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ABSTRACT 

This thesis reports an investigation on time-dependent loss of post-tensioned 

masonry box and tee sections representing diaphragm and fin walls, respectively. The 

prestress loss due to creep and shrinkage of masonry, and relaxation of steel bars 

were quantified separately and the main influencing factors considered were geometry 

and masonry type. For each type of masonry three diaphragm and three fin walls 

were built to determine prestress loss (decreasing load), creep (constant load) and 

shrinkage (zero load). The walls were constructed from undocked clay, calcium 

silicate and concrete block units with grade (ii) mortar with cementlime:sand in the proportions 

of 1:t:4 and water/cement ratio of 1.27. Creep and shrinkage were also measured on 

unbonded masonry units and mortar prisms for predicting the deformations in the 

masonry walls by using a previously developed composite model. The mal;onry units 

and mortar prisms were partly sealed to simulate the corresponding volume/surface 

ratio of the bonded masonry units and mortar joints in the masonry walls. 

The calcium silicate walls exhibited the highest prestress loss, creep and 

shrinkage compared with the clay and concrete block diaphragm and fin walls. The 

current methods of prediction of prestress loss for masonry are only suitable for 

specific types of masonry for which they were developed. On the other hand, the 

methods developed for prestressed concrete gave reasonable predictions for all the 

masonry types investigated, with one particular method being very accurate. For all 

test results it was confirmed that long-term deformations were influenced by 

geometry, fin walls exhibiting greater deformations than diaphragm walls. The 

composite model did not predict shrinkage very well in calcium silicate and concretc 

block walls because some moisture in the mortar was absorbed by the masonry units. 

As a result the partly sealed unbonded mortar prisms had higher water content than 

the mortar bed joint in the walls, and thus a higher shrinkage in the partly sealed 

mortar prisms occured. Consequently, when the creep and shrinkage of the partly 

sealed mortar prisms was applied to the model, the masonry deformation was 

overestimated. 

A modified water absorption test was carried out which confirmed that for 

units laid dry the mortar bed joint had a reduced shrinkage compared to the unbonded 

mortar prisms. From the results, creep and shrinkage adjustment factors were 

correlated with unit water absorption, and when adjusted creep and shrinkage were 

incorporated with the composite model, satisfactory predictions of masonry 

deformations were achieved. 

Abstract 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Prestressed masonry is not a new technology as records (Roberts et al 1986 

and Shrive 1988a, 1988b) show that it was used some 150 years ago in the 

construction of Thames Tunnel Project by Marc BruneI. Development of prestressed 

masonry has been quite slow due to the lack of experience and design guides, and 

consequently the exploitation of prestressed masonry has also been slow. It was not 

until the early seventies that the importance of post-tensioned brickwork was fully 

realized. Since then several tests have been carried out on lateral resistance of post

tensioned diaphragm walls which have proved to be cost effective, in being faster and 

easier to construct than prestressed concrete, especially in retaining walls and tall 

single storey buildings that require open spaces (Curtin 1987 and Curtin et.al. 1982a, 

1982b). 

Like concrete, masonry is capable of resisting high compressive stresses but 

not tensile stresses. Its ability to resist tensile stresses could be improved by either 

reinforcing or precompressing the structural element. Precompression has an 

advantage over normal reinforcement because the whole members is active in 

resisting the load whereas in normal reinforced only the uncracked section is active. 

Therefore prestressed members are not only designed to eliminate tensile stresses but 

also utilise the material effectively and prevent any permanent cracks. Such cracks 
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may lead to penetration of moisture and thus to corrosion of the reinforcement. 

Compared to prestressed concrete, generally it is more common to post

tension masonry rather than pretension. However when pretensioning (Curtin et. al. 

1982b and Wass 1969), the bars are stressed first to the required tension and 

anchored to moulds before the masonry is built around it. When the mortar has 

reached the required strength, the bars are released and thus the prestressing force is 

transmitted to the masonry. Pretensioning of masonry is normally carried out in the 

construction of lintels and beams. In post-tensioned masonry members, the bars are 

jacked to the required tension and anchored at the ends of the member after the mortar 

has acquired sufficient strength. Due to time constraint in construction, sometimes 

post-tensioning is carried out at 14 days instead of 28 days. 

Since prestressed masonry is still in its infancy, most of the research being 

carried out is on the lateral strength of these structures. Other important research 

aspects such as prestress loss in steel bars are still lagging behind that of 

prestressed concrete. 

1.2 Prestress loss in post-tensioned masonry members 

It is well established that steel stresses in prestressed concrete structures 

reduce with time. This reduction of stresses is known as the prestress loss. 

Prestress loss is normally expressed in terms of percentage of the initial stress of 

the prestressing steel. Major prestress loss in masonry is primarily due to the 

deformation of its constituents, only a small amounts due to relaxation of the steel and 

the prestressing system. Elastic and time-dependent deformation of masonry cause 

instantaneous and long-term prestress loss, respectively. Most loss takes place due 

to the time-dependent deformation, creep and shrinkage, of the masonry. 

Instantaneous loss in prestressed masonry is due to partial effect of elastic 
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shortening, the effect of anchorage set and frictional loss in the ducts. This type of 

prestress loss takes place at the transfer of prestressing force from the jack to the 

member to be stressed and depends mainly on the system used in stressing the 

prestressing steel. No short-term loss occurs due to elastic shortening if the 

brickwork is post-tensioned and the bars are stressed simultaneously. This is because 

the bars are stretched against the masonry member and then locked to the required 

stress. In cases where more than one prestressing bar is used, loss can be avoided by 

stressing the bars simultaneously. If the bars are stressed in sequence, the loss in the 

bars can be avoided by restressing the rod which was stressed initially. Loss due to 

friction is non-existent in most prestressed masonry members. Slip in anchorage is 

negligible if the prestressing system uses threaded bar with nuts as the locking device 

instead of strands with wedges. 

Unlike loss at transfer, long-term loss caused by time-dependent deformations 

is very complicated. This is because of the interdependent factors such as relaxation 

of the prestressing bar, creep and shrinkage of masonry. Knowledge of prestress 

loss is essential to engineers especially at the design stage where the magnitude of 

applied stress has to be determined. 

1 .3 Outline of problem 

In spite of the increasing popularity of post-tensioned masonry, only limited 

information is available on the subject. This is because for the most part, when 

compared to prestressed concrete, post-tensioned masonry is still at the initial stage 

even though it started a century ago. Another reason is because loss on site is usually 

minimised by restressing the bar either on the same day or a few days later and thus 

there is no real demand for the actual prestress loss as far as the engineers are 

concerned. However, despite the latter reason, actual prestress loss which 
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reflects the substantial behaviour of masonry is necessary for the purpose of long

term behaviour. The fact that brickwork is composed of bricks and mortar 

complicates the prediction of prestress loss because both materials behave 

differently when subjected to stress. 

Although masonry walls of different geometrical cross-sections are 

increasingly popular, to date research on prestress loss of masonry has been limited 

to certain masonry members built from a few types of masonry units only. No 

research has been carried out on calcium silicate brickwork with different geometries 

in relation to deformation of masonry. The influence of geometry can be quantified by 

the volume/exposed surface ratio of the masonry, which can indirectly determine 

prestress loss since creep and shrinkage of masonry depend on drying surface. Creep 

and shrinkage decrease with an increase in volume/exposed surface ratio. The 

volume/exposed surface ratio of diaphragm or cavity walls is much lower than of fin 

walls. 

Several researchers have agreed that a detailed study on prestress loss in 

masonry should be carried out in order to gain confidence from practicing engineers, 

that masonry is as good as other structural materials. Phipps (1991) states that 

whatever practical means are carried out to reduce loss, there is no substitute for an 

accurate knowledge of the relevant properties of the materials in a wall. Phipps 

(1991) also suggests that measurements should be carried out to make sure that the 

wall will behave satisfactorily throughout its life span. 

Furthermore none of the previous research determines the component loss of 

prestress. Shrive (1988b) states that more research is required before loss of prestress 

due to creep of the masonry and relaxation of the steel can be calculated to the same 

level of accuracy and with the same confidence as is currently enjoyed in the design 

of prestressed concrete members. Further reviews and developments on prestress 

loss are discussed in Chapter 2. 
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1 .4 Purpose and scope of research 

The main objective of this research was to quantify prestress loss in post

tensioned masonry members built from clay, calcium silicate and concrete block units 

with grade (ii) mortar. For each type of masonry three diaphragm and three fin walls 

were built to determine prestress loss (decreasing load). creep (constant load) and 

shrinkage (zero load). Other primary aims of this research were: 

1. To measure prestress loss in the prestressing steel bars due to relaxation of 

prestressing steel and deformation of masonry. Losses due to relaxation of the 

prestressing steel and time-dependent deformation of masonry (creep and 

shrinkage) were quantified separately. Even though creep data are available for 

unreinforced masonry, creep in prestressed masonry is different because the 

members are subjected to a higher stress than normalloadbearing members. 

2. To investigate the influence of geometry and masonry type on time-dependent 

deformation and prestress loss in masonry. The masonry strength considered 

for the test programmes varied from 27 to 100 MPa. 

3. To use a composite model theory for predicting long-term deformations in 

prestressed brickwork, and for predicting prestress loss in masonry. 

4. To compare the current methods of prediction of time-dependent prestress 

loss of post-tensioned masonry. 

5. To use similar methods developed for prestressed concrete in predicting prestress 

loss in masonry. 

Figures 1.1 to 1.6 represent the box and tee shape sections chosen to meet the above 

research objectives. 
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1 . S Definition of variables 

Diaphragm wall 

6 

A diaphragm wall is formed when two skins of brickwork are joined by 

cross-ribs at regular interval to form 'box' or I sections. When subjected to bending 

stresses and shear forces, the skins and the ribs act as flanges and webs, respectively. 

Fin waU 

Fin walls are formed when deep piers are required to support conventional 

cavity walls. 

Diaphragm and fin walls are suitable for tall single storeys buildings such as 

sports and assembly halls. 

Prestress loss 

Prestress loss is defined as the difference between the stresses in the bar at 

transfer and stresses after all loss has taken place. 

Creep 

Creep is defined as the gradual increase in strain over long periods of time at 

constant stress. Creep consists of two components: 

1. Basic or true creep which occurs under hygral equilibrium where there is no 

moisture movement involved. 

2. Drying creep that is a result of moisture movement between the member and 

the surrounding air. 

Figure 1.7 shows a typical creep curve for masonry which consists of 

primary, secondary and tertiary creep. Tertiary creep only occurs at high static 

stresses i.e 0.6-0.7 of static strength. However primary and secondary creep take 
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place at normal working loads, i.e 0.2-0.3 of static strength. 

Creep is sometimes expressed in terms of creep coefficient (ratio of creep to 

elastic strain) and specific creep (creep per unit stress). 

Moisture movement 

Moisture movements (strain/strain) in masonry are a result of the change in 

volume caused by composite action of moisture movement and carbonation with the 

surrounding air. Clay brickwork often undergoes a moisture expansion instead of 

shrinkage which occurs in calcium silicate or concrete block masonry. Figures 1.8 

and 1.9 show the moisture movement strain of masonry with time. Moisture 

movement strains are measured as linear movements. 

Relaxation of steel 

Relaxation of steel is a loss of tensile stress in a prestressed steel maintained at 

constant length and temperature. 
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CHAPTER 2 

REVIEW ON TIME-DEPENDENT LOSS OF POST-TENSIONED 

DIAPHRAGM AND FIN MASONRY WALLS 

2. 1 Introduction 

The prestressing force in steel does not stay constant throughout the life span 

of the structure. It is necessary to estimate the magnitude of the total stress reduction 

during the life span of the structure in order to determine all prestress loss at the 

design stage and evaluate the effective prestressing force. Thus elastic and long-term 

behaviour of masonry need to be known before any attempt in predicting prestress 

loss can be made. 

2.2 Previous research on prestress loss of masonry 

Hendry et at (1987) recommend that loss suggested by BS 5628: Part 2 

(1985) should only be used in the absence of specific data. This is because the 

recommended values are based on limited experience and knowledge of the properties 

of masonry. 

Based on experience with prestressed concrete, Curtin et al (1982a 1982b) 

recommend a value of 10-15% and 25-30% for losses in fired clay brickwork and 

concrete blockwork, respectively. Curtin explained that the difference is because 
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creep of fired-clay brickwork only occurs in the mortar joints. During his early work 

on post-tensioned masonry pier, Curtin (1987) assumed that the prestress loss was 

less than in prestressed concrete. However it was assumed that prestress loss due to 

creep was twice as much. The assumption was made because there is lack of 

information on prestress loss of masonry. 

Recently, however, the value of post-tensioned masonry loss is assumed to 

be of the order of 20 % (Curtin et al 1989). During a lateral load test on a diaphragm 

wall, Curtin (1986) loaded the wall using air bags between the diaphragm and a larger 

reaction wall. On completion of the tests and removal of the lateral load, the reaction 

wall was destressed to 0.344 MPa and overnight the stress increased to 0.55 MPa. 

The stress was again reduced to 0.276 MPa and within 24 hours the wall was found 

to have a stress of 0.3 MPa. The units used were Fletton bricks having a 

characteristic compressive strength of 25 MPa. The increase of stress was due to 

creep recovery of the wall. In another test Curtin et al (1991) measured prestress loss 

in the range of 3.6 to 12.4 % over of a period of 70 weeks i.e the mean loss was 8.8 

%. The clay brickwork was made with units having a mean compressive strength of 

70 MPaand mortar grade (ii). The loss was assumed to be due to creep only, because 

the walls were several months old. Curtin (1982 - 1991) used Macalloy bars 

throughout the tests. 

A study on the prestress loss of several months old previously prestressed 

concrete block walls, where initially the walls were used for lateral load tests, was 

carried out by Phipps et. al (1976) over a period of 70 weeks. The measured loss was 

assumed to be due to creep alone. The blockwork, 3 to 4 m high, was built from 10 

MPa solid dense aggregate blocks with 1: 1:6 mortar. The 4 m high walls were 

stressed to 1 and 1.5 MPa whereas the 3 m high walls were stressed to 3 and 3.5 

MPa. The percentage of prestress loss was in the order of 22%,20 %,15% and 13% 
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for the initial stress levels of 1.0 MPa, 1.5 MPa, 3.0 MPa and 3.5 MPa, respectively. 

Macalloy bars were used throughout the test. 

Tatsa et at (1973) post-tensioned eight cavity walls constructed from hollow 

and aerated concrete blocks with and without mortar joints in order to study the effect 

of joints on prestress loss of the block course. The concrete blocks, with compressive 

strength greater than 2.45 MPa, were used throughout the test and subjected to 

approximately 45% of their ultimate strength. The prestressing steel had relaxation 

loss of 4.5% after 2 weeks, 6.3 % after two months and 6.5 % after 6 months. The 

elastic modulus of the prestressing steel was in the range of 200 OPa. The walls, 

ranging from 0.9 to 3 m high, were subjected to 0.98 - 1.47 MPa stress with a 1:2:9 

(cement:lime:sand) mortar. Tatsa compared the measured loss of up to 20% with 

theoretical expressions which gave about 12.5 %. The theoretical expression 

developed by Tatsa will be discussed in Chapter 3. 

Taneja (1986) carried out 3-D finite element analysis involving a time-step 

procedure in estimating long-term prestress loss in post-tensioned brick and concrete 

block walls. The time-step procedure is to allow time interaction of dependent loss 

due to creep and shrinkage of the masonry and steel relaxation. The maximum loss in 

blockwork and brickwork were predicted to be in the order of 30% and 20%, 

respectively. It should be noted however that the aging coefficients used for the finite 

element models are of those for concrete. Shrive (l988b) predicted the loss in the 

same bricks and blocks using an equation developed by Ohali et al (1986) in 

predicting loss for partially prestressed concrete. The maximum difference between 

the two methods was about 4% which was attributed to the finite element method 

allowing for stress concentration near the anchorages. An aging coefficient of 0.8 

was used for creep, shrinkage and relaxation The equation claimed to give good 

predictions by Taneja but no experimental verifications were carried out. 

A series of tests designed to study the effect of brick, stress level of 
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brickwork at transfer and geometry on the loss of prestress in post-tensioned clay 

brickwork walls, columns and beams were carried out by Lenczner(1986a). The 

walls were constructed from Aetton and Ibstock units with compressive strength of 

34 and 119 MPa, respectively. The walls were post-tensioned after 28 days of laying. 

and the stress loss ceased after 150 days in Aetton walls, 175 days in Ibstock walls 

and after one year for both Aetton and Ibstock columns. Lenczner concluded that the 

loss of prestress varies from 11 to 15 % in prestressed walls, 8 to 10 % in 

prestressed columns and 12 % in prestressed beams. When compared to his 

theoretical method the calculated loss gave a good agreement with the measured loss 

especially in Fletton walls and columns. The recommended method proposed by 

Lenczner will be also discussed in Chapter 3. 

In another study Lenczner et al (1988) measured stress loss in walls that had 

been prestressed earlier for a period of one year. The walls were later destressed and 

prestressed again to about 20 % higher than the previous stress level. The walls were 

20 courses high with a 1:~3 of mortar mix. The units were Butterley bricks with a 

mean compressive strength of 68 MPa. It was observed that the walls experienced a 

lower loss in the second stage of prestressing even though they were subjected to a 

higher level of stress. This is because most of the creep has taken place at early age. 

When his method was used to predict the second loss the theoretical values gave 

higher estimates than the measured ones. After 100 days from the second post

tensioning the increase in creep was negligible. Lenczner concluded that only about 

one eighth of the prestress loss occurs in post-tensioned walls having a stress history. 

Using a similar equation, Lenczner (1986a, 1985) reported that prediction of 

prestress loss on various types of brick walls and columns are closer to the loss 

measured experimentally than those given by BS 5628: Part 2 (1985). The predicted 

loss was overestimated by a factor of 1.46 in walls and columns by a factor of 1.65 

according to BS 5628: Part 2 ( 1985). 
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Harvey and Lenczner (1993) measured prestress loss in concrete block 

masonry walls and columns built from grade (i), (ii) and (iii) mortar over 1 year 

period. The concrete masonry was post-tensioned using Macalloy bars. The prestress 

loss ranged from 7% to 37%, where the columns exhibited lower prestress loss than 

the walls. Details of the prestress loss is shown in Table 2.1. 

Based on volume changes of masonry, VSL International (1991) predicted 

loss of prestress for clay and concrete masonry at 7 % and 18 %, respectively. The 

prediction was based on the use of high strength steel strands instead of high strength 

bars. It is normal to use bars compared to strands in prestressed masonry because of 

difficulty in construction when using the latter. 

It is interesting to note that Foster (1970) used low tensile steel in prestressed 

masonry cylindrical water tank. He estimated the loss of stress due to friction in the 

ducts to be about 37 % of the allowable working stress but only about 0.4 % due to 

creep (due to the low stress). Foster however allowed more than 10% loss due to 

relaxation of steel. The water tank was constructed of class A engineering clay bricks 

with a 1:~3 ordinary Portland cement hydrated lime: sand mortar. The tank was 

stressed vertically and circumferentially by stressing steel of 7 mm diameter wires. 

Table 2.1 shows the summary of previous research on prestress loss of 

masonry. 

2.3 Factors affecting prestress loss of post-tensioned masonry 

Basically, long-term prestress loss of post-tensioned masonry depends on the 

magnitude of deformations of its components with time, i.e masonry units, mortar 

and prestressing steel. Different masonry units undergo different deformations 

because of their compositions and manufacturing process. For example, moisture 

expansion in clay units can cause the brickwork to expand instead of contract as in 
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calcium silicate and concrete blocks units. The three main components of time

dependent prestress loss in masonry are creep. shrinkage/moisture expansions and 

relaxation. Creep and shrinkage of calcium silicate and concrete block masonry cause 

a reduction in the stress of the prestressing bars (Roberts et al 1986). 

Another factor. which is not considered in this study. is diurnal effect (daily 

temperature and humidity variations) on prestress loss in masonry. The effect is 

similar to that of shrinkage in term of volumetric changes. An increase in temperature 

induces additional stress in post-tensioned masonry. However. the effect of 

temperature is not critical in cases of normal prestress levels. Diurnal effect is 

generally reversible and depends not only on the range of exposed temperature but 

also on the initial temperature and moisture content of the units at laying. BS 5628: 

Part 3 (1985) recommends thermal coefficients varying from 5 x 1O-6 to 15 x 10-6 per 

°C in masonry to be used in determining diurnal effect. Jessop (1980) suggested that 

thermal expansions are typically 5 x 10-6 to 7 x 10-6 per °C for clay bricks and 6 x 

10-6 to 13 x 10-6 per 0C for concrete blocks. In extreme cases the range of 

temperature of clay masonry could get up to 105 °C (British Development 

Association 1988). Thus the expected expansion in the clay masonry can be as high 

as 525 x 10-6 and this could result in an 18% increase in the stress of the prestressing 

bars ( see Appendix A.l). 

2.3.1 Creep of masonry 

Although there has been an increase in the usage of the vast range of 

type of units used for prestressed masonry. limited knowledge is available on creep 

of masonry. and most research has been on clay brickwork. Most researchers 

(Lenczner 1981. Shrive et at 1981 and Jessop 1980) assumed that masonry 

undergoes creep in a similar manner to concrete. Neville et al (1983) defines creep in 

concrete as the additional strain with time due to constant stress, and creep consists of 
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two components: basic (true) and drying creep. Basic or true creep occurs under 

hygral equilibrium when no moisture movement is involved. Drying creep is due to 

moisture movement between the member and the surrounding air. In structural 

concrete, basic and drying creep take place simultaneously, whereas in mass concrete 

only basic creep occurs. Consequently, basic and drying creep (or expansion creep in 

the case of clay brickwork) are likely to occur in brickwork with the exception of 

covered foundations etc. where basic creep would occur. 

2.3.1 (a) Mechanisms of creep 

Jessop (1980) believed that the mechanism of creep in masonry is 

basically the same as in concrete which is due to a combination of moisture transfer 

(within the gel structure) and collapse of gel structure in cement paste. Lenczner 

(1986a) states that creep in brickwork is due to the internal seepage of absorbed 

layers of water in the mortar and to a much lesser extent, a crystalline rearrangement 

of the brick matrix under pressure of the externally applied load. 

2.3.1 (b) Factors affecting creep 

Creep is influenced by the material properties such as composition of 

the units, type and proportion of mortar, suction rate, water absorption, magnitude of 

stress, relative humidity and temperature (before and after loading), and other time

dependent factors such as age of member when loaded, duration of loading and 

geometry. The method of curing affects creep, e.g autoclaved blocks creep less than 

low pressure steam-cured blocks. 

This section is primarily concerned with the influencing factors which 

were experimentally investigated in this research programme such as masonry unit 

strength, shape and size, suction rate and water absorption. The effect of masonry 

Chapter 2 



21 

shape and size, and type is studied in Chapter 4, whereas investigations on the 

effect of suction rate and water absorption are being carried out in Chapter 7. 

Effect of Shape and Size 

Lenczner (1978-1990) has made a major contribution in quantifying 

creep of masonry. Lenczner(1970,1978,1981,1990) observed that plain masonry 

wall creep more than piers. Based on a series of tests, Lenczner ( 1978b) reported that 

creep coefficients for brickwork and blockwork piers and cavity walls were in the 

range of 2 -2.4. For single-leaf walls the creep coefficients varied from 3-4. The 

brick and block units had compressive strengths of 56 and 3.3 MPa, respectively. In 
for 

another report Lenczner (1981) suggested an empirical method J.... predicting creep in 

masonry hollow piers, single leaf and cavity walls. 

Brooks (1988, 1990a, 1990b) quantified shape and size of masonry in 

term of its volume/exposed surface ratio (V IS). The V /S ratio simulates the average 

drying path length of moisture. Thus larger sections dry more slowly and exhibit a 

lower shrinkage and creep. In a series of tests, Brooks et al (1990a, 1990b) observed 

that the creep of masonry is similar to concrete in that it decreases with an increase of 

V /S ratio. Brooks et al (1988) measured the relative creep of clay brickwork which 

ranged from 1.64 (single leaf wall): 1.44 (cavity wall): 1.07 (hollow pier): 1 (solid 

pier) for VIS ratios of 44,51,78 and 112 mm, respectively. For the same range of 

VIS ratio as in clay brickwork (Brooks et al 1990a, 1990b), the relative creep in 

calcium silicate and concrete blockwork were in the range of 1.63 (single leaf 

wall): 1.50 (cavity wall): 1.13 (hollow pier): 1 (solid pier), and 1.55 (single leaf 

wall): 1.40 (cavity wall): 1.35 (hollow pier): 1 (solid pier), respectively. 

The different creep values for different VIS ratios demonstrates the 

influence of geometry and recommendations for single values of creep coefficient are 

not sufficient. Table 2.2 shows creep of plain masonry with different V IS ratios. 
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Since limited work has been carried out to study the effect of shape 

and size on creep of brickwork, it is appropriate to review its effect for concrete (see 

Section 2.4). 

Effect of masonry unit 

As stated earlier, Lenczner (1978b) observed that creep coefficients in 

clay brickwork and concrete blockwork were of the order of 2 - 4, the higher value 

being concrete blockwork. Lenczner(1978a) also developed an empirical method 

based on units strength for predicting creep. The method does not allow for different 

mortar types. 

Brooks et al (1992a) reported creep of various strengths of clay walls. 

The walls were built from 30-120 MPa clay units and subjected to a stress of 1.5 

MPa. The estimated ultimate creep coefficients for these single-leaf brick walls varied 

from 0.9 - 6.7. Abdullah (1989) monitored creep of walls subjected to 1.5 MPa 

stress, built from three different types of masonry Le clay, calcium silicate and 

concrete blocks. The clay and calcium silicate brick and concrete block units had a 

compressive strength of 93.7,25.4 and 13.0 MPa, respectively. He observed that 

concrete blockwork exhibited more creep than clay and calcium silicates brickwork. 

The estimated ultimate creep coefficients in clay and calcium silicate brickwork and 

concrete blockwork varied from 4.2 - 4.9, 2.7 - 3.5 and 3.0 - 3.9, respectively. 

Table 2.3 shows the effect of unit strength on creep (in terms of creep coefficient). 

Effect of ,uetion rate and water ab,orption 

Warren and Lenczner (1981) carried out creep tests for single-leaf 

walls built from seven different types of clay units and a 1:t3 mortar, where the 

walls for two of the brick types were soaked before laying. It was found that walls 

built with soaked units exhibited a lower strain ratio (elastif strain +, creep) than 
e astlc stra10 
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those laid dry. In one case (Aetton) that was laid dry, Warren and Lenczner (1981) 

found that the wall exhibited a higher strain ratio (5.32) than that of the same wall laid 

wet (2.68). However, the tests were not carried out at the same time and thc 

experimental details for one of the tests {for example unit strength} are not available. 

Based on tests of six different types of clay brickwork, Johnson 

(1984) recommended a hyperbolic equation that expressed overall strain (creep and 

shrinkage) of seven course masonry in terms of suction rate and water absorption of 

the bricks. The overall strain {Eov} was in the following form: 

(b 0 + a) t 
Eov = 

(-b 0' + a') + t 

where a = 941.05 {w/srO.493 

b = 107.98 [ 5 (7.;'; + w ) _ (2 {7.~ + w »)2] 

w = water absorption 

and s = suction rates 

According to Johnson (1984), the effect of suction rate and water 

absorption is quite complex: one would expect a porous brick to cause a higher creep 

in masonry than a dense brick. However, this is not always true as demonstrated 

below that both bricks might exhibit similar (low) creep despite the difference in 

Chapter 2 



24 

properties. Since suction rate and water absorption are correlated, lohnson (1984) 

gave the following general recommendations in determining creep: 

2.3.2 

Water Absorption (%) 

less than 7.0 

7.0 - 25.0 

Over 25.0 

Moisture movement of masonry 

Specific Creep 

75 x 10-6 

150 x 10-6 

75 x 10-6 

A clay brick fresh from the kiln, after firing within the range of 9.5(1)C 

and 12200C, is bone dry, and when it comes into contact with moist air it will absorb 

moisture until moisture equilibrium is reached (Lenczner 1972). The absorption of 

moisture is accompanied by volume expansion in the clay bricks which is termed 

irreversible moisture expansion. On the other hand, calcium silicate or concrete 

blocks units slowly lose moisture after manufacture and exhibit shrinkage. Moisture 

movement strain in clay masonry may be moisture expansion or shrinkage depending 

on the types of clay unit and the shrinkage of mortar. However, concrete and calcium 

silicate masonry always undergo shrinkage. 

There are three types of shrinkage in masonry namely carbonation, 

drying and plastic shrinkage. Reaction of carbon dioxide in atmosphere with calcium 

silicate hydrate in cement paste is accompanied by a shrinkage known as carbonation. 

Drying shrinkage occurs when moisture is lost from hardened mortar or concrete and 

calcium silicate units. However carbonation and drying shrinkage cannot be 

separated. Plastic shrinkage takes place when mortar is 'plastic' due to losses of free 

water before setting. This research is only concerned with drying and carbonation 

shrinkage. 
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Masonry units undergo reversible moisture movements when 

subjected to wetting and drying. Wetting and drying generally cause an expansion 

and contraction of the masonry units. 

