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Abstract 

 

Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are rare but 

invariably fatal neurodegenerative diseases affecting both humans and animals. They are 

characterised by the accumulation of a misfolded form of the normal cellular prion protein, 

known as PrPC. No cure for these diseases currently exists, although many different compounds 

have been investigated as potential anti-prion therapeutics. Many have been found to be active 

in vitro but this has not been reproduced in vivo. The development of effective therapeutics for 

these diseases is therefore of crucial importance, as well as having potential implications for 

other protein misfolding diseases such as Alzheimer’s disease. 

 

The work outlined here details investigations into a group of around 200 indole-3-glyoxylamide 

compounds. These were screened in a cell line persistently infected with scrapie to establish and 

optimise their in vitro anti-prion activities, establish their structure-activity relationship and 

identify a lead compound.  Further studies investigated the pharmacodynamic and 

pharmacokinetic properties of the compounds by investigating the time taken for them to exert 

their anti-prion effect and their curative abilities. Initial investigations into their mode of action 

were carried out by examining their effect on cell growth and formazan exocytosis.  

 

Microarray and proteomics studies were carried out to investigate the molecular targets of the 

indole compounds, and these identified the proteasomal pathway as a possible target.  

Inhibition of the protein degradation systems, specifically the lysosomal proteases, resulted in a 

build-up of PrPSc but this could be mitigated by co-dosing with anti-prion compounds. Targets 

including HSP90, caspase-12 and MTF-1 were investigated using western blotting to try and 

quantify changes in expression as a result of treatment, with limited variation being observed.  

 

Finally, 3D in vitro models were investigated to gain further information on the potential in vivo 

activity of the compounds. Three different models were investigated with varying degrees of 

success and confocal microscopy was used to visualise the 3D structures. Good correlation with 

the published in vivo activities of other compounds used in the study suggests the indole 

compounds would be active in vivo, and two of the models used showed potential as high-

throughput screening systems.  
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1. Introduction 

 

1.1. Overview of Prion Diseases 

 

Transmissible spongiform encephalopathies (TSEs), also called prion diseases, are a family of 

diseases affecting both animals and humans (see Table 1). Animal diseases include bovine 

spongiform encephalopathy (BSE) in cows, chronic wasting disease (CWD) in deer and elk and 

scrapie, the prototypic disease, in sheep and goats. (1)  Human diseases include various types of 

Creutzfeld-Jacob disease (CJD), Gerstmann-Straussler-Scheinker disease (GSS), fatal familial 

insomnia (FFI) and kuru, as well as the recently identified variably protease-sensitive 

prionopathy (VPSPr). (2) These diseases are invariably fatal. BSE and its human counterpart CJD 

came to prominence in the mid-1990s when there was an outbreak of BSE among cattle. This led 

to the emergence of variant CJD (vCJD) in humans which is believed to be caused by the same 

prion strain that causes BSE, with the route of infection thought to be via dietary exposure to 

BSE prions. (1, 3-9)  Despite widespread fears of an epidemic in the human population, very few 

people have so far been afflicted by vCJD, with 177 cases of definite or probable vCJD reported 

in the UK and 51 cases reported in 11 other countries (as of April 2014). (8) All these diseases are 

linked to an abnormal isoform of a normal cellular protein, the prion protein or PrPC. The disease 

causing isoform of this protein is known as PrPSc.   

 

Prion diseases (TSEs) can be divided into 3 etiological categories. Sporadic TSEs arise as a result 

of spontaneous mutations that can lead to the formation of the abnormal isoform of the 

protein. Inherited TSEs are caused when the mutation rendering PrPC susceptible to 

spontaneous  conversion is passed on to offspring. A common polymorphism at residue 129 is a 

key determinant of susceptibility to inherited and sporadic prion diseases. (10) Dominant 

mutations in the gene encoding PrPC (PRNP in humans) can produce a mutant PrPC that more 

readily undergoes spontaneous transformation to PrPSc. (11) Transmissible TSEs can also be 

acquired through exposure to the abnormal prion isoform. For example, iatrogenic CJD can be 

passed on through contaminated growth hormone taken from infected cadavers. (10) Prion 

diseases are generally characterised by a classical triad of histological features; spongiform 

vacuolation (affecting any part of the cerebral grey matter), neuronal loss and astrocytic 

proliferation. (1) 
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Table 1: Prion diseases in humans and animals. (12)  
 

 

 

 

1.1.1. Prion Structure (PrPC) and Function 

 

1.1.1.1. PrPC Structure 

Much recent interest has focused on determining the role of the normal isoform of the protein, 

PrPC. It is hoped that elucidating the role and mechanism of action of the normal isoform of the 

protein may give a clue as to the way the misfolded isoform affects the nervous system.  

 

PrPC is present in a broad variety of species and is always glycosylated, membrane attached by a 

glycosylphosphatidylinositol (GPI) anchor and based on a common blueprint. (13) A flexible 

amino-terminal tail is linked to a globular carboxy-terminal domain with a strongly conserved 

fold which is stabilised by a disulphide bridge. The two domains are joined via a highly conserved 

hydrophobic linker. (13) PrPC is highly expressed in the nervous system but is also found in various 

components of the immune system, bone marrow, blood peripheral tissues and other organs. 

PrPC expression  is  affected by the maturity and cellular activation of different cell types. (14) 
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The mature PrPC protein, as shown in Figure 1, contains a well-defined c-terminal globular 

domain consisting of three alpha helices and two beta sheets, and a structurally less defined 

region containing a stretch of octapeptide repeats (the OR) and a charged cluster. The domains 

are linked by a hydrophobic stretch of amino acids, the hydrophobic core (HC). (14) 

 

 
 
Figure 1: The human prion protein. SP denotes the signal peptide. OR indicates the octapeptide 
repeats. H1 to H3 denote the three alpha helices. CD indicates the central domain and CR 
indicates the central region, which contain charged clusters (CC) and the hydrophobic core (HC). 
GPI represents the glycosylphosphatidylinositol (GPI) anchor. Crosses indicate the glycosylation 
residues at amino acids 180 and 196. Figure adapted from Linden et al. (14)  
 

Glycosylation occurs between residues 144-224, with glycosylation residues at amino acids 180 

and 196, and one disulphide bond is present between cysteine residues 179 and 214. (14)  The α-

helix domains are anchored to the detergent-rich areas of the membrane via a GPI anchor. (15) 

PrPC presents in three distinct topological forms: the fully extracellular form and two 

transmembrane isoforms known as N trans-transmembrane-PrP (NtmPrP) and C trans-

transmembrane PrP (CtmPrP). Classification depends on their sequence orientation with relation 

to the lumen of the endoplasmic reticulum (ER). (16) CtmPrP has its COOH-terminus in the ER 

lumen while the N-terminus is exposed to cytosolic proteases. NtmPrP is the other way round. 

 

1.1.1.2. Physiological Role of PrPC 

The role of PrPC within the cell remains ambiguous, despite extensive literature on the subject. 

Its conservation across species suggests an important evolutionary role, with genes related to 

the prion protein gene (PRNP) having been identified in birds, (17) amphibians (18) and reptiles. (19) 

Comparison of the translated sequences of 40 mammalian PrP genes shows a large degree of 

conservation between sequences, suggesting that PrPC may have an important function, (12) and 

the individual glycine residues in the glycine rich area of the hydrophobic core of PrPC have also 

been shown to be perfectly conserved across fifteen mammalian species. (20) It was hoped that 

the generation of a PrP knockout mouse model would help reveal the role of PrPC. However, 

initial studies of PrP knockout mice did not show an overt phenotype as had been anticipated, (21, 

22) although subsequent studies have revealed an abundance of more subtle phenotypes. (23) The 
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most striking feature of mice lacking expression of PrPC is their resistance to prion infection and 

their inability to replicate prions. (24) Other possible functions of PrPC suggested from mouse 

models include roles in sleep regulation, managing oxidative stress via copper binding, 

superoxide dismutase (SOD) and mitochondrial activities, immune system function, neuronal 

excitability, neuroprotection, learning and behaviour and stem cell biology. (23)  Additional 

studies in prion knockout mice have also demonstrated a wide range of effects including 

disruption of olfactory behaviour, (25) iron transport, (26) tooth development, (27) glucose tolerance 

(28) and regeneration of adult muscle tissue. (29) Experimental autoimmune encephalomyelitis 

(EAE), an autoimmune disease, was shown to be more severe in PrP knockout mice. (30) This was 

attributed to the role of PrPC as a negative regulator of T-cell receptor signalling which is critical 

to the development of EAE. This suggests a critical role for PrPC in maintaining the integrity of 

the CNS in times of stress. (30, 31) Knockout mice were shown to have lower levels of anxiety 

under artificially induced stressful conditions so it is possible that PrPC also has a role in 

managing the response to stress at a systems level. (32) 

 

One of the most frequently suggested cellular functions of PrPC is a survival-promoting effect on 

neuronal and non-neuronal cells. PrPC has been shown to have a cytoprotective function by 

decreasing the apoptotic rate after exposure to apoptotic stimuli. (33) It has also been suggested 

that PrPC protects against oxidative stress, possibly via its capacity to bind copper. (34-36)  In vitro 

studies of rat pheochromocytoma cells showed those selected for resistance to copper toxicity 

or oxidative stress had higher levels of PrPC. (37) In addition, PrPC deficient primary neurons were 

more susceptible to agents inducing oxidative stress compared with wild type cells. (38) This was 

explained by a reduced level of Cu/Zn SOD activity although whether PrPC itself has SOD activity 

is  disputed. Although it has been suggested that PrPC could have SOD-like activity, (39) this has 

not been reproduced in vitro or in vivo.  (40-42) There is also a generally held view, which is widely 

supported, that PrPC is an important protein in synapses and is possibly involved in synapse 

formation. (43) The functional role of PrPC in the synapses has been suggested on the basis of its 

copper binding ability, (35) and it is thought that it can significantly modulate neuronal excitability 

and synaptic activity. (14) PrPC may participate in synaptic transmission by helping 

neurotransmitter release, controlling Ca+ flux, participating in long term potentiation and 

altering expression of neurotransmitter receptors. (44) There are also suggestions that PrPC is 

involved in neurite outgrowth and maintenance of the white matter, and axonal PrPC is 

important in the maintenance of peripheral myelin. (45)  
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Various other roles for PrPC have been suggested. Down regulation was found to impair cell 

adhesion in the zebrafish embryo, ultimately causing developmental arrest. (46) Interactome 

analysis suggests a role for PrPC in lactate metabolism, and the same study verified laminin 

receptor precursor (LRP) as a genuine interactor. (47) PrPC can act as a marker for hematopoietic 

stem cells and supports their self-renewal. It may protect the stem cells from apoptosis or 

sustain their long term renewal. (48) PrPC also has a variety of roles in the immune system. It 

presents both in the innate immune system on several types of antigen presenting cells including 

dendritic cells, and in the adaptive immune system on T lymphocytes. (49) PrPC has been shown to 

modulate the responses of immune cell precursors, promote the assembly of T-cell receptor 

(TCR) complex components, negatively modulate  phagocytosis and various aspects of peripheral 

inflammation and it may play an important role in the development and maintenance of the 

immune system. (14, 50) 

 

 

1.1.2. Prions and Disease 

 

1.1.2.1. Protein Misfolding Diseases 

Prion diseases belong to a group of diseases known as proteinopathies, which are diseases 

associated with abnormal protein deposition. (51) The proteinopathies include Alzheimer’s 

disease, Parkinson’s disease, Huntington’s disease, tauopathies and amyloid lateral sclerosis 

(ALS), and are thought to involve the prion-like induction of protein deposition via corruptive 

protein templating, also known as seeding. (52) This suggests that an underlying cause of many of 

these common neurodegenerative diseases is the seeded corruption of proteins that, under 

normal conditions, are harmless. (53)  Although the majority of human proteopathies are thought 

to arise sporadically, there is evidence that some of these diseases may also be transmissible 

under experimental conditions. (54)  

 

The different types of prion diseases are summarised in Table 1 and demonstrate the range of 

species affected by these diseases via different mechanisms. Transmission of disease between 

species has been shown to be far less efficient than transmission within species, (55) and the 

slight variations between sequences result in a ‘species barrier’, first noted in 1965. (56) The 

central event in prion disease pathogenesis is the conversion of the normal cellular protein, PrPC, 

into an insoluble and partially protease resistant isoform known as PrPSc which is able to 

propagate itself via further conversion of PrPC molecules. (15) 
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1.1.2.2.  The ‘Protein-Only’ Hypothesis 

The infectious nature of prion diseases was first identified when a herd of sheep were accidently 

inoculated with a vaccine contaminated with the scrapie agent, with 10 % of the herd going on 

to develop scrapie. (57) Scrapie was subsequently transmitted successfully to mice. (58) An 

infectious route for the human disease Kuru was also established in the late 1960s by the 

demonstration that the disease could transfer from humans to monkeys. (59)  The infectious 

agent was proposed to be a type of slow virus due to the long incubation times (60) but the 

finding that the infectious agent was resistant to procedures known to destroy nucleic acids cast 

doubt on this theory. (61) There was early speculation that the infectious particle may be a 

protein in the late 1960s (62) but this was not explored further until the term ‘prion’ was coined 

by Stanley Prusiner in 1982. (11) He hypothesised that the infectious agent was a ‘proteinaceous 

infectious particle’, also known as the protein-only hypothesis. 

 

Initial evidence in favour of the protein-only hypothesis came from the identification of 

protease-K resistant PrP, and the finding that the concentration of this protein corresponded 

directly to infectivity. (63, 64) This abnormal PrP was termed PrPSc, due to its association with 

scrapie, and the protease-resistant core was termed PrPres or PrP27-30 due to its molecular size. 

Both forms of the protein were shown to be encoded by the PRNP gene, directly linking the 

infectious agent with the normal cellular form of the protein (65) and the finding that transgenic 

mice that did not express PrPC were resistant to infection with PrPSc reinforced the importance 

of the normal cellular isoform in disease pathogenesis. (24) In addition, the discovery that 

infectivity could be propagated in mouse neuroblastoma cells inoculated with both brain 

homogenate (66) and PrPSc derived from infected brains and spleens (67) provided further evidence 

to support the theory.  

 

The experiment showing that PrPSc was able to induce the conversion of PrPC in a cell free 

system (68) was a key piece of evidence in support of the protein-only hypothesis, and these 

initial studies have been advanced by the development of Protein Misfolding Cyclic Amplification 

(PMCA). (69) For many sceptics, evidence that de novo, infectious prions could be formed in vitro 

was an essential piece of evidence that was required for the protein-only hypothesis to be 

accepted.  Synthetic prions which were shown to induce neurodegenerative disease in mice that 

overexpressed PrPC were first produced in 2004. (70) A subsequent study used PMCA to generate 

prions from an initial mix of PrPC and PrPSc, and these prions were able to induce 

neurodegenerative disease in wild type animals. (71) The demonstration that de novo, infectious 
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prions could be generated from both PrPC (72, 73) and rPrP (74-76) without initial seeding of PrPSc and 

with minimal additional factors has been suggested as a crucial piece of evidence in favour of 

the protein-only hypothesis. (77) The importance of co-factors has been demonstrated, with 

prions formed in the presence of phosphatidylethanolamine and RNA being around 1 million 

fold more infective than ‘protein-only’ prions. (78) The role of co-factors is not thought to negate 

the protein-only hypothesis as the main mode of disease transmission is still protein based. (77)  

 

The identification of different prion strains within TSEs provided a further challenge to the 

protein-only hypothesis, as conventional wisdom dictates that different strains of infectious 

particles are a consequence of changes to the genetic code. (79) It has been demonstrated that 

the properties of each strain can be encoded into the structure of PrPSc, resulting in different 

conformations and aggregation properties that can be faithfully reproduced by PrPC. (80-82) 

Different strains of PrPSc have been defined using their biochemical characteristics (83) and can be 

structurally distinguished from each other. (84)  PMCA can replicate the properties of different 

strains over multiple cycles, (85) and it has also been suggested that the co-factors required for 

the generation of de novo prions may encode strain properties by affecting prion conformation. 

(78) It can therefore be seen that there is significant evidence to suggest that the properties of 

different strains are encoded by the structural conformation of the specific prion. 

 

There have been suggestions recently that the definition of the term ‘prion’ should be changed 

to make it applicable to a wider range of neurodegenerative diseases that are not conventionally 

thought of as infective. (86) It has therefore been suggested that the definition of prion be 

changed to ‘proteinaceous nucleating particle’, to encompass the pathological events that occur 

in non-infectious proteinopathies and bring all these conditions under the umbrella of the prion 

concept.  

 

1.1.2.3. Disease Transmission and Infectivity 

As discussed in section 1.1.1.2 a unique feature of the prion diseases is their infectious nature, 

unlike the other proteinopathies which are not conventionally seen as infectious. PrPSc is 

thought to be the main constituent of the infectious agent, based originally on the finding that 

PrPSc purified from the brains of diseased animals was closely associated with infectivity. (11) The 

route of transmission can depend on the disease being studied. (83) Scrapie has been shown to be 

readily communicable between flocks although the mechanism is not understood. BSE is 

believed to be caused by cattle being fed meat and bone meal, and a significant body of 
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evidence suggests that the BSE prions were subsequently transmitted to humans via ingestion of 

contaminated meat, resulting in vCJD. (1, 3-9) CWD is thought to be spread through grazing in 

contaminated areas. It has been suggested that human diseases can be passed on through the 

use of contaminated surgical equipment, transfusion of contaminated blood or the use of 

contaminated human growth hormone. Under experimental conditions the fastest method to 

induce disease is intracerebral inoculation of PrPSc, although intravenous and intraperitoneal 

injections can also be used. (83) 

 

An interesting feature of prion diseases is the species and strain specificities of the disease. Cell 

free conversion assays have shown that PrPSc is able to induce the conversion of PrPC into the 

abnormal form. (68) However, attempts to drive this reaction using PrPC and PrPSc from different 

species have so far failed. (87-90) A correlation between the known in vivo transmissibility of TSE 

agents between species and the efficiency of the cell free conversion has been observed. (90) 

Analysis of sequence homology indicates that efficient PrPSc formation depends on homology in 

the central third of the PrP molecule. (91-93) Inoculation of one species with PrPSc from another 

species will result in prolonged incubation times or even the absence of disease pathology 

depending on the PrPSc strain and host animal. The codons located between residues 90 and 130 

are thought to influence transmissibility in humans and other mammals. (94) Different strains are 

characterised by differences in proteinase K (PK) digestion kinetics, ratios of the three principal 

PrP glycoforms, incubation time and PrPSc deposition levels. (95)  

 

The process of prion infectivity is termed neuroinvasion and is reviewed in. (83) It is thought to be 

a biphasic process, with the initial phase involving colonisation of lymphoreticular organs, and 

the second involving the somatic nervous system. The exact mechanism of transfer through the 

peripheral nerves is not understood. The entry of prions into neurons and subsequent transit to 

the CNS may occur via direct uptake by nerve endings in the intestine. (96) The lymphoid system 

has been shown to contain infectious particles (97) and a decrease in lymphocyte numbers results 

in a decrease in peripheral prion pathogenesis unless prions are delivered directly to the CNS. (98) 

Conventional dendritic cells have a critical role in initial prion capture (99) and functional follicular 

dendritic cells (FDCs) are crucial for peripheral prion accumulation, (100) with β-lymphocytes also 

being essential as they provide the maturation signals for the FDCs. (101) The vagal nerve and 

sympathetic nervous system are subsequently involved in transporting prions to the CNS. (102) 

Phagocytes have also been implicated in spreading infection, even though they are also thought 

to be a likely pathway for prion clearance, as increasing numbers of aggregates may result in 
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saturation of phagocytic clearance, with smaller aggregates being cleared while larger 

aggregates remain intact. (103) It has also been suggested that prions may hijack tunnelling 

nanotubes, which are possibly a conserved mechanism for cell communication, to spread from 

the intestinal entry site to the CNS. (104, 105) The relationship between the size of the aggregate 

and its infectivity has been investigated, with the most infectious particles found to be small 

oligomers containing between 12 and 24 monomers. (106, 107) 

 

Investigations into the transmission of PrPSc within cell cultures have yielded further information 

on the mechanism of transmission. (108) Initial uptake of a preparation of PrPres has been shown 

to be independent of PrPC, although uptake was affected by the PrPres preparation and aggregate 

size and only occurred in a subset of cells. (109) The propagation of prions within persistently 

infected cells has been shown to occur primarily via vertical transmission of prions from mother 

to daughter cells, (110) implying that mechanisms are in place for the partitioning of seeds during 

cell division. Horizontal transmission has also been documented, with PrPSc shown to spread to 

adjacent, uninfected cells after its release in exosomes from infected cells, (111-113) although 

horizontal transmission is generally less efficient. (110)     

 

1.1.2.4. Conversion of PrPC to PrPSc 

According to the protein-only hypothesis, discussed in section 1.1.2.2, the central event in prion 

disease pathogenesis is the conversion of the normal isoform of the prion protein, PrPC, into the 

abnormal form, PrPSc. PrPC is thought to be converted to PrPSc after it is translated, glycosylated, 

linked to a GPI anchor and carried to the cell surface. (114) Translation of PrPC to PrPSc results in 

the conversion of a predominantly α-helical structure into a predominantly β-sheet structure. (14) 

PrPC is composed of 43 % α-helices with no β-sheet structures, while PrPSc is composed of 20 % 

α-helices and 34 % β-sheets, (115) with two of the four PrPC helices being converted to β-sheets. 

(116) The exact structure of PrPSc has not been fully determined as the insolubility of the protein 

renders it unsuitable for structural studies, although the high β-sheet content explains the 

tendency of PrPSc to form protease resistant aggregates within the brain. (115) Despite this, 

various structural models of PrPSc have been proposed (see Figure 2). (117) The β-helix model, as 

seen in Figure 2a, was proposed on the basis of electron crystallography data, and was based on 

the contention that the structure of PrP is compatible with a parallel left-handed β-helical fold. 

As these structures readily form trimers, it was suggested that they would provide a natural 

model for a trimeric PrPSc molecule. (118) The β-spiral model, as seen in Figure 2b was predicted 

by molecular dynamic simulations, which aimed to predict the molecular basis of conversion 
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using a model of PrPC within an environment that is conducive to conversion. (119) In both the β-

helix and the β-spiral models the formation of β-sheets is thought to occur within the natively 

unfolded N-terminal region of PrPSc, preserving the α-helices that are characteristic of PrPC. The 

extended register β-sheet model, as seen in Figure 2c is radically different and proposes a 

complete refolding of the protein, thereby removing the structural motifs of PrPC. This model 

was based on studies using hydrogen-deuterium exchange coupled to mass spectrometry (HX-

MS) and used either recPrP (120) or brain-derived PrPSc. (121) 

 

 
 
Figure 2: Diagrammatic representation of three of the different models proposed for the 
structure of PrPSc. a. shows the β-helical model, with refolding of the N-terminal region of PrPC 
into a β-helix motif from residues 90 to 177. The α-helical motif of PrPC is maintained. b. shows 
the β-spiral model, consisting of a spiralling core of extended sheets comprising short β-sheet 
strands, again with the maintenance of the α-helical motif. c. shows the extended register β-
sheet model, which proposes a complete refolding of PrPC into a structure composed mainly of 
β-sheets. Figure adapted from Diaz-Espinoza et al. (117) 
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A western blot of PrPC and PrPSc can be seen in Figure 3. PrPSc bands appear at a lower molecular 

weight after PK digestion as the PrP molecules are cleaved at the N-terminal. (115) Removal of a 

12 kDa fragment results in a truncated form of PrPSc which remains infectious and is known as 

 PrP27-30  or PrPres, and is resistant to PK digestion. (122) 

 
 

Figure 3: Western blot of brain homogenate from uninfected hamsters (1 and 2) and hamsters 
infected with scrapie (3 and 4). Lanes 2 and 4 are treated with PK, demonstrating the hydrolysis 
of PrPC and the presence of the PK resistant core in the infected sample known as PrP27-30 or 
PrPres. Figure adapted from Colby and Prusiner. (12) 
 

Following the introduction of PrPSc from either infection or conversion from PrPC, the interaction 

of PrPSc with PrPC is thought to lead to further conversion of native PrPC. This results in the 

accumulation of PrPSc at the expense of PrPC, and is believed to be the main pathogenic event 

leading to neurodegeneration. (14) The mechanism of conversion of PrPC to PrPSc is yet to be fully 

elucidated. The resistance of PrP null  mice to infection has shown that PrPC expression is 

necessary for PrPSc replication, (23) and dimeric PrPC has been shown to bind PrPSc suggesting that 

conversion is instructed by PrPC. (123) Two theories have been suggested to explain how PrPSc 

causes the misfolding of endogenous host PrPC; the template directed refolding model and the 

noncatalytic nucleated polymerisation model. (124) The template directed model (Figure 4a) 

suggests that the introduction of PrPSc starts a catalytic cascade using PrPC, or an intermediate 

(PrP*) as a substrate. Due to the high energy barrier it is thought unlikely that this would be a 

spontaneous event and would therefore require chaperone activity and energy. The involvement 
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of an, as yet unidentified, ‘protein X’ has been postulated. (125, 126) However, a recent study 

looking at the inhibition of PrPSc propagation thought to be caused by competition for binding to 

protein X found that inhibition occurred without the need for an accessory co-factor. (127) This 

study also found that some mutations of the putative protein X binding site didn’t inhibit the 

formation of PrPSc, arguing against the involvement of protein X as a co-factor. (127)  

 

The other model is the noncatalytic, or seeding model (Figure 4b), also known as the nucleation-

dependent polymerisation model, which suggests that conformational change is 

thermodynamically controlled. Converted PrPSc is only established once it is added to a seed or 

PrPSc aggregate, with formation of the initial seed being the rate limiting step. The subsequent 

fragmentation of these aggregates, and the concomitant increase in aggregate numbers, results 

in exponential conversion rates. (128) In a cell free model PrPC can be converted to PrPSc by 

incubation with PrPres. (71) Aggregation is intrinsic to conversion, supporting the nucleation 

theory, and the initial lag phase can be overcome by seeding with preformed aggregates. (129, 130) 

Protein Misfolding Cyclic Amplification (PMCA) was developed based on this seeding model of 

prion replication, and allows the amplification of PrPSc by breaking up aggregates and then 

seeding them with PrPC, which is subsequently converted to PrPSc with the same conformation as 

the original aggregate. (69, 71)  A large number of cycles can cause increased amounts of de novo 

PrPSc. (103)  The use of the nucleation dependent polymerisation model as the basis for PMCA 

provides strong evidence that this model describes a key route by which prions are propagated, 

and this conclusion is further emphasised by the finding that prions in yeast and filamentous 

fungi propagate via protein aggregate fragmentation. (108) 
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Figure 4: Models for the conversion of PrPC to PrPSc. The refolding model suggests that the 
introduction of PrPSc starts a catalytic cascade using PrPC or an intermediate as a substrate. The 
seeding model suggests that PrPSc seeds result in the subsequent conversion and aggregation of 
PrPC. Figure adapted from Weissmann. (128) 
 

Despite extensive investigations the site of PrPC conversion still remains elusive. It has been 

found that cholesterol is needed for the cell surface localisation of PrPC, and this in turn is 

essential for the formation of PrPSc. (131, 132) Both isoforms of the protein are associated with lipid 

rafts (132-135) and the lipid rafts within the plasma membrane have been suggested as a possible 

site for conversion or interactions between the molecules. (136-139) Subsequent investigations 

have provided further evidence for this supposition, and the association of PrP with the lipid 

rafts is thought to be key to conversion. (140) The role of the lipid rafts is unclear; it is possible 

that they provide an optimal environment for conversion, they may contain a crucial co-factor 

required for conversion, or they may facilitate the co-internalisation of PrPC and PrPSc, promoting 

their conversion. (141) The role of intracellular pathways in conversion has also been investigated, 

with PrPSc aggregates being found along the endocytic pathway in early endosomes, the 

recycling compartment and the late endosomes and lysosomes. (142) The endosomal recycling 

compartment (ERC) has been identified as a site of PrPC conversion (143) and it has been 

suggested that conversion may occur as the two forms pass through the ERC together. (144) The 

generation of epitope-tagged PrPSc had provided further insights, demonstrating that the initial 

infection of cells occurs within 1 minute of exposure, with the plasma membrane being the 

primary site of conversion. (145) After conversion the PrPSc is rapidly internalised to the early 
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endosomes before either being recycled to the plasma membrane or being degraded by the 

lysosomes  via retrograde transport to the golgi body. (144) 

 
 
Figure 5: Diagrammatic representation of possible sites of PrPC conversion. PrPC is synthesised in 
the ER before translocation to the cell surface, where it resides in the lipid rafts. After 
internalisation via clathrin-dependent endocytosis (I) or caveolin-dependent internalisation (II) 
PrPC can be degraded by lysosomes or recycled to the cell surface via recycling endosomes. PrPC 
conversion is thought to occur either at the cell surface or along the endolysosomal pathway, 
and PrPSc can accumulate at the cell surface or in intracellular vesicles such as lysosomes. Figure 
adapted from Grassmann et al. (146) 
 

There are several molecules that have been implicated in the conversion of PrPC to PrPSc. The GPI 

anchor is thought to be a major determinant of conversion, and enzymatic modification of the 

GPI anchor has been shown to reduce the capacity of PrPSc to bind and replicate within cells. (147) 

The subunit of gamma-aminobutyric acid type A (GABAA) receptors known as GABAA receptor 

type 1 (garbrb1) has been found to associate with the formation of PrPSc and inhibition of gabrb1 

dose dependently decreased levels of PrPSc. (148) Glypican-1 has been proposed as a novel co-

factor which acts by forming a scaffold which facilitates the interaction of PrPC and PrPSc in lipid 

rafts. It has also been suggested that the heparin sulfate chains of glypican-1 may destabilise 

PrPC and therefore facilitate refolding in the presence of PrPSc. (149) The presence of lipids and 

RNA was found to be required for the efficient formation of infectious prions in vitro using 

PMCA, suggesting that these co-factors may have an important role in conversion. (78) An 
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unidentified nucleic acid has been proposed as a catalyst for the conversion of PrPC to PrPSc, and 

it was also postulated that the nucleic acid and PrP may rely on each other for propagation. (150)  

 

The PrPSc cleavage products are also thought to have a role in conversion. The C2 cleavage 

product is a C-terminal fragment about the same size as PrPres, and is the primary cleavage 

product in scrapie-infected brains. Decreased production of this cleavage product via calpain 

inhibitors can prevent the accumulation of PrPSc in cell cultures. (151) On the other hand, the C1 

cleavage product, which is membrane anchored, has been suggested as a dominant-negative 

inhibitor of PrPSc formation by competing with PrPC for binding to PrPSc seeds. (152) Finally, the 

endosomal-lysosomal system has been implicated in the formation of PrPSc, with lysosomes 

being a likely site for conversion. (153) 

 

1.1.2.5. Mechanisms of Prion Neurotoxicity 

The mechanism by which PrPSc induces a neurotoxic effect is still subject to debate, despite 

extensive literature on the subject. The identity of the neurotoxic molecule is also yet to be 

established with any certainty. Prusiner proposed PrPSc as the infectious molecule due to the 

infectivity associated with PrPSc purified from the brains of diseased animals. (11) Subsequent 

investigations have shown that the presence of PrPSc does not always induce disease and vice 

versa; disease pathology has been observed without PrPSc accumulation (154-156) while the 

accumulation of PrPSc has been observed without the onset of clinical symptoms. (157, 158) PrPC is 

required for the development of disease, suggesting that the conversion of PrPC to PrPSc is 

central to disease pathogenesis, (24, 95, 159, 160) and knockout of PrPC can reverse disease 

progression despite the accumulation of PrPSc. (161, 162)  

 

The dissociation of toxicity and infectivity was first suggested in 1993, (21, 24) with key evidence 

supporting this uncoupling coming with the identification of subclinical prion infections, 

characterised by experimental animals that were asymptomatic carriers of infection. (163) A 

possible explanation for the apparent uncoupling of neurotoxicity and infectivity has come from 

the suggestion that toxicity may be modulated by a toxic PrP intermediate. (158, 163) Studies have 

suggested that toxicity may be attributable to a specific toxic PrP that is distinct from PrPSc and 

probably consists of small oligomers. (129, 152, 164) A general model was proposed with the rate of 

neurodegeneration depending on the levels of this toxic intermediate, PrPL, with the toxic 

effects occurring when PrPL levels crossed a hypothetical local threshold. (95) This was further 

developed into a model which proposed that disease progression occurs in two distinct phases; 
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In the first phase PrPSc propagates exponentially, infectivity increases but no clinical disease is 

apparent, while in the second phase PrPSc levels plateau, infectivity remains constant but clinical 

disease develops. The length of phase two was inversely proportional to PrPC levels. The results 

from this model suggested that PrPL may be produced by a pathway separate from, but linked 

to, propagation, with PrPSc perhaps acting as a catalytic surface for PrPL production. (165) 

 

Further insights into the nature of the toxic molecule have been revealed from the study of non-

infectious PrP molecules that can induce neurodegeneration without the formation of infectious 

PrPSc. (166) The residues at 105-125, in the central region (CR) of PrP, were found to be key to 

neurodegeneration, with mice expressing PrP with this area deleted showing a very severe 

neurodegenerative phenotype. A mechanism was proposed whereby a receptor molecule for 

PrPC is responsible for transducing a signal, with binding at two sites on PrP to this target 

molecule being required for normal signalling. These sites were suggested as the residues at 

105-125 and an area in the C-terminal. Binding of one site only would induce a neurotoxic signal, 

while binding at both sites would either silence this signal or transmit a harmless signal. This 

theory is supported by the observation that PrPSc may be conformationally altered in the CR, (167) 

and by the observed toxicity of the PrP peptide 106-126 (168-170) which would competitively 

inhibit binding of PrPC at both binding sites.  

 

Along with the debate around the nature of the neurotoxic molecule, uncertainty remains over 

the pathways involved in inducing neurodegeneration. The requirement for PrPC to be present 

for neurodegeneration to occur has led to the suggestion that binding of PrPC to PrPSc may 

trigger transmission of a neurotoxic signal from the extracellular milieu. (103) This is supported by 

the finding that antibodies that bind to PrPC and cause cross-linking of PrPC molecules can induce 

neurotoxicity. (171) The loss of the hypothesised PrPC neuroprotective effect, as a result of 

conversion to PrPSc, is not thought to contribute to neurodegeneration, as PrPC depletion results 

in reversal of disease progression rather than further neurodegeneration. (83) A ‘loss of function’ 

hypothesis is therefore thought to be unlikely although the continued accumulation of PrPSc 

without neurotoxicity in the absence of PrPC suggests that PrPSc toxicity may be a PrPC 

dependent process. (159)  

 

Abnormal topologies and altered trafficking of PrPSc have also been suggested to contribute to 

neurodegeneration. (83) An excess of ctmPrP, a transmembrane form of PrPC with the C-terminal in 

the ER lumen, has been linked to neurodegeneration (16) although no direct evidence is currently 
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available to support this supposition. (103) A neurotoxic, cytosolic form of PrPC (cytPrP) has been 

identified that accumulates in the cytosol and forms PrPSc-like structures, (172, 173) although, again, 

the role of this cytosolic PrPC has been debated. (174, 175) Endoplasmic reticulum (ER) stress, a 

commonly observed occurrence in prion diseases, (176) has been suggested to result in the 

formation of this toxic PrP species, and has therefore been suggested as a possible mechanism 

of toxicity. (177-179) The observation that cytPrP accumulated as a result of proteasomal inhibition 

led to further investigations into the role of the ubiquitin-proteasome system (UPS) in 

neurodegeneration. It was shown that propagation of PrPSc in the presence of UPS inhibition 

resulted in the formation of PrPSc aggregates that activated caspase-dependent neuronal 

apoptosis, suggesting that proteasomal inhibition may lead to neurodegeneration. (180) A direct 

relationship was also observed between prion neuropathology and UPS impairment in prion-

infected mice, (181) and prion oligomers have also been shown to inhibit the proteasome (181, 182) 

suggesting that this may be a self-propagating cycle. It has been suggested that PrPC may 

mediate toxicity in conjunction with one of its interaction partners, although none of these are 

currently known to have any association with prion-linked neurodegeneration. (103) A final 

hypothesis relating to the role of PrPC is that PrPC may form transmembrane pores which could 

trigger neurotoxic damage. (183) However, there is currently no evidence that these pores form in 

vivo after infection.  

 

Normal cellular pathways have also been suggested to have a role in prion induced 

neurodegeneration. (184) In prion infected mice the PERK/eIF2α branch of the unfolded protein 

response (UPR), responsible for the transient shutdown of protein synthesis, was activated. This 

resulted in a 50 % decrease in synaptic proteins at 9 weeks post inoculation (wpi) with prions, 

with neuronal loss occurring a week later. (185) When prion infected mice were treated with 

inhibitors of this branch of the UPR at 9 wpi,  global protein synthesis rates were restored and no 

neuronal loss in the hippocampus was observed. (186) The inhibitor mice also demonstrated 

dramatically increased survival. (186) There is evidence that this pathway is relevant not just in 

mice but also in human patients; increased UPR activation and the activation of PERK and eIF-2α 

have been observed in the brains of patients with Alzheimer’s disease, Parkinson’s disease and 

Prion disease, suggesting that this may be a generic neurodegenerative pathway. (184) 

 

Synaptic impairment has also been suggested to contribute to neurodegeneration. Mutant PrP 

has been shown to disrupt cerebellar glutamatergic neurotransmission by reducing the number 
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of functional channels in cerebellar granule neurons, resulting in synaptic dysfunction and 

neurotoxicity. (187)  

 

 

1.1.3. Therapeutic Targets and Strategies 

 

The majority of research into anti-prion therapeutics has targeted either the normal prion 

isoform (PrPC) or the abnormal isoform (PrPSc). PrPC is a critical susceptibility factor for TSE 

diseases, with absence of PrPC in a host conferring resistance. (24, 159-162) The presence of PrPSc 

also directly relates to TSE infectivity. (188) There are three main models for demonstrating an 

anti-prion effect. (189) The first in vitro method is to incubate PrPC with PrPSc under particular 

conditions and measure the cell-free conversion of PrPC to PrPSc. (68) This model system can be 

used to assess the impact of potential therapeutic compounds on conversion in vitro, but does 

not allow measurement of any effect on infectivity. (190) Protein misfolding cyclic amplification 

(PMCA) is widely used for these investigations and uses crude brain homogenates to achieve 

higher yields of PrPSc. (191) PMCA has also been used to demonstrate the generation of de novo 

infectious prions capable of inducing disease in wild type animals. (72-74, 78) The second in vitro 

method employs infected cell cultures that persistently propagate infectious prions to screen 

potentially therapeutic compounds. (192, 193) In most cases prion infection does not induce any 

visible morphological or pathological changes to the cell cultures, meaning they can be used for 

this application. (108) Finally, animal models of prion disease allow the investigation of the effects 

of compounds in the whole organism. (189) Various compounds have been investigated although 

only two, quinacrine and pentosan polysulfate (PPS) have gone on to clinical trials. The 

quinacrine trials showed very limited success, (194) but the PPS trials were more encouraging with 

intraventricular administration increasing survival in patients with vCJD. (195-198) Interestingly, 

however, no alteration to the neuropathological changes in the brain was observed as a result of 

PPS treatment. An important but elusive goal is to be able to treat the disease after the 

appearance of symptoms, most likely by some combination of inhibiting PrPSc formation, 

destabilising existing PrPSc, blocking the neurotoxic effects of the infection and promoting the 

recovery of lost functions in the CNS. (199) Most efforts to date have targeted PrPSc accumulation 

(200) although given the suggestion that a different molecule may be responsible for the 

neurotoxic effect this may not be the most effective strategy. (95, 129, 152, 158, 163, 165)  
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An important target in developing anti-prion therapeutics is identifying epitopes essential for the 

conversion of PrPC to PrPSc, and also the identification of any co-factors that may be necessary 

for the reaction to occur. There has also been interest in using the immune system as a means of 

targeting prion diseases and work has pointed to a pivotal role for the immune system in prion 

infection from peripheral sites. (101, 201-204) As a result of the species and strain specificities of the 

disease, explained previously, it is desirable to be able to test compounds against multiple TSEs 

in multiple cell types. (205, 206) 

 

1.1.3.1. Anti-Prion Drug Discovery 

Several classes of anti-prion agents have been investigated (see Table 2).  Although some of 

these have been successful in in vitro and in animal models there has been little success in 

clinical trials or in finding a compound that is able to reverse disease symptoms once they have 

first appeared. Certain compounds that show activity in vivo require administration at the point 

of infection to be effective, so would therefore be no use in ‘real life’ cases of prion disease. The 

best compounds currently available can only modestly delay disease onset or death in vivo, 

although a promising class of PERK inhibitors have been discovered that seem to be able to 

‘cure’ infected animals. (186) These compounds work by reversing the shutdown of global protein 

synthesis caused by activation of the PERK/eIF-2α branch of the UPR, therefore restoring 

synthesis of synaptic proteins and preventing neurodegeneration. Exactly how long the mice 

used in this study would have survived is unknown as the experiment had to be cut short due to 

side effects, but these initial studies showed great promise. Anti-prion compounds can exert 

their effect via a variety of different mechanisms. PrPC and/or PrPSc can be stabilised by 

compounds that bind one or both isoforms, preventing conversion or aggregation. Limiting 

availability of PrPC, either by knocking it out or by altering the cell membrane composition to 

remove it from the cell surface, removes PrPC as a substrate for conversion. The cellular 

degradation machinery can be upregulated to increase degradation of misfolded PrP, and co 

factors thought to be involved in conversion can be targeted to reduce their efficacy. Other 

strategies include halting neuroinvasion, reducing oxidative stress and disrupting aggregates of 

PrPSc, and all will be discussed in further detail.   
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Table 2: Compounds exhibiting therapeutic and/or prophylactic anti-prion effects tested in cell 
cultures and/or bioassays. Table adapted from Trevitt and Collinge. (207)   
 

 

 

The polysulfated polyanionic compounds, also known as glycosaminoglycans (GAGs), are 

components of the extracellular matrix and are thought to act by competing with endogenous 

GAGs for binding to PrPC and PrPSc. (207) Pentosan polysulfate (PPS) is a simplified version of an 

endogenous GAG and has been shown to restrict the replication of PrPSc and delay the onset of 

clinical disease when administered directly to the brain either before or around the time of 

infection in hamsters and mice. (208-210) PPS has also shown a prolongation of survival time in 

clinical trials when administered intraventricularly, as discussed previously. (195-198) It has been 

suggested to work by reducing the available concentration of PrPC, thereby limiting substrate for 

conversion, (211, 212) and has also been shown to compete with endogenous GAGs for binding to 

PrPC. (213) Other polysulfated, polyanionic compounds such as dextran sulfate and heparin have 

also demonstrated anti-prion activity in vitro, with dextran sulfate also active  in vivo. (214-216) 

Congo red is an azo dye which is able to stack extensively and mimic larger sulfated polyanions, 

suggesting a mechanistic similarity to the GAGs. (207) Congo red and its analogues have been 
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extensively investigated in order to establish their anti-prion activities and determine a 

structure-activity relationship (SAR). (217-220) Congo red is thought to work by binding to and 

stabilising PrPC, and has been shown to bind non-specifically to rhPrP (221) and a carboxy-terminal 

domain of PrP (PrP 121-231) (222) by Surface Plasmon Resonance (SPR). It has been shown to 

decrease the β-sheet content of rhPrR and therefore increase susceptibility to PK digestion (223) 

as well as rendering PrPSc resistant to denaturation, thereby stabilising the structure and 

reducing the potential for further conversion. (224) Additional studies have shown that congo red 

analogues can prevent polymerisation of PrPC in a cell free assay. (190, 218, 225) These analogues 

have also been suggested to work by increasing proteasomal degradation of PrPSc by altering the 

rate at which PrPSc is identified as a misfolded protein, and antagonising the inhibition of the 

proteasome by PrPSc. (220) The other GAG related compound, suramin, causes the intracellular 

aggregation and degradation of PrPC, removing it from the cell surface. (226)  

 

Some compounds have been found to work by rendering PrPSc molecules protease sensitive by 

dissociating PrPSc aggregates. Branched polyamines are thought to work in this manner. (227-230) 

Several preparations of branched polyamines were tested on prion infected neuroblastoma cells 

(ScN2a) and were found to eliminate all PrPSc and cure the cells of infection. (227, 229)  The 

branched polyamines were most effective in an acidic environment and were shown to 

accumulate in lysosomes, which are a known site of PrPSc accumulation. (231) There are limitations 

to the efficacy of these compounds due to their size and poor bioavailability, so smaller 

lipopolyamines were investigated as an alternative. Some of these, such as DOSPA, were shown 

to effectively solubilise PrPSc without any detrimental effects, although the problems of poor 

bioavailability and a limited spectrum of activity against different strains are problems that still 

need to be resolved. (228)  

 

Tricyclic derivatives of acridine and phenothiazine have been investigated extensively and the 

lead compound from this group, quinacrine, has been taken through to clinical trials. (194) This 

group of compounds was originally chosen due to its ability to cross the blood-brain barrier 

(BBB), and quinacrine was shown to have an EC50 10 times lower than chlorpromazine or other 

derivatives. (232) An evaluation of quinacrine treatment showed that it can hamper de novo 

formation of PrPSc and interact with PrPC, but also that it was ineffective in vivo. (233) 

Pharmacokinetic studies suggest that a sufficiently high concentration can be achieved in brain 

tissue, although it was not established how much of this was protein bound and how much was 

‘free’. (234) A subsequent study in sheep found that the free extracellular quinacrine 
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concentration was not high enough to be effective. (235) Quinacrine was used in a clinical trial in 

humans suffering from prion diseases but was not found to be effective, and this was thought to 

be down to inadequate drug concentration at crucial sites. (194)  

 

Quinacrine and chloroquine are also reported to act in lysosomes (236) and lysosomotropic 

compounds are hypothesised to work via competitive inhibition of the GAG-PrP interaction, 

blocking of chaperones that aid PrPC unfolding or by destabilising PrPSc through alteration of the 

lysosomal pH. (236) The tyrosine kinase inhibitor STI571 accelerated the cellular degradation of 

PrPSc by triggering lysosomal degradation and these results confirm that PrPSc can be degraded 

by lysosomal proteases. (131, 237) Other compounds shown to work by increasing PrPSc degradation 

via redirection of PrPSc to the lysosomes include chlorpromazine (238) and tamoxifen and its 

metabolites. (239) 

  

The cell surface localisation of PrPC has been identified as a crucial factor in the conversion 

process, and cell surface localisation depends on the composition of the lipid rafts. (240) 

Cholesterol levels in the lipid rafts have been targeted to try and reduce the amount of PrPC on 

the cell surface, and interference with raft formation and association with PrPC by perturbation 

of cholesterol synthesis counteracted PrPSc formation. (132, 241, 242) Treatment with Mevinolin, a 

HMG-CoA-reductase inhibitor that causes cholesterol depletion in cells, resulted in less cell 

surface PrPC (243) and depletion of cholesterol through inhibition of synthesis and recycling was 

shown to reduce PrPSc formation. (244) Statins have been shown to have an anti-prion effect by 

decreasing cellular cholesterol and reducing PrPC availability, (132) and compounds such as 

simvastatin and drugs that reduce cholesterol esters have been dosed synergistically with 

tricyclic compounds, with promising results. (245, 246) Simvastatin, quinacrine and despiramine (a 

tricyclic antidepressant 5 times more potent than quinacrine) dosed together were effective at 

concentrations at which they were ineffective individually (245) and cholesterol ester modulators 

decreased the EC50 of quinacrine and chlorpromazine by up to 10 fold. (246) Polyene antibiotics 

such as amphotericin B can inhibit generation of PrPSc in infected cell cultures and are thought to 

act by modifying the membrane lipid composition. (242) Glypican-1 is present in lipid rafts and is 

thought to aid conversion by forming a scaffold which facilitates interactions between PrPC and 

PrPSc. (149) Reducing glypican-1 levels resulted in a decrease in the accumulation of PrPSc. (149) 

 

The development of PrPC knockout mice that were resistant to infection with PrPSc led to 

investigations into the therapeutic possibilities of localised PrPC knockdown. Depleting neuronal 
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PrPC in mice with an established prion infection reversed early spongiform change, prevented 

neuronal loss and increased survival despite the extraneuronal accumulation of PrPSc. (161) 

Subsequent experiments also showed that the cognitive and behavioural deficits that 

accompany early hippocampal spongiform pathology can be reversed by the depletion of 

neuronal PrPC. (162) Silencing of PrPC has been achieved using both RNAi and shRNA injections 

into the hippocampus, with treatment showing significant therapeutic benefit. (247, 248) A 

limitation to this treatment is that PrPC needs to be knocked out before neuronal loss is 

established, and targeting the hippocampus in the early stages of disease is an effective way of 

reducing the initial rate of prion propagation. With respect to human diseases it would be 

necessary to identify diseases at a much earlier stage than is currently possible to allow reversal 

of neurotoxic processes before it is too late. (249) 

 

The use of antibodies against PrP for immunisation or therapy was not initially thought possible 

due to self-tolerance of PrP. However, it has been demonstrated that PrPSc levels in infected cells 

can be reduced and disease onset delayed in mice by treatment with monoclonal antibodies. (250-

252) The antibodies are thought to work by binding to PrPC and preventing conversion to PrPSc, 

although increased endocytosis and enhanced degradation may also play a role in mediating the 

anti-prion effect. (253)  Dimeric PrP has been successfully used to induce antibodies against cell 

surface PrPC, and these antibodies can decrease PrPSc levels in prion infected cells by binding to 

cell surface PrPC and inhibiting conversion. (254) Adverse reactions to the Fc fragment of the whole 

antibody have been observed so Fab fragments have been investigated as a possible alternative. 

(255) Five fragments were investigated, and four of these were able to recognise cell surface PrPC 

and inhibit the formation of PrPSc, probably through blocking PrPC as a substrate for conversion 

or stabilising the structure. Antibodies that can penetrate the blood brain barrier (BBB) or allow 

targeting of the immune system to PrPSc plaques may increase efficiency. (256) The innate immune 

system has been implicated in the process of prion neuroinvasion and has therefore also been 

investigated as a possible therapeutic target. Neutralisation of the lymphotoxin-β-receptor 

blocks the maturation of follicular dendritic cells which, in turn, halts scrapie neuroinvasion and 

prevents the spread of PrPSc to the CNS, although this approach does require the time of 

peripheral prion infection to be known. (257) 

 

Discoveries about the role of normal cellular process in disease pathogenesis have opened up 

new targets for anti-prion therapeutics. It has been suggested that a small decrease in the rate 

of PrPSc formation could be sufficient to allow the cellular machinery to clear the remaining 
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misfolded protein, so total clearance of PrPSc by any form of therapy may not be necessary. (258) 

Oligomers of misfolded PrP have been shown to inhibit the ubiquitin-proteasome system (UPS) 

(181, 182) and, in turn, inhibition of the UPS resulted in decreased degradation of PrPSc as well as 

localisation of PrPC to the cell surface. (179) So far, however, there has been little progress in using 

compounds targeting the UPS as therapeutics. More progress has been made targeting the 

process of autophagy, the bulk degradation of cytosolic proteins and organelles, and a reduction 

of PrPSc after treatment with drugs that induce autophagy has been shown. (259) Trehalose, an 

autophagy inducer, reduced PrPSc in a time and dose dependent manner by increasing cellular 

degradation of the misfolded PrP (260) and similar results were obtained with rapamycin which 

increased the elimination of misfolded PrP before aggregation could occur. (261) Imatinib, an anti-

cancer drug that activates autophagy, resulted in enhanced lysosomal degradation of PrPSc in 

vitro. (259) Disruption of processes affecting apoptosis are thought to alter the progression of 

prion disease (262) and minocycline, a tetracycline with known neuroprotective activities, elicits 

anti-apoptotic effects against the neurotoxic activity of PrP peptides. (263) Inhibitors of 

intracellular signalling pathways such as phospholipase A inhibitors and glucocorticoids can 

reduce levels of PrPSc, as can inhibitors of the mitogen-activated protein kinase pathways. (207) 

 

The template assisted model of PrPSc formation, discussed in section 1.1.2.4, suggests that 

conversion of PrPC to PrPSc requires chaperone activity, catalysed by an as yet unidentified 

‘protein X’. (124) Compounds that matched the spatial orientation and basic polymorphism of the 

proposed binding site for protein-X were found to dose-dependently inhibit the formation of 

PrPSc at non-toxic concentrations of between 20 and 80 µM. (264) There is the possibility that the 

anionic cyclic tetrapyroles, sulfonated dyes, phosphorothioated oligonucleotides and sulfated 

glycans exert their inhibition of the formation of PrPSc by binding to a site normally reserved for 

physiological ligands that are important for conversion. (199) In reference to the seeded 

aggregation model, RNA aptamer D reduced the formation of de novo synthesised PrPSc and it is 

thought this might be due to its incorporation into PrPSc aggregates, preventing the formation of 

high molecular weight aggregates. (265)  

 

Various other molecules have been investigated as anti-prion compounds. Curcumin, a 

compound derived from turmeric, has anti-oxidative and anti-inflammatory properties as well as 

having anti-prion activity in both cell lines and mouse models. (266, 267) It has been shown to bind 

PrPSc oligomers and fibrils and its binding site overlaps with the congo red binding site. (268) 

DMSO was shown to reduce PrPSc accumulation and delay disease onset in mice when 
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administered at an estimated dose of 250 mg per day. (269) A high affinity was found between a 

cationic porphyrin and rhPrP using SPR, resonance light scattering and circular dichroism, 

suggesting that this could have possible uses as a therapeutic. (270) Brilliant blue is a dye with a 

symmetrical bifunctional structure that was thought to be likely to confer anti-prion properties. 

(271)  Brilliant blue’s role as a P2X7R antagonist was also hypothesised to confer neuroprotective 

properties. (271) It was found to prevent PrPSc infectivity and accumulation in vitro and in vivo and 

this was attributed to specific anti-prion properties rather than P2X7R antagonism. (272) 

Investigations into a monocationic phenyl-furan benzimidazole found anti-prion activity in this 

previously untested class of compounds, with PrPSc accumulation and infectivity inhibited. (273) 2-

aminothiazoles have also been shown to be active in vivo and capable of accumulating at 

relevant concentrations in the brains of mice, (274, 275) while 2,4-diarylthiazoles (276, 277) and indole-

3-glyoxylamides (278-280) have both been shown to be active in vitro. Fragments of PrPSc, 

particularly the C1 cleavage fragment, have been suggested as dominant negative inhibitors of 

PrPSc formation, probably working by competing with PrPSc for binding sites on PrPC. (152) Finally, 

SOD mimetics have been tested to try and counteract the hypothesised loss of SOD-like function 

caused by the conformational changes to PrPC. These SOD mimetics were found to extend the 

incubation period, reduce nitrative and oxidative damage and reduce the brain lesion burden in 

treated mice. (281) 

 

1.1.3.2. Cell Culture Models for Drug Discovery 

Cell culture models have been used to investigate various different aspects of prion diseases, 

including the different biochemical properties of PrPC and PrPSc, the nature of the infectious 

agent and biological markers of infection. They have also been widely used to screen drugs to 

assess their potential therapeutic benefit. Cell cultures were initially used to demonstrate that 

PrPC was the precursor to PrPSc and also demonstrate that the PrPC endocytic pathway is crucial 

for the generation of the abnormal isoform. (136, 138, 282) Compounds identified in these initial in 

vitro screens can then be further investigated in vivo using animal models. The most widely used 

models are rodent models but there are also disease models in deer, sheep, cows and primates. 

(283) 

 

The use of cell cultures in prion research is reviewed in Solassol et al (284) and Vilette. (285) The first 

successful attempt to establish a cell culture supporting prion replication was reported in 1970 

with the establishment of the SMB cell line, a line of non-neuronal cells isolated from the brain 

of a mouse infected with Chandler scrapie. (286) The SMB cells are highly phagocytic and are 
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therefore thought to mimic cells involved in the uptake and replication of prions. (217) These cells 

can also be cured using PPS and then reinfected with different mouse-adapted scrapie strains 

including 139A (RML), 79A and 22F. (287) Subsequently, cell lines have been developed that are 

permissive to rodent-adapted scrapie strains, as well as cell lines that have been genetically 

engineered to express ovine PrPC and are therefore susceptible to two different naturally 

occurring scrapie isolates. (288) 

 

The most common method of prion infection is to expose uninfected cells to an inoculum and 

check for formation of de novo PrPSc by western blotting. Homologous cell line models express 

PrPC from the same species as the inoculum, while in heterologous models there is a mismatch 

between the species origin of the inoculum, PrPC or cell line. (284) Different cell models are 

susceptible to different prion strains, with some being susceptible to more than one, and some 

cell lines, such as the SMB cells, can be cured and then re-infected with a different strain. (287) 

The proportion of infected cells can range from 1 % up to 30 % so subcloning can help increase 

the susceptibility of cultures to infection, with cells expressing higher levels of PrPC being more 

susceptible to infection. (289, 290) 

 

The development of the first cell cultures focussed on neuronal cells, and the neuroblastoma 

cells known as N2as are among the most extensively studied. (284) Subsequently many different 

types of cells have been shown to propagate PrPSc including hypothalamic GT1 cells, 

pheochromocytoma cells, cholinergic neuronal cells, hippocampal derived cells, cells from the 

peripheral nervous system such as Schwann cells and non-neuronal cells including fibroblasts, 

microglia and skeletal myoblasts. (285) Epithelial cells from rabbits as well as neuroglial cells and 

neuronal primary cultures from mice have been developed that over express ovine PrPC, and 

these are susceptible to scrapie infection. (288, 291, 292)  

 

A widespread use of cell culture has been in high-throughput drug screening programmes, 

where cells are dosed with different compounds and PrPSc levels assessed by immunoblotting. 

(205, 217, 280, 293) This identifies compounds that can reduce PrPSc levels, although strain specificity 

means that compounds which are active in a particular cell culture or against a particular strain 

may be ineffective in a different cell model. Investigations into the cell biology of PrPSc using cell 

cultures have assessed the role of the proteasome in PrPSc degradation, as well as investigating 

the involvement of the laminin receptor, heparan sulfate, lipid rafts, lysosomes and 

multivesicular bodies in the conversion of PrPC to PrPSc, the intracellular accumulation of 
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misfolded protein and the cell to cell spreading of prions. (285) Cell lines that are particularly 

susceptible to infection have been used to test samples for infectivity, (294, 295) and work is 

ongoing to identify biochemical markers of prion disease. Investigations into the mechanisms of 

neurodegeneration have been limited by the absence of a cytotoxic effect of PrPSc infection but 

there have been investigations into the role of SOD (296) and pro-apoptotic stimuli. (177, 180) The 

biological properties of cell-passaged prion strains are also an area of interest where cell culture 

has proved to be a powerful tool. (287) The development of cell lines that express human prions 

has so far been unsuccessful, although this would be a valuable tool in developing therapeutics 

that would be effective against human prion diseases. (297) 

 

 

 

1.2. Drug Discovery and Candidate Drug Target Profiles 

(CDTP) 

 

 

1.2.1. Drug Discovery and Development Process 

  

The process of drug development has several stages, the aim of each one (after the initial lead 

discovery) being to eliminate compounds that are either not effective against the target (low 

efficacy) or have properties that make them unsuitable for use as a drug (unsatisfactory drug 

metabolism and pharmacokinetics or toxicity).  

 

It is important to be aware of the typical phases of drug development, and the characteristics of 

candidate compounds that must be taken into account at each stage (all subsequent information 

in section 1.2 from (298) unless otherwise specified).  The initial stage in drug discovery is to 

identify the target molecule. In this case the molecules being targeted are PrPC and PrPSc. The 

relevance of the target molecule to the disease state has to be proven, as is the case in this 

instance. High throughput screening (HTS) can be used to identify active compounds (i.e. those 

showing an effect on the target molecule, whether real or hypothetical) and these ‘hits’ are then 

assessed via a relevant assay to find suitable lead compounds. Analogues of these lead 

compounds can then be synthesised to improve the potency, demonstrate a structure-activity 

relationship (SAR) and optimise the metabolic stability and physical properties. The desired 



28 

 

properties of the drug at launch can be used as a guideline to what is required. Once the lead 

compound has been optimised and the potency and safety proven it can move onto clinical 

trials. 

 

Due to time and cost considerations, an increasingly common method of identifying  potential 

lead compounds is by using a virtual high throughput screen (VHTS). This involves screening a 

large number of compounds against the target molecule using sophisticated computer systems. 

These systems assess the potential interactions between the compound being screened and the 

target based on the structures of the compound and potential binding sites on the target 

molecule. The Lipinski ‘rule of five’ is often used as a rough guide in determining whether a 

molecule is likely to have the desired properties to allow oral absorption. This can act as a 

starting point in choosing compounds for the VHTS. It proposes that poor oral absorption is likely 

if: 

1. Molecular weight is greater than 500 (ideally should be 350 – 400) 

2. Lipophilicity (as measured by LogP, see Equation 1) is greater than 5 (ideally should be -1 

– 2.5) 

3. There are more than 5 H-bond donors. 

4. There are more than 10 H-bond acceptors. 

Over 95% of marketed drugs adhere to at least two of these rules. 

 

Once potential lead compounds have been identified by VHTS their activity needs to be 

confirmed by an appropriate assay using the compound and the target molecule. After activity is 

confirmed then the active compound may be confirmed as a lead compound. At this point, 

analogues of the lead compound can be synthesised. The aim of the analogue synthesis is to find 

compounds that have improved activity or pharmacokinetic properties, or reduced side effects 

such as toxicity. The synthesis of analogues can also allow the determination of a structure-

activity relationship (SAR), in which certain substitutions at certain positions can be shown to 

confer improved efficacy. A quantitative SAR aims to establish the relationship between 

biological activity and properties such as molecular weight as well as surface and electronic 

properties: 

1. Lipophilicity refers to the ability of a compound to dissolve in fats, oils, lipids and non-

polar solvents. It can affect aqueous solubility, permeability, receptor binding, 

metabolism rate and plasma-protein binding. The logP is the intrinsic lipophilicity of the 

carbon skeleton and functional groups of a molecule in the absence of ionisation.  
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log 𝑃 = log10 (
[solute]𝑜𝑟𝑔𝑎𝑛𝑖𝑐

[solute]𝑎𝑞𝑢𝑒𝑜𝑢𝑠
) 

 
Equation 1: Equation for calculating the log P of a molecule 

 

2. Hydrogen bonding is the attractive force between a hydrogen atom covalently bound to 

an electronegative atom (donor) and a second electronegative atom (acceptor). These 

bonds can be between molecules (intermolecular) or within molecules (intramolecular). 

They are stronger than a Van der Waals interaction but not as strong as a covalent or 

ionic bond. The Abrahams constant is a measure of the relative hydrogen bonding 

capability of functional groups. Hydrogen bonds play a vital role in determining the 

specificity of a compound’s interaction with its target protein. (299) 

3. Electronic effects are caused by the distribution of polarity affecting activity and 

distribution of compounds. Polarity will affect whether a compound will pass through 

the cell membrane and determine how well it will bind to its target. 

 

 

1.2.2. Pharmacokinetics and Pharmacodynamics 

 

1.2.2.1. The Candidate Drug Target Profile (CDTP) and Pharmacokinetics (PK) 

The CDTP is an idea of what properties a compound would need to have to give it a good chance 

of reaching the market. An example of this is shown in Table 3. It encompasses in vitro and in 

vivo properties, a pharmacokinetic profile (the study of the movement of a compound within the 

body) and toxicity information. Quantitative pharmacokinetic measures are calculated by 

plotting the concentration of the drug in the blood plasma and measuring the area under the 

curve (AUC), also known as the integral. This can be used to describe a range of properties: 

1. Oral bioavailability (F) is the fraction of the drug dose that is absorbed by the body and 

survives to general systemic circulation. 

2. Half-life (t1/2) is the time taken for the drug concentration in the blood to reach half the 

original level. 

3. Volume of distribution (Vss) is the volume that all of the drug in the body would have 

to occupy if present at the same concentration as that found in the blood. 

4. Clearance (Cl) is the volume of blood from which all the drug is removed per unit time. 

5. Maximum Concentration is the maximum concentration achieved after dosing. 
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6. Plasma protein binding (PPB) is the reversible binding of a compound to soluble 

proteins in the blood. 

 

Table 3: An example of a CDTP. Table adapted from Stocks et al. (298) 
 

 

 

Activity at low concentrations, as demonstrated by the binding and functional IC50s, is desirable 

to avoid having to dose at high concentrations. The whole blood potency is important as this 

indicates how active the drug would be under conditions where a proportion of it may be 

unavailable due to binding to plasma proteins. A drug should be highly selective for its target 

molecule to avoid off-target effects, particularly on the hERG ion channels. Numerous 

structurally and functionally unrelated compounds can interfere with these channels, which are 

involved in cardiac action potential repolarisation. (300) Reduced function of hERG can increase 

the risk of potentially fatal cardiac arrhythmias so identification of compounds that may 

interfere with hERG channels is desirable as early as possible. High-throughput binding and 

functional assays can be used to measure membrane potential or Rb(+) flux, and these assays 
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can be combined with a more complex electrophysical investigation of compounds in cardiac 

myocytes to confirm inhibition of the hERG channels. 

 

The drug metabolism and pharmacokinetic (DMPK) properties, as described previously, are 

significant as they give an indication of what will happen to the drug, over time, once it enters 

the body. It has been estimated that 40% of the failures in drug discovery are due to problems 

with pharmacokinetics and drug delivery. As a result of this the assessment in vitro of the 

absorption, distribution, metabolism and excretion (ADME) properties of compounds has 

become increasingly important in drug discovery.  

 

Drug metabolism is routinely assessed by exposing the drug to rat hepatocytes or human 

microsomes and measuring the stability of the drug over time. This gives an estimate of how 

long it would take for a drug to be metabolised into inactive fragments and excreted. The precise 

duration of this process in the body cannot be directly extrapolated from microsomal stability, 

which is why rat in vitro clearance is also often measured.  Low clearance rates (Cl) are desirable 

as if the clearance rate is too high the drug may be metabolised and excreted before it is able to 

work. 

 

Pharmacokinetics measure the time course of drugs in an organism. (301) The volume of 

distribution (Vss) and oral bioavailability (F) are measures of how well the drug is absorbed into 

the body, and it is essential that these measures are high enough to allow the accumulation of 

active concentrations of the drug. Similarly, the half-life (t1/2) needs to be of a length which 

allows drug concentrations to remain high enough for long enough. Compounds with poor 

bioavailability and a short half-life (as estimated from microsomal stability) are unlikely to reach 

active concentrations, especially if the microsomal clearance rate is also high. Compounds that 

inhibit cytochrome P450 function may result in the accumulation of toxic levels of either the 

original compound, or compounds that are co-dosed, resulting in possible cytotoxic effects or 

adverse drug reactions. A low dose to man is desirable to limit the amount of compound that 

would have to be ingested and therefore reduce the possibility of off-target effects, as well as 

making the drug more practical to manufacture. 

 

 The physicochemical properties can be explained in terms of the Lipinski ‘rule of 5’ as discussed 

previously. Low molecular weight, good solubility and a logP below 5 are all desirable and 

increase the likelihood of a drug being successful. Lower levels of plasma protein binding (PPB) 
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are desirable as it is only the unbound fraction which can traverse cell membranes and therefore 

show activity. 

 

1.2.2.2. In Vitro Drug Screening and Pharmacodynamics  

Pharmacodynamics is the study of the relationship between the concentration of a given drug 

and the onset, intensity and duration of its pharmacological effects. (301)  There are a wide range 

of in vitro tests that can be used to assess the activity of potential drug compounds. There is 

some debate about what is classed as an in vitro assay, so for convenience they can be divided 

into two classes; cell based assays and non-cell based assays.  

 

Non-cell based assays use the purified target molecule to assess the activity of compounds 

against the target in isolation. For example,  Surface Plasmon Resonance (SPR) is a technique 

which allows the binding interactions between the target molecule and compounds of interest 

to be studied directly and in real time. In terms of the CDTP (Table 3) the non-cell based assays 

are valuable in determining the binding affinity or KD if it is not a functional assay, and this in turn 

can give an idea of the selectivity of a compound for its specific targets.  Compounds that have 

very strong interactions with their targets are likely to have higher specificity than those with 

weaker interactions.  

 

Cell based assays are the classic in vitro experiments and these assess the effects of a compound 

against the whole cell rather than just the isolated cellular component, allowing other properties 

such as toxicity to be determined. The type of cell line assay to be used depends on the target 

being assessed, and cell lines are often  developed to provide a specific readout for the targets 

of interest. The efficacy of a compound is normally expressed as the concentration at which it 

exerts 50% of its effect. This is known as the EC50, or half maximal concentration. Another 

common method of determining the effect of a compound is the concentration at which 50% of 

the cells are killed, known as cytotoxicity and expressed as LD50. For assays that do not use 

cytotoxicity as a measure of a compound’s effect a toxicity assay can be carried out in tandem. 

This ensures that compounds are not classified as active when they are actually toxic. A common 

method is to use yellow MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

which stains the nucleus of viable cells. This stain is converted to a purple colour by the addition 

of 1M HCl in isopropanol which can be quantified using a plate reader.  

 

 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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1.3. 3D Cultures 

 

1.3.1. Introduction 

 

At the beginning of the 21st century it was observed that increased chemical synthesis 

capabilities had resulted in large numbers of molecules being synthesised, with potential targets 

being identified afterwards. (302) All these compounds needed to be assessed for potential 

activity against the chosen target, with inactive or unsuitable compounds being identified as 

soon as possible. Identifying these compounds during the early stages of the drug discovery 

process has become a priority due to escalating costs further down the pipeline. (303) To this end, 

in vitro cell cultures have been used to carry out functional and toxicity assays on compounds 

identified by, for example, binding assays, and cell based testing has become a key component 

of drug discovery programmes. (304) 

 

Currently, the majority of High Throughput Screening (HTS) for drug compounds is done using 

cells cultured in 2D monolayers, which are compatible with automated platforms and well 

established analytical techniques. However, there has long been a concern that these systems 

are not sufficiently representative of the in vivo situation, due to differences in cell morphology, 

polarity, receptor expression, oncogene expression, interaction with the extracellular matrix 

(ECM) and overall cellular architecture. (305) It is becoming increasingly important to identify 

poorly functioning compounds as early as possible, and therefore reduce the costs associated 

with drug failure at later stages of the drug discovery pipeline.  

 

The potential of 3D cultures to fill this gap between 2D monolayers and in vivo systems is of 

increasing interest. The growth and function of cells in a 3D environment are noticeably 

different to cells grown in a monolayer, (306) and creating conditions that more accurately mimic 

the in vivo microenvironment would help increase predictive accuracy in the development of 

pharmaceutical compounds. Various techniques have been used to try and study cells in a more 

natural 3D environment, including liquid overlay and forced floating techniques, spinner flasks, 

artificial scaffolds including hydrogels, and spheroids in hanging drops. All of these techniques 

have their advantages and disadvantages, with a key problem being the lack of anything that can 

be successfully used in high-throughput applications.   
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1.3.2. The Advantages of a 3D System 

 

While 2D systems are useful in terms of HTS and ease of culturing, a major problem is that they 

lack contact with other cells, and with the ECM. Cells grown in monolayers are typically 3µm 

thick, with the vast majority of surface area being exposed to either the growth medium or the 

plastic surface the cells adhere to. As a result there is very limited cell-cell contact. Conversely, 

their 3D counterparts tend to be ellipsoids with a diameter of 10 – 30 µm, with nearly all the 

surface area being exposed to other cells or the ECM. (307)  

 

The cell-cell and cell-ECM contacts in 3D cultures are important for a number of reasons and are 

central to their ability to more accurately re-create in vivo conditions. Cell-cell communication 

can occur via chemical-biological routes or by mechanical signalling, and also by direct contact 

through the cytoplasm. It occurs in its most direct form when cells adhere to each other. This 

requires contact over a large surface area to allow the structures to form, and therefore is more 

prevalent in 3D culture. This increased coupling aids cell-cell communication and is therefore 

important in cell function. (307)  

 

In vivo, a complex, 3D ECM supports cells via the facilitation of communication through direct 

contact and by the secretion of a wide variety of cytokines and trophic factors. (308) It therefore 

stands to reason that careful refinement of the extracellular environment will affect the way 

cells behave. Interactions with the ECM are known to be important in defining cell function and 

mimicking in vivo conditions. The cell-ECM interactions work with the cell-cell signalling to 

maintain the homeostasis and specificity of the tissue, (309) and key processes in the cell life cycle, 

such as proliferation, migration and apoptosis, are regulated by organising principles determined 

by the ECM. (310) For example, cell-cell and cell-ECM interactions are essential for tissue 

morphogenesis in developing embryos. (311)  In some cases the ECM can affect chromatin 

structure and therefore gene expression, which can differ between cells in 2D and 3D. (312) This 

difference in gene expression can lead to changes in phenotype in 3D culture, with it varying 

dramatically depending on the extracellular context. (313)  Culturing cells in 3D is therefore more 

representative of in vivo conditions, and can facilitate the investigation of functional tissues 

rather than individual cells.  
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1.3.3. Methods of 3D Culture 

 

Various methods have been investigated for culturing cells in 3D. As a general rule, these involve 

either the creation of 3D spheroids or the use of extracellular scaffolds to help the formation of 

3D structures. Spheroids are the system of choice for therapeutic studies, particularly in cancer 

therapeutics, (314) while scaffolds have been used in tissue engineering. (315)  

 

1.3.3.1. Liquid Overlay and Forced Floating 

This technique works on the principle of preventing cells adhering to a surface so they instead 

adhere to each other (see Figure 6). Typically, plates are coated with agar, causing cells to 

migrate towards each other, aggregate, and then form spheroids that increase in size. (316)  A 

centrifugation step can be included if necessary to aid aggregation and spheroid formation. This 

method was found to be fairly reliable, particularly for tumour cell lines which tend towards 

aggregation. Spheroid size can be controlled to some degree by the initial seeding density, but 

the time involved in coating plates means that this method is not suitable for high throughput 

applications. (305) 

 

 
 

Figure 6: Forced floating method. Cells are grown on plates with a non-adhesive coating and 
subsequently aggregate to form spheroids. Figure adapted from Breslin and O’Driscoll. (305) 
 

1.3.3.2. Spinner Flasks 

The spinning flask technique is similar to the liquid overlay technique in that it forces cells to 

aggregate and form spheroids by preventing them from adhering to the surfaces of the culture 

vessel. It does this by constantly mixing the cell suspension to encourage cell-cell interactions 

until spheroids of the required size are formed, either by gently stirring the cell suspension or by 

rotating the culture vessel (see Figure 7). (305) Depending on the bioreactor, large amount of 

spheroids can be produced, although they are normally of varying size. (317) Forming spheroids 

using the liquid overlay method and then transferring them to a spinning bioreactor to increase 
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in size can result in a much more homogenous population. (318) The NASA developed rotary cell 

culture system simulates microgravity, allowing cells to aggregate, grow three dimensionally and 

then differentiate. It results in cells that are similar to their in vivo equivalents, and through co-

culturing can be used to create complex, heterologous 3D structures. (316) The primary 

disadvantage of spinner flasks is that the shear forces associated with stirring can alter the 

physiology of cells, although this can be overcome by using rotating culture vessels. (317) 

 

 
 

Figure 7: Agitation based approaches; a. spinner flasks and b. rotating culture vessels are used to 
generate spheroids. Figure adapted from Breslin and O’Driscoll. (305) 
 

1.3.3.3. Hanging Drop Techniques 

This technique promotes the formation of spheroids by culturing cells in a ‘hanging drop’ of 

medium. This encourages aggregation and the subsequent formation of cell-cell interactions in 

the bottom of the drop to form homogenous spheroids, with size being controlled through the 

initial seeding density (see Figure 8). The lack of an artificial scaffold means that concerns about 

the effect these may have on cell structure are mitigated, although the size of the spheroids that 

can be formed are limited by the amount of liquid the hanging drop can contain before 

succumbing to gravity. (305) This technique was originally developed to induce the formation of 

embryoid bodies, containing hematopoietic, endothelial, muscle and neuronal cells, from 

embryonic stem cells. (319) It was then modified to aid in the culture of the human hepatoma line 

HepG2 which failed to form spheroids in either forced floating or spinner flask methods. The 

hanging drop technique saw the cells accumulate at the bottom of the drop before forming a 

tightly packed spheroid which proceeded to display a typical solid tumour growth pattern. 

