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Abstract 

The present thesis examines two central issues in financial theory, optimal portfolio 

choice and investment performance evaluation, when the restrictive assumptions of 

the traditional static, mean-variance framework of analysis are relaxed. 

Chapter 2 presents a series of model specifications for the risky asset's returns and 

the underlying risk factor and derives the corresponding optimal portfolio choices. It 

shows how important the modelling assumptions are for the implementation of dy- 

namic asset allocation in practice and it contributes to the literature by examining 

the impact of horizon effects on portfolio choice in the presence of both predictability 

and stochastic volatility in asset returns. Moreover, this chapter shows how impor- 

tant is the introduction of an asset that completes the market and allows investors 

to hedge against the shocks that affect their opportunity set. 

Chapter 3 examines the bond portfolio choice of a long-term investor, making use 

of a macro-finance term structure model that allows for time-varying risk premia. 

This chapter shows how important is the failure of the expectations hypothesis for 

both myopic and long-term investors, since the time-variation in the bond premia 

dictates a market timing behaviour for investment as well as for hedging purposes. 

Incorporating macroeconomic information, that plays a significant role in bond pric- 

ing, we examine how this can be used for the formation of optimal portfolios by 

long-term investors. Furthermore, this chapter serves as an evaluation of the very 

11 



recent term structure models from an asset allocation perspective, drawing the at- 

tention to the correlation and the covariance structure of the bond returns. 

Chapter 4 employs the Harvey-Siddique asset pricing model and evaluates a sam- 

ple of UK equity unit trusts, proposing the intercept of this model, that is termed as 

the Harvey-Siddique alpha, as a new performance measure. This asset pricing model 

adds to the CAPM the returns of a negative coskewness strategy as an extra risk 

factor. Constructing this factor for the UK stock market, it is shown that negative 

coskewness bears a high risk premium. This framework allows us to examine how 

the adoption of specific performance measures generates incentives in fund manage- 

ment. In particular, we provide evidence that fund managers, who are evaluated by 

mean-variance performance measures, are incentivized to load negative coskewness 

risk to their portfolios in order to reap the corresponding premium and present it as 

outperformance. 

Chapter 5 overviews the contributions of this thesis, discusses the numerous issues 

that arise from the present results and outlines the following' steps in our research 

agenda. 
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Chapter 1 

Introduction 

1.1 Motivation and structure of the thesis 

Most of the theory of finance has been developed within a static, mean-variance 

framework. The main examples of this framework are the portfolio choice theory 

of Markowitz (1952), the fund-separation theorem of Tobin (1958) as well as the 

Sharpe (1964)- Lintner (1965)- Mossin (1966) Capital Asset Pricing Model (CAPM). 

These pathbreaking contributions served as an excellent first attempt to form optimal 

portfolios, to price risky assets as well as to evaluate fund managers and investment 

strategies. Nevertheless, the limitations of this framework are numerous and crucial. 

Providing motivation for this thesis, a significant portion of investors do not have 

myopic horizons and asset returns are not normally distributed, hence their higher 

moments should matter too. This thesis attempts to examine how the formation of 

optimal portfolios and the evaluation of investment strategies may be modified if we 

abandon the static, mean-variance framework. 

More specifically, we firstly examine how the optimal asset allocation of an in- 

vestor is modified when his horizon exceeds the next period. Chapters 2 and 3 

analyze a series of multiperiod portfolio choice problems, showing how a long-term 
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investor should optimally behave as well as how his optimal decisions differ from 

the case of a myopic investor. In particular, Chapter 2 presents a series of model 

specifications for the risky asset's returns and the underlying risk factor and derives 

the corresponding optimal portfolio choices. This exercise shows how important the 

modelling assumptions are for the implementation of dynamic asset allocation in 

practice. It contributes to the literature by examining the impact of horizon effects 

on portfolio choice in the presence of both predictability and stochastic volatility in 

asset returns. Moreover, it shows how important is the introduction of an asset that 

completes the market and allows investors to hedge against the shocks that affect 

their opportunity set. 

Chapter 3 examines the bond portfolio choice of a long-term investor, making use 

of a macro-finance term structure model that allows for time-varying risk premia. 

This chapter shows how important is the failure of the expectations hypothesis for 

both myopic and long-term investors, since the time-variation in the bond premia 

dictates a market timing behaviour for investment as well as for hedging purposes. 

Incorporating macroeconomic information, that plays a significant role in bond pric- 

ing, we examine how this can be used for the formation of an optimal portfolio by 

a long-term investor. Furthermore, Chapter 3 serves as an evaluation of the very 

recent term structure models from an asset allocation perspective, drawing the at- 

tention to the correlation and the covariance structure of the bond returns too, apart 

from the level of their expected returns and their predictability. Finally, in contrast 

to Chapter 2 that uses the dynamic programming approach, Chapter 3 employs 

the martingale methodology to solve the optimal portfolio choice problem in both 

complete and incomplete markets, presenting the plethora of the recently developed 

techniques for the solution of these problems. 

The second issue that this thesis considers is how investment strategies should be 
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evaluated if negative coskewness is priced in financial markets. In particular, Chapter 

4 uses the Harvey and Siddique (2000) asset pricing model and evaluates a sample 

of UK equity unit trusts for the period January 1991- December 2005, proposing 

the intercept of this model, that is termed as the Harvey-Siddique alpha, as a new 

performance measure. This asset pricing model adds to the CAPM the returns of a 

negative coskewness strategy as an extra risk factor. Constructing this factor for the 

UK stock market, it is shown that negative coskewness bears a high risk premium, 

underlining its importance. 

Using the proposed performance measure, the majority of the equity unit trusts 

significantly underperform their benchmark. Moreover, the results are compared 

with the performance measures that are commonly used in the literature. This 

framework also allows us to examine how the adoption of specific performance mea- 

sures generates incentives in fund management. This is an important issue related 

to the problem of the ex post state verification of the investment performance. In 

particular, we provide evidence that fund managers, who are evaluated by mean- 

variance performance measures, are incentivized to load negative coskewness risk to 

their portfolios in order to reap the corresponding premium and present it as out- 

performance. Nevertheless, this is not genuine outperformance for an investor who 

is averse to negative skewness, hence we document an unfortunate misalignment 

between managerial incentives and investors' preferences. 

Chapter 5 overviews the contributions of this thesis, discusses the numerous issues 

that arise from the present results and outlines the following steps in our research 

agenda. The rest of the present chapter introduces the reader to the general in- 

tertemporal portfolio choice problem and provides a classification of the fast-growing 

literature on this topic. It also discusses why negative skewness is priced in financial 

markets and how this feature is related to the intertemporal risks and the value, size 
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and momentum "anomalies". 

1.2 The intertemporal portfolio-consumption choice 

problem 

One of the central issues in financial economics is the determination of the optimal 

portfolio choice. The classical approach to the problem, suggested by Markowitz 

(1952), is to maximize a mean-variance objective function. This approach, however, 

is valid only if the investor has quadratic preferences or the risky asset returns are 

drawn from an elliptical distribution (see Chamberlain, 1983). Most importantly, 

this setup explicitly assumes that the investor has a one-period ahead horizon. 

Extensive research in the time series behaviour of the stock returns showed that 

these exhibit a series of stylized facts, such as time-varying volatility', negative skew- 

ness2 and predictability. 3 This behaviour led researchers to consider stock returns 

within a dynamic setting and motivated significant attempts to examine how shocks 

to a series of macroeconomic and financial risk factors affect the risky assets' returns. 

These stylized facts can be modelled by assuming that there is a set of underlying 

stochastic risk factors affecting the risky asset dynamics. Furthermore, if the in- 

vestment horizon of the investor exceeds the next period, then the optimal portfolio 

choice problem is significantly modified. In general, as Merton (1971) showed, the 

optimal portfolio choice of a long-horizon investor will incorporate an intertemporal 

hedging component, apart from the myopic one. This hedging demand arises due 

to the incentive of a risk-averse, long-term investor to minimize the volatility of his 

wealth path, which arises due to shocks in the underlying opportunity set. 
'See for example the review of Bollerslev et al. (1992). 
'See for example Andersen et al. (2002). 
3See the seminal paper of Campbell and Shiller (1988). 
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The pathbreaking study of Merton (1973) provided a characterization of the 

solution to this intertemporal problem. Nevertheless, the absence of an analytical 

solution to the resulting non-linear PDE discouraged any further research. This 

strand of the literature was revitalized with the increase in computing power and the 

provision of analytical solutions for special cases of the general problem. The studies 

of Kim and Omberg (1996), Brennan et al. (1997), Campbell and Viceira (1999) inter 

alia, examined the impact of returns' predictability by a series of financial variables 

on the optimal portfolio choice in an incomplete market setting. Chacko and Viceira 

(2005) dealt with the case of stochastic volatility. On the other hand, Cox and Huang 

(1989), Wachter (2002) and Detemple et al. (2003) inter alia, working in a complete 

market setting, made use of the martingale approach to provide an analytical or 

numerical solution to the general portfolio-consumption choice problem. 

1.2.1 The optimization problem 

The agent faces the problem of deciding what portion of his wealth he should consume 

and what to invest as well as how to allocate the portion of the wealth he invests 

among n-1 risky assets and an instantaneously riskless asset. The time-horizon is 

defined to be finite T. Uncertainty in this problem is described by the probability 

space P), with Sl being the sample space, P the Wiener measure, and F the 

a-algebra generated by the Brownian motions Bt and Bt defined on this space. 

The returns of the risky assets are assumed to follow a Stochastic Differential 

Equation (SDE) and, in particular, the moments of the risky assets are assumed to 

depend on a set of stochastic factors, symbolized by X. This set of stochastic factors 

characterizes the investment opportunity set that the agent faces. 

Introducing the appropriate notation, the riskless asset follows the Ordinary Dif- 

ferential Equation (ODE): 
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dP° 
= rf (X) dt (1.1) 

Po 

and the n-1 risky assets' returns follow the SDE: 

dP` 
P; =p (X)dt + Ei(X)dB (1.2) 

with i=1, .., n-1 where B is a standard (n - 1)-dimensional Brownian motion on 

the probability space that we previously defined and X is a k-dimensional vector 

collecting the stochastic factors. 

This state factor follows a Markovian diffusion process given by: 

dX = µX dt + EX dBX (1.3) 

where µX is a kxl vector function of X, EYExT is a kxk matrix function of X, while 

Bx is a k-dimensional standard Brownian motion on the same probability space. 

It is assumed that E is almost surely invertible. This is true when the variance- 

covariance matrix is nonsingular or, in other words, there are no redundant assets 

included in the asset space. The vectors dB and dBX are assumed to have a (n-1)xk 

correlation matrix, denoted by p. 

Denoting by 0 the (n-1)-dimensional vector of the portions of the wealth invested 

in the corresponding risky assets, the portion of the wealth invested in the riskless 

asset is 1- iT ¢, where i is a vector of ones. 

Therefore, the wealth process (W) is given, in the presence of consumption, by 
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the following diffusion process: 

dW=(W(o 
P 

+(1-iTJ) 
1O)-Cdt= 

0 

=W (q5T µdt + ¢T EdB + (1- iT 0) rf dt) - Cdt = 

= (W (qT (µ - iT rf) + r1) - C)dt + WcT EdB (1.4) 

The investor derives utility from his consumption as well as his terminal wealth. 

Therefore, he needs to find the optimal level of consumption C* and the optimal 

investment 0' in the risky assets, in order to maximize: 

T 
(1.5) max Eto[ae--8(-o)U(C(t))dt + (1 - a)e-°(T-to)B[W(T), T]] 

Q010(t) 

it 

to 

subject to the wealth dynamics given by (1.4) and the nonnegativity constraints 

C(t) >0, W (t) >0 for all tiE [to, T] and Wto > 0. 

The first constraint implies that consumption cannot be negative, while the sec- 

and acts as a natural no-default condition. In other words, zero consumption and 

zero wealth can be regarded as absorbing barriers in the corresponding processes. 

The weight a controls the trade off between utility derived by interim consumption 

and utility derived by final wealth. If a=0, then utility is derived only by final 

wealth and there is no interim consumption. If a=1, the agent derives utility only 

by interim consumption and there is no bequest function. The presented framework is 

general enough to accommodate for different time rates of preference. The parameter 

0 represents the discounting rate of future streams of consumption and wealth. 

The utility functions U(. ) and B(. ) used above are assumed to be strictly dif- 

ferentiable, strictly increasing, U'(C) >0 and B'(W) > 0, and strictly concave, 

U" (C) <0 and B" (W) < 0. Therefore, these utility functions satisfy the local 

non-satiation property for finite consumption and wealth levels and they refer to a 
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risk-averse investor. 

Furthermore, we assume that the standard Inada conditions are satisfied. In par- 

titular, limco U'(C) =1imw +o B'(W) = oo and limr U' (C) = limwý,, ý B'(W) _ 

0. The first Inada condition guarantees that the optimal consumption is nonnega- 

tive. Since consumption is financed by wealth, the optimal wealth level should be 

nonnegative too. In other words, since wealth can be interpreted as the present value 

of the future stream of consumption, the nonnegativity of consumption implies the 

nonnegativity of wealth. The second Inada condition essentially guarantees that the 

solutions are finite. Consequently, using a utility function that satisfies the Inada 

conditions, we can neglect the wealth and consumption constraints in the maximiza- 

tion procedure. The portfolio-consumption problem collapses to the maximization 

of equation (1.5) subject to (1.4). 

1.2.2 Classification of the Literature 

It is generally acknowledged that the literature of dynamic asset allocation begins 

with the seminal paper of Merton (1971), employing the budget constraint of a multi- 

period investor derived in Merton (1969). 4 Merton (1973) provided a supplementary 

treatment of the issue, deriving an intertemporal capital asset pricing model. How- 

ever, the lack of an analytical solution for the Partial Differential Equation (PDE) 

that describes the optimal portfolio-consumption problem for an agent with multi- 

period horizon, as well as the lack of the necessary computing power for numerical 

solutions, prohibited any applications of the Merton setup for more than two decades. 

These obstacles obliged researchers to follow various approaches of solving this prob- 

lem. During the last decade, there have been significant contributions, presenting 

tractable and insightful solutions. This section reviews and classifies this literature. 

4Samuelson (1969) derived the budget constraint of a multiperiod investor in discrete time. 
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Complete versus Incomplete markets 

The most important classification is among the studies that assume complete mar- 

kets and those working in an incomplete market setting. Under the assumption of 

complete markets, the "Martingale approach" can be employed. This methodology 

builds on the work of Harrison and Kreps (1979) on equivalent martingale measures. 

The assumption of complete markets implies that every source of risk can be per- 

fectly hedged. No arbitrage and market completeness guarantee the existence and 

the uniqueness of an equivalent martingale measure. 

Using the notation presented in the previous subsection, the matrix of the corre- 

lation coefficients between the vector of the Brownian motions of the risky assets (Bt) 

and the vector of Brownian motions of the risk factors (Bt) should be the identity 

matrix (p = I). The breakthrough of this methodology is that, as shown in Karatzas 

et al. (1987) and Cox and Huang (1989) and proved in Cox and Huang (1991), the 

multiperiod problem can be equivalently written as a static problem. 

Since most of the studies employ ad hoc specifications for the stock returns dy- 

namics, which are not derived by no-arbitrage conditions, the complete market set- 

ting is assumed to be quite restrictive. Therefore, most of the studies (see inter alia 

Brennan et al., 1997), that empirically estimate the parameters of the risky asset 

dynamics and the risk factors, do not impose such a restriction. On the other hand, 

Wachter (2002) provides an analytical treatment of the problem when the investor 

has to choose between a risky asset with mean-reverting returns and the markets 

are complete. She argues that the assumption of complete markets is realistic in her 

setup, since the shocks to stock returns have almost perfect negative correlation with 

the shocks to the Sharpe ratio that serves as a stochastic factor. 
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Numerical solutions versus explicit solutions 

The non-linear second-order PDE derived by Merton cannot be analytically solved 

as yet. As a result, the first attempts in the literature involved numerical solutions of 

the PDE using finite difference schemes. Brennan and Schwartz (1996), Brennan et 

al. (1997), Brennan (1998) and Xia (2001) inter alia employ model specifications for 

which analytical solutions do not exist and, therefore, use numerical solutions. The 

main disadvantage of these studies is the curse of dimensionality. Despite the increase 

in computing power, numerical solutions of PDEs become almost impossible as the 

number of risky assets and stochastic factors increases. Furthermore, the accuracy of 

the solution becomes very poor as the approximation errors propagate. As Detemple 

et al. (2005) note, the truncation of the state space and the imposition of boundaries 

for the value function, as used in finite difference schemes, may lead to a solution with 

unstable behaviour. Barberis (2000) solves numerically the dynamic programming 

problem, working in discrete time. 

Consequently, recent studies focus on deriving an analytical solution to this prob- 

lem. Liu (2007) provides- a complete treatment of the conditions under which Mer- 

ton's PDE collapses to a system of ODEs. The necessary assumption is that the 

risky assets and the risk factors' dynamics are characterized by processes which are 

"affine-quadratic" in the risk factors. In a complete market setting, an analytical 

solution can be provided even for the case of intermediate consumption, while under 

incomplete markets, an analytical solution is given only for the terminal wealth case. 

The framework of Liu (2007) nests almost all of the studies providing analytical solu- 

tions. For example, Kim and Omberg (1996) assume an Ornstein-Uhlenbeck process 

for the Sharpe ratio of the single risky asset, which follows a Geometric Brownian 

Motion (GBM) in their model. 

22 



Intermediate Consumption versus terminal wealth maximization 

As it has already been mentioned, the model specification and the assumption of mar- 

ket completeness are influential features for the type of the problem that is addressed. 

This choice is closely related to the possibility of deriving analytical solutions as well 

as the feasibility of numerical solutions. Most of the studies employing numerical 

solutions (see the previous subsection), as well as Kim and Omberg (1996) and Bar- 

beris (2000), assume that the multi-period investor maximizes his value function over 

terminal wealth, ignoring intermediate consumption. Under complete markets and 

"affine-quadratic" models for the risky asset dynamics, we can also deal with inter- 

mediate consumption using both the Dynamic Programming (see Liu, 2007) and the 

Martingale approach (see Wachter, 2002). The recent contributions of Detemple et 

al. (2003,2005) employ 'an alternative methodology under complete markets that 

makes use of Malliavin derivatives. This solution methodology requires Monte Carlo 

simulations, but it deals with more general risky asset dynamics (e. g. non-affine) 

and accommodates for the case of intermediate consumption too. 

Which moments of the assets' returns are time-varying? 

Asset returns exhibit a series of stylized facts such as time-varying risk-premia, sto- 

chastic volatility and deviations from normality. As a result, a GBM specification 

for the risky assets' returns dynamics is a very poor approximation. The literature 

on dynamic asset allocation has attempted to incorporate these facts in order to 

examine their impact on portfolio choice. 

Chacko and Viceira (2005) examine the case of stochastic volatility for a constant 

risk premium. Their model specification accommodates for volatility persistence and 

mean-reversion. It can also yield negative skewness due to the negative correlation 

between the shocks to the volatility process and the shocks to the risky asset process. 
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Such a model implies that the multiperiod investor faces a "volatility risk" that he 

has to hedge away. 

Liu et al. (2003) employ the double-jump model of Duffie et al. (2000), which 

allows for discontinuous movements both in asset prices and their volatility. Such a 

specification increases the sources of uncertainty for the risky asset and, interestingly, 

inhibits an "illiquidity" risk, which reflects the probability of a large drop in the 

risky asset price. An immediate consequence of this possibility is that a risk-averse 

investor will reduce his risky asset holdings. Das and Uppal (2004) employ a model 

which also accommodates skewness by assuming a jump process for the asset returns. 

Furthermore, their study refers to multiple assets, representing various international 

market indices. As a result, their model captures the fact that the price jumps 

occur simultaneously across these markets, diminishing the value of international 

diversification. 

Another strand of the literature allows for uncertainty in the moments of the as- 

sets' returns. This framework reflects the fact that forecasting is a very difficult task 

and the out-of-sample portfolio performance using point estimates of the moments 

is very poor (see e. g. De Miguel et al., 2008). Hence, Brennan (1998) allows the 

possibility of "estimation risk" for the conditional expectation of the risk premium. 

This implies that the investor should update his beliefs for the risk premium through 

time and this "estimation risk" becomes another source of uncertainty, against which 

the multiperiod investor has to hedge. Practically, this uncertainty reduces the risky 

asset holdings because the investor does not have exact knowledge about the posi- 

tivity and the magnitude of the risk premium, i. e. the motivation for investing in 

the risky asset. In a similar spirit, Xia (2001) assumes that returns are predictable, 

but the predictability relationship is uncertain. As a result, the multiperiod investor 

is able to update his beliefs through time, but he also needs to hedge against shocks 
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to this relationship. 

Discrete time versus continuous time 

Following the work of Merton, most of the studies examine this portfolio problem 

within a continuous time setting. The similarity with the techniques employed in 

dynamic asset pricing is one of the reasons why continuous time is preferred. Most 

importantly, as Merton (1975) argues, continuous time techniques allow us to solve 

in closed form portfolio choice problems which are analytically intractable in dis- 

crete time. This is true for the dynamic programming as well as for the martingale 

approach. 

On the other hand, there are a series of studies that deal with this problem in 

discrete time. Campbell and Viceira (1999) and Campbell et al. (2003) deal with 

the case of predictable returns and constant variances. Instead of working with 

Hamilton-Jacobi-Bellman (HJB) equations, as in continuous time, the studies using 

discrete time solve Euler equations. In particular, these studies employ loglineariza- 

tions of the Euler equations in order to derive the optimal portfolio and consumption 

expressions. Barberis (2000) examines a buy-and-hold investing strategy when re- 

turns are predictable and solves numerically the discrete time version of the dynamic 

programming problem. Another strand of the literature (see Brandt, 1999,2007 inter 

alia) uses conditional Euler equations and estimates nonparametrically the optimal 

portfolio and consumption choices for the various states of the underlying stochastic 

factors, employing conditional methods of moments. 

The main advantage of the studies working with conditional Euler equations is 

that they do not assume a specific model for the risky asset dynamics but they 

employ, instead, semiparametric estimations. On the other hand, they bear the 

disadvantage of resorting to approximations to get explicit solutions. Campbell et 
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al. (2004) demonstrate the correspondence between the discrete and the continuous 

time case, assuming predictability of stock and bond returns. This study mentions 

the pitfalls of mapping the discrete time solutions to a continuous time framework. 

