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ABSTRACT 

The primary focus in this thesis is on the production and detection of upstream-

propagating waves in laser-laboratory plasmas. Upstream waves are a feature of shocks in 

plasmas; launched at or just ahead of the shock, they travel against the flow into the 

unshocked medium. Despite the importance of upstream waves in understanding the 

properties of the Earth’s bow shock, and the foreshock region just ahead of the shock, 

upstream waves have not previously been investigated in the laboratory. The laboratory 

shock waves are produced by laser-matter interaction, and allowed to propagate into a 

nitrogen atmosphere, immersed in a magnetic field. One-dimensional numerical 

simulations of the fluid enable the construction of the whistler dispersion function; a 

mode unstable to growth is identified. The mode is compared with observations taken 

by a magnetic field probe, understood by a wavelet analysis. Agreement between 

observation and prediction is found. 
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1. INTRODUCTION 

1.1. MOTIVATION 

‘Plasma’ is a Greek word (πλάσμα) originally meaning “something which is easily 

moulded or shaped” (Liddell & Scott, 1890), the same root that gives us ‘plastic’ and 

(less directly) ‘plaster’. Therefore the choice of this word plasma to describe the fourth 

state of matter seems immediately an etymological irony. Not only do all but the tamest 

of manmade plasmas often resist being moulded, but moreover their ripe complexity 

makes their behaviour hard to predict and understand.  

Laboratory astrophysics can be divided into studies of ‘input parameters’, such as 

equations of states and nuclear cross sections, and scaled experiments of astrophysical 

systems (Remington et al., 2000).  I am looking at the latter case in this thesis. Much of 

the physics underpinning the behaviour of astrophysical systems is scale-invariant: it is 

possible to design laboratory studies of astrophysical phenomena that access the same 

physics, or pieces thereof, even though the systems are starkly different in scale (Cross et 

al., 2014; Ryutov et al., 2000). 

Space plasmas (those occurring in our solar system) have not enjoyed the attention of 

laboratory experiments that high-energy astrophysical plasmas have. Yet understanding 

the interaction between the solar wind and the bow shock is an open problem that may 

be particularly fertile for the kind of interchange offered by a combined observational, 

numerical and experimental approach. Moreover, kinetic processes in the foreshock 

region, lying directly ahead of the bow shock, mediate the effects of space weather on 

the Earth’s magnetic field. As it has become apparent that our satellite infrastructure 

could be vulnerable to extreme space weather events, understanding these kinetic 
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processes in the foreshock is a priority (Collier et al., 2010; Kangas et al., 2001; Posner et 

al., 2004). 

1.2. THE CONTEXT OF LASER LABORATORY ASTROPHYSICS 

Modern, high energy density facilities now enable matter to be studied in high-energy 

states believed to be relevant to many astrophysical environments. Laboratory 

experiments do not replace observations or computer simulations, but rather 

complement them. An approach incorporating experiments offers some advantages over 

an investigation made with only computers or telescopes. Unlike observations, 

experiments are repeatable, reproducible, and with clearly defined start and end states. 

Experimental configurations can be easily quantified and varied. Multiple diagnostics, 

including active diagnostics, can probe the properties of the experiment from many 

angles. The wider array of diagnostic capabilities means that some information can be 

directly obtained, and not merely inferred from other measurements. However, there are 

always physics components that cannot be scaled; equations of state and viscosity terms, 

for instance. 

Numerical simulations need to be validated against work in the laboratory: in particular, 

the range of spatial and temporal scales that can be accessed is often limited; for 

instance, codes might be able to simulate either a small part of a system accurately, or 

the full system without full regard for the microphysics processes, but not the fully 

detailed physics at all levels in the three dimensions. For a more detailed review of 

laboratory astrophysics, see for instance Remington et al. (2000). 

1.3. UPSTREAM WAVES IN THE EARTH’S BOW SHOCK 

The Earth has a surface geomagnetic field of approximately 4×105 nT, which is much 

larger than the typical magnetic field embedded in the solar wind at the Earth’s orbital 

radius (about 10 nT). Bearing in mind Alfvén’s theorem, the Earth’s magnetosphere 

therefore presents a substantial blunt obstacle to the solar wind flow; and the interaction 
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of the supersonic flow and the obstacle produces a standing shock wave in front of the 

Earth known as the bow shock. 

Upstream waves are waves that are travelling upstream from a shock. Such a wave 

cannot occur except in plasmas, because in most systems a shock is by definition the 

fastest wave that propagates: the situation in plasmas is different because of the plethora 

of wave modes supported. Moreover, when shocks are mediated by long-range collective 

effects instead of short-range collisions, the interplay between waves and particles 

becomes still more complex. Such is the plurality of wave modes possible in front of the 

Earth’s bow shock that some authors have called the region a ‘zoo’ of different wave 

species (Burgess, 1997). 

Understanding this region is difficult because, with in situ probes, the spatial scales of 

the shock and the waves are much larger than the measuring instruments aboard the 

probe. Numerical simulations have difficulty working over the large scale and with the 

multiplicity of kinetic and fluid effects. 

Recently a number of experiments particularly in the laser laboratory have enabled the 

scaling of systems to approach in well-defined ways the physical parameters present in 

astrophysical systems, for instance by Gregori et al. (2012) and Meinecke et al. (2014) 

who studied the creation of proto-galactic magnetic fields under the Biermann battery 

effect, and the subsequent amplification of those fields through turbulence. Some very 

recent work has demonstrated the possibility of exciting whistler waves in the laboratory 

through injection of an electron beam into a prepared plasma environment (Van 

Compernolle et al., 2015). However to the present author’s knowledge no one has 

previously measured shock-excited upstream waves in the laboratory. 

1.4. CHAPTER OUTLINE 

In Chapter 2 I review the theoretical topics necessary for the basis of the experiment. 

First I look at the underpinnings of rigorous scaling from laboratory to space, including 

in non-ideal systems (where dissipative effects are present). Then I look at the generation 

of shock waves; and indeed at the standing bow shock about the Earth. Finally I discuss 

a process by which a drifting, warm electron population may excite upstream waves. 
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Chapter 3 deals with instruments relevant to my experimental work. Whenever a 

physical quantity is measured by an instrument it is important to have a grasp of the 

capabilities of the measuring device: essentially one desires to know how far the data 

that the instrument provides may be accorded belief. More formally, it is necessary to 

have some understanding of the response function of the instrument. In Chapter 3 

therefore I discuss the design and capabilities of three instruments; the bdot probe, the 

Nomarski interferometer, and the electron spectrometer. Further, I look at how far what 

might be termed the ‘raw data’ they supply may be interpreted to give physical 

measurements—and what assumptions that interpretation entails. 

I introduce some important signal analysis techniques in the fourth Chapter. The data 

collected in my experiments is, to some degree at least, contaminated by noise and 

therefore some relatively robust signal analysis techniques are used to isolate features of 

interest. To put the analysis of experimental data on a surer footing I review those 

methods in Chapter 4. 

In Chapter 0, I discuss four experiments. Two are studies intended to create and detect 

upstream waves in the laser laboratory through the creation of a shock front in a 

prepared environment. Another experiment concerns the production of pulsed magnetic 

fields; I use it to gain a measure of understanding of the response function of the bdot 

probe. Finally I look at the characterization of hot electrons arising from a laser-matter 

interaction. 

In Chapter 1, I draw together the results obtained through the experiments to test my 

hypothesis that upstream waves are created in the laboratory. I find that the 

experimental bdot data that I obtain are in agreement, in terms of frequency and time-

of-flight arrival at the bdot probe, with the numerical estimation. 
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2. THEORY 

In this Chapter I give a review of some topics relevant to the experimental work I later 

present, with a focus on the theoretical underpinnings that enable experiments in laser 

laboratories to be meaningfully compared to situations in astrophysics and in space 

physics. I also discuss how whistler waves can be spontaneously excited in plasmas under 

certain conditions, by adapting a mechanism proposed by Gary (1985).  

2.1. ASTROPHYSICS IN THE LABORATORY 

2.1.1. The Euler–Alfvén scaling relation. 

Cross et al. (2014) went so far as to describe the scaling of the magnetohydrodynamic 

(‘MHD’) equations in the presence the quantum, resistive and radiative effects. However, 

I shall look first at MHD scaling in the ideal (that is, non-dissipative) case. This was first 

described by Connor and Taylor (1977), and first applied to astrophysical systems by 

Ryutov (2000). 

The ideal MHD equations may be expressed (Boyd & Sanderson, 2003) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝛁𝛁 ∙ 𝜌𝜌𝐯𝐯 = !, (2.1) 

𝜌𝜌
𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕 + 𝐯𝐯 ∙ 𝛁𝛁𝐯𝐯 = −𝛁𝛁𝑝𝑝 −

!
!𝜋𝜋𝐁𝐁 ∧ 𝛁𝛁 ∧ 𝐁𝐁, and (2.2) 

𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕 = 𝛁𝛁 ∧ 𝐯𝐯 ∧ 𝐁𝐁 , (2.3) 

in the centimetre-gram-second system of units. The symbols have their usual meanings. 

Further we close the system with 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝐯𝐯 ∙ 𝛁𝛁𝑝𝑝 = −𝛾𝛾𝛾𝛾𝛁𝛁 ∙ 𝐯𝐯, (2.4) 
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for adiabatic index 𝛾𝛾 (the ratio of specific heats). For this description to be accurate, it is 

assumed that the plasma be— 

collisional:  𝜏𝜏!! ≪
𝑚𝑚!

𝑚𝑚!
𝜏𝜏!, 𝜆𝜆!! ≪ 𝜆𝜆!,

non-relativistic:   
𝜔𝜔
𝑘𝑘
~
𝐿𝐿!
𝜏𝜏!
~ 𝑢𝑢 ≪ 𝑐𝑐,

quasi-neutral:   
𝜔𝜔 𝜔𝜔!"
𝜔𝜔!"!

≪ !,

with small Larmor radii:   
𝑟𝑟!!
𝜆𝜆!

≪ 𝛽𝛽.

 (2.5) 

In the above and elsewhere in this chapter, 𝜏𝜏!! is the ion collision time and 𝜆𝜆!! is the ion 

collisional scale length; 𝑚𝑚! and 𝑚𝑚! are the masses of electrons and ions respectively; 𝜏𝜏! 

is the characteristic hydrodynamic time and 𝜆𝜆! is the hydrodynamic scale length; 𝜔𝜔 and 

𝑘𝑘  are the angular frequency and wave number of waves in the system; 𝜔𝜔!"  is the 

electron gyrofrequency and 𝜔𝜔!" is the electron plasma frequency; and 𝑟𝑟!! is the electron 

Larmor radius. 

By a variable change it is straightforward to re-write the system of equations (2.1)–(2.4) 

in a non-dimensional form; that is, 

𝜌𝜌 = 𝜌𝜌∗𝜌𝜌!,   𝑡𝑡 = 𝑡𝑡∗𝑡𝑡!,   𝐯𝐯 = 𝐯𝐯∗𝑣𝑣!,   𝐁𝐁 = 𝐁𝐁∗𝐵𝐵!,   𝑝𝑝 = 𝑝𝑝∗𝑝𝑝!,   𝛁𝛁 =
!
𝑥𝑥!
𝛁𝛁∗, (2.6) 

where in each case the symbols with asterisks are dimensionless parameters and the zero-

subscripted quantities hold the physical dimensions. For instance one obtains, for (2.1), 

𝜕𝜕 𝜌𝜌∗𝜌𝜌!
𝜕𝜕 𝑡𝑡∗𝑡𝑡!

+
!
𝑥𝑥!
𝛁𝛁∗ ∙ 𝜌𝜌∗𝜌𝜌! 𝐯𝐯∗𝑣𝑣! = !. (2.7) 

Now, by judicious choice of the dimensional quantities we may eliminate the presence 

of dimensions from (2.1)–(2.4) altogether, while retaining the form of the equations. 

For instance on making the substitutions 

𝑡𝑡! →
𝜌𝜌!
𝑝𝑝!
𝑥𝑥!,   𝑣𝑣! →

𝑝𝑝!
𝜌𝜌!

,   and   𝐵𝐵! → 𝑝𝑝!, (2.8) 

one obtains, for (2.1), 

𝜌𝜌!

𝑥𝑥!
𝜌𝜌!
𝑝𝑝!

×
𝜕𝜕𝜌𝜌∗

𝜕𝜕𝑡𝑡∗ +
𝜌𝜌!

𝑝𝑝!
𝜌𝜌!

𝑥𝑥!
𝛁𝛁∗ ∙ 𝜌𝜌∗𝐯𝐯∗ = !, (2.9) 
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which immediately may be reduced to 

𝜕𝜕𝜌𝜌∗

𝜕𝜕𝑡𝑡∗ + 𝛁𝛁
∗ ∙ 𝜌𝜌∗𝐯𝐯∗ = !. (2.10) 

But for the asterisks (which merely indicate the quantity lacks physical dimensions), 

(2.10) is essentially (2.1). A similar transformation, preserving the form of the equations 

but stripping their dimensions, occurs in (2.2)–(2.4). 

It will be observed that although 𝑡𝑡!, 𝑣𝑣!, and 𝐵𝐵! are fixed by relation to 𝜌𝜌!, 𝑝𝑝!, and 𝑥𝑥!, 

the latter three quantities are free, except we impose the restriction that they must each 

hold the proper physical dimension to which each appertains: for instance, 𝜌𝜌! must be a 

density. However, the fixed ‘number multiplier’ or scale component of the quantity is 

inconsequential in the evolution of the system. 

More explicitly, suppose at some particular instant of time, the distribution and motion 

of plasma in two physically independent systems are geometrically related under the 

transformations 

𝐱𝐱! = 𝑎𝑎𝐱𝐱!,  𝑝𝑝! = 𝑏𝑏𝑝𝑝!,  𝜌𝜌! = 𝑐𝑐𝜌𝜌!,  𝐁𝐁! = 𝑏𝑏 𝐁𝐁!,  and  𝐯𝐯! = 𝑏𝑏/𝑐𝑐 𝐯𝐯!. (2.11) 

(2.11) effectively defines a ‘shape function’ or set of initial conditions between the two 

distributions. Here, 𝑎𝑎 , 𝑏𝑏 , and 𝑐𝑐  are scalar constants. We further suppose that both 

systems satisfy the assumptions in (2.5) and therefore each evolve separately according 

to equations (2.1)–(2.4). The first system (subscripted ‘1’) may be reduced to a non-

dimensional form as outlined above: 𝐱𝐱! = 𝑥𝑥!𝐱𝐱∗  for some fixed dimensional 𝑥𝑥! , and 

likewise for 𝑝𝑝!, 𝜌𝜌!, 𝐁𝐁!, 𝐯𝐯!, and 𝑡𝑡!. It follows that 𝐱𝐱! = 𝑥𝑥! 𝑎𝑎 𝐱𝐱∗, and similarly for the 

other quantities of the second system: system 2 evolves with a fixed scaling to the first 

system, with a temporal synchronization satisfying 𝑡𝑡! = 𝑐𝑐 𝑏𝑏  𝑎𝑎 𝑡𝑡!. 

In other words, if at any time the transformation (2.11) exists, then it is valid for all 

time, provided only that the assumptions (2.5) hold without interruption. 

2.1.2. Scaling relations in non-ideal systems. 

Plasmas produced both in laboratories and in astrophysical systems often deviate from 

ideal. To understand how this affects the validity of scaling, I introduce finite viscosity 

and finite resistance into the MHD equations. 
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With a term for viscosity the momentum equation (2.2) reads 

𝜌𝜌
𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕 + 𝐯𝐯 ∙ 𝛁𝛁𝛁𝛁 = −𝛁𝛁𝑝𝑝 −

!
!𝜋𝜋𝐁𝐁 ∧ 𝛁𝛁 ∧ 𝐁𝐁+ 𝜌𝜌𝜌𝜌𝛁𝛁

!𝐯𝐯. (2.12) 

𝜈𝜈 is the kinematic viscosity. Applying the transformations (2.6) and (2.8) gives  

𝜌𝜌∗
𝜕𝜕𝐯𝐯∗

𝜕𝜕𝑡𝑡∗ + 𝐯𝐯
∗ ∙ 𝛁𝛁∗𝐯𝐯∗ = −𝛁𝛁∗𝑝𝑝∗ −

!
!𝜋𝜋𝐁𝐁

∗ ∧ 𝛁𝛁∗ ∧ 𝐁𝐁∗ +
𝜈𝜈 𝜌𝜌!
𝑥𝑥! 𝑝𝑝!

𝜌𝜌∗𝛁𝛁∗!𝐯𝐯∗ 

𝜌𝜌∗
𝜕𝜕𝐯𝐯∗

𝜕𝜕𝑡𝑡∗ + 𝐯𝐯
∗ ∙ 𝛁𝛁∗𝐯𝐯∗ = −𝛁𝛁∗𝑝𝑝∗ −

!
!𝜋𝜋𝐁𝐁

∗ ∧ 𝛁𝛁∗ ∧ 𝐁𝐁∗ +
!
Re𝜌𝜌

∗𝛁𝛁∗!𝐯𝐯∗. (2.13) 

The quantity 
! !!
!! !!

 is better expressed as !
!"

 where 

Re =
𝑥𝑥!𝑣𝑣!
𝜈𝜈 =

𝑥𝑥! 𝑝𝑝!
𝜈𝜈 𝜌𝜌!

 (2.14) 

is the Reynolds number, a dimensionless measure of the importance of inertial forces to 

viscous forces (Huba, 2009). Therefore in comparing the evolution of two systems of 

disparate scales, it is needed that the reciprocals of their Reynolds numbers are in 

agreement for the scaling to be valid; and moreover, unless the physics underlying the 

viscosity also scale, it is required that the Reynolds number is large enough in both 

systems for the viscous forces to be negligible. 

Similarly, the induction equation (2.3) may be written with a term for finite resistance. 

Expressing Ohm’s law with a term 𝜂𝜂 for resistivity, we have 

𝐄𝐄+
!
𝑐𝑐 𝐯𝐯 ∧ 𝐁𝐁 = 𝜂𝜂𝐣𝐣. (2.15) 

Then the Maxwell–Faraday law is 

𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕 = 𝛁𝛁 ∧ 𝐯𝐯 ∧ 𝐁𝐁 −

𝑐𝑐!

!𝜋𝜋𝛁𝛁 ∧ 𝜂𝜂𝛁𝛁 ∧ 𝐁𝐁 . (2.16) 

Provided 𝜂𝜂 is constant in space, 

𝜕𝜕𝐁𝐁
𝜕𝜕𝜕𝜕 = 𝛁𝛁 ∧ 𝐯𝐯 ∧ 𝐁𝐁 − 𝐷𝐷!𝛁𝛁!𝐁𝐁 (2.17) 

for the magnetic diffusivity, 𝐷𝐷! = 𝑐𝑐!𝜂𝜂 !𝜋𝜋. After the substitutions (2.6) and (2.8),  

𝜕𝜕𝐁𝐁∗

𝜕𝜕𝑡𝑡∗ = 𝛁𝛁∗ ∧ 𝐯𝐯∗ ∧ 𝐁𝐁∗ −
𝐷𝐷!

𝑥𝑥! 𝑝𝑝! 𝜌𝜌!
𝛁𝛁∗!𝐁𝐁∗ 

and therefore 

𝜕𝜕𝐁𝐁∗

𝜕𝜕𝑡𝑡∗ = 𝛁𝛁∗ ∧ 𝐯𝐯∗ ∧ 𝐁𝐁∗ −
!

Re!
𝛁𝛁∗!𝐁𝐁∗. (2.18) 
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In this case the quantity remaining is the reciprocal of the magnetic Reynolds number, a 

quantification of the importance of magnetic advection to magnetic diffusion. 

Depending on which non-ideal terms are included in the evolution equations, there are 

many dimensionless scaling numbers that can be identified to characterize the 

relationship between two systems. 

2.1.3. The Sedov–Taylor law. 

In 1941 Sir Geoffrey Taylor was asked by the Civil Defence Research Committee to 

consider the mechanical effects of releasing a large quantity of energy into a small 

volume; the energy being released by nuclear fission. The reason the distinction in 

energy source is important is that, as Taylor found, without the generation of high-

pressure gas that accompanies the detonation of chemical explosives, a nuclear 

detonation is only half as efficient as a blast producer as a chemical device releasing the 

same energy. Taylor’s paper was declassified and released in 1950 (Taylor, 1950), by 

which time Leonid Sedov of the Soviet Union had independently discovered and 

published the same derivation, in the Russian language journal Applied Mathematics 

and Mechanics (1946). 

The solution may also be found from dimensional analysis of the system, under the 

assumptions that the blast wave is spherical; that the pressure in the blast wave is much 

larger than the surrounding atmospheric pressure; and that the total energy behind the 

shock remains constant. In this case, 

𝑟𝑟 = 𝐶𝐶 𝑡𝑡! !𝐸𝐸! !𝜌𝜌!
!! ! , (2.19) 

where 𝑟𝑟 is the outer radius of the shock wave, 𝐶𝐶 is a function whose value depends on 

the adiabatic index, 𝑡𝑡 is the time since the energy was released into a small volume, 𝐸𝐸 is 

the input kinetic energy, and 𝜌𝜌! is the density behind the shock. The Sedov–Taylor law 

is also scale invariant. 

The Sedov–Taylor speed is the speed of a shock at position 𝑟𝑟  as given by the 

differentiation with respect to time of (2.19),  

𝑣𝑣!–! =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

!
!  𝐶𝐶 𝑡𝑡!! !𝐸𝐸! !𝜌𝜌!

!! ! . (2.20) 
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The quantity !
!
𝐶𝐶𝐸𝐸! !𝜌𝜌!

!!/! is not known in a typical experiment but, in this model, it is 

a constant of proportionality between 𝑣𝑣!–! and 𝑡𝑡!! !. Therefore I call !
!
𝐶𝐶𝐸𝐸! !𝜌𝜌!

!!/! the 

Sedov–Taylor quantity. If the quantity, as measured by the graph of observed shock speed 

against 𝑡𝑡!! !, remains fixed, it is indicative of a Sedov–Taylor model being satisfactory 

in describing the shock evolution. 

2.1.4. The Rankine–Hugoniot conditions, as applied at a shock in a 

magnetized medium. 

The Rankine–Hugoniot equations describe the relationship between the physical 

variables of mass density, flow speed, gas pressure and specific internal energies, on 

either side of a one-dimensional shock (Landau & Lifshitz, 1987). For this reason the 

Rankine–Hugoniot equations are often known as the shock jump conditions. In the 

present case it is useful to extended them to include the effect of a background magnetic 

field, which may also be affected in magnitude and direction by the passage of the 

shock. (Fitzpatrick, 2011.) 

Under the conditions of MHD, the jump conditions may be expressed as (Landau & 

Lifshitz, 1987) 

𝜌𝜌𝑣𝑣! = !, (2.21) 

𝑣𝑣!
𝜌𝜌𝑣𝑣!

! +
𝛾𝛾𝛾𝛾
𝛾𝛾 − ! +

!
!𝜋𝜋 𝑣𝑣! 𝐵𝐵! − 𝐵𝐵!𝐯𝐯 ∙ 𝐁𝐁 = !, (2.22) 

𝑝𝑝 + 𝜌𝜌𝑣𝑣!! +
!
!𝜋𝜋𝐁𝐁!

! = !, (2.23) 

𝜌𝜌𝑣𝑣!𝐯𝐯! −
!
!𝜋𝜋𝐵𝐵!𝐁𝐁! = !, and, (2.24) 

𝐵𝐵!𝐯𝐯! − 𝐁𝐁!𝑣𝑣! = !, (2.25) 

where the curly braces indicate taking the difference in the value of the enclosed 

quantity as evaluated on one side of the shock compared to the other, the subscript ‘𝑛𝑛’ 

means the quantity in question as projected parallel along the shock normal (that is, the 

shock propagation direction), and the subscript ‘𝑡𝑡’ means the quantity in question as 

projected into the plane perpendicular to the shock normal. 
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2.1.5. Ionization of the neighbouring medium. 

Ionization of the ambient medium well ahead of the outgoing plume material has been 

previously reported (Harilal et al., 2006), including under similar conditions to my 

experiment (albeit at lower laser energy and with a metallic target) (Issac et al., 1998). In 

that experiment, which like my experiments had a nitrogen atmosphere and a long pulse 

laser, the authors suggest that the atmosphere becomes ionized up to a few centimetres 

through electron collisions after prompt emission of electrons from the solid target 

within a few nanoseconds of the laser pulse. The production of these ‘prompt’ electrons 

emerges probably through the process of inverse bremsstrahlung at the laser-solid or 

laser-plasma interaction.  

2.2. UPSTREAM WAVES AT PLANETARY BOW SHOCKS 

2.2.1. Collisionless shocks. 

Shocks in conventional fluids are transmitted principally by means of two-body 

collisions between the constituent particles of the fluid. The width of the shock 

transition is therefore no greater than a few collisional mean free paths, 𝜆𝜆!"# = 𝑛𝑛𝑛𝑛 !!, 

where 𝑛𝑛 is the gas number density and the collisional cross section is 𝜎𝜎 ~ 10-23 cm. 

However in the interstellar medium the particle densities are rarely sufficiently high for 

the mean free path to be smaller than the system in question, and yet observations 

suggest that in the universe, shocks are replete: shocks that propagate in, for instance, 

supernovae remnants or in the interplanetary medium must be facilitated by an 

alternative mechanism (Balogh & Treumann, 2013). 

In plasmas, the multiplicity of non-neutral particles enables the presence of collective 

particle effects through long-range electromagnetic interactions. The particles forming 

the plasma are not free to act independently interrupted only by occasional and discrete 

collisions with individual neighbours, but instead each particle is governed by the local 

electromagnetic fields. In place of elastic two-body collisions, an incident particle tends 

to suffer a large number of small, slight scatterings directly from close encounters with 

charges within its Debye sphere. However, if the density of charges is too low for this 
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process, then instead particles can scatter off small fluctuations in the local 

electromagnetic field; these fluctuations arise spontaneously from instabilities occurring 

at the flow interpenetration (Spitkovsky, 2008). In early literature the collisions 

occurring this way were called ‘anomalous collisions’. This allows a transition region of 

much less than the classic mean free path to form (Treumann, 2009).  