Structural examination of the spheroids showed them to be well organised 3D structures with a 

complex ECM, with the same features being found in spheroids cultured from different cell lines. 

(320)  The use of this technique to create fast growing, homogenous spheroids led to its 

development for use in a 384 well, high throughput screen, that is compatible with existing 

instrumentation, (321) and specially designed plates in both 96 well and 384 well formats are 

available.  
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Figure 8: Formation of hanging drop spheroids; a. diagram depicting the method of formation. A 
cell suspension is pipetted through the access hole to form a drop on the bottom of the plate. 
The cells aggregate at the bottom of the drop, forming a spheroid after around 1 day. b. 
fluorescence images of live/dead staining of Cos7 (African green monkey kidney fibroblast cells) 
and mES (murine embryonic stem cells) spheroids over a 12 day culture. Figure adapted from 
Tung et al. (321) 
 

1.3.3.4. Scaffolds 

Scaffolds work by providing a framework around which 3D structures can form. Cells attach to, 

and migrate along, scaffold fibres and fill the gaps of the scaffold as they divide, forming 3D 

structures whilst maintaining differentiation. (322) Scaffolds need to have the following 

characteristics: have appropriate surfaces for cell adhesion, proliferation and differentiation, be 

biocompatible, be highly porous with a high surface area to volume ratio, have an 

interconnected pore network and be resistant to mechanical in vivo stresses. (323) Collagen is the 

most commonly used scaffold, but pre-engineered scaffolds made of natural materials such as 

collagen composite, or synthetic polymers such as D,D-L,L polylactic acid (see Figure 9), have 

also been used to successfully grow cells including hepatocytes, neurons, endothelial cells, 

osteoblasts, chondrocytes, fibroblasts and smooth muscle cells. (316)  
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Figure 9: An example of a pre-engineered, biodegradable scaffold. This is a BD™ 3D open cell 
polylactic acid (OPLA®) scaffold. Figure adapted from Kim. (316) 
 

Various different materials have been used as scaffolds, including natural products such as 

alginate and collagen, naturally derived and synthetic polymers and hydrogels formed of a cross-

linked natural base material (agarose, collagen) with a high water content. (308) Problems 

associated with polymers (degradation) and hydrogels (expense, short shelf life, consistency), 

have been overcome by the development of non-degradable scaffolds made from inert 

materials such as polystyrene. (308) Scaffolds can allow the mechanical stress experienced by 

tissues in vivo to be replicated, and co-cultures of two or more cell types can produce complex 

tissues that more closely mimic the in vivo situation. (307) Scaffolds have also been used to culture 

human embryonic stem cells (hES), which hold a lot of potential for transplant therapies. So far, 

attempts to encourage hES cells to form viable and complex 3D structures has proved difficult, 

but the use of polymer scaffolds enabled their growth, differentiation and the formation of 

complex structures. (324)     

 

1.3.3.5. Microcarrier Beads 

Microcarrier beads were first developed in the 1960s as an alternative to 2D monoculture, and 

were found to support the attachment, aggregation and proliferation of a number of 

transformed cell lines and primary cells. (325) Microcarrier beads are small spheres 100 – 400 µm 

in size and have a large surface area to volume ratio which permits a high cell density. They are 

also widely available. (307) They can be used to co-culture cells in close proximity (326) and are an 

excellent tool for studying cell-cell and cell-substratum interactions, cell differentiation and 

maturation and metabolic studies. (316) 
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Figure 10: Brightfield image showing human mammary endothelial cells seeded onto 
microcarrier beads 133 – 215 µm in size. Black arrows indicate cells attached to the surface of 
the beads (300x magnification). Figure adapted from Kim. (316) 
 

1.3.3.6. Microfluidic Systems 

A microfluidic system has been described which can support 3D culture (see Figure 11). (327) A 

cell suspension is passed through the main chamber where micropillars allow the cells to attach 

and grow. This aids cell-cell contact, and the subsequent addition of a collagen matrix can 

facilitate investigation of cell-ECM interactions. It has been suggested that this might be a good 

platform for HTS, although it doesn’t allow retrieval and characterisation of the spheroids. A 3D 

model of Alzheimer’s disease, based on a microfluidic system, has been developed and this 

found that low levels of flow resulted in neurospheroids that were larger and formed more 

robust and complex neural networks than those formed in static flow conditions. (328) 

 

 

 

 



40 

 

 
 

Figure 11: Schematic representation of the closed loop perfusion culture system used for 3D 
culture. Within the cell reservoir cells are immobilised using the micropillars, and the formation 
of an ECM is facilitated by laminar flow complex coacervation. This is followed by perfusion 
culture of the immobilised cells. Figure adapted from Toh et al. (327) 
 

1.3.3.7. Organotypic Cultures 

Organotypic, or explant, cultures are slightly different to the methods discussed above as they 

involve the transplantation of biological tissues into culture, rather than the 3D culture of 

individual cells, where the normal cellular function within the tissue can be maintained for a 

limited period of time. (329) In some cases the entire organ may be transplanted, or dissected 

slices of the organ may be mounted onto siliconised filter paper or porous culture membranes. 

This allows the sections to maintain their cytoarchitecture and pattern of cell differentiation. (307) 

Explant cultures have been successfully generated using tissue from lungs, small intestine, colon, 

brain and aorta among others. (330) For example, skin explant models have been suggested to be 

a useful model for wound healing, inflammation processes, autoimmune diseases, malignant 

transformation, stress and ageing (331) while gastrointestinal (GI) explant cultures offer a model 

for examining the toxic effects of xenobiotics on the GI tract and the pathogenesis of intestinal 

tract diseases. (332) Tissue organids can also be formed from epithelial tissues without their 

corresponding stromal cells. After being freshly isolated from primary mammalian organs the 

organids are typically explanted into commercially available matrices before processing. (330) 
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1.3.4. Applications for 3D Culture 

 

The long term aim in developing 3D cultures has been to develop a system that could replicate 

the advantages of 2D cultures but produce data that is far more relevant to the in vivo situation. 

So far there has only been limited success in creating 3D systems that can be used in HTS, 

although some progress is being made in this area. (321) There are, however, some specific 

applications where 3D culture has been used to great advantage, and other areas where it could 

potentially be extremely valuable.  

 

1.3.4.1. 3D models in Cancer Research 

The most widely used model in cancer research is the multicellular tumour spheroid (MCTS) 

model system. The use of multicellular spheroids was adapted for use in cancer research in the 

1970s (333) and they were specifically manufactured for testing the effects of radiation and 

chemotherapeutic drugs on tumour growth.  The discovery that breast cancer cells were more 

resistant to chemotherapeutic drugs when cultured in 3D rather than 2D emphasised the 

importance of 3D culture as a more relevant in vitro screen. (307) Their ability to replicate the in 

vivo behaviour of tumours is based on 4 important features: (334) 

1. Morphological, functional and mass transport features of in vivo tissues can be 

replicated. 

2. Many characteristics of tumours can be approximated with regard to growth kinetics 

and the effect of the microenvironment. Spheroids larger than 400-500 nm tend to have 

a necrotic core. 

3. The spherical geometry allows direct structure-function analysis. 

4. Spheroids can be used to co-culture different cells. 

Due to these factors MCTS are a well-controlled 3D experimental model that can be used to 

assess potential chemotherapeutic strategies, with co-cultures providing the potential for 

studies into local penetration, distribution and efficacy of new drug candidates.  

 

Other models have also been used to investigate different aspects of cancer biology. (335) 3D skin 

epidermal models have been used in studies of tissue repair and as models for cancers such as 

squamous cell carcinoma, melanoma or esophageal carcinoma. The early steps of metastasis 

have been modelled in 3D and co-cultures between normal and malignant cells used to model 

invasion. Angiogenesis has been investigated for its therapeutic potential as disruption of the 

nutrient supply to the tumour could prevent growth. Models have revealed the need for certain 
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factors to allow angiogenesis to occur, therefore identifying possible therapeutic targets. 3D 

models have also been used to investigate the tumour microenvironment.  

 

1.3.4.2. Other Models 

A number of other models have been developed to investigate the efficacy and delivery of 

therapeutic strategies in a more realistic setting. (336) Liver tissue models have been developed to 

help better understand liver diseases and drug metabolism, with the hope that they may be able 

to provide more relevant pharmacokinetic information. 3D models of cardiac tissue have been 

developed to help understand the mechanism of heart disease and also to produce implantable 

constructs that could help restore function in diseased hearts. Polymer scaffolds have been used 

to construct models of skeletal muscle and vascular smooth tissues which demonstrate 

similarities in morphology, contractility and differentiation to in vivo tissues. These have been 

used for drug testing and to investigate aspects of tissue repair and regeneration. Attempts have 

been made to model bone tissue in order to create replacements in case of injury, although 

refinements in cell type, cell number and scaffold material are still needed before this is 

successful. A model of corneal tissue has been developed for use in drug permeation and 

efficacy studies as the cornea is the main route of absorption for many clinically used ocular 

drugs. A 3D model has been developed to model the distribution and spread of adenoviruses, 

and epithelial raft cultures are being investigated as a model for the replication of pox and 

herpes viruses and to evaluate the efficacy of antiviral agents. (329) Progress has also been made 

recently in the development of 3D neuronal models to investigate Alzheimer’s disease. (328, 337, 338) 

While the culturing of individual cells into 3D structures has not been used extensively in the 

research of anti-prion therapeutics, progress has been made using organotypic cultures. A model 

of prion-induced neurodegeneration has been developed using cerebellar organotypic slice 

cultures, (339, 340) and the prion organotypic slice culture assay allows the amplification and 

titration of prions under conditions that closely resemble intracerebral infection. (341, 342) 

 

1.3.4.3. Drug Safety Testing 

Current drug safety testing strategies rely on testing drugs in rats and a non-rodent species, but 

the predictive capability of this has been questioned. It has been suggested that 3D culture may 

allow the development of more relevant tissue models that could be used to test drug safety in a 

more accurate and reproducible way. (343) Current 2D systems don’t accurately reflect the 

complexity of target organs and therefore make it difficult to develop relevant screens for organ 

toxicity. The liver is the most important organ for drug induced toxicity and, although complex 
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3D liver models have been created, their complexity renders them unsuitable for routine drug 

screening. The embryonic stem cell test uses stem cells cultured in hanging drops to test for 

possible developmental effects of novel drug compounds, (344) and tubular kidney cells cultured 

in 3D show distinct improvements in predictive ability over 2D models when tested with known 

kidney toxicants. (345) Microfluidic systems have also been developed to represent organs 

important for drug-induced adverse effects, including the liver, heart, lung, kidney and bone 

marrow. (346) The authors of the review conclude that although progress is being made towards 

an in vitro system for drug testing, the increased complexity of the required systems means 

there are still many challenges ahead.   

 

 

 

1.4. Aims of the Thesis 

 

The introduction above outlines the major pathological events associated with prion disease, 

and the challenges associated with developing therapeutics for these complex diseases. The 

breadth of compounds that have been reported as having anti-prion activity is huge, underlining 

once again the complexity of disease pathogenesis and making the identification of the optimum 

therapeutic approach very difficult. The pipeline for drug discovery is described, along with 

information on 3D models that have been developed in the hope that they will provide a more 

accurate assessment of a compound’s potential to work in vivo.  

 

The subsequent chapters of this thesis will outline a series of investigations into the indole-3-

glyoxylamide (I3GA) compounds (Figure 12) as anti-prion compounds. The 13GAs were originally 

identified from an in silico screen (Mpamhanga et al, unpublished data), which predicted that 

this group of compounds would interact with PrPC.  It was therefore hypothesised that the I3GAs 

may have anti-prion activity, and that this activity may be modulated via a PrPC-linked 

mechanism. It was further hypothesised that the I3GAs could be developed as potent anti-prion 

compounds through repeated rounds of analogue synthesis and screening.  
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Figure 12: I3GA parent structure. R indicates any possible substitution of the structure. 
 

The initial aim of the study was to establish the anti-prion activity of the I3GAs. A whole cell 

screening assay, using a cell line persistently infected with scrapie, was used to determine if any 

of the first set of I3GAs were able to reduce levels of PrPSc in vitro. Results from the initial set of 

screening were used to develop a broad structure-activity relationship (SAR), and this in turn 

was used to direct the ongoing synthesis of analogues. Further rounds of screening allowed the 

SAR to be defined further, and the anti-prion activity of the I3GAs to be optimised. Once the 

anti-prion activity of the I3GAs had been established, an assay was developed to directly 

measure the binding between the I3GAs and PrP. This was done using SPR, which allowed 

interrogation of the real-time interaction between the I3GAs and recombinant PrP. I3GAs shown 

to be active in the cell line screen were investigated in this assay, but very few of the compounds 

showed an interaction with PrP, suggesting that their anti-prion activity was not the result of 

direct interaction with PrPC. 

 

The discovery that the I3GAs were not binding to PrPC necessitated the development of a new 

hypothesis regarding the mode of action of these compounds. In the absence of any clues, 

further investigations were undertaken to define the pharmacodynamic and pharmacokinetic 

properties of the I3GAs. This data, taken in conjunction with data from microarray and 

proteomics studies, led to the proposal that the compounds work by upregulating the 

proteasomal degradation pathway, increasing the degradation of misfolded aggregates and 

reducing the burden of infection in the cells. Investigation of this hypothesis did not produce any 

conclusive results, although it is thought that an effect of the I3GAs on protein degradation may 

be part of their mode of action. Work was also carried out to validate the results of the 

microarray and proteomics studies using Western Blotting, and this technique was also used to 

investigate potential cellular targets of the I3GAs identified from an in silico screen. 

 

The primary aim of this thesis was to establish the anti-prion activity of the I3GAs and determine 

their mode of action in this context. As many anti-prion compounds show promise in vitro but 
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fail to show activity in vivo it was also thought desirable to obtain some data pertaining to the 

potential in vivo activity of these compounds. To this end, 3D cell culture models were 

developed which, it was hypothesised, would be able to predict which of the novel compounds 

may be active in vivo. Based on the pharmacokinetic data it was hypothesised that the I3GAs 

may be active in vivo, and the data from the 3D models support this supposition. The potential 

of the 3D models to be used in a high throughput context was also assessed. It was proposed 

that routinely using 3D models for screening for anti-prion compounds could result in the 

identification of potential therapeutics that were more likely to have in vivo activity. These 

models therefore have the potential to reduce the inefficiencies and false positives associated 

with the anti-prion drug discovery pipeline.  
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2. Materials and Methods 

 

The information outlined below relates to the materials and methods used to conduct the 

studies outlined in this thesis. The information on cell culture and compound screening describes 

the work carried out in section 3.1, as well as being the basis for the work carried out in sections 

4.1, 4.2, 4.3, 4.4.2 and 6.2. 

 

 

 

2.1. Materials 

 

2.1.1. Cell Culture 

 

SMB cells (see section 1.1.3.2 for more information) were obtained from the TSE centre at the 

Institute of Animal Health, now based at the Roslin Institute at the University of Edinburgh. 

Medium 199 without phenol red, foetal bovine serum (FBS), new born calf serum (NBCS), 

phosphate buffered saline (PBS) and Hank’s balanced salt solution (HBSS) were from Invitrogen. 

Medium 199 with phenol red, penicillin-streptomycin solution and trypsin-EDTA solution were 

from Sigma Aldrich. Tissue culture treated petri dishes were from BD Falcon (through SLS) and 

Nunc, tissue culture treated flasks were from Greiner. 96, 24 and 12 well plates were from 

Corning and Greiner, with other cell culture consumables purchased from Fisher Scientific and 

Starlab. 

 

Reagents for the MTT and Bradford assays were obtained from Sigma Aldrich and the plate 

reader was from BioTek instruments. All reagents for dot blot analysis were purchased from 

Sigma Aldrich with the exception of guanadine thiocyanate (Fisher Scientific) and some of the 

antibodies. The primary antibodies were 6H4 (Prionics through Celtic Foods) and 8H4 (Sigma 

Aldrich) and the secondary antibody was anti-mouse IgG (GE Healthcare and Santa Cruz via 

Insight Biotechnology). Nitrocellulose was from Amersham via Fisher Scientific. Blots were 

visualised using chemiluminescent solutions (GE Healthcare and Geneflow).  Imaging was done 

using either hyperfilm from GE Healthcare, developed using Kodak developing solutions (Sigma 

Aldrich) or by using the ChemiDoc system from Bio-Rad. The haemcytometer was from bright 

line through Fisher Scientific and the microscope was from Olympus. 
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Solutions were made as follows. Reagents were from Sigma Aldrich: 

 Nonidet P40 (NP40) lysis buffer - 10 mM Tris HCl, 100 mM NaCl, 0.5 % v/v nonidet P40, 

0.5 % w/v sodium deoxycholate and 10 mM EDTA at pH 7.4 

 Radioimmunoprecipitation assay (RIPA) buffer - 50 mM Tris HCl, 150 mM NaCl, 1 % 

Triton-X, 1 % sodium deoxycholate and 0.1 % SDS at pH 8. 

 10 x tris buffered saline (TBS)  – 200 mM Tris, 9 % NaCl at pH 7.4  

 Acidic isopropanol – 8.33 ml HCl in 1 litre isopropanol (final concentration 0.1 M HCl) 

 

The library of small molecules used in these experiments were synthesised by Chen et al. Other 

compounds, including the positive controls and those used in the screen of literature 

compounds, were purchased from Sigma Aldrich with the exception of Amphotericin B, which 

was purchased from Fluka. All compounds were solubilised in either HBSS or DMSO and stored 

as 10 mM stock solutions. 

 

 

2.1.2. Surface Plasmon Resonance 

 

The SPR binding experiments were carried out using a Biacore 3000 instrument. Chips, reagents 

and consumables were purchased from Biacore through GE Healthcare. The 50 mM sodium 

hydroxide and 10 mM sodium acetate solutions were prepared  using chemicals from Sigma 

Aldrich. DMSO was also purchased from Sigma Aldrich. Bacterially expressed recombinant PrP 

was obtained from the TSE resource centre, based at the Roslin Institute at the University of 

Edinburgh.  

 

Buffers were made as follows and were filtered and degassed before use: 

 HBS-EP buffer - 0.01 M HEPES pH 7.4, 0.15 M NaCl, 3 mM EDTA and 0.005 % v/v 

surfactant P20 at pH 7.4 

 Running buffer - 150 mM NaCl, 10 mM Sodium Phosphate, 3 mM EDTA and 0.05% v/v 

Surfactant P20. 

 

 

 

 

 



48 

 

2.1.3. Microarray and Proteomics Studies 

 

All samples were prepared from SMB cells cultured and passaged using materials described in 

section 2.1.1. Proteomic analysis was carried out using an iTRAQ based proteomic workflow. 

RNA was prepared for the microarray using the RNeasy method from Qiagen and quality 

assessed using the Agilent Bioanalyser 2100. The microarray was carried out using the Gene Chip 

IVT express kit from Affymetrix.  

 

 

2.1.4. Competition Studies using Inhibitors of the Proteasome and 

Lysosomal Proteases 

 

All experiments were carried out using SMB cells, cultured and analysed using materials 

described in section 2.1.1. MG132  and E64 were purchased from Sigma Aldrich, lactacystin was 

from Enzo Life Sciences and cathepsin inhibitor III was from Calbiochem. All were stored as a 10 

mM solution in DMSO, with all solutions except MG132 stored as 10 or 200 µl aliquots at – 20 °C. 

 

 

2.1.5. Western Blotting 

 

Cells were cultured in 6 well plates from Greiner  with all other culture consumables and 

Bradford reagent as in section 2.1.1. Protease inhibitor tablets were from Roche. 5 x lamelli 

sample buffer was made up in-house. Any Kd Mini-protean gels were purchased from Bio-Rad, 

ColorPlus protein marker was from New England biolabs and the TGS buffer (10x) was from 

National Diagnostics via SLS. Both the electrophoresis tank and the blotting tank were from Bio-

Rad. Immobilon-P transfer membrane (PVDF) was purchased from Fisher Scientific and the filter 

paper purchased from Bio-Rad The 10 x TG buffer used to make up the transfer buffer was from 

National Diagnostics via SLS. Dried milk powder and BSA were from Sigma Aldrich, and TBS stock 

was made as before. Antibodies against HSP90, Lck and caspase 12 were from Cell Signalling via 

New England Biolabs, antibodies against beta actin and Sp1 were  from Abcam and the MTF-1 

antibody, as well as the secondary antibodies, were from Santa Cruz via Insight Bioscience. Blots 

were imaged using a Bio-Rad ChemiDoc and analysed using the Image Lab software.  
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2.1.6. 3D Culture 

 

Compound screening, SMB cell culture and MTT and Bradford assays were all carried out using 

the materials described in section 2.1.1. Unless otherwise stated the same medium was used as 

is used for the routine screening. 

 

The Hanging Drop Model - 96 well hanging drop plates were purchased from 3DBiomatrix via 

Sigma Aldrich after trials using samples of both plates from 3D Biomatrix. Collagenase and TES 

were purchased from Sigma Aldrich.  

 

The Alvetex Scaffold Model - The Alvetex plates were purchased from Amsbio. Neutral red was 

from Sigma Aldrich.  

 

The Happy Cell Model - The Happy Cell medium in DMEM was obtained from Biocroi Ltd, and 

low binding plates for use with the matrix were from Greiner Bio-One. DMEM was purchased 

from Sigma and L-glutamine purchased from Fisher Scientific. 

 

Confocal Microscopy – Confocal microscopy studies were carried out using a Nikon A1 confocal 

microscope which is based in the light microscopy facility in the Biomedical Sciences department 

of Sheffield University. Slides and coverslips were from Gerhard Menzel via Fisher Scientific. 

Vectashield mounting medium containing DAPI was from Vector Laboratories, Nile red was from 

Sigma Aldrich and Acti-stain 488 fluorescent phalloidin (henceforth referred to as acti-stain) was 

from Cytoskeleton Inc via Bioquote Ltd. Images were analysed using ImageJ open source 

software. 
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2.2. Methods 

 

2.2.1. Cell Culture 

 

The information below outlines the methods for  routine culture, dosing, lysing and analysis of 

the SMB cells (see section 1.1.3.2 for further information on the SMB cells). Due to the nature of 

the materials being used all work was carried out in a class two containment lab 

 

2.2.1.1. Initial Cell Culture 

Cells received from the Institute for Animal Health were defrosted and re-suspended in medium 

warmed to 37 oC. Medium was composed of medium 199 supplemented with 10% NBCS, 5% FBS 

and 0.5% Penicillin-Streptomycin. The cells were spun down for 5 minutes at 150 x g and the 

supernatant removed and replaced with fresh pre-warmed medium to remove all DMSO. The 

cells were then transferred to a tissue-culture treated plastic dish or T75 flask and incubated at 

37oC, 5% CO2 for 24 hours to allow the cells to attach. After 24 hours the medium was replaced 

to remove any dead cells and residual DMSO. The cells were then incubated for a further six 

days (making seven days in total) with a medium change after three or four days. Under normal 

culturing conditions the cells would be confluent at this time. 

 

2.2.1.2. Passaging and Seeding Cells for Experiments 

To passage the cells all medium was removed and replaced with 5 ml of a solution containing 

0.05 % trypsin and 0.002 % EDTA, made up by diluting a 10 x solution in HBSS. The cells were 

incubated at 37 °C for around 5 minutes or until they were observed to have detached from the 

surface of the dish. Medium was added to the plate to stop the trypsin-EDTA and the cells were 

removed from the plate and spun down for 5 minutes at 150 x g. The supernatant was removed 

and the pellets re-suspended in fresh medium before the cells were counted using a 

haemcytometer.  Five fresh culture dishes or 3 T75 flasks were plated out with 5 × 105 cells or 1 

× 106 cells respectively to maintain cell stocks. Sterile 96 well plates were also seeded with the 

cell suspension, with between 1 × 104 and 1.5 × 104 cells per well, depending on passage and 

growth rate. These plates were then left overnight to allow the cells to attach before being 

dosed with compounds of interest. Cell stocks were passaged once a week and the medium was 

changed after 3 or 4 days. 
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2.2.1.3. Cell Storage 

On occasion it was necessary to put the cell stocks into storage. This was to maintain stocks and 

was also necessary during periods of inactivity in the cell culture laboratory. Cells were detached 

from the plate or flask using trypsin-EDTA as in section 2.2.1.2 before being spun down for 5 

minutes at 150 x g. The supernatant was removed and replaced with a storage solution 

composed of FBS containing 10 % DMSO. 2 ml of this solution was added for each flask of cells, 

and 1 ml aliquots of this solution were transferred into cryovials. These were frozen at a rate of -

1 °C/minute in a -80 °C freezer before being transferred to a cryostorage unit where they were 

stored long term in the vapour phase of liquid nitrogen. 

 

 

2.2.2. Compound Screening 

 

2.2.2.1. Dosing and Initial Screens 

After 24 hours the cells in the 96 well plates were checked to ensure they had attached and 

were ready for dosing. The initial screens for each compound were carried out in triplicate at 

three concentrations; 1 µM, 10 µM and 20 µM. There were also 12 wells for negative controls 

(0.5 % DMSO) and 12 wells for the positive controls (10 µM curcumin) (see Table 4). DMSO stock 

solutions of each of the compounds were prepared by weighing out approximately 2 mg of the 

compound and then dissolving it in DMSO to give a final concentration of 10 mM. The 10 mM 

stock was diluted to 200 times the required concentration in DMSO. This was then diluted 10 

times in HBSS (5 µl DMSO dilution into 45 µl HBSS) before being added to the medium at a 20 

times dilution (5 µl HBSS dilution into 100 µl medium) to give a final DMSO concentration of 0.5 

%. Once dosing was complete the cells were incubated at 37 °C for five days. 
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Table 4: Typical layout for initial screens. Letters A-H represent different samples at three 
concentrations (1, 10 and 20 µM). Each concentration is screened in triplicate. The negative 
control (-ve) is 0.5 % DMSO, the positive control (+ve) is 10 µM curcumin. 
 

 

 

2.2.2.2. EC50 Analysis 

Cells were sub-cultured and seeded into 96 well plates as described in section 2.2.1.2. Cells were 

dosed as described in section 2.2.2.1, except that 8 concentrations of each compound were used 

instead of three. Results from the initial screens were used to determine the concentrations for 

EC50 screening. For example, if the compound was active at 10 µM but not 1 µM it would be 

screened at concentrations ranging from 0.5 µM to 20 µM. Each concentration was dosed in 

triplicate and each plate contained 12 positive control wells and 12 negative control wells. Plates 

were incubated at 37 °C for 5 days after dosing. Concentration curves were created and the EC50 

calculated using the graphing programme GraphPad Prism 5.0. Results were plotted on a log axis 

and the EC50 value determined using a non-linear regression of the dose response curve. 

 

Y=Bottom + (Top-Bottom)/(1+10^((LogIC50-X)*HillSlope)) 

Equation 2: Equation for calculating the non-linear regression of the dose response curve. 

 

Data was obtained and processed as shown in Figure 13 below.  Dot blot images were analysed 

to convert the image into numbers, by expressing the relative density of each dot as the 

Integrated Optical Density (IOD). The IOD was then expressed as a percentage of the untreated 

control. An average and a standard deviation was calculated from the data in triplicate, before 

the fitting of a nonlinear curve and the calculation of an EC50 value.  
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Figure 13: Example of the data for quinacrine dosed at concentrations ranging from 0.01 µM to 
20 µM; a. shows the original dot blot, with each concentration dosed in triplicate; b. shows the 
processing of the IODs for each concentration, and the calculation of averages and standard 
deviations; c. shows the generation of a dose-response curve and the calculated EC50. 
 

All compound screens were repeated at least twice to confirm the EC50 value and the results in 

section 3.1.1.3 are the average of the screens along with the standard deviation, in µM. 

Compounds that showed activity in the initial screen but showed no activity in the EC50 screen 

were classed as false positives and therefore inactive. EC50 values were also calculated for 

quinacrine and curcumin to validate the results of the compounds with unknown anti-prion 

activity. 

 

2.2.2.3. Viability Assay 

Viability assays using MTT (thiazolyl blue tetrazolium bromide) were carried out in duplicate 

alongside the activity assays. After the five day incubation 10 µl of the MTT stock solution at 5 

mg/ml was added to the medium and the solution incubated for 2 hours. After two hours the 

medium was removed and 30 µl or 60 µl of acidic isopropanol (propan-2-ol with 0.1 M HCl) was 

added. This was then measured on a UV plate reader at 570 nm with a background subtraction 

at 690 nm. Viability was calculated as a percentage of the untreated control.  
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2.2.2.4. Cell Lysis 

Once the five day incubation period was over the cells were lysed. This released the content of 

the cells so the amount of PrPSc could be measured. The plates were examined by eye before 

lysis to ensure that the cells were healthy and alive and to identify any abnormal wells. Medium 

was removed from the plates and 50 µl of either NP40 or RIPA lysis buffer was added. 25 µl of 

benzonase at 0.2 µl/ml in lysis buffer was added to the lysate to remove all nucleic acids from 

the protein samples. The plates were shaken for one hour on an orbital shaker after the addition 

of lysis buffer and benzonase to ensure that all the cells had lysed before the protein 

determination was carried out.  

 

2.2.2.5. Protein Determination 

A Bradford assay was used to determine the concentration of protein in the cell lysate. The 

protein concentration, as determined by the Bradford assay, was used to determine the relative 

quantity of cell lysate to load onto the membrane for the dot blot. Ideally between 30 µg and 40 

µg of protein was loaded in each well of the dot blot manifold.  

 
 

Figure 14: An example of a BSA calibration curve for calculating protein concentration. Lysis 
buffer containing different concentrations of BSA were measured using a Bradford assay, and 
the calculated slope used to calculate the protein concentration of the unknown samples. Each 
concentration was analysed in triplicate. 
 

For both the calibration standards and the cell lysates 250 µl of Bradford reagent was added to 5 

µl of the sample, followed by incubation for 5 minutes at room temperature. Absorbance was 

then measured at 570 nm using a plate reader. BSA standards were used to create a linear 

concentration gradient, using concentrations of 0.1 to 1.0 mg/ml (see Figure 14). The net 

absorbance was plotted against the protein concentration of each standard to construct a 

standard curve. The protein concentration of the unknown samples was then determined by 
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interpolation of the net absorbance values. The average concentration of protein was used to 

determine how much of each well should be applied to the nitrocellulose membrane.  

 

2.2.2.6. Dot Blot Analysis 

A 96 well manifold under vacuum was used to immobilise the cell lysate onto a nitrocellulose 

membrane, which then underwent a series of washes and treatments. This resulted in a final 

photographic image which allowed identification of wells in which PrPSc levels had been reduced. 

 

A piece of nitrocellulose membrane was clamped into the manifold on top of two pieces of filter 

paper the same size and shape. A vacuum of around 350 mmHg was applied to the manifold and 

the lysate from the 96 well plates loaded onto the manifold. Samples were transferred directly 

so the arrangement of compounds on the membrane was the same as the arrangement on the 

plate. Once all the liquid had been pulled through, the membrane was removed and left to dry 

for at least an hour. This was to ensure that the protein was fully immobilised on the membrane. 

This process was repeated for all plates with the top and bottom parts of the manifold being 

cleaned with 10% ethanol in water between each plate.  

 

Once the membranes were dry they were subjected to a series of washes to isolate, unfold and 

tag the PrPSc so it could be measured via chemiluminescence. All washes were done using tris 

buffered saline with 0.1 % Tween 20 (TBS-T) or without (TBS). A working solution of TBS was 

made up fresh for each set of blots by diluting 100 ml of a 10 times stock in 900 ml water.  TBS 

was used to make up reagent solutions unless stated otherwise, and 25 ml or 30 ml of each 

solution was prepared which could be used on one or two blots. 

 

Blotting was done using a series of washes as detailed below. Where two concentrations are 

shown these are for pre- and post-optimisation protocols: 

 Proteinase K at 75 µg/ml or 150 µg/ml for one hour at 37 °C. 1.5 ml aliquots of the stock 

solution at 1.5 mg or 3 mg were diluted into 28.5 ml TBS to make the working solution. 

The stock solution was prepared in advance and stored in the freezer 

 1 mM phenylmethylsulfolnyl (PMSF) fluoride for 10 minutes at 37 °C. 150 μl of a 200 mM 

stock solution in ethanol was added to 30 ml water to make the working solution. 

 3 x 5 minute washes in TBS-T. All steps from this point onwards were done at room 

temperature with shaking at 100 rpm. 



56 

 

  1.8 M guanadine thiocyanate for 10 minutes. 5.32 g guanidine thiocyanate was 

dissolved in 25 ml TBS. 

 3 x 5 minute washes in TBS-T. 

  5% fat free milk solution for 1 hour. 1.5 g fat free milk powder was mixed with 30 ml 

PBS. 

 3 x 5 minute washes in TBS-T. 

 6H4 or 8H4 for 1 hour. A 0.2 μg/ml solution was made up in TBS-T and could be used 

repeatedly. 

 3 x 5 minute washes in TBS-T. 

 Secondary antibody (anti-mouse IgG) for 1 hour. A 1:4,000 dilution was prepared in TBS-

T, and was only used once.  

 1 x 15 minute washes in TBS-T 

 2 x 5 minute washes in TBS (Tween can interfere with the ECL solutions). 

 3 minute wash with 5 ml ECL solution. This is made up of equal amount of solutions A 

and B, which should be mixed together at least 5 minutes before use. 

 

Once all the washes were complete the blots were visualised using either hyperfilm which was 

developed and fixed after exposure to the blot, or by using the Bio-Rad ChemiDoc system. The 

relative density of the dots was measured and quantified using either Labworks (UVP) or 

Quantity One (Bio-Rad) software. These software packages calculated the relative density of 

each of the dots and expressed it as the Integrated Optical Density (IOD). Results from the 

compounds were described as a percentage of the untreated controls to quantify changes in 

PrPSc levels, and the MTT and dot blot data was analysed to assess the effects of the compounds 

on PrPSc levels and cell viability. 

 

 

2.2.3. Surface Plasmon Resonance 

 

All studies were carried out using a Biacore 3000 instrument using a protocol developed and 

optimised by the Chen group, which is outlined in detail below. (221)  

 

2.2.3.1. Immobilisation Protocol 

PrP was immobilised onto a CM5 chip using a standard Biacore amine coupling protocol. A new 

CM5 chip was docked and primed three times with the HBS-EP buffer used for the 
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immobilisation. Once the chip had been primed the first flow cell on the chip was prepared as a 

blank reference cell. The surface was activated using an equal mixture of EDC and NHS. This was 

injected for 7 minutes at a flow rate of 5 µl/minute.  The activated sites were then blocked with 

a 7 minute injection of 1 M ethanolamine-HCl pH 8.5 solution at the same flow rate. 

 

Once the blank flow cell had been prepared, subsequent flow cells were used to immobilise the 

huPrP and moPrP. The cell surface was activated using the same method as above. Just before 

immobilisation the PrP was diluted to a concentration of around 20 µg/ml in sodium acetate pH 

5.5 buffer and this was injected manually at a flow rate of 5 µl/ml. These parameters provided a 

solution that was concentrated enough to obtain the desired immobilisation level, whilst at the 

same time allowing control to be maintained over the immobilisation to ensure the 

immobilisation level was not too high. An immobilisation level of between 3000 and 4000 RU 

was targeted and this was usually achieved with two injections. After the protein injection the 

chip surface was blocked with ethanolamine as before and then regenerated using a solution 

composed of 25 mM NaOH and 1 M NaCl to ensure that any unbound protein was washed off 

the chip. The flow rate was increased to 30 µl/minute followed by 3 injections of 5 µl 

regeneration solution. After immobilisation the flow of HBS-EP buffer was continued overnight 

to allow the chip to equilibrate.  

 

Once the immobilisation was complete the immobilisation level was calculated by subtracting 

the baseline level after the EDC-NHS injection from the baseline level after the immobilisation. 

This calculation was performed straight after the immobilisation, and also at the start of each 

run, to ensure consistency (see Figure 30). This provided confidence that the PrP was firmly 

bound and wasn’t dissociating from the chip, resulting in a decrease in immobilisation level, or 

aggregating, resulting in an increase in the immobilisation level. Checking the immobilisation 

before each run also ensured that the regeneration steps described in section 2.2.3.2 were 

working properly by demonstrating that none of the analytes used were still bound to the PrP.  

 

2.2.3.2. Compound Runs 

Initially, compounds were assessed at 40 µM to allow comparison with previous studies. (221)Any 

compounds that showed binding were run at a range of concentrations to try and establish a 

mode of binding.  
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Compounds were diluted to 0.61 mM in DMSO and were then diluted in running buffer so the 

final compound concentration was 40 µM and the final DMSO concentration was 6.5%. 6.5% 

DMSO was added to the running buffer for compound runs and DMSO solutions of 5.5%, 6%, 

6.5%, 7% and 7.5% were run alongside the samples which allowed a correction to be made for 

the presence of DMSO in the samples. Two regeneration solutions were used; the NaOH/NaCl 

solution used during the immobilisation, supplemented with 1% SDS and a glycine pH 2 solution 

supplemented with 1% ethylene glycol. These solutions forced the dissociation of any bound 

compound from the protein to ensure that all the binding sites were available at the beginning 

of each run. The running buffer, containing 6.5 % DMSO, was used as a sample blank and 

quinacrine at 40 µM was used as the positive control. Quinacrine has been shown to specifically 

bind to PrP (221, 233, 347) with a kD of 15 µM. (221) 

 

To screen the compounds, runs were set up to automatically perform the following series of 

injections; Compounds were injected for 1 minute at a flow rate of 30 µl/min, followed by a 3 

minute wait to allow for dissociation. The regeneration solutions were then injected at a flow 

rate of 35 µl/min, with a 20 second injection of the NaCl/NaOH solution (as used in the 

immobilisation step) being followed by a 20 second injection of the pH 2 glycine solution. These 

ensured that any analyte that remained bound to the ligand was removed. This was followed by 

1 minute of stabilisation time before the end of the run. Each compound was run in triplicate, 

and each set of triplicate runs was separated by a run during which only buffer was injected. A 

set of five DMSO calibration standards were injected at the start, in the middle and at the end of 

each set of compounds, with each of the five concentrations being injected in triplicate at each 

stage. Quinacrine in triplicate was also included at the start and the end of each set of 

compound runs. Data was analysed using a macro set up in excel, which automatically calculated 

results and presented them as % RUmax, (see section 3.2)  taking into account the DMSO 

calibration. 
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2.2.4. Additional Assays Based On The SMB Cell Line Screening 

Assay 

 

All assays outlined below used SMB cells routinely cultured as described in 2.2.1. 

 

2.2.4.1. Curative Assay 

These experiments were carried out using cells seeded into 24 well plates. Cells were seeded at 

50,000 cells per well in 400 µl medium into two separate 24 well plates using 12 wells of each. 

The cells were incubated for 24 hours to allow attachment before the medium was changed and 

the cells dosed with the appropriate compounds at the following concentrations: 

3001012 – 1 nM and 10 nM (EC50 1 nM). See Figure 45 for structure. 

Positive control – 1 µM quinacrine or 10 µM curcumin. See Figure 45 for structures. 

Negative control – 0.5 % DMSO 

 

The compounds were prepared using the same dilutions as in section 2.2.2.6 for the initial 

dilution of the stock solution into DMSO. 10 µl of the DMSO dilution was added to 90 µl of HBSS 

and 20 µl of this was added to each well, giving a 20 times dilution into the medium as before. 

Unless stated otherwise the cells were dosed once at the start of the assay. 

 

Once the cells reached confluence they were passaged and samples taken for dot blot analysis. 

This was performed routinely every 5 or 6 days depending on the confluence of the cells. The 

medium was removed and the cells washed with 400 µl of pre-warmed HBSS. Cells were 

detached using 200 µl of trypsin-EDTA solution in HBSS (as in section 2.2.1.2) which was stopped 

with 200 µl medium. A 200 µl aliquot was taken from each well (12 in total for each plate) and 

stored prior to being lysed and analysed. The remaining cells for each treatment were then 

pooled together (1 sample per treatment, 4 samples per plate.) to be counted and re-plated in 

triplicate. All samples were spun down at 150 x g for 5 minutes.  

 

The cells for re-plating were re-suspended in 1.2 ml of medium. One of the four samples was 

counted, since all samples were found to have similar cell counts, and from this the amount 

needed to plate the cells out at 50,000 cells per well was calculated. All samples were plated out 

in triplicate so the same plate template was used after each split. The aliquots for analysis were 

re-suspended in 100 µl of lysis buffer and 50 µl of benzonase per aliquot. These samples were 

then shaken on an orbital shaker for one hour. A protein determination using Bradford reagent 



60 

 

was carried out as described in section 2.2.2.5 prior to the samples being frozen at -80ºC for 

analysis at a later date.  

 

2.2.4.2. Time Course Assays 

Cells were seeded into 96 well plates following the same protocol as described in section 2.2.1.2. 

EC50s were run alongside the time course assays to ensure that there was no change in activity 

due to the use of new stock solutions and a different passage of cells. Compounds were 

prepared using the same dilutions as described in section 2.2.2.1. Each compound was dosed in 

triplicate and the entire experiment was carried out at least twice for each treatment. 

 

Cells were seeded at 10,000 cell/well and incubated for 24 hours before dosing to allow 

attachment. Dosing was applied at this point, and the first set of compounds in triplicate lysed 

immediately. Medium was removed using a multi-channel pipette and replaced with 50 µl lysis 

buffer or RIPA. This process was carried out at again at 8 or 16 hour intervals and repeated over 

6 days giving 12 time points for a 128 hour incubation.  

 

Once a plate had been completely lysed, 25 µl of benzonase at 0.2 µl/ml was added to each well 

and the plate was shaken at 200 rpm for one hour. At this point a Bradford assay was carried 

out, using the  protocol described in section 2.2.2.5 and the plate stored until analysis. Cell 

viability was not measured as it was well established in previous screens that the compounds 

were being used at non-toxic concentrations. PrPSc levels were assessed using dot blot analysis 

as described in section 2.2.2.6. 

 

2.2.4.3. Growth Curve Analysis 

To assess cell numbers using the haemcytometer the cells were grown in 24 well plates with an 

initial seeding density of 20,000 cells/well in 400 µl medium. Each compound was dosed in 

triplicate, with the first harvest and count done immediately after dosing. The next count was 

done 8 hours after dosing, with the same pattern being repeated for the next 6 days. The three 

wells were combined into one sample for counting, and for the earlier time points were spun 

down and re-suspended in a third of the amount of medium to concentrate the sample and 

improve the accuracy of the count. Cell numbers were determined by aspirating the sample and 

taking two 20 µl aliquots which were pipetted into either side of the haemcytometer. Four of the 

five sampling squares were then counted giving a total of 8 counts for each sample. As far as 
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possible, counting was done as soon as the samples were ready, although there was not found 

to be any problems with counting them a day later.  

 

For the MTT assays the cells were seeded into 96 well plates at a density of 5,000 cells/well. The 

outer rows of the plate were not used so were filled with  medium  to  reduce variability in 

growth caused by evaporation. One plate represented one time point and six wells were dosed 

per treatment. The experiment was repeated in duplicate on each plate. At 24 hour intervals the 

medium on the seeded wells was removed and replaced with 100 µl medium containing 0.5 

mg/ml MTT solution. After incubation for 2 hours at 37°C the medium was removed and the 

cells re-suspended in 50 µl acidic isopropanol. The absorbance of the wells was then measured 

at 570 nm with a background subtraction of 690nm using a plate reader. A calibration curve was 

created by seeding a plate with different concentrations of cells (5,000 to 40,000 cells/well) and 

then analysing the plate as described above. (see Figure 55). While MTT measures metabolic 

activity which is not directly proportional to cell number it was thought that the assay would be 

sufficiently sensitive for this application, and this proved to be the case. 

 

2.2.4.4. Screening of Literature Compounds 

Compounds for testing were either made up in DMSO as 10 mM stocks, or in HBSS as 5 mg/ml 

stocks depending on the solubility of particular compound. Compounds in HBSS stock solutions 

were diluted to 20 times the desired concentration and then diluted 1:20 into the culture 

medium. The effect of the compounds on PrPSc levels was determined by dot blot analysis as 

described in section 2.2.2.6. 

 

2.2.4.5. Competition Studies Using Inhibitors of the Proteasome and Lysosomal 

Proteases 

Cells were seeded into 96 well plates as before, at a density of 8,000 cells per well. Initial 

experiments investigated the inhibitors on their own, and the results of these initial experiments 

were used to determine the concentration of the inhibitors to be used in subsequent 

competition experiments. All inhibitors were diluted from the 10 mM stock solution following 

the same dilution scheme as for the compounds, giving a final DMSO concentration of 0.5% as 

for the routine screening. Cells were dosed with either the I3GA at a range of concentrations 

with a fixed concentration of inhibitor, of the inhibitor at a range of concentrations with a fixed 

concentration of the I3GA. For co-dosing experiments all compounds were prepared in DMSO at 

twice the desired concentration (400 times working concentration rather than 200 times). The 
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two compounds were then mixed 1:1 before being diluted in HBSS and then dosed into the 

culture medium. A time course study was also undertaken, to try and determine how long it 

took for protein levels to rise after treatment with MG132, and how this would be affected by 

co-dosing with 3001012. The time course assay was carried out as before, with two time points 

per day being taken over 5 days (0 – 128 hours). All end-point assays were carried out over 5 

days. MTT assays were used to determine cell viability and were carried out as before. PrPSc 

levels were determined by dot blot analysis as described in section 2.2.2.6. 

 

 

2.2.5. MTT-FE Assay 

 

Cells were seeded into 96 well plates at 10,000 cells/well and left to attach overnight. The 

following day the cells were dosed with the compounds of interest at concentrations 

determined as a result of the screen described in section 4.4.2. The wells round the edge of the 

plate were not used in order to reduce the amount of noise in the data.  

 

The compounds tested and the concentrations used are detailed in Table 5. 

 

Table 5: Compounds and their concentrations used in the MTT-FE assay 
 

 

 

Dosing was performed as in section 2.2.2.1, with compounds being diluted to 20 times working 

concentration before being dosed onto the cells. Compounds with stock solutions made up in 

DMSO (3001012, 3001207, 3001086, quinacrine and congo red) were diluted to 200 times 

working concentration in DMSO to ensure a final DMSO concentration of 0.5 %. This was 

thought important to maintain consistency with previous assays. As before the negative control 

was 0.5 % DMSO. 
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The assays were carried out as a time course, with the MTT-FE assay being carried out every day 

for 5 days (120 hours in total). All compounds were known to be active within this timeframe. 

The assay protocol was modified from Hong et al. (348) Medium was removed from the cells and 

replaced with 100 µl culture medium containing 0.5 mg/ml MTT (diluted from a 5 mg/ml stock in 

PBS as before). The plate was incubated at 37 °C for an hour, at which point the medium was 

removed and replaced with 50 µl 1 % tween 20. After 10 minutes incubation at 37 °C the tween 

solution was transferred to a clean plate and then read in a plate reader at 570 nm with a 690 

nm background subtraction. This is referred to as tween-soluble MTT (TS-MTT). The remaining 

MTT, known as tween-insoluble MTT (TI-MTT), was solubilised in 50 µl acidic isopropanol before 

being read using the same parameters.  

 

 

2.2.6. Microarray and Proteomics Studies 

 

2.2.6.1. Sample Preparation 

Samples for the proteomics and microarray assays needed to be carefully prepared to ensure 

that the results were reproducible within, and comparable between, the two studies. The 

number of samples to be analysed was limited by the iTRAQ which was only able to multiplex 8 

samples. Biological replicates were needed for each sample so only 4 samples could be analysed. 

Cells treated with 0.5 % DMSO were used as the untreated control, and this was the baseline 

against which the treated cells were compared. The compounds were dosed at 3 x EC50, ensuring 

that the concentration would be high enough to clear the PrPSc but hopefully avoid any off-

target side effects. Quinacrine was dosed at 1.5 µM, 3001012 at 4.5 nM and 3001207 at 6 nM 

with concentrations based on EC50s determined using the same passage of cells and stock 

solutions as used in the sample preparation.  

 

Time course experiments (as described in section 4.2) were used to determine the time point at 

which the cells would be lysed. These optimisation steps ensured that the compounds had time 

to exert their anti-prion effect whilst, again, minimising possible off-target side effects that could 

confuse results. Although quinacrine exerted its anti-prion effect much more quickly at higher 

concentrations, it showed a similar time course to the I3GA compounds at the concentrations 

used in this study. 56 hours was therefore chosen as the point at which maximum clearance had 

occurred for all three compounds.  
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The samples were prepared in tissue culture treated petri-dishes, using two dishes per 

compound to provide the biological replicates. Culture conditions were the same as for all other 

experiments. The cells were left to attach overnight and the medium changed before dosing. 

The plates were dosed at the appropriate concentrations with a final DMSO concentration of 0.5 

%. After 56 hours the medium was removed and the plates washed 3 times with HBSS. It was 

vital to ensure that all medium was removed so that the proteomics study was not 

contaminated with protein from the medium. A 0.02 mg/ml EDTA solution was used to remove 

the cells from the bottom of the plate. Trypsin is usually used for this step but was avoided as it 

can interfere with the downstream analysis. The cells were removed fully from the plate with a 

cell scraper and samples taken for protein determination and dot blot analysis to confirm the 

protein concentration and the presence or absence of PrPSc. The samples were split into two (3.5 

ml for proteomics, 1 ml for microarray), spun down for 5 minutes at 12,000 x g, the supernatant 

removed, and the pellets stored at -80 ºC. 

 

Protein determination and dot blot analysis were carried out as per sections 2.2.2.5 and 2.2.2.6 

respectively.  

 

2.2.6.2. Proteomic Analysis 

The prepared samples were compared in a multiplex format to determine changes in the protein 

expression profile resulting from treatment with the compounds. An 8-plex isobaric tag for 

relative and absolute quantification (iTRAQ) based proteomic workflow was used for the 

experiments. The iTRAQ technology is based on the chemical labelling of peptides with a series 

of isobaric reagents after enzymatic digestion of the proteins. The isobaric reagents have the 

same mass but are distinct from each other, producing different reporter ions when fragmented. 

Labelled samples were combined, fractionated by nano liquid chromatography and fragmented 

and analysed by tandem mass spectrometry. Proteins were simultaneously identified and 

relatively quantified in this approach. It was possible to analyse 8 different samples at once due 

to the availability of 8 different iTRAQ reagents, so in this study two biological replicates were 

carried out for each of the four compounds. Data processing and downstream statistical analysis 

were performed using the well-established pipeline developed  at the Chemical Engineering at 

the Life Science Interface (ChELSI) Institute at Sheffield University. 
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2.2.6.3. Microarray Analysis 

DNA microarrays were used to measure the expression levels of a large number of genes 

simultaneously. Total RNA was extracted from the cell pellets and the quantity and quality 

assessed. Once this had been confirmed the RNA was processed using the Gene Chip IVT express 

kit from Affymetrix. 15 µg of the biotin-labelled antisense RNA produced was fragmented and 

applied to the Mouse 430 plus 2 Gene Chip arrays, which allowed analysis of over 34,000 well 

characterised mouse genes (information from www.affymetrix.com). After 16 hours incubation 

at 45 ºC with rotation at 60 rpm the arrays were washed and the fluorescent signal developed 

using a streptavidin-phycoerythrin conjugate. The arrays were then scanned and following 

quality control using the Expression console package the data was available for downstream 

analysis. 

 

2.2.6.4. Network Analysis 

The data from both the proteomics and the microarray studies were combined, analysed and 

compared using the MetaCore software. Cellular level biological networks were built for all 

conditions. Gene and protein expression in treated cells were compared to gene and protein 

expression in cells that had been treated with DMSO only to determine which pathways were 

affected by treatment with either quinacrine or the I3GAs. Networks were built detailing 

pathways that may be altered as a result of treatment. Separate networks were built for the 

proteomics and microarray data individually, and then a third network was built using a 

combination of both data sets. 

 

Microarray data was analysed using the GeneSpring GX software, and the normalisation of the 

data was carried out using the PLIER 16 to standardise changes in gene expression attributed to 

biological variation instead of technical variation. Differentially expressed genes (DEGs) with an 

absolute fold change of ≥ 1.0 were determined by a paired Student’s T-test using p value <0.05, 

and the false discovery rate was determined at this p value according to the Benjamini and 

Hochberg method. (349) 

 

The proteomics data was originally expressed as an iTRAQ ratio, with up regulated proteins 

having a number greater than one and down regulated proteins having a number lower than 

one. In order to make these data comparable to the microarray data a transformation was 

necessary. This was achieved by taking the value of the lowest ratio of a group of data and 
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subtracting it from the selected microarray cut off point. This was added to all the values in the 

data set, and all down regulated proteins were transformed into negative values.  

 

The reports produced by MetaCore contained several different sets of data. Pathway maps were 

constructed based on the data sets, both individually and combined. The pathway maps 

represent a set of signalling and metabolic maps covering the human system in a comprehensive 

way. Experimental data is visualised on the map as blue (for down regulation) and red (for up 

regulation) histograms, with the height of the histogram corresponding to the relative 

expression level for a particular gene or protein. Enrichment analysis consisted of matching gene 

IDs of possible targets with functional ontological entities in MetaCore. The probability of a 

random intersection is estimated in a p-value of hypergeometric intersection, with a lower p-

value indicating higher relevance of the entity to the dataset. Process networks were suggested 

on the basis of each set of data, with each process representing a pre-set network of protein 

interactions characteristic for the process. Metabolic networks were also suggested.  

 

 

2.2.7. Western Blotting 

 

Cells were cultured as in section 2.2.1.2 and seeded into 6 well tissue-culture treated plates at a 

density of 150,000 cells/well in 1.5 ml medium. After an overnight incubation to allow 

attachment, they were dosed according to the protocol in section 2.2.2.1. Cells were dosed with 

either 3001012 at 5 or 10 nM or 3001207 at 50 or 100 nM, and 75 μl of the 20 times HBSS 

dilution was added to the medium to give a final DMSO concentration of 0.5%. Cells were then 

incubated for either 56 hours or 5 days before harvesting, at which point all medium was 

removed from the cells and they were harvested from the plate using a 0.5 ml trypsin-EDTA 

solution (see section 2.2.1.2). After the addition of 0.5 ml of medium the samples were spun 

down at 150 x g for 5 minutes before the supernatant was removed and the pellet re-suspended 

in 1 ml HBSS. These were spun down at 11,300 x g for 5 minutes, after which the pellet was 

washed twice with sterile HBSS to remove any traces of medium. The pellets were then lysed on 

ice in 250 µl of RIPA buffer supplemented with protease inhibitors, spun down for 1 minute at 

1,700 x g to remove cellular debris, and a Bradford assay carried out to determine protein 

concentration (see section 2.2.2.5). Samples for analysis were diluted in RIPA if required to give 

a final protein concentration of 1 µg/µl (40 µg protein in total). 10 µl lamelli buffer at 5 times 

working concentration was added to give a final sample volume of 50 µl. The samples were then 
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heated at 75 °C for 5 minutes and loaded onto the gel. To avoid problems with degradation the 

samples were kept on ice at all times and prepared and loaded onto the gel as quickly as 

possible.  

 

After heating, 40 µl of each sample was loaded onto the gel, which had been placed in the tank 

and the gasket filled with 1 x TGS buffer. Marker was loaded onto either one or both of the 

outside lanes, depending on how many samples were being run. The tank was filled with TGS up 

to the appropriate level and the gel run at 300 V for 5 minutes to move the samples into the 

stacking layer of the gel. It was then run for 30 minutes at 180 V. All gels were run using the 

same conditions. 

 

While the gel was running, appropriate size pieces of PVDF were activated in methanol and then 

soaked in transfer buffer (100 ml methanol, 100 ml 10 x TG buffer, 800 ml water) for half an 

hour. Once the gel was run it was removed from the case and briefly soaked in transfer buffer, 

before being layered with the PVDF membrane and filter paper according to the order shown in 

Figure 15 

 
 
Figure 15: Diagram showing how the gel and PVDF membrane are layered in preparation for 
western blotting. With the black side of the cassette down, stack upwards in the order fibre pad, 
filter paper, gel, membrane, filter paper, fibre pad. Figure adapted from Bio-Rad instruction 
manual. 
 

The cassette was then placed into the tank with the black side of the cassette next to the black 

side of the tank. An ice pack was placed in the gap and the tank filled to the brim with transfer 

buffer. This was run for 30 minutes at 180 mA. 
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Once the transfer was complete the PVDF was checked and if marker could be seen then the 

transfer had been successful. The edges were trimmed and it was placed into a centrifuge tube 

containing 25 ml TBS-T (see section 2.2.2.6 for composition). A series of washes were then 

performed as follows (at room temperature unless otherwise specified): 

 TBS-T, 15 minutes  

 Block, 1 hour  

 Primary antibody, overnight at 4 °C or 1 hour at room temperature  

 TBS-T, 3 x 5 minutes 

 Secondary antibody, 1 hour  

 TBS-T, 1 x 15 minutes 

 TBS, 2 x 5 minutes 

 ECL solutions, 3 minutes. 

 

Blocking and primary antibody conditions were optimised for each antibody individually, as can 

be seen in Table 6. 

 

Table 6: Western blotting conditions for each of the targets. All solutions were made in TBS-T 
(20 ml for the block, 5 ml for the primary antibody and 10 ml for the secondary antibody) and all 
primary antibody incubations were done overnight at 4 °C, unless otherwise specified. 
 

 

 

Once the washes were complete the blots were visualised using the Bio-Rad ChemiDoc system, 

and the resulting bands analysed using the image lab software. 
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2.2.8. 3D Culture 

 

The SMB cells, cultured routinely as in section 2.2.1, were used in all experiments. 

 

2.2.8.1. The Hanging Drop Model 

2.2.8.1.1. Optimisation of Spheroid Formation and Culture  

Initial optimisation was carried out using the 384 well plates to prove that the SMB cells would 

form spheroids. Drops were formed from 20 µl medium, with initial seeding densities of 300, 

1,500 and 7,500 cells per drop, as per the manufacturer’s recommendation. 10 µl medium was 

added to each drop 2 days after seeding, with a further 5 µl being added every two or three days 

subsequently. Spheroid formation was observed in the hanging drops and monitored by eye.  

 

Further optimisation was carried out using the 96 well hanging drop plate to identify the optimal 

drop size and seeding density (see Table 7). 

 

Table 7: Different seeding densities and medium volumes used in the optimisation of the 96 well 
hanging drop plate. Figures in the table show the total number of cells per drop for each of the 
parameters. 
 

 
 

Cell suspensions of the required seeding density were prepared and the appropriate amount (25 

μl, 35 μl or 50 μl) gently pipetted into the well to allow the formation of the hanging drop. 2 ml 

of water was added to the wells round the edges of both the upper and lower sections of the 

plate to reduce evaporation from the drops. This was replenished at the same time as the 

medium. Cells were monitored over 7 days, and 25 % of the original volume of medium was 

added every two or three days. Additional optimisation used the same protocol but investigated 

higher seeding densities of 500, 750 or 1,000 cells/ μl. Spheroids were harvested by pipetting the 

whole drop up from the top of the plate. If harvesting was problematic due to the spheroid 

getting lodged in the top of the well then the well was flushed with HBSS to dislodge the 

spheroid and remove it from the plate. To facilitate downstream processing the spheroids were 
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spun down to allow the removal of medium. If required the spheroids were rinsed with HBSS 

before being re-suspended in the lysis buffer. 

 

A variety of methods were used to lyse the spheroids. Two different lysis buffers were used 

during the optimisation process; 100 μl NP40 buffer and 100 μl RIPA buffer (see section 2.1.1 for 

composition of both). To facilitate lysis of the spheroids in the lysis buffer additional techniques 

were employed. These included incubating the spheroids at 70 °C for 30 minutes, as well as 

carrying out freeze-thaw cycles and passing the spheroids through narrow gauge needles. 

Freeze-thaw cycles were carried out by allowing the samples to freeze completely, before 

thawing in a water bath at 37 °C. This was repeated 4 times. Lysing the spheroids by passing 

them through a small gauge needle used a 21 g.a. needle and a 500 μl syringe, with the solution 

containing the spheroid being passed through the needle multiple times. It should be noted that 

the spheroids that were subjected to this treatment were re-suspended in 200 μl lysis buffer as 

100 μl was found to be impractical. The efficacy of each technique was determined using 

spheroids that had been dosed with 0.5 % DMSO, with two spheroids being combined into one 

sample. A total of 48 spheroids were combined into 24 samples, which were divided into 4 

groups of 6 and subjected to one of the above lysis methods after being suspended in RIPA lysis 

buffer. 

 

Collagenase digestion was carried out using a variety of different buffers and concentrations. 

Stock solutions at 10 mg/ml were made up in TESCA buffer (50 mM TES, 0.36 mM CaCl2) and 

stored in the freezer until required. Three different buffers were used for the digestion, 

including TESCA as well as high calcium TESCA (containing 5 mM CaCl2 rather than 0.36mM)and 

krebs-ringer buffer (135 mM NaCl, 5 mM KCl, 1 mM MgSO4, 0.4 mM K2HPO4, 1 mM CaCl2, 5.5 

mM glucose, 20 mM HEPES, pH 7.4). Each spheroid was digested in 100 μl of each of the buffers 

containing either 0.5, 1 or 2.5 mg/ml collagenase. Spheroids were incubated at 37 °C and were 

monitored at 30 minute intervals to determine if dissociation was occurring. After 3 hours of 

incubation the spheroids were removed from the collagenase solution, either by spinning the 

solution down at 13,400 rpm for 5 minutes and removing the supernatant or by removing the 

spheroid with a pipette and placing it in a clean tube. In both cases the spheroid would finally be 

re-suspended in 100 μl RIPA. 

 

Sonication of the sample in the bioruptor was carried out by first re-suspending the spheroids in 

100 μl RIPA, before decontaminating the outside of the tubes by exposing them to 1 M sodium 
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hydroxide for 1 hour. The tubes were then transferred to the bioruptor, which could 

accommodate 6 tubes at a time. Each batch of 6 tubes was subjected to 5 x 30 second bursts of 

sonication, with a gap of 30 seconds between each burst. The water bath attached to the 

bioruptor maintained the temperature within the sonicator at 4 °C. 

 

2.2.8.1.1. Compound Screening and Additional Investigations 

Cells were seeded into 96 well hanging drop plates at a density of 1,000 cells/μl in 40 μl medium. 

5 μl medium was added to each well every two or three days to counteract evaporation and 

medium depletion. Compounds were prepared for dosing as described in section 2.2.2.1 for 

compounds in DMSO, and as in section 2.2.4.4 for compounds in HBSS. 2 μl of the 20 x dilution 

in HBSS was added to each hanging drop. Compounds were initially screened at 10 times EC50 

with concentrations subsequently being increased. Concentrations for the literature compounds 

were calculated from their EC50 in the cell line model (see Table 34) as well as their reported 

activities in vivo. The spheroids were incubated for 5 days and then harvested by pipetting the 

entire drop up from the top of the plate. The drops were transferred to microcentrifuge tubes, 

with two drops (and therefore two spheroids) per tube. The tubes were spun down at 13,400 

rpm for 5 minutes, the medium removed, the spheroids rinsed with 50 μl HBSS and re-

suspended in 100 μl RIPA and 50 μl 0.2 μl/ml benzonase. Each sample was then subjected to 5 

30 second cycles in the bioruptor, with 30 seconds between cycles. Dot blot analysis was carried 

out as described in section 2.2.2.6. 

 

Investigations into the viability of the spheroids by seeding them into 96 well plates were carried 

out by culturing the spheroids as normal for 3 days, and then transferring them into a 96 well 

plate. Wells were either blank or pre-seeded to establish a 2D monolayer, which was done the 

day before transferal. Plates were then monitored and images captured to demonstrate how the 

spheroids behaved. Spheroids were lysed in the 96 well plate by removing the medium and 

replacing it with 100 μl RIPA and 50 μl 0.2 μl/ml benzonase. 

 

MTT assays were carried out by harvesting the spheroid from the hanging drop plate and re-

suspending it in 100 μl medium containing 0.5 mg/ml MTT. After 2 hours incubation, the 

spheroid was spun down, rinsed with HBSS, re-suspended in 50 μl acidified isopropanol and the 

resultant solution measured in a plate reader.  
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2.2.8.2. The Alvetex Scaffold Model 

Cell seeding in all formats was carried out according to the manufacturers’ recommendations, 

with the initial seeding density determined by the specific application and plate format.  

 

3 different plate types were used with different seeding conditions, but in all cases the scaffolds 

needed to be activated using a wash of 70 % ethanol, followed by 3 washes with medium. Cells 

were seeded into the 96 well plates in the full volume of medium, but in the case of the 24 and 

12 well plates the cells were seeded onto the scaffold in a small amount of medium, left to 

attach for two or three hours, with the wells subsequently being flooded with the required final 

volume, shown below. All parameters can be seen in Table 8. 

 

Table 8: Seeding conditions for the different Alvetex plate formats. 
 

 

 

The optimum seeding density for the 96 well plates was based on the initial growth data as 

determined by MTT. Based on the manufacturer recommendation, cells were seeded at initial 

densities of 10,000, 25,000, 50,000 and 100,000 cells/well in 200 µl medium. Growth was 

monitored using an MTT assay. The medium was removed from the well and replaced with 200 

µl medium containing 0.5 mg/ml MTT. This was incubated for two hours before the medium was 

removed and the formazan product solubilised using 50 μl acidic isopropanol. The resulting 

solution was transferred to a clean 96 well plate for measurement. The four different seeding 

densities were monitored over the course of 7 days. MTT assays done on the 24 well plates were 

carried out in the same way, with 1 ml of medium containing 0.5 mg/ml MTT being added to 

each well and 200 μl acidic isopropanol used for solubilisation. 

 

Visualisation of the cells using neutral red was carried out according to the Alvetex protocol. A 

0.5 % Neutral Red solution was made up in HBSS and sterile filtered. The medium was removed 

from the scaffold and 2 washes with 200 µl HBSS carried out. 100 µl of Neutral Red solution was 

added to each well and incubated for 5 minutes at room temperature. The stain was removed 

and the scaffolds washed for 5 minutes on the shaker with 200 µl HBSS. This was repeated once 
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before the wash buffer was removed and replaced with 100 µl HBSS, rendering the scaffolds 

ready for visualisation. 

 

Initial compound screens were carried out by dosing 8 wells with either HBSS only, 0.5 % DMSO, 

10 μM curcumin or 10 nM 3001012. Subsequent studies used the same compounds as were 

used in the hanging drop studies (see Table 46). Dosing was carried out as for the 2D screens 

(see section 2.2.2.1) In the cases where the stock solution was prepared in HBSS, a 20 x dilution 

of the compound was prepared in HBSS, before being diluted into the culture medium as 

normal. 96 well plates were dosed with 10 μl of the compound into 200 μl medium, 24 well 

plates were dosed with 75 μl of the compound into 1.5 ml medium. Initial experiments used all 

wells of the 96 well plate, but due to a pronounced edge effect subsequent experiments only 

used the inner wells of the plate.  

 

Cell lysis in the 96 well plates was carried out by removing the medium, washing the wells with 

100 μl HBSS and then adding 100 μl RIPA. The plates were then placed on an orbital shaker at 

200 rpm for as long as possible (minimum 1 hour) and the RIPA aspirated within the wells at 

regular intervals. 50 μl benzonase at 0.2 μl/ml was then added, the plate shaken for a further 15 

minutes and then the lysate transferred to a clean 96 well plate. In the initial study a second 

round of lysis was carried out to see if all the cells had been lysed. This gave a very weak signal, 

suggesting it was not beneficial and was therefore not repeated in subsequent studies. The cells 

grown and dosed in the 24 well plates were removed from the scaffolds before lysis. Once again 

the medium was removed and the wells washed with 500 μl HBSS, before the addition of 500 μl 

of a solution containing 0.05 % trypsin and 0.002% EDTA as used in the routine cell culture (see 

section 2.2.1.2). After 15 minutes incubation at 37 °C the plates were shaken for 15 minutes, 

before the addition of 500 μl medium to stop the enzymatic digestion. The whole well was 

transferred to a microcentrifuge tube and spun down at 12,000 x g for 5 minutes. The resultant 

pellet was re-suspended in 100 μl RIPA and 50 μl 0.2 μl/ml benzonase solution. To try and 

retrieve as many cells as possible this was repeated 2 more times, and the three samples 

combined in the same 150 μl of lysis buffer. This was found to give a good enough signal on the 

blot but was very labour intensive.  In both cases, dot blot analysis was carried out as described 

in section 2.2.2.6. 
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2.2.8.3. The Happy Cell Model 

As per the manufacturer’s instructions the Happy Cell suspension solution was mixed 1:1 with 

DMEM containing 10 % NBCS, 5 % FBS, 2 mM L-glutamine and 1% Penicillin-Streptomycin. The 

concentrations used were taken from the literature where DMEM had been used for routine 

culture of SMB cells. (350) Initially the cells were seeded at four different concentrations; 1,000, 

2,500, 5,000 and 10,000 cells/well. Aliquots of cells suspension containing the appropriate 

number of cells in Medium 199 were spun down and re-suspended in the Happy Cell matrix, 

with 100 µl of this being added to each well of the low-binding 96 well plate. These were 

specifically used to encourage the formation of 3D structures. The plate was then monitored by 

eye to confirm the optimum seeding density. The successful formation of spheroids was 

confirmed in this study, with subsequent experiments using initial seeding densities of 5,000 or 

10,000 cells/well. 

 

As initial attempts to harvest the cells for MTT and dot blot analysis were unsuccessful, an 

inactivation solution supplied by the manufacturer was used with the matrix. The 2 mg/ml stock 

solution was diluted to 0.6 mg/ml in HBSS, and 20 μl of this working solution was added to each 

well. The plate was incubated for an hour at 37 °C, allowing the cells to sediment out of the 

matrix. Careful aspiration of the majority of the medium left the spheroids in the bottom of the 

well, and washes could be carried out by adding 100 μl HBSS, aspirating, leaving the spheroids to 

sediment for 10 minutes and then removing the majority of the liquid as before. The cells were 

then either re-suspended in 50 μl RIPA and 25 μl 0.2 % benzonase, or 100 μl medium containing 

0.5 mg/ml MTT. MTT assays were carried out using the same basic protocol as before. The only 

change was that after removal of the medium containing MTT the cells were washed with 100 μl 

HBSS to remove excess medium and avoid any interference with the assay. After this wash step 

the cells were re-suspended in 50 μl acidified isopropanol to solubilise the formazan product, 

and the absorbance measured in a plate reader. Growth curve assays were carried out using 

MTT assays as detailed above, with assays carried out at 4 time points (0 hours, 24 hours, 48 

hours and 120 hours).  

 

Images of the spheroids were obtained by either capturing images while the spheroids were still 

within the plate using a brightfield microscope, or by staining and mounting the cells and then 

examining them using confocal microscopy (see section 2.2.8.4) 

 

 



75 

 

2.2.8.4. Confocal Microscopy 

The preparation of the 3D structures for confocal microscopy involved the harvesting and fixing 

of the 3D structures followed by staining and visualisation. Slightly different approaches were 

used for each of the models as protocols had to be optimised for each of the 3D structures. 

Vectashield mounting media containing DAPI was used to visualise the nuclei of the cells in all 

cases, with other stains used as described subsequently. 

 

Spheroids from the hanging drop model and the happy cell model were prepared according to 

the same protocol. Hanging drop spheroids were harvested as described in section 2.2.8.1, and 

the happy cell spheroids were retrieved after inactivation of the matrix using the inactivation 

solution as described in section 2.2.8.3. All spheroids were rinsed with HBSS, and to try and 

maintain the morphology of the spheroids they were allowed to sediment to the bottom of the 

tube before the HBSS was removed and replaced with 500 μl 4% paraformaldehyde solution. 

Fixation was done over 24 hours, before rinsing with HBSS and permeabilisation with 0.1 % 

Triton-X for 15 minutes. After further HBSS rinses the spheroids were re-suspended in a drop of 

Vectashield mounting medium with DAPI and mounted on a slide. The slide was sealed using 

clear nail varnish to prevent contamination of the microscope with biohazardous material. The 

nuclei of the cells in the spheroids were then visualised at 405 nm using confocal microscopy. 

 

The Alvetex scaffolds to be visualised were prepared in 12 well plates as it was possible to 

remove the scaffolds for fixation and mounting. Scaffolds were initially seeded as discussed in 

section 2.2.8.2, and then incubated for 6 days before harvesting. In order to visualise the 

proliferation of the cells, scaffolds were harvested, fixed and mounted at 2 day, 4 day, 6 day and 

8 day time points. To fix the scaffolds they were removed from the plate using forceps and 

subjected to 3 x 3 minutes washes in HBSS. The cells were fixed using an excess of a 1:1 mixture 

of ice cold methanol and acetone for twenty minutes at 4 °C, before the scaffolds were washed 

again in HBSS as before. A drop of mounting medium containing DAPI was placed on the slide, 

the scaffold was placed on top of it and another drop of mounting medium placed on top of the 

scaffold. A cover slip was placed on top and then sealed with clear nail varnish. 

 

Where required, nile red staining was carried out after fixation. A 1 mg/ml stock solution was 

prepared in methanol, and then diluted 1:2000 into HBSS. Scaffolds were incubated in this 

working solution for 10 minutes at room temperature.  This was followed by 3 x 3 minute HBSS 

washes before mounting as above.  Where required, acti-stain was used at a concentration of 
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100 nM by diluting 3.5 µl of stock into 500 µl HBSS. The stock was made up at 14 μM in 

methanol. Each scaffold was fixed as above before being incubated with 500 μl of the working 

solution at room temperature for 30 minutes in the dark. 3 x 3 minute HBSS washes were then 

carried out before any further staining was carried out. Where both nile red and acti-stain 

incubations were carried out the nile red incubation was carried out first, followed by the acti-

stain incubation and mounting. Activation of DAPI with ultraviolet light and subsequent 

detection of the blue emission at 405 nm allowed the visualisation of the nuclei of the cells 

within the scaffold. Nile red emitted at 525 nm and the acti-stain emitted at 488 nm, allowing all 

three channels to be collected at the same time. 
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3. Assay Development, Structure-Activity 

Relationship Optimisation and Lead 

Identification 

 

The development of small drug-like molecules as anti-prion compounds was started by the Chen 

group when virtual high throughput screening (VHTS) was used to identify potential anti-prion 

compounds. VHTS was carried out on 1.3 million compounds. They were computationally 

docked to the proposed protein X binding site (126) that was identified from a 3D NMR structure 

of recombinant human PrP (PDB structure entry 1qm3). (351, 352) Those that showed a strong 

predicted binding affinity based on hydrogen bonding and lipophilic interactions between the 

compound and the binding pocket were clustered into structurally similar groups. These groups 

were then narrowed down based on solubility, cLogP (less than 6), GOLD score (greater than 60) 

and availability from suppliers. A library of commercially sourced compounds was purchased, 

based on the results from the VHTS screening. These were then screened using Surface Plasmon 

Resonance (SPR) to evaluate their binding to PrP, (221) before those that showed promise were 

evaluated for their anti-prion activity in the SMB cell line model. (351, 353) 

 

Hits from both assays were analysed and active compounds from three different structural 

groups were identified as potentially interesting; pyridine dicarbonitriles, aminothiazoles and 

indole-3-glyoxylamides (I3GAs). The pyridine dicarbonitriles and aminothiazoles were initially 

investigated, with these structural groups showing both binding to PrPSc and micromolar activity 

in the cell line. (221, 351, 354, 355) The initial VHTS screen, as well as the preliminary validation work 

was carried out by Chen et al before the experimental work presented in this thesis was begun.  

 

The experimental work in this thesis focusses on the I3GAs, a structural group that showed 

promise as the parent structures were shown to have EC50s of less than 10 µM (see Figure 16).  

