none of the different methods, except for the

spectrometers, reduces the RMSE on average.

With large topographic variations over Mexico, the main tropospheric signal contri-

bution results from the topography-correlated component. The phase-based methods,

especially designed to resolve the topography-correlated component, therefore are ca-

pable of retrieving the tropospheric delay, reducing the RMSE by 0.5 cm to an average

RMSE level of 1.9 cm. Over Italy, tropospheric delays are more subject to signals

introduced from local weather and turbulent variations, which results in a strongly

under estimated tropospheric signal from the linear method with a maximum RMSE

reduction of only ∼0.05 cm on cloud-free interferograms, and 0.3 cm for the complete

dataset to an average RMSE level of 1.2 cm. As the power-law is applied locally, it is
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more strongly contaminated by the different tropospheric delay components, which are

present at different spatial scales, leading to a biased estimation of K
′
∆φ, and an average

RMSE increase of ∼0.2 cm. This is also expressed by the large RMSE across the differ-

ent power-law spatial bands (Figure B.5). Considering both phase-based methods have

the potential to introduce incorrect signals in the presence of turbulence and coherent

short-scale tropospheric signals, neither should be applied in those instances. However,

for the linear correction method the impact of turbulence appears less severe than for

the power-law method.

We do not observe an improvement by running a local high-resolution weather

model. This can be observed at El Hierro, where the high-resolution model tries to

estimate turbulence, but due to its incorrectly estimated location, is penalized with a

larger RMSE. With high-resolution models offering only a minimal improvement and

requiring additional computation, online available weather models are more suitable

for near real-time InSAR processing.

Preferred correction methods depend on the region of application and the SAR

satellite under consideration. However, from our analysis we find that each method

has its limitations, which vary with region of application and with time. For future

development we suggest that it would be optimal to combine the different correction

methods in such a way that they can constrain each other. Further work is needed in

order to identify suitable metrics that can be used to weight the different observations.

3.6 Conclusions

We performed a statistical comparison of different tropospheric correction methods

with respect to unwrapped interferograms over Mexico, Italy, and El Hierro. Our

analysis included methods based on spectrometer measurements, output of weather

models, and empirical interferometric phase-based methods. When available and lim-

ited to cloud-free and daylight acquisitions only, we found the spectrometers to provide

the largest RMSE reduction. We found that the estimated tropospheric delays using

MODIS have at best an accuracy equal to that of MERIS, and at worst twice that

of MERIS. We found the phase-based methods (linear and power-law) to outperform

the weather model methods in regions where tropospheric delays are mainly correlated

with topography. For regions over which this is less apparent, due to turbulence in the

troposphere and dynamic local weather, weather models can potentially offer better

performance. In those instances where weather models mis-estimate the location of

turbulent features, they will have a correspondingly higher RMSE. We did not find a

significant improvement when using a local high-resolution weather model (7 km and

2 km) instead of the global reanalysis products. With a longer required runtime, local

weather model are less suitable for near real-time InSAR application. From a cloud

cover analysis, we found the performance of the different correction methods to worsen
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with increasing cloud cover, with a ∼10-20% increase in RMSE for each cloudy SAR

date.

We confirmed that the different tropospheric correction techniques all have their own

limitations, and are not always sensitive to the same component of the tropospheric

delay. We did not find any of the tropospheric correction methods to be best in reducing

the tropospheric delays consistently over different regions and times. Therefore, we

recommend future developments should aim towards combining the different correction

methods in an optimal manner.

Together with this paper we release the Toolbox for Reducing Atmospheric InSAR

Noise - TRAIN, which contains all the applied correction methods within this study.

In future we will further expand this toolbox to include other corrections, such as those

from GPS.
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Abstract

In Guerrero, Mexico, slow slip events have been observed in a seismic Gap, where

no earthquakes have occurred since 1911. A rupture of the entire Gap today could

result in a Mw 8.0-8.4 earthquake. However, it remains unclear how slow slip events

change the stress field in the Guerrero seismic region, and what their implications are

for devastating earthquakes. Most earlier studies have relied on a sparse network of

GNSS measurements. Here we show that Interferometric Synthetic Aperture Radar

(InSAR) can be used to improve the spatial resolution. We find slip due to the 2006

slow slip event enters the seismogenic zone and the Guerrero Gap, with ∼5 cm slip

reaching depths as shallow as 12 km. We show that slow slip is correlated with a

highly coupled region, and estimate that slow slip events have decreased the total

accumulated moment since the end of the 2001/2002 slow slip event (4.7 years) by

∼50%. Nevertheless, even accounting for slow slip, the moment deficit in the Guerrero

Gap increases each year by Mw ∼6.8. The Guerrero Gap therefore still has the potential

for a large earthquake, with a slip deficit equivalent to Mw ∼8.15 accumulated over the
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Figure 4.1: Horizontal and vertical displacements for the 2006 SSE from Vergnolle et al.
(2010) estimated from GNSS in a North America reference frame. The gray arrows indicate
the MORVEL relative plate motion of the Cocos and the North America Plate (DeMets et al.,
2010). Gray polygons represent rupture areas of major earthquakes (Kostoglodov et al., 2003).
The red solid line indicates the extent of our SAR data, while the blue dashed line, in the
north of our study area, indicates the extent of the area assumed not to be deforming, used to
compute weights of the residual noise and slave atmospheric signal for our time-series model.
The SAR sensor is most sensitive to displacements perpendicular to the satellite flight direction.
As most of the horizontal displacements are in the flight direction, the SAR is mainly sensitive
to the vertical displacement component. P(1-3) refer to the profiles in Figure 4.8. The rupture
of the 1985 earthquake is indicated. The recent 2014 Guerrero earthquakes, which occurred on
the western edge of the gap, are indicated by the stars.

last century. Correlation between the slow slip region and non-volcanic tremor, and

between slow slip and an ultra slow velocity layer supports the hypothesis of a common

source potentially related to high pore pressures.

4.1 Introduction

In southern Mexico, the Cocos plate subducts beneath the North America plate at a

rate of ∼6.1 cm/year (DeMets et al., 2010), posing a huge hazard for coastal cities like

Acapulco, and also for nearby Mexico City. A Mw 8.0 earthquake in 1985 caused more

than 10,000 deaths in Mexico City and 3-4 billion U.S. dollars of damage (USGS). Since

then the city population has swelled to 21 million. Of particular concern is a region

of the subduction interface where no significant earthquake has occurred since 1911

(101.2◦W - 99.2◦W), referred to as the “Guerrero Gap” (Figure 4.1). The largest slip

deficit is assumed to be located on the northwestern section of the Gap (101.2◦W -

100.4◦W) (Kostoglodov et al., 1996), as some slip is thought to have been released on

the southeastern section by the Mw 7.7 earthquake in 1957, and the Mw 7.1 and 7.0
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earthquakes in 1962 (Ortiz et al., 2000). Prior to the discovery of slow slip events by

Lowry et al. (2001), Singh and Mortera (1991) estimated that a rupture of the Guerrero

Gap today could result in an earthquake of Mw 8.2-8.4.

Slow earthquakes, also denoted as slow slip events (SSEs), release strain over days

to years. While SSEs are not in themselves hazardous, they alter the stress field

and can therefore have an impact on the timing of subsequent, potentially damaging

earthquakes. Since 1995 one large event has been observed in Guerrero approximately

every 3-5 years; in 1995 (Larson et al., 2004, Vergnolle et al., 2010), 1998 (Lowry et al.,

2001, Larson et al., 2004, Vergnolle et al., 2010), 2001/2002 (Kostoglodov et al., 2003,

Iglesias et al., 2004, Vergnolle et al., 2010), 2006 (Larson et al., 2007, Correa-Mora

et al., 2009, Vergnolle et al., 2010, Radiguet et al., 2011, Bekaert , 2011, Hooper et al.,

2012, Cavalié et al., 2013), and 2009/2010 (Walpersdorf et al., 2011). Of the more

recent events, the 2006 SSE started around April 2006 and lasted till December 2006

(Larson et al., 2007, Correa-Mora et al., 2009) or perhaps February 2007 (Vergnolle

et al., 2010). Continuous GNSS observations by Vergnolle et al. (2010) (Figure 4.1)

show that the surface displacements associated with this SSE are small (maximum ∼5.6

cm) and extend over a large area. Sites near the coast (CAYA and COYU) uplifted by

∼5.6 cm, over a period of 9-10 months. About 110 km inland, sites subsided up to ∼2.6

cm (MESC), with displacements due to the SSE decreasing to zero beyond 250-300 km.

The cumulative horizontal displacements for most of the sites are in a southwesterly

direction, with the largest displacement reaching approximately 5.5 cm at CAYA. In

general, the surface displacements associated with the slow slip events extends from

the coast to Mexico City, 300 km inland.

Until very recently, studies of slow slip on the Mexico subduction zone have relied

only on a sparse GNSS network only (Lowry et al., 2001, Kostoglodov et al., 2003,

Larson et al., 2004, Iglesias et al., 2004, Larson et al., 2007, Correa-Mora et al., 2009,

Vergnolle et al., 2010), leading to poor spatial resolution of the slow slip itself. In this

study, which focuses on the 2006 event, we increase the number of data points by orders

of magnitude by including Interferometric Synthetic Aperture Radar (InSAR) data, and

perform a joint inversion of the GNSS (Vergnolle et al., 2010) and InSAR data for slow

slip on the subducting interface. This is an extension of our preliminary work (Bekaert ,

2011, Hooper et al., 2012). Cavalié et al. (2013) also included stacked InSAR data in

their recent study, but here we use time-series analysis of the InSAR data, to invert

for slip in an optimal way, taking into account the full variance-covariance of the data,

and allowing for variable smoothness of slip. We also apply a new method to reduce

error contribution from the troposphere, which is described in a companion paper to

this study (Bekaert et al., 2015). Finally, we use our estimated slow slip solution to

estimate the slip deficit accumulated since the end of the 2001/2002 slow slip event till

the end of the 2006 slow slip event, and discuss the implications for earthquakes in the

Guerrero Gap.
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Figure 4.2: Envisat PS-InSAR network showing the perpendicular and temporal baselines.
Solid lines indicate interferograms, while the markers show individual SAR acquisitions. All
interferograms are with respect to the master SAR image acquired on 16 December 2005. The
duration of the 2006 slow slip event is indicated by the dashed vertical lines.

Table 4.1: Dataset baseline information. Perpendicular (Bperp), temporal (T) and absolute
Doppler centroid (∆fDC) baselines. All interferograms are relative to the master of 16 Dec
2005.

Date Bperp T ∆fDC Date Bperp T ∆fDC
[m] [days] [Hz] [m] [days] [Hz]

26 Nov 2004 210 -385 23.4 7 Oct 2005 -110 -70 -4.0
31 Dec 2004 134 -350 24.6 11 Nov 2005 690 -35 0.1
4 Feb 2005 -120 -315 25.9 20 Jan 2006 -864 35 -4.1
11 Mar 2005 283 -280 17.3 24 Feb 2006 -282 70 -1.8
15 Apr 2005 561 -245 21.4 5 Jan 2007 430 385 5.8
20 May 2005 123 -210 26.7 9 Feb 2007 86 420 1.8
24 Jun 2005 700 -175 25.4 16 Mar 2007 349 455 -3.5
29 Jul 2005 305 -140 25.4 9 May 2008 138 875 5.4
2 Sep 2005 652 -105 26.0

4.2 InSAR processing

We used 18 Envisat (C-band) SAR images to study the 2006 SSE. The images cover

an area from the coast to Mexico City, approximately 300 km inland (Figure 4.1), and

were acquired during the interseismic period from 2004-2008, before and after the 2006

SSE. Figure 4.2 shows the temporal and perpendicular baselines of the processed single

master network. Of the 17 interferograms, 4 span the SSE in time. Exact values,

together with the Doppler centroid baselines, are given in Table 4.1.

We focused the data using the ROI PAC software (Rosen et al., 2004), followed by

the interferometric processing using the DORIS software (Kampes et al., 2003). In our

processing we used the 90 m SRTM DEM (Farr et al., 2007) to reduce topographic

contributions. The change in surface properties between two SAR acquisitions as well
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Table 4.2: Applied InSAR processing parameters. DORIS (D) (Kampes et al., 2003) and
StaMPS (S) (Hooper et al., 2012)

Parameter Value Parameter Value

SRTM DEM (D) 90 m Density random (S) 20 %
Multi-look factor (D) 1x1 Weed max noise (S) inf
Oversample (D) no Weed σ (S) 1
Dispersion threshold (S) 0.4 Unwrap grid size (S) 1000 m
number of patches (S) 144 Merge resample size (S) 1000 m
Processing method (S) Density Merge σ (S) 0.45 rad

as the specific satellite acquisition geometry adds decorrelation noise (Zebker , 1992).

This makes unwrapping more difficult, particularly in the more vegetated regions near

the coast. We reduce the noise contribution by applying the StaMPS time-series InSAR

technique (Hooper et al., 2007), in order to select only those pixels that demonstrate

stable phase characteristics in time. A summary of the applied DORIS and StaMPS

processing parameters are given in Table 4.2. Spatial-temporal variation in the tropo-

sphere leads to an additional signal in the interferograms, with a turbulent component

(mostly affecting length scales up to a few km), and a long-wavelength component

(>10 km). The turbulent component results from troposphere dynamics, while the

long-wavelength component is related to variations in pressure, temperature and rela-

tive humidity. Tropospheric delays in interferograms record the integrated delay along

the entire travelled path of the radar signal, hence the long-wavelength component ex-

hibits a correlation with the topography. In our study, tropospheric delay masks the

smaller slow slip displacement signal (Hooper et al., 2012); we observe large tropospheric

delays with an average correlation between the unwrapped phase and the topography

of K∆φ=2.8 rad/km (∼1.2 cm/km) (Bekaert et al., 2015). K∆φ varies spatially and

using a single value over a large regions fails to improve the result. Instead, we ac-

count for the spatially-varying tropospheric signal by applying a power-law correction

technique, assuming an exponent of 1.4 and a reference height of 7 km, both estimated

from sounding data for the observed period of time. An in-depth discussion on the

tropospheric correction technique and the results used in this study are contained in

our companion paper, Bekaert et al. (2015). The wrapped and unwrapped interfero-

grams after time-series processing and correction for tropospheric errors are included

in Bekaert et al. (2015) and shown in Figure 2.6.

4.3 Time-series InSAR analysis

Once we have corrected the data for the height-dependent tropospheric signal we model

the slow slip deformation using elastic dislocation theory. As none of the SAR acqui-

sitions were acquired during the event itself, the time series shows a discrete jump

at the time of the SSE corresponding to the slow slip displacement signal dSSE . We
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assume the secular velocity vsec to be constant, as was found in the GNSS processing

(Vergnolle et al., 2010). In our time-series model dSSE thus represents the cumulative

slow slip deformation as the deviation from the secular or inter-SSE velocity, which is

consistent with the GNSS estimates from Vergnolle et al. (2010) used in this study. In

our time-series inversion we estimate dSSE and vsec simultaneously with DEM errors,

which correlate with perpendicular baseline Bperp, and an atmospheric and noise signal

common to all interferograms, referred to as the residual master atmospheric signal,

am. The linear model describing the change of the interferometric phase ∆φ in time,

for a single time-series point, is:

E {∆φ} = Ax (4.1)

E





∆φt1
...

∆φtk−1

∆φtk
...

∆φn




= −4π

λ



∆t1 1 0 Bperp1
...

...
...

...

∆tk−1
... 0

...

∆tk
... 1

...
...

...
...

...

