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Abstract 

CoCrMo Metal on Metal (MoM) hip implants were designed to be 

durable, targeting a better quality of life for young, active patients. However, 

evidence suggests that such implants can release wear particles and metal 

ions due to a bio-tribocorrosion process. Metallic particles, produced by 

wear, at articulating interfaces of the joint surface have been linked with the 

formation of pseudotumors and lymphatic circulation. Whilst the ion release 

mechanism from the bulk alloy is the focus of many studies, it is not 

unreasonable to expect further corrosion of particles once they become 

detached from the surface of the implant. Wear debris is inherent to the 

process because it is an inevitable consequence of the relative motion 

between two opposite surfaces in contact. By this means, the removal of 

material due to mechanical action can generate millions of nanoparticles for 

each cycle of movement, which can then migrate into the tissues 

surrounding the implant. Several studies have indicated that metal ion levels 

rise after surgery and persist. Specifically metal particles spread by 

lymphatic circulation can continue to release ions even after removal of the 

source of wear. The mechanisms of ion release at this scale are still unclear 

along with the subsequent interaction between metal-ions and biological 

media (e.g. bovine serum albumin (BSA) proteins). 

Statistically significant toxicological studies require relatively large 

amounts of wear debris because most studies are based on the dose-

response of triplicate assays, which could require more than a hundred 

milligrams of nanoparticles. However, producing large volumes of wear 

debris particles which match the composition, size and morphology of those 

generated in actual hip replacements remains extremely difficult. This study 

focuses on the synthesis and characterization of CoCrMo nanoparticles, 

which mimic metal-on-metal (MoM) wear debris from hip implants. For the 

synthesis process, we have used a hitherto unexplored approach employing 

mechanochemical milling to produce a large amount of CoCrMo mimetic 

wear debris over short time scales. The nanoparticles produced were found 

to be similar in size, shape and composition to real implant wear debris from 

CoCrMo hip implants. In addition, pure metals that compose the alloy were 

compared in terms of their electrochemical corrosion, static corrosion and 

protein binding. 

Dissolution studies indicated a much lower dissolution of cobalt than 

previously reported. This was attributed to the efficient separation of 

nanoparticles prior to solute analysis through the use of centrifugation 
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combined with ultrafiltration. The data suggest that the previously accepted 

route for the release of cobalt ions may need revision. The study showed 

that after tribocorrosion of the CoCrMo alloy in BSA, the level of Co and Mo 

ions in solution increased dramatically. The increase in Mo ions could be 

linked with the preferential binding of Mo to the BSA proteins which results in 

the formation of a hard protein corona on CoCrMo and Mo particles and 

does not readily desorb even after washing. These findings are important as 

it highlighted the interaction of Mo-rich surfaces with amide groups in serum 

proteins and the possible formation of metal carbonyl complexes both of 

which can modify biological molecules, altering their ability to function 

properly. 

Electrochemical corrosion in the presence of a realistic concentration 

of BSA suggested that proteins play an important role in Mo dissolution from 

CoCrMo. Mo presumably reacts with amino acid residues present in protein 

molecules, initiating preferential dissolution even at low potentials, where 

there is no disruption of the Cr passivation layer on the CoCrMo alloy. Co 

and Mo samples showed active dissolution in all electrolyte solutions, 

whereas degradation of CoCrMo and Cr samples were controlled by a 

passivating oxide layer. The use of PBS accelerated the corrosion for all 

samples, increasing the metal ion concentration in the electrolyte and there 

was a high incidence and growth of pitting corrosion on Co samples.

This work suggests that the role of Mo as well as Co ions should be 

accounted for in the tribocorrosion of CoCrMo implant alloys, particularly in 

terms of inflammatory and toxilogical responses. 
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Chapter 1 - Introduction 

 A prosthesis is a device implanted in the body to replace an absent 

organ or to restore a compromised function. These can be external, as in the 

case of prosthetic legs or arms, or internal, such as artificial teeth, knees or 

hips. Internal prosthesis are by far more complex, they do not depend only on 

mechanical properties but also on the surgeon’s skills and biocompatibility of 

the material used. 

1.1 Hip Replacement: A short overview 

The hip is one of the body's largest joints. This articulation is a ball-and-

socket joint, where the ball is the femoral head, which is connected to the cup-

shaped cavity of the acetabulum, in the pelvis. The bone surfaces of the ball 

and socket are covered with a cartilage, a smooth tissue that cushions the ends 

of the bones and enables them to move easily. A synovial membrane 

surrounds the hip joint, and in a healthy hip, provides a small amount of fluid 

that lubricates the cartilage and eliminates most of the friction during hip 

movement [1]. 

Some of the main functions of the hip are to support the body weight and 

balance the body in static and dynamic postures. Problems related to wear or 

loss of function often appear as a consequence of the high loads involved in hip 

movement. Arthritis has been the most common cause of hip pain and disability 

[2]. Although it can develop at any age, it frequently starts between the ages of 

40 and 60. This disease can appear in the form of osteoarthritis, rheumatoid 

arthritis, traumatic arthritis, avascular necrosis and childhood hip disease [3]. 

Thomas Gluck was accredited with the first hip arthroplasty in 1890, 

however early reports about total hip replacement (THR) are dated 1950 and 

1951 by Sven Kiaer and McKee-Farrar, respectively [4,5]. THR surgery is one 

of the most successful operations in all of medicine and has been a good 

alternative for arthritis treatment in terms of chronic pain. This procedure 

consists of a complete removal and replacement of a diseased ball and socket 
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of the hip joint with artificial materials. A metal ball with a stem (prosthesis) is 

inserted into the femur (thigh bone) and an artificial plastic or metal cup socket 

is placed in the acetabulum (see Figure 1.1). 

Figure 1.1 - X-ray of an artificial total hip replacement [6].

The surgery provides significant pain reduction to patients with 

destructive joint disorders, as well as an improvement of articular function and 

a better quality of life. The clinical success achieved is based on revision rates 

and mortality, in which only 1.1% of primary hip replacements have been 

revised one year after primary surgery rising to 2.3% by year three, 3.5% by 

year five, and 4.7% by year seven. The risk of death in the first 30 days (0.3%) 

and 90 days (0.6%) after surgery is found to be similar to the overall risk of 

revision in these periods [7].  

With about 270,000 replacements done each year in the USA, THR 

became a surgery widely popular in the medical community. The surgery is 

projected to increase in the USA by 174% between 2005 and 2030 [8]. The 

situation in England and Wales is similar, the National Joint Registry (NJR) 

reported that in 2010 there were 76,759 hip replacement procedures recorded, 

representing a 6% increase compared with the same reporting period in 2009. 

The same report noted that the mean age of a patient undergoing this surgical 

procedure is 67 years, however, 12% of patients are younger than 55 years [7]. 
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Although increasing numbers of patients are opting for hip replacements, 

long term use is still a challenge principally because of the generation of wear 

particulates. Debris particles are an inevitable consequence of the relative 

motion between two opposite surfaces in contact. By this means, the removal 

of material due to mechanical action can generate millions of particles for each 

movement's cycle, which can then migrate into the tissues surrounding the 

implants. 

For many years, polyethylene wear has been one of the main leading 

causes of THR failure [9]. The implication of polyethylene wear particles as the 

dominant cause of osteolysis has renewed the interest in metal-on-metal 

(MoM) and ceramic-on-ceramic (CoC) implants for total hip arthroplasty, 

especially because of the potential to improve wear performance. 

Figure 1.2 - Wear rate comparison among different hip implants materials [10]

Ceramic-on-ceramic implants, such as Alumina and Zirconia, exhibit 

good wear performance. However, high product costs and the possibility of 

catastrophic fracture of the components due to the brittle nature of the material 

make this kind of joint an unattractive alternative [11]. 

Around the 1950s, orthopaedic devices started to use implants made 

entirely of metals, especially Ti alloys, stainless steels and Co alloys, however 

these were not approved for use in USA until 1999. Ti alloys erode easily under 

motion conditions, staining the tissues around the implant, and thus limiting the 

use in orthopaedic implants to pieces as stems [12]. Stainless steels can resist 

high loads, but are susceptible to crevice corrosion, and are linked to failures 
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associated with aseptic loosening [13]. Metal-on-metal (MoM) articulation is 

thus most commonly associated with a cobalt, chromium and molybdenum 

alloy. 

MoM hip implants showed promisingly low wear rates since the first 

generation (1960), with some devices surviving in-vivo for long periods of time 

(approx. 20 years) [14]. The second generation of MoM (1988) modified the 

geometry of these implants by improving sphericity and diametral clearance, as 

well as surface finish, however surprisingly the wear rate and long term use did 

not show any superior behaviour. The results were attributed to the small head 

size produced, which increased the frequency of dislocations. The solution was 

to fabricate a couple with bigger heads, that should decrease the dislocation 

problem and give lower wear by favouring lubrication of the joint [8,15]. 

Whereas hip resurfacing has shown promising results with large femoral heads 

in men but not in women [16], MoM THR failed at high rates in both. The link 

between the head size of the implant and the MoM failure rate in THR was 

established by Smith et al (2012), with larger heads failing more quickly, 

equivalent to a 2% increase in the risk of failure for each 1 mm increase in 

head size [8]. Langton et al. (2012) showed that the failure of larger heads in 

THR were associated with the tapper junction [17].

The apparent low wear rate of MoM hip implants has been recently 

related to the fact that most debris particles are found to be in the nanometric 

scale [18,19]. However, due to the small metal particle size, it is estimated that 

the number of metal particles can be up to 100 times greater than the number 

of polyethylene particles. Furthermore, the small size of the metal particles 

vastly increases the total surface area of the metal exposed to the aggressively 

corrosive environment of the body, increasing the propensity to release metal 

ions. 

Concern about this kind of implant has grown exponentially since the 

first reports of unexplained failure of MoM implants [20]. Consequently, the 

nature of the wear debris and the ion release generated by these implants has 

become of great interest in biomaterials research [21,22]. 

The term wear implies some mechanical action on the wearing surface 

whereas corrosion involves the gradual degradation of some material by 
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chemical reaction with their environment [23]. Corrosion includes two 

simultaneous reactions: oxidation (dissolution) and reduction. The metal 

dissolution, when atoms move out of the solid, and leave electrons in it, is 

possible only if, simultaneously, these electrons are neutralized by the 

reduction reaction. 

Biotribocorrosion of these implants, which are typically fabricated from 

CoCrMo alloys, involves both corrosion of the implant surface itself, which is 

stimulated by the wear process removing the passivating protective film, and 

mechanical wear of the surface to produce wear debris particles [24]. Such 

nanoparticles can be spread by lymphatic circulation and subsequently 

corrode. Both processes can therefore give rise to the release of metallic ions. 

Metal ions may have an inflammatory or toxic effect on cells and tissues, 

notably because certain metallic ions can complex with proteins and disable the 

primary function [25,26]. Current studies on CoCrMo alloy implants have 

indicated that levels of cobalt and chromium ions in the blood and urine rise 

after replacement surgery and could persist throughout an implant’s life [27–

29]. As a result there is an ongoing debate concerning the nature and level of 

the wear debris particles and metal ions released, the transport mechanisms of 

both the ions and the particles, and any link with inflammation [30]. 

Whilst the ion release mechanism from the bulk alloy is the focus of 

many studies, it is not unreasonable to expect further corrosion of particles 

once detached from the surface of the implant [31–33]. The mechanisms of ion 

release at this scale are still unclear along with the subsequent interaction 

between released metal-ions and biological media. 

One option is to study in-vivo wear debris particles extracted from 

patients [19] or use experimental models in animals [34]. However, another 

possibility is to produce wear debris synthetically. The production of 

nanoparticles by wear of metal-on-metal prostheses can be achieved by using 

hip simulators that accurately match the loading and motion cycles experienced 

in-vivo and produce results that reflect the clinical wear situation well 

[21,35,36]. Nevertheless, these types of machine are complex and expensive 

to produce. Another technique used to generate synthetic wear debris is pin-

on-plate, that unlike hip simulators, does not attempt to recreate the in-vivo

conditions [37,38]. However again this takes a long time to produce a very 
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small amount of debris nanoparticles. Ball milling powders of the bulk CoCrMo 

alloy may be a very cost-effective way of producing large volumes of synthetic 

wear debris. 

1.2 The Aims  

The overall aim of this research project is to establish a new synthetic 

technique that allows the bulk production of significant amounts of 

representative CoCrMo alloy wear debris. This will allow the comprehensive 

testing of the corrosion and toxicity behaviour of such particles. 

1.3 Objectives 

The specific objectives are: 

o The bulk production of CoCrMo wear debris with a good 

approximation to the size, shape and chemical composition of real 

wear debris found in patients; 

o  A comparison of the synthesis technique with common techniques 

already employed to produce CoCrMo wear debris; 

o To improve the separation of ions and nanoparticles in solution in 

order to be able to correctly measure ion release during the corrosion 

process; 

o To test the corrosion behaviour of the nanoparticles during their 

production in different biological media (dynamic corrosion); 

o To compare ion release in terms of incubation time (static corrosion), 

pH and in the presence of different biological media; 

o To test the binding affinity of the particles and ions to proteins; 

o To induce corrosion in the alloy and in pure elemental standards by 

using cyclic polarization in relevant biological media to compare with 

the behaviour of synthetic wear debris; 

o To produce enough particles to perform preliminary toxicological 

studies. 
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1.4 Chapter overview 

This work presents a total of seven Chapters. Chapter 1 provides a short 

introduction to the work with general information about the hip implant surgery, 

different biomaterials used in hip implants and the concerns related to them. 

This is followed by an outline of the project aims and objectives.  

Chapter 2 presents a detailed review of previous work on CoCrMo alloys 

and their properties, their failure, the characterization of wear debris derived 

from CoCrMo hip implants, the biological response to the degradation products 

(particles/ions), as well as a review of common methods to simulate wear 

debris in body simulation fluids. 

Chapter 3 discusses all the different methods used to generate wear 

debris and study the corrosion of bulk and powder CoCrMo alloys. The 

characterization techniques employed are explained, followed by the sample 

preparation and the materials used. Analysis of the starting materials are 

presented at the end of this Chapter and are referenced in later Chapters. 

In Chapter 4 an alternative mechanical milling method to generate 

synthetic wear debris is presented, together with a method for optimization of 

the process and followed by a validation of the products based on in-vivo 

characterization studies found in the literature and a comparison with a 

consolidated method.  

Chapter 5 presents the static and dynamic corrosion behaviour of these 

synthetic particles in relevant media, using a new method to accurately 

measure the ionic release during biotribocorrosion. The chapter concludes with 

metal binding studies to proteins, which is essential to explain selective 

dissolution.    

Chapter 6 presents the electrochemical corrosion of CoCrMo alloys and 

reference materials in biological media with a view to further explain the particle 

dissolution studies presented in previous chapters. 

Final conclusions including the limitations of this study and the potential 

for future research work in this area are presented in Chapter 7. 
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Following the implant degradation (corrosion/wear), there are concerns 

about the possibility of metal debris damage to soft tissue surrounding the joint 

(metallosis) and the uncertain effects of any release of metal ions and particles 

into the patient’s bloodstream [36,37]. 

2.1.1 - Cellular reaction to the implant 

Adequate bone healing, after implantation of an orthopaedic prosthesis, 

depends on a series of successive steps in which numerous cell types such as 

osteoblasts, osteoclasts and macrophages can play an important role in 

implant failure [28]. Bone mass is maintained by a balance between the activity 

of osteoblast cells, that form bone, and other cells called osteoclasts, that break 

it down. Macrophages, cells derived from monocytes1, have the function to 

phagocytose foreign elements in the body and /or secrete cytokines involved in 

inflammation activation [38], e.g. IL-6 (Interleukin-6) and TNF-α (Tumor 

necrosis factor-alpha). Because of this, macrophage cells are the “first line of 

defence” of an organism, as a result they are also responsible for implant 

biocompatibility. 

Early macrophage interactions with the surface of a prosthesis occur 

moments after its implant, when surrounding tissues form a 10-100 nm thick 

biolayer on its surface [39]. The contact with macrophages is mediated by the 

activation of the complement system2, through the adsorption of proteins [40] 

such as fibronectin and vitronectin that adsorb on the surface of the implant, 

acting as binder for macrophages. These interactions are the first between the 

implant surface and macrophages and result in the release of pro-inflammatory 

cytokines, regardless of the success of the phagocytosis process [41–43]. 

Rajamaki et al. (2013) reported that due to chronic inflammation a local 

acidification (pH 6.0) could be developed [49].  

1 Monocytes: a group of cells which has the function of defending the organism from foreign 

bodies. They are called macrophages when they leave the bloodstream to penetrate a 

tissue, in order to defend the body against any attacker.

2 Complement system: is a mechanism of the immune system responsible for mediating the 

inflammatory process with the antibodies. It consists of about 30 soluble and membrane 

proteins able to disrupt membranes of foreign cells, activate inflammation, enhancing 

phagocytosis and immune clearance.
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Release of metallic ions may occur by both mechanical wear between 

the bearing surfaces and/or wear debris, as well as through a corrosion 

process mediated by macrophage contact. In this latter process, called 

dissolucytosis, macrophages dissolve metal from surfaces too large to be 

phagocytosed. These macrophages form a membrane of dissolution that is 

chemically controlled by lysosomes, which have an acid environment (pH about 

4.5) potentially capable of dissolving material from implant surfaces [45]. 

2.2 CoCrMo alloy  

Cobalt-based alloys have been used in demanding applications. The 

characteristics of high-temperature performance (due to low thermal 

conductivity) and magnetic properties (similar to those of iron), fatigue 

resistance, corrosion resistance and biocompatibility have been widely 

explored by industry in several applications that include gas turbines (vanes 

and static components), orthopaedic implants and dental implants [46,47]. 

Cobalt-chromium alloys are one of the most common biomaterials used 

in orthopaedic implants today. The addition of chromium (between 19-30%wt) 

to cobalt alloys gives a better corrosion resistance due to the spontaneous 

formation of a passivating layer mainly formed by chromium oxide (Cr2O3), and 

in minor amounts by Co- and Mo-oxides [48,49]. This protective layer is thought 

to be 1-4 nm thick [50], acting as a barrier against corrosive body fluids. If there 

is no metal oxide film formed, the metal surface could easily undergo pitting 

corrosion. Molybdenum is added to produce finer grains which results in higher 

strengths after casting or forging with good localized corrosion resistance that 

makes the surface oxide layer tougher, so chlorides and other pitting agents 

are less likely to break it down [46,51]. 

CoCrMo alloys have a high elastic modulus (210–330 GPa) similar to 

that of stainless steel (approx. 200 GPa) which is much higher than that of 

cortical bone (20–30 GPa) [46]. They are primarily used where high stiffness or 

a highly polished and extremely wear-resistant material is required. To achieve 

mechanical properties and biocompatibility required for CoCrMo alloy for 

surgical implants, the standard ASTM F75 alloy offers minimal and maximum 
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chemical specifications for cast alloys (Table 2.1) while ASTM F1537 provides 

specifications for wrought alloys. 

Table 2.1 - ASTM F75 specifications for chemical composition of cast CoCrMo 
for surgical implants [57]

Element Composition, % 

(Mass/Mass) 

min max

Chromium 27 30

Molybdenum 5 7

Nickel ... 0.5

Iron ... 0.75

Carbon ... 0.35

Silicon ... 1

Manganese ... 1

Tungsten ... 0.2

Phosphorous ... 0.02

Sulfur ... 0.01

Nitrogen ... 0.25

Aluminum ... 0.1

Titanium ... 0.1

Boron ... 0.01

Cobalt balance balance

2.2.1 - Production of CoCrMo Alloys 

The alloy can be essentially categorized as either a Co-Cr-Mo alloy 

(which is usually used as a cast product) and a Co-Ni-Cr-Mo alloy, (which is 

usually wrought by hot forging). The castable Co-Cr-Mo alloy has been used in 

dentistry for a long time and most recently to make artificial joints. The wrought 

Co-Ni-Cr-Mo alloy is used to make the stems prostheses of heavily loaded 

joints such as the knee and hip [52]. CoCrMo alloy can form in two 

crystallographic phases; hexagonal close-packed (HCP) and face-centered 

cubic (FCC) (see section 2.2.3). 

The main difference between wrought and cast alloys is that wrought 

alloys are ductile enough so as to be hot or cold worked during fabrication, 

whereas cast alloys are brittle to the degree that shaping by deformation is not 

possible and they must be fabricated by casting alone [53]. Casting is a 

fabrication process in which a totally molten metal is poured into a mould cavity 
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having the desired shape. After the solidification, the metal assumes the shape 

of the mould with some shrinkage [53]. Biomedical devices produced by casting 

could contain up to 0.35 wt% carbon to improve castability by lowering the 

melting temperature to ~1350 °C compared with the normal range of 1450 -

1500 °C. This elemental addition results also in a fine grain size3 and allows for 

a decrease in the mould temperature. A wrought alloy is one that is worked by 

being forged or hammered at temperature and to stabilize the FCC phase 

which is more ductile than HCP due to an increased number of slip planes, a 

certain content of Ni, Fe or Mn is also necessary. After hot working, the typical 

CoCrMo microstructure contains a FCC matrix with fine HCP platelets [46]. 

These two process used in manufacturing of the alloy produce similar 

chemical compositions, however, there is a structural difference. The grain size 

of the wrought alloy is typically less than 10 μm, whereas the grain size for the 

cast material ranges from 30 to 1000 μm [54]. In addition, Jakobsen et al.

(2007) showed that toxicological tests suggest as-cast CoCrMo alloy is more 

inert than wrought CoCrMo, generating less inflammation which might result in 

less osteolysis [45]. 

2.2.2 - The effect of carbon in CoCrMo alloys 

The ASTM F1537 standard divides wrought CoCr alloys for surgical 

implants into two categories: high carbon (HC), where the C content is between 

0.15 -0.35 wt%; and low carbon (LC), where the C content is less than 0.15 

wt%. These implants present differences in surface, structure, roughness, grain 

size and carbide formation (see in Figure 2.2).  

3 A grain is an individual crystal in a polycrystalline metal or ceramic. Grain size is normally 

quantified by a numbering system (fine or coarse). There are three methods of grain size 

evaluation, all described and standardized in the ASTM E112 and in related standards. 

Grain boundaries serve as barriers to dislocation motion; thus refining the grain size of a 

polycrystalline material renders it harder and stronger  [59].
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orientation of the CoCrMo alloy, hypothesising improved tribological properties 

[61,62]. 

Although the ε phase increases the strength of the material, the implant 

can become brittle. Thus, it is essential to suppress the formation of the ε 

phase in the as-cast CoCrMo alloys to improve the ductility. The ɣ phase 

satisfies the von Mises yield criterion4, which is required for good ductility [63]. 

The control of carbon content is one method for increasing forgeability and 

ductility of wrought CoCrMo alloys; Carbon additions to the CoCrMo alloys 

stabilize the ɣ phase and form inter- and intra- granular carbides. 

2.3 Hip implant degradation and failure 

It was originally expected that CoCrMo hip implants would last longer 

than conventional MoM implants, and be primarily used by young and highly 

active people [70]. However, in 2010 the NJR data identified higher than 

expected revision rates for the MoM implants with 13,61% against to 3.31% to 

4.94% from non-MoM. Attention has focused on whether the problems could be 

associated with the use of larger femoral head sizes and particular designs. 

Mechanical failure in the form of disruption, decoupling and detachment of 

bone/implants are well known by the orthopaedists, and are easily detected by 

a wide variety of tests [71]. However, there are a range of pathologies that 

need to be further elucidated, in particular “unexplained pain” felt by a 

significant number of patients that is often related to high levels of metal ions 

detected in the blood, urine or serum [72–74]. This chronic pain can lead to a 

changes in the synovial fluid or even of the hip implant, in which the full 

economic cost of a hip revision is estimated at about £30,000 by the NHS 

[75,76]. 

Hip implant degradation is a complex subject, it can be triggered by a 

combination of physical, chemical and electrochemical reactions, which are 

known as Tribocorrosion [27]. The degradation caused by mechanical attrition 

4 Von Mises yield criterion - hypothesis defining the limit of elasticity in a material and the 

onset of plastic deformation under any possible combination of stresses. If von-Mises 

stress is greater than the material’s yield stress, the material will fail.
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between joint counter parts depends on loading and lubrication conditions. 

Furthermore, these effects can be combined with a corrosion process, in which 

metal dissolution occurs in the presence of body fluids [69]. According to Yan et 

al. (2006), the tribocorrosion system can be estimated in terms of total material 

loss (T) by the following equation:  

� � � � � � �

Equation 1 ­ Total materials loss in 

tribocorrosion 

Where W is the wear in the absence of corrosion, C represents the 

corrosion in the absence of wear, and S is the interaction between this two 

components. W can be determined by measuring the materials under cathodic 

protection, in order to protect the material from corrosion. C is usually 

determined by measuring the corrosion rate for a static system by using mass 

spectrometry to measure dissolution into the surrounding media. Examples of 

each quantification can be seen in the follow publications: [33,78,79]. 

Physical activities result in higher loads on the hip joint, increasing the 

propensity for the implant to fail; Friction, impact and compression are the 

physical reactions most relevant [70]. Damm et al. studied six patients (5 male, 

1 female, mean age 58±7 years, body mass 86±6 kg, height 174±5 cm) during 

walking simulation and observed a median peak in resultant load of 266% of 

the body weight [71].  
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.  

Figure 2.4 - Schematic wear process: (a) generation of wear particles; (b) a 
metal alloy (gray scaffold) with an oxidized surface film on the upper 
surface (molecules marked in red); (c) damage to the passive surface film 
(e.g. by scratching or pounding); (d) occurrence of corrosion due to the 
lack of a protective layer; (e) liberation of soluble compounds and wear 
particles; and (f) repassivation of the surfaces including wear particles 
(arrows) [70].

Friction effects in combination with shear stresses could heat the contact 

surface during high loading, long lasting activities [72]. The peak temperature in 

implants with polyethylene cups can rise up to 43.1 °C after an hour of walking, 

but this can vary considerably depending on each individual [73]. Wimmer et al

(2001) stated that the temperature at joint surfaces could possibly reach ~70 °C 

at a hard carbon-carbide contact [74]. This increase in temperature could start 

and/ or accelerate the corrosion process by basically increasing the 

conductivity of electrolytes, so increasing the electrochemical reactions that 

could take place [75]. 

Hip replacement wear debris in the human body can be generated by 

the articulating surfaces, but also from fretting wear of screws and the head 

against the stem [86,87]. Basically, this damage occurs at the asperities of 

contact surfaces between the bone and the stem/ screws, and is induced by 

vibrations of small amplitude. Silva et al. (2002) studied the average walking 
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activity of patients with well-functioning total hip replacements which was found 

to be close to 2 million cycles per year [78]. It is estimated that the processes 

can generate about 64x106 nano- and micro- sized particles per cycle [88,89], 

that are released into the surrounding tissues, and could eventually migrate 

through the bloodstream to various part of the body such as the kidney and 

liver. The wear particles that remain between the joint counter parts can also 

contribute to degradation. These entrapped particles can act as an abrasive by 

scratching the bearing surface [80]. This process not only damages the joint 

surface, but also helps to decrease the size of the debris by grinding the 

particles. 

The damage does not occur only where the joints are in contact, but 

anywhere where there is a tribological influence in combination with a corrosive 

fluid [69]. It is well known that proteins, presumably from synovial fluid, form an 

organic layer surrounding the implant, which changes the uppermost 50 to 200 

nm of the surface [72]. The real contribution of these proteins to corrosion and/ 

or wear is still a matter of controversy in the scientific community. Some studies 

[81,82] have found that proteins can enhance the corrosion of some metal 

alloys, whilst others researchers [83,84] have shown corrosion reduction. Yan 

et al. (2006) reported that although proteins can act as a lubricant and reduce 

friction, they can enhance material degradation due to an effect on corrosion 

and tribocorrosion processes [18]. The same group quantified the different 

tribological contributions in CoCrMo high and low carbon alloys in different 

environments, where corrosion accounts for between 22-47% of the total 

volume loss in 4 h, the remainder being attributed to mechanical wear (Figure 

2.5). 
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Figure 2.5 - Components of volume loss for CoCrMo high (a) and low (b) 
carbon in 50% serum, DMEM (Dulbecco's Modified Eagle's Medium, a 
common cell culture media) and 0.3% NaCl [27]. W is the wear in the 
absence of corrosion, C represents the corrosion in the absence of wear, 
and S is the interaction between this two components.

2.4 Specification of wear debris and metal ions collected from 

patients with MoM hip implants 

Despite the low wear rate from MoM hip implants (see Figure 1.2), the 

wear debris generated from these systems tend to be much smaller than in 

other systems, in the nanometre size range. It is estimated that these implants 

could annually produce between 6.7x1012 to 2.5×1014 wear particles [89], thus 

even a small volume of implant wear can produce a large number of 

nanoparticles. 

The release of metal ions can vary in composition and amount, 

depending on the type of implant and time implanted. The ionic radius of the 

species released from CoCrMo can varies few picometers according to the 

ionic charge and spin: Co 67-88.5 pm, Cr 58-94 pm and Mo 73-83 pm [95]. The 

oxidation state of the material and the oxidising species generated can provide 

valuable clues to any inflammatory response. Metal ion release occurs when 

the stable oxide layer is mechanically or chemically disrupted, producing a flow 

of metal ions. Metal oxide particles are produced, and metal ions are dissolved 
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from the base of the alloy while the oxide film is restored [85]. Even metal 

implants unaffected by dynamic or static loads will still release metal ions when 

exposed to liquids [86,87]. 

Another potential source of metal ion release is the nanometre-size of 

the wear debris. According to the Ostwald-Freundlich relation, particle solubility 

is inversely proportional to particle size. The small size of metal particles vastly 

increases the total surface area of the metal exposed to the aggressively 

corrosive environment of the body, however only a few researchers have 

explored this corrosion contribution [32,88]. In addition, the changes in pH level 

in different cellular regions and in different regions of the human body could 

accelerate ionic release. 

2.4.1 - CoCrMo alloy wear debris 

Particle characterization is based on identifying size, morphology and 

chemical composition and a wide range of different sized wear debris particles 

from hip implants have been identified. Goode et al. (2012) noted that particle 

size and principally composition strongly depends on the time between particle 

generation and tissue collection for analysis, as well as how the tissue/particle 

structure is preserved during analysis [13]. 

Most publications isolate wear particles from serum, using protocols 

involving a series of washes with enzymatic solutions, centrifugation to 

concentrate the particles and sonication to re-suspend them, avoiding chemical 

degradation by the use of digestion reagents [17,89]. It is potentially possible 

however that during sample preparation, a fraction of the very small wear 

debris particles are lost when removing the supernatant (see Section 5 5.1.2). 

Hart et al. (2010) analysed tissue from 6 MoM patients with unexplained 

failure of implants from four manufacturers. they used TEM/EDX (Figure 2.6) 

and also Microfocus X-ray spectroscopy using a synchrotron beam to assess 

the composition of wear particles in tissue; there being a relatively low particle 

concentration [90]. This study revealed Cr (III) phosphate in all four implant 

types analysed. Cobalt (Co) and molybdenum (Mo) were occasionally present 

in areas of high Cr. Co was normally found in a metallic state in the tissue, 

while Mo was found in an oxidized state. 
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Figure 2.6 - TEM image of a capsular tissue section fixed with osmic acid. 
The area imaged is the dense macrophage zone, just below the surface of the 
joint lining. The EDX analysis from region 1 shows an abundance of Cr in 
comparison with the background spectrum from region 2. There is a suspicion 
that the iron peaks, in region 3, are due to ferritin. No Co was detected [90].

Ward et al. (2010) analysed by TEM/EDX particles from the synovial 

fluid of failed CoCrMo hip implants (Figure 2.7), identifying metal wear debris 

ranging from 5 to 50 nm and agglomerations where particles were clustered 

inside the fluid. Particles were identified in three main compositions: close to 

that of the CoCrMo raw material; particles richer in Cr and Mo; and particles 

mainly composed of Cr and O [14]. 

Goode et al. (2012) examined nanoparticles from the tissue surrounding 

failed MoM hip implants using TEM/EDX (Figure 2.8), finding a large size 

distribution that varied from a few micrometres down to a few nanometres. 

Wear debris was commonly found clustered in areas of 1 µm. Most of the 

particles were spherical with a mean size of 30 nm and composed primarily of 

Cr. Chemical speciation was made using Scanning Transmission X-ray 

Microscopy and X-ray Absorption Spectroscopy, here two types of wear debris 

could be identified: a diffuse phase containing mainly Cr3+ with trace amounts 

of oxidised Co; dense core-shell particles containing metallic Co, Cr and Mo in 

the core which was surrounded by Cr3+. Mo was only detected in a few 

particles, co-localised with metallic Co and was absent from the oxidised debris 

[13].  
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Figure 2.7 - Examples of particles found within CoCrMo hip joint synovial 
fluid. Particle A (crystalline) is composed of the raw material, particle B 
(amorphous) is richer in Cr and Mo and particles C (amorphous) appear to be 
composed mainly of Cr and O [14].