2.3.2 <a> Mechanism of moisture movement in masonry 

Moisture movement strain is mainly due to moisture movements 

which cause the volume of the units to vary. Moisture absorbed or dissipated by the 

specimens results in expansion or contraction respectively. lessop (1980) explained 

that the dimensional changes were due to interaction of water molecules and internal 

surfaces of the material. These movements are affected by the concentration of water, 

molecules and the exposed surface area of the material. The amount of water 

absorbed increases with concentration of water molecules in the atmosphere (relative 

humidity) and the internal surface area of the material. Permanent moisture expansion 

in clay brickwork is due to the physical adsorption of water and possibly due to 

chemical reactions between water and certain constituents of ceramic bodies. Moisture 

movement in clay masonry is treated separately in the following section due to the 

different nature of moisture movement in fired-clay masonry as compared to 

calcium silicate and concrete block masonry. 

Moisture expansion of clay bricks 

A change in volume of clay bricks is often neglected in design. Clay 

brick units experience irreversible moisture expansion. that continues even years after 

manufacture, and reversible expansion and contraction that is caused by wetting and 

drying. Newly fired clay bricks absorbs moisture and thus expand on exposure to air. 

Most of the moisture expansion take place within a few hours of the brick leaving kiln 

and slows down as time progresses. Most of the long term moisture expansion of 
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clay units takes place within the first 6 months. 

Foster (1991) reviewed several research publications from 1938 to 

1980 on the importance of moisture expansion for design of clay brickwork. They 

stated that moisture expansion in the design of modern loadbearing brickwork 

structures needs to be considered. Previously, walls were thicker than the 

contemporary brickwork, which resulted in negligible effects from moisture 

expansion. Foster et al (1982) suggested ranges of time-dependent irreversible 

moisture expansion as follows: 

High 600 xl0-6 to 1080 x 10-6 

Medium 

Low 

360 xl0-6 to 600 x 10-6 

360 x 10-6 

It has been reported that for walls of 6 and 7 years old, the expansion could be as 

high as 2000 x 10-6 (Lenczner 1986b). Such magnitude of expansion should 

definitely be considered in the design so as to avoid any structural failure. 

Based on several tests from other researchers on different types of clay unit 

and methods of tests, Jessop (1980) concluded that reversible moisture strain in clay 

masonry, between completely dry and saturated states, lies in the range of 70 x 10-6 

to 200 x 10-6. 

Shrinkage of calcium silicate bricb and concrete blocb 

Unlike clay, calcium silicate bricks shrink on exposure to air. However 

limited work has been done on the shrinkage behaviour of calcium silicate bricks. A 

shrinkage strain of 210 x 10-6 was observed by Brooks (l986b) over a period of 300 

days. Using an equation that expresses shrinkage as a hyperbolic function of time, 

the ultimate strain (based on measured shrinkage) was estimated as 232 x 10-6. When 

the estimated ultimate strain is compared to the predicted values using composite 

modelling (see Section 3.5), there was a reasonable accuracy. 
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Based on work by other researchers, Baker et al (1982) concluded that 

concrete masonry exhibits considerably higher irreversible moisture strains than clay 

masonry. The permanent shrinkage in concrete masonry is in the order of 350 x 10-6 

to 600 x 10-6. It is thought that this shrinkage is mainly due to carbonation. Brooks et 

al (1990a) reported similar values of shrinkage to that of concrete, for concrete 

blockwork walls and piers constructed from a dense aggregate block. 

2.3.2 (b) Factors affecting moisture movement strain 

Moisture movement strain of masonry is partially reversible. Jessop 

(1980) explained that in clay brick units other factors such as manufacturing process 

in particular temperature of firing, time of exposure, time of laying, mortar, humidity, 

temperature, cyclic wetting and drying, and clay components all contribute to volume 

changes. To avoid problems with moisture expansion, bricks are normally laid at 

least 2 weeks after leaving the kiln. Moisture expansion increases as the relative 

humidity increases. 

Jessop (1980) also stated that for concrete blocks, time of exposure or 

laying, the method of curing, moisture content, relative humidity, types of aggregate 

and mortar joints affect shrinkage. Saturated autoclaved block units tend to have less 

moisture movement strain than saturated blocks cured in low pressure steam. The 

main reason for autoclaving in concrete blocks is to minimise shrinkage. The longer 

blocks are left to stand before laying the lower the shrinkage in the walls. Blocks 

made from sand and gravel aggregate show the least shrinkage, because as in 

concrete, shrinkage mostly takes place in the cement paste and aggregate tends to 

restrain shrinkage because of its stiffness. Jessop also explained that walls built with 

weak mortar tend to exhibit twice as much shrinkage as walls built with strong 

mortar. 
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Brooks et al (l990a, 1990b) verified experimentally that shrinkage of 

calcium silicate and concrete blocks units are influenced by the geometry of the 

masonry which can be expressed as the VIS ratio of the members as discussed in the 

following section. As in creep, suction rate and water absorption also affect shrinkage 

of masonry and these parameters are investigated in Chapter 7. 

Effects of shape and size 

Bingel (1984) reported that an increase in the V /S ratio generally 

resulted in a lower shrinkage in both calcium silicate and concrete masonry. Based on 

tests of Aetton clay, calcium silicate and lightweight concrete masonry, Bingel 

concluded that axial shrinkage of calcium silicate brickwork and lightweight concrete 

blockwork was linearly related to V /S ratio but Aetton clay brickwork did not follow 

this trend. Table 2.4 shows the influence of geometry on shrinkage of several 

concrete blockwork members. 

Brooks et al (1985) observed that axial shrinkage of calcium silicate 

and light-weight concrete block masonry (Swy) depended on size and was related to 

the V IS ratio. For calcium silicate brickwork: 

(2.1) 

where x and y are expressed as hyperbolic function of time t (days): 

lOOt 
x = (81 + O.8It); 

and y = (9.5 + O,5It) 
t 

The axial shrinkage of lightweight concrete blockwork was given by: 

Swy = x' - y'[~] (2.2) 
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where x and y are expressed as hyperbolic function of time t (days): 

and 

, lOOt 
x = (8 + 0.15t) 

t y' 
(9.3 + O.3t) 

Shrinkage decreases with an increase in the V /S ratio because it takes 

longer time for moisture to diffuse from a larger section (Brooks et. al 1988, 1990a 

and 1992b). The rate of shrinkage decreases as the relative humidity increases. 

Brooks (l986b) suggested that the VIS rates effect could be predicted 

using composite modelling which considers the separate behaviour and properties of 

mortar and bricks. The model was verified experimentally on a single-leaf Fletton 

wall and the experimental data results were modified by a factor to allow for the effect 

of the VIS ratio. Following this experiment, Brooks et al (1990a, 1990b) further 

verified the composite model by measuring the unbonded properties of moisture 

movement of both the units and the mortar when these were partly sealed according to 

the V /S ratio of the single-leaf Hetton wall. 

Lenczner (1978b) observed that the vertical moisture strain for a 

single-leaf clay brickwork wall and a pier were about approximately the same. 

However the vertical moisture strain in a blockwork pier was much higher than in the 

blockwork walls. Since limited work had been carried out to study the effect of shape 

and size on shrinkage of brickwork, it is appropriate to review its affect in concrete 

(see Section 2.4) 

Effect of masonry unit 

Lenczner (1978b) reported that the vertical moisture strains 10 

blockwork were about 5-6 times higher than in brickwork. In certain cases, 

blockwork shrinkage can exceed the combined elastic and creep strain. 
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Brooks et al (1992a) reported that generally weaker clay unit walls 

tend to exhibit long-term expansion, while the stronger unit walls tended to show 

long-term shrinkage. Initially low unit strength brickwork undergoes shrinkage, 

followed by moisture expansion. It was observed that moisture expansion was higher 

in Aetton brickwork than in the unbonded units, which suggested an interactive effect 

between mortar and unit. 

In a series of tests with various strengths of masonry unit, Abdullah 

(1989) observed that concrete blockwork undergoes greater vertical moisture 

movement as compared to clay or calcium silicate brickwork. The clay, calcium 

silicate and concrete block units had compressive strengths of 93.0,25.4 and 13.0 

MPa, respectively. 

Effect of suction rate and water absorption 

Based on tests of different types masonry, Johnson (1984) concluded 

that shrinkage in masonry increases with suction rate and water absorption. Johnson 

(1984) explained that moisture from the mortar joint is lost to the external atmosphere 

via diffusion through the brick. Initially the moisture (in liquid water) is transferred to 

the brick during laying through the liquid water absorption from the wet mix. When 

the mortar has set, the liquid water is by now in the form of vapour, the water vapour 

in the mortar joint will diffuse through the brick from the mortar and continues to do 

so during drying process. 

The following are. general guidelines relating (Johnson 1984) shrinkage and 

water absorption: 

Water Absorption (%) 

less than 7.0 

7.0 - 25.0 

Over 25.0 

Shrinkage 

150 x 10-6 

300 x 10-6 

300 x 10-6 
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2.3.3 Relaxation of prestressing steel 

Prestressing steel loses stress with time when subjected to constant 
to 

strain. Such loss in steel is referred~ relaxation loss which is affected by the ratio of 

initial stress to the yield strength of the steel. Under constant strain, the term intrinsic 

relaxation is used, but actual relaxation in prestressed structures is very complicated 

because the stress is continuously changing due to the deformation of the prestressed 

materials. Several investigations on relaxation of prestressing wire strands have been 

carried out but data on relaxation of bars is limited. 

Most of the research on relaxation of steel wires was carried out by 

Magura et. al (1964). Based on 501 individual tests investigating stress relaxation of 

hot rolled and cold drawn wires, Magura concluded that relaxation is not short lived 

but may continue indefinitely at a diminishing rate. It was observed that relaxation 

may be neglected if the steel is stressed to less than 50% of its tensile strength. 

Glodowski and Lorenzetti (lW2) observed that the method suggested by Magura et al 

does not predict-short term relaxation as accurately as long-term relaxation. As a 

result they proposed a method for predicting long-term relaxation loss based on short-

term stress relaxation. 
Part II 

BS 562~1985) recommends that loss of prestress due to relaxation 

may be assumed as the maximum relaxation of the tendon after 1000 hours duration 

obtained from the manufacturer's certificate of approval. However, clause 4.8.2.1 of 

BS 8110 (1985) suggests that prestress loss in concrete due to steel relaxation be 

obtained by mUltiplying relaxation factors with the 1000 hour relaxation test values. 

AI-Khaja (1986) found that relaxation loss predicted by BS 8110 

(1985) tends to overestimate the measured prestress loss and suggested the use of the 

previous British Code CPllO in allowing the 1000 hour relaxation loss to be the 
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maximum long-term relaxation. 

Besides being influenced by the initial stress/strength ratio, Magura et 

al (1964) also concluded that relaxation is influenced by pre-stretching, temperature, 

types of steel and duration of sustained prestress force. It was observed that as the 

initial stress increases, the relaxation loss increases at an increasing rate. Pre

stretching influences relaxation loss only if the steel is stretched for a period of time. 

The temperature effect is negligible if the bars are stressed at normal temperature. 

Section 3.6 presents two major methods, both consider the effect of initial 

stress/strength ratio in predicting loss due to relaxation of prestressing bars. 

2.4 Erred or shape and size on creep and shrinkage of 

concrete 

Extensive work has been carried out on the effect of shape and size on 

creep and shrinkage of concrete. A full review of previous work is given by Branson 

(1977), Neville (1983) and Abdullah (1989). 

There are two approaches available in taking into account the effect of 

shape and size in predicting creep and shrinkage in concrete, i.e average thickness 

and volume/exposed surface area (V IS) method. The average thickness method is 

suitable for members with average thickness up to 300 to 380 mm. Branson (1977) 

summarised previous work on the creep and shrinkage correction factors as in Table 

2.6. Branson also expresses the creep and shrinkage correction factors (C.F.h for 

short and long-term period as follows: 

Creep (C.F.)T = 1.14 - O.023T for~ 1 year loading 

Creep (C.F.h;: 1.10 - O.OI7f for ultimate values 

Shrinkage (C.F.h = 1.23 - O.038T for~ 1 year drying 

Shrinkage (C.F.h = 1.17 - O.029T for ultimate values 

where T = average thickness (mm) 
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The VIS method is recommended for larger members, i.e average 

thickness greater than about 30 to 38 mm. Table 2.7 shows the creep and shrinkage 

correction factors by using the VIS method (Branson 1977). Hansen et al (1966) and 

Committee of Prestress Losses (1975) recommend the use of the following creep and 

shrinkage correction factors: 

Creep (C.F.)r = 1.12 - 0.08[~] for V IS ~ 38 mm 

Shrinkage (C.F.h = 1.14 - 0.09[~] for VIS ~3.8 mm 
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Table 2.1 Experimental Work on Prestress Loss of Post-tensioned 

Masonry by Previous Researchers 

Researchers Masomytype Mortar Applied Loss 
(Year) and Strength Geometry Mix Stress due to 

(MPa) (cementli- (MPa) creep 
me: sand) 

Harveyand Concrete Block Walls 0.43 -
Lenczner (12.36 ) 1:1:6 
(1993) Columns 0.44 

Walls 2.19 
(12.48) 1 1 

Columns 1:0-x4t 2.24 

Walls 3.29 
(11.54) 

Columns 1 
1::r3 2.54 

1 
Curtin Clay Diaphragm 1:Ot-3 3.31 7.8% 
(1991) (70 ) 

Lencmer Aetton Walls 
(1986) (34 ) 1 4.42-5.87 -

Columns 1::r3 

_ .. __ ... _---- -- --- -- - -

Loss 
due to 

shrink-
age 

-

-

-

Loss Total 
due to Loss 

relaxat-
ion 

- 36.76% 

18.11% 

18.37% 

7.15% 

30.50% 

11.86% 

1% 8.8 % 

11-17% 
-

9-10% 
_L. _____ 

i 

VJ 
~ 
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Table 2.1 Continued 

Researchers Masonry type 
(Year) and Strength 

(MPa) 

Lencmer Ibstock 
(1986) (119) 

Butterley 
(68 ) 

Phipps Concrete 
(1976) Blockwork 

(10) 

Tatsa Concrete 
(1973) Blockwork 

(2.48 ) 
L-___________ - ---- - .. -

Mortar 
Geometry Mix 

(cementli-
me: sand) 

Walls 

Columns 
1 

Walls 1:4-3 

Columns 

1:1:6 
Diaphragm 

1:2:9 
Walls 

Applied Loss Loss 
Stress due to due to 
(MPa) creep shrink-

age 

- -
3.41-7.76 

5-6.18 

1-1.5 - -
3-3.5 

0.98-1.47 - -

Loss 
due to 

relaxat-
Ion 

-

-

-

Total I 

Loss 
I 

I 

I 
9-11% I 

8% 

13-14% 

10% 

22-20 % 
15-13 % 

20 % 

i 

w 
VI 
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Table 2.2 Effect of Geometry on Creep of Plain Masonry 

Researcher Masonry VIS (mm) Unit Type Mortar Ultimate 
and cement: lime: sand Creep 

Type strength Coefficient 
(MPa) 

Lenczner pier - Rustic Brown 1 2.23 
( 1978.1990) (56) 1:4':3 

Aglite Block 3.46 
(3.3) 

Aetton 1.91 
(23) 

wall -
Aetton 3.94 

(23) 

Aglite Block 2.14 
(3.3) 

Rustic Brown 2.41 
(56) 

Brooks etal single leaf 44 Clay 1 3.20 
(1990a wall (93.7) 1:4"3 

1990b) 
cavity wall 51 3.91 

hollow pier 78 3.48 

solid pier 112 3.21 

single leaf 44 Calcium Silicate 1 2.51 
wall (25.4) 1:4"3 

cavity wall 51 2.22 

hollow pier 78 1.96 

solid pier 112 1.69 

single leaf 44 Concrete Block 1 2.88 
wall (13) 1:4"3 

cavity wall 51 2.29 

hollow pier 78 2.05 

solid pier 112 1.96 
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Table 2.3. Effect of Unit Type on Creep of Plain Masonry 

Researcher Unit Type Mortar Estimated 
and cement: lime: sand Ultimate 

strength Creep 
(MPa) Coefficient , 

Lenczner (1978) Rustic Brown 1.13 2.23-2.41 
(56) '4' 

Aglite Block 2.14-3.46 
(3.3) 

Aetton 1.91-3.94 
(23) 

Abdullah (1989) Clay 1.13 3.20-3.91 
(93.7) '4' 

Calcium Silicate 1.69-2.51 
(25.4) 

Concrete Block 2.05-2.88 
(13) 

Brooks et. Aetton .1 1 1.4 
al.(1992a) (28.20) 1.4·~ 

Birtley Old 0.9 
English 

(31) 

Dorket 3.0 
Honeygold 

(54) 

Smooth Red 3.0 
(92.2) 

Nori 4.6 
(l~) 

Waingrove 6.7 
Smooth Red 

(123.7) 
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Table 2.4 Effect of Geometry on Shrinkage of Plain Masonry 

Researcher Member VIS Unit Type Mortar Estimated 
(mm) and cement: lime: sand Ultimate 

strength Shrinkage 
(MPa) ( 10-6) 

Lencmer pier Aetton 1 -125 
(1990) (28.69) 1:4-3 

wall Aetton -146 
(28.69) 

Lencmer pier Butterley 99 
(1978) (56) 

Aglite Block 637 
(3.3) 

wall Butterley 81 
(56) 

Aglite Block 426 
(3.3) 

AMullah single-leaf 44 Clay 1 149 
(1989) wall (93.7) 1:4-3 

cavity wall 51 151 

hollow pier 78 156 

solid pier 112 158 

single-leaf 44 Calcium Silicate 1 341 
wall (25.4) 1:4-3 

cavity wall 51 330 

hollow pier 78 306 

solid pier 112 293 

single-leaf 44 Concrete Block 1 409 
wall (13.0) 1:4-3 

cavity wall 51 394 

hollow pier 78 377 

solid pier 112 350 
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Table 2.4 Continued 

Researcher Member VIS Unit Type Mortar Estimated 
(mm) and cement: lime: sand Ultimate 

strength Shrinkage 
(MPa) ( 10-6) 

Bingel single-leaf 44 Calcium Silicate 1 1 300 

(1984) wall (30) 1:4-4i" 

cavity wall 51 400 

hollow pier 79 400 

solid pier 112 275 

single-leaf 44 Concrete Block 1 1 450 
wall (8.6) 1:4-4i" 

cavity wall 51 -

hollow pier 79 300 

solid pier 112 120 

single-leaf 44 Clay (Aetton) 1 1 -800 
wall (23) 1:;f4:i" 

cavity wall 51 -640 

hollow pier 79 -780 

solid pier 112 -190 
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Table 2.S Effect of Unit Type on Shrinkage of Plain Masonry 

Researcher Unit type Mortar Estimated 
and cement: lime: sand Ultimate 

strength Shrinkage 
(MPa) (10-6) 

Lenczner ( 1978) Renon 1 -125 to -146 
(28.69) 1:4':3 

Butterley 81- 99 
(56.0) 1 

1:4'3 

Aglite Block 426-637 
(3.3) 

1 
1:4'3 

Abdullah (1989) Clay 1.13 149-158 
(93.7) '4' 

Calcium Silicate 293-341 
(25.4) 1 

1:4'3 

Concrete Block 350-409 
(13) 

1 
1:4'3 
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Table 2.6 Creep and Shrinkage Correction Factors for Average 

Thickness of Members > 51 mm (Branson 1977) 

A verage thickness of Creep Shrinkage 
member (C.F.}r (C.F.}r 

in. mm SI year ultimate Si year ultimate 
value value 

2 51 1.3 1.3 1.35 1.35 

3 76 1.3 1.3 1.25 1.25 

4 102 1.11 1.11 1.17 1.17 

5 127 1.04 1.04 1.08 1.08 

6 152 1.00 1.00 1.00 1.00 

8 203 0.96 0.96 0.93 0.94 

10 254 0.91 0.93 0.85 0.88 

12 305 0.86 0.90 0.77 0.82 

15 381 0.80 0.85 0.66 0.74 

20 508 0.68 0.76 0.47 0.59 
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Table 2.7 Creep and Shrinkage Correction Factors for V /S 

~ 38 mm (Branson 1977) 

Volume/exposed surface 
ratio Creep Shrinkage 

(C.F.}r (C·F.h 

in mm 

1.5 38 1.0 1.0 

2 51 0.96 0.96 

3 76 0.88 0.87 

4 102 0.80 0.78 

5 127 0.72 0.69 

6 152 0.64 0.60 

8 203 0.48 0.42 
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CHAPTER 3 

REVIEW OF METHODS FOR PREDICTING PRESTRESS LOSS OF 

POST-TENSIONED MASONRY 

3. 1 Introduction 

For prestressed concrete, design engineers have the option of choosing 

several methods to predict prestress loss. However limited methods are available in 

predicting prestress loss of post-tensioned masonry, and those methods are only 

applicable to certain types of masonry. In the following sections the author presents 

current methods in predicting prestress loss in post-tensioned masonry. Since 

methods for predicting prestress loss in masonry are limited, a review on methods 

developed for prestressed concrete are also presented. 

3 .2. Prediction of time-dependent prestress loss in masonry 

In this section, methods recommended by Codes of Practice and previous 

researchers are gi ven. 

3.2. 1 Prediction of time-dependent prestress loss in masonry by 

Codes of Practice 

The only national standard that gives provisions on prestress loss of post

tensioned masonry is the BS 5628 (1985). Sutherland (1982) stated that BS 5628 
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(1985), then in draft form, is the first masonry code to give provisions on prestressed 

masonry members. No provisions are made for prestressed masonry in ACI 530 

(1990) and Eurocode No 6 (1988). However these codes provide coefficients for 

determining the effect of creep and shrinkage in masonry. These effects are presented 

in sections 3.4.1 and 3.5.1. At present, an update of Eurocode No 6 (1988) is being 

drafted by European countries and will include a design guide for prestressed 

masonry. 

3.2.1.(a) BS 5628 (1985) 

Clause 30.2 in the BS 5628: Part 2 (1985) recommends that 

allowances should be made for loss due to relaxation of the tendons, elastic 

deformation and time-dependent (creep and shrinkage) deformations of masonry, 

draw-in of the tendons during anchoring, friction and thermal effects in prestressed 

masonry. Only the loss due to relaxation of the tendon and time-dependent 

deformations of masonry will be presented in this chapter. The Code suggests single 

values of creep coefficients for clay or calcium silicate brick masonry and dense 

aggregate concrete block in predicting creep. The reduction of stress due to creep and 

shrinkage is predicted by multiplying the appropriate strain due to creep and 

shrinkage by the elastic modulus of the prestressing bar. This method does not 
of 

consider the eff ec~arying stress. 

3.2.2 Prediction of time-dependent prestress loss In masonry 

by previous researchers 

a 
The following methods are based on experimental results of prestress 

loss irK,variety of clay brickwork (Lenczner 1986a) and limited types of concrete 
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blockwork (Tatsa 1973). None of these methods has been verified on calcium silicate 

brickwork. 

3.2.2.(8) Lenczner method 

Based on a study of post-tensioned clay brickwork walls, columns 

and beams Lenczner (1986a) suggested that the residual force in the prestressing bars 

(FR) can be calculated in term of percentage of initial load at transfer as follows: 

or FR = 100 (l-R) 

£ 
Cc = creep ratio = (....£); 

E· I 

Ec = creep strain; 

£j = initial (elastic strain); 

Em = moisture strain ( positive for shrinkage); 

<1>w = stress in brickwork at transfer; 

~w = elastic modulus of brickwork in MPa; 

~ = elastic modulus of steel; 

As = area of prestressing bars; 

Abw= area of prestressed brickwork member; 

h = height of member; 

and L = length of prestressing bar. 

(3.1) 
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The residual force predicted is an overall magnitude of loss after all the 

deformations of the material have taken place. Application of the above formula 

requires knowledge of the deformations of the masonry, Le creep coefficient and 

shrinkage strain. The above equation has been verified on clay units only, and does 

not take into account the effect of varying stress on prestress loss. 

3.2.2. (b) Tatsa method 

Based on a study of aerated post-tensioned blockwork, Tatsa (1973) 

suggested that the overall prestress loss at any time is given by: 

where a = alL length ratio of block and wall; 

(Jct = initial prestress in the block; 

Eet= creep of block per unit stress at time t; 

Est = shrinkage at time t; 

~ = Young's modulus of steel; 

~t = joint to block creep ratio at time t; 

~t = joint to block shrinkage ratio at time t; 

OOst,r = relaxation loss in steel at time t; 

and l)(Jst,l = local loss in steel (estimated as 1% for a length of lm, and 

then decreasing with increasing length). 

The above equation predicts the increment of loss of prestress at any 

time, instead of ultimate loss. A factor expressing a ratio of mortar joint to the block 
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for creep (Kct) and shrinkage (Kgt) is incorporated into the equation so as to consider 

the defonnations of concrete units and the mortar joint. The effect of short panels is 

also introduced into the equation where it is expressed in tenns of the ratio of block to 

panel. Thus the application of the above equation requires the knowledge of 

defonnations of masonry units and mortar. The above equation has been verified on 

aerated concrete blocks only, and does not consider the effect of varying stress on 

prestress loss. 

3.3 Methods of prediding elastic modulus 

Methods of predicting elastic modulus of brickwork are considered 

because some of the methods in predicting creep of masonry require the knowledge 

of elastic modulus of brickwork. 

3.3.1 Elastic modulus of masonry by Codes of Practice 

3.3.1 (a) BS !628 (1985) 

Clause 19.1.7 of as 5628:Part 2 (1985) suggests that elastic moduli 

of clay, calcium silicate and concrete masonry (including reinforced masonry) be 

taken as: 

Emw = 0.9 fk OPa (3.3) 

where Emw = elastic modulus of masonry; 

and fk = characteristic compressive strength of masonry. 

The characteristic compressive strength of masonry is determined 

from Table 3.1 where it is expressed in terms of the compressive strength of 

structural units and mortar designation. 
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3.3.1 (b) ACI 530·88/ASCE 5·88 (1990) 

Clause 5.5.1 of the A Cl 530 code (1990) suggests that the elastic 

moduli of clay and concrete masonry can be determined from Tables 3.2 and 3.3, 

respectively. The Code defines the modulus of elasticity in terms of compressive 

strength of units and mortar types. 

3.3.1 (c) Eurocode No 6 (1988) 

Clause 3.2.6.1 of the Eurocode No 6 (1988) suggests that elastic 

modulus of masonry be determined as follows: 

Emw = 1000 f k MPa (3.4) 

where Emw = elastic modulus of masonry~ 

and fk = characteristic compressive strength of masonry (Table 3.1). 

3.3.2 Prediction of elastic modulus by previous researchers 

Elastic modulus of masonry can be predicted empirically (Lenczner 

1986a) and theoretically (composite modelling by Brooks 1986a and Ameny 1983 

and 1984). Composite modelling presented by Ameny (1983 and 1984» is limited for 

vertically stacked l bedded units and face shell bedded hollow units in stack bonds. 

Brooks (l986a, 1986b, 1987a,b and 1990) developed a model that is applicable to all 

types of bricks and mortar provided that the properties of bricks and mortar are 

known. This method is discussed later. 

3.3.2 (a) Lenczner method 

Most of the work by Lenczner has been based on clay units and thus 

the applications are limited to such brickwork. Based on tests of wide selection of 
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single-leaf cavity walls and piers, Lenczner (l986a) proposed that elasticity bc 

predicted using the following expressions in terms of square root of brick strength 

regardless of mortar grade: 

For bricks with compressive strength (B) of 20-70 MPa 

q,w = 300B - 2000 (3.5) 

For bricks with compressive strength greater than 70 MPa 

q,w = 12750 + 100B (3.6) 

For an approximate estimate of elasticity, the following equation should be used: 

q,w = 375O(B)0.5 -10000 (3.7) 

For bricks units with compressive strength less than 20 MPa, 

elasticity should be taken as 5000 MPa. Equation (3.7) is recommended for 

brickwork with mortar designation (i) but gives reasonably good results when mortar 

grade (ii) is used, but not with weaker mortars than grade (iii). 

3.3.2 (b) Brooks method 

Brooks (1986a) expressed the modulus of elasticity of masonry in 

terms of moduli of brick units and mortar. Brooks (1986a) suggests that elastic 

modulus of masonry be determined as follows: 

where Ewy = modul us of masonry perpendicular to the bed joint; 

F"y= modulus of elasticity of brick/mortar component; 

(3.8) 
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Em= modulus of elasticity of horizontal mortar joint; 

H = height of masonry; 

C = number of courses; 

C + 1 = number of mortar courses; 

by= depth of unit, 

my = height of mortar joint; 

Aw = cross sectional area of masonry ; 

Ab = cross-sectional area of bricks; 

and Am = cross-sectional area of vertical mortar joints = Aw - Ab. 

The modelling was verified experimentally on clay and calcium silicate 

single-leaf brick walls and clay brick piers with one type of mortar. Generally the 

predicted elasticity was within 13 % of that measured, and is independent of the 

geometry of the masonry. The model is applicable to any type of masonry unit and 

mortar provided that properties of masonry unit and mortar are known, and an 

equivalent expression is available for predicting the elastic modulus parallel to the bed 

joints. 