∆tn 1 1 Bperpn




vsec

am

dSSE

ctopo

 ,

where A is the design matrix and x is a vector of unknowns. E{·} represents the

expectation operator, ∆t the time between the master and slave acquisition, n the

total number of observations in time (interferograms), and −4π/λ the conversion from

the interferometric phase to line-of-sight displacement, as before. All interferograms

up to time tk−1 are prior to the slip event and thus do not directly include an estimate

for dSSE , hence the partial zero column in A. All interferograms help in constraining

the secular velocity. We estimate the unknown parameters by applying weighted least

squares, weighted by the inverse variance-covariance matrix of the data Q∆φ. Note

that vsec, dSSE , and ctopo are independent of the choice of master date; only am will

change if a different master date is selected, under the assumption that the data are

unwrapped correctly.

Correcting for the height-dependent tropospheric signal does not remove all the

atmospheric signals. While the impact of the residual atmospheric signal is small on

the estimation of the DEM errors and the master atmospheric signal, it strongly affects

the estimation of the secular velocity and the slow slip displacement signal. For these

we observe large spatial variations near the coast and towards the north of our InSAR

study area. We also observe a strong anti-correlation between them (Figure 4.3). To

account for this in our stochastic model, we define our diagonal variance-covariance

matrix Q∆φ such that we include the residual noise and slave atmospheric signal. For

each interferogram we estimate the data variance, in a non-deforming area (shown by

the blue polygon in Figure 4.1), after correction for an initial estimate of the DEM
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Figure 4.3: Line-of-sight (LOS) estimates for (a,e) the interseismic velocity, (b,f) the slow slip
surface displacement, (c,g) the master atmosphere, and (d,h) the DEM converted errors. In
absence of a tropospheric correction (top row) a high spatial correlation is observed between
the estimated displacements and the surface topography. After tropospheric correction, second
row, the signal-topography correlation is reduced, as can also be seen in a lower magnitude
of the residual master atmosphere, (d) versus (h). A, B and C in (b) give the location of the
individual points for which the surface displacement time-series is shown in Figure 4.5(c).

errors and the master atmospheric signal, estimated assuming uniform weights. The

non-deforming area extends over the region where we do not expect LOS displacements

associated with the interseismic deformation or the SSE (Vergnolle et al., 2010). We

also excluded Mexico City due to its large subsidence rate.

4.4 Error distribution of the surface displacements

We determine the error distribution of our model parameters, used for the slow slip

modeling on the subduction interface, through the percentile bootstrap method (Efron

and Tibshirani , 1986). As opposed to the regular algorithm, where n random samples

are taken from n observations, we select n1 and n2 random samples respectively from the

n1 and n2 observations (interferograms) before and after the SSE. Using this approach

the model design matrix remains invertible for each bootstrap simulation, i.e. there

will always be at least one interferogram that spans the slip event. Each bootstrap

simulation provides us with an estimate for the unknown model parameters (vsec, am,
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dSSE and ctopo) at each point.

Estimating the full variance-covariance matrix directly from bootstrapping is not

possible, as outliers in the model strongly bias the covariance terms. Moreover, while

the variance terms are not strongly biased by outliers, the variance estimate of a point

Pi obtained from the bootstrapped data contains, besides its actual variance, also a

variance and covariance component of the reference area or point Pj ,

σ̂2
∆ij = σ2

i + σ2
j − 2Cij (x) , (4.2)

with σ̂2
∆ij the estimated variance at point Pi computed from the bootstrapped data,

σ2
i and σ2

j respectively the actual variance at Pi and Pj , and Cij (x) the covariance

between both Pi and Pj , which varies with separation distance x. Assuming equal

point variance Pi and Pj , equation (4.2) can be re-written to the equation of a semi-

variogram (Wackernagel , 2003); see Appendix 4.8 for a full derivation. We constructed

our noise variance-covariance matrix using the covariance function fitted to the semi-

variogram of the slow slip displacement residuals ε. The latter is calculated as the

difference between the bootstrapped estimates of the slow slip displacement signal and

the weighted least squares estimate, i.e. ε = d̂
boot

SSE−d̂SSE . An example of the estimated

semi-variagram in shown in Figure C.2.

4.5 Modeling the 2006 SSE

The position and structure of the Guerrero subduction interface has been previously

estimated from a variety of data, including seismicity and focal mechanics (Singh and

Pardo, 1993, Pardo and Suárez , 1995), geologic records and volcanic features (Ferrari ,

2004), and from the analysis of the Meso America Subduction Experiment (MASE)

broadband seismic network (Pérez-Campos et al., 2008, Kim et al., 2010). The Pacific

plate subducts beneath the North America plate about 66 km south-southwest off the

coastal city Acapulco with a dip angle of 15◦ and becomes sub-horizontal at a depth of

40 km, approximately 80 km north-northeast from Acapulco (Figure 4.4). The interface

remains horizontal until about 230-250 km from the coast, after which it dips steeply

below the Trans-Mexican Volcanic Belt, at an angle of 75◦ (Kim et al., 2010, Chen and

Clayton, 2012). We use the same subduction geometry as Radiguet et al. (2012) and

Cavalié et al. (2013) (red solid line in Figure 4.4), which correlates with observations

from receiver functions (Kim et al., 2010) (green markers).

We model the slip event by dividing the fault into 25x25 km dislocation patches

and inverting for slip on the interface to fit the slow slip surface displacements. The

relationship between slip on the interface and the surface displacement, assuming a

homogeneous elastic half-space, is given by the Green’s functions in Okada (1985). We

assume a Poisson’s ratio of 0.25, and use the GNSS and our InSAR displacements
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Figure 4.4: Subduction interface model of the Cocos plate (beneath) and the North America
plate (above), as used in this study and by Radiguet et al. (2012), Cavalié et al. (2013) (solid
red). Interface as determined from Receiver Function tomography of teleseismic earthquakes
using the MASE network (Kim et al., 2010) is shown by the green markers. Topography
information as well as the GNSS stations locations (black square markers) are plotted with
respect to the distance to the coastal ACAP GNSS station, located in Acapulco. The interface
is modelled in 25x25 km dislocation patches, extending 450 km in the strike direction. In total
we use 180 patches to model. Ocean bottom topography data has been extracted from the
GEBCO 08 Grid (version 20091120, http://www.gebco.net), while for the elevations we made
use of the SRTM DEM.

during the SSE as our observations, resulting in the following slip model:

E




dInSARLOS

dGNSSN

dGNSSE

dGNSSU


 =


GInSAR
LOS x y 1

GGNSS
N 0 0 0

GGNSS
E 0 0 0

GGNSS
U 0 0 0




s

αpl

βpl

γpl

 ,

where dInSARLOS is a vector of the estimated InSAR displacements in the line-of-sight,

dGNSS are vectors of the GNSS displacements (3-components), G are matrices of

Green’s coefficients relating slip to surface displacement, and s is a vector of un-

known slip values for each patch. A planar correction is included for the InSAR data

(αplx+βply+γpl) to correct for the long wavelength orbit errors, where x and y are the

InSAR coordinates in a local reference frame. The inversion is weighted by the inverse

of the variance-covariance matrix Q, as estimated in section 4.4. Due to the large num-

ber of observations and the long spatial wavelength of the slow slip deformation signal,

we resampled our initial InSAR observations to a 1 km grid before computing the slow

slip surface displacements using weighted least squares, taking care to propagate all

errors.

The inverse problem is ill-posed and highly sensitive to measurement noise. We

therefore regularize the problem by introducing a prior constraint on smoothness, by

including Laplacian smoothness in the inversion. Previous studies of the 2006 slow

slip event have relied on smoothing based on trading off roughness and misfit manu-
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ally (Radiguet et al., 2011, 2012, Cavalié et al., 2013), except for Correa-Mora et al.

(2009), who select a smoothness coefficient based on a trade-off between the degrees

of freedom in the model and the misfit (Correa-Mora et al., 2008). We apply the

method as proposed by Fukuda and Johnson (2008), which solves for smoothness in a

Bayesian framework, allowing us to estimate the full probability distribution of each

slipping patch, taking into consideration all possible smoothness values. We assume

the distribution of the model residuals εd and the Laplacian of the slip 5s have a

normal distribution of zero mean, respectively ∼ N (0,Q) and ∼ N
(
0, α2I

)
. With α2

an unknown scaling parameter of the Laplacian variance matrix. Unlike, Fukuda and

Johnson (2008) we assume that our data uncertainties are known, and we do not scale

them. The posteriori probability distribution can be written as:

p
(
s, αpl, βpl, γpl, α

2 | d
)

= Kα2(−M/2) (4.3)

×exp{−1

2
εTdQ−1εd −

1

2α2
(5s)T (5s)},

where K is a normalization constant, N the total number of observations (GNSS and

InSAR combined), and M the number of dislocation patches. We treat α2 as unknown

and sample its full probability distribution using a Markov chain Monte Carlo method

(Mosegaard and Tarantola, 1995). We do the same for the unknown InSAR plane

coefficients (αpl, βpl and γpl) as well as the slip and rake of each slipping patch. We

fix the slip rake so that it is within 20 degrees of the plate convergence direction. We

sample our prior distributions using a variable step size which is evaluated every 10,000

model runs (Hooper et al., 2013).

4.6 Results

4.6.1 InSAR processing and InSAR time-series estimation

As no GNSS tropospheric estimates are available in Vergnolle et al. (2010), a direct

comparison between GNSS and the estimated InSAR tropospheric delays is not possi-

ble. We are however able to compare the estimated tectonic components from InSAR

and GNSS before and after tropospheric correction. Figure 4.3 gives the estimated

time-series components before (top row) and after (bottom row) tropospheric correc-

tion. Before tropospheric correction, spatial patterns correlating with the topography

can be observed in the north and middle of our study regions. For the slow slip dis-

placements, the variation of the signal towards the north does not correlate with GNSS

(top row, Figure 4.5). After correction, the slow slip signal is consistent with indepen-

dent estimates from GNSS, and the gradient between the slow slip displacement signal

and the local topography decreases by 1.1 cm/km. We find that the RMSE between

the displacements and those predicted by our time-series model decreases after tropo-
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spheric correction (second row, Figure 4.5). The reduction increases with distance to

the InSAR reference area, and has a maximum value of ∼1 cm (Bekaert et al., 2015).

For the secular velocity, we observe the largest displacement rates near the coast

(Figure 4.3(e)). This signal results from coupling between the subducting slab and the

continental plate, causing a buckling of the hanging wall block near the coast. As the

horizontal motion is almost perpendicular to the radar line-of-sight, the signal reflects

the vertical velocity almost exclusively. Further inland, the secular displacement rates

decrease.

For the slow slip displacement signal (Figure 4.3(f)), we see the opposite behavior.

This is a consequence of the continental plate (hanging wall) slipping back towards the

trench, resulting in uplift near the trench, and subsidence further inland. Further inland

we see the signal level out and diminish. The estimated slow slip deformation signal

near Mexico City is a tropospheric correction artifact, introduced when deformation

around Mexico City leaked into the 2-8 km spatial band filter.

For the estimated master atmospheric signal (Figure 4.3(g)), we find signals of up to

10 cm which do not show a clear correlation with topography. Towards the north-west

of our study region, we observe ∼9 km wavelength meso-scale atmospheric features

(wave pattern formation).

The DEM errors reveal a smoothly varying signal in along-track with an across-track

variation (Figure 4.3(h)). These signals are also present in the wrapped interferograms.

We believe this signal to be a focusing artifact, introduced by the zero-Doppler pro-

cessing within ROI PAC. We observed a similar feature in another study region, which

disappeared with images focused by ESA. The errors introduced during the focusing

stage are limited, as they are correlated with perpendicular baseline, and therefore

reliably estimated and subtracted.

4.6.2 Slow slip modeling

In total we performed 2.5 million forward models using Markov chain Monte Carlo

sampling, to sample the full parameter space for the slip and rake of each slipping patch,

the smoothness, and the three InSAR plane coefficients. From all these inversions we

kept the maximum a-posteriori solution, which represents the maximum of the 364-

dimensional histogram (364 parameters) (Hooper et al., 2013). When inverting GNSS

only this reduces by three, as no plane is included. Figure 4.6 and Figure 4.7 give

respectively our maximum a-posteriori slip solution and the corresponding marginal

probability density distributions for the largest slipping patch. The corresponding

modelled observations, residuals, and profiles P1-3 are shown in Figure 4.8. From the

GNSS time-series it is unclear if the Oaxaca GNSS sites are solely displaced due to

the 2006 Oaxaca SSE, or potentially a combination with the Guerrero 2006 slip event.

While the displacements associated with the 2006 Guerrero event are expected to be

small, we opted to exclude the Oaxaca GNSS sites (HUAT, PINO, and OAXA). Other
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Figure 4.5: Figure from (Bekaert et al., 2015). Top row, comparison of the estimated slow
slip surface displacements before and after tropospheric correction (left and middle panel). The
right panel gives the gradient between the slow slip deformation signal and topography before
and after tropospheric correction, estimated in 50 km along track segments using all data in
range. Before correction, the signal is strongly correlated in the middle and north of the InSAR
study region. After correction, this correlation is decreased, with on average a reduction of 1.1
cm/km. Light markers indicate the region around Mexico City, where subsidence contaminates
the tropospheric correction estimates at the selected spatial frequency band of 2-8 km, which was
chosen to avoid contamination of the long wavelength (∼150 km) slow slip signal. This region
is neglected in the slow slip modeling. Supplemental Figure C.1 gives the same comparison for
the secular velocity. Second row, line-of-sight surface displacement time-series for individual
locations, as shown in Figure 4.3, (b) before and (c) after the tropospheric correction is applied.
Residual master atmosphere and DEM errors are removed. The displacement in time is modelled
as an interseismic rate plus a slow slip step (black solid line). Positive displacements refer to
motion towards the satellite, comprising mostly of vertical uplift. Offsets on the y-axis are
chosen arbitrarily for clarity.
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Figure 4.6: Maximum a-posteriori slip solution derived from (a) GNSS only, (b) GNSS and
InSAR when including InSAR error covariance, and (c) GNSS and InSAR when neglecting
InSAR error covariance. Only significant slip, 95% confidence slip >0 cm, is shown. For each
slip solution we find slip in the seismogenic zone (thick solid black line). Inverting for the InSAR
variance only, assumes the estimated signal not to be contaminated from residual atmospheric
signals. Inverting for the variance only, allows slow slip to extend further eastwards than
when using GNSS only. Inclusion of covariance downweights the InSAR towards the GNSS
solution, potentially indicating that the InSAR signal is subjected to residual atmospheric
signals. Slip extends within the seismogenic zone (10-25 km depths), black solid line, and
enters the Guerrero Gap, dashed black line (black dotted line for the northwestern Guerrero
Gap). Spatial correlation between the slow slip region and non-volcanic tremor (Husker et al.,
2012) (blue dashed line) correlate with the existence of an ultra slow velocity layer (Song et al.,
2009) (green circles). Absence of an ultra slow velocity layer is shown from the cyan circles
(Song et al., 2009). Rake (black arrows) is within ∼10◦ of the updip direction. The second and
third rows, show the integrated seismic moment for the longitude at the trench, and for depth.
A peak at 40 km depth is introduced by the sub-horizontal character of the interface at this
depth.

studies instead force a zero displacement (e.g. Vergnolle et al., 2010, Radiguet et al.,

2012, Cavalié et al., 2013).

We compared the solution found when inverting GNSS data only (first column,

Figure 4.6) with those of a combined GNSS and InSAR inversion. We also compared

solutions found when including and excluding InSAR covariance (second and third

columns).

For the GNSS-only solution, significant slip (slip lower bound of 95% confidence >0

cm) is mostly found within 100 km horizontal distance of the GNSS sites perpendicular

to the trench. The slip release corresponds to an equivalent earthquake magnitude

of Mw 7.3, with the maximum slip (∼17 cm) concentrated at depths of 30-40 km.