Despite the most recent publications indicating Chromium oxides and 

phosphates as the main metallic wear debris found in implant surrounding 

tissue, this chemical specification could be a result of the decomposition of 

CoCrMo particles or from the raw implant surface due to corrosion, wear or a 

combination of both. The surface of the implant is known to be composed of a 

variety of chemical forms such as oxides (Cr2O3, CoO, Co3O4, MoO2 and 

MoO3) [50,91], hydroxides (Cr(OH)3, Co(OH)2)) [50,92], metal phosphates 

(CrPO4, Co3 (PO4)2) [90], and pure metal (CoCrMo) [19]. Consequently, it could 

be possible that wear debris is formed from different microstructural regions, 

associated with the implant surfaces. 
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Figure 2.8 - Transmission electron micrographs of macrophages containing 
wear debris (a-b) Bright field TEM images show electron dense debris 
(dark particles) and damaged mitochondria (arrows), (c) HAADF-STEM 
imaging reveals abnormal nuclear membrane structure (arrows) (d) 3D 
reconstruction of a volume within a cell, where wear debris appears green 
[13].

2.4.2 - Metal ions 

Several studies have shown an increase in metal ion levels after 

receiving MoM orthopaedic implants [93–95], however, there is no agreed 

threshold for the levels of Co, Cr and Mo that could indicate the failure of the 

joint. Sidaginamale et al. (2013) studied metal blood/serum levels in 3042 

patients. These showed background concentrations of 1.5 µg/l for Cr and 0.5 

µg/l for Co and only 3.22% and 0.033% patients presented concentrations > 2 

µg/l for Cr and Co [107]. Hart et al. (2009) proposed acceptable upper limits of 

2.56 µg/L for Cr and 2.02 µg/L (ppb) for Co in the whole blood [96]. Also, the 

Medicines and Healthcare Products Regulatory Authority (MHRA) suggests 

that if either cobalt or chromium ion levels are elevated above 7 μg/l a second 

test should be performed in order to identify patients who require closer 

surveillance and if the results persist, could indicate potential for soft tissue 

reaction. 

It is also important to take into account the valence state of these metal 

ions, in light of the fact that species such as hexavalent chromium, have been 

associated with cytotoxic and genotoxic effects [97]. Metal ions complexed with 

proteins could also play an important role in terms of impact on the immune 

system [98]. 



- 26 - 

Metal ion levels have been recorded in patients by the use of atomic 

absorption (AA) or inductively coupled plasma (ICP) mass spectrometry. In UK, 

most of the ICP-MS samples from hip patients are analysed at the Trace 

Elements External Quality Assessment Scheme (TEQAS). TEQAS can cover 

specimens that have been prepared using serum, whole blood, urine or dialysis 

fluids and drinking water as the base material, spiked with various 

concentrations of trace elements covering clinically relevant ranges. The 

source of the samples varies however these are mainly blood, urine or serum, 

meaning that results are not directly comparable. Smolders et al. (2011) 

proposed a formula to convert serum ion levels to blood levels, with prediction 

error below ±1.0 µg/L [99]: 

Cobalt in blood = 0.34+[0.88*Co in serum] 

Chromium in blood = 0.14+[0.58*Cr in serum] 

Equation 2 – Conversion of ions 

levels from blood to 

serum 

Jantzen et al. (2013) did a careful review of 43 studies of Co and Cr ion 

concentrations analysed in blood and serum from different types of MoM hip 

implants [100]. The average Cr concentration ranged between 0.5 and 2.5 µg/L 

in blood and between 0.8 and 5.1 µg/L in serum. For Co, the range was 0.7–

3.4 µg/L in blood and 0.3–7.5 µg/L in serum. An estimate of the average Co/Cr 

ratio for blood was calculated to be 1.4 ����.�

�	
�.�, while for serum this was 

1.3 ����.�

�	
�.�. 

The Ultima TPS modular MoM hip (DePuy, Leeds, UK) has a very poor 

clinical result [35], however it showed relatively low Co and Cr ion release 

according to the results of Clarke et al. (2003) [95] (shown in Figure 2.9). 

Although, serum Cr and Co levels have been shown to be a reliable indicator of 

anomalous wear and the risk of implant failure, they are not good predictors of 

immune system reaction. 

Only a few researchers have included molybdenum for in-vivo ICP-MS 

quantification of dissolution from MoM hip implants. Savarino et al. (2002, 

2006) did not find any significant change in Mo ion levels from serum samples 

relative to control samples [94,101]. Masse et al. (2003) analysed samples from 
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blood and urine, and found that Co and Cr levels increased in both compared 

to pre-operative values, however Mo levels increased in urine only [21]. 

Figure 2.9 shows the average (mean5) of Cr and Co serum or blood ion 

concentrations calculated for the different implants, and used to compare with 

the upper acceptable limit proposed for Cr and Co in blood.  

A ­ Cobalt

B ­ Chromium

Figure 2.9 - Average concentration and range, calculated from medians, in 
blood (red) and serum (blue) following various types of MoM hip 
arthroplasty for (A) Cobalt and (B) Chromium [112]

5 Mean - refer to one measure of the central tendency either of a probability distribution or of 

the random variable characterized by that distribution.
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2.5 Biological responses to CoCrMo wear debris and ions  

Owing to the small size and large number concentration, nanoscale 

wear debris and also metal ions released by MoM implants could travel from 

the surrounding tissue to other parts of the body through the lymphatic system. 

Urban et al. (2000) showed that even micro-sized wear particles from metal on 

polyethylene (MoP) hip implants were found in lymph nodes, bone marrow and 

liver [102].  

The biological response to metal nanoparticles and ions is complex, and 

involves a series of factors including protein adsorption and cellular migration 

[45]. Some reports have shown that monocytes/macrophages secrete 

cytokines (e.g., IL-6 and TNFα) in response to metal ions and particles 

(Kaufman et al., 2008). The particular binding of metallic ions and proteins may 

change their toxicity depending on partitioning between the free and bound 

forms. 

Local tissue responses linked to MoM hip joints have been associated 

with wear rate, dose, patient susceptibility and immune reactions, but there are 

still controversial reports about the real contribution of wear debris to 

hypersensitivity reactions. Doorn et al. (1998) showed that pseudotumors could 

be initiated by CoCrMo wear debris [89] and Pandit et al. (2008) associated 

pseudotumours with metal-on-metal hip resurfacings. However, Matthies et al. 

(2012) concluded that pseudotumors are present in MoM patients but are 

unrelated to the wear rate, suggesting that this effect is instead related to 

patient pre-disposition [103]. 

Recently, some studies showed that Co could be the most relevant 

chemical species for triggering tissue reactions. Hart et al. (2012) conducted in-

vivo investigations using Synchrotron radiation (4 µm probe) of tissue sections 

extracted from regions adjacent to Ultima MoM implants as well as from non-

Ultima MoM implants; both implants being constructed from both high (cup liner 

and stem) and low carbon (head) CoCrMo ASTM F75 alloys. The Co/Cr ratio 

found in periprosthetic tissue from Ultima was 1:1, while non Ultima was 1:10. 

Chromium phosphate was shown to be the predominant species in tissue 

surrounding the non-Ultima implants, however analysis of tissue surrounding 

the Ultima MoM implants revealed a mixture of metallic Co with a significant 
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amount of Co (II) as the main species together with some Cr phosphate [104]. 

In another paper from the same authors [90], they attempted to identify the 

chemical form of the metallic debris in tissues surrounding MoM hips following 

unexplained failure, XANES spectra of Mo identified octahedrally coordinated 

Mo, which was bound by oxygen and carbon. This was likely to be organic 

carbonyl ligands binding to Mo, although the data do not cover a sufficient 

energy range to be definitive about the speciation. It is known however that 

most metal carbonyls can produce a toxic effect [105,106]. 

An increase in the bioavailability of wear debris and ions after contact 

with serum and other body fluids could represent a significant danger for MoM 

patients. Rizzetti et al. (2009) reported a case of high metal concentrations 

even after the removal of the implant and an ion chelating treatment [23]. This 

report attributed loss of sight and sound to the implant fail. The patient partially 

recovered vision only after 8 months of chelating treatment to decrease metal 

ions levels. 

2.5.1 - Toxicity of particles 

For toxicological studies, often a large amount of particles is required to 

measure dose response effects. Particle size and shape may affect the cellular 

uptake; nanosized particles are taken up in most all types by pinocytosis6 and 

endocytosis7, whereas larger particles are internalised by macrophages only 

[107].  

Caicedo et al. (2009) showed that cobalt alloy particles 1-10 µm in size 

with the composition of the ASTM F75 standard, induced activation of the 

inflammasome in human macrophages [108]. Papageorgiou et al. (2007) tested 

CoCr alloy particles, ranging from nano (30 nm) to micro size (2.9 µm), in 

human fibroblasts. Nano-sized particles were seen to dissolve faster and in the 

first 3 days caused more DNA damage and cell death [109]. Kwon et al. (2009) 

6 Pinocytosis - ingestion of liquid into a cell by the budding of small vesicles from the cell 

membrane.

7 Endocytosis - process whereby cells absorb solid material outside their cell membranes and 

can be triggered by protein receptors in the cell membrane.
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studied the dose-dependent cytotoxicity of cobalt and chromium nanoparticles 

(30-35 nm in size); cytotoxicity was observed only for cobalt nanoparticles at a 

concentration of 1012 particles/mL [110]. 

2.5.2 - Toxicity of ions  

Particular attention has been paid to Cr ion release from CoCrMo 

implants because of the potential hazard of the chromium VI valence state 

[111], which is known to be carcinogenic, cytotoxic and genotoxic to human 

lung cells [97]. However, the formation of this species in the human body is 

unlikely as the Pourbaix diagram for Cr in water at 25 °C suggests toxic 

chromium VI is released only at pH > 7 and at high electrode potentials. The 

species generated under acidic conditions is Cr3+, which has a much lower 

correlation with toxicological issues [112–114].  

Catelas et al. (2003) tested both Co2+ and Cr3+ in macrophage cells, 

demonstrating a dose- and time-dependent response. Maximum cell death with 

Co2+ occurs at lower concentration than for Cr3+ [25]. Caicedo 2009 showed 

that all metal ions tested (Co+2, Cr+3 and Mo+5) produced from soluble CoCl2, 

CrCl3 and MoCl5 salts that can induce human macrophage pro-inflammatory 

responses through inflammasome multiprotein complexes in a concentration-

dependent manner [108]. Akbar et al. (2011) studied the effects of Co2+ and 

Cr6+ exposed to human lymphocytes and the cells were found to be more 

sensitive to Co2+. Using higher doses, cell proliferation and cytokine release 

decreased and apoptosis8 increased [115]. 

2.6 Synthetic approaches to generating wear debris and metal 

ions  

Due to the increasing medical concern with metal nanoparticles/ ions 

released by MoM hip implants and the implications of this not yet being very 

8 Apoptosis - the death of cells that occurs as a normal and controlled part of an organism's 

growth or development.
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well understood, several studies have been conducted for the elucidation of the 

problem. Some of these studies have used analysis of nanoparticles arising 

from revisions of hip implants [18,19]. During this procedure, the synovial fluid 

or surrounding tissue is removed from patients and isolation of the particles by 

chemical treatment is used for a subsequent microstructural characterization. 

Studies beyond simple characterization cannot be done, as a result of the low 

amount of debris and the difficulties in properly isolating the particles without 

their alteration or damage. 

Hip simulators are realistic models, which are heavily utilised and are 

able to realise a complete study of wear utilizing desired loading cycles and 

different surface charges to represent normal walking or high impact activities 

[30]. Joint simulators have become accepted tools to evaluate new prosthetic 

systems. Most recently the use of simulators has been redirected to produce 

and analyse MoM wear particles [17]. The process gives a good approximation 

of the particles produced in-vivo but they may still differ in size and 

composition. In addition, simulators are complex machines with a high cost to 

build and maintain. 

Another technique used to generate wear debris and evaluate wear is 

the pin-on-plate method. This is a simple technique that, unlike hip simulator 

machines, does not attempt to recreate the in-vivo conditions, however it can 

simulate sliding speeds and contact stresses between two surfaces incubated 

in relevant biological media.  

The aim of this thesis is to explore methods for obtaining nanoparticles 

that match with the nanoparticles released by MoM hip implants. A simple and 

effective method of powder preparation is mechanical attrition and dispersion 

by means of ball mills, which have found considerably application in the last 20 

years [116]. The similarity of the mechanical process of friction/fracture during 

grinding compared to the generation of wear debris from implants makes 

milling a good route to synthetically produce these nanoparticles. Furthermore, 

high energy milling is capable of producing nanoparticles in bulk quantities. The 

presence of a surfactant increases the dispersion of the powder and changes 

the particle shape [117]. Despite the advantages, the process has been 

underexplored in this type of application, and in this sense, there are a scant 

number of publications in this field. 
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2.6.1 - Body fluid simulation 

Body fluids have been proved to contribute to the degradation of 

biomaterials [81,118]. The fluid produced at the membrane in the joint, so-

called synovial fluid, has been largely simulated by researchers, using a variety 

of combinations based on serum proteins. The most abundant protein in the 

human body is serum albumin, but specifically synovial fluid composition is 

more than 60% human serum albumin that is combined with α-1-globulin, α-2-

globulin, β-globulin and γ-globulin [132]. 

The ISO standards (14243-1 and 14243-3) for knee simulation tests 

recommend the use of calf serum diluted with deionized water to a total protein 

concentration as low as 17 g/L. Nevertheless there are no recommendations 

for specific biochemical characteristics such as protein constituent fractions 

[119]. The fluid simulation composition from ISO is based on healthy joints, 

which contains 15-25 g/L of protein concentration. However, it is known that 

joints with diseases have much higher protein concentrations (in the range 36–

54 g/L) [120]. 

Several researchers studied the ideal lubricant to simulate synovial fluids 

based on healthy joints [134–137]. However, Brandt et al. (2010) analysed 

different synovial fluid simulations comparing them with the composition of 

joints that suffered from osteoarthritis [119]. The results indicated that a 

combination of iron-supplemented alpha-calf serum (ACS-I) diluted in 

phosphate buffered saline solution (PBS) and adding Hyaluronic acid (HA) at a 

concentration of 1.5 g/L produced a more clinically relevant lubricant for 

simulation studies. 

Table 2.2 - Characteristics of Calf Sera from HyClone used for synovial fluid 
simulation [119]

ACS­I 

Lot # AQE23894

Albumin (%) 66.3 

α­1­globulin (%)  4.5 

α­2­globulin (%)  8.2 

β­globulin (%)  19.2 
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γ­globulin (%) 1.1 

Total protein (g/L)  41 

Fe (mmol/L)  0.0877 

Ca (mmol/L) <0.5 

Inorganic P (mmol/L)  <0.2 

Mg (mmol/L)  0.08 

pH 7.71 

Osmolality (mmol/kg) 283 

2.6.1.1 - Serum Albumin 

Serum albumin is a well-established protein for simulating body fluids. 

Human Serum Albumin (HSA) is a single-chain protein with a molecular weight 

of 66.5 kDa, containing 609 amino acids organized to form a heart-shaped 

protein [138]. The amino and carboxyl terminal sequences are present in man, 

cow and several other species. HSA has functions as a major antioxidant and 

transport protein. The morphology is a repeating series of helical subdomains 

that form a triangular shape with sides of ~8 nm and depth of ~3 nm. It is 

present as roughly 67% alpha-helical form with the remainder in turns and 

extended polypeptide form [122]. However, when the alpha-helix structure is 

decreased, the beta-sheet structure is increased. The current theory on knee 

simulations suggests that frictional processes contribute significantly to this 

conformational change, with a combination of shear stresses and a rise in local 

contact temperatures causing protein degradation. Polypeptides may degrade 

and become sheared into low-molecular-weight polypeptides that remain in the 

lubricant solution [123].  

The isoelectric point (IEP) of HSA is about pH 5. There are pH-

dependent conformational changes named neutral to basic transitions. The 

neutral and basic forms of HSA can bind ligands with different binding affinities. 

In phosphate buffer at about pH 6, HSA is in the neutral conformation and at 

pH 9 the base form is predominant [124]. HSA can serve as an almost 

universal transport and depot protein in the circulation since it can bind 

reversibly a large number of compounds. There are two major binding regions 

named site I and II in HSA which are related to binding aromatics and 

heterocyclic compounds [125]. 

The source of HSA is very limited and expensive, as it has to be donated 

from human plasma. Also, it carries the risk of transmission of pathogenic 
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viruses. Bovine albumin serum (BSA) has a similar structure to HSA, and is a 

more viable way to do relevant simulation studies. 

BSA is a protein that is negatively charged at pH > 5 and exhibits an IEP 

between 4.7 and 4.9 pH [126]. In order to find out which amino acids govern 

BSA adsorption at which pH, Rezwan et al. (2005) calculated a protein-specific 

amino acid charge distribution at pH 7 [127]. Only Arginine and Lysine are 

positively charged and Aspartic acid and Glutamic acid negatively charged, 

while Histidine, Cysteine and Tyrosine do not carry any charge. 

Table 2.3 - Properties of the main amino acids present in BSA. Values 
collected from [127–129]. pKa is the negative logarithm of the dissociation 
constant for the –COOH group, and pKb for the –NH3

+ group.

Amino Acid
IEP 

[pH]

% in 

100g 

Molecular 

Weight 

[Da] 

Polarity pKa pKb Structure 

Arginine 10.76 5% 174.20 
Polar 

(Hydrophilic) 
2.17 9.04

Lysine 9.74 12% 146.19 
Polar 

(Hydrophilic) 
2.18 8.95

Aspartic acid 2.77 9% 133.11 
Polar 

(Hydrophilic) 
1.88 9.60

Glutamic 

Acid 
3.22 15% 147.13 

Polar 
(Hydrophilic) 

2.19 9.67

Histidine 7.59 3% 155.16 
Polar 

(Hydrophilic) 
1.82 9.17

Cysteine 5.07 6% 121.16 
Nonpolar 

(Hydrophobic) 
1.96 10.28

Tyrosine 5.66 5% 181.19 
Nonpolar 

(Hydrophobic) 
2.20 9.11

BSA particularly has been shown to play a diverse role in interacting with 

biomaterials at predetermined conditions. Vidal et al. (2010) studied the 

thermodynamics of the adsorption process of BSA onto CoCrMo, showing that 

the molecules have a strong affinity for the CoCrMo surface, with the gain in 

entropy representing the driving force for the adsorption process [130]. Also, 

the adsorption was suggested to be an endothermic process and the molecule 
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suffers structural changes when adsorbing onto the metallic surface. Karimi et 

al. (2011) showed that BSA enhances the alloy passive film stability at 

concentrations greater than 0.4 mg/ml [131]. Duong et al. (2012) showed that 

friction of the CoCrMo femoral head is dependent on the concentration of BSA, 

but there is a limit to the concentration (30 mg/ml) which can act as an effective 

boundary lubricant [132]. Immersion time was studied by Vidal and Munoz 

(2008), who showed time modifies the interface behaviour of the CoCrMo by 

decreasing the resistance of the passive film in the albumin solution (0.5 mg/ml 

mix with 0.14M NaCl) and increasing the resistance in Phosphate Buffered 

Solution (PBS) [48]. Espallargas et al. (2014), undertook CoCrMo alloy electro 

corrosion tests in albumin, and observed an increase in Mo concentration 

released into electrolyte when a potential was applied below the transpassive 

region, corresponding to ~53-62% of the total ions released from the alloy 

[133]. 

2.6.1.2 - CoCrMo corrosion under incubation in Simulation Body Fluid  

Karimi et al. (2012) studied long term corrosion of CoCrMo pellets (to 

represent implants) in PBS solution with various concentrations of BSA (0, 0.2, 

0.4, 2.0, 4.0 g/L) [118]. The results showed that all the samples lost weight up 

to 14 weeks and then started to gain weight. Inductively coupled plasma-optical 

emission spectrometer (ICP-OES) results, after an incubation period, showed 

that mainly Co and Mo were released from the alloy, and this started to 

decrease after 14 weeks (Figure 2.10). The decrease in dissolution and the 

increase in weight after 14 weeks was attributed to the precipitation of 

dissolved ions on the surface of the pellets. 
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Figure 2.10 - Amount of (a) Co, (b) Cr, and (c) Mo released from a Co–28Cr–
6Mo alloy into PBS solutions containing various BSA concentrations (0–4 
g/L) at 37◦C following incubation for 8, 14 and 22 weeks in the media. The 
dashed line shows the analytical detection limit [118]. 

Metikoš-Huković et al., (2006) carried out incubation studies using Co, 

Cr, Mo and CoCrMo alloy pellets immersed in Hank’s solution9 at pH 6.8. The 

results showed that Co and Mo pure metals released significantly more ions 

than the alloy (about x1000), while Cr dissolution from the alloy was slightly 

higher than that from pure Cr. By decreasing the pH to 2.0, the quantities of all 

metal ions released from the alloy increased. The same trend was observed for 

pure metals, except Mo, whose stability increased when the pH of the solution 

was decreased [134]. 

9 Hank’s solution - composed of a group of salts rich in bicarbonate ions, that are used as a 

buffer system in cell culture media and aid in maintaining an adequate physiological pH 

(roughly 7.0-7.4) for cellular growth.
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2.6.2 - Hip Simulators 

Hip joint simulators are a complex three-dimensional articulation that 

targets faithful reproduction of the physiological conditions of time/ loads at 

bearing surfaces. They provide control of variables such as speed, sliding 

distance and direction of movement; frequency, direction and magnitude of 

loading; as well as the chemical composition of the fluid and the temperature in 

the contact zone.  

Firkins et al. (2001) investigated the size of wear debris from MoM low 

and high carbon hip implants generated by simulators and found a similar wear 

debris size of 25-36 nm [29]. Catelas et al. (2003) analysed wear particles from 

MoM hip simulator testing of high and low carbon wrought CoCrMo alloys and 

cast CoCrMo alloy tested in BSA (Figure 2.11). After 0.25 million cycles (Mc), 

similar particle sizes and shapes were found for all CoCrMo alloys tested. 

Particle length averaged about 52 +/- 4 nm, there was up to 21% needle-

shaped particles composed mainly of CoCrMo, but the majority of particles 

remained round to oval in shape, composed mainly of chromium oxides [135]. 
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Figure 2.11 - TEM bright field image of particles generated by a hip simulator 
testing of the MoM implant pair in 95% bovine serum for different test 
periods. (A,B*) cast alloy after the 0.25 Mc and 1.75–2 Mc test periods, 
respectively; (C,D*) micrographs obtained with the high carbon wrought 
alloy after the 0.25 Mc and 1.75–2 Mc, respectively; and (E,F) low carbon 
wrought alloy after the 0.25 Mc and 1.75–2 Mc test periods, respectively. 
*Due to the smaller number of particles, (B) and (D) show the two areas of 
a representative micrograph that contained the most particles [135].

The wear debris particle composition determined by Catelas et al. (2003) 

(Figure 2.12) indicated that particles from the 1.75–2 Mc test period (steady-

state wear) showed proportionally more chromium oxide particles and fewer 

needle-shaped particles (mainly CoCrMo) compared with with those from the 

0.25 Mc test period (run-in wear) [135]. 
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Figure 2.12 - EDX of particles obtained from hip simulator testing of the metal-
on-metal implants immersed in 95% serum after the 0.25 Mc test period. 
(A) representative spectrum with Cr, O, and P (chromium oxide particles 
most likely from the passivation layer); (B) spectrum with Co, Cr, Mo, and 
P, C with a higher Cr intensity peak than Co (CoCrMo particles most likely 
from the carbides); and (C) spectrum with Co, Cr, and Mo, with a higher 
Co intensity peak than Cr (CoCrMo particles most likely from the matrix 
material - below the passivation layer and away from the carbides) [135]. 
C and Cu background noise from the carbon TEM grid.

Leslie et al. (2008) tested MoM bearing sizes of 55 mm and 39 mm in a 

hip simulator for 15 Mc in a Newborn serum, analysing wear debris and ions 

released [136]. The wear debris isolated was oval in morphology in the size 

range 9–108 nm (mean size of 28 nm). Prior to ICP-MS, nitric acid microwave 

digestion was employed to dissolve wear particles. The Co levels measured at 

0.13 Mc were significantly greater than at 3.6 Mc for both bearing sizes. After 
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0.5 Mc, the Co levels from the 39 mm bearings were significantly higher than 

for the 55 mm.  

Figure 2.13 - Levels of Co, Cr, and Mo in lubricant from 0.13, 0.5, 3.6, and 11.4 
Mc (bottom), levels of Co, Cr, and Mo from 3.6 and 11.4 Mc only (top 
right) for 39 and 55 mm head size bearing [136]

Hesketh et al. (2013) studied metal ion formation during 1 Mc hip 

simulator tests in Foetal bovine serum diluted in PBS (18 g/L). The cumulative 

ionic release was determined by ICP-MS at 1/3, 2/3 and 1 Mc. ICP-MS 

samples were mixed with an equal volume of 5% nitric acid, centrifuged at 

14,000 rpm for 10 min and then the supernatant was collected and filtered 

through a 0.4 μm filter. At 1/3 and 2/3 Mc, the ratio of Cr, Co and Mo ions was 

fairly constant throughout the test: 29%, 59–60%, and 11–12%, respectively. At 

1 Mc, there was more variation, Cr, Co and Mo abundance varied between 16–

26%, 60–72% and 11–14%, respectively [25]. These values are close to the 

relative amounts of Cr, Co and Mo in the base alloy.  

39    55 
(0.13Mc) 

Bearing size (Cycles (x106))

39    55 
(0.5Mc) 

39    55 
(3.6Mc) 

39    55 
(11.4Mc) 

39(3.6Mc) 55(3.6Mc) 39(11.4Mc) 
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2.6.3 - Pin-on-plate 

A pin-on-plate or pin-on-disc tribometer is an instrument that is used to 

investigate friction and wear properties of solid materials, both with and without 

a lubricant. Frictional behaviour is measured in terms of the coefficient of 

friction of sliding contact between a pin and a disc, whereas wear coefficients 

can be calculated by measuring the volume of material lost during the test. The 

wear factor can be calculated according to the equation [137]: 

Ws = Mloss / w x s x ρ Equation 3 ­ Wear factor 

where Mloss is mass loss, w is the normal load, s is the sliding distance, and ρ is 

the density of the specimen. 

 Chen et al. (2014) studied wear using low and high carbon CoCrMo 

alloys in pin-on-disc tests under Hank’s solution. The pin was mounted with a 

9.8 N load and tested against a disc rotating at 20 mm/s (24 rpm). The 

temperature was set to 37°C in an argon atmosphere, and the rotation radius 

was 8 mm. The test was performed over a continuous period of 16.8 h, 

resulting in a total volume loss of ~0.32 mm3 (2.61mg) and ~0.38 mm3 (3.1 mg) 

for low and high carbon alloys, respectively [138].  

Papageorgiou et al. (2007) produced CoCrMo nanoparticles (29.5 ± 6.3 

nm in size) with a pin-on-plate MoM bi-directional motion machine set to a 

speed of 56 mm/s and a contact stress of 11 MPa over a 24 h period in water. 

The nanoparticles were found to be uniformly round to oval. The authors did 

not indicate the composition after the experiment, as well as the exact amount 

of wear debris produced, but they did mention that there was not enough 

nanoparticles for all toxicological studies [109].  

Hank's solution and water used in the experiments cited before are not a 

good model to represent the synovial fluid and could generate different wear 

debris particles in terms of morphology and composition. However, the use of 

distilled water would facilitate the separation and sterilization of these for 

toxicological studies. 
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Figure 2.14 - CoCrMo nanoparticles produced by pin-on-plate test after 
filtration of immersion fluid onto a 100 nm pore sized membrane filter in a 
sonic bath for 1 h [109].

2.6.4 - Mechanochemical Milling 

Milling is a solid-state powder processing technique involving repeated 

welding, fracturing, and re-welding of powder particles in a high-energy ball mill 

[116]. The repetition of this phenomenon favours solid-state reactions leading 

to the formation of thin lamellar structures [139]. 

Figure 2.15 - Main stress types in mills, R1 – compression, R2 – shear 
(attrition), R3 – impact (stroke), R4 – impact (collision), circle – mass of 
milling media, square – mass of material charge, rectangle – mass of mill 
wall [140]

What distinguishes milling from other grinding processes is that fracture 

and welding of the particles both occur. The fracture of the particles creates 

atomically clean surfaces that provide sites for chemical reactions. Therefore, 

the process requires an inert atmosphere for sample preparation prior to 

grinding if additional chemical charge to be avoided. The welding of particles 

may occur when these surfaces are forced together during subsequent 

collisions. Then, reactions may occur along this new inner surface [116].  
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The minimum energy required in a collision is the energy capable of 

providing enough power to enable fracture and welding occur. Any additional 

energy will simply accelerate the process, which occurs as a consequence of 

the increased plastic deformation and heating of the particle. 

Particle size reduction is effected over time in the high-energy ball mill, 

as is a reduction in crystallite size, both of which reach minimum values at 

extended milling times [141]; this also depends on ductility of material being 

milled, as well as the vial/ balls employed. 

The milling atmosphere plays an important role in the size reduction. 

Raghu et al. (2001) concluded that milling in air is appropriate to the welding 

process because particle size initially decreases and then increases, whereas 

fracture is dominant in milling under argon [142]. 

Most recently, milling has been used to form nanoparticles in new 

materials such as polymers [143] and metals [144], and improvements in the 

milling process that optimize the formation of nanoparticles continue to be 

made.  

Most techniques to obtain nanoparticles from milling operate in a liquid 

media [117,144,145] to avoid the agglomeration formed after the welding 

process. Such a process is known as a mechanochemical route, where a 

chemical reaction is produced at the same time as mechanical deformation. 

This synthesis provides some advantages such as the control of particle 

morphology and size distribution. 

A constant concern related to the milling process is contamination. 

These impurities arising from the milling media may be associated with the time 

of milling, the intensity of milling, the atmosphere in which the powder is milled, 

and the differences in the strength/hardness of the powder and the milling 

medium [116]. Fritsch has summarized the properties of materials used for 

milling media (Table 2.4). 
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Table 2.4 - Main vials and balls materials used in high-energy milling [163] 

 Despite the wide number of contamination issues, this problem can be 

minimised with good control of the experimental parameters, leading to low 

levels of contamination (less than 1 at%) [129]. 

Mixer Mill 

A wide diversity of mills are currently available. They differ in their 

capacity, efficiency of milling and additional arrangements for cooling, heating, 

etc. Shaker mills such as SPEX, mill about 10–20 g of powder at a time and are 

most commonly used for laboratory investigations and for alloy screening 

purposes. Most of the mills have one vial containing the sample and milling 

balls, secured in the clamp and swung energetically back and forth several 

thousand times a minute. The back- and- fourth shaking motion is combined 

with lateral movements of the end of the vial, so that the vial appears to be 

describing a figure eight or infinity sign as it moves [140].  

Because of the amplitude (about 5 cm) and speed (about 1200 rpm) of 

the clamp motion, the ball velocities are high (of the order of 5 m/s), and 

consequently the force of the ball’s impact is usually high [141,147].  

Surfactants 

The term surfactant (surface-active-agent) designates a substance 

which exhibits some interfacial activity [148]. Surfactants may act as 

detergents, wetting agents, emulsifiers, foaming agents and dispersants. 

Surfactants have been used with the milling technique to prevent 

aggregation and stabilize separated nanoparticles and may also be used to 

minimize contamination. This effect is achieved because the surfactant creates 
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2.7 - Electrochemical corrosion of hip implant alloys 

Many corrosion phenomena can be explained in terms of 

electrochemical reactions. Biomaterials are susceptible to aqueous corrosion, 

which arises when a chemical or electrochemical reaction occurs on a metallic 

surface immersed in an aqueous electrolyte [48]. During this reaction, oxidation 

or removal of electrons from metal atoms and the reduction of oxidising agents 

or consumption of electrons by an oxidizing agent can both occur. Equation 4 

represents the generalised equation for the anodic reaction where M 

represents a Metal: 

� → ��� � ��� Equation 4 ­ Anodic reaction 

In order for corrosion to occur, electrons need to be consumed by 

cathodic reactions with the production of hydrogen, oxygen and water. At 

thermodynamic equilibrium, the rate of metal oxidation is balanced by the 

cathodic reactions. As a result, metal cations are released into solution, while 

the electrons are left inside the metal, forming an electric double layer with a 

potential difference across the metal surface. The metals with more negative 

potentials are more reactive to corrosion. From the Table 2.5, the potentials of 

Co, Cr and Mo are all negative, indicating that they are all reactive in aqueous 

solutions even in the absence of an applied potential [150]. 