2.2.2. The Earth’s bow shock. 

The shock is hyperbolic in geometry, with a flat nose sitting about 14 Earth radii (R!) 

from the Earth, extending around the planet with an extended tail persisting out to 

about 30 R!. These distances vary slightly depending on the solar wind conditions. The 

shape of the shock means that no matter the solar wind magnetic field direction, there is 

always regions on the front where the shock normal lies perpendicular to the solar wind 

field, and regions where it lies parallel to the solar wind field (Balogh & Treumann, 

2013). The bow shock itself, in terms of the electron heating scale, is about 20 km thick 

at its thinnest point (Schwartz et al., 2011) and up to 1000 km thick if the foreshock 

regions are included. 

These spatial scales make it difficult for space probes of only a few metres in size to 

investigate the macroscopic features of the shock, because local fluctuations often 

occlude the global properties. For instance even determining the macroscopic magnetic 

field direction is not trivial (Smith et al., 1998).  One answer to this problem is Cluster 

II1, a constellation of four identical spacecraft that can be separated by several thousand 

kilometres to provide measurements from four positions simultaneously, enabling some 

inference of properties on that scale. However, the ‘average’ value of the properties over 

the probe separation cannot be measured, only the values local to the probe positions 

(Escoubet et al., 2012). Nonetheless even this limited capability has yielded much 

unexpected information about the bow shock (Hobara et al., 2007). Investigations of 

other collisionless shocks, such as the termination shock where the solar wind is 

decelerated by the interstellar medium, or around other magnetized bodies in the solar 

                                                   
 
1 Cluster II replaced the original Cluster spacecraft, which unfortunately were destroyed 
during their launch because of an unhandled integer overflow in the flight control 
software. 
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system, will receive necessarily less investigation by in situ probing, but the surprising 

information such missions yield suggest the structure of these shocks is still poorly 

understood. (Stone et al., 2008.) 

Magnetohydrodynamic and particle-in-cell (‘PIC’) simulations of the bow shock have 

also been informative in understanding the interplay of the numerous physical processes 

occurring within the shock, but the sheer breadth of spatial and temporal scales makes 

accessing simultaneously both the macro- and micro-physics computationally 

challenging (Burgess & Scholer, 2013). 

2.2.3. The parallel shock and upstream waves. 

Where the angle between the shock normal and the local magnetic field is shallow, that 

is, the shock normal and magnetic field vectors are co-aligned or nearly co-aligned, the 

shock is called a parallel shock. (Some authors distinguish between a ‘parallel’ shock, 

where the angle is at or very close to the parallel vector, and call shocks close to 45° of 

the parallel quasiparallel shocks.) In a perpendicular collisionless shock, where the shock 

propagates perpendicular to the field lines, gyrating particles are fixed to within one 

gyroradius of the shock front, neglecting drift and scattering. With a parallel shock, 

however, particles are free to stream up and down the field lines leading away from the 

shock: when a mechanism exists for reflecting or scattering upstream particles close to 

the front, the result is an extended, turbulent foreshock preceding the shock transition, 

instead, as in the case of perpendicular or unmagnetized shocks, of the sharp shock foot 

a small number of gyroradii or collisional mean-free-paths wide. In the case of the 

Earth’s bow shock, observations show that the parallel foreshock is populated by a 

reflected ion and electron component, counterstreaming against the incoming flow. This 

is a condition unstable to the production of electromagnetic waves (Balogh & 

Treumann, 2013), and consequently, the upstream region is populated by a great 

number of distinct wave species (Burgess, 1997). 

In the Earth’s bow shock, the foreshock may be further divided into the electron and ion 

foreshocks. Electrons have a greater thermal speed than ions of the same temperature: as 

the bow shock curves away from the field lines, electrons have a slight advantage in 

outpacing the counterstreaming bulk plasma and consequently a region of reflected 
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electrons in absence of the ionic component is present. This part is called the electron 

foreshock. 

Burgess (1997) wrote a short review of observations of the varied wave species in the 

foreshock. Together with data from other sources (Balogh & Treumann, 2013; Dubinin 

et al., 2007; Hobara et al., 2007; Selzer et al., 2014) I have adapted the low frequency 

waves discussed in his paper into Table 1. 

Of particular interest are the whistler bursts or ‘lion roars’ whose origins are not fully 

understood except that they appear to be related to an electron beam instability (Tokar 

et al., 1984). It is known that a relatively hot beam of electrons propagating along a 

magnetic field through a cooler, Maxwellized plasma is unstable to the production of 

whistler waves (Gary, 1985), particularly if the hot beam has a temperature anisotropy in 

respect of the thermal distribution in the plane parallel to the field and that along it. A 

monochromatic beam of electrons may also produce chirping whistlers; this effect 

recently found experimental verification (Van Compernolle et al., 2015). Whistler bursts 

in the foreshock are more typically ‘hiss’ like, that is, displaying a broad spectrum 

without clear chirping. 
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Table 1. Observed low frequency waves in the Earth’s foreshock. All values are 

approximate. 

Name(s) Mode Typical 
frequency 

Typical 
wave-
length 

Amplitude 
(Δ𝐵𝐵 𝐵𝐵) 

Source 

ULF wavesa Fast, Alfvén-
ion 
cyclotron, 
and whistler 

5–
200 mHz;  
0.01 𝜔𝜔!" 

10–100 km 0.2–1.0 Field-aligned 
ion beams 

SLAMS, Large 
Amplitude 
Pulsations 

As above 30 mHz 1000 km 5 Possibly 
steepening of 
ULF waves 

3 Second 
Waves 

Right-
handed 

0.3 Hz 

 

500–
3500 km 

0.5 Unknown 

1 Hz 
whistlersb 

Mostly 
right-
handed 

0.5–4 Hz; 
10–
100 𝜔𝜔!" 

10–100 km 0.2 Possibly field-
aligned ion 
beam 

Whistler 
bursts, ‘lion 
roars’ 

Mostly 
right-
handed 

40–
100 Hz 

10 km 0.5 Possibly field-
aligned 
electron beams 

a Some authors call all waves below 10 Hz ‘ULF waves’. b ‘1 Hz’ waves have frequencies of 
1 Hz in spacecraft frame, but higher in the plasma frame.  
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2.3. UPSTREAM WAVES IN THE LABORATORY 

2.3.1. Whistler waves. 

Whistler waves, or electron cyclotron waves, are one species of mode that can propagate 

in a plasma with an imposed magnetic field. This derivation is adapted from Fitzpatrick 

(2011). Consider homogenous, quasi-neutral plasma, in which both plasma species are at 

rest. For small perturbations, that is waves of small amplitude, we may apply a linear 

approximation: each wave supported by the system may be expressed as the sum of 

plane waves, each of the form 

𝐄𝐄 = 𝐄𝐄𝐤𝐤 exp 𝑖𝑖 𝒌𝒌 ∙ 𝒙𝒙− 𝜔𝜔𝜔𝜔 . (2.26) 

The plasma current is specified by 

𝐣𝐣 = 𝛔𝛔 ∙ 𝐄𝐄. (2.27) 

where 𝛔𝛔 is the plasma conductivity tensor. 

In the context of the plane wave functions, the differential operators may be replaced by 

𝜕𝜕
𝜕𝜕𝜕𝜕 → −𝑖𝑖𝑖𝑖,  and  𝛁𝛁 → 𝑖𝑖𝐤𝐤. (2.28) 

Insertion into the Maxwell equations gives 

𝑖𝑖𝐤𝐤 ∧ 𝐄𝐄 = −
!
𝑐𝑐 ∙−𝑖𝑖𝑖𝑖 ∙ 𝐁𝐁, and (2.29) 

𝑖𝑖𝐤𝐤 ∧ 𝐁𝐁 =
!𝜋𝜋
𝑐𝑐 𝛔𝛔 ∙ 𝐄𝐄+

!
𝑐𝑐 ∙−𝑖𝑖𝑖𝑖𝐄𝐄. (2.30) 

These equations must be satisfied for a wave (or wave component) of frequency 𝜔𝜔 to 

exist in the plasma. With some re-arrangement an explicit condition can be extracted. 

𝐤𝐤𝐤𝐤− 𝟏𝟏𝑘𝑘! +
𝜔𝜔!

𝑐𝑐! 𝟏𝟏+
𝑖𝑖!𝜋𝜋
𝜔𝜔 𝛔𝛔 ∙ 𝐄𝐄 = !. (2.31) 

Turning now to the case where a background magnetic field is imposed on the 𝑧𝑧-axis, 

with the wave vector 𝐤𝐤 propagating parallel to the field, a solution to (2.4) is supplied 

under the condition that 

𝑆𝑆 − 𝑁𝑁! −𝑖𝑖𝑖𝑖 !
𝑖𝑖𝑖𝑖 𝑆𝑆 − 𝑁𝑁! !
! ! 𝑃𝑃

𝐸𝐸!
𝐸𝐸!
𝐸𝐸!

= 𝟎𝟎. (2.32) 
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Here, 𝑁𝑁 is the unknown refractive index of the plasma and the electric field vector is 

expressed in component form, 𝐄𝐄 = 𝐸𝐸! ,𝐸𝐸! ,𝐸𝐸! . Further, cold plasma theory gives 

𝑆𝑆 = 𝑅𝑅 + 𝐿𝐿 !, 𝐷𝐷 = 𝑅𝑅 − 𝐿𝐿 !, 

𝑅𝑅 = !−
𝜔𝜔!"!

𝜔𝜔 + 𝜔𝜔!" 𝜔𝜔 + 𝜔𝜔!"
  , and (2.33) 

𝐿𝐿 = !−
𝜔𝜔!"!

𝜔𝜔 − 𝜔𝜔!" 𝜔𝜔 − 𝜔𝜔!"
  . (2.34) 

The right-handed wave solution is  𝑁𝑁! = 𝑅𝑅 with eigenvector 𝐸𝐸! , 𝑖𝑖𝐸𝐸! , !  and the left-

handed solution is 𝑁𝑁! = 𝐿𝐿 with eigenvector 𝐸𝐸! ,−𝑖𝑖𝐸𝐸! , ! . The term 𝑃𝑃 in (2.32) is a 

longitudinal mode I do not discuss further. The refractive index 𝑁𝑁 ties the frequency 

and wavenumbers together under the relation 𝑁𝑁 = 𝐍𝐍 , 𝐍𝐍 = 𝑐𝑐𝐤𝐤 𝜔𝜔. 

2.3.2. The dispersion equation for transmission through a collisional 

medium. 

The atmosphere through which our whistler modes are expected to propagate in the 

laboratory is quite different to that encountered in many experiments and indeed in 

space in general. For one, there are collisions; whistler waves are usually observed in 

collisionless media. However, the lower ionosphere of Venus is understood to support 

whistler waves despite the presence of collisions that act to damp the wave through Joule 

dissipation (Daniels et al., 2012; Strangeway, 1997, 2000). 

The presence of electron collisions affects the dispersion equation. One way to model 

this is to add a collision term to the dispersion equation modelling the transport of 

waves through the medium. For the purposes of modelling this transport, I assume that 

the plasma is now at a single temperature, that is, without the presence of the warm 

electrons from behind the shock front. In this case the wave dispersion curve becomes 

𝑐𝑐!𝑘𝑘!

𝜔𝜔! = !+
𝜔𝜔!"!

!𝜔𝜔𝜔𝜔𝑣𝑣!"
∙ 𝑍𝑍

𝜔𝜔 + 𝑖𝑖𝜈𝜈!! − 𝜔𝜔!"
!𝑘𝑘𝑣𝑣!"

,  (2.35) 

where 𝑍𝑍 𝜁𝜁  is the plasma dispersion function, 

𝑍𝑍 𝜁𝜁 =
!
𝜋𝜋

𝑒𝑒!!!

𝑡𝑡 − 𝜁𝜁  𝑑𝑑𝑡𝑡
!!

!!
;  (2.36) 
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𝑘𝑘 is the wave number, 𝜔𝜔 is the frequency of the radiation, 𝜈𝜈!! is the electron collision 

rate within the transmission medium, and the other symbols have their usual meanings. 

For the purposes of computing 𝑍𝑍(𝜁𝜁) it is more convenient to use an alternative form, 

𝑍𝑍 𝜁𝜁 = !𝑖𝑖 exp −𝜁𝜁! −𝑡𝑡! 𝑑𝑑𝑑𝑑
!"

!!
= 𝑖𝑖𝑖𝑖𝑒𝑒!!!erfc (−𝑖𝑖𝑖𝑖),  (2.37) 

where erfc 𝑧𝑧  is the complementary error function. This avoids the difficulty of branch 

cuts during the integration. 

2.3.3. The collisional dispersion equation cast into a non-dimensional 

form. 

Solving this equation numerically is quite intractable, due to the presence of large 

numbers such as 𝜔𝜔!"!  ~ !"!" , even with a modern computer package such as 

Mathematica—which claims to be comfortable manipulating numbers in excess of 

!"!"!" . (I believe the difficulty arises in the estimation of the integral in (2.37).) 

Therefore, it is helpful to recast equation (2.35) in a dimensionless form. I take each 

physical parameter and express it a scalar multiplier of a fixed physical value, viz.— 

𝑘𝑘 = 𝑘𝑘∗𝑘𝑘!,   𝜔𝜔 = 𝜔𝜔∗𝜔𝜔!,   𝜔𝜔!" = 𝜔𝜔!"∗ 𝜔𝜔!"!,   𝜔𝜔!" = 𝜔𝜔!"∗ 𝜔𝜔!"!,   𝜈𝜈!! = 𝜈𝜈!!∗ 𝜈𝜈!!!. 

   (2.38) 

The symbols appended with asterisks are dimensionless numbers, intended to be of 

order unity (or thereabouts); the symbols appended with a zero subscript are those 

holding the dimensions of the system. Careful choice in the latter will eliminate the 

presence of these large numbers from (2.35) entirely. As it will transpire that 𝜔𝜔!" is the 

problem, let us set 𝜔𝜔! ~ !"! Hz. 

The reason for requiring the other frequencies to be referenced against the same 

standard follows from a wish to retain the basic form of (2.35) under the transformation 

into a non-dimensional system. To illustrate that, consider the argument of the 

dispersion function 𝑍𝑍 in (2.35), expressed in the new dimensionless parameters. 

𝜔𝜔 + 𝑖𝑖𝜈𝜈!! − 𝜔𝜔!"
!𝑘𝑘𝑣𝑣!"

→
𝜔𝜔∗𝜔𝜔! + 𝑖𝑖𝜈𝜈!!∗ 𝜈𝜈!!! − 𝜔𝜔!"∗ 𝜔𝜔!"!

!𝑘𝑘∗𝑘𝑘!𝑣𝑣!"∗ 𝑣𝑣!"
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With a careful choice of the 0-suffixed parameters in both the numerator and the 

denominator, it will be possible to eliminate all such parameters leaving only the 

asterisked, non-dimensional variables. 

The equation finally is 

𝑘𝑘∗!

𝜔𝜔∗! = !+
!

𝜔𝜔∗𝑘𝑘∗𝑣𝑣!"∗
∙ 𝑍𝑍

𝜔𝜔∗ + 𝑖𝑖𝜈𝜈!!∗ − 𝜔𝜔!"∗

𝑘𝑘∗𝑣𝑣!"∗
.  (2.39) 

This can be solved numerically to find the damping rate due to collisions for a whistler 

wave travelling through a collisional medium. 

2.3.4. Mechanisms for exciting waves in the laboratory. 

Consider the shock propagating through our laboratory system as depicted in Figure 2.1. 

Matter flows from bottom to top, slowing at the shock front boundary, where it is 

heated. The system is immersed in a magnetic field, which is arranged parallel to the 

direction of shock travel. Because the shock is mediated by ions, if the mean free path of 

the electrons exceeds that of the ion population, shock-heated electrons may disperse a 

few mean free path lengths forward of the front, whereupon there is now a two-

temperature fluid in the electron population. The hot electron fluid also has a drift 

velocity with respect to the unshocked fluid. It will be demonstrated that this 

configuration is unstable to the emission of whistler waves in the forward direction, 

along the field lines. In the absence of a magnetic field, this effect does not occur. 

We assume the system is partially ionized, is homogeneous away from the shock front 

and is immersed in a uniform, straight magnetic field. The shock propagates in a 

direction parallel to the field lines. The electrons are magnetized; that is to say that they 

are able to complete partial Larmor orbits before being scattered by collisions, but in the 

laboratory the ions are not magnetized. 

The electron-electron mean free path will be found in our experiments to be of order the 

shock thickness. Therefore a minority component of hot electrons are able to diffuse 

ahead of the shock front and permeate the unshocked plasma ahead of the front. 
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Figure 2.1. A model for the shock system, in the frame where the shock is 

stationary. 

 

This two-component electron distribution gives rise to an MHD instability in the plasma, 

which acts to produce whistler waves directed upstream. To see this I turn to the analysis 

of S. Peter Gary (1985). Gary considers a beam of heated electrons drifting into a 

homogeneous cooler, collisionless, background plasma. The beam travels parallel to a 

straight magnetic field. The dispersion relation of the combined system is computed 

from linear theory, to find that the system is unstable in some conditions to a whistler 

growth mode. 

Therefore the system consists of three components: an ionic background, an electron 

background, and a hot, drifting electron component. In adapting the model to my 

system, the hot components are drifting because they originated from the downstream, 

shocked plasma. Once the distribution function of this three-component plasma is 

determined, its dispersion equation may be deduced, and the various allowed modes 
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evaluated for their stability. I shall show that, under certain parameter ranges, an 

upstream-propagating whistler mode arises and is unstable to a growth condition. 

For the 𝑗𝑗th species, the distribution function is (Gary, 1985) 

𝑓𝑓!
! 𝐯𝐯 =

𝑛𝑛!𝑇𝑇∥!

!𝜋𝜋𝑣𝑣!!
!
!𝑇𝑇!!

 exp −
𝑣𝑣! − 𝑣𝑣!!

!

!𝑣𝑣!!
−
𝑣𝑣!! + 𝑣𝑣!!

!𝑣𝑣!!
𝑇𝑇∥!
𝑇𝑇!!

 , (2.40) 

where, for species 𝑗𝑗, 𝑛𝑛! is the number density, 𝑇𝑇∥! is the parallel temperature, 𝑇𝑇!! is the 

perpendicular temperature, 𝑣𝑣! is the thermal speed, 𝑣𝑣!! is the species drift velocity, and 

𝑣𝑣!, 𝑣𝑣!, and 𝑣𝑣! are the velocity components. 

Now, if we look only at the transverse modes (i.e., modes propagating parallel with 

disturbances perpendicular to the field lines), consideration of the linearized Vlasov 

equation shows that the dispersion curves will satisfy 

𝜔𝜔! − 𝑘𝑘!𝑐𝑐! + 𝑘𝑘!𝑐𝑐! 𝑆𝑆!
± 𝐤𝐤,𝜔𝜔

!

= !, (2.41) 

where 𝑆𝑆!
± are the dimensionless conductivities of the individual components: explicitly 

𝑆𝑆!
± 𝐤𝐤,𝜔𝜔 =

𝜔𝜔!!

𝑘𝑘!𝑐𝑐! 𝜁𝜁!𝑍𝑍 𝜁𝜁!
± +

!
! !−

𝑇𝑇!!
𝑇𝑇∥!

𝑍𝑍! 𝜁𝜁!
± ; (2.42) 

𝑍𝑍 has the meaning given in (2.36) and 

𝑍𝑍! 𝜁𝜁 =
!
𝜋𝜋

𝑒𝑒!!!

𝑡𝑡 − 𝜁𝜁 !  𝑑𝑑𝑑𝑑
!!

!!
=  −! !+ 𝜁𝜁𝜁𝜁 𝜁𝜁 ; (2.43) 

with also the useful quantities 

𝜁𝜁! =
!
!𝑘𝑘𝑣𝑣!

𝜔𝜔 − 𝐤𝐤 ∙ 𝐯𝐯!! , 

𝜁𝜁!
± =

!
!𝑘𝑘𝑣𝑣!

𝜔𝜔 − 𝐤𝐤 ∙ 𝐯𝐯!! ± Ω! , and, 

𝑘𝑘 = 𝑘𝑘! . 

The ± sign refers to waves of right-handed (+) and left-handed (−) polarizations 

respectively, viewed along the field lines. 

Gary was concerned with beams where the parallel and perpendicular temperatures may 

be unequal, but in my experiments, the relatively weak magnetic field strength and the 

relatively high collisionality makes it unlikely that the quantity 𝑇𝑇! 𝑇𝑇∥ deviates much 
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from unity. Therefore the conductivity of each plasma component satisfies 

𝑆𝑆!
± 𝐤𝐤,𝜔𝜔 =

𝜔𝜔!!

𝑘𝑘!𝑐𝑐! 𝜁𝜁!𝑍𝑍 𝜁𝜁!
± . (2.44) 

For numerical stability I have found it is useful to normalize the dimensional quantities, 

under the scheme 𝜔𝜔 → 𝜔𝜔∗𝜔𝜔!  for all frequencies; 𝑘𝑘 → 𝑘𝑘∗𝜔𝜔! 𝑐𝑐 ; and for all speeds, 

𝑣𝑣 → 𝑣𝑣∗𝑐𝑐 , with 𝑐𝑐  the vacuum speed of light, where the asterisk denotes the 

dimensionless quantity. I set 𝜔𝜔! = !"! Hz. The form of (2.41) is not affected by the re-

scaling of variables; a longer discussion of this process is presented in section 2.3.3. 

In the case of the experiments I describe, the conductivity is dominated by the 

electronic contributions to the fluid with the ionic fraction becoming negligible. This 

essentially follows from the fact that 𝜔𝜔!" ≪ 𝜔𝜔!", and therefore contributions arising in 

the ionic component may be neglected. 

Nonetheless the practical evaluation of (2.41) is not entirely straightforward; the 

complementary error function in particular is sensitive to large values on the imaginary 

axis and can produce numbers not representable on 64 bit arithmetic hardware. 

I create a list of values of 𝑘𝑘∗, and use the commercially available  Mathematica software 

to find numerically the global minimum of the dispersion function given on the left 

hand side of (2.41) for each 𝑘𝑘∗ , with 100 kHz <  ℜ 𝜔𝜔 < 10 GHz  and ℑ 𝜔𝜔 <

10 GHz. I find that the dispersion function reaches within 10-8 of zero quickly, in which 

case I accept the value of  𝜔𝜔 as the solution for that value of  𝑘𝑘; or else it diverges. I 

discard the divergent quantities as not satisfying the equation; and in this manner 

construct a graph of 𝜔𝜔 against 𝑘𝑘. With the assistance of a modern sixteen-core machine, 

Mathematica takes about five minutes to create a graph of the function with 

approximately twelve hundred values of  𝑘𝑘  spread logarithmically over the expected 

range. An example of such a graph is given in Figure 2.2. 

Figure 2.2 shows a solid curve representing the real part of the dispersion function; 

plotting the wave frequency 𝜔𝜔 against the wave number  𝑘𝑘. There are also two dashed 

curves showing the imaginary part of the dispersion curve; the curve with the shorter 

dashing shows regions of growth, whereas the longer curve shows damping regions. In 

the graph in this case, there is a region where strong growth would be expected, 

corresponding to a frequency of about 60 MHz. 
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I repeat this analysis over several mean free path lengths, dropping the averaged hot 

electron fraction with each penetration length. After five ‘layers’ the instability has 

dropped below an excitation threshold of approximately 100 e-folding times per second. 

Whether this process can cause waves to be pushed upstream is a separate matter; for the 

waves to propagate away from the shock their phase velocity must exceed the shock 

speed and therefore the Alfvénic speed by some distance. 

 

 

Figure 2.2. The dispersion curve, in a thin slice ahead of a shock, as 

estimated from a laboratory experiment. A mode unstable to rapid growth is 

visible. 
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2.4. CHAPTER SUMMARY 

The experiment is modelled as an expanding shock front propagating through the 

atmosphere. The region in front of the shock is considered to include a ‘beam’ of shock-

heated electrons diffusing from the downstream, hot side of the shock. The region is 

proposed to exist for several mean free paths, with decreasing beam density as calculated 

from the mean free path estimates. The presence of a hot beam of electrons propagating 

along a field line is unstable to whistler wave emission; the dispersion curve and the 

instability growth rate are calculated. Beyond this region the damping characteristic of 

the plasma can be considered; that is, the atmosphere between the excitation region and 

the probe is considered to be a transmission region. The plasma is collisional; and this 

damps the propagation of these waves. The physical parameters of these regions are 

tuned by measurements taken during the experiment (but bdot probe measurements are 

not used in this tuning).



 

 40 

3. INSTRUMENTATION 

The results of this thesis are largely contingent on the quality of the experimental data 

collected supporting them; and that quality flows from an understanding of the 

measuring instruments. In particular my results are dependent on the limitations of 

‘bdot’ probes, which are a kind of magnetic field probe. Therefore, in this chapter I 

discuss in some detail the nature and design of bdot probes, including their limitations 

and shortcomings. I also review optical interferometry of the Nomarski type, from 

which inference of electron densities can be made; and I look at electron spectrometry 

techniques, for estimating the energy profile of free electrons. My aim is to understand 

how estimates of physical quantities can be extracted from the data they yield, and how 

reliable those estimates can be. 

The interferometry data will be used to infer the electron number densities, with both 

spatial and temporal resolution (subject to the constraints that I discuss). The profile 

and evolution of the electron densities is used to constrain the computational models 

that I later use to understand my experiments. The bdot probes collect magnetic field 

data, resolved with time, and under appropriate signal processing, they detect whistler-

like waves in one class of experiment. The electron spectrometer gives me some idea of 

the ‘background’ electron spectrum present in the experiments. 