As summarized in Table 4.3, we find most of the slip release (∼76%) occurs on the

transition zone (25-40 km depths), with the remaining part almost completely (∼23%)
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Figure 4.7: Sampled marginal probability distributions of the model parameters. The rake and
slip is shown for the largest slipping patch, together with the smoothness, and when using InSAR
the planar correction. (a) gives the case when inverting for GNSS alone, (b) the combination
between GNSS and InSAR when using the InSAR covariance, and (c) the combined solution
ignoring InSAR covariance. The maximum a-posteriori slip solution is highlighted by the red
marker and line.

in the locked portion of the seismogenic zone (10-25 km) defined from past large thrust

earthquakes and inter-SSE coupling from interseismic studies (e.g. Kostoglodov et al.,

2001, Larson et al., 2004). The locked portion of the Guerrero Gap (101.2◦W - 99.2◦W)

itself accounts for ∼22% of the total seismic release in SSE, moment release equivalent

to an Mw 6.9 earthquake. For the northwest portion of the gap (101.2◦W - 100.4◦W,

no earthquake since 1911) this release is ∼13% of the SSE total, equivalent to an Mw

6.7 earthquake.

When including the full InSAR noise variance-covariance information (second col-

umn) the InSAR data are downweighted, pushing the solution more towards the GNSS

solution on the western side of the InSAR track, while the InSAR still provides a

low-level constraint. Including the InSAR data but neglecting covariance (third col-

umn) causes the slip solution to extend much more in south-easterly direction. While

the maximum slip magnitude and location remains approximately unchanged, we find

slip patches of ∼10 cm slip extending about 80 km more southeast than when using

GNSS-alone. As shown in Table 4.3, independent of which data is used, the maximum

a-posteriori slip solution has a similar estimated release of Mw 7.3, with ∼19-22% being

released in the locked Guerrero Gap (Mw ∼6.9), and ∼11-13% in the northwest portion

of the gap (Mw ∼6.7). Inverting without covariance (but leaving variance) information

tends to push the slip solution more down-dip, with ∼1.3% more of the total moment

released on the transition stage (25-42 km depths).

The maximum a-posteriori solution tends towards the smoother side of the marginal

probability distributions shown in Figure 4.7, and does not always coincide with the

peaks of the histograms. This can be explained by the fact that the histogram peaks

represent the maxima in a 2-dimensional parameter space and neglect all other dimen-
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Figure 4.8: Modelled surface displacements (first column) and their residual (second column)
together with the surface displacement profiles (P1, P2 and P3) (third column). The first row
gives the result when inverting GNSS data alone, middle row, when inverting GNSS together
with full co-variance information after tropospheric correction, and bottom row, after tropo-
spheric correction and when ignoring the InSAR covariance information. After tropospheric
correction we find the InSAR data to be more consistent with the GNSS observations in the
northern region. Near the coast the inclusion of co-variance downweights the InSAR data, push-
ing it towards the GNSS solution. This is due to residual tropospheric atmosphere near the
coastal region. Residuals reveal a misfit for the InSAR at the higher spatial resolution, imposed
by the smoothness constrained on the slip. Displayed errors are 2σ. All shown displacements
are in the line-of-sight (LOS).
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Table 4.3: Earthquake-like moment magnitude release for the maximum a-posteriori slip
solution. A comparison is made between the moment release in the locked seimogenic zone
(10-25 km depth) and the transition zone (25-42 km depth). Also the moment magnitude
release within the locked Guerrero Gap (101.2◦W - 99.2◦W) and the northwest portion of the
gap (101.2◦W - 100.4◦W) is shown. Rigidity is assumed to be 3× 1011 dyne/cm2 (or 3× 1010

N/m2).

Mw GNSS GNSS & InSAR GNSS & InSAR
(negl. COVAR) (with COVAR)

Total release 7.3 (100.0%) 7.3 (100.0%) 7.3 (100.0%)
Locked seismogenic zone 6.9 (23.4%) 6.9 (22.3%) 6.9 (23.5%)
Transition zone 7.2 (75.8%) 7.3 (77.1%) 7.2 (75.7%)
Guerrero Gap 6.9 (22.4%) 6.9 (18.8%) 6.9 (21.8%)
(Locked seismogenic zone)
Northwest 6.7 (13.3%) 6.7 (10.7%) 6.7 (12.1%)
Guerrero Gap
(Locked seismogenic zone)

sions included in the maximum a-posteriori solution. Each slip solution has a different

smoothness value, which is also set by the Markov chain Monte Carlo sampling. Figure

4.9 gives the rougher and smoother slip solutions.

4.7 Discussion

4.7.1 Slow slip modeling compared with other studies

Below, we compare the results when inverting for GNSS alone, and the integration

of GNSS and InSAR. For the latter we compare the inversions when using the full

InSAR variance covariance matrix, with those ignoring the InSAR covariance, as done

by Cavalié et al. (2013). In all our cases we find slip to enter the seismogenic zone

(10-25 km depth) and the Guerrero Gap, reaching depths as shallow as 10 km.

GNSS inversion

Our slow slip solution derived using GNSS observations only, Figure 4.6(a), compares

well with the overall slip pattern of Correa-Mora et al. (2009), who found a similar

spatial extent and magnitude of the slip distribution, and a peak slip of ∼19 cm com-

pared to our 17 cm. The solution of Radiguet et al. (2011), where smoothness is chosen

based on a trade-off between roughness and misfit, is rougher, with a maximum slip

just after the down-dip transition on the sub-horizontal section, and a large up-dip as-

perity near the coastal GNSS sites ACAP and COYA. The asperity is likely introduced

to fit the vertical displacements at COYO and ACAP, which differ from surrounding

GNSS stations (Larson et al., 2007). Our maximum a-posteriori solution fits the GNSS

observations well, with an RMSE of 0.3 cm and 0.3 cm for, respectively, the horizontal
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Figure 4.9: Smooth (left column) and rough slip solution (right column) for GNSS (top row),
combining GNSS and InSAR with full co-variance information (middle row), and, combining
GNSS and InSAR when ignoring co-variance (bottom row). The hyper parameter α2 is respec-
tively 1e−4 and 0.025 for the smooth and rough slip solution, both well outside the smoothness
marginal probability distribution (Figure 4.7). Only significant slip, 95% confidence slip >0
cm, is shown.
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and vertical components. For the two coastal sites COYA and ACAP, we overestimate

the vertical by an average of 0.1 cm, while fitting the horizontal displacements. In

our rougher solution, shown in Figure 4.9, we are capable of estimating both compo-

nents without significant residuals, illustrating the impact of smoothness. Compared

to Vergnolle et al. (2010), we find a slightly smaller maximum slip (17 cm compared

to 22.5 cm) and locate it 10 km further down-dip from the trench. Unlike Vergnolle

et al. (2010), we find significant slip extends to depths shallower than 19 km. Inverting

with the same interface as Radiguet et al. (2012), we find our peak slip coincides with

their down-dip extent of the higher slipping region (∼17 cm). We do not observe the

large up-dip slip of ∼17 cm just north of the coastal ACAP and COYA GNSS sites,

potentially introduced due to a rougher solution to decrease misfit of the observations.

We find a smaller magnitude release for the total slip distribution than Radiguet et al.

(2012), Mw 7.3 compared to Mw 7.5, as well as the release in the northwestern Guerrero

Gap, Mw 6.9 compared to Mw 7.2. The difference in magnitude could be introduced by

the difference in the assumed rigidity, which we assumed to be constant in this study,

compared to a layered model in Radiguet et al. (2012).

Within our sampled marginal smoothness probability distribution, we find slip of

∼5 cm reaching depths as shallow as 12 km, which is larger and shallower than pre-

vious studies by Correa-Mora et al. (2009) and Vergnolle et al. (2010), but in overall

agreement (∼1 cm larger) with the slip magnitudes by Radiguet et al. (2011, 2012).

In agreement with previous studies by Radiguet et al. (2011, 2012), we find slow slip

occurs in the locked part of the Guerrero Gap.

GNSS and InSAR (with covariance) combined inversion

Our joint GNSS and InSAR slip solution (Figure 4.6(b)), when including the InSAR

data with full covariance information, tends towards the GNSS solution. The region

of maximum slip remains west of the InSAR region towards the 40 km depth sub-

horizontal transition of the subduction interface. Slip enters the Guerrero Gap, with

magnitudes of up to ∼5 cm reaching depths as shallow as 12 km. The InSAR data

are not strongly weighted with the inclusion of the covariance information, as the slow

slip signal is correlated on similar length scales to atmospheric noise. Therefore the

Bayesian algorithm assigns a higher probability to keeping the slip smooth than fitting

the InSAR data perfectly.

GNSS and InSAR (neglecting covariance) combined inversion

When ignoring the InSAR error covariance (Figure 4.6(c)), the long wavelength signal

is interpreted as slow slip, which requires more slip northwards on the sub-horizontal,

40 km depth, segment of the interface than the GNSS-only solution, with a maximum

slip of ∼17 cm. This is in agreement with Cavalié et al. (2013), who explored the
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same InSAR track, with a different processing approach. However, unlike Cavalié et al.

(2013), we find the slip distribution is constrained to be parallel to the subducting

trench and we do not find any slip extending in a north-east direction. Care needs to

be taken with the eastern extent of the slow slip region. Inverting without covariance

assumes implicitly that the residual atmospheric signal is not correlated spatially. If

there are correlated residual atmospheric signals, they are assumed to be part of the

slow slip displacements in the inversion. When combining GNSS and InSAR, we find a

similar magnitude of slip as for GNSS (∼5 cm), reaching depths as shallow as 12 km.

Cavalié et al. (2013) constructed 8 interferometric pairs spanning the 2006 slow slip

event, multi-looked to a ∼640 m pixel size in order to reduce noise and thus decorre-

lation. They used a model from GNSS measurements to correct for the interseismic

displacement, and corrected orbital effects and long-wavelength errors by removing a

planar trend utilizing 5 to 6 GNSS stations, depending on the interferogram. In this

study, we used more SAR acquisitions, in a time-series approach, reducing the effects

of noise and atmosphere, and allowing us to simultaneously invert for the inter-seismic

rates and slow slip displacement signal. We include the uncertainty in orbit and other

long wavelength errors in our results, as is the case for the smoothness. Cavalié et al.

(2013) did not use a dedicated troposphere correction as applied in this study; instead,

they applied a simple stacking approach (Zebker et al., 1997) using the 8 interfero-

grams. In terms of modeling, we assumed the same subduction interface as Cavalié

et al. (2013), but rather than imposing an arbitrary scaling factor between InSAR and

GNSS, we let the variance of the observations control the weights. We use approx-

imately the same GNSS observations, except that we exclude the OAXACA GNSS

stations (PINO, HUAT and OAXA) rather than forcing them to have zero displace-

ment.

4.7.2 Correlation between slow slip, Ultra Slow velocity Layer and

Non-Volcanic Tremor

The coincidence of Non-Volcanic Tremor (NVT) and SSEs in Japan, Cascadia, known

as episodic tremor and slip events, gives weight to the hypothesis that NVT and slow

slip originates from the same source, or that one initiates the other. We find that

our slow slip solution (Figure 4.6) correlates well with the spatial occurrence of the

NVT (Husker et al., 2012), and the presence of an ultra slow velocity layer (Song

et al., 2009, Kim et al., 2010, Song and Kim, 2012). As the MASE (Meso-American

Subduction Experiment) network is a linear array, approximately perpendicular to the

trench, the NVT sensitivity in the direction perpendicular to the array is limited.

Increased energy release in NVT has been observed during the 2006 SSE (Rubinstein

et al., 2010, Husker et al., 2012), with an up-dip trend in NVT locations as the 2006

SSE progresses (Husker et al., 2012). In space, we find the NVT region occurs just
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down-dip of the maximum slipping region, coinciding with areas slipping by 3-13 cm.

The hypothesis of fluid flow and fluid processes at the plate interface generating seismic

tremor (Rubinstein et al., 2010) is supported by the correlation between an ultra slow

velocity layer (Pérez-Campos et al., 2008, Song et al., 2009) and the NVT, low electric

resistivity from magneto-telluric (Jödicke et al., 2006), and seismic velocity tomography

(Huesca-Pérez and Husker , 2012). The correlation we observe between the slow slip

region and the ultra slow velocity layer supports the hypothesis of slow slip related to

high pore pressures.

4.7.3 Earthquake hazard

We evaluated the slip deficit introduced from the end of the 2001/2002 SSE till the

end of the 2006 SSE, Figure 4.10. This interval of 4.7 years is fairly typical of the

time between events, which ranges from 3 to 5 years. To calculate the slip deficit at the

Guerrero Gap in the absence of any SSE, we multiplied the MORVEL plate convergence

rate of 6.1 cm/year (DeMets et al., 2010) over this period (4.7 years) and subtracted the

inter-SSE coupling solution by Radiguet et al. (2012), as derived from 12 years of GNSS

observations. We then calculated the slip deficit by differencing the slow slip estimate

from this. As the rake only deviates by up to ∼10◦ from the plate convergence direction

at the Guerrero Gap, we do not account for the rake variations. Irrespective of inverting

GNSS data alone, or when combining GNSS with InSAR, we find slow slip reduces the

total moment within the Guerrero Gap by ∼50% (Table 4.4). This leaves a residual

slip deficit, build up over 4.7 years, equivalent to an earthquake potential of Mw 7.3

which has been incremented by Mw ∼6.8 each year. In the northwestern section of the

Gap, where no earthquake has been observed since 1911, the slip deficit over the same

time-period is equivalent to Mw 7-7.1. In agreement with Radiguet et al. (2012) we find

the slip deficit outside the Guerrero Gap to be higher than inside the Gap, where slow

slip occurs. Nevertheless, considering the partial release of slow slip events over time,

the slip deficit within the Guerrero Gap can still cause large earthquakes and remains

a threat for Mexico City. Assuming all stress release happens through earthquakes and

through slow slip, an equivalent Mw ∼8 earthquake has been accumulated in the last

century within the Guerrero Gap. Recently, two earthquakes occurred on 18 April 2014

(Mw ∼7.2) and 8 May 2014 (Mw ∼6.4) on western edge of the Guerrero gap. Even if

they slipped entirely within the locked portion of the Guerrero Gap, they are too small

to have a significant impact on the slip deficit.

4.8 Conclusions

Whether inverting GNSS observations alone, combining GNSS and InSAR while ne-

glecting the covariance information, or while including the full InSAR covariance in-

formation, we find the 2006 Guerrero slow slip event to have an equivalent earthquake
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Figure 4.10: Slip deficit over Guerrero in 4.7 years, from the period after the 2001 SSE till the
end of the 2006 SSE. (a) Gives the slip deficit estimated assuming a 6.1 cm/year convergence
rate at the Guerrero Gap (DeMets et al., 2010) and with an inter-SSE coupling derived from
GNSS by Radiguet et al. (2012). After removal of the 2006 SSE we find the slip deficit in
(b) when inverting for GNSS only, in (c) combining GNSS and InSAR with full covariance
information, and in (d) when combining GNSS and InSAR ignoring covariance. In all cases
the slow slip release coincides with a high inter-SSE coupled region, reducing the slip deficit by
more than 50% (Table 4.4).

Table 4.4: Slip deficit after the 2006 SSE. This is the slip deficit from mid April 2002 (end
of the 2001/2002 SSE) till January 2007 (end of the 2006 SSE), approximately 4.7 years. Over
this duration and when neglecting the 2006 SSE the slip deficit in Guerrero was equivalent to a
Mw 7.5 or a Mw 7/year. For the northwestern Guerrero Gap this corresponds to a deficit of Mw

7.3 or Mw 6.8/year. The slip deficit is computed assuming a MORVEL plate convergence in
the Gap of 6.1 cm/year (DeMets et al., 2010) with the inter-SSE coupling from GNSS Radiguet
et al. (2012). Slip deficit values in the table in addition account for the 2006 SSE. In the
calculation rake is neglected as on average it is within 10◦ of plate convergence direction.

