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Abstract 
Successful germination is a major determinant of crop yields and survival of 

plants in the natural environment. Our knowledge of molecular factors 

important to seed quality is far from complete, yet such understanding is vital 

in the endeavour of mitigating the detrimental effects of extended storage on 

seed vigour and viability. Genome integrity is crucial for cellular survival and 

transmission of genetic information. A number of pre-genomic era studies 

identified strong correlations between DNA damage accumulated in the 

quiescent seed and seed ageing. If unrepaired, DNA damage results in delayed 

growth, mutagenesis and cell death. Damage products incurred by DNA are 

remarkably heterologous and plants have evolved multiple pathways to 

facilitate the repair of specific damage products. Through the isolation and 

analysis of knockout Arabidopsis mutants, this work identifies and 

characterises DNA repair genes whose action is required during seed 

imbibition. These studies examined the importance of four major DNA repair 

pathways in germination and seed quality. Mutants deficient in non-

homologues end joining (KU70 and KU80), homologues recombination (XRCC2) 

and base excision repair (ARP) DNA repair pathways were all found to be 

hypersensitive to accelerated ageing treatment but those deficient in 

nucleotide excision repair (ERCC1) were not. Therefore this work establishes 

roles for multiple DNA repair pathways in seed longevity. Comparative analysis 

also defined non-homologues end joining as the most important DNA repair 

pathway to seed quality. LIG6 encodes a unique plant specific DNA ligase with 

roles in seed longevity and implicated in repair of DSBs but remains largely 

uncharacterised to date. Here studies using extra-chromosomal recombination 

assays demonstrate LIG6 functions in the promotion of recombination activities 

in Arabidopsis protoplasts. Further studies demonstrate the involvement of 

LIG6 in the maintenance of root meristem genome stability. Collectively, this 

work provides an increased understanding of the early events central to the 

germination process and seed longevity.  
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1   Introduction 

The success of seed germination and the establishment of a robust seedling are 

determining features for the propagation of plant species, of both ecological 

and economic importance. Germination is a critical stage in the plant life cycle 

due to the high susceptibility of the seedling to stresses including low 

temperature, high salt or acid soils, infection and physical damage. Rapid 

seedling establishment is of paramount importance as it underpins the 

propagation of high quality mature plants. 

1.1    Seed Biology 

A seed is an embryonic plant enclosed in a protective outer covering called the 

testa (seed coat). It is a characteristic of spermatophytes i.e. seed producing 

plants and the formation of the seed completes the process of reproduction in 

seed plants. This starts with the development of flowers and pollination and 

ends with the embryo developed from the zygote encased within a seed coat 

formed from the integuments of the ovule. Spermatophytes can be classified 

into two sub-groups which are known as angiosperm and gymnosperm 

(flowering plants and coniferous plants (and related clades) respectively).   

1.1.1   Classification of seeds 

Seeds are classified into three categories, orthodox, recalcitrant and 

intermediate, based on their storage behaviour and desiccation tolerance 

(Roberts, 1973; Ellis et al., 1990). Orthodox seeds withstand desiccation during 

maturation on the mother plant and retain their germination potential for 

extended periods of dry storage and chilling. Recalcitrant seeds cannot survive 

prolonged periods of drying or chilling and must remain hydrated during 

storage before germination. Intermediate seeds fall between the two previously 

described categories. Orthodox seeds are particularly important agromonically 

and consist mostly of annual and biennial crops such as the cereals and grain 

legumes, as well as agroforestry. 
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1.1.2  Orthodox seeds and Arabidopsis 

From an evolutionary perspective, seed desiccation tolerance correlates with 

growth habitats in drier environments along with seasonal climates where 

seeds enable survival over the winter period. Orthodox seeds are commonly 

used in agriculture and this unique property of survival during dry storage 

allows the farmer flexibility over when seeds are sown. Preservation of 

embryonic viability in the dry state can extend over centuries in some species 

(Shen-Miller et al., 2002). This is associated with the existence of specific 

mechanisms to maintain the state of metabolic quiescence in mature dry seeds 

whilst preserving the integrity of cellular structures until cell metabolism is 

activated during germination. 

Mature dry seeds of most species require a period of dry storage known as 

after-ripening to release them from dormancy, which evolved as a mechanism 

to prevent germination whist still on the mother plant (Iglesias-Fernández et 

al., 2011). Dormancy is a physiological state in which fully mature seeds that 

have taken up moisture and are metabolically active will not germinate under 

conditions of humidity, light, and temperature that are favourable to their 

germination. Seeds must first lose dormancy and meet these permissive 

conditions before germinating. Consequently it is thought seed dormancy 

evolved to postpone germination during unfavourable seasons (section 1.1.2.2). 

This research primarily focuses on the orthodox Brassicaceae, Arabidopsis 

thaliana seed (hitherto referred to as Arabidopsis), [figure 1-1]. Arabidopsis is a 

small flowering plant (usually growing to 20–25 cm tall) native to Europe, Asia, 

and north-western Africa. It also appears to be native in tropical afroalpine 

ecosystems. It has a relatively small genome of approximately 135 megabase 

pairs (Mbp) and can complete its entire lifecycle in six weeks. The central stem 

that produces flowers grows after approximately three weeks, and the flowers 

naturally self-pollinate. Siliques are produced after fertilisation and are around 

5–20 mm long, containing 20–30 seeds each. One Arabidopsis plant can produce 

several thousand seeds. 
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Figure 1-1 Structure of a physiologically mature Arabidopsis 
seed  

A diagram highlighting key structural components of a mature Arabidopsis seed that has yet to 
undergo desiccation (section 1.1.2.1). Image adapted from (Junker et al., 2012).  The testa, or 
seed coat, is the outer protective layer of the seed, developed from the integuments of the 
ovule, diploid maternal tissue. The embryo consists of diploid cells as a direct result of 
fertilization. The mature embryo consists of the cotyledons (seed leaves), hypocotyl (stem-like 
embryonic axis below the cotyledons) and the radicle (embryonic root). Arabidopsis is classified 
as a dicotyledon due to the presence of two embryonic leaves. In dicots such as Arabidopsis, the 
energy rich endosperm is immediately absorbed by the enlarged cotyledons and is the primary 
food source for the Arabidopsis embryo during germination. Endosperm cells are triploid (3n) 
with two thirds of an endosperm cell’s genome being of maternal origin. The micropyle is a 
porous end in the endosperm and testa that serves to let water through during imbibition.  
During germination the Arabidopsis testa ruptures at the micropylar end and the radicle 
protrudes through the micropylar endosperm. The micropyle also plays an important role in 
fertilisation of the ovule as it is through here which the pollen tube usually passes.  

 

 

The morphology of the Arabidopsis seed is presented in [Figure 1-1]. The 

endosperm is a tissue surrounding the seed embryo. The amount of endosperm 

in mature seeds is highly species-dependent and varies from an abundant 

endosperm layer, as is the case in Nicotiana tabaccum (tobacco), to a single 

layer, as shown in the diagram for Arabidopsis thaliana. In non-endospermic 

seeds such as Pisum sativum (pea), the cotyledons serve as sole food storage 

organs during germination. In angiosperms such as Arabidopsis the double 
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fertilization results in formation of the diploid embryo and the triploid 

endosperm. The embryo is enclosed by the testa, which provides a protective 

physical and mechanistic barrier between the embryo and outside the seed. 

1.1.2.1 Seed maturation, desiccation, storage and potential 

damage 

It is important to understand the molecular processes that are associated with 

the different stages of an orthodox seed’s life cycle, as well as the mechanisms 

utilised to ensure protection against any sustained damage. The requirement 

for these protective mechanisms is exemplified during desiccation and 

imbibition. The extreme dehydration and rapid rehydration associated with 

maturation and imbibition respectively, are associated with high levels of 

oxidative damage to molecular structures and macromolecules (Bailly, 2004; 

Kranner et al., 2010a; Waterworth et al. 2011). Furthermore during dry 

storage, seeds remain quiescent with low metabolic activity. Low levels of 

molecular damage can accumulate during this period, and over time this can 

lead to a delay in germination (lower vigour) and a decrease in seed viability 

(Kranner et al., 2010a; Waterworth et al., 2015). 

Further to the oxidative damage that can occur during seed desiccation, low 

moisture content can cause cellular damage due to protein unfolding and 

membrane disturbance. Sugars, late embryogenesis abundant proteins, and 

heat shock proteins play important roles in preventing this damage in seeds 

(Hoekstra et al., 2001). 

During the maturation phase, seeds accumulate storage reserves and become 

desiccation-tolerant and dormant (section 1.1.2.2) whilst they develop on the 

mother plant, which is initiated after the embryo has fully developed (Finch-

Savage and Leubner-Metzger, 2006). At least four central regulators are known 

to tightly control seed maturation in Arabidopsis: ABSCISIC ACID-INSENSITIVE 3 

(ABI3),  LEAFY COTYLEDON 1 (LEC1),  LEAFY COTYLEDON 2 (LEC2), and FUSCA 

3 (FUS3) (Santos-Mendoza et al., 2008). When any one of these four genes are 

knocked out, common phenotypes are observed including reduced expression 

of seed storage proteins (Gutierrez et al., 2007) and decreased dormancy at 
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maturation (Raz et al., 2001). Other factors have been identified that have more 

specific roles in one of the maturation processes including two genes required 

for seed dormancy establishment: DELAY OF GERMINATION 1 (DOG1) and 

HISTONE MONOUBIQUITINATION 1 (HUB1) (Bentsink et al., 2006; Liu et al., 

2007) . 

During Arabidopsis seed development different programs of gene expression 

have been identified, comprising distinct classes that are co-ordinately 

regulated. The maturation class, expressed at early and mid-maturation phases, 

includes major seed storage protein (SSP) genes (including 2S albumins and 

12S globulins). The late embryogenesis abundant (LEA) class, which includes 

primarily genes involved in the acquisition of desiccation tolerance, is 

expressed during the later stages of seed maturation (Holdsworth et al., 2008) 

Abscisic acid (ABA) is an important positive regulator of both the induction of 

dormancy during seed maturation and the maintenance of the dormant state in 

imbibed seeds following shedding (Finch-Savage and Leubner-Metzger, 2006). 

Deficiency of ABA during seed development is associated with the absence of 

primary dormancy in the mature seed, whereas the over-expression of ABA 

biosynthesis genes can increase seed ABA content and enhance seed dormancy 

or delay germination (Nambara and Marion-Poll, 2003). Gibberellins 

(Gibberellic acids, GA) are required for plant embryogenesis however in later 

phases of embryogenesis their synthesis must be down-regulated as dormancy 

is initiated. Cross-talk with other plant hormone pathways, such as ABA, 

ethylene or auxin are involved in this regulation of GA biosynthesis, but as yet 

these interactions are not fully understood (Holdsworth et al., 2008). 

The level of dormancy increases during maturation and reaches a maximum in 

harvest-ripe seeds.  During subsequent dry storage of the seeds, dormancy 

status reduces until seeds are able to complete germination when imbibed 

under favourable conditions; this process is known as after-ripening. The speed 

of after-ripening can vary depending on environmental conditions during seed 

maturation, seed storage and germination (Holdsworth et al., 2008). The 

molecular mechanisms that control after-ripening are not well understood, 
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however several recent studies have provided evidence of regulation at various 

levels including RNA transcription. Transcripts of all ontological categories 

were observed; however, the 2–3% (500 genes) most highly expressed genes 

encode functions mainly associated with metabolism, protein synthesis and 

degradation. The ABA response element (ABRE) was over-represented in the 

promoters of genes highly expressed in the dry seed transcriptome 

(Nakabayashi et al., 2005). Whether or not seeds are capable of transcribing 

DNA and synthesising proteins in the dry state, for example, during prolonged 

after-ripening, remains to be demonstrated unequivocally. However work in 

sunflower has demonstrated levels of a subset of transcripts can differentiate 

between dormant and after ripened seeds (Meimoun et al., 2014). Transient, 

low-level transcription and translation may occur in air-dry, low-hydrated 

seeds, with more than 12,000 mRNA species being present in dry seeds of 

Arabidopsis. 

1.1.2.2 Seed dormancy and hormonal control of 

germination 

Plant hormones have controlling roles in the regulation of seed germination 

and dormancy. In turn, the genes encoding proteins that modulate the 

metabolism of these signalling molecules, in particular those involved in the 

biosynthesis and deactivation of GA and ABA, are major genetic regulators of 

these events. 

Removal or deactivation of ABA is also important as interactions between this 

hormone and GA play a regulatory role, inhibiting germination progression. A 

restraint on the completion of germination in seeds of some species is imposed 

by the surrounding structures, e.g. the endosperm, and thus there is a 

requirement either for it to be enzymatically weakened to allow the radicle to 

emerge, or for sufficient force to be generated within the embryo axis to 

physically break through, or both (Nonogaki et al., 2010). The endogenous ABA 

contents of non-dormant and dormant seeds rapidly decline upon imbibition 

during the early phase of germination (Preston et al., 2009). However, in 

dormant seeds this decrease is stopped and de novo ABA synthesis in the 
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imbibed state causes higher ABA contents, which are required for dormancy 

maintenance and for inhibiting germination (Nambara et al., 2010). Decreased 

levels of ABA in a seed during imbibition and early phase II is a major 

prerequisite for the completion of germination. ABA treatment of Arabidopsis 

seeds which have been after ripened showed that ABA does not affect the 

kinetics of testa rupture, but rather inhibits endosperm weakening and rupture 

(Müller et al., 2006). Changes in hormone contents during the early 

germination phase are also evident in Arabidopsis seeds for jasmonic acid, 

where content decreases, and indole-3-acetic acid (IAA) where content 

increases (Preston et al., 2009). 

The germination-inhibiting effect of ABA is counteracted by gibberellins (GAs) 

and by ethylene (Holdsworth et al., 2008). Ethylene has important roles during 

the late phase of germination and counteracts the ABA inhibition by interfering 

with ABA signalling, doing so without affecting ABA content (Linkies et al., 

2010).  In contrast, GAs are important during the early and the late phase of 

germination and counteracts ABA inhibition. GA biosynthesis localises to the 

radicle, hypocotyl, and micropylar endosperm during germination. Due to the 

rapid ABA degradation, the GA/ABA ratio increases approximately three-fold 

during early germination and around ten-fold during late germination (Ogawa 

et al., 2003). 

1.1.3 Physical, morphological and biochemical changes 

associated with germination and radicle emergence 

The success of seed germination and the establishment of normal seedlings are 

determining features for the propagation of a plant species as well as crop 

yields. Germination and the period shortly after (termed seedling 

establishment), is the most critical stage of a plant’s lifecycle due to the 

vulnerability of germinating seedlings. This includes mechanical injury, disease 

and environmental stresses. Rapid, uniform germination correlates with strong 

healthy seedlings which subsequently rapidly establish themselves (Rajjou et 

al., 2012). Germination performance consists of two qualities; viability (the 

maximum germination capacity of a seed lot) and vigour (the rate and 
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uniformity at which a seed lot will germinate). By definition, the process of 

germination in orthodox seeds encompasses events in the embryo starts with 

imbibition, the rapid uptake of water by a dry quiescent seed and ends with 

radicle protrusion through the seed coat (Bewley and Black, 1994). Seed lots 

with good germination performance are of great importance in the agronomical 

world. In seeds under conditions of stress such as high salinity; delayed onset, 

reduced rate, and increased dispersion of germination events results. This leads 

to reductions in plant growth and final crop yield, something exacerbated in 

seed lots with poor germination performance (Powell and Matthews, 2012; 

Rajjou et al., 2012; Waterworth et al., 2015). 

Germination is a complex process during which the seed must quickly recover 

physically from maturation drying, resume a sustained intensity of metabolism, 

complete essential cellular events to allow for the embryo to emerge and 

prepare for subsequent seedling growth. The transition from a dry seed to a 

seedling is tri-phasic according to the uptake of water [Figure 1-2]. 

Early on following the start of Phase I (imbibition), there is re-establishment of 

metabolism; restitution of the chemical and structural integrity of cells requires 

the co-participation of synthetic and protective events (Rajjou et al., 2012). 

Protein synthesis and respiratory activity initially involves components stored 

within the mature dry seed, although transcription and translation commence 

early during imbibition, as shown by transcriptome and metabolome analyses 

(Gallardo et al., 2001).  
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Figure 1-2 Phase division of Germination 

The division of germination into the three stages as classically defined (Bewley and Black, 
1994). Time course of physical and metabolic events that occur during germination (Phases I 
and II) and early seedling growth (Phase III). The time taken for these events to occur varies 
between species and is influenced by germination conditions. The curve shows a stylized time 
course of water uptake. Adapted from (Nonogaki et al., 2010). 
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1.1.3.1 Phase I:  germination and resumption of metabolic 

activities 

Rehydration during phase I of germination involves the hydration of matrices 

including the cell walls and reserve polymers [Figure 1-2]. Before imbibition an 

Arabidopsis dry seed is approximately spherical with a diameter of 200 µm and 

then swells to an ellipsoid with an approximate length of 350 µm and diameter 

approximately  250 µm (Meinke, 1994; Robert et al., 2008). Work in imbibed 

Nicotiana tabacum (Tobacco) seeds using proton nuclear magnetic resonance 

(NMR) micro-imaging has shown that an increased water content with time 

does not a result from a uniform increase in the hydration of all cells, but rather 

an increase in the number of cells which become hydrated within the seed. 

Water first reaches the micropylar endosperm and radicle tip and it is thought 

this leads to a rapid resumption of metabolic activities in these regions (Manz 

et al., 2005). The pattern of water uptake through the micropyle is mirrored in 

other seeds including wheat (Rathjen et al., 2009) and pea (Wojtyla et al., 

2006). 

Whilst water uptake is rapid in orthodox seeds, there is a more gradual 

resumption of steady state metabolism. That being so, large changes in 

metabolic activity are observed from the early onset of imbibition. Metabolism 

is reactivated with enzymes that were stored in the seed during maturation. In 

Arabidopsis proteomic analysis has shown a large number of enzymes involved 

in the major metabolic pathways were found in dry seeds and remained stable 

or even accumulated further during early germination (Gallardo et al., 2001; Fu 

et al., 2005; Rajjou et al., 2008). Proteomic analysis in other plant species has 

demonstrated the presence of proteins important for metabolic activity in dry 

seeds, including Lepidium sativum (cress) (Muller et al., 2010), Beta vulgaris 

(sugar beet) (Catusse et al., 2008), Hordeum vulgare (barley) (Sreenivasulu et 

al., 2010) and (Oryza sativa) rice (Yang et al., 2007).  

Resumption of energy metabolism occurs early during phase I of germination. 

Dry mature lettuce seeds contain mitochondria that have poorly differentiated 

inner-membranes. However, active enzymes are present and likely to provide 
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sufficient ATP for several hours after the start of imbibition (Hourmant and 

Pradet, 1981). In the dry seed, these enzymes are protected by LEA proteins 

found in the mitochondria (Tolleter et al., 2007).  

Imbibition is also associated with temporary anaerobic conditions  in the plant 

embryo as the seed coat is impermeable to oxygen during the early hours of 

germination (Kennedy et al., 1992). The pentose phosphate pathway (PPP) and 

glycolysis respiratory pathways are also activated during seed imbibition 

(Nonogaki et al., 2010). The glycolytic pathway is predominant when there is 

low oxygen availability, and so mitochondrial ATP production is restricted. In 

contrast, when mitochondria become active, the PPP pathway predominates 

(Roberts, 1964). Interestingly, a key link between the two pathways is the 

oxidised pyrimidine nucleotide NADP, a coenzyme of glucose-6-phosphate 

dehydrogenase. The metabolic flux between the two pathways may be 

accelerated by nitrogen-containing compounds that are important in the 

release of dormancy such as NO (section 1.1.2.2), by indirectly increasing 

NADPH oxidation (Nonogaki et al., 2010), providing a potential link between 

the seed’s decision to progress through germination and metabolic activity. 

Upon imbibition, dramatic changes in the transcriptome can be observed after 

as little as 1 to 3 hours in Arabidopsis (Preston et al., 2009). Some changes have 

been shown to be tissue specific, demonstrating strong regulation of the 

transcriptome very early in germination (Okamoto et al., 2010). Common cis-

acting elements in gene promoters have been found for transcripts that show 

strong changes in abundance, displaying similar expression patterns during 

these early germination events (Okamoto et al., 2010). In rice, transcripts that 

display strong regulation between zero and three hours imbibition are 

enriched for 3’ untranslated regions (UTRs) with motifs associated with RNA 

stability.   

1.1.3.2 Phase II: pre-germination and radicle emergence 

Once the rate of water uptake and changes in seed size and shape start to 

plateau, germinating seeds move into water uptake phase II, during which the 

water content remains stable and can vary widely in duration. Phase II ends 
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with testa rupture and germination. This is followed by phase III water uptake 

following radicle protrusion and completion of germination sensu stricto. Phase 

III water uptake continues during the transition to seedling growth [Figure 1-

2]. 

The endosperm in mature seeds provides an additional tissue that regulates 

germination by ABA in response to environmental factors. A two-step 

germination process appears to be a phylogenetically widespread trait 

determined by the anatomy of the seed-covering layers (Linkies et al., 2010). 

While Arabidopsis seed coat development has been studied in detail (Haughn 

and Chaudhury, 2005), little is known about the changes of the seed coat's 

mechanical and biochemical properties that ultimately lead to testa rupture, 

[Figure 1-1] initiated at the micropylar seed end.  

Embryo cells elongate prior to the completion of seed germination in 

Arabidopsis and cell division is not evident in the embryo during germination 

(Barrôco et al., 2005). After the initial swelling is complete, all changes in seed 

size and shape during germination are caused by cell expansion. Expanding 

plant cells adjust the extensibility of their cell walls by remodelling the major 

components of the cell wall. Loosening of the wall allows water influx which 

drives cell expansion and generates cellular turgor pressure (Schopfer, 2006). 

It is proposed that elongation of the Arabidopsis embryo occurs in a distinct 

elongation zone between the radicle and the lower hypocotyl [figure 1-1] 

(Schopfer, 2006). 

1.1.3.3 Germination and cell cycle 

As previously stated cell division in the Arabidopsis embryo is not required for 

germination and does not occur until radicle emergence. However cell cycle 

regulation is a requirement. Mitotic divisions are observed only after the 

radicle has protruded and presumably rely on the de novo production of other 

cell cycle regulators. Flow cytometry of germinating Arabidopsis seeds 

indicated that DNA replication is mainly initiated at the onset of root protrusion 

(Barrôco et al., 2005), whilst analysis has shown synthesis and/or activation of 

a subset of core cell cycle proteins trigger DNA replication, but is not sufficient 
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to drive cells into mitosis (Masubelele et al., 2005). Cell cycle control during 

seed germination may be exerted at multiple levels. However, knowledge of cell 

cycle events and their importance for germination is still scarce and 

fragmentary. Further to this, different species may have developed unique 

control mechanisms which are more suited to specific germination 

characteristics and habitat (Vázquez-Ramos and de la Paz Sánchez, 2003). 

1.1.4  Seed quality, vigour and longevity 

Seed quality is a measure of a seed lots storability (longevity), ability to 

germinate rapidly and uniformly (vigour) and to do so with high viability 

(Rajjou et al., 2012). It has only been in recent years we have begun to identify 

molecular determinants of seed quality (Barrett et al., 2015).  

Although proteins and membranes are protected in the mature dry seed, 

damage still occurs during maturation drying and imbibition. Cellular 

membrane structures that are maintained in a gel phase during maturation 

drying undergo a transition to a liquid crystalline phase when rehydrated. 

Damage to membranes can however occur during the transition between the 

two phases and this results in the leakage of solutes from cells (Nonogaki et al., 

2010). To this point, initial imbibition is often accompanied by a substantial 

leakage of cellular solutes. Similar phenomena can be observed in resurrection 

plants and pollen that rapidly return from a dry quiescent state to a fully 

hydrated state (Hoekstra et al., 1999). This leakage can actually help accelerate 

germination by lowering inhibitor concentrations within a seed (Matilla et al., 

2005). Too much leakage can have disadvantageous effects and may be 

considered a sign of damage to membranes and cellular compartments caused 

by rapid and uncontrolled rehydration (Matthews and Khajeh-Hosseini, 2007) 

In order to deal with the damage imposed during dehydration, storage and 

rehydration, seeds activate a number of repair mechanisms during imbibition. 

Damage to proteins can occur during desiccation and/or ageing during seed 

storage (section 1.1.4.1) due to the formation of modified amino acids. This 

may cause protein misfolding or a reduction or even loss in protein function. 

Oxidation within the seeds has important roles from maturation to 



- 15 - 

 

 

germination, however, detrimental effects associated with seed ageing are 

observed if oxidative levels in the seed become too high (Clerkx et al., 2004). A 

common type of oxidative damage occurs on methionine residues forming 

methionine sulfoxide. This damage is reversible through the actions of a class of 

enzymes called methionine sulfoxide reductases (MSRs). Transgenic 

Arabidopsis seeds with altered MSR expression displayed a strong positive 

correlation between MSR capacity and seed longevity (Châtelain et al., 2013).  

Other protein repair mechanisms in Arabidopsis have been identified as 

potentially conferring longevity in seeds. The protein L-ISOASPARTYL 

METHYLTRANSFERASE (PIMT) catalyses the conversion of abnormal L-

isoaspartyl residues to the physiologically normal L-aspartyl form (Dinkins et 

al., 2008). Arabidopsis seeds overexpressing PIMT1 (one such gene encoding 

this class of enzyme) caused a reduction in the accumulation of abnormal 

residues in proteins, and furthermore resulted in seeds with both increased 

vigour and longevity. Conversely a reduction in expression of this gene 

increases the accumulation of L-isoaspartyl residues in proteins within freshly 

harvested dry mature seeds. This accumulation leads to reduced seed vigour 

under germination stress conditions and hypersensitivity to ageing treatments 

(Oge et al., 2008).  

Levels of DNA damage during seed desiccation and storage correlate with seed 

quality (Cheah and Osborne, 1978b). Damage and repair to genomic DNA is 

covered more extensively in later sections but it includes the progressive loss 

of telomeric sequences during prolonged dry storage (Boubriak et al., 2007) 

along with the requirement for DNA repair machinery to repair double strand 

breaks. A  failure to do so leads to loss of seed viability and vigour (Waterworth 

et al., 2010). 

Seed vigour and longevity have not been intensively targeted in breeding 

programs and understanding of the molecular basis of seed quality is far from 

complete. Identification of more genes associated with seed quality is required 

in order to ensure that these traits can be improved through molecular 

breeding. Current understanding has elucidated the need for the repair of 
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accumulated damage in orthodox seeds before germination can run to 

completion, this is known as the repair hypothesis (Matthews et al., 2012). 

1.1.4.1 Mean germination time correlates with seed lot 

quality 

Germination is considered to have completed at the point of testa rupture and 

radicle emergence (Roberts, 1972a).  In germination, the lag period is defined 

as the observed time from the start of imbibition to radicle emergence. In 

maize, the lag period is proportional to the extent of deterioration in a seed lot 

determined by overall viability and seedling growth  (Matthews and Khajeh-

Hosseini, 2007). Germination curves showing seed vigour are produced 

following regular counts during germination of a seed lot from the start of 

imbibition to radicle emergence. These curves have demonstrated that seed 

vigour can differ between seed lots, even between those that display  rapid, 

vigorous germination (Matthews and Powell, 2012). The speed of germination 

can also be expressed as a mean germination time (MGT) value (Ellis and 

Roberts, 1980), which is a measure of the average time it takes for a seed to 

germinate.  

MGT is an important measure in the agronomical world in the evaluation of 

seed quality in numerous crops species. Work in Zea mays (maize), Capsicum 

annuum (pepper), Citrullus lanatus (watermelon), Cucumis sativus (cucumber) 

and Brassica napus (oil seed rape) have all demonstrated MGT is highly 

indicative of seedling field emergence rate as well as seedling establishment, 

size and uniformity (Matthews et al., 2012). Seed vigour and seedling 

establishment have long been known to be key determinants of crop yield (Ellis 

and Roberts, 1980).   

1.1.4.2 Seed ageing and the repair hypothesis  

Seed longevity determines seed vigour after storage. Initial work in the 1970’s 

demonstrated, through protein synthesis assays using rye embryo cell extracts, 

that extended periods of storage decreases the ability of embryos to synthesise 

proteins in vivo and correlates with poor germination and eventual loss of 
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viability (Roberts and Osborne, 1973).  In rye seeds a loss in viability was also 

associated with greater levels of DNA single strand breaks (SSBs) after storage 

(Cheah and Osborne, 1978a). This work has been built on by the International 

Seed Testing Association (ISTA) in developing the seed ageing/repair 

hypothesis to explain differences in vigour and viability (Matthews et al., 2012). 

In understanding seed quality and ageing, tests have been developed that 

closely mimic the effects of natural ageing but over a much shorter time period 

(Rajjou et al., 2008). Two commonly used examples are controlled 

deterioration (CD) and accelerated ageing (AA). These techniques rely on 

exposing the seeds to unfavourable storage conditions including high 

temperature and high relative humidity, which holds the seeds at a high 

moisture content (Powell and Matthews, 2012). These conditions induce 

damage to cellular macromolecules (e.g. DNA and proteins) and organelles 

within the seeds (Roberts. 1972; Roberts. 1973; Roberts et al. 1973; Dourado et 

al. 1984). Both of these tests exacerbate differences in vigour between seed lots 

and are commercially used as markers of seed longevity (Powell and Matthews, 

2012). 

As described in previous sections, high levels of molecular damage are 

accumulated during the different seed stages.  The repair hypothesis states that 

the more damage a seed has to repair, the longer the lag period will be to allow 

the seed time to repair accumulated damage before germination is completed. 

Work in rye first showed that upon imbibition, DNA repair synthesis occurs. 

With seed ageing, the delay to radicle emergence is increased accompanied by 

an extended period of DNA synthesis (Osborne et al., 1984; Elder and Osborne, 

1993). 

1.1.4.3 Improving seed vigour  

Work in many crop species has shown that after a period of hydration followed 

by drying back decreases the lag period (Rajjou et al., 2012). This treatment is 

known as seed priming, a technique that is widely used in the agronomic 

industry to improve the efficiency of seed germination and field emergence 

under adverse conditions (Rajjou et al., 2012). Osmopriming is performed by 
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soaking seeds in a solution of low water potential. This facilitates the controlled 

uptake of water allowing the initiation of metabolic activities in the seed 

embryo, whilst prohibiting radicle emergence and therefore completion of 

germination (Gallardo et al., 2001). In most orthodox seed-producing plant 

species, desiccation tolerance is maintained up until the point of radicle 

emergence. Therefore, priming can be followed by a dehydration step allowing 

extended storage of the primed seed over-coming prior deterioration (Butler et 

al., 2009).  Only once seeds are exposed to solutions of higher water potential 

will germination proceed to completion. The long term benefits of priming 

treatments are still however widely debated. Work in rice (Oryza sativa) seeds 

has shown that the effects of priming are permanently offset by prolonged 

storage or unfavourable storage conditions (Hussain et al., 2015). 

The osmotic agent polyethylene glycol (PEG) is commonly is used as a seed 

priming agent and in Arabidopsis this induces pre-germination metabolism 

(Gallardo et al., 2001). Further to this, work in sugar beet has shown seeds that 

have first undergone controlled deterioration (a process that artificially ages 

seeds causing loss of vigour and even viability – section 1.1.4.2) before priming, 

display reversible changes in protein accumulation patterns (Catusse et al., 

2011). These proteins were shown to correlate with seed vigour, including 

proteins involved in several metabolic pathways for lipid and starch 

mobilisation, translation initiation factors involved in protein synthesis and 

components of ABA signalling pathways important in the cellular regulation of 

germination  (section 1.1.3) (Catusse et al., 2011; Rajjou et al., 2012). Priming 

has also been implicated in initiating DNA repair in Allium porrum (leek) seeds. 

Using [3H]-thymidine incorporation as a measure DNA synthesis, it was 

demonstrated that osmopriming causes DNA repair-type synthesis (Bray et al., 

1989). This suggests that repair of DNA damage during germination is an 

important process. 
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1.2 DNA structure and the Arabidopsis genome 

DNA is a polymer composed of repeated deoxyribonucleotide monomer 

subunits. These consist of a deoxyribose sugar molecule covalently linked to a 

phosphate residue at the 5’ carbon and covalently bound to a nitrogenous base 

at the 1’ carbon. When polymerised, the phosphate residue of each 

deoxyribonucleotide is also bound to the 3’ carbon on the next 

deoxyribonucleotide in the polymer, which forms a backbone structure of sugar 

residues linked by phosphodiester bonds. DNA is made up of four nitrogenous 

bases:  thymine and cytosine (pyrimidine bases) and guanine and adenine 

(purine bases). Genomic DNA is found in a double stranded, right-handed 

helical structure. The sugar-phosphate backbone of each strand runs in an anti-

parallel direction to the other, with bases on the opposing strand pairing with 

each other in a complementary fashion: thymine (T) pairing with adenine (A) 

and cytosine (C) pairing with guanine (G) (Figure 1-3). 

In an organism’s genome, DNA encodes the genetic information for the 

synthesis of proteins in triplet code i.e. three bases encodes one amino acid (the 

building blocks of proteins). In 2000, Arabidopsis was the first multi-cellular 

eukaryote to have its genome completely sequenced. The genome was shown to 

comprise 1.25 x 108 base pairs, arranged into 5 chromosomes (Arabidopsis 

Genome, 2000). 

Over 27 000 protein-coding genes are predicted in Arabidopsis (Swarbreck et 

al., 2008). In addition to these genes, a range of structural RNA species also are 

encoded by the Arabidopsis genome including rRNA and tRNA, as well as 889 

pseudogenes and transposable elements (Swarbreck et al., 2008). DNA also 

provides the binding sites for components of transcription, therefore making it 

the basis for the control of gene expression. Over the past few decades, these 

non-protein encoding regions have been shown to play essential roles in plant 

development, physiology and other processes including the discovery of micro 

RNAs (miRNAs) which perform targeted regulation of specific mRNA 

expression required for plant development (Baulcombe, 2004) and response to 

environment stress (Zhang et al., 2005). The control of gene expression is also 
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regulated by the accessibility of the DNA, mediated by covalent modifications to 

the DNA bases and associated proteins known as epigenetic regulation. 

Epigenetic changes to DNA can be incredibly stable and indeed heritable, but in 

other circumstances they can also be tissue specific and transient in response 

to changing cellular conditions or stress (Grant-Downton and Dickinson, 2005; 

Meyer, 2011).  

 

 

Figure 1-3 Complementary base pairing 

Base pairs, which form between specific nucleobases, are the building blocks of the DNA double 
helix and contribute to the folded structure of both DNA and RNA. Dictated by specific 
hydrogen bonding patterns, Watson-Crick base pairs (guanine-cytosine and adenine-thymine) 
allow the DNA helix to maintain a regular helical structure that is subtly dependent on its 
nucleotide sequence.  

Guanine Cytosine 

Adenine Thymine 
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1.3 Sources and types of DNA damage to plants 

To ensure the integrity of genetic material and DNA structure, it is essential 

that plants, and indeed any organism, has a means of repairing any damage 

accumulated to the genome. This safeguards the genetic information so that 

daughter cells inherit an intact copy of each chromosome following DNA 

replication and cell division. Precise and accurate DNA replication is of 

particular importance in the plant vegetative tissues as these can give rise to 

the germline (Walbot, 1985). Plant growth is controlled in the root and shoot 

tips, these areas are known as meristems. The meristem contains an actively 

dividing group of undifferentiated cells, which gives rise to plant organs such as 

leaves and flowers. The plant germline is derived from these cells late in a 

plant’s development. This means that mutations acquired during the life of 

vegetative cells can be passed to the next generation of plants (Ries et al., 

2000).  

Plant cells are subjected to particularly high levels of DNA damage that causes 

changes to the chemical structure of the DNA. These result from a sedentary 

lifestyle and a dependence on sunlight for energy along with the concomitant 

exposure to environmental stresses including UV-A, UV-B, ozone, desiccation, 

rehydration, air and soil pollutants including heavy metals. These genotoxic 

agents cause a range of DNA damage products including single-strand DNA 

breaks (SSBs) and DSBs. DSBs also occur spontaneously, arising from defects 

occurring during DNA replication including collapsed replication forks, 

replication past a SSB and steric stresses as DNA is unwound (Figure 1-4). 

1.3.1  UV damage 

UV (ultraviolet) light is a major cause of DNA damage in plants due to their 

sessile phototrophic nature, in which they are exposed to UV on a continual 

basis during daylight hours. The UV spectrum is the part of the electromagnetic 

spectrum between 10 – 400 nm. It is the UV-A (315-400 nm) and UV-B (280-

315 nm) wavelengths that are able to penetrate the Earth’s atmosphere from 

the Sun at levels detrimental to DNA integrity. UV induces dimerisation 
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between adjacent pyrimidine bases including pyrimidine-pyrimidone (6-4) and 

cyclobutane pyrimidine dimers photoproducts. These changes to DNA structure 

are cytotoxic as they block transcription and DNA replication (Chen et al., 

1996). 

 

 

 

 

 

Figure 1-4 Sources of DNA damage and DSB products 

 A multitude of stresses can cause DSBs including ionising radiation (IR), heavy metals, reactive 
oxygen species (ROS), replication errors and mechanical stresses. This results in a wide range 
of DBS products including overhangs and damage to base and sugar residues. The   
denotes a 5’ to 3’ direction of DNA polarity. 
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1.3.2  Alkylation and hydrolysis 

DNA damage can also occur due to alkylation. An example of DNA alkylation is 

guanine methylation producing O6-methylguanine. This change in itself is 

mutagenic as  O6-methylguanine is mis-paired with thymine rather than 

cytosine by the replication machinery (Chen et al., 1996). Exposing plants to 

alkylating agents including ethylmethane sulfonate (EMS) causes alkylation of 

nitrogenous bases and is routinely used to induce point mutations in the 

Arabidopsis genome. Using forward genetics, this technique allows 

identification of new players in a specific biological process or signalling 

pathway (Qu and Qin, 2014). 

1.3.3  Reactive oxygen species and oxidative damage 

In plants, reactive oxygen species (ROS) are constantly generated as a by-

product of metabolic reactions that occur in the mitochondria, chloroplasts and 

peroxisomes (Foyer and Noctor, 2003). In the chloroplast, ROS are generated as 

a by-products of photosynthesis and include the superoxide radical (O2•-) and 

singlet oxygen (1O2) (Asada, 2006). Conversely in the dark, most of the ROS 

generated occurs in the mitochondria by the over-reduction of the electron 

transport chain in the form of O2•- (del Rio et al., 2006). In the peroxisome, the 

main reactive oxygen species generated are hydrogen peroxide (H2O2) (Roldán-

Arjona and Ariza, 2009) and O2•- (Maxwell et al., 1999). ROS are also generated 

by peroxidases and oxidases in the cell and perform important roles in 

developmental regulation as well as in response to environmental challenges 

such as recognition of pathogens (Gapper and Dolan, 2006; Moller et al., 2007). 

ROS also play key roles in seed dormancy and germination, however, they can 

react with and have detrimental effects on cellular macromolecules including 

DNA. 
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Figure 1-5 Oxidation of nucleotide bases 

[A] 7,8-dihydro-8-oxoguanine-adenine base pairing. The presence of an 8-oxoG base in 
genomic DNA can lead to a G to T transversion mutation via an 8-oxoG:A base pair stabilised by 
two interbase hydrogen bonds.  