Choice of utility functions 

Another important criterion, according to which studies on dynamic asset allocation 

can be classified, is the choice of the utility function that the multiperiod investor 

seeks to maximize. The results crucially depend on this choice, due to the dif- 

ferent properties of each utility function. Merton (1971) presented the solution to 

the problem using an exponential utility function (exhibiting constant absolute risk 

aversion- CARA) as well as the more general framework of utility functions exhibiting 

hyperbolic absolute risk aversion (HAHA). Most of the recent studies employ time- 

separable utility functions and more specifically, the power utility function. Such a 

choice is more realistic in comparison to the exponential one, since the power utility 

function exhibits constant relative, rather than absolute, risk aversion (CRRA). Fur- 

thermore, the separability of this utility function is very convenient, since it reduces 

the dimension of the value function optimization problem. 

On the other hand, there are some papers that examine different utility function 

specifications. The recursive utility function of Epstein and Zin (1989) has been 

employed inter alia by Campbell and Viceira (1999) and Campbell et al. (2003), 

while the continuous time version of this utility function, as developed by Duffle and 

Epstein (1992), has been employed in Campbell et al. (2004). 

The use of general conditional Euler equations in Brandt (1999) enables the use 

of various utility frameworks. Furthermore, the use of Monte Carlo simulations in 

Detemple et al. (2005) allows for more realistic and complex utility function specifi- 

cations. In general, the literature faces an important trade off between employing a 
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utility function that replicates realistic features of investors' behaviour and deriving 

analytical expressions for the portfolio-consumption problem that enable a detailed 

analysis of their properties. 

1.2.3 The Dynamic Programming Approach 

We define the value function I (W (X, to), X, to) : 

T 

ae-13(8-to)U(C(s))ds+(1-a)e-13(T-to)B[W(T), T]] I(W(X, to), X, to) = max Eto[ 
it 

C(t), O(t) o(1.6) 

This value function represents the maximized expected utility over interim con- 

sumption and terminal wealth. It depends on the agent's wealth, time and the 

stochastic opportunity set. 

Defining t- to + h, the previous expression can be re-written as: 

rto+h 
I (W (X, to), X, to) = max Eto [J ae ß(8-to) U (C(s)) ds+ 

to 
T 

+J ae-ß(8-("+h)) U(C(s))ds+ (1 - a)e-ß(T-t0)B[W(T), T] (1.7) 
to+h 

where by definition: 

T 
, (g-t) p(T-t) 

e- U(C(s))ds + (1- a)e B[W (T), T} =I (W (X, t), X, t) max Et 
it 

a 
(1.8) 

Therefore, for h small, we have: 
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t) 
I (W (X, to), X, to) = max Eto [J ae-Q(8-toU(C(s))ds +I (W (X, t), X, t)] (1.9) 

to 

We take a Taylor series expansion of I (W (X, t), X, t) around to, and, after ap- 

plying Ito's lemma due to the stochastic nature of the wealth process, we get: 

I(W (X, t), x, t) = I(w(t°), X, t°) + Ow (W(t) - w(to)) + ät (t - to)+ 
192 

+äX (x(t) - X(to)) + awax (jj'(t) - w(to)) (x(t) - x(to))+ 

+2 axaxT (x(t) - X(to))(X(t) - x(to))ý' +2 awe (ý'(t) - N'(to))2 + 0(h2) 
(1.10) 

Substituting expression (1.10) into equation (1.9), we have: 

t 
I (W (X, to), X, to) = max Eto [J ae- U(C(s))ds +I (W (X, to), X, to)+ 

to 
ei ei ei 

+aw (W(t) - W(to)) + ät (t - to) + äx (X(t) - X(to))+ 
1 a21 1 a21 

+2 ax-- (X (t) -X (to)) (X (t) -X (to))T +2 awe (W(t) - u'(to))2 

+aw021 ax (w(t) - W(to))(x(t) - X(to)) + 0(h2)] (1.11) 

or 
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t 
ae-ß(e-to)U(C(s)) max Eto [, (W(t) - w(to)) + ät (t - to)+ J as + äý 

to 
2 

+awax (w(t) - W(to))(x(t) -x(to)) +ä(x(t) -x(to))+ 
1 02 +2 axaxT (x(t) - x(to))(x(t) - x(to))' +2 awe (W(t) - w(to))2 + o(h2)] =0 

(1.12) 

Dividing both sides of the previous expression through h, passing h inside the 

expectation and taking the limit as h --+ 0 we get: 

maxE[ae-ßtU(C(t)) + 
5WdW 

+ 
ýt 

dt + 
ýXdX+ 

aXgXT1 
921 

+ 3W0xdWdX + 
Z3W2(dW)2] 

=0 (1.13) 

Defining then: 

J(W(X, t), O(t), X, t) - ae-ßtU(C(t)) + 
ýWdW 

+ 
9t 

dt+ 

+axdX + aWaXdWdX +2 aXSXT 
(dX)(dX)T +2 

5W2 (dW)2 (1.14) 

we get the Hamilton-Jacobi-Bellman (HJB) principle of optimality: 

max E[J(W (X, t), ¢(t), X, t)] =0 (1.15) 

Replacing the SDEs for dW and dX, as defined in (1.4) and (1.3) correspondingly, 

we get the following HJB equation for the dynamic problem that we examine: 
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max [a6-ýtU(C(t)) + 
at 

+ 
2W20TETlý 

2 

ÖW2 
+W((bT(µ - iTrf) +rf 

-01 
+ 

+µxT 
aI 

_C 
aI 

+ TrýEX EXT 021 
T) 

+ W(ýT EpTYY T 1921 _ (1.16) äX äW 2 BXaX OWOX 

with boundary condition for the value function: 

I(W(X, T), X, T) = (1- a)B(W(T), T) (1.17) 

This optimality equation can help us derive the First Order Conditions (FOCs) 

with respect to the control variables, namely the consumption choice and the vector 

of the risky assets' portfolio weights. The FOC with respect to the optimal portfolio 

choice yields: 

aýý) 
=0 W2o, FT 

a21 
+W(µ - iTrf) 

Di 
+WEpTýxT 

a2I 
=0 00 0W2 äw awax 

¢' _- ew (ET)-1(µ - iTrf) - ,1 
(EET)-IEpTEXT 

a2I 
(1.18) 

äw wew awax 

The first term in equation (1.18) is the myopic demand component ä la Markowitz. 

It takes into account the risk premium of the risky assets' returns adjusted by their 

covariance matrix. This expression is multiplied by - e---, which is a measure 
--7W 

of risk aversion (i. e. the concavity of the value function). The second term is the 

intertemporal hedging demand component. Using this expression, the conditions 

under which the portfolio choice for the multiperiod investor is identical to the static 

one can be derived. More specifically: 

i) If shifts in the underlying opportunity set do not affect the value function of 

the investor, i. e. awäx = 0. A trivial example is when the value function does not 
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depend on the stochastic factor, while the most commonly referred case is when the 

investor has a logarithmic value function, i. e. I(W, X, t) = log W+ log X. 

ii) If the underlying opportunity set is not stochastic, i. e. EX = 0. It is important 

to underline that the intertemporal hedging demand component arises due to the 

stochastic nature of the underlying opportunity set, not simply because of its time- 

variation. 

iii) If the innovations of the underlying stochastic factors are not correlated with 

the innovations in the risky asset returns, i. e. p=0. Therefore, the need to hedge 

against the stochastic evolution of the risk factors arises only when this is affecting 

the returns of the risky assets. 

The FOC with respect to consumption yields: 

aC 
=0 ae-QtU'(c(t)) - aw =0 u'(c*(t)) = 

aaWeßt 
(ý. ýs) 

This envelope condition exhibits the trade off between current and future con- 

sumption. The optimal consumption level C* at each time step t equalizes the 

marginal utility of consumption with the marginal value of saving to finance future 

consumption, appropriately adjusted for the time value of money and the preferences 

of the agent. If U'(C* (t)) >ää eßt, then the investor would be better off by in- 

creasing current consumption, while if U'(C* (t)) < ääw eßt, the agent should reduce 

current consumption in order to accumulate wealth. 

Assuming invertibility of the utility function, the FOC with respect to consump- 

tion gives the optimal consumption level: 

C' = Uj1(181 eßt) (1.20) 
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Replacing these FOCs back to the HJB equation, we end up with a second-order 

non-linear PDE with respect to the value function I(W, X, t): 

. 491 
ae-ßtU(Cý(t)) + at 2( ai! 

)Z(µ 
- zTrf)T(F'FT)-1(ý - iT rf)+ 

ow 
aI 821 81 1 '92r 02! 

+aWWrf - 
awe [e [ExpF-i(µ - jTrf )]T - 

(awax a(aiy ) 
(ExPPTExT) 

w2 w 
z 

x0 
(1.21) -Uj1(aaWeßt)a091 W+ 2Tr(ExFxT axaxT) 

+µXT a191 

As it has been mentioned, there does not exist an analytic solution for this general 

PDE. Hence, we should either resort to numerical methods or conjecture a particular 

functional form for the value function. If the investor's preferences with respect to 

wealth are characterized by a power utility function, then the conjectured form is: 

I (W, X, t) = e-ßt 
W1 

ry 
[f (X, t)]ý (1.22) 

Using this functional form, the optimal portfolio choice is given by: 

0* 
y`ýýT 

ý_1`µ 
- 2T rf) + `EET 

)-1ýP T AXT 
°" 

(1.23) 

and the optimal consumption choice by: 

C' = a7W f -1 (1.24) 

This essentially means that the optimal consumption-wealth ratio is given by 

= a7 f -1. Hence, this depends on the weight assigned by the investor to the 

utility derived by interim consumption as well as on the value of the function f. 

Using this conjectured form for the value function, the HJB equation (1.21) be- 
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comes: 

T ät + 
2T r(ýX AXT aXOX 

)+ 
L1X +1y7 Ex pr-1 (µ - iTrf )jT 

ax 

+2f (7-1"aX (Z'XFXT-ý'XPPTýXT) + ary 

+[ 
11 1 

ryryrf -ý]f =0 (1.25) 

with the boundary condition f (T, X) _ (1 - a) . 
Liu (2007) derives the general conditions under which this non-linear PDE col- 

lapses to a system of solveable ODEs. The requirement is that the drift, µX, and the 

volatility terms, EXEXT, of the underlying risk factors are affine-quadratic as well as 

the terms (µ - iTrf)T(F , FT)-1( - iT rf ), EX pE-1(µ - zT rf ), EX>XT - EX ppT EXT, 

that appear in the PDE, and the return on the instantaneously riskless asset, rf, are 

at most quadratic functions of the vector of risk factors. 

1.3 Why is skewness important? 

As we previously mentioned, extensive research in the time series behaviour of the 

stock returns showed that these exhibit a series of stylized facts, such as time- 

varying volatility, predictability, negative skewness and excess kurtosis. Hence, re- 

turns clearly violate the assumption of being normally and identically distributed 

over time. Equally importantly, the CAPM is documented to fail empirically. In a 

series of papers, Fama and French (1993,1995) showed that value and size strategies 

generate returns that cannot be explained by beta-risk loading. The outperformance 

of the momentum strategy, documented by Jegadeesh and Titman (1993), is another 

"anomaly". 
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Severe criticism to the CAPM assumptions comes from utility theory too. The 

assumption of quadratic preferences is clearly rejected since it implies increasing ab- 

solute risk aversion (IARA). A desirable property for a utility function is that agents 

are averse to negative skewness and have a preference for payoffs exhibiting positive 

skewness. This behaviour is termed prudence (see Kimball, 1990). Interestingly, 

experimental evidence (see Kahneman and Tversky, 1979) showed that there is an 

asymmetrically higher impact on utility by losses as related to gains, leading to utility 

frameworks such as Prospect Theory or Disappointment Aversion. These functions 

imply that agents are even more averse to negative skewness. Hence, aversion to 

negative skewness is a crucial feature that has been relatively neglected in asset pric- 

ing. Harvey and Siddique (2000) provide evidence that the negative coskewness risk 

is priced in financial markets. 

Another very important limitation of the CAPM is its static nature. The re- 

cent asset pricing literature has attempted to resolve the documented "anomalies" 

within an intertemporal framework. The studies of Vassalou (2003), Campbell and 

Vuolteenaho (2004) and Petkova (2006) provide characteristic examples. This ap- 

proach has its origins in the Intertemporal CAPM of Merton (1973). The most 

important observation is that there is a set of underlying risk factors which evolve 

stochastically through time and affect the dynamics of the assets' returns. It is in- 

teresting to observe that the impact of these risk factors on asset returns can be 

represented by means of higher moments. In other words, the intertemporal risks 

can be interpreted as higher moments risks. 

The next two subsections discuss the interplay of skewness and preferences as 

well as how the outperformance of the size, value and momentum strategies could 

be explained as risk premia due to negative skewness. 
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1.3.1 Skewness and preferences 

This subsection examines how skewness in the distribution of an agent's wealth affects 

his utility. In particular, we deal with utility functions that share the following two 

properties: 

i) Monotonicity, i. e. U'(Wt) >0 and 

ii) Concavity, i. e. the individuals exhibit second-order risk aversion and U"(Wt) < 

0. 

We also require that the utility function exhibits Decreasing Absolute Risk Aver- 

sion (DARA). This property implies that the wealthier an investor is, the less risk 

averse he becomes over a given level of investment. Since the Arrow-Pratt coefficient 

of Absolute Risk Aversion (ARA) is given by: 

ARA =- 
Üý, 

(W) 
(1.26) 

for this to be decreasing in wealth, it should hold that: 

,, (W) u� (W) 2 U,,, (w) ,,, a(ARA) <o-u+ aw U(W) 
(U'(w)) <0ý-U'(W) <o=U (W) >0 

(1.27) 

due to the properties previously stated. The positivity of the third derivative of the 

utility function along with its concavity describes a prudential behaviour. Leland 

(1968) and Sandmo (1970) argue that this behaviour is associated with the motive 

for precautionary savings in the presence of future income/consumption uncertainty. 

In general, prudence could be characterized as the sensitivity of the optimal choice for 

a decision variable with respect to its variability (see Kimball, 1990 for an analytical 

treatment). It is important to note that this behaviour is distinct from risk aversion. 

In particular, in the case of quadratic utility, U(W) = aW + bW2, the individual 
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has a zero degree of prudence, since U... (W) = 0, even though he is risk averse when 

b<0. 

Extending the previous analysis, it is very informative to examine the interplay 

between an asset's returns distribution and preferences. In order to examine more 

formally the impact of skewness on expected utility, it proves useful to perform a 

Taylor series expansion around the mean level of wealth W. Then, the expected 

utility at time t over wealth at time t+1 is given by: 

Et[U(Wt+i)] = Et[ý 
00 U(')(W t+i)(Wt+i - Wt+i)k (1.28) 
k=O 

k! 

Equation (1.28) can be re-written, under mild assumptions, as: 5 

1 1.29 Ee[U(We+i)1 1= 
00 Ukk! t+i) Ea[(Wi+i - Wt+i)kJ () 

k=0 

In a portfolio choice context, truncating the Taylor series expansion at k=2 cor- 

responds to the familiar mean-variance analysis. If we truncate the series at k=3, 

the third moment of the wealth distribution is also taken into account, i. e.: 

Et[U(WW+i)] '=' U(We+i)+ 

// ý) U/// (W t+i ) +U 
Wt+i 

Et[(Wt+i - Wt+i)Z] + 3! 
Et[(Wt+i - Wt+1)3] 

2! 
(1.30) 

The expansion of the expected utility shows the importance of asymmetries in the 

wealth distribution. If we have a symmetric distribution, then the last term vanishes 
5Lhabitant (1998) argues that if the Taylor series is uniformly convergent, then we also have 

pointwise convergence and the infinite series °° u( (w) can be integrated out of the expecta- 
tion term-by-term. Lhabitant's assumptions depend on the choice of the utility function. In the 
case of a power utility function, convergence occurs for wealth levels in the range of [0,21, which 
is not such a restrictive range. 
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for globally differentiable utility functions, even if the agent is prudent. Nevertheless, 

since most of the assets' returns are characterized by negative skewness, it becomes 

evident that the mean-variance Weltanschauung is only a restrictive case of the 

general problem. 

The impact of skewness is often examined using the power utility function. The 

main characteristic of this function is that it treats symmetrically utility gains and 

losses caused by a wealth change of the same magnitude. Actually, this is also a 

property of the mean-variance analysis. Despite this assumption, there is significant 

experimental evidence that agents are mainly averse to losses, not just to volatility. 

The Prospect Theory of Kahnmann and Tversky (1979) as well as the Disappoint- 

ment Aversion framework of Gul (1991) imply that investors maintain an asymmetric 

attitude towards losses as compared to gains. In general, this class of value functions 

captures the feature of first-order risk aversion, analyzed by Segal and Spivak (1990). 

This feature implies that investors are even more averse to negative skewness in com- 

parison to power utility agents. Hence, in the case of kinked utility functions, one can 

observe from equation (1.30) that, even if the wealth distribution is symmetric, the 

third central moment will still affect expected utility due to its asymmetric impact. 

1.3.2 Skewness, market "anomalies" and intertemporal risks 

In this subsection, it is argued that the documented asset pricing "anomalies", which 

are currently being explained as premia for intertemporal risks, could be linked 

to negative skewness. Among the most often cited failures of the CAPM is the 

outperformance of the size and value strategies. Fama and French (1993, p. 55) 

questioned whether "... specific fundamentals [can] be identified as state variables 

that lead to common variation in returns that is independent of the market and 

carries a different premium than general market risk". This conjecture motivated 
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a significant research effort to associate the returns of the Fama-French portfolios 

with specific economic and financial variables. For example, Vassalou (2003) creates 

a mimicking portfolio that proxies news to future GDP growth and argues that this 

can explain the cross-sectional behaviour of the Fama-French portfolios. 

On the other hand, Brennan et al. (2004) use the real interest rate and the Sharpe 

ratio as intertemporal risk factors. Petkova (2006) devises an asset pricing model 

using the financial variables that have been employed to predict future stock returns 

(dividend yield, term spread, default spread and the short term rate). Campbell 

and Vuolteenaho (2004) propose a two-beta model, explicitly specifying the cash 

flows and the discount rate as risk factors in an intertemporal asset pricing model. 

Summarizing, all these studies essentially assume the existence of a set of risk factors 

that vary stochastically and their innovations are correlated with the innovations to 

the stock returns. Such a setup generates intertemporal risk premia, as shown in 

Merton (1973). 

We argue here that these intertemporal risks could be statically represented in 

terms of higher moments. To show that formally, we provide a specific example. Let 

us fix a probability space (Q, 17, P) and the information filtration (. F't) = {Ft :t> 0}. 

Let St be the stock price and Xt the underlying risk factor at time t. The processes 

(St, Xt) form jointly a Markov process in the state space DE R2 and they obey to 

the following SDEs: 

dSt 
-k- = µdt + Qe () St 

VXdBBt 1.31 

dX = k(e - X)dt + Q., vdByt (1.32) 

where dB = (dB� dB. )' is a vector of standard Brownian motions adapted to (. Ft) 
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and the two Brownian motions have a correlation coefficient given by p3 . An impor- 

tant observation is that, even though the processes (St, Xt) are jointly Markovian, 

the process of the risky asset price (St) is not necessarily Markovian. 

Given this setup, it is shown in the Appendix how we can derive the unconditional 

moments of the stock returns defined by zst+l = st+l - st, where st - In St. In 

particular, we get: 

E(As) =µ (1.33) 

E(Os - E(Os))2 = a'0 (1.34) 

E(Os - E(Ls))3 = 
TZ (e-k +k -1)BQBQxpsý, (1.35) 

As it is evident from equation (1.35), the skewness of the returns' distribution 

crucially depends on the sign of the correlation of the shocks. Trivially, if there is no 

correlation, then the returns' distribution is symmetric. If the correlation is negative, 

then the returns' distribution is negatively skewed. The point made here is that a 

myopic investor, who neglects the dynamics of the underlying risk factor X, will 

erroneously interpret the risky asset's returns as normally distributed. On the other 

hand, the long-term investor, who takes into account the stochastic evolution of the 

underlying risk factor will be able to extract the correct, non-normal distribution. 

Interestingly, a series of studies in the dynamic asset allocation literature report 

a negative correlation between the shocks to the risky asset's returns and the shocks 

to the underlying risk factor. We refer inter alia to Brennan et al. (1997) who 

use the dividend yield, the short and the long rate, Campbell and Viceira (1999) 

and Barberis (2000), who use the dividend yield, and Wachter (2002), who uses the 
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Sharpe ratio. This negative correlation gives rise to a hedging demand component 

in the optimal portfolio choice of a long-term, power utility investor. 

Since intertemporal risks can be statically reflected by means of higher moments, 

it is argued that the Fama-French factors could proxy negative skewness. The study 

of Harvey and Siddique (2000) establishes such a link. They show that the abnormal 

returns generated by the value, size and momentum portfolios can be partly explained 

by the fact that they are negatively coskewed with the market returns. Consequently, 

the implementation of these strategies is essentially adding negative skewness to the 

overall portfolio returns. As Harvey and Siddique (2000, p. 1283) comment: "HML 

(value) and SMB (size) portfolios, to some extent, capture information similar to 

that captured by skewness". A direct consequence of the previous analysis is that 

the two approaches to asset pricing -intertemporal risk premia and higher moments 

risk premia- could be regarded as equivalent. 

Examining further this link, stocks with high book-to-market value ratios and 

small size are dominated by cash-flows (earnings) risk, as argued in Campbell and 

Vuolteenaho (2004). An earnings' shock has an irreversible effect through time, while 

an interest rate shock has a partly reversible effect, because interest rates determine 

the rates of expected returns apart from discounting future cash flows. If investors 

are forward looking and price these intertemporal risks, a shock to the cash flows 

will have a higher impact on prices today, while an interest rate shock is expected 

to have a lower impact due to its reversibility through time. This is sufficient to 

argue that assets with high earnings risk are expected to incorporate a higher risk 

premium. 

In terms of moments, this argument essentially implies that small size and value 

stocks are expected to have higher cokurtosis with the overall market returns, because 

a shock to earnings will have a larger impact on their prices, in comparison to big size 
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and growth stocks, which are mainly characterized by interest rate risk. However, 

bearing in mind (see Conrad et al., 2002) that negative shocks (bad news) typically 

have a stronger impact than positive shocks (good news), this feature leads us to the 

conclusion that the returns of small size and value stocks are negatively coskewed 

with the market returns. 