Guerrero Gap GNSS GNSS & InSAR GNSS & InSAR
(negl. COVAR) (with COVAR)

Slip deficit equivalent Mw 7.3 (∼6.8/year) 7.3 (∼6.8/year) 7.3 (∼6.8/year)
Seisimic moment reduction 51.4% 53.1% 50.8%

Northwest GNSS GNSS & InSAR GNSS & InSAR
Guerrero Gap (negl. COVAR) (with COVAR)

Slip deficit equivalent Mw 7.1 (∼6.6/year) 7.1 (∼6.6/year) 7 (∼6.6/year)
Seisimic moment reduction 55.2% 51% 54.6%
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magnitude of Mw 7.3. This is in agreement with Correa-Mora et al. (2009), but smaller

than previous studies, which estimated a Mw ∼7.5. We find larger slip magnitudes (∼5

cm) in the seismogenic zone (10-25 km depths) in the Guerrero Gap than reported pre-

viously. Of the total slow slip moment release we find 19-25% is released in the locked

part of the Guerrero Gap (equivalent to Mw ∼6.9). The majority of slip, ∼75% of the

total moment, is released in the transition zone (25-40 km depths). We allowed for rake

variations within 20◦ of the plate convergence direction, but find most of the slip to

be in the dip direction of the subducting interface. As the dip direction is ∼10◦ of the

plate convergence direction, this suggests some slip partitioning to occur. The remnant

strike slip component is not released through slow slip. When inverting the combined

observations from GNSS and InSAR, we find the slow slip extends further east, under

the InSAR track. In contrast to a previous InSAR and GNSS study (Cavalié et al.,

2013), we find that slip does not extend to the north-east, but remains approximately

parallel to the trench. Both non-volcanic tremor and our slow slip region correlate well

with the presence of an ultra slow velocity layer, strengthening the hypothesis that both

originate from the same process. We find slow slip occurs within a highly inter-SSE

coupled region. For the period between the end of the 2001/2002, and the end of the

2006 slow slip event an Mw 7.3 earthquake was accumulated, or equivalent to Mw 6.8

each year. This includes a reduction in total moment by ∼51% introduced by slow slip.

In the northwestern portion of the Gap, where no earthquake has been observed since

1911, the slip deficit is equivalent to a Mw ∼7.1 earthquake. Assuming stress being

released by earthquakes and slow slip, and considering an average 4-year slow slip cycle

and absence of a large earthquake in the last 100 years, the Guerrero Gap still has the

potential for causing a Mw ∼8 earthquake. The recent April and May 2014 Guerrero

earthquakes that occurred on the western edge of the Guerrero Gap are too small to

decrease this estimate significantly.
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Appendix InSAR covariance matrix from bootstrapping

We derive the InSAR variance covariance matrix for the errors by applying the per-

centile bootstrap method (Efron and Tibshirani , 1986) and using point-pair combi-

nations of the errors to estimate a covariance function. As opposed to the regular

bootstrap algorithm, where n random samples are taken from n observations, we select

n1 and n2 random samples respectively from the n1 and n2 observations (interfero-

grams) before and after the SSE, such that our model design matrix remains invertible

for each bootstrap simulation, equation (4.1). We estimate the residuals of the slow slip

displacement, ε, between each bootstrap simulation d̂
boot

SSE and the best estimate from

weighted least squares d̂SSE , and use the residuals for the variance-covariance matrix

estimation.

εk = d̂boot,kSSE − d̂SSE (4.4)

Where k represents one of the n bootstrap runs. Estimating the covariance matrix

directly from all the residuals is not possible as the covariance terms are biased by

outliers. For the variance the influence of outliers is less. Using the bootstrapped

residuals the estimated variance σ̂2
∆ij between a point pair Pij follows as:

σ̂2
∆ij =

n∑
k

(
εk∆ij

)2

n− 1
(4.5)

Which in theory corresponds to:

σ2
∆ij = σ2

i + σ2
j − 2Cij (4.6)

With σ2
i and σ2

j the variance at Pi and Pj , and Cij covariance between both. By

assuming the same variance for point Pi and Pj , equation (4.6) becomes σ2
∆ij = 2σ2

i/j−
2Cij , which reduces to the definition of a semi-variogram (Wackernagel , 2003):

γ (x) = C (0)− Cij (x) (4.7)

With C (0) the variance at point Pi and Pj , and with γ representing the dissimilarity of

the semi-variogram depending on the separation distance x between the two points. By

binning the experimental semi-variogram and by fitting a Gaussian covariance function

in combination with a nugget model for the uncorrelated terms, we were able to derive

the full variance-covariance matrix for the slow slip displacement. We validated the
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variance-covariance matrix for errors by using its inverse to weight a least squares

estimation of the point centroid for each bin, and ensuring that each estimated centroid

lay within the cloud of points used in the estimation.
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Abstract

Studies of the earthquake cycle benefit from long-term time-dependent slip modeling,

as it can be a powerful means to improve our understanding on the interaction of

earthquake cycle processes such as interseismic, coseismic, postseismic, and aseismic

slip. Observations from Interferometric Synthetic Aperture Radar (InSAR) allow us

to model slip at depth with a higher spatial resolution than when using GNSS alone.

While the temporal resolution of InSAR has typically been limited, the recent fleet

of SAR satellites including Sentinel-1, COSMO-SkyMED, and RADARSAT-2 permits

the use of InSAR for time-dependent slip modeling, at intervals of a few days when

combined. With the vast amount of SAR data available, simultaneous data inversion

of all epochs becomes challenging. Here, we expanded the original Network Inversion

Filter to include InSAR observations of surface displacements in addition to GNSS. In

the NIF framework, geodetic observations are limited to those of a given epoch, with a

stochastic model describing slip evolution over time. The combination of the Kalman

forward filtering and backward smoothing allows all geodetic observations to constrain

the complete observation period. Combining GNSS and InSAR allows modeling of

time-dependent slip at unprecedented spatial resolution. We validate the approach

with a simulation of the 2006 Guerrero slow slip event. We highlight the importance

101



102 Chapter 5: A Network Inversion Filter combining GNSS and InSAR

of including InSAR covariance information, and demonstrate that InSAR provides an

additional constraint on the spatial extent of the slow slip.

5.1 Introduction

For a better understanding of what causes and triggers earthquakes, it is important

to study all processes of the earthquake cycle. One aspect of this is the study of the

spatial and temporal inter-relation between the interseismic period, coseismic events

and related postseismic signals, as well as aseismic slip processes such as slow slip

events, which also change the surrounding stress field.

In the last few decades geodetic observations have proliferated with the development

of dense permanent GNSS networks such as the GPS Earth Observation NETwork

(GEONET) in Japan, the Southern California Integrated GPS Network (SCIGN), the

Pacific Northwest Geodetic Array (PANGA), and the Sumatran GPS Array (SuGAr),

and the acquisition of Interferometric Synthetic Aperture Radar (InSAR) data from a

large variety of satellites. Multiple studies have used the high temporal resolution of

continuous GNSS stations to model time-dependent processes including those of slow

slip events (e.g. Cervelli et al., 2002, Segall et al., 2006, Schmidt and Gao, 2010, Radiguet

et al., 2011, Bartlow et al., 2014), post-seismic slip (e.g. Hsu et al., 2006, Kositsky

and Avouac, 2010), afterslip (e.g. Miyazaki et al., 2004, Bedford et al., 2013), and

transient deformation (e.g. Mavrommatis et al., 2014). However, the spatial resolution

is dependent on the local GNSS network, and thus GNSS station distribution. In

contrast, Interferometric SAR (InSAR) has a much finer spatial resolution, on the

order of meters, but is limited to longer time-scales, with acquisitions every few days

at best, and is only sensitive to deformation in the direction of the radar line of sight.

Because of complementary advantages, GNSS and InSAR are often used in a joint

framework (e.g. Pritchard et al., 2002, Simons et al., 2002, Wright et al., 2004).

One way to retrieve the time-dependent history of fault slip is to invert all observa-

tions at all epochs simultaneously for slip at depth. This can become data and memory

intensive, especially when considering vast amounts of continuous GNSS and InSAR

data, the latter of which can be a few millions of observations for a single track and

epoch. Strategies exist to decrease the amount of InSAR data but might not be suf-

ficient, e.g. uniform grid resampling (e.g. Pritchard et al., 2002), quadtree resampling

based on the local variance (e.g. Jónsson et al., 2002), curvature-based resampling (e.g.

Simons et al., 2002), or using resolution-based resampling (Lohman and Simons, 2005).

Even so, with many acquisitions the data load can become untentable.

Alternatives to the single inversion approach exist, such as the Principal Component

Analysis-based Inversion Method (PCAIM) (Kositsky and Avouac, 2010), the Network

Inversion Filter (NIF) (Segall and Matthews, 1997), and its modification, the Extended

Network Inversion Filter (ENIF) (McGuire and Segall , 2003). PCAIM relies on a



§5.2 Network Inversion Filter 103

principal component analysis in the time domain to resolve the surface deformation

time-series. The NIF uses a stochastic description to describe how slip on the fault or

subduction zone interface evolves in time using a Kalman filter. This has the advantage

that it limits the observations in any single inversion step to those at the current epoch

only. Unlike the NIF and the ENIF, PCAIM does not require temporal smoothing to

be solved as hyperparameter, as the temporal smoothing follows from the number of

selected PCA components, which follows based on the statistical reduced chi-square

statistics. However, PCAIM is not capable of estimating specific terms such as the

GNSS local station motion or the GNSS reference frame motion. For all these methods,

the authors suggest the potential of including InSAR data as observations.

In our study we focus on the extension of the NIF (version by Bartlow et al. (2014)

which is an expansion of Segall and Matthews (1997)) to combine GNSS and InSAR

observations. The NIF implementation uses Kalman forward modeling and a backward

smoothing operation. After completing both operations, all geodetic observations will

provide a constraint on the slip estimates at all epochs. The strength of the NIF thus

lies in the complementary InSAR and GNSS datasets, where GNSS provides a high

temporal resolution and InSAR gives the high spatial resolution. We describe and im-

plement the methodology required to include InSAR in the NIF, combined with GNSS.

We then demonstrate the procedure on a synthetic simulation of the 2006 Guerrero

slow slip event.

5.2 Network Inversion Filter

To model time-dependent fault slip using Kalman filtering, the relationship between

fault slip, s, and geodetic observations of surface displacements, d, is combined with a

stochastic description of how slip evolves over time. The relationship between slip and

the displacement at the surface follows from elastostatic Green’s functions (e.g. Okada,

1985, Thomas, 1993). However, surface displacements as observed by geodetic tech-

niques will be contaminated by processes including non-tectonic deformation, such as

motions introduced by soil compaction. In addition, GNSS reference frame corrections,

InSAR orbit errors, and atmospheric delays introduce additional apparent deformation

that must be accounted for.

The observation equation at a time (epoch) tk relates the state vector of unknowns

Xk to the observations dk as:

dk = HkXk + εk, (5.1)

where Hk is the observation matrix, and the observation errors εk ∼ N (0,Rk), with

Rk the data covariance matrix. In addition to geodetic observations from e.g. GNSS

and InSAR, pseudo-observations can be included to enforce spatial smoothing, for
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example by minimizing the second derivative or Laplacian of the slip as min
∣∣∣∣∇2s

∣∣∣∣
∼ N

(
0, κ2I

)
, where κ is a scalar determining the amount of smoothing (Segall et al.,

2000).

The state transition equation describes how the state vector, Xk, at the current

epoch, tk, relates to the state, Xk+1, of the future at epoch, tk+1.

Xk+1 = Tk+1Xk + δk+1, with Ωk+1 = Tk+1ΩkT
T
k+1 +Qk+1 (5.2)

where Tk+1 is the transition matrix, δk+1 the process noise ∼ N
(
0,Qk+1

)
, and Ωk+1

the prediction variance-covariance matrix, all at epoch tk+1. Ωk+1 follows from error

propagation and combination of the process noise variance-covariance matrix Qk+1.

The definition depends on the formulation of the inverse problem. In section 5.2.3 we

elaborate on this for our application.

The definition of the transition matrix depends on the stochastic model. The Network

Inversion Filter (NIF) as proposed by Segall and Matthews (1997) is designed to detect

the departure of slip from steady state, which we define to be the interseismic rate. The

prior assumption is that the slip acceleration is close to zero, and can be modelled as

a white noise process, with scale parameter ω as ∼ N
(
0, ω2

)
. This allows cumulative

slip s since time t0 to be written as:

st = v (t− t0) +Wt, (5.3)

where v is the interseismic slip rate, and Wt the accumulated slip deviated from the

interseismic rate. The accumulated transient slip is the integral of a random walk

process Ẇ , or twice the integral of a white noise process with variance ω2. The scale

parameter ω constrains the temporal smoothing of the slip. Ẇ is the transient slip

rate. For a more complete description of the theoretical basis for the NIF see Segall

and Matthews (1997).

Below, we elaborate on the individual observation equations for GNSS (section

5.2.1) and InSAR (section 5.2.2), and describe how the state variables are assumed to

change in time. Finally (section 5.2.3), we combine both GNSS and InSAR, and derive

the full observation matrix Hk, the observation variance-covariance matrix Rk, the

state transition matrix Tk+1, and the process noise variance-covariance matrix Qk+1.

These four matrices completely define the linear system.

5.2.1 GNSS observation equation

The GNSS surface displacements, dGNSS, can be written as (e.g. Segall and Matthews,

1997):

dGNSS
(
x, t, tGNSS

0

)
= G (x)

[
st − stGNSS

0

]
+ L (x, t) + FF (t) + εGNSS, (5.4)
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where x describes the station location, tGNSS
0 is the start of the GNSS time-series, G

are the Green’s coefficients relating slip to surface displacements, and L are the local

GNSS benchmark motions for each component (ENU) and every station, modeled as

a Brownian random walk with scale τ as L = τ
∫ t

0 dw (Langbein and Johnson, 1997).

Note, the benchmark motions represent spatially-incoherent GNSS network displace-

ments and therefore should not include displacements related to Gs. FF is the GNSS

reference frame error, where F is a linearized Helmert transformation (e.g. Miyazaki

et al., 2003, Mavrommatis et al., 2014). F is a vector containing the coefficients of the

Helmert transformation (translation, rotation, and scale factors for each component).

We assume the latter to be an identity matrix, and let the ζ2 control the variance.

εGNSS are the GNSS observation errors ∼ N
(
0,ΣGNSS (t)

)
, where ΣGNSS (t) is the

GNSS observation variance-covariance matrix at time t.

5.2.2 InSAR observation equation

The InSAR surface displacements, ∆dInSAR, are the difference in the radar line of sight

between two acquisition times, tInSAR
0 and t, and for which the observations are with

respect to an arbitrary reference area or pixel (e.g. Hooper et al., 2012, Bekaert et al.,

2015):

∆dInSAR
(
x, t, tInSAR

0

)
= dInSAR (x, t)− dInSAR

(
x, tInSAR

0

)
(5.5)

= G (x)
[
st − stInSAR

0

]
+ PP (t) + εInSAR,

where tInSAR
0 refers to the acquisition time of the first SAR image. A planar correction

PP = [x1,x2,1] [α, β, γ]> is included to account for the long wavelength orbit errors

in the interferogram between tInSAR
0 and t; x1 and x2 are the coordinates of the InSAR

observations in a local reference frame. The variation of the planar coefficients in time is

assumed to be uncorrelated between interferograms. εInSAR are the InSAR observation

errors ∼ N
(
0,ΣInSAR (t)

)
, where ΣInSAR (t) is the interferogram observation variance-

covariance matrix at time t.