Table 2.5 - Co, Cr and Mo aqueous reaction

Reaction Potential [V]

	
�� � ��� ↔ 	
 -0.91 

	
�� � ��� ↔ 	
 -0.74 

	
����� � ��
� ↔ 	
 � ���� -1.48 

	��� � ��� ↔ 	� -0.28 

	������ � ��
� ↔ 	� � ���� -0.73 
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	 -0.15 
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↔ �� � ��
	 -0.07 

Biomaterials are known to exhibit active-passive behaviour. The 

passivation behaviour and effects of inhibitors or oxidizers on specimens can 

be assessed by potentiodynamic polarization, where the samples are scanned 

in both the anodic and cathodic directions, indicating localised and general 

corrosion behaviour. Figure 2.17 represents a cyclic polarization curve of a 

passive material10. The metal is cathodic at potentials below the corrosion 

potential (Ecorr). As the potential is increased, passing the corrosion potential 

(Ecorr), the metal becomes anodic and remains active in the potential region just 

above the corrosion potential (Ecorr) until the passivation potential (Epp). 

However, when the maximum point of anodic dissolution is met (icc) the current 

density drops to a very low value, called the passive current density (ip). This 

current drop is characterised by the formation of a protective oxide layer. 

During passivation, the metal could also corrode but at a significantly lower 

rate. When the material is in the transpassive region, there is a disruption of the 

passive layer, and the material starts to quickly corrode. How much the material 

will corrode, depends on the electrolyte [151]. 

10 Note: here the independent variable (potential) is often plotted as the 
ordinate for historical reasons. 
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Figure 2.17 - Cyclic polarization in a typically Evans Diagram for a passive 
material.

Tafel extrapolation is a technique that uses data obtained from cathodic 

and anodic polarization measurements. In Figure 2.17, the total anodic and 

cathodic polarization curves corresponding to hydrogen evolution and metal 

dissolution are superimposed as dotted lines, (a) and (b), respectively. To 

determine the corrosion rate from such polarization measurements, the Tafel 

region is extrapolated to the corrosion potential, as shown in Figure 2.17 

[169,170]. At the corrosion potential, the rate of hydrogen evolution is equal to 

the rate of metal dissolution, and this point corresponds to the corrosion rate of 

the system expressed in terms of current density. 

Bettini et al. (2013) noted that during electrochemical corrosion of 

CoCrMo alloy immersed in PBS, the relative fraction of ions detected in the 

transpassive region was close to the raw material elemental percentages, 

rather than being dominated by chromium dissolution. A much higher Cr 

dissolution was expected, once the CoCrMo alloy surface was dominated by a 

Cr oxide layer, and the corrosion takes place at the entire exposed surface 

[154]. 

(a) 

(b) 
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Figure 2.18 - Cyclic polarization curve for the CoCrMo alloy in aerated PBS at 
room temperature (pH = 7.4), scan rate of 10 mV/min, with marked 
potential value applied to the sample during the potentiostatic polarization 
measurement followed by metal ion release analyses [154].

Milošev and Strehblow (2003) undertook electrochemical studies of 

CoCrMo alloy immersed in Hank’s solution and found that a Cr2O3 passive film 

was mainly formed at potentials below 0.24 V (relative to Ag/AgCl), after that 

the CoO fraction increased with the potential. In the region 0.40 to 0.56 V 

(Ag/AgCl), an equal composition of Co and Cr oxides were found, and after that 

cobalt decreased. Also, they noted that the content of Co was much lower in 

the surface oxide layer than in the bulk, although Cr and Mo in the oxide layer 

were higher than in the bulk [50]. 

Figure 2.19 - Composition of the passive layer after oxidation of CoCrMo alloy 
immersed in Hank’s solution as a function of oxidation potential estimated 
by deconvolution of the peaks in X-ray photoelectron spectroscopy. Thin 
lines denote the atomic fractions for Co, Cr and Mo in the bulk alloy [50].
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Karimi et al. (2011) studied the electrochemical corrosion of a CoCrMo 

alloy immersed in PBS containing different concentrations of BSA. They 

showed that the Open Circuit Potential (OCP) [-0.2 V(Ag/AgCl)] values 

changed to more cathodic potentials [about -0.4 V(Ag/AgCl)] when the BSA 

concentration increased. BSA enhanced the alloy passive film stability at higher 

concentrations, however, in the range of 0.2–2 g/L, BSA reduced the oxide 

layer stability [131]. Comparing the amount of proteins used in this experiment 

with the proposed by Brandt et al (2010), which contains much more proteins, it 

is expected a passivation layer much more stable to protect the alloy. 

Figure 2.20 - Potentiodynamic polarization curves of CoCrMo in PBS solutions 
at various BSA concentrations from 0.25 V (OCP) to 1 V (Ag/AgCl) with a 
scan rate of 0.167 mV/s in aerated conditions at 37°C and pH of 7.4 [131]. 

2.8 Summary 

Much research effort has been undertaken to understand the high failure 

rate of MoM hip implants, especially in relation to the unexplained pain felt by 

patients after MoM hip surgery. Implant material loss can potentially initiate a 

cycle of inflammation and pain. What happens between the surgery and the 

first symptoms of implant failure remains unclear. 

Wear debris have been found in-vivo over a wide particle size range, but 

several publications consistently note an average size of ~30 nm. Different 

compositions of wear debris particles have been found, including chromium-

rich species as well as metallic Cobalt and oxidized Molybdenum (Mo) also 
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being regularly present. The latter suggest the result of a corrosive process 

suffered by the particles. Little is known about the real contribution of the wear 

debris in the release of ions. 

It is known that proteins can play an important role in the degradation of 

both, the implant and wear debris particles, helping to prevent or accelerating 

metal dissolution. However, the mechanism and, especially, the preferential 

corrosion of the alloy need to be explained. Part of the understanding of 

preferential dissolution required could come from the contrasting dissolution 

results from in-vivo and hip simulators studies, which often report high levels of 

Co and Cr, versus immersion and electrochemical studies that reveal mainly 

Co and Mo species undergoing dissolution. 

Cobalt species, instead of chromium, have been considered as the most 

relevant agent related to periprosthetic tissue reactions. No conclusive studies 

have been done in terms of Molybdenum species found in-vivo. Only a few in-

vitro studies using CoCrMo nanoparticulate wear debris have been undertaken, 

most probably caused by the difficulties in generating large amounts of wear 

debris. This thesis has investigated the corrosion/dissolution of CoCrMo alloy 

nanoparticles produced in large amounts by mechanical milling in different 

relevant biological media. 
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Chapter 3 - Materials and Methods 

3.1 Wear debris simulation 

To produce synthetic wear debris metal particles, three techniques were 

used: hip simulators, pin-on-plate wear and mechanochemical milling. In the 

next few pages, the experiments will be described, as well as the apparatus 

and material used in each case. 

3.1.1 - Simulated Body Fluids  

Simulated body fluids are made with the intention to mimic the diversity 

of the body environment. All the wear debris syntheses have been performed in 

a wet environment, primarily with the purpose of simulating body fluids, 

especially, the synovial fluid. When samples (bulk material or particles) are 

immersed in liquid, the fluid composition could potentially enhance oxidation or 

corrosion processes that may occur. 

In this study, several solutions were used both mixed and individually, in 

order to isolate their possible synergetic effects. The solutions studied were: 

Phosphate-buffered saline - PBS solution (10× concentrate from Sigma-

Aldrich); Bovine Albumin Serum - BSA (purified by a heat shock process, pH 

7.0 from Fisher Scientific); Fetal Bovine Serum - FBS (from Sigma-Aldrich); 

Iron-Supplemented Alpha-Calf Serum - ACS-I (heat inactivated from Fisher 

Scientific); Dulbecco′s Modified Eagle′s Medium -DMEM (from Sigma-Aldrich). 

3.1.2 - Hip Simulators 

Wear debris samples have been obtained by fatigue simulation of 

CoCrMo Hip Implants. The tests were performed in the Mechanical Engineering 

Department of the University of Leeds within the Institute of Functional 

Surfaces group. 
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Milling was conducted in different fluids using 10 mL of: Milli-Q water 

with 20 and 40 mg/mL of BSA; pure DMEM; pure PBS; Simulated Synovial 

Fluid (SSF) - a mix of Calf Serum Iron-Supplemented diluted to a total protein 

content of 40 g/L with PBS; PBS with 40 mg/mL of BSA.  

3.2 Reference materials for studies of corrosion during 

incubation and protein binding 

For corrosion investigation during incubation and also protein binding 

studies on reference elements, metal nanoparticles of less than 200 nm 

diameter were bought from Sigma-Aldrich: Cobalt(II,III) oxide (Co3O4); 

Chromium(III) oxide (Cr2O3); Molybdenum, which exhibits MoO2 at the surface. 

The particles were immersed for 24h, 48h and one month in Milli-Q water with 

40 mg/mL of BSA. 

3.3 Electrochemical corrosion 

In an attempt to understand the general corrosion behaviour of the 

ASTM F75 alloy and its major elements, a CoCrMo low carbon alloy and pure 

Co, Cr and Mo metal rods (10 mm diameter) were sourced from Pinnacle, 

DePuy-UK and Goodfellow-USA, respectively. The samples were evaluated by 

polarization curves (Figure 3.4), in the positive direction (anodic polarization) 

and negative direction (cathodic polarization). Three aerated and unstirred 

electrolytes solutions all at 37°C were used: Phosphate Buffered Saline (PBS); 

Milli-Q water with 40 mg/mL of BSA; PBS with 40 mg/mL BSA. 

The specimens were cut into 6 mm pieces, bonded to Cu wires with 

conductive glue, and mounted in resin. The surfaces of the samples were 

ground with 600, 800, 1200, 2400 grit SiC paper, and then sequentially 

polished with 1 µm Al2O3, 0.3 µm Al2O3, and a colloidal SiO2 suspension to 

form mirror-like surfaces. Before the electrochemical tests, the samples were 

cleaned in distilled water, rinsed in ethanol and dried in hot air. 
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suitable for studying nanoparticles, allowing the analysis of size, shape and 

composition of nanomaterials. ICP-MS allowed the investigation of the ionic 

products of the corrosion and tribochemical wear. 

3.4.1 - X-ray diffraction 

X-ray diffraction (XRD) is a bulk technique that was used to obtain 

crystallographic data from bulk and particulate samples. This technique is 

based on Bragg diffraction of X-rays and gives information on the phases, 

chemical composition, crystallite size and micro stress of samples. 

When X-rays hit a material, they can be elastically scattered by the 

electrons of the atom. X-ray photons after scattering change trajectory, yet, 

keep the same phase and energy (Figure 3.5). If the atoms responsible for this 

scattering are organized systematically, as in a crystalline structure, diffraction 

will occur as represented by Bragg's Law (Equation 5) [59]. 

�� sin2dn �

Equation 5 ­ Bragg's Law

Figure 3.5 ­ X­ray diffraction and Bragg's law

Where n is the order of reflection, λ is the wavelength of the X-rays and d is the 

d-spacing of the diffracting planes. This equation can be used to calculate the 

d-spacings in the sample using the experimental 2θ values, thus giving 

structural information about any phases that are present in the sample [59]. 

 In addition, X-ray diffraction can also give information about crystallite 

size and strain in polycrystalline samples, both important for understanding any 

decrease in particle size and stress caused by the mechanical wear process.  
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Characterisation by XRD was carried out using a Philips PANalytical 

X’Pert X-ray diffractometer with a monochromatized Cu Kα1 X-ray source (λ = 

1.545 Å) scanning over a range of 30-100° 2θ. Phase analysis was made by 

fitting the data with reference patterns from the International Centre for 

Diffraction Data (ICDD), formerly the Joint Committee for Powder Diffraction 

Standards (JCPDS). Examples are provided in Figure 3.12. 

General Sample Preparation 

 Powders were mounted in a plastic sample holder (cylindrical form 25x1 

mm) and the excess removed from the top with a glass slide. Particles in 

suspension were prepared by dropping the solution on a zero background 

plate, used as a sample holder, made of single crystal Silicon. 

3.4.1 - Scanning electron microscopy 

Scanning Electron Microscopy (SEM) is a technique used to show the 

surface and sub-surface structure of samples. The scanning process in a 

typical SEM (thermionic emission gun) occurs when electrons are emitted from 

a tungsten or lanthanum hexaboride (LaB6) filament and accelerated by an 

anode. The filament is often heated to high temperatures in the presence of an 

electric field, causing emission of electrons. The electrons are accelerated to 

the anode, a positive potential with respect to the filament in the range of 1 to 

30 kV. During the passage of the electron beam to the sample, there are 

several electromagnetic lenses whose function is to focus the beam and scan it 

towards the point of analysis [174]. Different signals can be emitted by the 

sample including secondary electrons (SE) and backscattered electrons (BSE). 

In a Field Emission Electron Guns (FEG), the field emission cathode is 

usually a wire of single-crystal tungsten fashioned into a sharp point and spot 

welded to a tungsten hairpin. The significance of the small tip radius, about 100 

nm or less, is that an electric field can be concentrated. If the tip is held at 

negative 3-5 kV relative to the anode, the applied electric field at the tip is so 

strong that the potential barrier for electrons becomes narrow in width. This 

narrow barrier allows electrons to “tunnel” directly through the barrier and leave 
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the cathode without necessarily requiring any thermal energy to lift them over 

the work function barrier. 

3.4.1.1 - Secondary electrons  

Secondary electrons are low energy electrons arising from ionization of 

electrons in the specimen. Due to their low energy, these electrons originate 

from within a few nanometers of the sample surface. They are attracted into a 

detector due to a positive voltage (200 V) of the grid located in front of the 

detector. Inside the detector, electrons are accelerated up to 10 kV. This 

acceleration results in the emission of photons that are guided to a 

photomultiplier that produces a current. The amplified signal output of the 

photomultiplier is displayed as a two-dimensional intensity distribution that can 

be viewed and recorded on a video display [174]. The images produced 

characterize the surface topography of the specimen. Examples are provided in 

Figure 3.13. 

3.4.1.2 - Backscattered electrons 

The backscattered electron (BSE) signal consists of high-energy incident 

electrons of the electron beam, that are reflected or back-scattered out of the 

specimen interaction volume by elastic scattering interactions with the nuclei of 

atoms within. These electrons are detected using a large area solid state silicon 

detector [174]. The images produced are characterized by grey levels relating 

to the composition of the sample surface. 

3.4.1.3 - Energy dispersive X-ray spectroscopy  

Energy dispersive X-ray (EDX) spectroscopy is a technique which is 

based on analysing the X-rays emitted by the specimen in response to 

excitation by the incident electrons [175]. This technique is used to gain data on 

the elemental composition of samples. 

EDX relies on the principle that each element has a unique atomic 

structure, so that X-rays emitted following ionization of secondary electron are 
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characteristic of this structure, which therefore identifies the element (see 

Figure 3.6) [175] 

Figure 3.6 - Electron movement after the incidence of an electron beam

SEM was performed using a LEO 1530 Gemini FEG-SEM operated at 3 

keV, 3.0 mm working distance and employing an in-lens electron detector and 

an Oxford Instruments 80 mm2 Silicon Drift EDX detector. Energy-dispersive X-

ray (EDX) spectroscopy element mapping was used to identify sample 

composition in specific regions. The analysis and image acquisition was 

performed using Oxford Instrument’s AZtec software. Examples are provided in 

Figure 4.7. 

General Sample Preparation 

Powder samples were fixed on a standard aluminium stub, and covered 

with a thin carbon layer. Loose particles were removed with the help of an air 

blower. Rod samples were fixed on the stub with carbon adhesive, and the 

sides were painted with conductive silver paint. 

3.4.2 - Transmission electron microscopy  

Transmission Electron Microscopy (TEM) generates images from the 

interaction between electrons transmitted through a thin specimen. It can 
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provide information about particle size, size distribution and morphology of the 

particles as well as crystallography and internal structure. TEM can also 

produce a very small electron beam, typically <5 nm and at best < 0.1 nm in 

diameter, which allows analysis of individual nanoparticles.  

The technique uses an electron beam produced by a tungsten filament that 

is accelerated through 200 kV and focused using a series of electromagnetic 

lenses (condenser lenses). After the electrons reach the sample, they can be 

reflected, absorbed, deflected elastically or inelastically or can be transmitted 

through the sample without deviation. The objective lens can form either an 

image or a diffraction pattern of the sample which is magnified, and then finally 

shown on a fluorescent viewing screen or digital camera (see Figure 3.7) [175]. 

Electron diffraction was used to gain data about crystal structure of the 

samples. In diffraction mode, the intermediate lenses are focused on the back 

focal plane, allowing diffraction patterns from the samples to be formed. 

In order to form an image on TEM, contrast plays an important role. 

Contrast is basically the difference in intensity between two adjacent areas. In 

TEM, amplitude contrast and phase contrast contribute to an image formation, 

although one will tend to dominate according to the conditions selected [175]. 

Figure 3.7 - Schematic of a TEM
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Usually, in order to get contrast in an image, an objective aperture is 

placed in the beam path at the back focal plane of the objective lens. Any 

electrons which are scattered by interaction with the sample are prevented from 

recombining to form the image by the aperture. Any regions where electrons 

are scattered will appear dark in the image. Because of this, the smaller the 

aperture used the greater the contrast, but at the expense of overall brightness 

[175]. 

Amplitude contrast results from variations in mass (Z number) or 

thickness or a combination of the two. Thicker (or higher Z) areas of the sample 

scatter more electrons than thinner (lower Z areas) and so appear darker in a 

Bright Field image [175].  

Diffraction contrast is a special form of amplitude contrast where the 

scattering occurs at special (Bragg) angles. Whereby the electron beam 

undergoes Bragg scattering, which in the case of a crystalline sample, 

disperses electrons into discrete locations in the back focal plane. By the 

placement of apertures in the back focal plane, the Bragg reflections can be 

selected, thus only parts of the sample that are causing the electrons to scatter 

to the selected reflections will end up projected onto the imaging apparatus 

[175]. Examples are provided in Figure 3.17.

Phase contrast will occur whenever we have more than one beam 

contributing to the image interfere with each other. Phase-contrast images are 

widely used in three forms: Moire-fringes, Fresnel-contrast and images which 

relate directly to the structural periodicity of the crystalline specimen [175]. 

TEM imaging provides information on the morphology of the sample and 

allows monitoring of any size reduction of the particles produced by the 

experiments. Bright field (BF) images were used to capture images that were 

subsequently used for sizing the particles, as they were clearly discernible from 

the background support film (an ultrathin holey amorphous carbon film).  

EDX detectors can also be attached to TEM to give compositional 

information at the sub-particle scale.  
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3.4.2.1 - Scanning transmission electron microscope  

Scanning transmission electron microscopy (STEM-HAADF) images 

where the contrast is directly related to the atomic number (Z-contrast image). 

This technique is distinguished from conventional TEM by focusing the electron 

beam into a narrow spot which is scanned over the sample in a raster, a 

rectangular pattern of parallel scanning lines [175]. Examples are provided in 

Figure 5.10. 

3.4.2.2 - Energy-filtered transmission electron microscopy  

Energy-filtered transmission electron microscopy (EFTEM) is an 

analytical technique that makes use of the characteristic energy loss of 

electrons through a thin specimen. Its main advantage comes from the two-

dimensional chemical information or "elemental maps" at nanometer resolution 

that can be extracted quickly from large sample areas. 

The TEM image recorded on CCD camera is formed by electrons which 

have been dispersed in energy loss determined by a magnetic prism 

spectrometer after the sample and the projector lenses. Only electrons with a 

limited amount of energy loss by the slit position and the thickness of the 

sample form the image that contains information about the elements of the 

sample. Examples are provided in Figure 4.3. 

TEM was performed on a FEI Tecnai F20 field emission gun TEM 

operated at 200 kV and fitted with an Oxford Instruments ultrathin window ISIS 

energy dispersive X-ray (EDX) system. 

General Sample Preparation 

Glass vials containing the samples were placed in an ultrasonic bath for 

15 min to re-disperse the particles and then were dropped on a 400 mesh Cu 

grid with a holey carbon amorphous film (Agar Scientific Lfd). The grid was 

dried for 15 min before insertion into the TEM vacuum.  

Particles were classified according to the values of the ratio (r) of length 

to width giving information on particle shape: round if 1 � r < 1.2, faceted if 1.2 

� r < 2.5, elongated if r � 2.5. These values were based on the shape 

characterization of Catelas et al. (2003) [152], however in their study spherical 
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particles were considered in a ratio 1 � r < 1.5, whereas in this study a more 

conservative value was used. 

3.4.3 - Inductively coupled plasma mass spectrometry 

  Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) is a technique 

used for the elemental characterisation of a liquid sample via ionization of the 

sample with an inductively coupled plasma followed by separation and 

identification of those ions using a mass spectrometer. The technique allows 

simultaneous quantification of most of the elements in the periodic table, at 

concentrations as low as parts per trillion (ppt).  

The sample is provided in solution form, which is pumped to a nebulizer 

and converted into a fine aerosol. A high-voltage spark creates a source of 

electrons that form a plasma discharge (~10,000 K). The argon plasma 

generates temperatures of about 8000�C, resulting in atomization and 

subsequent ionization of the analyte elements, which are then introduced to the 

mass analyser. The ions are separated according to their mass-to-charge ratio 

by a quadrupole magnet. An ion detector identifies the element by mass-to-

charge ratio and converts the ions into an electrical signal, which is then 

processed and converted into a concentration in ppb [176].

The technique is highly sensitive to a wide range of elements; therefore, 

matrix elements, formed during mass spectrometry, are complex and 

susceptible to element interferences. Matrix effects arise from the bulk 

composition of the sample, including water, organic compounds, acids and 

salts. Doubly charged or molecular ionic species can create difficulties in 

quantification. The matrix effect can be divided into two interferences 

categories: matrix induced spectral overlap problems and matrix induced signal 

intensity changes [177]. Another source of error could be from the sample 

preparation, in which the sample to be analyzed must be fully digested prior to 

analysis in order to dissolve the element(s) of interest [176,178]. 

Quantification of all elements was obtained from samples in order to 

determine any ion release during corrosion and tribocorrosion experiments, as 

well as identify impurities added during the process. Calibrations were 

performed using Co in 2-5% HNO3, Cr in 2-5% HCl and Mo in 2% NH4OH 
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standards from Reagecon, diluted in 10, 100 and 1000 ppb of MilliQ water. 

Investigations were carried out using a PerkinElmer SCIEX ELAN DRC-e ICP-

MS with a PerkinElmer S10 Autosampler. The levels of isotopes Co 59, Cr 52 

and Mo 96 were measured as well as they full chemical quantification. 

Examples are provided in Figure 5.7. 

General Sample Preparation 

A Perkin Elmer, Elan DRCe, ICP-MS was used to quantify the release of 

metal ions. For ICP-MS sample preparation, in addition to centrifugation, a 

Vivacon® ultrafiltration spin column equipped with a Hydrosart cellulose 

membrane of 2 kDa molecular weight cut-off (MWCO), corresponding 

approximately to a pore size of 1.5 nm, was used (Figure 3.8).  

Figure 3.8 - Relation between MWCO of filters/ ultrafilters and equivalent pore 
size [179]

Three different methods were employed to separate particles and ions in 

the hip simulator lubricant: firstly, centrifugation at 14000 rpm for 5-30 min; 

secondly ultracentrifugation using ~40000-60000 rpm (65000-150000 xg) for 

30-60 min; and finally, centrifugation at 14000 rpm for 10 min, extraction of the 
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supernatant and then further centrifugation at 14500 rpm (14000 xg) for 30 min 

using ultrafilters of 2 kDa MWCO. For milling experiments, only centrifugation 

followed by ultrafiltration was undertaken. The supernatants of the 

ultracentrifuged samples were analysed by TEM/ EDX before acid digestion, as 

well as the supernatant following centrifugation and ultrafiltration. 

Following each separation process, 1 mL of each sample was digested 

in 1 mL of 5% nitric acid for 30 min in an ultrasonic bath (65ºC). The samples 

were then centrifuged again at 14000 rpm for 10 min and 0.5 mL of the 

supernatant was collected and diluted in 8 mL of MilliQ water.  

3.4.4 - X-ray photoelectron spectroscopy 

X-ray Photoelectron Spectroscopy (XPS) is a widely used technique to 

identify elements present on the surface of a sample (typically 3-5 nm in depth), 

as well as provide information regarding the chemical state of the elements 

detected and the stoichiometry of the elements.  

During XPS analysis, the specimen is irradiated with X-ray photons of 

energy, ��, which are absorbed by atoms in the material leading to 

photoemission of electrons - the ejection of photoelectrons from the inner 

orbitals of atoms. The process of photoemission is shown schematically in 

Figure 3.9, where an electron from the K shell is ejected from the atom (1s 

photoelectron). The binding energy of the photoelectron can be calculated from 

the kinetic energy of the ejected electron which is measured by the instrument. 

The binding energy identifies specifically the element and atomic energy level 

from which the electron has been ejected [180]. The XPS spectrum produced, 

displays the binding energy (eV) on the x-axis versus the intensity of 

photoelectrons detected. 

The specific chemical environment of an element can be determined by 

measuring the deviation of a peak binding energy position relative to the known 

elemental energy. The area under each peak is proportional to the amount of 

each element present in the analysed volume of the sample surface [180].  
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used to calculate the hydrodynamic diameter (based on a sphere) by the 

Stokes-Einstein equation: 

���� �
��

3	
�

Equation 6 ­ Hydrodynamic diameter

Where d(H) is the hydrodynamic diameter, D is the translational diffusion 

coefficient, k is Boltzmann’s constant, T is the absolute temperature and η is 

the viscosity of the suspending fluid [186]. 

The hydrodynamic diameter can be affected by surface structure of 

particles, the ionic strength of the medium and the presence of non-spherical 

particles. When DLS sizing data is compared with Transmission Electron 

Microscopy images of the primary particle size, the agglomeration or 

aggregation state of the particles can be determined. In an unagglomerated 

suspension, the measured DLS diameter will be similar or any slightly larger 

than the TEM size. If the particles are agglomerated, the DLS measurement is 

often much larger than the TEM primary particle size and can have a high 

polydispersity index (a large variability in the particle size). 

Dynamic light scattering measurements were carried out using a 

Malvern Zetasizer Nano ZS instrument. The DTS Nano software was used to 

determine the particle size distribution. Examples are provided in Figure 4.1. 

General Sample Preparation 

Glass vials containing the samples suspended in water based solutions 

were placed in an ultrasonic bath for 20 min immediately before analysis. The 

value of CoCrMo refractive index used was 2.064 which was calculated by 

Raghunathan, V. K. et al [187] using the proportions of metals in the alloy (wt% 

Co: 64.3%, Cr: 28.0% and Mo: 6.0%) and their refractive indices (at λ = 488nm) 

derived from tables [188]. The light absorption coefficient of the particles was 

calculated in a similar manner and is 3.595. For DLS, the concentration was 

changed to 0.1% w/v to optimize the attenuator which varies the intensity of the 

laser and hence varies the intensity of the scattering. 
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3.4.6 - Zeta Potential 

The zeta potential (ZP) is a function of the surface charge which 

develops when any material is placed in a liquid. The ZP indicates the degree 

of electrostatic repulsion between adjacent, similarly charged particles in 

dispersion and gives a good indication of the suspension stability. 

Particles when placed in a solution are surrounded by a stationary layer, 

formed of an opposite charge to the particle, and a diffusion layer, which is 

electrically neutral (see Figure 3.10). During ZP measurement, a voltage is 

applied to the solution; particles are attracted to the electrode of the opposite 

polarity.

Figure 3.10 - Particle migration in Zeta Potential

(from http://nition.com/en/products/zeecom_s.htm)

The potential at the boundary shear plane between the particle with its 

ion atmosphere and the surrounding medium, is known as the Zeta Potential. 

The ZP is a function of the surface charge of a particle, any adsorbed layer at 

the interface with the media/ solution and the nature and composition of the 

surrounding medium in which the particle is suspended [189]. Zeta potential 

can be calculated with Smoluchowski's formula: 

� �
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Equation 7 – Zeta Potential
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�/� Equation 8 ­ Electrophoretic mobility
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Where � is the zeta potential (mV), � is the viscosity of solution, 	 is dielectric 

constant, U is the electrophoretic mobility in which 
 is the speed of particles 

(cm/s), V is the voltage (V) and L is the distance of electrode. 

Zeta Potential measurements were carried out using a Malvern 

Zetasizer Nano ZS instrument. In this study, the change of zeta potential as a 

function of the amount of protein adsorbed on the surface of colloidal 

nanoparticles in solutions was investigated. Examples are provided in Figure 

5.23. 

General Sample Preparation 

Glass vials containing the samples were diluted in different concentrations 

(0.05, 0.01, 0.5 and 1 %w/v) and placed in an ultrasonic bath for 20 min 

immediately before analysis. 

3.4.7 - Fourier transform infrared spectroscopy 

Fourier Transform Infrared Spectroscopy (FTIR) uses a beam containing 

many frequencies of infra-red light, and measures the absorption of the 

different frequencies by a sample, allowing the identification of chemical groups 

and compounds. For a given sample, specific chemical bonds are absorbed at 

characteristic frequencies related to the vibrational energy of the chemical 

bond, and the remaining infrared signal is transmitted through the sample [190].  

FTIR characterization was carried out using a Thermo Scientific Nicolet 

iS10 FTIR spectrometer running OMNIC processing software, fitted with an 

attenuated total reflection (ATR) accessory. The ATR contains a diamond 

crystal that internally reflects the IR beam allowing for improved transmission 

into the sample (0.5-5 μm). This technique was employed to follow protein 

conformational changes during milling. Examples are provided in Figure 5.18. 

General Sample Preparation 

 Bulk samples were placed straight in contact with the diamond crystal. A 

weight is placed over the sample, applying a pressure that encourages 

maximum contact with the crystal surface. Liquid samples were dropped onto 

the crystal and pressed with a concave tip. 



- 72 - 

3.4.8 - Ultraviolet-visible spectroscopy 

Ultraviolet-visible spectroscopy (UV-VIS) is based on the absorption of 

light over the wavelength range from ultraviolet up to the start of the infrared. In 

this region molecules undergo electronic transitions during absorption or 

reflectance of incident light and this affects the perceived colour of the 

chemicals involved. 

In this study, a Perkin Elmer Lambda XL spectrophotometer was used to 

scan the complete UV-VIS spectrum. It was used to analyse the presence of 

metal ions in solution as a result of the wear simulations and electrochemical 

corrosion. Examples are provided in Figure 6.29. 

General Sample Preparation 

 Glass vials containing the samples were placed in an ultrasonic bath for 

20 min immediately before analysis. The solutions were dropped into the 

sample holder.  

3.4.9 - Thermogravimetric analysis  

Thermogravimetric analysis (TGA) was performed in order to evaluate 

the concentration of the nanoparticles produced in a liquid. This technique 

consists in monitoring the change in mass of a sample as a function of 

temperature or time in a temperature controlled environment and atmosphere.  

TGA was conducted using a TGH 1000 (Stanton Redcroft) under an 

argon atmosphere, to avoid oxidation, fitted with a digital precision balance of 

0.1 mg sensitivity. The sample was heated from 100 ̊C to 900°C, at a rate of 

10°C/min. Examples are provided in Figure 4.24. 

General Sample Preparation 

A precision pipette was used to drop 0.1mL of the sample solution onto 

the sample holder. 
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the centre of the spinning disc, which separates them according to differences 

in their size and density. 

3.5 Characterization of as-Received Materials 

3.5.1 - CoCrMo powder alloy 

Figure 3.12 shows indexed XRD patterns of the CoCrMo high and low 

powder. The presence of two crystallographic phases was found: a dominant 

face-centered cubic (FCC) and hexagonal close-packed (HCP). These peaks 

were indexed according to the patterns with reference code of 00-015-0806 

(Cubic Cobalt) and 00-001-1278 (Hexagonal Cobalt) from International Centre 

for Diffraction Data (ICCD) base. 

Figure 3.12 - XRD of starting CoCrMo ASTM75 powder: (a) low carbon and (b) 

high carbon. 
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 Five peaks are well defined in this diffraction pattern, most from Cobalt 

FCC, taking in account the high percentage of this component in the alloy. 

Moreover, the occurrence of very small additional peaks may signify the 

presence of the HCP phase. Salinas and Rodriguez (1996) [112] showed that 

the presence of HCP phase is most visible in fine-grained material (7 µm) 

rather than in coarse grain (70 µm). Zeng et al. (2012) [113] also have reported 

a predominant HCP structure in particles of 5 nm range, however HREM also 

indicated the possibility of FCC phase. 

 The industrial process to obtain this powder raw material uses gas 

atomization, with means that the alloy suffers fast cooling. Using the CoCr 

phase diagram Figure 2.3, after heating the CoCr (Cr 27 wt%) alloy up to 1000 

ºC, the alloy present a FCC phase. With fast cooling, the alloy tends to retain 

the same phase. A similar process occurs with the CoCr hip implants that pass 

through a heat treatment of water quenching, but in this case, just the surface 

of the implants should present a FCC phase, whereas inside the implant could 

present also the HCP phase. 