Providing further reasoning for the size anomaly, it is claimed that small size 

stocks' returns are expected to be more negatively coskewed in comparison to the 

big size stocks because they also have lower survival probability rates. Small size 

stocks are thought to be more vulnerable to negative economic and corporate shocks 

because they are mainly new companies with lower capital capacity and they have a 

higher probability of going bankrupt. 

Regarding the ouperformance of the momentum strategy, there has not been 

suggested yet any successful intertemporal framework to provide an explanation of 

its outperformance. As Campbell and Vuolteenaho (2004, p. 1270) remark: "We are 

pessimistic about the two-beta model's ability to explain average returns on portfolios 

formed on past one-year stock returns". The explanation we put forward is due to 

the limited liability property of the assets and the concept of mean reversion. Within 

this framework, a poor performance in the previous year reduces the downside risk 

over the next period. On the other hand, past year's winners are expected to exhibit 

negatively coskewed returns due to their feature of long-term mean reversion. 

1.4 Appendix 

In order to find the moments of the stock returns, Ast+l = st+l - st, given the 

presence of the underlying stochastic factor X, we derive the joint conditional char- 

acteristic function of the processes (St, Xt). 
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The joint conditional characteristic function is given by: 

V (ui, u2; St+T, Xt+rI St, Xt) = E[exp(iu, t+T 
+ ZU2Xt+T) I Se, Xt] (1.36) 

and satisfies the following Kolmogorov equation: 

E[a`ýdS+ - dX+l 
02ý 

(dS)2+1 
a2V (dX)2+ 

92 
(dS)(dX)+aýdt] =0 (1.37) T- ax 2 a52 2 ax2 axas at 

Due to the affine structure of the processes (see Duffie et al., 2000), we conjecture 

that the functional form of the characteristic function is given by: 

cp(u; St+T, Xt+, I St, Xt) = exp[C(T; u) + Di(T; u)St + D2(7; u)Xt] (1.38) 

where u =(ul, u2) along with the terminal conditions C(0; u) = 0, Dl(0; u) = iul, 

D2 (0; u) = iu2. 

Replacing this trial form into the Kolmogorov equation and simplifying we get: 

D1µ + D2k(O - X) +2 (Di)ZQBX +2 (D2)2cr X+ DiD20'8cxP8xX = 

- 
äC 

+ 
äD1 

S+ 
OD2 

X 
c7T ar Dr (1.39) 

The method of undetermined coefficients yields the following system of ODEs: 

äD1 
=0= Dl = iul (1.40) 

Or 
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ac 
= (D1)µ + (D2)kO = iulµ + (D2)k6 (1.41) 

aD2 121 22 aT =2 (Di)2 Qe +2 (D2) ýx - D2k + D1DZO8QxP8x = 

_ -2uioe + 
2(DZ)2o 

+ D2(iu1Q8ap8 - k) (1.42) 

along with the corresponding terminal conditions. 

The ODE with respect to D2(rr) is of Riccati type and can be solved analytically. 

In particular, defining ä iuia8cY p3 - k, zQý 
, c" . -2uiQ8, = ä2 - 4bc, 

the solution is given by: 

2(exp(ýr) - 1) D2 (T) =-c+ iu2T (1.43) 
(ä + ý) (exp(ýr) - 1) + 2,0 

for 0 > 0. 

Consequently, C(T) is given by: 

C(T) = iuij. 17- +iU2kOr- 

-2CkO 

2ln[ä(exp(Y'T) 
- 1) +'(exp(ýr) + 1)1- 21n(2') - (ä + )T) 

(ý+ä6 -ä) 

Using Lemmas 2 and 3 of Jiang and Knight (2002, p. 201-202), given the joint 

conditional characteristic function, we can derive the unconditional characteristic 

function of Ost+l through: 

V(u19 U2; Ase+i) = exp[C(1; ui, O)] (D2(1; u1,0); X0) (1.44) 
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where OO(D2(1; ul)0); X0) is the characteristic function of X0. This follows a 

Gamma distribution with mean 0 and variance 022 
. Given the solutions to the 

ODEs and since Xt follows a Gamma distribution, the characteristic function of the 

stock returns is given by: 

w(ul, u2; A5t+1) _ 

= exp{iulp - 22k0[21n[ä(exp(, 
0) - 1) +'rfi(exp(ý) + 1)] - 21n(2ý) - (ä + 0)]} 

(''+ä)(''-ä) 

(1 +y 
2(exp('') - 1) 

ßa2 2kG (1.45) 
(a + ý) (exp(') - 1) + 2ý 2k 

Using this characteristic function, the moments given in equations (1.33), (1.34) 

and (1.35) are derived. 
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Chapter 2 

Dynamic Asset Allocation: The 

impact of modelling assumptions 

and market completion 

2.1 Introduction 

This chapter initially examines the intertemporal portfolio choice problem employing 

a series of model specifications for the risky asset's returns dynamics and the un- 

derlying risk factor. Using these different specifications, the impact of predictability 

and stochastic volatility on the optimal portfolio choice is examined, while discussing 

the necessary assumptions to derive explicit solutions. This is a partial equilibrium 

approach, where the agent under consideration derives utility from his terminal pe- 

riod wealth in an incomplete market setting. The optimal solutions are derived using 

the dynamic programming approach, firstly employed by Merton (1971,1973). The 

qualitative results for the case of interim consumption are analogous to the termi- 

nal wealth case, since, as Wachter (2002) demonstrated, the main impact of interim 
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consumption is to reduce the effective horizon of the terminal wealth investor. 

The final specification of the risky asset's returns dynamics used in this paper is 

a contribution to the literature, since it allows for both returns' predictability and 

time-varying volatility through the underlying stochastic factor. Until now, these two 

issues have been- separately examined (e. g. see Brennan et al., 1997 and Barberis, 

2000, for the case of predictability and Chacko and Viceira, 2005, for the case of 

stochastic volatility). This model provides the most general framework, since it 

allows all three possible channels of transmission of a shock affecting the underlying 

risk factor to the risky asset's returns dynamics, i. e. through the correlation of 

the shocks, through the drift as well as through the diffusion term of the returns' 

process. The specification of these dynamics is assumed to be the same as the 

physical production process used in Cox, Ingersoll and Ross (1985a), drawing a link 

with the stochastic general equilibrium literature. 

An innovative feature of the study is to investigate how the parameter values 

of the underlying risk factor dynamics affect the optimal solution. In particular, it 

is examined how the optimal portfolio choice is affected when the speed of mean- 

reversion and the diffusion coefficient of the underlying stochastic factor, as well as 

the correlation coefficient of the shocks are modified. In general, in the presence 

of fast mean-reversion in the risk factor process, the agent is less incentivized to 

hedge against a shock affecting it, since it is perceived as a transitory shock rather 

than a permanent one. Regarding the diffusion coefficient, as this increases, the 

hedging motive grows, since the magnitude of the shocks increases. The impact of 

the correlation coefficient is also important. If this coefficient is small in absolute 

value, the hedging ability of the risky asset is weak, hence the corresponding hedging 

demand is low. 

This framework is further exploited in order to introduce a contingent claim on 
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the sole underlying risk factor, to which the investor is assumed to be exposed. 

In other words, the market becomes now complete from the point of view of this 

investor. This contingent claim, a zero-coupon bond, is priced as in Cox, Ingersoll 

and Ross (1985b). Their pricing approach assumes that the market is dominated by 

logarithmic investors. Hence, the asset space is now expanded to include two risky 

assets. The aim of this exercise is two-fold: It firstly shows that even when the market 

is dominated by logarithmic investors, who behave myopically, a long-term investor 

who acts as a price-taker in this market, should still optimize intertemporally. As a 

result, his optimal portfolio choice should still incorporate an intertemporal hedging 

demand component. Secondly, it formally shows the intuitive result that, if an agent 

is sensitive to one risk factor, only the asset which has perfect correlation with this 

factor is used for intertemporal hedging, while the other asset could be still useful 

for its risk premium and the covariance structure of its returns. 

Using this expanded asset space, the optimal portfolio choice is determined and 

the impact of the parameter values of the risk factor process is re-examined. The 

hedging demand for the zero-coupon bond, that perfectly hedges away the interest 

rate shocks, increases with the investment horizon. It can be large enough to dom- 

inate the portfolio choice of the investor, especially when the diffusion coefficient 

of the interest rate process is large, the speed of its mean-reversion is low and the 

correlation between the shocks to the equity and the interest rate process is low in 

absolute value. 

The introduction of the bond provides also the opportunity to examine the im- 

pact of market completion on the welfare of the investor. In particular, we calculate 

the cost of not having access to this contingent claim for a long-term investor. This 

deprives him of the possibility to diversify his portfolio as well as to hedge intertem- 

porally. The corresponding utility cost is quite high and grows with the investment 
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horizon. To disentangle the diversification from the hedging effect, we also calculate 

the cost of acting myopically within the complete market setting. The results show 

that both effects are very significant, exhibiting the double role of this contingent 

claim. Consequently, the intertemporal dimension of the assets' returns should not 

be neglected by an investor who is not myopic. This argument highlights the limita- 

tion of the use of minimum variance portfolios for long-term investors. In particular, 

we show that their optimal portfolios would be erroneously regarded as largely inef- 

ficient by myopic observers, who take into account only one period-ahead expected 

returns and standard deviations. 

With respect to the modelling assumptions, the main conclusion is that the pa- 

rameter values of the risky asset's returns and the risk factor dynamics are crucial 

inputs for the behaviour of the multiperiod agent. Under different assumptions, a 

plethora of optimal solutions can be derived. This may prove to be a serious prob- 

lem, if one attempts to practically implement dynamic asset allocation. Therefore, 

more attention should be paid in the stage of modelling the risky asset returns and 

the underlying risk factor dynamics. 

The rest of this chapter is organized as follows: Section 2.2 presents the case of 

the simple correlation of shocks, while Section 2.3 examines the impact of returns' 

predictability and Section 2.4 examines the impact of stochastic volatility. Section 2.5 

analyzes the optimal portfolio choices under predictability and stochastic volatility 

in a complete and an incomplete market setting, while Section 2.6 concludes. 

2.2 Case I: Correlation of shocks 

We consider a long-term, risk-averse investor who seeks to maximize his bequest 

function defined over his terminal wealth, B[W(T)], allocating a portion 0 of his 
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current wealth to a risky asset with price S and the rest, 1- 0, to an instantaneously 

riskless asset with price Po. In particular, his value function depends on the level of 

his wealth W, on a risk factor, which in this section is assumed to be the long-term 

interest rate r and on time t. The preferences of the investor over his wealth are 

represented by a power utility function, exhibiting Constant Relative Risk Aversion 

(CRRA). Hence, the value function of the investor can be essentially written as: 

I(W(r, t), r, t) m(ax Et [B [W(T), T]] = 
Wl 

-YJ(r, 
t) X2.1) 

with terminal condition J(r, T) = 1. Furthermore, y is the CRRA coefficient 

with ry#1. 

The first case presented in this section assumes that the underlying risk factor 

affects the risky asset returns only due to the correlation of the shocks in their 

processes. The dynamics of the risky asset's returns are given by the SDE: 

dS 
S= µdt + a8dBB (2.2) 

where B8 is a standard Brownian motion defined on the probability space (S2, P, P) 

and the underlying risk factor, the long-term interest rate r, follows a diffusion 

process ä la Vasicek (1977): 

dr = r(B - r)dt + QrdBr (2.3) 

where Br is another standard Brownian motion defined on the same probability 

space. 

The innovations to the Brownian motions are allowed to be correlated, with their 

correlation coefficient given by p8r. The model for the interest rate accommodates 

mean reversion but not time-varying volatility. This model specification satisfies 
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the conditions of Liu (2007) to derive an analytical solution and it is similar in 

structure to the one examined in Kim and Omberg (1996) and Wachter (2002), with 

the difference that in their setup the stochastic factor was the market price of risk. 

The return of the instantaneously riskless asset is given by the ODE: 

dP0 
Po = rf dt (2.4) 

The instananeously riskless rate, rf, is allowed in this section to be distinctly 

different from the long-term interest rate, r, which serves as a stochastic factor in 

this case. 

Given the description of the problem, the wealth of the agent evolves through 

time according to the following SDE: 

dW = ¢WS+ (1 - O)WT =W [q5(µ - r1) + rf] dt + qWo3dB, (2.5) 

Using the Bellman principle of optimality, presented in Chapter 1, we have the 

following Proposition for the optimal portfolio choice: 

Proposition 2.1 

The optimal portfolio choice of the long-term, risk-averse investor who has 

the value function of equation (2.1), faces the budget constraint of equation (2.5) 

and the risk factor dynamics given in equation (2.3) is: 

0. =1 
(µ-rf) 

` 
08 

(See Appendix for the proof). 

(2.6) 

The optimal portfolio choice expression in equation (2.6) contains only the stan- 

dard Markowitzian component. This first trivial case formalizes the intuitive result, 
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that when the underlying stochastic factor does not influence the investment oppor- 

tunity set (neither through the drift and the volatility of the risky asset dynamics nor 

through the risk-free rate), the long-term investor behaves myopically. This result 

holds because the investor facing a constant equity premium, it - rf, and market 

price of risk, SR =, does not have any incentive to hedge against the shocks to 

the underlying risk factor. 

2.3 Case II: The impact of predictability 

A fundamental issue in financial theory is whether returns are predictable using pub- 

licly available information. Despite the extensive research on the topic, the debate is 

still open. A series of papers in the late 1980s (see inter alia Fama and French, 1988 

and Campbell and Shiller, 1988), using standard least squares regressions, cast doubt 

on the assumption that asset prices follow a random walk. In particular, they find 

that a series of financial variables have significant predictive ability. Fama (1991) in- 

terpreted these results as evidence of time-varying risk premia, rather than evidence 

against market efficiency. In an asset allocation framework, Kandel and Stambaugh 

(1996) argued that these predictive regressions, though having very low explanatory 

power, can be of significant economic importance. 

This section investigates the impact of predictability on the optimal portfolio 

choice of a multiperiod investor. The dynamics of the risky asset returns are assumed 

to be given by the following SDE: 

dS 
S= (ao + alr)dt + a, dB, (2.7) 

This specification implies that the long-term interest rate, r, predicts future re- 

turns in a linear way; returns are also assumed to exhibit constant volatility. Even 
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though these assumptions may seem quite restrictive, they are similar to most of 
the studies examining the impact of predictability on dynamic asset allocation. A 

similar setup has been employed, inter alia, in Brennan et al. (1997), Campbell and 
Viceira (1999) and Barberis (2000). 

The stochastic factor, the long-term interest rate r, is assumed to follow the SDE: 

dr = n(B - r)dt + QrdB, (2.8) 

The SDE for the long-term rate implies that it follows a mean-reverting process. 

This specification is in line with most of the studies applying standard regression 

analysis to examine the predictability of asset returns through stationary regressors. 

Nevertheless, the existence of a unit root in the interest rate process is still an open 

question. It is important to note that the inference for predictability is significantly 

modified if the interest rate process has a local-to-unity root (see for example Torous 

et al., 2004). Furthermore, the assumption of constant volatility in the interest rate 

process is required in order to derive an analytical solution to the optimal portfolio 

choice problem. The risk factor is allowed to be different from the risk free rate rf. 

Hence, the return of the instantaneously riskless asset is assumed to follow the ODE: 

dP0 
Po = rf dt (2.9) 

Under these assumptions, the risk premium, p- rf = ao + air - r', and the 

market price of risk, SR == ao+alr-rt become time-varying and stochastic Cs Qs 

through the underlying risk factor r. 

The wealth dynamics of the agent are given by: 
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dW= OWS+ (1- ¢)WT =W [q(ao +alr - r1) + rf ]dt + gWa8dB9 (2.10) 
0 

Proposition 2.2 

The optimal portfolio choice of the long-term, risk-averse investor who has 

the value function of equation (2.1), faces the budget constraint of equation (2.10) 

and the risk factor dynamics given in equation (2.8) is 

-1 
(ao + air - rf) Qr 

0, e + [d(t) + e(t)r] ýg P8, (2.11) 

where d(t) and e(t) are the solutions to the of ODEs (2.54) and (2.55) in the 

Appendix (See Appendix for the proof). 

The first term of the optimal portfolio choice in (2.11) represents the static mean- 

variance component ä la Markowitz (1952). It depends on the coefficient of relative 

risk aversion as well as on the risk premium and the variance of the risky asset. 

The second term represents the intertemporal hedging demand. It depends on the 

sensitivity of the investor's value function to the interest rate movements, captured 

by equations d(t) and e(t), as well as on the magnitude of the diffusion coefficients of 

the risky asset's returns (v8) and the interest rate (a,. ) SDEs. It is straightforward 

to observe that if the long-term rate is not stochastic, i. e. Q,. = 0, or if the shocks to 

the interest rate process do not affect the risky asset dynamics, i. e. p8f. = 0, then the 

intertemporal hedging demand is zero and the optimal portfolio choice collapses to 

its myopic component. Furthermore, inspecting the ODEs (2.54) and (2.55), in the 

limit case of y --* 1, which would be equivalent to the case of a logarithmic investor, 

then d(t) = e(t) -+ 0, so the hedging demand would disappear again. 

This optimal portfolio choice also demonstrates that, within this framework, the 
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multiperiod agent should be engaged in market timing. In other words, both his 

myopic and hedging demand components depend on the level of the stochastic fac- 

tor, apart from his preferences and his time horizon. Hence, it is evident that the 

existence of predictability crucially modifies the optimal portfolio choice of the long- 

term investor, as compared to the case of constant investment opportunities. This 

finding underlines the argument that the portfolio policy of a multiperiod investor 

can be both quantitatively and qualitatively modified due to different modelling 

assumptions. 

2.4 Case III: The impact of stochastic volatility 

This section presents a model, according, to which the risky asset returns exhibit 

stochastic volatility, while the drift of the process is constant. This framework is quite 

similar to the one employed in Chacko and Viceira (2005). The main difference is that 

-instead of using a latent factor, which is the volatility itself in their framework, we use 

an observable variable, the dividend y, to induce stochastic, time-varying volatility. 

In particular, the risky asset returns' dynamics are described by the following SDE: 

S= 
µdt + ý8 

! dB, (2.12) 

The dividend enters the volatility of the risky asset in an inverse way. Hence, the 

instantaneous volatility of the risk asset's returns implied by this model is given by 

Var(S) = Q; -1. In other words, as the risky asset pays a higher dividend, its returns 

exhibit lower volatility (see Pastor and Veronesi, 2003, for empirical evidence). With 

respect to the drift of the process, this specification essentially assumes that the 

expected return is constant. Chacko and Viceira (2005) use as a stochastic factor 

the precision of asset returns, which is defined as the inverse of the volatility. In our 
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setup, the dividend is assumed to follow the square root process: 

dy =r, (B- y)dt + Qy f dBy (2.13) 

where By is a standard Brownian motion defined on the same probability space 
(SZ, 

, 17, P) and the Brownian motions B, and By are allowed to be correlated with 

a correlation coefficient given by p8,. Apart from mean-reversion, this specification 

also implies that the volatility of the dividend increases as its level increases too. 

The return of the instantaneously riskless asset is given by the ODE: 

dP° 
Po = rf dt (2.14) 

Under these assumptions, the risk premium, (p - rf ), is constant, but the market 

price of risk, SR = 
('- ;), is stochastically time-varying. 

Given this setup, it is assumed that the value function of the investor now depends 

on the level of the dividend as well as on the level of his wealth and his time horizon. 

Hence; the value function of the investor can be written as: 

Wl-'Y 

J(y, t) (2.15) I (W (t), y, t) = m(aý E [B[W (T) 
, T]] = 1- -Y 

with terminal condition J(y, T) = 1. 

Following the same steps as in the previous sections, the dynamics of the agent's 

wealth process are described by the following SDE: 

dW = OW 7+ (1- O)W ö° 
= W[q5(µ - r1) + r1]dt + cWQ, ! dB, (2.16) 

Proposition 2.3 
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The optimal portfolio choice of the long-term, risk-averse investor, who has 

the value function of equation (2.15), faces the budget constraint of equation (2.16) 

and the risk factor dynamics given in equation (2.13) is 

0. _ý 
(/2 - 

2f)y+d(t)LYp�yy (2.17) 
a U, 

with d(t) =- (a++G)(eXP( 
(T 

t))-t))where a= (r, - (µ - rf) ä p8r), o_ 

- aý ,b= -2a - QT ps, and = a2 - 4W (See Appendix for the proof). 

As in the previous subsection, the optimal portfolio choice implies that the mul- 

tiperiod agent should be engaged in market timing. In particular, both his myopic 

and his intertemporal hedging demand components depend on the level of the sto- 

chastic factor in a linear way. With respect to the myopic demand component, this 

is true because the level of the stochastic factor determines the volatility of the risky 

asset. Regarding the hedging demand component, this effect occurs because the long- 

term investor seeks to hedge against the shocks to the dividend that would generate 

higher volatility and, consequently, deterioration of his investment opportunities in 

the subsequent periods. 

The optimal portfolio choice in equation (2.17) becomes identical to the static 

case, if the shocks to the dividend process are not correlated with the shocks to the 

risky asset returns (p8k = 0) as well as when the dividend is not stochastic (orb = 0). 

In the case of logarithmic preferences, which is equivalent to the limit y -º 1, we 

would get d(t) = 0, because c=0, and the portfolio choice of the multiperiod investor 

would again be the same as in the static case. 
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2.5 Case IV: Predictability and stochastic volatil- 

ity 

This section presents a framework in which there are two risky assets with prices S 

and 77 correspondingly, and a single underlying state variable, the risk-free rate r. 

In particular, the dynamics of these processes are correspondingly governed by the 

following SDEs: 

dS 
S= µrdt + a8-s/ dB3 (2.18) 

and 

L'7 
= ardt + wVr-dB,. (2.19) 

77 

where, as before, B,, and Br are standard Brownian motions defined on the prob- 

ability space (cl, 
. F, P). These shocks are not perfectly correlated, i. e. p8,. E (-1,1). 