[B] Thymine oxidation to Thymine glycol, Thymine glycol is a product of thymine oxidation. 
•
OH radicals attack the double bond of thymine at C-5 or C-6 and can abstract hydrogen methyl 

group (Simic, 1994). The hydroxythymine radical intermediate can react with O
2 

to yield 

thymine glycol (Demple and Linn, 1982). 
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Oxidative damage by ROS to nucleic acids is caused by covalent modifications 

to bases and the sugar phosphate backbone, leading to changes in DNA 

chemical structure. ROS can attack deoxyribose units and cause DNA 

fragmentation. ROS can also cause single strand breaks mediated by hydroxyl 

radicals via the removal of hydrogen from the C3, C4 and C5 of the 2-deoxyribose 

moiety in DNA (Moller et al., 2007). Hydroxyl radicals are highly reactive, not 

only to the 2-deoxyribose moiety but also the nucleobase of DNA. Subsequently, 

all four bases can be attacked by ROS and a wide range of oxidised base 

products have been discovered.  The most common single oxidised base 

observed in living cells is 7,8-dihydro-8-oxoguanine (8-oxoG). This is a 

ubiquitous product of DNA oxidation generated by the reaction of hydroxyl 

radical and closely related pyrimidine peroxyl radical (Cadet et al., 2012). 8-

oxoG itself is mutagenic as it mis-pairs with adenine leading to a base transition 

of G → T [Figure 1-5 A] (Chen et al., 1996). In addition to the mutagenic nature 

of 8-oxoG, thymine glycol oxidation, another type of ROS mediated DNA 

damage, is cytotoxic to a plant cell as it  blocks replication  [Figure 1-5 B] (Chen 

et al., 1996). 

High energy irradiation (X-rays and γ-rays) can cause damage directly to DNA 

but also indirectly through generation of ROS, particularly through a radiolysis 

reaction with water (H2O → OH• + H•). These types of ionising radiation are 

produced by the decay of natural radioactive isotopes and cosmic rays that 

penetrate the atmosphere from space. The Chernobyl nuclear disaster has 

caused much higher levels of IR in contaminated areas and, interestingly, plants 

from these areas have shown adaptation in response to double strand breaks 

(DSBs) and an increased resistance to DNA damaging agents (Kovalchuk et al., 

2004). In addition to ROS production through UV irradiation, ROS are also 

generated through the action of heavy metals in the Fenton reaction 

(Kovalchuk et al., 2001).  

The production of ROS during desiccation and lengthy periods of storage is a 

major contributor to DNA damage and is associated with seed ageing 

(Balestrazzi et al., 2011b). To date most contributions in this field have been 
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concerned with the role of ROS in the loss of vigour and viability during the 

prolonged storage of desiccation tolerant orthodox seeds. Lipid peroxidation 

induced by these compounds has been widely cited as being a major cause of 

seed ageing (Priestley, 1986; Bailly et al., 2004).  Desiccation-intolerant 

recalcitrant seeds display impairment of anti-oxidative mechanisms upon 

dehydration leading to oxidative damage and  numerous lethal lesions (Finch-

Savage et al., 1996).  During storage, orthodox seeds have low moisture content 

with very little metabolic activity (Rajjou et al., 2012). In such conditions, 

detoxifying enzyme activity is negligible and therefore any build-up of ROS can 

lead to direct deleterious effects on nucleic acids, or can be trapped in the 

intracellular structures (Smirnoff, 1993) only to be released upon imbibition, 

causing damage to the genome. Further to this in numerous plant species, seed 

ageing is associated with a marked loss in antioxidant enzyme activity 

(Pukacka, 1991; De Vos et al., 1994; Bailly et al., 1996). Prolonged dry storage 

will exacerbate ROS accumulation as will storage in sub-optimal conditions 

such as high temperature and humidity (Bailly et al., 2004; Tian et al., 2008). 

This in turn means that older seeds are less able to cope with ROS associated 

damage as well as accumulating an increased amount of ROS based damage.   

1.3.4  DNA strand breaks 

Both single and double strand DNA breaks are primarily caused by oxidative 

damage, whereby the phosphodiester bond of one or both of the two strands 

are oxidised when high levels of ROS are present. SSBs are further generated as 

excision repair pathway intermediates in response to DNA damage by ROS 

(sections 1.4.3 and 1.4.4) (Bray and West, 2005). Strand breaks are also 

generated by radiomimetic compounds that imitate the effects of radiation, 

such as methyl methane sulphonate (MMS) and bleomycin. MMS is an 

alkylating agent that predominantly methylates DNA on the N3-

deoxyadenosine and N7-deoxyguanosine of DNA bases, causing replication 

forks to stall during S-phase (Lundin et al., 2005). Bleomycin interacts with 

DNA and chelates heavy metal ions (e.g. Fe2+), producing a pseudoenzyme that 

reacts with oxygen to produce superoxide and hydroxide free radicals that bind 



- 27 - 

 

 

and cleave DNA through attack of the phosphodiester bond (Claussen and Long, 

1999).  

Double strand breaks are the most severe type of DNA lesion. Unlike most other 

forms of DNA damage, both strands of the DNA double helix have a break in the 

phosphate backbone and therefore a complementary strand is not present to 

guide repair. If DSBs are not repaired they lead to chromosomal fragmentation 

and substantial loss of genetic information during cell division and are 

therefore highly toxic to the cell. DSBs can be induced directly by IR through 

simultaneous oxidation of both strands (Chen et al., 1996) and  by bleomycin 

(Claussen and Long, 1999). Cells in S-phase of the cell cycle display increased 

levels of DSBs, caused by continued stalling of the replication fork when SSBs or 

a block on the template strand is encountered. The replication fork then ends 

up collapsing, generating a double strand end (Kuzminov, 2001). Programmed 

DSBs are also generated in cells during meiosis. Induction of DSBs is used to 

promote homology searching leading to the recombination and synapsis of 

homologous chromosomes during prophase I of meiosis (Grelon et al., 2001). 

This allows homologous recombination and facilitates the production of 

offspring diversity. 
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1.4 Repair of single strand damage of the DNA 

duplex 

Plants display a greater resistance to DNA strand breaking genotoxins than 

humans, with maize (Zea mays) surviving X-ray doses two to three times the 

10-Gray dose lethal to humans, even though they have comparable genome 

sizes (Killion and Constantin, 1972). Plant cells possess several pathways for 

the repair of DNA damage and specific DNA lesions require particular repair 

pathways. Many of the plant DNA repair pathways are strongly conserved 

among eukaryotes and are best characterised in yeast and mammalian model 

systems. However, our understanding of DNA repair in higher plants has 

increasingly developed over the past few decades, particularly in Arabidopsis 

thanks to its sequenced genome, online resources and availability of specific T-

DNA knockout mutants lines (Alonso et al., 2003).  

1.4.1  Direct reversal and photoreactivation 

Cells are known to eliminate some types of DNA damage by chemical reversal. 

These mechanisms do not require a template, since the types of damage they 

counteract can occur in only one of the four bases. These are UV-induced 

damage products known as pyrimidine dimers (section 1.3.1). Direct reversal 

mechanisms are specific to the type of damage incurred and do not involve 

breakage of the phosphodiester backbone. Pyrimidine dimers can be repaired 

by photoreactivation pathways and require DNA photolyases (Sancar, 1994). 

Two photolyases characterised in Arabidopsis are specific for photoreactivation 

of either cyclobutane pyrimidine dimers (CPDs) or pyrimidine (6-4) 

pyrimidones (6-4PPs), the two major UV-B-induced photoproducts in DNA and 

are called CPD and 6-4PP photolyase respectively (Waterworth et al., 2002). 

Photolyase enzymes bind to the pyrimidine dimer photoproduct and in a light-

dependent reaction catalyse the split of the pyrimidine dimer (Dany et al., 

2001). Interestingly whilst photolyases are phylogenetically conserved in many 

species, from the bacteria, fungi, plants and animals, the photolyase activities 

are absent in humans and other placental mammals. Humans instead rely on a 
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different repair mechanism to correct pyrimidine dimers termed nucleotide 

excision repair (section 1.4.4) (Lucas-Lledo and Lynch, 2009). 

1.4.2  Mismatch repair 

The mismatch repair pathway repairs incorrect nucleotides which are mis-

incorporated by DNA polymerase during DNA synthesis (DNA replication and 

recombination) or damaged bases resulting from base modification. It is one of 

the DNA repair pathways used in animals and plants to maintain genomic 

stability by targeting base–base mismatches and insertion/deletion loops. 

Mismatch repair also functions in homologous recombination, controlling the 

level of mismatches tolerated by the invading strand  (Hays, 2002). Detection of 

mutated bases is performed by a heterodimer of MSH proteins. These excise the 

mis-incorporated bases and the resulting gap is filled with a DNA polymerase 

and a DNA ligase (Iyer et al., 2006). Several characterised MSH proteins have 

been identified in Arabidopsis and exhibit high conservation with their 

mammalian counterparts and have important roles in meiotic recombination 

(Higgins et al., 2008). A novel MSH protein has also been discovered in 

Arabidopsis and shows, along with 3 other MSH proteins, to form three distinct 

protein heterodimers with different specificities for mismatched DNA (Culligan 

and Hays, 2000). 

1.4.3  Base excision repair (BER) 

Base modifications are the most common type of endogenous DNA damage and 

in the mammalian genome accounts for thousands of lesions per day (Lindahl, 

1993). The base excision repair (BER) pathway is very well conserved across 

all kingdoms, from bacteria to yeast, humans and plants (Kim and Wilson, 

2012). It is likely BER evolved in response to the high level of spontaneous 

decay products that are formed in DNA as a coping mechanism to the damage 

created upon reactions with natural endogenous chemicals, most notably ROS. 

BER has been extensively studied in higher eukaryotes but it is best understood 

in mammalian systems. BER deals predominantly with small non-bulky 

nucleobase lesions, damaged bases (e.g. 8-oxoG) derived from oxidation, 

alkylation or deamination or excising and replacing incorrect bases (e.g. uracil) 
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(Barnes and Lindahl, 2004; Fortini and Dogliotti, 2007; Zharkov, 2008). All 

living organisms have specific enzymes involved in the base excision repair 

(BER) pathway and can occur throughout the cell cycle (Morita et al., 2010). 

Multiple BER mechanisms exist but each pathway shares common elements 

and generally involve the following steps. The first part of all BER pathways is 

the recognition and removal of incorrect or damaged substrate bases. This is 

initiated by DNA glycosylases, which recognise and remove specific damaged or 

inappropriate bases forming AP sites to create an abasic site intermediate. An 

incision of the abasic site is then made by an apurinic/apyrimidinic (AP) lyase 

or endonuclease, the incision is in the 5’ side of the AP site, leaving 3’-OH and 

5’-deoxyribose-5-phosphate (5’-dRP) termini (Dianov et al., 1992). The 

remaining sugar fragment is removed by a phosphodiesterase or lyase. A DNA 

polymerase fills the gap left by the excised nucleotide and a DNA ligase 

generates a covalent phosphodiester bond between the 3’-OH end of the 

upstream nucleotide and the 5’-PO4 end of the downstream nucleotide 

(Tomkinson et al., 2006). These are then cleaved by an AP endonuclease, such 

as ARP (Murphy et al., 2009). The resulting single-strand break can then be 

processed by either short-patch (where a single nucleotide is replaced) or long-

patch BER (where 2-10 new nucleotides are synthesized) (Córdoba-Cañero et 

al., 2011).  

1.4.4  Nucleotide excision repair (NER) 

NER is the most well-studied mechanism for repairing UV-photoproducts in 

eukaryotic cells, in part because defects in human NER genes contribute to the 

photosensitive syndromes xeroderma pigmentosum (XP), Cockayne syndrome, 

and trichothiodystrophy (Kunz et al., 2005). NER involves damage recognition, 

incision of the damaged DNA strand on each side of the lesion, release of the 

lesion-carrying oligonucleotide, repair synthesis, and ligation to seal the repair 

patch. Recognition of DNA damage in the NER pathway is initiated in two 

distinct ways, which then use the same machinery to repair the damage. When 

damage occurs on the transcribed stranded of an actively expressing gene, 

transcription coupled repair (NER-TCR) removes it.    
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In the NER-TCR sub-pathway, NER repair machinery preferentially targets 

regions of the genome that are actively transcribed, this ensures interference of 

the lesions with transcription is avoided. This pathway is activated during 

transcription by stalling of elongating RNA POLYMERASE II (RNAPII) and is 

dependent on the recruitment of two proteins (COCKAYNE SYNDROME A and 

B) to the damaged site (Svejstrup, 2007). The other NER sub-pathway is known 

as global genome repair (NER-GGR). Lesions in this pathway are detected by 

the UV-damaged DNA-binding protein complex and another protein complex 

containing RAD23, XPC and centrin proteins (Volker et al., 2001). 

Both sub-pathways subsequently require the TRANSCRIPTION FACTOR-IIH 

(TFIIH) complex, which unwinds the DNA helix in the locality of the damaged 

site. This DNA unwinding activity is associated with the conserved helicase 

motifs observed in the XERODERMA PIGMENTOSUM GROUP B (XPB) and XPD 

subunits of the TFIIH complex. EXCISION REPAIR CROSS-COMPLEMENTING 

PROTEIN 1 (ERCC1), XPF and XPG are structure-specific endonucleases that 

excise DNA around the damage site. Following excision of the lesion, the 

oligonucleotide containing the damaged site is released, DNA repair synthesis 

(made by DNA polymerase δ or ε) and the ligation reaction occur, thus 

completing the NER process (Sancar and Tang, 1993)  
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1.5    Repair of DNA double strand breaks 

In all organisms all components of DNA are susceptible to damage i.e. the 

purine and pyrimidine bases, the phosphodiester linkages and the sugar 

residues all can incur damage. Many different genotoxic stresses originating 

from both in and outside of the a plant cell can cause DSBs. Environmental 

agents such as UV light, ozone and other reactive oxygen species, desiccation 

and rehydration as well as air and soil pollutants such as heavy metals can 

cause DSBs (Waterworth et al., 2011). Inside the cell, spontaneous DSBs can 

occur resulting from DNA replication defects, exemplified by collapsed 

replication forks, steric stresses during DNA unwinding, during replication and 

replication past a site of DNA damage (Kuzminov, 2001). DSBs pose a severe 

threat to the genome integrity of plants throughout their lifecycle. In yeast just 

one DSB in a cell can potentially cause a loss of viability in that cell, however, 

plants are thought to have a higher tolerance (Waterworth et al., 2011). In 

contrast to the serious threats posed by DSBs, programmed initiation of such 

DNA lesions play integral roles in early stage gamete formation, facilitating 

chromosome pairing and homologous recombination associated with meiosis 

(Schuermann et al., 2005). 

The result of many different stresses that can cause DSBs means marked 

heterogeneity in the DSB products is created. Even if lesions occur at identical 

sequences of DNA the structures of those DSBs formed may be entirely 

different. DSB products often lack the 3’ hydroxyl and 5’ phosphate groups 

usually associated at naked ends of DNA when produced in vitro by restriction 

enzymes, creating challenges in the repair of such lesions [Figure 1-4]. A well 

conserved family of proteins known as the DNA ligases are responsible for 

chemically re-joining (re-ligation) the two ends back together after a DSB has 

occurred. Three such proteins have been identified in the plant Arabidopsis 

thaliana; DNA LIGASE 1 (LIGI), DNA LIGASE 4 (LIG4) and DNA LIGASE 6 (LIG6). 

Homologues of LIG1 and LIG4 exist in fungi and mammals but LIG6 is only 

found in plant species (Taylor et al., 1998; West et al., 2000; Waterworth et al., 

2010). Ligase enzymes require 3’ hydroxyl and 5’ phosphate groups at the ends 
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of DNA strands to facilitate re-ligation (Bray et al., 2008). A range of DNA end 

processing factors, modifying DNA ends making them suitable for re-ligation by 

DNA ligases have been identified in yeast and mammals (Lieber, 2010). Such 

factors are poorly understood in plants. 

This marked heterogeneity in DSB products creates further problems for cells; 

a single DSB is potentially a lethal event and can severely inhibit plant growth 

and development. It is therefore important that plant cells have a multitude of 

DNA damage signalling and repair mechanisms to ensure quick, accurate and 

effective repair of DSBs. 

1.5.1  DNA double strand break detection and signalling 

The potentially lethal consequence of DSBs underpins how essential early 

detection and accurate repair is in plants. Cell cycle arrest allows the time 

needed for the cell complete this DNA repair, but still requires rapid detection 

to dampen any detrimental effects (Waterworth et al., 2011). Several proteins 

have been identified in Arabidopsis as candidates for the detection of DSB 

including KU70 and KU80 (Charbonnel et al., 2010). Homologues with 

conserved function of these proteins were first identified in yeast through in 

vitro assays and demonstrated the complex has a high affinity for exposed DNA 

ends (Lieber, 2010). KU70 and KU80 homologues are well characterised in 

yeast and mammals and are key components in DSB detection (Lieber, 2010). 

In Arabidopsis,  the KU complex is a key component of one DSB repair pathway, 

the so called non-homologous end joining pathway (NHEJ) (West et al., 2004). 

In the absence of the KU70/KU80 complex, microhomology is utilised to 

physically join the two ends of a DNA DSB event before the MRE11-RAD50-

NBS1 (MRN) complex facilitates chemical re-ligation of the two ends. The MRN 

complex has further roles in facilitating the DNA damage response. It has been 

shown in yeast and Xenopus that NBS1 recruits the protein kinase ATM (You et 

al., 2005). Upon recruitment, kinase activity is strongly up-regulated, directly or 

indirectly facilitating a multitude of cellular changes associated with DNA 

damage repair responses (Section 1.6.1)  
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Once a DSB has been detected and an initial repair response has occurred, there 

is a choice of repair mechanisms available to a plant. Two major classes of DSB 

repair pathway exist, as in all eukaryotes: homology-dependent and homology-

independent repair pathways (Waterworth et al., 2011). Homology-dependent 

recombination, otherwise known as homologous recombination (HR), requires 

the presence of an identical or nearly identical sequence to be used as a 

template. DSB repair by this pathway can lead to major changes in the genome 

through deletions, insertions, chromosome translocations and inversions 

(Mazon et al., 2010). HR can mediate accurate repair which does not lead to the 

production of any mutations within the genome (section 1.5.2). The second 

repair pathway is known as the non-homologous end joining pathway (NHEJ). 

It does not rely on the presence of a homologous DNA strand but instead joins 

the two strands of DNA with exposed ends together (section 1.5.2). In contrast 

to the HR pathway, NHEJ is intrinsically mutagenic and so will typically lead to 

at least small changes in DNA sequence local to a DSB event (Osman et al., 

2011). 

1.5.2  Homologous Recombination 

Homologous recombination relies on regions of homology and base-pairing 

between two different DNA duplexes. Different pathways of HR repair have 

been demonstrated in plants, termed single-strand annealing (SSA) [Figure 1-

6], synthesis-dependent strand annealing (SDSA) and double strand break 

repair model (DSBR) [Figure 1-7]. 
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Figure 1-6 Single Strand Annealing (SSA)  

The SSA pathway does not require a similar or identical separate molecule of DNA, unlike SDSA 
or DSBR pathways, making it unique in with regards to HR. The SSA pathway utilises one single 
DNA duplex instead and repeat sequences within it provides the identical sequences that 
homologous recombination needs for repair.  

 

The first, SSA has been shown to be the most common HR pathway active in 

plants when a DSB occurs between two repeated sequences (Siebert and 

Puchta, 2002). It accounts for up to one third of repair events in such 

circumstances, however, this pathway is non-conservative and results in the 

deletion of any intervening sequence (Mazon et al., 2010). The latter two 

pathways share a common beginning before diverging: at the site of a DSB, long 

3’ single-stranded DNA ends are produced by the exonuclease activity. The 

newly formed ssDNA then probes for matching strands on the homologous 

chromosome or sister chromatid (Edlinger and Schlogelhofer, 2011). When a 

site of homology has been found, DNA synthesis can proceed using the 

homologous region as a template. The opposite strand of the invaded duplex is 

displaced to allow further strand invasion and branch migration. It is at this 

point the SDSA and DSBR pathways diverge [Figure 1-7].  

In the SDSA pathway, the invading strand recombines with the original 

chromatid after dissociation from the invaded duplex (Waterworth et al., 
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2011). A mechanistically different process to SDSA can occur during the 3’ end 

extension if DNA synthesis continues all the way to the end of the chromosome, 

this process is referred to as break-induced replication (BIR) (Llorente et al., 

2008). Work in the field bean, Vivia faba, in which simultaneous incorporation 

of ethynyldeoxyuridine (a base analogue) and DSB induction resulted in no 

induction of DNA replication, suggesting that in higher plants BIR does not play 

a major role in DSB repair (Schubert et al., 2011).  

The displacement of one strand in the invaded duplex during strand invasion 

leads to the formation of the D-loop [Figure 1-7]. In the DSBR model, second 

end capture occurs where the displaced strand base-pairs with the homologous 

region of the 3’ end on the other side of the original break. The chromatids 

become linked together by the formation of two Holliday junctions (Osman et 

al., 2011). The resolution of the Holliday junctions occurs in one of two ways, 

either crossover between chromosomes will occur or not, this is dependent on 

where the DNA strands are cut (Mazon et al., 2010).  

One of the important features common to all the HR pathways is the search for 

homology preceding strand invasion. In vitro, just one protein is required for 

this step, termed RAD51, which has an essential role in HR in vegetative tissues.  

Further to this, in Arabidopsis, RAD51 knockout mutants are sterile (Li et al., 

2004) but are otherwise phenotypically normal. Mutant rad51 plants do not 

display hypersensitivity when treated with DSB-inducing agents (Li et al., 

2004). This implicates a relatively minor role for HR in double strand break 

repair in comparison to NHEJ (section 1.5.3). In contrast to Arabidopsis and 

higher plants, the moss, Physcomitrella patens, utilises HR as the major pathway 

for double strand break repair (Markmann-Mulisch et al., 2007). In addition to 

RAD51, many other proteins working in distinct complexes are required to 

process strand invasion and subsequent intermediates of recombination. 

Additional factors include XRCC2, XRCC3 and RAD51-like proteins (RAD51B, 

RAD51C and RAD51D) (Osman et al., 2011). Further factors which aid 

homology searching include the DNA helicases and chromatin-remodelling 

enzymes (Blanck et al., 2009).  
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Figure 1-7 Synthesis-Dependent Strand Annealing (SDSA) and 
Double Strand Break Repair Model (DSBR) of homologous 
recombination 

Several key recombination pathway proteins are shown at the stage at which they are active.  
After the initial strand invasion, D-loop formation and DNA synthesis has begun, the SDSA and 
DSBR pathways diverge. SDSA is thought to occur during S-phase when a sister chromatid has 
been synthesised and can be used as a template. The DSBR pathway occurs in meiosis and 
facilitates chromosome crossovers in creation of genetically diverse gametes. Crossovers are 
much rarer in SDSA in comparison to DSBR. 
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The highly repetitive nature of the genomes of higher eukaryotes has 

implications for the ability to utilise homologous recombination as a route of 

DSB repair (de Koning et al., 2011). Inappropriate recombination between two 

repetitive elements found at different loci within a genome has the potential to 

cause lethal mutations and so HR activity must be carefully regulated. In 

Saccharomyces cerevisiae, RAD51 has been shown to be regulated at the protein 

level by RAD52 (Liu and Heyer, 2011). This protein promotes homologous 

recombination by facilitating the nucleation of the RAD51 recombinase onto 

pre-processed single-stranded DNA. A RAD52 homologue is found in 

mammalian genomes but knockouts in mice display very little abnormal 

phenotypes with regards to repair, recombination or meiosis. Instead, BRCA2, a 

protein with no homologue in Saccharomyces cerevisiae maintains this central 

HR function in mammals (Liu and Heyer, 2011). Whilst it has been established a 

loss RAD52 function has no impact on cell growth and viability in human cells 

with functioning BRCA2 activity, recent reports show a loss in functional Rad52 

is synthetically lethal where cells are already BRCA2 deficient (Feng et al., 

2011). This implicates a more important role for the function of Rad52 in 

vertebrates than previously thought. A BRCA2 homologue in plants has been 

identified and characterised to have the same RAD51-binding activity as its 

mammalian counterpart and has importance in DNA repair (Abe et al., 2009). 

Two RAD52 homologues have been reported in Arabidopsis and RNA 

interference lines defective for both copies show an increased sensitivity to 

mitomycin C treatment and reduced levels of fertility (between 25-50%) 

(Samach et al., 2011). 

Evidence suggests regulation of HR activity occurs in a cell cycle-dependent 

manner. Work in yeast has shown HR is up-regulated in S and G2 phase during 

which times a sister chromatid is available as a template for repair (Huertas et 

al., 2008). The production of 3’ single stranded ends by 5’ resection is an 

important aspect in this regulation; Com1/Sae2 has been shown to control 

DNA-end resection in Saccharomyces cerevisiae (Huertas et al., 2008). CtIP (a 

homologue of Com1/Sae2) in Xenopus has been found to perform a similar role 

as well as interacting with the MRN complex (Com1/Sae2 interacts with the 
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homologous MRE11-RAD50-XRS2 (MRX) complex in Saccharomyces cerevisiae). 

Furthermore, in both yeast and vertebrates activity of Com1/Sae2 and CtIP is 

regulated by CDK-mediated phosphorylation at consensus CDK sites (Huertas 

et al., 2008; Wang et al., 2012). A homologue in plants has been described and it 

is possible the Arabidopsis COM1 protein regulates HR in a similar way to that 

demonstrated in yeast and vertebrates (Uanschou et al., 2007; Yun and Hiom, 

2009).  

1.5.3  Non-homologous end joining 

1.5.3.1 The canonical non-homologous end joining pathway 

Whilst mutations in genes required for NHEJ in mammals have often been 

found to be lethal, equivalent Arabidopsis knockout genes have a wild-type 

phenotype under normal growth conditions. However, if these mutants are 

exposed to high levels of genotoxic stress, knockouts often show growth 

hypersensitivity relative to wild-type. The DNA damage response is found to be 

permanently activated, with increased incidence of cell death even in the 

absence of genotoxins (Fulcher and Sablowski, 2009). Conversely, little is 

known about NHEJ processes in plants relative to our knowledge of the 

pathways in mammals. Well characterised KU-mediated recruitment of 

polymerases, end-processing accessory factors and even nuclease activities in 

mammals has so far not been translated into a similar characterisation in 

plants. This is due to the fact that many of these factors lack characterised 

homologues in plants, assuming they exist at all (Lieber, 2010). An exception is 

DNA POLYMERASE LAMBDA (POL λ) in Arabidopsis, which are mildly sensitive 

to DNA double strand breaks but defective in integration of a transgene. Double 

ku70 polλ mutants do not exhibit increased sensitivity to single ku70 lines, 

consistent with function through the same repair pathway as KU70 (Furukawa 

et al., 2015).  

The KU70-KU80 complex is a central component of the NHEJ pathway of DSB 

repair. The Ku complex in mammals is able to recognise, with high affinity, 

exposed ends of DNA by virtue of its ring-like structure (Grundy et al., 2014). 

Stabilising and protecting the broken DNA ends from exonuclease-mediated 
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degradation, the Ku complex then recruits the DNA-dependent protein kinase, 

DNA-PKcs, which is activated upon association with DNA. Subsequent 

autophosphorylation and phosphorylation of many other proteins initiates 

downstream end processing and ligation. One target of DNA-PKcs-mediated 

phosphorylation is the ARTEMIS nuclease upon which becomes active and 

opens and trims back DNA creating over-hanging strands in DNA hairpins in 

the preparation of ligation (Lieber, 2010). No homologues of either DNA-PKcs 

or Artemis have been found in yeasts or plants. Instead the Ku complex has 

been shown to interact with the MRX complex and DNA ligase IV to bring about 

NHEJ in Saccharomyces cerevisiae (Lieber, 2010). 

1.5.3.2 Back-up non-homologous end joining pathways 

A highly diverse range of stresses cause DSBs in DNA, as a result there is a 

marked heterogeneity in the DSB structures produced. The NHEJ pathway has 

evolved to process a wide range of repair substrates (Lieber, 2010). In 

mammals many different sub-pathways of NHEJ have been described. 

Flexibility is highlighted by the well-defined classical (or canonical) NHEJ (c-

NHEJ) pathway. This pathway can undergo extensive rounds of enzymatic 

activity which, if unsuccessful, can recruit other repair factors (Lieber, 2010; 

Waterworth et al., 2011). Sub-pathways known as the backup NHEJ pathways 

(B-NHEJ) include alternative end joining (alt-EJ) and microhomology-mediated 

end joining (MMEJ). Alt-EJ and MMEJ are Ku-independent and Arabidopsis ku70 

and ku80 mutants display an increased incidence of these B-NHEJ pathways 

(Heacock et al., 2004). Furthermore MRE11, from the MRN complex, is required 

for MMEJ activity as observed in Arabidopsis ku70 mutants (Heacock et al., 

2004) (Figure 1-8). 
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Figure 1-8 Pathway of the canonical and alternative 
nonhomologous end joining in plants. 

The conserved nonhomologous end-joining (NHEJ) pathway is mediated by the KU70–KU80 
complex, which possesses DNA end-binding activity. The MRE11, RAD50 and NBS1 (MRN) 
complex has double-strand break (DSB) detection, signalling, end-processing and structural 
roles. The DNA ligase activity of the DNA LIGASE 4 (LIG4)–XRCC4 complex seals the 
phosphodiester backbone. End joining can occur in the absence of KU; this repair pathway 
displays greater dependence on microhomologies and requires the presence of either MRE11 
or LIG4. Adapted from (Waterworth et al., 2011) 
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1.6    Responses to DNA damage in plants 

Responses to DNA damage are controlled by two master phosphoinositide-3-

kinase-related protein kinases (PIKKs) in plants.  ATAXIA TELANGIECTASIA 

MUTATED  (ATM) and ATAXIA TELANGIECTASIA AND RAD3 RELATED (ATR) 

have conserved functions in eukaryotes coordinating cell cycle arrest, 

transcriptional responses and chromatin remodelling for subsequent 

progression of the DNA repair pathways (Garcia et al., 2003; Culligan and Britt, 

2008; Drury et al., 2012) (Figure 1-9).  

1.6.1  The role of ATM and ATR 

There is some overlap in the function and responses of ATM and ATR to DNA 

damage, as either is sufficient for the observed down-regulation of a subset of 

transcripts following irradiation. Partial redundancy of ATM and ATR is also 

observed in the meiotic phenotypes of single and double mutants; atr displays 

full fertility, whilst atm shows only 10% that of wild-type, whereas the double 

mutant is completely infertile (Culligan and Britt, 2008). However, ATM is 

predominantly activated by DSBs and activates downstream signalling 

pathways leading to DNA repair, transient arrest of the cell cycle and inhibition 

of DNA replication (Culligan and Britt, 2008). ATR shows stronger activation by 

regions of single-stranded DNA associated with replication defects (Culligan et 

al., 2006). These can occur either spontaneously, after genotoxic stress, UV 

irradiation or hydroxyurea exposure, a chemical that causes DNA replication 

defects by inhibiting the enzyme ribonucleotide reductase, depleting the dNTP 

pool.  

In mammals, ATR and ATM directly and indirectly phosphorylate many 

hundreds of target proteins including the checkpoint associated protein kinases 

Chk1 and Chk2, Nbs1 and the histone 2A isoform H2AX (Matsuoka et al., 2007). 

For a long time, the majority of signalling components downstream of these 

two kinases had remained uncharacterised in plant species. One protein that 

has been shown to be phosphorylated in an ATM-dependant manner is 

SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) [Figure 1–8], a plant-specific 
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transcription factor that plays a central role in the DDR (Yoshiyama et al., 

2009). Interestingly, the characteristics of SOG1 are similar to those of 

mammalian p53, even though the proteins’ amino acid sequences are unrelated 

(Yoshiyama et al., 2014).  Another exception has been the highly conserved 

rapid ATM-dependent phosphorylation of the histone variant H2AX in response 

to DSB (Friesner et al., 2005). Recent phosphoproteomic work in Arabidopsis 

has begun to identify more phosphorylation targets; these include the NHEJ 

factor LIG4 and DNA damage response element MRE11 of either ATM or ATR. 

Other targets include HTA10 and ASK1, involved in meiosis and WAPL, PDS5 

and PCNA1 implicated in DNA replication (Roitinger et al., 2015). In the root 

and shoot meristems of Arabidopsis, ATM is also involved in initiating 

programmed cell death (PCD) to safeguard genome integrity in 

their stem cell populations (Fulcher and Sablowski, 2009). 
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Figure 1-9 ATM/ATR-mediated responses to DSBs  

ATM and ATR are both activated by DNA damage. There is some overlapping function but ATM 
is activated principally by DSBs and ATR has strong activation in response to ssDNA when 
replication at a replication fork is blocked. The ATM/ATR-mediated DNA damage response 
induces a large variety of cellular activities including those shown in this figure. Green arrows 
indicate ATM-mediation plays a major role in eliciting that cellular response. Orange arrows 
represent those in which ATR plays the major role in mediating a response.  Indirect or 
downstream effects are indicated by open arrows and inhibition by a flat ended line. SOG1 is 
involved in many aspects of the ATM/ATR signalling pathways. ATM-dependant 
phosphorylation of histone H2AX aids in the recruitment of DNA repair factors. ATM is 
responsible for most transcriptional changes and regulation of programmed cell death (PCR). 
ATR activates cell cycle checkpoints; one example in plants is the ATR-mediated activation of 
WEE1 a protein kinase which in turn phosphorylates CDKA;1. This phosphorylation inactivates 
CDKA;1 kinase activity required for cell cycle progression leading to arrest. Both ATM and ATR 
activation can cause endocycle induction (Adachi et al., 2011). ATM and ATR are known to 
directly phosphorylate histone H2AX around the sites of DSB damage associated DNA repair 
(Friesner et al., 2005). 
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1.6.2  Transcriptional changes in response to DNA damage 

The transcriptional response of genotoxic stress is integral to the DNA damage 

response of Arabidopsis. The subset of induced transcripts is poorly conserved 

between kingdoms, as such, work in mammalian and yeast systems cannot be 

translated to plants. The major controller of the transcriptional DNA damage 

response is ATM in plants, although ATR does have a minor role in gene 

expression regulation (Culligan et al., 2006). The ATM-mediated transcriptional 

response to DNA damage is highly specific to DSBs (Molinier et al., 2005) and is 

characterised by the substantial up-regulation of hundreds of genes, many 

displaying over a hundred-fold induction after a 100-Gy γ-ray dose. Many of the 

genes up-regulated by ATM and ATR are involved in DNA repair processes, cell 

cycle control and DNA metabolism. These include the homologous 

recombination factor RAD51 and the endonuclease COM1/CtIP, components 

involved in DNA synthesis and the DNA signalling factors RAD17, BREAST 

CANCER ASSOCIATED-GENE 1 (BRCA1) and POLY ADP-RIBOSE POLYMERASE 

(PARP) (Culligan et al., 2006). Interestingly, in Arabidopsis vegetative tissue 

there is little transcriptional change of the NHEJ-associated genes in response 

to DSBs (Culligan et al., 2006). Some genes are down regulated in response to 

DNA damage; including some expressed in G2 and M phase of the cell cycle 

(section 1.6.3).  

1.6.3  DNA damage checkpoints and cell cycle 

The DNA damage response and control of cell cycle progression is closely 

linked to the activation and release of checkpoints, which regulate entry and 

progression through the cell cycle. Plants deficient in checkpoint genes 

progress through the cell cycle in the presence of DNA damage. This ultimately 

leads to hypersensitivity to genotoxins and the suppression of growth. An 

example of this is in atr-deficient Arabidopsis seedlings, which display poor 

growth when treated with hydroxyurea (Culligan et al., 2004).  

In eukaryotes, the core cell cycle machinery is well conserved and controlled by 

complexes of cyclin and cyclin-dependent kinases (CDKs) (Dewitte and Murray, 

2003). Plants contain multiple CDKs, including CDKA;1 that are involved in the 
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regulation of the G1/S transition and G2. CDKA;1 contains regulatory 

phosphorylation sites including at Thr-14 and Tyr-15 which play key roles in 

controlling cell cycle by the activities of protein kinases and phosphatases (Inze 

and De Veylder, 2006). The protein kinase WEE1 controls the phosphorylation 

of CDKA;1 in plants. When exposed to hydroxyurea, wee1-deficient plants fail to 

undergo cell cycle arrest and conversely WEE1 overexpression causes 

phenotypes consistent with permanent activation of cell cycle checkpoints, 

including cell cycle arrest, differentiation of stem cells and resulting shrinkage 

of the meristem (De Schutter et al., 2007). These results collectively point to a 

key role for WEE1-mediated CDKA;1 phosphorylation in the control of the plant 

cell cycle in response to replication stress. However, WEE1 is not required for 

the response to DNA damage or for normal cell cycle progression (Cools et al., 

2011). The nature of DNA damage checkpoints in plants remains to be fully 

elucidated. 

In response to DNA damage, transcripts encoding the G2-associated cyclins and 

cyclin dependent kinases (CDKs) CYCB1;2, CDKB1;2 and CDKB2;1 are down-

regulated within 8 hours of γ-rays. Reduced expression continues for 24 hours 

subsequent to DNA damage (Culligan et al., 2006). The G2/M phase-specific 

CYCB1;1 transcripts exhibits rapid induction within 1 hour of DNA damage in 

an ATM-dependent manner, which peaks around 8 hours, finally reducing by 24 

hours. However, a GUS promoter and partial translational CYCB1;1 fusion 

shows slower kinetics and greater dependence on ATR, inciting differential 

responses between transcript and protein (Culligan et al. 2006). 

1.6.4 Deoxyribonucleotide synthesis for DNA repair and 

cell cycle 

With the notable exception of direct reversal, nearly all DNA repair pathways 

require DNA repair synthesis processes to operate. When single strand breaks 

occur, the repair machinery removes nucleotides around the area of damage 

and fresh deoxyribonucleotides (dNTPs) are required for synthesis of a new 

strand of DNA. In DSB repair new strands of DNA may be synthesised, catalysed 

by DNA polymerases after resection around the double strand break site 



- 47 - 

 

 

(Waterworth et al., 2011). DNA ligases are then responsible for joining the 

newly synthesised oligonucleotide to the 5’ side of resected DNA (Bray et al., 

2008). Synthesis of deoxyribonucleosides and deoxyribonucleotides can occur 

via de novo synthesis or salvage pathways. 

Ribonucleotide reductase (RNR) is an essential enzyme that provides dNTPs for 

synthesis of DNA via the de novo pathway. RNR proteins comprise two large 

(R1) and two small (R2) subunits, which form the protein that catalyses a rate-

limiting step in DNA precursor synthesis (Kolberg et al., 2004). The R2 subunit 

houses the di-iron tyrosyl radical cofactor essential for the reduction of 

ribonucleotide diphosphates (NDPs) to deoxyribonucleosides (dNDPs). 

Hydroxyurea is a well-known chemotherapeutic drug that reversibly binds to 

and inhibits the R2 subunit by acting as a scavenger of the tyrosyl free radical. 