Figure 3.13 displays SEM images of the CoCrMo alloy powder (both 

high and low carbon) from Sandvik Osprey. The images show particles of 

CoCrMo with a dense distribution and a spherical morphology. The particles 

were measured using ImageJ image analysis software and showed an average 

particle size of 4.8 µm ± 3 and 9.1 µm ± 6, respectively. Figure 3.14 shows 

EDX of random particles showing that there was little variation in composition. 

Figure 3.13 - SEM of the CoCrMo ASTM75 gas atomized raw material: (a) low 

carbon and (b) high carbon powder. 

(a) (b) 
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Figure 3.14 - SEM/EDX of the CoCrMo ASTM75 gas atomized raw material: 

(a) low carbon and (b) high carbon powder. 

In summary, the raw material presented a homogenous composition and 

a wide size distribution. Particles were found to be spherical and XRD pointed 

to the dominance of the FCC phase. 

3.5.2  - CoCrMo bulk alloy 

Figure 3.15 shows the XRD patterns obtained from the Co, Cr and Mo 

reference materials as well as the CoCrMo alloy commercial rods, with the 

phases indicated above each peak. The peaks are consistent with ICDD 

database listed in the Table 3.2. A cubic phase is present in all samples in the 

form of body-centered cubic (bcc) for Co and CoCrMo and a face centered 

cubic (fcc) phase for Cr and Mo, whereas some presence of a hexagonal (hcp) 

phase was found in the Co and CoCrMo samples. The CoCrMo alloy exhibits a 

similar diffractogram to the CoCrMo gas atomised powder studied in the 

previously, where it was demonstrated that there was evidence of a 

FCC(metastable)→HCP phase transformation. 
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Figure 3.15 - XRD of the polished surfaces of Co, Cr, Mo and CoCrMo rods.

Table 3.2 - Reference XRD pattern from ICDD corresponding to the sample 
peaks

Reference 
Pattern 

Name 
Crystal 
System 

Formula 
Lattice 

Parameter

04-006-8067 Cobalt Cubic (fcc) Co a = 3.53 Å 

04-003-3863 Cobalt 
Hexagonal 

(hcp) 
Co 

a = 2.50 Å 
c = 4.06 Å 

04-004-9049 Chromium Cubic (bcc) Cr a = 2.88 Å 

04-001-1814 Molybdenum Cubic (bcc) Mo a = 3.14 Å 

04-016-6869 CoCrMo Cubic (fcc) Co0.64Cr0.32Mo0.04 a = 3.59 Å 

04-016-6870 CoCrMo 
Hexagonal 

(hcp) 
Co0.64Cr0.32Mo0.04

a = 2.56 Å 
c = 4.12 Å 

Figure 3.16 shows backscattered electron imaging of the CoCrMo raw 

material used in the corrosion experiment. The relative large percentage of 

carbon is due the presence of carbides with particle diameters less than 2 µm. 

EDX analysis of the selected area in red shows the presence carbides rich in 
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TEM/EDX of the CoCrMo low carbon alloy standard (Table 3.3) shows 

Co and Cr within the ASTM standard limit whereas Mo was found slightly 

above the limit recommended. The use of a standard k factor for EDX 

quantification and the small region covered by the beam during TEM/EDX 

could be the reason for the deviation of the results, compared with bulk 

analysis.  

Table 3.3 - TEM/EDX on CoCrMo low carbon standard showing the average 

weight composition in 30 different areas of the sample. 

Wt% Co Cr Mo

Mean 65.0% 27.3% 7.2%

Std. deviation 0.7% 0.5% 0.5%

Max. 66.2% 28.3% 9.4%

Min. 63.6% 26.3% 6.8%

3.6 Materials Sample Preparation 

Sample preparation for materials used in the different studies are 

described and linked here with the respective sections. 

3.6.1 - Mechanochemical milling using 440C Hardened Steel vial/ 

beads (Section 4.2.1) 

Particles were produced by mechanochemical milling for 240 min using 

a SPEX mill with a vial and a bead (12.7 mm) made of 440C hardened steel 

(from SPEX SamplePrep) and CoCrMo ASTM F75 gas atomized low carbon 

alloy powder (from Sandvik Osprey) immersed in heptane with 10% oleylamine 

with 5:1 ball-to-powder weight ratio. Particles were analysed using the general 

powder sample preparation described for TEM and DLS. 
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3.6.2 - Mechanochemical milling using Zirconium Oxide 

Vial/Beads (Section 4.2.2) 

Particles were produced by mechanochemical milling for 15, 30, 60 and 

120 min using a SPEX mill with a vial and two beads (12.7 mm) made of 

zirconium oxide (from SPEX SamplePrep) and CoCrMo ASTM F75 gas 

atomized low carbon alloy powder (from Sandvik Osprey) immersed in heptane 

with 10% oleylamine with 10:1 ball-to-powder weight ratio. Particles were 

analysed using the general powder sample preparation described for TEM, 

DLS and SEM for powder. 

3.6.3 - Mechanochemical milling Optimization (Section 4.3.1) 

Particles were produced by mechanochemical milling according to the 

parameters described in Table 3.4 using CoCrMo ASTM F75 gas atomized low 

carbon alloy powder (from Sandvik Osprey). Particles were analysed using the 

general sample preparation described for DLS, CPS, XRD (for particles in 

suspension) and SEM (for powder). 

Table 3.4 - Description of the milling parameters in the factorial design 
experiment.

Samples 

# Time 

[hrs] 

Ball­to­Powder 

[g/g] 

Surfactant 
[% of oleylamine to heptane] 

Balls 

1 2 10:1 10 3  

2 10 10:1 10 3  

3 2 5:1 10 3  

4 10 5:1 10 3  

5 2 10:1 20 3  

6 10 10:1 20 3  

7 2 5:1 20 3  

8 10 5:1 20 3  

9 2 10:1 10 2  

10 10 10:1 10 2  

11 2 5:1 10 2  

12 10 5:1 10 2  

13 2 10:1 20 2  

14 10 10:1 20 2  

15 2 5:1 20 2  

16 10 5:1 20 2  
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3.6.4 - Simulating wear debris from hip implants (Section 4.3.4) 

Following optimization of the milling procedure, particles were produced 

by mechanochemical milling for 150 min using a SPEX mill with a vial and three 

beads (12.7 mm) made of zirconium oxide (from SPEX SamplePrep) and 

CoCrMo ASTM F75 gas atomized low carbon alloy powder (from Sandvik 

Osprey) immersed in 0.2 g of BSA diluted in 10 mL of deionized water with 3:2 

ball-to-powder weight ratio. Particles were centrifuged for 10 min at 14 000rpm 

and analysed using the general sample preparation described for TEM, DLS, 

TGA and SEM. 

3.6.5 - Accurate ICP-MS measurement (Section 5.1) 

Particulate debris were generated from a 28 mm diameter metal-on-

metal hip bearing surface in a Deep Flexion Prosim hip-simulator for 30,000 

cycles under ISO load conditions. The bearing material was wrought CoCrMo 

High Carbon alloy (DePuy). The lubricant used was 12 g/L Foetal Bovine 

Serum (FBS) plus Phosphate Buffered Saline solution (PBS) supplemented 

with 0.03% sodium azide to retard bacterial growth (Sigma-Aldrich). 

A Perkin Elmer, Elan DRCe, ICP-MS was used to quantify the release of 

metal ions. For ICP-MS sample preparation, in addition to centrifugation, a 

Vivacon® ultrafiltration spin column equipped with a Hydrosart cellulose 

membrane of 2 kDa molecular weight cut-off (MWCO), corresponding 

approximately to a pore size of 1.5 nm, was used. Three different methods 

were employed to separate particles and ions in the hip simulator lubricant: 

firstly, centrifugation at 14000 rpm for 5-30 min; secondly ultracentrifugation 

using ~40000-60000 rpm (65000-150000 xg) for 30-60 min; and finally, 

centrifugation at 14000 rpm for 10 min, extraction of the supernatant and then 

further centrifugation at 14500 rpm (14000 xg) for 30 min using ultrafilters of 2 

kDa MWCO. The supernatants of the ultracentrifuged samples were analysed 

by TEM/ EDX before acid digestion, as well as the supernatant following 

centrifugation and ultrafiltration. To prepare TEM samples, the grids were 

simply immersed for 24h in the corresponding liquid, collected and then dried. 

Following each separation process of the hip simulator lubricant, 1 mL of 

each sample was digested in 1 mL of 5% nitric acid for 30 min in an ultrasonic 
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bath (65ºC). The samples were then centrifuged again at 14000 rpm for 10 min 

and then 0.5 mL of the supernatant was collected and diluted in 8 mL of MilliQ 

water. Finally, the levels of isotopes Co 59, Cr 52 and Mo 96 were measured 

by ICP-MS. Particulate dispersions at the various stages of sample preparation 

for ICP-MS were analysed by Transmission Electron Microscopy (TEM). 

3.6.6 - Microstructural characterization of low and high carbon 

CoCrMo alloy nanoparticles produced by mechanical 

milling (Section 5.2) 

CoCrMo gas atomized powders (ASTM75), both high and low carbon, 

were purchased from Sandvik Osprey. Bovine Serum Albumin (BSA), heat 

shock, pH 7.0 was acquired from Fisher Scientific, and used in solution during 

milling as a process control agent. The solution was composed of 0.4g of BSA 

diluted in 10 mL of deionized water. The powders were ball milled for 150 min 

in a high energy Spex 8000M mill using zirconia ceramic vial and balls. Before 

milling, the vial was fully filled with an inert gas (Argon) to avoid atmospheric 

contamination. A ball-to-powder weight ratio of 3:2 was used. After collection, 

samples were centrifuged in a Heraeus Megafuge for 10 min, at 25°C and a 

centrifugal force of 8000G. This procedure removes part of the BSA and coarse 

particles, maintaining most of the fine particles in dispersion. 

3.6.7 - Corrosion of CoCrMo alloy in relevant media (Section 5.3) 

Synthetic wear debris were obtained by mechanochemical milling of a 

CoCrMo High Carbon powder (Sandvik Osprey – Co212-c) in a SPEX 8000M 

mill for 150 min, using a ball-to-powder ratio of 3:2, and 40 g/L of Bovine Serum 

Albumin (BSA) purified by a heat shock process, pH 7.0 (Fisher Scientific), 

diluted in MilliQ Water. Milling was also performed in pure PBS solution and 

Simulated Synovial Fluid (SSF) - a mix of Iron-Supplemented Calf Serum 

diluted to a total protein content of 40 g/L with PBS (Sigma-Aldrich). 

The mechanochemically milled samples were diluted 20x and only the 

centrifugation plus ultrafiltration (2 kDa ultrafilter) protocol was used prior to 

ICP-MS analysis. 
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3.6.8 - Bovine Serum Albumin binding to CoCrMo nanoparticles 

and the influence on dissolution (Section 5.4) 

CoCrMo high carbon gas atomized powders (ASTM75, ~ 60% Co, 27% 

Cr, 6% Mo) was purchased from Sandvik Osprey. Bovine Serum Albumin 

(BSA), heat shock, pH 7.0 was acquired from Fisher Scientific, and used during 

milling as a process control agent. The solution used was composed of 0.4 g of 

BSA diluted in 10 mL of deionized water. The powder was ball milled for 150 

min in a high energy Spex 8000M mill using zirconia ceramic vials and balls. 

Before milling, the vial was filled with an inert gas (Argon) to avoid atmospheric 

contamination. A ball-to-powder weight ratio of 3:2 was used. After collection, 

samples were centrifuged in a Heraeus Megafuge for 10 min, at 25 °C and a 

centrifugal force of 8000 G. This procedure removes the excess BSA and 

coarse particles (>200nm), maintaining most of the fine particles in dispersion 

(20 mg/mL). Co3O4, Cr2O3, Mo nanoparticles (which exhibit MoO2 on the 

surface) were purchased from Sigma Aldrich and suspended in BSA (20 

mg/mL) for 24h, washed in distilled water and finally re-suspended in ethanol. 

The washing procedure removed excess BSA due to its high affinity with 

ethanol.  

In order to demonstrate the effect of milling fluid on the size and stability 

of CoCrMo nanoparticles when in the presence of serum proteins, the samples 

were analysed by Transmission Electron Microscopy (TEM), Energy-Dispersive 

X-ray spectroscopy (EDX), Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS) and Zeta Potential (ZP) measurements. 
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Chapter 4 - Production of synthetic CoCrMo wear debris 

4.1 Introduction 

Metal-on-Metal hip implants were intended to offer improved durability, 

releasing a lower volume of wear debris than traditional implant designs. Some 

studies have highlighted that these wear debris particles are numerous at the 

nanometre scale [21]. Since then, wear debris from CoCrMo metal on metal 

implants has been linked to an inflammatory response in vivo. The toxicology of 

CoCrMo nanoparticle wear debris remains unclear as little is known about the 

transport and distribution of particles/ ions in the body [20]. 

Statistically significant toxicological studies require relatively large 

amounts of wear debris because most of the studies are based on dose-

response of triplicate assays, which could require more than hundred 

milligrams of nanoparticles [121,193]. However, producing large volumes of 

wear debris particles which match the composition size and morphology of 

those generated in actual hip replacements is extremely difficult. Laboratory hip 

simulators and pin-on-plate methods produce particles with a good 

approximation to the real wear debris observed in-vivo but this can take a long 

time to produce a small volume of material. Some studies have shown 

successfully large scale nanoparticle production using mechanochemical 

milling [130,158,162]. This technique allows the production of nanoparticulates 

using micro-sized starting powder alloys that degrade by the action of a 

combination of high energy impact/ friction and corrosion in the milling 

environment (liquid or gas). 

In this chapter, CoCrMo nanoparticles were produced by a 

mechanochemical milling procedure, which was optimized and results 

compared with debris observed in the literature and that found using the pin-on-

plate method, a consolidated technique to generate synthetic wear debris. 

These tests mainly assessed the particle size, shape and composition taking 

into account the amount of wear debris and the production time.  

In all simulation methods, the raw materials are under tribocorrosion 

conditions, in which the degradation mode includes wear, mostly by friction, 

and corrosion related to the chemical and electrochemical interactions between 
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the metal and the aqueous environment. The techniques are all different 

tribosystems which are related to the sample geometry and the directions 

involved in the friction (unidirectional sliding or reciprocating motion). Hip 

simulators are submitted to multidirectional sliding and pin-on-plate technique is 

in a reciprocating mode. In mechanochemical milling, the friction plays a minor 

role compared to impact in the overall degradation process.

Dynamic Light Scattering (DLS) and X-ray diffraction (XRD) analysis 

allowed bulk identification of the particle and crystallite size range and phase 

identification of the crystalline material, respectively. Transmission Electron 

Microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDX) provided 

an accurate analysis in terms of size, morphology and composition of the 

CoCrMo nanoparticles procedure. Thermogravimetric analysis (TGA) of a 

suspension allowed determination of the particle concentration generated by 

the different techniques. The full description of methods and materials used in 

this section can be found in Section 3.6. 

4.2 Mechanochemical Milling 

4.2.1 - 440C Hardened Steel Vial/beads 

Figure 4.1 shows a DLS histogram of preliminary milling studies using a 

SPEX mill with a vial and beads made of 440C hardened steel (from SPEX 

SamplePrep) and CoCrMo low carbon alloy powder immersed in heptane with 

10% oleylamine used as a process control agent. The volume distribution 

[Figure 4.1 (c)] showed two distinct peaks which were well defined, whereas 

the distribution by number of particles [Figure 4.1 (a)] showed a wide main 

peak at 53.2 nm ± 10.7 nm, in contrast with the intensity distribution [Figure 4.1 

(b)] which is dominated by the scattering of large particles at 243.8 nm ± 119.0 

nm, as expected. The results indicated a significant size decrease following 

milling from the initial size of 4.8 µm ± 3.0 of the gas atomized powder particles 

shown in Section 3.5.1.  

DLS measurements can be affected by scattering from the larger 

particles that swamps the signal from the smaller ones (the scattered intensity 

varies as the sixth power of the particle diameter). This means that it is difficult 
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with DLS to measure a wide range of particle sizes as produced by milling, 

where particles can vary between 10 nm and 1,000 nm. 

Figure 4.1 - DLS of ASTM75 CoCrMo low carbon milled for 4h in heptane with 
10% oleylamine showing size distribution by: (a) number, (b) intensity and 
(c) volume. 

Figure 4.2 shows a TEM micrograph from a typical large milled particle 

with a size ca. 92 nm surrounded by a dense concentration of small particles 

ca. 6 nm [labelled (b) and (c)] probably arising as a result of the dispersant 

action during milling. EDX of the particles showed particle (a) was mainly 

composed of cobalt and sulphur, with a relative wt% elemental ratio for Co, Cr 

and Mo of 82%, 18% and 0%, respectively. Particles (b) and (c) showed major 

peaks of sulphur, with relative elemental ratios (in wt%) of Co-51% Cr-49% Mo-

(a) Size Distribution by Number 

(b) Size Distribution by Intensity

(c) Size Distribution by Volume
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0% and Co-54% Cr-46% Mo-0%, respectively. High amounts of oxygen were 

found for all the particles, indicating oxidation, whereas no molybdenum (Mo Kα

at 17.44 keV) was detected, possibly as a result of corrosion or the detection 

limit of the technique. EDX highlighted the large presence of contamination as 

S, Na, Mg and K that may come from the jar and beads previously used with 

other materials. The presence of iron in 40% of the particles analysed indicated 

a contribution of the steel vial and ball in contamination of the sample, 

presumably due to the hardness of the CoCrMo alloy compared to the 440C 

hardened steel.  

Figure 4.2 - Bright field image and EDX of ASTM75 CoCrMo low carbon alloy 
powder milled for 4h using heptane with 10% oleylamine in steel vial/ 
beads.

Energy-Filtered Transmission Electron Microscopy (EFTEM) in Figure 

4.3 (b) showed the presence of chromium in the large particle, and in some, but 

not all of the small particles.  

Particles found here showed a wide variety of sizes and a high level of 

contamination from the beads and the vial. Even with the good particle size 

reduction, the steel vial/beads demonstrated a high level of contamination, 

mainly of iron, which was present in the majority of the particles analysed. The 
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high levels of iron contamination may potentially interfere in toxicological 

studies. 

Figure 4.3 - EFTEM of ASTM75 CoCrMo low carbon alloy powder milled for 4h 
in heptane with 10% oleylamine in steel vials/ beads: (a) Zero loss filtered 
image; (b) Cr L2,3 – edge elemental map.

4.2.2 - Zirconium Oxide Vial/Beads 

According to Table 2.4, a good material for the vial/beads is zirconium 

oxide (also known as zirconia), which has an extremely high resistance to 

abrasion, wears very slowly, and results in little contamination, according to 

SPEX SamplePrep [163]. In addition, due to their poor solubility, zirconium 

compounds have low systemic toxicity [194], being a good alternative milling 

media for CoCrMo corrosion and toxicological studies. 

CoCrMo ASTM F75 low carbon alloy powder was milled for 15, 30, 60 

and 120 min in heptane with 10% oleylamine using zirconium oxide vial/beads. 

The coloured liquids shown in Figure 4.4 contained a dispersion of 

nanoparticles after wet milling with heptane and oleylamine. Very fine particles 

remained suspended in the liquid while coarse particles were sedimented at the 

bottom of the glass jar. The influence of the surfactant on the liquid was noted 

in the colouration, for low milling times the liquid was clear with the liquid 

darkening as the milling time increased indicating improved particle dispersion 

in the liquid. 
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images showed some large particles with a lamellar structure, typical of the 

early stages of milling. In this stage, the particles tend to increase from their 

initial size and then start to decrease in size. After 60 min, particles showed a 

visible size reduction, with only a few large particles present. Finally after 120 

min, the particles exhibited a homogeneous size distribution, similar to that 

observed by DLS.  

Figure 4.6 - SEM secondary electron image of CoCrMo milled for: (a) 15 min, 
(b) 30 min, (c) 60 min and (d) 120 min.

SEM-EDX of the micron-sized particles milled for 120 min suggested a 

similar composition (in wt%) to the raw material, Co-65% Cr-28% Mo-7%, with 

Zr contamination from vial/beads at about 10% relative to other metallic debris 

(Figure 4.7). Few Cr-rich particles were found as shown in Figure 4.7 (c). Zr 

contamination appeared more often in large particles. As the size of the 

particles decreased, the EDX peaks of Zr were not detected. 

(a) (b) 

20 µm 20 µm

5 µm 5 µm

(c) (d) 



- 91 - 

Figure 4.7 - SEM-EDX of the micron-sized milled particles: (a) typical CoCrMo 
with ASTM75 composition, (b) CoCrMo with traces of Zr and (c) Cr-rich 
particles with traces of Zr.

Figure 4.8 displays TEM bright field images and EDX spectra of particles 

milled for 120 min that showed: (a) faceted particles with a major composition 

of zirconium oxide; (b) and (c) alloy particles with a faceted and spherical 

shape and respective size of 60 nm and 20 nm. 

Figure 4.8 – TEM bright field images and EDX analysis (wt%) of CoCrMo 
powder milled for 120 min.
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The CoCrMo particles are polycrystalline (grain size ca. 10 nm) as 

shown by TEM dark field in Figure 4.9. The electron diffraction pattern 

presented in Figure 4.10 suggested the major presence of the FCC (+) phase 

of CoCrMo (ref. code 04-016-6869) and also some of the HCP (o) phase (ref. 

code 04-016-6870). Plastic deformation during milling can induce the dynamic 

phase transformation from FCC to HCP with a decrease in particle and 

crystallite size. 

Figure 4.9 – TEM bright field (a) and dark field (b) images of a CoCrMo particle 
milled for 60 min.

Figure 4.10 - TEM bright field image (a) and selected area electron diffraction 
pattern (b) of CoCrMo particle milled for 60 min.

Particles milled with zirconium oxide vial/beads exhibited good control of 

contamination, considering that most of the contamination was found in large 

particles. Some adjustment in the weight ratio of ball-to-powder could help to 

50 nm50 nm
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decrease this contamination even further. Moreover, after milling, the beads 

surfaces and the vial walls were completely covered by a CoCrMo solid layer. It 

is expected that after several milling runs, this layer will increase in depth and 

decrease the contamination arising as a result of the erosion of the zirconium 

oxide walls.  

In conclusion, zirconium oxide vial/beads showed a superior 

performance than 440C hardened steel milling media. Nanoparticles were 

obtained in large amounts using both materials, however, zirconium oxide took 

less time to produce a narrow size distribution of particles with less 

contamination than the steel material. Because the Zr contamination was found 

mostly in the large particles, there is also a possibility to decrease the 

contamination level even further by separating the large particles from the 

smaller milled powder material. 

4.3 Optimization of the Milling Process  

Mechanical milling using a high energy SPEX mill has been employed to 

produce large amounts of wear debris. Basically, milling is a process of 

grinding which could be applied for several purposes such as: particle size 

reduction, amorphization, change of particle shape, solid state blending and 

change of materials properties. There are three stages of milling: the first stage 

is the initial compaction, rearrangement and restacking of particles followed by 

the particles sliding past each other producing a fine and irregular shape. Stage 

two is the compaction involving elastic and plastic deformation and this may 

cause cold welding for a metallic substance. The third stage of compaction 

involves particle fracture which results in further deformation or fragmentation 

of particles into the micro- or nanometre size range [164]. When particle 

fragments decrease in size, the tendency to aggregate increases and the 

fracture resistance will also increase, so the size reduction will reach a limit and 

if the milling process continues energy will be wasted without any further size 

reduction [164]. 

The process is affected by many variables such as: the type of mill; 

milling container; milling speed; milling time; type, size, and size distribution of 



- 94 - 

the grinding medium; ball-to-powder weight ratio; extent of filling of the vial; 

milling atmosphere; process control agent and temperature of milling. All these 

process variables are not completely independent. For example, the optimum 

milling time depends on the type of mill, size of the grinding medium, 

temperature of milling, ball-to-powder ratio, etc. 

In the process of milling the CoCrMo nanoparticles, some of the 

variables are fixed by the purpose of the milling or by the laboratory resources. 

The other variables can be accordingly manipulated so as to optimize the 

process. A factorial experiment is a simple statistical method that compares the 

maximum and minimum levels of a variable in the experiment and the 

combining effect of all variables to analyse the influence in the desirable 

outcome [195]. Useful exploratory analysis tools for factorial experiments 

include main effects plots, interaction plots, and a normal probability plot of the 

estimated effects. In this study a factorial design experiment was used to 

investigate the effect of milling variables on both size reduction and 

contamination, obtaining an optimum condition through the use of optimized 

parameters.  

Samples from the experiment were characterized by using Scanning 

Electron Microscopy (SEM) for particle morphology and particle size, Energy 

Dispersive X–Ray Spectroscopy (EDX) for the sample composition and 

contamination level and Dynamic Light Scattering (DLS) to obtain the average 

size of the particle in each sample. Factorial design has been carried out to 

obtain the effect of the variables and the optimum conditions to obtain the 

maximum size decrease with the minimum level of contamination. 

4.3.1 - Characterization of the milled particles from factorial 

design  

At the end of 16 experiments with the 4 parameters listed in Table 4.1 

[the milling time, the ball-to-powder weight ratio, the level of surfactant 

(oleylamine in heptane) and the number of balls], the average particle size was 

measured by DLS. All the experiments showed a doublet peak in DLS intensity 

plots, representing both large and small particles. By DLS number, the small 

particles are the majority in the samples, however for statistical purposes the 
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use of the average particle size gives a good estimation of the overall size 

reduction during milling. Zr contamination during the experiments was 

measured using SEM/EDX of different large areas in each sample. 

Table 4.1 - Description of the milling parameters in the factorial design 
experiment plus the size reduction and contamination level in wt% relative 
to Co, Cr and Mo.

Samples DLS  SEM/EDX

# Time

[hrs] 

Ball­to­

Powder [g/g] 

Surfactant 
[% of oleylamine 

to heptane] 

Balls Z­Ave 

[nm] 

Std Zr 

[%] 

Std 

1 2 10:1 10 3  1482.7 5.5 11.1 7.6

2 10 10:1 10 3  1533.3 16.0 9.9 6.1

3 2 5:1 10 3  1312.5 21.5 4.4 4.5

4 10 5:1 10 3  1984.0 156.5 12.4 11.7

5 2 10:1 20 3  1005.9 55.1 4.8 6.4

6 10 10:1 20 3  2157.5 82.5 8.0 7.1

7 2 5:1 20 3  1539.0 15.0 1.8 1.8

8 10 5:1 20 3  1504.5 121.5 9.3 9.7

9 2 10:1 10 2  874.6 26.2 10.5 9.2

10 10 10:1 10 2  2065.0 180.0 4.2 2.6

11 2 5:1 10 2  1603.5 72.5 6.8 8.2

12 10 5:1 10 2  1867.0 192.0 9.3 8.6

13 2 10:1 20 2  1863.3 47.5 4.8 8.9

14 10 10:1 20 2  2670.0 211.5 10.0 8.5

15 2 5:1 20 2  1905.5 80.5 5.5 8.4

16 10 5:1 20 2  2547.7 327.5 8.8 9.5

Figure 4.11 shows the average particle size measured by DLS in a 

triplicate assay (i.e. three separate DLS measurements). Time was the most 

pronounced effect, where a 2h milling time (odd numbered samples) tended to 

influence more significantly the particle size reduction compared to 10h milling 

time (even numbered samples). This implies that after 10h of milling there was 

cold welding between the metal particles, and the surfactant was no longer able 

to prevent aggregation [129]. 
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� � ����� � ���	
 Equation (4.1) 

The differences among effects and the interaction of variables were 

analysed using Analysis of Variance (ANOVA, with a 90% confidence levels) in 

the software Minitab 17. Figure 4.13 shows the ANOVA model for the factorial 

design experiment with size reduction as the response. The results indicated 

that at a significance level of 0.1, only milling time influences the size reduction, 

with most of the others variables including their interactions appearing as noise 

with a low variance in the normal plot [Figure 4.13 (a)]. The Pareto chart of 

effects shows the second most relevant variable was the number of balls inside 

the vials.  

Figure 4.13 - ANOVA of the effect of variables during milling using size 
reduction as the response: (a) Normal plot of the effects and (b) Pareto 
chart of the effects. 

A contour plot indicates in which direction two variables can reach their 

target values (maximum size reduction or minimum contamination) using 

constant values for the other two parameters. Figure 4.14 shows the contour 

plot for two variables with the most significant effects: milling time and number 

of balls. The graph indicates that by decreasing the milling time and increasing 

the number of balls in the vial it is possible to achieve an average particle size 

of less than 1400 nm. 

(a) (b) 
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Figure 4.14 - Contour plot of size average for number of balls versus milling 
time.

Figure 4.15 shows the ANOVA model for the factorial design experiment 

with contamination as response. The results indicate that milling time and the 

interaction of milling time and ball-to-powder ratio significantly affected the level 

of contamination during milling. It was expected that by increasing the milling 

time the contamination would increase. Also, decreasing the ball-to-powder 

ratio means an increase in the amount of starting powder inside the vial, which 

diminishes the contact between the Zirconium Oxide vial and beads because 

the powder occupies more space inside the vial during the attrition and sliding 

loads. This effect is more pronounced with an increase in milling time, which 

also increases the contact between the Zirconium oxide vial and beads 

because of the agglomeration of the particles. Both tendencies can be 

observed by the contour plot of contamination for milling time and ball-to-

powder ratio (Figure 4.16), which estimates Zr contamination below 5% for 

milling times of about 2 hours and ball-to-powder ratio of about 5:1. 

Milling Time [hours] 
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Figure 4.15 - ANOVA of the variables effects of the factorial design 24 during 
milling using contamination as response: (a) Normal plot of the effects and 
(b) Pareto chart of the effects.

Figure 4.16 - Contour plot of Zr contamination for Ball-to-Powder weight ratio 
versus Milling Time.

To achieve optimized conditions for both average particle size and 

contamination, Minitab 17 identified the combination of input variable settings 

that jointly optimize a single response or a set of responses. The optimal 

solution found for the input variable combinations were: 2 ½ hours milling time, 

5:1 ball-to-powder weight ratio, 20% of surfactant (oleylamine in heptane) and 3 

zirconium oxide balls, which gives a particle size average of about 1.5 µm and 

less than 2.5 wt% of Zr contamination.
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Figure 4.17 - Optimization plot for the factorial design. 

4.3.3 - Isolating Nanoparticles  

Centrifugal Particle Sizing (CPS) with high resolution was used to 

analyse the centrifugation time required to remove coarse particles, which are 

related to the unmilled and welded particles. This procedure also decreased the 

Zr contamination that was specifically related with the coarse particles. 

CoCrMo milled particles with a density estimated at 8.3 g/cm3, were 

centrifuged at 14000 rpm for 10 min. Figure 4.18 shows the CPS results, which 

demonstrate an effective sedimentation time of up to 7 minutes, removing 

particles above ca. 500 nm in diameter. 

Figure 4.18 - CPS of milled CoCrMo particles centrifuged for 10 min at 14000 
rpm.

0

1

2

3

4

5

6

7

0 2 4 6 8

Time [min]

2 10 5 10 0.1 0.2 2 3 



- 101 - 

In order to investigate the size fraction after longer centrifugation times, 

another run was carried out using the supernatant of samples after an initial 

centrifugation for 7 min. The results in Figure 4.19 showed that the limit for 

centrifugal sedimentation at the rotational speed of 14 000 rpm is ca. 10 min. 

Figure 4.19 - CPS of milled CoCrMo and centrifuged particles for 7 min.

XRD indicated the presence of ZrO2 amongst milled particles and gave a 

good indication of large amounts of contamination as compared to the small 

sample volumes probed by TEM-EDX. Figure 4.20 shows the presence of main 

peak (101) of tetragonal zirconia with (JCPDS 083-0113) after milling, however, 

after centrifugal sedimentation, the large zirconia particles are removed from 

the dispersion, and the corresponding ZrO2 XRD peak is absent. 

Figure 4.20 - XRD of CoCrMo particles: (a) after milling and (b) after milling 
and centrifuged.
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4.3.4 - Simulating wear debris from hip implants 

The hip degradation process can be initiated by physical and/or chemical 

reactions. Impact, compression and friction are physical reactions more 

relevant to hip implants and milling can, in principle, reproduce these forces, 

however the process may use different loads and timescales. During milling, 

metal particles are continually submitted to a welding, fracture and re-welding 

process. Bovine serum albumin (BSA), often used as surrogate for proteins 

present in-vivo, will be shown for the first time that can also act as a surfactant, 

creating a protective biolayer on the surface of the CoCrMo particles that 

inhibits the welding process. As a result, milling in BSA is dominated by the 

fracture process, reducing significantly the size of the particles. The optimum 

conditions for both milling time (2 ½ hours) and ball number (3) found for milling 

in oleylamine /heptane were applied for the case of milling in 0.2 g of BSA 

diluted in 10 mL of deionized water (used as surfactant). The ball-to-powder 

weight ratio was extrapolated to 3:2, so as to reduce the contact between Zr 

balls and vial. 