3.1. BDOT PROBES AND MAGNETIC FIELDS 

A good deal of this thesis concerns magnetic field measurements collected by means of a 

‘bdot probe’ (the pronunciation of ‘bdot’ is /ˈbiː.dɒt/). For that reason it is expedient to 

give a description of the design of the probe, to review how physical values are deduced 

from its measurements, and to discuss the limits of the probe’s measuring capabilities. 
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The information in this part is sourced in particular from Huddlestone and Leonard 

(1965, pp. 72–79), Phillips and Turner (1965), and Hutchinson (2002, pp. 11–13); and 

for the specific design of probe used here, Everson et al. (2009). 

3.1.1. The basic design of a bdot probe. 

In Figure 3.1, I provide a photograph of the external chassis of a bdot probe, and in 

Figure 3.2 a schematic diagram of the entire bdot probe is presented (kindly supplied by 

E. Everson). The probe tip, on the left in the photograph and in the diagram, houses the 

element that detects changes in the magnetic field. The black mark circling the tip in the 

photograph marks the position of the sensitive element. The thicker end, on the right, 

contains connections for external cabling; and the long shaft between the tip and the 

external connection enables the probe to be placed some distance from the thick, 

external wiring—which would be inconvenient in the tight confines of a laser-plasma 

experiment. The shaft also protects the fragile internal wiring. The black markings on 

the case in the photograph assist with orientation and proper positioning of the probe.  

Inside the tip, the three-axis bdot probe contains a set of three conducting coils, with 

each coil oriented such that its axis is orthogonal to the axes of the other two coils 

Actually, because the coils are counter-wound in the real probe, there are six coils (and a 

 

Figure 3.1. A photograph of a bdot probe, with a centimetre scale. 

The probe is shown placed atop a metallic packaging block. The tip 

containing the core is on the left. This photograph was taken by J. Cross. 
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dummy coil), but it is convenient for the moment to consider a slightly simpler design 

with only three sensitive coils. Therefore together the three axes, one through the face of 

each coil, form the axes of a three-dimensional Cartesian coordinate system. The coils 

are electrically independent, and are co-located by being wrapped around a single cube 

of known magnetic permeability. (Everson et al., 2009.) This is depicted in Figure 3.3. 

The probe tip consists of a central cube; a coil is wound around each of the three axes, to 

give three coils in total. Two of those three coils are shown in this projection; in our 

experiments the cube has a face side of approximate area of 1 mm2, or in the case of an 

alternative probe design, 3 mm2. 

 

 

Figure 3.2. A schematic of the entire bdot probe package. 

Taken from Everson et al. (2009), with the leading author’s gracious 

permission. 

 

Figure 3.3. A schematic of the bdot probe tip. 
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The conducting coils are attached to appropriate electronics where the voltage induced 

by the magnetic field may be measured with the motion of time. From knowledge of the 

geometry of the coils, in particular the areas they each enclose and their electrical 

reactances, the change in the magnetic field (hereafter ‘𝐁𝐁 field’) passing through each 

coil may be deduced. The voltage measured may be integrated over time to give the 𝐁𝐁 

field as a function of time; at least up to an integration constant which represents the 

initial field—in practice this is usually zero. The use of three orthogonal coils enables the 

spatial orientation of the 𝐁𝐁 field to be recovered. 

3.1.2. Magnetic coils and their basic properties. 

The probe relies on the principle of magnetic induction; that is, a change in the local 

magnetic field produces an electromotive force (‘e.m.f.’) in the conducting coils. This is 

a manifestation of the Maxwell–Faraday law, 𝜕𝜕𝐁𝐁 𝜕𝜕𝜕𝜕 = −𝛁𝛁 ∧ 𝐄𝐄 (whence the simple 

etymology ‘bdot probe’ arises). To apply this to a simple wire loop, I follow the 

derivation in Hutchinson (2002, pp. 11–13) by invoking the Kelvin–Stokes theorem to 

rewrite Faraday’s law in the integral formulation, i.e., 

𝐄𝐄 ∙ 𝐝𝐝𝐝𝐝 = −
𝜕𝜕
𝜕𝜕𝜕𝜕𝐁𝐁 ∙ 𝐝𝐝𝐝𝐝!!!

, (3.1) 

where the integral on the right-hand side is performed over the contiguous two-

dimensional region Σ ⊂ ℝ! (here that region is assumed constant with time) and the 

left-hand side integral is performed on the closed curve 𝜕𝜕Σ forming the boundary of the 

said region. 𝐝𝐝𝐝𝐝 is an infinitesimal element of area projected normal to Σ at every point 

at which it is evaluated.  

Suppose now that 𝜕𝜕Σ is embedded in the conducting coil, so that Σ is the area enclosed 

by the coil: see Figure 3.4. The coil is shown as a simple loop, surrounding a region Σ, in 

which a non-constant magnetic field lies. In a real design, the area between the 

connecting wires is kept as small as possible, perhaps by twisting the connecting wires 

together. However, that region still counts, so it is shown in the figure. For now I 

assume for simplicity that the coil acts as an open circuit, neglecting is reactance. Then, 

𝜕𝜕Σ consists of two parts, the part within the coil (including the connecting wires) and 

an arbitrarily short section linking the ends of the open coil. In practise, this ‘linking’ 
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section occurs inside the voltage measuring electronics. Using the principle of linearity 

to express the total integral as the sum of those geometrical components, the left-hand 

side of (3.1) becomes 

𝐄𝐄 ∙ 𝐝𝐝𝐝𝐝
!!

= 𝐄𝐄 ∙ 𝐝𝐝𝐝𝐝
!"#$

+ 𝐄𝐄 ∙ 𝐝𝐝𝐝𝐝
!"#$

= !+ 𝑉𝑉! = 𝑉𝑉!. (3.2) 

The coil itself is a conductor, so the electric field in it may, to first order, be regarded to 

vanish. The electric field between the ends of the coil is the voltage induced across it by 

the 𝐁𝐁 field—and this (𝑉𝑉! in Figure 3.4) is the potential we measure. 

Reviewing the right-hand side of (3.1), Σ is the area enclosed by the total coil-wire 

structure. Let us suppose the connecting-wire area is negligible. If the coil consists of 𝑁𝑁 

identical loops each of area 𝐴𝐴, this is a total area of 𝑁𝑁 ∙ 𝐴𝐴; and, taking 𝐵𝐵 to be the mean 

magnetic field through Σ, projected normal to Σ, the result 𝑉𝑉! = 𝑁𝑁 ∙ 𝐴𝐴 ∙ 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 follows. 

With re-arrangement and under temporal integration we obtain 

𝐵𝐵 𝑡𝑡 =
!
𝐴𝐴𝐴𝐴 𝑉𝑉! 𝑡𝑡 𝑑𝑑𝑑𝑑

!

!!
. (3.3) 

In many applications it will be found to be impractical to perform the measurement 

over the entirety of the preceding time, and therefore I will assume the initial value 

𝐵𝐵(!) is known (usually it is zero), and we rewrite this equation as 

 

Figure 3.4. Deriving the voltage induced across a coil in a changing 

magnetic field. 
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𝐵𝐵 𝑡𝑡 =
!
𝐴𝐴𝐴𝐴 𝑉𝑉! 𝑡𝑡 𝑑𝑑𝑑𝑑

!

!
+ 𝐵𝐵 ! . (3.4) 

It should be underscored that this derivation relied on the principle that there was no 

electric field within the coil conductor itself. This is true for a slowly varying 𝐁𝐁 field, but 

in the circumstances I describe later in this thesis it is necessary to take the reactance of 

the coil into consideration. 

3.1.3. The elimination of electric effects. 

The design presented in section 3.1.2 is the simplest bdot probe; and upon it several 

improvements can be made. A principle problem with implementing such a design in 

laser-plasma experiments as I later describe is the presence of large electrical fields, 

arising both directly from the laser-plasma interaction and possibly later in the ensuing 

plasma dynamics. These electric fields also act to drive currents in the bdot coils, and the 

distinction between electric and magnetic effects cannot be made in the previous-given 

design. (See in particular Everson et al., 2009.) 

To remedy this shortcoming, we use twin-twisted, counter-wound wire. That is to say, 

the single wire of each coil is replaced with two electrically independent wires, twisted 

together: such that there are now two coils per axis. In this case the presence of an 

external electric field acts equally on charges present in the coil, and, because of the 

counter-directed winding, a voltage of the same polarity arises on each coil on the axis 

coil-pair. However, the magnetic field induces a voltage of opposite polarity. Therefore 

subtracting one from the other gives twice the magnetic field and eliminates 

contributions arising from an external electric field. 

3.1.4. The full circuit equation for a single coil. 

In the derivation given for a simple coil in section 3.1.2 above, the effect of electric fields 

arising within the coil was neglected. In fact, the coil has some degree of reactance and it 

is expedient to consider this particularly when looking at measurements of high 

frequency fields (meaning, in the present case, 𝜔𝜔 ≳ 30 MHz). Following Everson et al. 

(2009) and Huddlestone and Leonard (1965), the bdot probe coil may be modelled as a 

circuit as in Figure 3.5. The 𝐁𝐁 field is understood to induce a voltage 𝑉𝑉!", and the 



BDOT PROBES AND MAGNETIC FIELDS 46  
 

 

measured voltage across the coil is 𝑉𝑉!! . The loop has internal resistance 𝑟𝑟 , self-

inductance 𝐿𝐿, capacitance 𝐶𝐶, and suffers a load resistance 𝑅𝑅. The flow of three currents 

𝑖𝑖!, 𝑖𝑖!, and 𝑖𝑖! are shown. 

We suppose the magnetic field induces a voltage 𝑉𝑉!", sufficient to drive a current 𝑖𝑖! 

through the inductor 𝐿𝐿 (against its internal resistance 𝑟𝑟). Applying Kirchhoff’s voltage 

law (the sum of all e.m.f.s in a closed loop is zero) around the outer loop and 

understanding that the supplied voltage 𝑉𝑉!" = 𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑, we find that 

𝐴𝐴𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑖𝑖!𝑟𝑟 + 𝐿𝐿

𝑑𝑑𝑖𝑖!
𝑑𝑑𝑑𝑑 + 𝑖𝑖!𝑅𝑅.  (3.5) 

Now, by applying Kirchhoff’s current law to the central node on the top rail, above the 

capacitor, we are constrained by 𝑖𝑖! = 𝑖𝑖! + 𝑖𝑖! . Inspection of the circuit components 

reveals that 

𝑖𝑖! = 𝐶𝐶
𝑑𝑑𝑉𝑉!!
𝑑𝑑𝑑𝑑    and   𝑖𝑖! = 𝑉𝑉!!𝑅𝑅.  (3.6) 

Since the coil is one of a counter-wound pair, the finite mutual inductance 𝑀𝑀 between 

the two must be included, and we replace the inductance 𝐿𝐿 in (3.5) with the total 

inductance 𝐿𝐿 +𝑀𝑀, where 𝐿𝐿 is now the self-inductance of the individual coil. After some 

rearrangement, we have the circuit equation for an individual bdot probe coil. 

 

  

Figure 3.5. The electrical model of a single bdot coil. 
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𝐴𝐴𝐴𝐴
𝑑𝑑
𝑑𝑑𝑑𝑑𝐵𝐵 𝑡𝑡 = !+

𝑟𝑟
𝑅𝑅 𝑉𝑉!! 𝑡𝑡 +

𝐿𝐿 +𝑀𝑀
𝑅𝑅 + 𝑟𝑟𝑟𝑟

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑉𝑉!! 𝑡𝑡 + 𝐿𝐿 +𝑀𝑀 𝐶𝐶

𝑑𝑑!

𝑑𝑑𝑡𝑡! 𝑉𝑉!! 𝑡𝑡   

  (3.7) 

We expect 𝑟𝑟 𝑅𝑅~ ! in a practical design. Further, we define the coil’s time constant 

𝜏𝜏 = (𝐿𝐿 +𝑀𝑀)/𝑅𝑅, which is a measure of how quickly an induced current will decay and 

therefore 𝜏𝜏 governs the temporal response of the coil. Applying these considerations and 

integrating over the measurement time gives a correction to (3.4); 

𝐵𝐵 𝑡𝑡 =
!
𝐴𝐴𝐴𝐴 𝑉𝑉!! 𝑡𝑡 𝑑𝑑𝑑𝑑 + 𝜏𝜏 + 𝑟𝑟𝑟𝑟 𝑉𝑉!! 𝑡𝑡 + 𝑅𝑅𝑅𝑅𝑅𝑅

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑉𝑉!! 𝑡𝑡 . (3.8) 

Here I have suppressed the field at zero time, and the integral is understood to be over 

the measurement time preceding the time point 𝑡𝑡. The differences between (3.8) and 

(3.4) are associated with the fact that, as the coil has a non-zero inductance, it opposes 

changes to the e.m.f.s arising within it. As such, the instantaneous voltage represents a 

contribution to the B field, at least for high frequency fields. The final term arises 

because in the limit of very high frequency fields, the capacitor in Figure 3.5 will act as a 

short. 

During the calibration of the probe, it becomes clear that the self-capacitance is 

negligible over the frequency range of interest (𝜔𝜔 ≪ ! 𝑅𝑅𝑅𝑅 ≪ ! 𝑟𝑟𝑟𝑟). In this limit, we 

approximate 𝐶𝐶 → ! and the expression for finding the relevant 𝐁𝐁 field projection from 

the measured voltage is 

𝐵𝐵 𝑡𝑡 =
!
𝐴𝐴𝐴𝐴 𝑉𝑉!! 𝑡𝑡 𝑑𝑑𝑑𝑑 + 𝜏𝜏𝑉𝑉!! 𝑡𝑡 . (3.9) 

To see the effect of the 𝐁𝐁 field frequency on the voltage response more explicitly, it is 

helpful to recast (3.7) in Fourier space with 𝑉𝑉!!(𝜔𝜔) as a function of 𝐵𝐵 𝜔𝜔 . 

𝑉𝑉!! 𝜔𝜔 = 𝐴𝐴𝐴𝐴
𝜔𝜔! 𝜏𝜏 + 𝑟𝑟𝐶𝐶 + 𝑖𝑖 𝜔𝜔 − 𝑅𝑅𝑅𝑅𝑅𝑅𝜔𝜔!

!− 𝑅𝑅𝑅𝑅𝑅𝑅𝜔𝜔! ! + 𝜔𝜔! 𝜏𝜏 + 𝑟𝑟𝑟𝑟 ! 𝐵𝐵(𝜔𝜔), (3.10)  

or, with 𝐶𝐶 → !, 

𝑉𝑉!! 𝜔𝜔 = 𝐴𝐴𝐴𝐴
𝜔𝜔 𝜔𝜔𝜔𝜔 + 𝑖𝑖
!+ 𝜔𝜔!𝜏𝜏! 𝐵𝐵(𝜔𝜔). (3.11) 

At low frequencies (𝜔𝜔𝜔𝜔 ≪ !), the response amplitude is proportional to frequency, but 

at high frequencies (𝜔𝜔𝜔𝜔 ≫ !) the frequency dependence is suppressed. In the design of a 

practical probe, including the ones I used in the experiments discussed later, 𝜏𝜏 ~ 30 ns 

and so this transition occurs at around 𝜔𝜔 ~ 30 MHz. 
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3.1.5. The full circuit equation for a counter-wound coil. 

Each of the three real coils consists of two loops wound together, and differentially 

amplified, as discussed in section 3.1.3. The winding process ensures that the two coils 

in each pair have the same geometry and therefore the same electrical properties, and 

they do not otherwise differ but by the position of the electrical ground and their 

polarity. So, under these assumptions, the potential across the second loop is 𝑉𝑉!! =

−𝑉𝑉!!, and therefore the expression for 𝐵𝐵 𝑡𝑡  in terms of the differentially amplified 

voltage 𝑉𝑉! = 𝑔𝑔 𝑉𝑉!! − 𝑉𝑉!!  is 

𝐵𝐵 𝑡𝑡 =
!

!𝑔𝑔𝑔𝑔𝑔𝑔 𝑉𝑉! 𝑡𝑡 𝑑𝑑𝑑𝑑 + 𝜏𝜏𝑉𝑉! 𝑡𝑡 , (3.12) 

where 𝑔𝑔 is the amplification factor. There are alternative integration schemes to that of 

(3.12) (see Everson et al., 2009), but in practise I have found that the results they give 

do not differ in any material way from the straightforward integration. Therefore, this is 

the scheme that I use in this thesis. 

3.1.6. Calibrating the probe. 

Bdot probes are handmade devices, and the variable geometry arising from the manual 

winding of each coil gives rise to errors to the design values of 𝐴𝐴, 𝜏𝜏, and 𝐶𝐶 for each of 

the three coils on an individual probe, as well as between different probes. In particular 

it will be seen immediately that a small error in the area enclosed 𝐴𝐴  will render 

measurements of the magnitude of the 𝐁𝐁 field quite inaccurate, but, because of (3.11), at 

high frequencies the dependence on 𝜏𝜏  also becomes increasingly pertinent; such a 

misestimation would lead to errors in comparing the relative amplitudes of different 

frequency components. 

The small size of the probe means that it is not practical to measure the geometry 

directly, so instead the probe is placed in an oscillating 𝐁𝐁 field of known orientation, 

magnitude and frequency, and its response measured. The field is generated by a 

Helmholtz coil powered by a network analyser; at higher frequencies (above 500 kHz) 

the inductance of the Helmholtz coil means that it is necessary to use a straight wire to 

generate the field instead.  
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With a known 𝐁𝐁 field applied along the axis to be measured, the probe’s response in 

Fourier space may be characterized as 

𝑉𝑉! 𝜔𝜔 = !𝑔𝑔𝑔𝑔𝑔𝑔
𝜔𝜔 𝜔𝜔𝜔𝜔 + 𝑖𝑖
!+ 𝜔𝜔!𝜏𝜏! 𝐵𝐵!"" 𝜔𝜔 e!"!!, (3.13) 

where 𝑉𝑉! 𝜔𝜔  is the measured voltage arising across the coil pair, 𝐵𝐵!"" 𝜔𝜔  is the applied 

magnetic field in which the coil is immersed, and e!"!! represents the signal delay 𝜏𝜏! 

between the applied field 𝐵𝐵!"" and the measuring electronics. In the limits of 𝜔𝜔𝜔𝜔 ≪ ! 

and 𝜔𝜔𝜏𝜏! ≪ !, the first derivative of imaginary component of (3.13) is 

𝜕𝜕
𝜕𝜕𝜕𝜕  ℑ 𝑉𝑉! 𝜔𝜔 =  !𝑔𝑔𝑔𝑔𝑔𝑔, (3.14) 

i.e., 𝐴𝐴 may be determined from the slope of the imaginary component of (3.13). 𝜏𝜏 may 

be then found by fitting measurements of 𝑉𝑉! 𝜔𝜔  against 𝐵𝐵!"" 𝜔𝜔  in (3.13). 

3.1.7. The shortcomings and the limitations of the probe; the sources 

for error. 

The calibration procedure gives rise to one particular set of errors: suppose the absolute 

error in the measured value of 𝐴𝐴 (the area of a coil) is 𝛿𝛿𝛿𝛿 (i.e., 𝐴𝐴 → 𝐴𝐴 + 𝛿𝛿𝛿𝛿).  From 

(3.12), the relative error in the inferred value 𝐵𝐵! 𝑡𝑡  compared to the true value of the 

applied magnetic field 𝐵𝐵! 𝑡𝑡  would then be 

𝐵𝐵! 𝑡𝑡
𝐵𝐵! 𝑡𝑡

=  !+
𝛿𝛿𝛿𝛿
𝐴𝐴  ; (3.15) 

so the error is merely multiplicative on the final result. If the relative error varies by coil, 

then three-dimensional resolution of a signal’s directionality could be affected. 

Errors in the value of 𝜏𝜏 will bias the relative magnitudes of frequency components across 

the spectrum. Suppose the error on 𝜏𝜏  is 𝛿𝛿𝛿𝛿  so that 𝜏𝜏 → 𝜏𝜏 + 𝛿𝛿𝜏𝜏 . Rearranging (3.11), 

which is already in frequency space,  

𝐵𝐵 𝜔𝜔 =
𝑉𝑉!! 𝜔𝜔
𝐴𝐴𝐴𝐴 ×

𝜔𝜔 𝜏𝜏 + 𝛿𝛿𝛿𝛿 − 𝑖𝑖
𝜔𝜔  ; (3.16) 

and so, adopting the notation of inferred field and true applied field from above, the 

relative error in frequency space is 

𝐵𝐵! 𝜔𝜔
𝐵𝐵! 𝜔𝜔

=
𝜔𝜔 𝜏𝜏 + 𝛿𝛿𝛿𝛿 − 𝑖𝑖

𝜏𝜏𝜏𝜏 − 𝑖𝑖 . (3.17) 
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The real part of (3.17) is plotted in Figure 3.6. The central, flat line is the zero-error 

curve, for reference. Below 10 MHz, even an order-of-magnitude error on 𝜏𝜏 (dash-dot 

line) has an effect smaller than ten per cent on the inferred B field. However, between 

10 MHz and 100 MHz, the effect of the error rises gradually over the frequency 

spectrum to about fifty per cent at 100 MHz. The phase is not affected (not shown). If 

we expect the error in our value of 𝜏𝜏 to be less than five per cent, then it does not seem 

to be a big problem. 

The probe’s physical body perturbs the flow of the plasma. Therefore, if the source of 

magnetic field signals is embedded in a shock front or flow of matter, the interaction of 

the probe with the plasma flow can contaminate the results. Care should be taken when 

interpreting data that possibly include sources very close to the probe.  

 

 

Figure 3.6. The effect of a small error in the probe time constant on the 

probe’s frequency response. 
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3.1.8. The probe bandwidth, and filtering of the data. 

Other reports have suggested that the bandwidth of bdot probes of the design used here 

is below 100 MHz, with the probe unable to distinguish events occurring faster than 

about 40 ns (Gregori et al., 2012). During the calibration of the probe, the raw 

frequency response of the probe is revealed. A graph showing the frequency response in 

the calibration of this probe by J. Meinecke is given in Figure 3.7; it shows the response 

function of the probe to a sinusoidal magnetic field produced around the probe by a 

Helmholtz coil. In the graph, the frequency response is smooth between about 200 kHz 

and 10 MHz—and the response curve is rising (on the log scale) suggesting a peak 

sensitivity at about 20 MHz. The curve is no longer smooth but suffers only slight 

variations until 100 MHz, whereupon it behaves erratically for the remainder of the 

frequency scale. Although at first blush it might be thought possible to deduce the 

response function given sufficient resolution on this curve, and so unwind this effect, in 

all likelihood this behaviour is due to the dominance of nonlinearities, and therefore I 

treat data above 100 MHz as unreliable. 

When computing the total B field as function of time, I exclude frequency 

contributions lower than 300 kHz by applying a high-pass first order Butterworth filter 

on the data of cut-off frequency 300 kHz.  

 

 

Figure 3.7. The frequency response of the bdot probe to sinusoidal signals 

(J Meinecke, private communication, 2012). 
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In the experiments described later, all the bdot probes used were constructed and 

calibrated by C. Murphy now at the University of York and by J. Meinecke at the 

University of Oxford. I wish to record my gratitude to those and to G. Gregori for the 

supply of these probes. 

3.2. INTERFEROMETRY AND ELECTRON DENSITY 

I use a Nomarski interferometer to make estimates of the electron density profile ahead 

and behind the laser-produced shocks. Electron density is a key parameter in our 

experiments; it indicates the existence and the progression of a shock, if any; and it 

constrains simulations. Interferometry exploits the fact that changes in the plasma 

permittivity, which principally arise from changes in the local electron density, retard or 

accelerate the phase velocity of electromagnetic waves passing through it. Comparison 

with vacuum-propagating reference waves enable the degree of retardation to be 

measured, and, under certain symmetry assumptions, the electron density to be inferred. 

This measurement has a number of advantages, such as the fact that the probe is non-

perturbative—it does not affect the plasma through which it propagates—and it may be 

temporally resolved to accuracy constrained only by the coherency of the probe beam 

light source, the quality of the intervening optics, and the integration period of the 

image recording systems. In the present case the measurements achieve a time resolution 

better than 1 ns. Further, we are able to produce a two-dimensional image rather than a 

single spatial point measurement. However there are limitations—in particular, that the 

measurement is not a true 2D slice but an integrated projection of the density along the 

line of sight of the probe. The mathematics of the inversion also entails assumptions 

about the symmetry of the plasma, and an assumption that the probe light is not 

angularly refracted as it passes through the system. 

In this section, I show how the interferometer works, I explain how the data can be 

analysed, and I elucidate some of these limitations. I rely on Huddlestone and Leonard 

(1965, pp. 431–436), Benattar et al. (1979), Ovsyannikov (2000, pp. 59–87, 165–177), 

Hutchinson (2002, pp. 104–141) and Gregory (2007). 
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3.2.1. Light waves in plasmas: density and refraction. 

The passage of electromagnetic waves propagating through the plasma is affected by the 

local plasma permittivity; indeed I have already discussed this in part 2.3, in the context 

of (relatively) low frequency electromagnetic waves, but here I turn my attention to 

radiation in the optical régime.  

In principle, because we have magnetic fields present, a meticulous analysis of this 

problem requires us to begin from the Appleton–Hartree for the refractive index, 

𝑁𝑁! = !−
𝑋𝑋 !− 𝑋𝑋

!− 𝑋𝑋 − !
!𝑌𝑌

! sin! 𝜃𝜃 ± !
!𝑌𝑌

! sin! 𝜃𝜃
!
+ 𝑌𝑌! !− 𝑋𝑋 ! cos! 𝜃𝜃

!
!
 , 

  (3.18) 

with 𝑁𝑁 = 𝑘𝑘𝑘𝑘/𝜔𝜔  the refractive index, 𝑘𝑘  the wave vector of the radiation, 𝜔𝜔  the 

frequency of the radiation, 𝑋𝑋 = 𝜔𝜔!"! /𝜔𝜔!, 𝑌𝑌 = 𝜔𝜔!"/𝜔𝜔, and 𝜃𝜃 the angle of propagation 

between the applied 𝐁𝐁 field and the wave vector. Indeed, because the plasma deliberated 

here is non-uniform, were the 𝐁𝐁 fields of relevance, it might seem necessary to use a full-

wave approach. However, in the cases under immediate consideration, the radiation is in 

the visible part of the electromagnetic spectrum, and the 𝐁𝐁 field is typically of order 

100 G. Therefore 𝑌𝑌!"# ~  !"!  !"!" ≪ ! and I discard quantities arising in the square 

of  𝑌𝑌. In this condition, (3.18) may be simplified a little; 

𝑁𝑁! = !−
𝜔𝜔!"!