3 . 4 Methods of predicting creep 

Several standards have started to recognize the significance of creep in 

the design of load bearing masonry members. Methods suggested by Codes of 

Practice and previous researchers are presented in this section. 

3.4.1 Creep of masonry by Codes of Practice 

3.4.1 <a) BS 5628 < 1985) 

BS 5628 : Part 2 (1985) suggests that creep is numerically equal to 

1.5 and 3.0 times the elastic deformation of the masonry in fired clay or calcium 
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silicate brick masonry and dense aggregate concrete block, respectively. No 

distinctions are made for different ages of loading, temperature, relative humidity, 

size of units, mortar types and geometry of masonry. 

3.4.1 (b) ACI 530·88/ASCE 5·88 (1990) 

Clause 5.5.5 of ACI 530-88/ ASCE 5-88 code (1990) suggests the use 

of coefficients of creep in predicting creep. The suggested coefficients of creep of 

masonry are 101.5 x 10-6 per MPa and 360 x 10-6 per MPa for clay and concrete 

masonry. respectively. The suggested coefficients of creep values given are 

regardless of the strength of the units and mortar types used. As in SS 5628: Part 2 

(1985). no distinctions are made for different age of loading, temperature, relative 

humidity. size of units. mortar types and geometry of masonry. The Code does not 

give any provisions for creep of calcium silicate brickwork. 

3.4.1 (c) Eurocode No 6 (1988) 

Eurocode No 6 (1988) suggests creep coefficients of 0.7 and 1.5 for 

clay and calcium silicate/concrete masonry. respectively. As in SS 5628 (1985) and 

ACI 530 (1990). the suggested creep coefficients are single values for different type 

of masonry units and mortar. As before no distinctions are made for other factors. 

3.4.2 Prediction of creep by previous researchers 

As for the prediction of elastic modulus, prediction of creep by 

previous researchers is divided into empirical and theoretical methods. 
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3.4.2 (a) Lenczner method 

Based on several years of observations on the behaviour of brickwork 

subjected to axial load, Lenczner (1985) proposed that strain ratio (R) should be used 

in predicting creep in brickwork, where R = maximum strain/ initial elastic strain. 

From experimental studies on piers, cavity walls and single-leaf walls 

on wide selection of bricks, Lenczner (1985) concluded that there are linear 

relationships between the strain ratio for walls, and for columns, and the square root 

of brick strength. The strain ratio for walls and piers, respectively, are: 

For walls: Rw = 5.46 - 0.33(B)0.5 (3.9) 

For piers: Rw = 2.73 - 0.14(B)0.5 (3.10) 

where B is the compressive strength of bricks (MPa). 

The above equations apply to brickwork with 1:t3 and 1: 1:6 mortar 

mixes of Portland cement, dry hydrated lime and sand. The linear regression analysis 

of the data for Equations (3.9) and (3.10) were 0.82 and 0.88, respectively. 

3.4.2 (b) Brooks method 

that 
Brooks (1986a) proposed~he specific creep of masonry can be 

expressed in terms of the effective and elastic moduli of brickwork. The specific 

creep of masonry (Cs) is given by: 

1 1 
CS=~-E 

wy -wy 

where Ewy= elastic modulus of brickwork as in Eq.(3.8); 

E'wy = effective modulus of brickwork; 

(3.11) 
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1 ~ [ Aw ] m (C + 1) 1 
and~= H El A + El A + v H ~ 

wy by b m m m 

where Elby = effective modulus of brick unit~ 

and Elm = effective modulus mortar. 

(3.12) 

Equation.(3.11) was verified experimentally (Brooks et al 1986b, 1988, 

199Oa, 1990b) for clay, calcium silicate and concrete masonry. 

3.5 Methods of predicting shrinkage 

Methods suggested by Codes of Practice and previous researchers are 

presented in this section. To date, only one theoretical method is available in 

predicting shrinkage of masonry (Brooks 1987b). Codes of Practice suggest either a 

single value for ultimate shrinkage or coefficients of shrinkage for different types 

masonry units and mortar grades. 

3.5.1 Moisture movement of masonry by Codes of Practice 

3.5.1 (a) BS 5628 (1985) 

Clause 30.2.4 of BS 5628: Part 2 (1985) suggests a maximum 

shrinkage (Esh) of 500 x 10-6 for both calcium silicate and concrete block masonry 

regardless of the mortar type. Since these values are based on limited research, there 

is no distinction between shrinkage of calcium silicate and concrete masonry. Any 

movement in clay and masonry is assumed to be negligible. As for the moisture 

movement of clay, calcium silicate and concrete units, and mortar, Clause A.5 of BS 

5628: Part 3 (1985) gives a range of typical reversible and irreversible movements. 
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3.5.1 (b) ACI 530·88/ASCE 5·88 (1990) 

The Code suggests that the irreversible moisture expansion of clay 

masonry be taken as 3 x 10-4. For concrete masonry, the coefficient of shrinkage is 

taken as 0.15-0.5 multiplied by the total linear drying shrinkage of concrete units. As 

in BS 5628 (1985), these values fail to consider the type of mortar used. 

3.5.1 (c) Eurocode No 6 (1988) 

Clause 3.2.6.4 of Eurocode No 6 (1988) recommends moisture 

movement of -100 to 200 x 10-6 for clay masonry. A value of 200 x 10-6 of 

shrinkage is suggested for calcium silicate and concrete masonry. As in other codes 

these values are single ultimate values which do not account for the type of mortar. 

3.5.2 Prediction of shrinkage by previous researchers 

3.5.2 (a) Brooks method 

Using a similar composite model to that for creep of masonry, Brooks 

(1987b) expressed the vertical shrinkage of masonry in term of vertical shrinkage of 

mortar and units as follows: 

~ m (C+1) b C (Sm - Sby) 
Swy = H s.,y + y H Sm +.:.:i.-H ---------'~A-...l;U..-;:E::-:-' --

[ 1 + ---1L by ] 
A E' 

where ~y = axial shrinkage of brick or block; 

E'by= effective modulus of brick or block; 

E'm = effective modulus of mortar; 

and Sm = shrinkage of mortar. 

m m 

(3.13) 
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It should be noted that effective modulus of units (E'by) and mortar 

(E'm) allow for creep of the unit and mortar because shrinkage reduces stresses. 

Equation (3.13) has been verified experimentally on three types of masonry units 

(clay, calcium silicate and concrete block units) made with grade ii mortar. 

3.6 Methods for predicting relaxation of steel 

3.6.1 Prediction of relaxation of steel by Codes of Practice 

3.6.1 (a) BS 5628: Part 2 (1985) 

The Code suggests that loss of prestress due to relaxation should be 

taken to be the maximum relaxation of the tendon after }(X)O hours duration given in 

the manufacturer's UK Certificate of Approval. In the absence of the manufacturer's 

Certificate of Approval, loss of prestress should be obtained from BS 5896 (1980) or 

BS 4486 (1980). The Standards suggests the 1000 hour relaxation value may be 

assumed to decrease from the value given for 60% to zero at 30% of the breaking 

load. Table 3.4 shows the 1000 hour relaxation loss (%) in accordance to BS 5896 

(1980) and BS 4486 (1980). 

3.6.2 Prediction of relaxation of steel by previous researchers 

3.6.2 (a) Magura method (1964) 

Magura (1964) suggests that the reduction of stress due to relaxation 

be predicted by the following equation: 

(~- 0.55) 
fs(t) = -fsi 10g1O 24t sy 10 (3.14) 

where fs = the remaining stress at any time t after prestressing; 
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f si = the ini tial stress; 

and fsy = stress at 1 % elongation; 

Equation (3.14) is valid only for (.!& ~ 0.55). 
Isy 

3.6.2 (b) Glowdowski et al method (1972) 

Glowdowski et al (1972) suggests a quadratic equation in predicting 

prestress loss due to relaxation of prestressing steel: 

SR = A + B In t + C (In t)2 

where SR = % relaxation; 

t = test time in hours; 

and A, a, C = function of the stress level ratio (initial stress/measured 

strength). 

(3.15) 

Glowdowski et al (1972) claimed that Equation (3.15) is quite 

accurate for short term as well as reasonably consistent with other methods of 

predicting long-term stress relaxation loss. 

3.7 Prediction of time-dependent prestress loss in prestressed 

concrete 

Two of the established methods for predicting prestress loss in 

prestressed concrete are considered. One of the methods (Dilger 1983) takes into 

account the effect of varying stress in the concrete. 

3.7.1 Dilger method 

Dilger (1983) presented an analytical method for calculating prestress 

loss by taking into account the effect of creep under varying stress. This effect is 

expressed in terms of an aging coefficient, which is less than 1. 
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The following equation expresses stress loss in one layer of steel: 

Ms (t) 
I10 fo cp(t,to) + Esh(t,to) Es + f'r(t) 

1 + PI1o(1+y12/r2)(1 + X cp(t,to» 

where bfs (t) = change of stress; 

(3.16) 

I10 = ~ =modular ratio at the time at first application of load, to; 

fo = initial stress; 

cp(t,to) = creep coefficient at time t for concrete loaded at age to; 

Esh(t,to) = free shrinkage developed between times to and t; 

Yl 
r2 

= elastic modulus of prestressing steel; 
As 

=Ac 
= distance from the neutral axis to the prestressing bar; 

-1t -Ac 
. ff' . fo 1 = agmg coe IClent = r-f --'0- t CP(t,to) 

= initial stress on the concrete 

= total stress at time t under varying stress 

= a r fs(1) = reduced relaxation; 

= reduction coefficient from Fig. 3.1; 

(f! -0.55) 
= -fsi 10g1O 24t sy 10 for stress relieved steel; 

(f! -0.55) 
= -fsi 10g1O 24t sy 45 for stress low-relaxation 

steel; 

fs(t) = the remaining stress at any time t after prestressing; 

fsi = the initial stress; 

and fsy = stress at 1 % elongation. 
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3.7.1 Abeles method 

Abeles (1966) recommends an analytical method that does not 

consider the effect of varying stress in the concrete members. The stress loss (PL) is 

given by: 

and 

PL = [ PLe + Ko (PLcr + PLsh) + PLc] (3.17) 

Ac.A. 

PLsh 

PIu 

Ct 

fci,p 

PLc 

= tension loss (applied to the pre-tensioned member only); 

= creep and shrinkage reduction factor for non-tensioned steel; 

= [Ac+ (n-1) Aps]/At 

= concrete area and transformed section area, respectively; 

= shrinkage tension loss = Esh E;;; 

= creep tension loss = n fci,p Ct ; 

= creep coefficient 

= initial concrete stresses at the level of prestress; 

= relaxation loss of the prestressing wire (Magura's). 
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Table 3.1 Characteristic Compressive Strength of Masonry 

(8SS628: Part 2 1985) 
(A) Constructed with bricks or other units baving a ratio of height to least horizontal dimension of 

0.6 
Mortar 

designation Characteristic compressive strength of masonry. fk (MPa) 
Compressive strength of unit (MPa) 

7 10 15 20 27.5 35 50 70 100 

(i) 3.4 4.4 6.0 7.4 9.2 11.4 15.0 19.2 24.0 

(ii) 3.2 4.2 5.3 6.4 7.9 9.4 12.2 15.1 18.2 

(B) Constructed with solid concrete bavio2 a ratio of height to least horizontal dimension of 1.0 
Compressive strength of unit (MPa) 

7 10 15 20 35 50 70 or greater 

(i) 4.4 5.7 7.7 9.5 14.7 19.3 24.7 

(ii) 4.1 5.4 6.8 8.2 12.1 15.7 19.4 

(C) Constructed with solid concrete baving a ratio of height to least horizontal dimension between 
2.0 and 4.0 

Compressive strength of unit (MPa) 

7 10 15 20 35 50 70 or greater 

(i) 6.8 8.8 12.0 14.8 22.8 30.0 38.4 

(ii) 6.4 8.4 10.6 12.8 18.8 24.4 30.2 

(0) Constructed with structural units other than solid concrete blocks baving a ratio of height to 
least horizontal dimension between 2.0 and 4.0 

Compressive stren2th of unit(MPa) 

7 10 15 20 35 50 70 or greater 

(i) 5.7 6.1 6.8 7.5 11.4 15.0 19.2 

(ii) 5.5 5.7 6.1 6.5 9.4 12.2 15.1 
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Table 3.2 Elastic Modulus of Clay Masonry by ACI 530-

88/ASCE 5-88 (1990) 

Net area Modulus of elasticity 
(Linear interpolation permitted) 

compressive 
strength ?f uni ts 

Type N mortar Type S mortar Type M mortar pSI 
(MPa) Em, psi X 106 Em, psi x 106 Em, psi x 106 

(OPa) (OPa) (OPa) 

> 12,000 2.8 3 3 
(> 82.74) (19.31) (20.68) (20.68) 

10,000 2.4 2.9 3 
(68.94) (16.55) (19.99) (20.68) 

8,000 2.0 2.4 2.8 
(55.15) (13.79) ( 16.55) (19.45) 

6,000 1.6 1.9 2.2 
(41.26) (11.03) (13.10) (15.29) 

4,000 1.2 1.4 1.6 
(27.58) (8.27) (9.65) (11.12) 

2,000 0.8 0.9 1.0 
(13.79) (5.52) (6.21) (6.89) 
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Table 3.3 Elastic Modulus of Concrete Masonry by 

ACI 530-88/ASCE 5-88 (1990) 

Net area Modulus of elasticity 
compressive (Linear interpolation permitted) 

strength ?f uni ts 
Type N mortar Type M or S mortar pSI 

(MPa) Em. psi x 106 Em, psi x 106 

(GPa) (GPa) 

> 6,000 - 3.5 
(> 41.26) (24.13) 

5,000 2.8 3.2 
(34.47) (19.31) (22.06) 

4,000 2.6 2.9 
(27.58) (17.93) (20.15) 

3,000 2.3 2.5 
(20.68) (15.86) 07.24) 

2,500 2.2 2.4 
07.24) (15.17) (16.55) 

2,000 1.8 2.2 
(13.79) (12.41) (15.17) 

1,500 1.5 1.6 
(10.34) (10.34) (11.03) 

Table 3.4 Relaxation Loss (%) at 1000 hour in Accordance 

with BS 5896 (1980) and BS 4486 (1980) 

Material Cold drawn wire or strand Cold drawn in Bar to 
to BS 5896 (1980) 

Imtialload mill coil to BS 4486 
(% of breaking load) Relaxation 

Class 1 Class 2 BS 5896 (1980) (1980) 

60 4.5 1.0 8.0 1.5 

70 8.0 2.5 10.0 3.5 
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CHAPTER 4 

EXPERIMENTAL DETAILS 

4. 1 Introduction 

The geometries investigated for this research were post-tensioned diaphragm 

and fin walls that were represented by a box and a single-tee section. The geometric 

walls were specifically chosen so as to study the influence of volume/exposed surface 

area on the behaviour of the post-tensioned walls. The post-tensioning system 

adopted in this research was high strength Macalloy bars that complied with SS 

4486 (1980). The walls represent typical retaining walls which have been constructed 

on various sites. 

4. 2 Outline of the test programme 

The research programme consisted of measuring prestress loss and time

dependent deformations on the two types of geometric members constructed from 

three types of masonry units. The research was divided into three separate tests as 

described below; 

Tell 1 Clay brickwork 

In Test 1, diaphragm and fin walls were built from clay units with a grade (ii) 

mortar. Three walls were constructed for each geometry to measure the prestress 
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loss, creep and shrinkage/moisture movement separately. Only two of these walls 

were post-tensioned for 120 days. The three walls for the measurements of prestress 

loss, creep and shrinkage/moisture strains are described as follows: 

(i) Moisture strain wall 

The wall was unloaded and the strain measured was due to 

shrinkage/moisture movement only; there may have been some movement 

due to temperature variations as all the walls were located in the laboratory 

where the humidity and temperature were not controlled. However, the 

variation in the atmospheric temperature and humidity is insignificant 

compared to the variations of temperature and humidity on sites (Fig. 4.17 

and 4.18). 

(ii) Creep wall 

The wall was loaded under constant stress so as to measure creep of the 

brickwork. The wall had to be restressed during the research to maintain the 

initial post-tensioned force throughout the duration of the test. 

(iii) Prestress loss wall 

The wall was loaded to the same level of stress as in the ereep wall; 

although the wall was not restressed during the test so as to allow for loss 

of the initial prestress force in the bars to take place. 

Test 2 Calcium silicate brickwork 

Similar tests were carried out as in Test 1 using calcium silicate units. 

Test 3 Concrete block units 

Similar tests were carried out as in Test 1 using concrete block units. 
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4.3 Materials 

4.3.1 Masonry units 

Generally, in practice it is more common to prestress brickwork and 

reinforce blockwork because brickwork has a higher compressive strength and can be 

easily formed into different sections for prestressing. Furthermore, concrete 

blockwork tends to undergo creep and shrinkage more than clay brickwork. 

However, for this particular research, it was considered important to investigate 

prestress loss of masonry constructed from clay, calcium silicate and concrete block. 
a are 

Since bricks withAstrength greater than 27 MPa t. normally used in reinforced and 

prestressed masonry, the tests programme used units with a compressive strength of 

atleast 27 MPa. 

4.3.1 (a) Clay brick 

The clay brick units used were of solid red smooth class B 

Engineering bricks manufactured and supplied by Marshalls Clay Products, 

Robinhood, Wakefield, West Yorkshire. The brick units, with compressive strength 

of 103 MPa, were of standard size (215 mm x 102.5 mm x 65 mm) with three 25-30 

mm diameter perforations. The units were approximately 12 months old when laid. 

4.3.1 (b) Calcium Silicate brick 

The Grade 4 solid calcium silicate brick units used in Test 2 were 

manufactured and supplied by Mansfield Brick, Mansfield, Nottinghamshire. The 

calcium silicate units had similar dimensions to the clay units. The brick units, with 

compressive strength of 27 MPa, were approximately 9 months old when laid. 
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4.3.1 (c) Concrete block 

The dense aggregate solid concrete blocks manufactured and supplied 

by Plasmor Ltd., Knottingley, West Yorkshire were used in Test 3. The blocks had 

dimensions of 440 mm x 100 mm x 220 mm. Dense aggregate concrete block with 

compressive strength of 14 MPa was chosen for the research to :represent medium strength 

masonry units. The units were approximately 9 months old when laid. 

4.3.2 Mortar 

The test walls were built with grade (ii) mortar, i.e cement: lime: sand 

ratio (by mass) of 1:~: 4~, using ordinary Portland cement, hydrated building lime and 

building sand, respectively. A sieve analysis in accordance with BS 1200 (1976) was 

carried out on the sand. Fig. 4.1 shows the results which complied with BS 1200 

(1976). Preliminary dropping ball tests were performed to determine the water 

cement ratio as required by BS 4551 (1980). From the dropping ball test, a 10.0 mm 

penetration of mortar was achieved with a water cement ratio of 1.27. The grade (ii) 

mortar was chosen because BS 5628 (1985) recommends that grade (ii), or better, 

should be used for reinforced masonry. 

4.3.3 Base and capping beams 

For this study, six 1.3 m by 1.3 m heavily reinforced concrete bases 

and capping beams were cast about 6 months before building the masonry walls (Fig. 

4.2 to Fig. 4.4). An ordinary Portland cement (OPe) concrete mix of 1:2:4 with 

0.52 water/cement ratio was used throughout the construction of these concrete 

members. The bases and the beams were cast earlier to minimise any effects of creep 

and shrinkage of the concrete members on the stress reduction in the prestressing 
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steel. High strength concrete was used to minimise deformations in the base and 

capping beams; resulting in negligible prestress losses. The bases and capping beams 

were of 450 mm and 250 mm thick, respectively. The reason for having thick bases 

and capping beams was mainly to produce uniform stress distributions in the 

masonry. 

4.3.4 Prestressing steel 

Macalloy cold rolled high tensile alloy steel bars to BS 4486 (1980) 

were used throughout the experiments. Table 4.1 shows the work test certificate for 

the bars provided by the manufacturer: McCalls Special Products. A total of nine 25 mm 

and nine 26.5 mm diameter of high tensile alloy steel bars were used. The 26.5 mm 

diameter bars were partially threaded at both ends, i.e 1 m plain rolled in the centre, 

but this resulted in slightly curvature of the bars. The 25 mm diameter bars were 

supplied fully threaded so as to avoid excessive curvature of the bars. 

4.4 Test procedure 

4.4.1 Test set-up 

The following sections describe the test set-up before measurements 

commenced on the masonry walls, masonry units and mortar prisms. 

4.4.1 <a) Prestressing procedure for bar anchored to concrete bases 

for creep and prestress loss walls 

Initially, one end of the prestressing bars was locked to a 200 x 200 x 

40 mm thick end plate with a washer and nut, through a 40 mm diameter hole at the 

bottom of the base as shown in Fig. 4.5. Another end plate was then placed over the 

bar on top of the base and followed by a washer and nut. After placing two bottle 
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jacks on each side of end plate. spacers were positioned on top of the bottle jack. 

With three 400 x 400 mm slotted plates placed on the spacer s. washer and nut were 

screwed on top of the plates. Pressure was applied to the bottle jack through a 

calibrated 700 kN capacity Budenberg hydraulic pump (see Fig. 4.6 and Plate 4.1). 

When the required force was reached (about 4 % higher than the intended force for 

the brickwork). the nut on the base was run up to the end plate and tightened against 

it. The reason for locking the bars at the top of the base was to avoid any movement 

of the end plate located below the base. It was undesirable to weld the nuts to the end 

plate in the pocket of the base because the anchorage accessories were required to be 

re-used throughout the experiments. 

4.4.1 (b) Building the masonry walls 

The walls were constructed on the reinforced concrete bases with the 

prestressed bar locked in position. Three masonry walls were built at the same time 

for each geometry using the same batch of mortar; 4 courses at a time and all the three 

walls had the same height at the end of the day. Plates 4.2 and 4.3 show the 

diaphragm and fin walls during construction. Fin walls were built a week after the 

diaphragm walls. For all the tests. a total of eighteen walls were constructed. The 

height of the 26-course clay and calcium silicate walls was 1960 mm. while the 9-

course blockwork walls had a height of 2080 mm. The walls were cured under 

polythene sheet for 7 days and on the 7th day, the top of the brickwork was bedded 

and levelled with mortar before positioning the capping beam. The walls were re

covered with polythene until 2 days before stressing the bars. The control (moisture 

movement strain) diaphragm and fin walls were constructed in the same manner but 

without the prestressing steel. 

Two days before stressing the bar at the top of the capping beam, the 

polythene sheets covering the wall were removed so that gauge points could be fixed 
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to the concrete bases, capping beams and each face of the wall. The gauge points 

were stainless steel Demec studs for 750 mm and 200 mm demountable mechanical 

extensometers. Brackets for an invar bar for measuring the total movement of the 

walls were later screwed to the base and the capping beams. Demec readings were 

taken the next day. 

Figures 4.7 and 4.8 show section details of the prestressed masonry 

walls. 

4.4.1 (c) Prestressing procedure 

A day before stressing the bars, a purpose made loadcell was placed 

over the bar against a 200 x 200 x 40 mm thick spreader plate on top of the capping 

beam. A similar spreader plate and washer and nut were screwed onto the load cell 

(see Fig. 4.9 and Plate 4.4). After locating bevel housing together with jack over the 

nut, a spacer and a nut were screwed onto the jack. Twenty-one days after 

construction, the bars were jacked to the required working stress and locked using a 

nut system against a spreader plate at the top of the capping beams. 

Just before prestressing,initial readings of the loadcells and strains at 

the bases, the capping beams and the masonry walls were taken. The stress was then 

applied to the bar by applying pressure to the jack through the hydraulic pump. The 

load was checked on a digital Peekel instrument and also by the calibrated pressure 

gauge on the hydraulic pump. The bars were stressed between 54 to 64 % of the 

breaking load as recommended by the steel manufacturers and Codes of Practice. 

Table 4.2 shows the prestressing force applied to the bars, the number of bars per 

wall and the corresponding percentage of breaking load used in the test programme. 

The load was applied at 50 kN increments for the calcium silicate brickwork and 

concrete blockwork, and 155 kN increments for the clay brickwork. Where 2 bars 

were used in each wall, the bars were stressed in sequence. For each increment of 
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load, Demec and invar bar readings were taken on the walls and also Peekel rcadings 

for the bars were taken. Fig. 4.10 shows the anchorage system at the top of the 

capping beams on prestress loss and creep walls. The walls were subjected to a load 

up to 46% of its working stress (Appendix A). Plate 4.5 to 4.7 show the post

tensioned masonry walls under test. 

4.5 Creep tests of masonry units and mortar prisms 

Description of creep loading frame 

The loading apparatus and method of measuring creep for masonry units and 

mortar were developed at the Department of Civil Engineering, the University of 

Leeds, for cylindrical concrete specimens. The creep frames for concrete cylinders 

was modified to suit masonry units and mortar prisms as shown in Fig. 4.11 and 

Plate 4.8. Two masonry units or mortar prisms and a calibrated cylindrical steel-tube 

load dynamometer held by four tie bars comprise a creep frame. The constant load 

was applied by stressing the tie bars manually by tightening the four nuts. The steel 

dynamometer was used to check the load and any loss of load was compensated by 

retightening the tie bars to the required load, i.e until the required value of strain on 

the dynamometer was within +2 divisions (equivalent to + 0.22 MPa). The 

cylindrical dynamometers were calibrated using A very Dennison Universal testing 

machine with maximum capacity of 500 kN. 

Sampling of creep and moisture movements specimens 

For the creep and shrinkage tests, a total of twelve 75x75x200 mm mortar 

prisms were prepared. The mortar prisms were sampled as follows: four prisms from 

first mortar mix, four from middle mortar batch and another four from the final 

mortar batch. Six of the prisms were positioned in the creep frames and subjected to 
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the same axial load as in the creep wall. The other six mortar prisms were left beside 

the walls so as to represent the free shrinkage of the mortar. 

Only two units: were used to represent each geometry for the creep test, and 

they were loaded between the header faces. 

4.6 Strain measurements 

Load cells and electrical strain gauges were used to measure prestress 

force and strain changes on the bars. Strain measurements on the concrete bases, 

capping beams and brickwork were made using the following three different sizes of 

Demec gauges; 

4.6.1 

(i) 750 mm gauge ----2.1 x 10-6 per division 

(i) 200 mm gauge ----8.0 x 10-6 per division 

(i) 150 mm gauge ----10.8 x 10-6 per division 

Reinforced concrete bases and capping beam 

The strains on the concrete bases and capping beams were measured using 200 mm 

Demec gauges. Fig. 4.12 to Fig. 4.15 show the locations of Demec points on the 

concrete bases and the capping beams. 

4.6.2 Masonry 

Four strain measurements were taken on each face of the masonry 

walls using 750 mm and 200 mm Demec gauges. The locations of these demec point'> 

are as shown in Figure 4.12 to 4.15. Total strains on each side of the walls was 

measured using a dial gauge fixed to I nvar bars. 

Chapter 4 



72 

4.6.3 Prestressing steel bar 

Force and strain in the bars were measured by loadcells and electrical 

strain gauges as described below: 

Electrical drain gauge 

The strain on the prestressing bars was measured using two sets of 

full bridges for high sensitivity and for compensation of temperature changes. The 

full bridge consisted of two FCA-6 rossettes. Before mounting the gauges, the 26.5 

mm diameter bars were filed and smoothed by fine sand paper. As for the fully 

threaded 25 mm diameter bars, the threads in the mid length of the bars were taken 

off by lathe machines to a 23.5 mm diameter. The grease on the bars was removed in 

three stages of washing using acetone, conditioner and neutralizer, respectively. The 

gauges were protected by applying two layers of M-coat D. Finally, the gauges were 

protected against mortar droppings during bricklaying by sealing them in PVC tube 

filled with expanding foam. Prior to applying the insulation, the gauges were tested 

for insulation and resistance. Figure 4.16 shows the configuration of the rossette. 

Load cell 

The tension force in the steel bar was measured by purpose-made 

tubular shape loadcells located at the anchorage point of the capping beam. The 

loadcells, positioned between the end plates and the locking nuts, were mounted with 

full bridge electrical strain gauges on its steel collar by semi-filled curing epoxy resin. 

The full bridge consisted of four PL-6 gauges manufactured by Micromeasurements. 

Standard hot bonding procedures were carried out in two cycles: by heating at l000C 

in the oven for two hours in each cycle. The strain gauge for full bridge connection to 

the distribution box is as shown in Fig. 4.16. The loadcells were calibrated each time 

before use and had an accuracy of ± 0.45 kN. 
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Hydraulic jack 

The bars were stressed using hydraulic operated jack, Mark 13, 

provided by McCalls Special Products. The jack was supplied with a pump and a 

calibrated gauge for direct reading of the load, and could stress bars up to 4(X) kN. 

4.6.4. Creep and shrinkage of masonry units and mortar prisms 

The creep and shrinkage/moisture movements of all the masonry units 

and mortar prisms were measured using two Demec gauge lengths of ISO mm. The 

Demec points were positioned along the unsealed stretcher face on the brick units and 

along the unsealed (200 mm) face of the mortar prisms. The Demec points were fixed 

on the specimens two days before the prestressing of the walls. 