CoCrMo ASTM F75 gas atomized particles were characterized as 

received in Section 3.5.1, and were found to have an average size of 4.8 µm ± 

3.0 mainly with a spherical shape. EDX showed particles with a narrow 

composition (wt %) of Co 63.3% ±1.1, Cr 30.2% ± 0.7 and Mo 6.5% ± 1.2. 

Figure 4.21 shows a TEM micrograph of the CoCrMo particles after milling, in 

which a wide range of particle sizes were found (ca. 8-2000 nm), hence a 

centrifugation for 10 min at 14 000rpm was used to obtain a narrower size 

distribution which was more representative of that observed in real wear debris 

[21]. This procedure also removed part of the BSA and most of the coarse 

particles (>200 nm), maintaining most of the fine particles in dispersion within 

the supernatant.  
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showed mainly two particle types: particles mainly composed of cobalt and 

chromium and molybdenum with a similar composition to the raw material [see 

Figure 4.23 (a)] and with all three shape forms, as well as faceted and spherical 

particles rich in cobalt and/or chromium with no molybdenum (Mo Lα 2.292 keV, 

Kα 17.44 keV) detected [Figure 4.23 (b)] (presumably as a result of the limit of 

detection of the technique and equipment or the effect of corrosion during 

milling). The average elemental composition (wt %) of nanoparticles measured 

indicated Co 54% ± 16, Cr 42% ± 16 and Mo 4% ± 8. Only 4% of the particles 

analysed showed a level of Cr higher than that of Co. 

Figure 4.23 - Energy Dispersive X-ray Spectroscopy (EDX) of two 
representative types of CoCrMo ASTM F75 low carbon alloy milled 
particles: (a) CoCrMo, similar to the raw material and (b) Co and 
Chromium rich.

 TGA analysis on the supernatant of the milled and centrifuged CoCrMo 

sample was used to measure the concentration of particles in the solution. This 

is necessary since a large fraction of the powder and BSA was removed by 

centrifugation. Figure 4.24 shows 2 sample weight loss zones that can be 

attributed to the loss of water (3.64 mg) and bovine serum albumin (2.2 mg) 

thus giving an indication of the mass fraction of the 3 components: water (0.105 

mL), BSA (1.44 mg) and CoCrMo (2.2 mg) particles. Knowing the total weight 

analysed (109.1 mg) allows us to estimate a concentration of ca. 20 mg/ mL 

and ca. 15 mg/ mL of CoCrMo nanoparticles and BSA, respectively.  
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Figure 4.24 - Thermogravimetric analysis of the centrifuged supernatant of 

CoCrMo milled in BSA for 2h30, using a 3:2 ball-to-powder weight ratio 

and 3 balls.

4.4 Validation of CoCrMo milled particles with hip wear debris 

from literature 

Particle characterization is based on identifying size, morphology and 

chemical composition. In the literature a wide range of different sized wear 

debris particles can be produced in-vivo from MoM hip implants have been 

identified. Here a comparison between particles often found from hip implants 

that have been reported in the literature and particles obtained by the 

synthetic milling procedure in BSA for 2 ½ hours, using a 3:2 ball-to-powder 

weight ratio and 3 balls has been carried out. 

4.4.1.1 - Size 

Milled particles were found consistently in the size range of 5-40 nm 

(see Figure 4.22), which was more evident after centrifugal sedimentation 

removed larger particles. Ward et al. (2010) identified wear debris from 

synovial fluid of patients which was in the range of 5-50 nm [19]. Goode et al.

(2012) found wear debris clustered over areas of 1 µm with a mean size of 30 

nm in microtomed sections of surrounding tissue. Catelas et al. (2003) 

analysed particles after hip simulation for 0.25 million cycles, sizing the 
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particles mainly in the range 20-80 nm, with an average particle size of ca. 50 

nm [152].  

4.4.1.2 - Morphology 

In this study, morphology characterization was carried out based on the 

procedure used by Catelas et al. (2003), which used ratios of the maximum 

dimension of each particle measured along orthogonal directions. After 

milling, particles were mainly found to be faceted (or oval), whereas for 

Catelas et al. (2003), particles were oval or needle shaped. Goode et al.

(2012) reported the majority of the particles found were spherical, however 

the paper did not specify how the classification was carried out. 

4.4.1.3 - Chemical Composition 

Mainly two different compositions were found following milling: cobalt 

and chromium-rich particles and particles with a similar composition to the raw 

material. Ward et al. (2010) identified wear debris in three main compositions: 

CoCrMo raw material; particles richer in Cr and Mo; and particles mainly 

composed of Cr and O. Goode et al. (2012) noted two types of wear debris 

particles: Cr+3 containing particles with trace amounts of Co and dense core-

shell particles containing metallic Co, Cr and Mo surrounded by Cr+3 containing 

shell.  

4.4.1.4 - Brief Summary 

 Both types of milled particles were comparable in terms of size, shape 

and composition to particles reported in the literature [19,21], however Cr-rich 

wear debris particles were only found on rare occasions following milling. In 

bulk hip implants, CoCrMo bulk materials form a protective oxide layer of Cr2O3

that could be disrupted during wear. Another possible source of Cr rich 

particles could be the result of the long term corrosion of particles of the raw 

material that could suffer preferential dissolution of Co and Mo. In that sense, 

corrosion studies of milled particles could help to better understand the origin of 

the Cr-rich particles. 
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4.5 Pin-on-plate Method for Production of Synthetic Wear 

Debris 

DLS results shown in Figure 4.25 revealed that using contact pressure of 

5 and 20 MPa produced relatively similar size particles; however a 20 MPa load 

exhibited an extended area in the DLS intensity plot similar to a doublet peak, 

indicating the presence of large particles in the dispersion. The particles were 

significantly bigger than those produced by milling followed by centrifugation, 

as well as those produced using a pin-on-plate method by Raghunathan et al. 

[187] for 24 h using 11 MPa load, which showed a particle size of 29.5 nm ±

6.3.  

Figure 4.25 - Size distribution of CoCrMo particles generated by Pin-on-Plate 
for 4 h immersed in BSA using contact pressure of: 5 and 20 MPa.

Figure 4.26 shows TEM bright field images of Pin-on-Plate produced 

particles. A size distribution for 300 particles showed an average size of 86.3 

nm ± 30 for the experiment with a 5 MPa load, and 112 nm ± 49 for the 20 MPa 

load. The particle shape found for the 5 MPa load was: 67% of particles 

faceted, 19% elongated and 14% spherical. These were slightly different for the 

20 MPa load which presented more elongated particles: 62% faceted particles, 

32% elongated and 6% spherical. An increase in the applied load tends to 

increase the coefficient of friction proportionally [196], producing more 

elongated particles.  
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Figure 4.26 - TEM bright field image of CoCrMo low carbon wear debris 
generated from pin-on-plate for 4 h at different contact pressure: (a) 5 and 
(b) 20 MPa.

Elemental composition of pin-on-plate particles produced using two 

loads was shown to be very similar, with most of the particles showing a Co 

deficiency relative to the composition of the bulk alloy. TEM-EDX of the pin-on-

plate particles revealed an average composition (in wt%) of Co-54% ± 12, Cr-

39% ± 13 and Mo-6% ± 3 and Co-52% ± 12, Cr-42% ± 12 and Mo-6% ± 3 for 5 

and 20 MPa, respectively. Cr levels were higher than Co in 35% of the particles 

when using a 20 MPa load and in 29% when using a 5 MPa load.   

Figure 4.27 – Elemental composition measured by TEM/EDX of pin-on-plate 
CoCrMo wear debris particles using different loads.

Mainly two types of particles were found (see Figure 4.28): (a) particles 

similar to the raw material composition and (b and c) particles rich in chromium 

(and oxygen) with or without the presence of molybdenum. 
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Figure 4.28 - TEM-EDX of pin-on-plate particles: (a) particles exhibit 
composition similar to raw material, Cr-rich particles with (b) and without 
(c) the presence of Mo. 

TGA was carried out on the pin-on-plate sample that used the 20 MPa 

load, which from TEM exhibited more particles than obtained at a load of 5 

MPa. Figure 4.29 showed two major mass losses related to loss of water (3.50 

mg) and BSA (0.36 mg). The total mass loss measured was 165.40 mg. 

CoCrMo particles were only a very small mass and were estimated by TGA to 

be ca. 0.36 mg which gives a concentration of 2.2 mg/mL of CoCrMo particles. 

The BSA concentration was 19.38 mg/mL, which was close to the BSA 

concentration at the start of milling. The particle size measured by TEM was at 

least 4x bigger than for CoCrMo milled particles. The contribution of large and 

hence heavier wear debris from pin-on-plate wear indicated the presence of 

fewer particles in the dispersion as compared to the milled particles. 

Figure 4.29 - Thermogravimetric analysis of the solution of CoCrMo low carbon 
alloy immersed in 20 g/L of BSA dilluted in MilliQ water for 4 h during pin-
and-plate experiment using 20 MPa load.  
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4.6 Summary 

Several studies have tried to determine the exact size, morphology and 

chemical composition of MoM wear particles generated in MoM hip prostheses 

[18–23]. There seems to be general agreement that CoCrMo wear debris 

particle size ranges between 30 to 70 nm. Some authors also reported larger 

particles linked to the occurrence of agglomeration [16, 17, 20]. The shape of 

wear particles appears to vary slightly from study to study, including round, oval 

and needle shaped particles. Regarding the chemical composition, most 

studies reported that particles were chromium-oxide or of CoCrMo alloy or alloy 

carbide origin [19, 20]. Since the alloy consists mostly of cobalt (~ 64 wt%), this 

could suggest that Co and Mo are being corroded and released into the 

solution, whereas mainly oxidized chromium would remain as particles. Another 

possibility may be that the chromium oxide particles originate from the passive 

oxide layer initially covering the implant surface.  

However, before particles exit the tribological interface, they may be 

exposed to high mechanical load when trapped between surface asperities of 

the head and cup during contact. A protective film of proteins could be partly 

disrupted allowing oxidation or corrosion of the particles.  

In this project a hitherto unexplored approach employing 

mechanochemical milling to produce a large amount of mimetic CoCrMo 

nanoparticle wear debris over short time scales has been used. Here, it was 

demonstrated to be a simple and efficient method to generate synthetic 

nanoparticles similar in size and shape to CoCrMo wear debris from hip 

implants. A wide range of particle sizes can be obtained and then separated by 

centrifugation. The particle composition was close to that of observed wear 

debris and similar to the raw material. However, only a few Cr rich particles 

were found, which could be related to the subsequent corrosion of CoCrMo 

particles. 

The milling technique was also shown to produce more particles than 

pin-on-plate in less time. The amount of elongated particles produced through 

the pin-on-plate method was higher than milling, indicating probably that this 
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shape is related to the amount of frictional forces applied. During milling, there 

was a predominance of faceted and spherical particles. In terms of 

composition, Cr levels were higher than Co in about 30% of the particles pin-

on-plate and only in 4% of milled particles, but in both the majority of the 

particles presented similar relative compositions to CoCrMo raw material. 

The concentration obtained for a 10 mL milled sample is equivalent to 

~20 years of debris generated from a real hip implant, based on the estimates 

of Yan et al. [38]. The large amount of nanoparticles produced in one run is 

suitable for a range of studies including: corrosion in relevant media, studies of 

protein binding and toxicity assays. 
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Chapter 5 - Tribocorrosion of Nanoparticulate and Wear Debris 

Metal-on-metal hip implant degradation leads to the release of metal 

ions and nanoparticles, which persist through the implant’s life and could be a 

possible cause of health complications. The degradation of orthopaedic devices 

has been investigated via tribocorrosion for a number of interfaces [31–

33,78,82,150], however degradation of the debris produced as a result of wear 

is not well understood [38,197]. 

In this chapter a modified ICP-MS sample preparation procedure has 

been used to measure the release of ions from CoCrMo alloys during wear 

simulation in different media. It is shown that the use of ultrafiltration following 

centrifugation, separates nanoparticulate wear debris from dissolved ions and 

provides an accurate estimate of metal ion release during tribochemical wear 

studies using hip simulators and also in milling experiments. Using this 

procedure, a study of the mechanochemical milling of CoCrMo nanopowder 

alloys (containing both high and low carbon) in relevant biological media has 

been undertaken. The chapter concludes with a study that correlates 

preferential binding between proteins and metal alloy nanoparticles to the 

alloy’s corrosion behaviour and the release of metal ions. 

5.1 Accurate ICP-MS measurement: the influence of sample 

preparation 

The established technique to analyse levels of metallic ions in simulation 

fluids is by inductively coupled plasma mass spectrometry (ICP-MS) 

conventionally following a sample preparation route involving centrifugation, 

extraction of the supernatant, acid digestion and prior to analysis. The 

centrifugation, digestion and dilution procedures are used to minimize clogging 

of the ICP-MS injector tube as well as minimize the influence of any matrix 

effects which may cause either (mass) spectral overlap problems or matrix-

induced changes in the intensity of an analyte signal during analysis. In this 

study, the ionic release from CoCrMo high carbon (Co-60%, Cr-29%, Mo-7%) 

hip simulator debris generated over 30,000 cycles immersed in FBS mixed with 
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Figure 5.2 - A and B, bright field TEM images of: different types of wear 
particles from the hip simulator test with Foetal Bovine Serum (FBS) in 
Phosphate-Buffered Saline solution (PBS) used as the lubricant. 

Particles were found to be well dispersed and have an average size of 

25.3 ± 20.7 nm in the range of 4.6 – 183 nm, with 43% of particles faceted, 

32% spherical and 25% elongated. The majority of the larger particles were 

found to be Cr-rich and to be associated with P and O (an example is shown in 

Figure 5.2 – A with EDX spectra shown in Figure 5.3). The smaller particles, 

often more acicular, were generally enriched in Co and Mo and associated with 

the presence of O and S (see Figure 5.2 – B with associated EDX spectra 

shown in Figure 5.3). 

Table 5.1 - Classification of CoCrMo high carbon wear particle’s shape and 
length generated by hip simulator over 30,000 cycles.

n % 
Size average 

[nm] 
StD max min 

Spherical 35 32% 22 11 48 4.8

Faceted 46 43% 27 29 183 4.6

Elongated 27 25% 27 10 50 8.2

TOTAL 108 100% 25 21 183 4.6
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Particle A – Co 6%, Cr 94%, Mo 0% Particle B.a ­ Co 79%, Cr 15%, Mo 6%

Particle B.b ­ Co 82%, Cr 11%, Mo 7% Particle B.c ­ Co 61%, Cr 37%, Mo 3% 

Particle B.d ­ Co 80%, Cr 11%, Mo 8% Particle B.e ­ Co 7%, Cr 93%, Mo 0% 

Particle B.f ­ Co 75%, Cr 17%, Mo 8% Particle B.g ­ Co 66%, Cr 30%, Mo 4%

Figure 5.3 - EDX of the particles generated by hip simulator shown and 
labelled in Figure 5.2.
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Particle A – Co 6%, Cr 94%, Mo 0% Particle B ­ Co 100%, Cr 0%, Mo 0%

Figure 5.5 - EDX of particles found on supernatant after ultracentrifugation 
(60,000 rpm for 60 min) shown are labelled in Figure 5.4: (A) Cr rich 
particles, (B) Co rich particle.

5.1.3 - Ionic release after hip simulator test in FBS+PBS with 

different ICP-MS sample preparation procedures 

Following the different sample preparation procedures (centrifugation, 

ultracentrifugation and centrifugation plus ultracentrifugation), the released 

metal ions were measured by ICP-MS of the isotopes Co 59, Cr 52 and Mo 96 

in a duplicate assay, and results are compared in Figure 5.6. The statistical 

significance of the methods used was calculated by ANOVA with a 95% 

confidence level. 

Figure 5.6 - Metallic elemental levels in supernatants (8x diluted in MilliQ 
water) by ICP-MS after different sample preparation procedures, given as 
the average of duplicate assays, with the error bar indicating standard 
deviation. The percentage values refer to the relative elemental 
composition for comparison with the bulk alloy (Co-60%, Cr-29%, Mo-7%). 
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For the hip simulator lubricant samples submitted to just centrifugation or 

ultracentrifugation, the elemental ratios are broadly comparable to the bulk 

alloy composition (Co-60%, Cr-29%, Mo-7%) but with Mo and Co levels raised 

by a few percent and Cr levels lowered by similar percentage (Figure 5.6). With 

a 95% confidence level (student t-test assuming unequal variances) we can 

affirm that there is a statistically significant difference between ICP-MS results 

for all elements for centrifugation compared with centrifugation plus 

ultrafiltration (ρ = 0.03, 0.01, 0.01 for Co, Cr and Mo respectively). The metallic 

particles already identified in the centrifuged only supernatants by TEM (Figure 

5.4) could easily be dissolved by the digestion process, or measured directly 

during ICP-MS, hence causing the differences in the ICP-MS results. 

Using ultracentrifugation, the overall levels of dissolved metal ions were 

reduced, especially at higher centrifuge speeds and longer times, however the 

elemental ratios remained identical within experimental variation. No statistical 

significance (ρ > 0.05) in both methods centrifugation and ultracentrifugation 

was found by either increasing the time or speed. 

The use of an ultrafiltration step decreases the overall level of metal ions 

by about 6 times compared to centrifugation alone and about 2 times when 

compared to ultracentrifugation alone. Importantly, there is a significant change 

in the relative elemental ratios (from the base alloy composition) following 

ultrafiltration, suggesting much higher levels of Mo (and to a lesser extent Co) 

dissolution together with a very low release of Cr during the walking cycle 

simulation. 

5.1.4 - Co, Cr and Mo ionic standards through ultrafilters 

The retaining properties of the ultrafilters were assessed using Co, Cr 

and Mo ionic standards mixed in MilliQ water at a concentration of about 100 

µg/L for each element. The essays were accomplished in triplicate under 

different conditions and are shown in Figure 5.7. 
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Figure 5.7 - ICP-MS of Co, Cr and Mo ionic standards in three conditions: only 
mixed, mixed and passed through ultrafilter (2 kDa MWCO) and finally 
mixed with BSA+PBS and passed through ultrafilter (2 kDa MWCO).

The results show no significant difference in the Co, Cr and Mo ions 

measured in MilliQ water with or without the use of ultrafiltration. Even when Co 

and Cr ions were placed in BSA+PBS solution, the amounts found were inside 

the standard variation. However, Mo suffers a significant drop in ionic 

concentration after the exposure to BSA+PBS. This is probably due to Mo ions 

complexing with the proteins present in BSA [198]. The ultrafilter used can 

remove particles bigger than 1.5 nm (ultrafilter size pore) as well as proteins 

larger than 2 kDa. 

5.1.5 - Brief Summary 

In this section, it was demonstrated that centrifugal sedimentation alone is 

not sufficient to separate nanoparticulate wear debris suspended in simulation 

media from metal ions dissolved in the media. This implies that the established 

general method used to separate particles from ions before ICP-MS, are 

overestimating the true amount of ions in solution [37]. It was shown that 

centrifugation and ultrafiltration are required for representative ICP-MS analysis 

of the products of in-vitro biotribocorrosion. 
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5.2 Microstructural characterization of low and high carbon 

CoCrMo alloy nanoparticles produced by mechanical 

milling 

Both high (0.15 -0.35 wt%) and low carbon (< 0.15 wt%) CoCrMo alloys 

are utilised in MoM hip implants. The carbon plays an important role in the 

strength, ductility and wear resistance of the implants. Nevertheless, the carbon 

can induce the formation of carbides and these may become sites for localized 

corrosion (dissolution) [54]. As a consequence, ions and/or particles released in 

this process may interact with the surrounding tissue and lead to an 

inflammatory response. 

This part of the study investigates ball milling in BSA of low and high 

carbon CoCrMo alloy gas atomized powders in order to help understand the 

effects of mechanical wear of the alloy during implant use. The characterization 

of the size, shape, composition and phase structure of these nanoparticles 

gives relevant information about the physicochemical behaviour in relevant 

biological media and any preferential dissolution of the elements. CoCrMo 

powders have been milled in bovine serum albumin (BSA) achieving a particle 

size reduction to the nanometre scale. 

The samples were analyzed by Transmission Electron Microscopy 

(TEM) (in terms of size and shape), Energy-Dispersive X-ray spectroscopy 

(EDX) (composition) and High-Resolution Transmission Electron Microscopy 

(HRTEM) (phase identification). These results are compared to bulk techniques 

such as X-ray Diffraction (XRD), Dynamic Light Scattering (DLS) and 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS), demonstrating the 

effect of milling fluid on the size and stability of CoCrMo nanoparticles when in 

the presence of serum proteins. The full description of methods and materials 

used in this section can be found on Section 3.6.6. 

5.2.1 - Particle size and shape 

The nature of the milling process could be comparable to the way that 

real wear debris particles are mechanically generated. The process includes 

the interaction between two moving CoCrMo surfaces, creating damage on the 
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surface of the alloy. Shear bands are characteristic of this process and are 

often observed in particles – see Figure 5.8. 

Figure 5.8 - CoCrMo high carbon particles after ball milling for 150 min in BSA 
diluted in deionized water, presenting surface degradation (shear bands) 
as a consequence of mechanical interactions.

The raw CoCrMo atomized powder shows perfectly round particle 

morphologies. After milling, DLS analysis (Figure 5.9) showed a significant 

decrease in particle size to below 800 nm in either, high and low carbon. The 

high carbon alloy shows a primary peak between 10 – 200 nm, with a 

maximum percentage at 70 nm. The secondary peak at 400 nm is more 

widespread between 200 - 800 nm and has a much lower percentage content. 

The low carbon alloy shows a lower primary peak (between 10 - 50 nm) than 

high carbon, with a secondary peak between 100 - 500 nm. For both milled 

powders, the majority of the particles were found in the range 10 - 200 nm. 

DLS results agree with TEM analysis of ~300 nanoparticles shown in 

Figure 5.10. By TEM, the low carbon alloy generated almost 50% more 

nanoparticles in the range of 10 - 200 nm than the high carbon alloy. The low 

carbon nanoparticles were found in large amounts below 60 nm, while the high 

carbon particles had a more even distribution below 80 nm. 
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Figure 5.9 - DLS particle size distributions by number for the high and low after 
ball milling for 150 min in BSA diluted in deionized water.  

Figure 5.10 - TEM particle size distributions for the high and low carbon alloys 
after ball milling for 150 min in BSA diluted in deionized water. 

5.2.2 - Phase analysis  

XRD of the raw material showed that both high [Figure 5.11 (a)] and low 

[Figure 5.11 (b)] carbon alloy powders, were dominated by the presence of the 

CoCrMo face-centred cubic phase (fcc, ICDD 04-16-6869). Traces of the CoCr 

hexagonal close-packed phase (hcp, ICDD 04-002-1030) were also evident.  
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Figure 5.11 – Phase identification by XRD: (a) high carbon raw material, (b) 
low carbon raw material, (c) high carbon milled material and (d) low 
carbon milled material, after ball milling for 150 min in BSA diluted in 
deionized water 

With the mechanical action of milling, post-milled material showed a 

significant increase in peak broadening and a decrease in crystallite size 

induced by strain and an increase in the hexagonal phase, especially in the 

CoCrMo low carbon alloy. This phase transformation is a strain induced fcc-hcp 

transformation (SIT), where temperature usually plays an important role, 

however in this case, stress is the most important contribution [199]. The 

presence of carbon substantially altered the retention of the fcc phase after 

milling which is expected because carbon is known to stabilize this phase 

[69,200]. In addition, XRD showed the appearance of traces of zirconia 
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Figure 5.13 - Boxplot11 of TEM/SEM EDX of high and low carbon, raw and 
milled material. 

ICP-MS results [Figure 5.13 (a)] strongly suggest that cobalt and 

molybdenum undergo dissolution during the milling process in the presence of 

serum protein in agreement with the TEM results. This behaviour is apparently 

independent of the amount of carbon in the alloy. The difference in the absolute 

degree of dissolution between the high and low carbon alloy powders shown in 

ICP is likely related to the Ostwald-Freundlich relation, where the particle 

solubility is inversely proportional to particle size. DLS and TEM having both 

revealed that the low carbon alloy produced more nanoparticles. Moreover, ICP 

indicates that chromium is most resistant to the corrosion process. 

11 The bottom of each box is the 25th percentile; top is the 75th percentile; line in the middle is the medium value; 

square inside the boxes represents the average; “Whiskers” above and below each box represent 1.5 of the 

average values; crosses are the outliers.
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Figure 5.14 - ICP-MS of low and high carbon post milled material 

5.2.4 - Brief Summary 

During milling, low carbon alloy powders generated more nanoparticles 

than the high carbon alloy, which is may be directly related to the mechanical 

properties of the alloy and the stabilization of the fcc phase by carbon [200]. 

ICP-MS together with SEM/TEM EDX gave an indication of cobalt and 

molybdenum dissolution in the presence of serum albumin proteins for both 

high and low carbon alloy milled powders. TEM shows good agreement with 

bulk techniques, and allows differentiation of dissolution results in terms of 

particle size. 

5.3 Corrosion of the CoCrMo alloy in relevant media 

Mechanochemical milling was also employed to compare the release of 

ions in dynamic conditions from CoCrMo alloy powders in different media such 

as PBS, BSA and SSF. Milled particles were then incubated (in static 

conditions) and a sample of the solution was used to measure the ionic release 

by ICP-MS. The full description of methods and materials used in this section 

can be found on Section 3.6.7. 

Blank Sample Low Carbon High Carbon

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

 Co

 Cr

 Mo



- 127 - 

ICP-MS analysis showed that CoCrMo particles milled in PBS release 

Co and Mo ions in a ratio of about 5:1 (Table 5.2). The presence of serum 

proteins (SSF and in particular pure BSA) during milling drastically increased 

the proportion of dissolved Mo by up to 70% (ρ = 0.001). 

Table 5.2 - Metallic elemental levels in supernatant samples following 
centrifugation plus ultrafiltration and ICP-MS of CoCrMo powders milled in 
different environments (diluted 20x). Results are given in both absolute 
terms (µg/L) and also relative terms (%).

Cobalt Chromium Molybdenum 

[µg/L] Sdt [%] [µg/L] Sdt [%] [µg/L] Sdt [%] 

Dynamic 

Conditions 

(Milling) 

PBS  

[pH 7.2] 
174.4 2.3 82.9% 0.3 0.0 0.2% 35.6 3.9 16.9% 

BSA  

[pH 7.2] 
33.1 5.5 30.0% 0.6 0.0 0.5% 76.7 11.8 69.5% 

SSF  

[pH 7.2] 
157.0 2.6 74.5% 0.8 0.0 0.4% 52.9 4.6 25.1% 

Static 

Conditions 

(incubated 24h) 

BSA  

[pH 7.2] 
0.7 0.1 9.6% 0.2 0.1 2.7% 6.4 0.7 87.7% 

BSA  

[pH 4.8] 
16.4 0.2 69.2% 4.8 0.2 20.3% 2.5 0.2 10.5% 

Following milling of the CoCrMo alloy powders in BSA at pH 7.2, static 

dissolution studies (incubation) shown at the bottom of Table 5.2, were then 

conducted over a period of 24 h under neutral and acid pH conditions, adjusted 

using HCl, all employing only the centrifugation plus ultrafiltration procedure 

prior to ICP-MS analysis. These results showed significant solubility of Mo at 

pH 7.2 and an increase in Co and Cr solubility at low pH. 

The exposure of milled particles for longer times in BSA (Figure 5.15) 

shows Mo as a preferential corrosion product, while PBS (Figure 5.16) and 

SSF (Figure 5.17) preferentially corrode Co from the particles. In terms of total 

amount of ionic product released, the salt rich solution PBS and SSF release at 

least twice as many ions than BSA. Cr showed no significant corrosion in all 

three solutions tested. In addition it was possible to observe an increase in the 

overall levels of Mo ionic release with an increase of serum concentration in 

solution (BSA > SSF > PBS). However, serum appears to play an inverse role 

in cobalt dissolution. Extended exposure time greatly enhances the release of 

Mo in the presence of BSA, however BSA only slightly affects Co corrosion in 

all solutions tested. 
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Figure 5.15 - Ionic release of CoCrMo milled in BSA particles over time, as 
measured by ICP-MS with centrifugation plus ultrafiltration procedure.

Figure 5.16 - Ionic release of CoCrMo milled in PBS particles over time, as 
measured by ICP-MS with centrifugation plus ultrafiltration procedure.

Figure 5.17 - Ionic release of CoCrMo milled in SSF particles over time, as 
measured by ICP-MS with centrifugation plus ultrafiltration procedure.
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5.3.1 - Fourier Transform Infrared Spectroscopy (FTIR)  

FTIR of pure BSA and CoCrMo milled in BSA followed by centrifugal 

sedimentation was carried out with and without ultrafilters. The particles in BSA 

analysed have size diameters less than 200 nm, as shown in section 4.3.4. 

Figure 5.18 (a) displays FTIR for BSA diluted in MilliQ water following 

centrifugation, which indicated the presence of primary and secondary amide 

[202]. The same absorbances are seen in Figure 5.18 (b) which shows FTIR of 

CoCrMo particles milled in BSA following centrifugation with an increase in 

absorption, possibly due to the protein coverage on the particle surface. Figure 

5.18 (c) shows FTIR of the solution after CoCrMo milled particles in BSA had 

been centrifuged and ultrafiltered with a 100 kDa ultrafilter, which removes 

most of the nanoparticles present in solution. These nanoparticles interacted 

with the amide groups in the BSA and with the removal of these particles, the 

signal related to amide was absent. The solution that remains exhibited 

absorbances due to C ≡ O and C = O, as well as peaks assigned to metal 

carbonyl, which could form with the remaining ions in solution. However, this 

could also be due to the degradation of the proteins in BSA post-milling, which 

are formed from more than 500 amino acids, mainly by the ones cited in the 

Table 2.3 . Finally, Figure 5.18 (d) shows FTIR in the solution after CoCrMo 

milled particles in BSA been centrifuged and ultrafiltered with a 30 kDa 

ultrafilter, which removes up to 95% of the proteins in solution, where no 

significant signal was detected in the FTIR spectra. 
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Figure 5.18 - FTIR spectra of: (a) BSA solution shows peaks of Amide I and II; 
(b) CoCrMo milled and centrifuged nanoparticles in BSA solution. (c) 
CoCrMo milled and centrifuged nanoparticles in BSA solution after the use 
of a 100 kDa MWCO ultrafilter (d) after the use 30 kDa MWCO ultrafilter.

5.3.2 - Brief Summary 

This revised ICP-MS preparation method has allowed the identification 

of the dissolution of specific metallic elements in different biological media and 

pH environments. This has revealed the preferential dissolution of Mo in the 

presence of serum proteins, and that, based on the pH dependence, it is likely 

that more significant Co and Cr solubility will only occur if debris particles are 

taken up by phagocytic cells and digested in lysosomes. Also, FTIR showed 

that part of the metal ions are possibly forming complexes as a result of the 

dissociation of the amino acids found on BSA by the energy input from the 

milling process.  
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5.4 Bovine Serum Albumin binding to CoCrMo nanoparticles 

and the influence on dissolution 

Most research in the literature has concentrated on corrosion studies of 

bulk pieces of CoCrMo hip implants, exploring the influence of possible body 

environments, in either static or dynamic situations [38,68,203]. It is well known 

that in a biological environment, the surfaces of biomaterials are modified by 

adsorption of biomolecules such as proteins, which mediates the interaction 

between cells and foreign materials [204]. Metal nanoparticles could be fully 

coated with proteins, effectively becoming a complex biological unit that 

changes the way in which the body identifies the particles [205,206]. 

Depending on the nature of the material, proteins can either enhance or inhibit 

metal dissolution: a corrosion protection effect is related to protein adsorption 

on the surface of a material, acting as barrier against corrosive body fluids 

[207]; whereas complexation of a metal by the amino acids present in proteins 

could potentially increase corrosion in some materials. It is therefore interesting 

to investigate whether serum albumin, the most abundant protein found in the 

circulatory system, may bind to alloy wear debris particles and change the 

surface, bioavailability and chemical behaviour such as dissolution. 

The purpose of this section is to investigate the interaction of CoCrMo 

nanoparticles with proteins, specifically isolating the effect of bovine serum 

albumin. To complement this study, Co3O4, Cr2O3 and Mo metal nanoparticles 

(which exhibits MoO2 all over the surface) were used as reference materials as 

they all may be associated with the surface of the CoCrMo hip implants. 