𝜔𝜔! = !−
𝑛𝑛!
𝑛𝑛!

 , (3.19) 

where the critical density for light of frequency 𝜔𝜔 is 𝑛𝑛! = 𝜔𝜔!𝑚𝑚!𝜖𝜖!/𝑒𝑒!. 

From knowledge of the refractive index we may compute the total phase lag between 

two initially in phase, coherent beams; one passing through the plasma and one through 

vacuum (or, in the actual experiments, near vacuum), both traversing paths of equal 

length. The principle is that any change in phase (𝛥𝛥𝜑𝜑) between the two arises because of 

the plasma, and it may be seen that  

𝛥𝛥𝛥𝛥 = (𝑘𝑘!"#$%# − 𝑘𝑘!) 𝑑𝑑𝑑𝑑
!"#$

= 𝑁𝑁 − !
𝜔𝜔
𝑐𝑐  𝑑𝑑𝑑𝑑

!"#$
 

=
𝜔𝜔
𝑐𝑐 !−

𝑛𝑛!
𝑛𝑛!
− ! 𝑑𝑑𝑑𝑑

!"#$
, (3.20) 
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where in each case the integral is taken over the line of sight from the detector; that is 

the beam optical path. The goal of the interferometry system is to measure 𝛥𝛥𝛥𝛥 so that 

𝑛𝑛! may be inferred. 

3.2.2. The Nomarski interferometer. 

A schematic of the Nomarski-style interferometer is given in Figure 3.8. The probe light 

enters at the left, expanded to the desired sampling cross section and collimated. It 

passes through a linear polarizer, set here at a nominal orientation of 90°. The beam 

continues, with the upper half passing through the plasma; the design is such that the 

lower half evades any plasma. The beam then passes through a Wollaston prism, which 

splits the beam into two orthogonally polarized components, each propagating at a 

slight angle to the other (in the diagram this separation is exaggerated). A final polarizer 

(or ‘analyser’) interferes the referencing and sampling components together, producing 

an interferogram, and this may be passed to an imaging system. The key distinction of a 

Nomarski interferometer is that an undisturbed portion of the beam acts as a phase 

reference for the sampling component of the beam. This simplifies the design somewhat 

as it is not necessary to have two sets of optics for two different beam paths. 

In order to interfere the reference and the sampling portions of the beam, the Wollaston 

prism is inserted into the beam path. The prism comprises two birefringent elements cut 

and glued at an angle, contrived such that two images of mutually orthogonal 

 

Figure 3.8. The passage of light through a simplified Nomarski-style 

interferometer. 
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polarization are emitted, propagating almost parallel to each other, but for a slightly 

diverging angle. In this case that separation angle is 1° or 2°. In some Wollaston prisms 

designed for high-intensity laser light, the elements are not glued. 

After further propagation of the two beams at this divergence, not so far that the images 

have drifted completely apart but rather far enough that the ‘top’ part of one beam 

overlaps with the ‘bottom’ of part of the other, the reference and sampling components 

are together; and their relatively orthogonal polarizations means that their place of 

interference can be set by the position of the analyser. 

The result is an interference pattern consisting of ‘fringes’, alternating light and dark 

regions where construction and destructive interference occurs. If there is no plasma, the 

optics are arranged such that the phase difference 𝛥𝛥𝜑𝜑 is swept from top to bottom, i.e., 

for image coordinates 𝑥𝑥,𝑦𝑦 , 𝛥𝛥𝜑𝜑!"# 𝑥𝑥,𝑦𝑦 ∝ 𝑦𝑦. Such an image forms a reference; the 

data image (the one with the plasma) is taken without disturbing the optics. Then the 

reference fringe pattern is subtracted from the data fringe pattern to find 𝛥𝛥𝜑𝜑 𝑥𝑥,𝑦𝑦 . 

3.2.3. The inference of the electron density by Abel’s method. 

The measurement we make is integrated over the plasma in the line-of-sight of each 

detector pixel. In this approximation, each line-of-sight is a straight chord passing 

through the plasma (i.e., the effect of refraction is neglected). The simplest analysis 

would presuppose the density were constant on this chord; with knowledge of the chord 

length the density could be found; this seems quite unreasonable a supposition to hold. 

Instead we proceed with the assumption that the plasma exhibits cylindrical symmetry 

(a condition fulfilled in approximation), so that we may apply the method of Niels 

Henrik Abel2 to transform from the integrated measurement of phase to the local 

electron density, as a function of the plasma radius. 

The Abel ‘forward’ transform is shown in Figure 3.9. The figure shows a slice through 

the 𝑦𝑦-axis of a cylindrically symmetric density function 𝑓𝑓. Darker grey corresponds to 

                                                   
 
2 A common hazard of being a brilliant mathematician is the propensity to die young: 
Abel died at the age of twenty-six. One of his final submissions was entitled ‘a general 
solution for the integration of all differential formulas’; unfortunately it was lost by a 
reviewer and has never been found. 
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greater density. A line of sight is shown as a straight, dotted grey line through the 

distribution, landing on the detector. The detector and the line of sight are orthogonal. 

Note that, if the line has its closest-approach to the centre of the distribution at radius 

𝑥𝑥, then the line samples every point 𝑓𝑓 𝑟𝑟 > 𝑥𝑥,𝑦𝑦  twice. 

From Figure 3.9, we see that the detector will measure 𝑓𝑓 𝑟𝑟,𝑦𝑦  by integrating over the 

line 𝑧𝑧. Let us label the measurement of  𝑓𝑓 at the detector as 𝐹𝐹 𝑥𝑥,𝑦𝑦 . The forward Abel 

transform is therefore 

𝐹𝐹 𝑥𝑥,𝑦𝑦 = 𝑓𝑓 𝑥𝑥! + 𝑧𝑧!,𝑦𝑦  𝑑𝑑𝑑𝑑
!

!!
. (3.21) 

where 𝑥𝑥 and 𝑧𝑧 are measured from the cylinder origin and 𝑦𝑦 is the cylinder height out of 

the page. The derivation is independent of 𝑦𝑦 in the sense that each slice through the 

 

Figure 3.9. The Abel forward transform of a cylindrically symmetric 

function onto a plane. 
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cylinder is, in principle, independent of the other slices. (3.21) may be re-cast so that it 

is not an explicit function of 𝑧𝑧 (after all, 𝑧𝑧 is not known to the observer at the detector): 

𝐹𝐹 𝑥𝑥,𝑦𝑦 = !
𝑟𝑟 𝑑𝑑𝑑𝑑
𝑟𝑟! − 𝑥𝑥!

𝑓𝑓 𝑟𝑟,𝑦𝑦
!

!
. (3.22) 

This is the explicit form of the path integral required in (3.20), and it agrees with our 

reasoning that 𝐹𝐹 𝑥𝑥,𝑦𝑦  should sample every 𝑓𝑓 𝑥𝑥 > 𝑟𝑟,𝑦𝑦  twice. What we actually require 

though is the reverse transform—the forward transform is performed automatically 

when we observe the cylinder side-on, and we wish to unwind that effect. The Abel 

reverse transform is obtained less straightforwardly but it may be verified by substitution 

into the forward transform (3.22): 

𝑓𝑓 𝑟𝑟,𝑦𝑦 =  −
!
𝜋𝜋 𝑑𝑑𝑑𝑑 

𝑑𝑑𝑑𝑑 𝑥𝑥,𝑦𝑦
𝑑𝑑𝑑𝑑

!
𝑥𝑥! − 𝑟𝑟!

 
!

!
. (3.23) 

With choices of 𝑓𝑓 and 𝐹𝐹 appropriate for electron density measurements with light rays, 

𝑓𝑓 = !−
𝑛𝑛!
𝑛𝑛!
− !    and   𝐹𝐹 =

𝑐𝑐
𝜔𝜔 𝛥𝛥𝛥𝛥,  

we obtain 

!−
𝑛𝑛!
𝑛𝑛!
− ! = −

!
𝜋𝜋

𝑑𝑑𝑑𝑑
𝑥𝑥! − 𝑟𝑟!

𝑑𝑑
𝑑𝑑𝑑𝑑

𝑐𝑐
𝜔𝜔 𝛥𝛥𝛥𝛥 𝑥𝑥,𝑦𝑦

!!

!
. (3.24) 

𝑟𝑟! is the maximum radius of the plasma; it being understood that 𝐹𝐹 𝑥𝑥 > 𝑟𝑟! = !, and 

consequently the contribution to the integral outside 𝑟𝑟! vanishes. Usually we will find 

that 𝑛𝑛! ≪ 𝑛𝑛!, in which case the expression may be simplified a little, 

𝑛𝑛! 𝑟𝑟,𝑦𝑦 = −
!𝑐𝑐𝑛𝑛!
𝜋𝜋𝜋𝜋

𝑑𝑑𝑑𝑑
𝑥𝑥! − 𝑟𝑟!

𝑑𝑑
𝑑𝑑𝑑𝑑 𝛥𝛥𝛥𝛥 𝑥𝑥,𝑦𝑦

!!

!
. (3.25) 

The integration is undertaken numerically by converting the integral to a sum over 

discrete coordinates in 𝑥𝑥: the coordinates coinciding with pixel grid of the detector.  

3.2.4. Limitations of interferometry. 

As we have seen, the interferometric system in effect performs an integration over the 

line of sight from each detector pixel to the probe source. Therefore, the image we 

obtain at the detector is not a true cross section of the plasma. Lacking depth 

information, in analysing the dataset it is necessary to make an assumption about the 

plasma configuration along that axis. The Abel inversion presumes that the dataset is 
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axially symmetric; if the data are not symmetric then the inversion acts as a kind of 

averaging to produce an axisymmetric plot. 

Density gradients in the plasma will cause refractive effects, bending the rays of light 

passing through the plasma. Refraction is a difficult problem for which to compensate, 

because it often results in ‘split’ fringes—where a fringe abruptly begins or ends.  

That the picture consists of spatially oscillating light and dark fringes limits the spatial 

resolution of the diagnostic. To avoid ambiguity, it is not sufficient to allocate merely 

one row of pixels to a dark fringe and the subsequent row to a light fringe, at least three 

or four rows will be required. This constrains the spatial resolution of the image to the 

corresponding fraction of the detector’s spatial resolution. 

The imaging system and probe laser together set a limit on the temporal width of 

successive diagnostic images. That is to say, even with multiple cameras or a multiple-

frame camera, it is not possible to obtain images spaced apart further than the temporal 

width of the probe, which is often of only a few nanoseconds. For a microsecond-long 

experiment, this is a serious constraint, and requires multiple laser shots to create a  

(pseudo) time history of the electron density profile. (This is not quite a time history, 

because there is no guarantee that each shot is identical to the previous one.) A potential 

solution to this is to use an array of mirrors, lenses and beam splitters to build a ‘pulse 

stacker’ (Börner et al., 2012), but for a microsecond beam this kind of set up is not very 

practical. 

These caveats aside, interferometry is a simple and largely reliable way to obtain 

estimates of electron density. 

3.3. TIME-INTEGRATED ELECTRON SPECTROSCOPY 

As the drive laser comes to focus, the action of collisional damping on the light wave 

within the plasma, as well as the presence of extreme electric fields in the light wave 

cause the acceleration of electrons to high velocity. These electrons rapidly escape the 

focal region, but their effects may become important: as discussed in section 2.3.4, 

streaming hot electrons can excite waves in the plasma medium through which they 
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propagate. In order to understand this phenomenon in relation to that of the hot, 

shock-produced electrons, I characterized the typical energy values of laser-accelerated 

electrons with the use of an electron spectrometer. 

3.3.1. The principle and the design of the electron spectrometer. 

Magnetic fields curve the trajectories of charged particles, without doing work upon the 

particles: this straightforward principle is the essence of the diagnostic. The design is 

shown in Figure 3.10. The spectrometer is positioned approximately 300 mm from the 

target, so incoming particles may be assumed to be collinear. Care is taken to ensure the 

image plate is parallel with the initial trajectory of the particles on their passage from the 

target. Electrons (and other particles) are admitted through a thin slit, in this case of 

2 mm height. These particles encounter a magnetic field, whose lines are arranged to be 

parallel with the slit and perpendicular to the particles’ trajectories. The magnetic field 

acts to deflect negatively charged particles—and I assume that only electrons are present 

in that configuration—upwards, into an imaging plate, which records the terminal 

position of the impacting electrons. The permanent magnet, whose active part is the 

neodymium-iron-boron alloy, is placed in a yoke. The yoke restricts the spatial leakage 

of the field; and I model the field as uniform between the poles, vanishing outside this 

 

Figure 3.10. A schematic showing the design and principle of the electron 

spectrometer. 
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region. (That this is not really the case is an important contributor to the error on my 

modelling of the diagnostic.) 

For an electron, of fixed rest mass and charge, the degree of deflection is a consequence 

of its momentum alone; slower electrons [following trajectories (1), (2), or (3)] are 

deflected more readily than very fast electrons [trajectory (4)], which pass straight 

through the 𝐁𝐁 field, experiencing little influence on their paths. Meanwhile, positively 

charged particles such as ions will be deflected in the opposite direction, and neutrals 

such as photons will not be affected at all. Under the presumption that electrons are the 

only negatively charged bodies present, we may in this manner separate the electron 

component for examination, and from the degree of deflection infer the initial speed. 

Trajectory (1) indicates that there is a minimum energy threshold before the diagnostic 

will detect the electron. 

The slit and the system geometry constrain particles to enter the electron spectrometer 

with momentum directed only parallel to the plate, at velocity 𝑣𝑣. The Lorentz force 

acting on a generic charged particle is 𝐅𝐅 = 𝑞𝑞 𝐄𝐄+ 𝐯𝐯 ∧ 𝐁𝐁 , from which (in the absence of 

𝐄𝐄) the electron equation of motion is 

𝑚𝑚!𝑥𝑥 = −𝑒𝑒𝑦𝑦𝐵𝐵   and   𝑚𝑚!𝑦𝑦 = −𝑒𝑒𝑥𝑥𝐵𝐵, (3.26) 

where the diacritical dots signify differentiation with time. We also have the constraint 

imposed by the terminal impact on the plate, i.e., 

𝑦𝑦 𝑑𝑑𝑑𝑑
!

!
= 𝑦𝑦   and   𝑥𝑥 𝑑𝑑𝑑𝑑

!

!
= 𝑥𝑥, (3.27) 

where 𝑥𝑥 is the terminal distance of the particle along the plate at the terminal time 𝜏𝜏, 

and 𝑦𝑦 is the height of the plate above the slit. The final restriction is that, because the 

magnetic force is always directed perpendicular to the electron’s motion, no work is 

done upon the electron by the force and so, at all times prior to impact, 𝑥𝑥! + 𝑦𝑦! = 𝑣𝑣!. 

Together these qualifications specify the kinetic energy ℰ of the electron, which is 

ℰ 𝑥𝑥 =
𝑒𝑒!𝐵𝐵!

!𝑦𝑦!𝑚𝑚!
𝑥𝑥! + 𝑦𝑦! !. (3.28) 

It is seen that ℰ ~ 𝑥𝑥!, making the diagnostic sensitive over a wide range of energies (in 

this design 36 keV to about 150 keV), but also liable to error because of the high 

exponent. 
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This derivation follows from the principle that the electrons travel within the magnetic 

field region, which is at uniform strength. If they pass out the other side [e.g., following 

trajectory (4)], or if there is ‘leakage’ outside the uniform, ideal region, then the 

calculation must be modified; in the latter case probably to the point of becoming non-

analytic. With knowledge of the field geometry, it would be possible to model this by 

sending a series of test particles of varying energy through the magnetic field of varying 

magnitude, terminating on the plate, to build a look up table, but I have not 

undertaken this. 

3.3.2. The sensitivity and the dynamic range of the imaging plates. 

The imaging plates are commercial products supplied by Fujifilm. I used the BAS-SR 

type, which consists of a 112 µm active layer protected by an 8 µm coating of Mylar 

plastic (C10H8O4). The structure is completed by adherence to a supporting back and 

finally a convenient weakly magnetized strip on the rear surface. The active layer consists 

of photo-stimulable phosphor crystals (BaFBr:Eu2+) in an organic binder. The 

introduction of ionizing radiation frees an electron from the Eu2+ ion, whereupon it is 

free to migrate to a nearby ‘F centre’ or farbe centre3 (an anomalous missing anion in the 

crystalline structure), which acts as a metastable trap for the electron. Irradiance with 

visible light is sufficient to liberate the trapped electron where it may recombine with 

the now Eu3+ ion; it does so with a characteristic photoluminescence of 390 nm. It is 

this photoluminescence that is detected during the imaging plate reading process (Chen 

et al., 2008; Fiksel et al., 2012; Zhong et al., 2005). 

While it is unnecessary to obtain an absolute calibration of the image plates for the 

purpose of spectrum extraction, the sensitivity of the active layer does vary slightly with 

the deposition kinetic energy of the recorded electron. It must be admitted immediately 

that there is not an abundance of material examining the sensitivity of imaging plates to 

electrons in the 35–150 keV range, but two papers between each other cover either end 

of the range adequately and their estimates are mutually consistent across the middle, 
                                                   
 
3 From the German word for ‘colour’. Crystals furnished with this particular lattice 
defect often have a vibrant colour about them, for the energy associated with an electron 
escaping a farbe centre and recombining with a hole corresponds to that of a visible 
photon. 
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unexplored ground (50–100 keV) (Busold et al., 2014; Zhong et al., 2005). I use 

𝛴𝛴ℰ 𝑥𝑥 = !.! × !"!!  
PSL
eV  × ℰ 𝑥𝑥 − !.!!"# PSL

!!

× 𝑆𝑆 𝑥𝑥  (3.29) 

(adapted from both papers), where 𝑆𝑆 𝑥𝑥  is the measured photostimulated luminescence 

at position 𝑥𝑥 and 𝛴𝛴ℰ 𝑥𝑥  is the total electron energy there delivered in eV, and the 

characteristic energy ℰ 𝑥𝑥  of an individual electron at position 𝑥𝑥 on the plate as given in 

(3.28). From this the number of electrons 𝑐𝑐 at that position and therefore with that 

energy is 

𝑐𝑐 𝑥𝑥 =
𝛴𝛴ℰ 𝑥𝑥
ℰ 𝑥𝑥 . (3.30) 

(3.29) did not include the effect of the protective Mylar coating for electrons below 

50 keV. However, at eight microns the coating is sufficiently thin that it is far thinner 

than the penetration depth of 50 keV elections (approximately 30 microns, according to 

the NIST database). Therefore, I disregard this effect.  

3.3.3. The resistance of the interposed gas to the travelling electrons. 

In the experiment, the electrons do not pass through a vacuum on their path to the 

detector, but rather a gas is present to facilitate the shock. Therefore the electron energy 

might be altered by its the passage through the argon gas, principally through scattering. 

I used the NIST database to obtain estimates of the stopping power of argon for each 

electron energy value within an appropriate range, and then used a simple model to 

calculate the original energy given a final energy, passage distance and pressure. The 

correction was in no case greater than a few per cent. The assumption is that the gas is 

not ionized in bulk at the very early time during which the laser is active. 

3.3.4. Sources of error, and limitations. 

The principle causes for error are imprecision in the ‘zero’ position of the magnetic field, 

and leakage of the field beyond the yoke-constrained region. By the zero position, I 

really mean the position at which the lowest energy electrons can be detected, which is, 

according to this theory, 36 keV. Estimates of the zero position are made by the clear 

dark shadow presented by the magnets on the imaging plate. The fringe field is probably 
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the more serious concern, because it has not been quantified here at all. The best 

solution I can see would be to calibrate directly the spectrometer with a controllable 

electron source. 

The measurement is also a time-integrated one, which means that it is impossible to 

separate the hot, laser-produced spectrum from other processes occurring at later time. 

This is a significant shortcoming of our spectrometer. The device must also be carefully 

aligned such that the image plate is parallel to the incident electron trajectory, but the 

initial electrons may well be deflected by strong magnetic fields near the laser-matter 

interaction point. 

The spectrum only goes down to 36 keV, which is not sufficiently low for the data I am 

interested in. This could be easily resolved with a weaker bending magnet, but the 

concerns about the Mylar coating’s stopping power might become relevant. 

3.4. SUMMARY OF THE INSTRUMENTATION CHAPTER 

I have discussed three instruments of particular relevance to this thesis; the bdot probe, 

the Nomarski interferometer and the electron spectrometer. Each has its uses and in 

particular the bdot probe provides important data for the results discussed later, and the 

electron interferometry will constrain important computer simulations; but all have 

some shortcomings. These limitations must be borne in mind when interpreting the 

data produced by each instrument, for each can supply misleading data.
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4. SIGNAL ANALYSIS TECHNIQUES 

The data extracted bdot probes are in the most part noisy and transient. To maximize 

the usefulness of the dataset and to improve the foundation of the principle results 

herein presented, I have found it useful to invoke certain techniques from signal 

analysis. 

The typical or default representation of a signal—for instance the plot of the detected 

magnetic field magnitude against time—does not always show clearly all of the 

information embedded within the signal; and moreover the representation may not even 

show the most important information in a way that is readily digestible. Therefore an 

alternative representation of the same information may be more useful to the 

experimenter. 

The most familiar signal analysis technique is the Fourier analysis, and this Chapter will 

include a brief summary of its results; but it will be seen that for transient signals the 

Fourier transform is a poor representation to choose. I look at the windowed Fourier 

transform and the wavelet transform, each being more suited to the analysis of signals 

displaying transient character; and I examine the use of coherency analysis in 

demonstrating the correlation of two signals that cannot a priori be determined to be 

related. 

4.1. MATHEMATICAL PRELIMINARIES 

It not my intention to introduce more mathematical machinery than is necessary for 

obtaining a physical intuition of the techniques under review in this Chapter. 

Consequently, I eschew a great part of the usual mathematical baggage that attends an 

introduction to wavelet theory. Nonetheless, it is easier to introduce those required 
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definitions, notations and results first, rather than repeatedly interrupt the discussion of 

the Chapter to draw them out. (Less optimistically, at least these preliminaries are at 

least in one place for ease of later reference.) 

Definition 1. Absolutely integrable functions (𝐋𝐋𝟏𝟏 ℝ  functions). 

Suppose we have a function 𝑓𝑓 ∶ ℝ → ℂ (that is, 𝑓𝑓 is defined over the real numbers and 

the result it returns are complex [or, possibly real, since a real number is also a complex 

one]). Then 𝑓𝑓 is said to be absolutely integrable if 

𝑓𝑓 𝑡𝑡  𝑑𝑑𝑑𝑑
!!

!!
< +∞ (4.1) 

(in the sense that the integral exists and has a finite value). The set of all absolutely 

integrable functions, where they are defined on the real line, is 𝐋𝐋𝟏𝟏 ℝ ; therefore, for 

shorthand, where 𝑓𝑓 satisfies this definition, we may write 𝑓𝑓 ∈ 𝐋𝐋𝟏𝟏 ℝ . 

Definition 2. Square-integrable functions (𝐋𝐋𝟐𝟐 ℝ  functions). 

A function 𝑓𝑓 ∶ ℝ → ℂ is square-integrable if 

𝑓𝑓 𝑡𝑡 ! 𝑑𝑑𝑑𝑑
!!

!!
< +∞. (4.2) 

Some authors would say that 𝑓𝑓  has finite energy. The set of all square-integrable 

functions on ℝ is called 𝐋𝐋𝟐𝟐 ℝ .  

Definition 3. The inner product ∙,∙ . 

For two functions 𝑓𝑓,𝑔𝑔 ∈ 𝐋𝐋𝟐𝟐 ℝ , the inner product of 𝑓𝑓 and 𝑔𝑔 is denoted 𝑓𝑓,𝑔𝑔  and is 

defined 

𝑓𝑓,𝑔𝑔 = 𝑓𝑓 𝑡𝑡  𝑔𝑔∗ 𝑡𝑡  𝑑𝑑𝑑𝑑
!!

!!
, (4.3) 

where 𝑔𝑔∗ is the complex conjugate of 𝑔𝑔. Unfortunately, this bracket notation for two 

functions 𝑓𝑓,𝑔𝑔  could easily be confused with the taking of an expectation value 𝑥𝑥  for 

a single variable, but I have still found it clearer than using other notations. 
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Definition 4. The norm in 𝐋𝐋𝟐𝟐 ℝ ..  

A norm is a measure of the “size” of an object; for instance the absolute value or 

modulus function 𝑥𝑥  is an example of a norm for 𝑥𝑥 ∈ ℝ. The norm I shall use for 

functions in 𝐋𝐋𝟐𝟐 ℝ , written for 𝑓𝑓 ∈ 𝐋𝐋𝟐𝟐 ℝ  as 𝑓𝑓 , is 

𝑓𝑓 = 𝑓𝑓, 𝑓𝑓 = 𝑓𝑓 𝑡𝑡 ! 𝑑𝑑𝑑𝑑
!!

!!
. (4.4) 

 

Definition 5. The support of a function and the meaning of compact support. 

The support of a function 𝑓𝑓 ∶ ℝ → ℂ is the set of all the points 𝑥𝑥 where 𝑓𝑓 𝑥𝑥 ≠ !. 𝑓𝑓 is 

said to have compact support if 𝑓𝑓 𝑥𝑥  is zero everywhere except for 𝑥𝑥 within some finite 

range. 

The Cauchy–Schwarz theorem on 𝐋𝐋𝟐𝟐. 

For all 𝑓𝑓,𝑔𝑔 ∈ 𝐋𝐋!,  

𝑓𝑓,𝑔𝑔 ! ≤ 𝑓𝑓  𝑔𝑔 . (4.5) 
 

The Parseval theorem. 