(280)  
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Figure 16: Structures of parent I3GA compounds, with EC50s of 1.5 µM (left) and 6.4 µM (right) 
 

The I3GAs were chosen due to the good activity of the parent compounds and their potential for 

modification. The I3GA structural motif is also known to be medically significant, and is included 

in phospholipase inhibitors, (356-359) antibiotics, (360) p38α MAPK inhibitors, (361-364) tubulin 

polymerisation inhibitors (365-367) and compounds for the treatment of HIV (368) (see Table 9). 
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Table 9: Examples of other compounds that include the I3GA pharmacophore (in red) and their 
proposed therapeutic function. Figure adapted from Thompson et al.  (279) 
  

 

 

The cell line screening assay was established and optimised to test the anti-prion activity of a 

series of I3GAs that were synthesised by Chen et al. The results from these experiments were 

used to refine the structure-activity relationship (SAR), and to subsequently identify a lead 

compound. Structural optimisation focussed on improving activity in the cell line assay. Surface 
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Plasmon Resonance (SPR) was used as a high-throughput screening tool, based on a protocol 

developed by Touil et al, (221) to test the binding of the compounds to full length human 

recombinant PrP, (recPrP) as an initial investigation into the mode of action. A full explanation of 

SPR can be found in section 3.2 and the protocol is outlined in detail in section 2.2.3.  All 

compounds used were synthesised by  Chen et al. The majority were synthesised by Mark 

Thompson while Vinciane Borsenberger, Katy Judd and Steve Ferrara are also acknowledged for 

their role in the synthesis. 

 

 

 

3.1. SMB Activity and Viability Screening 

 

Screens of the I3GA compounds were carried out in the SMB cells to determine their anti-prion 

activity, and this information was subsequently used to determine the SAR. Initial screens were 

carried out to evaluate the ability of the I3GAs to reduce PrPSc levels in the SMB cells at 

concentrations of 1 µM, 10 µM and 20 µM. MTT assays were carried out in parallel to assess any 

cytotoxic effects of the compounds by measuring the activity of living cells via mitochondrial 

dehydrogenases. Viable cells convert the water-soluble MTT to an insoluble purple formazan, 

which can be solubilised and measured. (369) Determination of toxicity was crucial because cells 

that were dead gave the same readout in the activity screen as cells with reduced levels of PrPSc, 

therefore raising the possibility of false positives in the activity screen. Positive and negative 

controls were included in all screens. Curcumin was chosen as the positive control as it has been 

shown to be a potent anti-prion agent. (266) The negative control was 0.5 % DMSO as it had no 

impact on cell viability or PrPSc levels (data not shown). Stock solutions for all the I3GA 

compounds were made up in DMSO so this also accounted for any off-target effects of the 0.5 % 

DMSO remaining after dilution. Once the initial screens were carried out and satisfactory results 

obtained any compounds showing activity were analysed to determine their EC50 value. A dose-

response curve was generated for each compound, allowing the calculation of an EC50 value via 

nonlinear regression of the curve. The EC50 value is a measure of the anti-prion activity of the 

compound, and the term half maximal effective concentration (EC50) refers to the concentration 

of the drug at which 50 % of its effect is observed. This is measured as the halfway point 

between the baseline (no effect) and the maximum effect after a specified exposure time. 
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After lysis, a Bradford assay was used to determine the protein concentration of the lysate and 

therefore calculate the amount to be used in the dot blot analysis. The Bradford assay uses the 

binding of Coomassie Brilliant Blue to protein to determine protein concentration. Binding 

causes a shift in absorbance from 465 nm to 595 nm which can be measured spectroscopically. 

(370) Dot blot analysis was used to quantify the amount of PrPSc in the cell lysate, and the dot blot 

protocol that was used was optimised from a protocol developed and reported by Rudyk et al. 

(217) Dot blot analysis works on a similar principle to western blotting, in that the target protein is 

bound by a primary antibody which, in turn, is bound to a secondary antibody with a 

chemiluminescent tag. This allows visualisation of the protein of interest. Rather than using 

electrophoresis the cell lysate is loaded directly onto the membrane, and a PK digestion is then 

used to remove all protein except the protease resistant core of PrPSc. PMSF is used to stop the 

PK digestion, before the protein is denatured using a concentrated guanidine thiocyanate 

solution. The membrane is then blocked with milk before being probed with antibodies and 

visualised. An example of a dot blot can be seen in Figure 19. The darker dots show where the 

primary antibody had bound and could therefore be used to quantify the amount of PrPSc in that 

particular sample. This, combined with the MTT data, could then be used to determine the anti-

prion potency and possible toxic effects of the compounds of interest. Materials and methods 

are detailed in full in sections 2.1.1, 2.2.1 and 2.2.2. 

 

 

3.1.1. Results 

 

3.1.1.1. Optimisation 

Two different primary antibodies were used over the course of these studies. To ensure that 

results using these two different antibodies would be comparable, the new antibody was tested 

using compounds with known anti-prion activity. Although the new antibody (8H4) maps to the 

region between residues 145 and 180 while 6H4 maps to residues 144-152, the results for the 

two antibodies were found to be comparable (see Table 10). 
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Table 10: EC50s of different compounds when probed with either 8H4 or 6H4 
 

 

 

Optimisation of the secondary antibody concentration was also performed, along with 

investigations into whether a BSA block might be preferable to a milk blot. A blot of an 

untreated 96 well plate was carried out, and different sections of the blot were exposed to 

increasing concentrations of the secondary antibody. The minimum concentration of secondary 

antibody required to give an adequate signal was assessed. This experiment was carried out in 

duplicate with one membrane blocked with 5% milk in TBS-T, and the other membrane blocked 

with 5% BSA in TBS-T. This aimed to determine whether BSA resulted in more efficient blocking 

which may, in turn, allow a better signal to be obtained with lower concentrations of the 

secondary antibody. BSA did not result in an improvement in the strength of the dot blot signal 

as shown in Figure 17. 

 

 
 
Figure 17: Optimisation of new IgG concentrations for dot blots. Dilutions up to 1:5000 were 
found to give a detectable and reproducible signal, while dilutions above this gave a very weak 
signal. There was not found to be any significant advantage in using BSA rather than milk for 
blocking. The data points shown represent the mean ± SD values from an single experiment 
where each sample was analysed 12 times. Data is expressed as the average density of each set 
of dots, and is presented as the integrated optical density (IOD) value (see section 2.2.2.2). 
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3.1.1.2. Initial Screen Results 

Analysis of the initial screen results was facilitated by splitting the compounds up into libraries. 

To a certain extent these libraries are chronological, with library A being the first to be 

synthesised and screened. Later libraries are grouped depending in the particular structural 

features being investigated, and this is outlined in Table 11. The numbering on the indole ring is 

shown in Figure 18 

 

 
 

Figure 18: The indole structure with the substitution positions numbered. The right hand 
structure shows the parent structure from earlier screens. The highlighted area shows the indole 
component numbered with the positions used for substitutions. 
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Table 11. Descriptions of the screening libraries used.  
 

 

 

The majority of the I3GA compounds that were screened were found to be non-toxic apart from 

the compounds shown in Table 12. 
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Table 12: Viability results from the initial screens. Results are given for compounds that caused 
cell death as measured by the MTT assay. All other compounds were classed as non-toxic. In all 
cases toxicity was determined at the initial screen stage, with cytotoxicity occurring at the toxic 
concentrations in all cases (n = 6) so no standard deviation data was available. Concentrations 
that were tested below the toxic concentration were not cytotoxic. 
 

 
 

Although the majority of toxic compounds were  only toxic at the highest concentration used in 

the initial screen, 3001162 induced cell death at all concentrations, making it unusually toxic for 

this group of compounds. 3001162 was the only compound with a sulphur-containing 

heterocycle, suggesting that this particular structural moiety cannot be tolerated by the SMB 

cells. No well-defined pattern was observed in the other toxic molecules, although the higher 

proportion of toxic molecules in library F suggests that the cells are particularly sensitive to 

changes to the carbonyl groups. All toxic molecules from the other libraries, with the exception 

of 3001196, had substitutions on the indole group, suggesting that for certain amine groups 

substitution to the indole group may confer toxicity onto otherwise non-toxic molecules.  

 

The results of the initial activity screens are shown below. An example of the raw data obtained 

for the initial screens can be seen in Figure 19. 
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Figure 19: Example of a dot blot showing initial screen data. Dark dots show the presence of 
PrPSc, with the absence of signal indicating absence of PrPSc. The blot represents initial screens 
for 8 different I3GA compounds (3001064 to 3001071), as well as positive and negative controls 
(10 µM curcumin and 0.5 % DMSO respectively). Each compound is screened in triplicate at 1 
µM, 10 µM and 20 µM. The plate is laid out as shown in the table to the right of the blot (1064 
refers to compound 30010164, 1065 to 3001065 etc). All compounds were active apart from 
3001068. The integrated optical density (IOD) value for each dot can be seen in the table below 
the blot. These values are used to calculate the amount of PrPSc remaining after treatment as a 
percentage of the negative control. 
 

All initial screen results were processed and expressed as a percentage of the PrPSc signal relative 

to the untreated control (0.5 % DMSO). The value for the untreated control was the average of 

the 12 wells on each plate that were dosed with 0.5 % DMSO. Any compound that reduced PrPSc 

by ≤ 70 % of the DMSO control, as measured by the IOD, were considered active. This cut off 

value was established by previous studies (278-280, 353, 355) and was used where appropriate 

throughout this thesis as a method of determining which compounds should be investigated 

further in the secondary assay. Each compound was assessed individually to determine if further 

analysis was required. Other publications reporting high-throughput screening programmes 

have used a cut off of 50 %. (205, 371) The higher cut off value of 70 % was used in this study due to 

the relatively small number of compounds involved, as identifying all compounds with anti-prion 

activity, even at low levels, was essential. This approach did result in false positives, as 11 out of 
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121 compounds identified as active in the initial screen were found to be inactive in the dose 

response screening. The majority of compounds, however, had their activity confirmed in the 

dose response screening, validating the approach that was used.  

 

Initial screen data is  presented as shown in Figure 20 with the indole structure on the left hand 

side (with different substitutions) and the amine group along the top. Active compounds are 

highlighted in green. The activity data for the initial screen is presented as the amount of PrPSc, 

as a percentage of the negative control, remaining after treatment with the lowest active 

concentration of compound. The lowest active concentration is stated below the activity data as 

an indicator of compound activity. 

 

 
 
Figure 20: Example of the layout of the data in the subsequent results tables. The indole group is 
described in the left hand column, with the amine group along the top. Activity data is presented 
for each compound, along with the lowest concentration at which that compound was active. 
Each result represents at least two independent experiments, and each experiment was carried 
out in triplicate. 
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Table 13: Initial screen results for library A. The compounds in library A represent a wide range 
of amines, in conjunction with either unsubstituted indoles (top row), 1-methylindoles (middle 
row) or 2-methylindoles (bottom row). 
 

 

 

3000223     

19.5 ± 12.8        

1 µM

3000553                         

37.9 ± 23           

10 µM 

3000259                            

17.5 ± 7            

10 µM 

3000260                            

6.7 ± 8.2         

1 µM 

3000234                            

17.8 ± 8.6         

1 µM 

3000235                            

98.8 ± 22        

20 µM

3000530                            

27.1 ± 8.9                  

1 µM 

3000556     

68.5 ± 15.3       

20 µM

3000662                  

132 ± 38.5         

20 µM

3000663                          

61.8 ± 8         

20 µM 

3000664                            

11.6 ± 1.4          

1 µM

3000656                   

47.3 ± 16.1         

10 µM 

3000732                  

157 ± 58.8              

20 µM

3000665                  

114 ± 20.7            

20 µM

3000557    

41.6 ± 15      

10 µM

3000651                    

78.8 ± 22.5      

20 µM

3000648                    

44 ± 14.6         

20 µM 

3000649                    

49.8 ± 36.8          

20 µM 

3000645                    

83.1 ± 13.7         

20 µM

3000646                    

84.4 ± 13.2        

20 µM

3000652                    

64 ± 18.2                  

20 µM

3000529                            

70.1 ± 28.9         

20 µM

3000258                            

17.6 ± 10.1          

10 µM 

3000255                            

90 ± 24.9        

20 µM

3000522                            

107 ± 18.9     

20 µM

3000230                            

95.2 ± 18.2         

10 µM

3000554                            

23 ± 16.5         

1 µM 

3000261                            

98.3 ± 15.7            

20 µM

3000686                  

91.2 ± 13.2         

20 µM

3000733                  

137 ± 59.5          

20 µM

3000283                   

148 ± 57.1         

10 µM

3000684                   

117 ± 36.1          

20 µM

3000685                  

109 ± 1.7         

20 µM

3000739                  

86.4 ± 11.5          

10 µM

3000688               

169 ± 77.6            

10 µM

3000738                   

78.5 ± 24.6         

20 µM

3000734                    

80.8 ± 10.7          

20 µM

3000284                    

76.7 ± 25.4         

10 µM

3000647                

73.7 ± 10          

20 µM

3000709                    

83 ± 8.7          

20 µM

3000735                    

69.7 ± 31.4          

20 µM

3000650                   

103 ± 10.3           

10 µuM

3000531                            

135 ± 31.5         

20 µM

3000532                            

101 ± 42.3           

20 µM

3000533                            

115 ± 21.2       

20 µM

3000534                            

41.3 ± 14.8          

1 µM 

3000232                            

63.2± 14.7         

20 µM

3000251                            

80.8 ± 14.3         

20 µM

3000249                             

74.9 ± 8.2                      

20 µM

3000689                  

121 ± 28.8         

20 µM

3000690                  

114 ± 33.5           

20 µM

3000666                  

111.29 ± 1.9         

20 µM

3000667                  

102 ± 25.2          

10 µM

3000691                   

124 ± 46.2          

20 µM

3000653                    

96.3 ± 18         

20 µM

3000654                    

112.7 ± 19.7         

20 µM

3000655                    

87.6 ± 14.1          

20 µM

3000737                   

129 ± 36.7       

10 µM

3000245                            

112 ± 18.6         

20µM

3000246                            

80.3 ± 14.3          

20 µM

3000250                            

83.1 ± 16.1         

20 µM

3000248                            

158 ± 17.3          

20 µM

3000740                  

100 ± 14.9          

20 µM

3000736                  

131 ± 62.5         

10 µM

3000711                   

81.9 ± 25.4          

20 µM

3000710                   

102 ± 14.7         

20 µM
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Table 14: Initial screen results for library B. The compounds in library B represent optimisation of 
the most promising amines, as identified from library A. These were investigated in conjunction 
with either unsubstituted indoles (top row) or 1-methylindoles (bottom row). 
 

 

 

 

3000914                            

104 ± 15.3           

20 µM

3000915                            

104 ± 3.7          

20 µM

3000918                             

19.3 ± 12.2                 

1 µM 

3000979                            

6.5 ± 3.8               

1 µM 

3000993                            

56 ± 1                             

10 µM 

3000991                            

5.6 ± 1.5                   

1 µM 

MT609                               

52.4  ± 12.3         

1 µM

3001085                          

31.5 ± 8.13         

20 µM

3000985                            

1.4 ± 2                    

1 µM

3000978                            

48.7 ± 2.03          

1 µM 

3001002                            

6.1 ± 0.8                 

1  µM 

3000999                            

6.7 ± 0.2                    

1  µM

3000996                              

8 ± 3.2                      

10 µM 

3000998                            

4.9 ± 0.6                  

1 µM 

3000997                            

52.3 ± 3.2           

1 µM

3000983                            

26.99 ± 7.88           

1 µM 

3000992                            

7.2 ± 1                   

1 µM 

3000995                            

6.5 ± 2.7                    

1 µM

3000994                            

4.6 ± 1.5                  

1 µM 

3001003                           

17.1 ± 4.9                      

1 µM 

3001012                            

6.98 ± 3.18         

1 µM

3001007                            

62.46 ± 11.4           
20 µM

3001088                                    

15.73 ± 5                    

1 µM

3001086                          

12.56 ± 5.19                 

1 µM

3001087                                     

17.73 ± 5.94          

1 µM

3001083                                    

103.87 ± 

30.91               

20 µM

3001000                            

143 ± 10.6            

20 µM

3001001                            

75.4 ± 10.9           

20 µM

3001008                            

16.8 ± 8.1            

10 µM 

3001013                            

16.77 ± 4.23          

1 µM

3000981                            

41.6 ± 14.49            

1 µM 

3000917                            

10.3 ± 13.16           

1 µM 

3000984                            

93.78 ± 29.65          
20 µM

3001082                          

110.82 ± 2.03          

20 µM

3001006                          

19.88 ± 13.41            

1 µM 

3001005                           

82.51 ± 11.45            

20 µM

3001084                          

94.32 ± 13.73         

20 µM

3000980                             

21.7 ± 15.51           

10 µM 

3000977                            

4.13 ± 1.71           

1 µM 

3000986                            

85.35 ± 19.96           
20 µM

3000987                            

40 ± 10.45            

10 µM

3000982                            

5.85 ± 1.19                     

1 µM 

3000916                            

139.69 ± 0.004                    

10 µM
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Table 15: Initial screen results for library C. The compounds in library C represent further 
optimisation of the amines identified from libraries A and B, in conjunction with unsubstituted 
indoles. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3001136                                

53.59 ± 5.48                  

20 µM

3001137                                

16.24 ± 3.08                

1 µM

3001138                                

19.59 ± 9.83                

1 µM

3001142                                 

8 ± 2.46                  

1 µM

3001162                                 

toxic                         

1 µM

3001165                                

6.26 ± 2.82                

1 µM

3001166                                

11.27 ± 5.16                  

1 µM

3001164                                

12.94 ± 0.94                

10 µM

3001143                                

9.36 ± 4.21                

1 µM

3001144                                 

8.16 ± 0.64                  

1 µM

3001163                                

18.88 ± 7.43                 

1 µM

3001167                            

99.82 ± 7.54                

1 µM
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Table 16: Initial screen results for library D. The compounds in library D represent further 
investigations into substitutions at the 5 and 6 position of the indole, using amine groups 
optimised from libraries A, B and C. The substitutions investigated were the addition of chloro 
groups at the 6 position (top row) and 5 position (second row), and the addition of methyl 
groups at the 6 position (third row) and 5 position (bottom row). 
 

 

 

 

 

 

 

 

 

 

 

 

3001060                         

10.53 ± 2.4           

1 µM

3001058                         

59.35 ± 4.68             

1 µM

3001063                         

22.14 ± 9.63             

1 µM

3001061                         

17.84 ± 0.74            

1 µM

3001059                         

13.93 ± 6.32          

1 µM

3001066                   

14.61 ± 1.08           

10 µM

3001064                     

11.73 ± 0.98              

1 µM

3001069                     

30.02 ± 11.87              

10 µM

3001067                     

37.79 ± 11.48            

10 µM

3001065                     

8.2 ± 3.59                

1 µM

3001072                     

19.51 ± 2.29            

1 µM

3001070                     

16.31 ± 4.14              

1 µM

3001073                     

13.92 ± 2.27              

1 µM

3001071                     

26.15 ± 16.98                

1 µM

3001075                       

31.44 ± 9.61           

20 µM

3001080                       

17.15 ± 10.17              

10 µM

3001077                       

15.07 ± 0.77              

10 µM

3001081                       

15.08 ± 2.93                

1 µM

3001062                          

48.87 ± 7.94            

20 µM

3000641                         

7.9 ± 6.97              

1 µM

3000785                         

11.01 ± 7.17                  

1 µM 

3000786                         

120.19 ± 12.04                    
10 µM

3000787                          

45.27 ± 4.53                      

1 µM 

3001068                     

118.29 ± 21.67               

20 µM

3001074                     

37.22 ± 8.66              

20 µM

3001076                       

115.79 ± 15.56              

20 µM
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Table 17: Initial screen results for library E. The compounds in library E represent a continuation 
of the investigations into the substitutions in library D. Further investigations of the 6 chloro 
substitution were undertaken (top row) along with investigations into the effect of two 
substitutions on the indole, at the 6 position and the 1 position (second row), 6-fluoro 
substitutions (third row), 7-chloro substitutions (fourth row) and 7-methyl substitutions (bottom 
row). Amines optimised from libraries A, B and C were used.  
 

 

 

 

Table 18: Initial screen results for library F. The compounds in library F represent investigations 
into the effect of changes to the carbonyl groups. The effect of a monocarbonyl group was 
investigated (top two rows), as was the addition of a heterocycle instead of the carbonyl groups 
(third row). Addition of a large group to the 1 position of the indole was also investigated 
(bottom row). Amines optimised from libraries A, B and C were used. 
 

 

3001123                            

7.42 ± 4.23                    

1 µM

3001124                       

42.72 ± 10.13                    

1 µM

3001125                       

5.46 ± 3.68                 

1 µM

3001127                     

17.54 ± 6.90                    

1 µM

3001128                     

9.33 ± 1.19                     

1 µM

3001130                      

22.89 ± 4.23                   

1 µM

3001129                     

11.02 ± 1.58                      

1 µM

3001139                   

37.86 ± 8.08                    

10 µM

3001140                     

11.73 ± 3.03                    

1 µM

3001126                     

5.55 ± 5.78                   

1 µM

3001181                    

24.47 ± 2.73                

1 µM 

3001180                   

7.78 ± 3.6                  

1 µM

3001141                

15.58 ± 4.51                      

1 µM

3001184                 

15.45 ± 9.25                

10 µM

3001183                             

7.28 ± 2.2                  

1 µM

3001182                   

29.13 ± 8.78                       

1 µM

3000525                                     

97.26 ± 14.8              

20 µM

3000520                                     

112.81 ± 0.00               

20 µM

3001010                                      

46.61 ± 15.52                

10 µM

3001011                                     

78.04 ± 14.21              

20 µM

3001009                                     

37.8 ± 6.44              

20 µM

3000527                                     

109.26 ± 7.38              

20 µM

3001015                                  

5.16 ± 2.48              

1 µM

3001016                                   

5.63 ± 0.23              

1 µM

3001017                                   

4.82 ± 2.48                

1 µM

3001014                                  

128.69 ± 4.52              

10 µM

3001018                            

98.18 ± 4.08               

20 µM

3001019                            

120.16 ± 2.83               

20 µM

3001057                            

116.39 ± 20.24                

20 µM

3001021                             

91.86 ± 9.22              

20 µM

3001020                             

104.17 ± 19.21              

20 µM

3001056                             

96.80 ± 19.41              

20 µM

3001022                               

44.29 ± 12.17               

20 µM

3001023                               

87.88 ± 2.5              

20 µM

3001026                               

44.5 ± 3.28              

20 µM

3001025                               

43.82 ± 6.48              

20 µM

3001024                               

77.73 ± 6.62              

20 µM
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Table 19: Initial screen results for library G. The compounds in library G represent further 
investigations into the effect of substitutions to the indole group using amines optimised from 
libraries A, B and C. The effect of the addition of a methyl bridge between the two carbonyls was 
examined (top row), along with the effect of iPr substitutions at the 6 position (second row), a 
methyl group at the 4 position (third row), a cyano group at the 6 position (fourth row) and a 
nitro group at the 6 position (bottom row). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3001192                         

102.73 ± 0.41            

20 µM

3001203           

110.22 ± 1.33      

20 µM

3001193                          

79.23 ± 11.47                    

20 µM

3001202    

119.52 ± 2.61           

20 µM 

3001199                   

14.44 ± 2.98                

1 µM

3001206             

5.52 ± 0.39           

20 µM

3001204                     

11.59 ± 1.74              

10 µM

3001205             

46.42 ± 11.27      

20 µM

3001194                        

31.03 ± 6.68                         

1 µM 

3001207                

18.04 ± 4.58                

1 µM

3001208             

12.35 ± 3.36          

1 µM

3001209                

10.63 ± 3.55                 

1 µM

3001210                

7.23 ± 2.72        

1µM
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3.1.1.3. EC50 Activity Screening 

The tables below show the calculated EC50 values for the I3GA compounds that were found to 

have anti-prion activity  in the initial screen, as outlined  in section 3.1.1.2. An example of the 

raw data obtained for the EC50 screens can be seen in Figure 21. 

 

 
 

Figure 21: Example of a dot blot for EC50 data. The data presented represent three I3GA 
compounds: 3001200 (columns 1-3); 3001205 (columns 4-6); 3001204 (columns 7-9); and 
controls (columns 10-12). In the control columns rows 1-4 were treated with 0.5 % DMSO 
(negative control) and rows 5-8 were treated with 10 µM curcumin (positive control). Each 
compound was screened at 8 concentrations, going from low at the top to high at the bottom. 
The integrated optical density (IOD) value for each dot can be seen in the table. These values are 
used to calculate the amount of PrPSc remaining after treatment as a percentage of the negative 
control. 
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Data is presented as shown in Figure 22, with the stated values representing the EC50 value of 

the particular compound. This value is a measure of the compound’s anti-prion activity, and is 

the concentration at which the compound exerts 50% of its anti-prion effect. See section 3.1.1.2 

for detailed explanations of each library. 

 

 
 
Figure 22: Example of the layout of the data in the subsequent results tables. The indole group is 
described in the left hand column, with the amine group along the top. Activity is expressed as 
the compound’s EC50 value. Each result represents at least two independent experiments, and 
each experiment was carried out in triplicate. 
 

Screens of compounds with known activity in prion infected cell lines were carried out alongside 

the I3GA screens. Quinacrine gave an EC50 of 0.31 ± 0.2 µM (literature value in ScN2a cells 0.3µM 

(232)) and the value for curcumin was 0.87 ± 0.15 µM (literature value in ScNB cells 10nM (266)). 

These values are in good agreement with the literature and validate the screening strategy.  
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Table 20: EC50 results for library A 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3000233                            

0.32 ± 0.02 

µM        

3000553                         

12.1 ± 2.4 µM 

3000259                            

0.232 ± 0.002 

µM 

3000260                            

0.011 ± 0.006 

µM 

3000234                            

0.24 ± 0.12 

µM 

3000530                            

0.64 ± 0.04 

µM 

3000258                            

Inactive 

3000556                  

6.9 ± 0.85 µM 

3000663                          

4.7 ± 5.5 µM 

3000664                            

0.068 ± 0.018 

µM

3000656                   

3.77 ± 1.69 

µM 

3000557                    

Inactive

3000648                    

Inactive

3000649                    

Inactive

3000554                            

0.68 ± 0.13 

µM 

3000534                            

0.17 ± 0.07 µM 
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Table 21: EC50 results for library B 
 

 

 

 

 

 

 

 

 

 

 

 

3000918                            

0.52 ± 0.15 µM

3000979                            

0.06 ± 0.000 µM 

3000993                            

1.03 ± 0.07 µM 

3000991                             

0.04 ± 0.035 µM 

MT609                              

0.82 ± 0.03 µM

3000985                            

0.22 ± 0.2 µM

3000978                            

1.2 ± 0.56 µM 

3001085                          

Inactive

3001002                            

0.29 ± 0.13 µM 

3000999                            

0.38 ± 0.09 µM

3000996                           

1.66 ± 0.51 µM 

3000998                            

0.12 ± 0.03 µM 

3000997                            

1.21 ± 0.18 µM

3000983                            

0.79 ± 0.34 µM 

3000992                            

0.026 ± 0.03 

µM  

3000995                            

0.072 ± 0.027 

µM

3000994                            

0.009 ± 0.002 µM 

3001003                           

0.006 ± 0.003 µM 

3001012                         

0.001 ± 0.0004 

µM

3001008                            

0.53 ± 0.08 µM 

3001013                            

0.019 ± 0.005 

µM

3000981                            

Inactive

3001088                                    

0.019 ± 0.005 µM

3001086                          

0.17 ± 0.05 µM

3001087                                     

0.018 ± 0.003 

µM

3001006                            

0.037 ± 0.018 

µM 

3000917                            

0.064 ± 0.009 

µM 

3000980                            

6.4 ± 2.3 µM 

3000977                            

0.13 ± 0.02 µM 

3000987                           

1.51 ± 0.15 µM

3000982                            

0.065 ± 0.035 

µM 
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Table 22: EC50 results for library C 
 

 

 

Table 23: EC50 results for library D 
 

 

 

 

 

 

3001136                                

Inactive

3001137                                

0.003 ± 0.000 

µM

3001138                                

0.6 ± 0.4 µM

3001142                                 

0.02 ± 0.00 µM

3001165                                

0.00095 ± 

0.00005 µM

3001166                                

0.035 ± 0.015 µM

3001164                                

0.12 ± 0.03 µM

3001143                               

0.0013 ± 0.0003 

µM

3001144                                 

0.11 ± 0.06 µM

3001163                                

0.006 µM

3001060                         

0.074  ± 0.009 

µM

3001058                         

0.009 ± 0.001 

µM

3001063                         

0.1 ± 0.02 µM

3001061                         

0.1 ± 0.03 µM

3001059                         

0.007 ± 0.000 µM

3001066                    

1.63 ± 0.81 µM

3001064                               

0.47 ± 0.04 µM

3001069                     

0.074 ± 0.005 

µM

3001067                     

0.56 ± 0.12 µM

3001065                        

0.068 ± 0.004 µM

3001072                     

0.06 ± 0.006 

µM

3001070                     

0.012 ± 0.003 

µM

3001073                     

0.045 ± 0.007 

µM

3001071                     

0.005 ± 0.004 µM

3001075                       

13 ± 2.8 µM

3001080                       

0.87 ± 0.31 µM

3001077                       

0.9 ± 0.3 µM

3001081                       

0.12 ± 0.06 µM

3001062                          

Inactive

3000641                         

0.16 ± 0.06 µM

3000785                         

0.14 ± 0.06 

µM 

3000787                          

0.41 ± 0.23 µM

3001074                     

6.2 ± 2.1 µM
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Table 24: EC50 results for library E 
                                

 

 

 

Table 25: EC50 results for library F 
 

 

 

 

 

 

 

 

 

 

 

3001123                                

0.012 ± 0.003 

µM

3001124                                 

0.007 ± 0.003 

µM

3001125                       

0.44 ± 0.2 µM

3001127                       

0.27 ± 0.01 µM

3001128                    

0.15 ± 0.02 µM

3001130                       

2.7 ± 0.42 µM

3001129                      

0.15 ± 0.02 µM

3001139                    

0.008 ± 0.002 

µM

3001140                    

0.0015 ± 0.0005 

µM

3001126                              

0.01 ± 0.004 

µM

3001181                   

0.45 ± 0.16 µM

3001180                   

0.024 ± 0.017 

µM

3001141                            

0.008 ± 0.000 µM

3001184                  

1.4 ± 0.14 µM

3001183                  

0.14 ± 0.035 µM

3001182                  

0.0145 ± 0.0005 

µM

3001010                                      

3.9 ± 1.9 µM

3001009                                     

Inactive

3001015                                

0.36 ± 0.12 µM

3001016                                   

1.40 ± 0.5 µM

3001017                                   

0.11 ± 0.02 µM

3001026                              

Inactive

3001025                               

Inactive
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Table 26: EC50 results for library G 
 

 

 

  

3001199                   

0.33 ± 0.06 µM

3001206             

0.6 ± 0 µM

3001204                     

2.75 ± 0.35 µM

3001205             

10 ± 0 µM

3001194                             

0.68 ± 0.11µM

3001207                      

0.0022 ± 0.0028 µM              

3001208             

0.011 ± 0.0014 

µM          

3001209                         

0.011 ± 0.00141 µM 

3001210                

0.035 ± 0.01 µM
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3.1.2. SAR Discussion 

 

The ultimate aim of this stage of the project was to determine if there was a relationship 

between the structure of I3GAs and their potency in the cell based assay.  This was done by 

analysing the activity data from the first round of the screening programme to determine 

structures that were beneficial to the anti-prion effect. Analogues of these active compounds 

were then synthesised and screened to try and further increase the potency. 

 

3.1.2.1. Library A 

The compounds in library A consisted of amines attached to an unsubstituted indole, a 1-

methylindole or a 2-methylindole and were based originally on the parent compound, an m-

chloro substituted phenyl ring attached to an unsubstituted indole via a glyoxylamide linker (see 

Figure 16). One trend that is immediately obvious is that a methyl substitution at the 1 or 2 

position of the indole (see Figure 23) is detrimental to activity.  

 

 
 
Figure 23: Examples of substituted indoles. a. is a 1-methylindole, b. is a 2-methylindole 
 

All compounds containing the 2-methylindole were inactive. Although three showed activity in 

the initial screens this was not confirmed in the EC50 screens so they were classed as inactive. 

Substitution at the 1 position also reduced activity although there were a few compounds that 

retained some activity (3000556, 3000663, 3000664 and 3000656). In all these cases, however, 

activity was reduced when compared to the unsubstituted analogue. Compare 3000233 (EC50 

0.32 µM) with 3000556 (EC50 6.9 µM) or 3000234 (EC50 0.24 µM) with 3000656 (EC50 3.77 µM). 

As a general rule the substituted indoles were at least an order of magnitude less active than 

their unsubstituted equivalent.  

 

There was also a clear pattern in the activity of the unsubstituted compounds. Only compounds 

derived from aromatic amines were active, while those derived from aliphatic, benzylic or 

secondary amines were largely inactive. The only exception was the 3-aminoquinolyl compound 
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3000534 (EC50 0.7 µM), which was the only bicyclic compound to show activity. One of the most 

active compounds was the unsubstituted phenyl ring (3000233) and only substitution at the 

para-position improved on this activity.  Meta-substituted compounds retained a degree of 

activity although they didn’t improve on the activity of the unsubstituted phenyl. Substitution at 

the ortho-position resulted in a complete loss of activity. Compare the p-methoxy derivative 

(3000260, EC50 0.011 µM) with its m-methoxy equivalent (3000259, EC50 0.23 µM). It can 

therefore be seen that primary aromatic amines with a para-substituent give the most potent 

anti-prion effect, while substitution of the indole at the 1 position reduces activity and 

substitution at the 2 position is not tolerated. 

 

 
 
Figure 24: Figure demonstrating para-, meta- and ortho-substitutions on the amine. 
 

3.1.2.2. Library B 

Using the information gleaned from the first library the second library was made up of 

unsubstituted indoles and 1-methyl indoles. Again a preference for para-substituted amines was 

seen, with p-OEt (3000979, EC50 0.06 µM) and p-SMe (3000991, EC50 0.04 µM) showing better 

activity than the unsubstituted parent compound (3000233), although neither were as active as 

the p-Me substitution (3000260). The most effective compounds were those possessing a p-

amino substituent. Three of these compounds gave EC50 values of less than 10 nM (3000994, 9 

nM; 3001003, 6 nM; 3001012, 1 nM) and all these contained an N-linked heterocycle at the 

para-position of the phenyl ring (see Figure 25). It can therefore be seen that a heterocycle 

containing at least one hydrogen bond acceptor should be present in the para-position for 

optimal activity. 
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Figure 25: Structures of some of the most active compounds, all of which contain an N-linked 
heterocycle at the para position of the phenyl ring (circled). a. 300994; b. 3001012; c. 3001003. 
 

Analogues of these compounds containing a 1-methyl substituted indole were also screened, 

and although these generally retained good activity they were not as potent as their 

unsubstituted equivalent. 

 

Compounds that were substituted at both the meta and para-positions were found to have 

either activity that was comparable to the meta-substituted analogue or to be inactive. For 

example, the 3,4-dimethoxy derivative (3000918, EC50 0.52 µM) had a similar activity to the m-

methoxy analogue (3000259, EC50 0.23 µM) and a lower activity than the p-methoxy analogue 

(3000260, EC50 0.01 µM). There is therefore no additive effect of substituting at two positions. 

This was further emphasised by the complete loss of activity seen in the 3,4,5-trisubstituted 

compounds. Activity was also lost on insertion of a methyl bridge between the amide nitrogen 

and the phenyl ring as can be seen in compounds 3000914 and 3000915, which were from m- or 

p-methoxybenzylamides. The incorporation of a nitrogen at the 3 position of the phenyl ring was 

shown to reduce the activity of a compound, for example 3000997 had an EC50 of 1.21 µM 

compared to the same compound without the nitrogen, 3000917, which had an EC50 of 0.064 

µM. A nitrogen at the 4-postion of the phenyl ring also resulted in a drop in activity. 

 

3.1.2.3. Library C 

Library C was based on the most active compounds from library 2, particularly 3001012 (EC50 1 

nM). Only three compounds showed comparable or better activity than the parent compound – 

3001137 (EC50 3 nM), 3001165 (EC50 0.95 nM) and 3001143 (EC50 1.3nM). In compound 3001137 

the addition of an additional nitrogen into the p-pyrazol-1-yl substituent caused a very slight 
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decrease in activity. Changing the position of the nitrogen molecules, as in 3001143, and adding 

an oxygen molecule to the p-pyrazol-1-yl substituent, as in 3001165, resulted in comparable 

activity. 

 

All other changes to the para substituent on the phenyl ring resulted in a decrease or complete 

loss of activity. Adding a methylene bridge between the phenyl ring and the heterocycle led to a 

decrease in activity of two orders of magnitude (3001138, EC50 0.6µM). Adding a 3,5-dimethyl 

substitution to the pyrazole ring caused a similar drop in activity. The only substituted 

compound with activity comparable to the lead compounds was the 1-methylpyrazol-1-yl 

derivative (3001163, EC50 6nM). Apart from this compound all other substitutions were very 

detrimental to activity. Unusually one of these compounds (3001162) was highly toxic to the 

cells, suggesting the use of a sulphur-containing heterocycle can’t be tolerated.  

 

3.1.2.4. Library D 

This library aimed to investigate the effect of different substitutions on the indole ring at the 5 

and 6 positions. Amines with proven activity on the unsubstituted indole were used to 

determine whether activity could be improved with indoles that had either a chloro or methyl 

substitution at the five or six position. 

 

 
 
Figure 26: Substituted analogues of parent compound 3000233; 3001060 (left) and 3001075 
(right) 
 

Comparing the results from the substituted indoles with the results from the unsubstituted 

indoles shows a clear pattern. In all cases the 5-methyl substitution caused a decrease in activity. 

Compare the unsubstituted 3000233 (EC50 0.32 µM) with the 5-methyl substituted 3001075 

(EC50 13 µM), and the unsubstituted 3000260 (EC50 0.011 µM) with the 5-methyl substituted 

3001080 (EC50 0.87 µM). The 5-chloro substituted indoles also caused a decrease in activity 

although not by as much as the 5-methyl substitution. Compare again 3000233 with the 5-chloro 

substituted 3001066 (EC50 1.63 µM). This is an order of magnitude better than the 5-methyl 

substituted indole but still nearly an order of magnitude worse than the unsubstituted analogue. 
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Compounds 3001069 (EC50 0.074 µM) and 3001067 (EC50 0.56 µM) gave results closer to their 

unsubstituted analogue, respectively 3000982 (EC50 0.065 µM) and 3000977 (EC50 0.13 µM).  

 

Substitution at the 6-position appears to be more beneficial to activity, with the 6-chloro 

substituted indole generally giving an increased or comparable activity to the unsubstituted 

analogue. Compound 3001060 (EC50 0.074 µM) in particular shows a notable increase in activity 

compared to its unsubstituted analogue (3000233, EC50 0.32 µM). In most other cases results 

were comparable, see 3001059 (EC50 7 nM) compared to 3000994 (EC50 9 nM) and 3001058 (EC50 

9 nM) compared to 3000260 (EC50 11 nM). The methyl substitution at the 6 position gave the 

most beneficial effect, with four out of five compounds showing increased activity compared to 

the unsubstituted analogue. Compare 3001073 (EC50 0.045 µM) with 3000977 (EC50 0.13 µM). 

The 6-methyl N-benzyl compound 3001074 (EC50 6.2 µM) is active but all other N-benzyl 

compounds (3000255, 3001062, 3001068 and 3001076) are inactive. It can therefore be seen 

that substitution at the 6 position is advantageous (or not detrimental) to activity, while 

substitution at the 5 position causes a decrease (or no change) in activity compared to the 

unsubstituted analogue. It is also clear that the 6-methyl substitution is more advantageous than 

the 6-chloro substitution. 

 

3.1.2.5. Library E 

This library continued the theme of the previous library but looked at substitutions in some 

additional positions on the indole. More compounds were synthesised with a 6-chloro 

substitution but none of these showed any improvement in activity over the unsubstituted 

analogue. As seen before there was comparable activity, with any decreases in activity being 

fairly small. Compare 3001123 (EC50 12 nM) with 3001003 (EC50 6 nM). Addition of a methyl 

group at the 1- position of the indole ring caused a drop in activity of around one order of 

magnitude compared to the 6-chloro substituted indole. Compare 3001128 (EC50 0.15 µM) to 

3001124 (EC50 7 nM). A 6-fluoro substitution gave results very similar to the unsubstituted 

analogues suggesting that this had no effect on activity. Compare the 6-fluoro substituted 

compounds 3001139 (EC50 8 nM) and 3001126 (EC50 10 nM) with their unsubstituted analogues, 

respectively 3001003 (EC50 6 nM) and 3000260 (EC50 11 nM).  

 

Substitution at the 7 position did not improve on the activity of the unsubstituted analogues. For 

the 7-methyl substitution results were at least an order of magnitude worse than the 

unsubstituted analogues. Compare the 7-methyl substituted compounds 3001184 (EC50 1.4 µM) 
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and 3001183 (EC50 0.14 µM) with their unsubstituted analogues, respectively 3000977 (EC50 0.13 

µM) and 3000260 (EC5011 nM). The 7-chloro substituted compounds retained more activity 

compared to the unsubstituted analogues than the 7-methyl compounds. However, their activity 

was still less or comparable to the unsubstituted analogues, and in no case was there a 

beneficial effect on activity. It can therefore be seen that none of the substitutions to the indole 

ring in this library were beneficial to activity compared to the unsubstituted analogue. 

 

3.1.2.6. Library F 

This library investigated the effect of removing one of the carbonyl groups or replacing the 

carbonyl groups with a heterocycle. It also investigated the addition of larger groups to the 1-

position of the indole ring.  

 

 
 
Figure 27: Different modifications investigated in Library F. a. removal of one of the carbonyl 
groups; b. replacement of the carbonyl groups with a heterocycle; c. addition of larger groups to 
the 1-position of the indole ring. 
 

It can be seen that the addition of the large group to the 1 position of the indole was not 

tolerated in terms of cell line activity, suggesting that while the substitution of small groups may 

be tolerated there is a steric limit to retaining activity. Removal of one or other of the carbonyl 

groups resulted in a large decrease or total loss of activity, while replacing the carbonyl group 

with a heterocycle was not tolerated and resulted in total loss of activity. Removal of the 

carbonyl group adjacent to the indole ring was only tolerated in one instance, 3001010 (EC50 3.9 

µM). However, the activity was very low compared to the compound with the other carbonyl 

group removed (3001017, EC50 0.11 µM), which in turn showed low activity when compared to 

the analogue with both carbonyl groups (3000994, EC50 9 nM). Removal of the carbonyl group 

furthest away from the indole ring was better tolerated, resulting in a decrease in activity of 

around one order of magnitude. Compare 3001015 (EC50 0.36 µM) to its  analogue containing 

both carbonyl groups, 3000260 (EC50 0.011 µM). 
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3.1.2.7. Library G 

Having established in previous libraries that a substitution at the 6-position was the most 

beneficial for anti-prion activity the effect of substitutions at this position was further 

investigated. The effect of a methyl bridge between the carbonyl groups and a methyl 

substitution at the 4-position of the indole ring was also investigated. 

 

The effect of the methyl bridge was to remove any activity from the compound while the 4-

methyl substituted compounds showed a decreased activity of around two degrees of 

magnitude compared to the unsubstituted compound. Compare 3001204 (EC50 2.75 µM) to its 

unsubstituted analogue 3000260 (EC50 0.011 µM), or 3001205 (EC50 10 µM) to its unsubstituted 

analogue 3000977 (EC50 0.13 µM). 

 

With respect to the substitutions at the 6 position, there were varied results. Derivatives with an 

isopropyl group at the 6 position showed a large decrease in activity compared to the 

unsubstituted analogues and to similar compounds with different substitutions at the 6-position. 

Compare 3001199 (EC50 0.33 µM) with the unsubstituted analogue 3000260 (EC50 0.011 µM), or 

the 6-chloro analogue 3001058 (EC50 0.009 µM). The modifications that proved the most 

effective were the addition of a 6-cyano or 6-nitro group. The former reduced the EC50 by nearly 

an order of magnitude from the previous best in one case, compare 3001207 (EC50 0.0022 µM) 

with the 6-chloro analogue 3001058 (EC50 0.009 µM). The 6-nitro analogues showed similar or 

improved activity to the unsubstituted analogue, compare 3001210 (EC50 0.035 µM) with the 

unsubstituted analogue 3000977 (EC50 0.13 µM), although none of the 6-nitro compounds gave 

better activity than the 6-cyano analogues. 

 

 

3.1.3. Conclusions 

 

From this screening programme it is possible to draw detailed conclusions on two things, namely 

the effect on activity of substitutions on the indole ring and the effect on activity of different 

amines. The effect on activity of removing one of the carbonyl groups was also examined but in 

far less detail. 

 

In conclusion it can be seen that in the majority of cases the unsubstituted indole is as potent as 

any of its substituted analogues. The only exception to this is substitutions at the 6-position. The 
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6-methyl and 6-nitro substitutions resulted in slight increases in activity, while the 6-cyano 

substitution resulted in an increase in activity, with an increase of an order of magnitude 

observed in one case. However, in terms of the activity of the lead compound, substitutions on 

the indole ring did not result in an increase in activity. A methyl group at the 2 position rendered 

the compound inactive while substitution at the 1 position caused a notable decrease in activity 

compared to the unsubstituted equivalent. Substitution at the 6 position was beneficial or had 

no effect on activity, and the 6-methyl substitution was advantageous. A 6-cyano substituted 

analogue of the lead compound was not synthesised although the SAR data from library G 

suggests that this may be optimal. Substitution at the 5 position caused a decrease or had no 

effect on activity. Substitution at the 7 position had no effect on activity compared to the 

unsubstituted equivalent.  

 

With respect to the effect of different amines there was also a clear pattern. Only aromatic 

amines showed activity. Phenyl rings substituted at the para-position showed a clear 

improvement in activity over the unsubstituted phenyl ring. Substitutions at the meta-position 

showed no improvement in activity while substitution at the ortho-position caused total loss of 

activity. A heterocycle containing at least one hydrogen bond acceptor needed to be present at 

the para-position for optimal activity. Compounds substituted at both the meta and para-

positions had activity similar or worse than the meta-substituted equivalent and the 

trisubstituted compounds were all inactive. There was therefore no additive effect of multiple 

substitutions on the phenyl ring. Insertion of a methyl bridge between the amide nitrogen and 

the phenyl ring reduced activity, as did incorporation of a nitrogen group at the 3- or 4-position 

of the phenyl ring.  

 

Strikingly, removal of one or other of the carbonyl groups caused a large decrease in, or total 

loss of, activity compared to compounds containing both groups. 

 

An interesting observation was that in the majority of the screens the total removal of PrPSc was 

not observed. Even at the highest concentrations of the most potent compounds, 5 to 20 % of 

the PrPSc remained. This can be seen in the example data presented in Figure 13, and faint spots 

are still visible on the dot blots presented in Figure 19 and Figure 21. The initial screen data 

presented in 3.1.1.2 also demonstrates the residual PrPSc that remained after treatment.  This 

raises the question of whether the cells are cured, and whether they still retain infectivity. It is 

possible that that PrPSc levels have been lowered to such a degree that accumulation to pre-
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treatment levels would be prevented by normal cellular processes, and in this context the cells 

could be considered cured. However, if the residual PrPSc was still infective then to refer to the 

cells as cured would perhaps be erroneous. Further work is required to show the long term 

effects of treatment on PrPSc levels, and also to determine whether the cells are still infectious. 

 

Validation of the dot blot analysis using western blotting was carried out by Mark Thompson and 

Matthew Jackson using a selection of the most active compounds. The reduction in PrPSc levels 

and the activity of the compounds was reproduced using western blotting, therefore validating 

the dot blot protocol for use in this application.  

 

 

 

3.2. Surface Plasmon Resonance (SPR) Binding Assay 

 

SPR is a technique widely used to monitor biomolecular interactions in real time. It has been 

used in a wide range of applications such as ligand fishing, microbiology, virology and epitope 

mapping as well as studying host-pathogen, protein-protein, protein-nucleic acid, protein-

membrane and protein-cell interactions. (372) The approach involves attaching one of the 

interaction partners, known as the ligand, to the surface of a sensor chip. Solution containing the 

hypothesised interaction partner, known as the analyte, is passed over the surface of the chip. 

Binding interactions at the sensor surface generate a response which is proportional to the 

bound mass, allowing identification of interaction partners and elucidation of their mode of 

binding. The strength of the interaction can be determined by monitoring dissociation, and the 

surface can then be regenerated to remove any remaining analyte, allowing the immobilised 

ligand to be used multiple times (see Figure 28). 

 

There are various methods of immobilisation available but one of the most commonly used is 

amine coupling using a CM5 chip. The gold coated surface of the chip is covered with 

carboxymethylated dextran which is then activated using a combination of EDC (1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride) and NHS (N-hydroxysuccinimide). This 

produces reactive succinimide esters which react spontaneously with amine and other 

nucleophilic groups allowing direct immobilisation of proteins. Any active sites that aren’t used 

for immobilising protein are blocked using ethanolamine to ensure that they don’t form 

interactions with the analyte. Each sensor chip has four flow channels. At least one of these acts 
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as the blank control, where the surface of the chip is activated and blocked without any protein 

bound to it. This ensures that any binding seen is between the analyte and the ligand, rather 

than the analyte and the surface of the chip. Direct binding to the surface can cause high non-

specific binding so needs to be accounted for. The remaining flow cells can be immobilised with 

different proteins or the same protein at different levels as required. 

 

Once the ligand has been immobilised the analyte of interest is flowed over the surface of the 

chip and interactions between the two are calculated from changes in the refractive index, 

measured in response units (RU). SPR occurs in thin conducting films at the interface between 

two media of different refractive indexes, in this case the glass of the sensor chip and the sample 

solution. The layer of gold on the surface of the chip acts as the conducting film.  

 

 
 
Figure 28: Pictorial representation of the SPR technique, showing the ligand attached to the flow 
cell and the analyte flowing over the top. Changes in the refractive index are detected in the 
immediate vicinity of the surface layer of the chip. The SPR angle shifts when biomolecules bind 
to the surface and change the mass of the surface area. (373) 
 

Binding is calculated using the shift from the baseline signal (immobilised ligand only), 

subtracting the signal from the reference cell and then expressing the shift as a percentage of 

what would be expected if all the binding sites had been occupied 1:1. This is known as the 

RUmax and is calculated as from the molecular weight of the ligand, the molecular weight of the 

analyte and the immobilisation level (see Equation 3). The immobilisation level is the difference, 

in response units, between the signal after the EDC/NHS activation and the signal after 

immobilisation of the ligand and regeneration of the surface: 
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(
𝐼𝑚𝑚𝑜𝑏𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙

𝑀𝑊 𝑜𝑓 𝑙𝑖𝑔𝑎𝑛𝑑
) 𝑥 𝑀𝑊 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑡𝑒 

 
Equation 3: Method for calculating the RUmax of a compound 
 

An analyte showing binding of around 100% RUmax would have a specific 1:1 interaction with the 

ligand, while the detection of a much higher RUmax value would suggest non-specific binding. If 

there was very little variation from baseline during the analyte injection then that would indicate 

that there was no interaction between the two molecules.  

 

The nature of the interaction between ligand and analyte can also be examined by investigating 

the dissociation constant (kD). This measures how long it takes for the ligand-analyte complex to 

dissociate and uses this as a measure of the strength of the interaction. With SPR there is a 

dissociation period after the analyte injection, where nothing but running buffer is passed over 

the surface of the chip. Any decrease in signal during this phase can then be used to monitor the 

dissociation. To ensure that all the analyte is removed from the chip the final step in the SPR run 

is to use regeneration solutions to dislodge any remaining bound analyte. After this the chip is 

ready to be injected with a new analyte (see Figure 29).  

 

 

 
 

Figure 29: Example sensorgram for investigating ligand-analyte interactions. Baseline represents 
the response from the immobilised surface only. Analyte injection causes the formation of 
complexes which then dissociate once the injection stops. Final removal of analyte is facilitated 
by regeneration solutions, returning the surface to baseline levels. Figure adapted from the 
Biacore sensor surface handbook. 
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SPR, using a Biacore 3000 instrument, was used to determine if there was a binding interaction 

between one of two forms of bacterially expressed recombinant PrP (full length human, huPrP, 

and full length mouse, moPrP) and the I3GAs. The moPrP was used to provide a comparison with 

the cell line assay, which was carried out in murine brain cells. Previous work had also used 

truncated human recombinant PrP (t-huPrP) (221, 351) to try and identify the region of PrP that the 

compounds might be binding to, but unfortunately there was none available for this study. It 

was thought that if binding affinities similar to the EC50s were demonstrated in the SPR assay 

then it may be possible to conclude that the compounds exert their in vitro anti-prion effect 

through binding to PrPC. Weak interactions may suggest a different mode of action. 

 

Previous work within the group had optimised the protocol for binding recombinant PrP to a 

gold sensor chip coated with carboxymethylated dextran (CM-dextran). (221) This method was 

chosen because PrPC is a known binder to heparin (213) and heparin resembles CM-dextran 

structurally, with binding of heparin to PrP occurring via the N-terminal. I3GAs were passed over 

the immobilised protein and the response analysed to determine if any of the compounds were 

interacting with the PrP. For these experiments the focus was on the shift in baseline after the 

analyte injection rather than the dissociation phase. It was decided to look at the binding event 

itself rather than the strength of the interaction, as this was the initial parameter of interest. 

This was because proof of an interaction, regardless of the strength, was required to 

demonstrate that the compounds may be working through direct interaction with PrP. Further 

elucidation of the interaction, through calculation of the kD and therefore the strength of the 

binding, was planned if any of the compounds showed significant, specific binding. Any 

compounds that showed binding were run at a series of concentrations to determine the shape 

of the binding curve and reveal further the mechanism of binding. 

 

Materials and methods are discussed in full in sections 2.1.2 and 2.2.3 respectively. 

 

 

3.2.1. Results 

 

3.2.1.1. Optimisation 

The SPR binding experiments using the Biacore 3000 instrument were carried out according to a 

protocol developed by the Chen group for previous work, as detailed in (221) and section 2.2.3. As 

such it didn’t require any optimisation although some small changes were made. Previous work 
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had used a chip for 5 runs before discarding it. It was thought that it might be possible to use the 

chip for longer, saving both time and money and allowing more of a comparison between runs. 

(221) The immobilisation levels and binding by quinacrine (the positive control) were monitored 

over time and were found to be stable after 17 runs carried out over a period of 4 weeks (see 

Figure 30 and Figure 31). The stability of the immobilisation levels and the quinacrine binding 

also suggest that the PrP is bound to the chip surface in a stable confirmation and that 

aggregation of PrP on the chip surface, as indicated by an increase in the baseline immobilisation 

level, does not seem to occur. Changes in the conformation of immobilised PrP over time were 

suggested to result in increased exposure of the C-terminal. (221) As quinacrine has been shown 

to bind to the C-terminal of PrP (347) it was suggested that fluctuations in quinacrine binding 

could be due to changes in the conformation of the immobilised PrP. As can be seen in Figure 

31, quinacrine binding during the initial run is significantly lower than subsequent runs, 

suggesting that less of the C-terminal may be exposed. However, quinacrine binding increases by 

the second run, and is subsequently consistent, suggesting that the conformation of the 

immobilised PrP has stabilised and the binding site on the C-terminal is available.  

 

 
 

Figure 30: Immobilisation levels over 17 runs for huPrP and moPrP. Each data point represents a 
representative sample of baseline immobilisation levels over the course of the run, and were 
measured in the presence of buffer containing 6.5 % DMSO only. n = 7. Very low standard 
deviations for the majority of data points demonstrate the stability of the immobilisation, as 
does the consistency of the immobilisation level between runs. The higher error observed during 
the first run is thought to be due to the PrP being in a slightly different, and shifting, 
conformation. Protein that is not tightly bound to the chip may also be washed off during the 
first run, resulting in a slight decrease in immobilisation level.  
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Figure 31: Response in % RUmax given by quinacrine over 17 runs against huPrP and moPrP. The 
lower binding on the first run was attributed to limited availability of the C-terminal of PrP, 
where quinacrine has been shown to bind. Subsequent increases in binding are attributed to a 
conformational shift in the immobilised PrP during the first run, with a stable conformation 
being maintained thereafter.  
 

3.2.1.2. Initial Screens 

All compounds were initially screened at 40 µM and the results expressed as % RUmax. 

Theoretical RUmax was calculated as described in Equation 3 and the observed binding response 

of the compound was expressed as a percentage of this theoretical value. Compounds that 

showed over 100% RUmax binding were not likely to be specific binders. It was thought that these 

compounds were either interacting with the surface of the chip or were non-specifically binding 

to the ligand. Compounds showing a high interaction with flow cell, as assessed by their 

interaction with the blank flow cell one, were likely to be binding to the surface of the chip 

rather than the protein so reliable binding data for these compounds could not be obtained. 

Non-specific binders were thought to be binding to all areas of the protein rather than the 

specific binding site that had been identified, and were therefore discounted. The use of a PrP 

peptide containing the hypothetical protein X binding site was suggested to determine whether 

the compounds were binding in this region as predicted, and truncated PrP had been used in 

previous studies, (221, 351) but neither the peptide nor the truncated PrP were available at the time 

these studies were carried out. 

 

Quinacrine was the positive control as it is known to bind to PrP and was used in previous 

experiments by the group. (221, 233) In the majority of cases it gave a result of 100 % RUmax ± 5% 

(see Figure 31). Low levels of quinacrine binding shown by the first run, and the subsequent 
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increase to theoretical levels, are thought to be due to small shifts in the conformation of the 

immobilised protein for a limited period after the immobilisation is carried out. This shift 

exposes more of the C-terminal which is where quinacrine is thought to bind. (221) 

 

Most of the compounds that were screened by SPR were also active in the SMB cell line. A few 

inactive compounds were included to allow for comparison. The results have been divided into 

the same libraries as used for the SMB screening. Results have been assigned to one of four 

categories: 

 

Orange = non-binders, results < 5 % RUmax. 

Yellow = low level binders, results >5 % RUmax but <20 % RUmax. 

Green = Binders, results >20 % RUmax 

Blue = Inconclusive results. 

 

The majority of screens were carried out in duplicate (at least) to ensure the reliability of results. 

Where confirmed the initial result was used. If the repeat differed significantly from the initial 

result then the compound was repeated again and the result shown is the result confirmed by 

the third screen. Compounds considered to be binders were then screened at a range of nine 

concentrations and the results analysed using a one-phase association linear fit.   

 

As in section 3.1.1 the results of the SPR experiments are presented here in libraries based on 

compound structure (see Table 11 and section 3.1.1.2 for detailed explanations of each library) 

The data is presented as outlined in Figure 32 with the indole structure on the left and the 

amine structure along the top. Each box contains the compound screening number along with 

the percentage of the theoretical binding (RUmax) that was observed at a concentration of 40 

µM.  
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Figure 32: Example of the layout of the data in the subsequent results tables. The indole group is 
described in the left hand column, with the amine group along the top. Observed binding at the 
initial screen concentration of 40 µM is expressed as the percentage of the theoretical RUmax. 
Each result represents at least two independent experiments, and each experiment was carried 
out in triplicate. 
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Table 27: SPR screening results for library A at a concentration of 40 µM.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3000233                            

13.9 ± 5.7 %       
3000553                         

45.7 ± 4.2 % 

3000259                            

19.3 ± 27.8 %

3000260                           

21.4 ± 26.1 % 

3000234                            

31.61 ± 2.41 %

3000530                            

-0.34 ± 3.16 % 

3000258                            

33.48 ± 2.04 %

3000556                 

34.84 ± 2.48 % 

3000663                          

1.2 ± 1.8 %

3000664                            

-1.6 ± 1 %

3000656                   

28.2 ± 1.8 % 

3000557                    

19.18 ± 0.51 %

3000648                    

23.2 ± 1.2 % 

3000649                    

4.13 ± 0.5 % 

3000554                            

1.68 ± 0.61 % 

3000534                            

43.36 ± 17.40 % 
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Table 28: SPR screening results for library B at a concentration of 40 µM.  
 

 

 

 

 

 

 

 

 

 

 

 

 

3000918                       

33.25 ± 5.05 %

3000979                            

-0.62 ± 1.25 % 

3000993                  

0.96 ± 5.21 %

3000991                           

-3.8 ± 1.9 %

MT609                     

not screened                        

3000985                            

-3.66 ± 0.92%

3000978                            

-10.42 ± 0.32 % 

3001085                                

170.92 ± 99.64 %

3001002                            

-1.94 ± 1.69 % 

3000999                            

-2.98 ± 1.85%

3000996                           

0.92 ± 0.33 % 

3000998                            

-7.68 ± 0.46 % 

3000997                            

1.27 ± 3.65 %

3000983                            

26.61 ± 9.12 % 

3000992                            

7.3 ± 3.3 %  

3000995                            

18.53 ± 8.98 %

3000994                            

-4.7 ± 0.4 % 

3001003                          

-13.24 ± 0.92 %

3001012                        

53.37 ± 1.53 %

3001008                            

-1.29 ± 4.56 % 

3001013                  

-2.86 ± 17.13 %

3000981                            

21.76 ± 2.14 % 

3001088                                    

-1.24 ± 2.14 %

3001086                          

-0.86 ± 4.56 %

3001087                                     

-1.84 ± 4.6 %

3001006                    

17.9 ± 4 % 

3000917                            

-0.59 ± 8.56 % 

3000980                            

-6.18 ± 1.41 %

3000977                            

-0.88 ± 2.43 % 

3000987                           

1.1 ± 4.1 %

3000982                            

22.52 ± 3.64 % 
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Table 29: SPR screening results for library C at a concentration of 40 µM. 
 

 

 

 

Table 30: SPR screening results for library D at a concentration of 40 µM  
 

 

 

 

 

3001136                                

-7.01 ± 4.85 %

3001137                                

-92.52 ± 77.02 %

3001138                                

24.99 ± 53.62 %

3001142                                 

-0.13 ± 7.83 %

3001165                                

116.27 ± 40.09 %

3001166                                

5.55 ± 4.73 %

3001164                                

7.31 ± 11.54 %

3001143                               

44.13 ± 37.31 %

3001144                                

-117.72 ± 462.96 %

3001163                                

6.33 ± 4.26 %

3001060                         

32.3  ± 7.9 %

3001058                         

-10.98 ± 0.92 %

3001063                        

-1.81 ± 0.93 %

3001061                        

-1.73 ± 1.36 %

3001059                        

-9.44 ± 1.14 %

3001066                         

-17.43 ± 1.1 %

3001064                              

-4.07 ± 1.19 %

3001069                     

1.23 ± 0.65 %

3001067                     

3.28 ± 0.7 %

3001065                        

-6.45 ± 1 %

3001072                        

-3.59 ± 0.7 %

3001070                       

-18.28 ± 9.55 %

3001073                       

-10.92 ± 1.47 %

3001071                       

-9.91 ± 6.24 %

3001075                       

-6.68 ± 0.46 %

3001080                       

1.78 ± 5.89 %

3001077                       

-27.65 ± 7.51 %

3001081                       

3.98 ± 2.42 %

3001062                          

-5.55 ± 1.94 %

3000641                         

27.15 ± 3.14 %

3000785                         

2.9 ± 1.1 % 

3000787                          

4.4 ± 6.5 % 

3001074                     

16.77 ± 0.64 

%
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Table 31: SPR screening results for library E at a concentration of 40 µM 
 

 

 

 

Table 32: SPR screening results for library F at a concentration of 40 µM. 
 

 

 

 

 

 

 

 

 

 

 

3001123                        

-4.58 ± 6.67 %

3001124                                   

20.73 ± 16.42 %

3001125                       

-3.40 ± 10.37 %

3001127                       

-3.32 ± 3.58 %

3001128                       

-5.42 ± 8.87 %

3001130                                

-10.17 ± 9.72 %

3001129                      

-1.9 ± 4.96 %

3001139                       

-3.21± 14.58 %

3001140                    

68.03 ± 28.41 %

3001126                       

0.1 ± 1.12 %

3001181                         

11.28 ± 3.56 %

3001180                          

-1.57 ± 4.87 %

3001141                          

-1.95 ± 7.25 %

3001184                

-1.05 ± 9.89 %

3001183                

-2.5 ± 9.89 %

3001182                      

-4.94 ± 6.75 %

3001010                                      

-1.47 ± 4.88 %

3001009                                     

29.6 ± 17.66 %

3001015                                

31.48 ± 0.13 %

3001016                                   

118.15 ± 1.2 %

3001017                                   

76.41 ± 1.08 %

3001026                              

0.8 ± 3 %

3001025                               

45 ± 12.8 %
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3.2.1.3. Dose response Analysis 

Binding studies were carried out at a range of concentrations to obtain dose-response curves for 

compounds that showed binding to PrP in the initial screens. The same chip that was used in the 

initial screens was also used for the dose-response analysis. A sensorgram such as the one in 

Figure 33 would be expected for a compound showing good binding and a dose response. 

Injection of the compound of interest occurs at 51 seconds, at which point an increased 

response can be observed if binding occurs. This injection continues for 1 minute, after which 

the signal can be seen to drop off dramatically. The 3 minute dissociation period allows the 

unforced dissociation of the analyte from the ligand, with regeneration solutions being injected 

after this period to ensure that all the analyte has been removed. The injection of the 

regeneration solutions is not shown in Figure 33. 

 
 
Figure 33: Dose response curves from SPR for the binding of compound 3001016 to huPrP, 
presented as the relative response (in RU) with blank data, calculated from the signal from the 
blank flow cell (fc1), subtracted. A steady baseline at zero is observed when buffer is injected 
over the chip, with a subsequent increase in signal at 51.5 seconds as the compound injection 
begins. The response increases as the concentration of the compound increases. Dissociation 
occurs once the injection stops at 112.5 seconds, as demonstrated by the decrease in signal after 
this point. The data is from a single injection at each concentration.  
 

The data in the following figures is the data from the time point at 112.5 seconds, which 

represents the end of the analyte injection. This point is therefore the maximum increase in RU 

from baseline that would be observed if the analyte was binding to the ligand.  
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3.2.1.3.1. Library A 

 
 

Figure 34: Dose response curve for compound 3000553 against huPrP. Binding at each 
concentration was analysed in triplicate. Binding increases with concentration up to 30 µM, at 
which point it decreases. The value for the goodness of fit of the curve is very low. 
 

The curve fitting in Figure 34 suggests that this compound is a specific binder although the 

goodness of fit (R²) value is very low. The repeat of this compound produced a similar result. 

 

 
 

Figure 35: Dose response curve for compound 3000534 against huPrP. Binding at each 
concentration was analysed in triplicate. An apparent dose-dependent increase in binding is 
questionable due to the high standard deviations at concentrations of 60 µM and above. 
 

The high standard deviations seen in Figure 35 suggest that 3000584 may be a non-specific 

binder. At higher concentrations the first injection was very high with the subsequent two 

injections being much lower, resulting in the very high standard deviations observed at 

concentrations from  60 µM and above.  
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Figure 36: Dose response curve for compound 3000556 against huPrP and moPrP. Binding at 
each concentration was analysed in triplicate. Only very low level binding was observed, with 
RUmax values peaking at less than 20 % of the expected theoretical binding, suggesting limited 
binding interactions. 
  

After dose response analysis this compound was re-classified as a non-binder. Although it 

appears to show a dose response it can be seen in Figure 36 that it is at such low levels that 

there is no clear evidence of any binding to the protein.  

 

3.2.1.3.1. Library B 

 
 
Figure 37: Dose response curve for compound 3001012 against huPrP and moPrP. Binding at 
each concentration was analysed in triplicate. Binding can be seen to plateau at the higher 
concentrations suggesting a saturation of binding, although less than 40 % of the predicted 
binding has occurred, suggesting limited binding interactions.  
 

This is the lead compound from the SMB screening and Figure 37 does seem to show some 

degree of binding.  As with other compounds the binding seems to reach a plateau before the 

theoretical RUmax is reached. The concentration at which binding is observed is much higher than 

the cellular EC50. 
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Figure 38: Dose response curve for compound 3000982 against huPrP and moPrP. Binding at 
each concentration was analysed in triplicate. Binding can be seen to plateau at very low 
concentrations, although only around 10 % of the predicted binding is observed, suggesting 
limited binding interactions.  
 

 
 
Figure 39: Dose response curve for compound 3000983 against huPrP and moPrP . Binding at 
each concentration was analysed in triplicate. As in Figure 38 the binding appears to plateau at 
low concentrations, but only a small proportion of the expected binding is observed, suggesting 
limited binding interactions. 
  

Figure 38 and Figure 39 show that for these two compounds the response was not increased 

with higher concentrations of compound, and the maximum response that was seen was well 

below the theoretical RUmax. 

 

3001085 failed to show a dose response so was re-classified as a non-binder. 

 

3.2.1.3.1. Library C 

3001165 was the only compound to show any binding activity although with high standard 

deviations which suggested it was interacting with flow cell 1 rather than with the protein.  
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3.2.1.3.1. Library D 

3001060 failed to show a dose response or binding response over the range of concentrations. A 

dose response was not carried out on 3000641 as there was none of the compound left. 

 

3.2.1.3.1. Library E 

3001124 and 3001140 were run at a range of concentrations but at higher concentrations 

showed a very large interaction with flow cell 1. This meant that it was impossible to determine 

if there was any binding occurring between the compound and PrPC at these concentrations as 

explained previously. The high standard deviations at the lower concentrations also cast doubt 

upon the validity of the original allocation of these compounds as binders, as there was likely to 

be interaction with flow cell 1 at the lower concentrations as well.  

 

3.2.1.3.1. Library F 

These compounds were the most interesting as they give the nearest to a specific binding dose 

response curve of any of the I3GAs. Compound 3001017 (Figure 41) in particular reached a 

plateau at around 150 % RUMax, with very low standard deviation, suggesting specific binding. 

 

 
 

Figure 40: Dose response curve for compound 3001016 against huPrP and moPrP . Binding at 
each concentration was analysed in triplicate. Binding increases in a dose-dependent manner 
although it does not reach a plateau suggesting that binding is not saturated, even though 
binding levels much higher than expected can be observed.  
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Figure 41: Dose response curve for compound 3001017 against huPrP and moPrP . Binding at 
each concentration was analysed in triplicate. Binding increases in a dose dependent manner 
and appears to be approaching a plateau at the higher concentrations, suggesting saturated 
binding at just over 100 % RUmax. This strongly suggests specific binding to both huPrP and 
moPrP.  
  

 
 
Figure 42: Dose response curve for compound 3001015 against huPrP and moPrP. Binding at 
each concentration was analysed in triplicate. Binding is increasing in a dose dependent manner 
but has not yet reached saturation. It is therefore not possible to determine whether this 
compound is binding specifically or non-specifically.  
  

The dose response for 3001015, as shown in Figure 42, was almost linear, although it is not 

known if it would have reached a plateau if higher concentrations had been used. It is therefore 

hard to say with any confidence whether this is a specific or non-specific binder, although up to 

100 µM it does look like a non-specific binder. 3001016 reaches a plateau at around 200 % 

RUmax, suggesting that the binding may be non-specific (see Figure 40). 
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Figure 43: Dose response curve for compound 3001009 against huPrP and moPrP. Binding at 
each concentration was analysed in triplicate. Very low levels of binding were observed, 
although it did appear to be dose-dependent. The low levels of binding observed at the highest 
concentrations suggest limited binding interactions.  
  

As can be seen in Figure 43, 3001009 only showed very low level binding. 3001025 did not show 

any dose response and the binding levels from the initial screen were not replicated so this was 

reclassified as a non-binder.  

 

 

3.2.2. Discussion 

 

It was hoped that the SPR data might go some way to elucidating the method by which the 

I3GAs exert their effect. The original hypothesis suggested that the I3GAs may be acting by 

binding to PrPC and preventing conversion of the normal isoform to PrPSc. The I3GAs clearly 

reduced PrPSc levels in the cells in a dose dependent manner, although it has not been 

determined whether this was done through inhibiting conversion of PrPC or via some other 

mechanism.   

 

It is quite clear from the results above that the majority of the I3GAs tested do not bind to PrP, 

and those that do are binding at concentrations much lower than their EC50 in the cell line. This 

makes it highly unlikely that they are exerting their anti-prion effect through binding to PrPC. 

Compounds from library F (3001015, 1016 and 1017) were the only ones that showed a 

response that suggested they might be specific binders. The explanation for the failure of these 

compounds to bind to recombinant PrP is unknown, but seems counterintuitive as the in silico 

screen initially identified them as potential interaction partners with the prion protein. Another 

possibility is that the binding site was unavailable due to the conformation of the PrP on the 
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chip. The PrP was thought to be bound to the CM5 chip via the N-terminal due to the structural 

similarity of CM-dextran to heparin. (221) Heparin has been shown to bind to the N-terminal of 

PrP (374) and heparin binding was shown to be prevented by immobilisation of PrP onto the chip. 

(221) The hypothesised protein-X binding pocket is thought to be between residues 167 and 218 

(126)so it is therefore thought unlikely that this would be compromised due to the interaction of 

PrP with the chip. However, it is possible that the binding site may have been inaccessible due to 

the conformation adopted by PrP, as the positive control that was used was not a compound 

know to bind to this specific area. It is therefore not possible to entirely rule out an interaction 

of the I3GAs with PrPC however from the evidence presented here it appears unlikely that this 

would be the primary mode of action. A final possible explanation for the observed lack of 

binding is that the NMR model used in the in silico screen was not very well defined, and 

therefore may not have been an accurate enough model to predict binding with a high level of 

accuracy (personal correspondence from Prof Chen). The reasons outlined above may explain 

the paradox that these compounds bind to PrP in silico, but don’t appear to bind to PrP in vitro. 

 

Both 3001016 and 3001017 gave dose-response curves of the required shape for binders, 

although 3001016 in particular had reached 200 % RUmax and not reached a definite plateau. 

3001017 reached a plateau at around 150 % RUmax. This was the only compound to show 

anything resembling a specific 1:1 binding curve. Again though, there is the discrepancy between 

the response seen in the SPR assay and the activity from the cell based assay as 3001017 had an 

EC50 of 0.1µM.  

 

3001015 showed a strong response with very low standard deviations but was a straight line 

response that showed no sign of reaching a plateau. This suggests that this compound is a non-

specific binder but, unlike other compounds, isn’t interacting with the chip surface. It is thought 

that this compound was probably interacting with the protein but not with a specific binding site 

as the binding doesn’t appear to reach saturation point. These three compounds all have the 

same monocarbonyl structure (and were the only three to have this structure) so it’s possible 

that this may be particularly suited to interacting with the PrP. 

 

Some of the compounds, including the three mentioned above, were assessed for their tendency 

to form aggregates. Aggregation based effects have often been responsible for producing false 

positive results in binding studies so it was thought important to see if this may be responsible 

for the ‘binding’ seen in the SPR studies.(375) All compounds showing evidence of binding to PrPC 
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were assessed for their tendency to form aggregates using the dynamic light scattering 

technique.(278)  The main compounds of interest were 3001015, 3001016 and 3001017 as these 

showed what appeared to be a strong binding affinity with the PrP. 3001016 and 3001017, 

which showed the strongest binding, were both found to form large aggregates at the 

concentrations used in the SPR screening. The data for 3001016 and 3001017 appears to be 

reaching a plateau at the higher concentrations, suggesting the covering of the available protein 

surface by these aggregates. 3001015 was also shown to aggregate, although not to the same 

extent, and this is reflected in the lower binding affinity seen in the SPR data. The data for 

3001015 did not appear to reach a plateau, but this may also be due to the formation of 

aggregates at a lower rate. It is possible that a plateau may have been reached if higher 

concentrations or longer injections of 3001015 had been used. Aggregation of the compounds 

was observed on the blank flow cell, suggesting that aggregation was responsible for the 

observed signal. The data presented above, however, has this data subtracted, suggesting that 

either a certain amount of the aggregation is dependent on PrP, or that some genuine binding 

may be occurring. As the general aggregation tendency of these compounds matches their 

observed PrPC binding affinities it must be concluded that this is caused by the aggregation of 

the compounds rather than a genuine interaction with the protein, however some form of PrP 

dependent interaction may be a possibility. 