5.2.3 Joint GNSS and InSAR observation and state transition equa-

tion

For the derivation of the full observation matrix Hk, let us assume that the number

of GNSS stations, Ns, does not vary in time. Likewise for the number of InSAR

pixels, Np, which is consistent over NI interferograms. For simplicity we limit the

description below to one GNSS network and InSAR track, but expand Hk to include

multiple InSAR tracks in Appendix 5.6. Combining the GNSS observations, equation

(5.4), with those of InSAR, equation (5.6), in the observation equation (5.1), including
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Laplacian smoothing, at time tk results in:
dGNSS

∆dInSAR

0

0

0


tk

= (5.6)


GGNSS

(
tk − tGNSS

0

)
GGNSS 0 I F 0 0

GInSARtk GInSAR 0 0 0 P −GInSAR

∇2 0 0 0 0 0 0

0 ∇2 0 0 0 0 0

0 0 ∇2 0 0 0 0


tk︸ ︷︷ ︸

Hk



v

W

Ẇ

L
F
P

sInSAR
0


tk

+ εk,

where ∆dInSAR is a (Np × 1) vector of InSAR line-of-sight displacements, and dGNSS a

(3Ns × 1) vector containing the three component GNSS displacements since t0. Here,

we choose to minimize the Laplacian of the interseismic slip rate, slip, and transient slip

rate separately. Altenative options can be included, such the slip (s = vt+ W) and/or

slip rate (ṡ = v+Ẇ). Assuming that the fault is modeled using Nd dislocation patches,

the state vector comprises of an interseismic rate vector v, an integrated random walk

vector W (cumulative slip deviation from the interseismic), and a random walk vector

Ẇ (transient slip rate) – all of length Nd. Additional terms are defined in equations

(5.4) and (5.6). The length of the state vector does not change and is identical in the

state observation and state transition equations. As the slip rate does not have an

influence on the observations, a column of zeros is included in the observation matrix.

We assume that the InSAR network is defined or inverted with respect to the first

acquisition at time tInSAR
0 . By doing so, we are able to estimate the reference slip

with respect to tInSAR
0 . In cases of isolated networks in time on a single track, the

sub-networks can be regarded as “new” tracks (see Appendix 5.6 for how to include

multiple InSAR datasets). Initially the reference slip is assumed to be zero or a prior

slip is assumed, which is updated to sInSAR
0 = vtk + Wk at tk = tInSAR

0 . We include,

the reference slip at the time of the master acquisition by including a set of pseudo

observations in the observation equation as 0 = vtk + Wk − sInSAR
0 . Note, this is not

shown in equation (5.7), and only applies at tk = tInSAR
0 .

The observation variance-covariance matrix follows from the combination of GNSS,

InSAR, and the weight of the Laplacian smoothing, κ2
i , assuming all to be uncorrelated
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with each other, as:

Rk =


σ2ΣGNSS

k 0 0 0 0

0 σ2ΣInSAR
k 0 0 0

0 0 κ2
1I 0 0

0 0 0 κ2
2I 0

0 0 0 0 κ2
3I

 , (5.7)

where an additional scale parameter σ of the observation variance-covariance matrices

is included to account for uncertainty in the model. For simplicity, we assume the

weight of the Laplacian smoothing to be the same for the interseismic rate, slip, and

slip rate; thus κ=κ1=κ2=κ3.

In the state transition equation (5.2), the interseismic slip rate is by definition con-

stant in time and does not, therefore, change from epoch tk to tk+1. The transient

slip (integrated random walk) at the new epoch, Wk+1, follows from that of the pre-

vious epoch combined with the integration of the random walk between both epochs

as Wk+1 = Wk + (tk+1 − tk) Ẇk. As indicated before, the GNSS benchmark motion

follows a random walk. The GNSS reference frame correction is assumed to be indepen-

dent from epoch to epoch (Segall and Matthews, 1997), i.e. white noise ∼ N
(
0, ζ2IF

)
,

where ζ is a scale parameter of the reference frame variance-covariance matrix IF .

Similarly, the InSAR orbit (plane) is assumed to be white noise ∼ N
(
0, %2IP

)
. The

full state transition equation can be written as:

v

W

Ẇ

L
F
P

sInSAR
0


tk+1︸ ︷︷ ︸

Xk+1

=



I 0 0 0 0 0 0

0 I I (tk+1 − tk) 0 0 0 0

0 0 I 0 0 0 0

0 0 0 IL 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 I


tk+1︸ ︷︷ ︸

Tk+1



v

W

Ẇ

L
F
P

sInSAR
0


tk︸ ︷︷ ︸

Xk

+δk+1,

(5.8)

with 0 a zeros matrix, I an identity matrix, both of size (Nd ×Nd), and IL an identity

matrix of size (3Ns × 3Ns).

For the process noise variance-covariance matrix, Qtk , we follow e.g. Segall and

Matthews (1997), Segall et al. (2000), for the interseismic slip rate, integrated random

walk, random walk, GNSS benchmark motion, and GNSS reference frame errors. We

apply the same methodology for the InSAR orbit (plane) with error distribution ∼
N
(
0, %2IP

)
. Like the interseismic slip rate, the reference slip does not change in time.
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The full process noise variance-covariance matrix Qtk is therefore:

Qtk =



0 0 0 0 0 0 0

0 ω2 ∆t3

3 I ω2 ∆t2

2 I 0 0 0 0

0 ω2 ∆t2

2 I ω2∆tI 0 0 0 0

0 0 0 τ2∆tIL 0 0 0

0 0 0 0 ζ2IF 0 0

0 0 0 0 0 %2IP 0

0 0 0 0 0 0 0


, (5.9)

with ∆t = (tk+1 − tk). Like before, 0 and I are the zero and identity matrices. The size

of IP is (3× 3), while for IF the size depends on the parameters included; for example

in case of translation, rotation, and scaling it has size (7× 7).

5.2.4 Kalman filter and backward smoothing procedure

The full description of the Kalman forward filtering and backward smoothing approach

is contained in Segall and Matthews (1997). During the forward filtering step, the

observations up to (and including) that of the current epoch, tk, are used to predict the

state of the next epoch, X̂k+1|k. We use the notation X̂k+1|k, which reads X̂ at k + 1

given k, and is the state at epoch k + 1 given the data up to epoch k. The prediction

is described by the state transtion equation (5.2):

X̂k+1|k = Tk+1X̂k|k (5.10)

Ωk+1|k = Tk+1Ωk|kT
T
k+1 +Qk+1.

This is followed by an update to the estimated state, by including the actual observa-

tions of the predicted epoch as:

X̂k+1|k+1 = X̂k+1|k + Kk+1

(
dk+1 −Hk+1X̂k+1|k

)
(5.11)

Ωk+1|k+1 = Ωk+1|k −Kk+1Hk+1Ωk+1|k.

The notation X̂k+1|k+1, now reads X̂ at epoch k + 1 given the data up to epoch k + 1.

Kk+1 is the Kalman filter gain at epoch tk+1, defined as:

Kk+1 = Ωk+1|kH
T
k+1

(
Rk+1 + Hk+1Ωk+1|kH

T
k+1

)−1
. (5.12)

The prediction and update procedure is applied in sequence to the whole time-series

until the observations of the last epoch, N , are updated, yielding X̂N |N . At this stage,

the estimated state is conditional on the data up to that epoch. After performing the

backward smoothing operation, an identical procedure to Kalman filtering but with

time reversed (i.e. starting from the last epoch), all geodetic observations are used in
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constraining the state vector at all epochs, yielding X̂k|N for all k.

To initiate the Kalman filter, an apriori estimate of state vector given no data ,X̂1|0,

is assumed, which describes the state at the initial epoch without any constraint from

the data. The corresponding uncertainties are specified in Ω1|0. Larger uncertainty can

be attributed when good apriori knowledge of the state vector is lacking.

5.2.5 Comparing the NIF with the earlier implementation

We modified the version of the NIF by Bartlow et al. (2014), which works with GNSS

data only, to include also InSAR data. While the main changes are related to the

InSAR data component, we also include the interseismic rate directly into the inverse

problem, whereas, Bartlow et al. (2014) corrects the GNSS observations for the inter-

seismic slip rate prior to ingestion in the NIF. To assess the impact of our modifications,

we compared the results of our NIF version and that of Bartlow et al. (2014) when in-

verting GNSS observations of the 2011 Cascadia Slow Slip Event (SSE). This dataset is

distributed as test-data for the earlier implementation of the NIF. Overall, we find that

our implementation does not significantly alter the results obtained from the previous

implementation; average transient slip differences are <1 cm, and slip rate differences

are negligible (∼0 cm/day).

5.3 Synthetic simulation of the Guerrero SSE

Our test dataset reflects the tectonic setting in southern Mexico (Figure 5.1), with a

simulation of the 2006 Guerrero SSE. Our observations span a duration of 1.8 years,

from June 2005 to April 2007, and include an 8 month inter-SSE period, prior to the

start of the 2006 SSE in February 2006 (1 year duration). We simulate the SSE, guided

by the time-dependent GNSS modeling results of Radiguet et al. (2011), who solved for

the slow slip source time function. We adopt a similar source time parameterization

scheme (Liu et al., 2006), where the location of slow slip initialization and the 0.8

km/day slip propagation velocity is from the best fit GNSS model by Radiguet et al.

(2011). For simplicity we fix the slow slip function rise time, which is estimated to vary

between 160 and 200 days (Radiguet et al., 2011), to be 183 days. For the maximum

accumulated slip over the duration of the 2006 SSE, we use the results from Bekaert

et al. (2015), which are similar to other studies of the same event (e.g. Vergnolle et al.,

2010, Radiguet et al., 2011, Cavalié et al., 2013). A full mathematical description

of our time-dependent slow slip model is contained in Appendix 5.6. We define the

interseismic loading using a backslip formulation (Savage, 1983), where the slip deficit

follows from the multiplication of the time with the MORVEL plate convergence rate of

6.1 cm/year (DeMets et al., 2010) and a simulated inter-SSE coupling. The latter only

varies with depth; we assume the fault is freely slipping at shallow depths (coupling =

0), fully locked in the seismogenic zone between ∼15-25 km (coupling = 1), and that
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Figure 5.1: Overview map of the Guerrero region, where the seven magenta triangles indicate
the location of the continuous GNSS sites used in our simulation. Black triangles show the
other GNSS stations of the network that were not considered. The red polygon shows the
extent of the InSAR track. The gray arrow indicates the MORVEL relative plate motion of
the Cocos and the North America Plate (DeMets et al., 2010), with depth contours of the
subducting slab indicated every 20 km (Pardo and Suárez , 1995, Melgar and Pérez-Campos,
2011, Pérez-Campos and Clayton, 2014).

there is a smooth transition region from 25-50 km depth, below which the fault is freely

slipping.

We use the time-dependent cumulative simulated slip (interseismic and slow slip)

on the subduction interface in combination with Green’s functions from triangular dis-

locations (Thomas, 1993), to infer the displacements over time at the surface. We use

the real GNSS station distribution that was installed in 2006, but limit ourselves to

seven stations, with six in the far field (magenta markers in Figure 5.1). We do this

to show the impact of including InSAR more clearly in a typical region with sparse

GNSS coverage. GNSS observations are simulated every 3 days, with random white

noise of 1 mm uncertainty for the horizontal displacements, and 2 mm for the vertical

displacements. A time-series with the north, east, and up components is shown for

selected GNSS stations in Figure 5.2(a). The location of our simulated InSAR track

corresponds to the location of the descending Envisat track 255 (red polygon in Figure

5.1), used in earlier slow slip studies over the region (e.g. Bekaert et al., 2015, Cavalié

et al., 2013). In time, we fix our master SAR acquisition to be on 1 June 2005, with a

simulated SAR acquisition every 2 months. We generate 10 interferograms, and include

orbit errors by simulating the addition of a bilinear plane. We incorporate the effects of
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residual atmosphere delays by including spatially-correlated noise according to Lohman

and Simons (2005), which varies in magnitude and correlation length for each interfero-

gram. Figure 5.2(b) shows the individually simulated components of the interferogram,

and the interferograms as input to the NIF. Our simulated interferograms have similar

signal magnitude as processed Envisat data over the region (Bekaert et al., 2015).

5.4 Results

We compare the NIF results when inverting for the GNSS observations only, and when

jointly inverting GNSS and InSAR observations. InSAR covariance is often neglected in

slip inversion studies. This should be avoided, as spatially-correlated atmospheric noise

will be treated as if it were signal. To demonstrate the impact on the estimated slip,

we also include a comparison between results when the InSAR covariance is included in

the inversion, and when it is neglected. We do not change the initialization of the state

vector parameters between the different cases. At t = 0, we assume the interseismic slip

rate to be 0 cm/yr with a 6 cm/year uncertainty, the accumulative slip to be 0 cm with

a 1 cm uncertainty, and the transient slip rate to be 0 cm/day with an uncertainty of

10−8 cm/day. These parameters are chosen assuming that the observations start in an

inter-SSE period. We choose the reference frame and local station motion uncertainty

such that local variations are allowed over time, but no clear tectonic leakage can

be observed in time. This approach is needed for two main reasons: (1) the SSE is

observed at only one GNSS station and therefore looks like an incoherent motion, while

in reality it is a tectonic signal; (2) all GNSS stations are located on one side of the

fault (hanging wall) and therefore the interseismic slip rate is quasi-uniform and will

be partly mapped into the GNSS frame motion. The spatial and temporal smoothing

hyperparameters vary between the different cases, and is selected though a maximum

likelihood grid search, as proposed in the original NIF (Segall and Matthews, 1997)

and applied in later studies (e.g. Segall et al., 2000, Bartlow et al., 2011, 2014). As

all GNSS observations are in the reference frame of the hanging wall, we are solving

for the interseismic loading in a backslip framework (Savage, 1983). The transient

slip has the opposite sense to the interseismic slip deficit. To avoid leakage of the

interseismic slip rate into the transient slip rate, and vice-versa we enforce a negativity

constraint on the interseismic slip rate consistent with the backslip formulation, while

enforcing a positivity constraint on the transient slip rate. Identical to the approach

by Bartlow et al. (2011), we use the PDCO (Primal-Dual interior method for Convex

Objectives) package (Saunders, 2015) to optimize the state vector after imposing the

sign constraint. Due to computation intensity, we do not run the PDCO optimization

for the state vector as part of our hyperparameter grid search. However, after the

Maximum Likelihood Estimation (MLE) of the hyperparameters, we compute the MLE

slip solution including the PDCO optimization. Below, we report on the results from
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Figure 5.3: Likelihood surface (-2L) as function of the smoothing hyperparameters in space
(κ2/σ2) and in time (ω2/σ2), obtained from a grid search. (a) In case of inverting for GNSS
observations only, (b) when combining GNSS with InSAR while neglecting InSAR covariance,
and (c) when combining GNSS and InSAR including full variance-covariance information. Black
diamond markers represent the selected maximum likelihood solution, for which the inter-SSE
locking rate is shown in Figure 5.4(b), the cumulative slip in Figure 5.5(b), and the slip rate
history in Figure 5.6. The red circle marker in (b) and (c) corresponds to the maximum
likelihood solution when using only GNSS (a).

the maximum likelihood solution for the three defined cases.

5.4.1 GNSS only

Figure 5.3(a) shows the results of the hyperparameter grid search, with a maximum

likelihood value for spatial smoothing hyperparameter of κ2/σ2 = 24·10−8, temporal

smoothing hyperparameter of ω2/σ2 = 0.24, and estimated data variance-covariance

scaling of σ̂ = 0.97. As expected, the latter is close to 1, indicating that the data

uncertainty is well described by the inverse problem. The results of the maximum

likelihood solution after forward filtering and backward smoothing are shown in Figure

5.4 for the inter-SSE locking rate, Figure 5.5 for the cumulative estimated slow slip,

and Figure 5.6 for the transient slip rate history.

The coastal GNSS stations are located approximately above the locked part of the

subduction interface, Figure 5.4(a), which is loaded in our simulation at a rate of ∼6

cm/year. In our estimation we are capable of retrieving this same peak magnitude of 6

cm/year. We find that the locking rate on the fault is well estimated for patches close

to (∼20 km) the coastal GNSS sites, with a residual that falls within the ∼1.5 cm/year

estimated uncertainty (Figure 5.4(c)). While a similar strike-parallel pattern can be

observed, we find the peak distribution to be located ∼10 km shallower than that in

the input simulation. We observe some smearing further down-dip, with an average

residual of ∼2.5 cm/year, which is likely due to the imposed smoothing constraint,

and to compensate for the over-estimation near the trench. The poor resolution is not

suprising given the very sparse GNSS coverage.