Suppose 𝑓𝑓 ∈ 𝐋𝐋𝟐𝟐 and the Fourier transform of 𝑓𝑓 exists and is denoted 𝑓𝑓. (The Fourier 

transform is defined later in (4.7).)  Then  

𝑓𝑓 = 𝑓𝑓  (4.6) 

(Baher, 1990). Loosely speaking, this is a statement saying that the Fourier transform 

preserves the ‘total size’ or the ‘total energy’ of the function on which it operates. 
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4.2. FOURIER ANALYSIS 

The most straightforward technique in signal analysis is the continuous Fourier 

transform, first introduced by Jean-Baptiste Joseph Fourier in his work Théorie 

analytique de la chaleur (1822)4. Fourier argued that any periodic function, even those 

possessing discontinuities, could be represented as the limit of the infinite sum of 

trigonometric functions: a position that Pierre-Simon Laplace felt to be ‘contrary to the 

rules of calculus’ (Herivel, 1975). The transformation was first used in solving 

differential equations, such as the Heat Equation discussed in Fourier’s Théorie; but its 

property of reorganizing time-series measurements by frequency formed the basis of 

early signal analysis. 

As I have alluded, among the more salient objections raised against Théorie was Fourier’s 

claim that even discontinuous functions could be represented by the sum of continuous 

trigonometric functions. Indeed, it would require another century of mathematical 

development before the limits and conditions of Fourier’s claim could be understood. 

Even with the mathematical details now tidy, in the practical use it requires both the 

assumption of periodicity and components of arbitrarily high frequencies. Therefore 

Laplace’s early objection concerns us as well; but because Fourier transforms are a 

simplified case of the other transforms we will discuss, I begin by reviewing in synopsis 

the mathematical technique of the Fourier transform, in its application to signal 

processing. 

4.2.1. The Fourier transform. 

Both the computation and the analysis of the signals made were done on discrete 

datasets with discrete transforms. However, the mathematical analysis of the continuous 

Fourier transform is more straightforward, so I begin there before looking at how it is 

adapted for discrete purposes.  

                                                   
 
4 In fact, Fourier had first attempted to publish his work on the eponymous series in 
1807, but his manuscripts were repeatedly rejected by referees, allegedly for lacking both 
generality and rigour. See Herivel (1975) for an interesting history. 
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The Fourier transform. 

Let us suppose that we have an instrument that provides a measurement of some 

physical quantity as a function of time. We label these measurements 𝑓𝑓(𝑡𝑡). Suppose 

further that 𝑓𝑓 is absolutely integrable [in the sense given in (4.1)]. Then the continuous 

Fourier transform of 𝑓𝑓(𝑡𝑡) is 

𝑓𝑓 𝜔𝜔 = 𝑓𝑓 𝑡𝑡 𝑒𝑒!!"#
!!

!!
𝑑𝑑𝑑𝑑, (4.7) 

where 𝜔𝜔 is the angular frequency. (Mallat, 1998.) 

In effect, the Fourier transform of 𝑓𝑓(𝑡𝑡) at 𝜔𝜔 filters 𝑓𝑓(𝑡𝑡) through the function e!!"#. If 

𝑓𝑓  has a component of frequency 𝜔𝜔 , then the sum at 𝜔𝜔  will become large. This 

property—that the transform decomposes 𝑓𝑓 𝑡𝑡  into a sum of frequencies—becomes 

clearer in the inverse transform. 

The representation of a noisy composite signal in Fourier space often enables the 

straightforward identification and characterization of the periodic features. See Figure 

4.1 for a synthetic example: the application of the Fourier transform enables one to see 

distinctly the frequency elements composing this dataset. The dataset on the left is 

impossible to interpret, not least because of the presence of Gaussian white noise; on the 

right hand side the graph’s power spectral density (the square of its Fourier transform) 

shows immediately it comprises only three distinct frequency components at 47, 67 and 

80, overlaid with noise. 

The inverse Fourier transform. 

The inverse Fourier transform of 𝑓𝑓 𝜔𝜔  is given by 

𝑓𝑓 𝑡𝑡 =
!
!𝜋𝜋 𝑓𝑓 𝜔𝜔 𝑒𝑒!"#

!!

!!
𝑑𝑑𝑑𝑑. (4.8) 

 

The original signal 𝑓𝑓(𝑡𝑡)  may therefore be expressed as the sum of the frequency 

amplitudes 𝑓𝑓 𝜔𝜔 , each multiplied by the exponential function. 𝑓𝑓 𝜔𝜔  is complex; the 

imaginary part represents the phase offset, that is, the initial phase. 

The circular functions, as expressed in the exponential, have a number of properties that 

make them useful for time-invariant analysis. In particular they are linear operators; 

complex exponentials are eigenvectors of linear time-independent systems, therefore the 



FOURIER ANALYSIS 69  
 

 

Fourier transform is merely a decomposition of the system into a sum of eigenvectors. 

However, when a system is not time-independent, it is clear that other functions could 

be a better choice, in place of the 𝑒𝑒!!"# .  (Mallat, 1998.) 

4.2.2. The energy and power of a signal; and its energy and power 

spectral densities. 

Although the Fourier transform of 𝑓𝑓 gives us a Fourier spectrum 𝑓𝑓, it is more common 

in practical application to interpret 𝑓𝑓! instead of 𝑓𝑓. For a signal 𝑓𝑓, the signal energy is 

defined as 

𝑊𝑊 = 𝑓𝑓 𝑡𝑡 ! 𝑑𝑑𝑑𝑑
!!

!!
 (4.9) 

(provided the integral converges), and by Parseval’s theorem (4.6), this is the same 

energy as contained in the Fourier transform of 𝑓𝑓;  

 

Figure 4.1. Synthetic noisy data in the time and in the frequency domains. 
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𝑊𝑊 = 𝑓𝑓 𝜔𝜔 ! 𝑑𝑑𝑑𝑑
!!

!!
. (4.10) 

The area under 𝑓𝑓 𝜔𝜔 !
 is the total energy of the signal; therefore, a plot of 𝑓𝑓 𝜔𝜔 !

 

against 𝜔𝜔 gives the energy spectral density (ESD), that is, the energy per unit frequency. In 

physical applications, 𝑊𝑊 normally has some simple multiplicative relation to physical 

energy; but it is not always the case so care must be taken with using the expression. 

(Stremler, 1990.) 

If the signal is not of finite energy, we may turn instead to the representation of the 

signal power. Suppose that 𝑓𝑓 is periodic with some period 𝑇𝑇. Then the power spectral 

density (PSD or power spectrum) is  

𝑃𝑃 𝑓𝑓 =
!
𝑇𝑇 𝑓𝑓! 𝜔𝜔

!
 (4.11) 

where the truncated Fourier transform of 𝑓𝑓 over the period 𝑇𝑇 is 

𝑓𝑓! 𝜔𝜔 = 𝑓𝑓 𝑡𝑡 𝑒𝑒!!"#  𝑑𝑑𝑑𝑑
!

!
. (4.12) 

Again, the signal power may not be physical power, but the relation is not usually 

distant. 

4.2.3. The Fourier uncertainty theorem. 

Regrettably it is not possible to give an arbitrarily precise measure of both the frequency 

components and the temporal range occupied by a signal: this is a fundamental property 

of signals, and not a limitation of the mathematical tools used to analyse them (Mallat, 

1998). Some authors refer to this relationship as the ‘uncertainty principle’, because it is 

mathematically analogous to the Heisenberg uncertainty principle in quantum 

mechanics. Unlike, however, the minimum joint-uncertainty in the momentum and 

position measurements of a particle, the fact that a relationship arises between the 

reciprocal parameters of time and frequency is not altogether surprising. 

The mean and standard deviation of a signal. 

Let 𝑓𝑓 ∈ 𝐋𝐋𝟐𝟐 and suppose 𝑓𝑓 is normalized (i.e., 𝑓𝑓 = !). For a finite energy signal, this 

assumption can be done without loss of generality under a straightforward re-scaling. 

Then the mean value of 𝑡𝑡 is 
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𝑚𝑚! = 𝑡𝑡 𝑓𝑓 𝑡𝑡 ! 𝑑𝑑𝑑𝑑
!!

!!
, (4.13) 

and the standard deviation of 𝑡𝑡 about this mean is 

𝜎𝜎! = 𝑡𝑡 −𝑚𝑚!
! 𝑓𝑓 𝑡𝑡 ! 𝑑𝑑𝑑𝑑

!!

!!
; (4.14) 

𝑚𝑚! and 𝜎𝜎! are real-valued. Similar definitions can be made for the mean frequency and 

standard deviation of 𝜔𝜔 when 𝑓𝑓 𝑡𝑡  is Fourier-transformed into 𝑓𝑓 𝜔𝜔 :  

𝑚𝑚! = 𝜔𝜔 𝑓𝑓 𝜔𝜔 ! 𝑑𝑑𝑑𝑑
!!

!!
; (4.15) 

𝜎𝜎! = 𝜔𝜔 −𝑚𝑚!
! 𝑓𝑓 𝜔𝜔 ! 𝑑𝑑𝑑𝑑

!!

!!
; (4.16) 

and these quantities are also real-valued. (Mallat, 1998.) 

The Fourier uncertainty theorem. 

Let 𝑓𝑓 ∈ 𝐋𝐋𝟐𝟐  and suppose 𝑓𝑓 is normalized (i.e., 𝑓𝑓 = !). For every Fourier transform 

pair 𝑓𝑓 and 𝑓𝑓,  

𝜎𝜎!𝜎𝜎! ≥
!
!. (4.17) 

In other words, a function cannot be arbitrarily confined in time and be at the same 

time confined in frequency space. I provide a proof of this fact in the Appendix. 

4.2.4. Discrete and finite Fourier transforms. 

In dealing with recorded data instead of abstract mathematical functions we necessarily 

turn to the discrete transform. Although the real physical function underlying the 

measurement is (probably) continuous, the recorded data are in the one-dimensional 

case only a set of coordinates, of the form 𝑡𝑡! , 𝑥𝑥! , for 𝑗𝑗 = !,… ,𝑁𝑁 − ! ; and the 

coordinates in the finite, discrete subspace of the rational numbers ℚ!×ℚ!. This rather 

curbs the power of our mathematical machinery, as the low density of numbers in this 

space means even the processes of taking limits and performing integrals are not 

mathematically robust. 
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An easy solution to the problem is to create a ‘normal’ continuous function 𝑓𝑓 ∈ 𝐋𝐋𝟐𝟐 

which can be Fourier-transformed, but which is ‘pegged’ to the measurements in the 

sense that the values at each of the 𝑡𝑡!  are 𝑓𝑓 𝑡𝑡! = 𝑥𝑥!. The downside is that with only a 

finite number of points 𝑡𝑡! , 𝑥𝑥!  on which to constrain our function (or even with only a 

countably infinite number of points), there is an infinite number of different ways of 

filling in the gaps between them, even in a smooth, continuous way. When imposing a 

constraint on the behaviour of 𝑓𝑓—for instance to say it does not oscillate wildly 

between measurements—we are essentially making an assumption either about the 

measurement device or the physical behaviour of the system. For instance, if probing a 

magnetic field with a bdot probe, we might be effectively assuming that high frequency 

waves are not present. We can either accept aliasing (the appearance of spurious 

frequency components reflected from above the sampling frequency) or impose an anti-

aliasing filter to eliminate them, which also attenuates tones near the sampling 

frequency. (Mallat, 1998.)  

The second problem with ‘real-world’ signals is that they are of finite duration; but the 

Fourier transform inherently deals with periodic data (because the basis functions are 

periodic). Supposing the signal is 𝑁𝑁 elements long, the 𝑥𝑥! and the 𝑥𝑥!!! components can 

be wrapped, appearing side-by-side so that the signal is effectively repeated. This may 

produce high frequency artefacts, particularly if 𝑥𝑥! ≁ 𝑥𝑥!!!. Further, if the signal 𝑥𝑥 is of 

limited duration, an extension of the Fourier uncertainty theorem proves that the signal 

cannot also be band-limited; that is to say, 𝑥𝑥 does not have compact support. (Mallat, 

1998.) 

The discrete Fourier transform. 

Given a collection of 𝑁𝑁 data points, in the form 𝑡𝑡! , 𝑥𝑥! , with 𝑗𝑗 = !,… ,𝑁𝑁 − !, the 

transformed points are 𝑥𝑥! are given by the analysis equation 

𝑥𝑥! =
!
𝑁𝑁 𝑥𝑥!𝑒𝑒!!"# !

!!!

!!!

. (4.18) 

The reverse transform (the synthesis equation) may be expressed 

𝑥𝑥! =
!
!𝜋𝜋 𝑥𝑥!𝑒𝑒!"# !

!!!

!!!

. (4.19) 
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However the computation in this manner is quite inefficient; instead a variant of the fast 

Fourier transform is usually preferred.5 

4.2.5. On the difficulties of representing transient events. 

The basis functions ( 𝑒𝑒!!"# ) of the Fourier transform are ill suited to detect and 

emphasize transient, short-lived events, principally because they are periodic across the 

entirety of time; the circular functions are not localized. Therefore, the representation 

cannot show the temporal position at which a component of the signal appears or 

changes: variations in the amplitude of a frequency component are effectively averaged 

over the sample time. For dynamic physical processes that are not time-invariant, this 

makes Fourier transforms quite unsuitable. 

4.2.6. Examples of real data. 

In Figure 4.2 I show the processed B-dot data to show the magnetic field history with 

time from one experiment. (See Part 5.1 for the full experiment details.) At 𝑡𝑡 = ! the 

graph is dominated by the noise from the laser pulse. In Figure 4.3 the power spectrum 

of the graph can be seen. It is quite difficult to interpret because the spectrum is actually 

dominated by this early-time noise. Therefore, a robust process to filter out this noise, 

by temporal windowing of the data, would be useful. 

                                                   
 
5 The fast Fourier transform was first published by Cooley and Tukey in 1965, and 
essentially involves exploiting the properties of the exponential function to rewrite the 
equations under a scheme requiring less arithmetic. Unbeknownst to them, the key part 
of the algorithm had been in fact been quietly invented by Carl Frederic Gauss in 1805, 
but remained unpublished until his death, and then little discussed until its later re-
invention. Gauss first used the method to simplify the arithmetic labour of fitting a 
sixth order polynomial to astronomical observations. 
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Figure 4.2. Magnet field data processed from a bdot probe. 

 

 

Figure 4.3. Power spectrum of the magnet field data given above. 
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4.3. THE WINDOWED FOURIER TRANSFORM 

Perhaps the most obvious remedy for the lack of transient detection is the windowed 

Fourier transform, also sometimes called the short time Fourier transform (‘STFT’). In 

this process we localize the circular functions by passing them through a simple 

‘window’ function, which acts to attenuate the exponential functions outside the 

window. The attenuated function can then be slid along the time axis to show the 

evolution of the signal; or alternatively it can be used to window-out an undesired 

transient feature at the beginning or end of the measurement, for instance the presence 

of noise from the laser-matter interaction. 

The windowed Fourier transform. 

Let 𝑔𝑔 𝑡𝑡  be a symmetric, real-valued function. I shall call 𝑔𝑔  the window function. 

Further, define 𝑔𝑔!,!; 

𝑔𝑔!,! 𝑡𝑡 = 𝐴𝐴𝐴𝐴 𝑡𝑡 − 𝑢𝑢 𝑒𝑒!"#, (4.20) 

where 𝐴𝐴  is a normalizing constant such that 𝑔𝑔!,! = ! . Here, 𝑢𝑢  represents a 

translation of 𝑔𝑔 along the temporal axis and 𝜔𝜔 is a modulation in frequency space. 

For a signal 𝑓𝑓 ∈ 𝐋𝐋𝟐𝟐 ℝ , the windowed Fourier transform of 𝑓𝑓 at 𝑢𝑢,𝜔𝜔  is the inner 

product of 𝑓𝑓 with the window 𝑔𝑔!,!. 

𝑓𝑓,𝑔𝑔!,! = 𝑓𝑓 𝑡𝑡  𝐴𝐴𝐴𝐴 𝑡𝑡 − 𝑢𝑢 𝑒𝑒!!"#  𝑑𝑑𝑑𝑑
!!

!!
 (4.21) 

In this way, the Fourier transform has been “windowed” or localized about the temporal 

point 𝑢𝑢. (Mallat, 1998.) 

4.3.1. Windowing to exclude early phenomena. 

Where a measurement contains transient phenomena only at the beginning or end of 

the measuring time period, or if a feature of interest is suspected a priori to exist in a 

certain region on the time axis, then a windowing function can be used to exclude or 

select the data of interest before a regular Fourier transform is applied to the windowed 

data. 
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In Figure 4.4 I include a windowed transform of the data presented in Figure 4.2. The 

data have been windowed to be included only between 500 ns and 800 ns; without the 

early time components, the graph behaves quite differently to Figure 4.3. A peak in the 

x- and y-axes is clearly visible at about 10–20 MHz, and again at about 40 MHz. No 

such behaviour is seen on the z-axis. 

4.3.2. Multiple windowed transforms in one graph. 

I present an artificial example: consider a 600 Hz constant tone superimposed on a 

‘chirp’; that is a tone of gradually increasing frequency, beginning at 200 Hz and rising 

in frequency uniformly over the time of 1 second to a pitch of 2 kHz. 

The raw graph of this, in temporal space, is an uninterpretable mess (not shown); the 

Fourier transform is a little better but it does not really convey what is happening 

(Figure 4.5). Turning to the windowed Fourier transform in Figure 4.6, the two 

 

Figure 4.4. Partial power spectrum of bdot data windowed on 500–800 ns 

reveals more peaks. 
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components are clearly visible in both cases. The evolution of the chirp is clearer when 

the temporal width of the windowing function is reduced (lower figure); but the trade-

off is the smearing in frequency space of the narrow-band constant tone. 

 

 

Figure 4.5. The power spectral density of a chirp superimposed on a 

constant tone. 

A 200 Hz variable-pitch tone gradually rising to 2000 Hz (a ‘chirp’) is 

superimposed on a constant tone of 600 Hz. The chirp is twice as energetic 

as the tone; but this is not seen in this representation, which each frequency 

component over time. 
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Figure 4.6. A windowed Fourier transform of the chirp superimposed on a 

constant tone. The data are the same as in Figure 4.10. The time axis is 

divided into equal width bins; in the top figure, there are ten bins, in the 

bottom figure, there are fifty. The Hann window function was used. 
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Figure 4.7. A spectrogram of the same data as given in Figure 4.2. 

4.3.3. Real data example. 

The data from Figure 4.2 are presented as a spectrogram in Figure 4.7. It is faintly 

possible to see a dark strip across the 50–60 MHz range, but it is not clear at all whether 

it is a real measurement or an artefact arising in the noise. A similar band of power is 

apparent in the 𝑥𝑥-axis as well (not shown), but it is absent in the 𝑧𝑧-axis. 

4.3.4. Heisenberg boxes, or time-frequency atoms. 

In one respect it might seem that by minimizing the width of 𝑔𝑔 the temporal resolution 

and hence utility of the transform given in (4.21) could each be maximized. 

Unfortunately, as depicted in Figure 4.6, this is not the case; in constraining the 

effective width of 𝑔𝑔  we merely expand the uncertainty on the frequency axis. 

Quantifying this relation, the minimum joint-uncertainty is ½. 



THE WINDOWED FOURIER TRANSFORM 80  
 

 

Since 𝑔𝑔  is symmetric, 𝑔𝑔!,! = 𝑒𝑒!"#𝑔𝑔 𝑡𝑡 − 𝑢𝑢  is centred about the constant 𝑢𝑢 . The 

variance about that position is 𝜎𝜎!, which satisfies 

𝜎𝜎!! = 𝑡𝑡 − 𝑢𝑢 ! 𝑔𝑔 𝑡𝑡 − 𝑢𝑢 ! 𝑒𝑒!"# ! 𝑑𝑑𝑑𝑑
!!

!!
. (4.22) 

A change in the integration variable 𝑡𝑡 → 𝑡𝑡 − 𝑢𝑢 does not affect the calculation, showing 

that the variance is not a function of 𝑢𝑢. Taking the Fourier transform, the spread in 

frequency space is 

𝜎𝜎!! = 𝜔𝜔 − 𝜉𝜉 ! 𝑔𝑔!,! 𝜔𝜔
! 𝑑𝑑𝑑𝑑

!!

!!
. (4.23) 

Therefore, 

𝜎𝜎!! = 𝜔𝜔 − 𝜉𝜉 ! 𝑒𝑒!!" !!! !
𝑔𝑔 𝜔𝜔 − 𝜉𝜉 ! 𝑑𝑑𝑑𝑑

!!

!!
 

= 𝜔𝜔 − 𝜉𝜉 ! 𝑔𝑔 𝜔𝜔 − 𝜉𝜉 ! 𝑑𝑑𝑑𝑑
!!

!!
 

= 𝜔𝜔! 𝑔𝑔 𝜔𝜔 ! 𝑑𝑑𝑑𝑑
!!

!!
, (4.24) 

which is independent of  𝜉𝜉. Applying the Fourier uncertainty theorem (4.17) we see that 

the joint uncertainty in the time-frequency resolution must be at least ½. 

Although this result was discussed in the context of Fourier transforms, it actually 

applies to any transform operating between the time and frequency axes. Therefore a 

point 𝑡𝑡!,𝜔𝜔!  on the time-frequency plane is ill defined, because the best resolution one 

can attain around such a ‘point’ is in fact an area of ½. Indeed, many transforms will 

occupy a larger area than this. The indivisibility of this area means that it is sometimes, 

in the context of a particular choice of transform, known as the time-frequency atom. 

(Mallat, 1998.) 

4.3.5. On the choice of the window function. 

The effect of windowing the circular functions 𝑒𝑒!"#  is to introduce ‘spectral leakage’; 

that is to say, a narrowband tone will exhibit frequency artefacts in the windowed 

representation, which do not correspond to tones in the true signal. The narrower the 

window, the greater the leakage; but the shape of the window has some effect as well. If 

the appearance of these artefacts is regarded as noise in the windowed Fourier transform 
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representation, then the choice of the window is often determined by the acceptable 

noise floor resulting from the transform. 

The effective noise introduced by the spectral leakage may be characterized by the graph 

of the Fourier transform of the window function. This is not noise in a random sense, 

but is the result of the window function re-distributing spectral components. 

The simplest window is simply a rectangular box; 

 𝑔𝑔!"# 𝑡𝑡 =  ! − ! ! < 𝑡𝑡 < !/!,
! otherwise.

 (4.25) 

However, the frequency response is not ideal for many purposes, see Figure 4.8. The 

central discrete Fourier transform ‘bin’ has leaked energy into the surrounding bins, so a 

sharp tone of narrow frequency response will be transformed to fill the neighbouring 

frequency bins. 

An alternative is the Hann window;  

 𝑔𝑔!"## 𝑡𝑡 =  
!
! !− cos !𝜋𝜋𝜋𝜋 − ! ! < 𝑡𝑡 < !/!,

! otherwise.
 (4.26) 

The graph of this function is given in Figure 4.9, together with the spectral leakage plot. 

The leakage now is much reduced, but it is no longer uniform across the neighbouring 

frequencies. 

In my work, I was guided by minimizing noise. I preferred the Hamming window. 

𝑔𝑔!"##$%& 𝑡𝑡 =  𝛼𝛼 − 𝛽𝛽 cos !𝜋𝜋𝜋𝜋 − ! ! < 𝑡𝑡 < !/!,
! otherwise.

 (4.27) 

with 𝛼𝛼 = !"
!"

 and 𝛽𝛽 = !− 𝛼𝛼. The choice of constants cancels the first side lobes in the 

Hann window, making it slightly better in that respect. 
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Figure 4.8. The frequency response of the rectangular box window 

function. 
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Figure 4.9. The Hann window (top) and its Fourier transform. 
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4.4. WAVELET ANALYSIS 

A wavelet can be considered as a singular, brief oscillation, or a small packet of 

oscillations. In convolving these wave packets with the signal, correspondences between 

the signal and the particular wave packet appear where the signal has a component 

matching the packet—this is a similar idea to the Fourier analysis, except now the 

pattern against which the signal is to be matched can be almost arbitrary. Moreover, a 

complex wavelet enables the preservation of phase information from the signal; in 

particular in the joint analysis of multiple signals the relative phase can be important. 

Analysis by wavelets defeats one limitation of windowed Fourier transforms whereby the 

resolution is uniform over the time-frequency plane. Wavelets thereby enable the 

simultaneous extraction of features of differing size on that plane, and it is not necessary 

to make a ‘guess’ about the appropriate window size to elucidate the features in 

question. However, it cannot defeat the fundamental minimum size of that atom (see 

section 4.3.4). Further, wavelets can also be designed to highlight transient features that 

are not easily detectable with Fourier methods. (Mallat, 1998.) 

The wavelet. 

A wavelet 𝜓𝜓 ∈ 𝐋𝐋𝟐𝟐 ℝ  has zero average, is normalized to unity ( 𝜓𝜓 = !), and is centred 

about zero. In like manner of (4.2), 𝜓𝜓 can be translated and scaled to produce a ‘family’ 

of wavelets 𝜓𝜓!,! , 

𝜓𝜓!,! 𝑡𝑡 =
!
𝑠𝑠
𝜓𝜓

𝑡𝑡 − 𝑢𝑢
𝑠𝑠 , (4.28) 

where the factor ! 𝑠𝑠 preserves 𝜓𝜓!,! = !. 

To give an idea of what a wavelet ‘looks like’, consider as an example the Morlet wavelet. 

The Morlet wavelet is a complex exponential modulated by a Gaussian envelope; the 

envelope localizes the exponential. The equation describing the wavelet is (in this case)  

𝜓𝜓!"#$%&(𝑡𝑡) =
!
!𝜋𝜋
𝑒𝑒!"#𝑒𝑒!

!!
! . (4.29) 

The quantity 𝜎𝜎 determines the bandwidth of the wavelet. The Morlet wavelet does not 

have compact support, but actually its value quickly becomes negligible a few 

oscillations from the central position. The effect of scaling the wavelet and translating it 
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is shown in Figure 4.11. The wavelet has both non-zero real and imaginary components; 

the imaginary part enables it to track changes in the phase of the structure it detects. 