 

 

 

3.3. Identification of the Lead Compound 

 

After careful consideration of all the SPR and cell line screening data, compound 3001012 

(Figure 44) was chosen as the lead compound. This compound was chosen on the basis of its 

nanomolar activity, and also because the synthesis of this compound was less problematic than 

the synthesis of some of the other I3GA compounds (personal correspondence from Mark 

Thompson). A relatively large amount of the compound had been synthesised and tested for 

purity, meaning that an adequate amount of high purity compound was available for the 

subsequent experiments. 
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Figure 44: Structure of 3001012, the lead compound. The compound contains an unsubstituted 
indole, both carbonyl groups and a N-linked heterocycle at the para-position of the phenyl ring. 
All these characteristics were found to result in optimal anti-prion activity.  
 

All 3 compounds from library B containing an N-linked heterocycle at the para-position of the 

phenyl ring had activities of less than 10 nM, and 3001012 was chosen as it was the most active. 

Substitutions to the indole ring didn’t increase the activity, and in certain cases decreased the 

activity, and as this was a key feature of the SAR it was decided to use the unsubstituted indole.  

 

It can be seen from the data presented in section 3.1.1 that the I3GAs represent an extremely 

potent group of anti-prion compounds with a tightly defined SAR. Substitution of the indole was 

not found to have a significant benefit in terms of activity, and aromatic amines with phenyl 

rings substituted at the para-position were most beneficial. A heterocycle with at least one 

hydrogen bond acceptor is required for optimal activity, as are both carbonyl groups. The 

significance of this discovery is substantial – although many anti-prion compounds have been 

described there are none that are active at such low concentrations. Investigations within the 

group into other groups of compounds have not found anything with nearly the same 

nanomolar activity as the I3GAs. Work within the group has shown quinacrine and curcumin to  

have EC50s of 0.5 µM and 0.7 µM (see Figure 46) while investigations into thiazoles (276, 355) and 

pyridine dicarbonitriles (354) have only identified compounds with micromolar activities. Other 

promising groups of compounds to have been tested in the SMB model include benzamides, (376) 

which only showed weak inhibition at 20 µM, and the 2-aminothiazoles (275) which were 

generally active around 1 µM, although the most active had an EC50 of 81 nM. However, none of 

these match the activity of the I3GA compounds or have such a well characterised SAR, making 

them a unique, interesting and promising anti-prion therapeutic.  

 

It is quite clear from the SPR data that this compound does not exert its anti-prion effect 

through binding. This has led to the original rationale for investigating these compounds, namely 

their identification as potential binders to PrPC in the in silico screen, being questioned. As 
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discussed in section 3.2.2 there are explanations that could be offered to explain the observed 

lack of binding, specifically the use of recombinant PrP instead of PrPC,  the possibility that the 

binding site was inaccessible and possible inadequacies associated with the model of PrP that 

was used in the in silico screen. Despite this contradiction, the excellent activity exhibited by the 

I3GAs and their well-defined SAR were felt to justify further investigations into their anti-prion 

properties. Although the compounds do not appear to interact with PrP, they do have a clearly 

defined effect on PrPSc levels in the SMB cells, suggesting the mode of action is unrelated to PrPC. 

The original hypothesis, that the I3GAs exert their anti-prion activity via direct interaction with 

PrPC, has not been supported and therefore a new hypothesis was required. The breadth of anti-

prion compounds in the literature, and the wide variation in their mode of action made 

formulating a new hypothesis challenging. The SAR that was established for these compounds 

does not match the SAR established for these compounds in their role as tubulin polymerisation 

inhibitors, (365-367) meaning that this data did not provide any clues as to what the mode of action 

might be. The next challenge, therefore, was to try and show what the mode of action might be. 

Two possible modes of action were hypothesised. The first was that the I3GAs may be working 

by increasing cell growth, resulting in increased levels of PrPSc dilution and subsequent 

reductions in steady state levels. The second was that the compounds may be working by 

influencing the aggregation of PrPSc. Both these hypotheses are explored further in the 

subsequent chapter.  
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4. Pharmacodynamic, Pharmacokinetic and 

Mode of Action Studies of the Lead 

Compounds 

 

Chapter 3 investigated the anti-prion properties of a large number of I3GA compounds. A high 

throughput cell based screening assay was used to determine the effect of these compounds on 

both cell viability and PrPSc levels, and these data in turn were used to establish a structure-

activity relationship (SAR). Further investigation of the SAR led to the development of I3GA 

compounds with nanomolar activities which subsequent rounds of optimisation failed to 

significantly improve upon. The most potent I3GA compounds were found to be unsubstituted 

indoles with an N-linked heterocycle at the para-position of the phenyl ring while the most 

advantageous substitution to the indole group was the addition of a cyano or nitro group at the 

6-position.  

 

In order to reveal further information about the properties and activity of the I3GAs, three of the 

compounds were investigated in more detail. 3001012, the most potent of the unsubstituted N-

linked heterocycle compounds, was identified as the lead compound (see section 3.3) and was 

therefore selected. Other compounds investigated in some, but not all, of the experiments 

detailed in this chapter were 3001207 and 3001086, also I3GA compounds. 3001207 was chosen 

as the most potent of the I3GA compounds with a 6-cyano substitution, with an EC50 close to 

that of 3001012. 3001086 was used in experiments carried out by another member of the group 

and so was included to allow direct comparison with studies that had already been carried out. 

The inclusion of both I3GA compounds allowed conclusions to be drawn about this structural 

group. Quinacrine was  investigated for comparative purposes as a compound suspected to have 

a different mode of action to the I3GAs, due to its ability, unlike the I3GAs, to bind PrP (see 

Figure 31 and Figure 37). Curcumin was used due to its use in the activity screening as a positive 

control. A series of compounds from the literature were also investigated, these are discussed in 

more detail in section 4.4.2.  
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Figure 45: Structures of the compounds used in the subsequent experiments; 3001012 (a), 
3001207 (b), 3001086 (c), quinacrine (d) curcumin (e) and DMSO (f).  
 

In order to gain more insight into the lead compounds a series of experiments were carried out, 

focussing on 3001012 and 3001207. All were examining the pharmacodynamic properties of the 

I3GA compounds, i.e. the effect of the drug on the cells.  

 The curative assay - The ability of the compounds to ‘cure’ the cells was investigated by 

monitoring PrPSc levels in the cells for a prolonged period after treatment with the 

compounds. Testing the residual infectivity of the cells was not possible so it was hoped 

that this assay would give reassurance that the absence of PrPSc was not simply a 

transient effect of treatment with these compounds.  

 Time course assays – These were carried out to determine how long the compounds 

took to exert their anti-prion effect, allowing elucidation of further information about 

the mode of action of the I3GAs. These assays were carried out with the I3GA 

compounds as well as with quinacrine and curcumin for comparison. 

 

There will also be discussion in this chapter of preliminary mode of action studies that were 

carried out, examining the effect of treatment on cell growth and MTT formazan exocytosis. The 

effect of the I3GAs and quinacrine on cell growth was investigated to determine if growth was 

being affected by any of the compounds. These studies were undertaken to try and glean 

information about the mode of action of the I3GAs compared to quinacrine and curcumin. Other 

groups had suggested that growth rate may affect the anti-prion activities of compounds (110, 377) 

and so an effect on growth rate could therefore be part of the mode of action. Another study is 

also outlined here, using the MTT formazan exocytosis (MTT-FE) assay. This assay uses the 

exocytosis by cells of the formazan formed during the MTT assay as a marker for the presence of 
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aggregated protein in cells. (348) It was hypothesised that disaggregation of protein aggregates 

may be a potential mode of action for the I3GAs, and that MTT formazan exocytosis (MTT-FE) 

could be used as an indirect readout of protein disaggregation. Compounds from the literature 

were also used in this study to allow comparison of the I3GAs with compounds whose mode of 

action had been investigated and reported. 

 

 

 

4.1. Pharmacodynamic Studies: Curative Assay  

 

The curative assay was carried out using 3001012 and quinacrine. Quinacrine was used because 

a long term study on this compound had been carried out, investigating its effects in different 

cell lines. (233) This study showed that quinacrine caused the clearance of PrPSc for 15 weeks. Both 

quinacrine and 3001012 were investigated at  concentrations close to their respective EC50s and 

the effect of repeat dosing compared to single dosing was also considered. Materials and 

methods for this study are outlined in detail in sections 2.1.1 and 2.2.4.1. 

 

 

4.1.1. Results 

 

In order to confirm that the correct concentrations were being used for the positive controls, 

EC50 curves for these compounds were run. Results were found to be comparable to those 

obtained previously (see Figure 46 and Table 10).  
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Figure 46: EC50 curves for quinacrine (right) and curcumin (left). Cells were dosed with the 
compounds at a range of concentrations (as described in sections 2.2.2.1 and 2.2.2.2) and the 
amount of PrPSc in the cell lysate was analysed using dot blotting after 5 days of exposure to the 
compounds. Quinacrine has an EC50 of 0.5 µM, while curcumin has an EC50 of 0.7 µM, 
demonstrating the concentrations at which both compounds are active in the SMB cell model. 
 

The curative assay was subsequently run four times: 

1. The first run was to ensure that the protocol that had been proposed worked. This was 

run for 4 passages and resulted in the cell number and the time between passages being 

reduced to allow the assay to continue for longer. Apart from these minor adjustments 

the assay was successful (data not shown). 

2. The second run used the refined protocol and was run for 7 passages. Curcumin was 

used as the positive control (data not shown). 

3. The third run was maintained for 8 passages. Quinacrine was used as the positive 

control instead of curcumin (data not shown). 

4. The fourth run was for 12 passages. As before 3001012 was run at 1 nM and 10 nM. 

Quinacrine was run at 1 µM, 5 µM and also at 1 µM with repeated dosing after each 

passage.  

 

Lysates of treated cells were prepared and analysed in groups of 4 passages, as shown in Figure 

47. Results presented here are from the fourth run, as this was the longest running and 

therefore the most significant in terms of the possible reappearance of PrPSc.  
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Figure 47: Example dot blot for 4 sets of lysate samples demonstrating the presence or absence 
of PrPSc as measured by the intensity of the signal. Each row represents a different treatment, 
while each set of three columns represents sequential passages from left to right. The lack of 
signal after treatment with 3001012 at 10 nM is shown to be maintained after 4 passages. 
 

Results from the longest running assay are shown below. 3001012 was again run at 1 nM and 10 

nM. Quinacrine was run at 1 µM and 5 µM, and also at 1 µM with repeat dosing after every split 

to see how this might affect results. The cells were passaged every four or five days depending 

on how confluent the cells were. 

 

 
 
Figure 48: PrPSc levels over time after dosing with either DMSO or 3001012 at 1 or 10 nM. PrPSc 
levels were monitored every 4 or 5 days, with the whole experiment running for 57 days. Each 
time point was analysed in triplicate. 
 

Complete clearance of PrPSc over the time period, as shown in Figure 48, was seen when the 

cells were dosed with 3001012 at 10 nM. Clearance at 1 nM was generally around 50 %, as 

would be expected as the EC50 is 1 nM, although it did fluctuate between 40 and 57 days. 
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Figure 49: PrPSc levels over time after treatment with either DMSO, or quinacrine at 1 or 5 µM. 
Cells were either dosed once or dosed after every passage with 1 µM quinacrine over the course 
of the experiment (quinacrine 1 µM and quinacrine 1 µM repeat dose respectively). PrPSc levels 
were monitored every 4 or 5 days, with the whole experiment running for 57 days. Each time 
point was analysed in triplicate. 
 

Figure 49 shows quinacrine to be effective at clearing PrPSc at a concentration of 1 µM when the 

cells were dosed once. No toxic effect was observed under the microscope at any point of the 

assay. An interesting observation was that for the first two splits after initial dosing the cell 

pellets had a yellow colour that disappeared after two passages. This was not seen in the cells 

that were dosed after every split. 

 

 

4.1.2. Discussion 

 

The aim of the curative assay was to determine how long it would take for the cells to re-start 

production of PrPSc after being ‘cured’ to give a measure of the long term efficacy of the anti-

prion activity of the I3GAs. It can be seen that treatment with compounds at concentrations 

higher than their EC50 results in the reduction of PrPSc signal for up to 57 days. 

 

Quinacrine was dosed at 1 µM and 5µM and both treatments showed the complete clearance of 

PrPSc over the duration of the assay (see Figure 49). Dosing at 5 µM showed a complete 

clearance of PrPSc (levels of <5 % of the blank) whereas dosing at 1 µM showed slightly higher 

levels (generally between 10 and 20 % of the blank). 1 µM is the lowest concentration shown to 

cause complete clearance of PrPSc and as such slight variations in the assay might cause this to 

be slightly less effective. Changes in stock solution and cell passage might be enough to shift the 
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EC50 slightly and reduce efficacy at 1 µM. Even though the clearance is not complete it is highly 

significant. 

 

Compound 3001012 for the most part behaved exactly as expected (see Figure 48). Routine 

screening had shown this compound to have an EC50 of 1 nM and so this concentration was used 

to see if partial clearance of the PrPSc resulted in reappearance of the protein faster than total 

clearance. For comparison a 10 nM solution was also used to ensure total clearance of PrPSc. 

Cells treated with 10 nM 3001012 showed complete clearance of PrPSc with no recurrence over 

the 57 day period of the assay, suggesting that at this concentration the cells are ‘cured’. Initial 

results for cells treated with 1 nM 3001012, up to 38 days, showed PrPSc levels gradually rising 

from around 50 % blank to around 60 % blank. After this point levels fluctuated but then settled 

at around 70 % of the blank. The data point at 57 days suggests that PrPSc levels have returned to 

pre-treatment levels (around 100 % of the blank). The significance of this is not clear - if found 

not to be an artefact it may be indicative of PrPSc  starting to return to pre-treatment levels, with 

the lag phase perhaps due to PrPSc levels being low enough to prevent conversion and 

aggregation for a limited period of time. A repeat of this study would be required to rule out the 

possibility of experimental artefacts and help elucidate this matter further.  

 

The discrepancies in the 1 nM data could possibly be explained by the ageing of the cells over 

the course of the assay, which may have affected results. Under normal conditions the cells are 

passaged every 7 days, and passaging them every 4 days caused them to grow more slowly and 

become more likely to undergo apoptosis. Longer running assays were only possible due to the 

close monitoring of the cells, ensuring they were passaged in good time. The lower than 

expected activity from 1 nM 3001012 may also be the result of dilution error. A fresh 10 mM 

stock solution of 3001012 was made up for these assays and it’s possible that this may have 

produced a small shift in the EC50. Similarly the large dilutions required to obtain concentrations 

low enough to be used in this assay were inherently prone to error. Small errors in dilution may 

have been enough to result in an inactive concentration - 3001012 at 0.5 nM was shown to have 

no effect on the amount of PrPSc while 5 nM caused almost total clearance. Experience has 

shown that this compound in particular is fairly consistent across different assays, with variation 

generally within the range found during the initial screen and EC50 calculation. However, the 

potential for small errors in dilution are thought to be the most likely explanation for the lack of 

activity from 3001012 at 1 nM. 
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The results from these experiments show clearly that 3001012 caused complete clearance of 

PrPSc with no return of infection within the time frame of the assay. A previous paper suggested 

that cells cured of quinacrine started to produce PrPSc after around 3 months. (233) Without 

running the assay for longer it is not possible to say whether PrPSc may have returned, and the 

data obtained does not suggest that PrPSc levels are starting to rise. Rather, these data are 

consistent with a prolonged period of PrPSc absence which was observed after treatment with 

both compounds. However, previous papers that have carried out these kinds of studies have 

suggested that the lack of detectable PrPSc may be due to a dilution effect rather than an actual 

absence of the protein. (377) The authors concluded that the continued growing and splitting of 

the cells means that PrPSc levels never return to a detectable level although it is still being 

produced, as it was being diluted by the dividing cells. It was proposed that dosing cells and then 

arresting growth resulted in PrPSc returning much more quickly, within around two weeks in the 

case of quinacrine. It is obviously important in determining the potency of lead compounds to 

establish whether the prolonged reduction of PrPSc is due to the cells being ‘cured’ or whether 

residual PrPSc could result in levels eventually starting to increase. It would be a good idea, 

therefore, to try and carry out the experiment where the cell growth is arrested and see if PrPSc 

levels do return to pre-treatment levels more quickly. While it’s questionable whether the effect 

of compounds on growth-arrested cells is relevant to the in vivo potential of prospective 

therapeutic compounds, this would add to the body of knowledge about these compounds. 

 

An interesting observation was that PrPSc levels appeared to be reduced almost completely 

during the curative assay, with clearance of PrPSc appearing more complete than was observed 

in the screens carried out over 5 days. This was observed from the second passage onwards at 

the highest concentrations of both 3001012 and quinacrine, suggesting that the normal 5 day 

duration of the screening experiments may not be long enough to allow total reduction of PrPSc.  

The increased efficiency of PrPSc clearance after 10 days, along with the failure of PrPSc levels to 

rise again, provides persuasive evidence that the cells are cured of infection. As discussed in 

section 3.3 a measure of infectivity would be desirable, but the data presented here suggests it 

may be valuable to look at the residual infectivity over a longer time frame than 5 days. 

 

In conclusion, 3001012 seemed to be a potent inhibitor of PrPSc over a long period of time, with 

just one dose at ten times the EC50 value appearing to cure the cells for at least eight weeks. 

However, there is a suggestion that PrPSc production may still occur, albeit at undetectable 

levels, which would require further investigation. The same applies to quinacrine at 1 and 5 µM, 
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although the repeat dosing experiments with 1µM quinacrine show that this compound is not 

toxic to the cells at this concentration, even after prolonged exposure. 

 

 

 

4.2. Pharmacodynamic Studies: Time Course Assays 

 

Time course assays were carried out to identify how long it took for compounds to exert their 

anti-prion effect. These experiments were initially suggested to help determine the optimum 

protocol for preparing samples for the microarray and proteomics studies detailed in section 5. 

Choosing the correct concentrations and duration of dosing was seen as important to avoid any 

off-target effects that the compounds may be having – longer dosing times and higher 

concentrations were thought more likely to confuse the results by increasing background noise 

and changes unrelated to the compound’s anti-prion functions. Initially it was suggested dosing 

should be done at the EC50 concentration, however subsequently this was revised to dosing at 3 

times EC50 as it was not possible to guarantee 50% clearance of PrPSc. In order to confirm the 

time course for these compounds these experiments were also carried out at higher 

concentrations of between 5 and 10 times EC50. 

 

The initial focus of these experiments was on the compounds to be used in the microarray and 

proteomic studies, namely 3001012 and 3001207. 3001207 was selected for the microarray and 

proteomics studies as it was the most active of the two compounds featuring a 6-cyano 

substitution to the indole. The 6-cyano substitution was beneficial to activity (see section 

3.1.2.7) in contrast to the majority of substitutions to the indole, so these compounds, and 

3001207 in particular, were of interest. Quinacrine was used in the microarray and proteomics 

studies and for that reason is included in these studies. Time course assays were also carried out 

on curcumin and 3001086 for comparative purposes. These assays were only carried out at the 

higher concentrations. See Figure 45 for structures of all compounds 

 

All concentrations were based on the previously calculated EC50 values which were confirmed as 

part of these experiments. Materials and methods for this study are outlined in detail in sections 

2.1.1 and 2.2.4.2.. 
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4.2.1. Results 

 

4.2.1.1. Confirmation of EC50 Values 

To ensure that the correct concentrations were being used the EC50 curves were repeated to 

check that the results could be replicated in a different passage of cells. Encouragingly the 

results were found to be comparable to previous experiments for all compounds. 

 
Table 33: Previous EC50 results compared to current EC50 results for all compounds used in the 
time course study. 
 

 

 

Some variability was observed between runs, although this is almost within the range of error 

found in the previous screens. Overall it was thought that the results are very reassuring as the 

compounds are not differing much in activity across different stock solutions and cell passages, 

especially given the dilutions involved. The EC50 screens carried out at this point were for 

conformation only and so were not repeated. Consequently, there are no standard deviation 

data for these values.   

 

4.2.1.2. Time Course Screen for Activity at EC50 

Initial time course investigations looked at the effect over time of three compounds, quinacrine, 

3001012 and 3001207, when they were dosed at their EC50 concentrations. 

 



142 

 

 
 
Figure 50: Time course data for a. quinacrine at 0.5 µM; b. 3001012 at 1.5 nM; c. 3001207 at 20 
nM. PrPSc levels were analysed at each time point and the data is presented as the percentage of 
the signal from the DMSO control at the same time point. No toxicity was observed over the 
course of the experiment. The data points shown represent the mean ± SD values from duplicate 
experiments where each sample was analysed in triplicate. 
 

The data in Figure 50 shows that 3001012 and 3001207 did not show a decrease in PrPSc levels 

over time when dosed at their EC50 concentration. Quinacrine at 0.5 µM showed a different 

pattern, with an initial decrease in PrPSc levels up to 48 hours, after which time PrPSc levels 

increased again to around 75% of the original level. Previous screens had established that the 

compounds were being used at non-toxic concentrations so toxicity as assessed by the MTT 

assay was not measured. Plates were monitored by eye and no toxic effects were observed. 

 

4.2.1.3. Time Course Screen for Activity at 3 times EC50 

Further investigations were subsequently undertaken into the activity of the compounds 

investigated in Figure 50 when they were dosed at 3 times their EC50.  
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Figure 51: Time course data for a. quinacrine at 1.5 µM; b. 3001012 at 4.5 nM; c. 3001207 at 60 
nM. PrPSc levels were analysed at each time point and the data is presented as the percentage of 
the signal from the DMSO control at the same time point. No toxicity was observed over the 
course of the experiment. The data points shown represent the mean ± SD values from duplicate 
experiments where each sample was analysed in triplicate. 
 

It can be seen in Figure 51 that quinacrine at 1.5 µM showed full clearance by 56 hours, with no 

subsequent rise in PrPSc levels as observed when quinacrine was dosed at 0.5 µM. 3001012 at 

4.5 nM showed a steady decrease to around 40 % of original PrPSc levels by 72 hours and 

3001207 at 60 nM showed a decrease of PrPSc levels to around 20 % by 48 hours, with virtually 

full clearance being achieved by 80 hours. 

 

4.2.1.4. Time Course Activity at 5 – 10 times EC50 

Finally, the compounds investigated in Figure 50 and Figure 51 were investigated at 

concentrations equivalent to between 5 and 10 times their EC50. 3001086 and curcumin were 

also investigated at these concentrations. 
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Figure 52: Time course data for a. quinacrine at 5 µM; b. 3001012 at 10 nM; c. 3001207 at 100 
nM; d. curcumin at 10 µM; e. 3001086 at 1 µM. PrPSc levels were analysed at each time point 
and the data is presented as the percentage of the signal from the DMSO control at the same 
time point. No toxicity was observed over the course of the experiment. The data points shown 
represent the mean ± SD values from duplicate experiments where each sample was analysed in 
triplicate. 
 

 The data in Figure 52 shows that quinacrine at 5 µM showed full PrPSc clearance by 24 hours. 

3001012 at 10 nM showed a steady decrease to around 30 % of original PrPSc levels by 56 hours, 

while 3001207 at 100 nM showed a decrease of PrPSc levels to around 20 % by 48 hours, with 

virtually full clearance being achieved by 80 hours. Curcumin at 10 µM gave good clearance by 
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48 hours and 3001086 at 1 µM followed the same pattern as the other I3GAs and resulted in 

clearance to around 20 % of original levels by 56 hours. 

 

 

4.2.2. Discussion 

 

Compounds were run over 128 hours at different concentrations to determine how long it took 

for each compound to exert its anti-prion effect. Quinacrine was found to clear PrPSc rapidly at 

higher concentrations (5 μM), but more slowly at lower concentrations (1.5 μM). The I3GA 

compounds were consistent in the time it took to clear PrPSc at the higher concentrations, with 

no effect when dosed at EC50 concentrations. When dosed at the highest concentration the main 

difference was that the final level of clearance was lowered, compared to dosing at 3 x EC50. 

Curcumin at 10 µM showed a similar pattern to the I3GA compounds as did 3001086, with 

maximum clearance at 48 and 56 hours respectively. All compounds were used at 

concentrations known to be non-toxic from previous screens, and this was confirmed by 

observation of the cells over the course of the experiment. No toxic effects were observed at 

any point.  

 

Quinacrine, at high concentrations, clearly acts much more quickly than the in-house 

compounds (see Figure 52a). In all repeats of this experiment PrPSc was nearly cleared after 8 

hours and totally cleared after 24 hours. For both 3001012 and 3001207, even at the highest 

concentration, it takes 56 hours and 48 hours respectively to clear PrPSc down to baseline levels 

(see Figure 52b and c). 3001086 adhered to the same pattern as the other I3GA compounds with 

clearance taking 56 hours (see Figure 52e). Whilst the I3GA compounds are significantly more 

active than quinacrine (3001012 is 333 x more active, 3001207 is 250 x more active, 3001086 is 

approximately twice as active) they take up to 7 times longer to clear the PrPSc from the cells.  

 

Quinacrine, despite at high concentrations clearing PrPSc from the cells very quickly, is not as 

efficient at lower concentrations, taking up to 48 hours to exert its full effect (see Figure 51a). It 

is the only compound to show this increased speed of activity at higher concentrations, and this 

may be due to its mode of action.  Quinacrine is known to interact with PrPC and is also able to 

inhibit the formation of de novo PrPSc, (233) with binding to PrP likely to be crucial to its mode of 

action. Whilst curcumin is known to bind to PrP fibrils (268) its mode of action has not been fully 

characterised, and the results presented here suggest it does not share a mode of action with 
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quinacrine (see Figure 52d). As demonstrated in section 3.2 none of the I3GA compounds with 

both carbonyl groups were shown to interact with PrP, suggesting that these compounds are not 

exerting their anti-prion effect via direct interaction with PrP. It therefore seems likely that the 

difference in the time taken for quinacrine to clear PrPSc, compared to curcumin and the I3GAs, 

is related to their differing modes of action.  

 

The failure of the two I3GA compounds to show any activity at their EC50 concentrations (see 

Figure 50b and c)  suggests a similar scenario to that seen in the curative assay. It would be 

expected that a reduction of PrPSc to around 50% of starting levels should be seen by the end 

point of the time course, at the 5 day time point which is used in the routine screens.  It is 

thought that some of the same problems experienced in the curative assay may also have a role 

here, such as the potential problems with dilution error, and furthermore there may be a narrow 

window between no clearance and total clearance. The error associated with the EC50 screening 

may make determining the EC50 with the required accuracy more challenging, especially at the 

very low concentrations at which these compounds are active. It is also possible that looking for 

more subtle changes in PrPSc levels is problematic due to the occasional lack of clarity in the 

blots. This was a particular problem during the first few time points due to the lower numbers of 

cells and the weaker signal which was obtained as a result. It was concluded that doing these 

assays at such low protein concentrations was perhaps not practical, although results from the 

higher concentrations gave adequately conclusive results.  

 

The results for quinacrine at EC50 concentration were also not as expected. As quinacrine was 

dosed at much higher concentrations it is unlikely that this is due to dilution error, although the 

problems with clarity may still play a part. The pattern seen does seem to be reproducible for all 

quinacrine experiments at this concentration. An initial decrease in PrPSc hits its lowest point at 

around 48 hours, with PrPSc levels at 20 – 30 % of control levels. PrPSc levels then gradually 

increase to around 80 – 90 % by the end of the assay. It is possible that at these low 

concentrations the conversion of PrPC to PrPSc is initially prevented, but there may not be 

enough of the compound to maintain this. As a result, after a certain period of time the 

conversion of PrPSc is able to recommence. This would fit in with the idea that this compound is 

working by binding to either PrPC or PrPSc.  

 

The discussions in sections 3.1.3 and 4.1.2 have both raised the question of whether the cells are 

genuinely cured or not by questioning whether PrPSc is still present within the cells. Analysing 



147 

 

PrPSc levels after 5 days appeared to show that residual PrPSc was still present, while the curative 

assay data suggest that analysis of PrPSc levels at a later time point results in almost total 

clearance. It was hoped that the time course assays might provide further insights into this 

question. It can be seen that for all compounds the majority of the reduction in PrPSc levels has 

occurred by 56 hours, after which PrPSc levels remain low. In most cases the data corresponding 

to a 5 day dose do not show total clearance, corresponding to the data from the endpoint 

studies. It is possible that running these studies for longer would result in further decreases in 

PrPSc levels, although any subsequent decrease in PrPSc would be occurring at a much slower rate 

than the initial decrease. While the data from the curative assay supports the supposition that 

the cells are cured, a reliable measure of residual infectivity at different time points would be 

required to provide more conclusive evidence of this.  

 

Although this data doesn’t provide any more information about how the I3GA compounds are 

working, it does suggest that they have a different mode of action to quinacrine at least. This 

reinforces the SPR data suggesting that this group of compounds, unlike quinacrine, do not bind 

to PrPC.  

 

 

 

4.3. Mode of Action Studies: Investigations into the Effect 

on Cell Growth 

 

Cell growth has been shown to be important in maintaining steady state levels of PrPSc, (110, 377) so 

the effect of the I3GA compounds on cell growth was investigated. It was hypothesised that the 

compounds might be working by increasing cellular proliferation which, in turn, would further 

dilute and decrease PrPSc levels. Growth curve analysis was carried out using two different 

methods, either counting the cells using a haemcytometer or by monitoring growth using the 

MTT assay described in section 2.2.2.3. Experiments were initially carried out using the 

compounds studied in the microarray and proteomics studies (quinacrine, 3001012, 3001207) 

when conditions for the sample preparation were being optimised. Curcumin and 1086 were 

also examined for their effect on growth, but only via the MTT assay. As before, cells treated 

with 0.5% DMSO were used as the negative control against which the treated samples were 

compared. Materials and methods for this study are outlined in sections 2.1.1 and 2.2.4.3. 
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4.3.1. Results 

 

4.3.1.1. Monitoring Cell Growth Using a Haemcytometer 

Initial analysis of cell growth was carried out using a haemcytometer. The cells were treated with 

different compounds and then harvested and counted at the specified time points. 

 

 
 
Figure 53: Growth assessed by cell counting after dosing with compounds at3 x EC50. Cells were 
harvested at regular time points before assessment of cell numbers using a haemcytometer. 
Results are expressed as the number of cells per well. The data points shown represent the 
mean ± SD values from duplicate experiments where each sample was analysed 4 times.  
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Figure 54: Final cell numbers after 120 hours of growth. Analysis of statistical significance using a 
multiple t-test shows that the difference between cells treated with DMSO and cells treated with 
quinacrine is not significant (p-value 0.711) but the differences between cells treated with DMSO 
and 1012 or 1207 are (p values 0.001 and 0.019 respectively). The data points shown represent 
the mean ± SD values from duplicate experiments where each sample was analysed 4 times. 
 

The data in Figure 53 and Figure 54 demonstrate that growth up to 80 hours appears fairly 

consistent with growth dropping off after this point in the DMSO treated cells but not those 

treated with the I3GA compounds. Growth in cells treated with quinacrine dropped off more 

dramatically at 96 hours suggesting that apoptosis is starting to be induced at this time point for 

cells treated with quinacrine but not cells treated with the I3GAs. 

 

4.3.1.2. Monitoring Cell Growth Using the MTT Assay 

In addition to the direct cell counting, growth was also monitored using the MTT assay. In this 

case metabolic activity, as determined by production of the purple formazan product, was used 

as a marker for cell numbers. In order to extrapolate cell numbers from that absorbance values 

obtained from the MTT assay a calibration curve was created (see Figure 55).  
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Figure 55: Standard curve using the MTT assay. Cells were seeded at the specified densities, 
allowed to attach for 24 hours and then analysed. The data points shown represent the mean ± 
SD values from a single experiment where each sample was analysed 6 times.  
 

Subsequently, experiments were run using DMSO as the negative control, 3001012 at 10 nM, 

3001207 at 100 nM and 3001086 at 1 µM. Each compound was dosed in replicates of 6, and the 

two sets of data combined for analysis. Absorbance data was converted to cell/well using the 

calibration curve above. Although some proliferation may have occurred during the 24 hours 

between seeding and analysis it was not thought that this would have significantly altered the 

curve, although no experimental evidence was obtained to support this supposition. 

 

 
 

Figure 56: Growth curves for 3001012 at 10 nM, 3001207 at 100 nM and 3001086 at 1 µM. 
Initial seeding density of 5,000 cells/well. The data points shown represent the mean ± SD values 
from duplicate experiments where each sample was analysed 6 times. 
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Figure 57: Cells per well after 120 hours (a) and 156 hours (b). T-tests show significant 
differences between DMSO and 3001012 at both 120 and 156 hours (p = 0.022 and <0.001 
respectively) as well as between DMSO and 3001086 at both 120 and 156 hours (p = <0.001 for 
both data sets). The data points shown represent the mean ± SD values from duplicate 
experiments where each sample was analysed 6 times. No significant difference was found 
between DMSO and 3001207 at either time points. 
 

It can be seen from the data in Figure 56 and Figure 57 that growth is consistent for all 

treatments up to 96 hours. At this point the growth curves diverge slightly, with cells treated 

with 3001012 and 3001086 showing significantly higher growth than the cells treated with 

DMSO and 3001207. After 120 hours, growth for all treatments reaches a plateau, suggesting 

that the cells have reached confluence. Comparison of cell numbers after treatment with 0.5 % 

DMSO to cell numbers after treatment with 3001012 or 3001086 showed statistically significant 

differences, although this was not observed after treatment with 3001207. 

 

 

4.3.2. Discussion 

 

The results obtained suggest that compounds 3001012 and 3001086 are increasing the growth 

rate of cells to a statistically significant degree. Data for 3001207 from the haemcytometer 

counts is contradicted by the data from the MTT screens and is therefore inconclusive. The 

reduced error in the MTT assays suggests that these data may be more reliable, and therefore 

that it is more likely that 3001207 is not affecting growth rate. It is quite clear, however, that the 

increases in growth rate, although statistically significant, are relatively small. The differences 

between the different treatments only become obvious after 96 hours of treatment. 
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It had been suggested that part of the anti-prion effect may come from increasing cell growth 

and therefore reducing levels of PrPSc by a simple dilution effect. This was suggested in response 

to a study showing that cell division leads to a predictable reduction in PrPSc levels to a steady 

state, although not to total clearance. (110) Similarly, ‘cured’ cells that had their growth arrested 

showed a reappearance of PrPSc after a few days, (377) rather than the three months seen in other 

studies. (233) As noted previously, although the increase in growth was significant it was still 

relatively small, and nowhere near the increase in growth necessary to cause the 

aforementioned dilution effect. The importance of this dilution effect can also be questioned as 

a result of the information gleaned from the time course assays carried out previously (see 

section 4.2). The finding that different compounds take different amounts of time to clear PrPSc 

from cells, without having a dramatic effect on cell growth, suggests that the dilution factor may 

not play a large role in this case. It is interesting to note that growth is very similar for all 

treatments up to the final time points, at which point differences between the treatments can 

be observed. This could suggest that treatment with the I3GA compounds ameliorates the 

decreased growth and initiation of apoptosis that occur as the cells reach confluence. It could 

therefore be hypothesised that they have a survival promoting effect. 

 

 

 

4.4. Mode of Action Study: MTT Formazan Exocytosis Assay 

 

 

4.4.1. Introduction 

 

The MTT formazan exocytosis (MTT-FE) assay described here is based on an assay described by 

Hong et al. (348) The authors reported that extracellularly applied amyloid-beta (Aβ) oligomers 

caused the exocytosis of formazan formed during the standard MTT assay, which appeared as 

needle-like structures. This could be distinguished from the intracellular granules of formazan by 

using a different method of solubilisation - granules could be solubilised using 1 % tween, with 

the extracellular ‘needles’ remaining intact. The needles could then be solubilised using acidic 

isopropanol as per the standard MTT assay protocol. Hong et al used this assay to identify small 

molecule compounds which could affect the toxicity or structure of Aβ oligomers by measuring, 

among other things, the effect of the compounds on MTT-FE. (348) Aβ aggregates were shown to 

dose-dependently increase MTT-FE, while compounds such as congo red and curcumin inhibited 
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Aβ induced MTT-FE and increased levels of tween-soluble MTT (TS-MTT). The authors reached 

the conclusion that if compounds are causing an increase in the level of TS-MTT then they may 

be working by causing the disaggregation of toxic Aβ oligomers. 

 

It was hypothesised that this assay could be deployed to investigate the mode of action of the 

I3GA compounds, by monitoring changes in TS-MTT levels over time when dosed with the I3GA 

compounds. If they were working via disaggregation of PrPSc oligomers then, hypothetically, an 

increase in TS-MTT would be expected. As it was not possible to verify the assay by monitoring 

changes in MTT-FE after exposure to extracellularly applied PrPSc, anti-prion compounds from 

the literature were also investigated. By comparing compounds with a known mode of action to 

our unknown I3GAs it was hoped that more information could be gleaned regarding the anti-

prion mechanism of the I3GAs. 

 

 

4.4.2. Validation of Literature Compounds in the SMB Model 

 

Several compounds that were reported to have anti-prion activity were chosen from the 

literature to be used in the MTT-FE assay to provide a comparison with the I3GA compounds. 

Where possible compounds with a reported mode of action were chosen to facilitate 

comparison with the I3GAs, whose mode of action is unknown. In order to ensure that the 

compounds were used at the correct concentrations in the MTT-FE assay, anti-prion activity and 

EC50 values were confirmed for the compounds in the SMB model. By validating the reported 

anti-prion activities of these compounds in the SMB model it was also hoped to provide 

confidence that results obtained for the I3GA compounds could be confidently compared to 

other small molecule compounds reported in the literature. Screening was carried out using the 

same protocol as was used for the screening of the I3GA compounds (see sections 2.1.1, 2.2.1, 

2.2.2 and 2.2.4.4 for materials and methods). 

 

4.4.2.1. Results 

The selected compounds were screened in the SMB cell line assay using the same protocols as 

were used for the screening of the I3GA compounds (see 3.1). Initial screens established 

whether the compounds were active, before screening at a range of concentrations to 

determine the EC50 value. Although these compounds had all been reported as active anti-prion 

compounds in the literature this was often in different cell lines or against different prion 
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strains. The calculated EC50 value for each compound in the SMB model, and how they compare 

to the reported literature values, can be seen in Table 34. Overall, good correlation was 

observed between the reported values and the values calculated in the SMB cells.  

 

Table 34: Results of activity screening of anti-prion literature compounds, compared to their 
published activities. EGCG – Epigallocatechin gallate. See Figure 58 for structures. 
 

Compound EC50 LD50 Literature value Reference Structure 

Pentosan 
polysulfate 

0.175 ± 0.025 
µg/ml 

>25 
µg/ml 

0.16 µg/ml in ScN2a 
cells, 0.001 – 0.01 µg/ml 

in ScMNB cells 

(214, 238) a. 

Dextran sulfate 
0.483 ± 0.275 

µg/ml 
>25 

µg/ml 
10-100 ng/ml in ScMNB 

cells 
(214) b. 

Heparin 
5.3 ± 2.658 

µg/ml 
>25 

µg/ml 
1 µg/ml in ScMNB cells (214) c. 

Amphotericin B 6.25 ± 0.768 µM > 20 µM 
4.5 µg/ml (4.87 µM) in 
ScGTI-7 and Sc512 cells 

(242) d. 

EGCG 7.5 ± 2.041 µM > 20 µM 50 µM in ScN2a cells (378) e. 

Chlorpromazine 2.83 ± 2.021 µM 20 µM 
3 µM in SMB cells, 10 

µM in ScN2a cells 
(232, 238) f. 

Congo red 
Inactive at 50 

µM 
> 20 µM 1-100 µM in SMB cells (217) g. 
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Figure 58: Structures of compounds used in the screen of literature compounds. See Table 34 for 
compound names.  
 

Congo red was the only one of the literature compounds not to behave as expected in these 

screens. Lower concentrations resulted in a dramatic increase in PrPSc, while the expected 

clearance at higher concentrations was not observed (see Figure 59). 
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Figure 59: The effect of congo red on PrPSc levels at a range of concentrations from 0.005 nM to 
10 µM. The blot on the left shows the increased PrPSc levels at lower concentrations of congo red 
as indicated by the stronger signal. The three left hand columns are the control wells, 
demonstrating the normal signal for comparison. Concentrations on the blot range from 0.01 
µM at the top to 50 µM at the bottom. The graph on the right demonstrates the effect on PrPSc 
levels of a wide range of congo red concentrations, illustrating that congo red causes an increase 
in PrPSc levels at concentrations as low as 5 nM. Exposure times were reduced for the blots of 
congo red treated cells to avoid saturation of the signal. 
 

4.4.2.2. Discussion 

Overall it was felt that there was good correlation between reported values for the compounds 

investigated and those achieved in the SMB model. The main exception to this was congo red, 

which was not found to be active in the SMB cells. On the contrary, at certain concentrations it 

actually caused a 15-fold increase in PrPSc levels (see Figure 59). This increase in PrPSc with congo 

red at low concentrations (0.1 µM) is something that has been observed and reported 

previously. (217) In this respect our data are in agreement with the literature. However, the same 

study reported that treatment with 1µM congo red resulted in 50 % PrPSc clearance, and 100 µM 

congo red gave near total PrPSc clearance, and this was not observed. Furthermore the 

magnitude of the increase in PrPSc levels (to approximately 1500 % control) is much greater in 

this study than has been reported in the literature (maximum increase of 250 %).  

 

It has been suggested that the reason for the increase in PrPSc levels at lower concentrations is 

because at concentrations below 5 µM congo red exists as a monomer, while above 5 µM it 

exists as a filamentous aggregate. (379) It has been suggested that the monomer may stimulate 

PrPSc formation by binding to only one site on PrPC, while at higher concentrations it may form a 

supramolecular complex which could sequester PrPC and PrPSc and prevent interactions and 

conversion. (380) 
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4.4.3. MTT-FE assay 

 

As described in section 4.4.1 this assay uses changes in the ratio of the two different products of 

the MTT assay to determine whether protein aggregation is occurring. Increased protein 

aggregation is associated with increased MTT formazan exocytosis, which results in increased 

levels of the tween-insoluble formazan product (TI-MTT) at the expense of the intracellular, 

tween-soluble formazan product (TS-MTT). Decreased protein aggregation, or increased protein 

disaggregation, was hypothesised to result in an increase in TS-MTT at the expense of TI-MTT. As 

TS-MTT and TI-MTT are interlinked, the total amount of product formed (referred to henceforth 

as total MTT) would be equivalent to the amount in a conventional MTT assay. It was thought 

that this should stay relatively consistent, with changes represented by differences in the ratio of 

the two products. It was hypothesised that if compounds were working via some effect on 

protein aggregates then this would be expressed by changes in the ratio of TS-MTT to TI-MTT. 

Materials and methods are outlined in detail in sections 2.1.1 and 2.2.5. 

 

4.4.3.1. Results 

All results are presented as the amount of TS-MTT as a percentage of the DMSO control. Total 

MTT was calculated from the addition of TS-MTT and TI-MTT – results were found to be similar 

to those obtained via conventional MTT assays (data not shown). Raw data was obtained as a 

print out from the plate reader and was transferred into an excel spreadsheet for analysis. 

Absorbances were converted to a percentage of the average of the blank wells (6 in total). An 

example of the raw data and the calculations performed can be seen in Table 35. 

 

Table 35: An example of the raw data obtained after solubilisation of the formazan product in 1 
% tween 20. Data is presented for 0.5 % DMSO and 5 µM quinacrine and the assay was 
performed 24 hours after dosing. The measured absorbances are averaged, the blank value is 
subtracted and the final result is expressed as a percentage of the DMSO control.  
 

 

 

Treatment Average Blank sub % DMSO

DMSO 0.063 0.058 0.06 0.063 0.065 0.0618 0.0571

Quin 5uM 0.081 0.072 0.082 0.084 0.076 0.079 0.0743 120.2265

Absorbance
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Figure 60: TS-MTT data for cells treated with 5 µM quinacrine. Cells were treated for 5 days, 
with the assay being performed at 24 hour intervals. Cells were incubated with MTT-containing 
medium for one hour before solubilisation with 1% tween-20. The tween solution was removed 
and measured before solubilisation with acidic isopropanol. 6 wells were analysed for each data 
point.   
 

The data for quinacrine at 5 µM, as shown in Figure 60, demonstrates an increase in the 

proportion of TS-MTT that can be observed over time, without any significant change in the 

overall MTT levels.  

 
 

Figure 61: TS-MTT data for cells treated with 3001012 (10 nM), 3001207 (100 nM) and 3001086 
(1 µM). Cells were treated for 5 days, with the assay being performed at 24 hour intervals. Cells 
were incubated with MTT-containing medium for one hour before solubilisation with 1% tween-
20. The tween solution was removed and measured before solubilisation with acidic 
isopropanol. 6 wells were analysed for each data point.   
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It can be seen in Figure 60 that no significant difference in TS-MTT levels or total MTT levels 

(data not shown) was observed over the course of the assay as a result of treatment with any of 

the I3GA compounds. 

 

 
 

Figure 62: TS-MTT data for curcumin (10 µM) and EGCG (10 µM). Cells were treated for 5 days, 
with the assay being performed at 24 hour intervals. Cells were incubated with MTT-containing 
medium for one hour before solubilisation with 1% tween-20. The tween solution was removed 
and measured before solubilisation with acidic isopropanol. 6 wells were analysed for each data 
point.   
 

The data in Figure 62 shows no significant difference in TS-MTT levels or total MTT levels (data 

not shown) was observed over the course of the assay as a result of treatment with curcumin or 

EGCG. 
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Figure 63: TS-MTT data for congo red at 1 µM and 10 µM. Cells were treated for 5 days, with the 
assay being performed at 24 hour intervals. Cells were incubated with MTT-containing medium 
for one hour before solubilisation with 1% tween-20. The tween solution was removed and 
measured before solubilisation with acidic isopropanol. 6 wells were analysed for each data 
point.   
 

As can be seen in Figure 63, no significant difference in TS-MTT levels or total MTT levels (data 

not shown) was observed over the course of the assay as a result of treatment with either 1 µM 

or 10 µM congo red. It had been hypothesised that since the different concentrations of congo 

red showed markedly different effects on PrPSc levels in the cells, that they may have different 

effects on levels of TS-MTT. This was not found to be the case.   
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Figure 64: TS-MTT and total MTT data for PPS at 5 µg/ml (a), DS at 5 µg/ml (b) and heparin at 50 
µg/ml (c). Cells were treated for 5 days, with the assay being performed at 24 hour intervals. 
Cells were incubated with MTT-containing medium for one hour before solubilisation with 1% 
tween-20. The tween solution was removed and measured before solubilisation with acidic 
isopropanol. 6 wells were analysed for each data point.   



162 

 

It can be seen from the data in Figure 64 that a different pattern was observed after treatment 

with PPS, DS and heparin. Levels of TS-MTT were shown to rise over the course of the 

experiment, but levels of total MTT also rose, following a similar pattern. This suggests that 

these compounds are having an effect on increasing cell growth or metabolism, rather than 

promoting the production of TS-MTT at the expense of TI-MTT.  

 

The cells were also observed under the microscope so that the ‘granules’ and ‘needles’ could be 

observed and photographed. Unfortunately the resolution and magnification of the microscopes 

were not sufficient to visualise the TI-MTT, although spots of granular MTT could be observed. A 

very distinct pattern was observed in the cells treated with quinacrine. It appeared that the 

granular MTT was localising at the edges of the cells, producing a distinctive ‘leopard print’ 

pattern (see Figure 65). This was not observed as a result of treatment with any of the other 

compounds (see Figure 66, Figure 67, Figure 69 and Figure 68). 

 

 
 
Figure 65: Cells treated for 120 hours with either DMSO (left) or quinacrine (right) and incubated 
for an hour with MTT. Dark spots indicate the presence of TS-MTT, with different patterns of 
distribution clearly visible.  
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Figure 66: Images for cells treated with either 3001012 (left), 3001207 (middle) or 3001086 
(right) for 120 days and incubated for an hour with MTT. 
 

 
 

Figure 67: Images for cells treated with either curcumin (left) or EGCG (right) for 120 hours and 
incubated for an hour with MTT. 
 

 
 

Figure 68: Images for cells treated with congo red at 1 µM (left) or 10 µM (right) for 120 hours 
and incubated for an hour with MTT.  
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Figure 69: Images for cells treated with PPS (left), DS (middle) or heparin (right) for 120 hours 
and incubated for an hour with MTT.  
 

4.4.3.2. Discussion 

A common problem with the treatment of prion diseases is the inability of the majority of anti-

prion compounds to reverse the disease following the onset of the clinical symptoms. This is 

possibly due, at least in part, to the failure of most anti-prion compounds to disaggregate PrPSc 

that has already formed, with it being more likely they are somehow preventing the conversion 

of PrPC to PrPSc. The only compounds that have been shown to disaggregate PrPSc are the 

complex polyamines, (228) and unfortunately none were available for this study.  

 

Against this backdrop, on one hand it’s unsurprising to find that the I3GA compounds, nor the 

majority of the literature compounds, had any effect on TS-MTT levels. The only compound to 

have any effect on TS-MTT levels, independent of total MTT levels, was quinacrine. The effect of 

quinacrine on TS-MTT levels suggests either some disaggregating effect of this compound that 

has not yet been explored, or another mechanism by which the proportion of TS-MTT may be 

affected. Quinacrine is known to bind to PrPC and is thought to work by interacting with PrPC and 

hampering the de novo formation of PrPSc. (233) It has a KD of 15 µM (221) and binding is thought to 

induce a conformational change that renders PrPC resistant to conversion and aggregation, as 

well as increasing the α-helical content. (223) The polyanionic compounds (PPS, DS and heparin) 

are thought to act by competitive inhibition of interactions between endogenous GAGs and PrPs 

(207) or by reducing the effective concentration of PrPC. (211, 212) It may be that quinacrine’s role in 

rendering PrPC resistant to aggregation may produce a similar effect to that seen in the original 

paper, therefore suggesting that both the disaggregation of toxic oligomers, and changes in the 

aggregation propensity of existing protein, can produce changes in the products of the MTT 

assay. 
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Congo red was included in this experiment due to its unique ability, among these compounds, to 

increase levels of PrPSc. It was hypothesised that if disaggregating compounds could cause an 

increase in the proportion of TS-MTT, then compounds known to increase levels of PrPSc might 

have the opposite effect. To test this hypothesis congo red was tested at two concentrations – 

one at which it caused an increase in PrPSc, and another at which it had no effect. As can be seen 

in Figure 63 there was no effect of congo red on TS-MTT levels at either concentration, 

suggesting that although PrPSc levels are increasing, they may not be forming aggregates. The 

inability of congo red to cure the cells in this model probably explains the lack of effect seen at 

the concentrations that do not result in increased levels of PrPSc.  

 

The results from PPS, DS and heparin suggest that although treatment increases the amount of 

TS-MTT this is due to a proportional increase in total cell number (as measured by total MTT) 

rather than production of TS-MTT at the expense of TI-MTT. MTT levels have been used 

previously in this chapter as a measure of cell growth (see section 4.3), and the results presented 

here appear to suggest that PPS, DS and heparin may be accelerating cell growth. Studies into 

cell growth were carried out using the same initial seeding densities as these studies and found 

that cell numbers, as measured by MTT, plateaued at around 3 days after dosing, suggesting that 

at this point the cells had  reached maximum confluence. The subsequent slight decrease was 

attributed to apoptosis due to limited space and resources. It is thought that this could explain 

the pattern seen in the results here.  

 

The results for curcumin were in some ways surprising as this was a compound that was shown 

to cause the disaggregation of Aβ oligomers in the original paper. (348) However, due to 

differences in the conditions used (persistently infected cells compared to cells challenged with 

oligomers) as well as different proteins (PrPSc compared to Aβ) it is perhaps not surprising that it 

didn’t cause changes in this case. Results from the time course assays (see Figure 52) suggest 

that quinacrine and curcumin may not share a mode of action, and this is further confirmed by 

the results from this assay. The time course assays also suggested a mode of action for the I3GA 

compounds that was distinct from quinacrine, with the clearance pattern being more 

reminiscent of curcumin than quinacrine. This assay provides further evidence that the I3GAs are 

working via a different method to quinacrine, although it doesn’t shed any further light on what 

the mode of action might be. 
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Every attempt was made to ensure that this assay was as accurate and as reproducible as 

possible but examination of the data in Table 35 reveals that the absolute differences in 

absorbance were quite small, even when a large difference was observed on conversion of the 

absorbance into a percentage. As discussed previously, a positive control, such as a complex 

polyamine, was not available for this assay and it is therefore not possible to say what absolute 

change in absorbance would be expected from a compound that was genuinely disaggregating 

PrPSc. Some reassurance can be taken from the limited dynamic range of this assay, as the 

maximum signal obtained from one well of a confluent 96 well plate was found to be around 0.1 

units. However, the lack of validation from a positive control calls into question both the 

significance of the changes observed during this assay and whether the assay was suitably 

optimised.  

 

The experiments performed in this section were carried out on the basis that a disaggregating 

effect of the I3GAs would help clear the cells of infection. The original hypothesis was that the 

fragmentation of large aggregates would facilitate PrPSc degradation through normal cellular 

pathways. Alternatively this hypothetical disaggregating effect can also be looked at in the 

context of the nucleation-dependent polymerisation model of prion conversion. Both this model 

and PMCA rely on the disaggregation of prion seeds and subsequent cycles of growth and 

fragmentation to explain the exponential increase in PrPSc levels. In this context compounds that 

cause protein disaggregation may actually increase PrPSc levels, rather than reducing them. This 

alternative perspective suggests that increased fragmentation would increase the number of 

seeds available and therefore facilitate conversion of PrPC to PrPSc. It is therefore possible that 

compounds with a disaggregating effect could do more harm than good. The well documented 

ability of quinacrine to reduce PrPSc levels suggests that this effect is not occurring in this case, 

supporting the hypothesis that quinacrine may prevent PrP aggregation rather than breaking up 

existing aggregates.  

 

 

 

4.5. Discussion 

 

From the data presented above it can be seen that further insights have been gained into the 

effect of the I3GA compounds but also into some of the well-established anti-prion compounds, 

particularly quinacrine. 
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The curative assay has shown that the I3GA compounds prevent the reappearance of ‘normal’ 

levels of PrPSc for up to 57 days after just one dose at concentrations close to the calculated EC50. 

Quinacrine and curcumin also caused this long term reduction in PrPSc levels. Other published 

data suggest that the lack of an increase in PrPSc levels is not due to the cells being cured, rather 

that PrPSc is still being produced but is rendered undetectable via dilution as the cells divide and 

multiply. If this is the case then that suggests the curative effect is not a direct, specific effect 

related to the compound itself, rather a more general effect caused by the multiplication of cells. 

However, this data does show that the effect of the I3GA compounds is not transitory i.e. they 

are not simply causing a temporary reduction in PrPSc. This is obviously an extremely important 

property for the I3GAs to possess. The curative assays also provided evidence that full clearance 

of PrPSc can be achieved by treatment with the I3GAs. Complete clearance was not observed 

after the standard 5 day dosing period but was observed to have occurred after 10 days as seen 

in the data for the curative assay, when the higher concentrations of compound were used. This 

therefore suggests that full clearance of PrPSc from the cells can be achieved with a slightly 

longer dosing period than is currently used.  

 

The time course assays that were carried out identified differences between the times taken for 

the I3GA compounds to be fully effective compared to quinacrine. At the highest concentrations 

of 5 to 10 times EC50 quinacrine had reduced PrPSc levels to their cured baseline within 24 hours, 

while the I3GA compounds (and curcumin) took up to 56 hours to exert their full effect. At lower 

concentrations (3 times EC50) the pattern seen for the I3GA compounds was similar with 56 

hours of treatment required to reduce PrPSc levels to the cured baseline. Quinacrine, however, 

took almost twice as long to reduce PrPSc at lower concentrations. These data, taken as a whole, 

support the hypothesis that the I3GA compounds do not share a mode of action with quinacrine. 

This was suggested on the basis that quinacrine is known to bind to PrPC, while the I3GAs do not, 

at least not at concentrations that match their activity in the cell line assay. It would appear that 

quinacrine activity is, at least in part, controlled by concentration. This is further suggested by 

the data from quinacrine at the lowest concentration (0.5 µM) where an initial decrease in PrPSc 

levels is reversed after around 48 hours, with PrPSc levels returning to almost pre-treatment 

levels. It would appear that the amount of quinacrine is not sufficient to maintain the curative 

effect that is seen initially. This concentration dependent effect was not seen as a result of 

treatment with the I3GA compounds. It was hypothesised that the decrease seen after 

treatment with 1 µM quinacrine might simply be as a result of the cells dividing at a higher rate 

due to not being at confluence – this had been demonstrated in the literature. (110) It was 
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thought, however, that if this was the explanation for the initial decrease and subsequent 

increase of PrPSc then this is something that should have been seen both in the I3GA compounds 

at low concentrations and in the DMSO controls. This was not something that was observed. 

 

The time course data was also analysed with respect to the finding that residual PrPSc remained 

after 5 days of dosing, but was totally eliminated after 10 days in the curative assay. The time 

course data showed that PrPSc levels appeared to plateau after the initial decrease which 

occurred within 56 hours. There was no overwhelming evidence to suggest that levels were still 

decreasing in a consistent manner. A key difference between the 10 day point in the curative 

assay and the 5 day endpoint assays was that the cells were passaged during the curative assays. 

As cell division has been suggested to lead to a predictable reduction in PrPSc (110) it is possible 

that the passaging of the cells, followed by an period of cell growth and division, was enough to 

dilute the already low levels of PrPSc and render it undetectable. It is possible that cell division is 

responsible for a second phase of PrPSc reduction, which proceeds at a much slower rate than 

the initial decrease seen up to 56 hours. There is no evidence from the growth curve analysis to 

suggest that cell growth occurs at a faster rate immediately after passaging, or that cell growth 

declines towards the end of the 5 day period, but that does not rule out the possibility that cell 

division has a role in eliminating the remaining PrPSc. As mentioned before, the key to 

determining if PrPSc is still present is determining whether the cells retain any infectivity at 

different time points. 

 

Growth curve assays were carried out to further investigate the suggestion that PrPSc levels are 

simply maintained at low levels as a result of cell division. It was hypothesised that if the 

compounds were affecting cell growth then reduction in PrPSc levels may result from an 

enhancement of growth and subsequent increase of this dilution effect. Although statistically 

significant differences were seen in the growth rate of treated cells compared to untreated cells, 

these were relatively small. As a result it was not thought that this might be the mechanism by 

which any of the compounds were causing reductions in PrPSc levels. The differences between 

the treatments were also more prevalent at the final time points, suggesting that the increased 

growth may be a result of some kind of protection against apoptosis. 

 

Results from the MTT-FE assay again reinforce the idea that the mode of action of the I3GA 

compounds is distinct from that of quinacrine. Whilst quinacrine causes an increase in levels of 

TS-MTT this was not seen as a result of treatment with any of the other compound. The changes 
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in TS-MTT as a result of treatment with quinacrine are hypothesised to be a result of quinacrine 

affecting the aggregation propensity of PrPSc, and therefore preventing the formation of 

aggregates rather than disaggregating those that already exist. This suggests a possible new 

application for this assay. The lack of effect of the I3GA compounds on TS-MTT levels is 

unsurprising for many reasons, from the general - very few compounds are able to reverse 

disease progression after the appearance of clinical signs - to the specific - the lack of interaction 

between PrPC and the I3GA compounds makes it unlikely that the compounds are working by 

interacting directly with PrPSc aggregates. 

 

Further insights into the pharmacodynamic and pharmacokinetic properties of the I3GAs were 

gained from experiments carried out by Chen et al, as well as by collaborators external to the 

University. The aim of these studies was to gain further insights into the potential of the 

compounds to work in vivo. Work carried out within the group investigated the toxicity of a 

selection of the I3GA compounds towards zebrafish larvae. Larvae at 48 hours post fertilisation 

(hpf) were dosed with the compounds at 5 µM, and the survival after 5 days recorded. Both 

3001207 and 3001012 were found to have no effect on zebra fish survival, and acridine orange 

staining showed that the embryos were developmentally normal with a general absence of 

acute toxic effects. (279) The stability of the compounds in the presence of mouse liver 

microsomes was also tested. The extent of compound degradation by microsomes was used as a 

measure of the potential in vivo stability of the compounds, with limited degradation being 

desirable to prevent the compound being metabolised before reaching its target. Compounds 

were exposed to the microsomes for 30 minutes, before the amount of the compound that had 

not been metabolised was analysed using HPLC. Both 3001012 and 3001207 showed good 

stability in the presence of microsomes, suggesting an in vitro half-life of several hours. (279) 

These results were thought to be very promising in terms of the in vivo properties of the I3GA 

compounds. 

 

Further pharmacokinetic investigations were carried out by Ronald Hawley at the University of 

California San Francisco (UCSF). In these experiments CD-1 mice were fed 3001012 in a liquid 

chocolate diet at a concentration of 50 mg/kg. 3001012 was found to reach a brain 

concentration of 16 nM suggesting favourable pharmacokinetic properties and the ability to 

cross the blood-brain barrier (BBB) (Personal correspondence from Ronald Hawley). This was 

thought to be a key finding as the ability of the compound to enter the brain is likely to be 

crucial for in vivo activity.  In addition to the pharmacokinetic studies the anti-prion activity of 
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the compounds was assessed in the ScN2a cell line, a scrapie-infected neuroblastoma cell line. 

Proof of compound efficacy in these neuronal cells was suggested to provide further evidence of 

the compound’s in vivo potential by demonstrating activity in both neuronal and non-neuronal 

cells. For all compounds tested there was found to be good correlation between activity in the 

SMB cells and activity in the ScN2a cells (P<0.0001, Pearson r = 0.9731). Activity was reduced in 

the ScN2a cells by around one order of magnitude, with EC50s of 0.014 µM and 0.011 µM for 

3001012 and 3001207 respectively. (279) Despite this, all the compounds tested retained good 

activity. 

 

Overall, it can be seen that the data presented here have further confirmed the SPR data 

suggesting that the I3GA compounds are not interacting directly with PrPC or PrPSc. Quinacrine is 

thought to act by preventing the formation of de novo PrPSc by binding to PrPC and rendering it 

resistant to aggregation and conversion, and from the data presented here it would seem 

unlikely that this is how the I3GA compounds are working. Unfortunately the data so far has not 

shed any further light on what the mode of action is; only what it is not. However, the additional 

data that have been obtained are promising – lack of in vivo toxicity, good microsomal stability, 

good in vivo pharmacokinetics and activity in different cell lines – and all suggest that these 

compounds have potential as compounds that may be active in vivo.  
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5. Mode of Action Studies: Microarray and 

Proteomics Studies 

 

 

5.1. Introduction 

 

Systems biology is an emerging approach to studying complex biological systems. It is based on 

the holistic idea that by looking at a system in its entirety, individual processes can be 

understood in the wider context of the system they exist in. Rather than focussing on individual 

genes or proteins, a systems biology approach looks at the properties of cells, tissues and 

organisms and their role in a relevant system’s structure and dynamics. (381) 

 

Proteomics and microarray studies are examples of a ‘top down’ approach to systems biology, 

where large amounts of information are obtained on the protein and gene expression of the 

system of interest. This approach has been used by Leroy Hood et al to investigate changes in 

the protein and gene expression of mice infected with different strains of scrapie, with data 

from an infected system being compared to data from an uninfected system to try and identify 

pathways that might be altered. (382) However, this approach has never been used to identify the 

molecular targets of anti-prion compounds. By carrying out these studies on cells that had been 

treated with the lead compounds it was hoped to reveal their mode of action, as well as 

demonstrating the validity of this approach in deconvoluting the targets of small, drug-like 

molecules. There was also interest in whether there would be any crossover between the results 

from the proteomics and the microarray, thereby validating their use as complimentary 

techniques. 

 

It was initially hoped that data could be generated from the cell lines that would be directly 

comparable to the data from the Leroy Hood paper, however, this was not possible due to the 

fact that the Leroy Hood paper used a whole animal model rather than a cell line and was 

comparing treated animals to untreated animals. There was no uninfected cell line available to 

use as a control so instead untreated, infected cells were used as a baseline against which to 

measure changes. 
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At the start of the study it was hoped that the results would help answer several questions: 

1. Can proteomics and microarray studies be used to identify the targets of small, drug like 

molecules? 

2. Are the techniques complementary to each other? 

3. What are the molecular targets of the I3GA anti-prion compounds? 

4. Are all the I3GA compounds working in the same way? 

It was anticipated that the results from the quinacrine-treated sample could be used as a proof 

of concept by comparing the results from the study with known targets of quinacrine from the 

literature, as well as providing data for a compound thought to have a different mode of action 

to the I3GAs. Chapter 4 provided further information about the mode of action of 3001012 and 

3001207, without enabling any definitive conclusions to be drawn. The results from the 

microarray and proteomics studies would be examined to try and identify the pathways that 

were affected as a result of treatment. 3001012, as the lead compound, was the obvious 

candidate for this study. 3001207 was chosen as it was the lead compound from the group with 

substitutions at the 6-position, with an EC50 very close to that of 3001012. Comparison of results 

using the two different techniques could be carried out to identify crossover between the two, 

and similarly comparison of results from the two different I3GAs could be carried out to see if 

they had targets in common. 

 

Proteomics and microarray studies were carried out by Paul Heath in the Sheffield Institute for 

Translational Neuroscience (SITraN) (microarray) and Caroline Evans in the Department of 

Chemical and Biological Engineering (proteomics). As the primary researcher, I was responsible 

for designing the experiments, choosing the compounds to be studied, preparing the cell pellets 

for analysis and the subsequent analysis and interpretation of the data once it had been 

processed through MetaCore. 

 

Materials and methods for this study are outlined in detail in sections 2.1.3 and 2.2.6. 
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5.2. Results 

 

5.2.1. Sample Validation 

 

Bradford assays and dot blot analyses were carried out on the samples prepared for the 

microarray and proteomics studies to check protein levels and ensure treatment had been 

successful.  

 

Table 36: Total amount of protein per sample as determined by Bradford assay. Each sample 
represents cells from one tissue culture petri dish suspended in 5 ml medium. 1 ml of this was 
taken for the microarray sample and 3.5 ml was taken for the proteomics sample. The final 0.5 
ml was retained for analysis, and was used for the Bradford assay and dot blot analysis. More 
protein was required for the proteomics so a larger sample was used.  
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Figure 70: PrPSc levels in the samples used in the microarray and proteomics studies. Cells were 
treated for 56 hours before being harvested, and dot blots performed on a sample from each 
plate. A and B indicate the two biological replicates 
 

5.2.1.1. DEGs and Up and Down Regulated Proteins 

 
Table 37: Total number of DEGs found 
 

 

 

The lists of genes were separated into groups depending on whether they were up or down 

regulated and then filtered using absolute fold cut off values of ≥ 1.5, ≥ 2, or ≥ 2.5. 
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Table 38: Number of DEGs grouped by up and down regulation at different cut off values. 
 

 

 

On the basis of this information it was decided to use an absolute fold cut off of ≥ 1.5 for the 

microarray data due to the very small number of genes with an absolute fold change of ≥ 2 or 

above.  

 

Table 39: Up and down regulated proteins from the proteomic studies. The identity of the 
different proteins can be seen in Table 40. 
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Table 40: Proteins identified as up or down regulated in the proteomics studies after treatment 
with quinacrine, 3001012 or 3001207 and compared to the DMSO control. 
 

 

 

 

5.2.2. MetaCore Pathway Analysis 

 

The data generated from the network analysis in MetaCore is presented below. The two most 

statistically significant pathway maps are presented for each treatment, along with a summary 

of the key proteins or genes from the microarray and proteomics studies around which the 

pathways have been generated. These key elements of the pathways are also marked in the 

maps with a blue or red thermometers; a blue thermometer indicates down regulation while a 

red thermometer indicates up regulation. The height of the thermometer indicates the extent of 

the up or down regulation. While no statement is made about whether the identified pathways 

were up or down regulated, this is inferred by the up or down regulation of the component 

targets from the microarray and proteomics studies. The role of the up and down regulated 

components can be used to determine what the effect on the pathway as a whole is likely to be, 

and this is discussed in section 5.3. 
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5.2.2.1. Quinacrine Compared to Untreated Control 

The MetaCore analysis of both microarray and proteomics data combined resulted in two 

statistically significant pathway maps; granzyme A signalling (Figure 71) and pathways for the 

stimulation of fat cell differentiation by Bisphenol A (Figure 72). 

 

 

 

Figure 71: Map of the statistically significant pathway representing apoptosis and survival – 
granzyme A signalling. This was the top scored map. Experimental data are represented by 
thermometers. Up-ward (red) thermometers indicate up-regulated signals and down-ward 
(blue) thermometers indicate down-regulated signals. 
 

Down regulated: Histone H2A and p53 
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Figure 72: Map of the statistically significant pathway representing putative pathways for 
stimulation of fat cell differentiation by Bisphenol A. This was the second top scored map. 
Experimental data are represented by thermometers. Up-ward (red) thermometers indicate up-
regulated signals and down-ward (blue) thermometers indicate down-regulated signals. 
 

Up regulated: A-FABP and FASN 

  

These two pathways were the only ones identified from analysis of the combined data sets The 

data sets were also analysed separately and each analysis produced the top 5 statistically 

significant pathways for that data set. The pathways identified from the microarray data were as 

follows (in order of statistical significance, most significant first): 

- DNA damage – ATM/ATR regulation of G1/S checkpoint 

- Cholesterol biosynthesis 
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- DNA damage – DNA damage induced responses 

- DNA damage – Role of NFBD1 in DNA damage response 

- Apoptosis and survival – DNA damage induced apoptosis. 

Pathways identified from the proteomics data were as follows (in order of statistical significance, 

most significant first): 

- Regulation of lipid metabolism – Regulation of fatty acid synthase activity in 

hepatocytes. 

- Cell cycle – Chromosome condensation in prometaphase 

- Cell cycle – Sister chromatid cohesion 

- Cell cycle – Initiation of mitosis 

- Cytoskeleton remodelling – neurofilaments. 

 

The DEGs from the DMSO vs quinacrine data set were also compared with the data from the 

Hood paper. (382) There was crossover in the case of three genes; histone H2B, histone H1.2 and 

vimentin.  

 

5.2.2.2. 3001012 Compared to Untreated Control 

Microarray and proteomics data were combined and analysed using MetaCore. The top two 

statistically significant pathway maps were related to hedgehog signalling (see Figure 73) and 

the regulation of apoptosis by mitochondrial proteins (see Figure 74). These pathways were also 

identified by MetaCore analysis of the proteomics and microarray data sets individually. 
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Figure 73: Map of the statistically significant pathway representing hedgehog signalling. This was 
the top scored map. Experimental data are represented by thermometers. Up-ward (red) 
thermometers indicate up-regulated signals and down-ward (blue) thermometers indicate 
down-regulated signals. 
 

Up regulated:  CDC37, HSP90, GLI-3, GLI-3R, beta-catenin, Skp2/TrCP/FBXW and Cul1/Rbx1 E3 

ligase 
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Figure 74: Map of the statistically significant pathway representing the regulation of apoptosis 
by mitochondrial proteins. This was the second top scored map. Experimental data are 
represented by thermometers. Up-ward (red) thermometers indicate up-regulated signals and 
down-ward (blue) thermometers indicate down-regulated signals. 
 

Up regulated: Apaf-1 

Down regulated: ANT 

 

The pathways shown above represent the two most statistically significant pathways. The 

MetaCore analysis ranks the top five statistically significant pathways (where these can be 

identified) and the other pathways identified from the combined data set as a result of 

treatment with 3001012 were (in order of statistical significance, most significant first): 

- G-protein signalling – RhoA regulation pathway. 

- Cell adhesion – Ephrin signalling 

- Neurophysiological processes – Receptor-mediated axon growth repulsion. 
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The microarray and proteomics data sets were also analysed individually to identify pathways 

affected by treatment with 3001012. As would be expected, the separate analyses identified 

some of the pathways that were identified by the combined analysis. Analysis of the microarray 

data identified the hedgehog signalling pathway, while analysis of the proteomics data identified 

both the regulation of apoptosis by mitochondrial proteins and the RhoA signalling pathway. 

Pathways identified from the microarray data also include (in order of statistical significance, 

most significant first): 

- Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) activity   

- Development – growth hormone signalling via P13K/AKT and MAPK cascades 

- G-protein signalling – Ras family GTP-ases in kinase cascades 

- Development – A2B receptor: action via G-protein alpha s 

Pathways identified from the proteomics data also include: 

- Glycolysis and gluconeogenesis 

Only three pathways, including those mentioned above, were identified from the proteomics 

data, with glycolysis and gluconeogenesis having the greatest statistical significance.  

 

5.2.2.3. 3001207 Compared to Untreated Control 

No pathways were matched to the combined data from the microarray and proteomics studies 

for 3001207. The number of DEGs with a fold change of ≥ 1.5 identified from treatment with 

3001207 was much smaller compared to the number identified from treatment with 3001012 

(27 compared to 268, see Table 38) which may explain why no pathways were identified for the 

combined data set. Analysis of the separated data sets identified 5 pathways for each of the data 

sets, and the top ranked pathways for each set of data are shown below. Pathways identified 

from the microarray data feature either histone H3 or p73 (both of which were up regulated), 

while the pathways identified from the proteomics data feature ANT, HSP90 and HSP90 beta.  
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Figure 75: Map of the statistically significant pathway representing the notch signalling pathway. 
This was the top scored map from the microarray data. Experimental data are represented by 
thermometers. Up-ward (red) thermometers indicate up-regulated signals and down-ward 
(blue) thermometers indicate down-regulated signals. 
 

Up regulated: P73 and Histone H3 
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Figure 76: Map of the statistically significant pathway representing the immune response – 
antigen presentation by major histocompatibility complex (MHC) class I. This was the top scored 
map from the microarray data. Experimental data are represented by thermometers. Up-ward 
(red) thermometers indicate up-regulated signals and down-ward (blue) thermometers indicate 
down-regulated signals. 
 

Down regulated; HSP90 and HSP90 beta 

 

The other pathways identified from the microarray data (in order of statistical significance, most 

significant first) were; 

- DNA damage – Inhibition of telomerase activity and cellular senescence 

- Cell cycle – Chromosome condensation in prometaphase 

- Cell cycle – Sister chromatid cohesion 

- Transcription – Role of heterochromatin protein 1 (HCP1) family in transcriptional 

silencing. 
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The other pathways identified from the proteomics data (in order of statistical significance, most 

significant first) were; 

- Mechanisms of CFTR activation by S-nitroglutathione (normal and CF) 

- CFTR folding and development (normal and CF) 

- Development – glucocorticoid receptor signalling 

- Apoptosis and survival – regulation of apoptosis by mitochondrial proteins.  

Of possible interest is the fact that two of the pathways identified include links to Sp1 (inhibition 

of telomerase activity and CFTR activation by S-nitrosoglutathione, microarray data and 

proteomics data respectively). Sp1 is a transcription factor and is involved in the copper 

dependent regulation of PrPC (see section 6.4.3.2 for more information). 

 

5.2.2.4. Comparison of 3001012 and 3001207 

As previously mentioned there was a 10-fold difference in the number of DEGs with a fold 

change of ≥1.5 identified after treatment with 3001012 compared to 3001207, although the 

total number of DEGs identified was comparable (4406 for 3001012 and 4802 for 3001207, see  

Table 37). Comparison of the pathways identified by MetaCore does show a certain amount of 

crossover, specifically in the identification of the regulation of apoptosis by mitochondrial 

proteins as a pathway affected by both compounds and the down regulation, in both cases, of 

ANT. Pathways with links to HSP90 were also identified for both compounds, though while 

HSP90 is up regulated after treatment with 3001012, it is down regulated after treatment with 

3001207. It is thought, however, that the crossover between the data sets is limited and 

ambiguous in places, particularly in the case of the contradictory effects on HSP90, casting doubt 

on the hypothesis that these two compounds work in the same way. 