In order to demonstrate the effect of milling fluid on the size and stability 

of CoCrMo nanoparticles when in the presence of serum proteins, samples 

were analyzed by Transmission Electron Microscopy (TEM), Energy-Dispersive 

X-ray spectroscopy (EDX), Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS) and Zeta Potential (ZP) measurements. The whole description of 

methods and materials used in this section can be found on Section 3.6.8. 
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5.4.1 - TEM/EDX on milled particles and reference materials 

immersed in BSA 

Wear debris from hip implants was synthetically produced by milling 

CoCrMo high carbon ASTM75 gas atomized powder in Bovine Albumin Serum 

(BSA). The reduction in particle size is mainly related to friction and impact 

during milling; however, the interaction with BSA could also play an important 

role in both the size reduction and the nanoparticle composition. The size 

fraction of 5 - 200 nm, commonly found in real wear debris in synovial fluid, was 

generated here by post-milled centrifugal sedimentation (10 min, 25 °C, 

centrifugal force of 8000 G) prior to testing and analysis. 

Initial TEM examination (Figure 5.19) showed most of the CoCrMo 

milled particles were surrounded by a thick amorphous layer (note darker 

contrast than the support film surrounding the group of particles) that could 

potentially be a protein corona. BSA is formed by a large sequence of amino 

acids, composed of carboxylic and amine groups, thus the presence of BSA 

could be distinguished from the TEM carbon support film by the detection of 

nitrogen. EDX spectra show that particles were mainly composed of cobalt and 

chromium with a deficiency in molybdenum (relative to the alloy composition), 

but also reveal the presence of nitrogen and oxygen [Figure 5.19 (c)]. A 

comparison with the composition of the raw material before milling indicates a 

decrease in cobalt weight percentage in the milled material of only about 5%. 

A B C 

Figure 5.19 - TEM analysis of synthetically produced CoCrMo nanoparticles on 
carbon support film; (A) a group of particles surrounded by a thick 
amorphous layer; (B) and (C) TEM/EDX of a representative particle, 
showing a composition consisting of cobalt and chromium with the 
presence of nitrogen and oxygen, note the deficiency in molybdenum 
signal (Mo Kα is at 17.4 keV).



- 133 - 

The reference materials (Figure 5.20) showed all particles to be less 

than 200 nm in diameter with an average size of 100 nm and standard 

deviation of 41 nm. The particles were incubated as received for 24 h in BSA, 

washed and then analyzed by TEM. The results show the clear formation of a 

protein biofilm (generally less than 5 nm in thickness) on the surface of all the 

particles (see Figure 5.21). 

Co3O4 Cr2O3 MoO2

Figure 5.20 - TEM of reference materials (Co3O4, Cr2O3 and MoO2) as 
received, which shows particles of less than 200 nm size diameter.

Co3O4 Cr2O3 MoO2

Figure 5.21 - TEM/EDX of Co3O4 (JCPDS 42-1467), Cr2O3 (JCPDS 38-1479) 
and MoO2 (JCPDS 32-0671) reference materials incubated for 24h in BSA 
showing an amorphous biolayer containing nitrogen surrounding the 
particles.
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5.4.2 - Static dissolution of the reference materials 

Dissolution of the reference materials after one month immersion in a 

BSA containing solution was measured by ICP-MS (Figure 5.22) following 

centrifugation and ultrafiltration to remove any small nanoparticulates. The 

levels of Co and Cr ions were found to be low, possibly as a result of biolayer 

formation inhibiting contact with the solution. Molybdenum however, showed 

high levels of dissolution in the presence of albumin. 

Figure 5.22 - ICP-MS of the soluble elements of Co3O4, Cr2O3 and MoO2

reference materials incubated for a month in BSA containing stock.

5.4.3 - Zeta Potential to measure protein binding between metal 

particles and BSA 

The zeta potential represents the surface charge in the presence of an 

aqueous solution when functional groups dissociate or ions adsorb onto 

surfaces from the solution. The IEP is the pH at which a species exhibits a net 

zeta potential (approximating to surface charge if specifically adsorbed ions are 

present) equal to zero. At the IEP of a protein, its structure is more 

hydrophobic, more compact and less stable due to the absence of inter-particle 

repulsive forces. 

The isoelectric point of each sample was estimated by zeta potential 

titration of CoCrMo and standard materials in MilliQ water (Figure 5.23). The 

CoCrMo alloy exhibits an IEP (~ pH 6.6) very close to that of Cr2O3 (~ pH 6.7), 

while the IEP of MoO2 is more acidic (~pH 2.6) and Co3O4 IEP more basic (~pH 

8.1). 

1

100

10000

Co Cr Mo



- 135 - 

Zeta Potential Titration in MilliQ Water

Figure 5.23 - Zeta Potential titration of CoCrMo and reference materials in 
MilliQ water to establish the isoelectric point of the materials. The solution 
pH was titrated using HNO3. 

Zeta potential titration results of the reference materials incubated in 

BSA showed that the standard IEP of the metal oxide reference materials in 

water all changed to become closer to that of BSA (pH 5) presumably due to 

the surface coverage by the protein (Figure 5.24). Molybdenum oxide showed 

the highest affinity for BSA, and cobalt the lowest. The CoCrMo alloy particles 

milled in BSA also showed a similar IEP to BSA. Electrostatic forces mediate 

the protein corona formation, molybdenum (oxide) particles are negatively 

charged at all pH values > 2.5, whereas surface charge of chromium and cobalt 

oxides is positive below pH ~7 (Figure 5.24).  
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Zeta Potential Titration in BSA

Figure 5.24 - Zeta potential titration of reference materials incubated for 24h in 
BSA and CoCrMo milled in BSA at the same concentration. The solution 
pH was titrated using HNO3.

5.4.1 - Brief Summary 

TEM analysis suggests the formation of a protein corona on synthetic 

CoCrMo wear debris particles incubated with BSA and the particles were found 

to be deficient in Molybdenum by EDX (Figure 5.19). An interaction with 

proteins was also seen for elemental reference oxide materials where ICP-MS 

showed that the reference materials underwent dissolution of predominantly 

molybdenum ions under static incubation in the presence of BSA (Figure 5.22). 

Using the same amount of particles and protein concentration, molybdenum 

nanoparticles showed the highest affinity to BSA, demonstrating that in the 

presence of serum proteins, the effective surface charge is very close to the 

IEP of BSA (Figure 5.24). Taken together these results indicate the importance 

of binding between albumin proteins and molybdenum, which may directly 

influence the strong dissolution of this element when CoCrMo alloy 

nanoparticles are produced as hip-implant wear debris in the presence of 

serum albumin. 
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5.5 Discussion 

Studies of total mass loss of hip implants due to wear and corrosion 

have used a general sample preparation route for ICP-MS analysis involving 

centrifugation and acid digestion to show that simulated wear debris has similar 

composition to the bulk alloy [136,193,194]. Yan et al. [31] attempted to 

separate wear debris particles and ions, produced by pin-on-plate testing in 

biological solutions by using centrifugation (10 min, 14,000 rpm) prior to ICP-

MS. Their results suggest that metal ion contents under open circuit conditions 

are similar to the bulk alloy ratio composition. 

The results presented in this chapter show that the corrosion product of 

CoCrMo ASTM75 are very different from the bulk alloy composition for all 

situations tested. A variation in the preferential ionic release was found to be 

strongly dependant on the environment in which the particles are immersed. 

The source of variation in the results found in the literature and those presented 

in this chapter are most likely related to the ICP-MS sample preparation 

procedure. 

Two main types of particles were found following hip simulation: Cr rich 

particles with the presence of O and P and Co rich particles. Both were 

consistent in size, shape and composition to those found by Catelas et al.

(2003) [152]. The particles rich in Cr and O found are presumably generated by 

disruption of the passivating chromium oxide layer on the alloy surface, 

possibly associated with phosphates from the lubricant. These hard oxide 

particles (Cr2O3 hardness ~2898 Vickers [210]) entrapped in the joint (CoCrMo 

ASTM75 hardness ~400 Vickers [210]) can act as abrasives, increasing the hip 

implant surface degradation. The sliding action between the two counter-

surfaces can give a round shape to the entrapped Cr rich particles. The 

environment rich in proteins could retard Cr autopassivation properties [211] 

exposing a Co-rich surface. This process could give rise to Co rich particles, 

which in Section 5.1.1 were often associated with acicular shape particles. Both 

types of particles were found in the supernatant after centrifugation and the 

particles show elements associated with salts. These had presumably 

precipitated from the PBS itself during drying (possibly NaCl, KCl, Na2HPO4 or 

KH2PO4). The metallic nanoparticles identified could be easily ionised by ICP-
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MS. TEM revealed that the solution that was centrifuged and ultra-filtrated did 

not contain particles. The implication of these results is that, unless 

ultrafiltration is employed, ICP-MS will be analysing both the underlying ion 

levels in solution arising as a result of dissolution and the alloy wear debris 

nanoparticles themselves. 

Dissolution results from the hip simulator using the centrifugation plus 

ultrafiltration protocol revealed a decrease in the overall level of metal ions by 

about 6 times compared to centrifugation and about 2 times when compared to 

ultracentrifugation. The elemental results showed important differences 

compared to the current literature: Cr shows very low release of ions and Mo 

levels are more close to those of Co. Despite elemental Mo being pretty much 

insoluble, the oxides formed on its surface – as the product of the passivation 

on hip implants (MoO2 and MoO3), when placed in alkaline solution, tend to 

release ions and form molybdates (MoO4
2−) [212]. In hip implants, these 

molybdates can help avoid pitting corrosion by covering the surface and acting 

as a barrier against electrochemical attack [56,213]. However, a different 

behaviour occurs with nanoparticles since the ionic complexes do not remain 

on the surface, but are released into solution as shown early in this chapter. 

Mechanical milling of CoCrMo ASTM75 alloy gas atomized powders 

showed that low carbon alloys produce significantly more and smaller 

nanoparticles than high carbon alloys. Some publications shown that the wear 

performance of high carbon CoCrMo is superior to low carbon [33,214], 

especially under tribocorrosion conditions. During the milling process, strain 

induces an fcc to hcp CoCrMo phase transformation in both alloys, however 

this is more pronounced in CoCrMo low carbon alloy after milling. It is known 

that an increase in carbon substantially increases the retention of the fcc phase 

[200] and Lee et al. (2008) showed that hcp phase formed along the 

interdendritic region during the solidification gives rise to brittle fracture [69].

Therefore, the observation that CoCrMo low carbon alloy produces a large 

amount of nanoparticles that are relatively smaller than those from a high 

carbon alloy could be attributed to the low capacity to retain the metastable fcc 

phase in the low carbon alloy. 

After milling CoCrMo low and high carbon alloys, evidence for cobalt and 

molybdenum dissolution in the presence of serum was confirmed by ICP-MS 



- 139 - 

and TEM EDX techniques. These findings are consistent with the data for the 

centrifuged plus ultrafiltered hip simulator samples shown in Figure 5.6 and are 

in agreement with the published electrochemical corrosion studies of 

Espallargas et al. [133], which indicated that BSA could increase Mo 

dissolution.  

Previous studies measuring whole blood metal ions have reported 

varying levels with the majority converging to a Co/Cr ratio about 1 for the first 

3-6 months [111,112,209]. After this initial period, Co ionic levels were superior 

to the Cr ions. Ilo et al (2015) studies using THA and hip resurfacing showed 

that, in both, failed implants presented Co/Cr > 1 (mean 2.3:1) whereas healthy 

joint presented Co/Cr ratio about 1 [215]. In the failed THA group the median Cr 

level was 4.15 μg/l (32% > 7 μg/l) and median Co level was 7.25 μg/l (52% > 7 

μg/l). In the failed THA group 60% of Co/Cr ratios were greater than a 1.5:1 

ratio, compared to only 28% in the failed resurfacings group. Whilst variation in 

measured levels of metal ions between studies may be explained by different 

implant design. There is no obvious explanation for the variation in Co/Cr in 

studies which use a material with the same chemical composition. The 

passivated layer can be disrupted in the presence of wear and fretting. In this 

case, metal oxide particles can be subsequentely corroded into human body 

releasing metal ions. These can reach different amounts compared to the 

CoCrMo element alloy, once that the oxide film is basically formed by Cr. 

Overall, corrosion results in the relevant media show that Cr dissolution 

from CoCrMo alloys is minimal in biological media under neutral pH, but more 

pronounced at low pH, such as that which may be found in a lysosome, as 

discussed by Gill et al. [127]. A Pourbaix diagram for Cr in water at 25 °C 

suggests toxic chromium VI is released only at pH > 7 and high electrode 

potentials, and the species generated under acidic conditions is Cr3+, which has 

a much lower correlation with toxicological issues [112–114]. Co dissolution 

appears to be more significant, particularly in the presence of salt-rich solutions 

(e.g. PBS) and at low pH; here the dominant species should be Co2+ as is 

discussed in recent MoM hip implant literature [117,125]. The hydrophobic 

components present in the serum may play an important role in the reduction of 

the contact between water and the metal particles, reducing further reaction 

with dissolved oxygen. However, significant dissolution of Mo was observed in 
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the presence of serum proteins and at neutral pH. It has been reported that 

molybdenum ions are essential to the formation of an organic film on the 

surface of hip implants, which can help avoid pitting corrosion and act as a 

barrier against electrochemical attack [51,198]. We have shown that the Mo is 

apparently more mobile in media containing serum proteins. This may be due 

to the ion (Mo2+ or MoO4
-2) complexing with the serum proteins present in the 

media [110,198], as result of secondary non-electrochemical reactions at the 

interface. 

FTIR showed that after the removal of nanoparticles through the use of 

ultrafiltration, the peaks related to amides were removed from FTIR spectra 

indicating protein attachment to the CoCrMo nanoparticles. Another interesting 

result from FTIR was the appearance of different peaks after the removal of the 

nanoparticles from the solution. There was a change in signal intensity 

following ultrafiltration, so the peaks in the region of 2200-1900 cm-1 could be 

present before filtration, but due to the strong signal from BSA, they were 

masked. These weak peaks can be related to BSA protein degradation [216] 

during milling. The amino acids present in BSA solution can provide multiple 

binding sites for metal free ions. These binding sites may include –NH, –SH, –

COOH, and –OH groups, which could give rise to these peaks. The hypothesis 

of the formation of metal carbonyl species is thought unlikely because the 

synthesis process often includes reduction at high temperature and pressure 

[217]. However, Hart et al. (2010) detected molybdenum metal carbonyl in 

tissue from MoM hip patients using X-ray Absorption Near Edge Structure 

(XANES) [21]. This study indicated an octahedrally coordinated molybdenum 

species bound by oxygen and carbon in the second coordination sphere. In 

addition, Dolamic and Burgi (2011) have shown that the degradation of amino 

acids such as L-asparagine and L-glutamic acid, both present in BSA, can give 

rise to new complexes with metallic species [218]. The importance of identifying 

the possible existence of metal carbonyl as a result of wear from hip implants is 

related to the high toxicity of these species [219,220]. 

Finally this work correlates preferential binding between proteins and 

metal alloy nanoparticles to the alloy’s corrosion behaviour and the release of 

metal ions. TEM images show the formation of a protein corona in all particles 

immersed in albumin containing solutions. Only molybdenum release was 
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significant in these tests, suggesting high dissolution of this element when 

CoCrMo alloy nanoparticles are produced as wear debris in the presence of 

serum albumin. The same trend was observed during extended exposure of 

molybdenum reference nanoparticles to albumin.  

Using the same amount of particles and protein concentration, 

molybdenum nanoparticles showed the highest affinity to BSA, demonstrating 

that in the presence of serum proteins, the effective surface charge is very 

close to the IEP of BSA. Electrostatic forces are expected to play a significant 

role in protein binding. Albumin, when ionized in water at pH > 4.9 (the 

isoelectric point - IEP), is a negatively charged protein that often shows affinity 

for hydrophobic surfaces, however it does exhibit a distinct positive patch on 

one of the triangular protein surfaces [205]. Mo showed an IEP of 2.6, being 

negative for values above the IEP, which can electrostatically bind the positive 

patch of BSA. According to Goyer and Clarkson (1996) proteins with specific 

metal binding properties play a special role in both the transport of metals from 

plasma to tissues and in the transport of metals across cell membranes and 

within the cell. Metals bound to albumin may be carried into cells by endocytotic 

mechanisms [219]. 

Taken together these results suggest the importance of binding between 

albumin proteins and molybdenum, which may directly influence the strong 

dissolution of this element when CoCrMo alloy nanoparticles are produced as 

hip-implant wear debris in the presence of serum albumin. Molybdenum is 

added to the alloy to impart corrosion resistance and its depletion in the 

presence of BSA, even at pH 7, could then leave the material open to greater 

corrosive attack. 

5.6 Conclusion 

In this work it was highlighted that the commonly reported techniques of 

separating nanoscale wear debris from lubricant fluids using only centrifugation 

or ultracentifugation are sub-optimal and lead to residual wear nanoparticles 

suspended in the analyte fluid. This can cause a large overestimation of the 

absolute and relative amounts of ionic dissolution that occurs during the 
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tribochemical wear of CoCrMo alloy samples. The use of a centrifugation plus 

ultrafiltration step during ICP-MS sample preparation can efficiently remove 

nanoparticulate wear debris that remain in the supernatant after centrifugal 

sedimentation. This, more accurate method of separating the wear particles 

from dissolved ions allows us to identify a significant ion release pathway 

through the body, hitherto unexplored.

Mechanical milling of CoCrMo alloys has been shown to decrease 

particle size to between 10-200 nm which is comparable with that seen in real 

wear debris released by hip implants. During milling, low carbon alloy powders 

generated more nanoparticles than the high carbon alloy, which is directly 

related to the alloys mechanical properties and the stabilization of the fcc phase 

by carbon. ICP-MS together with SEM/TEM EDX gave an indication of cobalt 

and molybdenum dissolution in the presence of serum for both high and low 

carbon alloy milled powders. 

The corrosion studies in different media have revealed the preferential 

dissolution of Mo in the presence of serum proteins, and that, based on the pH 

dependence, it is likely that more significant Co and Cr solubility will only occur 

if particles are taken up by phagocytic cells and digested in lysosomes. 

TEM analysis suggest the formation of a protein corona on synthetic 

CoCrMo wear debris particles incubated with BSA and the particles were found 

to be deficient in molybdenum by EDX. An interaction with proteins was also 

seen for elemental reference oxide materials where ICP-MS showed that the 

reference materials underwent dissolution of predominantly molybdenum ions 

under static incubation in the presence of BSA. During zeta potential titration, 

CoCrMo and Molybdenum nanoparticles showed the highest affinity to BSA. 

Overall these results gives a good indication of the importance of binding 

between albumin proteins and molybdenum, which may directly influence the 

strong dissolution of this element when CoCrMo alloy nanoparticles are 

produced as hip-implant wear debris in the presence of serum albumin. 

These findings are important as it highlights the interaction of Mo rich 

surfaces with amide groups in serum proteins plus identifies the formation of 

metal complexes both of which can modify biological molecules, altering their 

ability to function properly.  
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Chapter 6 - Electrochemical Corrosion Studies of Bulk 

Materials Immersed in Biological Media 

6.1 Introduction 

So far in this study, the data presented have mainly focused on the 

corrosion and biotribocorrosion of CoCrMo particles and reference materials. In 

an attempt to understand the general corrosion behaviour of the ASTM75 alloy 

and its major elements, the CoCrMo alloy plus pure Co, Cr and Mo metal 

reference samples were each immersed in Bovine Serum Albumin (BSA), 

Phosphate Buffered Saline (PBS) solution and a mix of both at a temperature 

of 37ºC, and were assessed through electrochemical measurement techniques 

(scheme shown in Figure 3.4) with a view to further investigate the particle 

dissolution studies presented in previous chapters. 

The corrosion of metallic biomaterials in appropriate media is a complex 

phenomenon, however an electrochemical corrosion study of the alloy solubility 

and the separate alloying elements could give relevant data to understand any 

selective dissolution in biological media. Each alloying element in cobalt-based 

alloys plays an important role in the implant: Cr is mainly responsible for 

corrosion protection, as it forms a passive oxide barrier layer on the surface of 

the alloy, that is mainly composed of Cr2O3 [50]; Mo is essential to the alloy as 

it provides maximum stability of the passive film and also acts to retard 

localized corrosion propagation in the case that the passive film is disrupted 

[204]. Some authors have suggested that the oxidation of Co and Cr occurs 

independently, in a process comparable to the oxidation of the pure metals [3], 

despite this, Zimmermann et al. (2010) have shown that there is a driving force 

for the development of the external oxide layer, which depends on the relative 

amount of Cr atoms at the surface layer [4]. Therefore, caution must be taken 

in interpretation of the alloy behaviour, which could differ from that of the pure 

metals due to the interactions and synergistic affects between the alloying 

elements. 

Polarization tests can provide useful information regarding corrosion 

mechanisms, corrosion rate and the susceptibility of specific materials to 

corrode in specific environments. Here, the corrosion behaviour of the samples 
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was evaluated by cyclic polarization curves, in a positive direction (anodic) and 

a negative direction (cathodic) both related to OCP, in three different aerated 

and unstirred electrolytes. Each measurement was carried out at least three 

times in order to check the repeatability of the experiments. 

Pourbaix diagrams of cobalt, chromium and molybdenum were 

simulated in water at 37ºC, under atmospheric conditions by using HSC 

Chemistry software version 5.0 from Autotec [222]. These diagrams helped to 

predict the corrosion behaviour related to different pHs and potentials. 

Complementary techniques such as Scanning Electron 

Microscopy/Energy Dispersive X-Ray Spectroscopy (SEM/EDX), X-ray 

photoelectron spectroscopy (XPS), Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) and Ultraviolet–visible Spectroscopy (Uv-ViS) were 

employed to analyse the surface of the samples and the electrolyte solutions, 

which allowed investigation of corrosion damage, the fundamental reaction 

kinetics and the preferential dissolution of certain elements. The full description 

of methods and materials used in this section can be found in Section 3.3.

6.2 Pourbaix diagram for Co, Cr and Mo 

Standard Pourbaix diagrams in the literature are for elements relative to 

a standard hydrogen electrode (SHE) in water (H2O) at 25 ºC. Pourbaix 

diagram simulations for the reference metals relative to Ag/AgCl electrode in 

water (H2O) at 37 ºC are presented and these show the theoretical domains of 

corrosion, passivation and immunity for a given potential and pH, based on the 

Nernst equation for the possible reactions. Each diagram indicates the 

conditions of thermodynamic stability of the elements studied and those 

derivatives of it which can exist in the presence of water or aqueous solutions 

free from substances with which the elements can form soluble complexes or 

insoluble salts (non-complexing solutions). 

According to the theoretical diagram (Figure 6.1), cobalt is highly 

susceptible to corrosion in water based solution at 37°C, releasing Co+2 ions at 

pH < 8 and potentials above -0.75 VAg/AgCl. The region of immunity, where the 
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Figure 6.5 - Anodic and cathodic polarization in BSA, PBS and BSA+PBS of: 
(a) Cobalt, (b) Chromium, (c) Molybdenum and (d) CoCrMo.

No significant variation in the corrosion potential (Ecorr) was observed for 

the elements in the three solutions tested. The cathodic potential domains for 

Co, Cr, Mo and CoCrMo are found below the Ecorr, where the current density 

was determined by the reduction of water and dissolved oxygen. In all samples, 

BSA slightly decreased the current density for the cathodic domain, compared 

with PBS-containing solutions. 

In all three solutions, polarized Co samples [Figure 6.5 (a)] showed an 

Ecorr, in naturally aerated conditions, which was within the corrosion domain 

predicted by the Pourbaix simulation (Figure 6.1) and above the equilibrium line 

(a). Thus, the anodic dissolution �� ↔ ��
��
� 2�

	 was thermodynamically 

spontaneous and there was no hydrogen reduction. Consequently, Co 

exhibited active dissolution leading to overall deterioration of the Co sample in 

these conditions. In the presence of BSA, Co showed more resistance to 
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increased current density than when in PBS, resulting in less overall corrosion 

at the end of the polarization sweep. 

Mo polarized samples [Figure 6.5 (c)] also showed an apparent active 

dissolution in all three solutions. The Ecorr values for all three solutions were 

found to lie inside the passivation region on the simulated Pourbaix diagram. 

However, during the increase in the potential, a breakdown of the MoO2 film will 

occur leading to accelerated dissolution. This may be due to the formation of 

porous and extremely permeable molybdenum oxides. In pure molybdenum, 

BSA appears to play a similar trend as in pure cobalt, by increasing the 

resistance compared to PBS. However, when the solution contains PBS, the 

graph showed a small region where the current density was constant, possibly 

an attempt at passivation, whereas BSA showed continuous active dissolution. 

Mo in BSA at a potential of 50 mV above Ecorr also shows a higher current 

density then Mo in PBS (see Table 6.1). 

A passive region is present in the Cr and CoCrMo alloy samples [Figure 

6.5 (b) and (d), respectively], which can be seen in all three solutions, from Ecorr

to breakdown potential Epit (see Table 6.1), with Epit determined as the potential 

at which the current density reaches 10 μA/cm2 [223,224]. CoCrMo in BSA at a 

potential of 50 mV and 100mV above Ecorr exhibited a higher passive current 

(Ip) compared to the others, which implies the dissolution of the passive film 

(see Table 6.1). 

The chromium passivation domain (see Table 6.1) decreases when the 

electrolyte used is PBS. This result represents the possible disruption of the 

passive film within which pitting then occurs, however, the metal surface was 

quickly able to re-passivate the protective film, decelerating the metal 

dissolution process. This phenomenon suggests that in this condition, the 

passive films formed were less thick, making them unable to withstand an 

overvoltage. In BSA, the passivating current density slightly increases, and the 

pitting potential (Epit) shifts towards higher values. A lower Epit value indicates 

increased chance of breakdown of the passive film and an early start to pitting 

and crevice corrosion. 

Cr and CoCrMo in PBS-containing solutions both show a shoulder at 

about 0.6 VAg/AgCl. This effect was also observed by Milosev et al. (2003) and 
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Vidal et al. (2008) in CoCrMo [53,55] and was attributed to the development of 

phosphate–chromium ion complexes that activate transpassive dissolution. 

Muñoz and Mischler (2007) studied the corrosion behaviour of CoCrMo 

alloy in simulated body fluids containing BSA and PBS. They found that both 

play a significant role in the electrochemical properties of the metal, oxide and 

electrolyte interface and that the presence of albumin increases the passive 

current density while phosphate decreases it [225]. Identical behaviour was 

observed here for CoCrMo, however the same is not true for Cr.  

Table 6.1- Corrosion data extracted from polarization curves. 

Sample Solution
pH 

before  

Ecorr

(V) 

Epit

(V) 

Passivation 

domain

Epit - Ecorr (V) 

I (A/cm²) 

50mV 

above 

Ecorr

I (A/cm²) 

100mV 

above 

Ecorr

Tafel 
extrapolation

Ecorr Icorr

Co 

BSA 7.20 -0.47 - - 3.58E-05 7.14E-05 -0.47 7.69E-06 

PBS 7.40 -0.52 - - 1.27E-04 3.76E-04 -0.51 4.25E-05 

PBS+BSA 7.35 -0.48 - - 4.87E-05 1.74E-04 -0.48 1.58E-05 

Cr 

BSA 7.20 -0.46 0.68 -1.14 1.50E-07 3.16E-07 - - 

PBS 7.40 -0.42 0.60 -1.02 3.48E-08 2.90E-08 - - 

PBS+BSA 7.35 -0.43 0.63 -1.06 6.47E-07 1.12E-06 - - 

Mo 

BSA 7.20 -0.27 - - 7.30E-06 1.11E-05 -0.29 9.67E-07 

PBS 7.40 -0.24 - - 3.54E-07 1.61E-04 -0.23 5.34E-07 

PBS+BSA 7.35 -0.24 - - 5.23E-07 1.74E-05 -0.24 1.62E-07 

CoCrMo 

BSA 7.20 -0.38 0.60 -0.98 1.55E-06 2.29E-06 - - 

PBS 7.40 -0.42 0.60 -1.02 3.18E-08 1.23E-07 - - 

PBS+BSA 7.35 -0.38 0.60 -0.98 2.08E-08 5.56E-08 - - 

For the CoCrMo alloy, the passive domain showed a slight variation and 

the passivating layer was formed at a higher current density in a BSA 

environment. No significant changes occurred in Epit, however in PBS, the 

sample exhibited multiple pitting potentials associated with the dissolution of 

different active phases before pitting corrosion of the matrix alloy. 

Overall, the presence of BSA was shown to improve the resistance for 

Co and Mo, while for Cr similar behaviour was observed in PBS and 
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immersion fluids and corrosion products in the bottom of the pit [32]. Mathew et 

al. (2014) studied CoCrMo low carbon alloy polarization in simulated body fluid 

with a total protein composition of 30 g/L, and these samples also showed an 

abundance of pits [226]. 

Bettini et al. studied CoCrMo alloy potentiodynamic polarization between 

0.5-0.7 VAg/AgCl in PBS. They showed that the commonly observed high 

increase in current density at 0.5 VAg/AgCl is followed by some metal dissolution, 

however no visible topography change was observed at 0.65 VAg/AgCl [171]. 

In conclusion, SEM analysis has shown that the main mechanism of 

degradation related to anodic polarization is pitting corrosion. PBS vastly 

increased the incidence of pitting, where the presence of salts was seen inside 

the pits. If proteins were present in solution, the material was homogeneously 

deposited on the surface of the samples, this being slightly less evident for Co. 

BSA was shown to play an important protection role against corrosion for all 

elements tested presumably coating the surface of the samples (with a carbon-

rich layer) and increasing the corrosion resistance. 

6.4.2 - X-ray Photoelectron Spectroscopy 

In order to further investigate the surface composition of the anodically 

polarized samples, XPS was performed. For the samples polarized in different 

media, this technique allows analysis of depths of up to 3-5 nm from the 

specimen surface and is mainly used to determine the chemical state of near-

surface elements. High resolution spectra were acquired for the main bulk 

compositional elements and adsorbates: Co 2p ,Cr 2p, Mo 3d, C 1s, N 1s, P 2p 

and O 1s. Peaks were fitted and deconvoluted using CasaXPS software. Any 

element species with total contribution below 3% found to be overlapped was 

treated as not detected.

The N 1s and C 1s peaks, located at 400.1 eV and 284.5 eV 

respectively, are typically associated with protein adsorption [204,227]. The N 

1s peak is more reliable than the C 1s peak to correlate with protein adsorption 

because it is less susceptible to contamination during the experiment. A clean 

metallic surface is very reactive and can adsorb water vapour and atmospheric 

contaminants. Carbon can often be present because of adsorbed hydrocarbons 
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and carbon oxides; oxygen is expected from instantaneous oxide formation, as 

well as adsorbed water vapour and carbon dioxide. 

For ease of comparison, XPS results from different samples were initially 

grouped in the same X-ray photoelectron spectral regions: N 1s, C 1s and P 2p 

regions. 

6.4.2.1 - Nitrogen (1s), Carbon (1s) and Phosphorous P (2p) 

Photoelectron Lines 

Figure 6.15 shows a comparison of the analysis of the areas under the 

photoelectron N 1s peaks taken to indicate the adsorbed amounts of BSA. All 

samples studied presented some level of attachment to the BSA proteins, with 

the CoCrMo alloy showing the highest intensity, Mo and Cr with similar values, 

and Co with the lowest (see values for the area under the N 1s peak). 

Figure 6.15 - XPS N1s scanning on (a) Co, (b) Cr, (c) Mo and (d) CoCrMo 
alloy, after anodic polarization in BSA.
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The anodically polarized samples in BSA plus PBS (Figure 6.16) 

showed a similar trend for Cr, whereas there was a decrease in N 1s intensity 

for Co and CoCrMo, possibly as a result of a synergy between the BSA and 

PBS components. Mo previously showed the presence of Metal-Nitrogen 

bonds, similar to those observed in metal nitrides [228], at the surface of the 

sample that were not found for the Mo anodically polarized sample in BSA [see 

Figure 6.15 (c)]. This is possibly due to the amount of BSA at the surface of the 

sample that forms a thick layer, and consequently XPS does not reach the 

depth where the metal-protein interactions are located. In BSA+PBS this layer 

is nominally thinner, making this interaction layer visible to XPS. The low N 

intensity for Co possibly indicates a poor adhesion of proteins to the metal 

surface due to competitive adsorption with phosphate ions. 

Figure 6.16 - XPS N1s spectra for: (a) Co, (b) Cr, (c) Mo and (d) CoCrMo alloy, 
after anodic polarization in BSA+PBS.
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C 1s spectra (Figure 6.17) were fitted by three peaks with binding 

energies for hydrocarbon (285 ± 0.1 eV), carbon singly bonded to either O or N 

(286.5 ± 0.2 eV) and carboxyl and/or amide groups (288.1 ± 0.2 eV) [204,227]. 