The R1 subunit is responsible for binding of the nucleoside diphosphate 

substrates along with allosteric effectors and is the target feedback regulation 

to ensure appropriate production levels of dNTPs, ensuring adequate NDP units 

are left for RNA synthesis (Elledge et al., 1992; Kolberg et al., 2004). Studies in 

yeast and mammals have shown that defective RNR often led to cell cycle 

arrest, growth retardation, and in mammals, p53-dependent apoptosis, 

whereas abnormally increased RNR activities leads to higher mutation rates 

(Elledge et al., 1992; Chabes et al., 2003). Three R2 genes in Arabidopsis have 

been characterised; RNR2A, RNR2B and TSO2.  The expression of TSO2 is 

increased proportionally upon exposure to DNA damaging agents and is part of 

the DNA damage transcriptional response. Further to this, tso2 rnr2a double 

mutants are found to be more sensitive to UV-C light with seedlings exhibiting 

increased DNA damage when compared to wild-type (Wang and Liu, 2006; Roa 

et al., 2009).  

A second pathway exists to supply the cell with nucleic acid precursors. This 

salvage pathway is controlled by deoxyribonucleoside kinases (dNKs) which 

phosphorylate deoxyribonucleosides into the corresponding 5'-

monophosphate deoxyribonucleosides.  These enzymes are well characterised 

in eukaryotes from unicellular organisms to insects and mammals, but 
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interestingly these enzymes are not present in yeast and other fungi. Different 

kinases are found in different organisms, in Dictyostelium discoideum, an 

amoeba, three dNKs are found: deoxyguanosine kinase, deoxyadenosine kinase 

and thymidine kinase 1 (TK1) (Sandrini et al., 2007). In the fruit fly, Drosophila 

melanogaster, one gene has been identified that encodes a multi-substrate 

enzyme that has four dNK activities (Munch-Petersen et al., 1998), whilst 

humans have four different dNKs genes: TK1, deoxycytidine kinase (dCK), 

thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) (Eriksson et al., 

2002). In recent years two TK1-like proteins: TK1a and TK1b and a further dNK 

gene with deoxyadenosine, deoxyguanosine and deoxycytidine kinase activities 

have been characterised in Arabidopsis (Clausen et al., 2012). It was thought 

that TK1a and TK1b have redundant roles, but recent work has shown TK1a 

transcription is up-regulated in response to UV-C irradiation, whilst TK1b 

remains unaffected. This suggests a specific role for TK1a in responding to DNA 

damage. Further to this TK1a over-expression lines in Arabidopsis demonstrate 

an decreased tolerance to DSBs, as shown by hypersensitivity to MMC and 

zeocin, a DNA intercalator which induces DNA DSBs (Pedroza-García et al., 

2014). 
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1.7    DNA damage and repair in seeds  

In plants, genomic integrity is preserved through the co-ordinated action of 

different DNA repair pathways. Understanding of DNA repair mechanisms in 

planta has dramatically increased in recent years with increased attention 

toward the molecular responses induced by environmental stresses (Kimura 

and Sakaguchi, 2006; Waterworth et al., 2011). However, the networks of DNA 

damage sensing and response functions have been only partially elucidated in 

plants. 

In orthodox seeds, metabolism virtually ceases in the quiescent embryo and the 

low activity of cellular maintenance pathways, including DNA repair, results in 

a decline in seed viability during storage. In addition, dehydration, dry storage 

and subsequent water imbibition upon germination of the seed are associated 

with high levels of oxidative stress and significant damage to the integrity of the 

genome of the embryo of the seed. The latter are especially true if seeds are 

stored under unfavourable conditions such as high temperatures and moisture 

contents. By identifying important DNA repair components in seed germination 

potential targets may be uncovered for the generation of crops with improved 

seed storability and germination capacity. However, most of our current 

understanding of plant DNA repair has originated from studies using non-

physiological stresses. 

A number of pre-genomic era studies established a correlation between seed 

ageing and accumulation of DNA damage. The integrity of DNA was shown to be 

decreased in seed lots of lower viability (Cheah and Osborne, 1978b), and low 

quality seeds were more likely to produce abnormal seedlings than seeds of 

high quality (Roberts, 1972a). Deterioration of DNA quality in aged seeds was 

observed in rye embryos. The integrity of DNA was shown to be decreased in 

seed lots with lower viability (Cheah and Osborne, 1978b).  Similarly in barley, 

broad beans and peas during storage there is a strong correlation between the 

loss of viability of seeds in storage, chromosomal breakages and the incidence 

of aberrant chromosomes (Abdalla and Roberts, 1969). Even in high-quality 
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seeds there are background levels of DSBs and ‘there is no threshold level of 

viability before chromosomal aberrations occur’ (Dourado and Roberts, 1984).  

 The genomic revolution has allowed study of individual pathways by enabling 

the production of single gene knock outs and in recent years this has allowed 

further elucidation of the major DNA repair pathways. The different DNA repair 

pathways play specific roles which are important to ensure genome stability. 

However, little is known about the roles of each pathway with regards to seed 

germination. 

1.7.1  DNA double strand break repair 

The correlation between low quality seeds and DNA damage (Roberts, 1972b) 

suggests DNA repair pathways play an integral role in germination and in the 

longevity of stored seeds. Specific genes and pathways have been identified in 

these DNA repair processes which are important in maintaining high quality 

seeds.  

Consistent with the observation that DSBs occur in high quality seeds during 

germination (Dourado and Roberts, 1984), unaged Arabidopsis seeds display 

increased transcriptional regulation of DSB-associated genes in the earliest 

stages of germination [Figure 1-10], coincident with DSB DNA repair synthesis 

(section 1.7.4.3) (Waterworth et al., 2010).  

1.7.1.1 Homologous Recombination 

Very little work has been reported linking HR to seed quality.  When the RAD51 

homologue in maize was knocked-out, germination was delayed by 3 to 4 days 

after irradiation treatment and seedlings did not survive past 2 weeks whilst 

wild-type siblings survived to develop into apparently healthy seedlings (Li et 

al., 2007a). 

1.7.1.2 Non-homologous end joining 

NHEJ is important in the repair of DSBs during germination with irradiated 

ku70 and lig4 deficient seeds germinating more slowly than wild-type (Friesner 

and Britt, 2003). Work in Arabidopsis using lig4 and lig6 mutants importantly 

demonstrated the first molecular link between DNA damage and seed quality. 
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LIG6 is a DNA ligase unique to plants and is important for germination and 

viability, especially in aged seeds (Waterworth et al. 2010). LIG4 is involved in 

the NHEJ pathway (section 1.5.3) and also involved in maintaining seed quality. 

Accelerated ageing procedures reduce both germination vigour and the 

viability in lig6 lig4 double mutant seed lines, these are more severely affected 

by accelerated ageing protocols than the single lig4 and lig6 mutant lines 

(Waterworth et al., 2010). This suggests that these two ligases function in 

distinct repair pathways to remove DNA damage in seeds early in imbibition, 

possibly through the classical NHEJ (LIG4) and an alternative NHEJ pathway 

(LIG6).  

1.7.1.3 DNA double strand break transcriptional response 

In Arabidopsis, transcription of genes involved in the DNA damage response are 

significantly up-regulated by the presence of DSBs (section 1.6.2). Within 3 

hours of imbibition, DNA damage response genes are also up regulated, these 

include PARP2, RAD51, TK1a, TSO2 and XRI1 [Figure 1-10]. After an initial steep 

rise in transcript levels, they begin and continue to fall as germination 

continues. Transcript levels then sharply increase nearer to the completion of 

germination with the subsequent synthesis of DNA related to cell cycle 

progression (Waterworth et al., 2010).  
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Figure 1-10 Activation of the double‐strand break (DSB) 
transcriptional response in imbibed seeds.  

Transient transcriptional activation of DSB‐responsive genes during imbibition between 0 and 
24 hours. This graph demonstrates that DSB detection is occurring very early with transcripts 
sharply rising and peaking at 3 hours post seed imbibition.  Adapted from (Waterworth et al., 
2010).  

 

Work in the legume, Medicago truncatula, has also shown that the expression 

profile of some genes related to DNA repair is up-regulated when seeds were 

imbibed with PEG6000, these include MtTDP1 (tyrosyl-DNA 

phosphodiesterase), MtTOP1 (DNA topoisomerase I), MtTFIIS (transcription 

elongation factor II-S) and MtTFIIS-like (Balestrazzi et al., 2011a). 

The activation of the DSB transcriptional response during seed imbibition 

significantly demonstrates that even seeds regarded as high quality have 

accumulated high levels of genotoxic stress not normally encountered in the 

plant lifecycle. Importantly, this also identifies physiological roles for DSB 

repair and damage response pathways in plants. 

1.7.2  Single strand break repair  

A number of pre-genomic era studies established that further to DSBs, there is a 

correlation between damage to DNA bases and seed quality. In aged rye seeds, 

loss of viability is associated with an accumulation of SSBs (Cheah and Osborne, 

1978b). In solution, DNA is naturally unstable in solution, so orthodox seeds 

having undergone desiccation often some increased stability to the genome. 

Work in 2 year old maize kernel demonstrated that base damage to seeds 

continues to be accumulated during storage when in the dry state but is 6-fold 

less than the levels of damage observed in solubilised DNA. Upon seed 

imbibition a 4-fold increase in the number of abasic sites from the dry state is 

also observed in maize kernels (Dandoy et al., 1987).  It is hypothesised that the 

rapid increase in these sites is due to the function of intermediate DNA damage 

repair steps in which DNA glycosylases excise damaged bases as part of the 

BER pathway (section 1.4.3). The up-regulation of genes involved in the repair 

of oxidative damage upon hydration of an orthodox seed has been observed in 
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both Arabidopsis and Medicoago truncatula. This is consistent with a model 

whereby imbibition is associated with substantial levels of oxidative damage to 

the genome of the seed (Bailly, 2004). 

1.7.2.1 Base excision repair 

Among all the DNA lesions induced by ROS, 8-oxoG is particularly common and 

mutagenic (section 1.3.3). It is a result of ROS-induced hydroxylation of the C-8 

position of guanine (Kasai and Nishimura, 1984), which has been shown to 

significantly increase in seeds during ageing and imbibition (Chen et al., 2012). 

BER is the major repair pathway to remove 8-oxoG damage (Kimura and 

Sakaguchi, 2006)  and is of potential importance in seed vigour. Work in 

Arabidopsis has demonstrated the over-expression of a BER component, OGG1, 

enhances seed longevity and abiotic stress tolerance (Chen et al., 2012). 

Arabidopsis seeds deficient in arp show increased sensitivity to accelerated 

ageing (Cordoba-Canero et al., 2014), supporting the importance of BER in 

maintaining high germination vigour and viability.  

1.7.2.2 Nucleotide excision repair 

NER is a very versatile DNA repair system composed of two distinct sub-

pathways acting on transcriptionally active (Transcription Coupled-Nucleotide 

Excision Repair (TC-NER)) or inactive DNA respectively (Global Genome-

Nucleotide Excision Repair (GG-NER)) (Le May et al., 2010). In Arabidopsis, NER 

is based on damage recognition, incision of the damaged site and release of the 

oligonucleotide that harbours the lesion (Hays, 2002; Hefner et al., 2003). New 

nucleotides are then used to synthesise and replace the removed strand of 

ssDNA (Hays, 2002). The NER associated genes MtTop1α and MtTop1β in M. 

truncatula are up-regulated in seed (Macovei et al., 2010) suggesting a role of 

NER in germination. 

  



- 54 - 

 

 

1.8 Reverse genetics in the study of plant DNA 

repair 

Reverse genetics is the process of studying the phenotypic effect of a mutation 

in a specific gene as opposed to the classical forward method of identifying 

mutated genes underlying an already characterised phenotype. Several 

mutagenized Arabidopsis populations have now been generated using 

Agrobacteria-mediated T-DNA insertions (Sussman et al., 2000; Brunaud et al., 

2002; Sessions et al., 2002; Alonso et al., 2003; Rosso et al., 2003).  

Many thousands of these Arabidopsis T-DNA lines are easily identifiable with 

the use of databases which link the flanking sequence tags of the T-DNA with 

the position in the genome. Mutant lines are identifiable using the SIGNAL 

flanking sequence tag database. SIGNAL is the most comprehensive database of 

T-DNA lines, recording over 360 000 insertion sites covering approximately 90 

% of all Arabidopsis genes (Li et al., 2007b). The number of genes without T-

DNA insertion alleles available may, in part, be explained by the low probability 

of generating complete coverage of all coding regions given the number of lines 

available (Alonso et al., 2003). In addition, although T-DNA insertion is 

generally considered random, with possibly a small amount of micro-homology 

between the T-DNA border sequence and genomic DNA at the site of 

incorporation, the integration of T-DNA insertion mutant libraries indicated a 

preference for T-DNA into A/T-rich regions of chromosomes (Brunaud et al., 

2002). Other research has shown that T-DNA shows specificity for the 

euchromatic regions with proportionately fewer T-DNA insertions in 

centromeric regions of the genome (Alonso et al., 2003). This apparent 

specificity may be an artefact of the mutant selection process, whereby the 

selection of the transformed lines is biased towards those in which expression 

of the selectable marker is favoured (Kim et al., 2007).  

Functional analysis and gene identification using Arabidopsis as a model has 

been greatly accelerated since the advent of such readily available mutant lines 

and has underpinned it as an important model organism in plant sciences.   
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1.9    Summary and aims 

Despite its importance to agriculture, relatively little is known about the 

molecular basis of seed quality. A number of pre-genomic era studies 

established a correlation between seed vigour/longevity and accumulation of 

genomic damage, but comparatively little work to date has investigated the 

molecular basis of this.  

The objective of this study was to identify molecular components of DNA repair 

pathways important to seed longevity and vigour. The importance of different 

repair pathways and their effect on seed vigour and longevity was elucidated 

through the isolation and analysis of knockout mutants. These studies 

investigate and compare the roles of four major DNA repair pathways in seed 

germination and seed quality: NHEJ, HR, BER and NER. Identifying and 

characterising genes whose action is required following imbibition, will provide 

a better understanding of the early events central to the germination process.  

Studies undertaken to understand the operation of DNA repair pathways in 

plants have largely been confined to identifying mammalian and yeast 

homologues. The unique DNA ligase 6, specific to higher plants remains largely 

uncharacterised but is known to have important roles in seed longevity.  

Further studies will focus on elucidation of the roles of DNA ligase 6 in planta. 

Extra-chromosomal recombination assays will provide insights into the roles of 

DNA ligase 6 in plant recombination activities. Assays to identify PCD events 

will define the roles of DNA ligase 6 in preferential PCD in root meristem cells 

in response to genotoxic stress. 

An additional aspect of these studies is that most of our understanding of plant 

DNA repair mechanisms arises from studies in which plants are artificially 

subjected to irradiation, radiomimetic compounds and other DNA damaging 

agents. As these genotoxic stresses are not normally encountered in the plant 

lifecycle, they are not necessarily physiologically relevant. Further elucidation 

of the roles plant DNA repair pathways in the orthodox seed will provide an 

increased understanding of their physiological importance. 
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2. Materials and Methods  
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2.  Materials and methods 

2.1    Suppliers 

Unless otherwise stated chemicals were obtained from: - 

Sigma Aldrich, Poole, UK 

2.2    Equipment 

Centrifugation of 0.5, 1.5 and 2 ml microcentrifuge tubes used a minispin 

(Eppendorf) microcentrifuge at 20238 rcf (14680 rpm) at room temperature 

unless otherwise stated. 15 and 30 ml Falcon tubes (BD Biosciences) were 

centrifuged using the 5810R centrifuge with the A4-62 rotor. A Beckman Avanti 

(J-25) refrigerated centrifuge with rotor JLA 16.250 was used for large-scale 

centrifugation steps in 250 ml tubes (Fisher Scientific). 

Polymerase chain reaction (PCR) was performed in the thermocycler machine 

Mastercycler (Eppendorf). Electrophoresis was performed using a mini subcell 

electrophoresis tank (BioRad) with a basic BioRad power pack. Solutions and 

equipment was sterilised using a Radwell Herald autoclave at 121 °C for 20 

minutes. Bacterial densities were determined using Biophotometer 

spectrophotometer (Eppendorf). Nucleic acid concentrations and purity were 

determined using a ND-1000 spectrophotometer (Nanodrop) with ND-1000 

software. 
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2.3    Plant material 

Seed stocks of mutagenized lines of Arabidopsis thaliana (hereby referred to as 

Arabidopsis) were obtained from The Nottingham Arabidopsis Stock Centre 

(NASC) (http://Arabidopsis.info/) (Scholl et al., 2000) or, if published, from the 

authors as detailed in table 2.1.  

Table 2.1 List of stocks used in this study 

Line Gene/ 

 AGI code 

Accession  

Number 

Reference/ 

Stock Centre 

Col-0 N/A N1092 NASC 

lig4-5 AT5G57160 SALK_095962 (Waterworth et al., 2010) 

lig6-1 AT1G66730 SALK_079499 (Waterworth et al., 2010) 

ercc1-1 AT3G05210 SALK_033397 (Charbonnel et al., 2010) 

ku70-1 AT1G16970 SALK_123114 (Heacock et al., 2004) 

ku80-3 AT1G48050 SAIL_714_A04 National Arabidopsis stock 

centre 

xrcc2-1 AT5G64520 SALK_029106 (Bleuyard et al., 2005) 

arp-1 AT2G41460 SALK_021478 (Córdoba-Cañero et al., 2011) 

 

 

  

http://arabidopsis.info/
http://www.arabidopsis.org/servlets/TairObject?id=30764&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=28833&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=134741&type=locus
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2.3.1 Isolation of Single T-DNA insertion knock-out 

mutants 

The mutant lines studied were in a background ecotype of Columbia (Col-0) 

with T-DNA insertion lines obtained from SALK (Alonso et al., 2003), SAIL 

(Sessions et al., 2002) or GABI (Kleinboelting et al., 2012). PCR based 

genotyping was used to isolate homozygous single mutants (section 2.7.1) 

using two week old seedlings grown on half MS media (section 2.4.4), Primer 

pairs used, were designed to the wild-type allele and T-DNA insertion allele for 

each gene [Table 2.2]. Isolated homozygous mutants were moved to soil to set 

seeds (section 2.4.5). 
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Table 2.2 List of primers 

Primer Sequence 

actin7_f 5'-ACATCGTTCTCAGTGGTGGT-3' 

actin7_r 5'-GCTGAGGGATGCAAGGATT-3' 

arp_tdna 5'-CGAGAAAAAGGCATGAACTTG-3' 

arp_wt 5'-GCTGCAGGACCAGAAACTAT-3' 

ercc1_tdna 5'-TTTCACCGTATCTTCCTGTGC-3' 

ercc1_wt 5'-CAAGTCGTCCGACGTCTACTC-3' 

ku70_tdna 5'-CTCTTGGCAAGTACACGCTTC-3 

ku70_wt 5'-TTACTTTGTTGTTTCGGGTGC-3' 

ku80_f 5'-GATTGTTGCGGGATAAACCA-3' 

ku80_r 5'-ATCGCGTTGCTGGAGAATAA -3' 

ku80_tdna 5'-AGAGAGTTCAGGGTCCTGCTC-3’ 

ku80_wt 5'-AGTGGCTGAGGAGAGACTTCC-3' 

lig4_tdna 5'-TTTGTTGTTTGAGGATCCGAC-3 

lig4_wt 5'-AAAGCCCTAAGGTCTTCATGG-3' 

lig6_tdna 5'-GCAAGGATCTTATCCTCCGAG-3 

lig6_wt 5'-GTTGGCTCTTCCCCTCCGTGAGAGAC-3' 

SAIL_LB1  5’-GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC-3’ 

SALK_LBb1.3 5'-ATTTTGCCGATTTCGGAAC-3' 

xrcc2_tdna 5'-ATCATCATTGGCATTGGAGAC-3 

xrcc2_wt 5'-TTTACATCTGGCGATTTTTGC-3 
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2.3.2 Crossing of Arabidopsis to produce double knock-

out mutants 

Double mutants were produced using two different single T-DNA insertion 

plants and crossing these (called the F0 generation). For most efficient 

crossings, plants at a stage when they have developed 5-6 inflorescences and 

plants that had started to form siliques were chosen. Mature siliques as well as 

open flowers and buds that have already a white tip were first removed from 

the first plant as well as open mature buds. Using a pair of Jewelers forceps (5 

Inox, Dumont, Switzerland), unopened flower buds were opened by inserting 

the tip of one pair of forceps between petals and sepals and all immature 

anthers were removed. From the other plant, mature flowers with visible 

pollen shedding from the anther were taken intact and the anther was rubbed 

against the stigma of the mother plant to cover it with pollen grains. Pollinated 

inflorescences were loosely wrapped in cellophane and red tape to cover and 

mark the cross. Siliques with hybrid seeds were left to mature for 15-25 days at 

which point seeds were collected. 

2.3.3 Isolation of Double T-DNA insertion knock-out 

mutants 

Hybrid seeds were sown and grown under normal conditions (F1 generation) 

(section 2.4). These hybrid seeds were heterozygous for the T-DNA insertions 

inherited from the parental lines. To confirm this, PCR based genotyping was 

performed (2.7.1) and heterozygous mutants for both genes were allowed to 

self-fertilise and mature seeds were collected.  These seeds were sown and 

grown under normal conditions to produce the F2 generation of plants, under 

Mendelian inheritance one in sixteen plants of the F2 generation were 

homozygous double mutants. To identify homozygous double mutants PCR 

based genotyping was performed and these were allowed to set seed to ensure 

a renewable stock. 
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2.4     Plant Growth Conditions 

2.4.1  Seed sterilisation and imbibition  

Materials 

Sterilisation solution:  10% (v/v) Bleach (5-10% hypocholorite) 

     1% (v/v) Triton-X100 

 Agar media:    0.1% (w/v) Phyto agar (Duchefa Biochemie) 

(Agar media was autoclaved and allowed to 

cool to room temperature before initial 

usage).  

Method 

Arabidopsis seeds were suspended in sterilising solution 1.5 ml sterile 

microcentrifuge tubes for 10 minutes. The seeds were washed five times in 

sdH2O and finally in tissue culture. 

2.4.2  Chlorine gas seed surface sterilisation 

Materials 

Gas sterilisation solution;  100 ml bleach (5-10% hypocholorite) 

     3 ml concentrated HCl 

Method 

 Arabidopsis seeds were placed in open microcentrifuge tubes in a sealed 

desiccator (Nalgene) under a fume cupboard (pf&f Ltd). Chlorine gas was 

produced by mixing 3ml HCl with 100 ml bleach under the fume cupboard and 

leaving the solution in the sealed desiccator with the seeds for 3 hours. 
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2.4.3  Antibiotics  

Antibiotic stock solutions and working concentrations are listed in Table 2.3 

Table 2.3 Antibiotics used in this study 

Antibiotic Stock Concentration in 

sdH2O 

Working  

Concentration 

Ampicillin 50 mg ml-1 50 µg ml-1 

 

2.4.4  Plant tissue culture  

Materials 

Murashige and Skoog media : 2.2 g l-1 Murashige and Skoog basal medium 

(pH 5.7)    1% sucrose 

     0.8% Phyto agar (for agar plates) 

Method 

Arabidopsis plants were germinated and grown under sterile tissue culture 

conditions on a half concentration of Murashige and Skoog media (½ MS) plus 

1% sucrose (Murashige and Skoog, 1962). The media was adjusted to pH 5.7 

with KOH before adding Phyto agar. Media was autoclaved allowed to cool to 

55°C before the appropriate antibiotic/herbicide were added, then poured into 

9 cm diameter Petri dishes (Starstedt) and allowed to set. Sterilised Arabidopsis 

seeds (section 2.3) were spread on ½ MS plates under sterile conditions at a 

typical density of approximately 50 seeds per plate. Plates were sealed with 

Micropore tape (3M) and the plants grown in a light chamber (MLR-351, 

http://uk.sanyo.com) unless otherwise stated under a 16 hour photoperiod, 

70% humidity at 23 oC. For growth beyond 2 weeks seedlings were transferred 

to soil.  
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2.4.5  Plant growth on soil 

Materials 

SHL Growing medium (William Sinclair Horticulture): 

     15% peat 0-5 mm 

     85% peat 0-10 mm 

     204 g m-3 N 

     238 g m-3 P2O5 

     408 g m-3 K2O (pH 6.0) 

Method 

Plants grown beyond 2 weeks were transferred to soil (SHL growing medium). 

The seedlings were carefully removed from the plates and grown in 

temperature controlled glasshouses 22 °C, 16 hour photoperiod (long-day 

conditions). 
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2.5 Seed production, Seed treatments and 

Germination assays 

2.5.1  Production of seeds 

Seeds were produced and given post-after ripening treatments as required in 

the following manner. 

2.5.1.1 High quality and non-dormant seeds 

Method 

To ensure seeds where of high quality and non-dormant dry mature seeds were 

harvested from mutant and wild-type plants grown simultaneously as 

previously described (section 2.4). Seeds from mutant and wild-type plants 

were produced in the same growth cycle. Seeds were stored in non-airtight 6 

ml universal tubes at ambient temperature and humidity. Seeds were left to 

after-ripened for 2 months prior use to release seeds from dormancy (Finch-

Savage and Leubner-Metzger, 2006). 

2.5.1.2 Dormant seeds 

Method 

Plants were grown in tissue culture for 2 weeks and moved to soil, the 

seedlings were carefully removed from the plates and grown in growth 

chambers in long day conditions at 15°C. Plants were grown until siliques were 

mature and harvested. Seeds were not allowed to after ripen by storage at -80 

°C until seeds were required.  

2.5.2  Germination assays 

Method 

Seeds were sown on Blue Blotter Germination Paper (SGB1924B, 

http://www.anchorpaper.com) in 90mm petri dishes (Sarstedt) with 7.5 ml 

dH2O without prior surface sterilisation. Seeds were stratified at 4 °C for 48 

hours before being moving them to a growth chamber as previously described 

(section 2.4.4). Seeds were scored for germination, defined here by emergence 

http://www.anchorpaper.com/
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of the radicle from the seed coat (Bewley, 1997), using a stereomicroscope to 

monitor radicle protrusion. Observations of germination were taken hourly or 

daily intervals, as appropriate. Independent biological replicates were 

performed with different harvests of the wild-type and mutant lines for 

verification of results. 

To allow an easy comparison of germination kinetics of each mutant line has 

been plotted independently with wild-type (Figure 3a-e). The mean time to 

germination (MTG) is a good measure of seed vigour and is a measure of the 

average time it will take a seed in a seed lot to germinate upon imbibition 

(Ranal and Santana, 2006).  

2.5.3  Accelerated Ageing of seeds 

Method 

Seed ageing was performed on high quality non-dormant seeds as previously 

described for Arabidopsis by (Hays, 2002), at a temperature of 40 °C with a 

relative seed moisture content of 10.8%. Several hundred (~200 mg) seeds of 

each line were each placed in Eppendorf tubes with the lid removed and 

suspended over a saturated solution of KCl (50 g KCl in 100 ml H2O) on an open 

platform in an air-tight container. The box was placed in a dark incubator at 40 

°C for 2 or 4 days. After ageing, the seeds were plated directly on Blue Blotter 

Germination Paper. The seeds were weighed before and after oven drying at 

100 °C for 72 hours to determine moisture loss. The relative moisture content 

was expressed as a percentage of the fresh weight. Germination assays were 

then performed (section 2.5.2). 

2.5.4 X-ray treatment of seeds and effects on germination 

and root growth 

Method 

Seeds were sterilised in 70% ethanol for 5 min, and resuspended in sterile H2O 

and stratified at 4 °C for 24 hours. IR treatments of 75 and 130 Gy were 

delivered using a 320 kV X-ray irradiation system (NDT Equipment Services) at 

a rate of 1 Gy min-1. Seeds were plated individually on half MS agar plus 1 % 
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sucrose in 90 mm petri dishes (Sarstadt) grown (section 2.4.4).  Plates were 

then placed upright in a growth chamber and seeds were scored for 

germination daily (section 2.5.2), after germination has occurred the length of 

root growth is measured daily to determine effects of root growth. 

2.5.5 GA/Fluridone solution for dormancy-breaking 

treatment of seeds 

Dormancy-breaking treatment was used to determine seeds were dormant or 

non-dormant (Bentsink et al., 2006). 

Materials 

Citrate/phosphate solution (pH5): 

     3.3 mM K2HPO4·3H2O 

     1.7 mM Citric acid 

Gibberellic acid (GA4+7, a mixture of GA4 and GA7 at a ratio of 2:1): 

     100 µM GA4+7 (Duchefa Biochemie) 

1 M KOH 

50 µM Fluridone (Duchefa Biochemie) 

DMSO 

Method 

To prepare the GA/Fluridone solution, 8.3 mg GA4+7 was dissolved in 200 µl 1 M 

KOH and 4.1 mg Fluridone was dissolved in 1 ml DMSO. These were added to 

250 ml Citrate/phosphate solution. Seeds were plated on Blue Blotter 

Germination Paper with 7.5 ml GA/Fluridone solution and stratified at 4 °C for 

48 hours before moving into a growth chamber. Observations of germination 

were taken at hourly or daily intervals, as appropriate. Controls were 

performed with H2O instead of the GA/Fluridone solution. 
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2.5.6 Cold stress treatment of seeds and effects on 

germination  

Cold-stress treatment was used to determine seed vigour of different seed lots 

Method 

Seeds were imbibed and incubated at 5 °C for 10 days after which seeds were 

scored for germination. Seeds were then moved to normal conditions (section 

2.5.2) and germination was scored daily thereafter. 

 

2.5.7 Osmopriming treatment of seeds and effects on 

germination 

Materials 

PEG 6000 solution 

Method 

Osmoprimed seeds were prepared by incubating dry mature seeds in the dark, 

for 5 days at 20 °C, in a −0.75 MPa PEG 6000 solution (2.42 g in 10 ml H2O). 

Seeds were then washed in H2O before being left in the dark on germination 

paper for 48 hours at ambient temperature to dry out. Primed seeds (n = 25) 

were then plated, stratified and germinated as previously reported in triplicate. 
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2.6 Genomic DNA extraction from seed and leaf 

material  

2.6.1 DNA extraction from leaf material for PCR-based 

genotyping 

Material 

Extraction buffer:   100 mM Tris-HCl (pH 9.0) 

     200 mM LiCl 

     50 mM EDTA 

     1 % SDS 

10 x T.E. buffer:   100 mM Tris-Cl (pH 8.0) 

     10 mM EDTA (pH 8.0) 

Absolute isopropanol 

Method 

Between 10 mg – 500 mg leaf material was ground in 1.5 ml microcentrifuge 

tube containing 500 µl of extraction buffer. The tube was centrifuged (5 

minutes, 13 000 rpm) at room temperature after which 350 µl of the 

supernatant was transferred to a fresh 1.5 ml microcentrifuge containing 350 

µl isopropanol. After mixing by inversion, the tube was centrifuged (10 

minutes, 13 000 rpm). The supernatant was removed and the pellet was air 

dried before re-suspension in 100 µl T.E. buffer. 
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2.6.2 CTAB based Genomic DNA extraction from seed 

material for gel electrophoresis 

 

Material 

CTAB buffer: 2% (w/v) Cetyl trimethylammonium 

bromide 

     2 M LiCl 

     20 mM EDTA 

     100 mM Tris-HCl pH 9.4 

     1 % (w/v) Polyvinylpyrrolidone 

     0.2 % (v/v) β-mercaptoethanol 

Absolute Isopropanol 

70 % ethanol 

Resuspension buffer:  20 mM EDTA 

     100 mM Tris-HCL pH8.0 

     250 mM NaCl 

T.E. buffer:    10 mM Tris-HCl (pH 8.0) 

     1 mM EDTA (pH8.0) 

RNase A (10 mg ml-1 E.C. 3.127.5) 

Absolute ethanol 

Materials: 

Seed material (500 mg) was ground to a fine powder in in liquid nitrogen with 

a pestle and mortar and placed in a 15 ml falcon tube before 6 ml of preheated 

(60 ° C) CTAB buffer was added. The tube contents was gently mixed and 

incubated at 60 ° C for 30 minutes.  A chloroform extraction was then 

performed by added equal volumes of chloroform: isoamyl alcohol (24:1) to the 
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seed/CTAB buffer mixture followed by centrifugation (3000 rpm, 10 minutes).  

The aqueous phase (CTAB buffer) was moved into a new falcon tube and the 

chloroform extraction was repeated. The aqueous phase was recovered and 4.2 

ml absolute isopropanol was added to precipitate genomic DNA. The 

precipitate was recovered by centrifugation (3000 rpm, 5 minutes). The 

supernatant was removed and the pellet was washed in 10 ml 70 % ethanol. 

The ethanol was discarded and the pellet air dried (5 minutes).  The pellet was 

resuspended in 650 µl resuspension buffer containing RNase A (10 µg ml-1) and 

transferred to a 1.5 ml microcentrifuge tube then incubated at 37 °C 

(30minutes). A chloroform extraction was again performed as before using 

equal volumes chloroform: isoamyl alcohol (24:1) to Resuspension buffer. The 

supernatant was transferred to a new microcentrifuge tube and 100 µl absolute 

ethanol was added drop by drop to a final concentration of 15% to precipitate 

carbohydrate contaminants. The tubes were incubated on ice for 30 minutes 

before centrifugation (14 000 rpm, 5 minutes). The supernatant was recovered, 

650 µl absolute isopropanol was added to precipitate the DNA and 

centrifugation was performed (14 000 rpm, 5 minutes) and the supernatant 

was discarded, retaining the pellet. The pellet was washed in 1 ml 70 % ethanol 

and spun (14 000 rpm, 1 minute). The ethanol was discarded and the pellet air 

dried then resuspended in 75 µl T.E. buffer. ND-1000 spectrophotometer 

(Nanodrop) with ND-1000 software was used to determine the concentration 

and purity of genomic DNA. 
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2.7 DNA amplification by Polymerase Chain 

Reaction 

Polymerase chain reaction (PCR) amplification of DNA fragments were 

conducted using particular DNA polymerase(s) depending on the application. 

Thermus aquatcus Taq DNA polymerase (REDTaq, Thermo Scientific or GoTaq, 

Promega) was used for all routine DNA amplifications and semi-quantitative 

DNA amplification. 

2.7.1 DNA amplification by PCR 

Materials: 

ReddyMix PCR Reaction Mix, Thermo Scientific. (final 1 x reaction):  

75 mM Tris-HCl (pH 8.8) 

20 mM (NH4)2SO4 

2.0 mM MgCl2 

0.01 % (v/v) Tween® 20 

dNTP mix (dATP, dCTP, dGTP and dTTP, 0.2 

mM each) 

0.625 U µl-1 ThermoPrime Taq DNA 

polymerase 

Precipitant and red dye 
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GoTaq® Green Master Mix, Promega. (2 x reaction): 

     2 x Green GoTaq® Reaction Buffer (pH 8.5) 

3 mM MgCl2. 

dNTP mix (dATP, dCTP, dGTP and dTTP, 0.4 

mM each) 

     50 U ml-1 Taq DNA polymerase 

Oligonucleotide primers (Invitrogen and 

Integrated DNA Technologies,) 10 µM  

T.E. buffer (section 2.6) 

Method 

Oligonucleotide primers were typically designed to have between 20 - 25 bp 

complementary to the target sequence to be amplified. A 100 µM stock of each 

oligonucleotide primer was made with T.E. from which a 50 x (10 µM) solution 

was made in sdH2O. PCR reactions using REDTaq and GreenTaq pre-mixes used 

the 1.1 x and 2 x master mixes at a 1 x final concentration. All PCR reaction 

contained a final concentration of 0.5 µM of forward and reverse 

oligonucleotide primer and typically 50 – 500 ng templates DNA. PCR reactions 

were performed in 0.2 ml PCR tubes with the final volume of the reaction mix 

made up to 20 µl or 50 µl with sdH2O. Reactions were run in a thermocycler 

(section 2.2) using the programs described below. 

2.7.2  PCR programs 

Unless otherwise indicated the following PCR programs were used which 

depended on the primer pair Tm and PCR product length: Taq50TD 
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97 °C  1 minute 

97 °C  30 seconds 

55 °C  30 seconds -0.5 °C/cycle  10 cycles 

72 °C  1 minute 

97 °C  30 seconds 

50 °C  30 seconds    35 cycles 

72 °C  1 minute 

72 °C  5 minutes 

Taq52TD 

97 °C  1 minute 

97 °C  30 seconds 

57 °C  30 seconds -0.5 °C/cycle  10 cycles 

72 °C  1 minute 

97 °C  30 seconds 

52 °C  30 seconds    35 cycles 

72 °C  1 minute 

72 °C  5 minutes 
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Taq55TD 

97 °C  1 minute 

97 °C  30 seconds 

60 °C  30 seconds -0.5 °C/cycle  10 cycles 

72 °C  1 minute 

97 °C  30 seconds 

66 °C  30 seconds    35 cycles 

72 °C  1 minute 

72 °C  5 minutes 
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2.8    Gel electrophoresis 

2.8.1  Agarose gel electrophoresis 

Materials 

Tris, Boric Acid, EDTA buffer (T.B.E.) pH8.3:  

     89 mM Tris base 

     89 mM Boric acid 

     2 mM EDTA 

Agarose (electrophoresis grade) 

Ethidium bromide (10 mg ml-1) 

Loading buffer:   50 % (v/v) glycerol 

     0.05 % (w/v) bromophenol blue 

     0.05 % (w/v) xylene cyanol 

Hyperladder I (Bioline) 

Methods 

Agarose (400 mg) was added to 40 ml T.B.E. and heated in microwave until 

dissolved. Ethidium bromide (40 x 10 mg ml-1) was added and the gel allowed 

to set in a gel cast with a comb (BioRad). The gel was overlaid with TBE buffer 

in the electrophoresis tank (BioRad). Loading buffer (0.25 volumes) was added 

to the samples which were then loaded on the gel. The marker Hyperladder 1 

kb plus (5 µl) was also loaded and run alongside the samples (unless otherwise 

indicated), which allowed the estimation of the size of the PCR product. 

Electrophoresis was conducted at 90 V/cm, after which the DNA was visualised 

on a UV transilluminator and images were analysed using the GeneTools 

program (Syngene). When percentage gels were required to be lower than 1 %, 

the initial weight of agarose was altered accordingly. 
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2.9    Gel extraction 

Gel extraction was performed using a QIAquick PCR purification kit (Qiagen) 

according to the manufacturer’s instructions. 

 Materials 

Buffer QG (Qiagen) 

Buffer PE (Qiagen) 

3 M Sodium acetate, (pH 5.0) optional 

Methods 

The protocol uses a spin column with a silica membrane to purify DNA. The 

DNA fragment was excised from the agarose gel and weighed in a 1.5 ml 

microcentrifuge tube. Binding and solubilisation buffer QG was added (300 µl 

per 100 mg of gel fragment), then incubated at 50 °C until the gel was dissolved 

and solution turned yellow. If the solution has not turned yellow, 10 µl 3 M 

sodium acetate was added to the mixture. DNA was precipitated by adding 1 gel 

volume of absolute isopropanol and mixed. The DNA was bound to a QIAquick 

spin column silica membrane by centrifugation (1 minute, 12 000 x g). The 

column was then washed by centrifugation with PE buffer (1 minute, 12 000 x 

g) twice before the DNA was eluted from the column in 30 µl sdH2O by 

centrifugation (2 minutes, 12 000 x g). 
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2.10   RNA purification and cDNA synthesis 

2.10.1 RNA purification 

Materials 

The SV total RNA isolation kit (Promega) was used for RNA isolation from plant 

tissue: 

SV RNA lysis buffer:   4 M guanidine thiocyanate 

      10 mM Tris (pH 7.5) 

     0.97 % β-mercaptoethanol 

SV RNA wash solution:  60 mM potassium acetate 

10 mM Tris-HCl (pH 7.5) 

     60 % ethanol 

RNA dilution buffer 

3 M LiCl 

Absolute ethanol 

70 % ethanol 

Method 

The RNA purification protocol isolates total intact RNA which is purified on a 

silica spin column. RNA purification was conducted using sterile, autoclaved 

pipette tips, microcentrifuge tubes, pestle and mortar. The plant tissue was 

frozen in liquid nitrogen and ground using a freezing cold pestle and mortar.  