 

 

 

5.3. Discussion 

 

 

5.3.1. Proof of Concept  

 

As discussed earlier, it was hoped to compare the quinacrine results with the literature to 

provide confidence that these techniques could be used to deconvolute the molecular targets of 

small molecule anti-prion drug compounds. Possible targets for quinacrine were identified from 
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the literature and then compared to the results from both the microarray and proteomics 

studies.  

 

A paper published by Fasano et al compared the gene expression profile of infected scGT1 cells 

to cells which had been cured with quinacrine. (383) They compared the expression of around 

15,000 genes and found that the gene for laminin was down regulated as a result of the 

clearance of PrPSc from the cell by quinacrine. Other possible targets included the genes 

encoding EGF-like repeats and discoidin I-like domains protein 3 precursor and LIM and SH3 

domain protein 1, which were up regulated. Endothelin-1 receptor and neogenin were down 

regulated. Other work suggests that the specific binding shown by quinacrine towards PrPC may 

be responsible for the anti-prion effect. (223, 233)  Quinacrine had also been proposed to work in 

lysosomes by inhibiting the GAG-PrP interaction. (236) Other hypotheses include destabilisation of 

the cell membrane by recycling cholesterol into the endosomal compartments (245) and blocking 

channels formed by PrP. (384) 

 

Figure 71 shows processes related to histones and p53 dependent apoptosis being down 

regulated. Histones are involved with facilitating the formation of chromatin in cells, and act as a 

spool around which DNA can wind. They are also thought to have a role in transcription 

regulation, DNA repair and replication and chromosomal stability. p53 is known as the tumour 

suppressor protein and is essential for the prevention of human cancers – all human cancers are 

associated with the suppression of either the gene or up and downstream signalling. (385) p53 can 

induce growth arrest or apoptosis depending on physiological conditions, and has a role in 

Alzheimer’s disease. (386) The down regulation of p53 suggests that apoptosis may be inhibited, 

although whether this is linked to a general down regulation of the granzyme A signalling 

pathway is unclear. Granzymes are serine proteases that act by cleaving caspases which in turn 

activate caspase-activated DNase which degrades DNA and induces an apoptotic cascade.  The 

main function of granzyme A signalling is to induce apoptosis in infected cells, and elevated 

levels of granzyme A have been found in patients with an infectious disease or in a pro-

inflammatory state. (387) Granzyme A can also cause the release of cytochrome C and other 

proteins which suppress inhibitor of apoptosis proteins. 

 

It is thought that the down regulation of histones and p53 in the granzyme A signalling pathway 

may be due to the cells being ‘cured’ and therefore returning to their normal, uninfected state. 

As this pathway is implicitly associated with the immune response it would seem reasonable to 
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assume that the observed down regulation is actually the pathways within the cured cells 

returning to their baseline levels as PrPSc levels reduce, with it being likely that this pathway is 

activated during infection. Unfortunately it’s not possible to confirm this without an uninfected 

control which is something that was not available for this study. Down regulation of p53 may 

also be related to the cells recovering from infection as it can promote cell growth, although 

quinacrine is known to up regulate p53 in cancer cells to increase the apoptosis of cancerous 

cells. AKT, which is involved in the fatty acid metabolic process (see Figure 72) is also part of a 

system including p53 that is affected by quinacrine in its anti-cancer role. (388)  

 

Figure 72 shows the effect on metabolic processes of the plastic monomer Bisphenol A (BPA). 

BPA is a key component of many plastics and epoxy resins and as a result is present in a 

significant amount of food packaging and plastic bottles. Environmental exposure to BPA has 

been linked to weight gain as it is thought to have an impact on fat cell formation by disrupting 

adipogenesis and lipid accumulation. (389) Elements of the fatty acid metabolic process, 

specifically fatty acid synthase (FASN) and fatty acid binding proteins (A-FABP) are upregulated. 

FASN is an enzyme system which catalyses fatty acid synthesis, while A-FABP is a transport 

protein for fatty acids and facilitates the transfer of fatty acids between the extra- and 

intracellular membranes. The up regulation of these two components suggests an up regulation 

of fatty acid metabolic processes and fat cell differentiation, both of which are key elements of 

this pathway. It is possible that up-regulation of A-FABP may increase recycling of cholesterol 

into the endosomal compartment, due to its role in facilitating the transfer of fatty acids 

between extra and intracellular membranes. However, this is contradicted by the up-regulation 

of fatty acid synthase which, hypothetically, would mitigate this type of cell membrane 

destabilisation.  

 

The identification of several pathways associated with DNA damage and cell cycle were thought 

to be interesting due to the suggested involvement of cell cycle proteins in neurodegeneration. 

(390) The increased expression of cell cycle proteins has been observed in post-mitotic neurons 

from patients with Alzheimer’s disease, and it has been suggested that re-entry into the cell 

cycle may promote Alzheimer’s pathology, with failure to complete the cell cycle resulting in 

neurodegeneration, also termed ‘abortosis’. (391) The down regulation of cell cycle pathways, as 

observed in the MetaCore analysis, could therefore be suggested as possibly protective against 

neurodegeneration. However, cell cycle proteins have also been observed in healthy post-

mitotic neurons, and it has been suggested that they may fulfil essential physiological functions 
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such as facilitating DNA repair and neuroplasticity. (390) Further to this, the key elements of the 

down regulated cell cycle pathways were related to DNA repair rather than being classical 

markers of cell cycle. Another important consideration that undermines this suggestion is that 

the cells being used in this study were still replicating and so were progressing through the cell 

cycle. It is therefore thought more likely that the prevalence of these cell cycle pathways is due 

to changes in normal cellular processes as a result of the reduction of the infectious burden.    

 

Although there was some crossover between DEGs identified by the Hood paper and the 

MetaCore analysis this was limited, especially since the Hood paper identified 333 DEGs. 

However, they had identified genes that differed between infected and uninfected mouse 

models, with the aim of identifying genes that may contribute to disease pathogenesis. It was 

hypothesised that curing the cells may result in the down regulation of genes that were up 

regulated in the disease state, however in reality the models are very different and do not 

withstand detailed comparison to each other. Neither the system, (mouse model, in vivo 

compared to cell model, in vitro), or the comparison (infected vs uninfected compared to 

infected vs cured) are directly comparable.  

 

Overall the data from the microarray and proteomics studies are not conclusive. It is thought 

that there is enough crossover between the pathways identified as being altered by quinacrine 

and the modes of action proposed in the literature to be confident of the validity of the 

technique, although the crossover is limited. The suggestion that quinacrine is affecting fatty 

acid synthesis and cholesterol recycling is particularly interesting. 

 

 

5.3.2. Can Microarray and Proteomics Studies Complement Each 

Other? 

 

Another aim of this project was to investigate the extent to which the two techniques can 

complement each other. It was hypothesised that changes in gene expression, as identified by 

the microarray, would be represented in the proteomics data by changes in the expression of 

the related proteins. This was not found to be the case – as far as could be determined there 

was no correlation between the DEGs from the microarray and proteins identified as being up 

and down regulated in the proteomics. Similarly, comparison of the pathways identified by the 

two different techniques shows limited crossover, although in the case of 3001012 and 
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quinacrine there was enough correlation between the data sets for MetaCore to be able to 

identify pathways from the shared data set. 

 

The lack of crossover between the microarray and proteomics data was more pronounced when 

there were fewer DEGs and proteins to form pathways around. For example, with the quinacrine 

data there were only 18 DEGs and 9 differentially expressed proteins (see Table 38 and Table 

39). For each data set there was one key gene which dominated the top ranked pathways. In the 

microarray data 3 out of the 5 top ranked pathways, all related to DNA damage, were associated 

with the down-regulation of p53. In the proteomics data, 3 out of the top 5 pathways, all 

associated with cell cycle, were associated with the down-regulation of histone H1. A brief 

glance at the data would suggest that quinacrine exerts its effect through one of these 

mechanisms, but the lack of supporting evidence perhaps casts doubt on this assumption. On 

the other hand, both data sets identified pathways related to cholesterol biosynthesis, which has 

been proposed as a target for quinacrine. (245)A similar pattern can be seen in the data for 

3001207, which also had a smaller number of DEGs and proteins to form pathways around. 

Microarray pathways were dominated by p73 and histone H3, and the proteomics pathways  

dominated by HSP90 and HSP90 beta 

 

The data set for 3001012, by comparison, is much larger and therefore the pathways are not as 

dominated by a single factor. When analysed separately, both data sets identified pathways 

involved in g-protein signalling, either related to the up-regulation of mitogen activated protein 

kinases (microarray) or the down-regulation of ephrin A receptors (proteomics), but examination 

of the pathways reveals no crossover between the two. There was further crossover between 

the two techniques with the microarray data identifying HSP90 as upregulated while the 

proteomics identified CDC37, a HSP90 chaperone, as upregulated.  

 

In conclusion it is difficult to say from this study whether proteomics can be used to validate the 

results of microarray experiments and vice versa. The translation of changes in gene expression 

to changes in protein expression was not observed, although the complexity of the relationship 

between gene and protein expression may explain this to a certain extent. However, gaining 

useful information from MetaCore depends on having enough data to put into it in the first 

place, and for this purpose it was useful to be able to combine the two sets of data. If the 

assumption is made that gene expression does not directly relate to protein expression then 

having measures of changes in both the genome and the proteome makes the resulting data set 
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far more powerful. It can therefore be concluded that although the two sets of data may not be 

able to validate each other, the two together are greater than the sum of their parts. 

 

 

5.3.3. 3001012 Compared to Untreated Control 

 

The MetaCore analysis of the microarray and proteomics data for 3001012 does not show any 

obvious trend in the areas that are affected by treatment. The two top scored pathways suggest 

that 3001012 may have an effect either on development via the hedgehog signalling pathway, or 

on apoptosis regulation by mitochondria. 

 

In embryos the hedgehog signalling pathway  is involved in development, and controls a diverse 

range of developmental processes. (392) In adults the hedgehog (Hh) family of proteins control 

cell growth, survival and fate, with the cellular response depending on the type of receptor cell, 

the dose and the time of exposure. Hh proteins are divided into three subgroups known as 

desert hedgehog (Dhh), indian hedgehog (Ihh) and sonic hedgehog (Shh), with the latter being 

broadly expressed and the best studied and understood in humans. All the subgroups have 

similar physiological effects, with different effects due to differences in expression. The binding 

of Hh to the receptor (Patched) activates a signalling cascade, which in turn activates a zinc-

finger transcription factor known as Gli-3, which is upregulated in the MetaCore study. Gli-3 

functions primarily as a repressor of the pathway. In the absence of Hh, Gli-3 is truncated, via 

the proteasome, into its repressor form. Introduction of Shh leads to this processing being 

inhibited and the full length form of Gli-3 accumulating. Various cancers have been linked to the 

activation of hedgehog signalling, and it can directly promote cancer by regulating cell growth 

and survival. 

 

The complexity of the pathway and the number of upregulated components make elucidating 

whether the whole pathway is up or down regulated more difficult. The up regulation of Gli3, 

along with up regulation of E3 ligases and the repressor form of Gli3 (Gli3R) all suggest that the 

pathway is being inhibited. The inhibition of Wnt signalling via antagonism of beta-catenin by 

Gli3R suggests a knock-on effect on Wnt signalling, although the up regulation of beta-catenin 

may be able to counteract this increased antagonism. Contradicting this data is the effect of 

HSP90 and CDC37 which are upregulated. The role of these two proteins within this pathway 

appear to be the activation of the STK36 kinase, which in turn activates Gli2. This could therefore 
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result in activation of the pathway, possibly counteracting the repression by Gli3R. It is therefore 

difficult, in this instance, to determine whether the pathway is up or down regulated. 

 

The link between this pathway and the mechanism by which the compounds are working is not 

immediately obvious, and the literature does not suggest any direct links between hedgehog 

signalling and prion diseases. The up-regulation of both the Gli3 gene and genes related to the 

proteasome suggest that reducing the burden of infection results in repression of the Hh 

signalling pathway as a result of an increase in the truncated form of Gli3. However, there is no 

evidence of any of the other key elements of the pathway (Shh, Ihh, Dhh and their receptors) 

being affected by treatment, and the up regulation of HSP90, in this case, would appear to be 

contributing to pathway activation. While inhibition of the hedgehog signalling pathway can be 

lethal in embryos, down regulation in adult tissues is tolerated, with this being targeted as a 

potential treatment for cancers resulting from over-activation of the pathway. (392) It is therefore 

hard to suggest why this pathway should be affected by treatment with anti-prion compounds, 

although it does provide a potentially interesting new area of investigation. 

 

Mitochondria are the central organelle involved in the intrinsic apoptotic pathway  which is 

governed by the pro- and anti-apoptotic Bcl family. (393) Apoptosis is regulated by controlling 

membrane permeability and the release or retention of cytochrome C, and the apoptotic 

pathway is initiated by the formation of a cytosolic apoptosome. This is comprised of Apaf-

1(upregulated in this study), procaspase-9 and cytochrome C. The apoptotic process is executed 

by caspases, which are cysteine proteases that cleave substrates at aspartic acid residues. 

Mitochondrial permeability is regulated via the voltage dependent anion channel (VDAC) which 

forms a permeability transition pore, with increased permeability being associated with 

apoptosis. This is a transmembrane channel between the VDAC on the outer mitochondrial 

membrane and the adenine nucleotide translocator (ANT) on the inner mitochondrial 

membrane. ANT was downregulated after treatment with both 3001012 and 3001207, 

suggesting that treatment with I3GAs may decrease mitochondrial membrane permeability. The 

up regulation of Apaf-1 suggests that treatment may be leading to increased apoptosis, while a 

reduction in membrane permeability suggests decreased apoptosis, again making elucidation of 

the effect on the whole pathway difficult.  

 

The effect of treatment ANT was thought to be potentially interesting. Increased opening of the 

mitochondrial permeability transition pore (MPTP) has been implicated in neurodegeneration 
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(394) with pore opening being triggered by, among other things, an excess of Ca2+, (395) stress in the 

endoplasmic reticulum (ER) (396) and oxidative stress caused by an increase in copper. (397) It is 

therefore possible that the compounds may be able to prevent neurodegeneration by 

contributing to the maintenance of the mitochondrial membrane integrity. Opening of the MPTP 

has been shown to cause the mitochondria to swell and burst, releasing cytochrome C and 

initiating the apoptotic cascade. (398) Reducing the formation of the MPTP could therefore 

potentially reduce neuronal apoptosis and degeneration.  This is counteracted, however, by the 

up regulation of Apaf-1, which may be contributing to apoptosis. It could therefore be 

hypothesised that the decrease in infection was due to treatment inducing the apoptosis of 

infected cells although, as discussed before, there is no evidence for either increased apoptosis 

or decreased growth rates in treated cells. It is therefore thought unlikely that this is a primary 

mode of action of 3001012.  

 

Examination of the pathways does reveal components known to be related to prion diseases. 

The top ranked pathway (Figure 71), shares links to the proteasomal pathway, which has been 

shown to play a role in the pathogenesis of prion disease. (179) A number of genes have also been 

identified from both the microarray data and the MetaCore data that are either involved in, or 

share links to, the proteasomal pathway (see Table 41).  Around 10% of the DEGs are involved in 

either ubiquitination or proteasomal processes and all of these were upregulated. 
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Table 41. Genes identified as upregulated in the microarray data in cells treated with 3001012 
that are involved in the proteasomal pathway. 
 

 

 

The proteasome, also known as the ubiquitin-proteasome system (UPS) is responsible for 

tagging and degrading misfolded proteins as part of the unfolded protein response (UPR) and 

has been implicated in various neurodevelopmental and neurodegenerative diseases including 

prion diseases. (399)(400) Infected mouse brains have been shown to have increased levels of 

ubiquitin conjugates, with toxic prion oligomers inhibiting the UPS both in vitro and in vivo. (181, 

182) Accumulation of PrPC in the cytosol as a consequence of retrograde transportation via 

endoplasmic reticulum associated degradation (ERAD) can aid conversion if it exceeds the 

degradative capacity of the UPS, and transient proteasome inhibition has been shown to initiate 

PrP conversion. It is also thought that UPS impairment may allow for the accumulation of PrP 

into toxic aggresomes. Another effect of the UPR is the inhibition of global protein synthesis, and 

this inhibition has been shown to cause a critical decline in key synaptic proteins, leading to 

neurodegeneration. Restoration of protein synthesis was shown to completely cure prion 

infected mice. (186) It is therefore possible that this pathway has multiple roles in the 

neurodegeneration associated with prion disease. 
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As shown above, a significant proportion of the genes and proteins affected by treatment with 

3001012 were related to the proteasomal pathway, and all of them were upregulated. It would 

be reasonable to conclude that 3001012 may be working, at least in part, by upregulating the 

UPS and therefore increasing ubiquitination and degradation of PrPSc. This corresponds with the 

finding that the I3GAs don’t seem to be interacting with PrPC or PrPSc directly, suggesting that a 

different pathway may be involved. The UPS will be examined in more detail in a section 6.1.  

 

 

5.3.4. 3001207 Compared to Untreated Control 

 

The data set for 3001207 was much smaller than the data set for 3001012 and therefore it is 

harder to draw conclusions from the limited data available. One of the key proteins in the 

microarray data is p73, which is related to p53 and is also considered a tumour suppressor. P73 

is involved in cell cycle regulation and the initiation of apoptosis, and can control cell cycle and 

regulation via mechanisms previously ascribed to p53. (401) P73 also has a role in neural 

development, and is a positive regulator of embryonic and adult neural stem cells. (386) The other 

key protein from the microarray studies is histone H3, which is part of the family of histone 

proteins that play a central role in transcription regulation, DNA repair and replication and 

chromosomal stability.  

 

Notch signalling was identified as the top rated pathway based on the microarray data from 

treatment with 3001207. The up regulation of p73, resulting in the increased activation of 

Notch1, suggests that this pathway is up regulated. Notch itself is a receptor with four isoforms, 

and the notch signalling pathway is involved in regulating cell fate during development and also 

maintaining tissue homeostasis in adults. Notch is also a key regulator of adult neural stem cells, 

with roles in the regulation of migration, morphology, synaptic plasticity and the survival of 

immature and mature neurons. (402) The involvement of notch signalling in neuronal survival 

suggests that it may have a role in prion disease pathology, but there does not appear to be any 

information among the literature to suggest a link. There is a clear link between the notch 

signalling pathway and Alzheimer’s disease as γ-secretase, the protease complex responsible for 

cleaving the amyloid precursor protein (APP) to produce amyloid-beta (Aβ), is also responsible 

for activating notch signalling via cleavage of the notch receptor. (403) The multiple substrates of 

γ-secretase has hampered the development of therapies targeted at the cleavage of APP due to 

the off target effects on the notch signalling pathway. However, as there is no role for γ-
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secretase in the conversion of PrPC to PrPSc there is not the same link between prion diseases 

and notch. 

 

The top rated pathway based on the proteomics data was related to the immune response, 

specifically the presentation of antigens by the major histocompatibility complex (MHC) class 1. 

This pathway features links to the proteasomal pathway via HSP90, as with the pathways from 

the 3001012 data, but in this case HSP90 is down-regulated. As the presentation of antigens by 

MHC class I is designed to alert the immune system to cells that are infected, it’s possible that 

the down regulation of elements of this pathway is due, as with quinacrine treatment, to cells 

returning to normal baseline levels after the removal of infection. As such, this may not be the 

mechanism by which the cells have been cured, rather a secondary effect relating to the removal 

of the burden of infection. The time course data for the 3001207 treated cells showed that full 

clearance was not achieved until 56 hours, which was the point at which the cells were 

harvested. It is possible, however, that the down-regulation of this pathway began at the point 

at which the infection started to decrease, so it’s possible that these off target effects may also 

be observed in the 3001207 treated cells. 

 

As with the quinacrine data, pathways related to cell cycle were identified as being affected by 

treatment with 3001207. Unlike the quinacrine data these pathways appear to be upregulated, 

as indicated by the up regulation of histone H3. For the reasons outlined in section 5.3.1 it is 

thought unlikely that changes to cell cycle are behind the anti-prion activity of the compounds. It 

is interesting, however, that there was this crossover between quinacrine and 3001207, but not 

3001012. 

  

Overall there do not seem to be any obvious links between 3001207 and any of the pathways 

known to be involved with prion diseases. This raises the possibility of a novel mode of action via 

a pathway that has yet to be identified. A possibility is that up regulation of the apoptotic 

pathways helps clear cells that are infected, however as excess cell death was not observed in 

any of the treated cultures (compared to the untreated control) this would seem doubtful. The 

lack of a large difference in growth also casts doubt on this hypothesis. The involvement of the 

notch signalling pathway in neuronal maintenance makes this pathway a possible candidate for 

intervention, although there is no literature precedent to support this at this time. 
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5.3.5. 3001012 vs 3001207 

 

As previously mentioned it was hypothesised that 3001012 and 3001207 would share a mode of 

action due to their similar structures and activities. The only crossover that was observed was 

that, in both cases, ANT was downregulated, suggesting that the compounds may be working by 

decreasing mitochondrial permeability and therefore affecting apoptotic processes. Direct 

comparison of the top 5 pathways identified by MetaCore using the combined data sets was not 

possible as this data was not available for 3001207. Comparison of the pathways identified for 

the individual data sets does show crossover in the pathways identified from the proteomics 

data, with the regulation of apoptosis by mitochondrial proteins featuring in both lists. This, 

again, suggests that both compounds may be working by affecting apoptosis via mitochondrial 

processes. 

 

However, there was no effect on the proteasomal pathway observed after treatment with 

3001207, nor was there any effect on the hedgehog signalling pathway. The limited crossover 

seen in these studies leads to the conclusion that these two compounds are not exerting their 

anti-prion effect in the same way, even though they are structurally similar and have almost 

equivalent activities in the cell line assay. Interestingly the key proteins identified for 3001207 

were much more closely related to the key proteins identified for quinacrine – p53 and p73 are 

part of the same family and have related but distinct functions as tumour suppressors. Similarly, 

the histones H2 and H3 are part of the same family and have related functions. However, the 

pathways that were identified were different (notch signalling for 3001207 and granzyme A 

signalling for quinacrine) and to add to the confusion p73 and histone H3 were upregulated after 

treatment with 3001207, while p53 and histone H2 were down-regulated after treatment with 

quinacrine. This suggests that while similar proteins may be affected by treatment with these 

compounds, the downstream effect is quite different. 

 

 

 

5.4. Overall Conclusions 

 

As laid out at the beginning of this chapter, four questions were asked. It was hoped that by 

answering these questions, insights could be gained into the suitability of systems biology 

techniques for elucidating the targets of small drug-like molecules, as well as identifying 
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potential targets of the I3GA compounds and elucidating further whether they have a common 

mode of action. 

 

In order to answer these questions, cells were treated with DMSO, quinacrine, 3001012 or 

3001207. Microarray and proteomics analyses were carried out, and the results analysed using 

MetaCore to identify pathways affected by treatment. Quinacrine was included in the study as a 

positive control due to the information available in the literature on its mode of action – 

quinacrine would be used to validate the technique for use with compounds where the mode of 

action was unknown. DMSO was the negative control, and all treated cells were compared to 

the results from DMSO in order to determine the differences between treated and untreated 

cells. 

 

The quinacrine results were thought to be hopeful, as pathways that were identified could be 

explained either in terms of a published mode of action, or as a consequence of the changes in 

immune response due to treatment and subsequent reduction of the infectious burden. The 

down regulation of the histones and p53 was thought to be an example of this. Up-regulation of 

A-FABP and fatty acid synthase suggested a role for quinacrine in altering cholesterol 

homeostasis, something that has been reported. (245) The importance of laminin, as reported by 

the authors of a study into the effect of quinacrine on gene expression in ScGT1 cells, (383) was 

not reproduced in this study. However, it is thought that the quinacrine results can be used to  

validate the results obtained for the I3GAs. 

 

The second aim of this study was to determine if microarray and proteomics studies could be 

used to complement each other. This was based on the hypothesis that changes in gene 

expression would be confirmed by the concomitant changes in protein expression, as detected 

by the proteomics studies. The specific validation of certain DEGs via identification of changes in 

their respective protein levels was not found to be possible, and this was attributed to the 

complex relationship between gene and protein expression, as well as the smaller number of 

proteins that could be identified in the proteomics studies. However, combining the two sets of 

data resulted in more powerful MetaCore analysis, with enough data available for 3001012 and 

quinacrine to allow pathways to be identified from the combined data set. If the assumption 

that gene expression does not necessarily correlate to protein expression is used, then having 

both sets of data is clearly beneficial and, although they may not complement each other 

directly, they do provide more information together than either would provide on its own. 
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Analysis of the MetaCore data for 3001012 identified roles for the compound either in altering 

hedgehog signalling or apoptosis as regulated by mitochondria. The link to hedgehog signalling 

was potentially interesting as this is not a pathway with known links to prion diseases, but did 

not provide any further insights into how 3001012 might be working. Increased mitochondrial 

permeability is associated with neurodegeneration, so decreased permeability as indicated by 

the down regulation of ANT may therefore be part of 3001012’s curative effect. No treatment-

induced apoptosis was observed in treated cells, suggesting that apoptosis of infected cells is not 

part of the mode of action. Further study of the top ranked MetaCore pathways (5 in total) 

revealed that around 10 % of DEGs were related to protein degradation pathways, with the 

majority being upregulated E3 ubiquitin ligases. As this is a pathway with established links to 

prion diseases it was decided that this was a potentially interesting avenue of investigation.  

 

The data set for 3001207 was much smaller, with none of the pathways identified by MetaCore 

having established links to prion disease. Again there was the suggestion that the induction of 

apoptosis, possibly as a consequence of changes in notch signalling, may have a role to play in 

clearing the cells of infection. However, as mentioned previously, no additional apoptosis was 

observed in treated cells compared to untreated cells. As with quinacrine, the changes in the 

immune system were attributed to the down regulation of these effects as the cells were 

relieved of their infectious burden. As with the effect of 3001012 on hedgehog signalling, it’s 

possible that the effects of 3001207 on notch signalling represent a novel involvement of these 

pathways in prion diseases. It is also possible that these changes represent off-target effects of 

the compounds, which are unrelated to their anti-prion activity. 

 

The inclusion of two I3GA compounds in this study aimed to show whether the two compounds 

were working in the same way. Their structural similarity, along with the tightly defined SAR for 

this group of compounds (see section 3.1.3) suggested that they would share a mode of action, 

and would therefore identify the same, or related, pathways in the MetaCore analysis. This was 

not found to be the case. There was no distinct effect of 3001207 on the proteasomal pathway, 

with the exception of its down-regulation of HSP90, contradicting the data from 3001012. 

Analysis of the proteomics data identified the regulation of apoptosis by mitochondrial 

processes as being affected by both compounds, although as discussed previously the relevance 

of this to the mode of action of the compounds is unknown. An interesting observation was that 

3001207 was shown to affect a much smaller set of genes than 3001012, perhaps suggesting 

that it has fewer off target effects. However, the limited crossover between the data sets does 
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seem to suggest that the two compounds are working in different ways, despite their structural 

similarity and their comparative activities in the cell line. 

 

In summary, it is thought that the use of microarray and proteomics is a valid approach for 

elucidating the targets of small drug-like molecules. Although the two techniques were not 

found to complement each other directly, the two sets of data together were thought to be 

more than the sum of their parts. Although no obvious mode of action has been identified for 

the I3GA compounds it has revealed links to the proteasomal pathway, known to have links with 

prion disease. It was therefore hypothesised that the I3GA compounds may be working through 

some modulation of the protein degradation system, resulting in increased degradation of PrPSc.  

There was limited crossover in the data for 3001012 and 3001207, leading to the initial 

conclusion that these two compounds do not share a mode of action. However, this is 

questionable due to their structural similarity and tightly defined SAR and therefore warrants 

further investigation.  
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6. Mode of action studies: Target elucidation 

 

 

A key finding from the microarray and proteomics studies, discussed in section 5.3.3, was that 

treatment of the SMB cells with the I3GA compound 3001012 resulted in the upregulation of 

multiple components of the proteasomal pathway. Due to the up-regulation of several E3 

ubiquitin ligases, as well as HSP90, it was hypothesised that 3001012 may be working via up-

regulation of protein degradation systems. The studies outlined in this chapter were  designed to 

validate and further reveal the possible effect of the I3GAs on the UPS, as well as investigating 

possible changes to targets of the I3GAs identified through other methods.  

 

 

 

6.1. Protein Degradation Pathways 

 

Within cells there are two major pathways that facilitate protein degradation: The ubiquitin-

proteasome system (UPS) and autophagy (see Figure 77). The UPS primarily degrades soluble 

intracellular proteins and transmembrane proteins that have been translocated from the 

membrane into the cytosol. Lysosomes primarily degrade membrane proteins in addition to 

degrading cytosolic proteins through autophagy. The two pathways are not entirely separate 

and therefore it is not possible to consider one without the other. The proteasome, also known 

as the UPS, is a multicatalytic enzyme which is expressed in the nucleus and cytoplasm of 

eukaryotic cells. Its primary function is to degrade proteins that are incomplete or misfolded. 

Autophagy is more of a bulk process, responsible for degrading unwanted cellular components. 

It is generally mediated by lysosomes, which contain lysosomal cysteine proteases (also known 

as cathepsins) that are also involved in protein degradation. Autophagy is a catabolic process 

whereby proteins are delivered to the lysosomal compartment for degradation, and several lines 

of evidence point to autophagy and the proteasomal pathway being interrelated, having shared 

substrates and regulatory molecules as well as showing co-ordinated and sometimes 

compensatory functions. (404) 
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Figure 77: Representation of the different protein degradation pathways and their main 
substrates. ER – endoplasmic reticulum, ERAD – endoplasmic reticulum associated degradation. 
 

The endoplasmic reticulum (ER) is responsible for quality control, meaning that only correctly 

folded proteins reach their cellular targets. Misfolded proteins are retained and subject to the 

endoplasmic reticulum associated degradation (ERAD) pathway, where they are marked for 

degradation by the proteasome. An accumulation of misfolded proteins and disruption of ER 

homeostasis can lead to a perturbation of function and ER stress which in turn can trigger the 

unfolded protein response (UPR). This results in decreased levels of protein translation, and 

increased levels of molecular chaperones, folding enzymes and ERAD, (405) resulting in increased 

protein degradation by UPS (see Figure 77).  

 

The UPS consists of the enzymatic proteasome complex itself, and the associated ubiquitination 

system which is responsible for labelling proteins for degradation. The proteasome complex is 

known as the 26S proteasome, and consists of the 20S core and one or two 19S regulatory 

subunits (see Figure 78).  
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Figure 78: Schematic diagram of the 26S proteasome, showing the 20S core and the 19S 
regulatory particle. Rpt and Rpn indicate subunits of the regulatory particle with or without 
ATPase activity respectively. Figure adapted from Deriziotis et al. (400) 
 

The 19S subunit binds and cleaves the polyubiquitin chain, allowing the substrate to be 

denatured and fed into the proteolytic core. The C-termini of the ATPases dock into the α-ring of 

the core particle and open the gate, resulting in substrate hydrolysis. The cross section of the β-

ring, as shown in Figure 78, shows the core particle subunits and demonstrates the location of 

the β1, β2 and β5 subunits. These differ in substrate specificity and activity and are responsible 

for caspase-like, trypsin-like and chymotrypsin-like activities respectively. Protein substrates are 

degraded into small peptides 3-25 amino acids in length (406) 

 

Proteins are marked for degradation with chains of ubiquitin, and the process is modulated by 

the sequential action of three different enzymes (see Figure 79). The ubiquitin activating 

enzymes (E1) bind ubiquitin and transfer it to the ubiquitin conjugating enzymes (E2). E2 

presents the ubiquitin to the ubiquitin protein ligases (E3) which bind to the target protein and, 

with the help of E2, the ubiquitin molecule is covalently attached. There are a limited number of 

E2 enzymes but many more E3 enzymes, as the E3 enzymes have highly specific interactions. The 

E3 ligases have ultimate control over protein stability. (407) The polyubiquitinated substrate is 

then identified by the 19S regulatory subunit as described above. 
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Figure 79: The process of labelling targets proteins for degradation via ubiquitination. E1 binds 
ubiquitin and transfers it to E2. The ubiquitin is transferred to E3 which covalently binds it to the 
target protein. E3 ligases are specific for their target protein. Figure adapted from Adams. (406) 
 

Heat shock protein 90 (HSP90) is a molecular chaperone and one of the most abundant proteins 

in cells. It is upregulated in response to stresses such as heat shock, from which it gets its name. 

It is involved in a wide range of cellular processes including signal transduction, intracellular 

transport and protein degradation and is required for the activation and stabilisation of a wide 

range of client proteins, many of which are involved in important cellular pathways. (408) It has 

been shown to associate with the proteasome, and is thought to participate in regulation as well 

as assembly and repair of the proteasome complex. (409) It has been shown to prevent protein 

aggregation, (410)and acts to keep denatured proteins in a partially folded state so they can be 

rescued and refolded with the help of the appropriate chaperone. (409) HSP90 is required for the 

degradation of ER membrane proteins, and various E3 ligases, including CHIP, Ubr1 and Cul5 are 

associated with HSP90. (408) Ubr1 is among the upregulated E3 ligases, as is a Cul complex, along 

with the HSP90 chaperone CDC37. Numerous cell-cycle related kinases are reported to form 

stable complexes with HSP90 and CDC37 is thought to be involved in directing immature kinase 

complexes to their final destination. (409) 
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6.1.1. Could These Systems be Affected by the I3GA Compounds? 

 

It can be seen in Table 41 that a significant proportion of the DEGs identified by the microarray 

as a result of treatment with 3001012 are E3 ubiquitin ligases. This in turn suggests that the SMB 

cells may be undergoing increased levels of ubiquitination, resulting in an increase in 

proteasomal activity in treated cells compared to cured cells. Although investigations have not 

found any effect on ubiquitin levels after treatment with 3001012 it is not known if this would 

be required for increased ubiquitination via up-regulation of the E3 ligases. In theory, up 

regulation of the proteasomal pathway may allow the cells to clear their burden of PrPSc more 

efficiently, or at least reduce it to a level where it can be maintained without further conversion. 

The up-regulation of HSP90 in the microarray, along with one of its chaperones in the 

proteomics study, suggests that this may play an important role in helping clear the cells of 

infection.  

 

As previously discussed in sections 1.1.2.5 and 5.3.3, there is a well- established link between 

the UPS and prion diseases, (399) so in this context it’s not surprising that there should be some 

alterations to this pathway. Inhibition of the UPS has been directly implicated in 

neurodegeneration, and PrPSc has been shown to inhibit the proteasome. (181, 182) There are 

several compounds that have been reported to work either by redirecting PrPSc to lysosomes for 

degradation or by upregulating autophagy including cationic dendrimers,(229, 411) tyrosine kinase 

inhibitors, (237) chlorpromazine, (238)  tamoxifen and its metabolites (239)   and rapamycin, lithium 

and trehalose. (259) Analogues of congo red have also been shown to restore normal proteasomal 

activity in the persistently infected SMB cells which suffer from chronic proteasomal inhibition, 

and this was suggested as their mode of anti-prion activity. (220) It would appear that this is a 

potential therapeutic avenue that merits further investigation. 

 

Previous work by Chen et al (unpublished data) showed that there is no significant effect of 

treatment with 3001012 on levels of LC3-II, a commonly used marker of autophagy, and 

therefore concluded that this compound was not working via modulation of autophagic 

processes. Another of the I3GA compounds, 3001086, was investigated in co-dosing experiments 

with autophagy inhibitors, with activity found to be unaffected. The same study also found no 

effect of treatment on ubiquitin levels by western blot. However, no investigations were 

undertaken into the effect of treatment on the UPS, and from the evidence presented so far it 

was hypothesised that some function of HSP90, possibly related to its association with the 
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proteasome, might have a role in the activity of lead compound 3001012. To determine the 

possible effects of treatment with 3001012 two methods were employed. The first method was 

to run competition assays in which 3001012 was co-dosed with inhibitors of both the 

proteasome and of lysosomal proteases. The second method was to probe for HSP90 using 

western blotting to determine if there was a difference in HSP90 levels between treated and 

untreated cells. Proteasomal activity was not measured directly, as all work with the SMB cells 

was required to be carried out within a class II containment lab, containing essential facilities for 

the direct measurements of proteasomal activity. Unfortunately, these facilities were not 

available during the life time of this project. 

 

 

 

6.2. Competition Studies Using Inhibitors of the 

Proteasome and Lysosomal Proteases 

 

 

6.2.1. Introduction  

 

 It was hypothesised that if treatment with 3001012 was causing up-regulation of the 

proteasome, then inhibition of the proteasome should negate the curative properties of the 

compound. Initially two proteasomal inhibitors were used; one with very specific inhibitory 

activity on the proteasome and one which affected both the proteasome and lysosomal cysteine 

proteases (LCPs).  The rationale for using two different inhibitors was to show more precisely 

any pathways which might be affected by 3001012. For example, if 3001012 activity was 

affected by the general inhibitor but not the specific inhibitor of the proteasome, that would 

suggest that 3001012 was not targeting the proteasome exclusively. MG132 and lactacystin 

were chosen for this purpose in the first instance (see Figure 80).  
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Figure 80: Structure of MG132 (left), a general inhibitor of the proteasome and the LCPs, and 
lactacystin (right), a specific proteasomal inhibitor. 
 

MG132 is a peptide aldehyde and is a well characterised inhibitor of the proteasome. It 

reversibly blocks the proteolytic activity of the 26S proteasome via potent inhibition of its 

chymotrypsin-like activity. It also inhibits LCPs. (412)  Lactacystin is a natural microbial product 

which inhibits the proteasome in a highly specific manner by covalently modifying the N-

terminal threonine of certain subunits of the β-ring. (413) Both trypsin-like and chymotrypsin-like 

activities are irreversibly inhibited, with the caspase-like activity inhibited reversibly and at a 

lower rate. Lactacystin itself does not interact with the proteasome until it undergoes 

conversion to the active proteasome inhibitor clasto-lactacystin β-lactone (see Figure 81). (414) 

Unlike lactacystin, clasto-lactacystin β-lactone can enter the cells, at which point it either 

interacts with the proteasome or is converted into an inactive form, known as lactathione, which 

is structurally and functionally analogous to lactacystin. This can be converted back into clasto-

lactacystin β-lactone within the cell to be used when required.  

 

 
 
Figure 81: Structure of clasto-lactacystin β-lactone, the active form of lactacystin. 
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From a clinical perspective the peptide boronic acids, such as bortezomib, are preferred due to 

their superior activity and slow dissociation from the proteasome, which gives stable yet 

reversible inhibition. (406) However, from a research perspective MG132 was preferred due to its 

use in previous studies, (179) and also because of price and availability considerations. Due to the 

high cost, lactacystin was used in a more limited set of experiments and within a pathway 

validation capacity. Considering MG132’s dual effect on both the proteasome and the lysosomal 

proteases, it was thought important to determine whether selective inhibitors of the lysosomal 

proteases had the same effect as MG132 to clarify the mechanism behind any observed effects. 

 

Lysosomal cysteine proteases (LCPs) are also known as the cathepsins, with 11 identified so far. 

They have specific and individual functions that are crucial to normal organism function and are 

associated with certain pathological events, including neurological disease. (415) Two LCP 

inhibitors with different specificities were used; E64 and Cathepsin inhibitor III (CI3). E64 is an 

irreversible, selective and highly potent cysteine protease inhibitor. It was chosen for this 

purpose due to its specificity, low toxicity and availability (Information from supplier MSDS). CI3 

selectively inhibits cathepsin B, L, S and papain (Information from supplier MSDS) and was 

chosen to help determine whether any changes seen might be as a result of inhibition of a 

specific cathepsin. Structures can be seen in Figure 82, and the different targets of all the 

inhibitors used in this study can be seen in Figure 83.  

 

 
 
Figure 82: Structures of CI3 (left), an inhibitor of cathepsins B, L, S and papain, and E64 (right), a 
general inhibitor of LCPs. 
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Figure 83: Representation of the targets of the different inhibitors used in these experiments. 

 
To assess whether any effect seen was specific to 3001012 or a general feature of the I3GA 

compounds two other structurally similar I3GA compounds were co-dosed with all the inhibitors 

where possible. 3001207 was chosen as it was one of the lead compounds, and also because it 

was also used in the proteomics and microarray studies. No E3 ligases were identified in the 

microarray and proteomics data for 3001207 and although results showed that there was a link 

to HSP90 it was found to be down-regulated. It was therefore thought important to also 

investigate 3001207 for comparative purposes. 3001086 was used as this compound had been 

investigated previously as part of studies relating to possible effects of the I3GA compounds on 

autophagy (see section 6.1). Materials and methods for this study are outlined in detail in 

sections 2.1.4 and 2.2.4.5. 

  

 

 
  
Figure 84:  Structures of 3001012 (a), 3001207 (b) and 3001086 (c). 3001012 has an EC50 of 1 
nM, 3001207 has an EC50 of 1.5 nM (first batch) or 15 nM (second batch) and 3001086 has an 
EC50 of 180 nM (See section 3.1) 
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6.2.2. Results  

 

6.2.2.1. MG132 

An initial investigation evaluated the effect of dosing the cells with MG132 on its own to see if it 

had any effect on PrPSc levels at a range of concentrations.  

 
 
Figure 85: PrPSc levels in SMB cells after dosing with MG132 at concentrations ranging from 0.05 
µM to 20 µM. 0.5 µM is the lowest concentration to induce an increase in PrPSc, and levels 
continue to rise in a dose-dependent manner until the amount of PrPSc starts to decrease at 5 
µM. Toxicity was observed at concentrations higher than 5 µM. The data points shown represent 
the mean ± SD values from duplicate experiments where each sample was analysed in triplicate. 
 

It can be seen in Figure 85 that from concentrations as low as 0.5 µM MG132 caused an increase 

in PrPSc, with levels increasing to around 3 times that of the untreated control at a concentration 

of 2.5 μM. The LD50 was estimated to be around 6 µM, with cell death starting to become 

obvious at 5 µM. The reported IC50 for MG132 in cultured cells is around 5 µM, (412) so the data 

here is in agreement with the literature. However, the associated toxicity means that the 

therapeutic window for this compound is rather small. For all subsequent assays MG132 was 

used at a concentration of 3 µM to provide the maximum activity without compromising cell 

viability.  

 

Once the working concentration of MG132 had been established it was co-dosed with 3001012 

at a range of concentrations.  
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Figure 86: Data showing the effect of MG132 on 3001012 activity as measured by PrPSc 
clearance. The black curve indicates 3001012 on its own at concentrations between 0.001 nM 
and 100 nM. The red curve indicates 3001012 at the same concentrations but co-dosed with 3 
µM MG132. Each graph shows an independent experiment, Table 42 gives estimated EC50 
values. The data points shown represent the mean ± SD values from a single experiment where 
each sample was analysed in triplicate. 
 

Table 42: EC50 values for 3001012 on its own or co-dosed with MG132 calculated from the data 
presented in Figure 86. 
 

 

 

The three independent experiments shown in Figure 86 indicate that 3001012 is less efficient at 

clearing PrPSc when co-dosed with MG132. In all cases, PrPSc has accumulated at the sub-active 

concentrations of 3001012 (<5 nM for all experiments), followed by a significant decrease at 
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active concentrations. The difference between baselines in co-dosed cells and cells dosed with 

3001012 only demonstrate a reduction in the efficacy of 3001012, but the extent of this 

reduction differs between experiments. The reduction of PrPSc levels in co-dosed cells varied 

between 50 % of the blank (a. and b.) and 100 % of the blank (c). The extent of PrPSc 

accumulation as a result of MG132 treatment at sub-active concentrations of 3001012 also 

varies from 150 % of the blank (c) to 300 % of the blank (a), even though the MG132 

concentration is the same. In b. and c. no change in the EC50 values is observed (see Table 42), 

although it can be seen that in a. the EC50 has decreased slightly, suggesting that co-dosing with 

MG132 can actually increase the activity of 3001012. 

 

Data from Figure 86a was analysed using multiple t-tests to determine if the differences 

between 3001012 on its own and 3001012 co-dosed with 3 µM MG132 at the higher 

concentrations of 3001012 were statistically significant. 

 

 
 
Figure 87: Statistical analysis of the data at concentrations of 5 (a), 10 (b) and 50 nM (c), 
comparing cells treated with 3001012 to cells treated with both 3001012 and MG132. Data from 
Figure 86a above. Statistical analysis using a multiple t-test showed statistically significant 
differences in all cases with p-values as follows; 5 nM p = 0.00468012, 10 nM p = 0.0041324, 50 
nM p = 0.0117233. The data points shown represent the mean ± SD values from duplicate 
experiments where each sample was analysed in triplicate. 
 

Statistical analysis of the differences between cells treated with 3001012 and cells treated with 

both 3001012 and MG132 show that MG132 is causing a statistically significant decrease in the 
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activity of 3001012 as measured by clearance of PrPSc (see Figure 87). This is true for 

concentrations up to 50 x EC50 (and up to 100 x EC50 in some cases) suggesting that even an 

excess of 3001012 can’t fully compensate for the antagonism of MG132. This is to be expected 

as MG132 is inhibiting the protein degradation systems, rather than 3001012. 

 

A time course assay was carried out to determine how long it took for PrPSc levels to rise after 

dosing with MG132. This was also carried out for cells which were co-dosed with 10 nM 3001012 

and MG132 to determine how co-dosing might alter the time courses of the individual 

compounds. It was hypothesised that if PrPSc levels rose more quickly than 3001012 was able to 

reduce PrPSc levels that may explain the reduced clearance seen in the previous experiments, as 

more PrPSc would have initially been present in the cells. However, if 3001012 was able to 

reduce PrPSc levels before the MG132 induced increase in levels, 3001012 may be able to 

mitigate the effects of inhibition. It would also suggest that the decreased clearance efficiency 

may have resulted from 3001012 being challenged by the effects of MG132.   

 

 
 
Figure 88: Effect on PrPSc levels in SMB cells when dosed with MG132 3 µM over 128 hours (6 
days). a. and b. show two independent experiments. PrPSc levels start to rise after 48 hours. 
Further repeats of the time course showed PrPSc levels beginning to rise at the same time, but 
the total PrPSc accumulation observed after 128 hours varied between 300 % of control (as seen 
in b) and 800 % of control (as seen in a). The data points shown represent the mean ± SD values 
from a single experiment where each sample was analysed in triplicate. 
 

As in the previous experiments it is clear that dosing the SMB cells with 3 µM MG132 causes 

significant, although not always consistent, rises in the levels of PrPSc, without any associated 

toxicity (see Figure 88). PrPSc does not start to accumulate immediately, with the observed lag 

phase of around 48 hours suggesting that other systems can compensate for the effects of 

MG132 inhibition for a limited period. A previous study found a large increase in PrPSc 

aggregates in ScN2a cells after 16 hours of MG132 treatment, suggesting the SMB cells may be 
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less sensitive to MG132 inhibition. (179) While accompanying MTT assays weren’t carried out in 

this specific instance, no signs of toxicity or imminent cell death were visible by eye before cell 

lysis. This is in agreement with the low cytotoxicity of MG132 at 3 μM (see Figure 85). 

 

 
 
Figure 89: Time course effect on PrPSc levels in SMB cells treated with 3001012 at 10 nM co-
dosed with MG132 at 3 µM. Drug treatment was assessed over a time course of 0 – 128 hours in 
Experiments 1 and 2. Each data point represents the mean ± SD values from a single experiment 
where each sample was analysed in triplicate. Data points in black show the effect of 3001012 
alone; data points in red show the effect of 3001012 co-dosed with MG132. (a) Statistical 
analysis of Experiment 1 using multiple t-test shows that at the 96 and 104 hour time points the 
effect of 3001012 alone or 3001012 co-dosed with MG132 is statistically different (p<0.001 in 
both cases). (b) Statistical analysis of Experiment 2 using multiple t-test shows that at the 120 
hour and 128 hour time points the effect of 3001012 alone or 3001012 co-dosed with MG132 is 
significantly different (p<0.001 in both cases). 
 

It can be seen in Figure 89 that the time course of 3001012 is not affected by co-dosing with 

MG132. No increase in PrPSc levels above normal was observed, suggesting that 3001012 is able 

to prevent MG132-induced PrPSc accumulation. The data from experiments one and two in 

Figure 89 would seem to suggest that at the final time points the effect of MG132 has more of 

an inhibitory effect on the activity of 3001012 than it does at earlier time points, with increased 

MG132 activity and decreased 3001012 efficacy seen from 96 hours in one case and 120 hours in 

the other.  

 

To determine whether the antagonism of MG132 activity was a feature of all I3GA compounds, 

or specific to 3001012, MG132 was co-dosed with two other I3GA compounds (3001207 and 

3001086) to see if the same pattern was observed. Statistical analysis was also carried out on the 



214 

 

final time points to determine if the differences as a result of the two treatments were 

significant. 

 

 
 
Figure 90: Effect on PrPSc levels in SMB cells when treated with a. 3001207 and b. 3001086. Black 
lines indicates the compound on its own, the red line indicates the compound co-dosed with 3 
µM MG132. Cells were dosed for 5 days.  The data points shown represent the mean ± SD values 
from triplicate experiments where each sample was analysed in triplicate. 
 

 
 
Figure 91: Statistical analysis of the data for the lowest and highest active concentrations of 
3001207 and 3001086. T-tests were carried out comparing cells dosed with the I3GA on its own 
to cells co-dosed with MG132 at 3 µM and a concentration gradient of the I3GA. 3001207 only 
showed a significant difference at 50 nM (p = 0.00194683, n = 9), while 3001086 showed a 
significant difference at both 1 µM and 20 µM (p = <0.001, n = 9 for both). The data points 
shown represent the mean ± SD values from triplicate experiments where each sample was 
analysed in triplicate. 
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Examination of the data in Figure 90 and Figure 91 does suggest that the effect of MG132 on the 

activity of 3001207 and 3001086 is not as pronounced as it is with 3001012, particularly in 

comparison to Figure 86c. However, the same pattern was seen, with PrPSc levels being 

significantly higher than normal at sub-active I3GA concentrations, rapidly decreasing around 

EC50 concentrations and then plateauing at the higher concentrations at slightly higher than 

normal levels, with this behaviour suggesting that clearance has been inhibited. Clearance 

efficiency was also affected to a statistically significant degree in some cases.  

 

These co-dosing experiments were also carried out using a fixed, active concentration of the 

I3GA compound and a concentration gradient of MG132. MG132 was only used at known sub-

toxic concentrations to avoid any toxicity related effects. These experiments were carried out to 

help elucidate further the mutual antagonism of MG132 and the I3GA compounds. 

 
 
Figure 92: Data showing the effect of a fixed concentration of 3001012, 3001207 and 3001086 
on MG132 activity; a. shows the co-dosed results in comparison to MG132 on its own, while b. 
shows the co-dosed results only for greater clarity. The x-axis gives the concentration of MG132. 
The data points shown represent the mean ± SD values from duplicate experiments where each 
sample was analysed in triplicate. 
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The data in Figure 92 clearly show that co-dosing with the I3GA compounds mitigates the 

accumulation of PrPSc that is observed when the cells are treated with MG132 on its own. 

Although PrPSc levels are still rising at the active concentrations of MG132 they are not rising to 

anywhere near the levels seen for MG132 only. This suggests that the I3GAs can compensate for 

a certain amount of inhibition, but at the higher MG132 concentrations they are less efficient at 

antagonising the effects of MG132. These data also show that MG132 is able to induce an 

increase in PrPSc in the presence of the I3GAs, in a dose-dependent manner. 

 

In conclusion, the studies with MG132 have clearly shown that inhibition of the protein 

degradation systems results in an increase in levels of PrPSc, with associated toxicity being 

observed at higher concentrations. Co-dosing MG132 with the I3GA compounds mitigates this 

PrPSc increase, with the I3GA compounds still active at a similar EC50 to that observed when 

dosed alone. A decrease in efficacy was noted, with PrPSc being cleared to a lesser extent when 

co-dosed with MG132. This effect appeared to be more pronounced when 3001012 was the 

I3GA in question, but statistically significant differences in the clearance of 3001207 and 

3001086 when dosed alone or with MG132 were observed. Co-dosing a concentration gradient 

of MG132 with the I3GAs still resulted in a dose-dependent increase in PrPSc levels, but the 

extent of the increase was massively reduced compared to MG132 alone. Time course analysis 

suggests that the I3GAs are able to prevent the PrPSc accumulation induced by MG132 

treatment. It can be seen in Figure 88 that it takes around 56 hours for PrPSc levels to start to 

rise. This correlates well with the time taken for the I3GAs to reduce PrPSc to a minimum level 

and it would appear that this is enough to prevent MG132-induced accumulation. The toxicity 

observed as a result of treatment with MG132 at high concentrations suggests that inhibition of 

the degradation pathways is dose-dependent, and that a certain amount of inhibition can be 

tolerated. However, complete inhibition of both the proteasome and LCPs above this level is 

clearly cytotoxic. 

 

6.2.2.2. Lactacystin 

The co-dosing experiments were subsequently repeated using lactacystin as the inhibitor. Again, 

this was screened on its own to establish its effect on PrPSc accumulation, and was then co-

dosed with the same I3GAs as before to show the effect of proteasomal inhibition on their 

activity.  
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Figure 93: PrPSc levels in SMB cells after dosing with lactacystin at concentrations ranging from 
0.1 µM to 20 µM. No significant effect was seen on either PrPSc levels or cell viability. The data 
points shown represent the mean ± SD values from duplicate experiments where each sample 
was analysed in triplicate. 
 
As can be seen in Figure 93 lactacystin does not have any effect on PrPSc levels. No toxicity was 

observed at the highest concentrations. As there was no obvious increase in PrPSc levels it was 

not possible to estimate active concentrations using the data from lactacystin in isolation. As 

there was no apparent toxicity at higher concentrations it was decided to use the highest 

practical concentration, which was 10 µM.  

 
 
Figure 94: Data showing the effect of lactacystin on 3001012 activity as measured by PrPSc 
clearance. The black curve indicates 3001012 on its own at concentrations between 0.1 nM and 
10 nM. The red data indicates 3001012 at the same concentrations but co-dosed with 10 µM 
lactacystin – a curve could not be fitted to these data. The data points shown represent the 
mean ± SD values from duplicate experiments where each sample was analysed in triplicate. 
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Due to compound availability this co-dosing experiment was done at a more limited range of 

concentrations than normal. However, statistical analysis by t-test of all data points showed no 

significant difference between any of the data points suggesting no significant effect of 

lactacystin on 3001012 activity (statistical analysis data not shown). 

 

6.2.2.3. E64  

As discussed in section 6.2.1, inhibitors of the LCPs were also investigated to clarify whether 

inhibition of the proteasome or the LCPs was causing the PrPSc increase observed when the cells 

were dosed with MG132. As direct, specific inhibition of the proteasome using lactacystin had 

not resulted in PrPSc increases, it was hypothesised that the increases may be due to the 

inhibition of LCPs, a known effect of MG132. To investigate this further, the effect on PrPSc levels 

and I3GA activity of two lysosomal protease inhibitors, E64 and CI3 were investigated. As before, 

initial studies looked at their effect in isolation, before considering their effect on the activity of 

the three I3GA compounds.  

 

 
 
Figure 95: PrPSc levels in SMB cells after dosing with E64 at a range of concentrations from 0.5 
µM to 25 µM. Each concentration is dosed in triplicate. (a) demonstrates the increased amount 
of PrPSc as indicated by the darker spots, while (b) shows the IOD values for those spots as a 
percentage of the untreated control. Figures down the left of (a) indicate the E64 concentration 
in µM. The data points shown represent the mean ± SD values from duplicate experiments 
where each sample was analysed in triplicate. 
 

As can be seen in Figure 95, E64 caused a large rise in PrPSc at slightly higher concentrations than 

MG132, with levels starting to rise from around 5µM. Unlike MG132 no toxicity was observed at 

the higher concentrations. On the basis of this it was decided to run the competition 

experiments using E64 at both 10 µM and 20 μM to see if different levels of clearance were 
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observed. E64 at 10 μM caused an increase in PrPSc levels of around 300 %, while E64 at 20 μM 

caused an increase in PrPSc levels of nearly 1000 %. 

 

 
 
Figure 96: The effect of two different concentrations of E64 on the activity of 3001012 (a), 
3001207 (b) and 3001086 (c). Bar graphs show the data for the I3GA only, and the I3GA with 10 
or 20 μM E64 at the lowest concentration where clearance occurs when the compound is dosed 
on its own. Stars indicate if the difference in clearance is statistically significant. Apart from 
3001207 with 10 μM E64 (p = 0.00882755) in all cases p = <0.001. The data points shown 
represent the mean ± SD values from duplicate experiments where each sample was analysed in 
triplicate. 
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Table 43: EC50 values for the I3GAs on their own or co-dosed with two different concentrations 
of E64 calculated from the data presented in Figure 96 
 

 

It can be seen in Figure 96 that in all cases co-dosing the I3GAs with E64 results in a statistically 

significant reduction in clearance efficiency, measured at the lowest concentration at which full 

clearance occurs. However, this reduced efficiency did not result in a significant reduction in EC50 

values, as can be seen in Table 43. 

 

Subsequent experiments co-dosed a concentration gradient of E64 with a fixed concentration of 

the I3GA compounds. 

 
 
Figure 97: The effect of a fixed concentration of 3001012, 3001207 and 3001086 on E64 activity; 
a. shows the co-dosed results in comparison to E64 on its own, while b. shows the co-dosed 
results only for greater clarity. The x-axis gives the concentration of E64. All compounds are able 
to prevent the accumulation of PrPSc induced by E64, with the activity of 3001012 being affected 
to the greatest degree. The data points shown represent the mean ± SD values from duplicate 
experiments where each sample was analysed in triplicate. 
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The data presented in Figure 97 shows a similar pattern to the MG132 data (see Figure 92), with 

the I3GAs able to mitigate the increases seen as a result of the inhibition, but with clearance 

efficiency still being reduced in the case of 3001012. Increased concentrations of inhibitor 

resulted in a dose dependent increase in PrPSc levels, again suggesting that an excess 

concentration of inhibitor is important. The E64 data presented here suggests that the activity of 

3001012 is impaired to a higher degree than the other I3GA compounds, although this is not 

replicated by the MG132 data. 

 

In conclusion it can be seen that treating the cells with E64 results in a similar pattern to that 

seen when the cells are dosed with MG132, although there are some notable differences. E64 

did not show any associated toxicity, and it was therefore possible to use it at much higher 

concentrations. Consequently, the PrPSc accumulation that could be induced with E64 was much 

higher than that induced by the sub-toxic concentrations of MG132. However, MG132 was 

active at lower concentrations. The I3GA compounds are capable of preventing the 

accumulation of PrPSc caused by E64, with co-dosing reducing the clearance efficiency of the 

compounds without affecting the EC50 values. As with MG132, a dose-response was seen with 

increasing concentrations of E64 causing increased inhibition of I3GA activity up to a certain 

point. The reverse was not seen, with an excess of I3GA not resulting in any improvement in 

clearance efficiency. Comparison of the E64 data presented here with the lactacystin data 

suggests that the observed increase in PrPSc levels is likely to be induced by inhibition of the 

LCPs, rather than the proteasome itself. 

 

6.2.2.4. Cathepsin Inhibitor III (CI3) 

The final inhibitor to be used in these co-dosing experiments was CI3, which selectively inhibits 

cathepsins B, L and S as well as papain. This was used to reveal further information about 

whether a specific cathepsin might be responsible for the PrPSc accumulation seen as a result of 

treatment with MG132 and E64. As with the other inhibitors it was first dosed on its own to 

assess its effect on PrPSc levels, before being co-dosed with the I3GAs. 
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Figure 98: PrPSc levels in SMB cells after dosing with CI3 at a range of concentrations from 0.5 
µM to 25 µM. No effect was observed on either PrPSc levels (activity) or viability. The data points 
shown represent the mean ± SD values from duplicate experiments where each sample was 
analysed in triplicate. 
 

It can be seen in Figure 98 that, like lactacystin, CI3 did not cause any significant changes in PrPSc 

levels over the range of concentrations used. This suggests that none of the cathepsins that are 

inhibited by CI3 have an important role in PrPSc homeostasis. No toxicity was observed at any 

concentration. As with lactacystin it was not possible to estimate active concentrations using the 

data from the compound in isolation so again the highest practical concentration, 10 µM, was 

used.  
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Figure 99: The effect of CI3 at 10 μM on the activity of 3001012 (a), 3001207 (b) and 3001086 
(c). Co-dosing with CI3 results in a decrease of the activity of 3001012 and an improvement in 
the activity of 3001086, but has no effect on the activity of 3001207. The data, as indicated by 
PrPSc clearance, is unaffected by treatment. The data points shown represent the mean ± SD 
values from duplicate experiments where each sample was analysed in triplicate. 
 

Table 44: EC50 values for the I3GAs on their own or co-dosed with CI3, calculated from the data 
presented Estimated EC50 values for the data presented Figure 99 
 

 

 

Even though CI3 did not have any effect on PrPSc levels it can be seen that there are shifts in the 

EC50s of 3001012 and 3001086 when co-dosed with 10 µM CI3 (see Figure 99 and Table 44). The 

EC50 for 3001012 has increased from approximately 4 nM to 25 nM, and this was found to be a 

reproducible effect. The EC50 for 3001086 has decreased slightly, shifting from 0.75 µM to 

around 0.4 µM, however the small magnitude of the shift and the error observed cast doubt on 

the significance of this. No change was observed in the EC50 of 3001207. 
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Subsequent experiments co-dosed a concentration gradient of CI3 with a fixed concentration of 

the I3GA compound. 

 
 
Figure 100: The effect of a CI3 concentration gradient on a fixed concentration of 3001012, 
3001207 and 3001086. There is no observable change in the activities of the I3GA compounds at 
their active concentrations. The data points shown represent the mean ± SD values from 
duplicate experiments where each sample was analysed in triplicate. 
 

Co-dosing a fixed concentration of the I3GA compound with a concentration gradient of CI3, as 

shown in Figure 100, had no effect on the activity of the I3GA compounds with clearance 

comparable to when the compounds are dosed in isolation at these concentrations. 

 

6.2.2.5. Negative Controls 

In an attempt to further elucidate the role of the I3GA compounds in antagonising the activity of 

the inhibitors, the same competition assays were carried out with compounds that had similar 

effects to either the I3GAs or the inhibitors but without affecting the proteasome or LCPs. 

During the studies of anti-prion compounds from the literature (see section 4.4.2), congo red 

was found to cause a large increase in PrPSc levels at certain concentrations (discussed in 

4.4.2.2). Although analogues of congo red have been shown to work by increasing PrPSc 

degradation by the proteasome, (220) there is no evidence that congo red itself has a direct effect 

on the proteasome or the LCPs. The I3GA compounds were co-dosed with congo red in place of 

the inhibitors to see if the rise in PrPSc levels was still diminished. Quinacrine, an anti-prion 

compound with an established mode of action (see section 4.4.3.2), was co-dosed with MG132 

and E64 to see if a similar effect was observed with a compound not associated with the 

proteasome or lysosomal proteases.  
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Experiments were carried out as before, with congo red used at 1 µM (see Figure 59) and 

quinacrine used at 5 µM. 

 

 
 

Figure 101: PrPSc levels in cells dosed with either 3001012 or co-dosed with 3001012 and 1 µM 
congo red. At sub-active concentrations of 3001012 (<5 nM in this instance) very high levels of 
PrPSc are observed, consistent with congo red dosed on its own. This rise in PrPSc levels is 
reduced at higher levels of 3001012. Bar chart shows the data from the active concentrations of 
3001012 for clarity. The data points shown represent the mean ± SD values from duplicate 
experiments where each sample was analysed in triplicate. 
 

The data in Figure 101 shows a similar pattern to that seen when the I3GAs were co-dosed with 

E64 and MG132. The biggest difference is that at sub-active I3GA concentrations, the increase in 

PrPSc seen as a result of congo red treatment is far bigger than seen with either E64 or MG132. 

The active concentrations of 3001012 are able to mitigate the majority of this increase, but the 

clearance efficiency is significantly reduced. Even at 50 and 100 nM 3001012, PrPSc levels are 

only reduced to around 100 % of the control. This suggests that the addition of the I3GA 

compound is able to counteract the congo red induced accumulation of PrPSc, but is not able 

totally cure the cells. It is therefore possible that congo red in some way inhibits the normal 

mode of action of 3001012, possibly through the direct interaction of congo red with both forms 

of PrP. It is also possible that the failure of 3001012 to totally mitigate the effects of congo red 

was simply due to the very high excess levels of PrPSc being produced. An interesting observation 

is that the cells were seemingly able to tolerate this massive accumulation of PrPSc, as no toxicity 

was associated with congo red treatment.  
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Figure 102: Effect on PrPSc levels when a concentration gradient of quinacrine was dosed either 
on its own or with MG132, E64 or CI3. Bar graphs show data for quinacrine at 1 μM, 5 μM and 
10 μM, with stars indicating statistically significant differences from quinacrine on its own. 
Statistically significant differences were found for quinacrine at 1 μM with MG132 (p = 
0.000221874) and E64 (p = 0.0173923) and for quinacrine at 5 μM with MG132 (p = 
0.000796993). The data points shown represent the mean ± SD values from duplicate 
experiments where each sample was analysed in triplicate. 
 

Table 45: EC50 values for quinacrine on its own or co-dosed with MG132, E64 or CI3, calculated 
from the data presented in Figure 102 
 

 

 

The data presented in Figure 102 and Table 45 shows a similar pattern to that seen with the 

I3GAs. Quinacrine is able to mitigate the increase in PrPSc caused by MG132 and E64, with 
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clearance efficiency being reduced to a significant degree at 1 μM. Although there was no 

advantage to increasing the concentration of the I3GAs, statistical analysis suggests that 

increasing the concentration of quinacrine restores full clearance efficiency, although at 10 µM 

this would appear to be the result of a slight increase in baseline levels of PrPSc in cells treated 

with quinacrine only. Treatment with all three inhibitors appears to decrease the EC50 of 

quinacrine slightly, although the significance of this remains ambiguous. 

 

 
 
Figure 103: Effect on PrPSc levels when MG132 (a), E64 (b) and CI3 (c) were co-dosed with 
quinacrine. For MG132 and E64 the graph on the right shows the curve for the co-dosed cells 
only for clarity. The data for CI3 also includes quinacrine on its own at 5 µM for comparison. The 
difference between quinacrine only and quinacrine with CI3 at 25 μM was not statistically 
significant (t-test, p = 0.0673633). The data points shown represent the mean ± SD values from 
duplicate experiments where each sample was analysed in triplicate. 
 

The effect of co-dosing quinacrine against a concentration gradient of the different inhibitors, as 

shown in Figure 103 was similar to that seen with the I3GAs, with the presence of the anti-prion 

compound dramatically decreasing the magnitude of the increase in PrPSc seen when the 
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inhibitors were dosed on their own. The slight increase in PrPSc levels as inhibitor concentration 

increased was also observed.  A slight increase in PrPSc levels was observed at the highest 

concentration of CI3, 25 µM, when a concentration gradient of CI3 was co-dosed with 5 µM 

quinacrine, but this was not found to be statistically significant.  

 

 

6.2.3. Discussion 

 

In this study 4 different inhibitors of the protein degradation systems were used, and their effect 

on both steady state levels of PrPSc and the activity of 3 different I3GA compounds was assessed 

through co-dosing experiments. Negative control experiments were carried out with congo red, 

which causes PrPSc accumulation via a mechanism not associated with protein degradation, and 

quinacrine, which is known to have a mode of action unrelated to protein degradation. 

 

6.2.3.1. Effects of the Different Inhibitors 

MG132 and E64 were the only inhibitors to cause PrPSc accumulation (see Figure 85 and Figure 

95), and the correlation between the effects of MG132 and E64 suggest that it is the inhibition of 

LCPs which results in the increase in PrPSc. This in turn suggests that lysosomal degradation has a 

crucial role to play in maintaining steady state levels of PrPSc within this system. The lack of 

increase in PrPSc levels seen as a result of treatment with lactacystin suggests that inhibition of 

just the proteasome does not have any effect on PrPSc homeostasis although this may be 

because the proteasome is already inhibited. (220) This study by Webb et al showed that the 

proteasomal activity in the SMB cells was reduced by around 50 % compared to cured cells, so 

although the proteasome was inhibited it did retain some activity. It is possible that other 

systems, such as the LCPs, are compensating for the partial inhibition of the proteasome under 

normal circumstances, meaning that specific, total pharmaceutical inhibition of the proteasome 

by lactacystin is not a challenge to the cells. Partial inhibition of the cathepsins with CI3 was not 

enough to cause the same effects as total LCP inhibition. It can therefore be concluded that 

none of the cathepsins inhibited by CI3 are individually responsible for PrPSc homeostasis. It may 

be that inhibition of some of the cathepsins can be compensated for by those that are 

unaffected, or that control rests with one (or more) of the uninhibited cathepsins.  

 

It could be hypothesised that if inhibition of the LCPs results in PrPSc accumulation, then their up-

regulation may be part of a mechanism by which PrPSc is cleared from the cells. However, the 
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role of LCPs and lysosomal degradation in prion disease is still ambiguous. Several anti-prion 

compounds have been shown to work by facilitating the transport of PrPSc to the lysosomes, 

including cationic dendrimers,(229, 411) tyrosine kinase inhibitors, (237) chlorpromazine (238) and 

tamoxifen and its metabolites. (239)  There is direct evidence that the induction of autophagy 

results in the degradation of PrPSc, with rapamycin, lithium and trehalose, all initiators of 

autophagy, able to reduce PrPSc in vitro and prolong disease incubation times in vivo. (259) There 

is also a precedent for MG132 and inhibitors of cathepsins B and L causing increased levels of 

PrPSc. (179, 416) In contradiction to this, there is evidence that the cathepsins are actually involved 

in disease pathogenesis, with an imbalance of cathepsins being associated with 

neurodegenerative diseases including Alzheimer’s and prion disease. (417-422) A study of ScN2a 

cells found that cathepsins B and L were upregulated in infected compared to uninfected cells, 

suggesting that they may be involved in PrPSc formation via a second autocatalytic route. (418) 

Another study comparing the gene expression profile of infected and uninfected mouse brains 

found cathepsins S, H, C, D, Z and, to a lesser extent, B and L were upregulated. (417) Cathepsins 

have also been implicated in neuronal death. (423) However, despite the evidence above the exact 

role of cathepsins in prion disease remains to be determined. 

 

From the data presented in section 6.2.2 it is thought likely that the lysosomes have a crucial 

role in the SMB cells in maintaining PrPSc homeostasis, possibly by degrading a certain amount of 

the PrPSc that is produced, but without ever being able to totally clear the cells of infection. 

Whether up-regulation of these processes is part of the mode of action of the I3GA compounds 

will be discussed in more detail in sections 6.2.3.2 and 6.2.3.3. The toxicity of MG132 at higher 

concentrations, the lack of toxicity associated with the LCP inhibitors and lactacystin and the 

partial inhibition of the proteasome by PrPSc suggest that the cells can withstand inhibition of 

one or other of the protein degradation pathways but not full inhibition of both. This makes it 

likely that the two systems may be able to compensate for each other if one is not functioning 

properly.  

 

6.2.3.2. Inhibitors vs 3001012 

It is clear from the data presented in section 6.2.2.1 that 3001012 is able to mitigate the rise in 

PrPSc caused by MG132 and E64, although co-dosing with the inhibitors did reduce clearance 

efficiency without changing the EC50. An excess of 3001012 was not found to improve efficiency, 

while increasing concentrations of the inhibitors were shown to dose-dependently increase PrPSc 

levels, even when co-dosed with 3001012. Direct inhibition of the proteasome with lactacystin 
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had no effect on 3001012 activity, while co-dosing with CI3 did shift the EC50, suggesting that 

inhibition of certain cathepsins may antagonise the activity of 3001012. The delay observed in 

the time course analysis suggests that degradation pathways are able to cope with a certain 

amount of inhibition for a limited period of time. It was hypothesised that the toxicity observed 

as a result of treatment with MG132 was due to full inhibition of both the degradation 

pathways, suggesting that some degradative capacity may remain at the concentrations used. 

Co-dosing with 3001012 totally prevented the rise in PrPSc levels, and it would appear that 

3001012 is able to exert its effect before PrPSc levels start to rise. This in turn suggests that the 

tipping point at which PrPSc starts to accumulate is never reached.  

 

The exact mechanism by which 3001012 is antagonising the effects of LCP inhibition is not clear. 

The original hypothesis was that 3001012 was upregulating the proteasome, so inhibition of the 

proteasome should have reduced the activity of 3001012. Evidence presented thus far suggests 

that it is the lysosomes, rather than the proteasome, which are the important pathway, so it 

could be suggested that 3001012 is acting by upregulating the LCPs.  This would seem to be 

confirmed in part by the data, as E64 and MG132 do reduce the clearing efficiency of the 

compound. However, in most cases, 3001012 still retains the majority of its activity, and in all 

examples except CI3 the EC50 is not affected, suggesting that other pathways are likely to be 

affected by 3001012 as part of its mode of action. It is also possible that 3001012 has no effect 

on the LCPs, but compensates for the increases caused by the inhibitors via its normal mode of 

action. The clearance of PrPSc by 3001012 occurs before the hypothetical tipping point at which 

PrPSc starts to accumulate, suggesting that the presence of 3001012 simply prevents the 

degradation systems from becoming overwhelmed. The lower efficiency may simply be a 

consequence of the lowered degradative capacity of the cellular machinery. This possibility was 

examined further by investigations into other I3GA compounds and also through the use of 

negative controls with no known connection to the protein degradation pathways.  

 

6.2.3.3. Inhibitors vs 3001207 and 3001086 

Two other I3GA compounds, 3001207 and 3001086 were used in co-dosing experiments (see 

section 6.2.2.1). The data for these compounds followed a similar trend to the 3001012 data, 

with efficacy affected to a smaller, though sometimes significant degree. Again, an excess of the 

I3GA was not beneficial, while the inhibitors were able to dose-dependently increase PrPSc 

levels, even in the presence of the I3GA.  As these compounds have a similar time course to 
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3001012 it is possible they are reducing PrPSc levels to the point where LCP inhibition does not 

result in the other degradation systems becoming overwhelmed.  

 

It can be seen that the data is not conclusive – although a more limited effect was seen on 

activity of 3001086 and 3001207, higher concentrations of MG132 in particular caused PrPSc 

accumulation in the presence of the I3GAs. It is therefore possible that activation of the LCPs are 

part of the mode of action of all three compounds. The structural similarities between the three 

compounds (see Figure 84), as well as the tight SAR  identified for the I3GA compounds, suggests 

that they should share a mode of action, although this assumption was called into question by 

the microarray and proteomics data. The hypothesis that the I3GAs work to reduce PrPSc levels 

via a mechanism that is independent of the protein degradation systems, thereby preventing the 

degradation systems from becoming overwhelmed when inhibited, ties in with the time course 

data for all compounds. However, an impact on lysosomal function is something that cannot be 

discounted on the basis of this data, but it is thought unlikely that this would be the only 

pathway affected by treatment. 

 

6.2.3.4. Negative Control Experiments 

Negative control experiments with quinacrine and congo red were carried out to try and show 

whether the effects seen were as a result of direct interactions with the LCPs, or due to the anti-

prion compounds compensating for PrPSc accumulation via a more generic mechanism. Taken as 

a whole, the data shows a very similar pattern to the data obtained for the I3GAs and inhibitors. 

Congo red is thought to stimulate PrPSc accumulation by acting as a scaffold for PrPSc formation 

at low concentrations. (380) It therefore causes increases in PrPSc without any effect on the 

protein degradation systems. 3001012 was shown to counteract this aggregation at active 

concentrations, although clearance to normal baseline levels was not observed. The mode of 

action of quinacrine has been investigated and has not been shown to have links to any of the 

protein degradation systems. However, it was still able to mitigate the accumulation of PrPSc 

caused by MG132 and E64 with a limited, although in some cases significant, effect on efficacy. 