The samples in BSA indicated a similar carbon chemical state at the surface of 

Co, Cr and CoCrMo, with a slight variation in composition: 285 eV peak (67-

70%), 286.5 eV peak (17-22%) and 288.1 eV (10-11%). Mo in BSA presented 

the most significant variation compared to the other samples showing more 

hydrocarbon (80%) and less carboxyl and amide groups (8%) on the surface.

Figure 6.17 - XPS C 1s spectra for: (a) Co, (b) Cr, (c) Mo and (d) CoCrMo 
alloy, after anodic polarization in BSA. 

The C 1s peaks were also fitted to the samples anodically polarized in 

PBS+BSA (Figure 6.18), showing for Co and Mo an overall decrease in both 

the total area and in the hydrocarbon peak associated with an increase in the 

carbon single bond to oxygen. However Mo showed a significant decrease in 

(a) (b) 

(c) (d) 
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carboxyl and amide groups, whereas Co showed an increase. Cr and Mo 

maintained almost the same relative amount of species as observed in BSA. 

The significant decrease in 288 eV peak area (amide group) in Mo in 

BSA+PBS [Figure 6.18 (c)] compared to Mo in BSA [Figure 6.17 (c)] and an 

increase in peak 286.5 eV peak area (carbon single bond to N or O) may be 

related to the dissociation of amino acid groups on the surface of the protein 

and the rise of the metal-nitrogen bonds seen in Figure 6.16 (c) for Mo in 

BSA+PBS. The Mo surface and/or ions could electrostatically bind to the amide 

group NH2.  

Figure 6.18 - XPS C 1s spectra for: (a) Co, (b) Cr, (c) Mo and (d) CoCrMo 
alloy, after anodic polarization in BSA+PBS.

Figure 6.19 and Figure 6.20 show the P 2p spectra for the samples 

polarized in PBS and BSA+PBS, respectively. All show the presence of 

(a) (b) 

(c) (d) 
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phosphate PO4
3- in PBS, the Cr and CoCrMo samples exhibited almost twice 

as much phosphate intensity than for the Co and Mo samples. In BSA+PBS 

there was no signal for the Mo sample which could implying that is 

predominantly covered with proteins on the surface, whereas Cr and CoCrMo 

showed a drastically reduced amount of phosphate at the surface of the 

samples relative to just PBS. The Co sample in BSA+PBS retained a large part 

of the phosphates, as compared with Co in PBS.  

 Figure 6.19 - XPS P 2p spectra for: on (a) Co, (b) Cr, (c) Mo and (d) CoCrMo 
alloy, after anodic polarization in PBS.

Figure 6.20 - XPS P 2p spectra for: (a) Co, (b) Cr, (c) Mo and (d) CoCrMo 
alloy, after anodic polarization in BSA+PBS.
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6.4.2.2 - Cobalt (2p), Chromium (2p) and Molybdenum (3d) 

All the peaks in this section were fitted according to reference data in 

[180–185,229–231]. Figure 6.21 shows the XPS Co 2p spectra for the Co 

samples in all electrolytes tested. The fitting shows that the surface of these 

samples were covered with Co (+2) (see Table 6.2), mostly consisting of oxides 

with some traces of hydroxides in the case of BSA. Co samples in PBS and 

BSA+PBS showed a preponderance of Co (+2), principally as hydroxides. Also, 

metallic cobalt (778 eV peak) was only found (albeit in small amounts) when 

anodic polarization was carried out in pure PBS. 

Table 6.3 shows the XPS Co 2p spectra for CoCrMo samples, which 

exhibited a very low signal when anodic polarization was conducted in BSA and 

BSA+PBS. This implies that the deposited layer is primarily organic. CoCrMo in 

PBS showed the presence of Co (+2), mainly comprising hydroxides.  

In the presence of BSA, the XPS Cr 2p spectra (Figure 6.23) showed a 

very low signal. In the presence of PBS and BSA+PBS, the Cr pure surface 

was covered by metallic Cr (0) probably existing as an underlayer below a Cr 

(+3) oxide/ hydroxide, which formed a passive layer of Cr2O3 as predicted by 

Pourbaix diagrams (Figure 6.2). 

Figure 6.24 shows the XPS Cr 2p spectra for the CoCrMo alloy, which 

exhibited a similar Cr oxidized surface independent of the electrolyte used. The 

passivating layer is principally a Cr3+ oxide/ hydroxide.  

Mo 3d XPS spectra from anodically polarized elemental Mo surface 

(Figure 6.25) showed that in BSA and BSA+PBS the surface was mostly 

composed of Mo in the metallic form and Mo (+6), whereas in PBS it was 

mainly composed of Mo (+4). According to the simulated Pourbaix diagram 

(Figure 6.4) it can be assumed that a thin layer of MoO2 is always present at 

the surface of the Mo sample. At higher potentials, Mo (+4) further oxidizes to 

Mo (+6), and this reaction appears to be accelerated by the presence of BSA in 

the solution during anodic polarization. 

Figure 6.26 shows the Mo 3d spectra from the CoCrMo anodically 

polarized samples, where BSA-containing solutions formed a layer that tends to 

avoid the oxidation of molybdenum metal in the alloy, probably by decreasing 
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contact with H2O. In pure PBS solution, the surface exhibited mainly 

molybdenum oxidation states +4, a minor amount of Mo (0) and no Mo (+6).  

Figure 6.21 - XPS Co 2p spectra for Co in: (a) BSA, (b) PBS and (c) BSA+PBS 
after anodic polarization.

Table 6.2 - Co 2p XPS quantification for elemental Co sample after anodic 
polarization in BSA, PBS and BSA+PBS. Co (+2) included oxides and 
hydroxides.

Solution Co (0) Co (+2) Co (+3) 

BSA 0% 94% 6% 

PBS 4% 88% 8% 

BSA+PBS 0% 95% 5% 
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Figure 6.22 - XPS Co 2p spectra for CoCrMo alloy in: (a) BSA, (b) PBS and (c) 
BSA+PBS after anodic polarization.

Table 6.3 - Co 2p XPS quantification for CoCrMo alloy after anodic polarization 
in BSA, PBS and BSA+PBS.

Solution Co (0) Co (+2) Co (+3)

BSA 0% 0% 0% 

PBS 0% 97% 3% 

BSA+PBS 0% 0% 0% 
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Figure 6.23 - XPS Cr 2p spectra for elemental Cr in: (a) BSA, (b) PBS and (c) 
BSA+PBS after anodic polarization.

Table 6.4 - Cr 2p XPS quantification for elemental Cr sample after anodic 
polarization in BSA, PBS and BSA+PBS.

Solution Cr (0) Cr (+3) Co (+6) 

BSA 0% 0% 0% 

PBS 46% 54% 0% 

BSA+PBS 50% 50% 0% 
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Figure 6.24 - XPS Cr 2p spectra for CoCrMo alloy in: (a) BSA, (b) PBS and (c) 
BSA+PBS after anodic polarization. 

Table 6.5 - Cr 2p XPS quantification for CoCrMo alloy after anodic polarization 
in BSA, PBS and BSA+PBS.

Solution Cr (0) Cr (+3) Cr (+6) 

BSA 9% 91% 0% 

PBS 10% 90% 0% 

BSA+PBS 11% 88% 0% 
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Figure 6.25 - XPS Mo 3d spectra for elemental Mo in: (a) BSA, (b) PBS and (c) 
BSA+PBS after anodic polarization.

Table 6.6 - Mo 3d XPS quantification for elemental Mo sample after anodic 
polarization in BSA, PBS and BSA+PBS.

Solution Mo (0) Mo (+4) Mo(+6) 

BSA 48% 11% 41% 

PBS 25% 50% 25% 

BSA+PBS 38% 9% 53% 
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Figure 6.26 - XPS Mo 3d spectra for CoCrMo alloy in: (a) BSA, (b) PBS and (c) 
BSA+PBS after anodic polarization.

Table 6.7 - Mo 3d XPS quantification for CoCrMo alloy after anodic polarization 
in BSA, PBS and BSA+PBS.

Solution Mo (0) Mo (+4) Mo(+6) 

BSA 78% 22% 0% 

PBS 40% 60% 0% 

BSA+PBS 70% 14% 16% 

In conclusion, XPS analysis indicates protein attachment to the metal 

surface to be less prominent in elemental Co samples. The amount of 

phosphate formed on the Co surface was low and the presence of BSA in the 

solution did not change significantly the result. The surface was shown to be 

covered by Co2+ in all of the solutions, however, fitting revealed the 
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predominance of hydroxides in PBS, whereas oxides were mainly found in the 

BSA solution. 

Elemental Mo in BSA was shown to be mostly composed of Mo in the 

metallic form and Mo6+, with a high deposition of proteins, which was shown to 

react with BSA possibly forming molybdenum-nitrogen bonds at the surface. 

Cr and CoCrMo showed a similar behaviour. In pure PBS, both showed 

large deposition of phosphates on the surface, however, when BSA was 

present, the amount of phosphate decreased drastically. Also, the passivating 

oxide layer on CoCrMo and Cr was seen to be present in the Cr3+ oxidation 

state in all solutions. 

CoCrMo only showed Co2+ and Co3+ in the presence of PBS, whereas 

no Co was detected in BSA and BSA+PBS. CoCrMo immersed in BSA-

containing solution showed low Mo oxidation and the surface was formed 

mostly of Mo metal, however, in PBS significant Mo4+ was found.  

6.5 Analysis of the Electrolyte Following Anodic Polarization 

6.5.1 - Inductively Coupled Plasma Mass Spectrometry 

Figure 6.27 shows the Co, Cr and Mo ionic release from the elemental 

reference materials into the electrolyte as measured by ICP-MS using the 

sample preparation protocol described in Section 5.1, with 30 kDa MWCO 

ultrafilters. For all elements, high dissolution was observed in the presence of 

PBS, whereas low dissolution occurred when the electrolyte used included 

BSA. The proteins appear to have acted as a biolayer, coating the metal 

surface and effectively reducing the contact of the metal with H2O and 

dispersed ions. This biolayer may have partially blocked the migration of 

metallic ions into the solution, however it could also complex with preferential 

metal species. In BSA+PBS solutions, the proteins adsorbed on the surface 

may have not covered the entire area, leading to sites which were more 

susceptible to localized corrosion.  



- 171 - 

Figure 6.27 - ICP-MS on (a) Co, (b) Cr and (c) Mo after anodic polarization of 
elemental reference materials. 

In terms of absolute amounts, Co and Mo exhibited more ionic release 

than Cr (about 200x and 20x respectively). The relatively low Cr corrosion rate 

started to increase after disruption of the passivating layer in the transpassive 

region, where pits started to be formed [see Figure 6.5 (b) and Figure 6.10]. 

 Figure 6.28 shows the ICP-MS measurement of ionic release from 

CoCrMo alloy after anodic polarization. The results shows some differences 

compared to the elemental metal reference samples (Figure 6.27). Co ionic 

release remained the highest in PBS and BSA+PBS solutions during the 

polarization tests. However, when BSA was added to the electrolyte, Co ions 

levels dropped to less than half. In addition, the presence of BSA in the solution 

increased the amount of Mo ions released and a selective preferential 

dissolution of Mo from the CoCrMo alloy was found in pure BSA. 

Figure 6.28 - ICP-MS in different biological solutions following anodic 
polarization of CoCrMo low carbon alloy.
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The dissolution behaviour of CoCrMo alloy after anodic polarization 

showed a similar trend to the particles studied in Chapter 5. In that, both Mo 

showed preferential release in the presence of BSA, while highly increased 

solubility of Co was evident in PBS-containing solution. In all situations, Cr 

shows no relevant significant amount of ionic release, unless the pH of the 

solution is altered to acidic conditions.  

6.5.2 - Ultraviolet–visible Spectroscopy 

UV-Vis analysis on the electrolyte following anodic polarization showed 

an absorption peak at around 370 nm indicating a possible transpassive 

dissolution of the Cr2O3 layer on CoCrMo [Figure 6.29 (c)] and Cr [Figure 6.29 

(f)] samples in PBS electrolyte via the formation of CrO4
2− [232]. Cr corrosion 

may be associated with transpassive dissolution of Cr2O3, and could increase 

in the presence of phosphates as described by Ouerd et al. (2008), where the 

concentration of CrO4
2− formed by the reaction in the solution depends on the 

amount of CrPO4 formed during immersion of the alloy in PBS: 

Cr2O3+10OH−→ 2CrO4
2−+6e−+5H2O 

CrPO4+8OH−→ CrO4
2−+3e−+PO4

3−+4H2O 

Anodic polarized Co and Mo samples presented no relevant data during 

UV-Vis spectral analysis, because the absorption peaks were only related to 

the biological media. 
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Figure 6.29 - UV-VIS spectra of electrolyte following anodic polarization of 
CoCrMo and Cr samples in different biological media. 

6.6 Discussion 

Co metal surfaces after anodic polarization were found to be covered by 

a native passive film formed of cobalt(II) oxide and also hydroxide (Figure 

6.21). This layer is generally stable in neutral alkaline solutions [212]. However, 

in the presence of PBS solution at 37°C, the integrity of the surface was highly 

affected by spontaneous active dissolution with an increase in the potential 

[Figure 6.5 (a)]. Metikos-Hukovic and Babic (2007) have shown that Co 

dissolution is significantly suppressed by alloying with Cr and Mo, which in this 

study showed a drop in the level of ionic release by a factor of 80x (Figure 6.27 

and Figure 6.28). The biolayer formed by BSA on Co was shown to not be as 

thick as on Cr or Mo, however it protected the surface by decreasing the 

current density during anodic polarization (Table 6.1). The size of the pits in the 

presence of phosphate was found to be higher than in albumin, with a 

significant amount of Cl and Na found within the pits, probably as a result of an 

autocatalytic process (Figure 6.6 and Figure 6.9). The anodic reaction 

continues until intermetallic particles and corrosion products present in a pit 
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become suspended after the detachment of intermetallic particles from the pit. 

The corrosion products that contained Cl with intermetallic particles inside the 

pits highlighted the role of the chloride ion. The variations of anodic current 

density in PBS and BSA+PBS solutions showed that the chloride ion has a rate 

determining effect for anodic reactions (Table 6.1).  

Cr and CoCrMo showed a similar behaviour during polarization that 

could be attributed to the passive chromium oxide layer dominating 

electrochemical reactions (Table 6.1 and Figure 6.5). PBS is known to improve 

the repassivation properties in steel alloys by limiting the acidity of the 

electrolyte to initiated pits [233]. However in both metals tested pitting 

dissolution occurred (Figure 6.10 and Figure 6.14), probably during 

transpassive dissolution of the Cr2O3 oxide layer which formed soluble CrO4
2−, 

which was evidenced by UV-vis (Figure 6.29). The breakdown of the passive 

film was associated with the presence of aggressive ions such as Cl- and the 

growth of pitting depends on the change in pH of the solution. Cr in BSA was 

shown to delay the initiation of pitting by increasing the breakdown potential, 

but this was not observed in CoCrMo, which showed an identical breakdown 

potential (Table 6.1). Presumably, the presence of salts in PBS solutions 

(containing chlorides) in our experiments can attack and destroy the passive 

film more quickly than it can be repaired in a low oxygen environment. Not only 

CoCrMo and Cr, but also Co and Mo samples presented high metal dissolution 

according to ICP-MS. 

The surface of Mo metal after anodic polarization in PBS showed severe 

degradation with high metal dissolution (Figure 6.11, Figure 6.12 and Figure 

6.13). The surface was mainly composed of Mo(+4) oxidation state with some 

Mo(0) and negligible Mo (+6). The test in BSA containing-solution showed 

reduced dissolution and a different surface composition, which was richer in Mo 

(0) and Mo(+6). Martin et al. (2013) have suggested that Mo is essential for the 

formation of an organic film at the surface of Mo metal and CoCrMo alloys [56]. 

Mo metal oxidizes to Mo(+4), forming MoO2 according to the following 

spontaneous reaction with water above the potential ca. -0.8 E(Ag/AgCl), pH 7.4 

at 37°C and MoO2 then further oxidizes to Mo(+6):  
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This may indicate that during anodic polarization in PBS, Mo(6+) 

molybdate ions only partially remain on the surface, and are probably mostly 

released into solution consistent with the ICP-MS results (Figure 6.27 and 

Figure 6.28). However, in the presence of BSA, the Mo(+6) ions released are 

most likely to bond to the biolayer and are measured in a much lower quantity 

in the solution. XPS indicated the presence of Mo-N bonds at the surface of 

BSA solution sample (Figure 6.25), probably as a result of a secondary reaction 

between proteins and Mo ions. 

CoCrMo anodic corrosion showed an interesting trend during corrosion 

in BSA solution, where preferential release of Mo occurred followed by Co 

(Figure 6.28). The species present at the surface was Mo(0), whereas in PBS it 

was Mo(+4). The biolayer may avoid further redox reactions in aqueous 

solutions creating a barrier, however Mo dissolution measured by ICP-MS may 

indicate the presence of another reaction between protein molecules and Mo 

metal that could also increase Mo dissolution. Espallargas et al. (2014) studied 

Mo dissolution during CoCrMo anodic polarization using PBS with 36 g/l 

albumin. Albumin was shown to drastically increase the Mo concentration in the 

electrolyte below the transpassive region of the alloy [150]. This implied that Mo 

was dissolving from the alloy even before high potentials could be applied. 

Some researchers have found albumin acting as a cathodic inhibitor on 

CoCrMo and that it accelerates the anodic reaction in solution with and without 

phosphates [53,225]. These authors used 0.5 g/L of albumin diluted in the 

electrolyte (mostly composed of PBS) during their studies, which may not be a 

realistic approach in terms of the actual absolute amount of protein present in-

vivo. Indeed, Brandt et al. (2010) have shown that for simulated synovial fluid 

the total protein constituents are measured at the levels of 15–25 g/L for 

healthy patients and 31.8 ± 1.9 g/L to simulate patients with osteoarthritic hip 

diseases [132]. In addition, it is known that diseased joints can exhibit much 

higher protein concentrations in the range of 36–54 g/L [120].  
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6.7 Conclusion 

The experimental technique used in this chapter involved anodic 

polarization of Co, Cr, Mo and CoCrMo alloy surfaces in the presence of BSA, 

PBS and BSA+PBS media. This creates electron depletion at the surface and 

hence a favourable environment for the adsorption of phosphate ions and 

albumin molecules. Thus, the BSA+PBS solution showed a competitive 

adsorption on the sample surfaces and influenced the electrochemical 

behaviour. In the presence of BSA SEM/EDX mainly showed the presence of a 

biolayer at the surface which was typically rich in carbon and nitrogen, 

supporting the hypothesis of an adsorbed protein biolayer. 

The total metal ion release measured for elemental reference materials 

were much higher as compared to a CoCrMo alloy. Co and Mo samples 

showed active dissolution in all electrolyte solutions, whereas degradation of 

CoCrMo and Cr samples were controlled by a passivating oxide layer. The use 

of PBS accelerated the corrosion for all samples, increasing the metal ion 

concentration in the electrolyte and there was a high incidence and growth of 

pitting corrosion on Co samples. SEM images showed a clear difference in the 

pit morphology depending on the solution employed.  

For electrochemical tests in the presence of BSA, at a realistic 

concentration, proteins were found to play an important role in Mo dissolution 

from CoCrMo. Mo presumably reacts with amino acid residues present in 

protein molecules, initiating preferential dissolution even at low potentials, 

where there is no disruption of the Cr passivation layer in CoCrMo alloys. 

Nevertheless, in order to understand the mechanism of Mo corrosion in 

proteins, it would be necessary to follow the dissolution state of the alloy over a 

range of different low potentials. 
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Chapter 7 - Conclusions 

The main aim of this research was to develop a method to produce 

significant amounts of representative synthetic CoCrMo wear debris. In this 

project, we have used the hitherto unexplored approach of mechanochemical 

milling to produce a large amount of mimetic CoCrMo wear debris 

nanoparticulates. In Chapter 4 it was demonstrated that this was a simple and 

efficient method to generate synthetic nanoparticles similar in size and shape to 

CoCrMo wear debris from hip implants observed in-vivo. A wide range of 

particle sizes were obtained by milling and these can then be size-separated by 

centrifugation, which also helps to remove trace levels of contamination from 

the milling process. The composition of synthetic wear debris was found was to 

be close to real wear debris and similar to the raw starting material. This 

process was compared to the pin-on-plate technique, which takes a long time 

to generate much fewer particles, most of which were in a size range larger 

than that commonly found in-vivo (ca. 30 nm). The particle concentration 

generate for one milling run (about 2 h) was estimated to be equivalent to about 

20 years of metal nanoparticles generated in vivo, assuming all hip wear debris 

remains in the joint. 

The relatively large scale production of CoCrMo nanoparticles allowed 

corrosion studies to be undertaken in Chapter 5 as well an investigation of 

protein binding properties in relevant media. However, dissolution studies are 

often based on solution spectrometry (mass or optical) that require the removal 

of all particles from tested solutions in order to avoid distortions in the final 

results. Nanoparticles produced by milling could easily be ionized during ICP 

analysis, if not correctly separated from the solution. The commonly reported 

and established techniques for separating nanoscale wear debris from lubricant 

fluids using only centrifugation or ultracentifugation, and these processes were 

found to be sub-optimal not only for milled fluids but also to hip simulation, 

leading to residual wear nanoparticles suspended in the analyte fluid. The use 

of a centrifugation plus ultrafiltration step during ICP-MS sample preparation 

was shown to efficiently remove nanoparticulate wear debris that remained in 

the supernatant after just centrifugal sedimentation, by creating a physical 

barrier that efficiently retains all remaining particulates in the membrane. The 

addition of the ultrafiltration step in ICP-MS sample preparation after 
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tribocorrosion of CoCrMo alloys using a hip simulator decreased the overall 

level of metal ions by about 6 times compared to centrifugation alone and about 

2 times when compared to ultracentrifugation alone. Importantly, there was 

observed to be a significant change in the relative elemental ratios in the 

solution (from the base alloy composition) following ultrafiltration, suggesting 

much higher levels of Mo (and to a lesser extent Co) dissolution together with a 

very low release of Cr during the walking cycle simulation. This two steps ICP-

MS sample preparation is essential for the correct estimation of chemical/ 

electrochemical hip degradation under biotribocorrosion simulations. 

This revised ICP-MS sample preparation method was employed after 

the production of CoCrMo nanoparticles by milling and allowed the 

identification of the dissolution of specific metallic elements in different 

biological media and pH environments. The corrosion studies in different media 

have revealed the preferential dissolution of Mo in the presence of serum 

proteins, and that, based on the pH dependence, it is likely that more significant 

Co and Cr solubility will only occur if particles are taken up by phagocytic cells 

and digested in lysosomes.

In Chapter 6, TEM analysis suggested the formation of a protein corona 

on synthetic CoCrMo wear debris particles incubated with BSA and the 

particles were found to be deficient in molybdenum by EDX presumably as a 

result of dissolution. An interaction with proteins was also seen for elemental 

reference oxide materials where ICP-MS showed that the reference materials 

underwent dissolution of predominantly molybdenum ions under static 

incubation in the presence of BSA. During zeta potential titration, CoCrMo and 

Molybdenum nanoparticles showed the highest affinity for BSA. The results 

provided a good indication of the importance of binding between albumin 

proteins and molybdenum, which may directly influence the strong dissolution 

of this element when CoCrMo alloy nanoparticles are produced as hip-implant 

wear debris in vivo in the presence of serum proteins. These findings are 

important as it highlighted the interaction of Mo rich surfaces with amide groups 

in serum which could modify biological molecules, altering their ability to 

function properly.

The compositional analysis of the surfaces (by XPS) of Co, Cr and Mo 

reference materials as well as a CoCrMo alloy following anodic polarization in 
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the presence of biological media showed the presence of a biolayer which was 

typically rich in carbon and nitrogen, supporting the hypothesis of an adsorbed 

protein layer seen in the nanoparticlulate debris by TEM. BSA and PBS 

solutions showed competitive absorption of proteins and salts on the sample 

surface and this influenced the ultimate electrochemical behaviour. The total 

metal ion release measured for elemental reference materials was much higher 

as compared to a CoCrMo alloy. Co and Mo samples showed active dissolution 

in all electrolyte solutions, whereas the degradation of CoCrMo and Cr samples 

were controlled by a passivating oxide layer. The use of PBS accelerated the 

corrosion for all samples increasing the metal ion concentration in the 

electrolyte and there was a high incidence and growth of pitting corrosion on 

Co samples. SEM images showed a clear difference in the pit morphology 

depending on the solution employed.  

For electrochemical tests in the presence of BSA, at a realistic serum 

concentration, proteins were found to play an important role in Mo dissolution 

from CoCrMo. Mo was thought to react with amino acid residues present in 

protein molecules, initiating preferential dissolution even at low potentials, 

where there is no disruption of the Cr passivation layer in CoCrMo alloys. 

In summary, this study has highlighted some important findings with 

respect to:  

� An alternative method to produce CoCrMo nanoparticlulate wear 

debris in significant quantities;  

� The development of an accurate sample preparation method prior 

to ICP-MS analysis, which can improve the quantification of 

tribocorrosion studies by attributing correctly the contribution of 

chemical degradation in failing hip implants; 

� The high levels of Mo dissolution in CoCrMo alloy that have only 

recently been reported in literature, and that was linked in this 

work with the high affinity of this metal for residues of the proteins 

found in serum albumin; 

� The formation of a metal complex between proteins and the metal 

ions released during tribocorrosion of micro-sized particles. 
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7.1 Limitations of this Study and Future Work 

Despite the interesting results obtained, there are still a number of 

limitations or future work that needs to be addressed:

� After milling, centrifugal sedimentation of large particles effectively 

removed most of the Zr contamination, reducing it to trace levels. Ideally, 

the use of a vial/ balls made of the CoCrMo material would avoid any 

contamination of this nature, but may compromise the size reduction. 

Further tests using CoCrMo beads in combination with a Zr vial could in 

theory produce good results in terms of size reduction and 

contamination, potentially avoiding the centrifugation process. In 

addition, the use of a planetary ball mill could produce even larger 

amounts of nanoparticles in less time, by increasing the frictional forces 

during the process. 

� The study suggested the formation of complexes between the metal ion 

and BSA proteins, however further investigation is required to identify 

the exact nature of the complex. Indeed, it is important to confirm the 

possibility of molybdenum carbonyl formation during CoCrMo hip implant 

wear, owing to the high toxicity of these species. 

� This study focused on the interaction of metal particles with albumin 

serum, isolating the response for this specific protein. Albumin represent 

about 70% of total proteins present in the synovial fluid. Hence it would 

be interesting to study the synergistic effect of all the proteins during 

CoCrMo tribocorrosion. 

� In order to understand the mechanism of CoCrMo alloy corrosion in the 

presence of proteins under anodic polarization, it would be necessary to 

follow the dissolution state of the alloy over a range of different low 

potentials. 
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� In a separate line of collaborative research, toxicological studies are 

currently being conducted to examine the toxicity and oxidative stress 

response toward the nano- and micro-sized milled CoCrMo particles 

produced in this research (see Appendix A). The hypothesis of this study 

was that nano- and micro-CoCrMo particles exert a cell-specific, time 

and dose-dependent toxicity and oxidative stress response in lung 

epithelial cells, osteoblasts and macrophages. So far, it was found that 

both nano- and micro-CoCrMo particles induced a time and dose-

dependent toxicity in all three types of cells studied. At the same mass 

dose, nano-CoCrMo significantly reduced the viability of macrophages 

as compared to micro-particles and significantly improved the viability of 

lung epithelial cells and osteoblasts. This work is ongoing.
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ABSTRACT 

Metal-on-metal (MoM) joint implants are used routinely during total hip and 

knee replacements and are typically composed of cobalt chromium molybdenum 

(CoCrMo) alloys. CoCrMo “wear particles”, in the nano- and micro-size ranges, are 

generated in situ. Meanwhile, occupational exposure to CoCrMo particles may be 

associated with the development of industrial dental worker’s pneumoconiosis and 

pulmonary exposure to CoCrMo particles is therefore a relevant concern in the 

manufacturing of MoM implants. The objective of this study was to examine the 

toxicity and oxidative stress response toward nano- and micro-sized CoCrMo particles 

in vitro. We hypothesized that nano- and micro-CoCrMo particles would exert cell-

specific, time and dose-dependent toxicity and oxidative stress response in lung 

epithelial cells, osteoblasts and macrophages. We found that both nano- and micro-

CoCrMo particles induced a time and dose-dependent toxicity in all three types of cells 

studied. Both nano- and micro-CoCrMo particles led to significant decreases in 

viability of lung epithelial cells and osteoblasts at doses of 100 and 1000 µg/mL and 

macrophages at doses of 10, 100 and 1000 µg/mL. The effect of particle size on cell 

viability was interesting and cell specific; compared to micro-CoCrMo, nano-CoCrMo 

significantly increased the viability of lung epithelial cells at doses of 100 and 1000 

µg/mL and of osteoblasts at 1000 µg/mL and, by contrast, significantly reduced the 

viability of macrophages at 1000 µg/mL. Similarly, the oxidative responses, 

represented by 2’,7’-dichlorofluorescein diacetate (DCF) and dihydroethidium (DHE) 

fluorescences against nano- and micro-CoCrMo exposures were found to be cell 

specific. Nano-CoCrMo significantly increased the DCF levels in lung epithelial cells 

at 100 and 1000 µg/mL, in osteoblasts at 0.1, 100 and 1000 µg/mL and in macrophages 

at all doses studied (0.1-1000 µg/mL). Nano-CoCrMo significantly increased the DHE 

levels in osteoblasts and macrophages at all doses studied while no significant 

differences in DHE levels were seen in lung epithelial cells. Meanwhile, micro-

CoCrMo significantly increased the DCF levels in lung epithelial cells at 10, 100 and 

1000 µg/mL, in osteoblasts at 0.1, 10, 100 and 1000 µg/mL and in macrophages at all 

doses studied. It also significantly increased the DHE levels in osteoblasts and 

macrophages at all doses studied while no significant differences in DHE levels were 

observed in lung epithelial cells. Compared to micro-CoCrMo, nano-CoCrMo 

significantly increased the DCF levels in all cells studied at 100 and 1000 µg/mL and 

significantly reduced the DCF levels in macrophages at 0.1, 1 and 10 µg/mL. 

Compared to micro-CoCrMo, nano-CoCrMo significantly decreased the DHE levels at 

0.1, 1, 10 and 100 µg/mL, significantly increased the DHE levels at 1000 µg/mL in 

osteoblasts and significantly increased the DHE levels in macrophages at all doses 

examined; no significant differences in DHE levels were observed in lung epithelial 

cells. Our findings highlight the potential roles that nano- and micro-CoCrMo particles, 

whether exposure is due to inhalation or implant wear, and associated oxidative stress 

may play in the increasingly reported implant loosening, osteolysis and systemic 

complications in orthopaedic patients, and may explain the risk of lung diseases in 

dental workers.

INTRODUCTION 

 Over a million total hip replacement procedures are performed each year; one-

third of these surgeries use metal-on-metal (MoM) implant devices composed of cobalt 

chromium molybdenum (CoCrMo) alloys [1-3]. While MoM implant devices offer 

advantages, such as increased strength and resistance to wear, over previous implant 

technology employing polymeric and/or ceramic articulating surfaces, they are not 
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without their faults and risks [4, 5]. In particular, new evidence is emerging that MoM 

CoCrMo implants generate wear particles in situ, within the micro- and nano-size 

range, as a result of implant breakdown between the articulating joint surfaces [4-11]. 

The generation of wear particles increases when the implant is improperly aligned, 

causing aseptic loosening of the joint, uneven wear and damage within the implant area 

[5, 9]. The current literature suggests that CoCrMo wear particles released locally 

within the joint area and surrounding tissues may cause cellular toxicity and a 

subsequent inflammatory response [4, 5, 9, 11].  

 Given this evidence and emerging concerns regarding the long term effects of 

CoCrMo particle exposure in joint replacement patients, the toxicity of CoCrMo wear 

particles has recently been explored in vitro [1, 4, 6, 8, 10-26] and in vivo [27-29]. To 

date, CoCrMo particle toxicity has been reported in cell types such as osteoblasts, 

osteoclasts, fibroblasts, leukocytes and macrophages and CoCrMo particle exposure 

has been found to cause reproductive toxicity [30, 31], genotoxicity and inflammatory 

immune reactions in exposed mice [7, 27, 28].  