The ground tissue (~100 mg) was added to a 1.5 ml microcentrifuge tubes 

containing 175 µl RNA lysis buffer and 350 µl RNA dilution buffer and mixed by 

inversion. The tube was incubated (3 minutes, 70 °C) before centrifugation (14 

000 x g, 10 minutes). The lysate was transferred to a fresh 1.5 ml 

microcentrifuge tube containing 200 µl 95 % ethanol. The mixture was added 

to a spin column and centrifuged (14 000 g, 1 minute) and the supernatant 

removed. 600 µl wash buffer was added to the column and re-centrifuged (14 
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000g , 1 minute), the flow through was removed and a second wash was 

performed using 250 µl wash buffer (14 000 g, 2 minutes) to remove any 

residual buffer and the flow through removed again. After changing to a fresh 

collection tube 50 µl sdH2O was added to the column and centrifuged (14 000 g, 

1 minute) to elute the RNA. The ND-1000 spectrophotometer was used to 

determine RNA concentration. RNA was then stored at -80 °C. 

2.10.2 cDNA synthesis 

cDNA synthesis was performed using the SuperScript™ II Reverse 

Transcriptase Kit (Invitrogen) and total RNA extracted (section 2.10.1); 

Materials 

200 U µl-1 SuperScript™ II Reverse Transcriptase 

5 x First-Strand Buffer 

0.1M DTT 

dNTP mix (dATP, dCTP, dGTP and dTTP, 10 mM each) 

500 µg ml-1 Oligo-deoxythymidine (Oligo (dT)) 

Method 

To synthesise cDNA the following were added to a 200 µl centrifuge tube; 1 µl 

Oligo (dT), 500 ng total RNA (section 2.10.1) and 1 µl dNTP mix, with the 

volume made up to 12 µl with sdH2O. The tube was incubated (65 °C, 5 

minutes) and after chilling on ice the following were added; 4 µl 5 x First-

Strand Buffer, 2 µl 0.1 DTT. The mix was then incubated (42°C, 2 minutes) again 

before 1 µl SuperScript™ II Reverse Transcriptase was added. The mix was then 

incubated (42 °C, 50 minutes) before inactivation of the reverse transcriptase 

by a 15 minute incubation at 70 °C. Completed reactions were then stored at –

20 °C until required. 
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2.11 Extra-chromosomal recombination assays  

2.11.1 Plasmid preparation for extra-chromosomal 

recombination 

Materials 

LB media:    10 g L-1 tryptone 

     5 g L-1 yeast extract 

     10 g L-1 NaCl 

Ampicillin 

Bacto-agar 

E. coli 

pGEMT Easy vector plasmids  

QIAGEN plasmid kit 

 

Methods 

E. coli glycerol stocks containing pGEMT Easy vector plasmids (Promega, 

www.promega.com) including GFP gene inserts with either a 5’ or 3’ deletion 

were donated by Dr Christopher West. The plasmid confers ampicillin 

resistance. Stocks were streaked onto LB media supplemented with 1 % bacto-

agar plates supplemented with ampicillin (50 μg ml-1) and incubated at 37 °C 

for 24 hours. One colony from each plate transferred to 500 ml LB media and 

incubated overnight (37 °C and 200 rpm shaking). Plasmid was purified using 

the QIAGEN plasmid isolation kit, and restricted with either HindIII or PstI to 

obtain line GFP sequences lacking the 3' and 5' respectively [Figure 6-6]. 
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a) 

 

b) 

 

Figure 2-1 Diagram of 3’ and 5’ GFP delete insertion in pGEMT 
Easy vector 

[A] Schematic of the 3’ and 5’ GFP delete insertion in pGEMT Easy vector. Digestion sites 
HindIII and PstI used to linearise the plasmid before protoplast transfection are highlighted [B] 
diagrammatic representation of the 3’ and 5’ GFP delete insertion and indicating region of 
homology (587 bp). 
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2.14.2 Protoplasting, transformation and imaging for 

extra-chromosomal recombination assay 

Materials 

Enzyme solution:   4 M mannitol 

     10 mM CaCl2 

     20 mM KCl,  

     20 Mm MES, 

0.1 % cellulose ‘Onozuka’ R10 

0.25 % Macerozyme 

pH 5.7 

W5 solution:    154 mM NaCl  

125 mM CaCl2  

5 mM KCl  

5 mM glucose,  

2 mM MES, 

 pH 5.7 

MMg solution:   0.4 M mannitol 

15 mM MgCl2 

4 mM MES  

pH 5.7 

PEG 4000 

Sterile water 

Methods 

Protoplasts were obtained from 4-5 week old plants as described (Wu et al., 

2009). Briefly, freshly cut leaves had the epidermal layer removed by peeling 
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off previously affixed tape. This leaves mesophyll cells exposed and then were 

placed in filter-sterilised enzyme solution digesting the cell walls exposed 

mesophyll cells. The dish was shaken (45 rpm) for 1 hour then centrifuged at 

100 rcf for 3 minutes. The pellet is then resuspended in prechilled W5 and 

protoplasts were then incubated on ice for 30 minutes. 

For transfection, protoplasts were centrifuged at 100 rcf for 3 minutes and 

resuspended in MMg solution. Protoplasts in MMg were mixed with 10µl (2 µg 

µl-1) of plasmid DNA at room temperature. An equal volume of PEG 4000 

solution (40 % (w/v) of PEG 0.1 M CaCl2 and 0.2 M mannitol) was added and 

incubated for 5 minutes at room temperature. Protoplasts were then gently 

flooded with W5 solution and centrifuged (100 rcf, 3 minutes). The protoplasts 

were resuspended in W5 and incubated for 16 hours in dark conditions. 

Protoplasts were imaged using an inverted Zeiss LSM 510 META Axiovert 

200M confocal microscope (60 x (oil) objective, Argon/2 (458, 477, 488, 514 

nm) laser. Protoplasts were illuminated with 543 nm and 488 nm wavelength 

light to image the red and green fluorescence respectively. Images were 

analysed with ImageJ by measuring the fluorescence intensity of GFP and 

dsRED across a section of each transformed protoplast using the ImageJ > 

Analysis > Analyze Particle... function. 
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3.  Characterisation of the roles 

NHEJ genes in Arabidopsis seed 

germination 
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3.1    Introduction 

Double strand breaks (DSBs) are the most detrimental form of damage to DNA. 

In plants, and indeed all eukaryotes, DSBs are repaired by two different DNA 

repair pathways: homologous recombination (HR) and non-homologous end 

joining (NHEJ). NHEJ is the predominant DSB repair mechanism in most higher 

plant tissues (West et al., 2002; Bleuyard et al., 2005; Waterworth et al., 2011). 

Whilst NHEJ is a mechanism that rapidly repairs DSBs, it is an error-prone 

pathway which frequently leads to deletions and/or insertions and therefore 

has mutagenic consequences. Conversely this is not true of the HR repair 

mechanism. HR generally facilitates repair without mutation by utilising 

regions of homology exchanging nucleotide sequences between two similar or 

identical molecules of DNA, which is then copied to repair the damaged region.  

3.1.1  Double strand break repair and DNA ligases 

The requirement to seal broken DNA molecules is essential in many biological 

processes including DNA replication, DNA recombination as well as DNA repair. 

DNA damage usually results with the production of either a single or double 

strand break. This may occur either directly as a result of damage and breaking 

of the sugar-phosphate backbone of DNA or indirectly through the processes of 

base excision repair and nucleotide excision repair (sections 1.4.3 and 1.4.4).  

After broken ends have been processed by the SSB or DSB repair machinery, 

DNA ligases are responsible for re-joining DNA molecules together at the 3’ OH 

and 5’ PO4 ends. The Arabidopsis genome contains three DNA ligase genes, LIG1, 

LIG4 and LIG6.  

The LIG4 gene has been well characterised in plants with a well conserved role 

in the canonical non-homologous ending joining (c-NHEJ) pathway (West et al., 

2000). LIG4 joins DNA ends directly in a sequence-independent manner in a 

pathway involving the KU70-KU80 proteins and the LIG4/XRCC4/XLF complex. 

LIG4 also interacts with other DNA damage repair factors as suggested by the 

presence of the BRCA1 C-Terminus (BRCT) domain as previously discussed 

(section 1.5.3). 
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The plant-specific LIG6 was identified by analysis of plant genomic databases 

(Bonatto et al., 2005). LIG6 displays significant sequence similarity to LIG1 but 

has a domain structure which is distinct from that of any other DNA ligase.  The 

N-terminus of LIG6 shows high levels of conservation with Pso2/Snm1 

proteins. These proteins belong to the Metallo-ß-lactamase associated CPSF 

ARTEMIS SNM1/PSO2 (ß-CASP) family and serve important roles in the repair 

of DNA interstrand crosslinks (Bonatto et al., 2005). 

3.1.2  Non-homologous end joining repair and the Ku-

complex. 

NHEJ is a highly conserved pathway DSB repair pathway important in 

eukaryotes and prokaryotes (Lieber, 2010). The canonical non-homologous end 

joining pathway is mediated by the KU70–KU80 complex. Seminal work in S. 

cerevisiae and mammalian cell culture demonstrated that KU proteins co-

localise within the nucleus and bind exposed dsDNA ends with high affinity as a 

heterodimer (Dynan and Yoo, 1998; Wang et al., 1998). It was also shown that 

the KU-complex protects DNA ends from large-scale degradation by 

exonucleases including Exo1 in S. cerevisiae (Mimitou and Symington, 2010). In 

eukaryotes, the KU-complex is additionally involved in maintaining the stability 

of telomeres. Exo1 resects Ku-depleted blunt-ended telomeres and promotes 

homologous recombination (Kazda et al., 2012). 

Arabidopsis KU70 and KU80 have a constitutive low-level expression in all 

tissues.  After exposure to DNA-damaging agents, a more than threefold 

induction of KU70 and KU80 expression is observed in protoplasts (Tamura et 

al., 2002).  In vitro work has demonstrated their interaction both with each 

other and DNA ends, in addition ku80-deficient mutant lines display 

hypersensitivity to the DNA damaging agents menadione, bleomycin and γ-

irradiation (West et al., 2002).  
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3.1.3  Redundancy in NHEJ pathways 

Recent studies in mammalian systems have also elucidated the high occurrence 

of cross-talk between repair pathways (Nussenzweig and Nussenzweig, 2007) 

and this work has begun to be transferred to our understanding in Arabidopsis. 

(Charbonnel et al., 2011).  For example, kinetic analysis of DNA DSB repair 

pathways in Arabidopsis has shown that when KU80 is knocked out and the 

classically defined canonical-NHEJ (c-NHEJ) (section 1.5.3.1) is suppressed, SSB 

machinery is then utilised in a back-up form of NHEJ occurs to repair the DSB 

(Charbonnel et al., 2010; Charbonnel et al., 2011). Arabidopsis ku70 and ku80 

mutants display a greater dependence on the use of micro-homologies between 

the DNA ends and a lower frequency of insertions of filler DNA at the break site 

(Heacock et al., 2004). 

3.1.4 Analysis of NHEJ and double strand break repair 

associated genes in Arabidopsis seeds 

Gamma irradiation causes an array of cellular damage, including DSBs, and 

leads to slowed seed germination in Arabidopsis. When irradiated, the NHEJ 

mutants lig4 and ku80 display an increased delay to germination completion 

when compared to wild-type (Friesner and Britt, 2003). In addition, seeds 

deficient in ku70 exhibit a hypersensitivity to the alkylating agent methyl 

methanesulfonate (MMS) (Riha et al., 2002). Excision of damaged bases has the 

potential to generate DSBs through the conversion of SSBs into DSBs, typically 

during DNA replication. MMS hypersensitivity in ku70-deficient seeds was only 

observed at the seed stage of the plant lifecycle (Riha et al., 2002) indicating a 

higher requirement for KU70-dependent DNA repair specifically during 

germination.  

DNA ligases are the enzymes responsible for the final DNA end-joining step in 

almost all DNA repair pathways. LIG4 in Arabidopsis is well characterised as the 

ligase involved in the canonical NHEJ pathway. Another, less well characterised 

DNA ligase, the plant specific LIG6, may also be involved in DSB repair as 

mutants display a reduced accuracy of the DSB repair pathway (Huefner et al., 
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2011). Mutant lig6 plants also display hypersensitivity to X-rays, although the 

reduction in growth is not as severe as that observed in lig4 mutant lines. 

Mutants in both LIG4 and LIG6 display a hypersensitivity to accelerated ageing, 

displaying decreased vigour and viability (Waterworth et al., 2010). This 

established a genetic link between DSBs and seed longevity.  A chromosome 

region containing LIG4 in Arabidopsis was subsequently identified in a QTL 

study for seed longevity (Nguyen et al., 2012) potentially providing additional 

support for the DSB repair machinery in maintaining high seed quality. 

3.1.5  Aims 

Most work demonstrating the roles of DSB repair machinery in plant biology 

has been conducted using non-physically relevant treatments including X-rays, 

and radiomimetic agents such as bleomycin. Recent work has begun to focus 

more on physiologically relevant analyses such as accelerated ageing 

demonstrated in the analyses of LIG4 and LIG6 function in germination 

(Waterworth et al., 2010). 

Through identifying and analysing knock-out mutants of different c-NHEJ 

components, the work reported in this chapter further validates previous work 

and further extends the premise that the DSBR machinery in Arabidopsis is 

required for seed viability, vigour and seed longevity.  
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3.2    Results 

3.2.1 Double strand break repair in lig6-1 and lig4-5 and 

double mutant lines after seed priming 

3.2.1.1 Isolation of lig6-1 and lig4-5 and double mutant 

lines 

To further advance the understanding of the role of LIG6 in DNA repair, a 

knock-out mutant line for LIG6 (AT1G66730) was isolated (SALK_079499) 

along with a LIG4  (AT5G57160) mutant (SALK_079499) and the double lig6-1 

lig4-5 mutant [Figure 3-1].  

Both mutant T-DNA insertions are originally from the SALK T-DNA mutant 

collection and are the result of the Agrobacterium tumefaciens-mediated 

integration of the T-DNA region of the pROK2 vector (Alonso et al., 2003). The 

rationale for analysing mutant lines for both DNA ligases was to allow 

comparisons along with identification of independent or redundant repair 

functions of both genes.  

These T-DNA lines have previously been isolated and characterised 

(Waterworth et al., 2010). The T-DNA insertions in these cases have been 

shown to disrupt the expression of the LIG6 and LIG4 transcripts. To ensure the 

presence of homozygous T-DNA insertion alleles, PCR analysis was conducted 

utilising primers corresponding to the LB regions of the T-DNA inserts and 

gene specific primers as shown in [Figure 3-1]. The wild-type allele was 

detected using primer pairs designed to the LIG6 and LIG4 genomic sequences.  

As these primers spanned the region of T-DNA insertion and due to the large 

size of the T-DNA (roughly 4 500 bp) (Alonso et al., 2003) along with PCR cycle 

parameters (section 2.7.2: Taq55TD), a PCR product that contained the entire 

T-DNA insertion was unable to be amplified, therefore presence of the T-DNA 

results in a failure to amplify the wild type gene.  
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PCR analysis shows that all three mutant lines have homozygous alleles 

containing their respective T-DNA insertions, with only bands present for the 

T-DNA insertions in the mutant lines [Figure 3-2]. Controls show the wild type 

gene in Col-0 lines. 

 

  

Figure 3-1 The LIG4 and LIG6 genes and position of T-DNA 
insertion  

Exons are denoted by boxes, with filled boxes representing UTR, empty boxes representing the 
coded regions and introns represented by a line.  

[A] Schematic of the Arabidopsis LIG6 gene. The position of the T-DNA insertion is indicated 

in the 14
th

 exon. The location of the primers used for genotyping lig6-1 are shown, with the T-
DNA allele identified using primers lig6_tdna and SALK_LBb1.3 and the wild-type allele 
identified using primers lig6_tdna and lig6_wt [table 2.2]. 

[B] Schematic of the Arabidopsis LIG4 gene. The position of the T-DNA insertion is indicated 

in the 11
th

 exon. The location of the primers used for genotyping lig4-5 is shown, with the T-
DNA allele identified using primers lig4_tdna and SALK_LBb1.3 and the wild-type allele 
identified using lig4_tdna and lig4_wt primers [Table 2.2]. 
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Figure 3-2 Isolation of lig6-1 and lig4-5 T-DNA insertion 
mutant. 

Left Border PCR analysis of thelig6-1 and lig4-5 T-DNA insertion lines. Genotyping to 
identify wild-type (WT) and homozygous plants for the T-DNA alleles. The PCR used primers 
shown in Figure 4-1 [A]. The ladder used was Hyperladder 1 kb plus (lanes L). Wild-type plants 
resulted in only a wild-type band (lane W) and homozygous plants had only the T-DNA band 
(lane T). PCR amplification of genomic DNA (section 2.7) was performed using DreamTaq PCR 
reaction mastermix (section 2.7.1) with the PCR program Taq55TD (section 2.7.2) in 20 μl. 
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3.2.1.2 lig6-1, lig4-5 and double mutant lines exhibit 

decreased seed longevity and germination vigour  

Previous work has shown the requirement for LIG6 and LIG4 in high seed 

germination vigour. Seeds lacking either DNA ligase take a longer time to 

germinate when compared to wild-type and so show an increased mean 

germination time (MGT) (Waterworth et al., 2010). Further to this, null mutant 

seeds are hyper-sensitive to accelerated ageing treatment (section 1.1.4.1). 

Mutant lines display increased MGT and decreased viability (Waterworth et al., 

2010) demonstrating a role for both ligases in seed longevity.  

To test for vigour differences, the MGT (hours) was plotted for each genotype. 

MGT was measured by adding together the time taken for each seed that did 

germinate together and dividing that value by the number of seeds that 

germinated. This can be expressed in the following equation [equation 3-1]: 

 

 

t = 
∑ 𝑛𝑖𝑡𝑖
𝑘
𝑖=1

∑ 𝑛𝑖
𝑘
𝑖=1

, 

Equation 3-1 Mean germination time equation 

ti is time starting of the experiment (after stratification) to the ith observed (hour); ni is the 
number of seeds germinated in the ith time interval, and k is the point at which the last seed that 
will germinate does so. The mean germination time of each independent test was the averaged 
to give the final MGT value. 

 

 

To confirm the previously reported phenotypes of reduced seed vigour and 

hypersensitivity to accelerated ageing of lig6 and lig4 (Waterworth et al., 2010), 

germination assays were performed. Forty seeds of each genotype were plated 

in triplicate onto germination paper (Anchor Blue, California) in a 90 mm petri 

dish with 7.5 ml dH2O and stratified at 4 °C for 2 days before being moved to a 

growth chamber (section 2.5). Germination was scored at time points up to 80 
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hours and subsequently converted into a percentage of seeds germinated from 

total lot relative to wild type controls. Germination is scored as protrusion of 

the radicle from the seed coat, the well-established industry standard way of 

defining germination (Ellis and Roberts, 1978). 

To quantify whether there was a significant difference between the means of 

each genotype, a one-way analysis of variance (ANOVA) was used and relevant 

post hoc test (see below) implemented to determine differences between 

individual groups. As in the previous chapters, groups that met all assumptions 

of equal sample number and equal variance between the same groups used the 

Tukey HSD test. Groups which failed to meet either one or both assumptions 

used the Tukey HSD test with the Games-Howell correction to account for these 

violations. To test whether sample groups had equal variance the Levene's Test 

for Equality of Variances was applied. P ≤ 0.05 indicates samples groups do not 

display equal variance. 

Germination of high quality (section 2.5) wild-type, lig6-1, lig4-5 and lig6-1 lig4-

5 seed lots all resulted in c. 100% viability [Figure 3-3 A and B]. Post hoc 

analysis confirms there was significant difference between wild-type MGT and 

that of the mutant lines; lig6-1 (P = 0.04), lig4-5 (P = 0.006) and lig6-1 lig4-5 (P 

= 0.006) [Figure 3-3 C]. This data supports the previous work in these mutant 

lines (Waterworth et al., 2010). Further germination analysis of 2 days aged 

mutant lines showed a significant decrease in the viability of each mutant line 

when compare to wild-type; lig6-1 (P = 0.039), lig4-5 (P = 0.047) and lig6-1 

lig4-5 (P = 0.002) and a significant increase in MGT; lig6-1 (P = 0.000), lig4-5 (P 

= 0.006) and lig6-1 lig4-5 (P = 0.000). This also concurs with the previously 

reported data (Waterworth et al., 2010) .  

 

 

 

 

 



- 94 - 

 

 

 

Figure 3-3 Germination performance of lig6-1, lig4-5 and the 
double knock-out mutant in high quality seeds. 

[A and C] Comparison of wild-type and mutant lig6-1, lig4-5 and lig6-1 lig4-5 seeds 
germination. Germination performance was analysed at 23 °C under 16 hour light and 8 hour 
dark cycle conditions. Seeds (n=40) were plated in triplicate on to germination paper and 
stratified at 4 °C for 48 hours before transfer to 23 °C (section 2.4). Error bars show the 
standard error of the mean (SEM). [A] Unaged seeds germination performance, Total 
viability for; Wild-type M = 100.00 % (SEM = 0), lig6-1 M = 99.17 (SEM = 1.44), lig4-5 M = 100 
(SEM = 0) and lig6-1 lig4-5 M = 98.33 (SEM = 1.13). The probability associated with Levene's 
Test showed equal variance (p=0.004). Post hoc comparisons using the Tukey HSD test 
indicated final viability are not significant between any of the genotypes (P > 0.05). [C] MGT of 
unaged seeds, Mean germination time (MGT) for physiological germination is presented. Wild-
type M = 31.91 hours (SEM = 0.48), lig6-1 M = 39.35 hours (SEM = 1.18), lig4-5 M = 36.76 (SEM 
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= 0.44) and lig6-1 lig4-5 M = 41.27 (SEM = 0.85). Levene's Test did show equal variance 
(p=0.321) Using the Tukey HSD test with the Games-Howell correction all three mutant lines 
were shown to be significantly different to wild-type; lig6-1 (P = 0.04), lig4-5 (P = 0.006) and 
lig6-1 lig4-5 (P = 0.006).     

[B and D] Germination of 2 days accelerated ageing seeds at 40 °C over a saturated KCl 
solution at 82 % relative humidity. Error bars represent the standard error of the mean. 
Values are from three replicates of 40 seeds each. Germination was analysed and displayed as 
in [A and C].  Graph [B] shows total viability for; Wild-type M = 100.00 % (SEM = 0), lig6-1 M = 
78.33 (SEM = 5.46), lig4-5 M = 86.67 (SEM = 1.67) and lig6-1 lig4-5 M = 64.17 (SEM = 4.39). The 
probability associated with Levene's Test did show equal variance (P = 0.03). Post hoc 
comparisons using the Tukey HSD indicated significant difference between wild-type and all 
three mutant lines; lig6-1 (P = 0.039), lig4-5 (P = 0.047) and lig6-1 lig4-5 (P = 0.002).  [D] MGT 
of 2 days aged seeds Mean germination time (MGT) for physiological germination is 
presented. Wild-type M = 61.00 hours (SEM = 2.68), lig6-1 M = 111.59 hours (SEM = 1.60), lig4-
5 M =83.44 hours (SEM =2.17) and lig6-1 lig4-5 M = 146.86 (SEM = 5.55). Levene's Test did not 
show equal variance (P = 0.049) Post hoc comparisons using the Tukey HSD indicated 
significant difference between wild-type and all three mutant lines; lig6-1 (P = 0.000), lig4-5 (P 
= 0.006) and lig6-1 lig4-5 (P = 0.000). 
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This data, along with supporting experiments which included germination 

under cold stress conditions (Waterworth et al., 2010),  led to the hypothesis 

that the delayed germination observed in these mutants may result from a 

reduced DNA repair capacity. Therefore this work supports the repair 

hypothesis specifically the need for the seed to repair damage accrued before 

imbibition (section 1.1.4.1). In seeds with poor vigour, which are thought to 

have increased damage and reduced repair capacity (Matthews et al., 2012), 

pre-sowing germination treatments can be performed on the seed lot which can 

restore good seed vigour. One such treatment is known as osmopriming and is 

widely used commercially in the agronomical world to ensure high vigour 

seeds at the point of sowing (section 1.1.4.3).  

The molecular mechanisms which underlie the improvement of vigour by 

priming remain unclear but are thought to involve repair processes and 

advanced germination progression. A major problem associated with priming is 

that seed longevity is reduced; however, the reasons for this remain unclear. 

This raises the question as to whether such priming treatments can promote 

the repair of DSBs by using back-up repair pathways (section 1.5.3.2) in these 

mutant lines whereby reduced DSB repair capacity caused lower vigour and 

loss of viability.  

3.2.1.3 Osmopriming of lig6-1 and lig4-5 and double 

mutant line seeds eliminates the delay in seed 

germination in high quality seeds 

To examine if priming treatments can change the mutant seed germination 

performance relative to wild-type, seeds underwent osmopriming treatment 

before germination analysis was performed. The osmopriming protocol used 

was adapted from a previously published protocol (section 2.5.7) (Gallardo et 

al., 2001). Osmoprimed seeds were prepared by incubating dry mature seeds in 

the dark, for 5 days at 20 °C, in a −0.75 MPa PEG 6000 solution (Michel and 

Kaufmann, 1973). Seeds were then washed in dH2O before being left in the dark 

on germination paper for 48 hours at ambient temperature. Primed seeds (n = 
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25) were then plated, stratified and germinated as previously reported in 

triplicate (section 2.5.2). Wild-type seeds (n = 30) that had been treated with a 

course of 5 days accelerated ageing (section 2.5.3) were compared to non-

primed, aged seeds [Figure 3-4] 

 

 

Figure 3-4 Germination performance of 5 days accelerated aged 
wild-type seeds with and without priming 

Germination performance was analysed at 23 °C under 16 hour light and 8 hour dark cycle 
conditions. 5 day aged wild-type seeds (40 °C, 82 % relative humidity) had had undergone 5 
days of osmopriming were plated (n =25) in triplicate on germination paper and stratified at 4 
°C for 48 hours before transfer to 23 °C long-day conditions (section 2.5). 5 day aged wild-type 
seeds that had not undergone any priming treatment were used as a control group. Primed 
seeds had a total viability = 73.33 % (SEM = 3.52) and MGT = 38.05 hours (SEM = 6.95) and 
control seeds had a total viability = 72.00 % (SEM = 6.11) and a MGT = 138.46 hours (SEM = 
8.77). Student T-Test analysis indicates there is no significant difference between primed and 
control seed viability (P = 0.86). A statistically significant difference is observed between 
primed and control seed MGT (P = 0.0009). 
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The students two-tailed T-test was preformed to analyse the MGT of the primed 

seeds (38.05 hours) compared to the control seed group (138.46 hours). As 

there are only two groups to compare, a one-way ANOVA would be 

inappropriate. Analysis showed that priming wild-type Arabidopsis seeds 

improves vigour aged seeds that have been primed germinate significantly 

faster (P = 0.0009) than aged seeds that have not been osmoprimed and 

therefore demonstrates successful application of this technique. 

Osmopriming was then performed on the lig6-1, lig4-5 and lig6-1 lig4-5 mutant 

seed lines including a wild-type control group. Two separate experiments were 

performed; one osmopriming high quality seeds [Figure 3-5 A and C] and the 

other osmopriming two day aged seeds [Figure 3-5 B and D]. 

Mutant seeds deficient in LIG6, LIG4 or both germinate with lower vigour than 

wild-type after accelerated ageing [Figure 3-5 A and C] (Waterworth et al., 

2010). However, after priming any significant delay in MGT was lost in all 

mutant backgrounds with respect to wild-type (lig6-1 P = 0.556, lig4-5 P = 

0.802 and lig6-1 lig4-5 P = 0.136; using a one-way ANOVA with Tukey HSD post 

hoc analysis). This suggested that repair processes are operative during 

priming presumably through redundant pathways. It was most probably that 

LIG1 as the only remaining ligase in the lig6-1 lig4-5 line is sufficient to 

overcome the observed reduced repair capacity (Waterworth et al., 2010). 

Furthermore there was no detrimental effect to total viability after priming in 

unaged seeds when comparing the different genotypes (P > 0.05).  

After 2 days ageing with subsequent osmopriming [Figure 3-5 B] differences 

were observed however. All mutant lines displayed improved vigour but lower 

viability compared to wild-type; lig6-1 (P = 0.01), lig4-5 (P = 0.04) and lig6-1 

lig4-5 (P = 0.000). This indicated osmopriming as performed here on aged 

mutant lines (section 2.5.7) had deleterious effects on viability. This finding was 

further emphasised when the MGT of these lines was analysed [Figure 5-6 D]. 

The lig6-1 and lig6-1 lig4-5 lines had significantly higher MGTs (P≤0.002) than 

wild-type. Interestingly, the MGT of lig4-5 was not significantly different from 

wild-type but was significantly shorter than lig6-1 (P = 0.027) and lig6-1 lig4-5 
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(P = 0.002). This suggested that LIG6 could have a specific role in seed 

germination that cannot be fully compensated for by either LIG1 or LIG4. 

This work built on the previously characterised roles of LIG4 and LIG6 in seed 

germination by raising the question: was this decrease in vigour specific to DNA 

ligases or do other DSB repair factors also influence seed vigour and viability? 

Whilst it is thought LIG6 has a role in repairing DSBs, the specific pathway it 

operates through remains elusive (Waterworth et al., 2010). LIG4 on the other 

hand is a well characterised gene in Arabidopsis with highly conserved function 

in the eukaryotic kingdom, critical to the NHEJ pathway (West et al., 2000). 

DNA repair pathways are multistep mechanisms and it was therefore decided 

to examine different components of the NHEJ pathway to determine whether 

the NHEJ pathway was more widely involved in seed vigour. 
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Figure 3-5 Germination performance of DNA ligase mutant 
seeds after osmopriming 

 [A and C] Comparison of high quality wild-type and mutant lig6-1, lig4-5 and lig6-1 lig4-5 
seeds after 5 days osmopriming treatment. Germination performance was analysed as 
previously described (Section 2.5). (n=40), error bars show SEM. [A] High quality seeds 
germination performance. Total viability for: Wild-type M = 98.33 % (SEM = 0.83), lig6-1 M = 
93.33% (SEM = 2.20), lig4-5 M = 95.0 % (SEM = 2.50) and lig6-1 lig4-5 M = 89.12% (SEM = 
1.49). The probability associated with Levene's Test showed equal variance (p=0.116). Post hoc 
comparisons using the Tukey HSD test indicated final viability not to be significant between any 
of the genotypes (P > 0.05). [C] MGT of High quality seeds, Mean germination time (MGT) for 
physiological germination is presented. Wild-type M = 27.49 hours (SEM = 0.46), lig6-1 M = 
29.04 hours (SEM = 0.85), lig4-5 M = 28.71 hours (SEM = 0.89) and lig6-1 lig4-5 M = 41.27 
hours (SEM = 1.02). Levene's Test show equal variance (p=0.28). Using the Tukey HSD test all 
three mutant lines were shown to not be significantly different to wild-type; (P > 0.05).     



- 101 - 

 

 

 

[B and D] Germination of DNA ligase mutant lines after 2 days accelerated ageing. 
Germination assays performed and analysed as above. Graph [B] shows germination 
performance and total viability for: Wild-type M = 96.67% (SEM = 2.20), lig6-1 M = 63.33% 
(SEM = 1.67), lig4-5 M = 71.67% (SEM = 4.41) and lig6-1 lig4-5 M = 54.17% (SEM = 4.41). The 
probability associated with Levene's Test did show equal variance (p=0.324). Post hoc 
comparisons using the Tukey HSD indicated significant difference between wild-type and all 
three mutant lines; lig6-1 (P = 0.01), lig4-5 (P = 0.04) and lig6-1 lig4-5 (P = 0.000).  [D] MGT of 
the 2 days aged seeds: Mean germination time (MGT) for physiological germination is 
presented. Wild-type M = 43.68 hours (SEM = 1.83), lig6-1 M = 67.49 hours (SEM = 4.07), lig4-5 
M = 51.79 hours (SEM = 1.68) and lig6-1 lig4-5 M = 82.84(SEM = 4.05). Levene's Test did show 
equal variance (P = 0.140) Post hoc comparisons using the Tukey HSD indicated significant 
difference between wild-type and the lig6-1 and double lig6-1 lig4-5  mutant lines; lig6-1 (P = 
0.002), and lig6-1 lig4-5 (P = 0.000). 
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3.2.2  The roles of KU70 and KU80 in seed quality 

3.2.2.1 Isolation of ku70 and ku80-deficient lines 

To investigate further potential roles for NHEJ factors in maintenance of seed 

viability, vigour and longevity, the core NHEJ components KU70 and KU80 were 

selected for analysis. The choice of genes for investigation in this study were 

done so using the following criteria:  a clear understanding of the roles the gene 

has in this repair pathway and well characterised hypersensitivity to DNA 

damage in knock-out mutants lines. This hypersensitivity demonstrates the 

genes do not display redundancy in that repair pathway. 

KU70 and KU80 form a dimer which binds broken DNA ends stabilising and 

protecting the exposed DNA. The complex then recruits other NHEJ 

components to facilitate end-joining and ligation (section 1.5.3). The KU genes 

have been previously well characterised in Arabidopsis and their roles in NHEJ 

are well understood (section 3.1.2). T-DNA insertion lines were subsequently 

isolated in KU70 (AT1G16970) and KU80 (AT1G48050).  

A previously characterised T-DNA insertion for KU70 (ku70-1) (Heacock et al., 

2004) was identified using the SIGNAL flanking sequence tag database 

(http://signal.salk.edu/cgi-bin/tdnaexpress) and ordered through the 

Nottingham Arabidopsis Stock Centre (NASC, http://Arabidopsis.info) (Scholl et 

al., 2000) (section 2.3). The ku70 mutant line was obtained from the SALK T-

DNA mutant collection (Alonso et al., 2003). A previously uncharacterised ku80 

mutant line was selected from the SAIL T-DNA mutant collection (Sessions et 

al., 2002). Primers for the mutant lines were designated for ku70-1 

(SALK_123114) [Figure 3-6] and ku80-3 (SAIL_714_A04) [Figure 3-7]. The 

ku70-1 line was produced as a result of Agrobacterium tumefaciens-mediated 

integration of the T-DNA region of the pROK2 vector and the ku80-3 line are 

have an integration of the T-DNA region of the pCSA110 vector.   

http://signal.salk.edu/cgi-bin/tdnaexpress
http://arabidopsis.info/
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Figure 3-6 Isolation of ku70-1 T-DNA insertion mutant. 

[A] Schematic of the Arabidopsis KU70 gene. Exons are denoted by boxes, with filled boxes 
representing UTR, empty boxes representing the coded regions and introns represented by a 

line. The position of the T-DNA insertion is indicated in the 9
th

 exon as previously described 
(Heacock et al., 2004). The location of the primers used for genotyping ku70-1 are shown, with 
the T-DNA allele identified using primers ku70_tdna and SALK_LBb1.3 and the wild-type allele 
identified using primers ku70_tdna and ku70_wt [Table2-2] 

[B] Left Border PCR of ku70-1 T-DNA insertion. PCR based genotyping to identify wild-type 
(WT) and homozygous (ku70-1) T-DNA insertion plants. The PCR used primers shown in Figure 
4-1 [A]. The ladder used was Hyperladder 1 kb plus (lane L). Wild-type plants resulted in only a 
wild-type band (lane W) and homozygous plants had only the T-DNA band (lane T). PCR 
amplification of genomic DNA (section 2.7) was performed using DreamTaq PCR reaction 
mastermix (section 2.7.1) with the PCR program Taq52TD (section 2.7.2) in 20 μl. 
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Figure 3-7 Position of ku80-3 T-DNA insert. 

[A] Schematic of the Arabidopsis KU80 gene. Exons are denoted by boxes, with filled boxes 
representing UTR, empty boxes representing the coded regions and introns represented by a 

line. The position of the T-DNA insertion is indicated in the 8
th

 exon. The location of the primers 
used for genotyping ku80-3 are shown, with the T-DNA allele identified using primers 
ku80_tdna and SAIL_LB1 and the wild-type allele identified using primers ku80_tdna and 
ku80_wt [Table 2.2]. 

 

The presence of the T-DNA insertion was identified by the amplification of a 

PCR product in reactions using primers corresponding to the LB regions of the 

T-DNA inserts and gene specific primers as shown in [Figure 3-6 A and 3-7 ] for 

ku70-1 and ku80-3 respectively.  The wild-type allele was detected using a pair 

of primers designed to the KU70 and KU80 genomic sequence that spanned the 

region of T-DNA insertion, due to the large size of the T-DNA (roughly 4 500 

bp) and PCR cycle parameters, these primers were unable to amplify a PCR 

product in the presence of the T-DNA insertion. 

The ku70-1 (SALK_029106) mutant line has been previously described and 

characterised (Riha et al., 2002) and the T-DNA insertions shown to disrupt the 

expression of the KU70 transcripts, however, the ku80-3 (SAIL_714_A04) was 

yet to be characterised. The T-DNA PCR product for ku80-3 was sequenced to 

identify the precise location of the LB of the T-DNA insertion. This result 

revealed the ku80-3 T-DNA insert was located in the 8th exon [Figure 3-7]. 
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Figure 3-8 Isolation of ku80-3 T-DNA insertion mutant. 

[A] Left Border PCR of ku80-3 T-DNA insertion. PCR based genotyping to identify wild-type 
(WT) and homozygous (ku80-3) plants for the T-DNA allele. The PCR used primers shown in 
Figure 4-1 [A]. The ladder used was Hyperladder 1 kb plus (lane L). Wild-type plants resulted in 
only a wild-type band (lane W) and homozygous plants had only the T-DNA band (lane T). PCR 
amplification of genomic DNA (section 2.7) was performed using DreamTaq PCR reaction 
mastermix (section 2.7.1) with the PCR program Taq50TD (section 2.7.2) in 20 μl. 