Unlike the I3GAs, an increase in quinacrine concentration increased clearance efficiency, again 

suggesting that quinacrine has a different mode of action to the I3GAs. The data would seem to 

suggest that the mitigation of the effects of inhibition is not necessarily related to some direct 

effect on the protein degradation systems, rather that the presence of a compound working to 

reduce PrPSc levels allows the degradative pathways to continue to function when their activity is 

impaired or one of them is unable to function.  
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6.2.3.5. Overall Conclusions 

In summary, the data presented here shows the importance of the LCPs in maintaining steady 

state levels of PrPSc. Direct inhibition of the proteasome does not have any effect on PrPSc levels 

suggesting a secondary role in PrPSc homeostasis. It is also possible that the inhibition of the 

proteasome by PrPSc, resulting in a decrease in activity of at least 50 %, renders the inhibition of 

the proteasome using lactacystin or MG132 redundant. All the anti-prion compounds that were 

investigated were able to mitigate the effect of inhibition of the protein degradation pathways, 

and 3001012 was also able to mitigate the PrPSc accumulation induced by congo red. The 

reduced clearance efficacy shown by 3001012 suggests that the activity of this compound is 

more sensitive to the presence of LCP inhibitors, and is possibly working in part by upregulating 

the activity of the lysosomes. However, a less pronounced effect was seen on the activity of the 

other I3GAs and it is likely that all these compounds share a mode of action. It is thought that if 

3001012 is affecting the LCPs then this is likely to be a secondary effect rather than the primary 

mechanism for clearing the cells of infection. Based on the data presented in section 6.2.2, it 

would seem likely that the anti-prion compounds are counteracting the inhibitors by reducing 

PrPSc levels before the alternative degradation systems become overwhelmed, allowing reduced 

levels of PrPSc to be maintained with a more limited set of cellular machinery and preventing 

further conversion. The precise mechanism by which the compounds reduce PrPSc remains to be 

determined, but preventing the tipping point at which the pathways become overwhelmed 

appears to be key to preventing PrPSc accumulation as a result of inhibition of the protein 

degradation pathways. 

 

 

 

6.3. HSP90 Validation 

 

 

6.3.1. Introduction 

 

As discussed previously it was hypothesised that the I3GA compounds might be exerting their 

anti-prion effect through some kind of manipulation of the proteasomal pathway. HSP90 was 

identified as being upregulated in the microarray after treatment with 3001012 and is known to 

be associated with the proteasomal activities. It was hoped that by probing for HSP90 levels 

using western blotting it might be possible to both validate the results of the microarray and 
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confirm that HSP90 levels, and by extension proteasomal function, are affected by treatment 

with the I3GAs. Materials and methods for this study are outlined in detail in sections 2.1.5 and 

2.2.7. 

 

 

6.3.2. Results 

 

 
 
Figure 104: Western blots showing expression of HSP90 after a 5 day dose (a) and after a 56 
hour dose (b). Graphs show HSP90 levels in treated cells from four biological replicates. Data 
was adjusted for loading difference and is presented as a percent of the DMSO control. 
 

It is clear from the data in Figure 104 that treatment with the I3GA compounds does not have 

any effect on the protein expression of HSP90, with no significant differences being found 

between the DMSO treated cells and the I3GA treated cells. Dot blots of samples dosed and 

prepared in the same way were run alongside the western blots and these confirmed that the 

compounds were reducing PrPSc levels as expected (data not shown). To ensure over-saturation 

of the signal was not a problem the blots were automatically exposed, allowing the maximum 

signal to be obtained but without breaching the limits of the detector.  
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6.3.3. Discussion 

 

It can be seen from the data in Figure 104 that there is no significant change in HSP90 protein 

expression as a result of treatment with the I3GA compounds. In some ways this is not surprising 

as although HSP90 was shown to be upregulated at the gene level in the microarray studies, it 

was not found to be overexpressed in the proteomics study. This suggests that increased gene 

expression may not directly relate to increased protein levels, or that the change in protein 

levels was not large enough to be identified through analysis of the proteomics data or detected 

using this semi-quantitative method. HSP90 is an abundant protein with many different 

functions so it is possible that the increase in levels required to aid the clearance of PrPSc is not 

particularly large. As a result the lack of a distinct change in HSP90 levels does not necessarily 

rule out the involvement of the proteasomal pathway in the mode of action of the I3GA 

compounds. It is also possible that the signal on the blot was saturated as a result of the loading 

concentration being too high, meaning that more subtle changes in protein level could not be 

distinguished. Due to the problems with sensitivity, and the possibly erroneous assumption that 

up-regulation of gene expression would result in up-regulated protein expression, it is thought 

that western blotting may not be the optimal technique for validating microarray data. Other 

studies that have used microarrays to compare uninfected brains with brains infected with TSEs 

have validated their results using quantitative RT-PCR (417) or immunohistochemistry (424) and 

these alternative techniques may be preferable. 

 

 

 

6.4. Target Identification and Validation using Inverse 

Docking and Western Blotting 

 

 

6.4.1. Introduction  

 

Inverse docking experiments were carried out by Jorge M Valencia Delgadillo alongside analysis 

of the microarray and proteomics data to identify potential targets of the I3GA compounds, 

3001012 and 3001207. The methods used and the targets suggested by him are outlined in 

sections 6.4.2 and 6.4.3. My role in the study was to validate the theoretic mode of action 
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proposed by him, and to investigate the normal physiological roles of these proteins to 

determine if and how they may be involved in prion disease and the mode of action of the I3GAs 

(sections 6.4.3.1 to 6.4.3.4). The results of this study are outlined and discussed in section 6.4.4. 

 

The compounds were virtually docked into protein models with the aim of identifying potential 

interaction partners. Crossover between the top ranked results from the two compounds was 

then assessed to determine if the compounds might share a target, a hypothesis that was 

suggested due to the structural similarity of the two compounds (see Figure 84). The levels of 

the identified targets were investigated using western blotting to investigate any possible 

changes in expression as a result of treatment with the I3GA compounds. 

 

 

6.4.2. Inverse Docking Methods 

 

Initial work used the set of DEGs identified by Hood et al (382)  to manually assemble a database 

of possible target proteins. Where possible a high resolution x-ray model was used, otherwise a 

homology model was chosen. Homology models have been widely used in high-throughput 

ligand docking and have been successful in extending the range of ligand docking in the absence 

of complete protein structures. However, the quality of the model directly affects the accuracy 

of the results. (425)  Both 3001012 and 3001207 were tested against this database using the 

inverse docking protocol established by Hui-fang et al. (426) A list of 20 possible targets was 

established for each compound, with the only crossover between the two being Horf6 and 

catalase HP11, neither of which have any link to prion diseases. 

 

In order to try and further improve the results a second, larger, database of protein targets was 

used, based on the potential drug target database (PDTD). The PDTD contains 1207 entries 

covering 841 known and potential drug targets, and focuses on those drug targets with known 

3D structures. The structures were prepared for docking by making hydrogens explicit and 

deleting water molecules, ligands and ions. Using the ChemPLP scoring function, the top 1% of 

targets was identified, resulting in 12 potential targets for each compound. 6 of the potential 

targets were found in both lists, although again none of these were found to have any links to 

prion disease. In order to try and improve the results a calibration set was used, as set out by 

Santiago et al. (427) Using this approach Lck and Caspase 7 were identified as potential targets of 

both the I3GA compounds, with both 3001012 and 3001207 interacting with Lck at the same 
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residues, namely Gln66, Gln68 and Arg72. As will be discussed further subsequently, Lck does 

show links to prion disease. Although there is no evidence of the involvement of caspase 7 in 

prion diseases, there is evidence for the involvement of caspase 12 which shares 85 % homology 

with caspase 7 but for which no model was available.  

 

 

6.4.3. Target Identification 

 

Drawing together the results from the inverse docking experiments, as well as analysis of the 

MetaCore data and results of a literature search, several possible targets of the anti-prion 

compounds were proposed. These were metal transcription factor 1 (MTF-1), specific protein 1 

(sp1), lymphocyte-specific protein tyrosine kinase (lck) and caspase 12. In order to validate the 

results, and also confirm the validity of inverse docking as a tool to identify the targets of small 

drug-like molecules, the levels of these proteins in treated cells were probed via western 

blotting and their levels compared to an untreated control to try and establish any differences in 

expression. 
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Figure 105: Schematic representation of the targets identified and their possible interactions. 
Targets identified by inverse docking are in orange, targets identified by the microarray are in 
green and targets identified from a literature search are in blue. PKC was not investigated 
further in this study but is crucial to understanding the interactions between the other targets. 
Figure adapted from Jorge M Valencia Delgadillo.  
 

6.4.3.1. MTF-1 

MTF-1 encodes a transcription factor which induces the expression of metallothioneins in 

response to heavy metals such as cadmium, zinc, copper and silver. It is also a known 

transcription factor for PrPC. (428) Metallothioneins are a group of proteins with the capacity to 

bind physiological and xenobiotic heavy metals. They have a diverse range of cellular functions 

including the inhibition of pro-apoptotic mechanisms and the enhancement of cellular survival 

and tissue regeneration, and have also been suggested to have a role in neuroprotection and 

neurodegeneration. (429) MTF-1 accumulates in the nucleus in response to heavy metal exposure 

and binds to promoters containing a metal responsive element. MTF-1 is also a paralog of Gli-3 

(see Figure 73), meaning that they are related as a result of duplication of the ancestral gene 
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within the genome. A role for PKC in the activation of MTF-1 in response to metals has been 

suggested. (430) 

 

Metallothioneins exist in four isoforms, known as MT-1 through to MT-4. MT-1 and MT-2 are 

induced in the liver and are the most widely expressed isoform in mammals, with a diverse 

range of functions. MT-3 is present in the brain and has specific neuronal growth inhibitory 

activity. (431) MT-4 has been more recently discovered and its function is yet to be revealed, 

although it resides primarily in the squamous epithelium and may have a function in regulating 

zinc levels during the differentiation of stratified epithelium. (432) MT-1, 2 and 3 have been 

investigated in relation to prion diseases due to their role in copper homeostasis which may be 

perturbed during infection due to reductions in PrPC activity. Cells in which PrPC expression was 

induced were found to have higher levels of metallothioneins after PrPC induction compared to 

control cells, suggesting that PrPC may have a role in protecting against metal-induced toxicity. 

(433) The up-regulation of MT-1 and 2 has been observed in BSE field cases, (434) a mouse model of 

BSE, (435) human TSEs, (436) and mouse models of scrapie. (421, 437) However, knockout of MT-1 and 

2 in mice did not have any effect on disease progression. (438) Conversely, MT-3 has been shown 

to be markedly diminished in Alzheimer’s brains (439) and in patients with long duration CJD. (436) 

It can therefore be seen that there is no simple correlation between metallothionein expression 

and TSEs. 

 

Given that PrPC is thought to have a role in copper binding it is possible that MTF-1 could be 

upregulated in order to compensate for reduced activity of PrPC after infection. It could also be 

hypothesised that MTF-1 may be upregulated to initiate the proposed neuroprotective 

properties of metallothioneins, either as a response to infection or as part of the curative 

mechanism. MTF-1 was found to be down-regulated in treated cells compared to untreated cells 

in the microarray assay. It’s possible that this is a reflection of MTF-1 levels returning to normal 

baseline levels as a result of treatment. However, another interpretation is that down-regulation 

of MTF-1 as a result of treatment may result in lower PrPC levels via its role as a transcription 

factor for PrPC. Less substrate would therefore be available for conversion so this may be a 

mechanism by which the infectious burden can be cleared.   

 

6.4.3.2. Sp1 

Sp1 is a zinc-finger transcription protein which is involved in many cellular processes including 

cell differentiation, cell growth, apoptosis, immune responses, responses to DNA damage and 
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chromatin remodelling. It is a transcription factor and is known to regulate PrPC expression, and 

is involved, along with MTF-1, in the copper dependent regulation of PrPC. (428) Up-regulation of 

sp1 has also been shown to be protective against prion-mediated cell death, (440) although 

targeting transcription factors is not a popular therapeutic intervention as they can often 

promote hundreds of different genes. The risk of unintended side effects is therefore high. Sp1 

activation by phosphorylation is regulated by atypical PKC, among other kinases. (441) In the 

microarray both sp1 and MTF-1 were down regulated, with the hypothesis being the same as 

that proposed for MTF-1. Down-regulation of sp1 would result in lower levels of PrPC and 

therefore reduced substrate for conversion to PrPSc, allowing clearance of the infectious burden. 

 

6.4.3.3. Lck 

Lck is a member of the Src family of protein tyrosine kinases and is crucial in T-cell development 

and function. (442-444) It has a key role in T-cell antigen receptor (TCR) linked signal transduction 

pathways and contributes to signalling via other receptors such as CD2, interleukin-2 and IL-2 

receptor β-chain. It is also critical for the selection and maturation of developing T-cells in the 

thymus. (445) Lck has a role in regulating sp1 activity (446) and is one of the controls for PrPC 

expression in T-cells which are capable of replicating, but not retaining, PrPSc infection. (447)   PrPC 

has also been shown to co-localise with Lck in the lipid rafts of human T-cells. An effect of 

treatment on Lck expression or activity via binding (as suggested by the inverse docking results) 

could therefore affect PrPC expression further downstream. Lck could also affect MTF-1 and sp1 

via interactions with PKC, as Lck can activate PKC via phosphorylation. (448) 

 

6.4.3.4. Caspase 12 

Caspase-12 is a member of the caspase family of proteins that play an important role in 

apoptosis. It is linked with the endoplasmic reticulum (ER) which has been proposed as a 

regulator of cell death, and caspase 12 is a central player in ER-stress induced apoptosis. (449) 

Caspase-12 located at the ER is activated by ER stress and results in cell death, with cleavage of 

the 55 kDa form into a 42 kDa form resulting in activation. (450) ER stress, and the resulting 

unfolded protein response (UPR), have been implicated in the pathogenesis of prion diseases by 

both enhancing the accumulation of PrPC aggregates (179) and by causing a critical decline in the 

synthesis of key proteins needed for neuronal survival. (186) Activation of caspase 12 is at least 

partially involved in the amyloid-beta neurotoxicity process in cortical neurons (451) and stress 

impairing ER degradation can lead to the accumulation of amyloid-beta and subsequent cell 

death. (452)  
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Further evidence points to a role for caspase 12 in prion disease, although the precise role 

remains ambiguous. ScN2a cells treated with purified PrPSc were more susceptible to caspase-12 

induced apoptosis, and histological examination of both mouse and human brains infected with 

scrapie showed the presence of activated caspase 12. (177) The same study demonstrated a direct 

correlation between caspase 12 activation and neuronal loss in vivo, with caspase 12 being 

proteolytically processed and therefore activated in the brains of scrapie infected mice. An 

increased cellular load of misfolded protein in the ER can trigger caspase dependent cell death, 

(453) and conversely the expression of caspase 12 can sensitise cells to ER stress. (454) The above 

evidence all seems to suggest a role for caspase 12 in the induction of neuronal death via ER 

stress caused by prion infection, and it has been suggested that the inhibition of caspase 12 

activation could be a viable therapeutic target as caspase 12 does not seem crucial for normal 

development or physiological cell death. (455)  However, a study carried out in mice with caspase 

12 knocked out seems to contradict the above body of evidence. Caspase 12 deficient mice were 

inoculated with RML prions, but no difference in survival, behaviour, pathology or accumulation 

of PK resistant prions was observed between the knockout and wild type mice. (456) The authors 

concluded that caspase 12 was not required for disease pathogenesis. 

 

It was hypothesised that inhibition of caspase-12 could prevent against neurotoxicity, and may 

therefore in some way be involved in the action of the I3GAs. The role of PKC in the modulation 

of caspase 12 is unclear. The activation of PKC has multiple functions in the signalling of the ER 

and stimulation of PKC can inhibit cleavage of caspase-12 to the active form, (457) possibly 

resulting in decreased neurotoxicity. However, PKC has also been implicated in the activation of 

caspases, (458) rendering its role in the pathway outlined in Figure 105 ambiguous. 

 

These four targets were investigated further through western blotting with each target being 

probed for individually. Materials and methods for this study can be found in sections 2.1.5 and 

2.2.7. 

 

 

6.4.4. Target Validation Using Western Blotting 

 

6.4.4.1. Results 

In the time available for these experiments it was not possible to obtain acceptable and 

reproducible western blots for Sp1 and Lck, meaning no data was obtained for the levels of 
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these proteins in treated cells. The problems encountered were suspected to be due to low 

levels of the target proteins in the cell lysate and digestion of the protein by proteases 

(particularly Lck) even in the presence of protease inhibitors.  

 

 
 
Figure 106: Western blots showing expression of MTF-1 after a 5 day dose (a) and after a 56 
hour dose (b). Graphs show average MTF-1 levels in treated cells from four biological replicates 
(n = 4), blots shown are representative of all replicates. Data was adjusted for loading difference 
and is presented as a percent of the DMSO control. 
 

Data in Figure 106 suggest that after 56 hours the levels of MTF-1 are slightly raised after 

treatment with the I3GA compounds, although the error in the data casts doubt on the 

reproducibility and consistency of this effect. The difference in MTF-1 levels between the treated 

cells and the DMSO control cells was not found to be statistically significant by multiple t-test. 

As explained in section 6.4.3.4, caspase 12 exists as both a full length form, at 55 kDa, and a 

cleaved form at 42 kDa. Both forms were probed for using the same antibody and the results for 

both forms are presented here. 
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Figure 107: Western blots showing expression of both forms of caspase 12 after a 5 day dose (a) 
and after a 56 hour dose (b). Graphs show average caspase 12 levels in treated cells from four 
biological replicates (n = 4), blots shown are representative of all replicates. Data was adjusted 
for loading difference and is presented as a percent of the DMSO control. T-tests showed levels 
of cleaved protein after treatment with high doses of 3001012 and 3001207 were significantly 
lower than the DMSO control (p = 0.00535421 and 0.043093 respectively, n = 4). 
 

The data from the 5 day dose (Figure 107a) does not show any significant differences between 

the treated cells and the DMSO control. However, the data from the 56 hour dose (Figure 107b) 

does show significant differences between the amount of the cleaved form of caspase 12, but 

only at the higher dose for both compounds. There was no significant difference in levels of full 

length caspase 12 between treated cells and the DMSO control, and these differences were no 

longer present after five days. 

 

6.4.4.2. Discussion 

It can be seen from the data above that no significant effect has been seen on any of the targets 

identified, with the exception of the cleaved form of caspase 12.  

 

It was hypothesised that MTF-1 might be up-regulated during infection due to the proposed 

neuroprotective properties of metallothioneins, and also to compensate for a possible reduction 
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in copper binding and metallothionein induction by PrPC. In this case it would be reasonable to 

assume that once the infection was cleared, MTF-1 expression and metallothionein levels would 

revert back to normal as extra neuroprotection would no longer be required and PrPC would be 

able to resume its normal physiological roles. As shown in Figure 106 there was no change in 

MTF-1 expression levels as a result of treatment with the I3GAs, although PrPSc levels are known 

to have decreased. Further information could be obtained by comparing MTF-1 levels in infected 

and uninfected cells, but unfortunately this was not possible.  

 

The down-regulation of MTF-1 and sp1 in the microarray assay were also considered with 

regards to their shared role as transcription factors for PrPC, with the hypothesis being that 

reduced levels of the transcription factors would result in lower levels of PrPC and consequently 

less substrate being available for conversion. This would allow cells to be cleared of existing PrPSc 

while limiting the formation of new PrPSc molecules. The lack of change in MTF-1 levels does not 

preclude this theory, for reasons outlined below, but even if a change had been observed it 

would have been tenuous at best to draw a direct line between changes in MTF-1 levels and 

decreased PrPC levels as each transcription factor is responsible for the promotion of multiple 

genes. Further investigation of levels of PrPC in treated compared to untreated cells would be 

useful in helping reveal whether the I3GAs were acting by reducing levels of PrPC. However, it 

would not provide further insights about the mechanism of the reduction in PrPC levels or the 

role of the transcription factors.    

 

As previously discussed, caspase 12 is a key player in ER-stress induced apoptosis. Its role in the 

UPR, which is implicated in prion disease, suggests that it may have an important role in prion 

disease pathogenesis, but its exact role is ambiguous (see 6.4.3.4). Given the conflicting 

evidence presented above it is difficult to draw any conclusions about the meaning and 

importance of the finding that the activated form of caspase 12 seems to be down-regulated 

after 56 hours treatment, although not after 5 days.  The literature seems to point to a role for 

caspase 12 in neuronal death, with inhibition of caspase 12 providing a neuroprotective effect. 

How this is relevant to our cell model is less clear, especially as treatment does not result in 

apoptosis or even reductions in growth. It is possible that the down regulation of caspase 12 

offers some form of protection from apoptosis, but how this would then translate to a reduction 

in PrPSc levels is unknown. A more likely explanation would seem to be that the reduction of 

infection in turn results in lowered ER stress and a resultant decrease in caspase 12 activation. It 

would be expected, however, that if this was the case then the effect should also be seen in the 
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cells treated for 5 days, at which point the burden of infection has been significantly reduced for 

an extra 2 days. It also seems counterintuitive that this effect wasn’t seen at the lower 

concentrations of the I3GA compounds, which were known to clear PrPSc with the same 

efficiency as the higher concentrations. It is therefore possible that the effect seen is due to 

some off target effect of the I3GA compounds that is only seen over a limited time frame and at 

higher concentrations. It is also worth noting that although a significant change was seen in 

levels of cleaved caspase 12, levels were very low in the first place in comparison to the full 

length form, meaning that the overall change in the amount of cleaved caspase would be 

minimal. 

 

There are several unknowns which make drawing meaningful conclusions from the western 

blotting results difficult. Firstly, there is no uninfected control against which to compare levels of 

target proteins. For example, it would be useful to know what the levels of activated caspase 12 

are in an uninfected equivalent, to help determine the importance of the observed changes. 

Similarly, being able to identify whether MTF-1 expression was altered as a result of infection 

would help clarify whether the lack of change seen as a result of treatment was significant. If no 

difference was observed between infected and uninfected cells it would strengthen the 

hypothesis that the compounds are not working via some effect on PrPC transcription factors. It 

is also important to note that a lack of change in expression does not preclude an interaction 

between the target and the I3GA, as predicted by the inverse docking. As discussed with 

reference to the HSP90 data it is possible that western blotting is not a suitable technique for 

validating these results, as it may not be sensitive enough to detect small changes in protein 

expression. This is particularly relevant in the case of MTF-1 as it was identified from the 

microarray data which measured changes in gene expression rather than changes in protein 

expression, which may not be directly related. It may therefore be desirable to attempt 

validation of these targets using quantitative RT-PCR, to validate the microarray data, or 

immunohistochemistry, to validate the proteomics data. 

 

Another consideration, particularly relevant to MTF-1, is the time it would take for MTF-1 levels 

to return to baseline levels once the cells were cleared, with the 5 day treatment period 

(including around 64 hours when the majority of PrPSc had been removed from the cells) maybe 

not long enough for equilibrium to be restored. It is therefore possible that a longer dosing 

period may have detected more significant changes, although it is not known how likely this 

scenario is. It is also unlikely that changes observed over a longer time period would be directly 
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related to the removal of the infectious burden, as the effect would need to be more immediate 

in order to elicit the observed effects.  

 

Taking the available data at face value an unavoidable conclusion is that treatment with the 

I3GA compounds doesn’t alter expression of MTF-1, making it unlikely that MTF-1 is either 

involved in, or related to, the mode of action of the I3GA compounds. It seems clear that the 

levels of activated caspase 12 are significantly lower after treatment for 56 hours, although not 

after 5 days, which suggests that the down regulation is not simply a result of the cells being 

cured. The evidence would seem to suggest that the down-regulation was transient, returning to 

pre-treatment levels after 5 days, and only seen at much higher I3GA concentrations than those 

required to cure the cells. This all suggests that caspase 12 is not directly responsible for 

reducing PrPSc in the cells, although an involvement in the process should not be ruled out.  

 

With regards to the hypothetical pathways mapped out in Figure 105, the results outlined in 

section 6.4.4.1 do not provide any evidence for the involvement of any of the identified targets 

in the mode of action of the I3GAs. For the reasons outlined above, this does not preclude the 

involvement of one or more of these targets, but the techniques employed were not sensitive 

enough to provide the information required. Lck and PKC were identified due to their 

identification as putative binding partners for the I3GAs, which would not necessarily be 

revealed by western blotting even if these studies had been carried out successfully. The role of 

PKC in phosphorylation and activation of the targets is key to many of the hypothesised 

interactions, and again this is not something that could be determined by quantifying levels of 

PKC due to the number and complexity of PKC’s interactions with its substrates, and also the 

large number of PKC isoforms. Much more work would be required to make clear the possible 

roles of all these targets in the mode of action of the I3GAs, with investigations into the effect of 

the I3GAs on PrPC levels being key. If PrPC levels are unaffected then the involvement of sp1 and 

MTF-1 would become more unlikely.   

 

 

 

6.5. Overall conclusions 

 

The fundamental aim of the work carried out within this chapter was to gain further insights into 

the mode of action of the I3GA compounds. Initial work used a systems biology approach, 
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combining data from microarray and proteomics studies, to try and narrow down pathways 

affected by treatment. Based on initial analysis of the MetaCore data an early hypothesis was 

formulated suggesting that the compounds might be working via some form of up-regulation of 

the protein degradation pathways. These pathways are known to be involved in prion disease 

pathogenesis, and the presence of a significant number of upregulated E3 ubiquitin ligases in the 

data set for 3001012 compared to the DMSO control pointed to their possible involvement in 

the mode of action of the I3GAs. 

 

Investigations were carried out to investigate the effect of proteasomal inhibitors on both PrPSc 

levels in the cells and on the efficacy of the I3GA compounds. It was found that compounds 

which inhibited the LCPs more generally, namely MG132 and E64, both caused a significant 

accumulation of PrPSc within the cells. Neither lactacystin, which is specific for the proteasome, 

nor CI3, which selectively inhibits certain cathepsins, caused any change in PrPSc levels. These 

results suggest that LCPs play a key role in maintaining steady state levels of PrPSc in the SMB 

cells. Toxicity was only observed after treatment with MG132, which inhibits both the 

proteasome and the LCPs, suggesting the cells cannot tolerate complete inhibition of both 

systems at the same time. It is therefore likely that the two systems may act as back up for each 

other.  

 

All four compounds used in the study (3 I3GAs and quinacrine) were able to counteract the 

increases in PrPSc caused by LCP inhibition. The efficacy of 3001012 was affected to a larger 

degree than the efficacy of the other compounds, with PrPSc clearance efficiency compromised 

even at higher concentrations of 3001012. No significant shift in EC50 was seen for any of the 

compounds, with the exception of 3001012 co-dosed with CI3.  

  

Co-dosing a fixed concentration of the I3GAs with a concentration gradient of MG132 and E64 

resulted in a dose-dependent increase in PrPSc. All three compounds were affected by higher 

concentrations of the inhibitors, suggesting that an excess of the inhibitors is significant. Time 

course analysis suggested there was a lag phase in PrPSc accumulation of around 48 hours, with 

PrPSc levels not increasing at all when co-dosed with 3001012. It was therefore hypothesised 

that alternative systems are able to compensate for the LCP inhibition for a limited period, 

beyond which a tipping point is reached and accumulation occurs. It was proposed that the 

I3GAs are antagonising PrPSc accumulation by reducing levels so that this tipping point is never 

reached and the cells are able to manage with a more limited set of cellular machinery. 
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Quinacrine was able to antagonise the inhibitors without any documented links to the protein 

degradation pathways, while 3001012 was able to antagonise the accumulation of PrPSc seen as 

a result of treatment with 1 μM congo red. This all suggests that the mechanism of antagonism, 

for the most part, is unrelated to a specific effect of the I3GAs on the LCPs. However, the 

decreased efficacy seen in 3001012 suggests that this compound may have an effect on the 

LCPs, but this is not thought to be the primary route by which PrPSc is cleared from the cells. 

Unfortunately this study was not able to determine the possible role of the upregulated E3 

ubiquitin ligases in the I3GA’s mode of action.  

 

Levels of HSP90 in treated cells were compared to untreated cells to determine if a difference in 

expression could be identified via western blotting, and also in the hope that it might validate 

the microarray results. No difference between HSP90 levels could be determined, although it 

was not clear whether this was due to a lack of sensitivity in the method used. It is also possible 

that the signal was saturated due to loading concentrations being too high, therefore masking 

any changes, as the western blots were not carried out at a range of lysate protein 

concentrations. There was also uncertainty around whether changes in gene expression would 

directly translate to protein expression. The suitability of western blotting as a mechanism for 

validating the microarray results was questioned, with quantitative RT-PCR or 

immunohistochemistry being proposed as alternatives.  

 

Finally, work was carried out to try and validate the results obtained by Chen et al from inverse 

docking experiments. Four targets had been identified through inverse docking, literature 

searches and interrogation of the microarray and proteomics data, and it was hoped that these 

results could be validated via western blotting. In the end only two of the four proposed targets 

were blotted successfully, with MTF-1 showing no significant difference in expression between 

treated and untreated cells over a range of concentrations and dosing periods. The cleaved, 

activated form of caspase 12 was shown to be significantly reduced after 56 hours of treatment 

with the highest concentration of both the I3GA compounds, although this was not seen as a 

result of any of the other treatments or time points. The most likely explanation was that the 

reduced levels might be due to decreased activation resulting from lowered ER stress after 

removal of the infectious burden. However, the lack of this effect at the later time points or the 

lower (but still active) concentrations suggests that this effect may be transitory and secondary 

to the mechanism by which the cells are cleared of infection. As with validation of the 

microarray results, the suitability of western blotting for this application is questioned. 
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Overall, the studies presented here have not resulted in a clearly defined mode of action for the 

I3GA compounds. It is clear that in the SMB models the lysosomes are essential for maintaining 

steady state levels of PrPSc, and the correlation between their inhibition and reductions in the 

efficacy (although not the EC50) of 3001012 suggest that this compound may be working, in part, 

via this mechanism. It is thought more likely that the lysosomes are a target of the I3GA 

compounds than the proteasome. The studies presented here also raise questions as to whether 

western blotting is a suitable technique for validating the results of in silico studies, and it is 

thought that further validations and investigations need to be carried out before this question 

can be answered.  
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7. Evaluation of 3D models as high throughput 

screening models and predictors of in vivo 

activity   

 

 

The use of 3D cell culture models in drug development has been suggested as a way of 

evaluating the potential in vivo activity of compounds without having to use an animal model. 

The structures formed in 3D mimic the morphology of cells within the body much more closely 

than 2D monolayers, and are therefore more representative of in vivo conditions (see section 

1.3.2 for a detailed review). As discussed in section 1.1.3.1 there has been significant progress in 

identifying compounds that are capable of reducing PrPSc levels in vitro, but in the majority of 

cases this in vitro activity is not reproduced in in vivo models. Identifying compounds that are 

active in vivo is therefore crucial in the development of a clinically effective anti-prion 

compound. Currently, the primary model for determining in vivo activity is a rodent model that 

has been infected with the prion disease of interest. Survival is monitored after dosing with the 

compound to see if there is any effect on disease pathogenesis. These mouse bioassays are the 

most powerful method of determining in vivo efficacy but they do have drawbacks. The practical 

constraints associated with working with living animals can make imaging and data acquisition 

more difficult during experiments. (311) Animal stocks are very expensive to maintain and 

experiments can be very expensive and time consuming to carry out, making the acquisition of 

statistically significant data more challenging. (307) There are also the ethical and regulatory issues 

associated with animal experimentation to consider. 

 

The challenges associated with carrying out animal studies, as well as the failure of so many anti-

prion compounds at this stage, meant that significant in vitro and molecular evidence would be 

required to justify the need for testing the I3GA compounds in an animal model. As this was 

something that could not be done ourselves, providing justification to potential collaborators of 

the favourable properties of the compounds would be key. Initial pharmacokinetic studies, 

discussed in section 4.5, suggested that the compounds had favourable pharmacokinetic 

properties and could accumulate in the brain, both of which would be required for in vivo 

activity. It was therefore hypothesised that a 3D model could be employed to provide additional 

evidence of the in vivo  potential of the I3GAs by demonstrating their anti-prion activity in a 
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more complex cellular environment. Three different 3D models were established and optimised 

for testing of the anti-prion activity of the I3GA compounds, and were also assessed  for their 

potential as a high-throughput model for screening anti-prion compounds. If suitable, it could be 

possible to use one or more of the models for high-throughput screening of anti-prion 

compounds in the future, allowing the identification of compounds unlikely to be active in vivo 

at an earlier stage of the drug discovery pipeline. 

 

3D models have been used for a variety of applications, with scaffolds most commonly used for 

tissue engineering (315) and spheroids primarily used in the development of anti-tumour drug 

compounds. (314) The validity of the different 3D culture models for these applications has 

therefore already been tested and verified and as a result the majority of protocols that have 

been developed and optimised are for looking at cellular proliferation or morphology. However, 

there is limited evidence in the literature of these models being used to investigate the effect of 

drug-like molecules on levels of an intracellular target, and as a result detailed methodologies 

were not available for the testing of the anti-prion compounds. It was for this reason that 

different systems were trialled. 

 

There are various products on the market which loosely fall into one of two categories: products 

facilitating the formation of spheroids, or scaffolds that encourage the growth of 3D structures. 

As part of this study, three different systems, representing both product categories, were 

trialled: the Biomatrix Perfecta3D® hanging drop plate, Happy Cell® matrix and the Alvetex® 

polystyrene scaffold. The aim was to establish a model in which the cells could be grown in 3D, 

dosed with the lead compounds, and then harvested and lysed to allow analysis of PrPSc levels. 

The Alvetex system has protocols for analysing cell viability via MTT and also for harvesting the 

cells for analysis, but for the other systems there were not established and validated protocols 

available. If the compounds could be shown to be working in the 3D model then this would give 

confidence that they may be active in vivo, and provide further evidence going forward of the 

potential of the indole compounds as anti-prion therapeutics.  

 

In order to validate results from the indole compounds a selection of compounds from the 

literature, with known in vivo activity, were also screened in the models. Details of these can be 

seen in Table 46. The EC50 values are taken from Table 34, and more information about this 

screening can be found in section 4.4.2. 
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Table 46. Compounds from the literature used in studies of activity in 3D models. Note that not 
all compounds were used in all studies. 
 

Compound EC50 in 2D culture Active in vivo? Reference 

Pentosan polysulfate 0.175 µg/ml Yes (197, 198, 208-210) 

Dextran sulfate 0.5 µg/ml Yes (215, 216) 

Heparin  5 µg/ml Unknown  

Amphotericin B 6.25 µM Yes (209, 459) 

Quinacrine  0.5 µM No  (1, 233, 460) 

Curcumin 0.7 µM Yes (267) 

 

The compounds from the literature were included to provide validation of the ability of the 

models to predict in vivo activity. If the in vivo activity of these well characterised compounds 

could be accurately predicted, then it was hypothesised that the same models could be used to 

predict the in vivo activity of the I3GAs. Good activity in the 3D models could therefore help 

justify screening these compounds in a genuine in vivo model, as well as providing confidence 

that they would be active. 

 

 

 

7.1. The Hanging Drop Model 

 

 

7.1.1. Introduction 

 

The hanging drop assay was originally developed as a way of growing homogenous spheroids 

without requiring an external scaffold.  
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Figure 108: Picture of the Perfecta3D® hanging drop plate. The 96 well plate is on the left, and 
the 384 well plate is on the right. The top of the plate can be separated from the bottom to 
allow the water reservoirs to be filled and replenished. Image taken from www.3dbiomatrix.com 

 

The hanging drop plates are made up of two layers, with the top layer holding the drops and the 

bottom layer enclosing them. Both layers have reservoirs for water round the plate edge to help 

reduce evaporation from the drops. The cell suspension is pipetted into the top of the well and 

forms a hanging drop of medium underneath the plate. Cells aggregate at the bottom of the 

drop and form homogenous spheroids that are all approximately the same size (see Figure 109). 

Spheroid size can be controlled through initial seeding density. The Perfecta3D® plate has been 

developed for use in high throughput screening systems, and is available in both 384 and 96 well 

formats. 

 

 
 
Figure 109: Formation of hanging drop spheroids; a diagram depicting the method of formation. 
A cell suspension is pipetted through the access hole to form a drop on the bottom of the plate. 
The cells aggregate at the bottom of the drop, forming a spheroid after around 1 day. (321) 
 

This technique has been used with multiple cell types, including breast and colon cancer cell 

lines, kidney cell lines, various carcinomas, osteoblasts, endothelial cells and murine embryonic 

stem cells (information from https://3dbiomatrix.com/cells/). However, there is no evidence 

file:///C:/Users/jenny/AppData/Roaming/Microsoft/Word/www.3dbiomatrix.com
https://3dbiomatrix.com/cells/
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that this model has been used in the study of neurodegenerative diseases  - or that the SMB cells 

being grown in this format - in the literature. Consequently, optimisation of growth and seeding 

conditions was necessary before the model was ready to be dosed with our compounds. 

Materials and methods for this study are outlined in detail in sections 2.1.6, 2.2.8.1 and 2.2.8.4. 

 

 

7.1.2. Results 

 

7.1.2.1. Optimisation 

Attempts had been made to harvest the spheroids from the 384 well plates with limited success 

as it was very hard to tell if the spheroid had been retrieved or not. Initial attempts to lyse and 

blot the spheroids were also unsuccessful. Investigations were continued using the 96 well 

plates, where it was hoped that the larger spheroids would give an improved signal on the blot 

without using any additional lysis methods. See Figure 110 for results. 

 

 
 
Figure 110: Dot blot of PrPSc levels in spheroids grown under optimised conditions in 96 well 
plates. Each dot represents 1 spheroid. The PrPSc levels can be seen to vary between spheroids, 
as demonstrated by the differing intensities of the dots and variation in absorbance levels as 
measured using Bio-Rad Quantity One software. This variation was attributed to problems with 
the efficiency of spheroid lysis, rather than genuine differences in the level of PrPSc between 
spheroids.  
 

It can be clearly seen in Figure 110 that the signal for each spheroid is not consistent, even 

though all spheroids should have been homogenous in size, and appeared this way under the 
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microscope. The inconsistent signal was attributed to the ongoing problems with lysing the 

spheroids, although in this case a signal from the intact spheroids is not visible. All the spheroids 

were formed from the same number of SMB cells from the same passage, and for this reason it 

was thought unlikely that the variation in the signal was due to genuine differences in PrPSc 

levels. In order to confirm this it was necessary to optimise the lysis conditions to obtain a more 

consistent signal. 

 

Further investigations were undertaken to determine the optimum conditions for the blot in 

terms of numbers of cells per spheroid, and numbers of spheroids per sample. It was hoped that 

the production of larger spheroids may result in only one being required per sample, therefore 

allowing for higher throughput of samples. If this was not the case then it was hoped to identify 

the minimum number and size of spheroid required for maximum signal. Results can be seen in 

Figure 111. 

 

 
 
Figure 111: Optimisation of samples for dot blotting analysis. The table shows PrPSc levels in 
samples prepared from lysed spheroids. Spheroids were seeded at concentrations of 500, 750 or 
1,000 cells/µl in 40 µl medium. They were harvested after 4 days and lysed in RIPA buffer. 
Spheroids were pooled together so that each sample contained either 1, 2, 3 or 4 spheroids, 
formed from an initial seeding density of 500, 750 and 1,000 cells/µl. Each sample was analysed 
using dot blot analysis to determine PrPSc levels and the strength of the signal. Seeding cells at 
1,000 cells/µl, and using two of these spheroids in each sample, was found to give the best 
signal. 
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As a result of these optimisations, subsequent experiments were all carried out with spheroids 

seeded at 1,000 cells/µl in 40 µl medium, with 2 spheroids being pooled together for each 

sample. From the data presented here it does not appear that there is any advantage to having 

more than two spheroids in each sample, as there is not a proportional increase in signal above 

this number. The reason for this is not clear as the signal was not saturated.  

 

Before carrying out any dosing experiments, attempts were made to make spheroid lysis more 

consistent and reliable. This was essential to identify if dosing the spheroids had any detectable 

and reproducible effect on PrPSc levels. Different methods of lysis were investigated, as well as 

the possibility of improving lysis by harvesting the spheroids at different time points. It was 

hypothesised that if the cells were still dividing, with the spheroids becoming denser, then that 

in turn would make the spheroids harder to lyse. It would therefore be easier to lyse the 

spheroids shortly after they had formed, rather than when they were well established. 

 

 
 

Figure 112: Average PrPSc signal  from a sample containing 3 spheroids after lysis at different 
time points. Spheroids were lysed by the addition of RIPA, followed by shaking, at 2, 3, 4 or 7 
days after seeding and the strength (as measured by the absorbance) and consistency (as 
measured by the error) of the PrPSc signal compared. Spheroids lysed shortly after seeding gave 
a better signal than those harvested after a longer time period, although the signal was less 
consistent, as indicated by the error. Spheroids harvested and lysed after 7 days gave the 
weakest yet most consistent signal. 
 

As can be seen in Figure 112 the most consistent signal was achieved after 7 days incubation. It 

therefore seemed desirable to attempt to increase the signal from spheroids harvested between 

4 and 7 days after lysis. This would also allow screening in the spheroids to be carried out over 
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the same time frame as the 2D screens, which were dosed for 5 days. To try and improve lysis 

further, 4 different lysis methods were investigated to try and improve the signal on the dot 

blot. Six samples, each containing two spheroids that had been treated with 0.5 % DMSO only, 

were subjected to one of the four lysis methods to see which would produce the strongest and 

most consistent PrPSc signal on the blot. The results can be seen in Figure 113. 

 

 

 
 

Figure 113: Results from the spheroid lysis optimisation. PrPSc levels were analysed by dot blot in 
spheroids subjected to different lysis conditions to determine the optimum lysis method. 
Spheroids were treated with 0.5 % DMSO and then subjected to different lysis conditions. Six 
replicates are presented for each treatment, and each replicate represents a sample containing 
2 spheroids, lysed using the method indicated. The data in the bar chart represents the average 
intensity of the 6 replicates, and the standard deviation is used as a measure of the consistency 
of the treatment. Data is expressed as the absorbance of the signal on the blot as measured by 
Quantity One software (Bio-Rad). It can be clearly seen that subjecting the spheroids to freeze-
thaw cycles produces the strongest, although not the most consistent, signal. 
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It is clear from the data in Figure 113 that by far the strongest signal was obtained after the 

spheroids were subjected to repeated freeze-thaw cycles. Freeze-thaw cycles cause cells to swell 

and break due to the formation of ice crystals during the freezing process, so it is possible in this 

case that the freeze-thaw cycles are disrupting the integrity of the spheroid as well as lysing the 

individual cells. It can be seen from the blot that lysis still isn’t as consistent as might be desired 

– dark spots suggest that parts of the spheroid may not have been completely lysed. However, it 

is possible that this method could be used in conjunction with another method, such as passing 

the spheroids through a small gauge needle after the freeze-thaw cycles, to allow the spheroid 

to be fully lysed. 

 

In addition to the lysis methods outlined above the use of collagenase to dissociate the spheroid 

before lysis was investigated. Again, there was no precedent in the literature for this procedure 

so all parameters had to be optimised. Collagenase is an enzyme which cleaves the main helical 

polypeptide chains of collagen. It exists in various forms, with the most potent form being the 

‘crude’ collagenase obtained from Clostridium histolyticum. (461) Because of its ability to cleave 

collagen it is widely used in the isolation of cells from tissue, and as such it was thought it could 

potentially be useful in improving the lysis of the spheroids. 

 

Initial results from the collagenase digestions suggested that using 1 mg/ml collagenase in high 

calcium TESCA was optimal as, by eye, this was the lowest concentration at which effective 

digestion was observed. Problems were encountered with removing the spheroids by 

centrifugation as the collagenase also came out of solution and it was very hard to separate the 

two to avoid interference with downstream analysis. Instead of spinning the spheroids down in 

the collagenase solution, the spheroids were removed and put straight into lysis buffer. When 

the lysis buffer was aspirated with a pipette it could be observed that the spheroid was 

disintegrating and was no longer visible in the lysis buffer, and the subsequent blot showed a 

much better and more consistent signal (see Figure 114). However, the signal was still very weak 

and was not as good or as consistent as the signal from the spheroids treated with freeze-thaw 

cycles, or the signal from the cells grown in 2D.  
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Figure 114: Dot blot showing PrPSc levels in spheroids lysed using either multiple freeze-thaw 
cycles (top row) or digestion with collagenase (bottom two rows). Four samples were lysed with 
freeze-thaw cycles, 8 samples were lysed using collagenase, and each sample contained 2 
spheroids. The strength of the signal was used as a measure of the successfulness of the lysis 
method. 
 

After these rounds of optimisation it was concluded that subjecting the spheroids to freeze-thaw 

cycles was the most consistent method of spheroid lysis. Although the collagenase had been 

proved successful it was a more labour intensive process that resulted in a weaker signal, and it 

was necessary to consider the potential hazards of working with a substance such as 

collagenase. At this point a new piece of equipment called a bioruptor (made by Diagenode) was 

purchased which allowed the sonication of samples sealed in microcentrifuge tubes, and which 

was effective on samples as small as 100 μl. This proved to be a much better instrument for 

sonicating the spheroids – the sealed tubes meant there was no risk of the sample 

contaminating the sonicator and the small volumes that could be used meant that the sample 

wouldn’t be too dilute. 5 cycles of 30 seconds each with 30 seconds in between was found to 

give a good reproducible signal, although two spheroids per sample were still required to get a 

decent signal (see Figure 115). From this point forward the sonicator was used to lyse the 

spheroids and all subsequent results are using spheroids prepped in this way. 

 

 
 

Figure 115. Example dot blots of PrPSc levels in spheroids dosed with 0.5 % DMSO and sonicated 
using the Bioruptor. Blots show results from two separate experiments. The signal is much 
clearer and more consistent. The blots shown in each experiment represent 6 different samples, 
each containing two of the DMSO treated spheroids. All samples were the same, with both blots 
being presented to demonstrate the consistency associated with lysing the spheroids in the 
Bioruptor. 
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7.1.2.2. Compound screening 

As the ultimate aim of the development of this model was to be able to use it as a high 

throughput screening model for identifying anti-prion compounds that may be effective in vivo 

the next step was to dose the cells. Initial experiments looking at optimising the spheroid lysis 

also looked to see if a difference in PrPSc levels could be detected via any of the lysis methods 

when the spheroids were dosed with curcumin which is known to be active in vivo. (267) 
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Figure 116: PrPSc levels for the spheroids treated with curcumin expressed as % of the DMSO 
treated spheroids subjected to the same lysis conditions. Only the freeze-thaw treated samples 
showed PrPSc levels of less than 70% of the DMSO control (the limit for activity), and this was 
also the only treatment that showed a significant difference (t-test) between the DMSO treated 
spheroids and the curcumin treated spheroids (p = 0.014749, n = 6). Differences between the 
DMSO treated spheroids and the curcumin treated spheroids for all other treatments were non-
significant. Six replicate samples were used for each lysis treatment, with each sample 
containing 2 spheroids treated with either 0.5 % DMSO or curcumin. 
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The lack of a significant reduction in PrPSc levels to below 70 % of the control for 3 out of the 4 

lysis methods (see Figure 116) suggests that the reduction seen in the spheroids subjected to 

freeze thaw cycles may not be a real effect. This experiment was not repeated and therefore the 

results were not validated as the decision was made to use the bioruptor instead. Due to the 

lack of activity shown by curcumin, other anti-prion compounds from the literature with known 

in vivo activity (see Table 46) were screened in this model. It was hoped that if these compounds 

caused a reduction in PrPSc in the spheroids then it would act as a proof of concept that this 

model could be used to correctly identify compounds with and without in vivo anti-prion activity.   

 

Spheroids were dosed with both the I3GA compounds and the compounds from the literature. 

The effect of 0.5 % DMSO on spheroid formation was investigated and found to have no effect 

on spheroid formation or stability (data not shown). Results for the literature compounds and 

the I3GAs can be seen in Figure 117 and Figure 118. 

 

  
 

Figure 117: PrPSc levels as a % of the DMSO control in spheroids treated with different 
compounds from the literature at a range of concentrations. PPS; Pentosan polysulfate, Amph; 
Amphotericin B, DS; Dextran sulfate. The data points shown represent the mean ± SD values 
from duplicate experiments where each sample was analysed in triplicate. Each sample contains 
2 spheroids. 
 

Figure 117 shows that the literature compounds did not show any significant evidence of activity 

at concentrations much greater than their EC50 in the 2D cell model, with the only treatment 
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reducing PrPSc levels below the standard cut off point of 70 % being dextran sulfate (65.71 % 

average). The reduction in PrPSc levels was found to be statistically significant using a multiple t-

test (p = 0.0277763). 

 
 

Figure 118: PrPSc levels as a % of the DMSO control in spheroids treated with the indole 
compounds 3001012 and 3001207 at a range of concentrations up 1000 x EC50 in the 2D cell 
model. The data points shown represent the mean ± SD values from duplicate experiments 
where each sample was analysed in triplicate for all treatments except 3001012 at 100 nM and 1 
μM and 3001207 at 10 μM where the data points shown represent the mean ± SD values from 4 
experiments where each sample was analysed in triplicate. 
 

None of the indole compounds showed any reduction of PrPSc below the 70 % cut-off (see Figure 

118), with the only treatment showing anything near this being 3001207 at 100 nM. This was not 

found to be a statistically significant reduction in PrPSc levels compared to the untreated control 

(multiple t-test, p = 0.0656629). 

 

7.1.2.3. Further Elucidation of Spheroid Morphology 

During the observations of the spheroids it was noted that after the initial formation period of 

around two days the spheroids did not appear to increase in size. It was not possible to monitor 

the growth of the spheroids using standard proliferation assays due to containment issues, so 

each day a spheroid was removed from the plate and photographed. Direct comparison of these 

pictures shows that, as suspected, the spheroids don’t appear to be growing in size (see Figure 

119). In the 2D model the cells double in number approximately every three days.  
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Figure 119: Images of spheroids taken over a number of days after seeding.  Comparison of the 
images shows that they do not appear to be increasing in size. 
 

At this stage it was not known whether the cells were alive or not. It was hypothesised that they 

may be alive but no longer growing, or they may still be growing with the spheroids becoming 

more and more compact as the days go by. A necrotic core is a feature of spheroids larger than 

500nm used in cancer models, (334) so another possibility was that it was only the cells on the 

outside that were dividing, with this not being enough to causes the spheroid to increase in size. 

An image was obtained using confocal microscopy to further reveal the structure and 

morphology of the spheroid. 
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Figure 120: Confocal microscope image at 20 x magnification of a spheroid formed in a hanging 
drop plate and stained with DAPI. 
 

The image in Figure 120 shows the cells round the edge of the spheroid have been stained with 

DAPI. The blank space in the middle of the spheroid may be the necrotic core or it may be that 

this area of the spheroid cannot be visualised using this technique. The flattened morphology 

observed in the 3D visualisation (right) is thought to be a result of spheroid flattening due to 

mounting.  

 

In order to investigate spheroid viability further, experiments were carried out to determine 

what would happen if the spheroids were seeded into a different environment, specifically a 

tissue culture treated 96 well plate with or without a pre-established SMB cell monolayer. It was 

hypothesised that if the cells were still alive they would attach to the bottom of the plate and 

spread out, although the extent to which this might occur was unknown.  
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Figure 121: Pictures demonstrating the attachment and spread of spheroids when transplanted 
into a 96 well plate either with or without a cell monolayer. Spread and growth of the cells from 
the spheroids can be clearly seen on the blank surface of the plate. Distinguishing cells from the 
spheroid from cells in the monolayer is more challenging. 
 

It can be seen from the pictures in Figure 121 that initial suspicions that the cells were dead are 

probably unfounded, and this was subsequently investigated further using an MTT assay. It is 

still theoretically possible that the cells at the centre of the spheroid are no longer alive but it is 

clear that those around the periphery, at least, are alive and have attached and spread out on 

the surface of the plate. The presence or absence of a cell monolayer doesn’t appear to make 

much of a difference to the spread of the spheroids. 

 

Finally, an attempt was made to carry out an MTT assay on the spheroids to determine if they 

were still alive, with cell death being a possible explanation for the observed lack of growth. The 

spheroids were obviously purple, indicating the presence of the conversion product, but after 

solubilisation only gave a very weak signal. One well of a 96 well plate, containing a monolayer 

of approximately 20,000 cells would give a signal of around 0.1 absorbance units (AU). The 

spheroids, which contained 40,000 cells when seeded, gave a signal of between 0.015 and 0.03 

AU.  
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Although the MTT assay only gave a very weak signal it was enough to show that formation of 

the conversion product was happening, indicating that at least some of the cells in the spheroid 

were still alive. The weak signal, despite a larger number of cells in the spheroid than in the 

monolayer, could be explained either by the presence of a necrotic core or by problems with 

either MTT penetration or final solubilisation. It was apparent from the work carried out that at 

least a proportion of the cells within the spheroid were alive, and due to the problems with 

solubilisation and visualisation no attempt was made to assess the live/dead ratio of the cells 

through any other method.  

 

 

7.1.3. Discussion 

 

The first and most obvious conclusion that can be drawn is that the SMB cells will aggregate to 

form spheroids when cultured in the hanging drop format. This was observed in both the 384 

and 96 well plate formats, with the spheroids being stable for up to 9 days. Unfortunately from 

this point on there is a lot of uncertainty associated with this model. 

 

The literature around this spheroid model primarily focusses on the application of the technique 

for studying anti-cancer drugs, with protocols available for using these spheroids in proliferative 

assays. There was no literature available at the time of writing about using this model for 

monitoring the effect of drugs on intracellular proteins, and therefore there were no standard 

protocols available for lysing the spheroids and analysing the lysate via immunoblotting. For this 

reason an extensive period of lysis optimisation was required. Advice from the manufacturer did 

not extend beyond using a more stringent lysis buffer and using a sonicator if possible so a 

search of the literature revealed some other options for homogenising tissue samples including 

mechanical techniques and enzymatic digestion using collagenase. The most promising of these 

techniques was subjecting the spheroids to repeated freeze-thaw cycles but sonication using the 

bioruptor was found to be much more efficient. 

 

Once lysis was optimised it was possible to dose the spheroids with a range of compounds to see 

if any change in PrPSc levels could be observed. As can be seen from the data (Figure 117 and 

Figure 118) the majority of the treatments didn’t result in any reduction of PrPSc below the 70 % 

cut off. Even the compounds that are reported to work in vivo showed no activity, with the only 

exception being dextran sulfate at 250 μg/ml. Much variation was observed even with the 
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optimised lysis conditions, with the large error being testament to the inconsistency of results 

between runs. The lack of activity from the compounds with known in vivo activity means that 

no conclusions can be drawn from this model about the potential in vivo activity of the indoles. 

The exact reason behind the failure of the compounds to exert their anti-prion effect in this 

model is not known, but various reasons have been hypothesised. It was observed early on in 

the study that once the spheroids had formed they did not appear to be increasing in size. 

Questions were therefore raised about whether cells within the spheroid were still alive and 

whether this may be a reason for the lack of activity seen from the anti-prion compounds. 

Studies were carried out to try and make this clear, with the cells round the edge of the spheroid 

appearing to be alive as they attached to the surface of a tissue culture plate when transferred 

to a 96 well plate. Preliminary MTT data also suggested that the cells in the spheroids were still 

alive, but due to the weak signal it was not possible to quantify this accurately. Due to 

containment issues it was not possible at this time to pursue this investigation using a different 

proliferation assay, but this would be something to be considered if this model were to be 

investigated further. 

 

The possible lack of growth was proposed as another reason why the compounds might not be 

working. In curative assays conducted with quinacrine it was found that when growth was 

arrested (in a 2D model), PrPSc reappeared within three days, much more quickly than when the 

cells were allowed to proliferate as normal. (377) Cell division has also been shown to contribute 

to the reduction of PrPSc levels to a steady state level, although not to total clearance. (110) It is 

therefore possible that cell division may have a role to play in the mode of action of one, if not 

all of these compounds, where if the cells within the spheroid are no longer dividing then the 

compound’s action may be compromised. As discussed previously, larger spheroids tend to have 

a necrotic core, which may contribute to this effect. Once again, a better measure of 

proliferation may help  determine this further.  

 

Another suggestion was that the way the cells are tightly packed into the spheroid may be 

preventing the compounds from accessing the cells within the spheroid. If penetration was 

limited then the potential effect of the compounds would also be limited. The main attraction of 

this hanging drop model was the manufacturer’s claim that the spheroids represented in vivo 

condition closely, and some of the compounds used in this study have been shown to have in 

vivo activity. Despite the evidence of its efficacy in a mouse model of prion disease, curcumin 

has been shown to have poor bioavailability in humans, with reasons given including poor 
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absorption, rapid metabolism and rapid systemic elimination. (462) It may be that these 

unfavourable pharmacokinetic properties are a reason why curcumin does not appear to be as 

active as might have been expected in this model. However, this is not thought to be the case 

with PPS and DS, and initial studies on the pharmacokinetic properties of the I3GAs found them 

to be present in mouse brains at concentrations above the cellular EC50 (see section 4.5).  While 

unfavourable pharmacokinetic properties may have a role to play in the lack of observed activity 

from the indole compounds, possibly due to their poor solubility, it is thought unlikely that this is 

the only factor preventing the compounds from working.    

 

The image of the spheroid obtained using confocal microscopy appears to show a region in the 

middle of the spheroid that is devoid of DNA, which may represent the necrotic core that exists 

in multicellular tumour spheroids. However, it has been suggested that confocal microscopy is 

not a suitable technique for imaging the central region of spheroids, with two photon excitation 

microscopy suggested as an alternative. (463) Other work has suggested that optimisation of the 

experiment parameters can result in imaging depth increasing from 100 µm to 320 µm. (464) The 

key parameters for optimisation were suggested to be the use of a water immersion lens and 

careful modulation of laser output as a function of depth. It may be that optimising one or other 

of these parameters may help elucidate the image of the spheroid further. All images presented 

here were obtained using oil immersion objectives, and the water immersion objectives have 

been suggested as being preferable as water more closely matches the refractive index of most 

living biological systems. (465)  

 

Overall there are advantages to this model which would, in theory, make it ideal for use as a 

high-throughput model for screening anti-prion compounds. It’s low cost and easy to use 

without any specialised equipment, and results in the formation of spheroids that are 

homogenous in size and shape. However, the total lack of activity seen from any of the 

compounds investigated raises questions about the suitability of this model for this specific 

application. It is thought that further investigation would be required to get to the bottom of 

why the compounds are not working, with the crucial bit of information being about whether 

the cells are proliferating. It was not possible to monitor this by MTT but there are other assays 

available that could be tried, and it is thought that this should be the first step if the spheroid 

model is going to be pursued any further. 
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7.2. The Alvetex Scaffold Model 

 

 

7.2.1. Introduction 

 

The use of scaffolds to culture cells in 3D is a well-established technique, with a variety of 

different materials, both natural and synthetic, being used as the basis of the scaffold. Scaffolds 

are designed to encourage cells to maintain their natural, rounded morphology, rather than 

being flattened as they are in 2D culture, as well as encouraging the formation of tissue like 

structures and cell-cell interactions.  

 

For the purposes of this study the Alvetex scaffold system was trialled. The Alvetex scaffold is a 

highly porous polystyrene scaffold which is 200 µm thick. 

 

 
 
Figure 122: Scanning electron microscopy image showing the edge of an Alvetex Scaffold (image 
from www.amsbio.com, suppliers of Alvetex scaffold).  
 

A significant advantage of the Alvetex platform was that it was available in a 96 well format 

which, in theory, could be used without the need for any significant optimisation or changes to 

culture conditions. The only optimisation that was needed was to check initial seeding densities. 

It was also available as 12 and 24 well plates, as well as inserts. The other advantage with this 

system, as stated earlier, was that detailed protocols existed for monitoring growth using an 

http://www.amsbio.com/
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MTT assay and also for lysing cells and retrieving the intact cells for analysis. Materials and 

methods for this study are outlined in detail in sections 2.1.6, 2.2.8.2 and 2.2.8.4. 

 

 

7.2.2. Results 

 

7.2.2.1. Growth Curve and Seeding Density Optimisation 

 
 

Figure 123: MTT results for SMB cells seeded onto the scaffold at densities ranging from 10,000 
cells/well to 100,000 cells/well. Increased metabolic activity, suggesting increased cell numbers, 
can be seen for all groups. The data points shown represent the mean ± SD values from 
duplicate experiments where each sample was analysed in triplicate. 
 

The results of the MTT assay, shown in Figure 123, strongly suggest that the cells were alive and 

proliferating within the scaffold over the 5 day period that was routinely used for compound 

screening.  

 

7.2.2.2. Cell Visualisation 

It was not possible to visualise the cells within the scaffold using brightfield microscopy, so 

attempts were made to visualise the cells by employing neutral red staining. Staining was carried 

out three days after seeding at 50,000 cells/well.  
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Figure 124: Images of the Alvetex scaffold under the brightfield microscope. a. shows the 
scaffold containing cells at 20 x magnification. b. shows the scaffold containing cells that have 
been stained with neutral red, also at 20 x magnification. Although a red colour can be seen it is 
not possible to identify individual cells. c. shows the appearance of the wells to the naked eye 
with the red staining clearly visible, showing the presence of living cells within the scaffold. 
Staining was carried out three days after seeding, with initial seeding densities of 50,000 
cells/well.  
 

It can clearly be seen in Figure 124c that neutral red staining was successful and the cells are 

alive and embedded within the scaffold, but this did not give any more information than the 

MTT assay. However, the lack of resolution under the brightfield microscope meant it was still 

not possible to identify individual cells under the microscope, as was the case in the 2D model. 

 

7.2.2.3. Cell Visualisation Continued – Confocal Microscopy 

Due to the lack of resolution available using the normal brightfield microscopes (see Figure 124) 

it was necessary to look at other options for visualising the cells. Protocols were available for 

fixing and mounting the scaffolds for use in a confocal microscope so this was explored further. 

It was hoped that the higher resolution afforded by the confocal microscope would help 

visualise the cells and confirm their 3D conformation within the scaffold. 
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In order to visualise the cells and the scaffold, different dyes were used. 4’-6-diamidino-2-

phenylindole (DAPI), which produces a blue fluorescence when bound to DNA, was used to 

visualise the nuclei of the cells. Nile red, a lipophilic dye which fluoresces red was used to stain 

and visualise the scaffold, both with and without cells present. An acti-stain phalloidin, which 

fluoresces green, was used to stain actin, a protein found in the cytoplasm and gain further 

insights into the orientation of the cells within the scaffold and cell-cell contacts.  

 

Initial studies visualised the nuclei of the cells to confirm the 3D conformation that was 

expected. Images of the scaffold were obtained, both when empty and when seeded with cells. 

Cells were visualised either as nuclei or as nuclei surrounded by the cytoskeleton. 

 

 
 

Figure 125: Depth colour coded z-stack of cell free Alvetex scaffold at 40 x magnification. Frame 
1 represents the top of the scaffold, frame 43 represents the bottom. Total depth is around 120 
µm with each frame 2.8 µm apart.  
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Figure 126: Orthogonal view of a z-stack image at 40 times magnification of the Alvetex scaffold 
from a 12 well plate seeded with cells at an initial seeding density of 500,000 cells. Cells are 
stained with DAPI to visualise the nucleus, and have penetrated the scaffold to a depth of 50 
μm. 
 

It can clearly be seen in Figure 126 that the cell nuclei are in a 3D conformation, and also that 

the cells had penetrated into the scaffold rather than just settling on the top. Once it was 

established that the cells were showing the expected rounded morphology further investigations 

were carried out, using scaffolds harvested at different time points to visualise the proliferation 

of the cells.  
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Figure 127: Orthogonal views of z-stack images from scaffolds harvested at different time points; 
2 days (a), 4 days (b), 6 days (c) and 8 days (d). Graphs show the number of pixels in each slice of 
the z-stack, representing the distribution of the cells within the scaffold and the depth to which 
they have penetrated, which did not change much between time points. 
 

The time course represented in Figure 127 confirmed the proliferation of the cells within the 

scaffold, and also validated the results from the MTT assay and the validity of using this 

technique for measuring cell growth in this model. The cells do not appear to be penetrating 
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further into the scaffold over time, suggesting that migration through the scaffold may not be a 

dynamic process.  

 

 
 

Figure 128: Orthogonal view of a z-stack image at 40 x magnification where the cells and the 
scaffold were stained with DAPI and nile red respectively and imaged at different wavelengths. 
Total depth of the image is around 100 µm. 
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Figure 129: 3D representation of the z-stack shown above in Figure 128. Numbers are in µm and 
represent the dimensions of the section. 
 

It can be seen from the images in Figure 128 and Figure 129 that the cells are embedded into 

the scaffold. The majority of the cells appear to be towards the top of the scaffold, although 

there is evidence of the cells migrating through it.  

 

 
 

Figure 130:  Orthogonal view of a z-stack image at 40 x magnification. Cell nuclei are stained 
with DAPI (blue), actin in the cytoskeleton is stained with phalloidin acti-stain 488 (green). The 
cell-cell contacts and 3D structure can be observed in all sections. 
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Staining of the cells with both DAPI and acti-stain as in Figure 130 allowed the cell-cell contacts 

to be visualised. The increased level of cell-cell contact is something that is key to the 3D 

model’s ability to replicate in vivo conditions and therefore being able to visualise this was a key 

finding. Further evidence of the cell-cell contact, and the cell’s orientation within the scaffold, 

can be seen in Figure 131 and Figure 133. 

 

 
 

Figure 131: Orthogonal view of a z-stack image at 40 x magnification. Cell nuclei are stained with 
DAPI (blue), actin in the cytoskeleton is stained with phalloidin acti-stain 488 (green) and the 
scaffold is stained with nile red (red). The red signal has slightly bled into the green channel, 
resulting in the yellow signal from some points of the scaffold. However, the cell nuclei, 
surrounded by the cytoskeleton, can be clearly seen.  
 

 

 
 

Figure 132: Deconstruction of Figure 131 above. Pictures represent either cell nuclei stained 
with DAPI (left), actin stained green, along with bleed through from the red channel (middle) and 
the scaffold stained red (right).  
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Figure 133: Image taken at 60 x magnification of scaffolds stained with DAPI and acti-stain.  
 

It can be seen in Figure 133 that imaging at 60 times magnification does not provide a significant 

amount of extra detail, therefore validating the decision to do the majority of the imaging at 40 

times magnification. 

 

7.2.2.4. Compound Screening 

Initial dosing trials were carried out to see if any activity could be seen from the I3GAs. Cells 

were dosed with HBSS, 0.5% DMSO, 10 µM curcumin or 10 nM 3001012. For this trial the lysis 

was repeated, with both sets of lysate being analysed to assess the effect of treatment on PrPSc 

levels. 
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Figure 134: Results of initial dosing trial on cells grown in 3D within the Alvetex scaffold. PrPSc 
levels are directly proportional to the integrated optical density (IOD) of the dots on the blot, as 
measured by Bio-Rad Quantity One software. It can clearly be seen that curcumin and 3001012 
are causing reductions in the levels of PrPSc in treated cells, although with slightly reduced 
efficacy compared to results in the monolayer. The results were also fairly consistent over 
different wells. The data points shown represent the mean ± SD values from duplicate 
experiments where each sample was analysed 4 times. 
 

The data in Figure 134 was thought to be extremely promising, as they show that the Alvetex 

scaffold can be used for this application, and also that the compounds seem to be capable of 

reducing PrPSc in this model, even if the efficiency compared to the 2D model does appear to be 

reduced.  
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Figure 135: Comparison of the PrPSc levels, as denoted by the signal on the dot blot, after 
treatment with different compounds and either 1 or 2 rounds of lysis. Two rows of an alvetex 
plate were treated with either HBSS, 0.5 % DMSO, curcumin or 3001012. Eight replicate wells, 
comprising 2 rows and 4 columns, were used for each treatment. Cells were lysed using RIPA 
buffer within the Alvetex scaffold, the lysate removed (lysis 1), and a second aliquot of RIPA 
buffer added to lyse any remaining cells (lysis 2). The faint signal from the second set of lysates 
suggests that the majority of the cells are being lysed in the initial lysis. This figure also 
demonstrates the activity of both curcumin and 3001012 in this model as shown by the 
decreased signal compared to the HBSS and DMSO control. This is more obvious in the results 
from the first lysis. 
 

An interesting observation from the blot pictured in Figure 135 was that the PrPSc levels in the 

Alvetex lysate, as denoted by the signal on the dot blot were much lower than had been 

expected, even though the low signal from the second lysis suggests that all the cells are being 

lysed. The signal from the MTT assay was much stronger than that from the 2D model, and given 

the higher initial seeding densities (50,000 cells/well in 3D, 10,000 cells in 2D) as well as the 

proliferation observed in both the MTT study and the confocal microscopy images it would be 

expected that higher levels of PrPSc, and a much stronger signal than normal, should be seen on 

the blot. Blots done at the same time, using the same antibody but with cells grown in 2D, gave 

a signal consistent with what is normally expected, suggesting the weak signal was not down to 

problems with the blotting protocol.  
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After this initial trial, further 96 well plates were purchased in order to obtain EC50 values for 

each of the compounds, allowing a direct comparison with activity in the 2D models. Cells were 

dosed with two I3GA compounds as well as compounds from the literature with known in vivo 

activity (see Table 46) and were seeded and harvested as previously, although in this case only 

one round of lysis was carried out. Compounds were dosed at a range of concentrations based 

on their EC50 in the 2D model. MTT assays were also carried out, using the highest 

concentrations of the compound used in the activity screen. For logistical reasons these were 

carried out in 24 well Alvetex plates, with each compound being dosed in duplicate, and each 

well analysed in triplicate. Compounds were screened in both 96 and 24 well plates and 

harvested as described in section 2.2.8.2. Results shown below are a combination of both sets of 

results. Results shown below represent at least three separate experiments.  

 

 
 
Figure 136: PrPSc levels in cells grown in Alvetex scaffolds and treated with the I3GA compounds  
that have not been tested in vivo. Both compounds can be seen to reduce PrPSc levels at 
concentrations similar to their EC50s in the 2D cellular model. The data points shown represent 
the mean ± SD values from duplicate experiments where each sample was analysed in triplicate. 
 

It is clear from the curves presented in Figure 136 that both 3001012 and 3001207 are active in 

the Alvetex model with EC50s of 5 nM and 10 nM respectively. 
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Figure 137: PrPSc levels in cells grown in Alvetex scaffolds and treated with compounds known to 
have in vivo activity (see Table 46 for references). All compounds except amphotericin B were 
shown to be active. The data points shown represent the mean ± SD values from duplicate 
experiments where each sample was analysed in triplicate. 
 

The data in Figure 137 demonstrates that both PPS and DS retain excellent activity in the Alvetex 

model with EC50s of 0.25 μg/ml and 0.3 μg/ml respectively, as would be expected given their 

well-established in vivo activity. Curcumin retains some activity, with an EC50 of 4 μM, although it 

is not as active as it is in the 2D model. Surprisingly, amphotericin B did not show any activity, 

and this is thought to be due to the concentrations used in this screen not being high enough. 
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Figure 138: PrPSc levels in cells grown in Alvetex scaffolds and treated with quinacrine and 
heparin. Quinacrine has  been shown to be ineffective in vivo, while heparin has not been tested. 
(see Table 46 for references). Both compounds showed activity, although in the case of 
quinacrine activity was reduced compared to activity in the 2D model. The data points shown 
represent the mean ± SD values from duplicate experiments where each sample was analysed in 
triplicate. 
 

Figure 138 shows that quinacrine showed some activity, with an EC50 of 2.5 μM  although it was 

much more active in the 2D model. The efficiency of quinacrine is also reduced, with clearance 

at the higher concentrations being much reduced compared to the 2D model and the transition 

from inactive to active concentrations not being as sharp as that observed in the 2D model. 

Heparin retains all its activity compared to the 2D screen, with an EC50 of 3 μg/ml  No 

information was available in the literature at the time of writing about the activity of heparin in 

vivo but the data presented here would suggest that it has the potential to be active. 
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Figure 139: MTT viability data for cells grown in scaffolds and treated with the highest 
concentrations of the compounds used in the activity screening. All compounds apart from 
quinacrine were non-toxic at their highest concentrations. The data points shown represent the 
mean ± SD values from duplicate experiments where each sample was analysed in triplicate. 
 

It can be seen from the data in Figure 139 that quinacrine at 20 µM was highly toxic, as it is in 

the 2D models, but was non-toxic at 1 µM. PPS and heparin showed increased signal compared 

to the DMSO treated control, something that had also been observed in the 2D culture (see 

Figure 64). 

 

 

7.2.3. Discussion 

 

In some respects the Alvetex model was found to be ideal for the purposes required. It was 

available in a 96 well format, ideal for high-throughput screening. Protocols were available for 

the visualisation of the cells using both brightfield and confocal microscopes, monitoring viability 

via MTT, lysing the cells for protein retrieval and using a trypsin-EDTA digestion to harvest the 

cells from the scaffold. The availability of these protocols made optimisation much easier and 

also gave confidence that this model could be used for the desired application. 
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Initial studies were encouraging with linear growth, as measured by MTT, being observed at 4 

different seeding densities (see Figure 123). Initial studies using curcumin and 3001012 also 

showed that both compounds were active, and that an adequate signal could be obtained on the 

blot using the lysis methods advised by the manufacturer (see Figure 134). The problems with 

visualising the cells under the brightfield microscope were solved through the use of confocal 

microscopy, which confirmed that the cells were in the correct 3D conformation. An actin stain 

was employed to allow visualisation of the cell-cell contacts which are a key feature of 3D 

models, and confirmed that the cells are in contact with each other in 3 dimensions.  

 

Seeding, dosing, lysing and harvesting the cells were all straightforward, with the only drawback 

being that the plates could be quite time consuming to prepare if several were being seeded at 

the same time. A very large number of cells were also required for the preparation of several 

plates. However, it was possible to obtain a good signal on the dot blot without too much 

optimisation. It is worth noting that removal of the cells from the scaffold, either by direct lysis 

or trypsin-EDTA digestion, was a very inefficient process. The MTT data (Figure 123) suggested a 

population doubling time of 4 days, so maybe 120,000 cells would be present in the scaffold. 

This compares to a doubling time of approximately 3 days in 2D, and an approximate final cell 

number of 40,000 cells/well. However, the signal on the blot was similar to that obtained from 

one well of a 96 well plate monolayer, even though 3 times as many cells were thought to be 

present. Although the signal was adequate, it is thought that further optimisation of lysis 

methods to increase efficiency might be desirable. Removal of the cells from the scaffold using 

trypsin was also a very time consuming process that only released a small proportion of the cells 

thought to be within the scaffold. The 96 well plate was also affected by evaporation from the 

outer wells, and for this reason only the inner wells could be used which limited the number of 

compounds that could be screened on each plate. 

 

The results from the Alvetex screening are very encouraging, with PPS, DS and the I3GAs all 

showing excellent activity in the model, with EC50 values equivalent to, or lower, than their 2D 

counterparts (see Figure 136 and Figure 137). The activity shown by the I3GAs is extremely 

promising, with no loss of activity observed in the 3D system. Heparin was also shown to be 

active at low concentrations suggesting that it has the potential to be active in vivo (see Figure 

138). This is not surprising given its structural similarity to PPS and DS, and its well established 

role as an anticoagulant suggests favourable pharmacokinetic properties. (466) Surprisingly, given 

its reported in vivo activity and activity in the 2D cell culture, amphotericin B was not active in 



286 

 

this model (see Figure 137). The suggestion had been made that it might be active against the 

hamster scrapie agent but not the mouse scrapie agent, (467) however this does not explain why 

it was still found to be active in the 2D model. It’s possible that unfavourable pharmacokinetic 

properties have hampered its activity, or that sufficient concentration were not reached in this 

study, but both things would require further investigation. Curcumin also showed reduced 

efficacy when it is known to be active in vivo (see Figure 137). As discussed in section 7.1.3, this 

may be due to its reported poor bioavailability. (462) Quinacrine, known not to be active in vivo, 

displayed reduced activity, with an increase in EC50 as well as a reduction in clearance efficiency 

at the higher concentrations (see Figure 138). All the data suggests that the Alvetex model is 

capable of predicting in vivo activity in this context, and that the activity shown by the I3GAs is 

very promising in terms of their potential in vivo activity. 