In addition to “internal” and localized CoCrMo particle exposure due to MoM 

implant wear, alternative routes of exposure such as inhalation or secondary 

exposure(s) due to particle translocation or migration from the initial site must be 

considered. For instance, CoCrMo particle inhalation may occur during the 

manufacturing and production of MoM implants in the medical device industry, 

thereby presenting an occupational exposure hazard. Although occupational exposure 

to CoCrMo particles has not been directly reported to date in orthopaedic implant 

manufacturing settings, pulmonary exposure to CoCrMo “dusts” with a similar 

composition to MoM orthopaedic implant material have been reported previously in 

dental implant manufacturing settings [32]. Inhalation of CoCrMo particles might have 

been associated with the “dental technician’s pneumoconiosis” (DTP) in a number of 

cases [32-38]. In other industrial and manufacturing settings, inhalation of cobalt-

containing metal “dusts”, such as tungsten carbide cobalt (WC-Co), have been well-

associated with the development of pneumoconiosis, occupational asthma and lung 

disease with increased risk of lung cancer [39-52]. For DTP resulting from exposure to 

CoCrMo particles, patients develop lung disease with a similar clinical presentation to 

hard metal lung disease (HMLD) resulting from occupational inhalation of WC-Co 

particles [9, 38, 53]; therefore, we believe it is pertinent to examine the effects of 

CoCrMo particle exposure in a relevant in vitro pulmonary model. 

Additionally, there is an emerging body of literature which demonstrates that 

particles within the nano-size range are capable of tissue translocation and migration to 

other organs, such as the liver, spleen or lungs [54-69], where tissue deposition occurs 

and a secondary particle exposure is generated. This phenomenon may occur for 

CoCrMo particles generated internally at orthopaedic implant sites and the potential for 

secondary CoCrMo toxicity at sites distant from the initial exposure cannot be 

excluded. Therefore, it is critically important to understand the full range of effects of 

CoCrMo particle exposure on a variety of cell types which are potential targets for 

CoCrMo particle exposure, whether the initial exposure was due to internal particle 

generation from orthopaedic implants or from external sources such as inhalation in 

occupational settings. The goal of the current study was to examine the toxicity and 

oxidative stress response toward nano- and micro-sized CoCrMo particles, for the first 

time, in an in vitro pulmonary model using lung epithelial cells and compare the 

outcomes with other implant site relevant cells such as human osteoblasts and 

macrophages using a nanotoxicity model recently developed in our lab [70]. Based on 

our current understanding of CoCrMo particle toxicity, we hypothesized that nano- and 
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micro-CoCrMo particles would exert cell-specific, time and dose-dependent toxicity 

and oxidative stress response in lung epithelial cells, osteoblasts and macrophages. 

MATERIALS and METHODS 

Materials and Reagents: CoCrMo microparticles (micro-CoCrMo) in the form of gas 

atomized powders from ASTM75 implants were used as received from Sandvik Osprey 

(Sandviken, Sweden); the chemical composition was 63.3�1.1 wt.% Co, 30.2�0.7 wt.% 

Cr and 6.5�1.2 wt.% Mo. Human lung bronchial epithelial BEAS-2B cells [70], THP-1 

(TIB-202) human monocyte/macrophage [71] and h.FOB1.19 (CRL-11372) human 

osteoblast cells [72-75] from our previous studies were from American Type Tissue 

Collection (ATCC; Manassas, VA). Dulbecco’s Modified Eagle Media (DMEM), 

Ham’s F12 Medium, sterile phosphate buffered saline (PBS), 0.25% 

trypsin/ethylenediaminetetraacetic acid (EDTA), fetal bovine serum (FBS), G418 

sulfate (geneticin) cell selection agent and penicillin/streptomycin were purchased from 

Lonza (Allendale, NJ). RPMI-1640 culture medium was purchased from ATCC. 

Isopropanol, hydrochloric acid, Triton-X-100, thiazolyl blue tetrazolinium bromide 

(MTT reagent), 2’,7’-dichlorofluorescein diacetate (DCF), dihydroethidium (DHE) and 

phorbol-12-mystirate-13-acetate (PMA) were purchased from Sigma-Aldrich (St. 

Louis, MO).  

Particle Preparation: CoCrMo nanoparticles (nano-CoCrMo) were obtained via 

mechanical milling of the micro-CoCrMo particles. In brief, micro-CoCrMo particles 

were milled in 20 g/L of a heat shocked fetal bovine serum (FBS) solution (pH 7.0). 

The powders were ball milled for 2.5 hr at a ball-to-powder weight ratio of 3:2 in a 

high energy Spex 8000M mill (Metuchen, NJ) using zirconium oxide ceramic vials and 

balls. Before milling, the vial was fully filled with an inert gas (Argon) to avoid 

atmospheric contamination. After collection, samples were centrifuged in a Heraeus 

Megafuge at 25°C for 10 min with a centrifugal force of 8000G to remove most of the 

FBS and coarse particles. Fine particles in the dispersion were collected for this study. 

For cell culture studies, both nano- and micro-CoCrMo particles were prepared using 

our previous protocol [76] in a phosphate buffered saline (PBS) solution containing 

10% FBS as a stabilization agent and sonicated using an Omni International Sonic 

Ruptor 250 Ultrasonic Homogenizer (Kennesaw, GA). A stock concentration of 5 

mg/mL CoCrMo particles was prepared by sonication (2 min, 120 watts power output, 

frequency 20 kHz) in an ice bath, to minimize heating of the sample during particle 

dispersion. Dilute particle suspensions, ranging from 0.1 to 1000 μg/mL, were prepared 

in DMEM containing 10% FBS and used immediately on the day of each experiment. 

Note that from an occupational standpoint, exposure limits have been set for cobalt 

particles alone, but limits have yet to be defined for cobalt-containing alloys such as 

CoCrMo or WC-Co, which have been reported to cause similar types of 

pneumoconiosis following pulmonary exposure [32-36, 38-53]. Further, it is difficult to 

define an exact in vitro dosage parameter due to the variability and extent of MoM 

orthopaedic implant wear on an individual patient basis. Therefore, in this study, we 

intentionally encompassed a range of particle exposures, from 0.1 to 1000 µg/mL, to 

represent the potential range in CoCrMo exposure which may occur in occupational 

implant manufacturing settings and in orthopaedic patient implant wear particle 

exposures. 

Particle Characterization: The particle size of nano-CoCrMo was analyzed using 

transmission electron microscopy (TEM) with a FEI Tecnai F20 field emission gun 

TEM operated at 200 kV and fitted with an Oxford Instruments ultrathin window ISIS 
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energy dispersive X-ray (EDX) system. A 3.5 µL droplet of particle dispersion was 

placed on a glow discharge-treated carbon support film (R1.2/1.3 Quantifoil 

MicroTools GmBH; measured hole diameter of 1.65 µm), blotted and plunge frozen in 

liquid ethane [77]. Average particle size was achieved by measuring Feret diameter of 

ca. 300 particles, which is defined as the distance between the most widely spaced 

nanoparticles in an agglomerate [77]. The particle size of micro-CoCrMo particles was 

characterized using scanning electron microscope (SEM). Secondary electron images 

were taken using a Hitachi SU8230 Ultimate Cold Field Emission operated at 2 keV, 

8.2 mm working distance and employing an in-lens electron detector. Elemental 

composition was determined via EDX. In addition, the average sizes of nano- and 

micro-CoCrMo particles in suspension were determined using dynamic light scattering 

(DLS, Malvern Zetasizer version 7.01, Malvern Instruments).  

CoCrMo Particle Assay Interference: Prior to execution of the cell viability and 

oxidative stress assays, the potential interference of CoCrMo particles was examined 

under the experimental conditions. To test compatibility with the MTT-based cell 

viability assay, 200 μL of CoCrMo suspensions (0.1 to 1000 μg/mL in DMEM) was 

added to duplicate wells in a 96-well plate. The plate was briefly centrifuged (500 × g, 

5 min) to pellet the particles at the bottom of the wells. The supernatant was then 

aspirated and 100 μL of plain (un-supplemented) DMEM was added to each well 

containing CoCrMo particles, along with 10 μL of MTT reagent. After 2 hr incubation 

at 37°C, 100 μL of solubilization solution was added to each well and the absorbance 

was determined at 570 nm. Any auto-reduction of the MTT dye reagent to formazan by 

the CoCrMo particles themselves would have been detected as an increase in 

absorbance compared to the blank wells, containing only media, MTT dye reagent and 

solubilization solution. Similarly, for the oxidative stress assay, we tested whether the 

CoCrMo particles caused increased fluorescence of either DCF or DHE under our 

assay conditions. CoCrMo particle suspensions were plated and centrifuged in 

duplicate wells of a 96-well plate as described above. The supernatant was then 

aspirated and replaced with 100 μL of 10 μM DCF or DHE working solution prepared 

in PBS. Plates were incubated for 15 min in the dark and then the fluorescence intensity 

of each well was quantified every 5 min, up to one hour, at 520 nm for DCF or 620 nm 

for DHE, to identify any potential particle/dye interference compared to the blank (dye 

solution only) wells.  

Cell Culture and THP-1 Macrophage Differentiation: BEAS-2B lung epithelial 

cells were cultured in DMEM supplemented with 10% FBS and 1% penicillin-

streptomycin and maintained at 37°C and 5% CO2. Human osteoblasts (h.FOB 1.19) 

were cultured in 1:1 Ham’s F12/DMEM supplemented with 10% FBS, 1% penicillin-

streptomycin and 0.3 mg/mL G418 and maintained at 37°C and 5% CO2. Upon 

confluency, BEAS-2B and osteoblasts (OB) were rinsed with PBS and trypsinized, 

transferred to 15 mL tubes and centrifuged at 1200 rpm for 7 min to pellet. Cell pellets 

were re-suspended in appropriate media at the desired plating density of 1.5 × 105

cells/mL, transferred to a 96-well tissue culture plate and allowed to adhere overnight 

prior to the assay(s).  

THP-1 monocytes were maintained in suspension culture in RPMI-1640 

supplemented with 10% FBS, 1% penicillin-streptomycin and 0.05 mM beta-

mercaptoethanol and maintained at 37°C and 5% CO2. Upon confluency, THP-1 cells 

were transferred to 15 mL tubes and centrifuged at 125 × g for 5 min to pellet. The cell 

pellet was re-suspended in RPMI-1640 containing 10 ng/mL PMA, which induces 

THP-1 monocytes to undergo macrophage (M0) differentiation, and plated in a 96-well 

culture plate at the desired density of 1.5 × 105 cells/mL. After 24 hr, THP-1 to M0 
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differentiation was confirmed via examination of cell morphology using a light 

microscope [78, 79], where M0 cells underwent a signature change in morphology and 

became adherent to the culture dish.  

CoCrMo Particle Exposure: Exposure to nano- and micro-CoCrMo particles was 

achieved by aspirating the media from each well and immediately replacing it with an 

equivalent volume of CoCrMo particle suspension at a concentration of 0.1-1000 

μg/mL. Cell plates were then incubated at 37° C and 5% CO2 for exposure periods of 6, 

12, 24 and 48 hr. 

Cell Viability Assay: For the viability assay, cells were exposed to either nano- or 

micro-CoCrMo particles at concentrations of 0.1, 1, 10, 100 and 1000 μg/mL for 

exposure periods of 6, 12, 24 and 48 hr. Following particle treatment, cells were rinsed 

once with sterile PBS to remove traces of media and excess particles. Then, 100 μL of 

un-supplemented DMEM was added to each well, followed by the addition of 10 μL 

MTT reagent to achieve a final concentration of 0.5 mg/mL MTT reagent per well. 

Cells were incubated for 2 hr at 37° C and 5% CO2 to allow conversion of the soluble 

salt (yellow) to formazan crystals (purple). Crystal formation was confirmed using light 

microscopy. 100 μL of solubilization solution (0.1 M HCl in isopropanol with 10% 

Triton-X) was then added to each well to dissolve the formazan crystals and the 

absorbance of each well was recorded at 570 nm using a Bio-Tek μQuant microplate 

reader (Winooski, VT). Blank values were subtracted from absorbance readings. Cell 

viability was calculated by dividing the absorbance of particle treated cells by the 

absorbance of control cells receiving media treatment only and converted to 

percentage; control cells represented 100% viability. 

Oxidative Stress Assay: Oxidative stress was examined at the same CoCrMo particle 

concentrations and exposure range described for the viability assay (above). Following 

particle treatment, cells were rinsed once with sterile PBS to remove traces of media 

and excess particles. Oxidative stress was then determined by the addition of 10 μM 

DCF or DHE in PBS following particle treatment. Plates were incubated for 15 min in 

the dark and then fluorescence intensity of each well was quantified at 520 nm for DCF 

or 620 nm for DHE using a Bio-Tek Synergy H4 plate reader (Winooski, VT). The 

relative fluorescence of particle-treated cells was calculated as fold over control.  

Statistical Analyses: All experiments were performed in triplicate and data are 

presented as mean ± standard deviation. Statistical analysis was carried out by two-way 

analysis of variance (ANOVA) using GraphPad Prism 6 software (La Jolla, CA). P 

values < 0.05 were considered significant.  

RESULTS 

CoCrMo Particle Characterization and Assay Interference: TEM and SEM 

examinations showed that the nano- and micro-CoCrMo particles had average sizes of 

35.4 nm (Figures. 1A and C) and 4.8 μm (Figures 1B and D), respectively. DLS 

analysis indicated that nano-CoCrMo averaged 54 nm and micro-CoCrMo particles 

averaged 5.0 μm in suspensions. EDX confirmed that the composition of nano- and 

micro-CoCrMo particles were largely Co, Cr and Mo (Figure S1). We did not find any 

significant CoCrMo particle interference in our assays; no significant auto-reduction of 

the MTT dye was identified in the viability assay (Figure S2) and no significant 

changes in DCF/DHE fluorescence were observed due to CoCrMo particles under the 

assay conditions tested (Figure S3).  
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CoCrMo Effects on Cell Viability: BEAS-2B, OB and M0 were exposed to nano- and 

micro-CoCrMo particles at concentrations of 0.1, 1, 10, 100 and 1000 μg/mL for 

durations of 6, 12, 24 and 48 hr. For BEAS-2B, the average cell viability was about 90-

98% (vs. control of 100%) for cells exposed to nano- and micro-CoCrMo particles at 

concentrations of 0.1, 1 and 10 μg/mL for durations of 6-48 hr; the cell viability tended 

to decrease with increasing particle exposure time from 6 hr to 48 hr at concentrations 

of both 100 and 1000 μg/mL (Figure 2). In cells exposed to nano-CoCrMo particles 

(Figure 2A), a significant reduction in viability (compared to control) was observed at 

100 μg/mL after 12, 24 and 48 hr of exposure and at the highest concentration of 1000 

μg/mL after 6-48 hr of exposure. Similarly, in BEAS-2B cells exposed to micro-

CoCrMo particles (Figure 2B), a significant reduction in viability (compared to 

control) was observed at 100 μg/mL after 12, 24 and 48 hr of exposure and at the 

highest concentration of 1000 μg/mL after 6-48 hr of exposure. When comparing the 

toxicity of nano- and micro-CoCrMo under identical conditions, nano-CoCrMo caused 

significantly less toxicity than micro-CoCrMo in BEAS-2B cells at 100 μg/mL after 24 

and 48 hr of exposure and at 1000 μg/mL after 6 and 12 hr of exposure; toxicity was 

similar for 1000 μg/mL nano- and micro-CoCrMo after 24 and 48 hr of exposure. 

For OB, cell viability remained high (> 90%) over the exposure periods tested 

(6-48 hr) for 0.1-10 μg/mL nano- and micro-CoCrMo particles (Figure 3). At 100 and 

1000 μg/mL, a significant decrease in cell viability (compared to control) was observed 

after 6-48 hr exposure of nano- (Figure 3A) and micro-CoCrMo (Figure 3B) particles 

and the cell viability decreased with increasing exposure time. There were no 

significant differences in the toxicity of nano- and micro-CoCrMo particles over the 

concentration and exposure range studied, with the exception of 1000 μg/mL, where 

nano-CoCrMo caused significantly less toxicity than micro-CoCrMo in OB after 24 hr 

of exposure (~70 % vs. ~60 % remaining cell viability, respectively).  

In M0, cell viability remained > 90% for the lowest concentrations of 0.1 and 1 

μg/mL over the 6-48 hr exposure period for both nano- and micro-CoCrMo (Figure 4). 

M0 exposed to nano-CoCrMo had significantly reduced viability (compared to control) 

after 24 and 48 hr exposure to 10 μg/mL (Figure 4A); no significant toxicity was 

observed between CoCrMo particles and controls at this concentration in either BEAS-

2B or OB under these conditions. Significantly reduced cell viability was also observed 

for the micro-CoCrMo particles at 10 μg/mL after 48 hr of exposure (Figure 4B). 

Moreover, at 100 and 1000 μg/mL, a significant decrease in cell viability (compared to 

control) was observed for both nano- and micro-CoCrMo particles at the time 

exposures studied except at 6 hr of 100 μg/mL of micro-CoCrMo particles. When 

compared directly, M0 viability after exposure to 1000 μg/mL nano-CoCrMo for 24 

and 48 hr was significantly lower than M0 exposed to micro-CoCrMo particles under 

identical conditions. 

CoCrMo Effects on Oxidative Stress: Oxidative stress was measured in the form of 

DCF/DHE fluorescence after exposure to nano- and micro-CoCrMo particles under 

identical exposure conditions tested in the viability assay. Compared to control, there 

was a significant increase in DCF fluorescence in BEAS-2B cells exposed to 100 

μg/mL nano-CoCrMo after 6, 12 and 24 hr of exposure and at 1000 μg/mL after 6, 12, 

24 and 48 hr of exposure; a maximum 3.5 fold increase in DCF fluorescence was 

observed in BEAS-2B cells exposed to 1000 μg/mL nano-CoCrMo after 6 hr of 

exposure, after which DCF fluorescence decreased with increasing exposure time 

(Figure 5A). In BEAS-2B cells exposed to micro-CoCrMo particles, a significant 

increase in DCF fluorescence was observed after 6 hr exposure to 10 and 100 μg/mL 
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and after 6, 12, 24 and 48 hr exposure to 1000 μg/mL micro-CoCrMo; a maximum 2.3 

fold increase in DCF fluorescence was observed in cells exposed to 1000 μg/mL micro-

CoCrMo after 6 hr of exposure (Figure 5B). At 1000 μg/mL of both nano- and micro-

CoCrMo particles, the DCF fluorescence decreased with increasing exposure time 

(Figure 5). In addition, nano-CoCrMo particles caused a significantly greater change in 

DCF fluorescence compared to micro-CoCrMo particles after 6, 12 and 24 hr exposure 

to 100 μg/mL and after 6, 12, 24 and 48 hr at 1000 μg/mL (Figure 5).  

For DHE, no significant differences, compared to control, were observed in 

BEAS-2B fluorescence after exposure to nano-CoCrMo (Figure 6A) or micro-CoCrMo 

(Figure 6B) particles. The observed DHE fluorescence in BEAS-2B cells exposed to 

both nano- and micro-CoCrMo particles was about the same as the control cells at all 

concentrations (0.1-1000 μg/mL) and exposure times (6-48 hr) studied. 

In OB, nano-CoCrMo caused a significant increase in DCF fluorescence, 

compared to control, at 0.1 μg/mL after 12 hr, at 100 μg/mL after 12 and 24 hr and a 

maximum increase in DCF fluorescence at 1000 μg/mL after 24 hr of exposure, about 

1.5-fold higher than control (Figure 7A). Exposure to micro-CoCrMo caused 

significantly increased DCF fluorescence, compared to control, after 12 hr exposure to 

0.1, 10, 100 and 1000 μg/mL and after 24 hr exposure to 1000 μg/mL (Figure 7B). 

Overall, nano-CoCrMo caused significantly higher DCF florescence than micro-

CoCrMo in OB after 24 hr exposure to 100 and 1000 μg/mL (Figure 7). 

 A varied effect on DHE fluorescence was observed in OB exposed to nano- 

and micro-CoCrMo particles (Figure 8). Compared to control, a significant increase in 

DHE fluorescence was observed in OB exposed to nano-CoCrMo at 0.1 μg/mL after 48 

hr, at 1 μg/mL after 6, 24 and 48 hr, at 10 μg/mL after 12, 24 and 48 hr, at 100 μg/mL 

after 6 and 12 hr and at 1000 μg/mL after 6, 12, 24, and 48 hr of exposure (Figure 8A). 

For micro-CoCrMo particles, a significant increase in DHE, compared to control, was 

observed for 0.1-1000 μg/mL after 6 hr of exposure and for 1, 10, 100 and 1000 μg/mL 

after 12 hr of exposure (Figure 8B). Compared to micro-CoCrMo, nano-CoCrMo 

caused significantly less DHE fluorescence at 0.1 and 1 μg/mL after 6 hr and at 1, 10 

and 100 μg/mL after 12 hr; however, at 1000 μg/mL, nano-CoCrMo caused 

significantly higher DHE fluorescence than micro-CoCrMo after 6, 24 and 48 hr of 

exposure (Figure 8A).  

 In M0, nano- and micro-CoCrMo particles caused significant increases in DCF 

fluorescence, compared to control, at all concentrations (0.1-1000 μg/mL) and exposure 

times tested (Figure 9). The maximum increase in DCF was observed at 1000 μg/mL 

after 6 and 12 hr exposure (Figure 9) for both nano- and micro-CoCrMo particles. 

Compared directly, nano-CoCrMo caused significantly less DCF fluorescence than 

micro-CoCrMo particles after 12 hr exposure to 0.1, 10 and 100 μg/mL; however, 

nano-CoCrMo caused significantly higher DCF fluorescence than micro-CoCrMo after 

6 and 12 hr exposure to 100 μg/mL and after 24 and 48 hr exposure to 1000 μg/mL 

(Figure 9).  

 Significantly increased DHE fluorescence, compared to control, was observed 

in M0 exposed to nano-CoCrMo at all concentrations tested (0.1-1000 μg/mL) after 6, 

12 and 24 hr of exposure; no changes in DHE were observed after 48 hr of exposure at 

any concentration (Figure 10A). In M0 exposed to micro-CoCrMo, a significant 

increase in DHE fluorescence was observed after 6 and 12 hr exposure to 0.1-1000 

μg/mL; DHE levels were similar to control at all concentrations after 24 and 48 hr of 

exposure to micro-CoCrMo (Figure 10B). Compared to micro-CoCrMo, nano-

CoCrMo caused significantly higher DHE levels in M0 at all concentrations (0.1-1000 

μg/mL) after 12 and 24 hr of exposure (Figure 10).  
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DISCUSSION 

Nanoparticles, due to their smaller size, have a higher capacity (compared to 

microparticles) to enter the circulatory system and deposit in tissues and organs such as 

liver, spleen, kidney, lymph node and lung [9, 56, 57, 80, 81], and the potential 

systemic effects of nanoparticle exposure could be of importance [37, 82, 83]. 

However, the role of nanoparticles and microparticles from orthopaedic implant wear 

in systemic responses is unknown although patients who undergo MoM joint 

replacements have presented translocation and deposition of CoCrMo wear particles in 

lymph nodes, liver and spleen [7-9, 84]. Meanwhile, inhalation of cobalt-containing 

metal particles may be associated with dental technician’s pneumoconiosis [32-34, 36, 

38, 53], and CoCrMo wear particles have also been a major concern of local toxicity 

and inflammation. Therefore, the goal of this study was to examine the toxic effects of 

nano- and micro-sized CoCrMo particles, originating from ASTM F75 orthopaedic 

implant materials, in a range of relevant cell types representing the potential routes of 

exposures, including lung epithelial cells, osteoblasts and macrophages. 

Our studies suggest that both nano- and micro-CoCrMo particles can induce 

toxicity in all cell types studied and the responses of cell viability and oxidative stress 

are dose, exposure time and cell type specific. Across the three cell types tested, at low 

concentrations (i.e. 0.1 and 1 μg/mL), nano- and micro-CoCrMo particles did not cause 

significant toxicity in our viability assay. Typically, in the presence of small amounts of 

foreign particles, cells may isolate the particles in internal phagolysosomal 

compartments, which could prohibit them from further interacting with other cellular 

components thereby preventing extensive cellular toxicity [19, 85-88]. The similarity in 

low toxicity between the nano- and micro-CoCrMo particles reported here in lung 

epithelial cells, osteoblasts and macrophages at concentrations less than 10 μg/mL 

seems to support the high biocompatibility of CoCrMo alloys in orthopaedic settings 

[89]; CoCrMo has been used prevalently in orthopaedic surgeries [9]. At high 

concentrations (i.e. 100 and 1000 µg/mL for BEAS-2B and OB cells, and 10, 100 and 

1000 µg/mL for M0 cells), both nano- and micro-CoCrMo particles could lead to 

significant decreases in viability in all cell types tested. It was reported that significant 

toxicity was observed in osteoblast-like cells exposed to ≥ 100 μg/mL micro-CoCr 

alloy particles after 24 and 48 hr exposure [12]. The current study provides direct 

evidence that nano- and micro-CoCrMo particles cause toxicity toward lung epithelial 

cells in vitro, which may help explain the risk of lung disease in dental workers [32, 33, 

35, 36, 38, 53] and highlights the need for further examination of pulmonary toxicity 

caused by CoCrMo particles, whether exposure is due to inhalation (in the case of 

DTP) or local implant wear particles.

  One would normally expect that nanoparticles exert greater toxic effects than 

microparticles of the same chemical composition due to their smaller size and increased 

surface area [37, 57, 81, 90-94]. However, in this study, no significant differences in 

cell viability were observed between nano- and micro-CoCrMo particle exposures in 

most of the concentrations and exposure times studied. Interestingly, compared to 

micro-CoCrMo particles, nano-CoCrMo particles led to significantly lower viability of 

macrophages and significantly higher viability of lung epithelial cells and osteoblasts at 

1000 µg/mL. In macrophages, it was believed that nanoparticles, due to their smaller 

size and thereby faster degradation, could lead to more impairment in phagocytosis and 

be more toxic to macrophages compared to microparticles [91, 95-97]. It is not clear 
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why nano-CoCrMo was less toxic, compared to micro-CoCrMo, to lung epithelial cells 

and osteoblasts in this study and further investigations are much needed. 

Oxidative stress has been implicated in age-related bone resorption and 

osteoporosis [98, 99] and in toxicity of CoCrMo particles in fibroblasts [6, 18, 20, 22, 

100], and may also play a role in the progression of lung diseases [101], such as those 

caused by cobalt-containing metal exposures [102]. Therefore, it is important to 

examine the capacity of nano- and micro-CoCrMo particles in causing oxidative stress 

in our cell models. In this case, we used a two-fold approach to assess the induction of 

oxidative stress using DCF, which serves as a ‘generalized’ marker for reactive oxygen 

species [103], and DHE, which serves as a specific marker of superoxide anion [104]. It 

seems that the oxidative responses against nano- and micro-CoCrMo particles were cell 

specific: both nano- and micro-CoCrMo particles resulted in significantly higher DCF 

levels and DHE levels in OB and M0 cells; significantly higher DCF and DHE levels 

were observed in macrophages at all concentrations studied (0.1-1000 µg/mL). It seems 

that the OB cells behaved like the M0 immune cells, which are known to exhibit a 

“respiratory burst” upon phagocytosis of microbes, marked by significant increases in 

the production of hydrogen peroxide and superoxide anion via enzymatic pathways that 

are critical for initiating anti-microbial response and infection clearance [105]. The 

significantly increased oxidative stress of OB and M0 cells may have contributed to the 

increased risks of implant loosening and osteolysis in orthopaedic implant patients. By 

contrast, BEAS-2B cells had no significant DHE changes but had significantly 

increased DCF levels at relatively high particle concentrations (e.g. 100 and 1000 

µg/mL). Moreover, nano-CoCrMo caused significantly higher levels of oxidative stress 

in lung epithelial cells compared to micro-CoCrMo particles at concentrations of 100 

and 1000 μg/mL, which was consistent with the expected size-dependent effect due to 

the increased reactive surface area of nano-CoCrMo compared to micro-CoCrMo. No 

significant differences were found in the DHE assay, which suggests that CoCrMo 

particles cause oxidative stress via other species than superoxide anion. Additionally, 

we found these results were consistent with the fibroblast studies in the literature [18, 

22], which found high levels of oxidative stress, marked by increased levels of DCF 

fluorescence, after as little as 2 hr of exposure [22] and increased levels of 8-OHdG 

staining, a marker of oxidative stress induced DNA damage, after 24 hr of exposure to 

CoCrMo particles [18]. Increased levels of oxidative stress in lung epithelial cells could 

ultimately lead to downstream effects such as DNA damage and genotoxicity upon 

long term exposure [16, 18-20] and may therefore be a contributing factor in the 

development of lung disease from pulmonary CoCrMo particle exposure in 

occupational settings.  

CONCLUSION 

This study examined the toxicity of nano- and micro-CoCrMo particles and 

determined whether their exposure induced oxidative stress in human lung epithelial 

cells, osteoblasts and macrophages. We found that both nano- and micro-CoCrMo 

particles can induce toxicity to osteoblasts and lung epithelial cells at doses of 100 

µg/mL or higher and to macrophages at doses of 10 µg/mL or higher, and the toxicity 

and oxidative responses are cell specific. Compared to micro-CoCrMo particles, nano-

CoCrMo particles resulted in significantly lower viability of macrophages at 1000 

µg/mL and significantly higher viability of lung epithelial cells at 100 and 1000 µg/mL 

and osteoblasts at 1000 µg/mL. At the same dose, significantly reduced viability of 

macrophages was also seen at shorter exposure times (e.g. 24 hr at 10 µg/mL and 6 hr 

at 100 µg/mL) exposed to nano-CoCrMo compared to micro-CoCrMo. Meanwhile, 
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compared to control, both nano- and micro-CoCrMo may lead to significantly 

increased DCF levels in the cell types tested. Compared to control, no significant 

differences in DHE levels were observed in lung epithelial cells while significantly 

higher DHE levels were found in both osteoblasts and macrophages at 0.1-1000 µg/mL. 

Compared to micro-CoCrMo, nano-CoCrMo particle treatment also caused 

significantly higher DCF levels in all three types of cells at high particle concentrations 

(i.e. 100 and 1000 µg/mL) and significantly lower DCF levels at 0.1, 1 and 10 µg/mL 

in macrophages. Nano-CoCrMo, compared to micro-CoCrMo, also resulted in 

significantly lower DHE levels at 0.1, 1, 10 and 100 µg/mL and significantly higher 

DHE levels at 1000 µg/mL in osteoblasts; there were also significantly higher DHE 

levels in macrophages at all doses studied. Therefore, these in vitro findings suggest 

that both nano- and micro-CoCrMo particles can induce toxicity and the responses of 

cell viability and oxidative stress are dose, exposure time and cell type specific. 
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FIGURE AND TABLE LEGEND 

Figure 1. A,B) Images and C,D) particle size distribution of A,C) nano- and B, D) 

micro-CoCrMo particles. 

Figure 2. Viability of BEAS-2B lung epithelial cells after exposure to A) nano- and B) 

micro-CoCrMo particles. (*P < 0.05, †P < 0.01 compared to control; ‡P < 0.05 vs. 

micro-CoCrMo)

Figure 3. Viability of osteoblasts after exposure to A) nano- and B) micro-CoCrMo 

particles. (*P < 0.05, †P < 0.01 compared to control; ‡P < 0.05 vs. micro-CoCrMo) 

Figure 4. Viability of macrophages after exposure to A) nano- and B) micro-CoCrMo 

particles. (*P < 0.05, †P < 0.01 compared to control; ‡P < 0.05 vs. micro-CoCrMo) 

Figure 5. BEAS-2B oxidative stress measured via fluorescence intensity of DCF after 

exposure to A) nano- and B) micro-CoCrMo particles. (*P < 0.05, †P < 0.01 compared 

to control; ‡P < 0.05 vs. micro-CoCrMo)

Figure 6. BEAS-2B oxidative stress measured via fluorescence intensity of DHE after 

exposure to A) nano- and B) micro-CoCrMo particles. (*P < 0.05, †P < 0.01 compared 

to control; ‡P < 0.05 vs. micro-CoCrMo)

Figure 7. Osteoblast oxidative stress measured via fluorescence intensity of DCF after 

exposure to A) nano- and B) micro-CoCrMo particles. (*P < 0.05, †P < 0.01 compared 

to control; ‡P < 0.05 vs. micro-CoCrMo)

Figure 8. Osteoblast oxidative stress measured via fluorescence intensity of DHE after 

exposure to A) nano- and B) micro-CoCrMo particles. (*P < 0.05, †P < 0.01 compared 

to control; ‡P < 0.05 vs. micro-CoCrMo)

Figure 9. Macrophage oxidative stress measured via fluorescence intensity of DCF 

after exposure to A) nano- and B) micro-CoCrMo particles. (*P < 0.05, †P < 0.01 

compared to control; ‡P < 0.05 vs. micro-CoCrMo)

Figure 10. Macrophage oxidative stress measured via fluorescence intensity of DHE 

after exposure to A) nano- and B) micro-CoCrMo particles. (*P < 0.05, †P < 0.01 

compared to control; ‡P < 0.05 vs. micro-CoCrMo)
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