Given this specification, the returns of these processes are predictable through 

the level of the stochastic factor. Moreover, they exhibit time-varying volatility that 

depends on the level of the interest rate in a linear way. These models are of the 

same form as in Cox, Ingersoll and Ross (1985a) and they essentially imply stochastic 

constant returns to scale, since the distribution of the rate of return on an investment 

in each of the processes is independent of the scale of the investment. The evolution 

of the underlying stochastic factor, which in this case is the risk-free rate, denoted 

by r, is determined by a mean-reverting, square root process: 

dr = rc(e - r)dt + 0r, lydBr (2.20) 

In this section we examine the optimal portfolio choice of a multiperiod investor 
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who has access only to the first process with price S, but not to the second one. 

Consequently, in principle, this agent cannot perfectly hedge the risk arising due to 

the innovations of the Brownian motion Br. However, he may have the possibility of 

investing in a contingent claim that is priced on this source of risk, if this becomes 

available. This contingent claim would eventually allow him to hedge away the 

interest rate risk. The following two subsections compare the optimal portfolio choice 

of this agent in two cases: 

i) The case where this contingent claim is not available versus 

ii) The case where this claim becomes available. 

It is important to stress that the key assumption made here is that the asset 

with value S is priced on a source of risk, captured by the innovations dB, that 

does not directly affect the utility of the long-term investor under consideration. His 

utility, represented by the value function (2.1), is assumed to be affected solely by 

the risk-free rate r, apart from the level of his terminal wealth and the time horizon 

of his investment. 

2.5.1 Incomplete markets 

In the first case, the asset space of the long-term investor contains only the risky 

asset with price S, which we henceforth call equity, and the returns' dynamics of 

which are given by equation (2.18), as well as an instantaneously riskless asset with 

price P0 that obeys the ODE: ' 

dP0 
Po = rdt (2.21) 

In this case, the risk-premium is given by (p - 1)r and the market price of risk is 

IIt should be noted that in order to derive an analytical solution for the optimal portfolio choice 
in this case, we need to assume that the stochastic factor is the same as the instantaneously risk-free 
rate. A similar assumption is made in Cox et al. (1985a). 
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given by SR =µ or'. ). Hence, they are both stochastically time-varying. Denoting 

by 0e the portion of the wealth invested in the equity, the agent's wealth dynamics 

are given by: 

dW = ýeW 5. + (1- Oe)W Pö 
=W Iq5e(µ - 1)r + r]dt +O Wa3ndB8 (2.22 

Proposition 2.4 

The optimal portfolio choice of the long-term, risk-averse investor who has 

the value function of equation (2.1), faces the budget constraint given in equation 

(2.22) and the risk factor dynamics given in equation (2.20) is: 

0e = 
l(4-1) 

+ d(t) e Pr (2.23) E 

with d(t) _- 2(exp(+G(T-t))-1) c where c= -( 
(,, _1)2 + ), b= _1-20,22 - (a++, )(exp(+G(T-t))-1)+2,27 o. Y2 rPsr 

2vT, a=k and V) = a2 --4b6 (See Appendix for the proof). 

The optimal portfolio choice expression is composed of two terms. The first term 

represents the myopic mean-variance component ä la Markowitz. It depends on the 

coefficient of relative risk aversion as well as on the risk premium and the variance 

of the risky asset's returns. The second term represents the intertemporal hedging 

demand. It depends on the sensitivity of the investor's value function to the interest 

rate movements as well as on the diffusion coefficients of the risky asset and the 

interest rate dynamics. 

The long-term investor attempts to hedge potential shocks to the interest rate ' 

through the second component of his asset demand. Since the correlation between 

the risky asset and interest rate shocks is not perfect, the investor cannot completely 
hedge away these shocks. Trivially, if the interest rate is not stochastic, i. e. Q, = 0, 

59 



the optimal portfolio choice is identical to the one in the myopic case. An interesting 

feature of this model specification is that the investor is not engaged in market 

timing, neither through his myopic demand nor through his hedging demand. 

Optimal portfolio choice, risk aversion and investment horizon 

In the present and the following subsections, we examine the optimal portfolio choice 

of the previously described long-term investor. In particular, we examine' how this 

choice is influenced by the level of his risk aversion and his investment horizon. 

Employing initially the following set of parameter values: {p = 1.6, a, = 0.034, 

Q8 = 0.9, n=0.1, p87. = -0.6,0 = 0.058 and r=0.05}, it is subsequently examined 

how the modification of these values affects the behaviour of the investor. 

It should be noted that modifying the benchmark parameter values would yield 

different optimal portfolio choices. This is a standard property of the mean-variance 

portfolio choice analysis and it carries through in the case of dynamic asset allocation. 

The various cases we examine for the parameter values show that both the hedging 

and the myopic demand components are very sensitive to this choice. In general, 

the expected returns of both the equity and the bond depend on the level of the 

risk-free rate r. Additionally, the myopic equity demand increases with the value 

of the parameter p, while the myopic bond demand increases as the parameter A 

increases in absolute value. 

Figure 2.1 depicts the portion of wealth invested in the risky asset for three 

different levels of relative risk aversion, as the investment horizon increases up to 15 

years. As the horizon increases, the hedging demand for the risky asset, measured by 

the difference between the total and the myopic demand, increases regardless of the 

level of risk aversion. However, the more risk averse the investor is, the greater the 

hedging motive becomes. In particular, for ry = 4, the hedging demand component 
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is of the same magnitude as the myopic one if the investment horizon exceeds 10 

years, while for -y = 10 the hedging demand dominates the total demand even for 

short investment horizons. Moreover, the hedging demand grows fast in the first 

years, but levels off from a specific horizon onwards. The reason is that the investor 

has fully exploited by that period all possible hedging opportunities provided by the 

risky asset. 

The impact of the correlation coefficient 

A very important determinant of the hedging demand is the extent to which the 

shocks of the risky asset's returns are correlated with the shocks of the interest rate 

process. The case of no correlation is trivial, resulting in no hedging demand. The 

Left panel of Figure 2.2 shows the hedging demand as the correlation between the 

shocks increases in absolute value for an investor with 15 years of investment horizon 

and various levels of relative risk aversion. As it is obvious, the greater the correlation 

is, the higher the hedging demand becomes. The reason is that as the magnitude of 

the correlation grows in absolute value, the risky asset can be more effectively used 

to hedge away these shocks. In other words, this risky asset becomes more important 

as a hedging device against the shocks to the interest rate. In the limit case of perfect 

negative correlation, the investor can perfectly hedge away these shocks. 

It is worth noting that the importance of the risky asset as a hedging device is 

greater as risk aversion increases. The Right panel of Figure 2.2 demonstrates this 

point. The investor with -y =2 uses the risky asset mainly for investment purposes 

and his hedging demand is not higher than the half of his myopic demand (ratio 

<0.5), even in the case of perfect negative correlation. On the other hand, a more 

risk averse investor, with y= 10, will use the risky asset mainly for hedging rather 

than investment purposes. In particular, his hedging demand will exceed the myopic 
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one even for moderate values of the correlation coefficient (I p8, j > 0.3). 

The impact of the risk factor diffusion coefficient 

Figure 2.3 demonstrates how important the diffusion coefficient of the underlying 

risk factor process is for the optimal hedging demand. Intuitively, the more volatile 

the interest rate is, the greater the incentive is for a risk averse investor to hedge 

these fluctuations. The reason is that the same shock is magnified as this coefficient 

increases and affects more significantly the investor's utility. The Left panel of Figure 

2.3 verifies this intuitive argument. As this diffusion coefficient increases, the hedging 

demand increases, regardless of the level of relative risk aversion. 

The Right panel of Figure 2.3 shows that it is the more risk averse investor who 

will mainly be affected by modifications in the values of the diffusion coefficient. 

The explanation for this finding is that a highly risk averse investor is the most 

sensitive one to interest rate shocks that generate fluctuations in his wealth path. As 

these fluctuations become wider due to the increase in the magnitude of the diffusion 

coefficient, the more risk-averse investor has a greater incentive to hedge them away. 

It is methodologically more appropriate to examine the relative importance of 

the hedging demand through its ratio with respect to the myopic demand, as in the 

Right panel of Figure 2.3, instead of simply using its absolute level. The reason is 

that by using the absolute level, a more risk averse investor may appear to have a 

lower hedging demand in comparison to a less risk averse investor (see the Left panel 

of Figure 2.3), because he altogether reduces his exposure to the risky asset, shifting 

his wealth to the riskless asset and not because he has a minor hedging motive. 
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The impact of the speed of mean-reversion coefficient 

An unexplored issue in the dynamic asset allocation literature is how the speed 

of mean-reversion of the underlying stochastic factor affects the investor's hedging 

demand. The Left panel of Figure 2.4 shows the level of the hedging demand for an 

investment horizon of 15 years and various levels of risk aversion, as the coefficient 

determining the speed of mean-reversion (ic) of the interest rate process increases. 

It is evident that the hedging demand decreases as this coefficient increases. As 

mentioned above, a more clear picture for the impact on the hedging incentives is 

provided through the ratios of the hedging to myopic demand. As the Right panel 

of Figure 2.4 demonstrates, the hedging incentive is extremely high when the mean- 

reversion is extremely slow (a commonly reported characteristic of the interest rate 

process), especially for highly risk averse investors. As the speed of mean-reversion 

increases, the hedging motive fades out and almost disappears for moderately risk 

averse investors (-y =2 or ry = 4). 2 

Though relatively neglected in the literature, this is an important finding that has 

a sound economic reasoning. When the speed of mean-reversion is slow, then a shock 

to the interest rate process is persistent and affects the investment opportunity set 

for a quite long period. In other words, such a persistent shock generates significant 

fluctuations in the wealth path of the long-term investor, who is highly incentivized 

to hedge them away. On the other hand, as the speed of mean-reversion increases, 

this shock is regarded as a transitory one, since it is expected to be absorbed by the 

process quite quickly. As a result, when the process quickly reverts to its long-run 

mean, the investor is not significantly affected by such transitory shocks and he is 

not motivated to hedge them away. 
2A similar argument has been made by Brennan and Xia (2002) for the speed of mean-reversion 

of the real interest rate process in their model. The different speed of the mean-reversion in their 
setup arises due to the different data frequency used for the estimation of the model parameters. 

63 



2.5.2 Completing the market 

In this subsection an extra asset is introduced, expanding the asset space. This 

extra asset is a contingent claim written on the non-available risky asset with price 

77. In order to clarify the terminology, we call this a "complete market case" from the 

point of view of the investor under examination. This definition implies that there 

exists an asset, the returns of which are perfectly correlated with the underlying risk 

factor r, that affects the utility of this long-term investor. The aim of this section 

is two-fold: We firstly show that even if the market is dominated by logarithmic 

investors, who behave myopically, a long-term investor, who acts as a price-taker, 

should still optimize intertemporally. As a result, his optimal portfolio choice should 

still incorporate an intertemporal hedging demand component. Secondly, we formally 

show the intuitive result that in a setup with one underlying risk factor, only the 

asset the returns of which are perfectly correlated with this factor is employed for 

intertemporal hedging. 

The dynamics of the non-available risky asset are given by equation (2.19) and 

the stochastic factor, as in the previous subsection, is assumed to follow the mean- 

reverting, square-root process of equation (2.20). We determine now the price of a 

zero-coupon bond, P6, which is a contingent claim on the non-available asset. In 

order to price this contingent claim, we assume that we are in an economy ä la CIR 

(1985a), populated by a representative agent, who has a value function Z(W, r, t). 3 

The fundamental differential equation that Pb should follow in equilibrium, as 

adapted by equation 6, p. 388, CIR(1985b), is given by: 

3 Note that i=T-T stands for the time horizon of the contingent claim and it is distinct from 
t, the investment horizon of the power utility agent with value function I (W, r, t). 
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where W is the representative investor's wealth and C* is his optimal consumption 

level. The equilibrium condition for market-clearing is that the representative agent 

invests all his wealth in the production process, i. e. i* = 1, where lr* is his optimal 

portfolio choice (see the definition in CIR, 1985a, p. 371). Therefore, Cov(W, r) = 

lr*warWr = wcrWr. In particular, the representative agent is assumed to have 

82z 
logarithmic preferences. This implies that äwä- =0 and WW = -1. Since the 

zero-coupon bond we are pricing is a security, the contractual terms of which do not to 

depend explicitly on the agent's wealth, then äW = 02pb = ayya, = 0. Consequently, 

the price of the zero-coupon bond follows the PDE: 

Q2 
a2P6 

+ 
apb 

[rc(9 - r) - Ar] + 
ap, 

- rPb =0 (2.25) 
2r är2 är at 

with the terminal condition Pb(r, T) = 1, where we have defined wo,, - A. 

Using the assumption that the zero-coupon bond price is an exponential-affine 

function of the interest rate, its price function can be written as: 

Pb(r, t) = exp(A(i) + B(t)r) (2.26) 

with terminal conditions A(T) = B(T) = 0. 

Replacing this trial form into the previous PDE we get: 

2B2(t)Q; 
r + B(t)ic(O - r) + A(t) + B(týr =r+ B(t)Ar (2.27) 
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where al(t) and b(t) stand for the corresponding derivatives with respect to time 

t. 

Since this expression is affine in r, the following equations are sufficient to hold: 

B(tý =1+ B(t)(rc + A) - 
ZQTBZ(t) 

(2.28) 

and 

A(t) = -B(t)rcO (2.29) 

Solving the system of these two ODEs, along with the corresponding terminal 

conditions, we have: 

B(t) 2(exp(; Gz)-1) 
,,, mac and A(ß'1 

(ä+' )(exp(' f)-1)+21p 

-2Q*, ä= +\, c=1, ß/i= ai-4bc. 

(2.26), an explicit formula for the zero-coup 

ä+ *) 

2 für 
2*0exp(_ 

2] where b= 
ar 

`(a 
+6)(exp(ýT1)+2,0 

Replacing these functions in equation 

on bond is derived. 

Employing the trial solution (2.26) and the relationship (2.27), the dynamics of 

, in a market dominated by logarithmic investors the zero-coupon bond returns, dpb 

are given by the following SDE: 

dP' 
-s- = (r + B(i)Ar)dt + B(i)er. f dB, (2.30) 
P6 

Having priced the zero-coupon bond, we now examine the optimal portfolio choice 

of a risk-averse, long-term investor with a value function as in equation (2.1), who 

is a price-taker and cannot affect the price formation of this contingent claim. In a 

vector form, the dynamics of the two available risky assets are given by: 

dP 
P= µpdt + EdB (2.31) 
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where µP = (Ar 
,, +B(t)af) IE= [a ö 

B(, -), 
O., 

fl and dB = (dB,, dBr)T. Correspond- 

ingly, the risk factor dynamics can be written as 

dr = pYdt +> dB,. (2.32) 

where It' = K(9 - r) and Er = 0',. '-, fr. 

Allocating a portion 0= (q5e) Ob )T of his wealth to the risky assets, equity (e) 

and bond (b), and a portion (1- iT q5) to the instantaneously riskless asset, the wealth 

dynamics of the long-term investor are given by: ' 

dW =W (¢T P+ (1- iT o) 
P o) =W (cbT (µp - ir) + r)dt +W qT EdB (2.33) 

o 

Proposition 2.5 

The optimal portfolio choice of the long-term, risk-averse investor who has 

the value function of equation (2.1), faces the budget constraint given in equation 

(2.33) and the risk factor dynamics given in equation (2.32) is: 

ýý = ryýýý: 
T)-iýµP 

- 2T) -i- (ýýt)ýFFT)-1ý pTr 2.34) 

where 

d(t) __ 
2(exp(0(T - t)) - 1) 

c (2.35) 
(a + 0)(exp(b(T - t)) -1) + 23b 

with c= 'IL 
I 1°(1 
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ü Par) + 
°2( v2)] 

+ 2= 
F 

(O2P2r) +a= [(1 - 

'y)( °as -1 + a) + n], b=- or and z/ý = a2 --4b8 (See Appendix for the 

proof). 
4Note that i is a 2x1 vector of ones. 
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Corollary 2.1 

The intertemporal hedging demand of the long-term, risk-averse investor contains 

only the zero-coupon bond, the shocks of which are perfectly correlated with the 

shocks affecting the underlying risk factor. The equity is still useful for its risk- 

premium and the covariance structure of its returns, but does not have any hedging 

value. 

Proof 

From the optimal portfolio choice of equation (2.34), writing the intertemporal 

hedging demand term in an explicit form, we get: 

0 
d`t)`EFT )_1EpT Ff T= 

(d(t)IB(tý) 
(2.36) 

Moreover, the total demand in explicit form is given by: 

_ 

ýoe 

_ 
ýi Qa(1-Par °aCr(1-Psr) (2.37) 

Ob 1rA (µ-1)Par ldt 
71Q2(1-Per)B(t ua r(1-Per)B(t) 

+ 
B(t 

In the special case that p81. = 0, we have a full separation of these two demands 

and the optimal portfolio choice for the equity collapses to the standard one-risky- 

asset myopic portfolio choice, c5e = -Y Qal 
. In the case we had p8,. = ±1, the optimal 

portfolio choice for the equity would not be determined, as one would expect, since 

the covariance matrix of the asset returns would not be invertible. This is true 

because we would then have two risky assets written on the same unique risk factor, 

making one of these assets redundant. 

Optimal portfolio choice and investment horizon 

Having solved analytically the portfolio choice problem of the long-term investor in 

the complete market case, we use specific parameter values to examine its various 
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aspects. In particular, we initially employ the following set of parameter values: 
{p=1.6,0,. =0.034, Q8=0.9, i =0.1, p8, =-0.6,0=0.058, A=-0.01, r=0.05 

and i' = 20 years}. This subsection examines how the portfolio choice is affected 
by the investment horizon, while the following subsections investigate the impact 

of the magnitude of the correlation coefficient among the shocks (per), the diffusion 

coefficient of the interest rate process (Q,. ) as well as the coefficient of the speed of 

mean-reversion (n). 

The Left panel of Figure 2.5 exhibits the equity and bond demand for an investor 

with y=4, as his investment horizon increases. A myopic investor sells short the 

bond and has a positive demand for the equity. This holds due to the much lower 

risk premium the bond is assumed to offer relative to the equity. As equation (2.37) 

shows, the bond has some diversification merit even for the myopic investor, since 

the correlation coefficient of the shocks affecting these two assets is negative. The 

long-term investor, though, finds some extra value in the bond due to its ability to 

perfectly hedge away the interest rate shocks. 

Consequently, as the investment horizon increases, the total demand for the bond 

increases, since the motive for hedging becomes more significant. As the Right panel 

of Figure 2.5 shows, the hedging demand dominates the total bond demand as the 

horizon increases. Moreover, the risk-averse investor under examination may have 

a total bond demand almost equal to the equity demand, if he has a quite long 

horizon. This finding shows how an asset with relatively low risk premium may play 

a significant role in the portfolio of a long-term investor. In particular, its hedging 

value can be so high as to alter the sign of its demand. 
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The impact of the correlation coefficient 

The hedging role of the bond depends on the correlation of the shocks affecting the 

equity returns' process with the shocks affecting the interest rate process. The Left 

panel of Figure 2.6 shows that, as the correlation coefficient decreases in absolute 

value, the total bond demand significantly increases in comparison to the equity 

demand. The absolute value of this ratio increases as the investor becomes more 

risk averse. The Right panel of Figure 2.6 shows that the increase in the bond 

demand is due to a significant increase in the hedging demand. In particular, for a 

low magnitude of correlation (in absolute value), the hedging demand dominates the 

myopic demand. However, if these shocks are highly correlated, the hedging demand 

for the bond is close to zero, regardless of the level of risk aversion. 

To interpret these results, one should take into account the multiple channels of 

transmission of an interest rate shock to the risky assets' returns processes. For ex- 

ample, an increase in the interest rate implies a negative shock to the equity returns 

due to the negative correlation. At the same time, this shock increases the expected 

returns of the equity and the bond, improving the available investment opportunities. 

However, this shock also increases the equity and bond returns' volatility causing a 

deterioration of the investment opportunities. Hence, our model specification pro- 

vides an interesting case where the sign of the hedging demand is not obvious a 

priori. 

For the specific parameter values we employed in this subsection, if the correlation 

coefficient is high in absolute value, then there is little scope for hedging because the 

negative effects (through the negative correlation and the increase in volatility) due to 

a positive shock to the interest rate are inherently almost offset by the corresponding 

positive effects it generates (through the increase of the expected returns). On the 

other hand, if the correlation is low in absolute value, the first channel of shock 
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transmission is neutralized and the investor becomes more exposed to the interest 

rate risk. As a result, he is incentivized to hedge away the interest rate shocks. 

It is important to note that at the same time, the different magnitudes of corre- 

lation have an impact on the diversification role of the bond too. As the correlation 

decreases in absolute value, the myopic demand for the bond increases. Nevertheless, 

the hedging demand shift due to the lower correlation (in absolute value) is so high 

that it dominates any shift in the myopic demand component. 

The impact of the risk factor diffusion coefficient 

As it has already been discussed, the magnitude of the diffusion coefficient of the 

interest rate process is a very important input for the hedging demand. The Left 

panel of Figure 2.7 shows the total bond-to-equity demand ratio for three different 

values of this coefficient, for an investment horizon of 15 years. We firstly observe 

that, as the coefficient of relative risk aversion increases, the bond-to-equity demand 

ratio increases, regardless of the value of the diffusion coefficient. However, a highly 

risk averse investor, (ry = 10), will hold less of the bond relative to the equity if the 

diffusion coefficient is Qr = 0.06. Prima facie, this result seems to contradict the 

intuitive argument that, as the shocks to the interest rate get magnified, the relative 

importance of the hedging asset (i. e. the bond) should increase. 

In order to clarify the underlying mechanism, we resort to the Right panel of 

Figure 2.7, that depicts the ratio (in absolute value) of hedging to myopic demand 

for the bond. This graph verifies the previous argument, that the hedging component 

of the bond demand becomes more important as the diffusion coefficient increases. 

The explanation for the finding of the Left panel is due to the myopic bond demand 

component. As the diffusion coefficient increases, the bond becomes riskier, hence 

the myopic bond demand is significantly decreased. This decrease has a greater 
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impact than the increase in the demand due to the hedging motive, so the total 

bond demand decreases in this case, as the diffusion coefficient increases. 

The impact of the speed of mean-reversion 

The last feature affecting the bond/equity mix that we examine, is the speed of mean- 

reversion in the interest rate process. In the incomplete market case, the hedging 

motive was greater when the speed of mean reversion was slower because a shock 

affecting the risk factor is more persistent. The Left panel of Figure 2.8 shows that 

this effect is true in the complete market case too. The hedging demand dominates 

the total bond demand as'the speed of mean reversion is slower. It is also interesting 

to note that the hedging incentive grows with the agent's risk aversion. 