 

In conclusion, the Alvetex model has many properties that would make it ideal for high-

throughput screening. The 96 well format is easy to use, and it is possible to get an adequate 

signal on the blot from one well. The Alvetex model has provided valuable information on the 

potential activity of the indole compounds, providing evidence that they may be active in vivo 

due to their activity and low concentrations in this model. The relevance of these results is 

backed up by the very good activity shown by PPS and DS, and the reduced efficiency of 

quinacrine. Despite this there are some drawbacks. Not being able to visualise the cells under a 

brightfield microscope makes it difficult to perform routine checks on the cells, and the expense 

of the plates may render it too expensive to be used on a large scale.  

 

 

 

7.3. The Happy Cell Model 

 

 

7.3.1. Introduction 

 

The final system to be trialled was the Happy Cell system. Like the Alvetex scaffold this is based 

on the concept of using a supportive matrix to allow the cells to grow in 3D, but in this case the 

matrix is not a solid scaffold but an advanced suspension medium. Instead of attaching to, and 

migrating within, a polystyrene scaffold the cells are suspended in a special formulation of 

medium, allowing the formation of colonies of cells with a spheroid-like morphology. The 
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hypothesis was that within this system the cells would be able to develop distinct 3D structures 

that weren’t as tightly formed as the spheroids, allowing easier lysis and analysis. Materials and 

methods for this study are outlined in sections 2.1.6,  2.2.8.3 and 2.2.8.4. 

 

 

7.3.2. Results 

 

7.3.2.1. Spheroid formation 

 

 
 
Figure 140: Pictures showing the formation of colonies and spheroid-like structures over time 
when SMB cells are cultured in Happy Cell matrix. Cells were seeded at 5,000 cells/well and 
monitored over 4 days. 
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It can be seen in Figure 140 that spheroids were forming within the Happy Cell medium, 

although it was not clear whether the cells were proliferating or simply aggregating together to 

form spheroids.  

 

In order to gain further insights into the morphology of the spheroids they were examined by 

confocal microscopy after staining with DAPI.  

 

 
 
Figure 141: Confocal image of the spheroids after transferal to a microscope slide and staining 
with DAPI. The right hand image shows a 3D representation of the left hand image. A strong 
signal can be seen from some of the spheroids, while some show a very weak signal.  
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Figure 142: Orthogonal view of a z-stack of a spheroid formed in the Happy Cell model. 
 

The images in Figure 141 and Figure 142 demonstrate that each of the spheroids is composed of 

multiple cells, although the DAPI signal does vary between cells. However, these images do show 

the 3D structure of the cells within the spheroid, validating the 3D conformation of the cells. It 

was not possible to determine any possible interactions between the spheroids as they had to 

be removed from the matrix for analysis, and therefore separated into individual units. 

However, it is thought that the majority of cell-cell interactions would take place within the 

spheroid rather than between spheroids. 

 

7.3.2.2. Compound Screening 

Spheroids were seeded and grown as before, with an initial seeding density of 5,000 cells/well. 

They were dosed with a selection of the compounds used in the Alvetex and hanging drop 

studies, namely 3001012, 3001207, PPS, DS and quinacrine.  
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Figure 143: PrPSc levels in cells grown in Happy Cell matrix and treated with compounds  that 
have not been tested in vivo. Both compounds can be seen to be active. The data points shown 
represent the mean ± SD values from duplicate experiments where each sample was analysed in 
triplicate. 
 

It can be seen in Figure 143 that both 3001012 are active in the Happy Cell model, with EC50s of 

10 nM and 50 nM respectively.  

 

 
 
Figure 144: PrPSc levels in cells grown in Happy Cell matrix and treated with compounds known 
to have in vivo activity (see Table 46 for references). Both compounds were shown to be active. 
The data points shown represent the mean ± SD values from duplicate experiments where each 
sample was analysed in triplicate. 
 

Again, the data in Figure 144 shows that both PPS and DS retain excellent activity in the Happy 

Cell model, with EC50s of 0.5 μg/ml and 1 μg/ml. For both these compounds and the I3GAs in 

Figure 143, the EC50 values are slightly higher than those seen in 2D and in the Alvetex model. 
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Figure 145: PrPSc levels in cells grown in Happy Cell matrix and treated with quinacrine, which is 
known not to be active in vivo (see Table 46). Quinacrine retained some activity but this was 
reduced compared to activity in the 2D model. The data points shown represent the mean ± SD 
values from duplicate experiments where each sample was analysed in triplicate. 
 

The quinacrine data, as shown in Figure 145, shows a similar pattern to the data from the 

Alvetex model. The activity of quinacrine is reduced, both in terms of its EC50 (1 μM in this 

model) and in terms of the efficiency, with the transition from inactive to active concentrations 

being much slower.  

 

Unfortunately it was only possible to do the EC50 screens once, due to the limited amount of 

inactivation solution that was available. However, each concentration was done in triplicate and 

it is thought that the low error associated with the majority of points provides confidence that 

the results are meaningful.  
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Figure 146: MTT viability data for cells grown in Happy Cell matrix and treated with the highest 
concentrations of the compounds used in the activity screening. The data points shown 
represent the mean ± SD values from duplicate experiments where each sample was analysed in 
triplicate. 
 

The data in Figure 146 demonstrates that none of the compounds were toxic at the 

concentrations used in the Happy Cell screening. As observed in the Alvetex model (see Figure 

139), PPS increased the signal compared to the untreated control. Quinacrine was used at lower 

concentrations in this study after the observation in previous studies that it was toxic at higher 

concentrations – there was a clearly visible degradation of the spheroids. This study took place 

before the inactivation solution had been obtained so it was not possible to retrieve the 

spheroids for further analysis and quantify this degradation.  

 

7.3.2.3. Growth Curve Analysis 

Growth curve analysis using MTT assays was undertaken to demonstrate whether or not the 

cells were proliferating within the Happy Cell matrix. The cells were also dosed with compounds 

at active concentrations to see if they had any effect on growth.  
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Figure 147: Cell growth within the Happy Cell medium as measured using MTT. Graph a. shows 
the cell numbers, as measured by absorbance levels, over time. Graph b. shows the absorbance 
as a factor of the control, demonstrating the effect of the different treatments on growth. The 
data points shown represent the mean ± SD values from duplicate experiments where each 
sample was analysed in triplicate. 
 

It can be seen from the data in Figure 147 that the cells don’t appear to be proliferating within 

the Happy Cell medium, conversely numbers actually seem to decrease towards the end of the 

time course. The data showing the effect of the different treatments also validates the data 

shown in Figure 146 that suggest that treatment with PPS results in a higher MTT signal. Given 

the lack of proliferation observed from the other treatments it is not possible to say whether this 

is as a result of the effect of PPS on growth, or some other interference within the MTT assay.  
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7.3.3. Discussion 

 

The Happy Cell system was trialled in this investigation as a half-way point between the rigid, 

physical scaffold of the Alvetex system, and the total lack of scaffold as demonstrated in the 

hanging drop model. The support provided by the matrix allowed the formation of spheroids 

which then appeared to aggregate together, although the individual spheroids were still distinct 

from each other. The spheroids formed in this model were much smaller than those formed in 

the hanging drop model, which was to be expected given the much lower initial seeding density 

(5,000 cells/well in the hanging drop model compared to 40,000 cells/well in the hanging drop 

model) and also the fact that one single spheroid formed in the hanging drop model, whereas 

the Happy Cell model resulted in the formation of many smaller, heterogeneous spheroids.   

 

In terms of its suitability as a high throughput model for screening, there are certainly 

advantages to this system. Culturing the cells was very easy and not too time consuming – apart 

from the extra step of combining the Happy Cell medium with the DMEM it was no more trouble 

than seeding cells into the 2D model. A big advantage was that all assays were able to be 

completed without lengthy optimisation, something that wasn’t achievable with the other 

systems. However, retrieving the spheroids for further analysis was time consuming and 

problematic, with the potential to lose all the spheroids if enough care and attention wasn’t 

applied. The edge effect was also found to be particularly pronounced in this model, limiting the 

amount of compounds that could be run on each plate. Despite this, in terms of the results 

achieved from the screening, it was possible to obtain a good signal on the blot without any 

optimisation, not something forthcoming in the other models. It may also be possible that, with 

more time and experience, the protocol could be refined in order to make it more user-friendly. 

The further application of this system would also depend on the inactivation solution being 

commercially available, which it is not at the time of writing.  

 

The activity shown by both the I3GAs was very promising, especially when compared to the 

decreased efficacy shown by quinacrine in this model. An interesting observation was that, as 

measured by the MTT assay, the cells did not appear to be proliferating. This raises the 

potentially interesting question of how the compounds are working as cell division is thought to 

be crucial for the maintenance of steady state PrPSc levels. (110)  It would be interesting to see if 

an accumulation of PrPSc was observed within the spheroids over time as a consequence of the 

lack of proliferation. As all the compounds were active it suggests that the reduction of PrPSc 
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levels without cell growth is common to all compounds, rather than a specific feature of the 

mode of action of the indoles.  

 

The confocal data also raised questions due to the weak signal shown by some of the spheroids. 

The reason behind this is unclear – it may be that a proportion of the cells are dead, however it 

would be expected that dead cells would actually give a stronger signal as the DAPI would be 

able to enter the cells more easily due to increased membrane permeability. A more likely 

explanation is that the sample preparation and microscopy conditions were not properly 

optimised – as discussed in section 7.1.3 the acquisition of good confocal images of spheroids 

may require more optimisation than was possible here. Ideally the cells would be imaged while 

still within the matrix, something that was not possible at the time of writing. It can be seen in 

Figure 142 that the spheroid imaged here shows a distinct 3D structure, with the individual cells 

visible. However, the relevance of these spheroids to in vivo conditions is perhaps questionable, 

as although spheroids are formed they are limited in size and therefore don’t represent the 

pharmacokinetic challenge that would be presented in vivo. However, from a practical 

perspective these smaller spheroids are much easier to work with and the aggregation of 

spheroids that is observed may help to more closely replicate in vivo conditions.  

 

 

 

7.4. Results Summary 

 

 

A summary of the screening results can be seen below in Table 47. The hanging drop results are 

not included as no activity was seen from any of the compounds and therefore the validity of the 

results is questionable, as discussed in section 7.1.3. A summary of the properties of the 

different models, with specific reference to the anti-prion screening, can be seen in Table 48. 
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Table 47: Summary of the EC50 results from screening in the different 3D models. 2D results are 
from screens carried out alongside the 3D screens 
 

 

 

Alvetex results represent an EC50 calculated from the combination of at least three different sets 

of experiments. As discussed previously the Happy Cell EC50 screens were carried out once, and 

the 2D screens were only carried out once as they were simply for conformation. 
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 Table 48: Advantages and disadvantages of the different 3D models with relation to their 
potential as high-throughput drug screening systems.  
 

  

 

 

 

7.5. Discussion 

 

The results shown in this chapter demonstrate the successful establishment of three different 

models of 3D culture with the aims of both testing the potential of the I3GA compounds to be 

active in vivo and evaluating the suitability of the different models to be used for the high-

throughput screening of anti-prion compounds. A summary of the advantages and 

disadvantages of each system, with specific reference to the anti-prion screening can be seen in 

Table 48. 

 

The first of the stated aims of this study was to determine whether the I3GA compounds were 

active in the 3D models, and therefore determine their potential suitability for screening them in 
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an animal model of prion disease. It is clear that in the two models in which screens were 

successfully carried out, both the I3GA compounds used in the study retained good activity, 

albeit with EC50 values that were slightly higher than in the 2D model. Interestingly, 3001012 was 

active at concentrations lower than 16 nM, the concentration found in the brains of mice during 

the pharmacokinetic investigations. The retention of good activity, and the correlation between 

results from the different models suggests that these compounds may be active in vivo. These 

findings are further validated by the results from the screens of the anti-prion compounds 

identified from the literature. PPS and DS have been reported to be effective in vivo, and  

retained their activities in the 3D model comparable to their activity in the 2D model. 

Amphotericin B showed no activity in the Alvetex model, possibly due to insufficiently high 

concentrations, while curcumin showed reduced activity, a finding attributed to its reported 

poor bioavailability. (462) The activity of quinacrine was assessed in both the Alvetex and the 

Happy Cell models as this compound has been shown to be ineffective in vivo. (1, 194, 233, 460) 

Quinacrine showed a much reduced efficacy in the 3D models, as demonstrated by both a 

reduction in the EC50 value and also a change in the shape of the clearance curve. The 

correlation between the reported activities of these compounds and the activities seen in the 3D 

model supports the hypothesis that the 3D model is a more realistic screening system than the 

2D model, further strengthening the case for testing the I3GAs in an animal model of prion 

disease. 

 

It can be seen in Table 48 that all of the systems that were used have advantages and 

disadvantages. The hanging drop model was excluded from consideration due to the lack of 

activity shown by any of the anti-prion compounds. The reason for this lack of activity was 

unclear, with explanations including the lack of growth shown by the spheroids, the presence of 

a necrotic core and possible pharmacokinetic and bioavailability problems being suggested. 

Although it does have several advantages in terms of ease of use it is clearly not suitable for this 

application. The Alvetex scaffold model was easy to use and assay development was facilitated 

by the wide range of protocols that were available for different applications. It would, however, 

be quite time consuming and require a lot of cells to set up several plates at the same time, as 

would be required for high-throughput screening. The inefficient lysis and retrieval of the cells is 

also something that would need to be optimised. The inability to visualise the cells under a 

brightfield microscope is potentially disadvantageous as it is not possible to monitor the health 

of the cells without staining or fixing for visualisation under the confocal microscope. However, 

this does not preclude the Alvetex model from being used in a high-throughput capacity. The 
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Happy Cell model also demonstrated potential as a high-throughput model. It was easy and 

cheap to set up, and allowed the culturing of spheroids that could be easily lysed and visualised 

under a brightfield microscope. Again, though, problems were encountered. Retrieving and 

processing the spheroids for downstream analysis was problematic, and only possible with the 

use of an inactivation solution that, at the time of writing, was not available commercially. The 

small size of the spheroids and the lack of insight into inter-spheroid interactions mean that 

more work is required to determine the relevance of this model to the in vivo situation. It is 

thought, however, that despite the problems outlined here both the Alvetex model and the 

Happy Cell model have the potential to be used as platforms for high-throughput screening of 

anti-prion compounds, although further optimisation would be required in both cases. The cost 

of these models is significantly higher than the cost of the 2D screening but in the context of the 

expense associated with animal experiments they are thought to represent good value for 

money. 

 

In summary, the data presented within this chapter investigated three different 3D models of 

cell culture as potential high-throughput screening systems. All three systems were found to 

have advantages and disadvantages, but the hanging drop system was discounted due to the 

problems with lysis and the lack of activity shown by any of the compounds. Evaluation of the 

three different systems concluded that both the Happy Cell system and the Alvetex system had 

the potential to be used as high-throughput models in future. The activity of several compounds 

was evaluated in the Happy Cell and Alvetex models, with good correlation found between the 

in vivo activity of a compound and its activity in the 3D model. Both the indole compounds used 

in this study were found to be active in the 3D model, with EC50 values only slightly higher than 

those found in the 2D model. This provides further evidence that these compounds may be 

active in vivo, again reinforcing their potential as anti-prion compounds. 
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8. Discussion and Future Work 

 

The data presented within this thesis outlines the development of a group of I3GA compounds 

with potent anti-prion activity and a tightly defined structure-activity relationship (SAR). Their 

pharmacokinetic and pharmacodynamic properties have been investigated, along with studies 

designed to gain insights into their mode of action. The potential of these compounds to be 

effective in vivo has been investigated using 3D cell culture models, and these models, in turn, 

have been assessed to determine whether they would be suitable for use in routine high-

throughput screening in future. 

 

The identification of a group of small molecule anti-prion compounds with a well-defined SAR 

and nanomolar activities is outlined in chapter 2.  Optimal activity was conferred by the 

presence of the following structural motifs: 

 No substitutions on the indole 

 An aromatic amine  

 Substitution at the para-position 

 Both carbonyl groups 

The optimised lead structure can be seen in Figure 148. It contains an unsubstituted indole, both 

carbonyl groups and an N-linked heterocycle at the para-position of the phenyl ring 

 

 
 

Figure 148: Structure of 3001012, the lead compound. 
 

 At the time the work was carried out, the I3GAs were unique in the literature both in terms of 

activity and in the specificity of the structural features required for activity. Extensive SAR 

investigations have been carried out with other structural groups that have demonstrated anti-

prion activity. However, despite all the investigations, to be discussed in more detail 

subsequently, a cure for prion diseases is still out of reach. The further investigation of the I3GAs 
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to obtain insights into their mode of action was therefore thought to be crucial in the continuing 

search for small molecule therapeutics for prion disease.    

 

In order to gain further insights into the pharmacodynamic properties of the compounds, time 

course and curative assays were carried out as well as binding studies using SPR. A series of 

compounds from the literature were also screened to validate the techniques being used. A 

large number of the I3GA compounds were screened to evaluate their binding to PrPC, with none 

of the I3GAs showing significant binding even at much higher concentrations than their cellular 

EC50. Direct interaction with PrP was therefore thought unlikely to be a possible mode of action. 

Time course studies showed that the I3GAs reduced PrPSc levels within 56 hours at 

concentrations of 3 and 10 times EC50, while the curative assay showed that one treatment of 

lead compound 3001012 at a concentration of 10 times EC50 could cure the cells of infection for 

at least 76 days. The I3GA compounds were also found to have favourable pharmacokinetic 

properties, showing good microsomal stability and reaching concentrations higher than the 

cellular EC50 in mouse brains. Toxicity studies using zebrafish found no evidence of toxicity in 

vivo. Good correlation was found between compound activity in the SMB cell line and the ScN2a 

cell line, showing that the compounds are active in a neuronal model, as well as the non-

neuronal SMB model.  Good correlation was also found between the reported EC50 values for the 

literature compounds in a variety of cell lines, and the EC50 calculated from the SMB model, 

validating this technique as a model for screening compounds with unknown anti-prion activity. 

The only exception to this was congo red, which showed no reduction of PrPSc. Conversely, at 

certain concentrations it caused a very large increase in PrPSc levels. The reason for the increase 

in PrPSc at lower concentrations was thought to be due to congo red in its monomeric form 

acting as a template for conversion. The reasons behind the lack of activity at higher 

concentrations are unknown.  

 

Initial mode of action studies aimed to show whether the compounds might be affecting cell 

growth or protein aggregation by using MTT assays. Neither growth nor aggregation was found 

to be affected using these techniques. An interesting observation from the SPR, time course and 

MTT-FE assays was that in all cases quinacrine showed a markedly different effect to the I3GAs. 

Reproducible binding of quinacrine to PrP was observed in the SPR assay, and a quinacrine-

specific pattern of MTT exocytosis was observed during the MTT-FE assay, as well as increases in 

TS-MTT independent of total MTT. In contrast to the I3GAs, the reduction of PrPSc over time was 

dependent on quinacrine concentration, with treatment at 5 μM clearing PrPSc within 24 hours, 
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while treatment with 1.5 μM took 48 hours. The ability of quinacrine to bind to PrP, unlike the 

I3GAs, may explain these differences at least in part. Quinacrine has been proposed to act by 

binding to PrPC and therefore rendering it less susceptible to transformation into the abnormal 

isoform, (223) which would correlate with increased efficacy at higher concentrations.  The MTT-

FE results could also be explained in this context, with the effect seen due to the prevention of 

continued conversion and aggregation. Quinacrine was originally synthesised as an anti-malarial 

drug, and has also been used for other applications, so it is perhaps not surprising that it has 

demonstrated different pharmacodynamic properties.  

 

The elucidation of the quinacrine results underline one of the main problems associated with 

this study. While the quinacrine data can be explained in terms of what is already known about 

the mode of action, this background information is not available for the I3GA compounds. Indole 

derivatives have been shown to prevent the aggregation of both hen egg white lysosome (468) 

and amyloid beta (469-471) with the mode of action generally suggested to be interaction of the 

indole with the native form of the protein, preventing aggregation. However, the lack of binding 

seen with PrPC suggests that this is not how the compounds investigated here are working.  

Similarly, the SAR described here does not correlate with the SAR described for other modes of 

action for related indoles, for example as tubulin polymerisation inhibitors. (365-367) The absence 

of any clues as to the mode of action of the I3GA compounds makes it particularly difficult to 

draw meaningful conclusions from the pharmacodynamic and mode of action data presented in 

chapter 3. This is a common problem in the development of anti-prion compounds – the 

existence of a wide variety of compounds with little apparent commonality in their mode of 

action suggests that prion metabolism is a complex process, making development of an effective 

therapeutic more problematic. (207) 

 

In an attempt to confront the lack of knowledge around the possible mode of action of the I3GAs 

a top-down approach was used. The hope was to identify pathways affected by treatment with 

the I3GA compounds, and use this information to draw conclusions about the areas involved in 

the anti-prion effect. Fasano et al used this approach to identify targets of quinacrine in cured 

mouse neuronal cells (383) and quinacrine was included in the study presented here to validate 

the technique for this application. The combination of the microarray and proteomics studies 

produced vast amounts of data that was analysed using MetaCore software. 

 

Various conclusions were reached as a result of these studies, which are summarised below; 
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 The results of the Fasano study could not be replicated. 

 However, up-regulation of fatty acid synthesis correlates with the suggestion that 

quinacrine works by increasing cholesterol recycling. 

 Limited crossover between the individual targets identified by the microarray and 

proteomics studies suggests that, in this case, gene expression does not directly 

translate to protein expression. 

 Where the data set was large enough, affected pathways could be identified from the 

combined data sets, suggesting that analysing both genomic and proteomic changes was 

advantageous. 

 Pathways identified for the I3GA compounds do not appear to have any relevance to 

prion disease, suggesting possible new areas of investigation. The up-regulation of 

hedgehog signalling as a result of treatment with 3001012 may suggest a potential anti-

cancer role for 3001012. 

 Analysis of pathway components suggests a role for either the proteasomal pathway, via 

up-regulation of E3 ligases, or the prion protein transcription factor, sp1. 

 3001012 and 3001207 don’t appear to share a mode of action. 

 

In order to assess the relevance of the above findings it was necessary to validate the results, 

and this was done using western blotting. As can be seen in chapter 5, no difference was seen in 

levels of HSP90 or MTF-1. Small changes were observed in the amount of cleaved caspase-12 , 

but this was not thought to be of great relevance due to the very low levels of cleaved caspase-

12 present in the sample, as well as the lack of change observed at other concentrations and 

time points. The suitability of western blotting for this application was questioned due to its 

semi-quantitative nature, with the suggestion that it may not be sensitive enough to identify any 

changes in protein expression. MTF-1, like sp1, is a known transcription factor for PrPC, and the 

lack of change in MTF-1 levels casts doubt on the hypothesis that the compounds are working 

via direct modulation of PrPC transcription factors. Unfortunately it was not possible to obtain 

any direct measure of sp1 levels, and this would be essential for more concrete conclusions to 

be drawn.  

 

Studies using inhibitors of the protein degradation pathways produced some insights into the 

role of the different degradation pathways in the maintenance of steady state PrPSc levels in the 

SMB cells. Broad inhibition of the LCPs resulted in accumulation of PrPSc to levels well above 

normal, something that was not observed with specific inhibition of either the proteasome or 
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particular cathepsins. Time course analysis of the PrPSc accumulation showed a lag phase of 

around two days before accumulation was seen, suggesting that alternative cellular systems 

were able to compensate for the inhibition of the LCPs for a limited amount of time. PrPSc 

accumulation was shown to increase in a dose-dependent manner, with increasing 

concentrations resulting in increased accumulation. MG132, which inhibits both the proteasome 

and the cathepsins, was toxic at high concentrations suggesting that a certain level of inhibition 

of both systems can be tolerated by the cells, but results in cell death above a certain point. The 

accumulation of large amounts of PrPSc without any associated toxicity, as observed after 

treatment with inhibitors and also congo red, suggests that the PrPSc aggregation in itself is not 

toxic to the cells in the short term.  

 

All the compounds tested in conjunction with the inhibitors were found to mitigate the worst of 

the PrPSc aggregation. It appeared that the decrease in PrPSc levels as a result of treatment meant 

that the tipping point above which the other cellular machinery was overwhelmed was never 

reached, with the cured baseline remaining steady for the duration of the experiment. The 

clearance efficiency of 3001012 was shown to be reduced when co-dosed with the inhibitors, 

suggesting that 3001012 may work, in part, by some effect on lysosomal degradation. Several 

compounds have been reported to work by facilitating transport to the lysosomes, (229, 237-239, 411) 

so there is a precedent for compounds working this way. However, the majority of activity was 

maintained and there was no decrease in EC50, suggesting that any effect on lysosomal 

degradation is unlikely to be the primary mode of action.  

 

The findings regarding the central role of the LCPs, and lysosomal degradation in general, 

correlate well with the literature. Protein aggregates are known to accumulate in cells when 

protein quality systems become overwhelmed, (472) and other studies have reported increases in 

PrPSc as a result of treatment with E64, one of the inhibitors used in this study. (144, 473) It has been 

suggested that the proteasome cannot degrade protein aggregates as their size means that 

entry into the catalytic chamber is not possible, which may explain the lack of effect of 

proteasomal inhibition. (474) This could also be explained by the finding that PrPSc can cause 

partial inhibition of the proteasome, (181, 182) a phenomena that has been demonstrated in the 

SMB cells. (220) In addition, ubiquitination of PrPSc has been shown to be limited, with highly 

sensitive techniques required for detection of ubiquitinated PrPSc in vivo. (475, 476) The apparent 

lack of effect on the proteasome and the explanation above calls into question the original 

rationale for investigating the proteasomal degradation systems i.e. the identification of several 
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up-regulated E3 ubiquitin ligases. It may be that they are up-regulated as a result of treatment, 

without a concomitant up-regulation of proteasome activity. No change in ubiquitin levels was 

observed as a result of treatment with the I3GAs suggesting that up-regulation of E3 ligases may 

not correlate with increased ubiquitination and proteasomal degradation. Similarly, studies into 

autophagy carried out by other members of the group suggest that autophagy is not affected as 

a result of treatment with the I3GA compounds and therefore that any lysosomal effect may not 

be related to the autophagy pathway. 

 

One of the aims of the mode of action studies was to test the hypothesis that the I3GAs shared a 

mode of action. This was suggested due to the structural similarity between the I3GA 

compounds, as well as the tightly defined SAR. This hypothesis was contradicted by the 

microarray and proteomics data, as well as the more pronounced effect of LCP inhibition on 

3001012 activity. However, it seems unlikely that the compounds have entirely separate modes 

of action. The more pronounced effect of LCP inhibition on 3001012 activity is thought to 

represent either an off-target effect unrelated to the anti-prion activity, or a small part of a more 

significant effect which is shared with the other I3GAs.  

 

The I3GAs are part of a large and ever growing number of compounds, with a wide range of 

mode of actions, that have been identified as having anti-prion properties. The variety observed 

among therapeutic molecules and the pathways by which they exert their anti-prion effects 

means that generating a hypothesis about compounds with an as yet unidentified mode of 

action is challenging. 

 

Therapeutic interventions can broadly be divided into four categories: 

1. Interfering directly with conversion through interaction with PrPC, PrPSc, or co-factors 

necessary for conversion. 

2. Reduction of substrate for conversion through reductions in PrPC levels. 

3. Modification of cellular pathways to prevent conversion or increase PrPSc degradation. 

4. Other miscellaneous strategies. 

 

The I3GAs are a group of compounds which, despite the extensive investigations outlined above, 

do not have a defined mode of action.  It has been shown that they do not bind to recombinant 

PrP, suggesting that they do not exert their anti-prion effect through direct interaction with 

either PrPC or PrPSc (therapeutic intervention number 1). Binding to PrPC by glycosaminoglycans 
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(GAGs)  such as PPS, DS and heparin sulfate can reduce conversion by competing for binding 

with endogenous GAGs that have a role in conversion, and also by reducing the amount of PrPC 

available for interaction with PrPSc. (211, 212, 214) Congo red has been shown to interact with PrPC, 

(221, 222) compete with endogenous GAGs for binding (213) and stabilise PrPSc, preventing further 

conversion. (224) Conversely, however, it has also been shown to induce the formation of PrPSc at 

low concentrations. (190, 217, 225) Analogues of congo red have been synthesised and a structure 

activity relationship determined, (217-220) with the mode of action thought to be prevention of 

conversion of PrPC to PrPSc (190, 218, 225) or increased degradation of aggregates by reversing 

proteasomal inhibition. (220) The compounds suramin and curcumin, which are structurally similar 

to each other and to congo red, have been shown to be active anti-prion compounds (208, 226, 266) 

and while curcumin has been shown to bind to PrPC, sharing a binding site with congo red, (268) 

suramin is thought to work by re-routing PrPC away from the cell surface. (226)  

 

Quinacrine and related compounds have been studied intensively, and quinacrine is thought to 

work by either direct binding to PrPC, (223, 233) inhibition of the PrPC-GAG interaction through 

activity in the lysosomses (209) or destabilisation of the cell membrane. (245) It can therefore be 

seen that the proposed modes of action for quinacrine fall into the first three categories 

mentioned above. Quinacrine has been shown to be ineffective in vivo (194, 233) and has also been 

shown to induce the formation of drug resistant prions, (377) suggesting that it does not have the 

required properties to be used as an effective therapeutic. Analogues of quinacrine, known as 

fluphenazine and trimipramine, have been shown to be active in vivo, (477) and quinacrine has 

been synergistically dosed with statins resulting in more than additive activities. (245, 246) 

Quinpramine, a chimeric molecule composed of the acridine scaffold of quinacrine linked to the 

iminodibenzyl scaffold of despiramine was found to have 5 times higher activity than quinacrine, 

suggesting that the combination of two different molecules may be advantageous. (245, 478) 

 

Other compounds thought to work by preventing the conversion of PrPC to PrPSc include a group 

of small molecules that were designed to block the site on PrPC reserved for physiological ligands 

that are important for conversion. The pyridine dicarbonitriles were the first rationally designed 

group of anti-prion compounds and were developed to fit the putative protein-X binding site. 

(264) Other groups thought to work by blocking this binding site include anionic cyclic 

tetrapyrroles, sulfonated dyes, phosphorothioated oligonucleotides and sulfated glycans. (199) 

Antibodies have been shown to prevent conversion by binding to PrPC, (250-252) and concealing the 

epitope of the 6H4 antibody, at residues 144-152, also blocks conversion. (479) The C1 cleavage 
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fragment of PrPC has been suggested as a dominant negative inhibitor of conversion, working by 

competing with PrPSc for binding sites on PrPC. (152) An alternative route to preventing conversion 

is reducing the number of seeds by stabilising PrPSc aggregates. As mentioned above this has 

been suggested as part of the mode of action of congo red, and RNA aptamer D reduces the de 

novo formation of PrPSc through its incorporation into PrPSc aggregates. (265) 

 

A related, but functionally distinct, strategy is to modulate the amount of PrPC available as a 

substrate for conversion. It was shown that mice lacking PrPC were resistant to scrapie infection 

(24) and this has subsequently been explored in a therapeutic context. The effect of the I3GAs on 

PrPC levels was not assessed, and this is a potential mode of action that could be explored. 

Depleting neuronal PrPC in mice was shown to increase survival and reverse early stages of 

disease pathogenesis, despite the accumulation of PrPSc. (161, 162) Silencing of PrPC expression 

using RNAi and shRNA has also been shown to be beneficial in vivo. (247, 248) Removing PrPC from 

the cell surface has been shown to be an effective therapeutic strategy as the amount of PrPC 

available for conversion is reduced. Interference with cholesterol synthesis, recycling and raft 

formation counteracted PrPSc formation, (132, 241, 243, 244) and polyene antibiotics such as 

amphotericin B are thought to work by modifying lipid raft composition. (242) Tacrolimus, an 

immunosuppressant drug, was shown to reduce PrPC levels in vitro and inhibit prion replication 

(480) although the anti-prion activity of tacrolimus has also been attributed to its role as an 

inhibitor of calcineurin, a calcium dependent phosphatase that has been linked to prion induced 

neurodegeneration. (481)  

 

The modification of existing cellular pathways and cell signalling has also been explored. The 

effect on protein degradation systems was hypothesised to be part of the mode of action of the 

I3GAs, although subsequent investigations failed to provide any unambiguous evidence in 

support of this hypothesis. A key finding, however, was that the LCPs appear to be crucial to 

PrPSc homeostasis, and several compounds are thought to work by increasing lysosomal 

degradation. Chlorpromazine, (238) tamoxifen (239) and tyrosine kinase inhibitors (131, 237) are 

thought to work by rerouting PrPSc to the lysosomes where it is degraded. Branched polyamines 

accumulate in the lysosomes, where the acidic environment facilitates their degradation of PrPSc. 

They are thought to work by causing fibre breakage and the capping of elongated fibres. (227-230) 

Induction of autophagy can cause a reduction in the burden of PrPSc, and this has been 

demonstrated using compounds such as trehalose, (260) rapamycin (261) and lithium and imatinib. 

(259) Reversal of PrPSc induced proteasomal inhibition can lead to a reduction in PrPSc, (194) and 
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disruption of processes affecting apoptosis can alter disease progression. (262) Targeting the 

unfolded protein response (UPR), and specifically the inhibition of global protein synthesis via 

activation of the PERK/eIF-2α branch of the UPR, has proved beneficial. Restoration of the 

synthesis of synaptic proteins as a result of inhibition of the PERK/eIF-2α pathway has been 

shown to prevent neurodegeneration. (184-186) The targeting of a cellular pathway, rather than a 

prion disease-specific target, means that this approach could also be applied to a number of 

different protein misfolding diseases.  

 

Outside of these three therapeutic avenues a wide number of additional approaches have also 

been reported. The range of strategies outlined here demonstrate, for the  most part, known 

compounds or techniques with a defined mode of action being applied to the prion disease 

model. As mentioned before, no insights into the mode of action of the I3GAs have been 

revealed from their mode of action in other therapeutic applications, and the existing mode of 

action of the I3GAs was not part of the original rationale for investigating these compounds as 

anti-prion therapeutics. Oligomer modulators that inhibit oligomer formation were found to 

inhibit neuronal degeneration and disease progression in vivo, as well as having excellent oral 

bioavailability and BBB penetration, making it another candidate for treatment of different 

protein misfolding diseases. (482) Conversely, the induction of oligomerisation has been shown to 

trap prion infectivity in vitro. (483) Stem cell therapies have recently been trialled in the treatment 

of prion disease, with injection of both wild type and PrP knockout stem cells into mice 100 d.p.i 

resulting in increases in both incubation time and survival. (484) The mechanism behind this 

curative effect is unknown, but is thought to involve the release of trophic factors or other 

neuroprotective components. The hypothesis that disease could result from a loss of the 

proposed anti-oxidant effect of PrPC (34) led to the investigation of anti-oxidant compounds as 

possible therapeutics with some success, (485, 486) although the anti-oxidant effect is not always 

thought to be the primary mode of action. (485) The nonpsychoactive cannabis constituent 

cannabidiol (CBD) has been shown to be effective as an anti-prion compound both in vitro and in 

vivo, although the mode of action is ambiguous. (487) It has no effect on cell free conversion, PrPC 

expression or PrPSc stability, so the authors suggest that it may be working by blocking microglial 

activation or antagonising the N-methyl-D-aspartate (NMDA) receptor, whose overactivation has 

been implicated in neurodegeneration. Flupiritine, a trimainopyridine analgesic, has been shown 

to improve cognitive function in CJD  patients via upregulation of the proto-oncogene Bcl-2 and 

normalisation of glutathione levels. (488) 
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In addition to the compounds outlined above there are also a significant group of anti-prion 

compounds, generally identified through phenotypic screening, that do not have a defined mode 

of action. This group of course includes the I3GAs. Investigations into 2-aminothiazoles (2-AMTs) 

have so far been very promising, as they have excellent pharmacokinetic properties and are able 

to double the survival time in mice. (274, 489) However, the mode of action is unknown and, like 

quinacrine, the 2-AMTs were able to induce the formation of drug resistant prions. (489, 490) Other 

compounds include biaryl amides and hydrazones, (491) piperazine derivatives, (492) 

diphenylpyrazole derivatives, (493)diarylthiazoles (276, 277) and 6-aminophenanthridines (494) and 

none of these have a known mode of action.  

 

The lack of conclusive evidence regarding the mode of action of the I3GAs means it is hard to say 

where the I3GAs fit in to the vast array of compounds shown to have anti-prion activity. It is 

unlikely that they exert their effect through direct interaction with PrPC or PrPSc, even though the 

original rationale for investigating the I3GAs was based on their proposed ability to bind PrPC. It 

is possible that they are working via modulation of PrPC levels but this is something that requires 

further investigation. The results of the studies using the LCP inhibitors suggest that the I3GAs 

may be targeting cellular processes rather than the PrPC-PrPSc interaction itself, making their 

inclusion into the third category the most well supported hypothesis. Despite this, the 

microarray and proteomics studies have suggested the intriguing possibility of a completely 

novel mode of action, perhaps via modulation of the notch or hedgehog signalling pathways. It is 

therefore conceivable that the I3GAs could open up an as yet unexplored avenue for the 

treatment of prion diseases.  

 

The use of 3D cellular models is something that has been widely used in the study of anti-cancer 

drugs and in tissue engineering. The use of these models to study the potential in vivo activity of 

anti-prion compounds is a novel application, although their use as models for Alzheimer’s 

disease is becoming increasingly popular. (328, 337, 338) The observed activity of the compounds in 

the different models is summarised in Table 47, and the pros and cons of each model are 

outlined in Table 48. The lack of success thus far in identifying anti-prion compounds that are 

active in vivo has been a major barrier to the development of clinical therapeutics. The hope was 

therefore that these 3D models could be used to provide more information on the potential in 

vivo activities of anti-prion compounds, and identify those with unfavourable properties without 

the use of animal models.  
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It can be seen from the data presented that there was a correlation between the efficacy of 

compounds in the 3D models and their known in vivo activity. Although the EC50 for the I3GA 

compounds was slightly reduced, the compounds were still shown to be active at very low 

concentrations, which is extremely promising. The reduced efficacy shown by quinacrine 

suggests that compounds which are unlikely to be active in vivo could be identified earlier in the 

drug discovery pipeline by using these 3D models. An interesting observation was that  while the 

cells in the Alvetex model were shown to be proliferating, the cells in the Happy Cell model did 

not appear to be. Given that cell division has been suggested to be crucial in speeding up the 

clearance of PrPSc from cells after treatment, (110, 377) the ability of all the compounds to clear 

PrPSc from both models with a similar efficiency and within the same time frame is surprising and 

requires further investigation. Both the Alvetex and the Happy Cell models would require further 

optimisation before they could be used in a high-throughput capacity, and the cost of these 

models, particularly the Alvetex scaffold, may be prohibitive. However, from the evidence 

presented here, and compared to the cost and ethical considerations of animal studies, it is 

thought that there is potential for these models to become a valuable tool in the arsenal of the 

medicinal chemist researching anti-prion compounds.  

 

The excellent activity demonstrated in the 3D models by the I3GAs has provided confidence that 

these compounds have the potential to work in vivo. The next step would therefore be to 

determine the optimal animal model to use for further investigation of these compounds. As 

described in section 4.5 the compounds have already been tested in a zebrafish model and were 

found to have no effect on zebra fish survival, suggesting low in vivo toxicity. The zebrafish 

model has been shown to be an accurate representation of rodent toxicity and can be used to 

predict LD50s with good accuracy. (495, 496) However, although they are a useful and cost-effective 

model, and have been used to investigate the function of PrPC, (497, 498) there is currently no 

infected model to be used in the testing of therapeutics. The presence of three different forms 

of PrP in zebra fish  would also make interpreting any results from an infected model more 

challenging. (499) Alternatively, PrP transgenic Drosophila, which are a tractable animal model of 

transmissible mammalian prion disease, could be used to test the in vivo effectiveness of the 

I3GA compounds. 

 

Animal models were initially used in order to prove that the disease-causing agent was infective. 

After the original outbreak of scrapie, the disease was successfully transferred to mice, (58) and 

subsequently kuru (59) and CJD (500) were inoculated into chimpanzees. Animal models were 
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therefore key to initially establishing the properties of this unusual pathogen. Animal models 

have continued to play a vital role, both in the testing of therapeutics and in elucidating the 

processes associated with prion disease pathogenesis and neurodegeneration. The most widely 

used model is the rodent model, both for practical reasons and also because they allow the 

discrimination between and characterisation of different prion strains. (283) Prion knockout mice 

enabled investigations into the cellular role of PrPC, and have provided crucial insights into the 

role of the normal isoform of the protein in disease pathogenesis. (23, 24) Transgenic mouse 

models have allowed the development of mice expressing human prions which can faithfully 

replicate all the key features of human disease, and these mice have made a vital contribution to 

the understanding of human prion disease pathogenesis and aetiology. (501) Both normal and 

transgenic mice have played key roles in elucidating the mysteries of prion biology, as well as 

allowing the analysis of the activity of potential therapeutic compounds in vivo. (283, 502-504) Highly 

susceptible transgenic mice that overexpress PrPC have allowed very sensitive detection of 

infectivity in prion preparations, helping provide the first evidence that infectious prions could 

be formed in vitro. (70) As well as mice, Syrian hamsters have also been used as a model for prion 

diseases due to their increased susceptibility and decreased incubation times. (15) Bank vole 

models have also become of interest as the bank vole is uniquely susceptible to a wide range of 

prions from different species. (505) 

 

Although there are a range of other animal models that can be used in the continuing research 

into prion diseases it is thought that the optimal route for the I3GAs would be to test them in a 

mouse model of prion disease. At the most basic level this would involve normal mice, infected 

with scrapie and dosed with the I3GAs to determine if there is any effect on disease progression 

and survival. It is thought that the evidence presented in this thesis would provide a compelling 

justification for these experiments to be carried out. Another approach, which has been 

discussed with collaborators, would be to screen the compounds in a cell line infected with CJD 

prions. This would test the compounds against human prions and, if the I3GAs were active, 

would provide further evidence that they could be used in clinical trials. This is something that is 

under development at the moment and will hopefully be available for screening in the near 

future.  

 

It can be seen from the discussion above that even though a large amount of information has 

been gained from the studies outlined above there are still many questions that need answering: 
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Do the cells retain infectivity after treatment? It can be seen that in all of the experiments 

carried out here, PrPSc levels are generally not lowered to zero, suggesting that residual amounts 

of PrPSc still remain in the ‘cured’ cells. Although the data from the curative assays suggest that 

levels do not return to normal in the short term, it would be interesting to see if the cells still 

contain enough of the infective agent to infect other cells. In the absence of a readily available 

mouse model, establishing an uninfected cell line that was susceptible to infection, and exposing 

them to lysate from treated cells may help determine if residual infectivity remains. Cell based 

infectivity assays have been reported in the literature, suggesting that this approach is valid. (294, 

295) 

 

How is compound activity affected by cell replication? A study by Ghaemmaghami et al that 

reported the results of a curative assay similar to the one outlined in this thesis found that the 

curative effect of quinacrine was drastically reduced when cell growth was arrested using 

sodium butyrate or dibutryl cAMP. (377) This was not investigated here at the time but may help 

to provide insights into the pharmacodynamic properties of the I3GAs, as well as providing 

further comparison with published quinacrine data. Analysis of the cell cycle using fluorescent-

activated cell sorting (FACS) may also provide further insights into any effect of treatment on cell 

cycle. Investigations into cell growth and cell cycle may also help reveal what is happening in the 

Happy Cell model, where anti-prion activity was observed without any apparent cell growth. 

 

Can the results of the microarray and proteomics studies be validated? Other studies had used 

quantitative RT-PCR (417) or immunohistochemistry (424) to validate the results of microarray 

studies and further work along these lines would be required to extrapolate the relevance or 

otherwise of the lack of change observed in the targets investigated by western blotting. 

Validation of the results is essential to understanding whether the approach taken in this study 

is suitable for deconvoluting the targets of small molecule anti-prion compounds.  

 

Are the proteasome and lysosomes directly affected by treatment with the I3GA compounds? 

The studies undertaken so far suggest that the I3GAs may be affecting some function of the 

lysosomes, whether that is the trafficking pathways that deliver PrPSc for degradation or 

degradation itself. However, neither this nor the effect on proteasomal activity has been 

measured directly due to containment issues. This is something that would be necessary to 

either validate or exclude an effect on the proteasomal degradation systems as part of the mode 

of action of the I3GAs. Direct measurement of proteasomal activity in the SMB cells under 
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steady state conditions would also determine the extent of proteasomal inhibition by PrPSc, 

allowing clarification of the results of pharmacological proteasome inhibition.  

 

Is PrPC affected by treatment? The reduction of PrPC levels, resulting in decreased substrate for 

conversion, was suggested as a mode of action of the compounds due to the down regulation of 

sp1 in the microarray assay. As well as direct validation of sp1 down-regulation, investigations 

into the effect of treatment on PrPC levels would validate or exclude an effect on PrPC levels as 

part of the mode of action of the I3GAs.  Western blotting of cell lysates has been carried out by 

other members of the group to validate the dot blot approach that is used routinely, and this is 

something that could perhaps be employed to investigate PrPC levels. 

 

Do the I3GAs share a mode of action? As discussed earlier this is still ambiguous, although it is 

thought that there should be at least some crossover in the mode of action of the different 

I3GAs.  Establishing whether all the I3GAs are working in the same way relies on the 

identification of a mode of action for at least one of these compounds. Structurally similar 

compounds could then be investigated to determine if they are working in the same way.  

 

What exactly is going on in the 3D screening models? The results presented within this thesis 

are the result of very limited investigations into the 3D screening models, with the focus on 

whether or not the anti-prion compounds show activity. Further investigations would be 

required to discover why PrPSc levels within the hanging drops were not affected by treatment 

with anti-prion compounds known to be active in vivo. The priority would be elucidating 

whether the spheroids are proliferating, and whether this has affected the activity of the 

compounds. Similarly, further investigations would be required to clarify the apparent lack of 

proliferation observed in the Happy Cell model, with alternative measures of proliferation being 

required to confirm the MTT results presented here. Further optimisation of the Alvetex model 

would be required to enable more efficient lysis and/or retrieval of the cells, allowing analysis to 

be carried out in a more reliable and less time consuming manner. Improved harvesting and 

mounting of both hanging drop and Happy Cell spheroids for analysis by confocal microscopy 

may also provide insights into their structural morphology. 

 

In summary, it can be seen that the I3GA compounds represent a novel group of anti-prion 

compounds with a mode of action that is yet to be fully determined. Further work may confirm 

that they are working by one of the mechanisms outlined here, or it may be that they are 
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working by a mechanism which is, as yet, unknown among existing anti-prion compounds. The 

possibility that these compounds represent a novel mode of action suggests that they may have 

promise as either a stand-alone treatment or as part of a multifaceted therapeutic intervention. 

Assessment of the in vivo activity of these compounds in mouse models is, at this point, essential 

in determining whether they have the potential to be used as therapeutics in a real life setting. 

However, the development of 3D models as outlined here suggests that the information which 

at the moment can only be obtained from animal models might, at some point, be available 

using in vitro methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 



315 

 

9. References 

 
1. Collinge J. Prion diseases of humans and animals: their causes and molecular basis. Annu 
Rev Neurosci. 2001;24:519-50. 
2. Gambetti P, Dong Z, Yuan J, Xiao X, Zheng M, Alshekhlee A, et al. A novel human disease 
with abnormal prion protein sensitive to protease. Ann Neurol. 2008 Jun;63(6):697-708. 
3. Brown DA, Bruce ME, Fraser JR. Comparison of the neuropathological characteristics of 
bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) in mice. 
Neuropathol Appl Neurobiol. 2003 Jun;29(3):262-72. 
4. Bruce ME. TSE strain variation. Br Med Bull. 2003;66:99-108. 
5. Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D, Suttie A, et al. Transmissions 
to mice indicate that 'new variant' CJD is caused by the BSE agent. Nature. 1997 Oct 
2;389(6650):498-501. 
6. Ritchie DL, Boyle A, McConnell I, Head MW, Ironside JW, Bruce ME. Transmissions of 
variant Creutzfeldt-Jakob disease from brain and lymphoreticular tissue show uniform and 
conserved bovine spongiform encephalopathy-related phenotypic properties on primary and 
secondary passage in wild-type mice. J Gen Virol. 2009 Dec;90(Pt 12):3075-82. 
7. Hill AF, Desbruslais M, Joiner S, Sidle KC, Gowland I, Collinge J, et al. The same prion 
strain causes vCJD and BSE. Nature. 1997 Oct 2;389(6650):448-50, 526. 
8. Diack AB, Head MW, McCutcheon S, Boyle A, Knight R, Ironside JW, et al. Variant CJD. 18 
years of research and surveillance. Prion. 2014;8(4):286-95. 
9. Collinge J, Sidle KC, Meads J, Ironside J, Hill AF. Molecular analysis of prion strain 
variation and the aetiology of 'new variant' CJD. Nature. 1996 Oct 24;383(6602):685-90. 
10. Collinge J, Palmer MS, Dryden AJ. Genetic predisposition to iatrogenic Creutzfeldt-Jakob 
disease. Lancet. 1991 Jun 15;337(8755):1441-2. 
11. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 
9;216(4542):136-44. 
12. Colby DW, Prusiner SB. Prions. Cold Spring Harb Perspect Biol. 2011 Jan;3(1):a006833. 
13. Aguzzi A, Baumann F, Bremer J. The prion's elusive reason for being. Annu Rev Neurosci. 
2008;31:439-77. 
14. Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR. Physiology of 
the prion protein. Physiol Rev. 2008 Apr;88(2):673-728. 
15. Prusiner SB. Prions. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13363-83. 
16. Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M, et al. A 
transmembrane form of the prion protein in neurodegenerative disease. Science. 1998 Feb 
6;279(5352):827-34. 
17. Gabriel JM, Oesch B, Kretzschmar H, Scott M, Prusiner SB. Molecular cloning of a 
candidate chicken prion protein. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9097-101. 
18. Simonic T, Duga S, Strumbo B, Asselta R, Ceciliani F, Ronchi S. cDNA cloning of turtle 
prion protein. FEBS Lett. 2000 Mar 3;469(1):33-8. 
19. Strumbo B, Ronchi S, Bolis LC, Simonic T. Molecular cloning of the cDNA coding for 
Xenopus laevis prion protein. FEBS Lett. 2001 Nov 16;508(2):170-4. 
20. Harrison CF, Lawson VA, Coleman BM, Kim YS, Masters CL, Cappai R, et al. Conservation 
of a glycine-rich region in the prion protein is required for uptake of prion infectivity. J Biol 
Chem. 2010 Jun 25;285(26):20213-23. 
21. Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J. 129/Ola mice 
carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. 
Mol Neurobiol. 1994 Apr-Jun;8(2-3):121-7. 



316 

 

22. Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, et al. Normal 
development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature. 1992 
Apr 16;356(6370):577-82. 
23. Steele AD, Lindquist S, Aguzzi A. The prion protein knockout mouse: a phenotype under 
challenge. Prion. 2007 Apr-Jun;1(2):83-93. 
24. Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, et al. Mice devoid of PrP 
are resistant to scrapie. Cell. 1993 Jul 2;73(7):1339-47. 
25. Le Pichon CE, Valley MT, Polymenidou M, Chesler AT, Sagdullaev BT, Aguzzi A, et al. 
Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nat Neurosci. 
2009 Jan;12(1):60-9. 
26. Singh A, Kong Q, Luo X, Petersen RB, Meyerson H, Singh N. Prion protein (PrP) knock-out 
mice show altered iron metabolism: a functional role for PrP in iron uptake and transport. PLoS 
One. 2009;4(7):e6115. 
27. Zhang Y, Kim SO, Opsahl-Vital S, Ho SP, Souron JB, Kim C, et al. Multiple effects of the 
cellular prion protein on tooth development. Int J Dev Biol. 2011;55(10-12):953-60. 
28. Strom A, Wang GS, Scott FW. Impaired glucose tolerance in mice lacking cellular prion 
protein. Pancreas. 2011 Mar;40(2):229-32. 
29. Stella R, Massimino ML, Sandri M, Sorgato MC, Bertoli A. Cellular prion protein promotes 
regeneration of adult muscle tissue. Mol Cell Biol. 2010 Oct;30(20):4864-76. 
30. Gourdain P, Ballerini C, Nicot AB, Carnaud C. Exacerbation of experimental autoimmune 
encephalomyelitis in prion protein (PrPc)-null mice: evidence for a critical role of the central 
nervous system. J Neuroinflammation. 2012;9:25. 
31. Hu W, Nessler S, Hemmer B, Eagar TN, Kane LP, Leliveld SR, et al. Pharmacological prion 
protein silencing accelerates central nervous system autoimmune disease via T cell receptor 
signalling. Brain. 2010 Feb;133(Pt 2):375-88. 
32. Nico PB, de-Paris F, Vinade ER, Amaral OB, Rockenbach I, Soares BL, et al. Altered 
behavioural response to acute stress in mice lacking cellular prion protein. Behav Brain Res. 2005 
Jul 30;162(2):173-81. 
33. Bounhar Y, Zhang Y, Goodyer CG, LeBlanc A. Prion protein protects human neurons 
against Bax-mediated apoptosis. J Biol Chem. 2001 Oct 19;276(42):39145-9. 
34. Milhavet O, Lehmann S. Oxidative stress and the prion protein in transmissible 
spongiform encephalopathies. Brain Res Brain Res Rev. 2002 Feb;38(3):328-39. 
35. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, et al. The cellular prion 
protein binds copper in vivo. Nature. 1997 Dec 18-25;390(6661):684-7. 
36. Brown DR, Clive C, Haswell SJ. Antioxidant activity related to copper binding of native 
prion protein. J Neurochem. 2001 Jan;76(1):69-76. 
37. Brown DR, Schmidt B, Kretzschmar HA. Effects of oxidative stress on prion protein 
expression in PC12 cells. Int J Dev Neurosci. 1997 Dec;15(8):961-72. 
38. Brown DR, Schulz-Schaeffer WJ, Schmidt B, Kretzschmar HA. Prion protein-deficient cells 
show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol. 1997 
Jul;146(1):104-12. 
39. Brown DR, Wong BS, Hafiz F, Clive C, Haswell SJ, Jones IM. Normal prion protein has an 
activity like that of superoxide dismutase. Biochem J. 1999 Nov 15;344 Pt 1:1-5. 
40. Jones S, Batchelor M, Bhelt D, Clarke AR, Collinge J, Jackson GS. Recombinant prion 
protein does not possess SOD-1 activity. Biochem J. 2005 Dec 1;392(Pt 2):309-12. 
41. Hutter G, Heppner FL, Aguzzi A. No superoxide dismutase activity of cellular prion 
protein in vivo. Biol Chem. 2003 Sep;384(9):1279-85. 
42. Zocche Soprana H, Canes Souza L, Debbas V, Martins Laurindo FR. Cellular prion protein 
(PrP(C)) and superoxide dismutase (SOD) in vascular cells under oxidative stress. Exp Toxicol 
Pathol. 2011 Mar;63(3):229-36. 



317 

 

43. Encalada SE, Moya KL, Lehmann S, Zahn R. The role of the prion protein in the molecular 
basis for synaptic plasticity and nervous system development. J Mol Neurosci. 2008;34(1):9-15. 
44. Nicolas O, Gavin R, del Rio JA. New insights into cellular prion protein (PrPc) functions: 
the "ying and yang" of a relevant protein. Brain Res Rev. 2009 Oct;61(2):170-84. 
45. Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, et al. Axonal prion 
protein is required for peripheral myelin maintenance. Nat Neurosci. 2010 Mar;13(3):310-8. 
46. Malaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, et al. Regulation of 
embryonic cell adhesion by the prion protein. PLoS Biol. 2009 Mar 10;7(3):e55. 
47. Watts JC, Huo H, Bai Y, Ehsani S, Jeon AH, Shi T, et al. Interactome analyses identify ties 
of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-
derived chaperones. PLoS Pathog. 2009 Oct;5(10):e1000608. 
48. Zhang CC, Steele AD, Lindquist S, Lodish HF. Prion protein is expressed on long-term 
repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci 
U S A. 2006 Feb 14;103(7):2184-9. 
49. Hu W, Kieseier B, Frohman E, Eagar TN, Rosenberg RN, Hartung HP, et al. Prion proteins: 
physiological functions and role in neurological disorders. J Neurol Sci. 2008 Jan 15;264(1-2):1-8. 
50. Isaacs JD, Jackson GS, Altmann DM. The role of the cellular prion protein in the immune 
system. Clin Exp Immunol. 2006 Oct;146(1):1-8. 
51. Walker LC, LeVine H, 3rd. Corruption and spread of pathogenic proteins in 
neurodegenerative diseases. J Biol Chem. 2012 Sep 28;287(40):33109-15. 
52. Jucker M, Walker LC. Pathogenic protein seeding in Alzheimer disease and other 
neurodegenerative disorders. Ann Neurol. 2011 Oct;70(4):532-40. 
53. Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in 
neurodegenerative diseases. Nature. 2013 Sep 5;501(7465):45-51. 
54. Prusiner SB. Cell biology. A unifying role for prions in neurodegenerative diseases. 
Science. 2012 Jun 22;336(6088):1511-3. 
55. Collinge J. Molecular neurology of prion disease. J Neurol Neurosurg Psychiatry. 2005 
Jul;76(7):906-19. 
56. Pattison IH. Experiments with scrapie with special reference to the nature of the agent 
and the pathology of the disease. Slow, latent and temperate virus infections. 1965;NINDB 
Monograph 2:249-57. 
57. Soto C, Castilla J. The controversial protein-only hypothesis of prion propagation. Nat 
Med. 2004 Jul;10 Suppl:S63-7. 
58. Chandler RL. Encephalopathy in mice produced by inoculation with scrapie brain 
material. Lancet. 1961 Jun 24;1(7191):1378-9. 
59. Gajdusek DC, Gibbs CJ, Alpers M. Experimental transmission of a Kuru-like syndrome to 
chimpanzees. Nature. 1966 Feb 19;209(5025):794-6. 
60. Cho HJ. Is the scrapie agent a virus? Nature. 1976 Jul 29;262(5567):411-2. 
61. Alper T, Cramp WA, Haig DA, Clarke MC. Does the agent of scrapie replicate without 
nucleic acid? Nature. 1967 May 20;214(5090):764-6. 
62. Griffith JS. Self-replication and scrapie. Nature. 1967 Sep 2;215(5105):1043-4. 
63. Bolton DC, McKinley MP, Prusiner SB. Identification of a protein that purifies with the 
scrapie prion. Science. 1982 Dec 24;218(4579):1309-11. 
64. Gabizon R, McKinley MP, Groth D, Prusiner SB. Immunoaffinity purification and 
neutralization of scrapie prion infectivity. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6617-21. 
65. Chesebro B, Race R, Wehrly K, Nishio J, Bloom M, Lechner D, et al. Identification of 
scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature. 1985 May 
23-29;315(6017):331-3. 
66. Rubenstein R, Carp RI, Callahan SM. In vitro replication of scrapie agent in a neuronal 
model: infection of PC12 cells. J Gen Virol. 1984 Dec;65 ( Pt 12):2191-8. 



318 

 

67. Race RE, Fadness LH, Chesebro B. Characterization of scrapie infection in mouse 
neuroblastoma cells. J Gen Virol. 1987 May;68 ( Pt 5):1391-9. 
68. Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, et al. Cell-free 
formation of protease-resistant prion protein. Nature. 1994 Aug 11;370(6489):471-4. 
69. Saborio GP, Permanne B, Soto C. Sensitive detection of pathological prion protein by 
cyclic amplification of protein misfolding. Nature. 2001 Jun 14;411(6839):810-3. 
70. Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, et al. Synthetic 
mammalian prions. Science. 2004 Jul 30;305(5684):673-6. 
71. Castilla J, Saa P, Hetz C, Soto C. In vitro generation of infectious scrapie prions. Cell. 2005 
Apr 22;121(2):195-206. 
72. Deleault NR, Harris BT, Rees JR, Supattapone S. Formation of native prions from minimal 
components in vitro. Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9741-6. 
73. Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C. De novo generation of 
infectious prions in vitro produces a new disease phenotype. PLoS Pathog. 2009 
May;5(5):e1000421. 
74. Wang F, Wang X, Yuan CG, Ma J. Generating a prion with bacterially expressed 
recombinant prion protein. Science. 2010 Feb 26;327(5969):1132-5. 
75. Zhang Z, Zhang Y, Wang F, Wang X, Xu Y, Yang H, et al. De novo generation of infectious 
prions with bacterially expressed recombinant prion protein. FASEB J. 2013 Dec;27(12):4768-75. 
76. Yuan Z, Yang L, Chen B, Zhu T, Hassan MF, Yin X, et al. Protein misfolding cyclic 
amplification induces the conversion of recombinant prion protein to PrP oligomers causing 
neuronal apoptosis. J Neurochem. 2015 Jun;133(5):722-9. 
77. Soto C. Prion hypothesis: the end of the controversy? Trends Biochem Sci. 2011 
Mar;36(3):151-8. 
78. Supattapone S. Synthesis of high titer infectious prions with cofactor molecules. J Biol 
Chem. 2014 Jul 18;289(29):19850-4. 
79. Morales R, Abid K, Soto C. The prion strain phenomenon: molecular basis and 
unprecedented features. Biochim Biophys Acta. 2007 Jun;1772(6):681-91. 
80. Bessen RA, Kocisko DA, Raymond GJ, Nandan S, Lansbury PT, Caughey B. Non-genetic 
propagation of strain-specific properties of scrapie prion protein. Nature. 1995 Jun 
22;375(6533):698-700. 
81. Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, et al. Eight prion strains have 
PrP(Sc) molecules with different conformations. Nat Med. 1998 Oct;4(10):1157-65. 
82. Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, et al. Evidence for 
the conformation of the pathologic isoform of the prion protein enciphering and propagating 
prion diversity. Science. 1996 Dec 20;274(5295):2079-82. 
83. Aguzzi A, Calella AM. Prions: protein aggregation and infectious diseases. Physiol Rev. 
2009 Oct;89(4):1105-52. 
84. Sigurdson CJ, Nilsson KP, Hornemann S, Manco G, Polymenidou M, Schwarz P, et al. 
Prion strain discrimination using luminescent conjugated polymers. Nat Methods. 2007 
Dec;4(12):1023-30. 
85. Castilla J, Morales R, Saa P, Barria M, Gambetti P, Soto C. Cell-free propagation of prion 
strains. EMBO J. 2008 Oct 8;27(19):2557-66. 
86. Walker LC, Jucker M. Neurodegenerative Diseases: Expanding the Prion Concept. Annu 
Rev Neurosci. 2015 Mar 30. 
87. Bossers A, Belt P, Raymond GJ, Caughey B, de Vries R, Smits MA. Scrapie susceptibility-
linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-
resistant forms. Proc Natl Acad Sci U S A. 1997 May 13;94(10):4931-6. 
88. Horiuchi M, Priola SA, Chabry J, Caughey B. Interactions between heterologous forms of 
prion protein: binding, inhibition of conversion, and species barriers. Proc Natl Acad Sci U S A. 
2000 May 23;97(11):5836-41. 



319 

 

89. Kocisko DA, Priola SA, Raymond GJ, Chesebro B, Lansbury PT, Jr., Caughey B. Species 
specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for 
the scrapie species barrier. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3923-7. 
90. Raymond GJ, Hope J, Kocisko DA, Priola SA, Raymond LD, Bossers A, et al. Molecular 
assessment of the potential transmissibilities of BSE and scrapie to humans. Nature. 1997 Jul 
17;388(6639):285-8. 
91. Priola SA, Caughey B, Race RE, Chesebro B. Heterologous PrP molecules interfere with 
accumulation of protease-resistant PrP in scrapie-infected murine neuroblastoma cells. J Virol. 
1994 Aug;68(8):4873-8. 
92. Priola SA, Chesebro B. A single hamster PrP amino acid blocks conversion to protease-
resistant PrP in scrapie-infected mouse neuroblastoma cells. J Virol. 1995 Dec;69(12):7754-8. 
93. Scott MR, Kohler R, Foster D, Prusiner SB. Chimeric prion protein expression in cultured 
cells and transgenic mice. Protein Sci. 1992 Aug;1(8):986-97. 
94. Schatzl HM, Da Costa M, Taylor L, Cohen FE, Prusiner SB. Prion protein gene variation 
among primates. J Mol Biol. 1995 Jan 27;245(4):362-74. 
95. Collinge J, Clarke AR. A general model of prion strains and their pathogenicity. Science. 
2007 Nov 9;318(5852):930-6. 
96. Heppner FL, Christ AD, Klein MA, Prinz M, Fried M, Kraehenbuhl JP, et al. Transepithelial 
prion transport by M cells. Nat Med. 2001 Sep;7(9):976-7. 
97. Fraser H, Dickinson AG. Pathogenesis of scrapie in the mouse: the role of the spleen. 
Nature. 1970 May 2;226(5244):462-3. 
98. Lasmezas CI, Cesbron JY, Deslys JP, Demaimay R, Adjou KT, Rioux R, et al. Immune 
system-dependent and -independent replication of the scrapie agent. J Virol. 1996 
Feb;70(2):1292-5. 
99. Flores-Langarica A, Sebti Y, Mitchell DA, Sim RB, MacPherson GG. Scrapie pathogenesis: 
the role of complement C1q in scrapie agent uptake by conventional dendritic cells. J Immunol. 
2009 Feb 1;182(3):1305-13. 
100. Mabbott NA, Mackay F, Minns F, Bruce ME. Temporary inactivation of follicular dendritic 
cells delays neuroinvasion of scrapie. Nat Med. 2000 Jul;6(7):719-20. 
101. Klein MA, Frigg R, Flechsig E, Raeber AJ, Kalinke U, Bluethmann H, et al. A crucial role for 
B cells in neuroinvasive scrapie. Nature. 1997 Dec 18-25;390(6661):687-90. 
102. Beekes M, Baldauf E, Diringer H. Sequential appearance and accumulation of 
pathognomonic markers in the central nervous system of hamsters orally infected with scrapie. J 
Gen Virol. 1996 Aug;77 ( Pt 8):1925-34. 
103. Aguzzi A, Falsig J. Prion propagation, toxicity and degradation. Nat Neurosci. 2012 
Jul;15(7):936-9. 
104. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, et al. Prions hijack 
tunnelling nanotubes for intercellular spread. Nat Cell Biol. 2009 Mar;11(3):328-36. 
105. Gousset K, Zurzolo C. Tunnelling nanotubes: a highway for prion spreading? Prion. 2009 
Apr-Jun;3(2):94-8. 
106. Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, et al. The most 
infectious prion protein particles. Nature. 2005 Sep 8;437(7056):257-61. 
107. Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A, et al. The physical 
relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog. 
2010 Apr;6(4):e1000859. 
108. Krauss S, Vorberg I. Prions Ex Vivo: What Cell Culture Models Tell Us about Infectious 
Proteins. Int J Cell Biol. 2013;2013:704546. 
109. Greil CS, Vorberg IM, Ward AE, Meade-White KD, Harris DA, Priola SA. Acute cellular 
uptake of abnormal prion protein is cell type and scrapie-strain independent. Virology. 2008 Sep 
30;379(2):284-93. 



320 

 

110. Ghaemmaghami S, Phuan PW, Perkins B, Ullman J, May BC, Cohen FE, et al. Cell division 
modulates prion accumulation in cultured cells. Proc Natl Acad Sci U S A. 2007 Nov 
13;104(46):17971-6. 
111. Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, et al. Cells release prions in 
association with exosomes. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9683-8. 
112. Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix JL, et al. Mouse neuroblastoma 
cells release prion infectivity associated with exosomal vesicles. Biol Cell. 2008 Oct;100(10):603-
15. 
113. Paquet S, Langevin C, Chapuis J, Jackson GS, Laude H, Vilette D. Efficient dissemination of 
prions through preferential transmission to nearby cells. J Gen Virol. 2007 Feb;88(Pt 2):706-13. 
114. Caughey B, Raymond GJ, Ernst D, Race RE. N-terminal truncation of the scrapie-
associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of 
PrP to the protease-resistant state. J Virol. 1991 Dec;65(12):6597-603. 
115. Riesner D. Biochemistry and structure of PrP(C) and PrP(Sc). Br Med Bull. 2003;66:21-33. 
116. Huang Z, Prusiner SB, Cohen FE. Scrapie prions: a three-dimensional model of an 
infectious fragment. Fold Des. 1995;1(1):13-9. 
117. Diaz-Espinoza R, Soto C. High-resolution structure of infectious prion protein: the final 
frontier. Nat Struct Mol Biol. 2012 Apr;19(4):370-7. 
118. Govaerts C, Wille H, Prusiner SB, Cohen FE. Evidence for assembly of prions with left-
handed beta-helices into trimers. Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8342-7. 
119. DeMarco ML, Daggett V. From conversion to aggregation: protofibril formation of the 
prion protein. Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2293-8. 
120. Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK. Molecular architecture of human 
prion protein amyloid: a parallel, in-register beta-structure. Proc Natl Acad Sci U S A. 2007 Nov 
27;104(48):18946-51. 
121. Smirnovas V, Baron GS, Offerdahl DK, Raymond GJ, Caughey B, Surewicz WK. Structural 
organization of brain-derived mammalian prions examined by hydrogen-deuterium exchange. 
Nat Struct Mol Biol. 2011 Apr;18(4):504-6. 
122. Cronier S, Gros N, Tattum MH, Jackson GS, Clarke AR, Collinge J, et al. Detection and 
characterization of proteinase K-sensitive disease-related prion protein with thermolysin. 
Biochem J. 2008 Dec 1;416(2):297-305. 
123. Meier P, Genoud N, Prinz M, Maissen M, Rulicke T, Zurbriggen A, et al. Soluble dimeric 
prion protein binds PrP(Sc) in vivo and antagonizes prion disease. Cell. 2003 Apr 4;113(1):49-60. 
124. Aguzzi A, Sigurdson C, Heikenwaelder M. Molecular mechanisms of prion pathogenesis. 
Annu Rev Pathol. 2008;3:11-40. 
125. Telling GC, Scott M, Mastrianni J, Gabizon R, Torchia M, Cohen FE, et al. Prion 
propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of 
cellular PrP with another protein. Cell. 1995 Oct 6;83(1):79-90. 
126. Kaneko K, Zulianello L, Scott M, Cooper CM, Wallace AC, James TL, et al. Evidence for 
protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion 
propagation. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10069-74. 
127. Geoghegan JC, Miller MB, Kwak AH, Harris BT, Supattapone S. Trans-dominant inhibition 
of prion propagation in vitro is not mediated by an accessory cofactor. PLoS Pathog. 2009 
Jul;5(7):e1000535. 
128. Weissmann C. The state of the prion. Nat Rev Microbiol. 2004 Nov;2(11):861-71. 
129. Cobb NJ, Surewicz WK. Prion diseases and their biochemical mechanisms. Biochemistry. 
2009 Mar 31;48(12):2574-85. 
130. Birkmann E, Riesner D. Prion infection: seeded fibrillization or more? Prion. 2008 Apr-
Jun;2(2):67-72. 



321 

 

131. Gilch S, Nunziante M, Ertmer A, Schatzl HM. Strategies for eliminating PrP(c) as substrate 
for prion conversion and for enhancing PrP(Sc) degradation. Vet Microbiol. 2007 Aug 
31;123(4):377-86. 
132. Taraboulos A, Scott M, Semenov A, Avrahami D, Laszlo L, Prusiner SB. Cholesterol 
depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit 
formation of the scrapie isoform. J Cell Biol. 1995 Apr;129(1):121-32. 
133. Gorodinsky A, Harris DA. Glycolipid-anchored proteins in neuroblastoma cells form 
detergent-resistant complexes without caveolin. J Cell Biol. 1995 May;129(3):619-27. 
134. Sarnataro D, Paladino S, Campana V, Grassi J, Nitsch L, Zurzolo C. PrPC is sorted to the 
basolateral membrane of epithelial cells independently of its association with rafts. Traffic. 2002 
Nov;3(11):810-21. 
135. Vey M, Pilkuhn S, Wille H, Nixon R, DeArmond SJ, Smart EJ, et al. Subcellular 
colocalization of the cellular and scrapie prion proteins in caveolae-like membranous domains. 
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14945-9. 
136. Caughey B, Raymond GJ. The scrapie-associated form of PrP is made from a cell surface 
precursor that is both protease- and phospholipase-sensitive. J Biol Chem. 1991 Sep 
25;266(27):18217-23. 
137. Borchelt DR, Scott M, Taraboulos A, Stahl N, Prusiner SB. Scrapie and cellular prion 
proteins differ in their kinetics of synthesis and topology in cultured cells. J Cell Biol. 1990 
Mar;110(3):743-52. 
138. Caughey B, Race RE, Ernst D, Buchmeier MJ, Chesebro B. Prion protein biosynthesis in 
scrapie-infected and uninfected neuroblastoma cells. J Virol. 1989 Jan;63(1):175-81. 
139. Prusiner SB, Scott MR, DeArmond SJ, Cohen FE. Prion protein biology. Cell. 1998 May 
1;93(3):337-48. 
140. Taylor DR, Hooper NM. The prion protein and lipid rafts. Mol Membr Biol. 2006 Jan-
Feb;23(1):89-99. 
141. Hannaoui S, Shim SY, Cheng YC, Corda E, Gilch S. Cholesterol balance in prion diseases 
and Alzheimer's disease. Viruses. 2014 Nov;6(11):4505-35. 
142. Jeffrey M, McGovern G, Goodsir CM, Brown KL, Bruce ME. Sites of prion protein 
accumulation in scrapie-infected mouse spleen revealed by immuno-electron microscopy. J 
Pathol. 2000 Jul;191(3):323-32. 
143. Marijanovic Z, Caputo A, Campana V, Zurzolo C. Identification of an intracellular site of 
prion conversion. PLoS Pathog. 2009 May;5(5):e1000426. 
144. Goold R, McKinnon C, Rabbanian S, Collinge J, Schiavo G, Tabrizi SJ. Alternative fates of 
newly formed PrPSc upon prion conversion on the plasma membrane. J Cell Sci. 2013 Aug 
15;126(Pt 16):3552-62. 
145. Goold R, Rabbanian S, Sutton L, Andre R, Arora P, Moonga J, et al. Rapid cell-surface 
prion protein conversion revealed using a novel cell system. Nat Commun. 2011;2:281. 
146. Grassmann A, Wolf H, Hofmann J, Graham J, Vorberg I. Cellular aspects of prion 
replication in vitro. Viruses. 2013 Jan;5(1):374-405. 
147. Bate C, Tayebi M, Williams A. The glycosylphosphatidylinositol anchor is a major 
determinant of prion binding and replication. Biochem J. 2010 May 15;428(1):95-101. 
148. Kimura T, Ishikawa K, Sakasegawa Y, Teruya K, Sata T, Schatzl H, et al. GABAA receptor 
subunit beta1 is involved in the formation of protease-resistant prion protein in prion-infected 
neuroblastoma cells. FEBS Lett. 2010 Mar 19;584(6):1193-8. 
149. Taylor DR, Whitehouse IJ, Hooper NM. Glypican-1 mediates both prion protein lipid raft 
association and disease isoform formation. PLoS Pathog. 2009 Nov;5(11):e1000666. 
150. Radulescu RT, Brenig B. Infectious nucleic acids in prion disease: halfway there. Trends 
Biochem Sci. 2009 Jan;34(1):4-5; author reply -6. 