Another example is the Haar wavelet, which behaves rather differently: 

 𝜓𝜓!""# 𝑡𝑡 =
! − ! ! ≤ 𝑡𝑡 < !,
−! ! ≤ 𝑡𝑡 < ! !,
! otherwise.

 (4.30) 

𝜓𝜓!""# is not continuous and so not differentiable, but for analysing discontinuous or 

sharply rising transients in noise this is an advantage; an example might be detecting the 

sudden failure of machine tools (Li et al., 2007). 𝜓𝜓!""# has compact support. 

 

Figure 4.10. A Morlet wavelet, with the real and imaginary parts shown. 

The function describing the wavelet is given in (4.29). 

 



WAVELET ANALYSIS 86  
 

 

 

Figure 4.11. The effect of rescaling and translating a wavelet. 

The Morlet wavelet previously presented in Figure 4.10 above is here shown 

at three different scales and positions. Translation does not adjust the shape 

of the wavelet; it is shown in different positions for clarity. 

The continuous wavelet transform. 

Let 𝑓𝑓 ∈ 𝐋𝐋𝟐𝟐(ℝ) . Then the wavelet transform of 𝑓𝑓  around time 𝑢𝑢  and at scale 𝑠𝑠  is 

denoted 𝒲𝒲!,!(𝑓𝑓) and is given by 

𝒲𝒲!,! 𝑓𝑓 = 𝑓𝑓,𝜓𝜓!,! = 𝑓𝑓 𝑡𝑡 𝜓𝜓!,!∗ 𝑡𝑡  𝑑𝑑𝑑𝑑
!!

!!
. (4.31) 

This has the appearance of the windowed Fourier transform (4.21), except that now our 

choice of the windowing function 𝑔𝑔 has become less restricted. 

There is a trade-off in loosening this restriction on the nature of the basis functions for 

the transform, in that the relationship between the scale factor 𝑠𝑠 of the wavelet and the 

frequency variable 𝜔𝜔 becomes less straightforward. First, one may examine the wavelet 

transform of a sine wave of known period (Meyers et al., 1993). For wavelets of 

particularly irregular nature, lacking dominating Fourier components, it is probably a 

meaningless exercise to draw a relation between the Fourier and wavelet scales. For 

wavelets that are essentially modified Fourier transforms, such as the Morlet wavelet, the 
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connection between the scale and frequency is more straightforward and, for an 

appropriate choice of parameters, the Fourier and wavelet periods can be almost equal. 

With that caveat aside, the conversion between scale and frequency can in general be 

expressed 

𝜔𝜔 𝑠𝑠 =
𝜔𝜔!
𝑠𝑠𝑡𝑡!

, (4.32) 

where 𝜔𝜔 𝑠𝑠  is the frequency (or ‘pseudo-frequency’) of the wavelet at scale 𝑠𝑠, 𝜔𝜔! is the 

central frequency of the wavelet in question, and 𝑡𝑡!  is the time interval intervening 

between successive sampling points. I take the central frequency 𝜔𝜔!  of a particular 

wavelet to be that of the maximum Fourier component composing the wavelet. 

4.4.1. The relationship between transforms of the Fourier type, the 

windowed Fourier type, and the wavelet type. 

Each of the three transforms so far described has differing advantages and disadvantages 

compared with the others. An advantage arising not least in the case of the Fourier 

transform is its computational simplicity and ubiquity. 

One way of distinguishing the transforms is to review the frequency-time graph for 

each; for instance see Figure 4.12. I have already reviewed the concept of the time-

frequency atom, and we can extend this analysis to look over the entire graph, where 

each division on the graph has an area of at least the time-frequency atom. In the case of 

the ordinary Fourier transform, the time axis is undivided (so there is no temporal 

resolution) but the frequency axis is divided equally as often as may be permitted by the 

time record length. The windowed Fourier transform has a temporal axis divided on the 

basis of the window function’s width; these are typically equal divisions, and the 

frequency scale is accordingly divided. For the wavelet analysis, more temporal 

resolution is given for lower frequencies but at the higher end of the spectrum we are 

able to obtain a better understanding of the temporal evolution.  
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Figure 4.12. The division of the time-frequency plane under a windowed 

Fourier transform and under a wavelet transform, in schematic. 

In the case of the windowed transform, the division is equal across the time-

frequency plane. For a wavelet transform, greater frequency resolution is 

accorded to lower-frequency signals. In this schematic the effect has been 

somewhat exaggerated. 

 

Table 2. A summary comparison of the three signal transforms so far discussed. 

 Basis function Temporal 
resolution 

Frequency 
resolution 

Periodicity is 
assumed? 

Fourier transform exp 𝑖𝑖𝑖𝑖𝑖𝑖   None Maximal Yes, over the 
entire signal 

Windowed Fourier 
transform 

𝑔𝑔 𝑡𝑡 − 𝑢𝑢
× exp 𝑖𝑖𝑖𝑖𝑖𝑖   

(For a window 𝑔𝑔) 

Set by 
window 
width 

Inverse of 
window 
width 

Within each 
window 

Wavelet transform Many choices Varies throughout the 
frequency-time graph 

No 

 

4.4.2. Effects arising at the edge of the measurement. 

Most measurements performed are not cyclical, and there is often a sharp discontinuity 

at the edge of the measurement where the signal suddenly begins, or where it is abruptly 

truncated. The transform is not considered reliable when it is too close to this 

f

t

f

t

Windowed Fourier transform Wavelet transform
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corruption, particularly if the wavelet’s support has extended into the null region. To 

quantify that, the points within two e-folding distances of the edge can be shown as 

greyed out (see figure in section 4.4.4). However in the real data I analyse, this effect 

was not important because of long record lengths, and therefore I did not apply this 

fade-out convention in my other graphs. 

4.4.3. On the choice of wavelet. 

Unlike Fourier transforms, the space of basis functions available for undertaking a 

wavelet transform is evidently quite broad: a choice must be made for the function 𝜓𝜓 in 

(4.28) and (4.31). Torrence and Compo (1998) suggest, in their paper on the subject of 

applying wavelet analyses to climate data, that four considerations guide the choice of 

wavelet; that is to say, whether the wavelet takes on complex values or is wholly real-

valued; the width, or, 𝑒𝑒-folding time of the wavelet amplitude; the shape of the wavelet 

graph as compared with the expected feature to examine; and finally the orthogonality 

of the wavelet. To this I would add the quality of the relationship between the scale and 

Fourier period, as discussed in section 4.4.1. 

I use the continuous transform as it is reputedly better for feature extraction than its 

discrete equivalent (e.g., Grinsted et al., 2004). That is to say, non-orthogonal wavelets 

are preferred. Complex-valued wavelets capture phase information, for better detection 

and characterization of oscillations, and I prefer them for that reason. In terms of shape, 

I prefer wavelets resembling sine functions, as packets of electromagnetic waves are 

expected to be of this basic nature. This also happily permits that the relationship 

between the scale and the true frequency is not too intricate.  

The wavelet width is important as well; a narrow width enables the function to be better 

at detecting temporally transient events, but necessarily has a broader spread in 

frequency space. Further, the corruption occurring from edge effects means that the 

narrower-width transform will be more resilient to edge effects close to the start or end 

of the measurement. 

From these considerations, I find that the Morlet wavelet is often the preferable choice. 
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4.4.4. A synthetic example of a wavelet analysis. 

I show the linear chirp with the constant tone superimposed, from the same data as in 

Figure 4.6. I use a Morlet wavelet. The feature extraction is quite distinct; however, 

unlike the windowed Fourier transform, it suffers from the loss of frequency resolution 

at higher frequencies. Because the frequency resolution is reduced, a long-term 

narrowband signal is accordingly distributed over a larger space on the frequency-time 

graph; therefore the apparent energy in the signal will fall. Thus, the correspondence 

between the wavelet coefficient, as represented on the graph by the intensity of the 

colour, and the true energy of the signal, is not fixed over the frequency-time plane. 

Instead, signals of equal amplitude will appear in the wavelet representation to be more 

intense at the lower end of the spectrum and less intense at the higher end. 

To show a bit more of the power of wavelet analysis, I introduce two repeating sharp 

tone patterns onto the same data, at 400 Hz and 2 kHz. Again these are well detected 

by the wavelet analysis, as seen in Figure 4.14. However, some corruption between the 

separate components is visible particularly as the chirp approaches the 2 kHz repeating 

tone; this underscores the importance of choosing the right wavelet for the task. 

4.4.5. A real example. 

Figure 4.15 shows the wavelet power (the square of the wavelet transform) over the time-

frequency plane. In subfigure (a), data from the 𝑥𝑥-axis are presented; in subfigure (b), 

the data are from the 𝑦𝑦-axis. The component seen previously, but only weakly, at around 

50–60 MHz now appears quite distinct and more narrowly defined on the time-

frequency plane, in particular on (b). Regrettably, in (a) the region is swamped with a 

short-lived by wideband component. This is not present in (b), but there is a hint of a 

shorter-lived feature at about 80 MHz. Since the data from both axes are important in 

determining, for example, whether a circularly polarized wave is present, it would be 

useful to compare the two components with a more unified methodology. More 

importantly in determining the nature of these processes and whether the two axes are 

physically showing the same information, it would be interesting to compare the relative 

phases of the features. 
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Figure 4.13. A wavelet transform of a chirp and a superposed constant tone. 

The data are the same as in Figure 4.6. The data that might be corrupted by 

edge effects, within two 𝑒𝑒-folding times of the edge, have been shadowed. 

 

Figure 4.14. A wavelet transform showing four distinct signal components; 

regions susceptible to edge effects are placed in shadow. 
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4.4.6. Cross wavelet and phase coherency analysis 

Wavelet analyses can be very sensitive, but the nuance involved in selecting the 

appropriate wavelet leaves them liable to a certain degree of subjectivity and thus prone 

to producing false positives. One remedy for this is to compare two measurements of 

the same system; if the same frequency component can be identified in two independent 

measurements it is some evidence that the detected signal is not likely an artefact arising 

from noise in one particular measurement. However this does not eliminate the 

possibility, for instance, of narrowband noise corrupting two measurements. A further 

check is to compare the phase coherency between the two signals. If the two have a 

consistent phase relationship at a given frequency component, it becomes still more 

improbable that this coincidence arises from Gaussian noise. Later, I shall discuss the 

use of this technique to compare signals collected from two orthogonal axes of the bdot 

probe. The intention is to show that if coherent signals are detected on two orthogonal 

axes with a consistent ninety-degree phase relationship in one frequency band for a 

sustained time period, then this is evidence of a circularly polarized magnetic wave 

propagating past the bdot probe. 

Wavelet power spectrum (WPS). 

Let 𝑓𝑓 ∈ 𝐋𝐋𝟐𝟐 be a signal. Then the wavelet power spectrum of 𝑓𝑓 at scale 𝑠𝑠 and time 𝑢𝑢 is 

WPS!,! 𝑓𝑓 ,= 𝒲𝒲!,! 𝑓𝑓 𝒲𝒲!,!
∗ 𝑓𝑓 , (4.33) 

where 𝒲𝒲 is the wavelet transform as defined in (4.31), the asterisk denotes the taking of 

the complex conjugate, and here the application of the angle brackets ∙  is the taking of 

an expectation value. The calculation of the expectation value is discussed below. 

The wavelet power spectrum is analogous to the power spectrum under the Fourier 

transform, but because the frequency-time ratio changes as a function of frequency, a 

narrowband signal can become distributed over a Heisenberg box of larger and larger 

frequency dimension. Therefore, the expected power for such a signal will fall with 

frequency, unless allowance is made. 
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Figure 4.15. A wavelet transform of the same data as given in Figure 4.2, 

taken from (a) the 𝑥𝑥-axis and (b) the 𝑦𝑦-axis of the probe. 
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4.4.7. Cross wavelet power, and the coherency of two signals. 

The wavelet cross spectrum (WCS). 

For two signals 𝑓𝑓,𝑔𝑔 ∈ 𝐋𝐋𝟐𝟐, the cross wavelet spectrum at time 𝑢𝑢 and scale 𝑠𝑠 is written 

WCS!,! 𝑓𝑓,𝑔𝑔  and is given by 

WCS!,! 𝑓𝑓,𝑔𝑔 = 𝒲𝒲!,! 𝑓𝑓  𝒲𝒲!,!
∗ 𝑔𝑔 , (4.34) 

where 𝒲𝒲!,!
∗ 𝑔𝑔  is the complex conjugate of the wavelet transform of 𝑔𝑔 at 𝑢𝑢, 𝑠𝑠 , and ∙  

represents the taking of an expectation value (Maraun & Kurths, 2004). The 

expectation value is computed by smoothing over the dataset. WCS!,! 𝑓𝑓,𝑔𝑔  is a 

complex quantity whose imaginary component reveals the phase separation 𝛷𝛷 between 

𝑓𝑓 and 𝑔𝑔 under the wavelet at the specified scale and time: 

WCS!,! 𝑓𝑓,𝑔𝑔 = WCS!,! 𝑓𝑓,𝑔𝑔 𝑒𝑒!!. (4.35) 

One difficulty with taking the cross wavelet power of two signals is that if one of the 

wavelets of one of the signals individually has a particularly large magnitude, the cross 

wavelet product will also be large, even though the joint power (or correlation) between 

the two signals might be small. To limit this problem, the wavelet signals should be 

normalized, by computing the local expectation value of the signal in what is essentially 

an averaging process. This is what we do with the wavelet coherency estimation. 

Cross-wavelet coherency (WCO). 

The wavelet coherency index WCS represents the degree of correlation between two 

signals. 

WCO!,! 𝑓𝑓,𝑔𝑔 =
WCS!,! 𝑓𝑓,𝑔𝑔

WPS!,! 𝑓𝑓 WPS!,! 𝑔𝑔
 (4.36) 

Both the numerator and denominator involve taking the expectation value:  

WCO!,! 𝑓𝑓,𝑔𝑔 =
𝒲𝒲!,! 𝑓𝑓  𝒲𝒲!,!

∗ 𝑔𝑔
𝒲𝒲!,! 𝑓𝑓 𝒲𝒲!,!

∗ 𝑓𝑓  𝒲𝒲!,! 𝑔𝑔 𝒲𝒲!,!
∗ 𝑔𝑔

. (4.37) 

The expectation operator ∙  does not commute with transforms; if merely a simple 

smoothing process is carried on 𝑓𝑓 and 𝑔𝑔 before the transforms are taken then the WCO 

index will be everywhere unity. The transform is quite sensitive to the value of the 

expectation operator used. For the most part I apply an n-point smoothing operator. 
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4.4.8. A synthetic example. 

Let us consider two independent Gaussian white noise processes. Only the first noise 

process will have super imposed onto it a short tone at 2000 Hz that repeats every 

0.01 s. Both processes have imposed on them a common 1000 Hz repeating tone, but in 

the case of the second signal, the tone has a 𝜋𝜋/! phase lag with respect to the tone in the 

first signal. The tones each have an amplitude 25% larger than the mean Gaussian noise. 

The wavelet transforms of these two signals are given in Figure 4.16; a Morlet wavelet is 

used with choice of parameters to enable a close to 1:1 mapping from scale to frequency. 

The effect of taking the cross wavelet spectrum is presented in Figure 4.17. In the top 

panel, the joint-signal power is given, highlighting regions on the frequency-time graph 

(or scale-time graph) of common power. The 1000 Hz tone is clear, since it is present in 

both signals. The 2000 Hz tone, however, was not in the second signal so it is strongly 

suppressed in the joint transform. (As there will be correspondences between the noise 

in the second transform and the 2000 Hz tone by chance, elements of it remain just 

visible.) In the middle pane, the phase angle delta between the two signals is given. 

However, where the signals are little more than noise, this is a spurious, rapidly evolving 

quantity. Therefore, it is shown faded out where, in the case of either signal, the 

magnitude is below an a priori estimate of the noise. What remains, in this case, is the 

1000 Hz stripe comprising the train of discrete tones. Although not necessary in this 

example, in the final pane only signal differences of −𝜋𝜋 !± 𝜋𝜋 ! have been selected; 

the other angles are shown as white. In this example, a clear identification of a common, 

albeit phase-lagged component, can be made. 

4.4.9. A real example. 

Figure 4.18 shows a wavelet coherency analysis of the real 𝑥𝑥 and 𝑦𝑦 data from the bdot 

probe. There is a clear strip running from 0.2 µs to about 0.8 µs at about 55 MHz, 

suggesting common energy on both axes here at this frequency. There are other regions 

on the graph with common power as well, including in the very lowest frequency of the 

spectrum and briefly at just below 30 MHz. 
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Figure 4.16. Wavelet transforms of the two signals discussed in the text. 
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Figure 4.17. Wavelet coherency analysis: see accompanying text on page 95. 
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Figure 4.18. A wavelet coherency analysis of the same data as given in 

Figure 4.2. 

4.5. SUMMARY OF THIS CHAPTER 

I have reviewed the basic principles of three related signal analysis techniques, starting 

with Fourier analysis and showing how it can be extended to cover varying sinusoidal 

signals with the windowed Fourier analysis. I go further to talk about non-stationary 

signal analysis with the wavelet transform and in particular the ability of the wavelet 

coherency transform to take two signals and determine if they share common 

components, up to and including phase drifts (which may be quantified).



 

 99 

5. EXPERIMENTS 

In this chapter I discuss four experiments. The principal experiments are two I 

undertook at the GEKKO facility, at the Institute of Laser Engineering, Osaka University. 

I produced laser-driven shocks in a nitrogen atmosphere, using a bdot probe to monitor 

the generation of magnetic fields. In the first experiment, wavelet examination of the 

magnetic field data suggests that, only when a background field is imposed, a right-

handed propagating wave is excited. In the second GEKKO experiment, under slightly 

different conditions, no such waves were observed; an explanation of this is given in the 

next chapter. 

The third experiment discussed was performed at Target Area West, on the Vulcan 

facility at Rutherford Appleton Laboratory. The experiment was intended to 

demonstrate the amplification of self-generated magnetic fields through plasma 

turbulence. That aspect is discussed in (Meinecke et al., 2014). I look in particular at the 

electron spectrometry. 

Finally the fourth experiment was done at the Laboratoire d’Utilisation des Lasers Intense 

(LULI), at the École Polytechnique in France. That experiment concerned the production 

of magnetic fields of particularly high magnitude using a capacitor-type laser target. See 

Santos et al. (2015). The fields generated were short-lived, and provided a useful 

platform for investigating the true bandwidth of the probe—in the sense of the fastest 

pulsed field it could detect, with reference to the same field examined by other 

diagnostics. 
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5.1. PRODUCTION OF SHOCK WAVES AT THE GEKKO FACILITY 

I used the GEKKO laser facility at the Institute of Laser Engineering, Japan to drive 

shockwaves in low-pressure nitrogen and to study the effect of imposing an ambient 

magnetic field on the generated magnetic field configuration. In particular I wanted to 

see if it were possible to drive magnetic field waves into the unshocked material 

upstream of the shock front in a manner somewhat analogous to the Earth’s bow shock 

or other astrophysical shock structure. 

The experiment showed that the generated magnetic field was increased in magnitude by 

the presence of the background field. The experiment also showed that right-handed 

circularly polarized waves could be produced in the laser-laboratory. 

5.1.1. The experiment design. 

The experiment design is shown by schematic in Figure 5.1 below. 351 nm light 

illuminates a cylindrical carbon rod of diameter 500 µm, with laser focal spot 250 µm 

and pulse length of 500 ps. The driver energy was varied, with values of 480 J, 850 J or 

1280 J, depending on the number of beams used during the illumination. This 

prompted the generation of a shockwave, expanding into the surrounding nitrogen. The 

nitrogen initial fill pressure was 1 mbar. A permanent magnet was present in some 

experiments to provide an ambient field on which whistler waves if excited could 

propagate. The rod surface is heated under the light flux, and impulsively expands, 

acting as a piston to drive a shock front into the nitrogen. The nitrogen is probably at 

least partly ionized by the initial laser flash. To characterize this shock front, time-

resolved interferograms are captured at 15 ns and at 25 ns, and temporally streaked self-

emission images are recorded between 25 ns and 50 ns. 

To effect a parallel magnetic field in the region at and near the shock front, I placed a 

removable commercial neodymium magnet directly above the rod to produce a 

magnetic field directed along the rod’s extended axis. I used a Hall probe to measure the 

field strength of the magnetic and confirm it is indeed dipolar, or at least decaying with 

cubic distance along the axis. A plot of the measured magnetic field values and the fitted 
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curve (to a dipolar field, on the 𝑧𝑧-axis with the form 𝐵𝐵 𝑧𝑧 = 𝜇𝜇!𝑚𝑚 !𝜋𝜋𝑧𝑧!) is given in 

Figure 5.2. 

For each laser energy value, one shot was taken with the permanent magnet in place, 

and one with it removed, so that a ‘null’ comparison could be made. I obtained six 

measurements: three with the field in place and three without. The bdot probe was 

positioned directly below the rod so that the imposed field is approximately parallel at 

its position, coincident with the 𝑧𝑧-axis. The probe is not sensitive to static fields, but 

only detects changes in the magnetic field. 

 

 

Figure 5.1. A schematic of the experiment performed at the GEKKO facility 

in 2012. 
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Figure 5.2. The magnetic field strength of the permanent magnet, with 

distance from the target chamber centre along the dipole axis of the magnet. 

The magnet surface is at -0.8 cm. 

 

5.1.2. Interferometry. 

The raw interferometric images from low energy (480 J) shots are presented in Figure 

5.3. The magnetic field is not observed to have any effect on the shock propagation in 

any shot. The driving energy in both cases was 480 J (± 6 J) of 321 nm light, from two 

shots; the left panes show the state of the target prior to the laser firing; the right panes 

show the state of the plasma 15 ns after firing. The laser fires from the right side of the 

page. The presence of the magnetic field in the lower two images is expected to make no 

difference to the shock generation or propagation. A shock front is faintly visible in each 

case as a slight ridge in the interferometry fringes. 

The fringe patterns can be readily discerned by the human eye, but for a numerical 

analysis the fringe geometry must be understood by the computer. The presence of 

anomalous, individual bright pixels is a bar to this, as is the variable brightness and 

contrast across the image—because typical computational analyses consider the absolute 
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value of the pixel brightness whereas the human vision processing is sensitive to 

contextual contrast. (The variable brightness arises because the laser is not uniformly 

bright on the imaging chip.) I apply a despeckle filter over each image to remove errant 

individually bright pixels. I also run a local thresholding tool over the images, which 

converts the image into a binary, black-or-white image. That is to say, a pixel is made 

totally black if the pixel brightness is below a certain threshold, and totally white if 

above. In the local thresholding model, the local contrast (within say 30 pixels) 

determines the requisite threshold brightness for choosing if a pixel is considered ‘black’ 

or ‘white’. Neither of these processes alters the inherent information contained in the 

image, which is the fringe geometry, but rather makes the information more amenable 

to computational interpretation. In Figure 5.4 I show the effect of this first part of the 

interpretation process. 

Subsequently the image is passed through a two-dimensional Fourier transform, and the 

highest frequency components—corresponding to the uneven fringe edges and the 

remaining speckle—are zeroed out with a mask. A reverse transform gives a clean fringe 

pattern, whose values are modulo 2π. Finally, the fringe pattern is ‘unwound’, by which 

I mean, the cyclical white-dark-white fringes are converted to a linear, monotonically 

increasing phase component from top to bottom. This entire process is applied to both 

the reference and the data image; the reference phase map may then be subtracted from 

the data map to give the effective phase change arising because of the plasma. The 

technique in this paragraph follows from Gregory (2007). 

Finally I implement (3.25) in MATLAB, a convenient software package for numerical data 

analysis, to obtain an estimate of the electron density in the cylindrical assumption. I 

present the density profiles from all six shots at the two different times (15 ns and 25 ns) 

below. 
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Figure 5.3. Interferometry pictures captured at 15 ns in the GEKKO 2012 

experiment. 
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Figure 5.4. The effect of the pre-processing on the interferometry images. 

The raw image on the left is the same as in the upper-right pane of Figure 

5.3; on the right is the same image after applying a despeckle filter and a 

local threshold tool. 

 

5.1.3. Interferograms and shadowgraphy show the appearance of a 

shock in the nitrogen. 

Interferograms were consistent with a shock wave expanding into the surrounding 

medium. See Figure 5.5 and Figure 5.6: in each, a graph of the density is presented. The 

laser strikes from the left onto (0 cm, 0 cm). The lineouts, shown below in each figure, 

are along the 0 cm horizontal chord, averaged over the nearest ten vertical pixels. Figure 

5.6 shows the better data, but probably Figure 5.5 is more representative of the typical 

data: in both figures the images show a spike in the density at (0 cm, 0 cm) where the 

carbon rod stood prior to the laser ablation. This is likely to be a dense cloud of carbon 

plasma. At about 0.50 cm in Figure 5.5 and 0.65 cm in Figure 5.6 there is an arc of 

high density. I infer this to be a shock wave. The lineouts assist in the interpretation of 

the position of this shock, as well as the properties on either side, but also the lineouts 

highlight that the whole picture must be taken as a two-dimensional slice to reduce the 

impact of noise. A summary of the analysis from the interferometry data is given in 

Table 3 on page 109. 
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The effect of the magnetic field on the motion of the plasma can be quantified, within 

the ideal MHD assumption, by the value of the plasma beta. For the ram pressure the 

beta is 

𝛽𝛽!"# =
𝜌𝜌𝑣𝑣!

𝑝𝑝!"#
≈ !𝜋𝜋

𝑚𝑚!𝑛𝑛!𝑣𝑣!

𝐵𝐵!  ~ !"!. (5.1) 

(The intermediate quantities are in CGS units.) As the shock slows down, 𝛽𝛽!"# drops to 

around 10, but this still indicates the ram pressure dominates. Therefore the fact that the 

imposition of the magnetic field is not observed to affect the shock morphology is 

unsurprising. 