Regarding the bond-to-equity demand ratio, this effect is much more compli- 

cated. In particular, we observe that for highly risk averse investors, the total bond 

demand decreases in comparison to the equity demand, as the speed of mean rever- 

sion decreases. Having clarified that the hedging bond demand actually increases in 

this case, the explanation for this finding is again due to the myopic component. In 

particular, as the speed of mean-reversion becomes slower, the bond becomes more 

risky, since the term B(t) in the bond returns' dynamics increases in absolute value. 

Hence, the decrease in the myopic bond demand component of this risk averse in- 

vestor more than offsets any increase in the hedging demand component, reducing 

the relative total portion of wealth invested in the bond. 

The mean-variance "inefficiency" of the long-term portfolio choice 

The fundamental result of dynamic asset allocation is that the portfolio choice of a 

long-term investor exhibits an additional component due to hedging purposes, apart 

from the standard myopic component. This result, contradicts the mean-variance 
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analysis of Markowitz (1952). Hence, the construction of minimum variance portfo- 

lios is of no use for a long-term investor, since the concept of variance has a static 

dimension in the standard analysis. Nevertheless, the long-term investor seeks to 

minimize the volatility of his wealth path through time, not simply one-step ahead. 

In order to illustrate this concept, we construct in Figure 2.9 the myopic efficient 

frontier using the properties of the equity and the bond returns, along with the 

tangency line starting from the risk-free rate r=0.05 in the expected returns' 

axis. This figure also presents the pairs of expected return and standard deviation 

arising from the portfolio formed by an agent with 15 years of investment horizon 

and coefficients of relative risk aversion of ry = 2, ry =4 and ry =8 correspondingly. 

The figure shows that the optimal portfolios of this long-term investor are in the 

"inefficient region". 

Hence, an observer with a static point of view would conjecture that this investor 

is behaving suboptimally, not exploiting the available investment opportunities. Such 

a conjecture would be wrong, because the observer does not take into account the 

intertemporal dimension of the investor's behaviour. In other words, the long-term 

investor is willing to "sacrifice" a significant level of one-step ahead expected returns 

by shifting his portfolio mix so as to minimize intertemporal volatility, not just 

the next period one. This analysis demonstrates how important the intertemporal 

dimension is for long-term investors and how this can be misinterpreted if viewed 

from a static perspective. 

2.5.3 The impact of market completion 

The main concept underlying the process of "completing the market", through the 

introduction of the zero-coupond bond, is that the long-term investor under ex- 

amination will be able to perfectly hedge the shocks affecting the underlying risk 
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factor, the only source of intertemporal risk. When the market was incomplete this 

hedge was only partial. Hence, we expect a significant utility gain for the 'long- 

term investor from the process of market completion. Defining as IINC(W, r, t) _ 
WI- JINC(r, t), the value function of the investor in the incomplete market case and 

as IcoM (W, r, t) = W_y JcoM (r, t), the value function in the complete market case, 

we expect that IINC(W, r, t) < IcoM(W, r, t) for y>1. We seek then to find the 

portion of wealth, CER, which, if deducted from the wealth of the investor in the 

complete market, would equalize his utility with the utility derived in the incomplete 

market case: 

((1- CER)W)1-'r 
1-ry 

Wl-7 
JcoM(r, t) -1- ry 

JINc(r, t) (2.38) 

where J(r, t) = exp(ry(c(t) + d(t)r)) and the functions c(t), d(t) are correspond- 

ingly known for each case (see the proofs of Propositions 2.4 and 2.5 in the Appendix). 

In other words, CER can be also interpreted as the portion of wealth that the 

investor in the incomplete market would pay to have access to the bond that com- 

pletes the market. This certainty equivalent ratio of wealth (CER), for ry > 1, is 

given by: 

CER = 1- 
JiNC(r't) (2.39) ýJcoM(r, 

t)ý 

Figure 2.10 shows the CER for three levels of relative risk aversion, as the in- 

vestment horizon increases. We observe that, regardless of the level of risk aversion, 

as the horizon increases, the portion of wealth that the long-term investor in the 

incomplete market would give up in order to have access to the bond is increasing. 

The cost of not being able to make use of the bond can be as high as 35% of the 

wealth of an investor with ry = 10 and 15 years of investment horizon. 
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Two remarks are useful for the interpretation of this graph: Firstly, the cost does 

not increase monotonically with the level of risk aversion. This is an expected result 

since the total demand for the bond has a nonmonotonic behaviour with respect to 

level of the risk aversion. Secondly, by completing the market, the investor is better 

off not only due to his enhanced hedging ability, but also due to the use of this bond 

for diversification purposes. 

We disentangle the hedging from the diversification effect by calculating the CER 

of optimizing intertemporally in comparison to acting myopically within the complete 

market case. Using the previous steps, the cost of acting myopically is given by: 

CER =1- [JINT(r, t)] ry'=ý (2.40) 

where IINT(W, r, t) = 
yyl-7 JINT(r, t) stands for the Intertemporal value function 

of the long-term investor. The previous expression holds since the value function in 

yyl-7 the myopic case is given by IMYOp(W, r, t) = 1-7 
Figure 2.11 exhibits this certainty equivalent wealth ratio (CER), as the invest- 

ment horizon increases, showing that the cost of not hedging against the intertem- 

poral risk is very significant and, as expected, it increases with the length of the 

horizon, since the hedging motive increases. The utility gains are not directly com- 

parable for different levels of relative risk aversion because of the different exposures 

to the interest rate risk. However, for all these levels of risk aversion, the inability 

to hedge the interest rate shocks implies significant utility costs. 

2.6 Conclusion 

This chapter examined the impact of modelling assumptions for the risky asset re- 

turns and the risk factor dynamics on the optimal portfolio choice of a long-term 
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investor. It is an attempt to show that the modelling assumptions play a significant 

role in the solution of this problem and acts as a warning for the practical implemen- 

tation of dynamic asset allocation, that it is not a straightforward task. Actually, 

quite the opposite is true. 

Firstly, there is a trade off between obtaining closed-form solutions and mod- 

elling returns in a flexible way. The "affine-quadratic" dynamics, as characterized 

in Liu (2007) and employed in this study, allow us to derive explicit solutions, but 

they cannot accommodate for non-linear models of returns' predictability, non-linear 

mean reversion or richer stochastic volatility models. Secondly, the issue of whether 

returns are predictable, as well as how their stochastic volatility is generated, cru- 

cially affects the optimal portfolio choice. For example, even though in most of the 

presented models the long-term investor will be involved in market timing, when 

both predictability and time-varying volatility is employed as in CIR (1985a), there 

is no need for market timing. 

A very important issue that we examined in this study and that it is not fully 

exploited in the literature, is the impact of completing the market. In particular, 

expanding the asset space to include a contingent claim, the returns of which are 

perfectly correlated with the shocks to the underlying risk factor, significantly affects 

the optimal portfolio choice. The equity is still important for investment purposes but 

does not serve for intertemporal hedging any more. The long-term investor manages 

to perfectly hedge away the underlying risk factor shocks using this contingent claim. 

Examining the impact of the market completion on the welfare of the long-term 

investor, we find that this is significantly improved due to the achieveable perfect 

hedge. This is a quite important result, underlining the practical purpose of market- 

ing assets that perfectly hedge away known risk factors. Further research is needed 

to shed light on the welfare implications of hedging instruments, such as volatility 
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and currency options as well as longevity and catastrophe bonds. Identifying the 

risks that a long-term investor is exposed to, he will be able to immunize his port- 
folio from unexpected shocks, appropriately employing the corresponding hedging 

instruments. 

A final conclusion of this study is that long-term investors should not make use of 

the standard mean-variance efficient frontiers. These frontiers take into account only 

one-period-ahead expected returns and standard deviations, ignoring the intertem- 

poral volatility of the investor's wealth path. It was shown here that the optimal 

portfolio of a long-term investor would be erroneously regarded as "inefficient" by 

a myopic observer. Hence, as with the mean-variance portfolio rules, mean-variance 

efficient frontiers provoke an unfortunate mismatch between preferences, objectives 

and tools in the asset allocation of long-horizon agents. 

i C 
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2.7 Appendix 

Proof of Proposition 2.1 

From the Bellman principle of optimality, we derive the following Hamilton- 

Jacobi-Bellman (HJB) equation: 

E(dI) =0= 
ýW-W 

[O(µ - rf) + rf ]dt + 
är 

rc(B - r)dt+ 

+1 
02I 

W2ý2ýZdt + 
11921 2-o dt +a dt + 

02I 
ýWQaýrPerdt =0 (2.41) 

2 äW2 2 ör2 ' ät äW är 

The first order condition with respect to the optimal portfolio weight yields: 

a(. ) 
_ 

ar f 021 2Z 1921 ao =o aww(µ - r) + aw2ýt' 0ý + awarW°rOsPsr =0= 
8I f 821 

0« _ 
äw (µ - r) 

_ away or (2.42) 821 2 821 Par 
aW 

w ýe 
8W 

w or', 

In order to solve this problem, a trial form for the value function is conjectured: 

exp(ry(c(t) + d(t)r)) (2.43) 1(W, r, t) =Ww1 'y 
W1-ry 

with terminal conditions c(T) = d(T) = 0, so that I(W, r, T) 

Substituting the trial solution and the optimal portfolio choice into the HJB 

equation, the following expression is derived: 
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1 (µ - rf )2 
2, Y or2 

+ rr + (p - rf)d(t) 
Qr 

P8r +2 dd 2(t)ýrpsr+ 
88 

1 
ry 

ryd(t)rc(O - 
r) + 

2(lry 'Y)d2(t)QT 
+17 

ry(c(t) 
+ d(t)r) =0 (2.44) 

where 6 and d denote the corresponding partial derivatives with respect to time 

t. 
This is an affine expression in r. Using the method of undetermined coefficients, 

we get the following ODEs in c(t) and d(t): 

d(t) = d(t)rc (2.45) 

and 

rf2 
6(t) + 

1- ýý 

a2 

)+1 

ry 
yrf + ry(µ 

- rf)d(t)a8P8r+ 
s 

-F 
12 ry&(t)orr 

ar + d(t)iO + 2d2(t)Qr 
=0 (2.46) 

Solving the ODE with respect to d(t) with the help of the terminal condition 

d(T) = 0, we get 

d(t) =0 (2.47) 

Substituting the partial derivatives of the value function I(W, r, t) into (2.42) and 

using that d(t) = 0, we get the optimal portfolio choice in (2.6). 

Proof of Proposition 2.2 

The HJB equation of this problem is given by: 
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E(dI) =0= 
2WW [q(ao + air - rf) + rf ]dt + or rc(9 - r)dt+ 

1 192 
+2 öW2 W2020r8dt +1 

ßr2 
cr dt + 

5t 
dt + 

aW5r 
OWQBQ, P8, dt =0 (2.48) 

Taking the FOC with respect to 0, we find the optimal portfolio choice: 

a(') 
=0 

aI 
W(ao + air - rf) + 

021 
W20LY8 + 1921 WQQePBT =0 00 ow awe away 

äw (ao + air - rf) 82, 
e ýr 0 (2.49) 

gW Ue es W ae 
Par 

OW2 

In this case, the conjectured functional form for the value function is: 

I (W, r, t) =Wl -1 
exp(ry(c(t) + d(t)r +2 e(t)r2)) (2.50) 

Using this trial form, the optimal portfolio choice is given by: 

(ao + air - r1) 
orb 

+ [d(t) + e(t)r] ý8 p87 (2.51) 

Substituting the trial solution and the optimal portfolio choice into the HJB 

equation (2.48), we get after some simplifications: 
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2 
(ao 

0,2rf 

)2 
+ 2y 

1 le 
r2 + 

1(a0 
-rf 

)al 
r+ rf +2 (d(t) + e(t)r)2cr p8r+ 

2 + ry 
ye(t)K(O - r)r + 

2(1ry2 7) 
d2(t)v* +1 ry2ryd(t)e(t)Q*r + 2(1ly 7) 

e2(t) , rr2+ 

+2(1ry )e(t) 
*+d(t) rp8, (ao+alr-r1)+e(t)rp8r(ao+air-rf)r+ 

8 as 

+1'' 
-Yd(t)rc(O - 

r) +1' 
'Y6(t) 

+1' 
ryd(t)r 

+ 
21 y 

ye(t)r2 =0 (2.52) 

where c, d and 6 denote the corresponding partial derivatives with respect to time 

t. 
This equation is a quadratic expression in r. For this equation to hold, it is 

sufficient that the following equations hold: 

Z (ao 
- Tf 22 
-Z )+ 

rf +1 ry d(t)kO + 
2(l 

d2(t)QT 
+ 

Z0rTPard2(t)+ 
Y 8. 'Y 'Y) 

2(1 
ry 

7) 
e(t)crf + d(t) L8 pa (ao - r1) +1 ry 

,ý 
6(t) =0 (2.53) 

1 (a° - rf )a, y d(t)rc +y e(t)r. 0 + y-2 d(t)e(t)a2+ 7 1-y 1-y 1-y Qe 

7e(t)d(t)op Br + d(t) o'rPBTai + e(t)-Psr(ao - rJ) +' d(t) =0 
Q, Q, 1-y 

d(t) + d(t){ 1yy ýgP8ra1- !+ e(t)[tiýr + (1- y)0 PBr]}+ 
Q, J 1 

2y 
(a0 )al 

=0 (2.54) +e(t)[-P., (ao - rJ)1 -y+ KO] + 
ý8 yy a2 

and 
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1a l2 
- 

'Y 
e(t)rc +2 y 

e2(t)0, r + e(t) -P8rai + 2e2(t)ýrpBr +1y e(t) =0 2ryQ, 1-7 2(1-y) a, 2 21-7 

____) 
ýr e(t) -i- e(t) (8P8rai -1y , arc) 

+ e2(t)[Yar + (1 -'Y)ýr ar -I- 
1- 'Ya12 

=0 2 Qg 
(2.55) 

along with the corresponding terminal conditions. 

Solving the system of ODEs in e(t) and d(t), we can replace the solutions into 

the optimal portfolio choice expression (2.51) in order to get an explicit solution. 

The solution for e(t) is given by: 

e(t) -- 
2(exp(i(T - t)) -1) (2.56 

(a + b)(exp(zb(T - t)) - 1) -+2,0 ) 

for 'i > 0, where Vi = a2 --4b6, a= (2n -2 
ry ö p87 a1), b= -ycr - (1 - 

y)ul p',., 6=. The ODE in d(t) can be solved numerically using a Runge-Kutta 
-YT 

scheme. 

Proof of Proposition 2.3 

The HJB equation of this problem is: 

E(dI) =0 
5WW[q5(µ 

- rf) +rf]dt+ 
ýyn(B 

- y)dt+ 

1 1921 

awe w2o2Q. 8 
ydt + 2äy QYydt + 

ýt 
dt + 

aWlaygW 
o3cr p8ydt =0 (2.57) +2 

Taking the FOC with respect to ¢, the optimal portfolio choice is derived: 
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s 021 az1 a21 00 
0 

ýWW(µ-r)+äW2W 
ýa8y+BWayWQYQ8P8y=0= 

al f aaI 
"__a 

(µ -T )y away oy 
aal W C2 

- aal W ore 
PSyY (2.58) 

WeW 

Conjecturing the following functional form for the value function, I(W, y, t) = 
W_y exp(y(c(t) + d(t)y)), and substituting the optimal portfolio choice in the HJB 

equation, we get the equation: 

1 (µ-rf )zy+(µ-rf 
)dt ý ry zzz 2-, Ue 

() 
Oe 

PByy +2d (t)ry 
sy F 

12 +1 'y 
ryd(t)rc(O - 

y) + 2(1 ry)dz(t)vzyy 
+1 'Y 

ry(c(t) 
+ d(t)y) =0 (2.59) 

This is an affine expression in y. Hence, it is sufficient that the following two 

equations hold: 

d(t) = d(t)ýc-12y2 
(µ 

U8 

f )2 
-1 y 

(p-rf)d(t)8P8b- 2d2(t)ýb-1 2 
ryd2(t)cr 

p2 
-y2 

(2.60) 

and 

ryrf 
- d(t)0B (2.61) 

7 

Solving the Riccati ODE with respect to d(t) using the terminal condition d(T) = 

0, we get: 

d(t) =_ 
2(exp(0(T - t)) -1) c (a +'i/))(exp(ýi(T - t)) - 1) + 20% 
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for&i>0, where a= (rc -"(pµ- rf) Q P8y), 6=-µa, fb= _20,2 - 
L-20,2 p8Y and = a2 --06. 

2 

Proof of Proposition 2.4 

The HJB equation of this problem is given by: 

E(dI) =0ý 
äWW[O(µ 

- 1)r + r}dt + arc(O 
- r)dt+ 

+1 
02I 

W2020,2rdt + 
1021 

ol 2rdt +l dt + 1921 OW a. u, p, rrdt =0 (2.62) 
2 8W2 82 are '' 57t- War 

The FOC with respect to the optimal portfolio weight yields: 

19(. ) 
=0 

ei 
w(µ -1)r + 

a2I 
wa 

alý - aw aw2 

er 
aww ý$ 

1921 
zaer+ WQ-Or p r=0= 

away 
82! 

owar 
0r (2.63) - 021 W as 

Par 
W 

The following functional form is conjectured for the value function: 

I (W, r, t) =W1y exp(y(c(t) + d(t)r)) (2.64) 

Using this trial function and replacing the optimal portfolio choice back in the 

HJB equation, we get: 

27 (µ gel 
2 )r+r+1 ry 

ryd(t)rc(B - 
r) +2 d2(t)vfpe,. r+ 

+21 rye 
-yd 

2(t)orTr +1 It 
y 

(6(t) + d(t)r) =0 (2.65) 

The method of undetermined coefficients implies that it is sufficient to solve the 
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ODE in c(t): 

1 
ry 

ryc(t) 
+12 

-Yd(t)KO =0= c(t) = -d(t)KO (2.66) 

and the ODE in d(t): 

d(t) + 
12 7 (µ 1)2 

+ 
1- 7' 

- d(t)v +2 ryd2(t)ýrPär +2 12(t)(7 =0 (2.67) 
'Y2 g ly 

with the terminal conditions c(T) = d(T) = 0. Solving the ODE (2.67) with 

respect to d(t), we get: 

d(t) =- 
2(exp(ý)(T - t)) - 1) 8 (2.68) 

(a + ib)(exp(i%(T - t)) -1) + 20 

for ii > 0, where 6= -( µýý + ), b=- QrPär- 2ýr+ a=n and 

V) = a2-4bc. 

Moreover, the solution for c(t) is given by: 

af-+b T-t 

=- 
'o 2'P eXP( z)1 (2.69) 

c(t) b 
lný(a+, 

O)(exp(? b(T- t) - 1)) +2 

Proposition 2.5 

The corresponding HJB equation for this problem is given by: 

0, 
+1W 2cEET q5T 

021 
+ W(OT (µt - ir) + r) 

I+ 

ät 2 9W2 aW 121 
+WoTF/ITFrT 

02I 
+ 

1Tr(ý. 
Tý: rT) + µrT 

al 
=0 (2.70) 

äW är 2 är2 är 

Taking the FOC in order to find the optimal portfolio choice, we have: 
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00 
=0 WZ¢ , FT 

a2I 
+W (µP - ir) 

aI 
+ WEpTFfT 

a2I 
=0 aW2 aw aWOr 

e1 0" 
aaw W 

(EET)-1(µP - ir) - a, 
ý 

W 
(EET)-lEpTErT 1921 

away 
(2.71) 

al aw 

and substituting this solution into the HJB equation, we have: 

aI 1 (8W )2 
PTT -1 P- 

aI 
8W821 

81 
8r OW r1 P- 

ät +2 8'I 
(µ - zr) (ýE) (µ ir) + aWWr + i9 E PE (µ ir) 

OW aw 
1(. 5 WÖr)2 r rT -rT rT r rT 

021 
rT0 = +2 02! 

(E EE pp E)+ 2Tr(E E )är2 + är 
0 (2.72) 

owl 

Using the trial solution, I(W, r, t) =W 17 exp(y(c(t) + d(t)r)), the optimal solu- 

tion becomes: 

! ý" = ry 
(EFiT)-1(µP 

- ir) + d(t) (EET )_lEpT F (2.73) 

and the HJB equation becomes: 

1 
ry 

ryc(t) +1y yd(t)r+ 
2y(pp 

- ir)T(EET)-1(pP - ir) - ryd(t)ErpE-1(µp - ir) 

+r - 
ry (FrErT 

- ý`rppT ý'rT) yd2(t)7'T(>rErT) 
+ 'y d(t)µrT =0 (2.74) 

22 1-ry 

Using the method of undetermined coefficients, we can equivalently solve the 

following ODEs: 

1 
ry 

ryc(t) 
+1 ry 

yd(t)icO =0 c(t) = -d(t)r,, 9 (2.75) 
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and 

17 yd(t) +2 crd2(t) - [y(PBrýr(e -1) +A)+ 1y yr, 
]d(t)+ 

+1-}- 
1 (µ -1)2 

_ 
2(µ - 1)PBr' A2 'Y aa 

2^1 or2(1 - Pä r) oreQr(1 - p2 ar(1 - Psr) 
+2 (QPer) =0 

d(t) 
2 orTd2(t) _ [(1- -Y)(Par7r(e - 1) 

+ A) + k]d(t) +1y y+ 

1-y (µ-1)Z 
_ 

2(I-1)PBrA A2 
)ý 

1-y f2 2) (2.76) + 2ýy 
[a 

(1 - Par) 085x(1- P8r) 
+ 2(1 - Pär 

+2 (ý Per =0 

Solving the Riccati ODE with respect to d(t) using the terminal condition d(T) = 

0, we get: 

"- - 
2(exp(i(T - t)) - 1) d (t) 

(a +'tb)(exp(bi(T - t)) -1) + 2Vi 
6 (2.77) 

for ýi > 0, where c= (0ý(1 
Pr . or(1-P. r 

+o (1? P. r 
]+ ! 'a2i2r) +7, a= 

+ A) + n], b=- ! QT and ýi = \/a2 --4b6 

Consequently, the solution for c(t) is given by: 

B 27P exp(a+O T-t ) 
C(t) b 

ln[(a 
+ 0)(exp(ýb(T - t) - 1)) + 2) 

(2.78) 
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Figure 2.1: Myopic and Total equity demand 
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This Figure shows the the myopic and the total equity demand as a portion of an 
investor's wealth for three degrees of relative risk aversion (ry = 2, dashed line for 
the myopic and solid line for the total demand, ry = 4, dashed line for the myopic 

and dotted line for the total demand, yy = 10, dashed line for the myopic and 
dash-dotted line for the total demand), as the investment horizon increases from 1 

to 15 years. The employed parameter values are: it = 1.6, a, = 0.034, Qe = 0.9, 
n=0.11 Pe}. = -0.6,0 = 0.058. 
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Figure 2.2: The impact of the correlation coefficient on equity demand 
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This Figure exhibits the hedging equity demand (left panel) as a portion of an 
investor's wealth with a horizon of 15 years for different degrees of relative risk 
aversion (y = 2- solid line, ry = 4- dotted line, ry = 10- dash-dotted line), as the 

correlation coefficient varies from p8, = -0.1 to p8, = -1. The right panel presents 
the ratio of the hedging to the myopic equity demand for the same investor as this 

correlation coefficient varies. 