[B] RT-PCR analysis of KU80 transcripts in wild-type and ku80-3 lines.  Reverse 
transcription PCR (RT-PCR) and subsequent PCR analysis was performed as previously 
described (section 2.12) from wild-type and homozygous ku80-3. The cDNA was amplified 
using primers specific for KU80 cDNA (ku80_f and ku80_r, shown in [Figure 3-8]) or using 
ACTIN-7 primers as a control for cDNA synthesis [Table 2.2].  
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3.2.2.2 RT-PCR analysis of KU80 transcript expression in 

ku80-3 

To determine whether the T-DNA insertion in ku80-3 lines disrupted the 

expression of the KU80 transcript, reverse transcription PCR (RT-PCR) was 

performed using RNA isolated from 3 week old leaf tissue of homozygous ku80-

3 (section 2.10.1). The RNA was reverse transcribed to generate cDNA (section 

2.10.2) and as a control for cDNA synthesis resultant cDNA was utilised in a 

PCR reaction to amplify a fragment of ACTIN-7 cDNA. To identify the presence 

of KU80, PCR reactions were performed using primers which would amplify a 

KU80 cDNA specific product. The forward primer used annealed to the 2nd exon 

of KU80 and the reverse primer annealed to the 7th exon, creating a fragment 

2,111 bp long.  

In wild-type plants, a cDNA product was amplified showing the presence of the 

KU80, it was not possible to amplify a cDNA KU80 product in the homozygous 

ku80-3 line [Figure 3-8 B]. The presence of the T-DNA insertion is therefore 

sufficient to disrupt and prevent expression of any detectable KU80 transcript. 

In both the wild-type and mutant alleles a fragment of ACTIN-7 cDNA was 

amplified, demonstrating the presence of cDNA in both reactions.  The ku80-3 

expression analysis was therefore consistent with this being a null mutant 

allele and was used for further study. 
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3.2.2.3 Hypersensitivity of ku70-1 and ku80-3 to X-ray 

treatment is consistent with null mutations in both 

genes 

Growth hypersensitivity to X-ray irradiation, which induces DSBs, is widely 

used to provide evidence that a specific gene may have a role in DSB repair. 

Here wild-type, ku70-1 and ku80-1 seed lots were surface sterilised in 70 % 

ethanol for 5 min, and resuspended in dsH2O before IR treatment. 75 or 150 Gy 

was delivered using a 320 kV X-ray irradiation system (NDT Equipment 

Services) at a rate of 1 Gy minute-1. Seeds were plated individually in one row 

on ½ Murashige and Skoog solid medium before being stratified at 4 °C for 48 

hours (section 2.5.4). The plates were then transferred to a growth chamber as 

previously described (section 2.4). The primary roots were measured 3, 5, and 

7 days after plates had been transferred to the growth chamber and the graph 

displays the average root length [Figure 3-9]. 

To test whether there was a significant difference between the means of each 

genotype one-way analysis of variance (ANOVA) was used and a post hoc test 

(see below) implemented to determine differences between individual groups. 

Groups that met all assumptions of equal sample number and equal variance 

between the same groups were subjected to the Tukey HSD test. Groups which 

failed to meet either assumption used the Tukey HSD test with the Games-

Howell correction to account for these violations. To test whether sample 

groups had equal variance the Levene's Test for Equality of Variances was 

applied. P ≤ 0.05 indicated samples groups did not display equal variance. 

The ku70-1 and ku80-3 mutant alleles displayed a wild-type growth phenotype 

when in optimal conditions [Figure 3-9 A]. This agreed with different 

previously characterised ku80 knock-out mutants in Arabidopsis (West et al., 

2002) and other NHEJ mutants such as lig4 (Waterworth et al., 2010). However, 

when imbibed ku70-1 and ku80-3 seeds are subjected to X-rays, a phenotype 

differing from wild-type was observed [Figure 3-9 B and C] and shows 

statistically significant differences between the knock-out lines and wild-type 

root growth. 
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Figure 3-9 Sensitivity of ku70-1 and ku80-3 mutants to X-ray. 

[A] Mean root length with no X-ray treatment: Wild-type, ku70-1 and ku80-3 lines were 
grown as previously described (section 2.5.2). Seeds were plated on ½ MS agar media with X-
rayed and control seeds plated in quadruplicate. The mean length of primary roots is shown 
after 3, 5 and 7 days post imbibition (n=7). The error bars displayed are +/- standard error . 
The probability associated with Levene's Test for Equality of Variances at three days (p=0.382), 
five days (p=0.118) and seven days (p=0.031). A one-way ANOVA was conducted to compare 
root growth between the 3 genotypes. Post hoc comparisons using the Tukey HSD test 
indicated the mean score for 3 (wild-type; M = 7.37 mm SEM = 1.21, ku70-1; M = 6.37 mm SEM 
= 1.59, ku80-3; M = 6.26 SEM = 1.04) and 5 days growth (wild-type; M = 22.10 SEM = 3.78, 
ku70-1; M = 21.81 mm SEM = 2.86, ku80-3; M = 19.33 mm SEM = 5.56) were not significant 
between any genotype (p > 0.05). Post hoc comparisons using the Games-Howell correction 
indicate the mean scores for 7 days growth (wild-type; M = 52.40 mm SEM = 10.09, ku70-1; M = 
48.82 mm SEM = 2.73, ku80-3; M = 46.95 mm SEM = 8.14) were not significant between 
genotypes either (p > 0.05). 

[B] Mean root length with 75 Gy X-ray treatment: Wild-type (n = 11), ku70-1 (n = 9) and 
ku80-3 (n = 9) lines were treated with a 75 Gy dose of x-ray and root growth recorded as 
previously described (section 2.5.4). The probability associated with Levene's Test for Equality 
of Variances at 3 days (p=0.175), 5 days (p=0.116) and 7 days (p=0.022). A one-way ANOVA 
was conducted to compare root growth between the 3 genotypes. Post hoc comparisons using 
the Tukey HSD test with the Games-Howell correction indicated the means score at 3 days 
growth (wild-type; M = 6.81 mm SEM = 1.03, ku70-1; M = 1.02 mm SEM = 0.56, ku80-3; M = 
0.99mm SEM = 0.43) are significantly different in the ku70-1 and ku80-3 (p < 0.0005) lines 
when compared to wild-type root growth. There was no significant difference found between 
the mean of the ku70-1 and ku80-3 (p > 0.05).  5 days growth (wild-type; M = 18.49 mm SEM = 
2.73, ku70-1; M = 4.66 mm SEM = 1.78, ku80-3; M = 5.75 mm SEM =3.64) shows a significant 
difference between ku70-1 and ku80-3 (p < 0.0005) lines when compared to wild-type root 
growth. There was no significant difference found between the mean of the ku70-1 and ku80-3 
(p > 0.704). 7 days growth (wild-type; M = 39.57 mm SEM = 9.63, ku70-1; M = 9.71 mm SEM = 
4.97, ku80-3; M = 14.91 mm SEM = 4.18) shows a significant difference between ku70-1 and 
ku80-3 (p < 0.0005) lines when compared to wild-type root growth. There was no significant 
difference found between the mean of the ku70-1 and ku80-3 (p = 0.071). * indicates a P < 0.05 
significant difference within the 3 genotype means  
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[C] Mean root length with 150 Gy X-ray treatment: Wild-type (n = 13), ku70-1 (n = 7) and 
ku80-3 (n = 10). ). The probability associated with Levene's Test for Equality of Variances at 3 
days (p=0.001), 5 days (p=0.002) and 7 days (p=0.001).  A one-way ANOVA was conducted to 
compare root growth between the 3 genotypes. Post hoc comparisons using the Tukey HSD test 
with the Games-Howell correction indicated the means score at 3 days growth (wild-type; M = 
6.52 mm SEM = 1.30, ku70-1; M = 0.71 mm SEM = 0.54, ku80-3; M = 0.41 mm SEM = 0.47) show 
significantly different  mean values in the ku70-1 and ku80-3 (p < 0.0005) lines when compared 
to wild-type root growth. The means of ku70-1 and ku80-3 show no significant difference (P = 
0.485). 5 days root growth (wild-type; M = 16.46 mm SEM = 2.91, ku70-1; M = 2.72 mm SEM = 
0.63, ku80-3; M = 0.95 mm SEM = 1.73) shows a significant difference between ku70-1 and 
ku80-3 (p < 0.0005) lines when compared to wild-type root growth and show no significant 
difference between each other (P = 0.209). After 7 days root growth (wild-type; M = 33.09 mm 
SEM = 8.16, ku70-1; M = 4.71 mm SEM = 3.22, ku80-3; M = 3.89 mm SEM = 2.68) shows a 
significant difference between ku70-1 and ku80-3 3 (P < 0.0005) lines when compared to wild-
type root growth and show no significant difference between each other (P = 0.846). 
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After a 75 Gy dose of X-rays, a reduction in root growth in both the ku70 and 

ku80 deficient lines was clearly visible when compared to wild-type. This was 

confirmed by the very low P-values (P < 0.0005) for all group mean root 

lengths [Figure 3-9 B]. Interestingly, there was no significant difference 

between the means of ku70-1 and ku80-3 at any measured point after 75 Gy 

radiation (P > 0.05), consistent with similar roles for KU70 and KU80 in 

protecting the Arabidopsis genome against DSBs. Wild-type root growth after 

75 Gy was not significantly different to wild-type growth without irradiation (P 

> 0.05) at any point of measure [Figure 3-9 A and B]. After 150 Gy wild-type 

root growth was significantly reduced after 5 days when comparing the growth 

of non-irradiated wild-type seedlings [Figure 3-9 A and C]. The reduction of 

root growth was exacerbated in ku70 and ku80 mutant lines when exposed to a 

higher dose of X-rays, i.e. from 75 Gy to 150 Gy. There was a significant 

difference between root growth in both ku70 and ku80 mutant when compared 

growth between 75 and 150 Gy treatments after 5 and 7 days respectively (P < 

0.05).  

As previously reported these results confirmed that the mutant lines, including 

the newly isolated ku80-3, were hypersensitive to high energy irradiation. 

These lines were taken forward for analysis of seed vigour, viability and 

longevity. Furthermore, the fact that mammalian KU70 and KU80 function as a 

heterodimer (Tamura et al., 2002) and display similar hypersensitivity to X-

rays allows independent assessment of the roles of the KU complex in seed 

physiology. 
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3.2.2.4 Germination performance of high quality ku70-1 

and ku80-3 seeds shows the requirement of these 

genes to maintain high vigour seeds 

Work has shown components of the NHEJ repair pathway to have some role 

seed vigour. Removal of gene function of either LIG4 or LIG6, both involved in 

DSB repair in Arabidopsis, caused a delay in seed germination (Waterworth et 

al., 2010). LIG4 function is well characterised and central to the c-NHEJ 

pathway (West et al., 2000). To identify a role for other repair factors known to 

function in the c-NHEJ pathway, analysis of ku70-1 and ku80-3 germination 

performance was undertaken.  

If KU70 and KU80 have roles in ensuring vigorous germination as LIG4 and LIG6 

do, then the knock-out lines for both these genes should have shown decreased 

seed vigour expressed as an increased time to complete germination relative to 

wild-type. To determine if these genes had specific roles in seed vigour, 

germination assays were performed with the mutant seeds lines ku70-1 and 

ku80-3 and compared to wild-type. Forty seeds of each genotype were plated in 

triplicate onto germination paper (Anchor Blue, California) in a 90 mm petri 

dish with 7.5 ml dH2O and stratified at 4 °C for 2 days before being moved to a 

growth chamber (section 2.5). Germination was scored at time points up to 100 

hours and then converted into a percentage of seeds germinated from total lot 

relative to wild type controls. Germination was scored as protrusion of the 

radicle from the seed coat and high quality (section 2.5) wild-type, ku70-1 and 

ku80-3 seed lots resulted in c. 100% viability in all genotypes tested [Figure 3-

10 A] .   
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Figure 3-10 Germination performance of high quality ku70-1 
and ku80-3 seeds. 

[A] Germination of wild-type, ku70-1 and ku80-3 high quality seeds. Germination 
performance of ku70-1 and ku80-3 mutant seed (n=40) performed in triplicate, analysed at 23 
°C under 16 hour light and 8 hour dark cycles. Error bars show the standard error. Total 
viability for: wild-type M = 100.00 % (SEM = 0), ku70-1 M = 99.17 (SEM = 1.44), ku80-3 M = 
99.17 (SEM = 1.44). The probability associated with Levene's Test for Equality of Variances 
(p=0.02). Post hoc comparisons using the Tukey HSD test with the Games-Howell correction 
indicated no significant difference in final viability between any of the genotypes (P > 0.05). 

[B] Mean germination time of each genotype. Mean germination time (MGT) for 
physiological germination is presented. Error bars show the standard error around the mean 
(SEM). Wild-type M = 31.91 hours (SEM = 0.83), ku70-1 M = 42.74 hours (SEM = 0.081) ku80-3 
M = 40.75 hours (SEM = 0.32). The probability associated with Levene's Test for Equality of 
Variances (p=0.09), A one-way ANOVA was conducted to compare mean germination time. Post 
hoc comparisons using the Tukey HSD test indicated the means score for MGT was significantly 
different for between ku70-1 and ku80-3 (p < 0.0005) lines when compared to wild-type MGT, 
denoted by an asterisk (*). There was also a significant difference between ku70-1 and ku80-3 
(P= 0.021), denoted by a cross (†). 
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Previous work also showed high viability of mutant seeds deficient in two other 

DSB repair factors, lig4 and lig6, in the absence of seed ageing (Waterworth et 

al., 2010). Here, the germination performances showed a decrease in vigour 

(MGT), when compared to the mutant lines individually to wild-type 

germination performance. Post hoc analysis confirms there are significant 

differences between wild-type MGT and that of the mutant lines (p < 0.0005). 

Specifically, seeds deficient in either of these two c-NHEJ factors significantly 

slower germination than wild-type seeds. This data indicated that both KU70 

and KU80 genes were required to maintain strong vigour in seeds of otherwise 

high quality. These results further supported the growing evidence from 

molecular analysis here, that repair factors, particularly DSB repair factors, play 

a crucial role maintaining high seed vigour.  

Interestingly, post-hoc analysis showed a significant difference between the 

MGT of ku70-1 and ku80-3 seed lots, with ku70-1 seeds taking significantly 

longer to germinate on average [Figure 3-10 B]. As phenotypic analysis showed 

both mutants had the same levels hypersensitivity to DNA damage [Figure 3-

10], this difference in MGT might not be expected. This result could be 

interpreted as demonstrating KU70 has a more important role in seed vigour 

than KU80. 

3.2.2.5 Germination performance of ku70-1 and ku80-3 

seeds after accelerated ageing treatment shows a 

requirement for the KU complex in seed longevity. 

The delayed germination exhibited by both ku70-1 and ku80-3 mutants further 

suggested that DNA damage and repair is important to seed germination and 

seed quality. Seed storability (longevity) is an agromonically important aspect 

of seed quality (section 1.1.4). It is also important in the conservation of plant 

genetic resources. Increases in seed moisture content and temperature during 

storage results in quantifiable and predictable decreases in seed viability 

(Roberts, 1973). It has been shown through cytological studies that quantified 

chromosomal aberrations (which are products of mis-repaired DSBs) in seeds, 
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even small losses of seed viability through ageing are inevitably associated with 

an increase of chromosome damage (Dourado and Roberts, 1984).  

To determine if KU70 or KU80 were important factors in seed longevity, low 

quality seeds were produced by accelerated ageing (AA). Seed lots are exposed 

to conditions of elevated temperature and relative humidity (Hay et al., 2003) 

(section 2.4). This is a widely used industry-standard technique that mimics 

long term storage in sub-optimal conditions  (Matthews et al., 2012). If a 

significant decrease in seed quality was observed, in terms of either viability or 

vigour after AA treatment in the mutant lines, this would have indicated a role 

for these factors in seed longevity. Wild-type seeds were treated alongside 

ku70-1 and ku80-3 mutant seeds to form the control group.  

Seeds were exposed to either 2 [Figure 3-11 A] or 4 days [Figure 3-11 B] 

accelerated ageing before being immediately imbibed, plated out in triplicate (n 

= 40) and stratified in the dark at 4 °C for 48 hours as previously described 

(section 2.4). Seeds were then moved to the growth cabinet (time = 0). 

Germination was scored daily for the first 12 days and again between 16 and 18 

days. 
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Figure 3-11 Germination performance of ku70-1 and ku80-3 in 
2 and 4 day aged seeds (40 °C at 82% relative humidity) 

[A] Comparison of Col-0 and mutant seeds mutant which have undergone 2 days 
accelerated ageing. Seeds underwent accelerated ageing treatment at 40 °C at 82% relative 
humidity for 48 hours (Winston and Bates, 1960). Seeds were immediately plated on 
germination paper in triplicate (n = 40) and stratified at 4 °C for 48 hours before transfer to 23 
°C (time = 0 hours).  Germination performance of ku70-1 and ku80-3 performed under 16 hour 
light and 8 hour dark cycles at 23°C is shown (section 2.5).  

[B] Comparison of Col-0 and mutant seeds mutant which have undergone 4 days 
accelerated ageing Seeds underwent accelerated ageing treatment at 40 °C at 82% relative 
humidity for 96 hours (Winston and Bates, 1960). Germination performance analysis was 
undertaken as previously described in [A] (n = 40). 
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MGT indicated a significant decrease in vigour in the aged mutant lines relative 

to wild type controls [Figure 3-12 C D]. Interesting after 2 days ageing, wild-

type seeds displayed no loss in viability with 100 % seeds germinating [Figure 

3-12 A]. Conversely, both the mutant lines seeds failed to germinate after the 16 

day final time point. Wild-type seeds did display an approximate two-fold delay 

in germination after ageing  (61.0 hours) when compared to high quality wild-

type seeds (31.9 hours) [Figures  3-12 C and 3-10 B]. The ku70-1 and ku80-3 

mutant seeds had significantly longer MGTs (126.5 and 94.0 hours 

respectively) than wild-type after 2 days accelerated ageing treatment. There 

was a difference ~3.5-6 times greater than that observed in high quality seeds.  

After 4 days ageing treatment there was a substantial difference between the 

mean germination times of ku70-1 and ku80-3 mutant seeds (276.3 and 238.8 

hours) and wild-type (105.0 hours). This was an increase from approximately 

10 hours between unaged mutant and wild type lines to well over 100 hours 

after ageing treatment. A statistically significant difference was observed in the 

MGT between 2 day aged ku70-1 and ku80-3, which was consistent with the 

analysis shown in high quality seeds [Figure 3-10]. Interestingly, this significant 

difference was lost after ku70-1 and ku80-3 seeds have been aged for 4 days, 

although there was greater variation in mean values at this time point.  

In high quality seed lots [Figure 3-10 A], there was no difference in the final 

viability of wild-type or either mutant line. In seeds that underwent AA 

treatment for 2 days a significant decrease in viability was apparent in both the 

ku70-1 and ku80-3 mutant lines when compared to wild-type with decreases of 

21.5 % and 21.7 % respectively [Figure 3-12 A, B]. After the 4 day treatment, 

wild-type total viability had decreased by 50% but the viability of ku70-1 and 

ku80-3 mutant seeds was only 12.5 % and 14.2 %. This was a difference of 37.5 

% and 35.8 %, demonstrating loss of viability is further exacerbated in the 

mutant seeds that have undergone prolonged AA treatment.  
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Figure 3-12 Germination performance of ku70-1 and ku80-3 
seeds after 2 and 4 day aged (40 °C at 82% relative humidity) 

[A-B] Comparison of total germination in wild-type and mutant seeds.  

(A) 2 days accelerated aged seeds. Seeds underwent 2 days accelerated ageing and were 
allowed to germinate as previously described (section 2.5) in triplicate (n=40), the final 
germination score was marked after 18 days and displayed here as a percentage. Error bars 
show the standard error.  Wild-type (M = 100.00 %, SEM = 00.00) ku70-1 (M = 78.50 %, SEM = 
6.06) and ku80-3 (M = 78.33 %, SEM = 2.89). A one-way ANOVA was conducted to compare root 
growth between the 3 genotypes. Post hoc comparisons using the Tukey HSD test indicated the 
means for ku70-1 and ku80-3 are significantly different to the wild-type mean (P = 0.001), 
denoted by an asterisk (*). The means for ku70-1 and ku80-3 are not significantly different from 
each other (P = 0.998).  

2 days 4 days 
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(B) Viability of 4 days accelerated aged seed lots. Seeds underwent 4 days accelerated 
ageing and were allowed to germinate as previously described (section 2.5) in triplicate (n=40), 
the final germination score was marked after 18 days and displayed here as a percentage. Wild-
type (M = 50.00 %, SEM = 13.23) ku70-1 (M = 12.50 %, SEM = 5.00) and ku80-3 (M = 14.17 %, 
SEM = 5.20) Error bars show the standard error. A one-way ANOVA was conducted to compare 
root growth between the 3 genotypes. Post hoc comparisons using the Tukey HSD test 
indicated the means for ku70-1 and ku80-3 are both significantly different to the wild-type 
mean (P = 0.004 and 0.006 respectively), denoted by an asterisk (*). The means for ku70-1 and 
ku80-3 are not significantly different from each other (P = 0.970).  

[C-D] Comparison of MGT in wild-type and mutant seeds. 

(C) 2 days aged seed lots. Mean germination time (MGT) for physiological germination is 
presented for the germination assays of seeds that had undergone 2 days accelerated ageing 
with germination measured daily over 16 days. Error bars show the standard error. The graph 
shows MGT for Wild-type (M = 60.97hours, %, SEM = 4.64), ku70-1 (M = 126.49 hours, SEM = 
15.60) and ku80-3 (M = 94.02 hours, SEM = 12.31). A one-way ANOVA was conducted to 
compare root growth between the 3 genotypes. Post hoc comparisons using the Tukey HSD test 
indicated the means for ku70-1 and ku80-3 are significantly different, denoted by an asterisk 
(*), to the wild-type mean (P = 0.001 and 0.032 respectively). The means for ku70-1 and ku80-3 
are also significantly different from each other (P = 0.034). 

(D) MGT of 4 days aged seed lots. Mean germination time (MGT) for physiological 
germination is presented for the germination assays of seeds that had undergone 2 days 
accelerated ageing with germination measured daily over 18 days. The graph shows MGT for 
Wild-type (M = 104.99 hours, SEM = 23.40), ku70-1 (M = 276.34 hours, SEM = 49.81) and ku80-
3 (M = 238.80 hours, SEM = 69.69). A one-way ANOVA was conducted to compare root growth 
between the 3 genotypes. Post hoc comparisons using the Tukey HSD test indicated the means 
for ku70-1 and ku80-3 are significantly different, denoted by an asterisk (*), to the wild-type 
mean (P = 0.015 and 0.046 respectively). The means for ku70-1 and ku80-3 are not significantly 
different from each other (P = 0.662).  
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It also should be noted that there was a large increase in the spread of data for 

the MGT after 4 days AA. In high quality seeds neither the wild-type nor the 

mutant lines had a standard error (SEM) < 0.32h. However, in 4 days aged 

seeds, wild-type had an SEM of 23.40h and ku70-1 and ku80-3 mutant seeds 

had an SEM of 49.81h and 69.69h respectively. A greater spread in the MGT 

values around the average as was observed here is indicative of seeds losing 

synchronicity in germination. This is a defining characteristic of seed lots with 

low germination potential and poor seed quality (Roberts, 1973). The mutant 

lines both had a SEM much larger than wild-type when seeds were aged for 4 

days, indicating the mutant lines seeds are of a lower quality than wild-type. 

Taken together these results demonstrated the importance for KU70 and KU80 

in maintaining seed vigour and viability. When deficient in either ku70 or ku80 

seeds were hypersensitive to suboptimal storage conditions i.e. seeds were 

shown to have decreased longevity through the decrease in total seed 

germination. 
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3.2.2.6 ku70-1 and ku80-3 seeds lose viability after 

accelerated ageing treatment rather than become 

dormant.  

Accelerated ageing caused a decrease in total germination observed [Figure 3-

12]. The hypersensitivity of the treatment in these mutant lines suggested that 

the seed lots lose viability. It is hypothesised that the decrease of total 

germination in the mutant lines relative to the wild-type was due to the 

inability of these lines to repair accumulated damage to the genome.  

It was feasible that the failure of some seeds to germinate was caused by a 

thermo-dormancy induced on AA treatment. Furthermore, it was a possibility 

that the mutant lines examined here are more susceptible to becoming dormant 

after storage in unfavourable conditions or if there is an altered primary or 

secondary dormancy in the mutant lines (section 1.1.2). To test this hypothesis, 

seeds which had undergone accelerated ageing were imbibed (as in section 

3.2.4) and subsequently treated with the dormancy breaking chemicals (section 

2.5.5). 

A control experiment was performed using dormant seeds to ensuring that the 

dormancy-breaking treatment was effective [Figure 3-13]. Dormant wild-type, 

ku70-1 and ku80-3 seeds were produced by growing the mother plant at 15 °C, 

collecting the seeds without after ripening  (Kendall et al., 2011) and storing at 

– 80 °C until required (section 2.5.1).  

Dormant seeds were imbibed on germination paper and put directly into the 

growth chamber without stratification so as not to encourage dormancy to be 

broken. Germination performance was measured every 48 hours until the 

dormancy was released using a cocktail of gibberellic acid hormones and the 

ABA-synthesis inhibitor, fluridone (Bentsink et al., 2006). Dormancy release 

was initiated at 14 days after imbibition. Germination was recorded daily for a 

further 10 days (section 2.5.5).  
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Figure 3-13 Germination performance of dormant wild-type, 
ku70-1 and ku80-3 seeds before and after dormancy breaking 
treatment 

The germination performance of dormant wild-type, ku70-1 and ku80-3 seeds (section 2.5.1.2) 
was analysed. The germination assay was performed and recorded as previously stated with 
(section 2.5.2) except seeds were not stratified. After 14 days in the growth chamber, a 
dormancy-breaking chemical cocktail was applied (highlighted with the arrow) to the seeds 
(section 2.5.5). The error bars display the standard error of the mean.   
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The graph [Figure 3-13] showed seeds of each genotype did not germinate up 

to two weeks after imbibition, indicating the dormant nature of all seed lots. 

Upon addition of the dormancy-breaking cocktail to the dormant wild-type, 

ku70-1 and ku80-3 seed lots each germinated to near 100 % within three days. 

The result presented here [Figure 3-13], confirmed this treatment is effective in 

breaking seed dormancy.  

To test the hypotheses that AA treatment induced thermodormancy in wild-

type, ku70-1 and ku80-3 seeds or the mutant lines have altered dormancy 

levels, 2 and 4 day AA treated seeds were imbibed, plated on germination 

paper, stratified for 48 hours before being moved to the growth chamber under 

long day conditions (section 2.5). Germination was scored after 21 days before 

seed lots were treated with the dormancy-breaking chemical cocktail and left 

before seeds were scored again 7 days later [Figure 3-14]. No germination was 

induced by the dormancy-breaking treatment in any seed lot after AA.   

These results did not support the hypothesis that dormancy in the different 

seed lines after AA treatment is the cause for the decrease in total germination 

[Figure 3-14]. This supported the hypothesis that the accelerated ageing caused 

the seeds to lose viability and was consistent with decreased longevity in ku70-

1 and ku80-3 mutant lines. 
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Figure 3-14 Analysis of total germination in aged wild-type, 
ku70-1 and ku80-3 seeds before and after dormancy breaking 
treatment 

Germination performance of wild-type, ku70-1 and ku80-3 seeds aged for [A] 2 days and [B] 4 
days at (40 °C at 82% relative humidity). Germination was scored in triplicate (n = 40), 21 days 
after stratification (shown in bold) before being treated with the dormancy-breaking chemical 
cocktail (section 2.5.5). Germination was scored again 7 days later (stripes). The error bars 
display the standard error of the mean.   

 

  

[A] 

[B] 
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3.2.2.7 KU80 and KU70 are important factors for 

germination vigour under cold temperature  

Seeds lots of differing vigour may display high germination rates under ideal 

conditions, but display different germination performances under stress.  

Germination at low temperatures slows the emergence of the radicle 

substantially. Cold-stress is commonly used by the seed industry to evaluate 

germination rates which are more representative of field conditions often 

encountered by field-grown crops sown in early spring and late autumn. 

Molecular analysis of seeds deficient in the lig4 and lig6 DSB repair factors has 

previously identified a role for the two ligases in seed vigour under cold stress 

(Waterworth et al., 2010). To determine if KU80 and KU70 had similar roles and 

displayed lower vigour than wild-type in low temperature conditions, the 

germination performance was investigated in KU-deficient lines. 

Unaged ku70-1 and ku80-3 mutant lines seeds were imbibed and incubated at 5 

°C for 10 days after which seeds were scored for germination [Figure 3-15]. At 

10 days wild-type seeds displayed high levels of germination (84.2 %), whereas 

only 37.5 % of ku70-1 and 59. 2 % of ku80-3 mutants germinated. Under 

optimal germination conditions all genotypes show near 100% germination 2 

days after imbibition, after 48 hours stratification.  

To determine whether this phenotype was related to viability or vigour, seeds 

were transferred to 23 °C growth conditions and germination was scored 4 

days later. At this point, all genotypes showed high levels of germination, wild-

type (99.2 %), ku70-1 (95.0 %) and ku80-3 (100.0 %). The near total 

completion of germination in all genotypes indicated low temperature stress 

influences germination vigour as opposed to seed viability and the KU-deficient 

lines display lower vigour than wild-type. This supported the lower MGT of 

ku70-1 and ku80-3 observed previously [Figure 3-15]. However, it should be 

considered that whilst low temperature stress is well established in slowing of 

the germination processes demonstrated by the delay in radicle emergence, 
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prolonged imbibition of seeds at low temperature may act as an additive source 

of DNA damage because of increased oxidative stress. 

 

Figure 3-15 Analysis of germination in wild-type, ku70-1 and 
ku80-3 seeds under cold stress treatment 

Germination performance of wild-type, ku70-1 and ku80-3 seeds germinated under cold stress 
treatment at 5 °C. Germination was scored 10 days imbibition (shown in bold). Seeds were then 
moved to long day conditions (section 2.5.2) and germination was scored again 4 days later. 
Germination was scored again 7 days later (stripes). The error bars display the standard error 
of the mean.   

 

 

 

This result together with the phenotypic analysis of germination performance 

after each treatment supported the hypothesis that c-NHEJ repair factors are 

important in orthodox seed germination. This work agreed with previous 

reports that demonstrated the requirement for the c-NHEJ repair factor, LIG4 in 

maintaining both seed vigour and longevity (Waterworth et al., 2010).  
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3.3   Discussion 

3.3.1 Priming restores vigour but not viability in DSB 

repair deficient seed 

Previous work had established that Arabidopsis seeds deficient in either LIG4 or 

LIG6 activity display a longer lag time before germination and therefore a 

greater MGT (Waterworth et al., 2010). In the agronomical world priming is a 

widely used technique to improve seed vigour in crop species to ensure seed 

quality and gain all the benefits associated with it (section 1.1.4.3).  

Investigating DNA synthesis using the measure 3H thymidine incorporation in 

artificially aged seeds of wild cabbage (Brassica oleracea) as a marker showed 

increased incorporation in aged seeds when compared to unaged seeds. This 

work also reported that treatment of these seeds with hydroxyurea (a DNA 

synthesis inhibitor) demonstrated that this recovery must be attributed to pre-

replicative repair of DNA damage and is not linked to replication (Thornton et 

al., 1993). Similar studies in leek (Allium porrum L.) demonstrated that the 

correlation of DNA repair synthesis with improved germination after priming 

was observed across plant species (Ashraf and Bray, 1993).  More recent work 

has shown that DNA replication in Arabidopsis occurs just before radicle 

emergence (Barrôco et al., 2005; Masubelele et al., 2005), demonstrating that 

DNA synthesis linked to priming is not related to DNA replication.  

The work reported here showed that priming negates the effect of reduced 

repair capacity in lig4 and lig6 deficient Arabidopsis seeds, where onset of 

germination was delayed in even high quality seeds (Waterworth et al., 2010). 

This demonstrated further that the back-up repair pathways are sufficient to 

repair accumulated damage in high quality seeds. However, priming treatments 

themselves exert osmotic stress on the seed (section 1.1.4.3). Whilst MGT 

values were decreased after osmopriming treatment, overall viability was 

reduced in aged seeds with reduced repair capacity [Figure 3-4 and 3-5]. These 

results agreed with the hypothesis that repair capacity is not only important for 

seed vigour, but also longevity.  However, it is important to note that this does 
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not rule out a second hypothesis that priming simply causes the advancement 

of germination regardless of DNA quality. 

 

3.3.2 KU70 and KU80 are required for high seed quality 

in Arabidopsis 

This work supported the hypothesis that DNA DSB repair factors were required 

in orthodox seeds for rapid and uniform germination. Viability and vigour has 

long been known to decrease upon seed ageing, with a concomitant 

accumulation of DNA strand breaks (Cheah and Osborne, 1978).  

Previous work has shown mutant seeds deficient in ku70 exhibit 

hypersensitivity to the genotoxin Methyl methanesulfonate (MMS) which 

causes methylation damage to bases (Riha et al., 2002). MMS-induced damage 

is mostly repaired by SSB repair mechanisms that excise the damaged base. If 

left at an intermediate step in the repair process, the SSB intermediate has the 

potential to generate DSBs through conversion of a SSB into a DSB during 

replication. In Arabidopsis, this hypersensitivity to MMS in ku70-deficient 

mutants was only evident during the seed stage of the plant lifecycle (Riha et 

al., 2002). This indicates a role for the KU70 gene in maintenance of seed 

quality. However, MMS is a chemical genotoxin and may not be representative 

of the endogenous and exogenous stresses presented to seeds within soil. 

3.3.3 KU70 and KU80 function is a determining factor of 

seed longevity in Arabidopsis 

Work in the pre-genomic era demonstrated the correlation between DSB DNA 

damage after ageing and seed quality. Higher levels of chromosomal 

aberrations were observed in Hordeum distichum (barley) and Pisum sativum 

(pea) seeds after ageing (Dourado and Roberts, 1984). This corresponded to 

the mis-joining broken chromosomes after a DSB event. Subsequent molecular 

identification of repair processes in Arabidopsis have demonstrated that NHEJ 

repairs the majority of DSBs in non-dividing plant cells (Waterworth et al., 
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2011). This random end-joining pathway revealed the mechanism by which 

mis-joining broken chromosomes are produced after accumulated DSBs events 

during sub-optimal storage and seed ageing treatments. This suggested an 

important role for NHEJ in seed genome repair. 

The work reported in this chapter has demonstrated that both KU70 and KU80 

were required for optimal germination vigour, even when the seeds were of 

high quality and stored in optimal conditions. These findings were broadly in 

line with the effects on seed quality after removing a functional LIG6 in 

Arabidopsis, which was the first reported molecular link between DSB repair 

and seed vigour and longevity (Waterworth et al., 2010). Loss of either ku70 or 

ku80 was sufficient to decrease seed longevity as demonstrated by both mutant 

lines’ hypersensitivity to accelerated ageing [Figure 3-11]. When compared 

with wild-type the two mutant lines displayed increased desynchronised 

germination, a factor that also correlates with loss in seed quality (Matthews et 

al., 2012). Upon seed ageing of the mutant lines, germination time significantly 

increased [Figure 3-12 C and D] and viability substantially decreased, which is 

indicative of reduced seed quality  (Matthews et al., 2012).  

3.3.4 Dormancy is not responsible for decreases in 

germination potential 

Dormancy mechanisms have evolved to inhibit germination in response to 

unfavourable conditions conducive to seedling establishment (section 1.1.2). 

Work in Lactuca sativa (lettuce) seeds showed that after heat treatment for 

considerable lengths of time just before imbibition causes reduced germination 

due to increased levels of dormancy.  These seeds could however be effectively 

released from dormancy when dormancy-releasing chemicals were applied 

during imbibition. (Fu and Yang, 1983). It was possible that the decreased 

germination potential in aged seeds related to thermo-induced dormancy 

associated with accelerated ageing. To test this, controls run against the aged 

seeds which demonstrated that an effective dormancy-breaking treatment was 

not able to causes the remaining quiescent seeds to germination [Figure 3-14].  
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When seeds were treated with a dormancy-breaking chemical cocktail, both 

unaged and aged mutant showed no significant difference in the number of 

seeds germinated than before treatment [Figure 3-14]. This work demonstrates 

that germination potential was not decreased in these mutant lines due to a 

potential increase of dormancy levels. This finding also supported the 

hypothesis that these c-NHEJ factors were important to seed germination via 

genome protection. A decrease in overall germination potential was not 

associated with deep-dormancy induction brought on by the accelerated ageing 

programme utilised.  

3.3.5 Understanding the molecular responses to DSBs 

and controls of NHEJ as a determining factor of seed 

quality 

Reduction in NHEJ repair capacity exhibited in the mutants studied here 

correlates with an overall reduced seed quality. Therefore, this work was 

consistence with the hypothesis that if DNA damage is not efficiently repaired 

upon rehydration, it can cause a loss in seed vigour (caused by an extended 

period of time required to repair the accumulation of damage to the genome in 

the seed) and eventual seed viability (when accumulation of DNA damage 

exceeds repair capacity). Understanding the mechanisms by which DSBs are 

detected in seeds may provide further insight into the importance of NHEJ in 

maintaining good seed quality.  

Any controlling mechanisms between a decrease in seed vigour and 

accumulation of DSBs remains elusive. The DSB response in plants is 

coordinated by (section 1.6.1). ATM, the master kinase activated by DNA 

damage (Culligan et al., 2006), may control the hitherto unknown mechanisms 

by which seed vigour is decreased after ageing in response to accumulation of 

DSBs. ATM also regulates programmed cell death (PCD) events which occur in 

cells where DNA damage exceeds repair capacity (Fulcher and Sablowski, 

2009). It is possible that excessive PCD events in the seed embryo, in response 
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to increased DNA damage accrued during ageing impedes germination and 

causes eventual loss of viability.  

It is not conclusively known if loss of seed viability is an active choice i.e. the 

seed ‘chooses’ to die in a programmed signalling-mediated response, or 

passive, whereby accumulated molecular damage overwhelms the seed and it is 

not able to restore metabolic activity. However, work in pea has shown that 

increased inter-nucleosomal DNA fragmentation is observed during seed 

ageing which suggests that cell death is triggered after ageing (Kranner et al., 

2011). Inter-nucleosomal DNA fragmentation is an indicator of active 

programmed cell death in plants and can be visualised as banding on an 

agarose electrophoresis gel (Kuthanova et al., 2008). Isolating the molecular 

components that regulate possible choices between repair of DSBs or cell death 

is important in understanding how the seed is able to repair the genome upon 

imbibition. 
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4.  Characterisation of the role of 

homologous recombination in 

Arabidopsis seed germination  
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4.1    Introduction 

Unlike the repair products of non-homologous end joining (NHEJ) pathway, 

homologous recombination (HR) repair generally preserves the integrity and 

fidelity of genomic material when repairing a chromosomal break. In higher 

plants, HR mediated repair of DSBs, is relatively rare in somatic tissues. In these 

cases preferential use of c-NHEJ and back-up NHEJ pathways are observed 

(Charbonnel et al., 2011). HR is also the recombination mechanism utilised in 

meiosis and there is an increased activity of HR during S-phase of mitosis 

(Waterworth et al., 2011). Work in tobacco has demonstrated through 

recombination studies of ectopic homologous sequences (not at equivalent 

positions on homologous chromosomes) that HR only accounts for c. 0.01 % of 

repair events in such circumstances (Puchta, 1999). Intra-chromosomal 

recombination assays have shown HR is much more frequent than observed in 

genomic DNA, with up to a third of repair events being mediated are the HR 

sub-pathway single strand annealing (SSA) in cases where a break is flanked by 

a repeated sequence (Siebert and Puchta, 2002).  