Our estimated cumulative slip, Figure 5.5(b), is a smeared version of the original

simulation, Figure 5.5(a). This is to be expected, as the GNSS network is not well
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Figure 5.4: Comparison of the inter-SSE locking rate. (a) The simulated rate, (b) the Maxi-
mum Likelihood solutions, and the residuals with respect to the simulated value. (c) Estimated
uncertainties. We show the Maximum Likelihood solution when using GNSS alone, and the joint
inversion with InSAR, while neglecting and accounting for the InSAR covariance information.
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Figure 5.5: The same as Figure 5.4 but for the cumulative transient slip between January
2005 and April 2007.

distributed in order to resolve for the peak slow slip location, with only the ACAP

station clearly capturing the SSE surface displacements. We find the peak slip to be

under-estimated by ∼7 cm, with an average estimated uncertainty of ∼2 cm (Figure

5.5(c)). We also find some up-dip slip residuals, introduced by the mis-estimation of

the inter-SSE loading. The latter also causes the slip uncertainty to grow over time.

We find the estimated slip rate (Figure 5.6 (second row)) to correlate in space and

time with that of the simulation (Figure 5.6 (top row)). As for the cumulative slip, we

find the estimated slip rate to be smoother than that of the simulation. On average,

an under-estimation of ∼0.06 cm/day is observed during the transient period (Figure

5.7 (top row)).

Original observations and those estimated are shown in the Supplemental material

(Figure D.1). The modeled surface displacements fit the observations well, with a mean

residual of around 0 mm, and an accuracy similar to that of the simulated observations:

∼1 mm for horizontal and ∼2 mm for the vertical components.

5.4.2 GNSS and InSAR (neglecting covariance)

Figure 5.3(b) shows the results of the grid search for the hyperparameters. Our esti-

mated maximum likelihood value for the temporal smoothing hyperparameter (ω2/σ2

= 0.8) is double that of the GNSS case. Compared to before, a much rougher spatial
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solution is preferred (κ2/σ2 = 5·10−6). We find a lower value for the estimated data

variance-covariance scaling, σ̂= 0.89, which implies that the model overfits the data.

As InSAR covariance information is not included, each of the ∼103 InSAR obser-

vations are treated as if they are independent observations. A much rougher solution

is therefore found for the maximum likelihood solution. In reality much of this rough-

ness is fitting the spatially-correlated InSAR noise from the residual atmosphere. This

results in apparent noise signals that propagate into the slip model. The estimated

inter-SSE loading rate (Figure 5.4(b)) shows large residuals underneath the InSAR

track, especially towards the down-dip extent of the subduction interface (up to 8

cm/year).

The cumulative transient peak slip is over-estimated by ∼3 cm, Figure 5.5(b). Also

large errors relative to the true input slip of on average ∼12 cm can be observed

at other locations, especially down-dip of the slow slip region. Because the solution is

rougher than the GNSS only solution, we also find larger uncertainties for the estimated

cumulative slip. The smallest uncertainty of ∼4.5 cm can be found underneath the

InSAR track and GNSS station locations, with larger values of on average ∼8 cm

elsewhere.

The slip rate history (Figure 5.6 (third row)) shows much more temporal variation

over the whole time-period, even when there is no SSE taking place. These fluctuations

reach an average magnitude of ∼0.07 cm/day.

We find the GNSS residuals are within the uncertainty bounds of the original simu-

lated observations (mean residual around zero mm), see Supplemental material Figure

D.2(a). For the InSAR data, we find an average Root Mean Squared Error (RMSE)

of ∼3 rad (or ∼1.3 cm). As we simulated the original tectonic signal and the InSAR

orbit error (phase ramp), a direct comparison can be made with the NIF estimates.

Supplemental material Figure D.2(b) gives the simulated tectonic signal and the misfit

of the estimation. We find a mean RMSE of ∼0.57 rad (or ∼0.25 cm). The last three

interferograms (Oct 2006, Nov 2006, and Feb 2007) show the largest residuals, with

an average of ∼1 rad (or ∼0.45 cm). Over time, the spatial pattern of the residuals

is enhanced; illustrating that mis-estimation is integrated over time. We find that the

orbital planes are well estimated with small residuals, average RMSE of ∼0.7 rad (or

0.3 cm); see Supplemental material Figure D.2(b).

5.4.3 GNSS and InSAR (including covariance)

By including the full InSAR variance-covariance information, we find that the combined

GNSS and InSAR solution is more similar to the GNSS only case. This is expected as

the InSAR observations add more information about the spatial extent of the slow slip

surface observations. However, the InSAR contribution is down-weighted and provides

only a lower-level constraint (e.g. Bekaert et al., 2015), as the simulated slow slip signal

has a correlation length similar to that of the simulated residual atmosphere (i.e ∼2-
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50 km). By including the covariance, we find the estimated data variance-covariance

scaling is close to 1, σ̂= 0.99. We also find similar hyperparameters to the GNSS only

case.

Overall an improvement can be observed when jointly inverting GNSS and InSAR,

compared to the GNSS only case, while accounting properly for the InSAR covariance

information. Apparent noise signals, introduced in the slip rate history when neglecting

the covariance information, are now suppressed (Figure 5.6(b)). We find a significant

improvement in the location and estimation of the peak cumulative transient slip, misfit

of <1 cm compared to ∼7 cm for the GNSS-only case, and with a similar uncertainty

of ∼2 cm. The inter-SSE loading is slightly different to the GNSS case. We find a

residual rate of up to 4.5 cm/year underneath the InSAR track, down-dip of the slow

slip region. When neglecting InSAR covariance, this residual was significantly larger

(up to ∼8 cm/year).

As before, we find small residuals for the GNSS and InSAR (Supplemental material

Figure D.3). GNSS residuals are within the uncertainty bounds of the simulated data.

For the InSAR, we find the estimated tectonic signal and orbital errors with similar

magnitudes as when neglecting the InSAR covariance. The misfit between the tectonic

simulation and the estimation indicates under-estimation of the slow slip signal.

5.5 Discussion

Our NIF results are a reasonable approximation of the simulated tectonic slow slip

signal. We find that the InSAR observations provide an additional constraint on the

slow slip signal at the fault interface, which is under-estimated when inverting sparsely

distrbuted GNSS observations only.

Our NIF implementation is limited to a single spatial smoothing hyperparameter.

We believe it will be more appropriate to include a separate smoothing hyperparam-

eter for the inter-SSE locking rate, and also smooth differently in the dip and strike

direction. For example, at subduction zones the interseismic slip rate is expected to

vary with depth with a shorter wavelength than in the along strike direction. Including

an additional hyperparameter in our current NIF implementation comes at the cost of

an extra dimension to the grid search.

With increasing step size, and with more hyperparameters to solve for, the grid

search becomes a time consuming operation. An alternative approach to the grid search

is included in the Extended NIF by McGuire and Segall (2003), where the hyperparam-

eters are included directly in the state vector. As in our study, the hyperparameters

remain constant over time. Assuming constant hyperparameters can form a limitation

in a complex time-series with a mixture of interseismic, coseismic, postseismic, aseismic,

and slow slip processes. In particular, the rapid displacement change during a short-

term SSE might be suppressed when the smoothing hyperparameters are solved toward
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interseismic slip rate. Developments by Fukuda et al. (2004, 2008) allow for a time-

varying spatial and temporal smoothing parameter. This is achieved by including the

hyperparameters as stochastic variables using the Monte Carlo Mixture Kalman Filter

or the hierarchical Bayesian state space approach. None of the above NIF modifications

currently include InSAR capability. We believe that our presented methodology can

be adopted straightforwardly into the other methods.

In our simulation, significant spatially-correlated atmospheric noise (simulated vari-

ance between 1-3 cm2, and correlation lengths up to 50 km) is added. InSAR covariance

information is often neglected in tectonic slip inversion studies. This should be avoided,

as spatially correlated noise will be treated as signal. This becomes of special impor-

tance in studies where the tectonic signals have a similar correlation length as the noise,

as is the case for our simulation here. Recently, different efforts and promising progress

has been made on the quantification and construction of InSAR variance-covariance

matrices (e.g. González and Fernández , 2011, Agram and Simons, 2015, Fattahi , 2015,

Bekaert et al., 2015). Future modeling studies should aim to include InSAR covariance

information as part of regular inversion procedures.

The quality of the InSAR observations are expected to improve with more regular

SAR acquisitions. Our simulation included a SAR acquisition every 60 days. With

Sentinel 1 acquisitions are currently every 12 days, which will further decrease to every

6 days once Sentinel 1B is launched. With a swath width of ∼250 km and a spatial

resolution of 5x20 m, large areas can be covered at high resolution and with short

repeat times. Having a larger amount of independent InSAR observations will lead

to a further reduction in the influence of atmospheric noise. Being able to ingest this

data for time-dependent modeling in the NIF could provide invaluable information in a

variety of applications, such as volcano inflation and deflation, and fault creep, as well

as coseismic and postseismic events.

5.6 Conclusions

Vast amounts of geodetic data have been acquired over the last two decades. The

acquisition rate will continue to increase exponentially with further expansion of GNSS

networks and the acquisition of InSAR data from Sentinel 1, NISAR, and ALOS 2.

Simultaneous inversion of all geodetic data to solve for the time-dependent history

of fault slip is a computationally-intensive process, for which an alternative is the

Network Inversion Filter. Different versions exist of this method, but to date, none of

these include Interferometric Synthetic Aperture (InSAR) observations. In this study,

we have provided and applied the Network Inversion Filter methodology to include

InSAR. To validate the approach we simulated the 2006 Guerrero SSE for a subset of

the existing GNSS sites (mainly far-field) and for the descending Envisat track 255. We

find that GNSS can retrieve the cumulative SSE at approximately the same location as
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the input simulation, but with a smaller peak slip, due to spatial smoothing. Inclusion

of high resolution InSAR further improves the recovery of the transient slip. InSAR

covariance is often neglected in slip inversion studies. This should be avoided, as

spatially-correlated atmospheric noise will be treated as if it was signal, introducing

apparent slip signals at depth. We compare the joint GNSS and InSAR inversion

while neglecting and including InSAR covariance information. When including InSAR

covariance, we find a solution that has similar smoothing hyperparameters to that of

GNSS. We find that InSAR provides an improved constraint with its high-resolution

observations above the slow slip region. Our study demonstrates the use of InSAR data

to retrieve time-dependent slip, which can provide invaluable information for a wide

variety of applications.
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Symbols

Subscript
InSAR Interferometric Synthetic Aperture Radar
GNSS Global Navigation Satellite System
k + 1 | k Epoch k + 1 given all data up to epoch k
k Epoch k given all data up to epoch k

Symbols
α, β, γ Coefficients of the InSAR orbit error (plane)
δ Residual of state vector in the state transistion equa-

tion
εGNSS, εInSAR GNSS and InSAR observation errors
F GNSS reference frame coefficients (e.g. translation,

rotation, and or scaling)
L Local GNSS benchmark motions for each component

(ENU)

P InSAR orbit (plane) coefficients ([α, β, γ]>)
∇2 Laplacian operator
Ω State variance-covariance matrix
I Identity matrix
O Zero matrix
R, Σ Total and individual dataset observation variance-

covariance matrices
Q Process noise variance-covariance matrix
∆dInSAR InSAR radar line-of-sight surface displacements
∆t Time difference between epochs

Ẇ slip rate or Random walk ∼ N
(
0, ω2

)
κ Spatial smoothing parameter
d Observations of surface displacements
F Linearized Helmert transformation matrix of GNSS

reference frame
G Greens coefficients
H Observation matrix
K Kalman filter gain
P InSAR orbit (plane) matrix ([x1,x2,1])
s Fault slip
sInSAR

0 Reference slip at the InSAR reference time
T State transition matrix
X State vector
N Normal distribution
ω Random walk scale parameter controlling temporal

smoothing
σ Scaling parameter of the data observation variance-

covariance matrix
τ Scale parameter of the brownian random walk of the

local GNSS benchmark motion



§5.6 Conclusions 123

ζ Scale parameter of the GNSS reference frame variance-
covariance matrix

Ns, Np, NI Number of GNSS stations, InSAR pixels on a single track,
and InSAR interferograms on a single track

tGNSS
0 , tINSAR

0 GNSS and InSAR reference time
t Time
v Interseismic slip rate
W Integrated random walk or Cumulative slip deviated from

the steady-state interseismic slip rate
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Appendix Time-dependent slow slip simulation

Following Liu et al. (2006), we define the source time function of transient slip-rate as:

v =

Asin
(

πt
tSSE

)
0 ≤ t < tSSE/2,

A
2

[
1 + cos

(
2πt
tSSE
− π

)]
tSSE/2 ≤ t < tSSE

(5.13)

where t is time, tSSE the rise time and duration of the slow slip event, and A the

amplitude of the source function. We assume the acceleration and deceleration rise

time have equal duration. The time-evolution of slip, s, follows from the integration of

transient slip-rate, where we define the integration constants and A such s=0 at t=0,

and s=sSSE
0 at t=tSSE, leading to:

s =


4sSSE0
π+4

[
1− cos

(
πt
tSSE

)]
0 ≤ t < tSSE/2,

sSSE0
π+4

[
2πt
tSSE

+ 4− π − sin
(

2πt
tSSE

)]
tSSE/2 ≤ t < tSSE

(5.14)

An example is contained in Supplemental Figure D.4.
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Chapter 6

Discussion and conclusions

6.1 Discussion

The Mexican SSEs compared to others

An overview of the world’s subduction zone SSEs is given in Figure 6.1. In total there

are six known locations including: Mexico, Cascadia, Japan, Costa Rica, Alaska, and

New Zealand. Between all these, the Mexican SSEs compare best with the long-term

SSEs in Japan. They have a similar peak slip magnitude, duration, and recurrence

interval. For both regions, SSEs are located at a similar depth, but the Mexican SSEs

extend ∼10 km deeper and also enter into the seismogenic zone. In both cases, tremor

is concentrated towards the down-dip extent of slow slip region. Below, I provide a

summary for the characteristic SSE parameters for the six known SSE subduction zone

locations:

• Mexico has large and small magnitude SSEs. The larger SSEs repeat approxi-

mately every 3-5 years, have a duration of up to a year, and reach a magnitude

of up to Mw 7-7.4 (e.g. Vergnolle et al., 2010, Larson et al., 2004). These SSEs

have been shown to enter into the seismogenic zone, and reach depths of up to

40 km. On average, they have a peak slip value of ∼15-20 cm, located at a depth

of ∼35 km (e.g. Radiguet et al., 2012, Bekaert et al., 2015a). The smaller SSEs,

only discovered recently by Frank et al. (2015), repeat every 3 months and are

observed just down-dip of the larger SSEs. They have a duration of ∼1 month,

reach a peak slip of ∼6 mm, and are on average equivalent to Mw ∼6.4 (Frank

et al., 2015). Non-volcanic tremor in Mexico is located on the down-dip edge of

the small magnitude SSEs.