4.6.5. Strain measurement on creep dynamometer 

Four 200 mm length Demec gauge were positioned longitudinally 

on the cylindrical dynamometers to monitor the applied load on the creep specimens. 

The dynamometer was placed in the creep frame in such a way that the Demec points 

were located half way between the tie rods of the creep frame as shown in Fig. 

4.11. 

4.7 Environmental conditions 

Due to the size of the Wall, all the test specimens were kept in a non

controlled environment in the laboratory. Temperature and humidity changes were 

recorded using a temperature and humidity monitor. The variations in temperature and 

humidity during the experiment are shown in Fig.4.17 and 4.18 respectively. 
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4.8 Testing 

The following describes tests and measurements carried out on the 

masonry walls, masonry units and mortar prisms in this study. 

4.8.1 Deformations of masonry walls 

4.8.1 (a) Elastic modulus 

The elastic modulus was measured by taking strain measurements 

using Demec gauges and Invar bar deflections on each face of the creep and prestress 

loss walls at every load increment during the prestressing process. The locations of 

the Demec gauges are given in Section 4.6.2 and Figs. 4.12 to 4.15. 

4.8.1 (b) Shrinkage 

The zero readings on each face of the masonry control walls were 

taken within 2 hours after prestressing the bars in the creep and prestress loss walls. 

Subsequent readings were taken every day during the first week after loading, twice a 

week up to 80 days and once a week thereafter. The locations of the strain 

measurements were identical to those of the creep and prestress loss walls. 

4.8.1 (c) Creep 

The zero readings of the creep walls were taken when the bars were 

jacked to the full load following the elastic modulus measurement. Subsequently, 

readings were taken at the same time as the control walls. The sustained load on the 

bars was monitored using the Peekel instrument and the load was maintained at ± 10 

kN (2.5% of the initial load). The bars were required to be stressed almost everyday 

during the first five days after the prestressing process, twice a week up to 80 days 

and once a week thereafter. 
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4.8.1 (d) Prestress loss of the masonry walls 

Similar intervals of time as for the creep masonry walls were chosen 

for the readings of prestress loss. The prestress loss (strain gauge) changes of load 

(loadcell), were monitored immediately after transfer. 

4.8.2 Deformations of masonry units and mortar prisms 

The deformations of the masonry units and mortar prisms were for the 

verification of composite model that was developed by Brooks (1986a and 1987b) 

as discussed in Chapters 2 and 3. The models required information on elastic and 

time-dependent deformation, i.e creep and moisture movement strain of the masonry 

units and mortar prisms. 

4.8.2 (a) Elastie modulus 

Since no standard method of measuring modulus of elasticity of 

masonry units exists, the elastic modulus was obtained from strains measured during 

the loading of the creep specimens (secant modulus of elasticity). 

For the clay and calcium silicate units, single units were also loaded 

between bed faces and between header faces so as to measure the elastic degree of 

anisotropy. An A very Denison Universal testing machine with maximum capacity of 

500 kN was used for this purpose, the units being tested between 3 mm plywood 
of 

platens. Deformatio""the units were measured using electrical strain gauges. 

4.8.2 (b) Moisture movement strain 

The specimens for this test were the control specimens for the creep 

tests, and measurements were taken at the same time as for creep. 
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4.8.2 (c) Creep 

The mortar specimens sampled during bricklaying were stored 

together with the walls under polythene sheet for 7 days. On the 7th day, the prisms 

were partly sealed with bituminous paint and polythene sheet to the same 

volume/exposed surface ratios (V IS) of the mortar in the walls. The volume/surface 

ratios for the units and mortar are shown in Table 4.3. Figure 4.19 shows details of 

the partial sealing of the masonry units and mortar prisms. Creep was measured 

between header faces in individual creep frames within 24 hours of stressing the bars 

in the walls. For the concrete block units, the specimens were cut to the brick size 

normal to the bed face of block units. Plate 4.8 shows the masonry units and mortar 

prisms under test. 

4.8.3 Stress relaxation test 

Fig. 4.20 shows the intrinsic relaxation test set-up. The bars were 

fixed at a constant length, i.e constant strain by stressing them between 2 steel plates 

rigidly fixed to a steel channel and a spacer. The bars were subjected to loads of 

354.9 and 397.7 kN corresponding to 64% of the ultimate tensile strength of the 25 

and 26.5 mm bars, respectively. 

4.9 Control tests 

4.9 (a) Compresslve strength 

Concrete bases and capping beams. 

The 28-day compressive strength test of concrete was carried out 

using a Dartec Tonipact test machine of 3000 kN capacity in accordance with BS 

1881: Part 116 (1970). 100 x 100 x 100 mm concrete cubes placed between platens 

were subjected to a constant load of 0.4 MPa per sec (0.4 N/s or 0.4 MPa/s) until 
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failure. The ultimate load (kN) was read from the instrument digital display. The 

compressive strength of the concrete members was measured by tests on concrete 

cubes at 28 days and the results are shown in Table 4.4. 

Mortar 

For the compressive strength three cubes (100 x 100 x 100 mm) and 

prisms were made from each batch of mortar used in the walls. The cubes and the 

prisms were tested at 21 days in accordance with BS 4551 (1980). Table 4.5 shows 

the average compressive strength of mortar ·cubes. 

Clay bricks 

Compressive strength test on ten bricks, as specified in BS 3921 

(1985), was carried out on the Dartec testing machine at a constant loading rate of 5.5 

kN/sec (15 MPa.min) until failure. The specimens, which were previously immersed 

in water, were loaded on bed faces tested between 4 mm plywood sheet as specified 

in BS 3921 (1985). The results are given in Table 4.6. 

Calcium Silicate 

The compressive strength of calcium silicate bricks was detennined as 

required by BS 187 (1978). Ten bricks, previously immersed in water at a 

temperature of 20±. 5 C for 18±2 hour, were tested between 4 mm thick plywood. A 

constant load of 6.6 kN/sec (18 MPamin) was applied perpendicular to the bed faces 

until failure. Table 4.6 lists the results. 

Concrete blocks 

The compressive strength of blocks was determined in accordance 

with BS (fJ73 (1981) where the blocks were immersed in water for 16 hours prior to 

capping with mortar. The mortar has a 1: 1 mix of high alumina cement complying 

Chapter 4 



78 

with the requirements of BS 915: Part 2 (1972), and sand complying with the 

requirements of grading zones 2 or 3 of BS 882; 1201:Part 2 (1992). When the 

mortar had reached at least 28 MPa, in accordance with the procedures given in BS 

4551 (1980), the mortar capped specimens were subjected to a constant rate of 10±1 

MPa until failure. Table 4.6 shows the compressive strength results. 

4.9 (b) Standard dropping ball test for mortar 

The standard consistency test for mortar is to measure the penetration 

of a methyl methacylate ball when it is allowed to fall on to brass mould filled with 

mortar. The penetration of the ball was measured to the nearest 0.1 mm as specified 

by BS 4551 (1980). In these tests, the mortar penetration was 10 ± 0.5 mm. 

4.9 (c) Macalloy prestressing steel tensile test 

The test was performed on the 25 and 26.5 mm bars in an A very 

Universal tension/compression test machine with 1000 kN capacity. Since the 

machine was only able to measure the load, electrical strain gauges were used for 

measuring strains changes. Fig. 4.21 shows a typical stress-strain curve of the bars 

when tested accordance with BS 4486 (1980). 

Chapter 4 



79 

Table 4.1. Work Test Ceritficate for the McCalls Special Products Bars 

Nominal 0.1 % Proof Ultimate Ultimate Elongation Modulus 

size Proof Stress Load Stress at Fracture of 

(mm) Load (GPa) (kN) (MPa) (%) Elasticity 

(kN) (GPa) 

25 467 947 560 1135 13 188 

26.5 480 838 625 1083 13 176 

Table 4.2. The Prestresslng Force Applied on the Bars, Number of 

Bars per Wall and the Corresponding Percentage of 

Breaking Load used in the Experiments. 

Units Diaphragm wall Fin Wall 

Prestress Prestress 
focce No of bars % breaking focce No of bars % breaking 
(kN) load (kN) load 

Clay 309 2No25 55% 363.1 2 No 26.5 58% 

Calcium Silicate 323.4 1 No 25 58% 379.94 I No 26.5 61% 

Concrete Blocks 302.4 1 No 25 541% 399.84 I No26.5 64% 
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Table 4.3. Volume/exposed Surface Ratios of the Walls, Masonry 

Units and Mortar Prisms. 

Volwne 

Wall (107 mm3) 

Mas.* Brick 

Diaph. 38 31 
(Gay) 

Fin. 44.9 36.5 
(Gay) 

Diaph. 40.7 33 
(Calciwn 
Silicate) 

Fin. 47.4 39 
(Calcium 
Silicate) 

Diaph. 37.4 34.1 
(Conaete 

Block) 

Fin. 49.5 45.9 
(Conaete 

Block) 
masonry * 

** see Fig. 4.19 

Mortar 

7.35 

8.4 

7.35 

8.4 

2.57 

3.54 

Exposed swface area VIS Total Sealed length 

(105 mm3) (mm) (mm)** 

Mas.* Brick Mortar Mas.* Brick Mortar Brick MortHr 

47.7 39.5 8.3 80 79 89 12.5 21.8 

72.5 56.1 12.2 62 65 69.3 8.5 17.2 

47.7 39.5 8.3 85 84.26 89 12.8 21.8 

72.5 56.1 12.2 65.47 69.5 69.3 8.6 17.2 

45.8 41.8 2.97 81.82 81.48 86.55 12.5 21.25 

69.89 65.1 4.7 70.83 70.5 75.11 9.45 18.78 

Table 4.4. Compressive Strength of Concrete Cubes at 28 day 

Base and Capping Beam no. Mean Concrete Strength 

(MPa) 

1 57.3 

2 55.2 

3 64.24 
4 62.38 
5 62.67 
6 67.95 
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Table 4.5 Mean Compressive Strength and Standard Deviation of 

Mortar Cubes (MPa) 

Age Clay Brickwork Calcium Silicate Concrete 
Brickwork Blockwork 

Diaphragm Fin Diaphragm Fin Diaphragm Fin 

10.13 11.52 10.42 9.66 12.27 13.04 
21 days (0.72) ( 1.28) (0.84) (0.94) ( 1.36) ( 1.72) 

( ) - standard deviation 

Table 4.6 Mean Compressive Strength and Standard Deviation of 

Masonry Units (MPa) 

Unit Type Header Face Bed Face 

Clay Brick 15.75 103 

( 1.06) (9.7) 

Calcium Silicate 18.5 27.08 

Brick (6.9) ( 1.41) 

Concrete - 14.87 

Block ( 1.14) 

( ) - standard deviation 
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PLATE 4.1 



Plate 4.2 During Construction of Diaphragm Wall 

Plate 4.3 During Construction of Fin Wall 
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Plate 4.4 Prestressing Details of Bar at the top of 
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Plate 4.8 Creep Tests on Masonry Units and Mortar Prisms 
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CHAPTER S 

ANALYSIS AND DISCUSSION OF TEST RESULTS 

5. 1 Introduction 

This chapter presents the observations and analysis of results for the tests 

described in Chapter 4. The properties of the masonry units and mortar prisms, 

determined from control tests, are tabulated in Chapter 4. 

S.2 

5.2.1 

5.2.1 (a) 

Brickwork 

Elasticity 

Measured elasticity 

Table 5.1 shows the average elasticity (secant) of the masonry walls 

determined from the measured initial strain on each face of the walls during loading. 

For all types of masonry, there is no indication that the elasticity of the brickwork is 

affected by the volume/exposed surface ratio (V IS) of the walls. These observations 

support previous findings that elasticity of brickwork is not affected by geometry 

(Lenczner 1978 and Amjad 1990). 

As expected, due to the high compressive strength of clay units (103 

MPa), clay brickwork had the highest elastic modulus compared to the calcium 

silicate and concrete block walls. The lower modulus of elasticity in calcium silicate 

and concrete block is due to the porous/permeable nature of their constituents. 
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The average modulus of elasticity of clay and calcium silicate 

brickwork is much less than their respective units compared with concrete 

blockwork. For example, for the clay fin walls, the ratio of unit Iwall modulus was 

1.60, whereas the corresponding ratio for the concrete block fin wall was 0.80 

(Elastic moduli data is given in Table 5.7). While the elasticity of the brickwork walls 

is clearly influenced by the mortar, there is a smaller influence for blockwork. This is 

due to fewer mortar bed joints in blockwork than in brickwork for the same size of 

masonry member. For this investigation, it appears that elastic modulus of blockwork 

is roughly equal to the modulus of the block units, but this may not be true for other 

units. 

S.2.1 (b) Elasticity by finite elements 

Elasticity of the masonry walls was predicted by a linear elastic finite 

element method using Pafec (Program for Automatic Finite Element Calculations 

lW8) package. Pafec also computes creep of materials but its application is generally 

for mechanical engineering problems. In this research Pafec (1978) was used for 

comparing the elasticity of the masonry walls by applying individual deformations of 

the masonry units and mortar. The variables in this study were the types of masonry 

units with different compressive strength. 

Basic asswnption of the analysis 

The analysis assumes that~ 

a) the wall is thin and has a constant thickness, 

b) stresses are constant throughout the thickness of the element, 

and c) the element is flat and carries load in its plane only. 
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The walls were analysed as 2-D plane stress element. The width of the walls 

was 665 mm in clay and calcium silicate brickwork, and 550 mm in concrete 

blockwork. The height of the walls was as in the experiments. Initially the waIls were 

divided into a number of eight nodes isoparametric curvilinear quadrilateral elements. 

The elements were subjected to the same stress as the experimental brickwork. The 

elasticity of the walls was determined from the displacements output of the elements. 

Pafec (1978) determined the displacement of the elements by first expressing them in 

terms of in-plane nodal displacement matrices. Application of virtual work method 

results in a set of simultaneous equations (stiffness) which relate the nodal forces 

with the nodal displacement. The displacement of the elements is then solved by 

assembling and solving the equations for the entire wall. 

Fig. 5.1 shows typical displacements in the masonry walls under 46% of its 

working stress. The elasticity using the finite elements method is compared to the 

measured values as in Table 5.1. Pafec predicts elasticity reasonably well in clay 

walls and within 20% in calcium silicate and concrete block walls, although the walls 

analysed were represented as a single-leaf wall. This confirms the previous 

observation that the elastic modulus of masonry is not influenced by geometry. The 

general prediction of elastic modulus is discussed in Chapter 6. 

5.2.2 Creep of masonry walls 

The average creep was determined by subtracting the average 

shrinkage and instantaneous (elastic) strains from the measured strains on the creep 

walls. Tables B.1, B.2 and B.3 of Appendix B show the strains of the clay, calcium 

silicate and concrete block walls measured at various positions. The average creep of 

the masonry walls was then plotted at each time interval as shown in Fig. 5.2 to 5.4. 

During these tests, the average temperature and humidity were 210C and 40%, lSOC 
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and 45%, and 2Q<>C and 45% for clay, calcium silicate and concrete block masonry, 

respectively (see Figs. 4.17 and 4.18). 

All the masonry walls investigated in this test programme exhibited similar 

creep-time behaviour as concrete, i.e rapid increase initially and with a decreasing mte 

with time. Approximately 80% of the 120-day creep in the walls took place in the first 

60 days after loading. Compared to the other walls, creep on different faces of the fin 

calcium silicate walls had the highest variation (10%). 

The influence of geometry and masonry units on the average creep of the 

masonry walls is presented in the following sections. 

5.2.2 <a) Influence of geometry 

Figures 5.2 to 5.4 show that for all types of masonry, creep of the fin 

walls with a V IS ratio of 62 - 70 mm was higher than creep of the diaphragm walls 

with a VIS ratio of 81 - 85 mm. The fin walls generally exhibited 12 % higher creep 

than the diaphragm walls and the trend with geometry agrees with the findings of 

previous researchers (Abdullah 1989). The greater creep in the fin walls is due to its 

low value of VIS which means that, relatively, there is more exposed surface area for 

drying creep to take place in the masonry and the average drying path length for 

moisture diffusion is less. Since a greater drying is associated with a greater creep (as 

for concrete), the results of this investigation are as anticipated. 

5.2.2 (b) Innuence of masonry units 

The influence of masonry units on specific creep is illustrated in Fig. 

5.5 and Fig. 5.6 for the diaphragm and fin masonry walls, respectively. The trends 

indicate that creep is influenced by the type of masonry unit. Clay walls, constructed 

from units with a compressive strength of 103 MPa, exhibit less creep than walls 

constructed from calcium silicate and concrete block units. At 120 days, clay, calcium 
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silicate and concrete block fin walls undergo a specific creep of 83 x 10-6, 160 x 10-6 

and 150 x 10-6 per MPa. respectively. A lower creep was measured in the concrete 

block wall than the calcium silicate wall. although the compressive strength of 

calcium silicate units was greater (27.08 MPa) compared with the concrete block unit 

(14.87 MPa). However. a calcium silicate wall have three time as many bed joints as 

a concrete block wall. which therefore increase creep when comparing brickwork 

with concrete blockwork. Consequently. it can be concluded that for units of the 

same size • masonry units with high compressive strength exhibit a lower creep 

in masonry walls. 

Creep of masonry occurs mainly due to mortar, the units offering 

resistance to creep. The stiffer the brick units the lower the creep of masonry and, 

generally. the stiffer the brick the greater the compressive strength. 

5.2.2 (c) Ultimate creep 

An estimate of the ultimate creep of the masonry walls was obtained 

using regression analysis of the Ross (1937) hyperbolic-time function, which was 

developed for concrete. This analysis has been used previously in determining 

ultimate deformations in masonry (Lenczner 1986a and Brooks et al 1990a). Previous 

researchers (Lenczner 1986a and Brooks et al 1990a) observed that the function 

underestimates short-term deformations but predicts long-term deformations 

reasonably well. The hyperbolic time function is: 

or 

where c = creep (10-6); 

t 
c = (a + 6t) 

t - = a+ bt c 

t = time under load (days); 

(5.1) 
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The analysis was carried out using the smoothed creep-time curves of Fig. 

5.2 to 5.4. Initially, [time/creep] versus time curves were plotted at 20 day intervals. 

The plots give a straight line with a slope of tb' and an intercept of ordinate 'a'. The 

ultimate creep was determined from a reciprocal of slope 'b'. The ultimate specific 

creep and the correlation coefficients, using the rectified hyperbolic equation arc 

shown in Table 5.2. As expected the calcium silicate and concrete block diaphragm 

and fin walls exhibited a higher ultimate specific creep compared with the clay 

brickwork. 

Attempts were also made to predict the ultimate creep specific by a logarithmic 

expression (Neville et al 1983). However, the expression only predicted short-term 

creep quite well (up to 60 days after loading), but the long-term values were 

underestimated. 

The ultimate specific creep of diaphragm clay (V /S=80) and concrete block 

(V /S=82) walls were much lower than values reported by A bdullah (1989) for 

approximately the same V /S ratio (hollow piers). The differences could be due to the 

test conditions, because Abdullah (1989) tested masonry with bricks laid wet and the 

masonry was cured under polythene sheet until loading it at 28 days. 

5.2.2 (d) Creep coefficient 

The creep coefficients of the masonry walls are shown in Table 5.3. 

The creep coefficients were determined from the ratio of ultimate creep to the 

instantaneous strain at loading. Calcium silicate (2.2 - 2.4) and concrete block (2.34 -

2.53) walls exhibited higher values of creep coefficients compared to clay (1.49 -

1.55) walls. 
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For all types of masonry, fin walls have higher values of creep 

coefficients when compared to the diaphragm walls. This is due to the effect of 

geometry on creep as discussed in section 5.2.2.(a), the elastic strain being 

unaffected by geometry. 

5.2.3 Shrinkage of masonry walls 

The shrinkage of the masonry walls are given in Tables B.1, B.2 and 

B.3 of Appendix B. The measurements commenced on the same day as loading of the 

creep and prestress loss walls. All the masonry walls exhibited shrinkage with time, 

even the clay walls, as shown in Fig. 5.7 to 5.11. Compared with the other walls, the 

measured shrinkage on the different faces of the concrete block diaphragm walls had 

the highest variations (10%). 

The effect of geometry and masonry units on shrinkage of the 

masonry walls is presented in the following sections. 

5.2.3 (a) Influenee of geometry 

The average shrinkage-time curves of the masonry walls are shown in 

Fig. 5.7, Fig. 5.8 and Fig. 5.9 for clay, calcium silicate and concrete blocks walls, 

respectively. As expected the magnitude of the shrinkage was influenced by the 

masonry geometry, with fin walls showing a higher shrinkage than diaphragm walls. 

As for creep, the higher shrinkage in the fin walls can be explained by its lower value 

of VIS. 

5.2.3 (b) Influenee of masonry units 

The influenced of masonry units on shrinkage is shown in Fig. 5.10 

and 5.11. As for creep, the masonry walls built from high compressive strength 
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masonry units exhibited less shrinkage. This was due to the greater stiffness of the 

masonry units which restrains the shrinkage of the mortar joint. 

The shrinkage of the clay wall was rapid initially and then slowed 

down after 60 days. The calcium silicate and concrete block walls undergo similar 

trends of shrinkage with time, but the rate of shrinkage of the walls was much higher 

especially at later stages. 

5.2.3 (c) Ultimate shrinkage 

Using the same hyperbolic-time function (Eq. 5.1) as for creep, the 

ultimate shrinkage was estimated for all the masonry types walls and tabulated in 

Table 5.4. There was no clear difference between the ultimate shrinkage of fin and 

diaphragm walls for all types of masonry. This implies that the geometry effect is 

smaller for long-term shrinkage of masonry. The ultimate shrinkage value of the 

calcium silicate diaphragm wall is higher than that of fin. This is due to the higher rate 

of shrinkage at later stages, but it should be emphasised that the ultimate values are 

based on relatively short-term test data. Longer term tests of several years are 

desirable. 

For the same V /S ratio, the ultimate shrinkage of the diaphragm clay 

and concrete walls were higher than that reported by Abdullah (1989). Again, 

differences could be due to the tests conditions, as stated previously in section 

5.2.2.(c). 

5.2.4 Prestress loss of masonry walls 

Generally good agreement was obtained between the strain recorded 

by the loadcell with the back-up strain as measured on the bar. The prestress loss of 

the diaphragm and fin prestressed masonry walls, initially loaded at 46% of its 

working stress, are shown in Figs. 5.12 to 5.14. 
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The measured prestress loss of the clay walls was up to 4% higher 

than that values measured by Curtin (1991) who carried out tests when the brickwork 

was several months old before prestressing; initially his brickwork was used for a 

reaction wall in a flexural strength test. This implies that Curtin's lower prestress loss 

was due to a reduced creep and shrinkage because of the greater age and also due to 

the effect of pre-loading. The present values of prestress loss of the clay walls are 

similar to those reported by Lenczner (1986). 

The effect of geometry and the masonry units on prestress loss are 

discussed in the following section. 

5.2.4 <a> Influence of geometry 

The influence of geometry on prestress loss is illustrated in Figs. 5.12 

to 5.14. For all the types of masonry the diaphragm walls have a lower prestress loss 

than the fin walls, by about 3 %. This was because of the corresponding lower time

dependent deformations of the diaphragm masonry walls. Hence, there is an 

influence of geometry as expressed in terms of the V IS ratio. 

S.l 4 (b) Influence of masonry units 

The effect of masonry units, clay, calcium silicate and concrete blocks 

on prestress loss in the prestressed diaphragm and fin masonry walls are illustrated in 

Fig. 5.15 and Fig. 5.16. The clay, calcium silicate and concrete block walls were 

initially stressed to 3, 1.57 and 2 MPa, respectively, and the clay walls exhibited a 

lower prestress loss compared to the prestressed calcium silicate and concrete block 

walls. 

Again the pattern of prestress loss with unit type follows that of creep 

and shrinkage, viz. the lower the unit strength, the more the creep and shrinkage, and 

prestress loss. 
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5.2.4 (c) Measured strain on prestress loss walls 

Figure 5.17 shows the measured strain-time curve of the prestressed 

clay walls under varying stress, which was due to the decrease of prestressing force 

on the walls as a result of creep, shrinkage and relaxation of the bars. Hence, the 

measured strain values on the prestressed walls were less than the sum of creep and 

shrinkage (Figs. 5.2 and 5.8). Due to the effect of geometry a higher strain was 

measured on the prestressed fin walls than on the prestressed diaphragm walls. 

The corresponding measured strain-time curves for calcium silicate and 

concrete block walls are shown in Figs. 5.18 and 5.19, respectively. Similar trends 

were observed. 

5.3 Mortar prisms 

As stated earlier, the instantaneous and time-dependent deformations 

of partly sealed mortar prisms were determined in this study for the application of 

composite model theory to predict deformations in the masonry walls. The predicted 

deformations are compared to the measured deformations in Sections 6.2 and 6.3, of 

Chapter 6. The following sections present the test results. 

5.3.1 Elasticity 

The secant modulus of elasticity of the 75 x 75 x 200 mm mortar 

prisms was determined from the average strains resulting from applying the load in 

the creep test Table 5.5 gives the results. 

The mean modulus of elasticity varied between 6.94 to 10.04 OPa, 

even though the mix proportions and wlc ratio of the mortar remained constant 

throughout the test programme. The corresponding compressive strength of mortar is 
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shown in Table 4.5 in Chapter 4, and it can be seen that the variation is less than for 

the elastic modulus. Table 5.5 also indicates the standard deviations were quite high 

for the concrete blockwork mortar. When the standard deviation and Students Hest 

are considered, the variation of mean moduli was insignificant. 

5.3.2 Creep 

Figures 5.20 to 5.22 show the influence of geometry on the creep of 

partly sealed mortar prisms. For all the type masonry walls, mortar prisms for the fin 

walls exhibited higher creep than the diaphragm walls, which was the trend observed 

for the brickwork. Thus the simulated VIS ratio in the mortar prisms appeared to be 

satisfactory . 

Figures 5.23 and 5.24 show the specific creep-time curve of the 

mortar prisms for the clay, calcium silicate and concrete block walls. The mortar 

prisms for both calcium silicate creep walls exhibited higher specific creep compared 

with the clay and concrete block walls. This could have been due to the lower 

compressive strength of mortar cubes for the calcium silicate walls (see Table 4.5). 

The actual measured strains are detailed in Appendix C. 

5.3.2 (a) Ultimate ereep 

The ultimate creep of the partly sealed mortar prisms was determined 

using the same equation as for creep of brickwork Le the Ross hyperbolic equation 

(Eq. 5.1). The ultimate creep and correlation coefficients of mortar prisms are as 

shown in Table 5.5. As expected the mortar prisms for the calcium silicate brickwork 

exhibited the highest ultimate specific creep compared with the clay and concrete 

block masonry. This is due to the lower compressive strength of mortar for calcium 

silicate brickwork. 
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5.3.3 Shrinkage 

Figures 5.25 to 5.27 show the influence of geometry on shrinkage of 

mortar prisms was similar to that on creep of mortar, i.e a higher shrinkage for a 

lower V /S ratio. 

Figures 5.28 and 5.29 compare the shrinkage-time curves of the partly 

sealed mortar prisms for each type of wall. For both the diaphragm and fin walls, the 

mortar prisms for the calcium silicate walls exhibited the greatest shrinkage. As for 

the explanation given for creep, this could have been due to the lower compressive 

strength. Appendix C shows the shrinkage measured on the mortar prisms, and the 

greatest variations occured for the calcium silicate walls (20%). 

5.3.3 (a) Ultimate shrinkage 

sealed 
The ultimate shrinkage of the partlYAmortar prisms was determined 

using Ross hyperbolic equation (Eq. 5.1). Table 5.5 shows the ultimate shrinkage, 

constant 'a' and 'b', and correlation coefficients of the mortar prisms. As expected 

from the measured trends, the mortar prisms for the calcium silicate brickwork exhibit 

the highest ultimate shrinkage. 

5.4 Masonry units 

The deformations of the masonry units to be used in the application of 

the composite models theory in Chapter 6 are presented in the following sections. 

5.4.1 Elasticity 

Table 5.6 shows the elasticity of clay, calcium silicate and concrete 

block units when subjected to load between header faces. The bed-face modulus of 

the clay units were almost twice the header face modulus but there was no significant 

difference for the calcium silicate units. The reason for measuring the elasticity of the 

Chapter 5 



121 

header and bed face of masonry units was because elastic and time-dependent 

deformations tests were carried out with units loaded parallel to the bed face, which 

did not represent the actual loaded units in the masonry walls. To overcome this 

situation, the ratio relating elastic moduli between header and bed faces (Ebx./Eby) wa" 

required in order to adjust the header-face deformation to give the bed-face 

deformation as required for the composite model. 

5.4.2 Creep 

Figures 5.30 to 5.32 show the influence of geometry on the creep of 

the partly sealed masonry units was similar to that of shrinkage of the brickwork and 

of the partly sealed mortar prisms. Figures 5.33 and 5.34 compare the specific creep 

of the partly sealed unbonded masonry units for each type of wall. After 60 days of 

loading, all the masonry units exhibited creep at a decreasing rate and the magnitude 

of creep was insignificant in the clay units compared with the creep of the mortar 

prisms (Fig. 5.20 to 5.22). For the calcium silicate and concrete block units, the 

magnitude of creep was approximately 20% of the mortar creep. 