4.1.1  Homologous recombination and XRCC2 

The genes involved in eukaryotic HR were first identified in budding yeast and 

mainly belong to the RAD52 epistasis group including RAD51 (Pâques and 

Haber, 1999). The identification of homologues in other species including 

plants indicates that the HR repair pathway is highly conserved (Bleuyard et al., 

2006). Core HR proteins include members of the RAD51 family including DMC1, 

RAD51 and five RAD51 paralogues: XRCC2, XRCC3, RAD51B, RAD51C and 

RAD51D. In mammals, the five paralogues share 20–30% identity at amino acid 

level with RAD51 and with each other (Masson et al., 2001). Biochemical 

studies of the mammalian paralogue proteins have shown they form different 

complexes with each other: RAD51B-RAD51C-RAD51D-XRCC2, RAD51C-

RAD51D-XRCC2, RAD51C-RAD51B, RAD51C-XRCC3, and RAD51C-RAD51D 

(Suwaki et al., 2011). In the animal model systems, mutations in the RAD51 

paralogue genes are embryo-lethal (Pittman and Schimenti, 2000), so very little 
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in vivo data is available and therefore the functions of these various sub-

complexes are still unclear.  

Work in mammalian cell culture has demonstrated that XRCC2 is important for 

the accumulation of RAD51 (involved in the search for homology and strand 

pairing stages of the process) section 1.5.2) at the site of DNA damage. The loss 

of XRCC2 also results in a severe delay in the early response of RAD51 to DNA 

damage (Tambini et al., 2010). 

Each of these RAD51 paralogues, including XRCC2 have been characterised in 

Arabidopsis. By contrast to their mammalian orthologues, none of the 

Arabidopsis RAD51 paralogues are required for survival in individual single 

mutants. (Da Ines et al., 2013; Wang et al., 2014).  

The essential role of HR recombination in meiosis was a limiting factor in the 

studying the role of this pathway in seed longevity, vigour and viability. 

Arabidopsis lines deficient in HR factors such as DMC1, RAD51, RAD51c and 

XRCC3 are hypersensitive to DNA damaging agents and sterile with striking 

meiotic chromosome fragmentation, and therefore do not produce seeds (Wang 

et al., 2014). However, XRCC2 is involved in somatic DSB DNA repair but 

Arabidopsis plants deficient in this factor do not display sterility, unlike the 

previously mentioned HR factors (Bleuyard et al., 2005). This factor was 

therefore evidently dispensable for meiotic HR. 

Whilst xrcc2-deficient plants do not display growth hypersensitivity following 

γ-irradiation, they showed a slower DSB repair kinetics when monitoring γ-

H2AX nuclear foci formation, a widely used biomarker for DSB. The emergence 

and elimination of γ-H2AX foci can be used for quantitative analysis of the 

breakage and repair of cellular DNA (Kinner et al., 2008). In xrcc2-deficient 

plants γ-H2AX foci show slower repair than control plants (Bleuyard et al., 

2005). Mutant xrcc2 lines also exhibited a small but statistically significant 

increased sensitivity to the DNA cross-linking agents mitomycin C and cisplatin. 

In addition, hypersensitivity to methyl methanesulfonate  (MMS), a chemical 

that causes methylation damage to bases, was also reported (Wang et al., 2014). 
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This showed that XRCC2 in Arabidopsis is required to repair DNA cross-links 

but is not essential for the repair of DSBs, presumably due to the repair of DSBs 

by NHEJ. Comet assay analysis after bleomycin treatment (a DSB-inducing 

chemical) showed Arabidopsis plants deficient in XRCC2 display 

hypersensitivity. The work also demonstrated partially redundant function of 

XRCC2 with RAD51B and RAD51D as DNA fragmentation (defined as percentage 

of DNA in the comet tail) increased in the double and triple mutants lines  

(Wang et al., 2014).  

4.1.2  Aims 

The work already shown in chapter 3 demonstrated the importance of the DSB 

repair pathway NHEJ in seed vigour and longevity. DSBs are also repaired by 

homologous recombination in Arabidopsis. Therefore HR may also have a role 

in seed quality. Little work in the role of homologous recombination factors in 

germination has been reported to date. To circumvent seed production arising 

from the sterility of HR deficient lines, XRCC2 was selected as the 

representative core HR gene to evaluate the importance and function of this 

recombination mechanism in seed germination and seed quality. The work 

presented here demonstrates that the HR gene XRCC2 contributed to 

maintenance vigour in aged seeds but not overall viability. 
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4.2    Results 

The pivotal role of homologous recombination in meiosis means that HR 

mutants are often sterile. XRCC2 was well characterised with important roles in 

DSB repair in somatic cells with similar phenotypes to other HR mutants except 

it had the advantage that it was fertile (section 4.1.1). Mutant knockout xrcc2 

lines show increased sensitivity to DSBs in somatic cells but did not have an 

essential role in meiosis (Tambini et al., 2010; Da Ines et al., 2013; Wang et al., 

2014).  

4.2.1  Isolation of an XRCC2-deficient line 

To determine if HR might play in germination and seed quality a T-DNA 

insertion line was isolated in XRCC2 (AT5G64520). A previously well 

characterised T-DNA insertion for XRCC2 designated xrcc2-1 was identified 

using the SIGNAL flanking sequence tag database (http://signal.salk.edu/cgi-

bin/tdnaexpress) and ordered through the Nottingham Arabidopsis Stock 

Centre (NASC, http://Arabidopsis.info) (Scholl et al., 2000) (section 2.3) 

(Tambini et al., 2010; Da Ines et al., 2013; Wang et al., 2014). The xrcc2-1 

mutant line originated from the SALK T-DNA mutant collection (Alonso et al., 

2003). Primers for the mutant lines were designated xrcc2_wt and xrcc2_tdna 

(SALK_029106) [Figure 4-1 A].  

The presence of the T-DNA xrcc2-1 alleles was identified by the amplification of 

a PCR product in reactions using primers corresponding to the LB regions of 

the T-DNA inserts and gene specific primers as shown in [Figure 4-1 A]. The 

wild-type allele was detected using a pair of primers designed to the XRCC2 

genomic sequence that spanned the region of T-DNA insertion. The xrcc2-1 

(SALK_029106) mutant allele has been previously characterised (Bleuyard et 

al., 2005) and the T-DNA insertion was shown to disrupt gene expression.  

http://signal.salk.edu/cgi-bin/tdnaexpress
http://signal.salk.edu/cgi-bin/tdnaexpress
http://arabidopsis.info/
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Figure 4-1 Isolation of the xrcc2-1 T-DNA insertion mutant 

[A] Schematic of the Arabidopsis XRCC2 gene. Exons are denoted by boxes, with filled boxes 
representing UTR, empty boxes representing the coded regions and introns represented by a 
line, dashed line represent DNA outside of the gene. The position of the T-DNA insertion is 

indicated in the 5
th

 intron as previously described (Bleuyard et al., 2005). The location of the 
primers used for genotyping xrcc2-1 lines are shown, with the T-DNA allele identified using 
primers xrcc2_tdna and SALK_LBb1.3 and the wild-type allele identified using primers 
xrcc2_tdna and xrcc2_wt. 

[B] Left Border PCR of xrcc2-1 T-DNA insertion. PCR based genotyping to identify wild-type 
(WT) and homozygous xrcc2-1 plants for the T-DNA allele. The PCR used primers shown in 
Figure 4-1 [A]. The ladder used was Hyperladder 1 kb plus (Bioline) (lane L). Wild-type plants 
resulted in only a wild-type band (lane W) and homozygous plants had only the T-DNA band 
(lane T). PCR amplification of genomic DNA (section 2.7) was performed using DreamTaq PCR 
reaction mastermix (section 2.7.1) with the PCR program Taq55TD (section 2.7.2) in 20 μl. 
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4.2.2  Germination assays of high quality xrcc2-1 seeds 

A wild-type phenotype has been reported for plant growth in the xrcc2-1 

mutant when grown under optimal conditions (Bleuyard et al., 2005), although 

germination performance was not investigated. If XRCC2 functioned to facilitate 

germination vigour as was observed in NHEJ-deficient mutants (section 3.2.2), 

then xrcc2 mutants [Figure 4-1] should have shown delayed radicle emergence.  

The germination performance of high quality seeds (section 2.5) was 

investigated as previously described (section 2.5.2). Wild-type and xrcc2-1 seed 

germination was scored up to 100 hours imbibition [Figure 4-2]. Germination 

performance of xrcc2-1 mutant seeds was not significantly different wild-type.  

Statistical analysis using a two-tailed Students T-test indicated no significant 

difference in total germination (P = 0.374) of the average time to germination 

of the two seed lots (P=0.295). 

This result contrasts with that found in the c-NHEJ deficient mutant seed lines. 

This suggested those factors involved in the c-NHEJ pathway are more 

important to seed quality than the HR factor, XRCC2.  
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Figure 4-2 Germination profile of high quality xrcc2-1 seeds 

[A] Comparison of Col-0 and xrcc2-1 mutant seeds Germination performance analysed at 23 
°C under 16 hour light and 8 hour dark cycles. Seeds were plated on germination paper and 
stratified at 4 °C for 48 hours before transfer to 23 °C (section 2.4). Total germination of wild-
type was 100 % and 98.3 % in xrcc2-1 mutant lines (P=0.374 using Student’s T-test). The MGT 
of wild-type was 31.91 hours and in in xrcc2-1 mutant lines was 30.78 hours (P = 0.295 using 
Student’s T-test). 
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4.2.3 Accelerated ageing of xrcc2-1 seeds causes significant 

decreases in vigour but not viability relative to wild type 

controls 

The c-NHEJ pathway is the predominant pathway for repairing DSBs in 

Arabidopsis (Charbonnel et al., 2011). This may be a factor as to why xrcc2-1 

seeds showed a wild-type germination phenotype in high quality seeds. Low 

levels of DSB DNA damage present in the cell were most likely repaired by the 

preferred c-NHEJ pathway. To test if XRCC2-mediated HR was required in seeds 

which have accumulated higher levels of DNA damage accelerated ageing was 

performed (section 1.1.4.2). 

Seeds were exposed to either 2 [Figure 4-3 A] or 4 days [Figure 4-3 B] 

accelerated ageing at 40 °C and 82 % relative humidity (Winston and Bates, 

1960) before being immediately imbibed, plated out in triplicate (n = 40) and 

stratified in the dark at 4 °C for 48 hours as previously described (section 2.4 

and 2.5). Seeds were then moved to the growth cabinet (time = 0). Germination 

was scored every 24 hours for the first 12 days and again between 16 and 18 

days. 

There was no significant difference in mean total germination percentages 

between wild-type and xrcc2-1 seeds after 2 days ageing treatment (P = 0.12) 

or 4 days ageing treatment (P = 0.82). Therefore xrcc2-1 displayed wild-type 

viability even after losing 50 % of its germination potential. This differs from 

the phenotype observed in NHEJ-deficient mutants, where lig4-5 (Waterworth 

et al., 2010), ku70-1 and ku80-3 (section 3.2.2.5), which displayed significantly 

lower levels of viability as well as a higher MGT. 

A decrease in vigour in the xrcc2-1 mutant line relative to wild-type 

germination performance was observed after both 2 and 4 days accelerated 

ageing. The xrcc2-1 mutant lines show a significant increase in MGT when 

compared to wild-type for both 2 and 4 days ageing; statistical analysis using 

the Student’s T-test gave P values of 0.008 and 0.005 respectively [Figure 4-4 C 

and D].  
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Figure 4-3 Germination profile of xrcc2-1 seeds which have 
undergone accelerated ageing  

[A] Comparison of Col-0 and xrcc2-1 seeds mutant which have undergone 2 days 
accelerated ageing. Germination performance of xrcc2-1 seeds analysed at 23 °C under 16 
hour light and 8 hour dark cycles. Seeds were plated on germination paper and stratified at 4 °C 
for 48 hours in triplicate (n = 40), before transfer to 23 °C (section 2.5).  

[B] Comparison of Col-0 and xrcc2-1 seeds mutant which have undergone 4 days 
accelerated ageing. Seeds underwent accelerated ageing treatment at 40 °C at relatively high 
humidity for 96 hours. Germination performance analysis was undertaken as previously 
described in [A]. 
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Figure 4-4 Germination profile of xrcc2-1 seeds that have 
undergone accelerated ageing 

[A-B] Comparison of viability in wild-type and mutant seeds mutant of (A) 2 days 
accelerated ageing. Germination performance of xrcc1-2 seeds analysed at 23 °C under 16 
hour light and 8 hour dark cycles. Seeds were plated on germination paper and stratified at 4 °C 
for 48 hours before transfer to 23 °C (section 2.5) in triplicate (n = 40), the final germination 
score was marked after 18 days and displayed here as a percentage with Wild-type (M = 100.00 
%, SEM = 00.00) and xrcc2-1(M = 94.17 %, SEM = 5.77). Error bars show the standard error of 
the mean. Statistical analysis using the Students T-test indicates there is no significant 
difference between the means P = 0.16). (B) Seeds which have undergone accelerated 
ageing. Germination performance of 4 day aged xrcc1-2 seeds analysed in triplicate (n = 40) as 
before. Wild-type (M = 50.00 %, SEM = 7.64) and xrcc2-1 (M = 47.5 %, SEM = 6.61). Error bars 
show the standard error of the mean. Statistical analysis using the Students T-test indicates 
there is no significant difference between the means P = 0.82). 

[C-D] Comparison of mean time germination in wild-type and xrcc2-1 mutant seeds of (C) 
2 days accelerated ageing. 2 days accelerated aged seed lots. Mean germination time (MGT) 

2 days 4 days 
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for physiological germination is presented for the germination assays of seeds that had 
undergone 2 days accelerated ageing with germination measured daily over 16 days. Error bars 
show the standard error of the mean. The graph shows MGT for wild-type (60.97 h, SEM = 4.64) 
and xrcc2-1 (M = 87.89 h, SEM = 8.17). Statistical analysis using the Students T-test indicates 
there is significant difference between the means (P = 0.008). (D) Seeds which have 
undergone 4 accelerated ageing. The MGT of 4 days accelerated aged seed lots. Mean 
germination time (MGT) for physiological germination is presented for the germination assays 
of seeds that had undergone 2 days accelerated ageing with germination measured daily over 
18 days . The graph shows MGT for wild-type (105.0 h, SEM = 13.51) and xrcc2-1 (M = 182.63 h, 
SEM = 17.75). Error bars show the standard error of the mean. Statistical analysis using the 
Students T-test indicates there is significant difference between the means (P = 0.005). 
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4.3    Discussion 

4.3.1 Molecular analysis of the xrcc2-1 mutant lines 

T-DNA mutant lines were isolated to allow a reverse genetics approach to 

determine the function of the core HR DNA repair gene XRCC2 in seed 

germination, longevity and vigour. The mutant line was predicted to have a T-

DNA insertion within the respective gene at the beginning of the 5th intron: the 

xrcc2-1 line has been previously characterised (Tambini et al., 2010; Da Ines et 

al., 2013). PCR-based genotyping was used here to confirm that a homozygous 

line of the characterised mutant allele was used in the present study. 

4.3.2 Germination vigour is not changed in xrcc2-1 

deficient high quality seeds 

DNA damage progressively accumulates with extended periods in the dry 

quiescent state (section 1.1.3). Repair of DNA damage in the embryo of is 

known to occur before completion of germination. Indeed repair is initiated in 

very early imbibition, detected as high levels of de novo DNA synthesis  not 

related to DNA replication (Osborne et al., 1984). The first study to identify a 

molecular link between DNA repair processes in germination showed that the 

LIG4 and LIG6 are required for vigorous seed germination by facilitating repair 

of DSBs before germination (Waterworth et al., 2010). Work presented in the 

previous chapter has shown that KU70 and KU80, involved in NHEJ, also repair 

facilitate rapid germination (section 3.2.2.5). DSB repair in eukaryotes occurs 

via two main pathways, NHEJ and HR. This previous work demonstrating a role 

of c-NHEJ in seed germination raised the question: does HR activity influence 

germination performance? In high quality seeds, analysis of germination 

demonstrated that HR mediated by XRCC2 is not an important component of 

seed vigour; there was no statistical difference between the MGT of the xrcc2-1 

and wild-type seed lots (P > 0.05) [Figure 4-2]. This result suggested that HR 

activity is not limiting for germination vigour. However in high quality seed lots 

tested under optimal lab conditions, differences in germination potential can be 



- 144 - 

 

 

difficult to identify. Accelerated ageing/controlled deterioration between seed 

lots have been developed to identity such differences (Matthews et al., 2012). 

4.3.3 xrcc2-1 mutant lines are hypersensitive to 

accelerated ageing 

Accelerated ageing is one treatment used to determine differences in seed lot 

germination performances (Matthews et al., 2012). When NHEJ-deficient 

mutants were subjected to accelerate ageing treatments, the MGT increased 

and viability decreased. This demonstrated that seeds have a lower 

germination potential when deficient in this type of DSB repair pathway 

(section 3.2.2.5). It is interesting to note that whilst xrcc2-1 seeds showed wild-

type levels of viability with up to 4 days accelerated ageing (P > 0.05) [Figure 4-

3], the MGT was significantly different after just 2 days accelerated ageing (P = 

0.008) [Figure 4-4]. This result indicated that XRCC2-mediated HR was required 

for seed vigour in low quality seeds. Further characterisation of the sub-

pathways of HR and understanding which function in response to DNA damage 

in seeds would better elucidate the overall roles of HR in seed quality (section 

1.5.2). The SSA pathway of HR was found to be responsible for a third of repair 

events between sequence repeats in Arabidopsis (Siebert and Puchta, 2002; 

Waterworth et al., 2011). The DGU.US recombination reporter locus has been 

engineered to show recombination activity after a DSB event in the Arabidopsis 

genome: this cassette required SSA to restore active the GUS gene which when 

expressed could be identified by histochemical staining. When the DGU.US 

recombination reporter was put into xrcc2 lines, restoration of the GUS gene 

was severely reduced, demonstrating XRCC2 was an important factor for SSA 

activity (Serra et al., 2013). This find suggests that the importance of XRCC2 in 

seed vigour in aged seeds displayed in this studied, may be due to its role in the 

SSA pathway and that conservative repair mechanisms was important in such 

circumstances. 

Phenotypic analysis of irradiated rad51-deficient maize kernels showed 

germination was delayed severely relative wild-type lines with increased 

numbers of abnormal seedlings. This indicated a role for HR in repair events 
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during seed imbibition and germination (Li et al., 2007), although potentially 

irradiation and seed ageing would generate a different spectrum of DNA 

damage which required different repair mechanisms. 

Pre-genomic era work established a correlation between the accumulation of 

DSBs after seed ageing and seed quality: in high quality seeds levels of DSB DNA 

damage is much lower (Dourado and Roberts, 1984). Here, germination 

performance has shown that XRCC2-mediated HR was not required for DNA 

repair, presumably as the c-NHEJ machinery was responsible for repairing the 

majority of DSBs in higher plants (section 1.5). This also agreed with the 

phenotypic analysis of mutant alleles from different c-NHEJ and HR-deficient 

mutants when subjected to genotoxic stress. Mutants deficient in c-NHEJ repair 

factors such as KU70 and KU80 are hypersensitive to the radiomimetic 

compound bleomycin (Tamura et al., 2002), whilst mutants deficient in HR-

factors only show small but significant sensitivity to bleomycin (Tambini et al., 

2010), in agreement with the proposed order of DSB repair kinetics in 

Arabidopsis (Charbonnel et al., 2011),  

DNA damage results in a wide spectrum of DNA lesions which form substrates 

for different repair pathways and which can differentially interfere with the 

essential processes of DNA transcription, replication and mitosis. HR may be 

required to repair specific substrates, which were present in seeds having 

undergone accelerated ageing but not high quality seeds. Whilst the majority of 

S-phase DNA replication synthesis occurs concurrently with radicle emergence 

and completion of germination (section 1.1.3), work in Arabidopsis seeds has 

shown that replication inhibitors increase MGT (Masubelele et al., 2005). 

Another HR factor involved in the SSA repair in Arabidopsis is BRCA2 (Seeliger 

et al., 2012). BRCA2 in mammals was highly expressed in S-phase and was 

recruited to stalled replication forks. Functional analysis of BRCA2 is consistent 

with a role in recombination repair associated with normal replication (Scully 

and Livingston, 2000). It is possible that replication blocks caused by DNA 

damage acquired during accelerated ageing require HR-mediated repair, 

leading to the MGT increase observed. The majority of replicative DNA 
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synthesis in Arabidopsis occurs at or around radicle emergence (Barrôco et al., 

2005; Masubelele et al., 2005). If HR had a role in repair during replication, this 

would mean a role in DNA repair during seed germination. 

The function of HR in the germinating seed should be further investigated. It 

may be that HR plays a rare but important role in preservation of genome 

integrity in the germinating seed. Preservation of genomic integrity is of 

particular importance to meristem cells in order to minimise transmission of 

mutations in the plant germline, which is established relatively late in the plant 

development cycle. The embryonic root and shoot apical meristems represent 

the origin of the new plant  (Bewley et al., 2013). Work in Arabidopsis root 

meristems has shown the repair of DSBs is tightly regulated and monitored. 

Plants with decreased DSB repair capacity show increased programmed cell 

death events in the meristems in response to DSB-inducing genotoxic stress 

(Fulcher and Sablowski, 2009).  

HR is known to be up-regulated in meristematic cells, whilst meristem cells 

initiate PCD at lower levels of DNA damage than surrounding tissue (Fulcher 

and Sablowski, 2009; Waterworth et al., 2011). It would have been interesting 

to investigate the temporal and spatial localisation of HR transcripts in 

germinating seeds. Although HR events are rare relative to NHEJ, it is therefore 

plausible that HR repair of DSBs is particularly crucial in the embryonic 

meristems. 
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5. Characterisation of the roles of 

Nucleotide excision repair and 

Base excision repair in 

Arabidopsis seed germination 
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5.1    Introduction 

Both base excision repair (BER) and nucleotide excision repair (NER) are 

involved in the repair of damage that has occurred to one of the two strands of 

the DNA helix. Whilst these pathways share similar mechanistic steps, including 

detection of damage, excision around the area of damage and synthesis of new 

DNA to replace excised bases, the proteins orchestrating these steps differ 

between the two pathways (sections 1.4.3 and 1.4.4).  

To determine if BER and or NER have any role in seed vigour and longevity, 

core-components of these pathways were selected for study using the same 

criteria outlined in the previous results chapters. The BER gene APURINIC 

ENDONUCLEASE-REDOX PROTEIN (ARP) and NER gene, EXCISION REPAIR 

CROSS COMPLEMENTATION GROUP 1 (ERCC1) were chosen for study. Mutant 

lines were then selected that have been previously characterised in Arabidopsis 

and shown to have specific roles in the corresponding repair pathways, 

displaying DNA damage hypersensitivity so as not to display total redundancy 

with other genes (section 5.1.1 and 5.1.2). These lines have been previously 

classified as arp-1 and ercc-1 respectively. 

5.1.1  ARP and base excision repair  

ARP was identified in Arabidopsis as one of three genes (including APE1L and 

APE2) that shows homology to abasic endonuclease genes in animals, yeast and 

bacteria. The Arabidopsis gene ARP was first identified as an analogue of the 

human REDOX EFFECTOR FACTOR 1/AP ENDONUCLEASE 1 (REF-1/APE1) 

often shortened to APE1.  This endonuclease contains a conserved cysteine 

residues key for REF/ARE1 redox activity (Babiychuk et al., 1994). The human 

APE1 was originally isolated as a DNA repair enzyme and later found to have a 

redox activity. It was found to be responsible for reducing the transcription 

factors FOS and JUN which enhances DNA-binding activity of both proteins 

(Xanthoudakis and Curran, 1992, 1996). In Arabidopsis, ARP has been found to 

have this same dual activity in vitro, demonstrating both class II endonuclease 
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activity and redox activity which stimulates the DNA-binding activity of 

recombinant human transcription factors FOS and JUN (Babiychuk et al., 1994).  

Under ideal growth conditions, single mutant lines deficient in any one of the 

three Arabidopsis AP endonucleases do not show any apparent differences from 

wild-type in growth rate, growth habit, and fertility (Murphy et al., 2009). 

When APE1L and APE2 are knocked-out concurrently, a lethal phenotype is 

observed with abortion of developing embryos. Mutant arp plants show no 

such deleterious phenotype even in combination with either ape1 or ape2 

(Murphy et al., 2009). Work in vitro has shown that ARP has the major AP 

endonuclease activity in Arabidopsis. arp-deficient cell extracts lack detectable 

BER activity on either the uracil- or the synthetic AP site analogue 

tetrahydrofuran (THF)-containing DNA substrates. This is restored on addition 

of the human APE1 protein demonstrating APE1L and APE2 cannot 

redundantly compensate for ARP function in cell extracts (Córdoba-Cañero et 

al., 2011). Further studies have shown ARP is directly required for 8-oxoG 

repair, processing the 3′-blocking ends generated by FPG and OGG1 in vitro 

(Córdoba-Cañero et al., 2014). 

Whilst arp-1 plants show no phenotypic difference to wild-type under ideal 

growth conditions, these lines are hypersensitive to 5-fluorouracil (5-FU), a 

uracil analogue that favours mis-incorporation of dUMP into DNA. This 

demonstrates that ARP is an important factor in plant survival and growth 

under genotoxic stress (Córdoba-Cañero et al., 2011). In the course of the 

studies presented here, mutant arp seeds were reported to display decreased 

longevity and have increased sensitivity seed ageing by controlled 

deterioration testing (CDT) (Córdoba-Cañero et al., 2014). 

5.1.2  ERCC1 and nucleotide excision repair 

ERCC1 encodes a protein critical for stabilising and enhancing the functionality 

of the endonuclease XPF required for NER (section 1.4.4). The ERCC1/XPF 

complex creates a structure-specific endonuclease, initially identified for its 

essential role in nucleotide excision repair (NER) in budding yeast (Davies et 
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al., 1995). The endonuclease activity specifically recognises double- to single-

strand transitions in DNA, incising the 5′–3′ single-strand just after the 

junction. The protein was first identified in plants in Lilium longiflorum 

(common name, Easter lily) as a homologue to the DNA excision repair proteins 

human ERCC1 and yeast RAD10. The protein was found to responsible for 

reduced sensitivity of the cross-linking agent mitomycin C (MMC) in ERCC1-

deficient Chinese hamster ovary (CHO) cells (Xu et al., 1998).  

Arabidopsis ercc1-deficient plants show hypersensitivity to different DNA 

damaging agents. UV-B and UV-C treated mutant seedlings have stunted root 

growth and also display reduced growth in response to methyl 

methanesulfonate (MMS) and MMC treatment (MMS is an alkylating agent that 

adds methyl groups to a variety of sites). This shows ERCC1 is important to 

repair of a wide range of different DNA damage products, as UV creates 

pyrimidine dimers, (Hays, 2002; Dubest et al., 2004). The gamma-plantlet 

phenotype is observed after 100 Gy of γ-radiation to ercc1-deficient seeds, in 

which mutants germinate normally and produce healthy seedlings with well‐

expanded cotyledons, but undergo transient (7 days) late S/G2 arrest in the 

meristem cells before going on produce true leaves (Hefner et al., 2003; Hefner 

et al., 2006). Whilst the nature of the arrest-inducing lesion in ercc1 apical 

meristem cells is unknown, the late S/G2 associations suggests the damage is 

not detected until S-phase is underway, possibly a lesion that blocks 

replication.  

ERCC1 has role in SSA homologous recombination in extra-chromosomal 

recombination assays, where it may act to remove overhanging non-

homologous tails after complementary sequences have been exposed and can 

anneal to each other (Dubest et al., 2004). ERCC1 is also involved in telomere 

homeostasis in Arabidopsis, working in complex with XFP to protect short 

telomeres from homologous recombination. Whilst ercc1 mutants develop 

normally and show wild-type telomere length, Arabidopsis plants that are also 

tert-deficient display much earlier onset of chromosomal instability. This 

telomere instability is associated with the presence of dicentric chromosome 
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bridges; cytological studies show visible extra-chromosomal DNA fragments in 

mitotic anaphase rather than a general acceleration of telomeric repeat loss 

(Vannier et al., 2009).  

5.1.3  Aims 

Recent work has shown components of the NHEJ repair pathway to be 

important in seed vigour. Work in chapter 3 showed ku70 and ku80 deficient 

seeds are hypersensitive to accelerated ageing treatment. Furthermore mutant 

lines deficient in lig4 and lig6 show a marked delay in germination and loss of 

viability. The work reported to date has demonstrated a role for DSB repair 

factors in seed quality, but it leads to the question: Do any other repair 

pathways have a similar importance in seed vigour? Through analysis of the 

germination performance of seed deficient in different repair pathways, other 

factors which determine seed quality can potentially be identified. Some SSB 

repair factors involved in BER have now been associated with seed longevity. 

Hypersensitivity to ageing treatments in Arabidopsis seeds deficient in the BER 

factor arp and Arabidopsis seeds overexpressing another BER factor OGG1 

demonstrate resistance to ageing treatments (Chen et al., 2012; Córdoba-

Cañero et al., 2014). No direct evidence has been reported linking the NER 

repair pathway with germination performance. Here the germination 

performance analysis and comparison of mutants deficient in either core NER 

or BER factors demonstrate that seed longevity is associated with active base 

excision repair but not nucleotide excision repair. 
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5.2    Results 

5.2.1  Isolation of arp- and ercc1-deficient lines 

To determine the relative roles that BER and NER might play in seed vigour, 

viability ARP (AT2G41460) and ERCC1 (AT3G05210) were chosen as their 

roles in DNA repair (BER and NER respectively), which have been well 

characterised in Arabidopsis (sections 5.1.1 and 5.1.2). Previously characterised 

T-DNA insertion lines were identified using the SIGNAL flanking sequence tag 

database (http://signal.salk.edu/cgi-bin/tdnaexpress) and ordered through the 

Nottingham Arabidopsis Stock Centre (NASC, http://Arabidopsis.info) (Scholl et 

al., 2000) (section 2.3). Both mutant lines come from the SALK T-DNA mutant 

collection (Alonso et al., 2003). The mutant line for ARP was designated arp-1 

(SALK_021478) (Córdoba-Cañero et al., 2011) and ERCC1 was designated ercc1-

1 (SALK_033397) (Dubest et al., 2004) [Figure 5-1 A, 5-2 A]. These mutants are 

the result of the Agrobacterium tumefaciens-mediated integration of the T-DNA 

region of the pROK2 vector. PCR was performed on the lines obtained from the 

stock centre to confirm the presence of the T-DNA insertion [Figure 5-1 B, 5-2 

B]. The presence of the T-DNA allele was identified by the amplification of a 

PCR product in a reaction using primer corresponding to the LB region of the T-

DNA insert and gene specific primers for arp-1 and ercc1-1 as shown in [Figure 

5-1 B, 5-2 B]. Wild-type alleles were detected using a pair of primers designed 

to the ARP and ERCC1 genomic sequence that spanned the region of T-DNA 

insertion and due to the large size of the T-DNA (c. 4 500 bp) and PCR cycle 

parameters, these primers were unable to amplify a PCR product in the 

presence of the T-DNA insertion.  

  

http://signal.salk.edu/cgi-bin/tdnaexpress
http://arabidopsis.info/
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Figure 5-1 Isolation of arp-1 T-DNA insertion mutant. 

[A] Schematic of the Arabidopsis ARP gene. Exons are denoted by boxes, with filled boxes 
representing UTR, empty boxes representing the coded regions and introns represented by a 

line. The position of the T-DNA insertion is indicated in the 5
th

 exon. The location of the primers 
used for genotyping arp-1 are shown in black, with the T-DNA allele identified using  primers 
arp_tdna and SALK_LBb1.3 and the wild-type allele identified using primers arp_tdna and 
arp_wt [Table 2.2]. 

[B] Left Border PCR of arp-1 T-DNA insertion. Genotyping to identify wild-type (WT) and 
homozygous arp plants for the T-DNA allele. The PCR used primers shown in Figure 3-1. The 
ladder used was Hyperladder 1 kb plus (lane L). Wild-type plants resulted in only a wild-type 
band (lane W) and homozygous plants had only the T-DNA band (lane T). PCR amplification of 
genomic DNA (section 2.7) was performed using DreamTaq PCR reaction mastermix (section 
2.7.1) with the PCR program Taq55TD (section 2.7.2) in 20 μl. 
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Figure 5-2 Isolation of ercc1-1 T-DNA insertion mutant. 

[A] Schematic of the Arabidopsis ERCC1 gene. Exons are denoted by boxes, with filled boxes 
representing UTR, empty boxes representing the coded regions and introns represented by a 

line. The position of the T-DNA insertion is indicated in the 2
nd

 exon. The location of the primers 
used for genotyping ercc1-1 are shown, with the T-DNA allele identified using primers 
ercc1_tdna and SALK_LBb1.3 and the wild-type allele identified using primers ercc1_tdna and 
ercc1_wt [Table 2.2]. 

[B] Left Border PCR of arp-1 T-DNA insertion. Genotyping to identify wild-type (WT) and 
homozygous ercc1-1 plants for the T-DNA allele. The PCR used primers shown in [Figure 5-2 A]. 
The ladder used was Hyperladder 1 kb plus (lane L). Wild-type plants resulted in only a wild-
type band (lane W) and homozygous plants had only the T-DNA band (lane T). PCR 
amplification of genomic DNA (section 2.7) was performed using DreamTaq PCR reaction 
mastermix (section 2.7.1) with the PCR program Taq55TD (section 2.7.2) in 20 μl. 

  

ercc1_wt 

ercc1_tdna 

SALK_LBb1.3 
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5.2.2  Sensitivity of arp-1 and ercc1-1 to X-ray 

Here, wild-type, arp-1 and ercc1-1 seed were treated with X-rays as in chapter 

3. Seed lots were surface sterilised in 70% ethanol for 5 min, and resuspended 

in dsH2O before IR treatment, (75 Gy), delivered using a 320 kV X-ray 

irradiation system (NDT Equipment Services) at a rate of 1 Gy minute-1. Seeds 

were plated individually in one row on ½ Murashige and Skoog agar before 

being stratified at 4 °C for 48 hours (section 2.4). The plates were then 

transferred to a growth chamber and grown vertically down the surface of the 

agar (section 2.5.4). The primary roots were measured 3, 5, and 7 days after 

plates had been transferred to the growth chamber and  the mean root length 

was calculated [Figure 5-3 A]. 

Neither mutant displayed a different phenotype in root growth relative to wild-

type without X-ray treatment, this agrees with previous characterisation of the 

two knockout lines (Dubest et al., 2004; Córdoba-Cañero et al., 2011). 

Hypersensitivity to X-ray treatment is observed in only the ercc1-1 mutant line; 

with slower growth phenotype observed when compared to wild-type. [Figure 

5-3] shows the statistical significance between each appropriate comparable 

measured average. After 75 Gy treatment, ercc1-1 shows much slower root 

growth than wild-type, using a one-way ANOVA with a Tukey HSD post-hoc  

test for multiple comparisons is confirmed highly significant (P < 0.05). 



- 156 - 

 

 

Figure 5-3 Sensitivity of arp-1 and ercc1-1 mutants to x-ray. 

[A] Mean root length with no x-ray treatment. Wild-type, arp-1 and ercc1-1 lines were 
grown as previously described (section 2.5.4). The mean length of primary roots is shown after 
0, 3, 5 and 7 days post imbibition from 1 plate with respect each mutant line (minimum n=7). 
Error bars show the standard error of the mean (SD). The probability associated with Levene's 
Test for Equality of Variances at three days (p=0.455), five days (p=0.255) and seven days 
(p=0.005). A one-way ANOVA was conducted to compare root growth between the 3 genotypes. 
Post hoc comparisons using the Tukey HSD test indicated no significant differences (P>0.05) 
between the means score for 3 days (wild-type; M = 7.37 mm SD = 1.98, arp-1; M = 7.50 mm SD 
= 1.56, ercc1-1; M = 9.04 mm SD = 1.99) and 5 days growth (wild-type; M = 22.38 mm SD = 3.71, 
arp-1; M = 22.16 mm SD = 2.94, ercc1-1; M = 24.19 mm SD = 5.56). Post hoc comparisons using 
the Tukey HSD test with the Games-Howell corrected indicated no significant differences 
(P>0.05) between the growth of wild-type and the mutant lines (wild-type; M = 48.19 mm SD = 
13.93, arp-1; M = 45.67 mm SD = 7.46, ercc1-1; M = 53.57 mm SD = 7.2) 

 

[B] Mean root length with 75 Gy X-ray treatment: Wild-type (n = 11), arp-1 (n = 8) and 
ercc1-1 (n = 11) mutant lines were treated with a 75 Gy dose of x-ray and root growth recorded 
as previously described (section 2.5.4). The probability associated with Levene's Test for 
Equality of Variances at 3 days (p=0. 200), 5 days (p=0. 522) and 7 days (p=0.073). A one-way 
ANOVA was conducted to compare root growth between the 3 genotypes. Post hoc 
comparisons using the Tukey HSD indicated the means score at 3 days growth (wild-type; M = 
6.81 mm SD = 1.03, arp-1; M = 4.95 mm SD = 1.46, ercc1-1; M = 5.10 mm SD = 0.39) are 
significantly different in the ercc1-1 lines (p = 0.01) when compared to wild-type root growth. 
After 5 days growth (wild-type; M = 18.49 mm SD = 2.73, arp-1; M = 16.14 mm SD = 2.76, ercc1-
1; M = 11.18 mm SD = 2.08) shows a significant difference in ercc1-1 lines (p < 0.0005), when 
compared to wild-type root growth. There was no significant difference found between the 
mean of wild-type and arp-1 lines (p = 0.129). 7 days growth (wild-type; M = 39.46 mm SD = 
9.63, arp-1; M = 32.21 mm SD = 5.90, ercc1-1; M = 24.32 mm SD = 4.91) shows a significant 
difference in ercc1-1 root growth (p<0.0005) when compared to wild-type root growth. There 
was no significant difference found between the mean of the arp-1 and ercc1-1 (p = 0.136). * 
indicates a P < 0.05 significant difference between wild-type and ercc1-1 root growth means.  

  

  * 

   * 
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5.2.3 Germination performance of high quality arp-1 and        

ercc1-1 seeds is indistinguishable from wild-type 

seeds 

ercc1-1 displayed sensitivity to X-ray treatment and the knockout lines have 

been previously characterised as being deficient in the single strand break 

repair pathway NER (Dubest et al., 2004). Germination assays were next 

performed on high quality seeds lots (section 2.5.1) in wild-type, arp-1 and 

ercc1-1 background to determine if SSB repair pathways have a role in seed 

quality. Seeds were plated onto germination paper (Anchor Blue, California) in 

a 90 mm petri dish with 7.5 ml dH2O and stratified for 2 days before being 

moved to a growth chamber (section 2.5). Germination was scored starting 22 

hours after seeds were moved to the growth chamber following stratification. 

The germination performance of arp-1 was compared to wild-type seeds to 

determine any delay to germination, similarly the germination of ercc1-1 was 

shown [Figure 5-4 A]. 

The graph [Figure 5-4 B] showed no significant differences (P > 0.05 using an 

unpaired one-way ANOVA and Tukey HSD post-hoc test for multiple 

comparisons) between MGTs of mutants and wild-type (section 2.5). [Figure 5- 

4 B] also showed no significant difference in MGT between either arp-1 and 

ercc1-1 and wild-type (P > 0.05). This suggests that in high quality seeds BER 

and NER did not play an important role in seed vigour. 
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Figure 5-4 Analysis of the germination performance of high 
quality single strand break repair mutants. 