• Japan has short and long-term SSEs. Its long-term events occur in the Bungo

Channel (southwest of Shikoku) at depths of 20-30 km, with duration of a few

months up to 2 years (e.g. Hirose et al., 1999, Yoshioka et al., 2015), and a

recurrence interval of 5 to 7 years (Kobayashi and Yamamoto, 2011). Peak cu-
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Japan     Long-term: ~20 cm over few months - 2 years   (~7 Mw  every 5-7 years)
     Short-term: ~3-4 cm over few days - few weeks (~5-7 Mw  every ~6 months)

Mexico  Long-term: ~15-20 cm over year   (~7-7.4 Mw  every ~4-6 years)
     Short-term: ~6mm over a month (~6.4 Mw  every ~3 months)

Cascadia     ~1-4 cm over 1-2 months   (~6.5 Mw every year)

            Costa Rica  
 ~12 cm over ~3 months   (~6.6-7.2 Mw  every 21 months)

Legend
Alaska  ~10-15 cm over 1-3 year   (~7-7.5 Mw )

New Zealand  
Deep: ~15 cm over few months - year   (~6.5-7 Mw  every 2-4 years)
             Shallow : ~4-7 cm over 1-3 weeks (~6.6 Mw  every ~1-2 years)

Figure 6.1: Map overview of slow slip solutions at subduction zones, modified from Beroza
and Ide (2011). Individual panels show the location of the SSEs (green polygons), with respect
to the subduction zone geometry (cyan depth contours), non-volcanic tremor (orange polygon),
and past co-seismic rupture areas (purple polygons). The title contains characteristic SSE
information for each region (see text for references).
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mulative slip reaches 5 to 20 cm, and give a magnitude of Mw ∼7. Short-term

SSEs with a duration of a few days to a week have been detected down-dip of

the long-term SSEs, reaching depths between 10-60 km (e.g. Hirose and Obara,

2005, Nishimura, 2014). The recurrence is shorter with an interval of up to half

a year. On average the short-term SSEs reach equivalent earthquake magnitudes

of Mw 5-7, with slip magnitudes up to 4 cm. Tremor is observed to coincide with

these short-term SSEs, and is located on the down-dip edge of the long-term SSEs

(Nishimura, 2014).

• The Cascadia SSEs span a wide range of durations and recurrence intervals (e.g.

Brudzinski and Allen, 2007). On average SSEs have a duration up to 40 days,

and repeat each 10-14 months. A shorter recurrence interval is observed between

41◦N-46◦N (e.g. Schmalzle et al., 2014). SSE slip magnitudes are small, with on

average 1-4 cm slip, equivalent to on average Mw ∼6.2-6.8 (e.g. Dragert et al.,

2004, Schwartz and Rokosky , 2007). SSEs have been collocated in space and time

with tremor (e.g. Bartlow et al., 2011).

• New Zealand has deep and shallow SSEs. The deep SSEs are located at the

down-dip extent of the locked region at 25-60 km depth. They have a recurrence

interval of 2-4 years, and a duration varying from a couple of months to a year

(e.g. Wallace and Beavan, 2006). With slip magnitudes of up to 10-20 cm, the

deep SSEs are approximately equivalent to a Mw 6.5-7 earthquake. The shallow

SSEs are located at 15 km depth, have a duration of 1-3 weeks, and a shorter 1-2

years repeat interval. The slip magnitude ranges from 4-7 cm, corresponding to

an equivalent Mw 6.5-6.8 (e.g. Bartlow et al., 2014).

• So far 3 SSEs have been observed in Alaska (Ohta et al., 2006, Wei et al., 2012,

Fu and Freymueller , 2013). The duration of the SSEs varies between 1 and 3

years, with no regular repeat interval. The last two SSEs are offset by 8 and 9

years from the first SSE. Slip magnitudes of 10-18 cm have been modelled, with

an earthquake like magnitude of Mw ∼7-7.5.

• Costa Rica has large SSEs, which repeat approximately every ∼21 months, and

small SSEs in northern part of the peninsula, which have a shorter recurrence

interval of 1 year (Jiang et al., 2012). The larger SSEs reach a peak slip of

12 cm over a 3 month duration, and are equivalent to Mw 6.6-7.2 (Outerbridge

et al., 2010). Outerbridge et al. (2010) showed tremor and SSEs to temporally-

correlated, but could not find a spatial correlation.

Geodetic observations of SSEs

Today, geodetic observations of SSEs have mainly relied on continuous GNSS networks.

Figure 6.2 gives an overview of the GNSS sites around the Pacific Ocean from Kreemer
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Figure 6.2: Map of the GNSS station distribution around the Circum-Pacific belt - Ring of
Fire. Markers show the GNSS stations from the Global strain rate model (Kreemer et al., 2014)
gridded at 0.5◦ spacing. GNSS stations within the Ring of Fire, 2.5◦ region around the closest
plate, are colored green and red, where the red show those GNSS stations within a known SSE
region.

et al. (2014), with those around Circum-Pacific belt, also know as the “Ring of Fire”,

shown in green and red. To estimate how well monitored SSEs are around the Pacific,

I grid the GNSS station locations at a resolution of 0.5◦ (∼55 km along the equator),

and I assume that this resolution is enough to capture slow slip surface displacements.

As most of the deformation takes place in the first 250 km of the hanging wall, I limit

my analysis to the hanging wall side of Circum-Pacific belt, and label the region within

2.5◦ as part of the “Ring of Fire”. In total ∼25% of the Circum-Pacific belt is covered

by GNSS (red and green markers in Figure 6.2) at 0.5◦ resolution. This means that

we do not know whether slow slip occurs in ∼75% of the Circum-Pacific belt. This

observation gap could be covered by combining InSAR (∼38%) and seafloor geodesy

(∼37%).

Today, slow slip regions cover roughly ∼9% of the Circum-Pacific belt. Regions with

known SSEs are ∼56% covered by GNSS (red markers in Figure 6.2) at 0.5◦ resolution.

Clearly, a good GNSS density can be observed over Japan and Cascadia, with a much

lower coverage in Mexico and Costa Rica. Additional InSAR and sea-floor geodesy

observations would allow us to better constrain existing models, especially in regions

with offshore SSEs, as in New Zealand. About half of the missing coverage at known

SSE sites is offshore, requiring seafloor geodesy.

Observing SSEs with InSAR around the world

The Mexican SSEs are some of the largest around the world, and due to a favourable

setting of the tectonic interface also give one of the largest surface displacements as-

sociated with slow slip. For the feasibility of InSAR as observation technique for slow



§6.1 Discussion 133

slip, many factors need to be considered which will vary on a case-by-case basis. I

identified the following three factors that can play a key role in InSAR success for slow

slip purposes.

1. The amount of cumulative slow slip expected in the radar line-of-sight, which is

dependent on the SAR platform acquisition geometry and the orientation of the

surface displacements.

2. The amount of tropospheric and ionospheric InSAR noise. The latter is more

prominent for the longer wavelengths SAR platforms (e.g. L-band) such as ALOS

1/2, and the future NISAR mission.

3. The SAR repeat interval, the duration of the InSAR time-series, and the duration

of the SSE. All these play a role for time-dependant modelling objectives as well

as how much atmospheric variability can be further decreased.

The larger the Signal-to-Noise Ratio (SNR), described by (1)-(2), the easier it will be

to extract the signal from the InSAR data. Sophisticated time-series InSAR methods

and atmospheric noise corrections can be used to decrease the noise-level further.

Below, I summarize the results for a C-band InSAR feasibility study, assuming

Envisat and Sentinel 1 geometries, for the August 2009 Cascadia SSE. The applied

methodology can be found in Appendix E. For simplicity the perpendicular baseline

component was neglected here. The 2009 Cascadia SSE has a ∼1 month duration,

with cumulative GNSS slow slip surface displacements of maximum ∼7 mm towards

the southwest, and with a small ∼1-2 mm upward motion. With a focus on C-band

SAR platforms, I neglect the ionospheric noise. For the troposphere I consider two

cases, one where the noise level is 2 cm, and another one of 4 cm. For simplicity, I

assume a 3-year InSAR observation period with the SSE occurring halfway in time.

Table 6.1 gives an overview of the SNR for the various acquisition geometries and the

for the two noise cases. It can be observed that the ascending acquisition mode has a

favourable geometry with respect to the surface displacement field, with an SNR 5-8

times larger than the descending case. Nonetheless, over the 3-year time-period none

of the SAR platforms get a SNR larger than 1. Based on the assumed noise levels,

InSAR will therefore not be feasible to observation technique. Potentially InSAR can

be successful if a longer time-series is considered, or in case the noise-levels are further

decreased using improved tropospheric correction methods. Which correction method

gives the largest reduction in tropospheric noise depends on your region. I elaborated

on this in chapter 3 and summarize the findings below in the conclusions. Another

consideration can be to capture the superposition of multiple SSEs, which will increase

the signal level further.
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Table 6.1: Envisat and Sentinel 1 InSAR feasibility for the 2009 Cascadian SSE. The table
gives the Signal-to-Noise Ratio for a 3-year duration InSAR time-series, assuming ascending
and descending geometries, with a tropospheric noise level of 2 and 4 cm (columns). The
analysis includes the aimed Sentinel 1 and Envisat repeat times (rows), with a more realistic
case included for Envisat.

2 cm 4 cm

SAR repeat interval Descending Ascending Descending Ascending

Sentinel 1A/B - 6 days 0.19 0.94 0.09 0.47

Sentinel 1A - 12 days 0.13 0.66 0.07 0.33

Envisat - 35 days 0.03 0.29 0.01 0.15

Envisat - 70 days (realistic) 0.02 0.21 0.01 0.10

6.2 Conclusions

My thesis has demonstrated that advanced time-series processing and atmospheric cor-

rection methods enable the use of Interferometric Synthetic Aperture Radar for the

observation of slow slip surface displacements at high spatial resolution, and in combi-

nation with GNSS, for subsequent slow slip modelling on the subducting interface. In

fact, the atmospheric noise correction still forms one of the largest challenges facing the

InSAR community today and therefore formed a focus in my thesis. The development

of a novel tropospheric correction method facilitated slow slip modelling in a static

inversion. Subsequently, I developed a refined approach using a time-dependent slip

inversion combining GNSS and InSAR. While further work is required, this will provide

valuable insight into the physics of slow slip events. Below, I provide an overview of

the key findings of my thesis, together with more detailed conclusions.

Key Finding 1: Topography-correlated SAR delays can be described

by a power-law function, which unlike previous methods allows for spatial

variation of the troposphere. The power-law can be applied in presence of

deformation by applying spatial band filtering to separate tectonic signals

from tropospheric delays.

Chapter 2 of my PhD thesis focuses on a new phase-based method for tropospheric

delay estimation. Typically, phase-based tropospheric corrections have been estimated

over a full interferogram, a non-deforming region, or from a band insensitive to deforma-

tion. Some studies have applied the linear correction locally and reported good results,

with a significant decrease in topography-correlated signals. Applying the linear esti-

mation locally should be avoided as the intercept of the linear function will be biased by

other signals, leading to an incorrect estimate of the tropospheric delay. In response to

this, I developed a power-law relationship that can be applied locally, and which allows

to estimate a spatially-varying signal from the interferometric phase. Accounting for

spatial variation becomes more important for larger spatial datasets (>10s of km) as

pressure, temperature, and relative humidity can change significantly over these spatial
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scales. I performed a case study correction over Mexico using C-band Envisat data,

where large tropospheric signals are present and masking smaller magnitude slow slip

surface displacements. After the power-law tropospheric correction, I find a reduction

in the topography-correlated signals, and an improved correlation between the GNSS

and InSAR. In chapter 4, I use these derived surface deformation in the modelling of

the 2006 Guerrero SSE.

Key Finding 2: From all available tropospheric correction methods,

space-based spectrometers give the largest noise reduction. In the presence

of clouds, all correction methods perform 10-20% worse. Phase-based meth-

ods perform well when the tropospheric delay is topography-correlated. On

average, global weather models perform better than local high-resolution

models.

In chapter 3, I performed a statistical comparison of all the current available tro-

pospheric correction methods over Mexico, Italy and El Hierro. I found that none of

the tropospheric correction methods can be labeled the best in reducing tropospheric

InSAR noise in a consistent manner over different regions, and at different instants. I

came to this conclusion after an analysis where I compared tropospheric delay estimates

based on spectrometer measurements from MERIS and MODIS, output of low and high

spatial resolution weather models, and using the empirical linear and power-law inter-

ferometric phase-based methods. All these methods are now included in my open source

Toolbox for Reducing Atmospheric InSAR Noise (TRAIN). As anticipated, I confirmed

that the auxiliary data methods are limited by the spatial and temporal resolution of

the source data, while for the phase-based methods the limitation lies in separating

tropospheric delays signals from other phase contributors such as tectonic and man-

induced signals. In my analysis I found that spectrometers gave consistently the largest

RMSE reduction, but this was only when the data were available during day-time and

cloud-free conditions, which represented a strong limitation. As MERIS was acquired

simultaneously with the Envisat radar data, thus capturing the true troposphere at

the right moment, it performed the best, decreasing the residual noise level close to

the theoretical accuracy of MERIS as determined in earlier literature. While MODIS

requires an interpolation in space and time, I found its accuracy to be at best equal to

that of MERIS, and in the worst case twice that of MERIS. The phase-based methods

performed better than the weather model in those instances where the tropospheric

delay was mainly topography-correlated. In presence of additional coherent features

in the atmosphere (e.g. gravity waves), weather models have the potential to provide

an improved delay estimation. Turbulent features are less well resolved, therefore mis-

estimation in weather models result often in an increased RMSE. I did not observe a

clear improvement by using a high-resolution weather model (7 km and 2 km versus

∼70 km). High-resolution models allow for more complexity in the local tropospheric
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delay, but when estimated incorrectly are directly penalized with an increased RMSE.

Considering a longer required runtime, local weather models are less suitable for near

real-time InSAR applications. From a cloud cover analysis, I found the performance

of the different correction methods to worsen consistently with increasing cloud cover,

with a ∼20% increase in RMSE for each cloudy SAR date. Clearly each method has

its own limitations and sensitivities to different components of the tropospheric delay

(e.g. only a wet component can be estimated from spectrometer observations, and

a topography-correlated component for the phase-based methods), therefore further

developments should aim for an integration of the different correction methods in an

optimal manner. Suggestions for this are included in the recommendations section.

Key Finding 3: Slow slip entered the Guerrero seismic gap during the

2006 SSE. Since 1911, the Guerrero Gap has accumulated a Mw 8 equivalent

slip deficit, imposing a large seismic hazard for Mexico City and surround-

ing. This hazard has not been decreased significantly by the 2014 Guerrero

earthquakes.

In chapter 4, I combined GNSS observations and tropospheric corrected InSAR data

with an objective to develop a slip model inversion strategy, and to refine the estimate

of the slow slip model for the 2006 Guerrero SSE. I achieved this by formulating the

joint inverse problem in a Bayesian framework, where all unknowns such as slip, rake,

smoothness, and InSAR plane are sampled using Markov Chain Monte Carlo methods.

I found that high-resolution InSAR observations have a strong impact on the spatial

extent of slow slip on the subduction interface. However, careful attention should

be given to InSAR noise-covariance information. When I included the InSAR noise

covariance information, the slip solution tended towards the GNSS-only solution. In

this instant InSAR provided only a conservative constraint on the slip solution, as

residual atmospheric signals had a similar covariance structure to the actual slow slip

surface displacements. When neglecting covariance, as done frequently in the InSAR

community, more emphasis was put on the InSAR data, and thus also on potential

residual noise signals. When neglecting covariance information, I found that the joint

GNSS and InSAR solution extended further East underneath the InSAR track.

Independently when inverting the GNSS observations alone, combining GNSS and

InSAR when neglecting or including the covariance information, all slow slip solutions

give an equivalent earthquake magnitude of Mw 7.3, and where most of the seismic

moment (∼75%) is released in the transition zone (25-40 km depths), with a peak slip

of ∼17 cm just down-dip of the transition on the sub-horizontal section of the subduct-

ing interface. Compared to earlier studies, I found larger slip magnitudes (∼ 5 cm) to

occur in the seismogenic zone (10-25 km depths); part of this can be attributed to a

variation in smoothness. From my slow slip model analysis, I found the 2006 slow slip

event to release about 19-25% of its total seismic moment within the locked part of the
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Guerrero Gap, with a moment release equivalent to an earthquake magnitude of Mw

∼6.9. From the end of the 2002 SSE to the end of the 2006 SSE, including the 2006

slow slip release, the Guerrero Gap has been loaded by Mw ∼6.8 each year. In order to

assess the seismic potential of the Guerrero gap since the 1911 earthquake, I assumed

that stress has been only released by earthquakes and slow slip, and that SSEs repeat

every 4 years. Based on this I found that the Guerrero gap has accumulated a potential

of a Mw ∼8 earthquake over the last century. Even the two recent April and May 2014

(Mw ∼7) earthquakes, that occurred on the western edge of the Guerrero Gap, do not

change this potential significantly.