The calcium silicate unit exhibited the greatest creep, and had the 

lowest strength. and therefore the general relationship between creep and strength 

seems to apply to units as well as mortar and concrete. The measured strains from 

which creep was calculated are given in Appendix C. 

5.4.2 (a) Ultimate creep 

Table 5.7 gives the ultimate creep, and correlation coefficients 

obtained by regression of the Ross hyperbolic equation (Eq. 5.1). The average 

ultimate creep of the clay units was about 3% of the average ultimate creep of the 

mortar prisms used for the clay walls, which suggests that clay units would hardly 

contribute to creep in the clay walls. 
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The average ultimate creep of the calcium silicate and concrete block 

units were about 20 % of the average ultimate creep of the mortar prisms used for the 

calcium silicate walls, i.e the same as the measured creep. 

5.4.3 Shrinkage/moisture expansion 

Figures 5.35 to 5.37 show that the influence of geometry on the 

shrinkage/moisture movement of masonry units was similar to that on shrinkage of 

the brickwork and mortar prisms. 
that 

For a given type of wall, Figs. 5.38 and 5.39 show~the clay units 

undergo a very small expansion instead of shrinkage. Calcium silicate and concrete 

block units undergo shrinkage with time but at a decreasing rate. However the 

magnitude of shrinkage of the units is negligible when compared to the corresponding 

shrinkage of mortar. The measured shrinkage are given in Appendix C, which shows 

that calcium silicate units had the highest variation (31 %). 

5.4.4 Ultimate shrinkage 

Table 5.7 gives the results of the analysis by the rectified Ross 

hyperbolic shrinkage-time expression in order to estimate the ultimate shrinkage and 

moisture expansion (clay). Generally the trends of ultimate values with V /S ratio were 

the same as for the measured values. 

5.5 Relaxation loss 

Figure 5.40 shows the stress relaxation of the 25 mm and 26.5 mm 

bars over a period of 120 days under a constant strain. The maximum stress loss due 

to relaxation in the 26.5 mm and 25 mm bars was 4.5 and 3.5%, respectively. These 

values do not represent the actual prestress loss due to relaxation of the prestressing 

bars in the prestressed masonry because the prestress loss occurred under reducing 
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strain due to the time-dependent deformations of the masonry. The values can be 

corrected to represent the actual loss under varying stress by multiplying the loss by a 

factor suggested by Magura ( 1964). 

Based on the relaxation tests (Fig. 5.40), the denominator in Eq. (3.14) was 

obtained by substituting the known variables. The average value of the denominator 

was calculated as 13.6, and thus the stress of the 25 mm and 26.5 mm bars expressed 

as Eq. (3.14) is as follows: 

(f! -0.55) 
fs (t) = -fsi log1O 24t sy 13.6 

where fs = the remaining stress at any time t after prestressing; 

fsi = the initial stress; 

fsy = stress at 1 % elongation; 

and t = time after initial prestressing. 

S.6 Individual Prestress Loss 

(5.2) 

Using the estimated ultimate creep (Section 5.2.2 (c» and shrinkage (Section 

5.2.3 (c», the corresponding individual prestress loss was computed and shown in 

Table 5.8. The prestress loss due to relaxation in Table 5.8 was based on measured 

relaxation loss in Section 5.5. For calcium silicate and concrete block walls, 

shrinkage contributed the highest prestress loss compared to creep and relaxation. 

However, in clay brickwork creep contributed slightly more (by 1.5%) loss than 

shrinkage. 

Eventhough calcium silicate walls (Figs. 5.13 to 5.14) exhibitcd highcr 

prestress loss than concrete block walls during the first 120 days, there was no clear 

Chapter 5 



124 

difference in the total estimated ultimate prestress loss between the calcium silicate (22 

- 23.5%) and concrete block (22.8 - 24.10/0)walls. 

5 . 7 Temperature and humidity 

The variation of atmospheric temperature and humidity in the laboratory, 

during which strain measurements are taken, are shown in Figs. 4.17 and 4.18, 

respectively. The temperature and relative humidity varied between 17-26°C and 20-

70%, respectively, during Test 1 (clay brickwork). The temperature decreased to 

about 100C during Test 2 (calcium silicate brickwork) and later increased to a 

maximum of 24°C in Test 3 (concrete blockwork). The humidity varied between 25-

62% and 25-55% in Test 2 and Test 3, respectively. 

The variations in atmospheric temperature and humidity during Test 2 might 

have caused the difference in trend of creep and shrinkage of calcium silicate 

brickwork. 
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Table S.l Modulus of Elasticity of Clay, Calcium Silicate 

Brickwork and Concrete Blockwork CGPa) 

Masonry Type Secant Modulus of Elasticity (OP-d) 

Diaphragm* Fin* Paf cc ( 1978) 

Clay Brickwork 19.66 18.82 18.11 
( 1.1) ( 1.5) 

Calcium Silicate 12.11 12.8 10.71 
Brickwork (2.18) ( 1.54) 

Concrete Blockwork 13.97 13.16 16.23 
(5.3) ( 1.05) 

* - Measured values 
( ) - standard deviation 

Table 5.2 Ultimate Specific Creep of Clay, Calcium Silicate 

Brickwork and Concrete Blockwork 

Ultimate Specific Crcep* 
(Microstrain/MPa) 

Masonry Type Geometry 
Diaphragm Fin 

Clay Brickwork 76 91 
a=O.064 a = 0.045 

b = 0.0044 b = 0.0037 
R = 0.98 R = 0.98 

Calcium Silicate 182 188 
Brickwork a = 0.114 a = 0.079 

b = 0.0035 b = 0.0034 
R = 0.96 R = 0.93 

Concrete Blockwork 167 192 
a= 0.095 a = 0.099 
b = 0.003 b = 0.0026 
R = 0.99 R = 0.98 

* Ultimate S ciflc Cree - lI(Stress x b: pe p ) 
R = Correlation coefficient 
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Table S.3 Creep Coefficient of Clay, Calcium Silicate 

Brickwork and Concrete Blockwork 

Creep Coefficient 

Masonry Type Geometry 

Diaphragm Fin 

Clay Brickwork 1.49 1.55 

Calcium Silicate 2.20 2.40 
Brickwork 

Concrete Blockwork 2.34 2.53 

Table S.4 Ultimate Shrinkage of Clay, Calcium Silicate 

Brickwork and Concrete Blockwork 

Ultimate Shrinkage 
(Microstrain) 

Masonry Type Geometry 

Diaphragm Fin 

Clay Brickwork 179 204 
a = 0.19 a = 0.084 

b = 0.0056 b = 0.0049 
R = 0.99 R = 0.98 

Calcium Silicate 418 400 
Brickwork a = 0.146 a = 0.098 

b = 0.0024 b = 0.0025 
R = 0.92 R = 0.90 

Concrete Blockwork 500 513 
a= 0.254 a = 0.207 
b= 0.002 b = 0.0195 
R = 0.96 Rb = 0.97 

R = Correlation coefficient 
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Table S.S Deformation of Mortar Prisms as Sampled during Construction of the Masonry Walls 

~oory Geometry 
Types 

Diaphragm 
Oay 

Fin 

Diaphragm 
Calcium 
Silicate 

Fin 

Concrete Diaphragm 
Block 

Fin 

n ( ) -Standard deviation l R - Correlation Coefficient 
~ .., 
VI 

Strength 
MPa 

10.13 
(0.72) 

11.52 
(1.28) 

10.42 
(0.84) 

9.66 
(0.94) 

12.27 
(136) 

13.04 
(1.72) 

Average Specific 
Elasticity Creep 

GPa at 120 days 
(10~) 

7.5 534 
(0.70) (67) 

737 641 
(0.9) (98) 

7.78 675 
(1.95) (2Cf7) 

6.94 701 
(2.06) (255) 

10.04 662 
(3.2) (57) 

9.56 653 
(4.7) (166) 

Creep 
Specific CreqJ Correlation Shrinkage at Ultimate 

Ultimate Coefficient Coefficient 120 days Shrinkage 
Creep and values of 'a (10~ (1O~ 

(10~/MPa) 'and 'b' 

654 4.91 a= 0.041 1400 2381 
b =0.00149 (156) 

R=O.97 

740 5.45 a= 0.024 1650 2433 
b = 0.00135 (142) 

R = 0.99 

781 6.08 a=O.0302 1630 2173 
b=O.ool28 (225) 

R=O.98 

813 632 a= 0.0177 1893 2381 
b = 0.00123 (71) 

R = 0.99 

736 7.4 a= 0.051 1500 2179 
b = 0.00136 (150) 

R=O.99 

787 7.52 a= 0.0337 1640 2173 
b=0.00127 (94) 

R =0.96 

Shrinkage 
Correlation 
Coefficient 

and values of 'a 
'and 'b' 

a= 0.0355 
b=0.00042 

R =0.95 

a= 0.03067 
b= 0.00041 

R =0.98 

a=0.025 
b =0.00046 

R=0.9 

...... 
!j 

a= 0.0153 
b = 0.00042 

R-0.9 

a= 0.0253 
b = 0.00046 

R =0.93 

a= 0.03066 
b = 0.00046 

R = 0.94 
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Table 5.6 Modulus of Elasticity of Masonry Unit Between 

Header and Bed Faces 

Masonry Type Secant Modulus of Elasticity (OPa) 

Header Face Bed Face 

Clay Unit 17.49 29.0 
( 1.3) (0.75) 

Calcium Silicate Unit 13.38 15.17 
(3.56) ( 1.49) 

- 9.96 Concrete Block (.92) 

( ) - standard deviation 

Chapter 5 



(') 
::r 

~ .., 
VI 

Table 5.7 Deformations of Masonry Units 

Specific 
Masonry Geometry Strength Plasticity Creep 
Types MPa GPa at 120 

(Header) days 
(lo-6/MPa) 

Diaphragm 
Sample 1 17.77 17 
Sample 2 16.50 21 

Qay 
103 

Fin (9.7) 
Sample 1 19.20 20 
Sample 2 16.50 24 

Ave. = 17.49 
(1.3) 

Diaphragm 
Sample 1 13.23 150 
Sample 2 18.18 80 

Calcium 26.08 
Silicate (1.41) 

Fin 
Sample 1 12.61 121 
Sample 2 9.50 134 

Ave. = 13.38 
(3.56) 

Specific 
Ultimate 

Creep 
(l0-6/MPa) 

20 

23 

152 

152 

Creep 
Creep Correlation Shrinkage Ultimate Correlation 

Coefficient Coefficient at 120 Shrinkage of 
and values of days (lQ-6) Coefficient 

'a 'and 'b' (10-6) 

0.34 a= 0.42 -18 -38 a= 0.36 
b = 0.051 -22 b = 0.027 
R= 0.99 R = 0.85 

0.39 a = 0.023 -22.50 -35 a= 1.6 
b = 0.045 -27.50 b = 0.029 
R=O.99 R = 0.80 -IV 

\0 

2.3 
a= 0.223 270 284 a = 0.19 

b = 0.0066 150 b = 0.0031 
R=0.9 R = 0.95 

2.3 a = 0.144 230 324 a = 0.19 
b = 0.0066 230 b = 0.0031 
R = 0.99 R = 0.90 



Table 5.7 Continue 

Masonry Geometry Strength Elasticity SpecificC 
Types MPa GPa reep 

at 120 
days 

_00-6/MPa) 

Diaphragm 
Sample 1 10.70 70 
Sample 2 9.80 128 

Concrete 14.87 
Block (1.14) 

Fin 
Sample 1 10.61 97 
Sample 2 8.72 137 

Ave. = 9.96 
(0.92) 

( ) - Standard deviation 
R - Correlation Coefficient 

() 

I 
~ .., 
Vl 

Specific Creep Correlation 
Ultimate Coefficient Coefficient 

Creep and values of 
(l0-6/MPa) 'a 'and 'h' 

125 1.25 a= 0.282 
b= 0.0084 
R=O.97 

132 1.31 a = 0.14 
b = 0.0076 
R=O.99 

Shrinkage Ultimate 
at 120 Shrinkage 
days (10-6) 

(10-6) 

175 303 245 

226 454 246 

--

Correlation 
of 

Coefficient 

a =0.214 
b = 0.0033 

R=0.9 

a= 0.24 
b = 0.0022 
R = 0.91 

- --- ~~-

..... 
w 
o 
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Table S.8 Ultimate Individual Prestress Loss of the Masonry Walls 

Creep (%) Shrinkage (%) 
Relaxation Total 

Type of Loss 

Masonry (%) 

Diaphragm Fin Diaphragm Fin 
(%) 

Diaphragm Fin 

Clay 
Brickwork 6.0 6.8 5.0 5.2 3.5-4.5 14.5 16.5 

Calcium 
Silicate 7.2 8.0 10.5 11.5 3.5-4.5 21.2 24 

Brickwork 

Concrete 
Blockwork 7.5 8.7 11.3 11.6 3.5-4.5 22.3 24.8 
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CHAPTER 6 

PREDICTION OF SHRINKAGE, CREEP AND PRESTRESS LOSS 

USING COMPOSITE MODEL 

6. 1 Introduction 

Presently, only the ultimate prestress loss is considered in the design 
a 

of prestressed members. However, knowledge on prestress loss a~different time 

interval is sometimes required. This chapter presents the methods that predict 

prestress loss at various times as ~ell as the ultimate value. The prestress loss 

depends on the deformations of the masonry and relaxation of the prestressing bars. 

Methods are proposed which incorporate composite models for predicting 

deformations of prestressed masonry. Before presenting the proposed method, 

comparisons are made between the various methods of predicting deformations 

(reviewed in Chapter 3) of the masonry and the measured values. This is to provide a 

general indication of the validity and accuracy of the proposed method. 

6.2 Elastic deformation 

6.2.1 Prediction of elastic modulus by Codes of Practice 

6.2.1 (a) BS 5628: Part 2 (1985) 

In determining elastic modulus of brickwork by BS 5628: Part 2 

(1985), Eq. (3.3) is used. Knowing the compressive strength of the units, the 
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characteristic compressive strength of masonry is obtained from Table 3.1. To obtain 

the elastic modulus, the characteristic compressive strength of the masonry is 

substituted into Eq. (3.3). 

As stated in Chapter 3, BS 5628:Part 2 (1985) a'isumes no effect of 

geometry on deformation of masonry and the findings discussed in section 5.2.1.(a) 

support that assumption. Thus the Standard predicts a single value of elasticity for 

both diaphragm and fin walls investigated in this research. Table 6. 1 shows the 

comparison between elastic modul us of the masonry by BS 5628: Part 2 (1985) and 

the measured values. The Standard underestimates the elastic modulus of diaphragm 

walls by 17%,41 % and 32% in clay, calcium silicate and concrete block masonry, 

respectively. For fin walls, the Standard underestimates elasticity by 9%,44% and 

28% in clay, calcium silicate and concrete block masonry, respectively. 

6.2.1 (b) ACI 530-88/ASCE 5-88 (1990) 

Knowing the oompressive strength of the masonry unit and the mortar 

type, the elastic modulus of the clay and concrete block walls can be directly 

determined from Tables 3.2 and 3.3, respectively. No provision is given for calcium 

silicate brickwork. 

Table 6.1 compares the elastic modulus of the masonry given by ACI 

530 (1990) and the measured values. ACI 530 (1990) also predicts a single value of 

elastic modulus for both the diaphragm and fin walls investigated in this research. 

The Code overestimates the elastic modulus of diaphragm walls by 5% and 9% in the 

clay and concrete block walls, respectively. For the fin walls, the Code overestimates 

elasticity by 10% and 15% in the clay and concrete block walls, respectively. 

Therefore the Code seems to predict elasticity of masonry reasonably well for clay 

and concrete block masonry. 
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6.2.1 (c) Eurocode No 6 (1988) 

Eurocode No 6 (1988) adopts a similar method as in BS 5628: Part 2 

(1985) except that the characteristic compressive strength of masonry should be 

determined either experimentally or theoretically from an expression in terms of 

strength of unit and mortar (Eq. (3.4». 

Eurocode No 6 (1988) also predicts a single value of elastic modulus 

for both the diaphragm and fin walls investigated in this research. Table 6.1 compares 

the elastic modulus of the masonry by Eurocode No 6 with the measured values. The 

Code underestimates elastic modulus of the diaphragm walls by 7 %,37% and 24% 

in the clay, calcium silicate and concrete block masonry, respectively. For the fin 

walls, the Standard underestimates elasticity by 3%,41% and 19% in clay, calcium 

silicate and concrete block masonry, respectively. As in BS 5628: Part 2 (1985), 

Eurocode No 6 predicts elasticity reasonably well only in clay brickwork. The large 

differences between the elastic modulus measured in this test and the predicted values 

by the Standards in calcium silicate and concrete block walls cannot be explained, 

although this could be due to the methods being based on clay brickwork data alone. 

6.2.2 Prediction of elastic modulus by previous researchers 

Only the Lenczner (1986) and Brooks (1990) methods are considered 

in predicting elastic deformation of masonry. The model developed by Ameny (1983) 

is disregarded because it is restricted to certain types of full-bedded solid and face

shell bedded hollow concrete masonry. This means that the Ameny model is not 

really applicable to other types masonry with different types of bonds. 
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6.2.2 (a) Lenczner method (1986) 

Equations (3.5) to (3.7) arc used in predicting elastic modulus 

developed by Lenczner (1986). The elastic modulus of the masonry is determined 

directly from compressive strength of masonry units. 

Again this method predicts a single value of ela~tic modulus for both 

the diaphragm and fin walls investigated in this research. Table 6.2 shows the method 

overestimates elastic modulus of the clay diaphragm and fin walls by 17% and 22fJ(), 

respectively. However, this method underestimates elasticity of the calcium silicate 

diaphragm and fin walls by 52% and 55%, respectively. This method also 

underestimates elasticity of the concrete block diaphragm and fin walls by 68% and 

66%, respectively. The large differences between the predicted elasticity of the 

calcium silicate and concrete block walls and the measured values are probably due to 

the empirical equations being based simply on clay brickwork test data. 

6.2.2 (b) Brooks method (1990a) 

For this method, elastic modulus of the masonry walls is obtained by 

direct substitution of the appropriate values of elastic modulus of the partly sealed 

unbonded brick units and the partly sealed mortar prisms into Eq. (3.8). In the 

prediction of elasticity of the clay walls, adjustment was made due 10 the difference in 

the elasticity between bed and header faces (anisotropy) of the clay units. The effect 

of anisotropy is presented in Section 5.4.1. No adjustments were made for the 

prediction of elasticity of the calcium silicate and concrete block walls, because Table 

5.6 shows the calcium silicate units are isotropic. For the concrete block walls, no 

adjustments were made to the block units because the units were tested between bed 

face in the creep test 
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Table 6.2 shows the predicted and measured elasticity of the masonry 

walls. Generally the predicted and measured elastic moduli of the clay and calcium 

silicate walls are in good agreement, i.e within 10 % of the measured values. 

However the model underestimates modulus of elasticity of the concrete block 

diaphragm and fin walls by 29 and 25 %, respectively. 

A detailed discussion on the application of composite model was 

presented by Brooks (l990a). Appendix D shows a sample calculation of predicting 

elastic modulus of the clay diaphragm wall. 

6.3 Creep 

6.3.1 Creep of masonry by Codes of Practice 

6.3.1 (a) BS 5628:Part 2 (1985) 

BS 5628:Part 2 (1985) only predicts ultimate specific creep by 

multiplying the appropriate factor given in Section 3.4.1.(a) to the elastic strain 

(determined from Section 6.2.1 (a» of the masonry walls. Table 6.3 compares the 

predicted and the estimated ultimate creep from extrapolation of experimental results 

of the masonry walls investigated in this research. 

Based on a single value prediction, the Standard overestimates creep 

of the diaphragm walls by 21 %, 20% and 89% in the clay, calcium silicate and 

concrete block walls, respectively. For fin walls, the Standard overestimates creep by 

1 %, 17% and 64% in the clay, calcium silicate and concrete block walls, respectively. 

However, if the measured elastic strain values were used, the Standard only 

overestimates creep of diaphragm and fin concrete block walls by 28% and 20%, 

respectively. It can be concluded that the Standard predicts creep quite well for the 

clay and calcium silicate walls but not for the concrete block walls. 
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6.3.1 (b) ACI 530·88/ASCE 5·88 (1990) 

As with BS 5628 (1985), ACI 530 (1990) also predicts ultimate 

specific creep by multiplying the appropriate suggested coefficients of creep, in 

Section 3.4.1.(b), by the applied stress of the masonry walls. Table 6.3 compares the 

estimated ultimate creep of the masonry walls investigated in this test programme and 

the predicted creep by the Code. 

The Code overestimates the ultimate creep of the diaphragm concrete 

block walls by twice as much as the estimated ultimate value extrapolated from test 

data, although only overestimates by 33% in the corresponding clay wall. For fin 

walls, the Code overestimates creep by 11 % and 88% in the clay and concrete block 

walls, respectively. No provision is given for creep of calcium silicate brickwork. 

6.3.1 (c) Eurocode No 6 (1988) 

As with the previous two methods, Eurocode 6 (1988) also predicts 

ultimate specific creep and Table 6.3 shows the Code overestimates the ultimate creep 

of clay diaphragm wall by 8% and underestimates by 10% in the fin. The Code 

estimates creep reasonably well in the diaphragm and fin calcium silicate walls, i.e 

8% and 5%, respectively. As in for the concrete block wall, the Code overestimates 

creep by 70% and 47% in the diaphragm and fin walls, respectively. The Code 

predictions follow the same pattern as the BS 5628: Part 2 (1985), reao;;onably well in 

the clay and calcium silicate walls but quite poor in the concrete block, because both 

standards suggest the same value of creep coefficients. 
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6.3.2. Prediction of creep by previous researchers 

6.3.2 (a) Lenczner method (1986) 

This method predicts creep in term of the creep ratio. which is 

determined using appropriate equations as given in Section 3.4.2.(a). The creep is 

then predicted by mUltiplying the creep ratio by the elastic strain (Section 6.2.2 (a». 

The predicted creep is compared to the estimated ultimate creep values as in Table 

6.4. 

This method underestimates creep of the clay diaphragm wall by 18% 

and overestimates creep in fin wall by 1 %. However, this method does not predict 

creep of calcium silicate and concrete block walls very well because the elastic 

modulus expressions (Section 3.3.2 (a» had been based on clay brickwork. If the 

measured elastic strains were used, the method only underestimates creep by up to 

16% in both the calcium silicate and concrete block walls. 

6.3.2 (b) Brooks method (1987b) 

In this method, creep is obtained in terms of specific creep. The 

specific creep is obtained by substituting the elastic and effective modulus of the 

brickwork to Eq. (3.12). The moduli of the masonry walls were determined using 

similar method as in Section 6.2.2.(b). Table 6.4 compares the predicted and 

estimated ultimate creep. The table shows that the predictions overestimate ultimate 

creep in the clay and calcium silicate walls by up to 39% and underestimate by 9% in 

the concrete block. For the same reason as in the prediction of elasticity of the clay 

walls, adjustments were made on to allow for anisotropy in predicting creep in clay 

walls. 
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Figure 6.1 compares the predicted creep of the clay walls to the 

measured values over a period of 120 days. This model predicts creep reasonably 

well in the diaphragm and fin clay walls (20%). However, the model overestimates 

creep by 25% and 23% in the diaphragm and fin calcium silicate walls, respectively 

(see Fig. 6.2). For the diaphragm and fin concrete block walls, the model 

overestimates creep by 4% and 9%, respectively (see Fig. 6.3). 

6.4 Shrinkage 

6.4.1 Prediction of shrinkage by Codes of Practice 

6.4.1 (a) BS 5628:Part 2 (1985) 

Table 6.5 gives the suggested maximum shrinkage strain of 500 

microstrain for both the calcium silicate and concrete block walls. However, the 

Standard assumes no net moisture movement strain occurs in clay brickwork; 

although a shrinkage was measured between 147 x 10-6 to 184 x 10-6. 

The Standard overestimates shrinkage in calcium silicate and concrete 

block walls, viz. 20% and 25% for the diaphragm and fin calcium silicate walls, 

respectively, and by 3% for both the diaphragm and fin concrete block walls. 

6.4.1 (b) ACI 530·88/ASCE 5·88 (1990) 

The Code suggests a coefficient of irreversible moisture expansion of 

clay brickwork to be taken as 300 x 10-6. As for concrete masonry, the coefficient of 

shrinkage is taken as O.15-0.:lmultiplied by the total linear drying shrinkage of the 

concrete masonry unit. As in BS 5628 (1985) the method fails 10 consider the type of 

mortar used. 
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Table 6.5 compares predicted moisture movement strain with the 

estimated ultimate creep values of the masonry walls investigated in this research. The 

Code estimates an expansion of 300 x 10-6 where as the average measured shrinkage 

of the diaphragm and fin clay brickwork is 147 x 10-6 and 184 x 10-6, respectively. 

The Code underestimates shrinkage of the diaphragm and fin concrete block walls by 

up to 24%. No provision is given for shrinkage in calcium silicate brickwork. 

6.4.1 (c) Eurocode No 6 (1988) 

Clause 3.2.6.4 of Eurocode No 6 (1988) stipulates a moisture 

movement strain of -100 to 200 x 10-6 for clay masonry. A shrinkage of 200 x 10-6 is 

suggested for calcium silicate and concrete masonry. As for the other codes no 

allowance is made for the type of mortar. 

Table 6.5 compares predicted moisture movement strain by Eurocodc 

with the estimated ultimate creep values of the masonry walls investigated in this 

research. Compared with the range of moisture strain of -100 to 200 x 10-6 the 

estimated ultimate shrinkage of the diaphragm and fin clay walls fall within that 

range. When compared to the estimated ultimate shrinkage of the diaphragm and fin 

calcium silicate walls, the Code underestimates shrinkage of by 52% and 50%, 

respectively. The Code also underestimates shrinkage of both the diaphragm and fin 

concrete block walls by 60% . 

6.4.2 Prediction of shrinkage by previous researchers 

Only one method (Brooks 1987b) is available in predicting shrinkage 

of brickwork. In this method, appropriate expansion/shrinkage of the partly scaled 

unbonded masonry units and the partly sealed mortar prisms from tests results 

(Section 5.3.3 and 5.4.3) are substituted into Eq. (3.13). A detailed discussion on the 
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application of the composite model has been previously discussed by Brcx)ks (1987b 

and 1990b). Table 6.5 compares the measured shrinkage of brickwork to the 

predicted values at 120 days. Appendix D shows a sample calculation predicting 

shrinkage in the clay walls. 

Figure 6.4 compares the predicted shrinkage of the clay walls with the 

measured values over a period of 120 days. The predicted shrinkage of the diaphragm 

wall is in good agreement (3%) when compared to the fin wall (13%). However, the 

mooel does not predict shrinkage in the diaphragm and fin calcium silicate walls very 

well (see Fig. 6.5), there being overestimates of the diaphragm and fin calcium 

silicate walls by 40 % and 50 %, respectively. This is probably due to the water being 

absorbed by the units during laying the brickwork. As a result the partly sealed 

mortar prisms have higher water content than the mortar bed joint in the walls, and 

thus a higher shrinkage in the partly sealed mortar prisms is likely. Thus when the 

shrinkage of the partly sealed mortar prisms is applied to the model, an over 

estimation will occur. This logic is dealt with further in Chapter 7. Evidence of 

absorption by the unit after laying is shown in Plate 6.1. 

Figure 6.6 compares the predicted shrinkage to the measured values for the 

diaphragm and fin concrete block walls. The predicted values are within 19 % and 15 

% for the diaphragm and fin walls, respectively, and it is probable that unit water 

absorption also affected the prediction mooel. 

6.5 Prestress loss 

6.5.1 Prediction of prestress loss by Codes of Practice 

Table 6.6 compares the estimated ultimate and the predicted prestress 

loss in the prestressed masonry walls by Codes of Practice. The relaxation loss of the 

bars are in accordance to BS 4486 (1980) as described in section 3.6. 
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6.5.1 (a) BS 5628: Part 2 (1985) 

The Standard approach is based on a single value of creep coefficient 

and ultimate shrinkage depending on the type of masonry, i.e clay, calcium silicate 

and concrete block masonry. The strength of unit and mortar are not considered. The 

method predicts prestress loss due to creep, shrinkage and relaxation, separately. 

Using the predicted ultimate creep and shrinkage of the masonry 

walls, Table 6.3 and 6.5, the prestress loss in the masonry walls are as follows: 

where 

Stress Loss = fer. Es + fsh . Es + Rst 

Es = elastic modulus of bar; 

fer = creep strain of masonry; 

= c.f x elastic strain of masonry; 

c.f = 1.5 for clay and calcium silicate brickwork, and 

3.0 for concrete blockwork; 

fsh = shrinkage strain (negligible for clay brickwork and 

( 6.1) 

500 x 10-6 for calcium silicate and concrete block 

masonry); 

and RsF relaxation of steel at 1000 hours in accordance with 

BS 4486 (1980). 