 [A] Germination performance of high quality arp-1 and ercc1-1 mutant lines. Germination 
performance of arp-1 and ercc1-1 seeds analysed at 23 °C under 16 hour light and 8 hour dark 
cycles. Seeds were plated on germination paper and stratified at 4 °C for 48 hours before 
transfer to 23 °C (section 2.5). 

[B] arp-1 and ercc1-1 mean germination time. Mean germination time (MGT) for 
physiological germination is presented. Error bars show the standard error around the mean 
(SEM). Wild-type M = 31.91 hours (SEM = 0.83), arp-1 M = 32.46 hours (SEM = 0.08), ercc1-1 M 
= 33.33 hours (SEM = 0.71). The probability associated with Levene's Test for Equality of 
Variances (p=0.18), A one-way ANOVA for multiple comparison using the Games-Howell 
correction was conducted to compare the MGT indicated that there was no significant 
differences between arp-1 and ercc1-1 and wild-type (P > 0.05) .  
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5.2.4 Hypersensitivity to accelerated ageing treatment is 

observed in arp-1 lines but ercc1-1  

The ageing regime chosen was relatively mild, with the seeds only exposed to 

high humidy (82 % relative humidity) and a temperature of 40 °C for 48 hours. 

The regime caused no significant loss of viability to wild-type seeds (P > 0.05, 

Students T-Test comparing 2 days aged and untreated wild-type seed lots) 

[Figure 5-5 A]. In wild-type seeds, ageing resulted in a near 2-fold increase in 

the MGT compared to that observed in high quality seeds and there a decreased 

seed quality through a decrease in seed vigour was observed. 

Work presented in [Figure 5-5 A] showed the germination performance of 2 

days aged arp-1 and ercc1-1. To determine if there was any difference in seed 

vigour, the MGT was calculated and an unpaired multiple comparison one-way 

ANOVA was performed [Figure 5-5 B]. The results showed the arp-1 line had a 

significantly longer MGT than that of wild-type (P = 0.001). This suggested that 

ARP has an important role in protecting and repairing the genome upon 

imbibition before germination. This result highlighted the potential of BER 

more widely having an important role in germination. By contrast the ercc1-1 

mutant line displayed no significant increase in MGT when compared with 

wild-type under the conditions used, consistent with ercc1-1, and by extension 

NER, not having an important role in seed longevity and vigour. This did not 

rule out the possibility that NER does play some role in seed germination when 

the seed is exposed to other exogenous stresses.   
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Figure 5-5 Analysis of single strand break germination 
performance after 2 days accelerated ageing. 

 [A-B] Germination performance in 2 days accelerated aged arp-1 and ercc1-1 mutant 
seed lines. Germination performance of arp-1 and ercc1-1 seeds, analysed at 23 °C under 16 
hour light and 8 hour dark cycles. Seeds were plated on germination paper and stratified at 4 °C 
for 48 hours before transfer to 23 °C (section 2.4) 

[C] Mean time to germination of each mutant line. Mean germination time (MGT) for 
physiological germination is presented. Error bars show the standard error around the mean 
(SEM). Wild-type M = 58.57 hours (SEM = 1.04), arp-1 M = 72.10 hours (SEM = 1.55), ercc1-1 M 
= 63.86 hours (SEM = 1.37). The probability associated with Levene's Test for Equality of 
Variances (p=0.70), A one-way ANOVA for multiple comparison using the Games-Howell 
correction was conducted to compare the MGT indicated that there was no significant 
differences between ercc1-1 and wild-type (P = 0.84). Statistical analysis shows a significant 
difference between wild-type MGT and arp-1 MGT (P = 0.007). 
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5.3    Discussion 

5.3.1 Molecular analysis of the arp-1 and ercc1-1 mutant 

lines 

T-DNA mutant lines were isolated to allow a reverse genetics approach to 

determine the function of ARP and ERCC1 with regards to germination longevity 

and vigour. Each mutant line was predicted to have a T-DNA insertion within 

their respective gene and have been previously characterised to confirm this. 

Neither T-DNA insertional line produce transcripts or proteins of their 

respective gene and furthermore the arp-1 and ercc1-1 mutant lines have 

previously been identified and characterised for deficiencies in BER and NER 

respectively (Dubest et al., 2004; Co rdoba-Can ero et al., 2011). PCR-based 

genotyping was used here to confirm that homozygous lines of these 

characterised mutant alleles were obtained. 

For this study the mutant allele for each gene was chosen as they have been 

previously well characterised over multiple studies (Dubest et al., 2004; Hefner 

et al., 2006; Murphy et al., 2009; Vannier et al., 2009; Co rdoba-Can ero et al., 

2011, 2014) and the aim of this research is to determine any role each pathway 

rather than gene, may have on seed germination.  

5.3.2  Sensitivity of arp-1 and ercc1-1 to X-rays 

The use of radiation hypersensitivity of plant growth in forward genetics has 

long been an established route into characterisation of DNA repair genes; 

indeed it is how ERCC1 in Arabidopsis was first identified (Xu et al., 1998). Root 

growth assays performed after irradiation can be a strong indicator of such 

DNA repair roles. The sensitivity of ercc1 deficient mutants to radiation is well 

characterised and the results presented here concur with what is previously 

reported (Hefner et al., 2003; Dubest et al., 2004). Root growth retardation has 

not been reported in arp-1 deficient plants after radiation and analysis here 
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showed no hypersensitivity: however it has been reported that these mutants 

are sensitive to other DNA damaging agents such as 5-fluorouracil (Córdoba-

Cañero et al., 2011).  

Intermediates of both NER and BER are regions of single stranded DNA. If 

either repair pathway is impeded through, for example the loss of one of the 

constituent parts, this can lead to higher incidence of DSB events at these points 

of ssDNA (Mladenov and Iliakis, 2011). This potentially causes retardation of 

root growth in NER mutants due to an increased persistence of DSBs causing a 

pause in cell cycle progression with even the loss of some stem cells through 

PCD. 

5.3.3 Germination vigour is not affected by the loss of ARP 

or ERCC1 in high quality seeds 

Repair of DNA damage in the embryo of Arabidopsis seeds is known to occur 

before germination was completed. Indeed repair is initiated in very early 

imbibition, detected as high levels of de novo DNA synthesis (Osborne et al., 

1984). The studies in Chapter 3 have identified that DSB repair genes are 

important determinants of seed viability, vigour and longevity. The work 

presented here extends this understanding of seed quality by mutant analysis 

of BER and NER factors and their influences on seed vigour. Using the arp-1 and 

ercc1-1 mutant alleles to investigate roles of BER and NER respectively in seed 

quality, germination assays were performed on high quality seeds (section 

2.5.1). These two mutant lines displayed the same germination characteristics 

as wild-type under the conditions used consistent with no important role in 

germination for the BER and NER repair pathways here. 

5.3.4 arp-1 but not ercc1-1 seeds demonstrate increased 

susceptibility to accelerated ageing. 

To further elucidate any role ARP and ERCC1 might play in germination, 

accelerated ageing was used. This exacerbates any differences the knock-out 

mutant might have in comparison to wild-type.  
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Interestingly after ageing, the BER deficient seeds (arp-1) showed a significant 

increase in MGT (P < 0.01), and therefore decreased seed vigour. Conversely 

NER deficient seeds (ercc1-1) did not. The importance of BER to seed vigour in 

aged seeds over NER could be explained through the types of DNA damaged 

incurred during the ageing process and imbibition. Oxidative damage is 

associated with seed desiccation and storage (Dandoy et al., 1987; Bray and 

West, 2005).  Among all the DNA lesions induced by ROS, 7,8-dihydro-8-

oxoguanine (8-oxoG) is predominant, resulting from of ROS-induced 

hydroxylation of the C-8 position of guanine (Kasai and Nishimura, 1984), 

which is shown to significantly increase in seeds during ageing and imbibition 

(Chen et al., 2012). BER is the major repair pathway to remove 8-oxoG damage 

(Kasai and Nishimura, 1984), consistent with the importance of the BER factor 

ARP in seed vigour demonstrated here. Recent work using a different seed 

ageing technique known as controlled deterioration (section 1.1.4.2) was 

reported and showed a similar decrease in vigour to the data presented here 

(Córdoba-Cañero et al., 2014). These results agreed with this finding, but this 

work further showed the potential importance of BER in seed longevity over 

NER.  Expression of the BER-associated genes MtTdp1α and MtTdp1β in 

Medicago truncatula is up-regulated in seeds (Macovei et al., 2010) and work in 

Arabidopsis has demonstrated that over-expression of another BER component, 

OGG1, enhanced seed longevity and abiotic stress tolerance (Chen et al., 2012). 

This ageing regime resulted in delayed radicle emergence in wild-type seed, 

with MGT increased from 32 hours in high quality seed to 58 hours in aged 

seeds [Figure 5-4 B and 5-5 B]. No decrease in viability was observed and 

remained at c. 100 % [Figure 5-5 A]. Delayed germination of aged seeds may 

result from the operation of checkpoints prior to the commencement of DNA 

replication that control progression through germination in response to the 

accumulation of genomic damage. The MGT of unaged and aged ercc1 seeds 

were not significantly different to wild-type and the total viability remained 

close to 100%, showing NER repair pathway does not have an important 

determining role in seed vigour, viability or storability under the conditions 

tested. However this did not rule out the possibility that NER does play some 
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role in seed germination but required under different environmental stresses 

not determined here. 

This work demonstrated the importance of ARP-mediated BER but not NER to 

seed vigour after seed ageing. Interesting, arp-1 did not show the same levels of 

hypersensitivity to accelerated ageing as the ku70-1 and ku80-3 mutants 

[Figure 3-11], where significant decreases in viability were observed. Under the 

conditions tested here, this work demonstrated that whilst BER is important to 

seed quality is it less so than NHEJ.  
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6. Characterisation of the plant 

specific DNA ligase 6 
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6.1    Introduction 

DNA ligases are broadly divided into two groups based on the utilisation of 

different co-factors, either NAD+ or ATP (Shuman, 2009).  NAD+-dependent 

DNA ligases are mostly observed in eubacteria whereas ATP-dependent DNA 

ligases are utilised primarily by eukaryotes. Several ATP-dependent DNA 

ligases are found across the eukaryote domain which have specific roles in 

cellular DNA metabolism (Martin and MacNeill, 2002).  

6.1.1  DNA Ligases 

Four DNA ligases have been characterised in eukaryotes, DNA LIGASE 1, 3, 4 

and 6 (LIG1, LIG3, LIG4 and LIG6 respectively). LIG1 and LIG4 are conserved 

across all eukaryotes (Shuman, 2009). LIG3 homologues are found across 

eukaryotes including in human, fruit fly, sea anemone and slime mould but are 

absent in some eukaryotic groups including plants (Simsek and Jasin, 2011). 

LIG6 is structurally distinct to other DNA ligases and was first identified in 

Arabidopsis and rice (Oryza sativa) by sequence identity to LIG1 and has only 

been observed in higher plants (Bonatto et al., 2005; Waterworth et al., 2010). 

DNA LIGASE 2 and DNA LIGASE 5 were originally characterised in mammalian 

cells and have biochemical ligase activities but no known function and do not 

represent additional LIG genes (Tomkinson and Mackey, 1998): DNA LIGASE 2 

might result from alternative splicing of LIG3 transcripts and DNA LIGASE 5 is 

thought to be derived from one of the known mammalian LIG genes (Shuman, 

2009; Simsek and Jasin, 2011). 

In mammals, LIG1 is an essential gene that encodes the major cellular DNA 

ligase activity that joins Okazaki fragments as part of the DNA replication 

complex (Barnes et al., 1992). LIG1 homologous have been identified across the 

eukaryotic spectra with well characterised examples in the yeast, 

Saccharomyces cerevisiae (Barnes et al., 1992) and in Arabidopsis (Taylor et al., 

1998). LIG1 homologues have important roles in SSB repair in eukaryotes with 

additional DSB repair roles characterised in animals (Liang et al., 2008) and 

plants (Waterworth et al., 2009). The Arabidopsis plant cell contains three 
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genomes, those of the nucleus, plastids and mitochondria (Arabidopsis Genome 

Initiative, 2000). The Arabidopsis LIG1 gene encodes two isoforms shown by 

GFP fusions, one targeted to the nucleus and the other the mitochondrion. 

These isoforms arise from alternative translation start sites in a single mRNA 

transcript, producing LIG1 protein isoforms either with or without a 

mitochondrial targeting pre-sequence (Sunderland et al., 2006). No reported 

evidence could be found in planta demonstrating LIG1 is targeted to the 

chloroplast (Sunderland et al., 2006). However LIG1 transcripts do contain a 

theoretical chloroplasts targeting sequence (Sunderland et al., 2006) and 

double lig6 lig4 mutants are viable and green (Waterworth et al., 2010) 

suggesting LIG1 may be responsible for chloroplast genome maintenance and 

replication but remain inconclusive.  

 

Figure 6-1 Schematic of Ligase proteins found in Arabidopsis  
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6.1.2  Elucidating the function of LIG6 in higher plants 

Characterisation in Arabidopsis seeds showed that LIG6 is required for rapid 

seed germination, seedling establishment and is a determinant of seed quality 

and longevity (Waterworth et al., 2010). Seedlings deficient in LIG6 show no 

increased growth sensitivity to a wide range of DNA damaging agents 

including: UV-C, methyl methanesulfonate (MMS), mitomycin C (MMC), 

menadione and bleomycin (Waterworth et al., 2010), unlike the 

hypersensitivity observed in other Arabidopsis knock-out lines of DSB repair 

factors including lig4 lines (West et al., 2000). Only with exposure to a high 

dose of X-rays is significantly increased growth retardation observed relative to 

wild type plants (Waterworth et al., 2010), indicative of a role in DSB repair. 

The mechanism by which LIG6 interacts with the different DNA repair 

pathways has yet to be elucidated. Work in Arabidopsis has shown a function 

for LIG6 in the repair of the hairpin-ended double strand breaks (DSBs) 

generated during excision of the maize Ac element. These results suggest LIG6 

is a functional homologue of ARTEMIS (section 1.5.3.1), where LIG6 binds to a 

hairpin structure and either nicks/facilitates hairpin nicking close to their apex. 

In the absence of a functional LIG6, other nucleases may open the hairpin 

structures, but tend to do so further from the hairpin apex (Huefner et al., 

2011). A non-essential role for LIG6 has also been observed in Agrobacterium-

mediated T-DNA integration into the Arabidopsis genome, where the presence 

of LIG6 limits T-DNA integration in root transformation (Park et al., 2015). 

6.1.3  Aims 

Recombination activities in a plant cell can be observed using an extra-

chromosomal recombination (ECR) assay. Two plasmids containing the 

respective 3´and 5´ends of GFP and sharing some region of sequence homology 

are transfected into cells. Recombination between the two plasmids is 

measured by the activation of a reporter gene. Here, an in planta ECR assay has 

been developed utilising GFP as the reporter gene to determine any roles LIG4 

and LIG6 have in ECR. Performing this analysis on knockout mutants of lig4, 
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lig6 and lig6 lig4, ratios of GFP:dsRED fluorescence gave quantifiable measures 

of the ECR rate in each genotype. Any statistically significant changes in this 

ratio in the mutant protoplasts when compared to wild-type would implicate 

that gene in the control of extra-chromosomal recombination activity.  

  



- 170 - 

 

 

6.2    Results 

6.2.1 LIG6 promotes extra-chromosomal recombination 

events in Arabidopsis protoplast cells whilst LIG4 

inhibits ECR. 

To investigate the potential roles of LIG4 and LIG6 in ECR, a modified 

recombination assay from those of the 1990’s was used. Instead of GUS, two 

fluorescent proteins were used to analyse recombination events; GFP and 

dsRED. dsRED was used to quantify plasmid uptake into protoplasts whilst two 

plasmids, each containing a different deletion of the GFP gene with an 

overlapping middle sequence was used to assay recombination. Only if a 

recombination event had occurred between the two GFP plasmids would a 

functioning fluorescent GFP protein be expressed (section 2.11). Fluorescence 

was quantified using confocal microscopy and controls were performed to 

ensure no detectable crossover in simultaneous excitation can be established 

when visualising any dsRED or GFP associated fluorescence [Figure6-2] 

(Drexler et al., 2004). 

This assay was used to evaluate the relative rates of recombination in 

protoplasts deficient in LIG4, LIG6 or both LIG4 and LIG6 in comparison to wild-

type. Measurements were determined by taking the ratio of fluorescence 

(GFP:dsRED): the higher the value, the greater the fluorescence of GFP is in 

comparison to dsRED and therefore increased incidence of recombination. This 

assumes that there was no bias in the plasmid transfection between by each 

genotype. A significant difference between the ratios observed in the lig4-5, 

lig6-1, lig6-1 lig4-5 and wild-type protoplasts would implicate a role for these 

gene(s) in ECR.  

To test levels of co-transformation, wild-type protoplasts were transformed 

with plasmid containing the full length gene for GFP and a plasmid containing 

the gene for dsRED. Levels of co-transformation were ascertained by 

comparing the number of transformed protoplasts fluorescing both red and 
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green to those fluorescing only one colour. Levels of co-transformation were at 

100% and overall transformation was c.40 % [Figure 6-2]. It was hypothesised 

that if a protoplast had taken up the plasmid containing the gene for dsRED, the 

same amount of plasmid containing the gene for GFP should be co-transformed 

into the cell. 

 

Figure 6-2 Efficiency of protoplast transformation  

Showing 100% co-transformation [A] imaged for GFP fluorescence (488 nm wavelength light) 
[B] imaged for dsRED fluorescence (543 nm light wavelength) and [C] imaged for both GFP and 
dsRED as well as illumination to show all protoplasts. 

 

 

The GFP:dsRED ratio of transformed wild-type Arabidopsis protoplasts was 

measured to provide a control for the relative fluorescence. A variation in 

values was observed ranging from 0.028435 to 4.483924 with an average of 

1.192819. The Anderson-Darling test was used to determine whether the data 

was normally distributed: - 

 

𝐴𝐷 = −𝑁
2𝑖 − 1

𝑁
(ln(𝐹(𝑌𝑖)) + ln(1 − 𝐹(𝑌𝑁+1−𝑖))) 

Equation 6-1 Anderson-Darling test for normal distribution 

N is the number of data F is the cumulative distribution factor and Y is the succession of 
ordered values. This test assumes normality, and is looking for sufficient evidence to reject 
normality. The likelihood of normality is expressed as a P-value, with normality accepted with a 
value P >0.05 i.e. within a 95% confidence interval.  
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The P-value for this data was calculated to be 0.0178224, indicating that the 

data is not normally distributed [Figure 6-4]. The ratiometric data was 

transformed by taking the log of each value. Applying the Anderson-Darling test 

to test whether the transformed data was normally distributed gave a P-value = 

0.592625, falling well within the confidence range. 
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Figure 6-3 Extra-chromosomal assay showing GFP and dsRED 
fluorescence 

Transformed protoplasts with 5’END DEL GFP, 3’END DEL GFP and dsRED a) wild-type, b) lig4-
5 c) lig6-1 d) lig6-1 lig4-5. (Scale bars: 25 µm). For the ECR assay, relative fluorescence of 
recombined GFP to dsRED was measured in wild-type, lig4-5, lig6-1 and the lig6-1 lig4-5 double 
mutant [Figure 6-3]. The ratios were logged as before, giving the following P-values; 0.65 (wild-
type), 0.11 (lig4), 0.46 (lig6) and 0.28 (lig6-1 lig4-5), all of which indicate normally distributed 
values and allowing use of standard ANOVA statistical analysis. 
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To determine whether there was a significant difference in ratios of green and 

red fluorescence between wild-type Arabidopsis protoplasts and mutants, the 

students T-test was performed on the logged ratiometric data.  

 

 

 

Figure 6-4 Anderson-Darling plot to determine normality of 
data spread 

These graphs show the wild-type GFP:dsRED ratio [A] before and [B] after data has been 
transformed 
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Figure 6-5 Mean average of A) GFP:dsRED ratio and B) logged 
GFP:dsRED ratio in Arabidopsis protoplasts transformed with 
dsRED, 5’END DEL GFP and 3’END DEL GFP. 

[A] The mean ratio of GFP:dsRED is shown for wild-type; M = 1.19 (n=20), lig4-5; M = 0.43, lig6-
1; M = 0.24 (n = 12) and lig6-1 lig4-5 M = 0.83 (n = 19).   

[B] The mean logged ratio of GFP:dsRED is shown for wild-type M = -0.31 (SEM =0.25), lig4-5 M 
= 0.43 (SEM =0.32), lig6-1; M = -1.81 (SEM =0.19) and lig6-1 lig4-5 M = -1.31 (SEM =0.34).  A 
one-way ANOVA was performed using Tukeys HSD post hoc test to determine significant 
difference of the mean logged GFP:dsRED values between each genotype. Significant differences 
were observed between wild-type and lig4-5 (P = 0.043), wild-type and lig6-1 (P < 0.01) but not 
wild-type and lig6-1 lig4-5 (P = 0.13). 
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The analysis showed there is a significant difference in the levels of GFP 

fluorescence, and therefore levels of ECR between wild-type and lig6-1 

protoplasts (P = 0.0007), with a decrease in GFP fluorescence in lig6-1 

protoplasts. A significant difference was also identified between wild-type and 

lig4-5, with increased levels of ECR in the lig4-5 when compared to wild-type 

protoplasts (P = 0.04). There is no significant difference between the 

GFP:dsRED fluorescence ratio in wild-type and lig6-1 lig4-5 protoplasts (P > 

0.05), nor between the ratios observed in lig6-1 and lig6-1 lig4-5 protoplasts 

(P > 0.05) [Figure 6-4].  
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6.2.2 LIG6 and LIG4 protect genome stability in roots. 

Plant growth is mediated by small populations of stem cells; these are located 

in the meristems of shoots and roots. The root meristem stem cells are called 

the root initials; these surround another group of stem cells collectively known 

as the quiescent centre (QC) (Figure 6-6). Cells in the QC divide rarely but 

provide an intercellular signal to the root initials preventing differentiation 

(Scheres, 2007). Stem cells which are displaced from centre zone of the 

meristem then populate the peripheral zone at which point differentiation is 

initiated (Stahl and Simon, 2012). Plant growth via root and shoot meristem 

pose particular risks, so guarding genome integrity within plant stem cell 

niches is vital (Heyman et al., 2013).  

In the root and shoot meristems of Arabidopsis rapid ATM-dependent, autolytic 

programmed cell death (PCD) (van Doorn, 2011) ensures damaged cells are 

eliminated from stem cell populations (Fulcher and Sablowski, 2009; 

Sablowski, 2011). Confirmation that PCD is initiated as a response to DSBs in 

root stem cells was observed in mutants defective in the NHEJ pathway (ku80 

and lig4). Spontaneous PCD in roots was statistically significantly higher in 

NHEJ pathway deficient mutants compared to wild-type (Sablowski, 2011).  

Here the roles of LIG4 and LIG6 in maintenance of genome integrity in root 

meristems cells under genotoxic stress was investigated and quantified in roots 

exposed to bleomycin. 
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Figure 6-6 Propidium iodide (PI) staining of root tips showing 
PCD events in wild-type, lig4-5, lig6-1 and lig6-1 lig4-5 mutants 
after bleomycin treatment 

[A] Diagram of the root meristem with the QC marked in green and the root initials marked in 
red, adapted from (Fulcher and Sablowski, 2009).  [B-E] representative confocal images of 4 
day old root tips including a 24 hour period of bleomycin treatment (1 µg ml-1) stained with PI 
which enters dead cells but only marks the outline of those living,  [B] wild-type, [C] lig4-5 
mutant, [D] lig6-1 and [E] lig6-1 lig4-5 double mutant (Scale Bar; 50 µm). 

 

Figure 6- 7 Number of programmed cell death events per root 
in wild-type, lig4, lig6 and lig6 lig4 mutant plants 

Statistical analysis using the student T-test determined a significant difference between wild-
type and lig4-5 (P =0.00039 *); lig6-1 (P = 0.00009 *); lig6-1 lig4-5 (P < 0.00001 **).  The 
standard error of the mean is displayed. (n = 20). 
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3 day old seedlings (wild-type, lig4-5, lig6-1 and lig6-1 lig4-5)  were treated 

with the radiomimetic drug bleomycin for 24 hours to induce DSBs. Roots 

where incubated in propidium iodide (PI), which stains the cell walls of  living 

cells but is a marker for loss of cell membrane integrity and cell death when 

entering and staining the entirety of a dead cell (Truernit and Haseloff, 2008). 

Finally roots were then imaged under the microscope [Figure 6-6 B-E]. Wild-

type roots were imaged (n=20) showed a mean incidence of 1.7 PCD events per 

root. For lig4 and lig6 single mutant lines the mean incidence of PCD events was 

similar to each other; 4.2 and 4.6 per root respectively. This is around a 2.5 fold 

increase in PCD incidence in both cases when compared to wild-type and are 

both significantly different (Students T-Test P < 0.00001). A mean incidence of 

19 PCD events was observed in the double mutant, over an 11 fold increase 

from wild-type. These results show genome integrity is decreased in the 

Arabidopsis root meristem without the action of the ligases LIG4 and LIG6. 
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6.3    Discussion 

6.3.1  The roles of LIG4 and LIG6 in extra-chromosomal 

recombination 

In 1990’s the first report which enabled quantification of extra-chromosomal 

recombination events and the rate at which they occur in plants by the use of β-

glucuronidase (GUS) as a marker was published. This allowed measurement of 

extra-chromosomal recombination (ECR) events within a cell (Puchta and 

Hohn, 1991) and represents a landmark study of plant recombination 

mechanisms. Work with mammalian cell culture has given differing results in 

the roles of DNA repair factors have on rates of ECR. In human and hamster 

fibroblast cell culture the incidence of ECR are found to be increased in cells 

deficient in ATM (Drexler et al., 2004), however the number ECR events have 

been shown to be unaffected in mice fibroblast cell culture deficient in KU80 

(Morrison and Wagner, 1996).  

The results from this study clearly showed a difference in the incidence of 

recombination events between wild-type, lig4-5, lig6-1 and lig6-1 lig4-5 mutant 

lines. Interestingly there was a significant increase in recombination with 

regards to lig4 mutants when compared to wild-type, lig6-1 and lig6-1 lig4-5 

lines [Figure 6-4]. An increase in GFP:dsRED ratio in lig4-5 protoplasts when 

compared to wild-type suggested that ECR was down-regulated when LIG4 was 

expressed. This was observed as an up-regulation of ECR activity in lig4-

deficient protoplasts at an extra-chromosomal level. 

A significant decrease of the GFP:dsRED ratio was observed in lig6 protoplasts 

when compared to wild-type [Figure 6-5]. The GFP:dsRED ratio decreased in 

mutants deficient in LIG6 and demonstrated a role for LIG6 in facilitating 

homologous extra-chromosomal recombination. From these results it could be 

hypothesised that LIG6 played a role in facilitating chromosomal recombination 

whilst LIG4 had an inhibitory role. Little has been reported on the role of LIG6 

in plant recombination but these results demonstrated a hitherto 

uncharacterised role in extra-chromosomal recombination pathways.  
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This assay measured recombination activity on an extra-chromosomal basis. 

Intra-chromosomal recombination assays would be necessary to confirm a role 

for LIG4 and LIG6 in regulation and promotion of chromosomal recombination, 

but these results gave support towards such roles. Work in rad50 Arabidopsis 

mutants observed increased intra-chromosomal recombination consistent with 

RAD50 suppressing recombination in Arabidopsis (Gherbi et al., 2001)  

To produce fluorescent GFP protein in this ECR assay, the two plasmids must 

have undergone a recombination event, requiring the recombination 

machinery of the plant. It is therefore interesting that a significant increase in 

fluorescence levels in lig4 mutant protoplasts was observed when compared to 

lig6 mutant lines. LIG4 has been well characterised and is important in the 

NHEJ pathway (West et al., 2000). It is possible that action of LIG4 promotes 

NHEJ repair before homologous recombination can occur. It is through HR 

creation a functional GFP gene would occur. Interestingly the double mutant 

showed levels of recombination with no significant difference to wild-type, 

suggesting competitive opposing action of LIG6 and LIG4. Such competition 

between HR and NHEJ pathways has been reported in mammalian cultures 

where cells deficient in the core NHEJ factor XRCC4 displayed increased 

instances of HR-mediated DSBR (Delacote et al., 2002). Further to this in vitro 

studies showed competition for a common DNA substrate between the human 

RAD52 and KU proteins, involved in the initial steps of HR and NHEJ 

respectively (Van Dyck et al., 1999). A report in Arabidopsis showed the 

absence of another component of the NHEJ, RAD50, and stimulated homologous 

recombination in planta and is consistent with the hypothesis of competition 

between HR and NHEJ pathways. 

LIG4 is known to be a key component of the canonical NHEJ. Work in 

Arabidopsis has defined the DNA repair kinetics of DSBs where c-NHEJ is the 

predominant DSB repair mechanism before back-up NHEJ pathways (section 

1.3.5.2) and then homologous recombination repair (Charbonnel et al., 2010; 

Waterworth et al., 2009). Removal of LIG4 may decrease the efficiency of NHEJ, 
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allowing ECR events to occur with increased incidence, consistent with the 

hypothesis of competition between HR and NHEJ. 

To test this hypothesis, over-expression lines of LIG4 and LIG6 could be created 

and the same assay performed with these. If competition occurs here, extra-

chromosomal recombination rates will decrease in lines over-expressing LIG4 

and increase in lines over-expression LIG6. Furthermore analysis of mutants 

deficient in other core NHEJ factors, such as KU80 may give further insight into 

the regulation of repair pathway choice i.e. HR or NHEJ.  

6.3.2  The roles of LIG4 and LIG6 in genome stability in 

roots   

Mild increases in PCD in both lig4 and lig6 mutants reinforced  previous reports 

that genomic integrity is tightly controlled in the root meristem (Fulcher and 

Sablowski, 2009). Interestingly, an 11-fold increase in PCD events was 

observed in the double mutant here, significantly more PCD than that observed 

in the single mutants (P < 0.00001). This suggested there is redundancy 

between LIG6 and LIG4 and/or that the cumulative effects of damage resulting 

from the lig4 and lig6 mutants had additive effects on promoting PCD. 

Hypersensitivity to bleomycin observed in the single mutants showed that 

neither ligase could completely compensate for the loss of the other ligase;  this 

result was consistent with root growth phenotypes after 100 Gy X-ray 

(Waterworth et al., 2010). Both ligases may be needed for efficient repair of a 

specific subset of DNA lesions; in lig4 and lig6 mutants one of the remaining 

ligases may function in inefficient back-up pathways. T-DNA insertion studies 

demonstrated that lig6 lig4 mutants were able to perform inter-chromosomal 

recombination, albeit with decreased efficiency, demonstrating LIG1 (as the 

only functional ligase present in this mutant line), could partially compensate 

for loss of both LIG6 and LIG4 (Park et al., 2015). This demonstrates that plants 

have evolved very flexible repair pathways that are able to operate without 

core-components. 

These results are interesting with regards to understanding how a plant deals 

with genotoxic stress and also which cells are more susceptible to that stress. It 
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is known that recombination factors are important in maintaining viability in 

the stem cells of the meristem even when plants are grown under ideal 

conditions (Fulcher and Sablowski, 2009). Analysis of PCD frequencies in 

response to genotoxic stresses more representative of those a plant may 

encounter, such as high salt concentration and low moisture content, would 

show whether these mutants have the same phenotype under more 

physiologically relevant stresses. Mutant lines deficient in NHEJ factors LIG4 

and X-RAY CROSS COMPLEMENTATION PROTEIN 4 (XRCC4) in conjunction with 

loss of another NHEJ-associated factor DNA POLYMERASE LAMBDA (POL λ) 

indicated the involvement of NHEJ-mediated repair of salinity-induced DSBs 

(Roy et al., 2013). 

By over-expressing those recombination factors which, when deficient, showed 

a decrease in cell viability in Arabidopsis root initials, it may be possible to 

promote meristem cell viability and therefore increase whole plant viability 

(Sablowski, 2011). It was interesting to discover a redundancy in phenotypic 

function between LIG6 and LIG4; the question must therefore be raised: why 

did plants uniquely evolve LIG6? Further work is therefore needed to 

determine this and to understand the distinct roles and mechanisms LIG6 and 

LIG4 have in maintaining genome stability and ultimately cell viability in the 

root meristem. It is possible that LIG6 and LIG4 function in the same pathway 

as complementary factors. A second possibility is that these two proteins are 

phenotypically complementary but function in two separate pathways such 

that deficiency in both leads to a large decrease in genome stability and 

ultimately cell viability [Figure 6-7].  Similar analysis of other knock-out 

mutants of plant DNA repair factors may provide a greater understanding of 

the roles DSB repair plays in plant meristem maintenance.  
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7. General Discussion   
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7   General Discussion 

Seed germination vigour is a major determinant of crop yield and survival of 

plants in the natural environment. However, our knowledge of the molecular 

factors important to seed quality is far from complete. Such understanding is 

vital to mitigating the detrimental effects of extended storage on seed vigour 

and viability. In particular, storage under hot and humid conditions exacerbates 

deterioration of seed quality with farmers in the developing world often not 

having access to controlled storage facilities in order alleviate these stresses to 

the seed. Identifying factors important to maintenance of seed vigour and 

longevity should enable biotechnological or plant breeding approaches to 

improve these qualities. In crop species, this is an obvious strategy to maintain 

and improve crop yields. These studies have identified important functions of 

both double and single strand break repair mechanisms in the maintenance of 

seed vigour and longevity.  
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7.1 Towards a well-defined model of DNA repair 

processes in seeds 

7.1.1 NHEJ repair of DSBs is the most important DNA 

repair pathway in mitigating the deleterious effects 

of seed ageing. 

Analysis of NHEJ mutants deficient in lig4 and lig6 identified a molecular link 

between seed longevity and DSB repair (Waterworth et al., 2010b). Here, 

further investigation of the NHEJ pathway in the context of germination was 

undertaken using mutants deficient in ku70 and ku80. These demonstrated a 

lower seed vigour in high quality seeds, conforming with previous phenotypic 

analysis of lig4 and lig6 mutants (Waterworth et al., 2010). The work presented 

by this study provides further evidence that components of non-homologous 

end joining pathways have direct and important roles in seed quality.  Analysis 

of the sensitivity of lig4 and lig6 to accelerated ageing identified that lig6 played 

a greater role in maintenance of seed vigour and viability. The additive 

phenotype is suggestive that these ligases play distinct roles in germination, 

possibly in pathways with specificity for different end chemistries. Although 

KU70 and KU80 function upstream of lig4 in the c-NHEJ pathway, the 

hypersensitivity of KU factors to seed ageing was more comparable to that 

displayed by lig6, potentially indicating KU might also function  upstream of 

lig6. Interestingly, NHEJ-factor deficient seeds were the only mutant types 

investigated in this study that displayed a relative decrease in seed vigour of 

unaged seeds along with decreased viability after accelerated ageing 

comparison to aged wild-type seeds. This hypersensitivity further 

demonstrates a requirement for the repair of DNA DSBs in early-imbibing seeds 

as well as roles for the recombination machinery in the recovery from damage 

accumulated during quiescence. NHEJ therefore presents the greatest potential 

in identifying avenues to lessen the effects seed ageing. Indeed recent genetic 

analysis of determinants of Arabidopsis seed longevity identified that a QTL 
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confirming increased longevity co-localised with the LIG4 locus (Nguyen et al., 

2012).  

To determine if NHEJ factors can promote increased seed longevity and vigour, 

analysis of over-expressing lines would be informative. Over-expressing KU70 

and KU80 using seed specific promoters could increase NHEJ repair capacity 

during germination, potentially resulting in seeds with greater resistance to 

seed ageing and germination stresses.  

7.1.2 XRCC2-mediated HR has a role in mitigating the 

effects of seed ageing but is not as important as 

NHEJ in seed quality 

As demonstrated in chapter 4, without the homologous recombination factor 

XRCC2, germination vigour was lower in aged seeds when compared to 

equivalent wild-type germination performance. Unaged xrcc2-1 seeds were 

shown to have germination performance indistinguishable from wild-type seed 

lots [Figure 4-2].  This differs from the decrease in vigour displayed by seeds 

deficient in the NHEJ factors lig4, ku70 and ku80 [Figure 3-3 A and 3-10 B]. 

Similarly, unlike these c-NHEJ mutants, the xrcc2-1 lines did not show differing 

levels of viability to wild-type seeds after seed ageing [Figure 4-3].  

In higher plants, HR mutant plants are phenotypically normal during the 

vegetative phase of development and do not display pronounced 

hypersensitivity to DSB-inducing treatments, including X-rays. It is therefore 

thought that NHEJ is the major pathway utilised in DSB repair in these cases 

(Waterworth et al., 2011). This may also explain the increased hypersensitivity 

in c-NHEJ mutants to ageing treatment [Figure 3-11] compared to that 

observed in HR mutants when compared to wild-type [Figure 4-4]. Decreased 

vigour observed in unaged NHEJ mutants was not present in xrcc2-1 lines and 

supports this hypothesis. From this it may be deduced that HR functions to 

repair a specific sub-set of DNA damage lesions that are not present in unaged 

seeds but rather accumulated during storage. For example it is known that the 

HR sub-pathway single strand annealing accounts for c. 30% of repair events 
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that occur between tandem repeats (Siebert and Puchta, 2002). Indeed XRCC2 

is known to have a non-redundant role in SSA as well as RAD51-dependent 

homologous recombination (Serra et al., 2013). Deep sequencing of the aged 

seed genome in xrcc2-1 lines (section 7.2.1), might elucidate the identity of the 

damage products targeted and repaired by XRCC2-mediated HR.  

To repair a damaged region of DNA, HR requires an intact template, permitting 

an error-free break repair event. A homologous template is used for repair in a 

pathway mediated by the RAD51 recombinase protein in conjunction with 

accessory proteins including the focus of part of this study, XRCC2. In yeast and 

mammals, HR is tightly regulated and this recombination activity is dependent 

on cell cycle stage. The lowest level of HR activity was observed in G1, before 

replication of a sister chromatid, whilst activity is highest during S-phase and 

G2 when sister chromatids are available (Mazon et al., 2010). Analysis of the 

Arabidopsis seed has demonstrated that the cell cycle is highly regulated during 

germination and was only initiated at or around the end of germination. Cells 

are mostly in G1 throughout imbibition when HR levels are low. DNA synthesis 

(S-phase) coincides with radicle emergence (Barrôco et al., 2005; Masubelele et 

al., 2005) and therefore during germination in Arabidopsis, HR may not be as 

important as NHEJ due the cell cycle stage of embryo cells.  