Key Finding 4: High spatial-resolution InSAR observation and conti-

neous GNSS can be combined together in a NIF framework to retrieve

time-dependant slip history of SSEs at better resolution than before. It is

of importance to account for InSAR covariance information, as otherwise

spatially-correlated noise will be treated as if it were signal.

Having good knowledge on the slip history of slow slip events in combination with

other observations from seismology can provide valuable information about the physics

involved. The slip history can be retrieved through a simultaneous inversion of all

geodetic data. This however is a computational intensive process, for which the Net-

work Inversion Filter is an alternative. Several versions of the NIF exist, but none of

the methods include InSAR observations. In chapter 5, I developed and applied the

methodology to include InSAR and GNSS together in the Network Inversion Filter

(NIF) framework. In my study, I demonstrated the importance of including InSAR

covariance information. This is of particular importance for tectonic modeling of signal

such as slow slip events that have a similar correlation length as tropospheric signals.

Indeed, when neglected, spatially correlated noise will be treated as if it were signal.

When the InSAR covariance is included, more emphasis is put on the GNSS data, while

InSAR still provides a lower-level constraint. The NIF combining GNSS and InSAR will

be a powerful tool for researchers across multiple disciplines to study time-dependant

tectonic processes.

6.3 Recommendations and Future work

InSAR noise

Surface deformation associated with pre- and post- event processes around tectonic

faults (e.g. creep, interseismic and postseismic deformation) is often of small magnitude,

and can be masked by noise in the InSAR measurements. Hence, the accuracy of InSAR

surface deformation measurements depends on how well we correct the data for various

noise components. These include tidal motion (1-2 cm displacement in the radar line-
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LOS

Figure 6.3: Noise masking the subsidence signal over Mexico City (red circle) in an L-band
ALOS interferogram from 1 October 2008 to 16 February 2009 (138 days) on track 186. Incre-
mental noise correction from left to right for the ionosphere, the troposphere, DEM errors, and
tides. Each 6.28 rad corresponds to 11.5 cm displacement in the radar line-of-sight.

of-sight), satellite orbit errors (a smooth trend), residual topography (DEM) errors (up

to a few cm), the ionosphere (up to 5m for L-band), and the troposphere (up to 20-

30 cm). Correcting for all these components should become a standard practice of the

InSAR processing chain. An example of an incremental correction for an L-band ALOS

interferogram is shown in Figure 6.3. The ionosphere and troposphere are the largest

and most important noise sources. While tidal motion can be modeled (DiCaprio and

Simons, 2008), and InSAR orbit and DEM errors can be addressed by integration

with GPS and application of time-series InSAR methods (e.g. Hooper et al., 2012),

correcting for atmospheric noise remains one of the most significant challenges for the

InSAR community (Hooper et al., 2012, Bekaert et al., 2015b,c). Below I comment on

future projects that aim to progress the field.

Tropospheric InSAR correction

Tropospheric corrections are often applied without quality control. While uncertainties

in weather models are not well defined, specific metrics can be thought that describe

whether weather models are likely to provide an accurate tropospheric correction. For

example under what conditions will there be more turbulence, which is not physically

described in weather model but treated as a stochastic process. In a co-authored

study (Walters et al., 2015), we show that humidity, temperature, or complexity in

local topography, can be used as indicator for weather model performance. Similarly,

spectrometers products of Precipitable Water Vapor are made for a specific time, but

no quality measure is provided in terms of the impact of temporal interpolation to the
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SAR acquisition time, or with respect to a bias from an incorrect cloud mask. For

example variable wind speed would impact a linear weighted temporal interpolation.

Being able to quantify the accuracy of the different atmospheric correction methods

will be of direct benefit when propagating uncertainties in time-series processing (see

below on Inversion of GNSS and InSAR for tectonic signals), and when performing a

weighted joint inversion of different tropospheric observations. The latter is another

project for future research. As weather models, spectrometers, and InSAR have a

different sensitivity to the troposphere, a joint inversion of all the datasets will help to

constrain the tropospheric noise.

Ionospheric InSAR correction

Opportunities exist to further progress the field in developing and expanding iono-

spheric correction methods for InSAR data. This is of particular importance for L-

band SAR missions, such ALOS 1 mission, the current ALOS 2 mission, and the future

NASA/ISRO NISAR mission. Meyer et al. (2015) showed that the ALOS 1/2 ascend-

ing orbit configuration is especially sensitive for equatorial ionospheric scintillation,

mainly related to the time of day and the mission operation with respect to the solar

cycle. In terms of ionospheric InSAR corrections, phase-based estimation methods are

limited by decorrelation of the interferograms. Currently, ionospheric weather models

of TEC are often too coarse (2-2.5 degrees) for the purpose of correcting InSAR data

for ionospheric noise. However, this field is undergoing continuous development, and

an up-to-date study would prove invaluable to assess the current state-of-the-art. This

would benefit from collaboration with expert groups such as at the University of Bath,

which have in house capabilities of running dedicated models. Alternatively, GPS can

be used, but is often limited by the spatial resolution. Auxiliary based corrections alone

will likely currently not be enough to correct for high scintillation effects in InSAR data.

However the combination of auxiliary data and phase-based methods might provide a

useful constraint.

Inversion of GNSS and InSAR for tectonic signals

InSAR is an attractive technique that can provide observations of tectonic deformation

at high spatial resolution. Joint inversion of GNSS and InSAR often neglect the InSAR

covariance information. This should be avoided, as spatially correlated InSAR noise will

be treated as if it were signal. The challenge of including covariance information lies in

the construction of an accurate noise covariance matrix. As part of my research, I have

attempted to construct the covariance matrix for the estimated slow slip signal from

a statistical analysis of the InSAR time-series (Bekaert et al., 2015a). Fattahi (2015)

proposes to split the tropospheric noise into a stochastic and analytical component,

where the latter represents seasonal and annual variability that can be mathematically
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described. Another approach is to account for the temporal noise correlation between

interferograms during a weighted InSAR time-series inversion, and propagate the full

uncertainties to estimate the accuracy of the different time-series components (e.g.

González and Fernández , 2011). Up to today, the methodology for the estimation

of the InSAR covariance matrix, and its application for tectonics studies, remains an

ongoing research topic that will have a big impact on future modeling.

Seafloor geodesy for constraining SSE

Up until now, slow slip modeling has mainly relied on InSAR and GNSS observations.

This means that geodetic observations have been limited to those on the continents. A

powerful complement to satellite geodesy is the use of seafloor geodesy. It provides the

means to constrain regions with offshore SSEs such as in New Zealand, Japan (Boso),

and Costa Rica. In other regions such as Mexico, seafloor geodesy can constrain the

up-dip extent of the slow slip solution. This year’s HOBITSS project in New Zealand

is the first attempt on using seafloor geodesy to study offshore SSEs (Wallace, 2015).

From May 2014 till June 2015, 24 Absolute Pressure Gauges (APG) and 15 Ocean

Bottom Seismometers (OBS) were operated at less than 10 km spacing, directly above

a known slow slip region offshore in Gisborne. At the moment of writing, results have

not yet been announced. In future, I expect further deployment of seafloor geodesy to

other slow slip subduction zones could provide valuable observations that can help us

in getting a better understanding of SSEs.

A global online SSE catalogue

Comparing all slow slip regions known today helps in the search for common features

when slow slip occurs. This can be facilitated by a global catalogue of slow slip models.

Such a research effort is currently underway by Priyamvada Nanjundiah and Sylvain

Barbot at Earth Observation Singapore (EOS) (Nanjundiah, 2015). Their Source Char-

acteristics of EarthQuakes (SCEQ) catalogue is a layer for google earth, which can be

added by including the following link https://bitbucket.org/sbarbot/sceq/raw/

default/sceq.kml. An online catalogue is of direct benefit for the research commu-

nity. It could be used as an online distribution of results, but also to perform analysis

across different regions. When comparing different regions it would be beneficial to in-

clude different layers of geospatial information such as isotherms, subduction interfaces,

interface segmentation, plate age, convergence rates, earthquake locations, tremor lo-

cations, results from receiver functions and magnetotelluric studies, and many more.

Being able to synthesise this information in an online geospatial framework will allow

detailed comparison of different slow slip regions with an invaluable database of in-

formation for researchers around the world. A global approach towards the slow slip

phenomena will be the future direction to take in order to address some of the key

https://bitbucket.org/sbarbot/sceq/raw/default/sceq.kml
https://bitbucket.org/sbarbot/sceq/raw/default/sceq.kml
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questions, one of which is: Why does slow slip occur in some regions and not in others?

6.4 Concluding Remarks

In this thesis, I developed the required methodology to use InSAR as an observation

technique for slow slip, and demonstrated its use with a slow slip study over Mexico.

My methodology has a wide impact as it provides the general InSAR framework for

other slow slip regions. In addition, my expansion to include InSAR in the Network

Inversion Filter allows for time-dependant slip modelling, not just limited to slow slip,

but also for fault creep and other time-dependent slip processes. Finally, I developed

the Toolbox for Reducing Atmospheric InSAR Noise (TRAIN), which includes all state-

of-the-art tropospheric InSAR correction methods. This includes my newly developed

phase-based power-law tropospheric correction method, which unlike previous meth-

ods accounts for spatially variable tropospheric properties. All these tools are of wide

interest for the InSAR community and can be applied across many disciplines, and

moreover are easily integrated in the default InSAR processing chain. Being able to

decrease the atmospheric noise levels for InSAR, improves the retrieval of small mag-

nitude signals such as inter-seismic, post-seismic, and slow slip signals, and moreover

has the potential to uncover new undetected deformation signals that otherwise would

have been masked by noise.
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Figure A.1: Top, overview map of the locations A-D considered in this analysis. First panel
of (a)-(d), radar line-of-sight relative delays computed for each interferogram using the ERA-I
ECMWF weather model. The dashed solid line indicates the estimated h0, while the solid black
line gives the maximum elevation over the InSAR region. Second panel, log-log plots of the
delay curves shown in the first panel, for which the colours are kept consistent. Only the height
range up to 4 km is shown. A near-linear behaviour indicates the net delay curve can be well
approximated by a power-law function. The dashed delays (first panel) are not included as
they contain negative components for which the log cannot be taken, and in any case represent
cases where the difference in delay is close to zero and the troposphere therefore has negligible
effect. Third panel, histogram of the correlation coefficients for each line in the second panel.
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Figure B.1: Mountain wind blockage over Mexico based on the WRF 850 hPa horizontal wind
velocities, perpendicular to the mountain ridge, at the time of each SAR acquisition. Maximum
stagnation height is compared with the local topography, and shown as binary, with red colors
represent blocking, and white no blocking. Gray refers to absence of data. The first figure panel
shows the local topography, the extent of the InSAR area (red outline).
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Figure B.2: Same as Figure B.1, but for Italy.
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Figure B.3: Same as Figure B.1, but for El Hierro.
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Figure B.4: MODIS recalibration factors αrecal, estimated from a linear relationship between
MERIS and MODIS PWV. Left, variation of the estimated calibration factors in time with
corresponding 2σ uncertainty, and where the weighted mean is indicated by the dashed line.
Red colors relate to the observations over Italy, blue over Mexico, and black shows the combined
datasets. Right, the histogram of the calibration factors, where gray bars shows the combined
dataset with a weighted average calibration factor of 0.95. Only acquisitions with more than
50% mutual MERIS and MODIS pixels are considered in this analysis.
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Figure C.1: Comparison between inter-SSE velocities from InSAR (gray points) and GPS
(red squares), before (left panel) and after (middle panel) tropospheric correction. The light
gray scatters indicate the region around Mexico City where tectonic deformation contaminates
the tropospheric correction. The right panel shows the local correlation with topography. On
average, applying the power-law method reduces the local correlation by 0.6 cm/yr per km.
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Figure C.2: Experimental variogram estimated from InSAR for the slow slip component
after tropospheric correction (circular markers). Lines correspond to different fitted covariance
functions, for which the spherical function shows the best fit.
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Figure D.1: Comparing simulated GNSS surface displacements (colored points) with those
estimated from the NIF (solid black lines) when inverting for only GNSS observations. GNSS
station locations are indicated in Figure 5.1.
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Figure D.4: (a) Slip-rate and (b) slip over time for our simulated SSE. This example shows a
SSE started after 25 days, with a duration of 100 days, and an accumulated slip of 10 cm.



Appendix E

Methodology for InSAR

feasibility study of slow slip

events

Slow slip surface displacements are often masked by tropospheric noise in the interfer-

ograms, and therefore require advanced tropospheric corrections in combination with

sophisticated time-series InSAR processing method to decrease the InSAR noise levels.

The feasibility of InSAR to observe SSE can be investigated by comparing the Signal-

to-Noise (SNR) ratio. When the SNR>1, InSAR is likely to be successful. The signal

follows by projecting an estimate of the cumulative slow slip surface displacements (e.g.

from GNSS) into the radar line-of-sight. The magnitude will thus be depending on the

specific satellite acquisition geometry. The noise-level as found after time-series InSAR

processing can be computed by propagating the interferogram uncertainties using the

inverse problem as will be used in the time-series approach. Let us assume that the

inverse problem is defined as:

E
{

∆φ
}

= Ax, (E.1)

with A the design matrix of the inverse problem, ∆φ an observation vector with the

interferograms, x a vector of unknowns which includes the slow slip signal, and E{.}
the expectation operator. The covariance matrix of the observations is defined as

Q∆φ. By applying the variance propagation law, the estimated covariance matrix of

the unknowns Qx̂x̂ follows as:

Qx̂x̂ =
(
ATQ−1

∆φA
)−1

(E.2)

Below, I elaborate on how the design matrix for a Single Master (SM) time-series ap-

proach is defined. This is a modification to Hooper et al. (e.g. 2004) where a steady-state

velocity model is assumed. Surface displacements dtect introduced from a subduction

process and the occurrence of a slow slip event, can be modeled as a steady-state ve-
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locity in combination with a sigmoid function (e.g Larson et al., 2004, Franco et al.,

2005) as:

dtect (t) = d0 + vintt+ dSSE

[
1 + exp

(
t− t0,SSE
τSSE

)]−1

, (E.3)

with t the time, d0 the reference tectonic deformation at t=0, vint the interseismic

velocity, dSSE the cumulative slow slip displacements, t0,SSE the center time of the

SSE, and τSSE the duration of the SSE. For an interferogram with a master acquisition

at tm, and a slave acquisition at ts, the relative displacement becomes:

∆dtect = vint∆t+ dSSEα(tm,ts), (E.4)

with α(tm,ts) a scaling factor with its magnitude depending on the master and slave

acquisition times. Including equation (E.4) for n interferograms, into the SM time-

series framework (e.g. Hooper et al., 2004) leads to:

E
{

∆φ
}

= Ax (E.5)

E
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...

∆ti α(tm,tk) B⊥ti
1

...
...

...
...

∆tn α(tm,tn) B⊥tn
1




vint

dSSE

ctopo

am

 ,

with ∆ti the time difference between the master and the ith slave acquisition, B⊥ti

the corresponding perpendicular baseline, ctopo the DEM-correlated errors, and am the

residual master atmosphere and noise. −4π/λ is a conversion factor to convert inter-

ferometric phase to LOS deformation. The errors after applying time-series processing

can now be computed by substituting A into equation (E.2).
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