322 

 

151. Yadavalli R, Guttmann RP, Seward T, Centers AP, Williamson RA, Telling GC. Calpain-
dependent endoproteolytic cleavage of PrPSc modulates scrapie prion propagation. J Biol Chem. 
2004 May 21;279(21):21948-56. 
152. Westergard L, Turnbaugh JA, Harris DA. A naturally occurring C-terminal fragment of the 
prion protein (PrP) delays disease and acts as a dominant-negative inhibitor of PrPSc formation. J 
Biol Chem. 2011 Dec 23;286(51):44234-42. 
153. Kovacs GG, Budka H. Molecular pathology of human prion diseases. Int J Mol Sci. 2009 
Mar;10(3):976-99. 
154. Flechsig E, Shmerling D, Hegyi I, Raeber AJ, Fischer M, Cozzio A, et al. Prion protein 
devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. 
Neuron. 2000 Aug;27(2):399-408. 
155. Lasmezas CI, Deslys JP, Robain O, Jaegly A, Beringue V, Peyrin JM, et al. Transmission of 
the BSE agent to mice in the absence of detectable abnormal prion protein. Science. 1997 Jan 
17;275(5298):402-5. 
156. Manson JC, Jamieson E, Baybutt H, Tuzi NL, Barron R, McConnell I, et al. A single amino 
acid alteration (101L) introduced into murine PrP dramatically alters incubation time of 
transmissible spongiform encephalopathy. EMBO J. 1999 Dec 1;18(23):6855-64. 
157. Race R, Raines A, Raymond GJ, Caughey B, Chesebro B. Long-term subclinical carrier 
state precedes scrapie replication and adaptation in a resistant species: analogies to bovine 
spongiform encephalopathy and variant Creutzfeldt-Jakob disease in humans. J Virol. 2001 
Nov;75(21):10106-12. 
158. Hill AF, Joiner S, Linehan J, Desbruslais M, Lantos PL, Collinge J. Species-barrier-
independent prion replication in apparently resistant species. Proc Natl Acad Sci U S A. 2000 Aug 
29;97(18):10248-53. 
159. Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, et al. Normal host 
prion protein necessary for scrapie-induced neurotoxicity. Nature. 1996 Jan 25;379(6563):339-
43. 
160. Manson JC, Clarke AR, McBride PA, McConnell I, Hope J. PrP gene dosage determines the 
timing but not the final intensity or distribution of lesions in scrapie pathology. 
Neurodegeneration. 1994 Dec;3(4):331-40. 
161. Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J. Depleting neuronal 
PrP in prion infection prevents disease and reverses spongiosis. Science. 2003 Oct 
31;302(5646):871-4. 
162. Mallucci GR, White MD, Farmer M, Dickinson A, Khatun H, Powell AD, et al. Targeting 
cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in 
prion-infected mice. Neuron. 2007 Feb 1;53(3):325-35. 
163. Hill AF, Collinge J. Subclinical prion infection. Trends Microbiol. 2003 Dec;11(12):578-84. 
164. Huang P, Lian F, Wen Y, Guo C, Lin D. Prion protein oligomer and its neurotoxicity. Acta 
Biochim Biophys Sin (Shanghai). 2013 Jun;45(6):442-51. 
165. Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J. Prion propagation and 
toxicity in vivo occur in two distinct mechanistic phases. Nature. 2011 Feb 24;470(7335):540-2. 
166. Solomon IH, Schepker JA, Harris DA. Prion neurotoxicity: insights from prion protein 
mutants. Curr Issues Mol Biol. 2010;12(2):51-61. 
167. Peretz D, Williamson RA, Matsunaga Y, Serban H, Pinilla C, Bastidas RB, et al. A 
conformational transition at the N terminus of the prion protein features in formation of the 
scrapie isoform. J Mol Biol. 1997 Oct 31;273(3):614-22. 
168. Brown DR, Herms J, Kretzschmar HA. Mouse cortical cells lacking cellular PrP survive in 
culture with a neurotoxic PrP fragment. Neuroreport. 1994 Oct 27;5(16):2057-60. 
169. Fioriti L, Quaglio E, Massignan T, Colombo L, Stewart RS, Salmona M, et al. The 
neurotoxicity of prion protein (PrP) peptide 106-126 is independent of the expression level of 
PrP and is not mediated by abnormal PrP species. Mol Cell Neurosci. 2005 Jan;28(1):165-76. 



323 

 

170. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, et al. Neurotoxicity 
of a prion protein fragment. Nature. 1993 Apr 8;362(6420):543-6. 
171. Solforosi L, Criado JR, McGavern DB, Wirz S, Sanchez-Alavez M, Sugama S, et al. Cross-
linking cellular prion protein triggers neuronal apoptosis in vivo. Science. 2004 Mar 
5;303(5663):1514-6. 
172. Ma J, Lindquist S. Conversion of PrP to a self-perpetuating PrPSc-like conformation in the 
cytosol. Science. 2002 Nov 29;298(5599):1785-8. 
173. Chakrabarti O, Hegde RS. Functional depletion of mahogunin by cytosolically exposed 
prion protein contributes to neurodegeneration. Cell. 2009 Jun 12;137(6):1136-47. 
174. Drisaldi B, Stewart RS, Adles C, Stewart LR, Quaglio E, Biasini E, et al. Mutant PrP is 
delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP 
undergoes retrotranslocation prior to proteasomal degradation. J Biol Chem. 2003 Jun 
13;278(24):21732-43. 
175. Fioriti L, Dossena S, Stewart LR, Stewart RS, Harris DA, Forloni G, et al. Cytosolic prion 
protein (PrP) is not toxic in N2a cells and primary neurons expressing pathogenic PrP mutations. 
J Biol Chem. 2005 Mar 25;280(12):11320-8. 
176. Hetz CA, Soto C. Stressing out the ER: a role of the unfolded protein response in prion-
related disorders. Curr Mol Med. 2006 Feb;6(1):37-43. 
177. Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J, Soto C. Caspase-12 and 
endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J. 2003 
Oct 15;22(20):5435-45. 
178. Rane NS, Kang SW, Chakrabarti O, Feigenbaum L, Hegde RS. Reduced translocation of 
nascent prion protein during ER stress contributes to neurodegeneration. Dev Cell. 2008 
Sep;15(3):359-70. 
179. Nunziante M, Ackermann K, Dietrich K, Wolf H, Gadtke L, Gilch S, et al. Proteasomal 
dysfunction and endoplasmic reticulum stress enhance trafficking of prion protein aggregates 
through the secretory pathway and increase accumulation of pathologic prion protein. J Biol 
Chem. 2011 Sep 30;286(39):33942-53. 
180. Kristiansen M, Messenger MJ, Klohn PC, Brandner S, Wadsworth JD, Collinge J, et al. 
Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation 
and apoptosis. J Biol Chem. 2005 Nov 18;280(46):38851-61. 
181. Kristiansen M, Deriziotis P, Dimcheff DE, Jackson GS, Ovaa H, Naumann H, et al. Disease-
associated prion protein oligomers inhibit the 26S proteasome. Mol Cell. 2007 Apr 27;26(2):175-
88. 
182. Deriziotis P, Andre R, Smith DM, Goold R, Kinghorn KJ, Kristiansen M, et al. Misfolded 
PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry. 
EMBO J. 2011 Aug 3;30(15):3065-77. 
183. Solomon IH, Biasini E, Harris DA. Ion channels induced by the prion protein: mediators of 
neurotoxicity. Prion. 2012 Jan-Mar;6(1):40-5. 
184. Halliday M, Radford H, Mallucci GR. Prions: generation and spread versus neurotoxicity. J 
Biol Chem. 2014 Jul 18;289(29):19862-8. 
185. Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG, et al. Sustained 
translational repression by eIF2alpha-P mediates prion neurodegeneration. Nature. 2012 May 
24;485(7399):507-11. 
186. Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, et al. Oral treatment 
targeting the unfolded protein response prevents neurodegeneration and clinical disease in 
prion-infected mice. Sci Transl Med. 2013 Oct 9;5(206):206ra138. 
187. Senatore A, Colleoni S, Verderio C, Restelli E, Morini R, Condliffe SB, et al. Mutant PrP 
suppresses glutamatergic neurotransmission in cerebellar granule neurons by impairing 
membrane delivery of VGCC alpha(2)delta-1 Subunit. Neuron. 2012 Apr 26;74(2):300-13. 



324 

 

188. Caughey B. Prion protein interconversions. Philos Trans R Soc Lond B Biol Sci. 2001 Feb 
28;356(1406):197-200; discussion -2. 
189. Nunziante M, Gilch S, Schatzl HM. Prion diseases: from molecular biology to intervention 
strategies. Chembiochem. 2003 Dec 5;4(12):1268-84. 
190. Kirby L, Birkett CR, Rudyk H, Gilbert IH, Hope J. In vitro cell-free conversion of bacterial 
recombinant PrP to PrPres as a model for conversion. J Gen Virol. 2003 Apr;84(Pt 4):1013-20. 
191. Supattapone S. Prion protein conversion in vitro. J Mol Med (Berl). 2004 Jun;82(6):348-
56. 
192. Butler DA, Scott MR, Bockman JM, Borchelt DR, Taraboulos A, Hsiao KK, et al. Scrapie-
infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol. 1988 
May;62(5):1558-64. 
193. Schatzl HM, Laszlo L, Holtzman DM, Tatzelt J, DeArmond SJ, Weiner RI, et al. A 
hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J 
Virol. 1997 Nov;71(11):8821-31. 
194. Collinge J, Gorham M, Hudson F, Kennedy A, Keogh G, Pal S, et al. Safety and efficacy of 
quinacrine in human prion disease (PRION-1 study): a patient-preference trial. Lancet Neurol. 
2009 Apr;8(4):334-44. 
195. Rainov NG, Tsuboi Y, Krolak-Salmon P, Vighetto A, Doh-Ura K. Experimental treatments 
for human transmissible spongiform encephalopathies: is there a role for pentosan polysulfate? 
Expert Opin Biol Ther. 2007 May;7(5):713-26. 
196. Tsuboi Y, Doh-Ura K, Yamada T. Continuous intraventricular infusion of pentosan 
polysulfate: clinical trial against prion diseases. Neuropathology. 2009 Oct;29(5):632-6. 
197. Newman PK, Todd NV, Scoones D, Mead S, Knight RS, Will RG, et al. Postmortem findings 
in a case of variant Creutzfeldt-Jakob disease treated with intraventricular pentosan polysulfate. 
J Neurol Neurosurg Psychiatry. 2014 Aug;85(8):921-4. 
198. Honda H, Sasaki K, Minaki H, Masui K, Suzuki SO, Doh-Ura K, et al. Protease-resistant PrP 
and PrP oligomers in the brain in human prion diseases after intraventricular pentosan 
polysulfate infusion. Neuropathology. 2012 Apr;32(2):124-32. 
199. Caughey B, Caughey WS, Kocisko DA, Lee KS, Silveira JR, Morrey JD. Prions and 
transmissible spongiform encephalopathy (TSE) chemotherapeutics: A common mechanism for 
anti-TSE compounds? Acc Chem Res. 2006 Sep;39(9):646-53. 
200. Cashman NR, Caughey B. Prion diseases--close to effective therapy? Nat Rev Drug 
Discov. 2004 Oct;3(10):874-84. 
201. Klein MA, Kaeser PS, Schwarz P, Weyd H, Xenarios I, Zinkernagel RM, et al. Complement 
facilitates early prion pathogenesis. Nat Med. 2001 Apr;7(4):488-92. 
202. Brown KL, Stewart K, Ritchie DL, Mabbott NA, Williams A, Fraser H, et al. Scrapie 
replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nat 
Med. 1999 Nov;5(11):1308-12. 
203. Kitamoto T, Muramoto T, Mohri S, Doh-Ura K, Tateishi J. Abnormal isoform of prion 
protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J Virol. 
1991 Nov;65(11):6292-5. 
204. Mabbott NA, Bruce ME, Botto M, Walport MJ, Pepys MB. Temporary depletion of 
complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie. Nat 
Med. 2001 Apr;7(4):485-7. 
205. Kocisko DA, Baron GS, Rubenstein R, Chen J, Kuizon S, Caughey B. New inhibitors of 
scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J 
Virol. 2003 Oct;77(19):10288-94. 
206. Kocisko DA, Engel AL, Harbuck K, Arnold KM, Olsen EA, Raymond LD, et al. Comparison 
of protease-resistant prion protein inhibitors in cell cultures infected with two strains of mouse 
and sheep scrapie. Neurosci Lett. 2005 Nov 11;388(2):106-11. 



325 

 

207. Trevitt CR, Collinge J. A systematic review of prion therapeutics in experimental models. 
Brain. 2006 Sep;129(Pt 9):2241-65. 
208. Ladogana A, Casaccia P, Ingrosso L, Cibati M, Salvatore M, Xi YG, et al. Sulphate 
polyanions prolong the incubation period of scrapie-infected hamsters. J Gen Virol. 1992 Mar;73 
( Pt 3):661-5. 
209. Doh-ura K, Ishikawa K, Murakami-Kubo I, Sasaki K, Mohri S, Race R, et al. Treatment of 
transmissible spongiform encephalopathy by intraventricular drug infusion in animal models. J 
Virol. 2004 May;78(10):4999-5006. 
210. Diringer H, Ehlers B. Chemoprophylaxis of scrapie in mice. J Gen Virol. 1991 Feb;72 ( Pt 
2):457-60. 
211. Kamatari YO, Hayano Y, Yamaguchi K, Hosokawa-Muto J, Kuwata K. Characterizing 
antiprion compounds based on their binding properties to prion proteins: implications as 
medical chaperones. Protein Sci. 2013 Jan;22(1):22-34. 
212. Shyng SL, Lehmann S, Moulder KL, Harris DA. Sulfated glycans stimulate endocytosis of 
the cellular isoform of the prion protein, PrPC, in cultured cells. J Biol Chem. 1995 Dec 
15;270(50):30221-9. 
213. Caughey B, Brown K, Raymond GJ, Katzenstein GE, Thresher W. Binding of the protease-
sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red [corrected]. J 
Virol. 1994 Apr;68(4):2135-41. 
214. Caughey B, Raymond GJ. Sulfated polyanion inhibition of scrapie-associated PrP 
accumulation in cultured cells. J Virol. 1993 Feb;67(2):643-50. 
215. Farquhar CF, Dickinson AG. Prolongation of scrapie incubation period by an injection of 
dextran sulphate 500 within the month before or after infection. J Gen Virol. 1986 Mar;67 ( Pt 
3):463-73. 
216. Ehlers B, Diringer H. Dextran sulphate 500 delays and prevents mouse scrapie by 
impairment of agent replication in spleen. J Gen Virol. 1984 Aug;65 ( Pt 8):1325-30. 
217. Rudyk H, Vasiljevic S, Hennion RM, Birkett CR, Hope J, Gilbert IH. Screening Congo Red 
and its analogues for their ability to prevent the formation of PrP-res in scrapie-infected cells. J 
Gen Virol. 2000 Apr;81(Pt 4):1155-64. 
218. Sellarajah S, Lekishvili T, Bowring C, Thompsett AR, Rudyk H, Birkett CR, et al. Synthesis 
of analogues of Congo red and evaluation of their anti-prion activity. J Med Chem. 2004 Oct 
21;47(22):5515-34. 
219. Rudyk H, Knaggs MH, Vasiljevic S, Hope J, Birkett C, Gilbert IH. Synthesis and evaluation 
of analogues of Congo red as potential compounds against transmissible spongiform 
encephalopathies. Eur J Med Chem. 2003 Jun;38(6):567-79. 
220. Webb S, Lekishvili T, Loeschner C, Sellarajah S, Prelli F, Wisniewski T, et al. Mechanistic 
insights into the cure of prion disease by novel antiprion compounds. J Virol. 2007 
Oct;81(19):10729-41. 
221. Touil F, Pratt S, Mutter R, Chen B. Screening a library of potential prion therapeutics 
against cellular prion proteins and insights into their mode of biological activities by surface 
plasmon resonance. J Pharm Biomed Anal. 2006 Mar 3;40(4):822-32. 
222. Kawatake S, Nishimura Y, Sakaguchi S, Iwaki T, Doh-ura K. Surface plasmon resonance 
analysis for the screening of anti-prion compounds. Biol Pharm Bull. 2006 May;29(5):927-32. 
223. Georgieva D, Schwark D, von Bergen M, Redecke L, Genov N, Betzel C. Interactions of 
recombinant prions with compounds of therapeutical significance. Biochem Biophys Res 
Commun. 2006 Jun 2;344(2):463-70. 
224. Caspi S, Halimi M, Yanai A, Sasson SB, Taraboulos A, Gabizon R. The anti-prion activity of 
Congo red. Putative mechanism. J Biol Chem. 1998 Feb 6;273(6):3484-9. 
225. Demaimay R, Harper J, Gordon H, Weaver D, Chesebro B, Caughey B. Structural aspects 
of Congo red as an inhibitor of protease-resistant prion protein formation. J Neurochem. 1998 
Dec;71(6):2534-41. 



326 

 

226. Gilch S, Winklhofer KF, Groschup MH, Nunziante M, Lucassen R, Spielhaupter C, et al. 
Intracellular re-routing of prion protein prevents propagation of PrP(Sc) and delays onset of 
prion disease. EMBO J. 2001 Aug 1;20(15):3957-66. 
227. Supattapone S, Nguyen HO, Cohen FE, Prusiner SB, Scott MR. Elimination of prions by 
branched polyamines and implications for therapeutics. Proc Natl Acad Sci U S A. 1999 Dec 
7;96(25):14529-34. 
228. Supattapone S, Piro JR, Rees JR. Complex polyamines: unique prion disaggregating 
compounds. CNS Neurol Disord Drug Targets. 2009 Nov;8(5):323-8. 
229. Supattapone S, Wille H, Uyechi L, Safar J, Tremblay P, Szoka FC, et al. Branched 
polyamines cure prion-infected neuroblastoma cells. J Virol. 2001 Apr;75(7):3453-61. 
230. Winklhofer KF, Tatzelt J. Cationic lipopolyamines induce degradation of PrPSc in scrapie-
infected mouse neuroblastoma cells. Biol Chem. 2000 May-Jun;381(5-6):463-9. 
231. McKinley MP, Taraboulos A, Kenaga L, Serban D, Stieber A, DeArmond SJ, et al. 
Ultrastructural localization of scrapie prion proteins in cytoplasmic vesicles of infected cultured 
cells. Lab Invest. 1991 Dec;65(6):622-30. 
232. Korth C, May BC, Cohen FE, Prusiner SB. Acridine and phenothiazine derivatives as 
pharmacotherapeutics for prion disease. Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9836-41. 
233. Barret A, Tagliavini F, Forloni G, Bate C, Salmona M, Colombo L, et al. Evaluation of 
quinacrine treatment for prion diseases. J Virol. 2003 Aug;77(15):8462-9. 
234. Yung L, Huang Y, Lessard P, Legname G, Lin ET, Baldwin M, et al. Pharmacokinetics of 
quinacrine in the treatment of prion disease. BMC Infect Dis. 2004 Nov 29;4:53. 
235. Gayrard V, Picard-Hagen N, Viguie C, Laroute V, Andreoletti O, Toutain PL. A possible 
pharmacological explanation for quinacrine failure to treat prion diseases: pharmacokinetic 
investigations in a ovine model of scrapie. Br J Pharmacol. 2005 Feb;144(3):386-93. 
236. Doh-Ura K, Iwaki T, Caughey B. Lysosomotropic agents and cysteine protease inhibitors 
inhibit scrapie-associated prion protein accumulation. J Virol. 2000 May;74(10):4894-7. 
237. Ertmer A, Gilch S, Yun SW, Flechsig E, Klebl B, Stein-Gerlach M, et al. The tyrosine kinase 
inhibitor STI571 induces cellular clearance of PrPSc in prion-infected cells. J Biol Chem. 2004 Oct 
1;279(40):41918-27. 
238. Yamasaki T, Suzuki A, Hasebe R, Horiuchi M. Comparison of the Anti-Prion Mechanism of 
Four Different Anti-Prion Compounds, Anti-PrP Monoclonal Antibody 44B1, Pentosan 
Polysulfate, Chlorpromazine, and U18666A, in Prion-Infected Mouse Neuroblastoma Cells. PLoS 
One. 2014;9(9):e106516. 
239. Marzo L, Marijanovic Z, Browman D, Chamoun Z, Caputo A, Zurzolo C. 4-
hydroxytamoxifen leads to PrPSc clearance by conveying both PrPC and PrPSc to lysosomes 
independently of autophagy. J Cell Sci. 2013 Mar 15;126(Pt 6):1345-54. 
240. Westergard L, Christensen HM, Harris DA. The cellular prion protein (PrP(C)): its 
physiological function and role in disease. Biochim Biophys Acta. 2007 Jun;1772(6):629-44. 
241. Bate C, Reid S, Williams A. Phospholipase A2 inhibitors or platelet-activating factor 
antagonists prevent prion replication. J Biol Chem. 2004 Aug 27;279(35):36405-11. 
242. Mange A, Nishida N, Milhavet O, McMahon HE, Casanova D, Lehmann S. Amphotericin B 
inhibits the generation of the scrapie isoform of the prion protein in infected cultures. J Virol. 
2000 Apr;74(7):3135-40. 
243. Gilch S, Kehler C, Schatzl HM. The prion protein requires cholesterol for cell surface 
localization. Mol Cell Neurosci. 2006 Feb;31(2):346-53. 
244. Gilch S, Bach C, Lutzny G, Vorberg I, Schatzl HM. Inhibition of cholesterol recycling 
impairs cellular PrP(Sc) propagation. Cell Mol Life Sci. 2009 Dec;66(24):3979-91. 
245. Klingenstein R, Lober S, Kujala P, Godsave S, Leliveld SR, Gmeiner P, et al. Tricyclic 
antidepressants, quinacrine and a novel, synthetic chimera thereof clear prions by destabilizing 
detergent-resistant membrane compartments. J Neurochem. 2006 Aug;98(3):748-59. 



327 

 

246. Orru CD, Cannas MD, Vascellari S, Angius F, Cocco PL, Norfo C, et al. In vitro synergistic 
anti-prion effect of cholesterol ester modulators in combination with chlorpromazine and 
quinacrine. Central European Journal of Biology. 2010 Apr;5(2):151-65. 
247. White MD, Farmer M, Mirabile I, Brandner S, Collinge J, Mallucci GR. Single treatment 
with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice 
with prion disease. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10238-43. 
248. Biasini E, Harris DA. Targeting the cellular prion protein to treat neurodegeneration. 
Future Med Chem. 2012 Sep;4(13):1655-8. 
249. Verity NC, Mallucci GR. Rescuing neurons in prion disease. Biochem J. 2011 Jan 
1;433(1):19-29. 
250. Heppner FL, Musahl C, Arrighi I, Klein MA, Rulicke T, Oesch B, et al. Prevention of scrapie 
pathogenesis by transgenic expression of anti-prion protein antibodies. Science. 2001 Oct 
5;294(5540):178-82. 
251. Peretz D, Williamson RA, Kaneko K, Vergara J, Leclerc E, Schmitt-Ulms G, et al. 
Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature. 2001 Aug 
16;412(6848):739-43. 
252. White AR, Enever P, Tayebi M, Mushens R, Linehan J, Brandner S, et al. Monoclonal 
antibodies inhibit prion replication and delay the development of prion disease. Nature. 2003 
Mar 6;422(6927):80-3. 
253. Krammer C, Vorberg I, Schatzl HM, Gilch S. Therapy in prion diseases: from molecular 
and cellular biology to therapeutic targets. Infect Disord Drug Targets. 2009 Feb;9(1):3-14. 
254. Gilch S, Wopfner F, Renner-Muller I, Kremmer E, Bauer C, Wolf E, et al. Polyclonal anti-
PrP auto-antibodies induced with dimeric PrP interfere efficiently with PrPSc propagation in 
prion-infected cells. J Biol Chem. 2003 May 16;278(20):18524-31. 
255. Alexandrenne C, Hanoux V, Dkhissi F, Boquet D, Couraud JY, Wijkhuisen A. Curative 
properties of antibodies against prion protein: a comparative in vitro study of monovalent 
fragments and divalent antibodies. J Neuroimmunol. 2009 Apr 30;209(1-2):50-6. 
256. Aguzzi A, O'Connor T. Protein aggregation diseases: pathogenicity and therapeutic 
perspectives. Nat Rev Drug Discov. 2010 Mar;9(3):237-48. 
257. Mabbott NA, Young J, McConnell I, Bruce ME. Follicular dendritic cell dedifferentiation 
by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie 
susceptibility. J Virol. 2003 Jun;77(12):6845-54. 
258. Nicoll AJ, Collinge J. Preventing prion pathogenicity by targeting the cellular prion 
protein. Infect Disord Drug Targets. 2009 Feb;9(1):48-57. 
259. Heiseke A, Aguib Y, Schatzl HM. Autophagy, prion infection and their mutual 
interactions. Curr Issues Mol Biol. 2010;12(2):87-97. 
260. Aguib Y, Heiseke A, Gilch S, Riemer C, Baier M, Schatzl HM, et al. Autophagy induction by 
trehalose counteracts cellular prion infection. Autophagy. 2009 Apr;5(3):361-9. 
261. Cortes CJ, Qin K, Cook J, Solanki A, Mastrianni JA. Rapamycin delays disease onset and 
prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker disease. J 
Neurosci. 2012 Sep 5;32(36):12396-405. 
262. Kranich J, Krautler NJ, Falsig J, Ballmer B, Li S, Hutter G, et al. Engulfment of cerebral 
apoptotic bodies controls the course of prion disease in a mouse strain-dependent manner. J Exp 
Med. 2010 Sep 27;207(10):2271-81. 
263. Corsaro A, Thellung S, Chiovitti K, Villa V, Simi A, Raggi F, et al. Dual modulation of 
ERK1/2 and p38 MAP kinase activities induced by minocycline reverses the neurotoxic effects of 
the prion protein fragment 90-231. Neurotox Res. 2009 Feb;15(2):138-54. 
264. Perrier V, Wallace AC, Kaneko K, Safar J, Prusiner SB, Cohen FE. Mimicking dominant 
negative inhibition of prion replication through structure-based drug design. Proc Natl Acad Sci U 
S A. 2000 May 23;97(11):6073-8. 



328 

 

265. Proske D, Gilch S, Wopfner F, Schatzl HM, Winnacker EL, Famulok M. Prion-protein-
specific aptamer reduces PrPSc formation. Chembiochem. 2002 Aug 2;3(8):717-25. 
266. Caughey B, Raymond LD, Raymond GJ, Maxson L, Silveira J, Baron GS. Inhibition of 
protease-resistant prion protein accumulation in vitro by curcumin. J Virol. 2003 
May;77(9):5499-502. 
267. Riemer C, Burwinkel M, Schwarz A, Gultner S, Mok SW, Heise I, et al. Evaluation of drugs 
for treatment of prion infections of the central nervous system. J Gen Virol. 2008 Feb;89(Pt 
2):594-7. 
268. Hafner-Bratkovic I, Gaspersic J, Smid LM, Bresjanac M, Jerala R. Curcumin binds to the 
alpha-helical intermediate and to the amyloid form of prion protein - a new mechanism for the 
inhibition of PrP(Sc) accumulation. J Neurochem. 2008 Mar;104(6):1553-64. 
269. Shaked GM, Engelstein R, Avraham I, Kahana E, Gabizon R. Dimethyl sulfoxide delays PrP 
sc accumulation and disease symptoms in prion-infected hamsters. Brain Res. 2003 Sep 5;983(1-
2):137-43. 
270. Xiao CQ, Feng BY, Ge YS, Fan XY, Jiang FL, Xiao G, et al. Comprehensive study of the 
interaction between a potential antiprion cationic porphyrin and human prion protein at 
different pH by using multiple spectroscopic methods. J Pharm Sci. 2013 Mar;102(3):1076-85. 
271. Bolognesi ML, Ai Tran HN, Staderini M, Monaco A, Lopez-Cobenas A, Bongarzone S, et al. 
Discovery of a class of diketopiperazines as antiprion compounds. ChemMedChem. 2010 Aug 
2;5(8):1324-34. 
272. Iwamaru Y, Takenouchi T, Murayama Y, Okada H, Imamura M, Shimizu Y, et al. Anti-
prion activity of Brilliant Blue G. PLoS One. 2012;7(5):e37896. 
273. Stanton JB, Schneider DA, Dinkel KD, Balmer BF, Baszler TV, Mathison BA, et al. 
Discovery of a novel, monocationic, small-molecule inhibitor of scrapie prion accumulation in 
cultured sheep microglia and Rov cells. PLoS One. 2012;7(11):e51173. 
274. Li Z, Silber BM, Rao S, Gever JR, Bryant C, Gallardo-Godoy A, et al. 2-Aminothiazoles with 
improved pharmacotherapeutic properties for treatment of prion disease. ChemMedChem. 
2013 May;8(5):847-57. 
275. Gallardo-Godoy A, Gever J, Fife KL, Silber BM, Prusiner SB, Renslo AR. 2-Aminothiazoles 
as therapeutic leads for prion diseases. J Med Chem. 2011 Feb 24;54(4):1010-21. 
276. Thompson MJ, Louth JC, Greenwood GK, Sorrell FJ, Knight SG, Adams NB, et al. Improved 
2,4-diarylthiazole-based antiprion agents: switching the sense of the amide group at C5 leads to 
an increase in potency. ChemMedChem. 2010 Sep 3;5(9):1476-88. 
277. Thompson MJ, Louth JC, Little SM, Chen B, Coldham I. 2,4-diarylthiazole antiprion 
compounds as a novel structural class of antimalarial leads. Bioorg Med Chem Lett. 2011 Jun 
15;21(12):3644-7. 
278. Thompson MJ, Louth JC, Ferrara S, Sorrell FJ, Irving BJ, Cochrane EJ, et al. Structure-
activity relationship refinement and further assessment of indole-3-glyoxylamides as a lead 
series against prion disease. ChemMedChem. 2011 Jan 3;6(1):115-30. 
279. Thompson MJ, Louth JC, Ferrara S, Jackson MP, Sorrell FJ, Cochrane EJ, et al. Discovery of 
6-substituted indole-3-glyoxylamides as lead antiprion agents with enhanced cell line activity, 
improved microsomal stability and low toxicity. Eur J Med Chem. 2011 Sep;46(9):4125-32. 
280. Thompson MJ, Borsenberger V, Louth JC, Judd KE, Chen B. Design, synthesis, and 
structure-activity relationship of indole-3-glyoxylamide libraries possessing highly potent activity 
in a cell line model of prion disease. J Med Chem. 2009 Dec 10;52(23):7503-11. 
281. Brazier MW, Doctrow SR, Masters CL, Collins SJ. A manganese-superoxide 
dismutase/catalase mimetic extends survival in a mouse model of human prion disease. Free 
Radic Biol Med. 2008 Jul 15;45(2):184-92. 
282. Taraboulos A, Scott M, Semenov A, Avrahami D, Prusiner SB. Biosynthesis of the prion 
proteins in scrapie-infected cells in culture. Braz J Med Biol Res. 1994 Feb;27(2):303-7. 



329 

 

283. Groschup MH, Buschmann A. Rodent models for prion diseases. Vet Res. 2008 Jul-
Aug;39(4):32. 
284. Solassol J, Crozet C, Lehmann S. Prion propagation in cultured cells. Br Med Bull. 
2003;66:87-97. 
285. Vilette D. Cell models of prion infection. Vet Res. 2008 Jul-Aug;39(4):10. 
286. Clarke MC, Haig DA. Evidence for the multiplication of scrapie agent in cell culture. 
Nature. 1970 Jan 3;225(5227):100-1. 
287. Birkett CR, Hennion RM, Bembridge DA, Clarke MC, Chree A, Bruce ME, et al. Scrapie 
strains maintain biological phenotypes on propagation in a cell line in culture. EMBO J. 2001 Jul 
2;20(13):3351-8. 
288. Vilette D, Andreoletti O, Archer F, Madelaine MF, Vilotte JL, Lehmann S, et al. Ex vivo 
propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine 
prion protein. Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):4055-9. 
289. Bosque PJ, Prusiner SB. Cultured cell sublines highly susceptible to prion infection. J 
Virol. 2000 May;74(9):4377-86. 
290. Nishida N, Harris DA, Vilette D, Laude H, Frobert Y, Grassi J, et al. Successful transmission 
of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-
type mouse prion protein. J Virol. 2000 Jan;74(1):320-5. 
291. Archer F, Bachelin C, Andreoletti O, Besnard N, Perrot G, Langevin C, et al. Cultured 
peripheral neuroglial cells are highly permissive to sheep prion infection. J Virol. 2004 
Jan;78(1):482-90. 
292. Cronier S, Laude H, Peyrin JM. Prions can infect primary cultured neurons and astrocytes 
and promote neuronal cell death. Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12271-6. 
293. Geissen M, Leidel F, Eiden M, Hirschberger T, Fast C, Bertsch U, et al. From high-
throughput cell culture screening to mouse model: identification of new inhibitor classes against 
prion disease. ChemMedChem. 2011 Oct 4;6(10):1928-37. 
294. Liu Y, Sun R, Chakrabarty T, Manuelidis L. A rapid accurate culture assay for infectivity in 
Transmissible Encephalopathies. J Neurovirol. 2008 Oct;14(5):352-61. 
295. Klohn PC, Stoltze L, Flechsig E, Enari M, Weissmann C. A quantitative, highly sensitive 
cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci U S A. 2003 Sep 
30;100(20):11666-71. 
296. Milhavet O, McMahon HE, Rachidi W, Nishida N, Katamine S, Mange A, et al. Prion 
infection impairs the cellular response to oxidative stress. Proc Natl Acad Sci U S A. 2000 Dec 
5;97(25):13937-42. 
297. Sim VL. Prion disease: chemotherapeutic strategies. Infect Disord Drug Targets. 2012 
Apr;12(2):144-60. 
298. Stocks M, Alcaraz, M, Griffen E. On Medicinal Chemistry. 
299. Wade RC, Goodford PJ. The role of hydrogen-bonds in drug binding. Prog Clin Biol Res. 
1989;289:433-44. 
300. Priest BT, Bell IM, Garcia ML. Role of hERG potassium channel assays in drug 
development. Channels (Austin). 2008 Mar-Apr;2(2):87-93. 
301. Gabrielsson J, Green AR. Quantitative pharmacology or pharmacokinetic 
pharmacodynamic integration should be a vital component in integrative pharmacology. J 
Pharmacol Exp Ther. 2009 Dec;331(3):767-74. 
302. Ganesan A. Recent developments in combinatorial organic synthesis. Drug Discov Today. 
2002 Jan 1;7(1):47-55. 
303. Myers S, Baker A. Drug discovery--an operating model for a new era. Nat Biotechnol. 
2001 Aug;19(8):727-30. 
304. Giese K, Kaufmann J, Pronk GJ, Klippel A. Unravelling novel intracellular pathways in cell-
based assays. Drug Discov Today. 2002 Feb 1;7(3):179-86. 



330 

 

305. Breslin S, O'Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. 
Drug Discov Today. 2013 Mar;18(5-6):240-9. 
306. Schmeichel KL, Bissell MJ. Modeling tissue-specific signaling and organ function in three 
dimensions. J Cell Sci. 2003 Jun 15;116(Pt 12):2377-88. 
307. Page H, Flood P, Reynaud EG. Three-dimensional tissue cultures: current trends and 
beyond. Cell Tissue Res. 2013 Apr;352(1):123-31. 
308. Maltman DJ, Przyborski SA. Developments in three-dimensional cell culture technology 
aimed at improving the accuracy of in vitro analyses. Biochem Soc Trans. 2010 Aug;38(4):1072-5. 
309. Kleinman HK, Philp D, Hoffman MP. Role of the extracellular matrix in morphogenesis. 
Curr Opin Biotechnol. 2003 Oct;14(5):526-32. 
310. Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW. The organizing principle: 
microenvironmental influences in the normal and malignant breast. Differentiation. 2002 
Dec;70(9-10):537-46. 
311. Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell 
culture and live tissue. Nat Rev Mol Cell Biol. 2007 Oct;8(10):839-45. 
312. Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J 
Theor Biol. 1982 Nov 7;99(1):31-68. 
313. Bhadriraju K, Chen CS. Engineering cellular microenvironments to improve cell-based 
drug testing. Drug Discov Today. 2002 Jun 1;7(11):612-20. 
314. Mueller-Klieser W. Three-dimensional cell cultures: from molecular mechanisms to 
clinical applications. Am J Physiol. 1997 Oct;273(4 Pt 1):C1109-23. 
315. Ma W, Fitzgerald W, Liu QY, O'Shaughnessy TJ, Maric D, Lin HJ, et al. CNS stem and 
progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen 
gels. Exp Neurol. 2004 Dec;190(2):276-88. 
316. Kim JB. Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol. 
2005 Oct;15(5):365-77. 
317. Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture 
for biomedical research. Biotechnol J. 2008 Oct;3(9-10):1172-84. 
318. Hirschhaeuser F, Leidig T, Rodday B, Lindemann C, Mueller-Klieser W. Test system for 
trifunctional antibodies in 3D MCTS culture. J Biomol Screen. 2009 Sep;14(8):980-90. 
319. Keller GM. In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol. 1995 
Dec;7(6):862-9. 
320. Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK. Method for generation of 
homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol 
Bioeng. 2003 Jul 20;83(2):173-80. 
321. Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S. High-throughput 3D 
spheroid culture and drug testing using a 384 hanging drop array. Analyst. 2011 Feb 
7;136(3):473-8. 
322. Bell E. Strategy for the selection of scaffolds for tissue engineering. Tissue Eng. 1995 
Summer;1(2):163-79. 
323. Hosseinkhani H. 3D in vitro technology for drug discovery. Curr Drug Saf. 2012 
Feb;7(1):37-43. 
324. Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R. Differentiation of 
human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci U S A. 
2003 Oct 28;100(22):12741-6. 
325. van Wezel AL. Growth of cell-strains and primary cells on micro-carriers in homogeneous 
culture. Nature. 1967 Oct 7;216(5110):64-5. 
326. Johns RA, Tichotsky A, Muro M, Spaeth JP, Le Cras TD, Rengasamy A. Halothane and 
isoflurane inhibit endothelium-derived relaxing factor-dependent cyclic guanosine 
monophosphate accumulation in endothelial cell-vascular smooth muscle co-cultures 
independent of an effect on guanylyl cyclase activation. Anesthesiology. 1995 Oct;83(4):823-34. 



331 

 

327. Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, et al. A novel 3D mammalian 
cell perfusion-culture system in microfluidic channels. Lab Chip. 2007 Mar;7(3):302-9. 
328. Park J, Lee BK, Jeong GS, Hyun JK, Lee CJ, Lee SH. Three-dimensional brain-on-a-chip with 
an interstitial level of flow and its application as an in vitro model of Alzheimer's disease. Lab 
Chip. 2015 Jan 7;15(1):141-50. 
329. Andrei G. Three-dimensional culture models for human viral diseases and antiviral drug 
development. Antiviral Res. 2006 Sep;71(2-3):96-107. 
330. Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of 
mammalian biology and disease. Nat Rev Mol Cell Biol. 2014 Oct;15(10):647-64. 
331. Lebonvallet N, Jeanmaire C, Danoux L, Sibille P, Pauly G, Misery L. The evolution and use 
of skin explants: potential and limitations for dermatological research. Eur J Dermatol. 2010 Nov-
Dec;20(6):671-84. 
332. Randall KJ, Turton J, Foster JR. Explant culture of gastrointestinal tissue: a review of 
methods and applications. Cell Biol Toxicol. 2011 Aug;27(4):267-84. 
333. Sutherland RM, McCredie JA, Inch WR. Growth of multicell spheroids in tissue culture as 
a model of nodular carcinomas. J Natl Cancer Inst. 1971 Jan;46(1):113-20. 
334. Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R. The use of 3-D cultures for high-
throughput screening: the multicellular spheroid model. J Biomol Screen. 2004 Jun;9(4):273-85. 
335. Kimlin LC, Casagrande G, Virador VM. In vitro three-dimensional (3D) models in cancer 
research: an update. Mol Carcinog. 2013 Mar;52(3):167-82. 
336. Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug 
discovery and transport studies. J Pharm Sci. 2011 Jan;100(1):59-74. 
337. Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D'Avanzo C, et al. A three-dimensional 
human neural cell culture model of Alzheimer's disease. Nature. 2014 Nov 13;515(7526):274-8. 
338. Zhang D, Pekkanen-Mattila M, Shahsavani M, Falk A, Teixeira AI, Herland A. A 3D 
Alzheimer's disease culture model and the induction of P21-activated kinase mediated sensing in 
iPSC derived neurons. Biomaterials. 2014 Feb;35(5):1420-8. 
339. Falsig J, Sonati T, Herrmann US, Saban D, Li B, Arroyo K, et al. Prion pathogenesis is 
faithfully reproduced in cerebellar organotypic slice cultures. PLoS Pathog. 2012;8(11):e1002985. 
340. Campeau JL, Wu G, Bell JR, Rasmussen J, Sim VL. Early increase and late decrease of 
purkinje cell dendritic spine density in prion-infected organotypic mouse cerebellar cultures. 
PLoS One. 2013;8(12):e81776. 
341. Falsig J, Aguzzi A. The prion organotypic slice culture assay--POSCA. Nat Protoc. 
2008;3(4):555-62. 
342. Falsig J, Julius C, Margalith I, Schwarz P, Heppner FL, Aguzzi A. A versatile prion 
replication assay in organotypic brain slices. Nat Neurosci. 2008 Jan;11(1):109-17. 
343. Roth A, Singer T. The application of 3D cell models to support drug safety assessment: 
Opportunities & challenges. Adv Drug Deliv Rev. 2013 Dec 27. 
344. Seiler AE, Spielmann H. The validated embryonic stem cell test to predict embryotoxicity 
in vitro. Nat Protoc. 2011 Jul;6(7):961-78. 
345. DesRochers TM, Suter L, Roth A, Kaplan DL. Bioengineered 3D human kidney tissue, a 
platform for the determination of nephrotoxicity. PLoS One. 2013;8(3):e59219. 
346. Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE. Microengineered physiological 
biomimicry: organs-on-chips. Lab Chip. 2012 Jun 21;12(12):2156-64. 
347. Vogtherr M, Grimme S, Elshorst B, Jacobs DM, Fiebig K, Griesinger C, et al. Antimalarial 
drug quinacrine binds to C-terminal helix of cellular prion protein. J Med Chem. 2003 Aug 
14;46(17):3563-4. 
348. Hong HS, Maezawa I, Yao N, Xu B, Diaz-Avalos R, Rana S, et al. Combining the rapid MTT 
formazan exocytosis assay and the MC65 protection assay led to the discovery of carbazole 
analogs as small molecule inhibitors of Abeta oligomer-induced cytotoxicity. Brain Res. 2007 Jan 
26;1130(1):223-34. 



332 

 

349. Benjamini YH, Y. Controlling the false discovery rate - a practical and powerful approach 
to multiple testing. Journal of the Royal Statistical Society Series B - Methodological. 
1995;57(1):289-300. 
350. Dlakic WM, Grigg E, Bessen RA. Prion infection of muscle cells in vitro. J Virol. 2007 
May;81(9):4615-24. 
351. Reddy TR, Mutter R, Heal W, Guo K, Gillet VJ, Pratt S, et al. Library design, synthesis, and 
screening: pyridine dicarbonitriles as potential prion disease therapeutics. J Med Chem. 2006 Jan 
26;49(2):607-15. 
352. Zahn R, Liu A, Luhrs T, Riek R, von Schroetter C, Lopez Garcia F, et al. NMR solution 
structure of the human prion protein. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):145-50. 
353. Cope H, Mutter R, Heal W, Pascoe C, Brown P, Pratt S, et al. Synthesis and SAR study of 
acridine, 2-methylquinoline and 2-phenylquinazoline analogues as anti-prion agents. Eur J Med 
Chem. 2006 Oct;41(10):1124-43. 
354. Guo K, Mutter R, Heal W, Reddy TR, Cope H, Pratt S, et al. Synthesis and evaluation of a 
focused library of pyridine dicarbonitriles against prion disease. Eur J Med Chem. 2008 
Jan;43(1):93-106. 
355. Heal W, Thompson MJ, Mutter R, Cope H, Louth JC, Chen B. Library synthesis and 
screening: 2,4-diphenylthiazoles and 2,4-diphenyloxazoles as potential novel prion disease 
therapeutics. J Med Chem. 2007 Mar 22;50(6):1347-53. 
356. Rosenson RS, Hislop C, Elliott M, Stasiv Y, Goulder M, Waters D. Effects of varespladib 
methyl on biomarkers and major cardiovascular events in acute coronary syndrome patients. J 
Am Coll Cardiol. 2010 Sep 28;56(14):1079-88. 
357. Rosenson RS, Hislop C, McConnell D, Elliott M, Stasiv Y, Wang N, et al. Effects of 1-H-
indole-3-glyoxamide (A-002) on concentration of secretory phospholipase A2 (PLASMA study): a 
phase II double-blind, randomised, placebo-controlled trial. Lancet. 2009 Feb 21;373(9664):649-
58. 
358. Hui DY, Cope MJ, Labonte ED, Chang HT, Shao J, Goka E, et al. The phospholipase A(2) 
inhibitor methyl indoxam suppresses diet-induced obesity and glucose intolerance in mice. Br J 
Pharmacol. 2009 Aug;157(7):1263-9. 
359. Bradley JD, Dmitrienko AA, Kivitz AJ, Gluck OS, Weaver AL, Wiesenhutter C, et al. A 
randomized, double-blinded, placebo-controlled clinical trial of LY333013, a selective inhibitor of 
group II secretory phospholipase A2, in the treatment of rheumatoid arthritis. J Rheumatol. 2005 
Mar;32(3):417-23. 
360. Takhi M, Singh G, Murugan C, Thaplyyal N, Maitra S, Bhaskarreddy KM, et al. Novel and 
potent oxazolidinone antibacterials featuring 3-indolylglyoxamide substituents. Bioorg Med 
Chem Lett. 2008 Sep 15;18(18):5150-5. 
361. Genovese MC, Cohen SB, Wofsy D, Weinblatt ME, Firestein GS, Brahn E, et al. A 24-week, 
randomized, double-blind, placebo-controlled, parallel group study of the efficacy of oral SCIO-
469, a p38 mitogen-activated protein kinase inhibitor, in patients with active rheumatoid 
arthritis. J Rheumatol. 2011 May;38(5):846-54. 
362. Siegel DS, Krishnan A, Lonial S, Chatta G, Alsina M, Jagannath S, et al. Phase II trial of 
SCIO-469 as monotherapy (M) or in combination with bortezornib (MB) in relapsed refractory 
multiple myeloma (MM). Blood. 2006 Nov 16;108(11):1022a-a. 
363. Cottrell JA, Meyenhofer M, Medicherla S, Higgins L, O'Connor JP. Analgesic effects of p38 
kinase inhibitor treatment on bone fracture healing. Pain. 2009 Mar;142(1-2):116-26. 
364. Medicherla S, Wadsworth S, Cullen B, Silcock D, Ma JY, Mangadu R, et al. p38 MAPK 
inhibition reduces diabetes-induced impairment of wound healing. Diabetes Metab Syndr Obes. 
2009;2:91-100. 
365. De Martino G, Edler MC, La Regina G, Coluccia A, Barbera MC, Barrow D, et al. New 
arylthioindoles: potent inhibitors of tubulin polymerization. 2. Structure-activity relationships 
and molecular modeling studies. J Med Chem. 2006 Feb 9;49(3):947-54. 



333 

 

366. La Regina G, Edler MC, Brancale A, Kandil S, Coluccia A, Piscitelli F, et al. Arylthioindole 
inhibitors of tubulin polymerization. 3. Biological evaluation, structure-activity relationships and 
molecular modeling studies. J Med Chem. 2007 Jun 14;50(12):2865-74. 
367. Brancale A, Silvestri R. Indole, a core nucleus for potent inhibitors of tubulin 
polymerization. Med Res Rev. 2007 Mar;27(2):209-38. 
368. Wang T, Yin Z, Zhang Z, Bender JA, Yang Z, Johnson G, et al. Inhibitors of human 
immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles 
leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-
c]pyridin-3-yl)ethane -1,2-dione (BMS-488043), a drug candidate that demonstrates antiviral 
activity in HIV-1-infected subjects. J Med Chem. 2009 Dec 10;52(23):7778-87. 
369. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to 
proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55-63. 
370. Bradford MM. A rapid and sensitive method for the quantitation of microgram 
quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 
7;72:248-54. 
371. Ghaemmaghami S, May BC, Renslo AR, Prusiner SB. Discovery of 2-aminothiazoles as 
potent antiprion compounds. J Virol. 2010 Apr;84(7):3408-12. 
372. Pattnaik P. Surface plasmon resonance: applications in understanding receptor-ligand 
interaction. Appl Biochem Biotechnol. 2005 Aug;126(2):79-92. 
373. Cooper MA. Optical biosensors in drug discovery. Nat Rev Drug Discov. 2002 
Jul;1(7):515-28. 
374. Warner RG, Hundt C, Weiss S, Turnbull JE. Identification of the heparan sulfate binding 
sites in the cellular prion protein. J Biol Chem. 2002 May 24;277(21):18421-30. 
375. Shoichet BK. Screening in a spirit haunted world. Drug Discov Today. 2006 Jul;11(13-
14):607-15. 
376. Fiorino F, Eiden M, Giese A, Severino B, Esposito A, Groschup MH, et al. Synthesis of 
benzamide derivatives and their evaluation as antiprion agents. Bioorg Med Chem. 2012 Aug 
15;20(16):5001-11. 
377. Ghaemmaghami S, Ahn M, Lessard P, Giles K, Legname G, DeArmond SJ, et al. 
Continuous quinacrine treatment results in the formation of drug-resistant prions. PLoS Pathog. 
2009 Nov;5(11):e1000673. 
378. Rambold AS, Miesbauer M, Olschewski D, Seidel R, Riemer C, Smale L, et al. Green tea 
extracts interfere with the stress-protective activity of PrP and the formation of PrP. J 
Neurochem. 2008 Oct;107(1):218-29. 
379. Edwards RA, Woody RW. Spectroscopic studies of Cibacron Blue and Congo Red bound 
to dehydrogenases and kinases. Evaluation of dyes as probes of the dinucleotide fold. 
Biochemistry. 1979 Nov 13;18(23):5197-204. 
380. Stopa B, Gorny M, Konieczny L, Piekarska B, Rybarska J, Skowronek M, et al. 
Supramolecular ligands: monomer structure and protein ligation capability. Biochimie. 1998 
Dec;80(12):963-8. 
381. Kitano H. Systems biology: a brief overview. Science. 2002 Mar 1;295(5560):1662-4. 
382. Hwang D, Lee IY, Yoo H, Gehlenborg N, Cho JH, Petritis B, et al. A systems approach to 
prion disease. Mol Syst Biol. 2009;5:252. 
383. Fasano C, Campana V, Griffiths B, Kelly G, Schiavo G, Zurzolo C. Gene expression profile 
of quinacrine-cured prion-infected mouse neuronal cells. J Neurochem. 2008 Apr;105(1):239-50. 
384. Farrelly PV, Kenna BL, Laohachai KL, Bahadi R, Salmona M, Forloni G, et al. Quinacrine 
blocks PrP (106-126)-formed channels. J Neurosci Res. 2003 Dec 15;74(6):934-41. 
385. Bourdon JC. p53 and its isoforms in cancer. Br J Cancer. 2007 Aug 6;97(3):277-82. 
386. Killick R, Niklison-Chirou M, Tomasini R, Bano D, Rufini A, Grespi F, et al. p73: a 
multifunctional protein in neurobiology. Mol Neurobiol. 2011 Apr;43(2):139-46. 



334 

 

387. Cullen SP, Brunet M, Martin SJ. Granzymes in cancer and immunity. Cell Death Differ. 
2010 Apr;17(4):616-23. 
388. Ehsanian R, Van Waes C, Feller SM. Beyond DNA binding - a review of the potential 
mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, 
and cancers. Cell Commun Signal. 2011;9:13. 
389. Boucher JG, Boudreau A, Atlas E. Bisphenol A induces differentiation of human 
preadipocytes in the absence of glucocorticoid and is inhibited by an estrogen-receptor 
antagonist. Nutr Diabetes. 2014;4:e102. 
390. van Leeuwen LAG, Hoozemans JJM. Physiological and pathophysiological functions of 
cell cycle proteins in post-mitotic neurons: implications for Alzheimer's disease. Acta 
Neuropathol. 2015 Apr;129(4):511-25. 
391. Raina AK, Hochman A, Zhu X, Rottkamp CA, Nunomura A, Siedlak SL, et al. Abortive 
apoptosis in Alzheimer's disease. Acta Neuropathol. 2001 Apr;101(4):305-10. 
392. Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev. 2008 Sep 
15;22(18):2454-72. 
393. Jeong SY, Seol DW. The role of mitochondria in apoptosis. BMB Rep. 2008 Jan 
31;41(1):11-22. 
394. Fiskum G. Mitochondrial participation in ischemic and traumatic neural cell death. J 
Neurotrauma. 2000 Oct;17(10):843-55. 
395. Brustovetsky N, Brustovetsky T, Jemmerson R, Dubinsky JM. Calcium-induced 
cytochrome c release from CNS mitochondria is associated with the permeability transition and 
rupture of the outer membrane. J Neurochem. 2002 Jan;80(2):207-18. 
396. Deniaud A, Sharaf el dein O, Maillier E, Poncet D, Kroemer G, Lemaire C, et al. 
Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial 
outer membrane permeabilization and apoptosis. Oncogene. 2008 Jan 10;27(3):285-99. 
397. Reddy PV, Rao KV, Norenberg MD. The mitochondrial permeability transition, and 
oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and 
astrocytes. Lab Invest. 2008 Aug;88(8):816-30. 
398. Buki A, Okonkwo DO, Wang KK, Povlishock JT. Cytochrome c release and caspase 
activation in traumatic axonal injury. J Neurosci. 2000 Apr 15;20(8):2825-34. 
399. Lin Z, Zhao D, Yang L. Interaction between misfolded PrP and the ubiquitin-proteasome 
system in prion-mediated neurodegeneration. Acta Biochim Biophys Sin (Shanghai). 2013 
Jun;45(6):477-84. 
400. Deriziotis P, Tabrizi SJ. Prions and the proteasome. Biochim Biophys Acta. 2008 
Dec;1782(12):713-22. 
401. Allocati N, Di Ilio C, De Laurenzi V. p63/p73 in the control of cell cycle and cell death. Exp 
Cell Res. 2012 Jul 1;318(11):1285-90. 
402. Ables JL, Breunig JJ, Eisch AJ, Rakic P. Not(ch) just development: Notch signalling in the 
adult brain. Nat Rev Neurosci. 2011 May;12(5):269-83. 
403. De Strooper B, Iwatsubo T, Wolfe MS. Presenilins and gamma-secretase: structure, 
function, and role in Alzheimer Disease. Cold Spring Harb Perspect Med. 2012 Jan;2(1):a006304. 
404. Nedelsky NB, Todd PK, Taylor JP. Autophagy and the ubiquitin-proteasome system: 
collaborators in neuroprotection. Biochim Biophys Acta. 2008 Dec;1782(12):691-9. 
405. Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory 
pathway. Science. 1999 Dec 3;286(5446):1882-8. 
406. Adams J. The proteasome: structure, function, and role in the cell. Cancer Treat Rev. 
2003 May;29 Suppl 1:3-9. 
407. Bedford L, Paine S, Sheppard PW, Mayer RJ, Roelofs J. Assembly, structure, and function 
of the 26S proteasome. Trends Cell Biol. 2010 Jul;20(7):391-401. 
408. Li J, Buchner J. Structure, function and regulation of the hsp90 machinery. Biomed J. 
2013 May-Jun;36(3):106-17. 



335 

 

409. Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. The 90-kDa molecular chaperone 
family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther. 
1998 Aug;79(2):129-68. 
410. Johnson JL, Craig EA. Protein folding in vivo: unraveling complex pathways. Cell. 1997 Jul 
25;90(2):201-4. 
411. Okemoto-Nakamura Y, Yamakawa Y, Hanada K, Tanaka K, Miura M, Tanida I, et al. 
Synthetic fibril peptide promotes clearance of scrapie prion protein by lysosomal degradation. 
Microbiol Immunol. 2008 Jul;52(7):357-65. 
412. Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. 
Trends Cell Biol. 1998 Oct;8(10):397-403. 
413. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL. Inhibition of 
proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. 
Science. 1995 May 5;268(5211):726-31. 
414. Dick LR, Cruikshank AA, Destree AT, Grenier L, McCormack TA, Melandri FD, et al. 
Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol 
Chem. 1997 Jan 3;272(1):182-8. 
415. Turk V, Turk B, Turk D. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 
2001 Sep 3;20(17):4629-33. 
416. Luhr KM, Nordstrom EK, Low P, Kristensson K. Cathepsin B and L are involved in 
degradation of prions in GT1-1 neuronal cells. Neuroreport. 2004 Jul 19;15(10):1663-7. 
417. Xiang W, Windl O, Wunsch G, Dugas M, Kohlmann A, Dierkes N, et al. Identification of 
differentially expressed genes in scrapie-infected mouse brains by using global gene expression 
technology. J Virol. 2004 Oct;78(20):11051-60. 
418. Zhang Y, Spiess E, Groschup MH, Burkle A. Up-regulation of cathepsin B and cathepsin L 
activities in scrapie-infected mouse Neuro2a cells. J Gen Virol. 2003 Aug;84(Pt 8):2279-83. 
419. Baker CA, Manuelidis L. Unique inflammatory RNA profiles of microglia in Creutzfeldt-
Jakob disease. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):675-9. 
420. Combarros O, Alvarez-Arcaya A, Sanchez-Guerra M, Infante J, Berciano J. Candidate gene 
association studies in sporadic Alzheimer's disease. Dement Geriatr Cogn Disord. 2002;14(1):41-
54. 
421. Dandoy-Dron F, Guillo F, Benboudjema L, Deslys JP, Lasmezas C, Dormont D, et al. Gene 
expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of 
increased levels of seven other mRNA transcripts. J Biol Chem. 1998 Mar 27;273(13):7691-7. 
422. Diedrich JF, Minnigan H, Carp RI, Whitaker JN, Race R, Frey W, 2nd, et al. 
Neuropathological changes in scrapie and Alzheimer's disease are associated with increased 
expression of apolipoprotein E and cathepsin D in astrocytes. J Virol. 1991 Sep;65(9):4759-68. 
423. Nakanishi H. Neuronal and microglial cathepsins in aging and age-related diseases. 
Ageing Res Rev. 2003 Oct;2(4):367-81. 
424. Vidal E, Tortosa R, Marco P, Fondevila D, Rabanal RM, Torres JM, et al. Late stage 
cathepsin C, CXCL13 and Ki-67 overexpression correlate with regional neuropathology in a BSE 
transgenic murine model. J Comp Pathol. 2013 Jan;148(1):22-32. 
425. Cavasotto CN. Homology models in docking and high-throughput docking. Curr Top Med 
Chem. 2011;11(12):1528-34. 
426. Hui-fang L, Qing S, Jian Z, Wei F. Evaluation of various inverse docking schemes in 
multiple targets identification. J Mol Graph Model. 2010 Nov;29(3):326-30. 
427. Santiago DN, Pevzner Y, Durand AA, Tran M, Scheerer RR, Daniel K, et al. Virtual target 
screening: validation using kinase inhibitors. J Chem Inf Model. 2012 Aug 27;52(8):2192-203. 
428. Bellingham SA, Coleman LA, Masters CL, Camakaris J, Hill AF. Regulation of prion gene 
expression by transcription factors SP1 and metal transcription factor-1. J Biol Chem. 2009 Jan 
9;284(2):1291-301. 



336 

 

429. Santos CR, Martinho A, Quintela T, Goncalves I. Neuroprotective and neuroregenerative 
properties of metallothioneins. IUBMB Life. 2012 Feb;64(2):126-35. 
430. LaRochelle O, Gagne V, Charron J, Soh JW, Seguin C. Phosphorylation is involved in the 
activation of metal-regulatory transcription factor 1 in response to metal ions. J Biol Chem. 2001 
Nov 9;276(45):41879-88. 
431. Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: the multipurpose protein. Cell 
Mol Life Sci. 2002 Apr;59(4):627-47. 
432. Vasak M, Meloni G. Chemistry and biology of mammalian metallothioneins. J Biol Inorg 
Chem. 2011 Oct;16(7):1067-78. 
433. Rachidi W, Chimienti F, Aouffen M, Senator A, Guiraud P, Seve M, et al. Prion protein 
protects against zinc-mediated cytotoxicity by modifying intracellular exchangeable zinc and 
inducing metallothionein expression. J Trace Elem Med Biol. 2009;23(3):214-23. 
434. Hanlon J, Monks E, Hughes C, Weavers E, Rogers M. Metallothionein in bovine 
spongiform encephalopathy. J Comp Pathol. 2002 Nov;127(4):280-9. 
435. Tortosa R, Vidal E, Costa C, Alamillo E, Torres JM, Ferrer I, et al. Stress response in the 
central nervous system of a transgenic mouse model of bovine spongiform encephalopathy. Vet 
J. 2008 Oct;178(1):126-9. 
436. Kawashima T, Doh-ura K, Torisu M, Uchida Y, Furuta A, Iwaki T. Differential expression of 
metallothioneins in human prion diseases. Dement Geriatr Cogn Disord. 2000 Sep-Oct;11(5):251-
62. 
437. Duguid JR, Rohwer RG, Seed B. Isolation of cDNAs of scrapie-modulated RNAs by 
subtractive hybridization of a cDNA library. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5738-42. 
438. Vidal E, Tortosa R, Marquez M, Serafin A, Hidalgo J, Pumarola M. Infection of 
metallothionein 1+2 knockout mice with Rocky Mountain Laboratory scrapie. Brain Res. 2008 
Feb 27;1196:140-50. 
439. Hozumi I. Roles and therapeutic potential of metallothioneins in neurodegenerative 
diseases. Curr Pharm Biotechnol. 2013 Mar;14(4):408-13. 
440. Jeong JK, Park SY. Transcriptional regulation of specific protein 1 (SP1) by hypoxia-
inducible factor 1 alpha (HIF-1alpha) leads to PRNP expression and neuroprotection from toxic 
prion peptide. Biochem Biophys Res Commun. 2012 Dec 7;429(1-2):93-8. 
441. Newton AC. Protein kinase C: structure, function, and regulation. J Biol Chem. 1995 Dec 
1;270(48):28495-8. 
442. Sefton BM. The lck tyrosine protein kinase. Oncogene. 1991 May;6(5):683-6. 
443. Straus DB, Weiss A. Genetic evidence for the involvement of the lck tyrosine kinase in 
signal transduction through the T cell antigen receptor. Cell. 1992 Aug 21;70(4):585-93. 
444. Anderson SJ, Levin SD, Perlmutter RM. Involvement of the protein tyrosine kinase p56lck 
in T cell signaling and thymocyte development. Adv Immunol. 1994;56:151-78. 
445. Isakov N, Biesinger B. Lck protein tyrosine kinase is a key regulator of T-cell activation 
and a target for signal intervention by Herpesvirus saimiri and other viral gene products. Eur J 
Biochem. 2000 Jun;267(12):3413-21. 
446. Chakraborty G, Rangaswami H, Jain S, Kundu GC. Hypoxia regulates cross-talk between 
Syk and Lck leading to breast cancer progression and angiogenesis. J Biol Chem. 2006 Apr 
21;281(16):11322-31. 
447. Raeber AJ, Sailer A, Hegyi I, Klein MA, Rulicke T, Fischer M, et al. Ectopic expression of 
prion protein (PrP) in T lymphocytes or hepatocytes of PrP knockout mice is insufficient to 
sustain prion replication. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3987-92. 
448. Liu Y, Witte S, Liu YC, Doyle M, Elly C, Altman A. Regulation of protein kinase Ctheta 
function during T cell activation by Lck-mediated tyrosine phosphorylation. J Biol Chem. 2000 
Feb 4;275(5):3603-9. 
449. Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis: the 
story so far. Ann N Y Acad Sci. 2003 Dec;1010:186-94. 



337 

 

450. Momoi T. Caspases involved in ER stress-mediated cell death. J Chem Neuroanat. 2004 
Sep;28(1-2):101-5. 
451. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, et al. Caspase-12 mediates 
endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000 Jan 
6;403(6765):98-103. 
452. Viana RJ, Nunes AF, Rodrigues CM. Endoplasmic reticulum enrollment in Alzheimer's 
disease. Mol Neurobiol. 2012 Oct;46(2):522-34. 
453. Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B, et al. Proapoptotic BAX 
and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. 
Science. 2006 Apr 28;312(5773):572-6. 
454. Hitomi J, Katayama T, Taniguchi M, Honda A, Imaizumi K, Tohyama M. Apoptosis 
induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. 
Neurosci Lett. 2004 Mar 4;357(2):127-30. 
455. Mehmet H. Caspases find a new place to hide. Nature. 2000 Jan 6;403(6765):29-30. 
456. Steele AD, Hetz C, Yi CH, Jackson WS, Borkowski AW, Yuan J, et al. Prion pathogenesis is 
independent of caspase-12. Prion. 2007 Oct-Dec;1(4):243-7. 
457. Lee W, Kim DH, Boo JH, Kim YH, Park IS, Mook-Jung I. ER stress-induced caspase-12 
activation is inhibited by PKC in neuronal cells. Apoptosis. 2005 Mar;10(2):407-15. 
458. Denning MF, Wang Y, Tibudan S, Alkan S, Nickoloff BJ, Qin JZ. Caspase activation and 
disruption of mitochondrial membrane potential during UV radiation-induced apoptosis of 
human keratinocytes requires activation of protein kinase C. Cell Death Differ. 2002 Jan;9(1):40-
52. 
459. Pocchiari M, Schmittinger S, Masullo C. Amphotericin B delays the incubation period of 
scrapie in intracerebrally inoculated hamsters. J Gen Virol. 1987 Jan;68 ( Pt 1):219-23. 
460. Geschwind MD, Kuo AL, Wong KS, Haman A, Devereux G, Raudabaugh BJ, et al. 
Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease. Neurology. 2013 Dec 
3;81(23):2015-23. 
461. Harper E. Collagenases. Annu Rev Biochem. 1980;49:1063-78. 
462. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: 
problems and promises. Mol Pharm. 2007 Nov-Dec;4(6):807-18. 
463. Indovina P, Collini M, Chirico G, Santini MT. Three-dimensional cell organization leads to 
almost immediate HRE activity as demonstrated by molecular imaging of MG-63 spheroids using 
two-photon excitation microscopy. FEBS Lett. 2007 Feb 20;581(4):719-26. 
464. le Roux L, Volgin A, Maxwell D, Ishihara K, Gelovani J, Schellingerhout D. Optimizing 
imaging of three-dimensional multicellular tumor spheroids with fluorescent reporter proteins 
using confocal microscopy. Mol Imaging. 2008 Sep-Oct;7(5):214-21. 
465. Sheppard CRJT, P. Effects of specimen refractive index on confocal imaging. J Microsc. 
1997;185(3):366-74. 
466. Gandhi NS, Mancera RL. Heparin/heparan sulphate-based drugs. Drug Discov Today. 
2010 Dec;15(23-24):1058-69. 
467. Demaimay R, Adjou K, Lasmezas C, Lazarini F, Cherifi K, Seman M, et al. Pharmacological 
studies of a new derivative of amphotericin B, MS-8209, in mouse and hamster scrapie. J Gen 
Virol. 1994 Sep;75 ( Pt 9):2499-503. 
468. Morshedi D, Rezaei-Ghaleh N, Ebrahim-Habibi A, Ahmadian S, Nemat-Gorgani M. 
Inhibition of amyloid fibrillation of lysozyme by indole derivatives--possible mechanism of action. 
FEBS J. 2007 Dec;274(24):6415-25. 
469. Cohen T, Frydman-Marom A, Rechter M, Gazit E. Inhibition of amyloid fibril formation 
and cytotoxicity by hydroxyindole derivatives. Biochemistry. 2006 Apr 18;45(15):4727-35. 
470. Bendheim PE, Poeggeler B, Neria E, Ziv V, Pappolla MA, Chain DG. Development of 
indole-3-propionic acid (OXIGON) for Alzheimer's disease. J Mol Neurosci. 2002 Aug-Oct;19(1-
2):213-7. 



338 

 

471. Torok M, Abid M, Mhadgut SC, Torok B. Organofluorine inhibitors of amyloid 
fibrillogenesis. Biochemistry. 2006 Apr 25;45(16):5377-83. 
472. Goold R, McKinnon C, Tabrizi SJ. Prion degradation pathways: Potential for therapeutic 
intervention. Mol Cell Neurosci. 2015 Jan 10. 
473. Luhr KM, Nordstrom EK, Low P, Ljunggren HG, Taraboulos A, Kristensson K. Scrapie 
protein degradation by cysteine proteases in CD11c+ dendritic cells and GT1-1 neuronal cells. J 
Virol. 2004 May;78(9):4776-82. 
474. Scotter EL, Vance C, Nishimura AL, Lee YB, Chen HJ, Urwin H, et al. Differential roles of 
the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated 
TDP-43 species. J Cell Sci. 2014 Mar 15;127(Pt 6):1263-78. 
475. Kang SC, Brown DR, Whiteman M, Li R, Pan T, Perry G, et al. Prion protein is 
ubiquitinated after developing protease resistance in the brains of scrapie-infected mice. J 
Pathol. 2004 May;203(1):603-8. 
476. Kovacs GG, Preusser M, Strohschneider M, Budka H. Subcellular localization of disease-
associated prion protein in the human brain. Am J Pathol. 2005 Jan;166(1):287-94. 
477. Chung E, Prelli F, Dealler S, Lee WS, Chang YT, Wisniewski T. Styryl-based and tricyclic 
compounds as potential anti-prion agents. PLoS One. 2011;6(9):e24844. 
478. Meyer zu Horste G, Mausberg AK, Korth C, Stuve O, Kieseier BC. Quinpramine--a 
promising compound for treating immune-mediated demyelination of the nervous system. Drug 
News Perspect. 2010 Jun;23(5):287-94. 
479. Zhou X, Bi H, Wong J, Shimoji M, Wang Y, Yuan J, et al. Alkylating antitumor drug 
mechlorethamine conceals a structured PrP domain and inhibits in vitro prion amplification. J 
Toxicol Environ Health A. 2011;74(22-24):1493-503. 
480. Karapetyan YE, Sferrazza GF, Zhou M, Ottenberg G, Spicer T, Chase P, et al. Unique drug 
screening approach for prion diseases identifies tacrolimus and astemizole as antiprion agents. 
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):7044-9. 
481. Mukherjee A, Morales-Scheihing D, Gonzalez-Romero D, Green K, Taglialatela G, Soto C. 
Calcineurin inhibition at the clinical phase of prion disease reduces neurodegeneration, improves 
behavioral alterations and increases animal survival. PLoS Pathog. 2010;6(10):e1001138. 
482. Wagner J, Ryazanov S, Leonov A, Levin J, Shi S, Schmidt F, et al. Anle138b: a novel 
oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion 
and Parkinson's disease. Acta Neuropathol. 2013 Jun;125(6):795-813. 
483. Imberdis T, Ayrolles-Torro A, Verdier JM, Perrier V. Thienyl pyrimidine derivatives with 
PrP(Sc) oligomer-inducing activity are a promising tool to study prions. Curr Top Med Chem. 
2013;13(19):2477-83. 
484. Relano-Gines A, Lehmann S, Bencsik A, Herva ME, Torres JM, Crozet CA. Stem cell 
therapy extends incubation and survival time in prion-infected mice in a time window-
dependant manner. J Infect Dis. 2011 Oct 1;204(7):1038-45. 
485. Muyrers J, Klingenstein R, Stitz L, Korth C. Structure-activity relationship of tocopherol 
derivatives suggesting a novel non-antioxidant mechanism in antiprion potency. Neurosci Lett. 
2010 Jan 18;469(1):122-6. 
486. Drisko JA. The use of antioxidants in transmissible spongiform encephalopathies: a case 
report. J Am Coll Nutr. 2002 Feb;21(1):22-5. 
487. Dirikoc S, Priola SA, Marella M, Zsurger N, Chabry J. Nonpsychoactive cannabidiol 
prevents prion accumulation and protects neurons against prion toxicity. J Neurosci. 2007 Sep 
5;27(36):9537-44. 
488. Otto M, Cepek L, Ratzka P, Doehlinger S, Boekhoff I, Wiltfang J, et al. Efficacy of flupirtine 
on cognitive function in patients with CJD: A double-blind study. Neurology. 2004 Mar 
9;62(5):714-8. 
489. Berry DB, Lu D, Geva M, Watts JC, Bhardwaj S, Oehler A, et al. Drug resistance 
confounding prion therapeutics. Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):E4160-9. 



339 

 

490. Ghaemmaghami S, Russo M, Renslo AR. Successes and challenges in phenotype-based 
lead discovery for prion diseases. J Med Chem. 2014 Aug 28;57(16):6919-29. 
491. Lu D, Giles K, Li Z, Rao S, Dolghih E, Gever JR, et al. Biaryl amides and hydrazones as 
therapeutics for prion disease in transgenic mice. J Pharmacol Exp Ther. 2013 Nov;347(2):325-
38. 
492. Leidel F, Eiden M, Geissen M, Hirschberger T, Tavan P, Giese A, et al. Piperazine 
derivatives inhibit PrP/PrP(res) propagation in vitro and in vivo. Biochem Biophys Res Commun. 
2014 Feb 28;445(1):23-9. 
493. Leidel F, Eiden M, Geissen M, Kretzschmar HA, Giese A, Hirschberger T, et al. 
Diphenylpyrazole-derived compounds increase survival time of mice after prion infection. 
Antimicrob Agents Chemother. 2011 Oct;55(10):4774-81. 
494. Nguyen P, Oumata N, Soubigou F, Evrard J, Desban N, Lemoine P, et al. Evaluation of the 
antiprion activity of 6-aminophenanthridines and related heterocycles. Eur J Med Chem. 2014 Jul 
23;82:363-71. 
495. Ali S, van Mil HG, Richardson MK. Large-scale assessment of the zebrafish embryo as a 
possible predictive model in toxicity testing. PLoS One. 2011;6(6):e21076. 
496. Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 2005 
Jan;4(1):35-44. 
497. Malaga-Trillo E, Salta E, Figueras A, Panagiotidis C, Sklaviadis T. Fish models in prion 
biology: underwater issues. Biochim Biophys Acta. 2011 Mar;1812(3):402-14. 
498. Halliez S, Passet B, Martin-Lanneree S, Hernandez-Rapp J, Laude H, Mouillet-Richard S, 
et al. To develop with or without the prion protein. Front Cell Dev Biol. 2014;2:58. 
499. Cotto E, Andre M, Forgue J, Fleury HJ, Babin PJ. Molecular characterization, phylogenetic 
relationships, and developmental expression patterns of prion genes in zebrafish (Danio rerio). 
FEBS J. 2005 Jan;272(2):500-13. 
500. Gibbs CJ, Jr., Gajdusek DC, Asher DM, Alpers MP, Beck E, Daniel PM, et al. Creutzfeldt-
Jakob disease (spongiform encephalopathy): transmission to the chimpanzee. Science. 1968 Jul 
26;161(3839):388-9. 
501. Wadsworth JD, Asante EA, Collinge J. Review: contribution of transgenic models to 
understanding human prion disease. Neuropathol Appl Neurobiol. 2010 Dec;36(7):576-97. 
502. Watts JC, Prusiner SB. Mouse models for studying the formation and propagation of 
prions. J Biol Chem. 2014 Jul 18;289(29):19841-9. 
503. Aguzzi A, Brandner S, Marino S, Steinbach JP. Transgenic and knockout mice in the study 
of neurodegenerative diseases. J Mol Med (Berl). 1996 Mar;74(3):111-26. 
504. Jankowsky JL, Savonenko A, Schilling G, Wang J, Xu G, Borchelt DR. Transgenic mouse 
models of neurodegenerative disease: opportunities for therapeutic development. Curr Neurol 
Neurosci Rep. 2002 Sep;2(5):457-64. 
505. Watts JC, Giles K, Patel S, Oehler A, DeArmond SJ, Prusiner SB. Evidence that bank vole 
PrP is a universal acceptor for prions. PLoS Pathog. 2014 Apr;10(4):e1003990. 
 
 