Using Eq. (6.1). the predicted prestress loss in the clay, calcium 

silicate and concrete masonry walls are tabulated in Table 6.6. The Standard 

overestimates prestress loss in the diaphragm and fin calcium silicate walls by 20% 

and 12%, respectively. For the diaphragm and fin concrete block walls, the Standard 

overestimates prestress loss by 33% and 27%, respectively. As for the clay 
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brickwork walls, the Standard underestimates prestress loss by 31 % and 38% in the 

diaphragm and fin walls, respectively. 

The Standard estimates prestress loss better (within 20%) if measured 

elastic strain for predicting creep, shrinkage and relaxation strain were used instead of 

the estimated values as shown in Table 6.7. 

6.5.1 (b) ACI 530-88/ASCE 5-88 (1990) 

No provision is given for predicting prestress loss of prestressed 

masonry. However the predicted deformations in Section 6.2 can be used to predict 

the prestress loss of prestressed masonry investigated in this research. 

The prestress loss in the masonry walls due to creep and shrinkage is 

predicted by assuming the stress loss in the bar as follows; 

Stress Loss = (Coc. fave) . Es + Esh . Es + Rst 

where Es = elastic modulus of bar; 

Emw = elastic modulus of masonry; 

fave = average prestress on masonry at transfer; 

Coc = creep coefficient of masonry (Section 6.3.1 (b»; 

Rst = relaxation of prestressing bar; 

( 6.2) 

and Esh = shrinkage/moisture expansion strain (Section 6.4.1 (b». 

Using Eq. (6.2), prestress loss predicted by ACI 530 (1990) is shown 

in Table 6.6. The Code estimates a stress gain instead of a loss in the clay wall. Since 

no provision is given for the deformations of calcium silicate brickwork, no 

prediction of prestress loss was possible. As in the case of concrete blockwork walls, 

this method overestimates prestress loss in both the diaphragm and fin walls by 

25%. 
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6.5.1 (c) Eurocode No 6 (1988) 

No provision is given for predicting prestress loss in prestressed 

masonry. However, as in Section 6.5.1 (b), the predicted deformations in Section 

6.2 was used to predict the prestress loss in the prestressed walls investigated in this 

research. Stress loss in the bar; 

Stress Losses = Ecr . Es + Esh . Es + Rst 

where Es = elastic modulus of bar; 

Ecr = creep strain (as in Section 6.5.1 (a»;. 

Rst = relaxation of prestressing bar; 

(6.3) 

and Esh = shrinkage/moisture expansion strain (-100 to 200 x 10-6 for clay 

brickwork and 200 x 10-6 for calcium silicate and concrete block 

masonry). 

Using Eq. (6.3), the prestress loss predicted by Eurocode No 6 is 

shown in Table 6.6. This method predicts the prestress loss reasonably well in 

concrete block walls, i.e within 20%, but underestimates prestress loss in clay and 

calcium silicate brickwork by up to 33%. 

6.5.2 Prediction of prestress loss by Previous Researchers 

6.5.2 (8) Lenczner method (1986) 

Lenczner (1986) presented a method that predicts time-dependent 

prestress loss due to creep and shrinkage only; excluding relaxation loss in the 

prestressing bar. The method is based on the predicted creep coefficient and the 

measured shrinkage of the walls. 
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Figure 6.7 and 6.8 show the predicted prestress loss for the day 

masonry walls using Eq. (3.1). The method predicts prestress loss very well in clay 

brickwork. For diaphragm and fin calcium silicate masonry, the method 

underestimates the prestress loss by 25% and 40% respectively. However the meth(x.J 

predicts prestress loss up to 33% and 41 % in the diaphragm and fin concrete block 

walls respectively. Table 6.8 compares measured prestress loss to the estimated 

values when measured creep, shrinkage and relaxation strains were used, and as 

expected better estimations were obtained in all the ma.~onry types. 

6.5.2 (b) Tatsa method (1973) 

This method predicts prestress loss due to creep and shrinkage by 

taking into account of the deformations of the masonry unit and mortar. However the 

method had only been verified on post-tensioned concrete blockwork. Using Eq. 

(3.2), based on measured deformation values, the method overestimates prestress 

loss by 13 % and 5% for the diaphragm and fin concrete block walls (Figs. 6.11 and 

6.12), respectively. Comparisons could not be carried out on clay and calcium silicate 

brickwork due to lack of data. 

6.6 Methods of predicting prestress loss in prestressed concrete 

Two methods, developed for prestressed concrete, are considered for 

predicting prestress loss. These methods are based on Dilger (1983) and AbcJes 

(1966). The method developed by Dilger takes into account the effect of varying 
an 

stress by incorporatin~aging coefficient but the Abeles (1966) method ignores the 

effect of varying stress. When applied to prestressed concrete, both methods require 

estimates of creep and shrinkage which can be obtained from Standard methods of 

prediction. Since there are no equivalent methods for masonry, creep and shrinkage 

are obtained from the composite models. 
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6.6.1 Dilger method (1983) 

This method is given by Eq. (3.16), the creep coefficient and 

shrinkage strain being those determined using the composite modelling. The creep 

coefficient is expressed in terms of creep at time t divide by elastic strain at loading, 

I.e. 

Creep coefficient (cp) = Ec (t) I Ej (to) 

where Ec (t) = creep at time t 

° and Ej (to) = elastic strain at loading = ( E w ) 
wy 

From composite modelling the specific creep at time t ; 

1 1 
Cs = E'""-E 

wy wy 

thus creep at time t, C = 0w (Ff--- El ) 
wy wy 

where 0w = applied stress 

Therefore the creep coefficient can be expressed as 

where 

and 

~ = elastic modulus of masonry (Eq. (3.8»; 

E'wy = effective elastic modulus of masonry. 

(6.4) 
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The effective elastic modulus of masonry (E'wy) can be detcnnincd as below; 

1 ~ [ Aw ] m (C + 1) 1 
~= H E' A + E' A + Y H E' wy by b m m m 

where E'wy= effective elastic modulus of masonry~ 

E'by= effective elastic modulus of elasticity of unit; 

E'm= effective elastic modulus of elasticity of mortar ; 

H = height of masonry; 

C = number of courses; 

C + 1 = number of mortar courses; 

by = depth of unit, 

my = height of mortar joint; 

Aw = cross sectional area of masonry ; 

Ab = cross-sectional area of bricks; 

and Am = cross-sectional area of vertical mortar joints = Aw - Ab. 

Based on Eq. (3.16), the stress loss can be expressed as 

Ewy 
Ilo fo (E' (t to) - 1) + Esh(t,to) Es + f'r(t) 

WY , Ms (t) 

(6.5) 

(6.6) 

Appendix D shows a sample calculation using this method. Figures 6.7 to 

6.12 compare the predicted prestress loss to the measured values for all the masonry 

walls. 
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Attempts were also made to estimate prestress loss by substituting measured 

creep, shrinkage and relaxation strains in Eq. (6.6). Table 6.8 gives the estimated 

prestress loss using the measured strains. 

6.6.2 Abeles method (1966) 

The expression for this method can be found in Section 3.7.2, and 

involves substituting the predicted creep and shrinkage into Eq. (3.17) at the required 

time. The predicted creep and shrinkage are determined from the composite model 

expressions presented in Sections 6.3.2.{b) and 6.4.2.(a). Appendix C shows a 

sample calculation using this method. Comparison between the predicted prestress 

loss to the measured values are given in Fig. 6.7 to 6.12. As in Dilger method 

(1983), prestress loss was obtained using the measured strains and the estimated loss 

are shown in Table 6.8. 

6.7 Comparison of the proposed method of predicting prestress 

loss of brickwork with the experimental results and previous 

researchers 

Figure 6.7 compares the predicted prestress loss with the measured values of 

the prestressed clay diaphragm walls. Dilger method (1983), which includes an aging 

coefficient, predicts prestress loss more accurately (+ 30%) than Abeles (1966). 

Abeles (1966) oversestimated prestress loss up to 46% in the diaphragm walls. The 

Lenczner method (1986) predicts prestress loss in the prestressed clay diaphragm 

walls very well <± 5%). 

Figure 6.8 compares the predicted prestress loss with the measured values for 

the clay fin walls. Dilger et al. (1983) and Abeles (1966) methods overpredict 

prestress loss by 25% and 36%, respectively. The Lenczner method (1986) 
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overpredicts prestress loss in the clay fin wall for the first 80 days but then predict it 

reasonabl y well. 

Figure 6.9 compares the predicted prestress loss with the mea~urcd values for 

the prestressed calcium silicate diaphragm walls. The Dilger et al. (1983) and A bcles 

(1966) methods overestimated prestress loss by 35% and 50%, respectively. 

Figure 6.10 compares the predicted prestress loss wi th the mca<;ured values 

for the prestressed calcium silicate fin walls. The Dilger (1983) and Abclcs (1966) 

methods overpredict prestress loss by 13% and 25%, respectively. 

Figure 6.11 compares the predicted prestress loss with the measured values in 

the prestressed concrete block diaphragm walls. Once again. Dilger et al. (1983) and 

Abeles (1966), both methods overpredict prestress loss up to 25%. The Tatsa (1973) 

method overestimates prestress loss in the concrete block diaphragm wall by 13%. 

Figure 6.12 compares the predicted prestress loss with the mca~urcd values in 

the prestressed concrete block fin wall. The Dilger et al. (1983) and Abeles (1966) 

methods overestimate prestress loss up to 20 %. However Tatsa (1973) method 

predicts prestress loss in the concrete block fin wall very well <± 5%). 

As expected Dilger (1983) method predicted prestrcss loss accurately (± 10%) 

when measured strains were used. 

6.8 Conclusions 

Lenczner and Tatsa methods gave good predictions of prestress loss in clay 

and concrete block masonry, respectively. Even though the use of (height of 

member/length of bar) ratio in Lenczner method would reveal the best method in 

estimating prestress loss in clay walls, however the method tends to underestimate 

prestress loss in other types of masonry units even if measured creep, shrinkage and 
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relaxation strains were used (Table 6.8). This is due to the method being mercJy 

based on clay brickwork. Method developed by Tatsa (1973) does not predict 

prestress loss well in other types of masonry because the method was based on 

concrete block masonry only. 

BS 5628: Part 2 (1985) and Eurocode No 6 (1988) gi ve better csti mation of 

prestress loss in the calcium silicate and concrete block walls, respectively, compared 

to other national standards. 

Generally all the methods give reasonably good agreement with measured 

prestress loss if the measured strains were known. This means that most of the 

methods are suitable for predicting prestress loss, the only problem is lack of data to 

give better prediction of creep and shrinkage. 

For practical and design purposes, ultimate prestress loss of clay brickwork 

can be assumed as 20% which agrees with values recommended by Curtin (1989). 

As for calcium silicate and concrete block walls, an ultimate value of 30% can be 

used. 
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Table 6.1 Modulus of Elasticity of Clay, Calcium Silicate Brickwork 

and Concrete Blockwork Predicted by Codes of Practice 

Masonry Oeometry Measured BS 5628 ACI-530 Eurocodc 

Type (OPa) (1985) (1990) ( 1988) 

(OPa) (OPa) (OPa) 

Clay Diaphragm 19.66 
Brickwork 16.38 20.68 18.2 

Fin 18.82 

Calcium Diaphragm 12.11 
Silicate 7.11 NA 7.6 

Brickwork 
Fin 12.8 

Diaphragm 13.97 
Concrete 9.54 15.17 10.6 

Blockwork 
Fin 13.16 

Table 6.2 Modulus of Elasticity of Clay, Calcium Silicate Brickwork 

and Concrete Blockwork Predicted by Previous 

Researchers 

Masonry Oeometry Measured Brooks Lenczncr 

Type (OPa) (199Oa) ( 1986) 

(OPa) (OPa) 

Clay Diaphragm 19.66 20.36 
Brickwork 23.05 

Fin 18.82 20.2 

Calcium Diaphragm 12.11 11.96 
Silicate 5.82 

Brickwork 
Fin 12.8 11.65 

Diaphragm 13.97 9.98 
Concrete 4.46 

Blockwork 
Fin 13.16 9.93 
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Table 6.3 Ultimate Specific Creep of Clay, Calcium Silicate 

Brickwork and Concrete Blockwork Predicted 

by Codes of Practice 

Masonry Geometry Creep BS 5628 ACI-530 Eurocodc 

Type (1O-6IMPa) (1985) (1~) No6 

(10-61MPa) (1O-6/MPa) (1988) 

( IO-6/MPa) 

120 Ultimate 
days * 

Clay Diaphragm 72 76 
Brickwork 92 101 82 

Fin 86 91 

Calciwn Diaphragm 143 183 
Silicate 220 NA 198 

Brickwork 
Fin 161 188 

Diaphragm 132 167 
Concrete 315 360 283 

Blockwork 
Fin 150 192 

*Based on extrapolation of test data 
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Table 6.4 Ultimate Specific Creep of Clay, Calcium 

Silicate Brickwork and Concrete Blockwork Predicted 

by Previous Researchers 

Masonry Geometry Creep Brooks Lenczncr 

Type (1O-6/MPa) (199Oa) (1986) 

(1O-6/MPa) (1O-6/MPa) 

Clay 
Brickwork 

Diaphragm 76 106 62 

Fin 91 120 90 

Calciwn Diaphragm 183 245 166* 
Silicate 

Brickwork 
Fin 188 250 158* 

Concrete 
Diaphragm 167 164 157* 

Blockwork 
Fin 192 175 167* 

* based on measured strain 
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Table 6.S Predicted Shrinkage of Clay, Calcium Silicate 

Brickwork and Concrete Blockwork 

Masonry Geometry Shrinkage Brooks BS5628 ACI-530 Eurocodc 

Type (10-6) (199Oa) (1985) (1990) No6 

(10-6) «10-6) ( 10-6) ( 1988) 

( 10-6) 

120 Ultimate 120 Ultimate Ultimate Ultimate Ultimate 
days days 

Diaphragm 147 179 175 303 

Clay 0 -300 -100 to 
Brickwork 200 

Fin 184 204 210 306 

Diaphragm 300 418 421 563 
Calcium 
Silicate 500 NA 200 

Brickwork 
Fin 323 400 480 627 

Diaphragm 242 500 280 404 

Concrete 500 300 200 
Blockwork 

Fin 272 513 313 582 
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Table 6.6 Predicted Ultimate Prestress Loss of Clay, Calcium 

Silicate Brickwork and Concrete Blockwork by Codes 

of Practice. 

Masonry Geometry Estimated BS 5628 ACI-530 Eurocodc 

Type Prestress (1985) (1990) No6 

Loss (%) (%) ( 1988) 

(%) (%) 

Clay Diaphragm 14.5 9.94 -4 10.42 
Brickwork 

Fin 16.5 10.3 -3 11.07 

Calcium Diaphragm 21.2 25.4 17.1 
Silicate NA 

Brickwork 
Fin 24 26.9 17.5 

Diaphragm 22.3 29.6 20.8 
Concrete 18.50 

Blockwork 
Fin 24.8 31.48 21.8 

* Usm estJmated cree and shnnkaj e straIn g p g 
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Table 6.7 Predicted Ultimate Prestress Loss of Clay, Calcium 

Silicate Brickwork and Concrete Blockwork by Codes 

of Practice. 

Masonry Geometry Estimated BS 5628 ACI-530 Eurocode 

Type Prestress (1985) ( 1990) No6 

Loss (%) (%) ( 1988) 

(%) (%) 

Clay Diaphragm 14.5 14.2 14.0 14.2 
Brickwork 

Fin 16.5 16.45 17.00 16.45 

Calcium Diaphragm 21.2 19.75 21.00 19.75 
Silicate 

Brickwork 
Fin 24 20 22.00 20 

Diaphragm 22.3 19.7 22.5 19.7 
Concrete 

Blockwork 
Fin 24.8 20 24.5 20 

• Usm measured elastiC stram and shnnka e g g 
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Table 6.8 Predicted Prestress Loss of Clay, Calcium Silicate 

Brickwork and Concrete Blockwork by Previous 

Researchers at 120 days· 

Masonry Geometry Measured Lenczner Tatsa Dilgcr** Abelcs 

Type (%) (1986) (1973) (1983) (1966) 

(%) (%) (%) % 

Clay Diaphragm 10 10 13.5 14.2 
Brickwork NA 

Fin 12.5 13.1 14.72 16.69 

Calciwn Diaphragm 17 16.27 20.5 22.75 
Silicate NA 

Brickwork 
Fin 20 17 22.00 24.00 

Diaphragm 15 13 17 17.41 18.6 
Concrete 

Blockwork 
Fin 17.5 13 18 17.6 19.07 

* USlO measured elastic stram and shrinka e g g 
** Aging coefficient of 0.5 was used 
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Table 6.9 Estimated Ultimate Individual Prestress Loss of the 

Masonry Walls by Composite Modelling 

Type of Masonry Creep(%) Shrinkage (%) Relaxation (%) 

Clay Brickwork 9.2 8 3.5 - 4.5 

Calcium Silicate 
10 16.0 3.5 - 4.5 

Brickwork 

Concrete Blockwork 9.5 15 3.5 - 4.5 
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CHAPTER 7 

IMPLICATIONS OF UNIT WATER ABSORPTION ON PREDICTION 

OF MASONRY DEFORMATION AND PRESTRESS LOSS 

7. 1 Introduction 

Previous research (Brooks 1990a, Bingel 1984 and Abdullah 1989) had 

shown that for docked units the long-term deformation, creep and shrinkage, could 

be predicted reasonably accurately by composite modelling. However, in this 

investigation, predictions were rather poor for the calcium silicate and concrete block 

masonry. This chapter describes the findings from additional tests carried out to 

investigate this poor prediction. The tests were mainly to study the effect of high 

water absorption masonry units, laid dry, on moisture movement and resulting strain 

in the unit and mortar joint, both during and after curing. 

Since no external drying is taking place during curing, the overall moisture 

content is the same during this period. However, the moisture content in the masonry 

unit is probably higher than before construction. Even though the overall moisture 

content is the same when the masonry is first exposed for drying, the shrinkage and 

creep potential of the brickwork may be reduced because moisture movement, from 

the fresh mortar joint to the masonry unit, may tend to lower the water/cement ratio of 

the mortar. Reduction in the water/cement ratio of mortar joint would tend to reduce 

the creep and shrinkage of the brickwork on exposure to the environment. 

The water absorbed by the unit would not appreciably affect the shrinkage of 

the unit because it is in the form of 'free water' which only affects reversible 
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shrinkage, and this is usually small compared with irreversible shrinkage due to loss 

of adsorped water. 

7.2 Experimental details 

7.2.1 Control tests 

Three control tests were carried out on each type of masonry unit: an 

initial rate of suction test, a standard water absorption test (SS 3921 1985) and a 

modified unit water absorption test. A detailed description of the modified water 

absorption test is presented in Section 7.2.1 (c). 

7.2.1 (a) Initial rate of suction 

The suction test carried out on each type of masonry unit was in 

accordance with SS 3921 (1985). The test was carried out by weighing the units, 10 

units for each type of masonry, before and after immersing in 3 mm depth of water 

for 60 seconds. 

7.2.1 (b) Standard water absorption 

The standard water absorption test was carried out in accordance with 

BS 3921 (1985). Although there is no provision for a water absorption test for 

concrete block units, a test similar to that of clay and calcium silicate units was carried 

out on the concrete block. A 24-hour cold immersion test was carried out instead of 

the 5-hour boiling test. According to BS 3921 (1985), the 24-hour cold immersion 

test results are always lower than the 5-hour boiling test. As in the initial rate of 

suction test, 10 units were used for each type of masonry. 
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Initially the units were oven dried until a constant weight was 

achieved. The oven dried masonry units were then immersed in water for 24 hours 

before they were weighed again. The water absorption was obtained from: 

7.2.1 (c) 

Water Absorption = 100 (wet mass - dry mass) 
dry mass 

Modified water absorption 

A short-term modified water absorption test was carried out by 

monitoring the weight of one unit of a 2-course bonded masonry sample before and 

0.5,1,3,5,10 and 24 hours after laying. Six sets of 2-course masonry samples were 

laid for each type of masonry. All the specimens were kept in separate polythene 

sheets immediately after laying to prevent moisture loss to the environment and to 

prevent moisture movement between the specimens. 

To prevent bonding between the mortar and the masonry unit to be 

weighed, a layer of polythene mesh was used. Plate 7.1 shows the arrangement of 

the 2-eourse masonry. At the same time, the overall weight of the 2-course masonry 

sample was monitored before and at each time of weighing. This was to confirm that 

there was no loss of moisture to the surrounding environment during the test pericxl. 

For the concrete block unit, a single unit was capped with mortar and 

covered with glass instead of another block because of the limited capacity of the 

weighing balance being used. As for the clay and calcium silicate units, a layer of 

polythene mesh was used to prevent bonding between mortar and concrete block. 

Plate 7.2 shows the concrete block during the water absorption test. 
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7.2.2 Long-term test 

Two sets of tests were carried out on each type of masonry: shrinkage 

and modified water absorption. The water absorption and shrinkage tests were carried 

out up to 70 and 140 days, respectively. Table 7.1 shows the compressive strength of 

mortar used for each type of masonry. Another test was carried out to compare the 

shrinkage and creep of mortar prisms with the original, and with a reduced 

water/cement ratio, the prisms being partly sealed to correspond with the calcium 

silicate tests discussed in Chapter 4. 

7.2.2 (a) Modified water absorption 

The procedure for the long-term modified water absorption test was 

similar to the short -term (24 hours) modified water absorption test but the period of 

tests was extended up to 70 days. The weight of the units was monitored at 

1,3,7,14,21,30,40,50,60 and 70 days. A total of 10 sets of I-course (concrete block) 

and 2-course (clay and calcium silicate) masonry were laid for each type of masonry. 

All the masonry samples were stored in a controlled environment with a temperature 

of 21+1°C and a relative humidity of 65±.5%, the samples being covered with 

polythene sheet for the first 21 days. 

7.2.2.(b) Shrinkage 

For the shrinkage tests of the clay and calcium silicate masonry, four 

3-course masonry sets were laid. Two sets of the masonry were laid from dry units 

and the other two sets from docked units. 

Individual shrinkage measurements of the masonry units and the 

mortar prisms as in Chapter 4 were carried out. The masonry units and the mortar 
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prisms were sealed according to the VIS of the masonry (Table 7.2). Two mortar 

prisms were sampled from each type of masonry. No measurements were made on 

unbonded concrete blocks between header faces because the shrinkage measurements 

in Chapter 4 were between bed faces. Plate 7.3 shows the arrangement for the 

shrinkage test using clay and calcium silicate masonry. Shrinkage measurements were 

taken at the same times interval as in water absorption tests. For shrinkage of the 

concrete block, 2-course masonry was laid as shown in Plate 7.4. 

7.2.2 (c) Reduced water/cement ratio of mortar prisms 

Creep and shrinkage tests, similar to those of the diaphragm and fin 

calcium silicate walls in Chapter 4, were carried out on 8 partly sealed mortar prisms. 

Another set of creep and shrinkage tests were also carried out on mortar prisms with a 

reduced water/cement (w/c) ratio. The reason for carrying out this test was to study 

the effect of migration of moisture from mortar to masonry units during construction 

on creep and shrinkage. 

From the known mortar mix, water/cement ratio and weight of mortar 

joint from the water absorption test, the effective water/cement ratio (w/c) of mortar 

joint after 24 hours was determined from the following equation; 

/ (Wo - WA) 
wc= C 

ce 
(7.1) 

where Wo = mass of water in mortar 
W/Co x mass of mortar joint. 

6 + W/Co ' 

W A = water absorbed by the units from modified water absorption test; 

Cce = mass of cement; 

and W /Co = original water/cement ratio. 

For the 2-course masonry with l:r~ mortar mix, the mass of the 

mortar joint was 591 gm, the mass of cement was 81.3 gm, and the water absorption 
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(WA) was 26 gm. Hence with an original water/cement ratio of 1.27, the reduced 

water/cement ratio of 0.95 was determined from Eq. (7.1). 

The amount of water absorbed by the units was obtained at the end of 

the short-term modified water absorption test, i.e 24 hours after laying. At this time 

the cement had set and all the water was not in its 'free form'. 

7.3 Measurements 

7.3.1 Modified unit water absorption 

For both the short and long-term water absorption test of the clay and 

calcium silicate masonry. a weighing balance with maximum capacity of 10 kg was 

used, while a balance with maximum capacity of 25 kg was used for water absorption 

test of concrete block. Both balances had an accuracy of ± 1 grammes. 

7.3.2 Shrinkage 

The overall shrinkage of the clay and the calcium silicate masonry was 

measured using a 200 mm Demec gauge. The shrinkage of the unbonded unit 

(between header faces) and the mortar prisms were measured using a 150 mm Demec 

gauge. The vertical shrinkage of the individual bonded units was measured using a 

surface-mounted 50 mm acoustic vibrating wire gauge (VWG). The gauges were 

fixed to the units surfaces by an epoxy adhesive to special end mounting blocks. 

The vibrating wire gauge measures a change of strain of ± 1 microstrain, the 

change of strain (bE) being: 

1 1 
(bE) = 4 x 10-10 (Tt2 - T22~ 

where T 1 and T2 are periods of frequency 
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Measurements were made before laying and then at 1,3,7,14,21,30,40,50,60 

and 70 days after laying. 

For the concrete blocks, a 400 mm Demec gauge was used to measure the 

overall strain. The individual block units were monitored using a 200 mm Dcmec 

gauge. Figure 7.1 shows the positions of the Demec studs and the vibrating wirc 

gauge on the clay, calcium silicate and concrete block masonry. 

7.3.3 Reduced water/cement ratio of mortar prisms 

Creep and shrinkage tests of the partly sealed mortar prisms were 

carried out using the apparatus abscribed in Chapter 4, the strains being measured 

using 1.50 mm Demec gauge. 

7.4 Test results 

7.4.1 Short-term water absorption 

7.4.1.(a) Initial suction rate 

The initial suction rate test is a measure of surface porosity of masonry 

units which absorb water from the mortar by capillary action and thus possibly affects 

the bond between the units and mortar (Garrity 1993). Table 7.3 shows the results of 

the initial suction test of the masonry units. Concrete had the highest suction rate 

compared with the clay and calcium silicate units. This could be due to the presence 

of large pores in the concrete block but the pore-size distribution may also be a factor. 

7.4.1.(b) Standard water absorption 

The water absorption test is a measure of the overall porosity of 

masonry units and is normally expressed in terms of the percentage increase in mass. 

Table 7.3 shows the results of the standard water absorption test for all the masonry 
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units. As expected (because of the higher initial suction rate), the calcium silicate unit~ 

(11.32%) exhibit a higher water absorption compared with the clay units (3.72%). 

However, that trend of behaviour was not applicable to concrete block units because 

they had a water absorption of 8.83%, while showing the greatest suction rate. This 

could be due to the higher air void/unit weight ratio in calcium silicate units when 

compared to concrete block units, since units with a higher air void/unit weight ratio 

tend to have higher water absorption 

7.4.1 (c) Modified water absorption test 

Figure 7.2 shows the water absorbed by the masonry units over a 

period of 24 hours. All the units show similar trends of water absorption: rapid 

initially and then at a reducing rate after 3 hours. Clay units absorbed the least amount 

of water compared with both calcium silicate and concrete block units. Even in tenns 

of the percentage increase in mass. the clay had the least water absorption (0.35%) 

compared with the concrete block (0.65%) and calcium silicate (1 %) units. The 

difference in percentage increase in mass in this test when compared to the standard 

method (Fig. 7.3) is partly due to the units being oven dried in the standard method. 

A higher percentage of water being absorbed by the units in the standard water 

absorption test was also partly due to a higher exposed surface area of absorption 

(immersed completely) of the units in the standard water absorption test. In the 

modified water absorption test, only one surface (bed face) was available for 

absorption of moisture. 

7.4.2 

7.4.2 (a) 

Long-term water absorption tests 

Modified water absorption 

Figures 7.4 to 7.6 show the long-term water absorption of all the 

masonry units. An overall weight of 99% of the original weight were measured on all 
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the water absorption specimens during curing, which indicates a negligible water loss 

to the atmosphere during this period. Thus any moisture movement occured between 

the mortar and the masonry units only. 

Figure 7.4 shows that clay units absorbed about 0.3% of water after I 

day of laying and then lost water for the next 7 days. Between 7 and 21 days, some 

moisture from the mortar was absorbed back by the units. On exposure to the 

surrounding air at 21 days, there was a delay before the unit started to lose moisture. 

After 30 days all the initial water absorbed was dissipated. 

The calcium silicate units absorbed about 0.6% of water from mortar 

after 1 day of laying (Figure 7.5) and then lost water for the next 13 days. Over the 

next seven days, the units absorbed back some of the moisture from the mortar joint. 

On exposure to the surrounding air at 21 days, moisture was lost immediately for the 

first 9 days. After 9 days of exposure, the units appear to absorb moisture again for 

the next 10 days before losing moisture for the remaining test period. 