In rye and Avena fatua (oat) seeds, DNA repair processes have been shown to 

start during the earliest phases of germination, only 30 minutes after 

imbibition initiation. This was demonstrated by 3H-thymidine incorporation 

into DNA and unlike in the chain of germination events characterised in 

Arabidopsis, these cereals display DNA replication within several hours of 

imbibition prior to radicle emergence (Elder and Osborne, 1993; Barrôco et al., 

2005). In these species, HR may have a more prominent role in repairing DNA 

lesions as the cell cycle has progressed further than observed in Arabidopsis 

during the early stages of germination. With this in mind, the relative 

importance of different repair pathways could vary with regards to 

germination across higher plant species. 
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Homologous recombination is a highly conserved, multistep and multifaceted 

pathway involving many factors (Mazon et al., 2010). In chapter 4, XRCC2 gene 

was chosen as the candidate to investigate the role of HR in Arabidopsis seed 

germination due the characterised role of XRCC2 DNA damage-mediated HR 

whilst not being essential for meiosis based HR. Many other HR factors are 

involved in meiotic HR and are sterile; it is therefore very difficult to study seed 

germination in knockout mutants such as rad51 (Li et al., 2004). Following on 

from the present study, different HR factors could be examined to further probe 

their roles within the context of germination. Other HR factors of interest which 

do not display sterility in Arabidopsis are RAD51B and RAD51D (section 1.5.2). 

 

7.1.3 SSB repair functions in aged seeds but was not as 

important as the repair DSBs to seed quality 

Pre-genomic era studies identified that accumulation of SSBs correlated with 

seed quality (Cheah and Osborne, 1978). This study investigated the roles of 

two well-defined SSB repair pathways, base excision repair and nucleotide 

excision repair pathways, in germination. Both ARP and ERCC1 have been well 

characterised in Arabidopsis and have non-redundant roles in BER and NER 

respectively, as demonstrated by hypersensitivity to genotoxic stresses 

(sections 5.1.1 and 5.1.2). Germination performances of unaged arp and ercc1 

mutant lines were phenotypically indistinguishable from that of wild-type 

seeds [Figure 5-4]. This suggested that these SSB repair pathways do not have 

an important function in unaged seeds. Upon accelerated ageing the MGT of 

arp-1 was significantly increased from wild-type aged seeds; however ercc1-1 

mutant seeds remain indistinguishable from wild-type [Figure 5-5]. This 

demonstrated ARP-mediated BER held a more important role than ERCC1-

mediated NER repair during seed germination. Indeed work in maize identified  

a four-fold increase of apurinic/apyrimidinic sites in DNA during early 

germination, which was attributed to an intermediate step of BER whereby 

DNA glycosylase activity removes damaged bases (Dandoy et al., 1987). This 

demonstrates the large cumulative levels of oxidative damage in the seed which 
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was repaired by BER early in germination. The importance of BER to seed 

quality is further highlighted in Arabidopsis where over-expression of the BER 

glycosylase OGG1 results in increased tolerance to ageing treatments (Chen et 

al., 2012) 

Whilst arp-1 lines have lower seed vigour than wild-type seeds after ageing, the 

final viability was not significant different from wild-type. This phenotype was 

the same as that observed in the xrcc2-1 mutant lines (section 7.1.2) but differs 

from the NHEJ mutants where ageing treatment causes significant decrease in 

viability (section 7.1.1). This suggested that NHEJ pathways have a more 

significant role in maintaining seed quality than those involved in SSB repair. 

This was most likely due to the nature of the lesions repaired by each pathway. 

DSBs are highly cytotoxic DNA lesions due to their highly mutagenic nature. 

Chromosomal fragmentation results in the loss of large chunks of genetic 

information and this explains why plants cannot tolerate high levels of DSBs 

(section 1.5) (Waterworth et al., 2011). Oxidative damage to DNA bases may 

have serious consequences for the cell but is generally better tolerated (section 

1.3.3) (Roldán-Arjona and Ariza, 2009), however, the mutation rate due to seed 

ageing is unknown (Section 7.2.1).  

7.1.4 The potential roles of other DNA repair mechanisms 

in seed quality 

Direct reversal of UV induced photoproducts by photolyase enzymes is an 

important DNA repair mechanism in green tissues (Waterworth et al 2002). 

Further work following on from the present study could seek to study the 

photoreactivation pathway to elucidate any roles in seed quality. It is probable 

that this pathway only has a minor role in the repair of the genome in 

germinating seeds under normal physiological conditions. This is due to action 

of photolyase enzymes being light-dependent (Dany et al., 2001). As seeds are 

under soil whilst imbibing and proceeding through germination they are 

exposed to limited amounts of light. Seeds may accumulate UV-induced 

photoproducts during maturation on the mother plant. However, NER mediates 

slower ‘dark repair’, of photoproducts (Fidantsef et al., 2000), which could 
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repair such damage upon imbibition. Analysis of ercc1 and other NER factor 

mutants in germination performance in the dark would determine if NER 

repairs photoproducts in seed germination. 

A further avenue of investigation to identify the roles of mismatch repair 

(MMR) in germination would allow determination of potential roles in seed 

germination.  Work in Arabidopsis has shown that unaged seeds deficient in 

MSH2 show germination indistinguishable from wild-type in the first 

generation. These mutants do however display increased endogenous 

microsatellite instability and fifth generation seed lots displayed variable 

germination vigour and seedling establishment compared to wild-type 

(Hoffman et al., 2004). This suggests that in unaged Arabidopsis seeds MMR 

does not play a role in germination, but has essential roles in maintaining 

genomic integrity to ensure deleterious mutations are not accumulated and 

passed on to the progeny.  

MMR is known to primarily be involved in base-base mismatches and 

insertion/deletion mis-pairs generated during DNA replication and 

recombination (Li, 2008). In Arabidopsis seeds, flow cytometry has revealed 

that a major transition through S phase toward G2 is only detected around  the 

moment of radicle emergence and therefore completion of germination 

(Barrôco et al., 2005). It should be noted upon 8 hours of imbibition in water, 

flow cytometry data shows a peak corresponding to 4C nuclei in Arabidopsis 

seeds but only after 40 hours after imbibition is a large increase in the 

frequency of 4C nuclei observed coinciding with radicle production (Barrôco et 

al., 2005). This suggests that the majority of DNA synthesis involved in 

replication occurs at or around the completion of germination, coinciding with 

radicle emergence. It can hypothesised that in Arabidopsis, the mismatch repair 

pathway does not play an important role in DNA repair in seeds during phase I 

and II of germination sensu stricto as little replicative DNA synthesis is present 

until the end of germination.  
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7.1.5 Roles of alternative repair pathways in germination  

Several pathways which mediate DNA repair are conserved across eukaryotes 

and have been well defined in plants, such as the c-NHEJ pathway. However, it 

is becoming clear that plants, as other organisms, have multiple back-up repair 

pathways that facilitate repair using different components of the DNA repair 

machinery (Charbonnel et al., 2010). 

Plants have a relatively high tolerance for DNA damage and mutations in 

characterised repair pathways are viable. This is suggestive of alternative 

repair pathways having higher activity in plants than animals (Waterworth et 

al., 2011). An increased understanding of the conservation and evolution of 

DNA repair pathways between plant species may provide further insights into 

the relationship between DNA repair and seed quality. Work using comparative 

genomic analysis between Arabidopsis and rice as well as by performing 

similarity searches and conserved domain analysis against proteins known to 

be involved in DNA damage repair in human, yeast and E. coli has been 

previously reported. It was found that core components of all repair pathways 

are generally conserved across eukaryotes but there are some divergences. 

NER and MMR were found to be the most highly conserved pathway (Singh et 

al., 2010). Interestingly, plants contain homologues of both the animal OGG1 

and bacterial FPG glycosylases, which could reflect exposure to the particularly 

high levels of oxidative stresses experienced by plants due to their sedentary 

lifestyle. Several novel genes, for instance MSH7 and LIG6, not present in other 

eukaryotes, are found to be well conserved across higher plants (Singh et al., 

2010; Waterworth et al., 2010). This supports the hypothesis that plants have 

evolved novel mechanisms to maintain genome stability.  

The desiccation tolerant seed represents the evolution of a very efficient 

mechanism of reproduction. The embryo genome is potentially exposed to high 

levels of genotoxic stress during seed development and maturation on the 

mother plant and in soils with unfavourable conditions such as high salt or 

acidity levels. Other desiccation tolerant organisms have also evolved novel 

approaches to mitigate genome damage. The bacterium Deinococcus 
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radiodurans is known for its resistance to extremely high doses of ionizing 

radiation and for its ability to reconstruct a functional genome from hundreds 

of radiation-induced chromosomal fragments. It is thought this capability 

evolved to ensure survival during desiccation which is associated in this 

bacteria with an accumulation of DSBs (Mattimore and Battista, 1996). It would 

be expected that plants have evolved repair activities to cope with DNA damage 

in the seed stage of the plant lifecycle , as exemplified by the isolation of novel 

repair factors such as LIG6 (Waterworth et al., 2010). This highlights the 

importance of understanding the physiological relevance of different DNA 

repair pathways and their importance at different stages of the plants lifecycle.  

 

7.1.6 Functions of DNA Ligase 6  

Most of our knowledge of plant DNA repair mechanisms arises from studies in 

which plants are exposed to non-physiological stresses (Waterworth et al., 

2011). An important aspect of the work presented in this study was the 

identification of roles for several DNA repair pathways in seed biology, 

expanding our understanding of the physiological functions of plant DNA repair 

mechanisms. For example, LIG6 was first phenotypically characterised due to 

its role in seed germination (Waterworth et al., 2010), unlike LIG4, which is 

well characterised as part of the c-NHEJ pathway in Arabidopsis (West et al., 

2000). The plant specific LIG6 has a highly conserved ligase domain and N-

terminal domain with homology to the SNM/Artemis class of proteins. This 

could suggest a role in repair or end processing of DSBs with a particular end 

chemistry, such as ARTEMIS in mammalian c-NHEJ (Lieber, 2010) This could be 

tested by over-expression of recombinant LIG6 in E. coli and via biochemical in 

vitro assays of activity with various DNA substrates.  

Whilst the pathway in which LIG6 operates has yet to be delineated, work in 

this study demonstrated a role for LIG6 in extra-chromosomal recombination, 

functioning in direct competition with LIG4. Better understanding of the LIG6 

pathway in plant DSB DNA repair could specifically elucidate the specific types 

of DNA lesions that most affect seed quality. LIG6 was first identified in plants 
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due to sequence homology to LIG1 but it also contained the catalytic core of 

eukaryotic PSO2/SNM1/ARTEMIS proteins (section 6.1.2). It maybe that LIG6 is 

functional homologue of these proteins (section 1.5.3.1) whereby LIG6 binds to 

a hairpin structure and either nicks/facilitates nicking of the hairpin. mutant 

lines deficient in LIG6 line displays redundancy of this function suggesting it is 

not the primary function LIG6 (Huefner et al., 2011). 

Delineating the pathway in which LIG6 functions may be possible through 

identification of interacting proteins using LIG6 as bait in yeast two-hybrid 

system library screening. Alternately tandem affinity purification (TAP) tagging 

and mass spectrometry (MS) analysis of proteins interacting with epitope 

tagged LIG6 could be employed. These approaches have been previously used 

to successfully identify novel interactors of core plant NHEJ repair pathway 

components. For example yeast two-hybrid system library screening 

demonstrated the interaction of MRE11 and the histone acetylase TAF-1 in 

Arabidopsis (Waterworth et al., 2015). This approach may elucidate interacting 

proteins of LIG6 as well as revealing further novel DNA repair. 

7.1.7  DNA repair and seed vigour 

In addition to repair mechanisms, DNA damage signalling and response factors 

play a crucial function in the cells response to genotoxic stress. The DNA 

damage response in eukaryotes is controlled and coordinated by the 

checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATAXIA 

TELANGIECTASIA AND RAD3 RELATED (ATR). These kinases activate repair 

factors, halt or slow progression of the cell cycle and control pathways to cell 

death. Control of the cell cycle is imperative in ensuring that damage to the 

genome is repaired before DNA replication in order to prevent transmission of 

potentially mutagenic damage to the daughter cell. Indeed cell cycle 

progression is tightly monitored by cell cycle checkpoints and slowed or halted 

in the presence of DNA damage (section 1.6.3).  

Decreasing vigour is accompanied by progressive delays in radicle emergence 

and eventually culminates in loss of viability.   The molecular basis for the delay 

to germination observed in DNA mutants with diminished repair capacity in 
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these studies has yet to be elucidated. Although Arabidopsis seeds cells do not 

undergo mitosis until the point of radicle emergence, cell cycle checkpoints 

have been shown to be important for seed vigour. Loss-of-function alleles of 

‘early-activated’ CYCDs during phase I of germination, display reduced division 

activation and consequential delayed root emergence (Masubelele et al., 2005). 

This demonstrates a potential mechanism by which seeds are able to delay 

germination whilst repair is on-going. ATM and ATR are the two master kinases 

which co-ordinate the DNA damage response and are responsible for inhibiting 

cell cycle progression in response to DNA damage [Figure 1-9 (Culligan et al., 

2006; Matsuoka et al., 2007; Roitinger et al., 2015)]. To test this hypothesis the 

roles of ATM and ATR in seed germination should be analysed. The MGT is 

increased wild-type Arabidopsis seeds that have undergone accelerated ageing, 

demonstrating lower seed vigour. If either ATM or ATR function to halt cell 

cycle progression in response to DNA damage in seeds, this may potentially this 

would cause subsequent delay in the radicle emergence. Mutants deficient in 

these genes would potentially display unaged vigour phenotypes even after 

ageing. If such a phenotype was observed, this work would further elucidate 

the importance of the DNA damage response and repair processes in seed 

quality. If removal of this regulation causes a decrease in MGT, then this would 

demonstrate regulation is not mediated by other forms of damage such as that 

to proteins or lipids which is causing lower seed vigour (section 7.3). 
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7.2 DNA damage accumulation in seeds and the 

molecular consequences 

A decrease in seed quality can be attributable to effects of ageing on the repair 

capacity. Impairment of enzyme functions due to protein damage exacerbates 

accumulation of DNA damage products exceeding repair capacity. In addition to 

determining the roles DNA repair during seed germination and their roles in 

seed quality. Understanding the forms of genomic damage accumulated in seed 

ageing would help to further determine the roles of each repair pathway in the 

germinating seed in the context of impaired repair capacity.  

7.2.1 Accumulation of DNA damage during seed storage 

The main focus of these studies has been the roles played by representative 

factors for each DNA repair pathway under normal germination conditions 

with or without accelerated ageing. It remains unknown whether these 

conditions cause a wide spectrum or specific subsets of DNA damage lesions. 

Quantitative analysis of DNA damage products present in the embryo both 

before and during imbibition would indicate what type of damage products are 

accumulated by the dry seed. Similarly, the factors analysed here may have 

important roles in germination when the seeds are exposed to different 

genotoxic stresses. 

In order to investigate the types of DNA damage in the dry seed, further work 

could be conducted utilising the single cell gel electrophoresis (comet) assay. 

This has been adapted to differentiate between SSB and DSB repair in genomic 

DNA and successfully applied to a number of plant species including 

Arabidopsis (Kozak et al., 2009). Applying this technique to aged and unaged 

embryonic seeds cells could elucidate the relative amount of DSBs and SBB 

accumulated after ageing. However DSBs are extremely cytotoxic and the 

relative number observed even after some seed ageing that lowers vigour 

maybe low and not quantifiable using the comet assay. Chromatin remodelling 

is known to be important in the cellular response to DNA DSBs. Rapid 

phosphorylation of the histone H2AX to γ-H2AX, a widely used biomarker for 
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DSBs, may provide a quantitative measure of DSB events in the seed embryo. 

Visualising the appearance and loss of γ-H2AX foci by using immunostaining 

with anti-γ-H2AX has been shown to be a reliable quantitative measure of DSB 

events and repair kinetics in Arabidopsis (Charbonnel et al., 2011). 

 A major type of oxidative damage observed in the genome is 8-oxoG (section 

1.3.3).  It is possible to quantify the levels of 8-oxoG in the genome of the 

embryo by either an enzyme-linked immunosorbent assay (ELISA) or High-

Performance Liquid Chromatography (HPLC) using Anti-8-oxo-dG (Yoshida et 

al., 2002). This would identify levels of oxidative base damage in the embryo 

and could determine if there are threshold levels of oxidative damage at which 

seed quality deteriorates. 

The accumulation of mutations upon ageing may represent a significant factor 

in seed quality. Genome stability could be evaluated by performing genome 

sequencing of unaged and aged wild-type seeds and comparing wild-type to the 

mutant lines described in these studies. This work would identify not only the 

levels of mutations caused by seed ageing, but also which repair pathways are 

important in maintaining genome integrity in the seed. Furthermore, mutations 

in the genome may preferentially occur at specific loci. Work in mammalian 

cancer cells has identified so called ‘common fragile sites’ (CFS). These genomic 

loci are evolutionarily conserved late replicating regions with AT-rich 

sequences, which have increased genomic instability associated with cancer 

(Ma et al., 2012). Using sequencing analysis would potentially elucidate 

hotspots within the Arabidopsis genome with increased genome instability after 

seed ageing. 

7.2.2 The importance of telomere maintenance in seed 

quality 

Repair and maintenance of telomeres during germination may also represent a 

role for DSB repair mechanisms in germination. In eukaryotes, chromosomal 

ends are linear and are protected from recognition as broken DNA ends by 

highly conserved nucleoprotein telomeric cap structures. The DNA damage 

response can be triggered if telomeres are unprotected and can form substrates 
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of recombination pathways. This can result in mutagenic chromosomal 

rearrangements and fusions, ultimately leading to cell death  (Amiard et al., 

2014). Between species, varying lengths of TTTAGG tandem repeats usually 

form plant telomeres. Shortening lengths of telomere below c. 250 nucleotides 

is associated with genomic instability in Arabidopsis (Heacock et al., 2004). 

After seed ageing, the loss of viability in wheat grain is preceded by the 

fragmentation of wheat telomeric sequences (Bucholc and Buchowicz, 1992, 

1995). Accumulation of genomic lesions or nucleolytic degradation during the 

quiescent state of the dry seed could cause telomere loss and lead to deletional 

recombination events (Watson and Riha, 2011). Arabidopsis ku70 mutants 

display deprotection of telomeres with dramatic deregulation of telomere 

length control. Mutant telomeres were observed expanding to more than twice 

the size of wild type by the second generation (Riha et al., 2002). The 

hypersensitivity of these mutants, specifically at the seed stage of the plant 

lifecycle may provide a molecular explanation as to why germination vigour 

loss is observed in the NHEJ mutants. The activity of this complex correlates 

with DNA replication and is absent in dry Melandrium album seeds (Riha et al., 

1998). In contrast, aged wheat seeds display telomere restoration within 90 

minutes of imbibition (Bucholc and Buchowicz, 1992). Further insight into the 

regulation and loss of telomere integrity may provide an avenue into 

understanding causes of DSBs and associated chromosomal defects during seed 

ageing.  

7.2.3 Protection of DNA against damage in seeds 

The studies presented here have focussed on the repair of accumulated damage 

to the genome once metabolism in the seed is re-established after imbibition. 

Understanding the protective mechanisms which minimise accumulation of 

DNA damage in seeds also provides an important aspect of our understanding 

in seed quality and the molecular basis for DNA damage and repair. 

The role of the seed coat is important to seed quality. Germination performance 

is reduced after natural and accelerated ageing in mutants that exhibit testa 

defects (Debeaujon et al., 2000; Clerkx et al., 2004). Aged rice seeds have 
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increased testa permeability due to physical damage. These seeds have 

increased sensitivity to aluminium genotoxicity compared to unaged seeds 

(Alvim et al., 2007). This demonstrates the role the testa holds in protecting 

seed embryos from exogenous stresses. Understanding the genetic and 

molecular events that take place during testa development may allow breeding 

of seeds with testa that harbour more effective characteristics required for seed 

longevity through added protection of the seed genome. 

Despite the quiescent nature of dry seeds, plants possess effective mechanisms 

to minimise excessive oxidative stresses and curtail the accumulation of 

genomic damage. In orthodox seeds a number of proteins are associated with 

desiccation tolerance and maintenance of the quiescent state. The abundance of 

seed storage proteins, late embryogenesis abundant (LEA) proteins and heat 

shock proteins (HSPs) strongly correlate to seed longevity (Rajjou and 

Debeaujon, 2008). HSPs have an important role in protein stability and folding 

acting as a molecular chaperone.  HSPs also act to protect other proteins from 

oxidative damage. In transgenic Arabidopsis lines that over-express heat stress 

transcription factors, subsequent increased accumulation of HSPs an 

augmented tolerance to seed ageing is observed (Prieto-Dapena et al., 2006). 

During imbibition, detoxification systems in the seed include a number of 

antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and 

ascorbate peroxidase (APX), (Bailly et al., 1996; Bailly, 2004; Bailly et al., 2004; 

Rajjou and Debeaujon, 2008), which act to mitigate the effects of oxidative 

stress to cellular macromolecules and organelles. ROS is known to attack DNA, 

causing damage to the genome and potentially introducing mutagenic changes 

(section 1.3.3). Understanding how these systems protect the genome is 

essential in understanding how the seed maintains quality and viability. 
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7.3 The relative importance of DNA damage in 

seed deterioration  

Seed quality is defined in terms of viability, which is the maximum germination 

capacity of a seed lot. Seed vigour, describes the speed and uniformity of 

germination and seedling vigour. A decrease in seed quality is intrinsically 

linked to lower vigour, viability and a greater susceptibility to exogenous 

stresses (section 1.1.4).  The work presented in this study has focussed on the 

role of genome deterioration in seed quality and the importance of numerous 

repair factors in maintenance of seed longevity and vigour. DNA repair 

mechanisms are major determinants of seed vigour and longevity. In particular 

repair of DSBs by NHEJ is the most important pathway for maintenance of seed 

vigour and viability, exemplified by the NHEJ-factors, KU70 and KU80 (section 

3.2.2). However, DNA damage cannot be considered in isolation.  Membranes 

and biological macromolecules also undergo progressive deterioration in the 

dry quiescent state. Protein oxidation can potentially reduce the repair capacity 

of enzymes, whilst membrane damage can promote degradation of nucleic 

acids through release of nuclease enzymes. 

7.3.1 Accumulative damage to proteins and repair upon 

imbibition influences seed quality 

Studies that have begun to elucidate molecular determinants of seed quality 

have demonstrated that accumulation of DNA damage and its repair alone is 

not the only factor. Severe deterioration of proteins in the seed results from 

both reduced cellular maintenance in the quiescent state and cycles of 

desiccation and rehydration (Oge et al., 2008). Increased levels of reactive 

oxygen species are observed during germination and protein oxidation occurs 

during imbibition (Bailly, 2004; Job et al., 2005; Kranner et al., 2010b). In 

Arabidopsis seeds, the predominant targets of oxidation are carbonylation of 

the highly abundant seed storage proteins and core metabolic enzymes (Job et 

al., 2005; Arc et al., 2011). These storage proteins may function to protect 

metabolic enzymes by ‘mopping up’ oxidative ROS molecules associated with 
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germination (Arc et al., 2011). Mechanisms involved in protein repair correlate 

with seed longevity in Arabidopsis including methionine sulfoxide reductases 

(MSR) that repair oxidative damage to methionine residues (section 1.1.4). 

Levels of MSR also correlate with seed longevity in varieties of Medicago 

truncatula (Châtelain et al., 2013), demonstrating this repair mechanism is 

important across species. Repair of abnormal L-isoaspartyl residues 

accumulated after seed ageing to the physiologically normal L-aspartyl is also 

important. PIMT1 is a protein that catalyses this conversion and over-

expression confers higher seed vigour and increased longevity (Dinkins et al., 

2008) (section 1.1.4). 

7.3.2 Deterioration of storage RNA in the dry seed may 

influence seed vigour 

As well as mechanisms that repair protein damage, germination performance is 

linked to RNA damage. Turnover of mRNA influences germination progression 

(Holdsworth et al., 2008). As a consequence of its single-stranded nature and 

cytoplasmic location, RNA is particularly susceptible to oxidation by ROS. 

Damage to RNA can cause a block in translation, which acts as a signal within 

the cell to target the mRNA for degradation (Bazin et al., 2011). In after-ripened 

sunflower seeds oxidation of specific mRNAs was identified, mainly encoding 

genes with putative functions in cell signalling including factors that may be 

involved in dormancy regulation. Targeted oxidation resulted in 8-oxoG 

damage in 24 specific transcripts (Bazin et al., 2011). This means in the 

quiescent seed that the levels of mRNA transcripts can be controlled non-

enzymatically utilising this targeted oxidative damage (El-Maarouf-Bouteau et 

al., 2013). 

7.3.3 Decreases in organelle integrity is associated with 

loss of seed vigour and viability  

Seed deterioration is also associated with membrane damage and disruption of 

organelles. Cytological studies of aged seeds identified that disruption of 

mitochondria correlated with loss in seed vigour and subsequent observations 
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found a reduction in nucleotide levels in wheat embryos (Berjak and Villiers, 

1972; Standard et al., 1983). Accumulation of lipid damage correlates with seed 

quality. Loss of membrane integrity associated with lipid peroxidation is 

accompanied with a decline in seed vigour and viability (Bewley et al., 2013). 

Molecular mechanisms such as antioxidants guard against the deleterious 

effects that ROS has on organelles and membranes within seeds. Arabidopsis 

mutants deficient in the lipophilic antioxidant vitamin E (tocopherol) display 

hypersensitivity to seed ageing (Sattler et al., 2004). Further to this, QTL 

analysis in Arabidopsis for seed longevity found a QTL for this trait co-localised 

with the vitamin E locus (Nguyen et al., 2012) and elevated levels of tocopherol 

in rice seeds conferred resistance to accelerated ageing and gave rise to high 

vigour seedlings (Hwang et al., 2014). 

7.3.4 The importance of repairing DNA damage in seeds 

compared to other types of cellular damage 

Understanding fully the molecular basis for seed quality is vital for the 

production of crop species with enhanced germination vigour and resistance to 

seed ageing. The work reported in the study has identified multiple molecular 

components which promote these qualities, but it must be considered in the 

wider context of factors which influence seed quality. It remains unclear which 

aspects of molecular damage are of greatest importance in the production of 

higher vigour seeds resistant to seed ageing. However, increasing evidence is 

demonstrating that effective DNA repair is essential in the production and 

maintenance of high seed quality. 

Damage to DNA differs from damage to other components of the cell. If proteins 

or lipids are unrepairable, replacements can be synthesised: however 

replacement of damaged DNA is not necessarily as straightforward. The most 

cytotoxic form of DNA damage are DSBs and NHEJ significantly facilitates the 

repair of such lesions in higher plants (Waterworth et al., 2011). NHEJ is 

intrinsically mutagenic, meaning that even if a DSB is repaired the DNA 

sequence is potentially changed with possible detrimental effects. A blueprint 

for life is contained within the plant genome and mutations to this template will 
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be permanent. Using the genome, factors involved in repair can be synthesised 

and replacements for damaged molecules produced. However, without a stable 

genome this is not possible, emphasising the importance of genomic stability 

and accurate repair in seed vigour and longevity.  

7.3.5  DNA damage and programmed cell death in the seed 

DNA damage is toxic to the cell. In the presence of unrepairable damage, 

pathways to cell death can be activated as an integral aspect of the plant DNA 

damage response. Work in Arabidopsis roots demonstrated that a marked 

increase in stem cell death mediated by ATM and ATR was observed  in 

mutants deficient in the NHEJ factors lig4 and ku80 (Fulcher and Sablowski, 

2009). This further demonstrates the potential importance of DNA repair in 

maintaining seed viability. PCD events induced in response to unrepairable 

levels of DNA damage could represent the molecular mechanisms behind the 

observed decrease of viability in NHEJ mutants reported in this study (section 

3.2.2.5) and previously in lig4 and lig6 mutants (Waterworth et al., 2010). To 

test this hypothesis, mutant seeds that have been aged and display decreased 

viability in comparison to wild-type could be analysed for PCD events. Removal 

of the embryo from the seed coat, treatment with propidium iodide and 

analysis utilising microscopy would determine the number of PCD events in 

each genotype. If increased levels of PCD events are observed in the mutant 

embryo compared to wild-type, this would demonstrate a potential molecular 

mechanism by which these seeds are more susceptible to viability loss after 

ageing. This would agree with the exhaustion hypothesis whereby seeds have a 

finite repair capacity and it is thought, when protection and repair mechanisms 

eventually fail, that cell death and ultimately, seed death are the result (Kranner 

et al., 2010a). Work in this study demonstrated the importance of the DSB 

repair factors LIG4 and LIG6 in the root meristem of Arabidopsis consistent  

previous studies in LIG4 and KU80 (Fulcher and Sablowski, 2009). This 

demonstrates the stringent regulation of DSB repair in plant stem cells and the 

subsequent role of PCD in maintaining the plant germline. To date, the 

molecular factors which regulate loss of seed viability remain unknown, but 
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genomic damage to embryonic meristems may be an important factor in seeds. 

Thus PCD may ensure the genomic integrity of the germline through selective 

elimination of cells with defective genomes, but excessive amounts of cell death 

may eventually inhibit the seeds ability to germinate at all.  

7.3.5 Understanding the relationship between seed 

dormancy and DNA repair 

Dormancy is an adaptive mechanism that seeds have evolved to prevent 

germination under unfavourable environmental conditions for seedling 

establishment. Regulation of dormancy in different species and ecotypes within 

species has adapted in various habitats to respond to different environmentally 

specific cues such as temperature and light (Finch-Savage and Leubner-

Metzger, 2006; Graeber et al., 2012; Rajjou et al., 2012).  

The Arabidopsis ecotype, Col-0, used in this study was non-dormant if grown 

under normal conditions and left to after-ripen for two months. The potential 

presence of dormancy in the aged seed lots could influence interpretation of 

these results. In the NHEJ mutants, a decrease in final germination potential is 

observed after accelerated ageing [Figure 3-11]. To ensure this was due to loss 

of viability and not a form of induced dormancy, a dormancy breaking 

treatment was given to these aged seeds lots. The results demonstrated that the 

decrease in germination potential was not linked to dormancy [Figure 3-14].  

Whilst no dormancy was observed in this study, links between seed dormancy 

and DNA repair have long been established. Remaining in a hydrated, rather 

than desiccated state, may provide some advantage to a seed under certain 

environmental conditions. Metabolic activity is vastly higher in dormant 

hydrated seeds compared to those in the dry state (Rajjou et al., 2012). 

Therefore such seeds have a greater potential for active repair of DNA damage. 

Indeed it has been shown that hydrated, dormant lettuce seeds accumulated 

little chromosomal damage and retained germination vigour for extended 

periods in comparison to dry stored seeds (Villiers, 1974). DNA repair 

synthesis is also observed in dormant hydrated oat embryos (Elder and 

Osborne, 1993). It is probable that genome repair mechanisms are activated in 
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dormant seeds during wet-dry cycling in the soil during unfavourable 

conditions. More recently, the Arabidopsis ecotype Cvi, (which acquire primary 

dormancy during development) was found to have the highest level of LIG6 

transcripts in dormant seeds after prolonged periods of hydration (Waterworth 

et al., 2010). However, the molecular mechanisms of DNA repair activity in the 

hydrated, dormant seed remain to be established. 

Interestingly QTL analysis in Arabidopsis uncovered a negative correlation 

between dormancy and seed longevity. It was demonstrated that seeds which 

deteriorate more rapidly in dry storage exhibiting a higher dormancy capacity 

than those, which display better longevity (Nguyen et al., 2012). This discovery 

suggests that seed longevity and dormancy could represent distinct adaptive 

mechanisms that have been evolved in response to varying climates to prolong 

embryo viability.   
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7.4 Implications for understanding DNA repair in 

germinating seeds 

A large body of work in the pre-genomic era correlated seed vigour with 

chromosomal aberrations and SSBs (section 7.2). Understanding the molecular 

basis of DNA repair in seeds will also identify novel approaches for assessment 

of seed quality and commercial pre-germination treatments for its 

improvement.  

7.4.1 Activation of DNA damage repair mechanisms and 

understanding the molecular basis for priming 

Seed priming is a widely used commercial pre-sowing treatment to improve 

seed vigour in the field. These treatments can increase seedling field emergence 

in many agricultural species by as much as 5 – 10 %. It is thought that these 

treatments hydrate and re-establish cellular repair metabolism whilst 

inhibiting completion of germination (Burgass and Powell, 1984). However, 

despite the wide commercial use of such treatments, relatively little is known 

about the molecular basis of priming. 

This study investigated the effects of osmopriming on mutants deficient in lig6 

and lig4. These DNA damage repair mutants have lower vigour than wild-type 

in aged seeds and display hypersensitivity to accelerated ageing (Waterworth 

et al., 2010). After priming treatments of unaged seeds neither mutant 

displayed a significantly different MGT to wild-type Figure 3-5 B], 

demonstrating seed vigour in these mutants can be recovered to wild-type 

levels by priming. Two competing hypotheses could explain the observed 

improved seed vigour. The first is that priming treatments allow resumption of 

DNA repair metabolism and that back-up DSB repair pathways are operative in 

DSB repair deficient mutants (section 1.5.3.2), repairing DNA damage that is 

associated with lower seed vigour (section 1.7). The second is known as the 

advancement of germination hypothesis, whereby priming treatments promote 

germination processes and possibly by-pass normal events associated with 

germination, in this case repair of DNA damage.  
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DNA repair synthesis during priming has been observed across many different 

plant species (Burgass and Powell, 1984; Ashraf and Bray, 1993; Thornton et 

al., 1993). A priming-like repair activity was identified in nature, where partial 

hydration of seeds from the desert species Artemisia during the night by dew  

was associated with a large decrease in DNA fragmentation (Huang et al., 

2008). These reports support the hypothesis that priming facilitates metabolic 

activation of DNA damage repair responses, mitigating the loss of repair 

capacity in the lig6 and lig4 mutants. After accelerated ageing priming confers a 

wild-type germination vigour in the lig4 mutants, conversely lig6 mutants still 

have lower vigour than wild-type [Figure 3-5 D]. This result confirms that LIG6 

is crucial for maintenance of germination vigour and suggests that back-up 

repair pathways are inefficient at repairing the types of DNA damage usually 

facilitated by LIG6.  

Whilst priming treatments used in this study reduce the MGT in all mutants and 

wild-type, after accelerated ageing and subsequent osmopriming viability is 

significantly reduced in the mutant lines. This indicates a disadvantage of using 

such treatments with very low quality seeds that have a reduced repair 

capacity. Previous work in lettuce showed that, whilst that priming treatments 

do advance germination, once seeds are re-dried increased susceptibility to 

deterioration in storage is observed (Tarquis and Bradford, 1992). 

Identification of other repair processes that are activated and function during 

priming treatment will give further insights into the molecular basis for 

priming and will enable better targeted priming treatments of different seed 

lots. 
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7.4.2 Biomarkers of seed quality 

To better understand the specific role DNA repair pathways have in seed 

germination, further investigation into the molecular mechanisms which 

regulate these pathways should be undertaken. The DNA damage response in 

plants is coordinated by the ATM and ATR kinases. ATM specifically controls a 

dynamic and rapid transcriptional response to DSBs which facilitates repair 

processes (Culligan et al., 2006). Arabidopsis seeds early in imbibition are not 

undergoing extensive DNA replication. The DNA damage response 

transcriptional response is therefore evidently activated in imbibed seeds in 

response to genomic damage accumulated during storage, which is consistent 

with previous observations of  increased frequencies of chromosomal breaks in 

aged seeds (Abdalla and Roberts, 1969; Roberts, 1972; Dourado and Roberts, 

1984). 

The latest official figures show that the value of overall output of crops is £9.4 

billion in the UK alone (https://www.gov.uk/government/news/farming-

industry-income-rises). The seed industry is reliant on germination testing to 

validate the quality of seed lots supplied to farmers. It is imperative that 

farmers can trust the quality of the seeds they sow to ensure good crop yields. 

The ability to determine the quality of a seed lot means farmers can have 

confidence in the seeds they sow. Germination performance strongly correlates 

with eventual crop yield and used in many crop species as a reliable marker of 

seed quality (Matthews et al., 2012).  However performing this analysis can be 

labour intensive and time consuming depending on the MGT of the plant 

species. Identifying biomarkers that correlate to seed quality may provide a 

more efficient measure than manual germination testing. 
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From our understanding of the mechanisms of DSB repair, the DSB 

transcriptional response represents a potential candidate a molecular marker 

for seed quality. This study has collated and built on previous reports that DNA 

repair capacity and accumulated DNA damage are important determinants of 

seed quality. At present there is a lack of universal biomarkers for seed quality. 

As the DSB transcriptional response is highly conserved the same analysis may 

be performed across species (Waterworth et al., 2015). Work in Arabidopsis has 

shown the DSB transcriptional response occurs rapidly after imbibition peaking 

at only 3 hours  (Waterworth et al., 2010). The more damage accumulated by 

the seed, the greater the DSB transcriptional response,  meaning analysis is 

quantifiable (Waterworth et al., 2011). Transcriptional data is amenable to 

high-throughput analysis and is also relatively rapid and cheap to perform 

(Kim, 2006; Waterworth et al., 2011). These qualities make the DSB 

transcriptional response a prime candidate for further investigation in 

developing biomarkers for seed quality. 
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7.5   Conclusions 

Seed germination vigour is a major determinant of crop yields (Matthews et al., 

2012; Rajjou et al., 2012). Elucidating the molecular mechanisms that control 

germination vigour could therefore represent a significant step to improving 

crop yields in the context of climate change and hostile environments. The 

work presented in this thesis builds upon pre-genomic era studies that 

indicated a correlation between the amount of DNA damage accumulated in the 

embryo genome and seed ageing. The importance of the major plant DNA 

repair pathways to germination and seed quality was investigated though 

analysis of Arabidopsis mutants. These studies established important roles for 

both DSB and SSB repair factors in seed longevity and vigour. Under the 

conditions utilised in these investigations, only one DNA repair factor (ERCC1) 

out of seven analysed, did not have a role in seed vigour after seed ageing. This 

indicates that multiple DNA repair pathways are integral components of 

germination processes and important determinants of seed quality. These 

studies concluded that repair of DSBs by NHEJ (KU70 and KU80) is the most 

important determinant of seed quality with regards to DNA repair.  

The importance of NHEJ over other repair pathways to seed vigour is mostly 

likely due to the severe cytotoxicity of DSBs when compared to SSBs and the 

predominance of NHEJ over HR repair in higher plants. As such, work in these 

studies has demonstrated that further analysis of the NHEJ pathway in 

germination could reveal prime candidates for potential crop improvement by 

employment of biotechnological methods. Moreover, these studies establish 

important physiological roles for plant DNA repair pathways. Further studies 

characterised the novel plant specific LIG6, which has important roles in seed 

longevity. This work demonstrated that LIG6 functions to facilitate extra-

chromosomal recombination in a competitive manner with LIG4 and is 

important to root meristem genome stability and viability. 

The DNA damage transcriptional response in Arabidopsis to DSBs is exhibited 

very early in phase I of germination and peaks at only 3 hours into imbibition. 

This demonstrates a rapid response to such DNA lesions (Waterworth et al., 
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2010). Understanding the link between the molecular controls of repair 

pathways and seed vigour and viability could further elucidate more molecular 

determinants of seed quality. 

It is possible that further factors that determine seed vigour can be discovered 

through understanding the molecular basis for DNA repair processes in the 

Arabidopsis seed and building on the work presented in this study. This could 

facilitate both the eventual development of plant varieties with enhanced 

germination performance and storability characteristics along with molecular 

markers for seed quality. DNA repair processes are considered to be highly 

conserved within higher plants and so work in this study could be readily 

transferred to agronomically relevant plant species.  
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