One important caveat is that the interferometry analysis is taken from the back side of 

the rod between 15 ns and 25 ns and therefore the shock properties at this time and 

position are only a proxy for the shock below the rod, later in its evolution; the values 

extracted here are used to constrain a simulation later. This approach follows from 

Gregori et al. (2012). 
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Figure 5.5. The estimated electron density at 15 ns, as computed from an 

interferogram. The laser energy was 480 J. 
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Figure 5.6. The estimated electron density at 25 ns, as computed from an 

interferogram. 

The lineout is shown along the 0 cm horizontal chord, directly behind the 

laser strike position, averaged over the nearest ten vertical pixels. 
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Table 3. Estimates of shock position and electron density change in the GEKKO 2012 

experiment from interferometric measurements, and inferences of shock speed. 

 480 J ± 5 J 840 J ± 15 J 1.28 kJ ± 15 J 

With applied magnetic field? No Yes No Yes No Yes 

At 15 ns       

Shock progress / cm 0.49 0.48 0.55 0.52 0.61 0.61 

Sedov–Taylor quantity (est.) / 
cm ns-2/5 

0.17 0.16 0.19 0.18 0.21 0.21 

Sedov–Taylor speed (est.) / 
µm ns-1 

130 130 150 140 160 160 

Pre-shock electron density / 
1018 cm-3 

0.6 0.5 0.7 0.5 0.6 0.6 

Peak electron density / 1018 cm-3 1.7 1.6 1.7 1.8 2.0 2.1 

Compression ratio 2.8 3.2 2.4 3.6 3.3 3.5 

At 25 ns       

Shock progress / cm 0.60 0.60 0.67 0.71 0.81 0.81 

Sedov–Taylor quantity (est.) / 
cm ns-2/5 

0.17 0.17 0.18 0.20 0.22 0.22 

Sedov–Taylor speed (est.) / 
µm ns-1 

96 96 110 110 130 130 

Pre-shock electron density / 
1018 cm-3 

0.4 0.5 0.3 0.4 – 0.5 

Peak electron density / 1018 cm-3 0.92 1.0 0.82 1.2 – 1.5 

Compression ratio 2.3 2.0 2.7 3.0 – 3.0 

Values are quoted to two significant figures, except the pre-shock density, which is 

difficult to estimate. For the meaning of the Sedov–Taylor quantity and speed, see 

section 2.1.3 on page 24. In one case the data were insufficient for the density 

reconstruction. 
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5.1.4. Optical streaked self-emission. 

Streaked interferometry (Figure 5.7) shows an outgoing disturbance in the electron 

density. The streaked interferometry shows a horizontal slice at fixed position, and then 

the time proceeds down the image. (Actually the horizontal slice in the streak camera 

image represents a vertical slice through on the images above; the image is rotated before 

it reaches the camera.) The colours are reversed. The fringes are visible as vertical lines in 

the centre of the image. The laser flash is at the top right; then the image is dark until 

the probe laser illuminates the system and the shutter opens, where upon a diagonal 

density disruption in the fringes is visible. If the fringes were sufficiently well resolved, it 

would be possible to obtain an estimate of the density function with time, but 

regrettably they are insufficiently clear for such a task. 

 

Figure 5.7. Streaked interferometry image, reversed colour: evidence of an 

outgoing feature is visible. 
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5.1.5. Bdot probe measurements. 

Figure 5.8 and Figure 5.9 both present the raw signal (the voltage) recorded by the bdot 

probe; that is to say, this is the signal prior to any filtering or analysis. The axes have the 

meaning given in Figure 5.1, and the zero on the time axis is the laser-matter interaction 

time. In both cases the 𝑧𝑧 signal is on average flat, but in Figure 5.8 there is much less 

noise than in Figure 5.9, where the data are overwhelmed for the first 200 ns or so with 

noise. The other channels, 𝑥𝑥 and 𝑦𝑦 show different behaviour; in both cases there is a rise 

and fall of the voltage over about 1 µs, but in the case of Figure 5.9 this is much more 

pronounced with an early peak at about 400 ns. The 𝑥𝑥  and 𝑦𝑦  axes appear roughly 

correlated in both graphs with the 𝑧𝑧 axis behaving separately. In the case of both figures, 

if there is any high frequency behaviour it is largely occluded by the noise. 
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Figure 5.8. Raw data from the bdot probe (no imposed field, 1.3 kJ driver). 

 

 

Figure 5.9. Raw data from the bdot probe (with imposed field, 1.3 kJ 

driver). 
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5.1.6. Wavelet coherency analyses of the bdot probe observations. 

Description of method as applied to this dataset. 

The coherency analysis of the bdot probe data is presented in Figure 5.10; the coherency 

estimate is taken between the two axes orthogonal to the shock travel direction (and, 

where imposed, the background magnetic field direction). This means the data are 

collected on the 𝑥𝑥- and 𝑦𝑦-axes of the probe as defined in Figure 5.1. 

The description that follows on is given in reference to Figure 5.10 on page 116. I shall 

begin with a summary explaining the means by which the data were processed, then 

how each graph was made, and finally what I believe the physical implication to be. 

To produce each graph, I process the data recorded on two orthogonal bdot probe coils 

under the method explicated in Part 3.1, in particular under equation (3.9) to give the 𝐁𝐁 

field as a function of time, projected into the 𝑥𝑥 and 𝑦𝑦 directions (each of which is 

orthogonal to the shock-travel direction at the probe: see Figure 5.1 on page 101). The 

vertical component (the 𝑧𝑧-axis, which is the shock travel direction) is disregarded. Then, 

I apply the signal analysis techniques I discussed in Part 4.4 to give a set of three wavelet 

coherency graphs. In the left column, the data presented were taken with no magnetic 

field imposed; and on the right, the background dipolar background field was in place. 

The design of graphs. 

Figure 5.10 on page 116 shows data taken with a laser energy of 1.2 kJ. It is at this energy 

that the distinction between the case with no imposed field (left column) and the case 

with the imposed field (right column) was most clear. In each graph, the vertical scale 

represents the angular frequency of the detected signal, and the horizontal scale shows 

the evolution of time since the laser pulse was fired. 

The graphs in the uppermost row, that is, subfigures (a) and (b), show the cross wavelet 

coherency, as defined in section 4.4.7, in modulus. The bright colours depict regions of 

high common power between the two axes of the bdot probe. The power is measured on 

a log scale, shown in decibels, relative to the noise floor. 
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The graphs in the middle row [subfigures (c) and (d)] show the phase lag between the 

signals recorded on the two orthogonal axes, ranging from −𝜋𝜋 to +𝜋𝜋. In order that the 

graph not be too overwhelming, I have suppressed regions where the signal power on 

either coil falls below what I estimate to be the detection threshold for the bdot probe at 

the relevant frequency. Those areas are shown faded on the graph. 

In the final, lowermost row [subfigures (e) and (f)], I present the same data as in 

subfigures (c) and (d), except that now I only highlight regions where the phase lag 

between the two signals is at −𝜋𝜋 !, within a tolerance of ±𝜋𝜋 !. 

The features that are visible on the signal power graphs (a) and (b); a description 

thereof. 

In both plots (a) and (b), there is evidence of a bright pulse at early time (𝑡𝑡 < !.! µs). 

The pulse is relatively wideband in both subfigures, although brighter in graph (b). In 

(a), there is also a kind of echo of the early noise occurring at about 0.1 µs. If this feature 

is present in (b), it is overwhelmed by another signal, which occurs very brightly from 

0.0 µs until about 0.2 µs. In (b) there is also a clear band, extended from early time until 

about 1.0 µs, occurring in a narrow band approximately between 50–70 MHz, with 

power concentrated at 60 MHz. This feature is completely missing in figure (a). The 

peak power in this band is of order 40 dB, gradually falling away into noise. 

Subfigure (b) also shows the presence of some ‘spikes’ that periodically extend off the tail 

upwards. From analysis with wavelets of narrower frequency discrimination, I believe 

these are artefacts of the wavelet transform, where the 60 MHz band has significantly 

higher power than the local average and is ‘leaking’ upwards. 

The phase differences between orthogonal magnetic field measurements, shown in 

subfigures (c) and (d). 

To determine the nature of this common coherence, let us now look at the phase lag 

between the two orthogonal bdot axes in the case of both experiments. Subfigure (c) 

again shows the case with no magnetic field; the low-magnitude data close to the noise 

floor have been suppressed. In general it is difficult to discern much in the way of a 

pattern, although the early spike has some consistent phase lag. 
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A similar story applies in subfigure (d), but it is clearer that the band described of high 

power in (b) has a consistent phase throughout, suggesting that it is not merely a region 

of white noise but was generated by some physical process. The lag is approximately 𝜋𝜋/! 

for much of the band, suggesting that the fronts here are right-hand circularly polarized 

in the bdot probe’s frame. 

Features of π/2 phase lag as highlighted in graphs (e) and (f). 

In figures (e) and (f) I have suppressed all points from (c) and (d) by fading, except 

those displaying lag of −𝜋𝜋 !± 𝜋𝜋 !. Subfigure (e) is now largely empty, although there 

is common power in this phase lag at times before 0.1 µs. In subfigure (f), however, 

there is a clear sequence of three right-hand polarized bursts at about 60 MHz, with a 

bandwidth of perhaps 20 MHz. The bursts fade before 1 µs. 

5.1.7. Summary of the 2012 GEKKO experiment. 

I produced shocks in nitrogen with a driver at multiple energies. I characterized the 

shock through optical diagnostics at early times. The imposition of a weak background 

magnetic field did not affect the shock propagation but it did affect the generated 

magnetic field configuration. There is evidence of a right-hand polarized mode at about 

60 MHz in only the field-imposed case. 
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Figure 5.10. The coherency analysis of the bdot probe data taken at 1.3 kJ. 
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5.2. SECOND EXPERIMENT AT THE GEKKO FACILITY (2014) 

 

Figure 5.11. A schematic of the experiment performed at the GEKKO 

facility in 2014. 

A source of uncertainty in the first experiment at the GEKKO facility was the non-

uniformity of the imposed magnetic field, both in terms of magnitude as the shock 

progressed, and the degree of curvature. It seemed to me that the variance in the field 

was a confounding variable that could be readily eliminated (see Figure 5.2 on page 

102). Therefore, I designed a Helmholtz-like array consisting of a pair of disc magnets 

surrounding the target, intended to produce a region of straight field lines. The lower 

magnet has a 1 cm diameter hole drilled through it to accommodate the passage of a 

bdot probe. In this experiment I used only one driver energy value, 360±20 J, requiring 

three driver beams in the cone per shot: using only three beams from the twelve-beam 

array enabled me to take more shots without waiting for amplifier cooling. During the 

experiment, I varied the gas pressure and the distance between the bdot probe and the 
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target. The shock parameters were observed with optical interferometry and 

shadowgraphy; framed self-emission showed the disintegration of the carbon target. 

5.2.1. The design of the 2014 experiment. 

I designed a target assembly in which the magnetic field would be uniform and 

relatively strong, compared to the previous experiment—in which the field had been 

dipolar, weakening as the shock progressed and also diverging spatially. The assembly 

consisted of two neodymium-boron-iron magnets in a Helmholtz configuration; 

modified by the introduction of a small hole in one of the magnets to accommodate the 

bdot probe. A schematic of the design is presented in Figure 5.11 above. The field was 

measured to be 5000 G with a Hall probe at several points along the rod axis within 

3 cm of the target-laser interaction point. The GEKKO laser irradiated a carbon rod with 

360 J of 321 nm light, prompting the generation of a shockwave into the surrounding 

nitrogen. The nitrogen pressure, before the laser fired, was varied between 1.3 mbar and 

6.6 mbar. 

Side-on optical interferometry (of the Nomarski design) and shadowgraphy was 

available from a probe beam passing through the target orthogonally to the principle 

driver cone (i.e., into the page in Figure 5.11). That common probe line also supplied the 

self-emission diagnostics (with appropriate filters to exclude the laser light): the full 

diagnostic set up is shown in Figure 5.12. 
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Figure 5.12. The diagnostics set up for the 2012 and 2014 experiments at 

the GEKKO facility. (T Morita, private communication.) 

5.2.2. Optical emission images. 

Using a framing camera I obtained time-resolved self-emission images, showing the 

disintegration of the carbon rod and an outgoing arc: see Figure 5.13. These images are 

time-resolved pictures of the radiation emitted by the plasma, without backlighting. The 

exposure time in each case is 0.25 ns. The framing camera consists of a number of 

independent CCDs each supplied from a common optical line; the camera thereby 

enables one to capture multiple time-resolved images of the same shot. At 5 ns, multiple 

images appear of a white-hot target, but this is likely due to internal reflections of the 

same image. By 20 ns the ghost reflections have vanished. At about 25 or 30 ns a clearly 

distinguished glowing front is visible moving away from the target. Figure 5.14 shows 

the position of this outgoing arc. The results suggest it is, between 25 ns and 50 ns, 

approximately a Sedov–Taylor shock. 



SECOND EXPERIMENT AT THE GEKKO FACILITY (2014) 120  
 

 

 

Figure 5.13. A series of self-emission images captured of a shock front 

evolving from a carbon plasma and expanding into the surrounding 

nitrogen medium. 

 

 

Figure 5.14. The horizontal position of the outgoing arc, with a Sedov–

Taylor curve fitted. 
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5.2.3. Interferometry through optical probing. 

At 15 ns and 25 ns, interferograms are also captured. An example of such an 

interferogram is presented in Figure 5.15. As in the 2012 experiment, the interferograms 

are interpreted to provide electron density information at two time points, which is later 

used to constrain simulations. The results are found to be in line with the 2012 

experiment at the same energy and fill pressure values. 

 

 

Figure 5.15. An interferogram showing the emergence of a shock front 

propagating into the surrounding nitrogen media. 
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5.2.4. The magnetic field signals recorded by the bdot probe. 

The bdot probe recorded signals for all shots. Two examples are given: see Figure 5.16 

and Figure 5.17. Figure 5.16 is at 25 mm distance and shows a slightly weaker field, 

peaking at about 30 gauss, whereas the other figure has a peak at about 40 gauss, and 

reaches its peak sooner. This is consistent with a Biermann battery mechanism driving 

the field generation in or just behind the shock front. 

In Figure 5.18 on page 124 I show the coherency analysis from two datasets equivalent 

but for the presence of an imposed straight field. This time there is no evidence of a 

narrowband signal. 

5.2.5. Summary of the 2014 experiment 

I produced and characterized shock waves at the GEKKO facility. I used a Helmholtz 

array to impose a consistent 5000 gauss field on the target for some shots. The bdot 

probe indicated the generation of magnetic field up to about 40 gauss.  

However, there was no evidence of right-hand polarized waves as we saw in the 2012 

experiment. This was also the case when no imposed field was in place. The reason for 

the difference in results between the two experiments will be investigated in Part 6.3 on 

page 146. 
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Figure 5.16. Magnetic field measurements from bdot probe (with imposed 

field, 360 J driver, 1 mbar back pressure, probe at 25 mm distance). 

 

 

Figure 5.17. Magnetic field measurements from bdot probe (with imposed 

field, 360 J driver, 1 mbar back pressure, probe at 20 mm distance). 
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Figure 5.18. The coherency analysis of the bdot probe data from the 2014 

experiment. 
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5.3. SPECTROMETRY OF ELECTRONS 

This experiment was principally conceived to develop our study of magnetic field 

amplification through turbulent plasma flows; that element is discussed by Meinecke et 

al. (2014). The component I discuss here was an attempt to detect any electrons 

accelerated by the process of diffusive shock acceleration. However, such an ambition 

was not likely to succeed given the plasma conditions (Reville et al., 2013). Instead, I 

used the data produced to look at the electron energy spectrum produced during the 

experiment. 

5.3.1. Design of the experiment. 

The experiment was conducted in Target Area West in May 2012 at the Vulcan laser 

facility in Oxfordshire, United Kingdom. A target, usually a single carbon rod, is heated 

by the illumination of up to three long pulse beams from the Vulcan laser. The heater 

beams were arranged at a ninety-degree angle to the detector line of sight. On some 

shots, two targets were used, with the second target heated from the opposite side; but 

the spectrometer was not adjusted. Here, however, I look only at the high-energy 

electrons produced. For the detail of the electron spectrometer’s operation, see Part 3.3 

and in particular Figure 3.10 on page 59. 

We used a great variety of target configurations: sixty-six shots with single ‘slab’ targets; 

fifty-eight shots with double targets; sixty-three single 500 µm diameter carbon rod 

targets, of which thirty-one included a grid intended to perturb the outbound shock 

front; and in all but a minority of cases there was some level of gas fill. 

5.3.2. Example image plates. 

An example of a scanned image plate, after it is converted to PSL values, is given in 

Figure 5.19. The dark regions represent higher PSL values. The area between the magnets 

is isolated, averaged and then the value is plotted as a function of distance along the 

image plate. The image has been converted to PSL (photostimulated luminescence) 

values by proprietary software supplied with the image plate scanner; the black areas 

indicate the deposition of charge (or x-rays) and the white areas represent its absence. 
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The outline of the magnets is marked in black dashed lines. The region between the 

magnets, from which the energy spectrum shall be estimated, is shown in white dashed 

lines. 

In Figure 5.20 I show the relevant part of the image plate zoomed in. The colour scale is 

different from the previous figure. There is a band of dark corresponding to a higher 

electron density. The average value of the PSL count is taken as a function of distance 

and presented in Figure 5.22. 

Two examples, both from carbon rod targets, are presented in Figure 5.21 (no gas) and 

Figure 5.22 (1 mbar argon). The shots without gas appear to be a lot ‘messier’, with 

lower values in general. The shots taken with a background gas fill have a higher PSL 

count in general—suggesting a greater number of heated electrons—and they follow a 

smooth curve with a peak at 0.5 cm. This suggests the presence of a gas fill greatly 

increases the number of heated electrons. 

In Figure 5.23 and Figure 5.24 I have applied (3.30) to obtain the electron count with 

energy. The presence of an energy ‘cut off’ at 40–50 keV is reproduced in all data; there 

is, if one moves from right to left, a precipitous decline in electron count at this energy 

value. The predicted ‘minimum energy’ from the calculation discussed in section 3.3.2 is 

36 keV, suggesting that the approximation is not very reliable. Probably the effects of 

fringe fields around the yoke, which were previously neglected, are responsible for this 

deviation. 

Integrating over the energy in the gas-filled case gives a total electron count of about 108 

electrons; these are collected by a detector through a slit of 0.2 cm2 area placed 30 cm 

distant from the target. If the electron profile is uniform over that area, it suggests 

approximately 1011 electrons were emitted with energies in excess of ~ 50 keV and below 

200 keV. 
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Figure 5.19. A false colour scan of an imaging plate, after exposure during 

the experiment. 

 

 

Figure 5.20. The PSL level in the magnetic field region (darker corresponds 

to higher electron density). 
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Figure 5.21. Lineout from an image plate. This shot had no background gas 

fill. 
 

 

Figure 5.22. Lineout from an image plate. This shot was taken in the 

presence of 1 mbar of argon gas.  
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Figure 5.23. Conversion to charge line density per energy. This shot had no 

background gas fill. 
 

 

Figure 5.24. Conversion to charge line density per energy. This shot was 

taken in the presence of 1 mbar of argon gas.  
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5.3.3. The results in summary. 

There is a clear difference between shots that have a gas fill and those which do not; 

since the free electron count is higher at the measured energy values when the gas is 

present, it suggests that the damping effect of the gas is not particularly important but 

rather the gas acts as a source of charged electrons. However the limitations of the 

diagnostic, in particular the energy detection range and the time-integrative nature, and 

the probable presence of fringe fields compromising the accuracy of the count, do not 

allow a reliable interpretation of the data that can be made useful for the experiment at 

times following the laser-matter interaction. 

5.4. LASER-DRIVEN COILS 

This experiment was undertaken at the LULI facility, École Polytechnique, France in 

May 2014. Essentially, a high power laser drives electrons from one of a pair of parallel 

discs to the other, establishing a high potential difference between the two surfaces. A 

return current then flows, to neutralize this charge accumulation, through a wire 

connecting the two plates; and this wire is arranged in a single loop. A high 𝐁𝐁 field arises 

through the axis of the wire loop, of the order of a few hundred tesla, persisting for a 

few nanoseconds. 

The growth and decay of a field on this time scale, was at the limit of the probe’s 

theoretical temporal response. Therefore, the experiment allowed me to test the 

bandwidth of the bdot probes by reference to ultra-fast bdot probes supplied by le 

Commissariat à l'énergie atomique et aux énergies alternatives (‘the CEA’). 

5.4.1. The motivation for the experiment. 

The generation of magnetic fields approaching 1 kT is of interest to numerous 

communities, including not only high field physics in abstract (Portugall et al., 2013) 

but also applications such as suppression of electron heat conduction in the inertial 

confinement fusion scheme (Chang et al., 2011), in the validation of nuclear modelling 

(Schielke et al., 2003), in probing the mechanism of superconductors (Hunte et al., 
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2008), and in laboratory astrophysics studies (Courtois et al., 2004). However, reaching 

fields in excess of 300 T is beyond the range of conventional capacitor-driven 

electromagnets (Herlach, 2002), and other methods, such as driving flux compression 

with chemical or even nuclear explosives (Neuber & Dickens, 2004), have obvious 

practical shortcomings. 

Therefore, producing a stable, long-lived (10s ns) magnetic field through a compact, 

laser-driven device has clear advantages to many communities, in particular lab 

astrophysics. However, previous experiments using the capacitor-coil target design (I 

describe the design below) have failed to characterize the field geometry well, making 

estimations of the maximal field strength uncertain (Fujioka et al., 2013). Therefore, in 

this experiment we intended to measure the field in several places, though several 

diagnostics, to constrain better our model of the field. 

I implemented a three-axis bdot probe on this experiment to complement several other 

diagnostics (CEA probes, Faraday rotation, proton deflectometry). Here my intention is 

not to concentrate on the other diagnostics and the experiment as a whole, but rather to 

examine the temporal response of the bdot probe to a field whose rise time is on the 

order of nanoseconds.  

5.4.2. The target design and the driver parameters. 

The target consists of two parallel metallic discs, conjoined with a metal wire arranged in 

a small loop. A high power long pulse laser system delivered 500 J (±25 J) of 526 nm 

light onto the target over 500 ps, reaching an estimated focal intensity of 

3 × 1017 W cm-2. The laser is brought to focus on the rear disc’s front surface, passing 

through a hole in the forward disc. The laser-plasma interaction on the target surface 

drives a population of hot electrons from the rear disc and onto the front disc, 

establishing an electric potential gradient between the two discs. In (i), the rear disc is 

illuminated through the hole of the front disc. In (ii), the laser plasma interaction has 

driven a collection of electrons onto the front target, creating a charge imbalance. This 

charge separation creates a strong electric field between the plates. In (iii), the charge 

imbalance has driven a return current through the wire loop, creating a magnetic field. 
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Figure 5.25. The target design and evolution of the LULI experiment in 

2014. From Santos et al. (2015). 

 

 

Figure 5.26. The position of the bdot probe (not to scale).  

5.4.3. Magnetic field measurements from the bdot probe. 

The probe is positioned at either 42 mm or 25 mm from the coil centre (see Figure 

5.26).  From previous experiments of this nature (Daido et al., 1986; Fujioka et al., 

2013) we expect the field lifetime to be on the order of 10 ns or less. The multi-axis 

probe records a peak in the magnetic field along the coil axis as expected, with a full-

width at half-maximum (FWHM) size of 10 ns. Data from other measurements suggest a 

lifetime of about 5 ns (full width at half maximum), so from this we might conclude 

that the probe is reaching the bandwidth limit of the probe (see Figure 5.27).  
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5.4.4. Summary of results. 

The data from the bdot probes in this experiment were compared against data collected 

from the other probes provided by the CEA. Faraday measurements were collected on a 

streak camera but were not available at the time of writing. It is found that the CEA 

probes, which have a bandwidth exceeding 2.5 GHz, detected the field life time of 

about 5 ns in contrast with our measurement of about 10 ns FWHM. It was necessary to 

apply a high pass, first order Butterworth filter with cut off frequency of 8 kHz to the 

dataset before processing. The value of the cut off frequency was found by an 

interpolation process. Assuming that the data from the CEA probes are correctly 

interpreted, this suggests our bdot probes have a response function preventing resolution 

below about 10 ns. 

We also compared the detected, peak magnetic field at the bdot probe with the 

magnetic fields recorded by other detectors. A three-dimensional magnetostatic model 

of the target was constructed, which, given a specified flow of electrical current through 

the target and wire loop, simulates the magnetic field that results. A copy of the model 

was produced for each diagnostic; the only difference being that the magnitude of the 

electrical current through the wire loop was adjusted in each case such that the field it 

produced matched the measured field at the detector position. The magnetostatic model 

was designed and implemented by Mathieu Bailly-Grandvaux of the University of 

Bordeaux. 

By this process I compared the data from the bdot probe with the data recorded by 

other probes placed in other positions. I found that with an appropriate high pass filter 

of ~ 8 kHz, the match with the alternative probe was good. 
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Figure 5.27. The magnetic field, computed from induction probe 

measurements, at a distance of 42 mm from the coil centre, resolved in 

three directions. These two shots were taken under the same experiment 

parameters. 
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Figure 5.28. Magnetic field data of Figure 5.27 but collected from an 

alternative probe. From Santos et al. (2015). The different lines show the 

effect of different filters. 

 

5.5. A SUMMARY OF THE EXPERIMENTS CHAPTER 

At the GEKKO facility, I produced laser-driven shocks in a nitrogen atmosphere, using a 

bdot probe to monitor the generation of magnetic fields. In the first experiment, wavelet 

examination of the magnetic field data suggests that, only when a background field is 

imposed, a right-handed wave is excited. In the second GEKKO experiment, under 

slightly different conditions, no such feature was observed. 

The third experiment, utilizing electron spectrometry, revealed the number of free 

electrons in the range of 50–200 keV increases when a background gas of 1 mbar density 

is present instead of a vacuum, but the limitations of the diagnostic precluded further 

interpretation. 