The concrete block units exhibited a similar pattern of moisture 

movement to the calcium silicate units (Fig. 7.6). The block unit absorbed about 

0.55% of water one day after laying and then lost water for the next 20 days. On 

exposure to the surrounding air at 21 days, the block continued losing moisture till 

the end of the test 

7.4.2 (b) Shrinkage 

Mortar prism 

Figure 7.7 shows the shrinkage of the part-sealed mortar prisms for 

each batch of mortar used in the modified water absorption test. When compared with 

the shrinkage of the mortar prisms in Chapter 4, the trends of shrinkage of the prisms 

for the clay and concrete block masonry are similar. However the shrinkage of the 

mortar prism for the calcium silicate brickwork in Chapter 4 is considerably higher 
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than in Fig. 7.7. This could be due the lower compressive strength of mortar used for 

calcium silicate walls in Chapter 4 which suggests a potential for highcr shrinkagc. 

Masonry units 

Figure 7.8 compares the shrinkage of bonded and unbonded clay units 

measured between header and bed faces. During curing, the bonded docked unit 

undergoes shrinkage which suggests the mortar is taking water for hydration. On the 

other hand, the bonded dry unit undergoes expansion due to water absorption from 

the mortar. When exposed to the surrounding air, the docked and dry units exhibit 

similar shrinkage, i.e when measured from the age of 21 days. 

Figure 7.8 also suggests a significant difference between bed and 

header face shrinkage (after curing) of the dry unbonded clay unit, which has 

implications for the composite model where deformations were measured between 

header faces. However, the header face shrinkage is only slightly less than the 

'actual' shrinkage of the bonded dry bed face unit. 

Figure 7.9 compares the shrinkage of calcium silicate units measured 

between header and bed faces. During curing, there is little moisture movement strain 

except in the case of the bonded dry unit which undergoes expansion due to water 

absorption. On exposure to the surrounding air, the bonded dry unit exhibits less 

shrinkage than the bonded docked unit, there being little difference between the bed 

and header face shrinkage of the un bonded units. However, the 'actual' shrinkage of 

the bonded dry unit is greater than the unbonded unit shrinkage which is used in the 

composite model. 

The shrinkage results for the concrete block units (Fig. 7.10) are 

similar in behaviour to the calcium silicate units, i.e the bonded dry unit exhibits less 

shrinkage than the bonded docked unit on exposure to drying at 21 days. Compared 

with unbonded shrinkage, the 'actual' dry bonded shrinkage is slightly greater. 
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Masonry 

Figures 7.11 to 7.13 compare shrinkage-time curves of the clay, 

calcium silicate and concrete block masonry built from docked and dry units. All the 

masonry made with docked units exhibited a higher shrinkage compared with 

masonry made from dry units. For the masonry constructed from dry units, the 

mortar joint never recovers all the moisture that has been absorbed by the dry units 

during curing. As a result, the shrinkage potential of masonry made from dry units is 

reduced even though the overall moisture content in the masonry is the constant 

during the curing period. On exposure to the surrounding air, the higher moisture 

content of the docked bonded unit would be expected to have a greater shrinkage than 

the dry bonded unit as confirmed in Figs. 7.12 and 7.13. In the case of clay units 

(Fig. 7.11), there is no significant difference between the docked and dry units, 

previous researchers have indicated that dry units can sometimes undergo shrinkage 

more than docked units. The absorbed water may be in the form of 'free' water which 

does not contribute significantly to shrinkage. 

Mortar joint 

The shrinkage of the mortar joint in the masonry was determined by 

deducting the shrinkage of masonry units from the total masonry shrinkage using the 

following equation: 

::B (DLmas x Esmas - ( DLmas - n x m) x Esunits ) (7.2) 
E smortar n x m 

where DLmas = length of the Demec gauge used to measure the 

overall strain on the masonry (mm); 

m = depth of mortar joint (mm) (varied from 10 mm to 20 mm); 

n = number of mortar joints; 
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Esunits = average strain of the units (see Fig. 7.1 (a) and (b»; 

Esmas = average measured strain on the masonry (see Fig. 7.1 (a) and (b»; 

and Esmortar = strain of the mortar. 

For clay and calcium silicate masonry, Eq. (7.2) becomes: 

Esmortar 
= (200 x Esmas - ( 200 - 2 x m) x Esunits ) 

2xm 

For the concrete block masonry, the corresponding equation is as follows: 

Esmortar 
= (400 x Esmas - ( 400 - 1 x m) x Esunits ) 

1 x m 

(7.3) 

(7.4) 

Figure 7.14 compares the shrinkage of the mortar joint, in masonry 

made from docked and dry units, to the shrinkage of the partly sealed mortar prism 

for clay masonry. The shrinkage of the mortar joint in masonry 'laid dry' exhibits 

less shrinkage compared with the mortar prisms (26%). The reduction in the 

shrinkage of the mortar joint in masonry 'laid dry' can be attributed to the reduced 

water/cement (w/c) ratio caused by the unit absorption. 

Figure 7.15 compares the shrinkage of the mortar joint to the 

shrinkage of the partly sealed mortar prisms for the calcium silicate masonry. There is 

little difference between the shrinkage of the mortar joint in 'docked' masonry and the 

partly sealed mortar prisms (10%). Due to the lower effective water/cement ratio, the 

shrinkage of the mortar joint in the masonry 'laid dry' exhibits less shrinkage when 

compared with the partly sealed mortar prisms (80%). It is also noticeable that during 

curing, the mortar joint exhibits shrinkage, as a result of transfer of moisture to units. 

Due to the vertical and horizontal restraint by the bond, shrinkage of the mortar joint 

in the masonry 'laid dry' during curing could lead to bond cracking and as a result 

could affect the elastic load deformation of masonry. 
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Figure 7.16 compares the shrinkage of the mortar joint with the 

shrinkage of the partly sealed mortar prisms for 2-course concrete block masonry. As 
cc 

for the calcium silicate masonry, there is not much differen,!. between the docked unit 

masonry shrinkage in the mortar joint and the partly sealed mortar prisms (9%). 

However, the shrinkage of the mortar joint in the masonry 'laid dry' exhibits Icss 

shrinkage when compared to the partly sealed mortar prisms (70%). 

It will be recalled that the reason for partly sealing mortar prisms was 

to simulate the mortar in the masonry i.e to have the same volume/exposed surface 

(V/S) ratio. Therefore, the shrinkage of the partly sealed prisms should be the same 

as the shrinkage of the 'docked' mortar joint. Figures 7.14 to 7.16 show a small 

difference. Therefore it can be concluded that from the limited tests carried out, the 

V /S ratio simulation gives a reasonable approximation of the mortar joint shrinkage 

w hen the units are docked. 

Figures 7.17 and 7.18 show the shrinkage ratio of the 

bonded/unbonded units, and the bed mortar joint/mortar prisms over a period of 120 

days. The ratios can be used to re-predict the shrinkage by the composite model. The 

mortar shrinkage ratio is more significant than for the units since most of the 

shrinkage takes place in mortar bed joint. For mortar used with the dry units, the ratio 

is actually a shrinkage reduction factor for the mortar prisms. 

Relation between creep and s/Irinkage of mortar prisms, 

and water absorbed by units 

Figure 7.19 shows the relationship between the shrinkage reduction 

factor of mortar prisms (see Fig. 7.18) and the percentage standard water absorption 

for each type of masonry. From a practical point of view, it is desirable to relate the 

shrinkage reduction factor to the standard water absorption which is normally 

supplied by the manufacturers, rather than the modified water absorption. The 
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shrinkage factors were obtained from the average ratio of shrinkage of bonded mortar 

bed joint (laid dry)/mortar prism as given in Table 7.4. The shrinkage reduction factor 

is defined as : 

Figure 7.19 also shows that the shrinkage reduction factor of mortar 

prisms decreases as the unit standard water absorption increases: theoretically 

shrinkage reduction factor of unity represents zero unit water absorption. Table 7.4 

also compares the average ratio of shrinkage of bonded mortar bed joint 

(docked)/mortar prism with the average ratio of shrinkage of the bonded mortar bed 

joint (laid dry)/mortar prism in all the masonry. As expected, the average ratio of 

shrinkage of bonded mortar bed joint (docked)/mortar prism is higher than that laid 

dry. In the masonry made from docked units there was no moisture movement 

between the mortar bed joint and the units and, consequently, the mortar bed joint 

made with docked units has higher moisture content than that of the mortar bed joint 

made with dry units. Higher moisture content generally results in higher shrinkage 

due to more moisture escaping from the external surface. 

The corresponding shrinkage enlargement factor for masonry units is 

in Fig. 7.20. The enlargement factor is defined as: 

for the clay and calcium silicate units, and 

shrinkage of the bonded dry unit 
shrinkage of the unbonded dry unit between bed faces 

for the concrete block unit. 
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The influence of the unit standard water absorption being the opposite 

of that of mortar prisms because shrinkage enlargement factor reduces with a decrealie 

in percentage water absorption. The shrinkage enlargement factor of the bonded units 

(laid dry)/unbonded in Table 7.4 is greater than unity in all the masonry due to the 

higher moisture content in the bonded units at the time of exposure to the 

environment. For the same reasons, the shrinkage enlargement factor for the docked 

units is greater than for the dry units. 

Re-prediction of creep and shrinkage by composite model 

Using the information presented in this Chapter, the deformations of 

the masonry walls tested in Chapter 4 were re-predicted by adjusting the original 

creep and shrinkage data (unbonded) to allow for the unit water absorption. The 

adjustment to the shrinkage and creep was as follows: 

(a) Shrinkage 

The shrinkage of the partly sealed mortar prisms was reduced 

by a shrinkage reduction factor according to the unit water 

absorption (Fig. 7.19). 

The shrinkage of the calcium silicate and concrete block units 

were increased by the factors shown in Fig. 7.20; no 

adjustment was made to the clay unit, because the factor wali 

close to unity. 

(b) Creep 

From the specific creep-shrinkage curves of Figs. 7.21 to 

7.25, the adjusted creep was obtained from the adjusted 

shrinkage. For example, Fig. 7.21 shows the adjustment 

procedure for the final creep (Cfr) of the mortar prisms (clay 
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diaphragm wall) obtained from the final adjusted shrinkage 

(Sfd, where Sfr = 0.74 x original shrinkage (Sf), giving final 

creep of 472 x 10-6. 

Detailed calculations of the re-prediction of creep of the walls is 

shown in Appendix E. Figures 7.26 to 7.31 compare the prediction of creep with and 

without the adjustment factors, with the measured values. As expected the re

prediction values gives better estimates, i.e a difference of 5%. 

Detailed calculations of the re-prediction of shrinkage of the walls arc 

also shown in Appendix E. As for creep, the re-predicted shrinkage for all the 

masonry types give better estimations compared with the original predictions (see 

Figs.7.32 to 7.37). 

Re-prediction of prestress loss 

Using the adjusted creep and shrinkage values, the re-estimations of 

prestress loss of the post-tensioned masonry walls tested in Chapter 4 are shown in 

Figs. 7.38 to 7.43. As for creep and shrinkage, the re-prediction of prestress loss 

gives a better estimate for all the masonry types. Detailed calculations of the re

prediction of prestress loss are given in Appendix E. The accuracy of prestress loss is 

improved by an average of 50%, 79% and 60% for the post-tensioned clay, calcium 

silicate and concrete block walls, respectively. 

7.4.2 (c) Reduced water/cement ratio of mortar prisms 

Using Eq. (7.1), the actual water/cement ratio used in the calcium 

silicate walls was found to be reduced by 25% due to absorption of single unit. 

Therefore, for the 2-course masonry, the actual water/cement ratio would be reduced 

by 50%. However, a mortar mix with a high reduction of the water/cement ratio was 

judged to be unreasonable, and so the mortar prisms were made with the 25 % 
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reduced water/cement ratio. As stated earlier, the reason for this test was to 

demonstrate the effect of a reduced water/cement ratio on creep and shrinkage of 

mortar. The reduced and original water/cement ratio of mortar cubes had a mean 

compressive strength of 17.09 (standard deviation = 4.8) and 12.55 (standard 

deviation = 0.64) MPa, respectively. Appendix F shows the creep and shrinkage of 

these mortar prisms. 

Creep 

Figure 7.44 shows the creep of the partly sealed mortar prisms for the 

original and reduced water/cement ratio tests. As expected, for both diaphragm and 

fin walls, the creep of mortar prisms with a reduced water/cement ratio is about 40% 

lower than creep of mortar with original water/cement ratio. However, the trend of 

the creep in both mortar prisms were similar i.e rapid initially and slower after 60 

days. 

Figures 7.46 and 7.47 show the effect of water/cement ratio on the 

creep of mortar prisms for calcium silicate walls at intervals of 20 days. The creep of 

mortar increases with an increase in the water/cement ratio because the strength is 

lower~ according to Neville and Brooks (1993) creep is approximately inversely 

propotional to strength. While the creep in these tests is greater than that deduced 

from the modified water absorption/shrinkage tests on the masonry, the effect of a 

reduction in effective water/cement ratio on creep is clearly demonstrated. The 

attempted simulations of a reduction in the water/cement ratio does not appear to be 

correct probably because of compaction: the mortar prisms were fully compacted but 

the mortar joint would remain more porous after removal of moisture through 

absorption. 

Chapter 7 



203 

Shrinkage 

Figure 7.45 shows the shrinkage of the partly sealed mortar prisms 

for the original and the reduced water/cement ratio test. The shrinkage of mortar 

prisms with the reduced water/cement ratio is about 20% lower than the shrinkage of 

mortar with original water/cement ratio. The low water/cement ratio results in lower 

shrinkage potential (see Figs. 7.48 to 7.49) because cement paste structure is 

'stronger' so that moisture is held more firmly within the pores structure and also due 

to less of moisture escaping. 

7 • S Summary on the effects of unit water absorption on prediction 

of deformation of masonry. 

Test results presented in this chapter demonstrate the importance of unit 

absorption on the accuracy of predicting deformation of masonry by composite 

model. The results explain why the composite model over predicts deformation of 

masonry presented in Chapter 6. This means that the assumption, i.e shrinkage in 

mortar joint is the same as in mortar prisms, made in the prediction of composite 

model is only valid if the units are docked first. For the masonry laid dry, the 

shrinkage of the unbonded mortar prism to be used for predicting the shrinkage of the 

masonry has to be reduced. and that reduction of shrinkage can be as much as 80% 

for units with high water absorption characteristics. The same situation applies to 

creep. It is interesting to note that BS 5628:Part 3 (1985) recommends that brick units 

with initial suction rate greater than 1.5 kg/(mm2.min) should be docked first before 

laying. If the brick units are not docked, the mortar consistency should be adjusted by 

increasing the water/cement ratio. 

Reduction of the water/cement ratio in mortar results in a higher strength and 

thus lower the creep and shrinkage potential of masonry. Moreover, the reduction in 

w/c ratio could also increase the modulus elasticity of the masonry provided self-
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compaction (due to its weight) of the masonry, during initial curing, occurs. On the 

other hand, too much reduction in the w/c ratio at an early stage could also cause the 

mortar to become too porous and thus lower its compressive strength and the 

modulus of elasticity of masonry. This could happen if, especially in a hot weather, 

the masonry is not cured properly. As a result, poor bond between the mortar joint 

and the masonry units could occur. 
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Table 7.1 Compressive Strength of Mortar used for Water 

Absorption and Shrinkage Test 

Masonry Type Compressive Strength 
(MPa) 

Clay 9.63 
(+ 2.5) 

Calcium Silicate 11.74 
(+ 1.8) 

Concrete Block 12.1 
(+ 1.1) 

( ) Standard deviation 

Table 7.2 Volume/exposed Surface Ratios of the Masonry, 

Masonry Units and Mortar Prisms. 

Masonry Volume (105 mm3) Exposed swface area VIS (mm) Total Sealed length** 

TYne 

Mas.* 

Clay 44.5 
Calcium 
Silicate 47.4 

Concrete 
block 198 

Mas. * = masonry 
** see Fig. 4.19 

Brick Mortar 

40.1 4.41 

43 4.41 

194 0.04 

(l04 mm31 x (mm) 

Mas.* Brick Mortar Mas.* Brick Mortar Brick Mortar 

15.9 14.6 1.27 28 27.5 35 -24 -2.5 

15.9 14.6 1.27 30 29 35 -2.'; -2.5 

53 52 1.08 37 37 41 -12 -3 
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Table 7.3 Initial Suction Rate and Standard Water Absorption 

Masonry Type Initial Suction Rate Test Standard Water Absortion 
(kg/mm2.min) Test (% increase in mass) 

Clay Unit .27 3.72 
(+ 0.15) (+ 0.83) 

Calcium Silicate Unit 0.5 11.32 
(+ 0.11) (+ 0.68) 

Concrete Block Unit 7.98 8.83 
(+ 0.72) (+ 0.21) 

( ) Standard deviation 

Table 7.4 Average Shrinkage Factors of Masonry Units and 

Mortar Prisms 

Masonry Mortar 
Type (bondedlunbonded*) 

Docked Dry 

Clay 0.8 0.7 
(0.1) (0.1) 

Calcium 0.88 0.2 
Silicate (0.1) (0.1) 

Concrete 1.1 0.3 
Block (0.4) (0.08) 
* Unbonded mortar nsms p 
** Dry unbonded unit 
( ) Standard deviation 

Unit 
(bondedlunbonded**) 

Docked Dry 

1.9 1.1 
( 1.0) (0.8) 

2.3 1.4 
(0.5) (0.1) 

5.24 1.3 
(0.95) (0.1) 
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Plate 7.1 Two-course Clay and Calcium Silicate Masonry 

for Modified Water Absorption Test 

Plate 7.2 Concrete Block Unit for Modified Water 

Absorption Test 
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Plate 7.3 Three-course Clay and Calcium Silicate Masonry 

for Shrinkage Test 

Plate 7.4 Two-course Concrete Block Masonry for 

Shrinkage Test 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 

RESEARCH 

8. 1 Introduction 

This chapter compares the experimental and analytical findings for time

dependent deformations in prestressed masonry. The investigation was carried out on 

post-tensioned clay, calcium silicate and concrete block walls. For each type of 

masonry three diaphragm and three fin walls were built to determine prestress loss 

(decreasing load), creep (constant load) and shrinkage (zero load). The eighteen full 

scale walls were constructed with grade (ii) mortar. 

A composite model for masonry, based on Brooks (1987a), was incorporated 

into methods developed for prestressed concrete to predict prestress loss for post

tensioned masonry. In order to validate the composite model, short and long-term 

tests were carried out on unbonded masonry units and mortar prisms. 

The implications of high water absorption units, laid dry, on the prediction of 

deformation of masonry were also investigated. Based on the findings from this 

investigation, suggestions for future research are presented. 

8.2 Prestress loss 

1- Prestress loss was affected by the shape and the size of the cross-section 

which was expressed in terms of the volume/exposed surface ratio (V IS). 
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Prestress loss decreased with an increased in the V IS ratio, and diaphragm 

walls exhibited a lower prestress loss than fin walls. 

2- Prestressed masonry members constructed from high compressive strength 

units exhibited a lower prestress loss. 

3- The diaphragm and fin calcium silicate masonry walls exhibited a higher 

prestress loss than the concrete block masonry walls which had a higher 

prestress loss than the clay walls. 

4- In all the masonry studied in this investigation, most of the prestress loss in 

the post-tensioned masonry walls took place during the first 60 days after 

loading. After 60 days of loading, prestress loss continued at a decreasing 

rate. 

5- Post-tensioned clay, calcium silicate and concrete block diaphragm walls 

exhibited prestress loss of 10%, 17% and 15 %, respectively (Figs. 5.12 to 

5.14), after a period of 120 days. The corresponding prestress loss of clay, 

calcium silicate and concrete block fin walls were 12.5%, 20% and 17.5%, 

respectively. 

6- Based on extrapolation of test data, the total ultimate prestress loss of the clay, 

calcium silicate and concrete block diaphragm walls were 14.5%,21.2% and 

22.3%, respectively. As for the clay, calcium silicate and concrete block fin 

walls, the total ultimate prestress loss were 16.5%, 24% and 24.8%, 

respectively 
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7- In the clay, calcium silicate and concrete block fin walls, the ultimate prestress 

loss due to creep was 6.8%, 8.0% and 8.7%, respectively (Table 5.8). As for 

the clay, calcium silicate and concrete block diaphragm walls, the the ultimate 

prestress loss due to creep was 6.0%, 7.2% and 7.5%, respectively. 

The ultimate prestress loss due to shrinkage in the clay, calcium silicate and 

concrete block fin walls was 5.2%, 11.5% and 11.6%, respectively (Table 

5.8). The corresponding prestress loss due to shrinkage in the clay, calcium 

silicate and concrete block diaphragm walls was 5%, 10.5% and 11.3 %, 

respectively. However, prestress loss due relaxation was found to be about 

3.5 to 4.5% (Table 5.8). 

8.3 Creep and shrinkage 

1- As for prestress loss, creep and shrinkage of the masonry walls were found to 

be affected by the shape and the size of the cross-section which was 

expressed in terms of the VIS ratio. Creep and shrinkage of the masonry 

decreased with an increase in the VIS ratio and diaphragm walls exhibited a 

lower creep and shrinkage than fin walls. 

2- During the first 120 days, the diaphragm and fin walls constructed from clay 

units exhibited a lower specific creep than that of walls constructed from 

calcium silicate and concrete block units. However, the specific creep of the 

calcium silicate diaphragm and fin walls exhibited a higher specific creep than 

that of concrete block walls ( Figs. 5.5 and 5.6). 

As for the shrinkage, similar trends as in the specific creep were observed 

(Figs. 5.10 and 5.11). 
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3- The estimated ultimate creep coefficients from extrapolation of experimental 

results of the clay, calcium silicate and concrete block diaphragm walls 

investigated in this research were 1.49, 2.2 and 2.34, respectively (Table 

5.3). The corresponding estimated ultimate creep coefficients of the clay, 

calcium silicate and concrete block fin walls were 1.55, 2.40 and 2.53, 

respectively. 

4- Based on extrapolation of test data, the estimated ultimate shrinkage of the 

clay, calcium silicate and concrete block diaphragm walls were 179 x 10-6, 

400 x 10-6 and 500 x 10-6, respectively (Table 5.4). As for the clay, calcium 

silicate and concrete block fin walls, the estimated ultimate shrinkage were 

204 x 10-6,418 x 10-6 and 516 x 10-6, respectively. 

8.4 Composite modelling 

1- An initial application of the composite model developed by Brooks (1987a) to 

predict the deformation of masonry constructed with dry units resulted in 

overestimations of creep by 25% and shrinkage by 35% (Figs. 6.1 to 6.7). 

When allowances were made for the unit water absorption, the composite 

model gave creep and shrinkage satisfactory predictions (see Section 8.4 -4). 

2- Shrinkage of the mortar bed joint in masonry (calcium silicate and concrete 

block) built with units laid dry exhibited only about 20-30% of the shrinkage 

of unbonded mortar prisms (Figs. 7.15 and 7.16). However, the shrinkage of 

the mortar bed joint in masonry built with docked units was within (±) 15% 

of the shrinkage of an un bonded mortar prism which was partly sealed to the 

V /S ratio of the the masonry mortar joints. 
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3- In Chapter 7 a method has been developed to allow for unit water absorption 

on creep and shrinkage of unbonded unit and mortar specimens. The method 

gives factors for the change in creep and shrinkage in terms of a standard 

water absorption. For the units laid dry, creep and shrinkage enlargement 

factors occur, while creep and shrinkage reduction factors occur for the 

mortar joints. 

4- When adjusted creep and shrinkage data for the unbonded mortar prisms and 

masonry units were incorporated into the composite model, the corresponding 

creep and shrinkage of the masonry walls were predicted satisfactorily i.e 

within ± 5% in both cases (Figs. 7.26 to 7.37). 

5- When the composite model (with adjusted creep and shrinkage data to allow 

for unit water absorption) was incorporated into existing methods developed 

for predicting loss in prestressed concrete, the post-tensioned masonry loss (± 

10 %) were predicted satisfactorily (Figs. 7.39 to 7.43) as described below. 

8.S Comparison between the ultimate values obtained by 

extrapolation of the experimental results and prediction methods 

1- BS 5628: Part 2 (1985) underestimates the modulus of elasticity (Table 6.1) 

of clay, calcium silicate and concrete block walls by up to 17%, 47% and 

32%, respectively. Shrinkage of the calcium silicate walls is overestimated by 

up to 25% and underestimated by up to 3% for concrete block walls (Table 

6.5)~ although the Standard implies that shrinkage of clay brickwork is 

negligible, a shrinkage was measured between 147 - 184 x 10-6. Although 

creep was predicted satisfactorily (+ 20%) in clay and calcium silicate 
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brickwork, it was found to overestimate creep by up to 89% in the concrete 

block masonry (Table 6.3). 

BS 5628: Part 2 (1985) predicted prestress loss (Table 6.6) reasonably well 

(12 to 33%) in calcium silicate and concrete block masonry but for clay 

brickwork the prestress loss was generally found to be underestimated (38%). 

2- ACI-530 (1990) predicts modulus of elasticity reasonably well (+ 15%) for 

clay brickwork and for concrete blockwork (Table 6.1). The Code predicts 

creep reasonably well (+22%) in the clay brickwork walls but not in the 

concrete block walls that is with an overestimation of atlca.st 88% (Table 6.3). 

As in the SS 5628, the ACI-530 (1990) also implies that clay brickwork does 

not undergo shrinkage although a shrinkage between 147 - 184 x 10-6 was 

measured in this research. For the concrete block walls, the Code 

overestimates shrinkage by 24%. When the Code creep and shrinkage values 

were used to predict prestress loss in clay brickwork, the Code predicts a gain 

of 3.5% as compared to the average measured loss of 15.5% (Table 6.6). In 

the case of concrete blockwork the Code predicts prestress loss within 25%. 

3- Eurocode No 6 (1988) predicts the modulus of elasticity reasonably well for 

clay (± 5%) and concrete block masonry (- 24%) but not for the calcium 

silicate (- 41 %) brickwork (Table 6.1). The Code also predicts creep 

reasonably well (± 10%) for clay and calcium silicate brickwork walls but 

overestimates for concrete blockwork by up to 69% (Table 6.3). As for the 

shrinkage, the Code underestimates by 40% to 60% in all the masonry walls 

(Table 6.5). When the Code values for creep and shrinkage were used to 

predict prestress loss for all the walls, estimates were found to be reasonable 

i.e within 33% (Table 6.6). 
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4- The Lenczner method (1986) predicts modulus of elasticity and crcep 

satisfactorily for clay brickwork (+ 22%). The method was developed 

specifically for clay masonry and it was found to underestimate the clastic 

modulus and creep of calcium silicate and concrete block masonry by 68% 

(Table 6.2). However, the method predicts creep of calcium silicate 

brickwork and concrete blockwork reasonably well (- 20%) when the actual 

elastic strains were used (Table 6.4). Loss of prestress for the clay brickwork 

was predicted reasonably well (+ 5%), while loss of prestress for calcium 

silicate brickwork and concrete blockwork was underestimated by up to 24% 

(Table 6.8). 

5- The composite model (Brooks method 1987a) satisfactorily predicl~ modulus 

of elasticity (± 10%) of clay and calcium silicate brickwork but for concrete 

blockwork (- 30%) it was underestimated (Table 6.2). This wa~ due to the 

moisture movement from the mortar joint to the high water absorption block 

that tends to reduce the elastic modulus of the unit. Prediction of creep, 

shrinkage and prestress loss are referred to in Section 8.4 

6- Using estimated (from composite modelling) creep and shrinkage, Dilger 

method (1983) predicts prestress loss more accurately (+ 30%) than Abeles 

(1966) which overestimated by up to 46% (Figs. 6.7 to 6.12). Even when the 

measured creep, shrinkage and relaxation were used to predict prestress loss 

for all the walls tested, the Dilger method (± 10%) predicts more accurately 

than Abeles method (± 20%) 
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The Tatsa method (1973), specifically developed for concrete block 

masonry (Table 6.8), oversestimates prestress loss by 13% and 5% for the 

diaphragm and fin walls, respectively. 

8.6 Suggestions for future research 

1- Investigations into creep, shrinkage and prestress loss of other types of 

masonry with different types of units and mortar should be carried out to 

cover the large 'range of masonry products available. 

2- The effect of incremental prestressing at different ages on prestress loss of 

post-tensioned masonry should be investigated, particularly the application of 

post-tensioning in stages from an early age. In post-tensioned prestressed 

concrete, this technique is used to minimise losses due to creep and 

shrinkage. 

3- Measurements of prestress loss on full scale retaining walls exposed to severe 

weather conditions (relative humidity, temperature, freezing, thawing and 

diurnal effects) need to be carried out. The severe weather conditions will 

affect long-term creep, shrinkage and prestress loss (gain/loss). In extreme 

conditions, diurnal effects could sometimes reduce the level of prestress 

particularly in low strength units where creep and shrinkage are greater. 

4- The effect of non-prestressing steel on prestress loss of post-tcnsioned 

masonry needs to be investigated. Some prestressed masonry retaining walls 

use high yield non-prestressing steel for additional reinforcement in perforated 

bricks. 
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5- The effect of unit water absorption units, laid dry and docked, on elasticity, 

creep and moisture movement strain of masonry should be studied on other 

types of masonry so that 'standard' adjustment factors can be established for 

the unbonded properties required by the composite model approach. The 

modified water absorption test developed in this investigation (Chapter 7) can 

be used for this purpose. 