89 



Figure 2.3: The impact of the risk factor's diffusion coefficient on equity demand 
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This Figure exhibits the hedging equity demand (left panel) as a portion of an 
investor's wealth with a horizon of 15 years for different degrees of relative risk 

aversion (ry = 2- solid line, ry = 4- dotted line, ry = 10- dash-dotted line), as the risk 
factor's diffusion coefficient increases from o,. = 0.01 to a, = 0.05. The right panel 

presents the ratio of the hedging to the myopic equity demand for the same 
investor as this diffusion coefficient increases. 
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Figure 2.4: The impact of the speed of mean-reversion on equity demand 
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This Figure exhibits the hedging equity demand (left panel) as a portion of an 
investor's wealth with a horizon of 15 years for different degrees of relative risk 
aversion ('y = 2- solid line, ry = 4- dotted line, ry = 10- dash-dotted line), as the 
coefficient of the speed of mean-reversion increases from rc = 0.05 to i=1. The 

right panel presents the ratio of the hedging to the myopic equity demand for the 
same investor as this coefficient increases. 
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Figure 2.5: Bond and equity demands 
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The left panel shows the total demand, as a portion of wealth, for the equity 
(horizontal solid line), the total demand for the bond (dashed line), the hedging 

demand for the bond (solid line) and the myopic demand for the bond (horizontal 
dotted line) for an investor with coefficient of relative risk aversion ry = 4, as his 

investment horizon increases from 1 to 15 years. The right panel exhibits the ratio of 
the total bond to equity demand (dashed line) and the ratio of the hedging to the 

myopic bond demand in absolute value (solid line) for an investor with relative risk 
aversion -y = 4, as his horizon increases. The parameter values used for both panels 
are: µ=1.6, a,. = 0.034, a, = 0.9, t=0.1, p8, = -0.6,0 = 0.058, A= -0.01 and 

r=0.05. 

2.5 

2 

1.5 
0 
cý OC 

92 



Figure 2.6: The impact of the correlation coefficient on bond and equity demands 
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The left panel shows the total bond to equity demand ratio for an investor with 15 
years of horizon, as his relative risk aversion increases, for three different values of 

the correlation coefficient between the shocks affecting the interest rate process 
and the equity return process. The right panel shows the absolute value of the 

hedging to myopic bond demand ratio for these values of the correlation 
coefficient, as the investor's relative risk aversion increases. 
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Figure 2.7: The impact of the risk factor's diffusion coefficient on bond and equity 
demands 
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The left panel exhibits the total bond to equity demand ratio for an investor with 
15 years horizon, as his relative risk aversion increases, for three different levels of 

the diffusion coefficient of the interest rate process (a, = 0.01- dotted line, 
Q,. = 0.034- solid line, Q,. = 0.06- dash-dotted line). The right panel shows the 
absolute hedging to myopic bond demand ratio for these values of the diffusion 

coefficient, as the investor's relative risk aversion increases. 
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Figure 2.8: The impact of the speed of mean-reversion on bond and equity demands 
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The left panel-exhibits the total bond to equity demand ratio for an investor with 
a horizon of 15 years, as his relative risk aversion increases, for three different 

values of the coefficient of the speed of mean-reversion (ic = 0.1- solid line, n=0.2- 
dash-dotted line, 'c = 0.4- dotted line). The right panel shows the absolute hedging 

to myopic demand ratio for these three values of the coefficient of the speed of 
mean-reversion, as the investor's relative risk aversion increases. 
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Figure 2.9: Myopic efficient frontier and long-term portfolio choices 
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This Figure shows the efficient frontier constructed using the equity and the bond 
returns. The parameter values used to generate this frontier are: it = 1.6, 

Q, = 0.034, a8 = 0.9, r, = 0.1, p8,. = -0.6,0 = 0.058, A= -0.01 and r=0.05. The 
dashed line is the tangency line starting from the risk-free rate r=0.05 in the 

expected returns axis. The square, the circle and the diamond, to the right of the 
frontier, show the pairs of expected return and standard deviation, derived from 

the optimal portfolios formed by a long-term investor with 15 years of horizon and 
coefficients of relative risk aversion equal to y=2 (square), ry =4 (circle), y=8 

(diamond). 
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Figure 2.10: Utility gains from market completeness 

o. 

0.3 

0 
L 
w 

0.2 
3 
00 
c 0 

0 IL o. 1 
H 
0 

o. 

0.0 

0" 
. 

r f 
1000 

0 

ar 10 
. 00 

00,0 
.. 1 

4 , ar, 0 30 

. '. 
$' 

RRA=2 
- 3- RRM4 
- RRA-10 

123456789 10 11 12 13 14 15 
Horizon (Years) 

This Figure shows the portion of the wealth, which, if deducted from the investor 
acting in the complete market, would yield the same utility as the utility derived by the 
investor acting in the incomplete market. This portion of wealth (cost of incomplete, 
market) is depicted, as the horizon increases from 1 to 15 years, for three degrees of 
relative risk aversion (ry = 2- solid line, ry = 4- dotted line, 'y = 10- dash-dotted line). 
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Figure 2.11: Utility gains from optimizing intertemporally 
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This Figure shows the portion of the wealth, which, if deducted from the investor 
optimizing intertemporally within the complete market setting, would yield him the 
same utility as the utility derived by the investor acting myopically. This portion of 
wealth (cost of acting myopically) is depicted, as the horizon increases from 1 to 15 

years, for three degrees of relative risk aversion (ry = 2- dash-dotted line, y= 4- solid 
line, ry = 10- dotted line). 
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Chapter 3 

Dynamic Bond 'Portfolio Choice 

with Macroeconomic Information 

3.1 Introduction 

This chapter examines the optimal portfolio choice of a long-term bond investor, who 

faces a set of macroeconomic risk factors, both observable (inflation and output gap) 

and latent ones (real interest rate, inflation central tendency and real interest rate 

central tendency). It makes use of the essentially affine macro-finance term struc- 

ture model of Dewachter et al. (2006) that allows for time-varying risk premia and 

consistently estimates the central tendencies simultaneously with the term structure. 

Employing this setup, the investment aswell as the hedging opportunities provided 

by consistently priced zero-coupon bonds for a power utility agent are examined. 

There are a series of ways that this chapter contributes to the literature. Firstly, 

it incorporates macroeconomic information in an asset allocation context and shows 

how this can be of significant use for both a myopic and a long-term investor. De- 

spite the conclusion of Cochrane (2007, p. 242) that finance has a lot to say about 

macroeconomics, macroeconomic information has been relatively neglected in the 
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dynamic asset allocation literature. The stochastic factors affecting the investment 

opportunity set are commonly assumed to be financial variables, such as the dividend 

yield (see Barberis, 2000) and the Sharpe ratio (see Wachter, 2002) that exhibit only 

a modest degree of predictive ability. Nevertheless, macroeconomic variables have 

been shown to be significant predictors of future bond returns (see Ang and Piazzesi, 

2003). 1 

Secondly, it focuses on bond portfolio choice that is relatively unexplored in 

the literature, since the majority of the studies on dynamic asset allocation examine 

stock-only portfolios. The notable exceptions are the studies of Campbell and Viceira 

(2001), Brennan and Xia (2002) and Sangvinatsos and Wachter (2005). The degree 

of the bond yields' predictability as well as the bonds' no-arbitrage pricing, based 

on the underlying stochastic factors, imply that a bond portfolio setting provides an 

even more robust framework to examine, in contrast to most of the literature that 

uses ad hoc assumptions for the asset returns' dynamics (see Brennan et al., 1997 

for an early example). Furthermore, bonds-only portfolios are extremely important 

for the fund management industry and for central banks. 

The related work on dynamic bond portfolio choice includes the studies of Bren- 

nan and Xia (2000) and Sorensen (1999), who assume that interest rates are as in 

Vasicek (1977). A similar framework has been employed in Xia (2002), who exam- 

ines the impact of limited access to nominal bonds on an investor's welfare. Munk et 

al. (2004) examine the stock-bond mix of a long-term power utility investor in the 

presence of mean-reverting returns, stochastic interest rates ä la Vasicek and infla- 

tion uncertainty. This framework has been further exploited for the derivation of the 

optimal portfolio-consumption policy of a long-term investor by Munk and Sorensen 

(2004). In this study, apart from a Vasicek interest rate model, a' three-factor, 

'Flavin and Wickens (2003) argue that macroeconomic variables contain significant information 
for the covariance structure of the assets' returns, showing that this property can be of great 
importance for mean-variance investors. 
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non-Markovian, Heath- Jarrow-Morton term structure model is also employed. The 

results show that the hedging demand is very sensitive to the choice of the term 

structure model. Theoretical approaches to bond-only portfolio selection problems 

have been considered by Schroder and Skiadas (1999), Kargin (2003), Tehranchi and 

Ringer (2004) as well as Liu (2007). 

Our study also allows for time-varying bond premia, in contrast to Campbell 

and Viceira (2001) and Brennan and Xia (2002) who assume them to be constant. 

Hence, we can capture the failure of the expectations hypothesis. Moreover, we 

use a macro-finance term structure model rather than the purely latent factor term 

structure model that has been commonly used in the finance literature and has been 

employed by Sangvinatsos and Wachter (2005). Unlike the latent factor framework 

that lacks a clear economic interpretation, the macro-finance model of Dewachter et 

al. (2006) allows us to reach more robust conclusions for bond portfolio choice. It 

additionally allows the central tendencies of inflation and the real interest rate to 

affect bond premia and hence the optimal portfolio choice, a concept not considered 

before to the best of our knowledge. Furthermore, the existence of five underlying risk 

factors enables us to examine the implications of portfolio selection among multiple 

bonds. 

In addition to the previous issues, this study also serves as an evaluation of 

the employed term structure model from an asset allocation perspective. The term 

structure literature has mainly focused on fitting past and predicting future yields, 

while the asset allocation perspective allows us to examine a series of more general 

issues. In particular, the covariance and correlation structure of the bonds' returns is 

extremely important for the formation of optimal portfolios. Equally important are 

the implied market prices of risk that affect the sensitivities of an investor's wealth 

to the -underlying macroeconomic factors. In other words, the implied risk premia 

contain significant information for the degree of risk aversion and the horizon of 
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market participants. 

Finally, we can derive conclusions with respect to what a long-term investor 

regards as a riskless asset. This very important issue has been repeatedly considered 

in the literature (see Modigliani and Sutch (1965), Stiglitz (1970) and Fischer (1975) 

for early discussions), but it was only recently that Wachter (2003) provided a formal 

theoretical treatment. In particular, we are able to introduce real bonds in the asset 

menu of the investor, that helps us investigate how the definition of the riskless asset 

is modified when the investor's horizon changes. The introduction of real bonds 

allows us also to examine their role for investment and hedging purposes. 

The rest of this chapter is organized as follows: Section 3.2 outlines the employed 

term structure model, while Section 3.3 discusses the data issues and the implications 

of the estimated model. Section 3.4 derives the optimal portfolio choice for the 

long-term investor in complete markets and Section 3.5 derives the corresponding 

portfolio choice in an incomplete market setting. Section 3.6 discusses the results for 

the portfolio choice in both complete and incomplete bond markets, while Section 

3.7 concludes. 

3.2 The term structure model 

3.2.1 Risk factors 

We employ the setup of Dewachter et al. (2006). There are five stochastically time- 

varying risk factors: the output gap y, the inflation rate 7r, the real interest rate p, 

the inflation central tendency i* and the central tendency of the real interest rate 

P""2 

2For precision, the real instantaneously risk-free rate prevailing in an economy with stochastic 
price level as derived in Section 3.4.2 is slightly different from the definition of Dewachter et al. 
(2006), but we keep the same notation for ease of reference. 
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The dynamics of the risk factors, (y, ir, p, lr', p*), are characterized by the follow- 

ing SDEs: 

dy = [ryyy + ! y, r(7r - 7r*) +'b, (p - P*)l dt + Q. dwy (3.1) 

dir = [k7t + ic7r7r(ir - 7r*) +', p(p - p*)]dt + Qndw, (3.2) 

dp = [envy + na, (7r - ir') + np, P(P - p*)]dt +a dwp (3.3) 

dlr` = K,. �. (7r' - 6, r. ) dt + U,. dw, - (3.4) 

dp* = lip. p. (p' - O. )dt+up. dwp. (3.5) 

where ww (t), j= {y, ir, p, lr*, p*} denote independent standard Brownian motions 

defined on the probability space (S2, F, P) with filtration F and time set [0, T1, 

0<T<oo.. 

The assumed dynamics of the output gap (y), inflation (7r) and the real interest 

rate (p) imply that these are affected by the short-run deviations from their central 

tendencies (the central tendency of the output gap is zero). Moreover, this structure 

implies that the central bank follows a feedback rule for the real interest rate. The 

central tendencies of the inflation (ir`) and the real interest rate (p*) are allowed to 

be mean-reverting processes, capturing possible inertia in the adjustment process. 

Vector X contains these risk factors: 

X= (y, ir, P, 7r*, P*)T (3.6) 
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Re-writing the dynamics of the risk factors in a vector form, we have: 

dX = [ý + KX ] dt + Sdw (3.7) 

where 7i = (0,0,0, -Kp. p. Bp. )T is a 5x1 vector, dw is a 5x1 vector 

dw = (dwy, dw, dw., dw,., dw.. )T 

K is a 5x5 matrix with elements 

Kvy 'Ulr rbUP -KU'r -K p 

'iry 'inr fiep -Kirr -! 1rp 

K- 
I£py fCpr K PP -"Cpr -' /p 

0 0 0 0 

0 0 0 0 tP. p. 

and S= diag(Qy, Qn, up, a,., up. ) is a diagonal 5x5 matrix. 

(3.8) 

(3.9) 

The last assumption essentially implies that there is no interrelationship in the 

volatility structure of the macro factors. Following Duffee (2002), the market price 

of risk is assumed to be time-varying and affine in the risk factors, given by C= 

SA + S-1EX, where A is a 5x1 vector and 'E is a 5x5 matrix, the elements of which 

are estimated from the joint model. The matrix E contains the sensitivities of the 

prices of risk to the macroeconomic factors. In particular, to avoid identification 

problems, only a restricted set of the market prices of risk is estimated (see Dai and 

Singleton, 2000 for a discussion). This term structure model can be classified as 

Ao(5) within the family of the essentially affine models. 
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3.2.2 Bond returns 

The price of a zero-coupon default-free nominal bond at time t maturing at time 

t+T -T is assumed to be given by P(X, t) = exp(-a(T) - b(T)TX), where a(T) is a 

scalar and b(T) is a 5x1 vector, with initial conditions a(O) =0 and b(0) = 05x1. The 

no-arbitrage condition under the risk neutral measure Q requires that the expected 

excess returns of this bond are zero, since the market price of risk is zero under Q. 

Given the market price of risk ý, it holds that 

dw = dw + edt (3.10) 

where iu(t) _ (wý, z"v,,, ff , 17 . th )T is a vector of independent standard Brown- 

ian motions under the risk neutral measure. 

The dynamics of X under Q are given by: 

dX = [ý - S2A + (K - E)X]dt + Sdw (3.11) 

Therefore, the no-arbitrage condition for the bond price under Q implies that the 

following PDE should hold: 

2 
19P 1 

(ý - sen + (x -: ")X) Tä+2 axaxT SZ + at = rP (3.12) 

where r is the instantaneously nominal risk-free rate, given by r =- ýr +p= ai X, 

where Si = (0 110 0)T. 

Substituting the partial derivatives of P into the PDE and using the method of 

undetermined coefficients, we end up with a system of ODEs in a(T) and b(T): 

ýT 
= z/ýT b- 

1Tr(bTS2b) 
- ATS2b (3.13) 

and 
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ab 
= Öl + (K - =)T b (3.14) äT 

along with the corresponding initial conditions. These ODEs are solved numeri- 

cally using a Runge-Kutta scheme. 3 

Under the risk-neutral measure Q, the absence of arbitrage opportunities dictates 

that the returns' dynamics of the zero-coupon nominal bond i in this setup are given 

by: 

dP' 
= rdt - b(T)T Sdw (3.15) 

P; 

Switching from the risk-neutral measure Q to the physical measure P, the bond 

returns' dynamics under the physical measure are given by the SDE: 

dPi 
= (r - b(r)T Sý)dt - b(r)T Sdw Pi 

= (r - b(T)T S2A - b(T)T =X )dt - b(T)T Sdw (3.16) 

3.3 Data, Estimation and implications 

3.3.1 Data 

In order to estimate the term structure model, Dewachter et al. (2006) make use 

of data for the yields on zero-coupon US Treasury bonds with maturities of 3 and 

6 months and 1,2,5 and 10 years. 4 A quarterly frequency is adopted for the pe- 

riod 1964: Q1 to 1998: Q4. Inflation was constructed by taking the annual percentage 

change in the CPI index provided by the IMF and the output gap series were con- 
3The ODEs in this chapter were numerically salved in MATLAB 7.0 using the function ode45 

and in Mathematica 6 using the function ndsolve. 
4The data are available on Gregory Duffee's website. 
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structed based on data provided by the Congressional Budget Office. The filtered 

time series for the five factors are depicted in Figure 3.1 and Figure 3.2.5 It is impor- 

tant to observe that there is significant variation in the underlying macroeconomic 

variables, hence we expect that the investment opportunity set significantly varies 

through time. 

3.3.2 Estimation 

In order to estimate in an efficient way both the dynamics of the underlying risk fac- 

tors and the prices of risk, Dewachter et al. (2006) employ a Kalman filter algorithm. ' 

We refer to Section 3 of their study for the proper definition of the measurement and 

the transition equation of the model as well as for its implications for the macro- 

economic dynamics. The estimates of the parameters and their standard errors are 

given in Table 3.1. The results show that the market prices of risk are time-varying 

indeed.? Moreover, the volatilities of the risk factors are estimated to be relatively 

low, an important observation for the rest of the analysis. 

3.3.3 Implications for the bonds' returns 

Nominal Bonds' sensitivities to the risk factors 

Given the estimates of the term structure model and the market prices of risk, we 

firstly examine the sensitivities of the bond returns to the underlying risk factors. 

This will help us understand how the expected returns and the volatilities of the 

5 We would like to thank Marco Lyrio for the provision of the data. 
6The presence of unobservable factors dictates the use of a filtering procedure. Duffee and 

Stanton (2008) argue that for Gaussian models the Kalman filter yields more efficient estimates in 
comparison to the Efficient Method of Moments when the time series are highly persistent. 

71t is important to note that, following the dynamic asset allocation literature, we use the 
point estimates of the coefficients. Even though the unrestricted coefficients of the matrix Z are 
significantly different from zero, this is not true for the constant component of the inflation and the 
output gap risk premia, i. e. Ay and A,,. Setting either parameter to zero could slightly affect the 
analysis. 
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bonds for various maturities are formed. In particular, we solve the ODEs in b(T) 

given by equation (3.14) in order to derive the factor loadings. Figure 3.3 presents 

these loadings adjusted for the corresponding bond maturity, (b(T)/T). 

The inflation and the real rate affect only the very short maturities. Practically, 

their impact on the nominal bonds with maturity beyond one year is negligible. 

Negligible is also the impact of the output gap, regardless of the bonds' maturity. 

On the other hand, the central tendency of inflation has a dominant impact on the 

prices of bonds with maturities longer than one year. The impact of the real rate 

central tendency is also significant for similar maturities. 

It should be noted that Figure 3.3 presents the factor loadings adjusted for the 

corresponding maturity (b(T)/T), while for the bond returns and their volatilities, it 

is the plain values of b(T) that matter. Hence, one can observe that it is mainly the 

inflation central tendency lr* that affects the nominal bond returns and volatilities 

for maturities longer than one year. 

Expected excess bond returns 

An extremely important input for any portfolio choice problem is the expected excess 

returns offered by the available assets. Hence, it is interesting to examine the impli- 

cations of this model for the expected excess returns of the nominal bonds for various 

maturities. In particular, given (3.16), these are given by -b(T)T S2A - b(r)TEX. 

Figure 3.4 plots the expected excess returns of the nominal zero-coupon bonds with 

maturities 1,3,5,7 and 10 years for the whole sample period. 

There are a series of observations to make: Firstly, there is significant time- 

variation in the expected excess returns. This finding underlines the importance 

of the returns' predictability through a set of underlying risk factors that generates 

horizon effects for an investor's optimal portfolio choice. The expectations hypothesis 

that assumes constant term premia and has been used by Campbell and Viceira 
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(2001) and Brennan and Xia (2002) for dynamic bond portfolio choice is clearly 

rejected, given the statistical significance of the time-varying risk coefficients in E. 

Secondly, this term structure model implies much more "reasonable" risk premia 

in comparison to a series of previously used models. ' Thirdly, another attractive 

feature of this essentially affine term structure model is that the variation in the 

expected excess returns is significantly higher than their average level. As Duffee 

(2002) notes, this is a necessary qualification for a model to be consistent with the 

variety of yield curve shapes observed in the data. The commonly used completely 

affine models fail to meet this requirement and, as a result, they are less fit for the 

selection of optimal portfolios. 

Furthermore, it should be noted that the excess returns tend to strongly co- 

move through time, despite the quite diverse economic conditions encountered in the 

sample period. We conjecture that this is true because the expected excess returns 

are mainly driven by the inflation central tendency. 9 For example, variations in the 

output gap have almost no effect on the bonds' returns. As a final comment, it should 

be stressed that for most of the periods, the 1-year zero-coupon bond has a relatively 

high expected excess return (higher than 0.5%). This fact may significantly affect 

the formation of optimal portfolios. 