The fourth experiment, on the production of magnetic fields of particularly high 

magnitude using a capacitor-type laser target, demonstrated the bdot probe could 

respond to high frequency events (up to 100 MHz). 
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6. DISCUSSION 

6.1. SHOCK WAVES AT THE GEKKO FACILITY 

6.1.1. One dimensional hydro-radiative simulations. 

I model the GEKKO experiment on a spherically symmetric grid by using the Helios 

software package to obtain estimates for the evolution of the system as a whole and for 

the plasma parameters outside the observation times. Helios is a one-dimensional 

radiation-magnetohydrodynamics code commonly used on experiments of this nature. 

From an initial condition and specification of materials the software package solves the 

equations of radiation-magnetohydrodynamics on a Lagrangian grid. (MacFarlane et al., 

2006.) 

The simulation begins with laser incident on a carbon region in a low-density nitrogen 

atmosphere. Helios simulates the interaction of the laser light, the absorption of energy 

and the ionization dynamics including in the nitrogen gas, the resulting disassembly of 

the rod and the expansion of a shock into the surrounding atmosphere. Ions and 

electrons are treated as two fluids, and radiation exchange is modelled, but 

magnetohydrodynamic effects are not included in the simulations. To tune the 

parameters of the model I adjust the energy supplied to the system in the model until 

the initial expansion front of the shock simulated in Helios matches the experimental 

observations in the measured position. This happens at about 3% energy in line with 

previous work (Gregori et al., 2012). This is consistent over the laser energy range used 

in the experiments. It is important to say that I do not use any information gleaned 

from the bdot probe measurements to tune the Helios simulations. 

The Flash centre at the University of Chicago has also modelled the disassembly of the 

carbon rod under similar conditions (Tzeferacos et al., 2012) in two dimensions. The 
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authors find that the shock produced is asymmetric because the laser driver breaks the 

symmetry. Helios cannot capture this behaviour because it is a purely one-dimensional 

code. By 100 ns, this represents a 0.08 cm difference in shock position of the front 

compared with rear side of the target. This discrepancy is not captured by the one-

dimensional simulations I use. 

The purpose of this modelling is to obtain estimates of plasma parameters as a function 

of radius that are difficult to measure: in particular the temperatures and densities of the 

electron and ion components and the mean charge state of the ions. From these 

quantities parameters such as the electron and ion plasma frequencies may be calculated 

(Huba, 2009). 

In Figure 6.1, I include a plot of the shock position as estimated by Helios, together 

with a Sedov–Taylor fit to those position estimates. The fit is made on points 100 ns to 

200 ns; it diverges after this, suggesting that the simpler Sedov–Taylor model is not 

including important physics, such as the relevance of losses. 

 

Figure 6.1. The hydrodynamic simulation against a best-fit Sedov–Taylor 

curve on data between 100 ns and 200 ns, at 1.3 kJ. 
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6.1.2. On the validity of the hydrodynamic simulations. 

Helios is a one-dimensional package and it therefore cannot include many effects such 

as flow turbulence and shock asphericity that arise in multi-dimensional systems. 

Asphericity in the shock can lead to the spontaneous generation of magnetic fields 

through the Biermann battery effect (Gregori et al., 2012); and such fields lie off the 𝑧𝑧-

axis (rather they occur in the local tangent plane of the shock), which would disturb the 

validity of modelling of the situation as consisting of only parallel field lines. (The fields 

would lie off the 𝑧𝑧-axis because they occur with 𝑑𝑑𝑩𝑩 𝑑𝑑𝑑𝑑 ∝ 𝛁𝛁𝑇𝑇! ∧ 𝜵𝜵𝑛𝑛!, and, on the 𝑧𝑧-

axis, the density gradient lies along 𝑧𝑧.) Moreover, turbulence in the flow both amplifies 

and further distorts the spatial geometry of the field lines (Meinecke et al., 2014). 

Therefore, at least behind the shock, the magnetic field lines are not straight and parallel 

as assumed in the later analysis. To date I have not addressed these concerns in the 

work. 

While the Helios code treats the electron and ion fluids separately, it assumes they are 

co-moving and each at a Maxwell temperature. This fluid assumption is a little at odds 

with the later modelling I do of the shock front with the inclusion of the downstream 

electron flow; which is allowed to move separately, still as a fluid, from the bulk electron 

fluid. 

The final concern is that ionization dynamics are only approximated. As I discussed in 

section 2.1.5, we can expect a degree of ionization of the atmosphere at early time 

because of prompt electrons released during the laser-matter interaction. However, 

although Helios does include inverse-bremsstrahlung effects, the effect is only used for 

local heating and the ‘long range’ transport of hot electrons—as particles rather than as 

a fluidic component—is not included in the fluid model. Helios instead allows all layers 

of gas to absorb the laser light directly and in that manner become partially ionized. 

However, one-dimensional simulations have the advantage of being fast to run and 

being relatively easy to interpret. They may be readily compared with analytical models, 

such as the Sedov–Taylor shock wave. 



UPSTREAM-PROPAGATING WHISTLER WAVES 139  
 

 

6.2. UPSTREAM-PROPAGATING WHISTLER WAVES  

6.2.1. Analysis from theory. 

I apply the analysis presented in section 2.3.4 on page 34, using the parameters 

estimated by simulation (as constrained by interferometry and other measurements) in 

part 6.1. First the shock position as a function of time is detected by the peak in ion 

density jump. This position is slightly ahead of the temperature peak. Then the data 

either side of the shock are passed to a mathematical function representing the local 

dispersion relation, adapted from Gary (1985) as expressed in (2.5). 

𝜔𝜔! − 𝑘𝑘!𝑐𝑐! + 𝑘𝑘!𝑐𝑐! 𝑆𝑆!
± 𝐤𝐤,𝜔𝜔

!

= !. (6.1) 

The 𝑆𝑆!
±  are the dimensionless conductivities of the individual components. Let the 

subscript ‘𝑒𝑒’ refer to the upstream, unshocked electron component. Then 

𝑆𝑆!± 𝐤𝐤,𝜔𝜔 =
𝜔𝜔!"!

𝑘𝑘!𝑐𝑐! 𝜁𝜁!𝑍𝑍 𝜁𝜁!± ; (6.2) 

𝑍𝑍 has the meaning given in (2.36) and 

𝜁𝜁! =
𝜔𝜔

!𝑘𝑘𝑣𝑣!!,!
 

𝜁𝜁!± =
𝜔𝜔 ± 𝜔𝜔!"
!𝑘𝑘𝑣𝑣!!,!

 

The quantities 𝜔𝜔!", 𝜔𝜔!" and 𝑣𝑣!!,! are evaluated in the relevant position upstream of the 

shock directly from the Helios data, for instance three electron mean free paths ahead 

of the front (but this position can be varied). The ion component is evaluated in the 

same position. 

The electron beam component (subscript ‘𝑏𝑏’) arising from downstream is similar but the 

quantities 

𝜁𝜁! =
!

!𝑘𝑘𝑣𝑣!!,!
𝜔𝜔 − 𝐤𝐤 ∙ 𝐯𝐯!!  and, 

𝜁𝜁!
± =

!
!𝑘𝑘𝑣𝑣!!,!

𝜔𝜔 − 𝐤𝐤 ∙ 𝐯𝐯!! ± 𝜔𝜔!" , 

are evaluated in the downstream, shocked region; except 𝐯𝐯!!, which is the difference 
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between the fluid velocity in the shock region and the fluid velocity in the unshocked 

layer under consideration in (6.2). 

The choice of depth in front of the shock is important because the deeper into the 

unshocked medium, the more that collisions will deplete the density of the warm 

electron beam component arising from downstream. The warm beam’s density is 

computed based on the distance from the sampling position and the local electron mean 

free path. However, the shock front is not modelled as a zero-width region in Helios, 

but as an extended transition region with a ramp of finite gradient. Too close or inside 

the front and there is no longer a cold ‘unshocked’ background inside which the ‘beam’ 

may propagate. 

(6.1) is numerically solved (as earlier discussed in section 2.3.4) to give a prediction of 

the growth or damping rates of each frequency component in the given layer of plasma 

at the particular time. Together with some assumption of the spectral distribution of the 

local noise, this gives an estimation of the emission profile at a particular time at a 

particular place; for instance, see Figure 6.2. In the figure, the solid line shows the 

computed dispersion function, that is, the wave frequency for a given wave number. The 

imaginary component is shown with either a dotted line for positive growth rate, or a 

dashed line where it is damped. A solid vertical line shows the wave number where the 

wave is most unstable to growth; in this particular configuration it occurs at 39.5 cm-1. 

This corresponds to a frequency of 64.5 MHz. The horizontal line shows the observed 

right-handed waves, as found in our wavelet analysis (Figure 5.10 on page 116), which 

were centred on 60 MHz. The correspondence between the prediction and the 

observation is readily seen. 
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Figure 6.2. Predicted dispersion function 2.2 electron m.f.p.s ahead of the 

shock, at 75 ns in the 1.3 kJ experiment. The observed mode at 60 MHz is 

also noted. 
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Figure 6.3. The computed growth chart for the GEKKO 2012 experiment, 

showing the expected growth rates of any whistler disturbance ahead of the 

shock, in the 1.3 kJ case. 

 

Further a section of layers in front of the shock can be integrated to give a 

comprehensive emission prediction near the shock, with the passage of time. This is 

actually a prediction of the growth rate of background fluctuations into waves. The 

emission estimation is given in Figure 6.5. This shows how the shock is predicted to 

excite whistler modes in the layers upstream of the shock, as time evolves. At early time 

there is a bright, wideband flash; and subsequently after about 10-7 seconds there is a 

gently narrowing band of emission, moving downward in frequency space and settling 

between around 60–90 MHz. The growth rate peaks at about 107 s-1, which is perhaps 

not very large for the experimental time frame. 
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6.2.2. Emission to observation mapping 

The emission estimation however is not the same as what we would expect to observe 

with a probe, because the various components emitted must travel through the plasma, 

and each has a different phase speed. Therefore I pass the emission graph through a 

function that calculates the appropriate phase delay from the emission given the time, 

position, and phase speed of each point on the emission graph to give a plot of the 

arrival time by component. The phase speed is 𝑣𝑣!! = 𝜔𝜔 𝑘𝑘, and the distance over which 

the component is to travel is approximated as the probe distance from TCC less the 

shock position. The shock position is estimated by Helios. Such a graph looks as in 

Figure 6.4, and it is a key result. The graph suggests no emission from the shock front 

arrives until about 300 ns after the shock is produced; at which point a wide band 

appears at once. By 700 ns, the emitted fronts have narrowed to be between 40 and 

80 MHz in bandwidth. The agreement with Figure 5.10 on page 116 is striking. 

 

Figure 6.4. The predicted signal at the bdot probe, based on the above 

calculations, in the GEKKO 12 experiment. This is a key result. 
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6.2.3. Concord of the observation and prediction. 

Comparing Figure 6.4 (the prediction of wavelet excitation from theory and measured 

experimental parameters) and Figure 5.10 on page 116 (the observations made with the 

bdot probe), the agreement between the observation and the prediction is good, in 

terms of the expected frequency range emitted (around 60 MHz). The prediction data 

have not been tuned by the bdot observations. 

The observed signal power in the experiment is somewhat higher than predicted, 

because a growth rate of 107 s-1 is only a few e-folds for a front that escapes the shock 

layer quickly enough to reach the probe. 

The bursting behaviour observed in Figure 5.10 is seen in the prediction as well, at 

around 800 ns, but that is probably because of the low temporal density of the 

prediction dataset rather than an explanation of the measured result. 

The close concord of the observation and prediction here suggest that the proposed 

excitation mechanism is valid; and that upstream waves are indeed emitted from the 

shock front in the laboratory system. It opens this up as a platform to study the 

behaviour of these waves. 

6.2.4. Application to the bow shock; and validity of the scaling 

relations. 

Some dimensionless numbers are given in Table 4, together with their estimated values 

in the laboratory and in the experiment. I should underscore that the importance is the 

reciprocal of the number, so for instance while clearly 15 ≠ 1014, it might not be an 

unreasonable approximation to say that 0.07  ≈  0 in the context of laboratory 

astrophysics, particularly given the error bars on some quantities such as temperature. 

However, the difference in the Biermann number [as defined by Cross et al. (2014), a 

measure of the importance of the Biermann battery effect] suggests the result is not a 

true scaling of the system. 

The disturbance in the magnetic field lines by the creation of off-parallel magnetic field 

lines changes the character of the shock from being ‘parallel’ to being ‘quasi-parallel’. 
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This is actually more in keeping with the electron foreshock in the bow shock, which 

exists in a region where ions are unable to propagate far upstream because of the field 

geometry bending away from parallel. However, in the laboratory system ions are 

principally constrained by collisions. I have not evaluated the effect of off-parallel 

magnetic field components in the whistler excitation model, but this could be a 

refinement made in future work. 

 

Table 4. Some dimensionless numbers expressing the relevancy of the experiment to the 

bow shock. 

Quantity Definition Meaning Upstream 
bow 
shock 

Lab. 
expt. 

Reynolds number Re =
𝑥𝑥!𝑣𝑣!
𝜈𝜈  

Inertial forces vs. 
viscous forces 106 104 

Magnetic 
Reynolds number 

Re! =
𝑥𝑥!𝑣𝑣!
𝜂𝜂  Advection vs. 

magnetic diffusion 1014 15 

Péclet number 
(heat) Pe =

𝑥𝑥!𝑣𝑣!
𝜅𝜅  Heat convection vs. 

heat conduction 109 70 

Biermann number Bi =
e !+ Z ρ!𝑥𝑥!

𝑚𝑚  
Magnetic field 
advection vs. field 
generation 

104 10-1 

Definitions from Huba (2009) and Cross et al. (2014). Estimated values of bow shock 
from Balogh and Treumann (2013); lab. values cross-checked with Gregori et al. (2012). 
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6.3. THE NON-DETECTION OF UPSTREAM WAVES IN THE 

SECOND GEKKO EXPERIMENT 

In the 2014 experiment at the GEKKO facility I did not observe any waves of the type 

probably detected in the 2012 experiment. Examining the plasma variables with the 

dispersion function (6.1) suggests that the high magnetic field was to blame: the 

experiment was designed before the effect was understood. The changed field strength 

pushes the system out of the parameter space region where a whistler wave would be 

expected to be excited: see Figure 6.5. There is a region of weak damping up to a wave 

number of 10 cm-1, but aside from that the prediction is that the plasma in this layer is 

approximately transparent to whistler waves with neither growth nor damping. 

 

 

Figure 6.5. Predicted dispersion function for the 2014 experiment, 2.2 

electron m.f.p.s ahead of the shock, at 75 ns, 450 J driver energy. 
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Figure 6.5 shows the dispersion curve of the plasma at one particular time instant in one 

particular slice ahead of the shock, but actually it is indicative of the curve over the 

entire experiment. In Figure 6.6, the predicted growth of right-handed whistler modes, 

in the plasma up to ten m.f.p.s upstream of the shock is shown. The chart shows the 

instability to growth in colour, as a function of time since the laser flash horizontally 

and as a function of frequency vertically. The graph does not show any growth terms 

higher than about 10-6 s-1; no emission is predicted. 

However, the dispersion relation here does not act to damp whistler waves either. If the 

waves detected in the 2012 experiment were created somewhere outside the shock, such 

as at the laser-matter interaction point, they would be free in the 2014 experiment to 

propagate through the shocked region and would be detected by the probe. Although 

not conclusive, the null result in this case does not undermine the hypothesis that the 

shock is the origin of the detected waves. 

6.4. SUMMARY OF THE DISCUSSION 

I have presented a mechanism by which the data shown in Parts 5.1 and 5.2 can be 

consistently explained: shock-heated electrons diffuse a little way upstream, putting the 

plasma there into a situation unstable to whistler emission. The frequencies predicted by 

the dispersion relation for a magnetized plasma, as discussed in section 2.3.4, are those 

detected by the bdot probe. This suggests a right-handed whistler wave is being 

launched by the shock front, propagating upstream against the flow, to arrive at the 

probe. To the author’s knowledge, if this hypothesis is borne out, it would be the first 

time such an observation has been made in a laboratory. 

There are some limitations to the approach discussed here. For one, the data provided by 

the Helios software package, which underlie the dispersion curve analyses, are likely to 

be inaccurate so far as the ionization dynamics are concerned. For another, the shock’s 

asphericity and the full magnetic field structure should be properly incorporated into 

the wave-launch model. Further work, including a wider and more dedicated portfolio 

of experiment diagnostics, modelling with a two-dimensional code, and a design 

intended to approach the correct dimensionless numbers, could address this. 
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With such improvements, it would be possible to design experiments to access particular 

configurations in the electron foreshock, or to validate codes making upstream wave 

predictions. 

 

 

Figure 6.6. The computed growth chart, showing the expected growth rates 

of any whistler disturbance ahead of the shock. The chart essentially predicts 

zero growth (the growth rate is below 10-6 s-1). 
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7. CONCLUSIONS 

In this thesis I have presented and examined the hypothesis that the waves detected 

during a laser-laboratory experiment are upstream waves, launched by a laser-produced 

shock front propagating into the nitrogen atmosphere. From optical observations of the 

laser experiment, I tune a one-dimensional hydrodynamic simulation that provides 

sufficient data to construct the whistler dispersion function in the region immediately 

ahead of the shock. I find that one particular frequency range is unstable to whistler 

emission. The range narrows as the shock evolves with time, culminating in a predicted 

right-hand circularly polarized emission band between 50 and 90 MHz at 1 µs. 

Magnetic field observations made by the bdot probe in the experiment, analysed by a 

wavelet process, independently shows right-handed bursted magnetic waves of 

60±10 MHz, detected at the probe between about 300 ns to about 1 µs. In order to 

compare the predicted emissions, which are computed in a layer moving just ahead of 

the shock, with the experimental magnetic field observations, which are made at a fixed 

position 3 cm from the laser-matter interaction point, I compute the expected 

distribution of whistler waves arriving at the 3 cm position, based on their flight time 

evaluated for each frequency component. This simulated observation prediction agrees 

well with the waves actually observed by the bdot probe, in terms of the frequency range 

and timing of such waves. 

To the author’s knowledge, this is the first time a laboratory platform has been 

successfully used to produce, detect and characterize upstream waves. In particular, by 

using similarity scaling, the waves appear to be analogous to the poorly understood ‘lion 

roars’ or whistler bursts, which occur in the Earth’s bow shock probably as a result of 

field-aligned electron beams. Even though the very low Biermann number in my 

experiment, as well as the very high collisionality, mean it is difficult to compare the 
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experiment directly to processes occurring in the bow shock, the usefulness of a new 

platform to study bow shock foreshock waves should not be underestimated. In 

particular I am able to study the macroscopic, average properties of these waves, which 

cannot be done with instruments on satellites. 

I discuss also a second experiment, where the plasma properties and magnetic field 

geometry differed from the first experiment. This experiment did not show any 

upstream behaviour, but application of earlier predictive methods only predicts damping 

and no growth terms here. Therefore the hypothesis is not undermined by the null 

result. 

Laboratory astrophysics continues to expand into new domains. This thesis represents a 

new avenue for the laboratory astrophysics, looking not just at large scale behaviour but 

also at the “microstructure” or finer details such as upstream waves. With time on the 

National Ignition Facility assigned for the study of collisionless shocks, upstream waves 

generated by other mechanisms may soon be available for direct laboratory study.  
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Appendix. A proof of the Fourier uncertainty 

theorem. 

The following is adapted from Merryfield (2005), but generalized to signals of non-zero 

mean.  

The Fourier uncertainty theorem. 

Let 𝑓𝑓 ∈ 𝐋𝐋𝟐𝟐  and suppose 𝑓𝑓 is normalized (i.e., 𝑓𝑓 = !). For every Fourier transform 

pair 𝑓𝑓 and 𝑓𝑓,  

𝜎𝜎!𝜎𝜎! ≥
!
!. (A.1) 

Proof. 

Define a function 𝑔𝑔 𝑡𝑡 = 𝑒𝑒!!!!! 𝑓𝑓 𝑡𝑡 , where the quantity 𝑚𝑚! has the meaning given 

in (4.15) for the function 𝑓𝑓. Then 𝑔𝑔 𝑡𝑡 = 𝑒𝑒!!!!!  𝑓𝑓 𝑡𝑡 = 𝑓𝑓 𝑡𝑡 . Since 𝑓𝑓 = ! 

we have by the definition of the norm (Definition 4 in Part 4.1) that 

! = 𝑓𝑓 𝑡𝑡 ! 𝑑𝑑𝑑𝑑
!!

!!
= 𝑔𝑔 𝑡𝑡 ! 𝑑𝑑𝑑𝑑

!!

!!
. (A.2) 

Exploiting that for any 𝑔𝑔 , 𝑔𝑔 𝑡𝑡 ! = 𝑔𝑔 𝑡𝑡 𝑔𝑔∗ 𝑡𝑡  (the asterisk denoting the complex 

conjugate), 

! = ! × 𝑔𝑔 𝑡𝑡 𝑔𝑔∗(𝑡𝑡) 𝑑𝑑𝑑𝑑
!!

!!
, (A.3) 

The expression may be integrated by parts, with the subtlety that we take ! 𝑑𝑑𝑑𝑑 =

𝑡𝑡 −𝑚𝑚! ; since this integral is conducted over the entire real line, the offset by a fixed 

constant makes no difference, and we obtain 
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! = 𝑡𝑡 −𝑚𝑚! 𝑔𝑔 𝑡𝑡 𝑔𝑔∗ 𝑡𝑡 !!
!! − 𝑡𝑡 −𝑚𝑚! 𝑔𝑔 𝑡𝑡 𝑔𝑔!∗ 𝑡𝑡 + 𝑔𝑔! 𝑡𝑡 𝑔𝑔∗ 𝑡𝑡  𝑑𝑑𝑑𝑑

!!

!!
 

  (A.4) 

The first term on the right hand side vanishes: since 𝑔𝑔 = !, to satisfy this 𝑔𝑔 𝑡𝑡 ! 

must go to zero quickly for sufficiently large 𝑡𝑡 . The second term is more involved. 

Consider two general complex functions 𝑥𝑥 and 𝑦𝑦; the identity 

ℜ 𝑥𝑥𝑦𝑦∗ + 𝑥𝑥∗𝑦𝑦 = !ℜ 𝑥𝑥𝑦𝑦∗ = !ℜ(𝑥𝑥∗𝑦𝑦) (A.5) 

may be readily verified. Turning back to (A.4), observe that the left hand side is entirely 

real-valued so the result of the integral on the right must be real also; applying the 

identity (A.5) under the integral sign to (A.4) gives 

! = −!ℜ 𝑡𝑡 −𝑚𝑚! 𝑔𝑔 𝑡𝑡 𝑔𝑔!∗ 𝑡𝑡  𝑑𝑑𝑑𝑑
!!

!!
. (A.6) 

For any 𝑧𝑧 ∈ ℂ, ℜ 𝑧𝑧 ≤ 𝑧𝑧 , therefore, 

! ≤ ! 𝑡𝑡 −𝑚𝑚! 𝑔𝑔 𝑡𝑡 𝑔𝑔!∗ 𝑡𝑡  𝑑𝑑𝑑𝑑
!!

!!
; (A.7) 

and we may apply the Cauchy–Schwarz inequality (4.5) to split the multiplication 

under the integral into a product of two integrals; 

! ≤ ! 𝑡𝑡 −𝑚𝑚! 𝑔𝑔 𝑡𝑡 ! 𝑑𝑑𝑑𝑑
!!

!!

!
!

𝑔𝑔!∗ 𝑡𝑡 ! 𝑑𝑑𝑑𝑑
!!

!!

!
!
. (A.8) 

Reviewing the first integral on the right, 

𝑡𝑡 −𝑚𝑚! 𝑔𝑔 𝑡𝑡 ! 𝑑𝑑𝑑𝑑
!!

!!
= 𝑡𝑡 −𝑚𝑚!

! 𝑔𝑔 𝑡𝑡 ! 𝑑𝑑𝑑𝑑
!!

!!
 

= 𝑡𝑡 −𝑚𝑚!
! 𝑓𝑓 𝑡𝑡 ! 𝑑𝑑𝑑𝑑

!!

!!
 

= 𝜎𝜎!!.  (A.9) 

For the second integral, we require Parseval’s theorem (4.6). This ‘preservation of size’ 

under the Fourier transform is fundamentally why inequality (A.1) exists. Applying the 

theorem, we find 

𝑔𝑔!∗ 𝑡𝑡 ! 𝑑𝑑𝑑𝑑
!!

!!
= 𝑖𝑖𝑖𝑖𝑔𝑔 𝜔𝜔 ! 𝑑𝑑𝑑𝑑

!!

!!
 

= 𝜔𝜔! 𝑔𝑔 𝜔𝜔 ! 𝑑𝑑𝑑𝑑
!!

!!
. (A.10) 

Finally writing 𝑔𝑔 back in terms of 𝑓𝑓, 
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𝑔𝑔 𝜉𝜉 = 𝑔𝑔 𝑥𝑥 𝑒𝑒!!"#  𝑑𝑑𝑑𝑑
!!

!!
 

= 𝑓𝑓 𝑥𝑥 𝑒𝑒!!!!!𝑒𝑒!!"#  𝑑𝑑𝑑𝑑
!!

!!
 

= 𝑓𝑓 𝑥𝑥 𝑒𝑒!! !!!! !  𝑑𝑑𝑑𝑑
!!

!!
 

=  𝑓𝑓 𝑚𝑚! + 𝜉𝜉 . (A.11) 

Gathering these expressions and inserting them into (A.8), 

! ≤ !𝜎𝜎! 𝜔𝜔! 𝑓𝑓 𝑚𝑚! + 𝜔𝜔
! 𝑑𝑑𝑑𝑑

!!

!!

!
!
. (A.12) 

Under a change of the integration variable (𝜔𝜔 → 𝜔𝜔 −𝑚𝑚!), 

! ≤ !𝜎𝜎! 𝜔𝜔 −𝑚𝑚!
! 𝑓𝑓 𝜔𝜔 ! 𝑑𝑑𝑑𝑑

!!

!!

!
!
 

≤ !𝜎𝜎!𝜎𝜎! , (A.13) 

which suffices to prove result (A.1). 
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