6-
out 

Further tests on creep, shrinkage and prestress loss need to be carried"or a 

longer duration, especially with calcium silicate brickwork which exhibited a 

higher deformation rate after prolonged loading than clay brickwork and 

concrete blockwork. 
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APPENDIX A 

A.I • Prestress Loss due to creep, shrinkage and thermal effect 

Consider Class B Engineering Clay Bricks with compressive strength of 70 MPa, 

with grade (ii) mortar. 

Characteristic strength (fk ) = 15.1 MPa (BS 5628 Part 2 1985) 

Elastic modulus of masonry (Em) = 0.9 fk GPa = 13.6 GPa 

Assume working stress of 3 MPa, 

therefore the elastic strain = 3 MPa I 13.6 GPa 

= 221 x 10-6 

Creep (BS 5628 Part 2 1985) = 1.5 x elastic strain 

= 1.5 x 221 x 10-6 = 332 x 10-6 

Neglect shrinkage (BS 5628 Part 2 1985) 

Thermal (-20 to 65°C) = Coeff. of thermal (BDA 1988) x range of temperature 

= 8 x lO-6,'OC x 85 OC = 680 x 10-6 

Ultimate tensile stress of Macalloy bar = 1030 MPa 

Working stress of Macalloy bar = 0.7 x 1030 MPa I factor safety of prestressing steel 

= 0.7 x 1030 MPa ILlS 

= 627 MPa 

Prestress loss due to creep = (Creep x Elastic modulus of steel) 
Working stress of steel 

= 
332 x 10-6 x 165 x 103 

627 
54.78 

= 627 

=8.73 % 
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No prestress loss due to shrinkage, since clay brickwork is assumed to undergo 

expansion instead of shrinkage. 

Prestress loss due to thermal effect = (thermal strain x Elastic modulus of steel) 
Working stress of steel 

= 
= 

680 x 1O-6x 165 x 103 

627 
112.2 
627 

= 17.89% 

A.2 - Determination of working stress 

Working stress = fk IYm 

where fk = characteristic compressive strength of brickwork 

Ym = partial factor of safety for material = 2.3 

From Fig. 1 Table 2 BS5628:Part 2: 1985, for mortar grade (ii) with Class B 

Engineering (clay), Class 4 (calcium silicate) and dense aggregate concrete blocks, 

the characteristic compressive strengths are 18.2, 7.9 and 10.6 MPa, respectively. 

Thus the working stresses of the clay, calcium silicate and dense aggregate concrete 

masonry are 7.9, 3.4 and 4.6 MPa, respectively. 
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Appendix 8 

Measured Strains of Masonry at Various Position 5 

Table 81 - Clay Wall 

(a) Diaphragm wall 

Time A verage Overall Strain (10-6) A verage Moisture Strain (10-6) 
In (Creep Wall) (Moisture Strain Wall) 

days 

• A B C D Ave. A B C D Ave. 

0 0 0 0 0 0 0 0 0 0 0 

20 134 161 175 157 157 46 41 48 44 45 

40 206 239 245 214 226 78 79 81 76 78 

60 266 294 294 257 278 108 112 121 90 108 

80 317 337 325 286 317 131 136 138 108 128 

100 355 366 351 304 344 ISO 148 149 115 140 

120 376 387 368 320 363 156 158 153 120 147 

(b) Fin wall 

Time Average Overall Strain (lfr6) A verage Moisture Strain (10-6) 
In (Creep Wall) (Moisture Strain Wall) 

days 

• A B C D E F Ave. A B C D E F Ave. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 201 207 214 241 259 216 223 81 72 74 79 90 93 82 

40 276 235 285 310 330 310 290 120 110 90 110 115 135 110 
60 327 340 381 383 407 363 367 152 145 142 148 147 148 149 
80 388 363 415 422 433 385 410 183 ISO 146 162 165 168 163 
100 410 402 439 440 454 412 426 197 172 159 173 180 178 177 
120 430 420 452 464 468 428 444 207 182 165 179 185 185 184 

• Refer to Figs. 4.12 to 4.15 
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Measured Strains of Masonry at Various Positions 

Table B.2 - Calcium Silicate Wall 

(a) Diaphragm wall 

Time A verage Overall Strain (10-6) A verage Moisture Strain (10-6) 
in (Creep Wall) (Moisture Strain Wall) 

days 

• A B C D Ave. A B C D Ave. 

0 0 0 0 0 0 0 0 0 0 0 

20 191 191 192 197 193 77 70 79 73 75 

40 283 259 298 282 281 128 115 140 113 124 

60 359 330 383 365 360 178 170 197 170 179 

80 430 392 452 445 430 233 218 254 228 233 

100 484 421 ~ 516 482 272 235 297 277 270 

120 561 526 564 573 556 293 298 315 295 300 

(b) Fin wall 

Time A verage Overall Strain (10-6) Average Moisture Strain (10-6) 
in (Creep Wall) (Moisture Strain Wall) 

days 

• A B C D E F Ave. A B C D E F Ave. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 204 201 286 276 239 240 240 96 95 102 111 94 90 98 

40 292 294 391 379 351 345 345 148 144 177 176 143 153 157 

60 380 387 486 470 419 422 427 211 210 238 244 196 209 218 

80 464- 480 552 551 491 488 504 275 260 298 276 246 254 268 
100 531 544 596 591 532 543 556 330 309 328 310 274 290 307 
120 546 583 611 629 538 593 583 349 328 345 341 288 311 327 

• Refer to Figs. 4.12 to 4.15 
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Measured Strains of Masonry at Various Positions 

Table B.3 - Concrete Blockwork 

(a) Diaphragm wall 

Time A verage Overall Strain ( 10-6) Average Moisture Strain (10-6) 
10 (Creep Wall) (Moisture Strain Wall) 

days 

• A B C 0 Ave. A B C 0 Ave . 

0 0 0 0 0 0 0 0 0 0 0 

20 197 207 187 207 200 59 69 68 78 68 

40 291 321 291 356 314 112 116 116 137 128 

60 343 413 338 423 378 142 164 139 177 160 

80 405 465 405 465 432 174 204 184 209 193 

100 425 505 465 495 473 185 234 234 226 220 

120 441 541 521 521 506 202 249 268 251 242 

(b) Fin wall 

Time A verage Overall Strain (lQ-6) Average Moisture Strain (10-6) 
in (Creep Wall) (Moisture Strain Wall) 

days 

• A B C 0 E F Ave. A B C 0 E F Ave. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
20 180 280 235 235 240 230 232 80 90 80 80 80 80 82 

40 285 355 310 330 310 340 321 135 150 140 140 150 135 141 

60 368 463 ~ 440 400 480 426 170 195 185 190 200 180 186 

80 423 485 458 490 490 543 480 190 240 225 225 225 215 220 

100 480 535 502 540 530 (JJ7 530 220 270 255 2.50 2.50 2.50 250 

120 535 565 543 565 595 650 572 230 295 290 275 270 280 272 

• Refer to Figs. 4.12 to 4.15 
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Appendix C 

Measured Strains of Mortar Prisms 

Table C.I - Mortar Prisms for Clay Walls 

(a) Mortar Prisms for Diaphragm Walls 

. 
Time Average Overall Strain (10-6) Average Moisture Strain (10-6) 

in (Average of 2 Readings on Creep Specimens) (Average of 2 Readings on Shrinkage 
days S >ecimens) 

Mort 
1 2 3 4 5 6 

No. 
Ave. 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 1420 1370 1320 12S> 1220 1220 1305 506 506 456 456 406 406 

40 2120 2100 1920 1910 1870 1870 1965 940 815 790 765 665 615 

60 2589 2489 2389 2289 2289 2289 2389 1138 1138 938 888 888 838 

80 2978 2673 2673 2573 2573 2478 2658 1200 1286 1200 1153 1103 1006 

100 3072 2972 2872 2872 2772 2672 2872 1376 1441 1391 1191 1191 1186 

120 3300 3100 3000 3000 2900 2700 3000 1422 1497 1557 1397 1247 1277 

(b) Mortar Prisms for Fin Walls 

Time Average Overall Strain (10-6) Average Moisture Strain (10-6) 
in (Average of 2 Readings on Creep Specimens) (Average of 2 Readings on Shrinkage 

days S >ecimens) 

Mort 

No. 
1 2 3 4 5 6 Ave. 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 2011 1906 1811 1606 1561 1556 1741 620 515 470 465 470 465 

40 2733 2728 2613 2463 2433 2423 2563 1110 1105 1105 960 955 960 

60 3234 3119 2924 2829 2724 2629 2909 1300 1250 1250 1200 1150 1100 

80 3685 378:> 3235 3130 3045 2920 3300 1700 1600 1500 1500 1400 1350 

100 3962 3882 3512 3292 3252 3152 3502 1815 16.50 1585 1580 14.50 1515 

120 3956 3851 3656 3451 3271 3256 3573 1860 1770 16.50 1620 1500 1510 

Ave. 

0 

456 

765 

988 

1158 

1291 

1397 

Ave. 

0 

550 

1033 

12~ 

1~ 

1600 

16.50 

Appendices 



258 

Measured Strains of Mortar Prisms 

Table C.l - Mortar Prisms for Calcium Silicate Walls 

(a) Mortar Prisms for Diaphragm Walls 

Time Average Overall Strain (1cr6) Average Moisture Strain (10-6) 
in (Average of 2 Readings on Creep Specimens) (Average of 2 Readings on Shrinkage 

days S Jecimens) 

Mort 

No. 
1 2 3 4 5 6 Ave. 1 2 3 4 5 6 Ave. 

0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 

20 1155 1055 111ll 980 1<m - 1090 409 529 529 559 579 499 517 

40 1789 1659 1779 1489 1634 - 1670 696 876 966 926 976 836 879 

60 22~ 2058 2283 1783 1933 - 2053 952 1152 1252 1202 1272 1052 1147 

80 2430 2355 2655 1911> 21~ - 2330 1165 1390 1390 1440 1400 1330 1353 

100 2632 2632 2CXJ7 2132 2407 - 2542 1302 151l) 1605 1552 1602 1462 1517 

120 2800 2810 3185 2310 2560 - 2710 1440 1720 1810 1640 1750 1540 1650 

(b) Mortar Prisms for Fin Walls 

Time Average Overall Strain (10-6) Average Moisture Strain (lO-~ 
in (Average of 2 Readings on Creq> Specimens) (Average of 2 Readings on Shrinkage 

days S Jecimens) 

Mort 

No. 
1 2 3 4 5 6 Ave. 1 2 3 4 5 6 Ave. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 1356 1266 1121 1456 1216 1391 1301 640 540 600 500 600 580 576 

40 1662 1802 1752 2352 2052 1972 1912 1040 960 1040 900 1000 1060 1000 

60 2528 2118 2128 2723 2423 2228 2357 1380 1340 1440 1200 1320 1480 1360 

80 2595 2285 2685 3185 ~ 2600 27~ 151l) 1670 176) 1680 1600 166) 1658 

100 2652 2542 2952 3252 3047 2852 2882 1720 1740 1890 1800 1780 1900 1805 

120 2769 2569 3069 3319 3269 2969 2994 1800 1880 1940 1840 1900 2000 1893 
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Measured Strains of Mortar Prisms 

Table C.l • Mortar Prisms for Concrete Block Walls 

(a) Mortar Prisms for Diaphragm Walls 

Time Average Overall Strain (10-6) Average Moisture Strain (l0-~ 
in (Average of 2 Readings on Creep Specimens) (A verage of 2 Readings on Shrinkage 

days S >ecimens) 

Mort 

No. 
1 2 3 4 5 6 Ave. 1 2 3 4 5 6 Ave. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 1311 1166 1121 1056 1016 966 1106 550 500 500 490 480 500 500 

40 1847 1747 1672 1622 1597 1547 1672 827 872 852 782 732 752 802 

60 2268 2218 2168 2068 2018 1968 2118 1220 1170 ll20 1120 1020 950 llOO 

80 2593 2493 2393 2343 2343 2293 2410 1483 1383 1333 1333 1133 1133 1300 

100 2745 2645 2545 2545 2545 2445 2578 1575 1520 1450 1400 1250 1200 1400 

120 2874 2824 2724 2724 2624 2574 2724 1660 1630 1580 1479 1379 1279 1500 

(b) Mortar Prisms for Fin Walls 

Time Average Overall Strain (l~ Average Moisture Strain (1O-~ 
in (Average of 2 Readings 011 Creep Specimens) (Average of 2 Readings on Shrinkage 

days S>ecimens) 

Mort 

No. 
1 2 3 4 5 6 Ave. 1 2 3 4 5 6 Ave. 

-
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 1675 1325 1195 1175 1175 1125 1275 685 635 610 555 535 535 593 

40 2263 1863 1863 1763 1763 1663 1863 957 927 947 907 857 847 907 

60 2704 2304 2294 2194 2154 1904 2259 1280 1225 1205 1105 1055 1055 1155 

80 3055 2605 2555 2455 2365 2295 2555 1455 1405 1355 1355 1305 1255 1355 

100 3271 2871 2771 2671 2571 2471 2771 1611 1581 1561 1511 1411 1401 1511 

120 3494 3044 2994 2874 2774 2494 2944 1728 17~ 1718 1618 1528 1528 1638 
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Appendix C 

Measured Strains of Masonry Units 

Table C.4 - Clay Units* 

Diaphragm Fin 

Time Average* Average** Average* Average** 
in Overall Strain Moisture Strain Overall Strain Moisture Strain 

days (10-6) (10-6) (10-6) (10-6) 

Unit 

no. 1 2 Ave. 1 2 Ave. 1 2 Ave. 1 2 Ave. 

0 0 0 0 0 0 0 0 0 0 0 0 0 

20 20 40 30 -10 0 -8 20 55 42 -20 5 -5 

40 25 40 33 -20 5 -8 25 60 43 -20 -5 -8 

60 30 40 35 -20 0 -10 30 65 48 -20 -5 -10 
80 30 40 35 -25 -10 -18 30 65 48 -10 -25 -18 

100 40 40 40 -20 -10 -15 30 65 48 -15 -15 -15 

120 45 40 43 -22 -18 -20 30 65 48 -23 -28 -26 

* Average of 2 readings on creep specimens 

** Average of 2 readings on moisture movement specimens. 
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Measured Strains of Masonry Units 

Table C.S - Calcium Silicate Units 

Diaphrngm Fin 

Time A verage Overall Average A verage Overall Average 
m Strain (10-6)* Moisture Strain Strain (10-6)* Moisture Strain 

days ( 10-6)** ( 10-6)** 

Unit 

no 1 2 Ave. 1 2 Ave. 1 2 Ave. 1 2 Ave. 

0 0 0 0 0 0 0 0 0 0 0 0 0 

20 135 145 140 60 40 50 140 210 175 45 55 50 

40 195 205 200 100 50 75 200 300 250 95 105 100 

60 m 232 260 165 75 120 305 315 310 140 140 140 

80 347 272 310 200 100 150 355 365 360 180 190 185 

100 400 320 360 240 140 190 380 410 395 205 225 215 

120 445 335 390 270 150 210 420 440 430 230 230 230 

* Average of 2 readings on creep specimens 

* * Average of 2 readings on moisture movement specimens. 
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Measured Strains of Masonry Units 

Table C.6 • Concrete Block Units 

Diaphragm Fin 

Time A verage Overall Average A verage Overall Average 
m Strain (10-6)* Moisture Strain Strain (10-6)* Moisture Strain 

days (10-6)** (10-6)** 

Unit 

no 1 2 Ave. 1 2 Ave. 1 2 Ave. 1 2 Ave. 

0 0 0 0 0 0 0 0 0 0 0 0 0 

20 180 190 185 90 80 85 195 145 220 75 85 80 

40 270 210 240 120 100 110 300 300 300 140 100 120 

60 290 290 290 130 150 140 295 425 360 165 155 160 

80 290 350 320 120 180 ISO 365 435 400 185 195 190 

100 325 405 365 ISO 220 185 400 470 435 210 220 215 

120 350 465 410 175 245 210 430 510 470 226 246 236 

* A verage of 2 readings on creep specimens 

* * Average of 2 readings on moisture movement specimens. 
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APPENDIX D 

Prediction of Elastic Modulus, Creep, Shrinkage and Prestress Loss 

using Composite Model (Brooks 1987a) 

(a) Elastic modulus and creep (Clay diaphragm wall) 

Using the following data~ 

where E"y* = 29 GPa (Table 5.6)~ Em = 7.5 GPa (Table 5.5); 

H = 1960 mm~ C = 26 courses; 

C+l = V; by =65mm, 

my = 10 mm; Aw = 2.08 x lOS mm2 . , 

Ab = 1.98 x HP mm2~ Am = 10 x 1()3 mm2 

* elastic modulus of clay unit between bed faces 

Equation 3.8 becomes~ 

_1 __ 0.862 [ 1 ] + 0.138 
E - R E E 

wy """'by 0.956 + 0.044 (, m 

For eff ecti ve modul us (-J.--), Equation D.1 becomes 
wy 

(D.1) 

----L-_ 0.862 [ 1 ] 0.138 
E' - E' E' + E' 

wy by 0.956+ 0.044 pfD- m 
by 

(D.2) 
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Applying Equation 3.12 for the units and mortar. the effective modulus of the 

masonry units and mortar in Equation D.2 is determined as follows 

1 1 
Cbs=~-~ 

by ~y 

Thus E l

by = 1 1 
(Cbs +-,;-> 

by 

1 and El = -----:~ 
m (C +_1_) 

ms E m 

where ~ = specific creep of unit between bed faces 

C = specific creep of mortar prisms ms 

The predicted elastic moduli and creep are as tabulated below. 

Time Cms El Cbs 
El El 

in 
m (G~i) (GPK) (1 ()-6/ (OPa) (10-6/ 

days MPa) MPa)* 

0 0 7.50 0 29.00 19.23 

20 283 2.40 7.3 23.90 10.5 

40 400 1.88 9.3 22.80 8.84 

60 467 1.67 10 22.40 8.13 

80 500 1.58 10.7 22.10 7.8 

100 527 1.51 11 22.00 7.57 

120 533 1.5 11.33 21.80 7.5 

Cw 
oo-t/ 

MPa)** 

0 

43.1 

61.07 

71.04 

76.14 

80.06 

81.31 

(D.3) 

(D.4) 

Stress x 
Cwy 

( 10-6) 

0 

129 

183 

213 

228 

240 

244 

* Cbs = Specific creep between header faces x elastic modulus between header faces 
elastic modulus between bed faces 

= Specific creep between header faces x 1.66 

** Specific creep 
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(b) Shrinkage (Clay diaphragm wall) 

Using similar data for predicting creep. Eq. (3.13) becomes; 

0.862 (S - Sb ) = 0.862 Sb + 0.138 S f m ElY 
y m b 

1 + 21.5 F 

where S = axial shrinkage of masonry; wy 

~y = axial shrinkage of brick or block~ 

Elby= effective mooulus of brick or block; 

El = effective mooulus of mortar; m 

and Srn = shrinkage of mortar. 

rn 

The predicted shrinkage at 20 day intervals is tabulated below. 

Time Sby Sm El El 
in days 

m (G~~) (10-0) (10-6) (GPa) 

0 0 0 7.5 29.00 

20 -3 456 2.4 23.90 

40 -6 765 1.88 22.80 

60 -10 988 1.67 22.40 

80 -15 1158 1.58 22.10 

100 -17 1291 1.51 22.00 

120 -20 1397 1.5 21.80 

(0.5) 

Sw), 
(10-6) 

0 

62.1 

103 

131 

150 

167 

179 
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(c) Prediction of Prestress Loss of Diaphragm Clay Brickwork 

using Equation 6.3 (Dilger method) 

The following are the constants substituted into Eq. ( 6.3); 
_ Es _ 175 x 1 ()3 _ 8 60 

no - Ewy - 20.36 x 1()3 - . 

fo =3 N/mm2 Es = 175 x 1<P N/mm2 
A 491 x 2 __ 8 _ 

0.00472 P - AwIc - 2.08 x 105 

y12/r2= 0 

rr(t) = a fr(t) a = 0.40 (from Fig.3.I) 

fr(t) = relaxation of the steel (based on test value) 

The aging coefficient is determined from the following; 

3 1 x (t,to) = 

where ft(t,to) is a function of relaxation of brickwork. However to date no 

experimental data has been reported. The aging coefficient normally varies from 0.5 

to 1.0. Tables 0.3 and 0.4 shows the effect of using the aging coefficient as 0.5 and 

1, respectively in predicting prestress loss. 

Eq. ( 6.3) becomes; 

[25.8 (E,lr,to) - 1) + Esh(t,to) 175 x 103 + f'r(t)] 
Ms (t) = wy (0.6) 

(1 + 0.041 a) 

20.36 
where a = (1 + X (t,to) [E'wy(t,to) - 1]) (0.7) 
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The predicted prestress loss at 20 day intervals, assuming X = 1.0, is tabulated in 

Table D.l below ~ 

Time E' C a Esb bfs (bfs/629) in days (GPei') wy 
f'r(t) ( 10-6) ( 10-6) 100 

0 20.36 0 1 0 0 0 0 

20 10.50 43.1 1.94 62 7.90 39.72 6.31 

40 8.84 61.07 2.30 103 9.54 55.96 8.90 

60 8.13 71.04 2.50 131 9.54 64.71 10.33 

80 7.80 76.14 2.61 150 9.54 69.43 11.04 

100 7.57 80.06 2.69 167 9.54 74.25 11.80 

120 7.50 81.31 2.72 179 9.54 76.65 12.18 

The predicted prestress loss at 20 day intervals, assuming X = 0.5, is tabulated in 

Table D.4 below: 

Time E' Cwy a Esh bfs (bfs/629) 
in days (GPK) (10~) (1O~) f'r(t) 100 

0 20.36 0 1 0 0 0 0 

20 10.50 43.1 1.47 62 7.90 40.47 6.60 

40 8.84 61.07 1.65 103 9.54 57.35 9.12 

60 8.13 71.04 1.75 131 9.54 66.55 11.59 

80 7.80 76.14 1.81 150 9.54 72.04 11.43 

100 7.57 80.06 1.84 167 9.54 76.64 12.18 

120 7.50 81.31 1.86 179 9.54 79.13 12.58 
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(d) Prediction of Prestress Loss of Diaphragm Clay Brickwork 

using Equation 3.17 (Abeles method) 

Prestress loss 

Using the same constant as in Dilger method, the stress loss in Eq. (3.17) 

can be expressed as 

PL = Ko (PLcr + PLsh) + PL.{t) 

The predicted prestress loss at 20 day intervals is as tabulated in Table D.4 

below. 

time El Cw Esh Ms (bfs/629) 
in days (oPK) (1O-~) (10-6) PI..,.(t) 100 

0 20.36 0 0 0 0 0 

20 10.50 43.1 62 7.90 42.98 6.83 

40 8.84 61.07 103 9.54 61.19 9.73 

60 8.13 71.04 131 9.54 71.28 11.33 

80 7.80 76.14 150 9.54 77.33 12.29 

100 7.57 80.06 167 9.54 82.36 13.09 

120 7.50 81.31 179 9.54 85.10 13.54 
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Appendix E 

Re-prediction of Creep, Shrinkage and Prestress Loss using 
Composite Model 

(a) Creep (clay diaphragm walls) 

Shrinkage factor of mortar = 0.74 (Fig. 7.18) 

Shrinkage factor of unit = 1.1 (Fig. 7.17) 

Creep/shrinkage of mortar = 0.43/MPa (Fig. 7.21) 

Creep/shrinkage of unit = 0.98IMPa (Fig. 7.23) 

Mortar 

Final specific creep of mortar = Creep/shrinkage of mortar x final shrinkage of mortar 

where 

final shrinkage of mortar = original shrinkage of mortar x Shrinkage factor of mortar 

= Sot x 0.43 

Therefore the new specific creep of mortar = 0.43 x Sot x 0.74 

At 20 days after loading; 

original shrinkage of mortar = 456 x 10-6 

Therefore the specific creep of mortar = 0.74 x 456 x 10-6 x 0.43 

= 145 x 10-6 per MPa 

Unit. 

Since the shrinkage factor (1.1) and creep/shrinkage (0.98) ratio of the clay units are 

almost equal to unity, therefore there are no adjustments in the original creep and 

moisture movement of the units. 

The new effective modulus of the mortar was determined by substituting the specific 

creep of mortar into Eq. D.4 (Appendix D). Similarly the creep of the walls was 

determined as in Appendix 0 (a). 
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The re-predicted creep of the clay diaphragm wall is tabulated in Table E.l below. 

time C E' *C E' E' C 
in days 

ms m bs (G~~) (GP~) ( 10-6/ (l(}6/ (GPa) (l(}6/ 
MPa) MPa) MPa) 

0 0 7.50 0 29.00 19.23 0 

20 145 3.345 7.3 23.90 13.17 23.93 

40 243 2.517 9.3 22.80 10.95 39.36 

60 314 2.136 10 22.40 9.83 49.79 

80 368 1.915 10.7 22.10 9.10 57.87 

100 411 1.771 11 22.00 8.62 64.02 

120 445 1.671 11.33 21.80 8.27 68.98 

(b) Shrinkage (clay diaphragm wall) 

Mortar 
At 20 days after loading the original shrinkage of the mortar = 456 x 10-6 

By applying the shrinkage factor; 

the final shrinkage of the mortar = 0.74 x 456 x 10-6 = 337 x 10-6 

Unit 

Stress x 
C 

w 
( 10-6) 

0 

71.8 

118 

149 

174 

192 

207 

Again. as in the creep. no adjustments on the original moisture expansion of the units 

was made. 

The re-predicted shrinkage of the wall was determined by substituting the final 

shrinkage of mortar into Eq. D.5 (Appendix D). 
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The re-predicted shrinkage at 20 day intervals is tabulated in Table E.2 

below. 

Fmal 
Time Shy Sm Sm El El S 

in days m (G~~) wy 
(10-6) (10-6) (10-6) (GPa) ( 10-6) 

0 0 0 0 7.5 29.00 0 

20 -3 456 337 3.59 23.91 52 

40 -6 765 566 2.65 22.82 87 

60 -10 988 731 2.23 22.48 113 

80 -15 1158 867 1.99 22.15 135 

100 -17 1291 95 1.84 21.99 151 

120 -20 1397 1034 1.73 21.83 164 

( C) Prestress loss (clay diaphragm wall) 

Similar methods of predicting prestress loss as in Appendix D (Abeles and 

Dilger) were used in re-predicting the new prestress loss, i.e by substituting the rc

predicted creep and shrinkage. 

The repredicted prestress loss (Abeles) at 20 day intervals is tabulated in Table E.3 

as follows: 

time Cw~ Esh % 
in days (l0-6) (10-6) P4(t) Prestress 

Loss 

0 0 0 0 0 
20 72 52 7.90 6.25 

40 118 87 9.54 8.39 
60 149 113 9.54 9.91 
80 174 135 9.54 11.13 
100 192 151 9.54 12.02 
120 207 164 9.54 12.77 
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Appendix F 

Measured Strains of Mortar Prisms 

Table F.1 - Creep and Shrinkage Mortar Prisms 

(a) Mortar Prisms for Diaphragm Walls 

Mortar Prisms with Original Mortar Prisms with Reduced 
Water/cement Ratio Water/cement Ratio 

Time Average Overall A verage Moisture Average Overall Average Moisture 
in Strain (10-6) Strain (10-6)** Strain (10-~ Strain (10-6)** 

days * * 

1 2 Ave. 1 2 Ave. 1 2 Ave. 1 2 Ave. 

0 0 0 0 0 0 0 0 0 0 0 0 0 

20 900 1000 950 500 500 500 700 500 600 450 400 425 

40 1700 1500 1600 1000 900 950 1400 1200 1300 850 800 825 

60 2300 2150 2250 1300 1250 1275 1700 1500 1600 1100 1000 1050 

80 2800 2400 2600 1600 1500 1550 1900 1700 1800 1200 1100 1150 

100 2900 2700 2800 1700 1600 1650 2000 1800 1900 1300 1100 1200 

120 2900 2900 2900 1750 1650 1700 2000 1900 1950 1400 1100 1250 

(b) Mortar Prisms for Fin Walls 

Mortar Prisms with Original Mortar Prisms with Reduced 
Water/cement Ratio Water/cement Ratio 

Time Average Overall Average Moisture Average Overall Average Moisture 
10 Strain (1o-~ Strain (10-6)** Strain (1o-~ Strain (10-6)** 

days * * 

1 2 Ave. 1 2 Ave. 1 2 Ave. 1 2 Ave. 

0 0 0 0 0 0 0 0 0 0 0 0 0 

20 800 900 850 400 500 450 800 750 775 400 450 425 

40 1700 1900 1800 1000 1000 1000 1300 1300 1300 800 850 825 

60 2300 2400 2350 1350 1350 1350 1700 1650 1675 1100 1150 1125 

80 2450 2600 2525 1500 1550 1525 1900 1850 1875 1200 1300 1250 

100 3000 3000 3000 1800 1700 1750 2100 2050 2075 1300 1400 1350 

120 3000 3200 3100 1800 1800 1800 2300 2200 2250 1350 1450 1400 

* A vera e of 2 readin s on cree s Imens g g p pec 
** Average of 2 readings on shrinkage specimens 
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