The Covariance and Correlation structure of bonds' returns 

The term structure literature usually neglects the models' implications for the covari- 

ance and correlation structure of the bonds' returns. However, this is an extremely 

important input for portfolio selection that is traditionally built within a mean- 
8See for example the extreme premia reported in Sangvinatsos and Wachter (2005) as well as 

the ones implied by the model of Dewachter and Lyrio (2006). 
'This observation is analogous to the result of Cochrane and Piazzesi (2005) that a single factor 

can explain much of the time variation in expected excess bond returns. It is also related to the 
known result of Litterman and Scheinkmann (1991) that the parallel shifts of the yield curve can 
be captured by a single factor. 
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variance framework. Given the coefficient estimates and the factor loadings b(-r), we 

report in Table 3.2 the covariances and correlations for the 1,2,3,5,7 and 10-year 

nominal zero-coupon bonds' returns. 

The volatilities of the returns are extremely low, especially for short maturities. 

An explanation for this result is that the factor that has a dominant role for bond 

pricing, the inflation central tendency, is estimated to have an extremely low volatility 

(see Table 3.1). Furthermore, this Ao(5) term structure model does not allow for 

time-varying bond returns' volatilities and it ignores possible covariances between the 

various risk factors. According to Duffee (2002), the limited ability of the essentially 

affine models to capture the time variation in conditional variances is the price to 

pay for their superior forecasting power. This trade off is significantly taken into 

account when we report our results. 

With respect to the correlations of the returns, these are found to be extremely 

high. In particular, for bonds with similar maturities the correlation is higher than 

0.95. Again, this characteristic significantly affects the formation of optimal port- 

folios, since including bonds of similar maturities in the asset menu will lead to a 

nearly singular covariance matrix, leading to extreme results. 

The maximal Sharpe ratio 

Given the market price of risk = SA + S-1-=X, an interesting way to examine 

the implications of the present term structure model for an investor is to derive 

the Maximal Sharpe Ratio (MSR), given by the norm of ý, i. e. MSR =. 

Figure 3.5 depicts the MSR for the sample period. The MSR is always positive, 

because it is assumed that the investor can take both long and short positions in 

any asset. There are two very significant observations to make: Firstly, there are 

a series of periods where the (perceived) MSR is extremely high. As we discussed 

in the previous subsections, this finding is due to the combination of the relatively 
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high expected excess returns and the very low volatilities implied by the estimated 

term structure model. This finding is essentially equivalent to a "bond premium 

puzzle", drawing the analogy to the equity premium puzzle of Mehra and Prescott 

(1985), since a high reward for bearing risk in the bond market implies highly volatile 

marginal utilities for the investors. Secondly, there is significant time-variation in 

the investment opportunities. This fact underlines the significance of horizon effects 

and market timing in portfolio selection. 

3.4 Portfolio choice in complete markets 

3.4.1 Real wealth and consumption and access to nominal 

bonds 

This section examines the optimal portfolio choice in a complete nominal bond mar- 

ket for a long-term investor, who takes into account the stochastic evolution of the 

underlying risk factors. Formally, the investor has to allocate his wealth W at time t 

among 5 zero-coupon default-free bonds with different maturities (Ti, T2i..., T5), the 

returns of which are given in equation (3.16), and cash yielding the nominal instan- 

taneously risk-free rate, p= rdt. The portions of his wealth allocated to each of 

the zero-coupon bonds are collected in the 5x1 vector 0= (01,02, 
..., 05)T, while the 

portion of the wealth invested in the instantaneously riskless asset is 00 =1- iT 0, 

where i is a vector of ones. 

Utility over terminal real wealth 

We firstly examine the case where the investor's utility is defined over terminal real 

wealth. Given the bond returns' dynamics, the wealth dynamics of the investor are 

given by the following SDE: 
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dW = W(OT 
P+ 

(1 _ iTO) 
p) 

= 
0 

=W(cbT[-B(T)TSZA-B(T)TüX)]+r)dt-WcTB(T)TSdw (3.17) 

where now P is the vector of the 5 zero-coupon bond returns. Hence, B(r) is 

now a matrix 5x5, since this stacks the column vectors b(T) for each of the 5 bonds 

in a matrix form. In other words, B(r) = (b(Ti), b(T2),.., b(T5)), where (TI, 721 ..., 

T5) are the durations of the 5 zero-coupon bonds. 

Since the vector of the shocks affecting the returns of the risky assets dw is the 

same as the vector of shocks affecting the underlying risk factor dynamics, we can 

use the Martingale approach of Cox and Huang (1989) and Karatzas et al. (1987) 

to solve the optimal portfolio choice problem. The main observation is that there 

exists a unique pricing kernel m. This pricing kernel is a Stochastic Discount Factor 

(SDF) that converts the risky asset dynamics into a martingale process and it can 

be interpreted as a system of Arrow-Debreu prices. Given that ý is the market price 

of risk in the complete nominal market, the dynamics of the nominal SDF are given 

by: 

dm 
= -rdt - ýT dw (3.18) 

m 

with initial value mto = 1. The crucial observation for the martingale methodol- 

ogy is that the process mtWt is a martingale too. As a result, Eto[mTWT] = Wto. 

The long-term investor seeks to maximize 

(WZ)1-ry 

max Eto iT (3.19) 
7 

subject to the constraint that 
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E'to [mTWT] = Wto (3.20 

In order to examine this problem, we need to specify the dynamics of the price 

level l1t. Following Brennan and Xia (2002), the price level dynamics are given by 

the SDE: 

= 7rdt + Qn fi dw (3.21) 
II 

where an is a 5x1 vector. In general, the shocks affecting the stochastic price 

level need not be perfectly correlated with the shocks to the underlying risk factors in 

X. 10 In our setup, however, we get this perfect correlation since one of the underlying 

risk factors is the inflation rate ir. In other words, we can specify the vector an as 

al, = (0 0,7r 00 0)T, where o is the diffusion coefficient of the inflation rate process 

specified in Section 3.2. As a result, we are in the "complete markets case" as termed 

by Brennan and Xia (2002)11, in the sense that the shocks to the bonds' returns are 

perfectly correlated with the shocks affecting the underlying risk factors including 

the price level. Hence, we can use the martingale methodology for this case too. 

Consequently, the dynamic portfolio choice problem becomes a static one. Form- 

ing the Lagrangian function: 

(j_'T_ )i-7 
L(WT, 1) = Eto 1 y- l[Eto[mTWT] - wto] (3.22) 

and taking the First Order Condition (FOC) with respect to the terminal wealth 
'°This case, which is equivalent to an incomplete market case, is examined by Sangvinatsos and 

Wachter (2005), where the underlying risk factors are latent factors with no clear macroeconomic 
interpretation and hence their shocks cannot be perfectly correlated with the shocks to the price 
level dynamics. 

"As Brennan and Xia (2002, p. 1206) note, this is the case when "the expected rate of inflation 
ir is not observable but must be inferred from the observation of the price level itself". This is 
exactly true in the Dewachter et al. (2006) term structure model that we are using, since the rate 
of inflation is calculated as the annual percentage change in the CPI. 
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we have: 

00 1 
ÖWT =0 WT = (IIT ryl71ZT) 

ýT = (IMTIIT) ry (3.23) 

where l is the Lagrange multiplier. Defining the variable Zt = (lmtHt)-1, real 

wealth at time t can be written as: 

wt 
= (lmtHt) "= ZZEt[(ZT)''-1] (3.24) 

As a result, wealth W is a function of Z, H, X and t. Consequently, we can write 

it as G(Z, II, X, t) = F(X, t)IIZ4 = W(t). 

Applying Ito's lemma, the dynamics of the variable Z are given by: 

dZ 
Z= (r -7r + anon + ýT ý-a )dt +(- an )T dw (3.25) 

while under the risk neutral measure Q they are given by: 

dZ 
- (r -r+ Qncn)dt + (ý - on)T Z 

diu (3.26) 

It should be also noted that the price level dynamics under the risk neutral 

measure Q are given by: 

dII 
= (7r - vný)dt + vndiu (3.27) 

II 

and the dynamics of X under Q are given by (3.11). 

As Wachter (2002) argues, we can interpret wealth as a zero-coupon bond that 

pays a final amount WT at time T. The no-arbitrage condition for a zero-coupon 

bond G(Z, II, X, t) implies that under the physical measure P, its instantaneous 

expected excess returns should be equal to the market price of risk multiplied by the 

diffusion of the wealth process G. It actually proves easier to work under the risk- 
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neutral measure Q. In this case, the instantaneous expected excess returns should 

be equal to zero, since the market price of risk is zero under Q. 

This argument implies that the following PDE should hold: 

äZZ(r-7r +QTQ�)+[ '-S2A+(K-=)X]TO + ann(7r -vn )+ 

aG T 02c 182G 2T 1020 2T + at + 2Tr(SS _XOXT) +2 äZ2 
Z (- ten)(-ten) +2 än2 

n or n+ 
020 

+(SQn)Tnana + ozanlZ(e 
-u )Tan + Z( - an)TSaz x- rG (3.28) 

i 
along with the terminal condition* G(ZT, XT, IIT, T) = IITZT . 

It is also crucial to note that the optimally invested wealth should have a diffusion 

term identical to the diffusion term of the wealth process G. Therefore, for the 

optimal portfolio choice 0, it should hold that: 

II 
('SoX )T (3.29) C-' (OT (-BT S)= TZ 

OG OG aG Z(ý - an) '} ý-IJOr 'ý" 

Proposition 3.1 

Let us conjecture the following form for the function G(Z, X, II, t): 

G(Z, X, H, t) =H ZZ F(X, t) =H Zt exp[! (2XTQ(t)X + d(t)TX + c(t))J (3.30) 

where Q(t), d(t), c(t) are 5x5 matrix, 5x1 vector and scalar functions of time 

correspondingly with terminal conditions Q(T) = 05z5i d(T) = 05x1 and c(T) = 0. 

For an investor who has a power utility over real terminal wealth with coefficient 

of relative risk aversion ry 54 1 and has access to nominal bonds, his optimal portfolio 

choice is given by: 
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of 
- ry(BTS2B)-1(-BTS2A- BTEXt) + (1 

- )(BTS2B)-1(-BTS)Qn 

+l (BT S2B)-1(-BT S)S[d(t) +1 (Q(t) + Q(t)T )Xt] (3.31) 
72 

with the functions d(t) and Q(t) satisfying the system of ODEs (3.99) - (3.100) 

given in the Appendix. The remainder 0o =1- iT cb is invested in the nominal 

instantaneously riskless asset (See Appendix for the Proof). 

The first two terms of the optimal portfolio choice expression (3.31) compose the 

myopic term ä la Markowitz (1952). In particular, the second term arises because 

the investor seeks to maximize his utility over real wealth having access to nominal 

bonds that are priced under the nominal SDF. The third term provides the hedging 

demand component a la Merton (1973). There are two interesting observations to 

make: 

i) The long-term power utility investor has a hedging demand apart from the 

standard mean-variance myopic one. This depends on the diffusion of the bond 

returns dynamics as well as on the sensitivity of the investor's wealth to the risk 

factors, represented here by the functions d(t) and Q(t). It is straightforward to 

observe that, if the investor is not sensitive to any shifts in the risk factors, then 

there is no intertemporal hedging demand component, since äX = 0. 

ii) Both the myopic and the hedging bond demand components are characterized 

by market timing, i. e. the optimal portfolio choice depends on the current level of 

the risk factors. The reason for this behaviour is that bond returns are predictable 

through the risk factors in X, hence the investor needs to take this information into 

account for investment as well as for hedging purposes. 
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Utility over interim real consumption 

The previous setup can be generalized to the case where the agent seeks to maximize 

his utility over real interim consumption. In particular, the long-term investor seeks 

to maximize: 

max Eto fT e-&(t-to) 
(CtInt)l-ry 

dt (3.32) 
C(t), 4(t) o1-y 

where 5 is the investor's time discount rate. The wealth dynamics are now slightly 

different since we allow for consumption: 

dW =W (qT p+ (1- iT 0) 
po) 

- Cdt = 
no 

=W (cbT [-B(T)T S2A - B(T)T=X )j + r)dt - Cdt - WOT B(T)T Sdw (3.33) 

Given the nominal SDF m, the discounted consumption stream of the agent 

must be financed by his initial wealth. As a result, the static budget constraint of 

the problem is given by: 

mtCtdt = Wto (3.34) ito, Eto 

This can be re-written as: 

Wtomto = Eto [J 
T 

Ctmtdt] Wto = mto Eto [J 
T 

Ctmtdt] (3.35) 
to to 

This relationship holds for any time point tE [to, T]. Forming the Lagrangian of 

the static problem and taking the FOC with the respect to consumption, we get: 

00 
=0 Ct = e-ý(t-to)(II; -7lmt)_ry = 

Ct 
= e-ry(t-t0)(lmtIIt) (3.36) 

Oct Ht 

Employing the variable Zt - (lmtIIt)-1 and substituting in the budget constraint 
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the optimal solution for consumption, real wealth at t can be written as: 

wt 
= mt'Et[ 

it 
e-y(e-t)(lmeIl8)-1m8n8ds] = ZtEt[J e- ('-t)Z. ds] (3.37) 

t "I 
Hence, nominal wealth Wt is a function of Z, II, X and t and we can define the 

function 6(Z, X, H, t): 

G(Z, X, H, t) = Wt = IItZtEt 
T 

e- 'IV (9-t) Z. -ids] (3.38) 

with the boundary condition: 

G(Z, X, II, T) =0 (3.39) 

In this case, G(Z, X, H, t) can be re-written as: 

(Z, X, H, t) = e-ry(B-t)G(Z, X, II, s)ds (3.40) it G 

where G(Z, X, H, s) was previously defined. 

Hence, in the case of interim consumption, wealth is interpreted as a bond that 

pays a stream of consumption coupons. Given this interpretation, this "bond" should 

satisfy the corresponding no-arbitrage condition for a coupon bond. As Wachter 

(2002) shows, instead of solving the implied PDE for the coupon bond, we can 

equivalently solve the PDE derived in the terminal wealth case, given in (3.28). 12 

Corollary 3.1 

Given the relationship between the functions G(Z, X, II, t) and G(Z, X, II, t) as 
"This is essentially an application of Lemma 2 in Liu (2007, p. 35). This Lemma states that, if 

for a function f (t, X) it holds that {+Cf=0 with terminal condition f (T, X) = 1, where G is 

the Dynkin operator, then the function f=fTf (s, X)ds satisfies the equations 
at + L! +1=0 

and j (T, X) = 0. 
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well as the conjectured functional form for G(Z, X, II, t) given in (3.30), the optimal 

consumption-wealth ratio of an investor who seeks to maximize his power utility 

function over interim real consumption and has access to nominal bonds is given by: 

C* e- 
ry (t-to) 

t- (3.41) 
Wt ft T e-ry(8-t)F(X, s)ds 

and his optimal portfolio choice 0t is given by: 

ct - (BT S2B)-1(-BTS2 A- BTEXt) + (1 )(BT S2 B)-1(-BTS)vn+ 

+1(BTs2B)-1(-BTs)sfT 
e '(e-t)F(X, s)(d(s)T +2(Q(s)+Q(s)T)X)]ds 

fT e-'Y('-t)F(X, s) ds 

(3.42) 

where the functions c(t), d(t) and Q(t) satisfy the system of ODEs in (3.98) - 

(3.100). The remainder ¢o =1- iT q5 is invested in the nominal instantaneously 

riskless asset (See Appendix for the Proof). 

The previous expressions show that the long-term investor with utility over in- 

terim consumption behaves quite differently in comparison to a myopic investor. His 

consumption-wealth ratio is time-varying and it depends on the underlying macro- 

economic conditions. Consequently, the long-term investor attempts to "time the 

market" in his consumption decisions as well as in his optimal portfolio choice. More- 

over, the hedging demand given in (3.42) can be interpreted as a weighted average 

of a series of terminal wealth hedging demands, where the weights depend on the 

present discounted value of consumption. 

The expression (3.41) outlines the mechanism, according to which the investor 

trades off consumption and savings. This trade off depends on his horizon as well 

as his degree. of relative risk aversion. As Wachter (2002) notes, for ry >1 the 
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consumption-wealth ratio tends to rise when investment opportunities are high and 

it tends to fall when investment opportunities become poorer. 

The inverse of (3.41) presents the ratio of wealth to consumption, bearing a 

resemblance to a dividend discount model. Consequently, the present value of wealth 

depends on the current macroeconomic conditions as well as on the preferences and 

the horizon of the investor. For ry > 1, an increase in the time discount rate, ö, 

decreases the wealth-consumption ratio. It should be also noted that when T -+ oo, 

as in Campbell and Viceira (2001), this expression is similar to a Laplace transform 

of F(X, s) withý being the corresponding discount parameter. 

3.4.2 Introducing real bonds 

If the investor is interested in real wealth and consumption, then there is the scope 

of adding real bonds in the asset space. The term structure model we have employed 

allows us to introduce and price real bonds in a convenient way. In this subsection 

we price real zero-coupon bonds using the real SDF. Starting from the dynamics of 

the nominal SDF m: 

dm 
= -rdt - eT dw (3.43) 

m 

and applying Ito's lemma to the function M= mII, we can find the dynamics of 

the real SDF M. In particular, these are given by the SDE: 

dM d(mH) 
- -F q7 mII - (r - it + ane)dt -(- Qn)T dw (3.44) 

There are two observations to make, given the dynamics of the real SDF. Firstly, 

the real instantaneously risk free rate is given by r- 7r + Qný. This is distinct from 

the conventionally characterized as real rate p=r- 7r. The difference is the extra 

term, one, arising due to the stochastic evolution of the price level. Secondly, the 
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market price of risk under the real SDF is also modified and it is given by ý- an. 

It is assumed that the price of a real zero-coupon bond, PR, is an affine function 

of the underlying risk factors in X and time t. In particular, the price of the real 

bond is given by: 

PR(t, X) = exp(-aR(T) - bR(T)TX) (3.45) 

where aR(r) is a scalar and bR(T) is a 5x1 vector, with initial conditions a R(O) =0 

and bR(O) = 05x1. 

Under the risk neutral measure Q, the no-arbitrage condition for the real zero- 

coupon bonds states that their expected excess returns over the real instantaneously 

risk free rate, r- it + Qne, should be equal to zero. It should be noted that under 

the real SDF, switching from the risk-neutral measure Q to the physical measure P, 

it holds that dw = dw + (ý - ari)dt. Therefore, the dynamics of X under Q are now 

given by: ' 

dX =p- S2A+ SQn + (K - E)X]dt + Sdw (3.46) 

Hence, the no-arbitrage condition for the real bond prices under Q implies the 

following equation: 

(ý-SZA+SQn+(K-ý)X)TOpR+1 a2PR 
SZ+apR = (r-7r +Qn6)PR (3.47) 

ax 2 axaxT at 

Substituting the partial derivatives of PR in the PDE and using the method of 

undetermined coefficients, we get a system of ODEs in aR(T) and bR(r): 

asR 
= z/ 

_)T bR - 2Tr(bRT 
S2bR) - AT S2bR + UN SA + Or ST bR (3.48) 
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and 

abR 

aT = (6' - b2) + (K - =)TbR + =TS-10,11 (3.49) 

where ö2 = (0 100 0)T, along with the corresponding initial conditions. 

Under the risk-neutral measure Q, the absence of arbitrage opportunities dictates 

that the returns' dynamics of the real zero-coupon bond i in this setup are given by: 

pRR 
= (r - 7r + c4 )dt - bR(T)T Sdz"v (3.50) 

Consequently, under the physical measure P, the bond returns dynamics are 

given by: 

R 

PR = (r 
- it + or - bR(T)T SS + bR(T)T SQn)dt - bR(T)T Sdw (3.51) 

Figure 3.6 shows the factor loadings bR(T), adjusted for the corresponding ma- 

turity T, i. e. bR(T)/r. In comparison to the corresponding factor loadings of the 

nominal bonds, the main difference is that both the inflation and the output gap 

have an important effect on the real bond prices and returns for short maturities. 

The real rate p affects only the very short maturities. As in the case of nominal 

bonds, the inflation central tendency is the dominant factor for the real bond prices. 

Nevertheless, its impact is now less pronounced for longer maturities that are also 

slightly more affected by the real rate central tendency. 

Figure 3.7 shows the expected excess returns of the real bonds over the real risk 

free rate, given by -bR(r)TS2A-bR(. r)T'=X+bR(T)TSQn. It is interesting to observe 

that the real bonds with long maturities exhibit negative expected excess returns for a 

significant portion of our sample period. In general, for a large portion of our sample 
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period, the 1-year and the 3-year real zero-coupon bonds are characterized by higher 

expected excess returns in comparison to the 7-year and the 10-year bonds. Table 

3.3 presents the covariance and the correlation structure of the real bonds' returns. 

The results document the very low volatilities and the very high correlations of the 

returns. 

Some of the cases that we examine in the subsequent empirical results include 

both nominal and real bonds in the asset menu of the long-term investor. For consis- 

tency, both types of bonds should be expressed under the same SDF (either nominal 

or real). When we deal with this case, we choose to express the real bonds' returns 

dynamics under the nominal SDF. To this end, we need to apply Ito's lemma to the 

function (PRII). It should be reminded that the real bonds' returns dynamics under 

the real SDF are given by equation (3.51). Applying Ito's lemma to the function 

(PRII), we find the dynamics of the real bonds' returns under the nominal SDF. In 

particular, these are given by: 

d(PR D) 
= (r +a Tý - bR(r)T Se)dt - (bR(r)T S- an)dw (3.52) 

Consequently, when we examine the optimal portfolio choice of the long-term 

investor in the presence of both real and nominal zero-coupon bonds, the previous 

expression for the real bond returns' dynamics under the nominal SDF is being used. 

For example, the diffusion term of a real bond's returns under the nominal SDF, given 

by -(b'(T)TS - Qn), has been employed in the expression of the optimal portfolio 

choice given in equation (3.31) in the place of the corresponding diffusion term of 

the nominal bond's returns dynamics, given by -b(7)T S. 
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3.4.3 Real wealth and consumption and access to real bonds 

Utility over terminal real wealth 

In this subsection, we examine the case of an investor who maximizes utility over 

terminal real wealth, when he has access to a complete real bond market. The real 

wealth dynamics of this investor are given by: 

d(f) =n (ORT[-BR(I)T S(e-ßn)1 +r-7r+Qný)dt+ ¢RT(-BR(I)T S)dw (3.53) 

where OR is the vector of the portions of his real wealth E. allocated to each of 

the 5 available real zero-coupon bonds and BR(T) = (bR(Tl), bR(r2), .., bR(T5)). 

The crucial observation is that using the real pricing kernel M, the process Mt n 

is a martingale too. As a result, we get the static budget constraint Eta [MT n]_ 

W'A. The investor seeks to maximize (3.19) subject to this constraint. Forming the 
r1to 

corresponding Lagrangian function and taking the FOC with respect to the terminal 

real wealth we have: 

aýWT 

00 T (IMT) 
ýýT) 

0 
ýT _7 (3.54) 

where 1 is the corresponding Lagrange multiplier. 

We define the variable ZR - (lMt)-1, hence real wealth at time t can be written 

as: 

Wt 
= (lMt) -l = ZRE [(ZT)"-1] (3.55) 

Given the definition of the real SDF, M= mil, one may note that ZR = Zt. 

Hence, the dynamics of ZR are given by (3.25) under the physical measure P. How-, 

ever, since the market price of risk under the real SDF is (ý - an), the dynamics of 
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ZR under the risk neutral measure Q are now given by: 

dZR 
ZR = (r - it + cne)dt +(- ýn)T dw (3.56) 

and the dynamics of X under Q are given by (3.46). 

Real wealth n is a function of ZR, X and t. Consequently, we can define 

GR(ZR, X, t) FR(X, t)(ZR)7 =n, with the terminal condition GR(ZT, XT, T) _ 

(ZT) lf. Consequently, real wealth in this case can be interpreted as a real zero- 

coupon bond paying a final amount at time T. This means that under the risk 

neutral measure, its expected excess returns (over the real risk free rate) should be 

equal to zero. In other words, GR should satisfy under Q: 

aZR 
DG"ZR(r 

- 7r + U'e) + SZA + Sun + (K - =)X]T äx- + 

aR 82 GR 12GR 

+a + 
2Tr(SST 

axaXT) 
+2 

(aZ )2 
(ZR)2(S 

- QII)T (S 
- orII)+ 

a2CR +ZR(e - an)TSa2RSX = (r - 7r +a )GR (3.57) 

Moreover, the optimally invested real wealth should have a diffusion term iden- 

tical to the diffusion term of the real wealth process GR. Therefore, the optimal 

portfolio choice OR should satisfy: 

GRoRT(-BRT'S) = 
OGR 

ZR 
IS - 0)T + (S 

OG R 
)T (3.58) 

OZ 5x 

Proposition 3.2 

Let us conjecture the following form for the function GR(ZR, X, t): 
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GR(ZR, X, t) 
_ 

(ZR) ry FR(X, t) = (ZR) exp[! (Z XT QR(t)X + dR(t)T X+ c' (t))l 

(3.59) 

where QR(t), dR(t), cR(t) are 5x5 matrix, 5x1 vector and scalar functions of 

time correspondingly with terminal conditions QR(T) = 05--5i dR(T) = 05x1 and 

cR(T) = 0. 

For an investor who has a power utility over real terminal wealth with coefficient 

of relative risk aversion 'y 54 1 and has access to real bonds, his optimal portfolio 

choice is given by: 

oR = 
1(BRTS2BR`-1(-BRT 

S2A -B EXt + BRT SUn) 

+i (BRTS2BR)-l(-BRTS)S[dR(t) + 2lQRltý + QRItýTýX (3.60) 

with the functions dR(t) and Q' (t) satisfying the system of ODEs (3.99) - (3.100). 

The remainder OR =1- iT qR is invested in the instantaneously real riskless asset 

(See Appendix for the Proof). 

Utility over interim real consumption 

This subsection examines the case where the investor maximizes his utility over 

interim real consumption. Using the real SDF M, his initial real wealth should 

finance the discounted real consumption stream: 

T (art Wto 
Eto[ 

f 
Mtdt =- (3.61) 

to fit nto 

The investor seeks to maximize (3.32) subject to the previous constraint. Forming 
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the Lagrangian and taking the FOC with respect to real consumption, we get: 

ä C( IIt) =0 
ýt 

= e-ý(t-t0)(lMt)-1 (3.62) 

Using the definition of ZR = (lMt)-land the optimal real consumption choice, 

real wealth at time t can be written as: 

Wt 
= Mt 'Et[J fTe_(s_t)(lMa)_; 

Msds] = ZREt[ 
fTe_: 

i(8_t)(Z8R)_1ds] (3.63) 
nt 

it it 

If we define 

GR(ZR, X, t) = 
nt 

= ZREt[ 
it T 

e-'(9-t)(ZR)ly-1ds] (3.64) 
t 

with the boundary condition: 

GR(ZR, X, T) =0 (3.65) 

then, GR (ZR, X, t) can be re-written as: 

T 
GR(ZR, X, t) =J e-y(e-t)GR(ZR, X, s)ds (3.66) it 

where GR(ZR, X, t) was previously defined. 

In this case, real wealth can be interpreted as a real coupon bond that pays 

a stream of discounted real consumption coupons. Following this observation, the 

dynamics of this bond should obey the corresponding no-arbitrage condition. Nev- 

ertheless, as we have already mentioned, we do not need to solve a different PDE 

than the one derived for the terminal wealth case, given in (3.57). 

Corollary 3.2 
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Given the relationship between the functions GR and GR and the conjectured 

functional form for GR given in (3.59), the optimal real consumption-wealth ratio 

of an investor who seeks to maximize his power utility function over interim real 

consumption and has access to real bonds is given by: 

Cý /fit e7 (t-to) 

Wt /nt - ft e ry(e-t)FR(X 
s)ds 

(3.67) 

t 
Furthermore, his optimal portfolio choice is given by: 

OR =7 (BRTS2BR)-1(-Bm'S2A - BRT EXt + BRT SQII)+ 

+ 
2(QR(S) 

+ QR(S)T)X)IdS 
+1(BRTS2BR)-1(-BRTS)S-"T 

[ e-ry(s-, Y 

fT e-Y1(e-t)FR(X, s) ds 

(3.68) 

with the functions cR(t), dR(t) and QR(t) satisfying the system of ODEs in (3.98) 

- (3.100). The remainder, 00 =1- 2TýR, is invested in the real instantaneously 

riskless asset. 

3.5 Portfolio choice in incomplete markets 

In this section, we examine the optimal portfolio choice of the long-term investor 

with a power utility function over terminal wealth in an incomplete bond market. 

The market incompleteness arises because the investor has access to fewer bonds in 

comparison to the number of the underlying risk factors. Therefore, in an incomplete 

nominal bond market, B(7-) is a 5xn matrix with n<5 and in an incomplete real 

bond market, BR(T) is a 5xn matrix with n<5. 
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3.5.1 Access to nominal bonds 

In an incomplete nominal bond market, any price of risk & can be written as: 

(-BTS)T (BTS2B)-1 (-BT S)& +(- (-BT S)T (BT S2B)-1 (-BT S)S) (3.69) 

The first term of this expression, (-BT S)T (BT SIB)-1(-BT S)ý =ý is the unique 

price of risk that both prices and it is spanned by the available assets, i. e. it is 

the price of risk in the complete market case that we examined in the previous 

section. The second term I- (-BT S)T (BT S2 B)-1(-BT S)ý =v is the residual of 

the projection of Z onto the available assets and lies in the null space of (-BT S), 

hence it holds that (-BTS)v = 0. Note that in a complete market v=0. 

Consequently, in the incomplete market case, the nominal SDF m" is associated 

with the price of risk &=e+v. The dynamics of m" are given by: 

dm' 

mv = -rdt -(+ v)T dw (3.70) 

In general, the budget constraint Et,, [m7. WT] = Wt,, should be satisfied by any 

pricing kernel W. However, we cannot optimize with respect to this budget con- 

straint because it is not possible to replicate the resulting process for wealth by 

trading in the underlying assets, since we are in an incomplete market. He and 

Pearson (1991) argue that it is sufficient to verify this budget constraint for a single 

pricing kernel ml*. This is termed-as the minimax pricing kernel because it is the 

kernel that minimizes the agent's maximized utility. In other words, we can solve 

the portfolio choice problem in the incomplete market case as in the complete mar- 

ket case by "adding" the assets that are necessary to complete the market and at 

the same time modifying their returns' process in a way that their optimal portfolio 
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weights are zero. This is accomplished by the specific minimax kernel m"', because 

it guarantees that the "added" assets have such properties that the investor does not 

want to trade them. 

Hence, the pricing kernel we use follows the SDE: 

dm'* 
= -rdt - (ý + v`)Tdw ' 

(3.71) 
m 

The solution of the optimal portfolio choice problem follows the same steps as in 

the previous section. The agent seeks to maximize: 

(n )i-'r 
max Eto 

1_ 
(3.72) 

7 

subject to the constraint 

Eto [m' WT] = Wto (3.73) 

The nominal wealth dynamics are the same as in (3.17). The FOC of the problem 

is: 

W00 

WT 

T=O 
WT = lIIT 

ry1112T) Y ýT = (lmT IIT) 3.74) 
(7 

where 1 is the corresponding Lagrange multiplier. 

Defining the variable Zr = (lmt'IIt)-1, real wealth at time t can be written as: 

Wt 
= (lmi*nc) '' = Zr*EtE(ZT )ý-i1 (3.75) 

As a result, wealth Wt is a function of Zt', II, X and t. Consequently, we can 

=W (t). define the function G'(Z"`, II, X, t) -= Fl (X, t) II (Z"') 1 

Applying Ito's lemma, the dynamics of the variable Z"' are given by: 
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dZ"' 
Zv' = (r-ir+a on+( +v')T( +vý)-an(e+v*))dt+(6+v'-a )Tdw (3.76) 

while, under the risk neutral measure Q, they are given by: 

dZv' 
Z,, " = (r - 7r +o crn)dt +(+ v' - Qn)T div (3.77) 

It should be also noted that the price level dynamics under the risk neutral 

measure Q are given by: 

dII 
= (7r - T(ý + v*))dt + Qndiu (3.78) 

while the corresponding dynamics of X are given by: 

dX = [' + KX - S(ý + v')]dt + Sdi (3.79) 

We can interpret again nominal wealth as a zero-coupon bond that pays a final 

amount WT at time T. The no-arbitrage condition for a zero-coupon bond GI (Z'*, X, 

II, t) under the risk-neutral measure implies that its instantaneous expected excess 

returns should be equal to zero. Following this observation, we get the PDE: 

I aG! 
az *Z' (r-7r +cnan)+[ý+xx-S(e+v*)]T ax 

aGl aG! a2Gj 1 a2GI + aý 
II(ý -o (e + v*)) + at + ZTr(SST axaxT) 

+ aIIz 
r1zornorn 

g2 r1 azGI 
+2 (äZG )2 (Zv*)2(e + v* - an)T (e + v* - orn) + (sorn)T nanax 

z a2G' 
+a DH 

IIZv* (Z + v* - Qn)T crn + Z"` (ý + v* - Qrt)TSazv, ax = rGl (3.80) 
a 

with the terminal condition GI (ZV 
7 XT, IIT, T) = IIT(ZT) 7. 

131 



Moreover, the optimally invested wealth should have a diffusion term equal to 

the diffusion term of the wealth process GI. Therefore, the optimal portfolio choice 

0I should satisfy: 

GI (cI )T (-BT S) = 
aGl Z"* (e + v` - Qn)T + 

aGl HaT + (S aGI )T (3.81) azv an 11 ax 

Proposition 3.3 

Let us conjecture the following form for the function GI (Z"', X, II, t): 

GI(Z"', X, II, t) = IIt(Zt')iF, (X, t) = 

= nt(Zr) exp[_(2XTQI(t)X +d'(t)TX ý-CI(t))l (3.82) 

where QI (t), dl (t), cl (t) are 5x5 matrix, 5x1 vector and scalar functions of time 

correspondingly, with terminal conditions Q'(T) = 05y5i dI (T) = 05x1 and c! (T) = 0. 

For an investor who has a power utility over real terminal wealth with coefficient 

of relative risk aversion ry 54 1 and has access to an incomplete nominal bond market, 

the minimax pricing kernel is given by: 

ýýýIIT ýlj 
- 

(S1)T [d! +2 (Q1 + (QI)T )X ] (3.83) 

where (Qn) - is the residual of the projection of Qn onto the traded assets, (Qn)1 = 

an - un(-BTS)T (BTS2B)-1(-BTS) and (S1) is the residual of the projection of S 

onto the traded assets, S1 =S- S(-BTS)T (BTS2B)-1(-BTS). 

Moreover, his optimal portfolio choice is given by: 
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0t = y(BTS2B)-1(-BTS2A - BTEXt) + (1 
- 

It 
)(BTS2B)-1(-BTS)Un 

+ (BT S2B)-1(-BT S)S[d1(t) +2 (QI (t) + QI (t)T )Xt] (3.84) 

with the functions dl (t) and QI (t) satisfying the system of ODEs in (3.110)- 

(3.111) given in the Appendix. The remainder 0ö =1- iT qr is invested in the 

nominal instantaneously riskless asset (See Appendix for the Proof). 13 

3.5.2 Access to real bonds 

The derivation of the optimal asset allocation for a long-term investor with power 

utility over terminal wealth in an incomplete real bond market follows the same 

steps. Any price of risk ý- an can be written as: 

- Un = (-BRTS)T(BRTS2BR)-l(-BRTS)(ý 
- an)+ 

+((6 - Qn) - (-BRT S) T (B'S2B'1 (-B 'S)(T - an)) (3.85) 

The first term of this expression, (-BRTS)T(BRTS2BR)-1(_BRTS)(e - an) = 

ý- an is the unique price of risk that both prices and it is spanned by the available 

real assets, i. e. it is the price of risk in the complete real market case we examined 

in the previous section. The second term 

(e 
- QII) - 

(-B S)T BRTS2BR)-1(-BiS)( - 
-on) °V 

is the residual of the projection of the price of risk onto the available real bonds 

and lies in the null space of (-BRT S), hence it holds that (-BS )V = 0. 

"Note that the analogy of Wachter (2002) between the case of utility over terminal wealth and 
the case of utility over interim consumption does not carry through in the incomplete market case. 
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Consequently, in the incomplete market case, the real SDF, Mv, is associated 

with the price of risk (ý - an) =ý- an + V. Following the same argument of He and 

Pearson (1991), we seek to find the minimax pricing kernel MV , which guarantees 

that the real bonds "added" to complete the market have such properties that the 

investor does not want to trade them. 

Hence, the pricing kernel we use follows the SDE: 

dM'' 
Mv, = -(r - 7r + an( + V*))dt -(+ V' - Qn)Tdw (3.86) 

The agent seeks to maximize: 

max Eto nT 
1 ry 

(3.87) 
- 

subject to the constraint Eto[MT' n] =n. Forming the corresponding La- 
o 

grangian function and taking the FOC with respect to terminal real wealth, we have: 

00 
a(W 

(/nT) 
=0T= (l MT")-4 (3.88) 

where l is the corresponding Lagrange multiplier. We define the variable Zt 

(lMI *)-1, hence real wealth at time t can be written as: 

Wt 
= (1Mt ')-'' = Zt *Et[(ZT')'I-1] (3.89) 

nt 

The dynamics of Zi ' are given by (3.76) under the physical measure P. However, 

since the market price of risk under the real SDF is (ý + V* - an), the dynamics of 

ZV* under the risk neutral measure Q are now given by: 

Ztvv 
._ 

(r - it + aT (ý' + V*))dt + (ý + V* - QR)Tdw (3.90) 
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1 

and the dynamics of X under Q are given by: 

dX = [ý + KX - S(ý + V* - Qn)]dt + Sdw (3.91) 

Real wealth is a function of Zt ', X and t. Consequently, we can define 

GIR(ZV*, X, t) . FIR(X, t)(Zv)7 =n 

with the terminal condition G" (ZT', XT, T) = (ZT") ry 
. Consequently, real 

wealth in this case can be interpreted as a real zero-coupon bond paying a final 

amount at time T. This interpretation implies that under the risk neutral measure, 

its expected excess returns (over the real risk free rate) should be equal to zero. In 

other words, G" should satisfy under Q: 

8Zi'' 
Z'* (r - it + on (Z + V*)) ++ KX - S(e + V' - Qn)]T öX + 

} 
0GIR 

+ 
1Tr(SST a2GIR 

)+1 
a2GIR 

(ZV*)2(e + V* - Un)T (S + V* - Ur, ) 
(ýt 2 aXOXT 2(aZV")2 

a2GIR +ZV* ( +V' -a )TSaZV*aX=(r-ir+ an( -fVý))GrR (3.92) 

Moreover, the optimally invested wealth should have a diffusion term equal to 

the diffusion term of the real wealth process GI G. Therefore, the optimal portfolio 

choice OIR should satisfy: 

GIR(oIR)T (-BRTS) = 
OGI 

7i v* + V* - Un)T + (S 
G 

)T 3.93) 

Proposition 3.4 

Let us conjecture the following form for the function GI R(ZV*, X, t): 
r 
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CrIR(ZV', X, t) = (ZV') I (X, t) = 

_ (ZV*)7 exp[ý(2XTQIR(t)X +CýIR(t)TX -ýCIR(t))l 
(3.94) 

where QIR(t), dIR(t), clR(t) are 5x5 matrix, 5x1 vector and scalar functions of 

time correspondingly, with terminal conditions QIR(T) = 05x5i dIR(T) = 05x1 and 

CIR(T) = 0. 

For an investor who has a power utility over real terminal wealth with coefficient 

of relative risk aversion -y 54 1 and has access to an incomplete real bond market, the 

minimax pricing kernel is given by: 

V= _(S1)T 
[d IR +2 (QIR + (QIR)T )X J (3.95) 

where (S1) is the residual of the projection of S onto the traded real bonds, 

Sl =S- S(-BRT S)T (BRTS+2BR)-1 f-BRTSI. 

Moreover, his optimal portfolio choice is given by: 

tR = 
! 

(B S2BR)-1(-BRTS2A- B EXt + BRTSUn) 

4(BRT 
S2BR)-1(-BRTS)S[dIR(t) +1 (QIR(t) + QIR(t)T)Xt} (3.96) 

with the functions dIR(t) and QIR(t) satisfying the system of ODEs (3.116)- 

(3.117). The remainder, 00 R=1- iT qIR, is invested in the instantaneously real 

riskless asset (See Appendix for the Proof). 
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3.6 Results 

This section reports the optimal portfolio choices of an investor who maximizes 

his utility over real terminal wealth for various degrees of relative risk aversion and 

investment horizons. The first subsection refers to the case of a complete bond market 

while the second subsection refers to the case of an incomplete bond market, where 

the incompleteness arises because the available bonds are fewer than the number of 

the underlying risk factors. 

Following Sangvinatsos and Wachter (2005), the results that we report refer to a 

specific combination of the underlying risk factors. Nevertheless, instead of setting 

ad hoc values for the risk factors, we employ the values of the macroeconomic vari- 

ables that were actually experienced in 1975: Q1.14 This helps us derive an economic 

interpretation for our results. This specific choice is made by taking into account 

the implications of the term structure model for the bonds' expected excess returns 

and their covariances, as discussed in Section 3.3.3. In particular, we have chosen 

this date because it yields reasonable expected excess returns for the bonds relative 

to their volatilities. Given the bond premium puzzle implication of this model, other 

periods of our sample would yield extreme results, obscuring the analysis. 

3.6.1 Portfolio choice in complete markets 

In a complete market, an investor may form a portfolio with multiple bonds. In 

particular, the existence of five risk factors in the term structure model of Dewachter 

et al. (2006) allows us to examine the investor's bond portfolio choice among five 

nominal bonds. Panel A of Table 3.5 presents these choices for 'y =4 and y= 10, 

as well as when the investment horizon increases up to T= 10 years. The results 

show that, in case five bonds are available, the investor should take extreme long 

"These refer to an output gap of y= -5.89%, inflation 7r = 10.43%, real interest rate p= 
-5.21%, inflation central tendency 7r* = 4.55% and real rate central tendency p' = 0.67%. 
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and short positions. The reason for this behaviour is the extremely high correlation 

of the bonds' returns, mentioned in Section 3.3.3. Even very small differences in 

the risk-return trade off of the various bonds, motivate the investor to hold highly 

leveraged positions. 

This may be a quite puzzling observation, but it is a direct consequence of the 

estimated term structure model. There are various ways that these extreme positions 

could be much smoother in reality. Firstly, a series of institutional investors, such as 

pension and bond funds, are not allowed to hold short positions. Such a constraint 

would lead to zero positions in the bonds that theoretically appear to be sold short. 

Secondly, transactions costs could actually make the perceived differences in the risk- 

return trade off disappear, neutralizing the incentive of holding so extreme positions. 

Furthermore, one should be very cautious when interpreting these results, because 

they refer to ex post estimates of the risk factors' and bond returns' volatilities. In 

particular, the volatility of the inflation central tendency, that mainly affects bond 

returns, was estimated to be extremely low over the sample period. However, the 

perceived volatility in the long-run inflation expectations may be much higher ex 

ante, so an investor may regard the bond returns' volatilities to be much higher 

than what this model implies. Consequently, if the level of risk is increased, the ex 

ante maximal Sharpe ratio would be much lower and the small differences in the 

bonds' premia would not lead to major demand shifts. In other words, if parameter 

uncertainty is taken into account as in Barberis (2000), Xia (2001) and Garlappi et 

al. (2007), bond demands may not be as extreme as the results in Table 3.5 suggest. 

The next issue to examine is how real bonds can be mixed with nominal bonds in 

a portfolio. This exercise is motivated by the significantly lower correlations of the 

returns of these two different types of bonds, as Table 3.4 shows. It should be noted 

that in this case the expected excess returns as well as the volatilities and correlations 

of the real bonds are derived using their dynamics under the nominal SDF. We have 
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shown how to derive the real bonds' returns dynamics in (3.52). Therefore, when we 

derive the optimal portfolio choice of the long-term investor from equation (3.31) in 

the presence of both real and nominal bonds, the dynamics of the real bonds' returns 

given by the SDE in (3.52) are appropriately used. 

In particular, Panel B of Table 3.5 reports the results of bond portfolio selection 

among five bonds, i. e. nominal 1,5 and 10-year bonds and real 3 and 7-year bonds, 

when the investor derives utility from his terminal wealth. The long and short 

positions are relatively large for low degrees of risk aversion in the myopic case 

(T = 0), but they are not as extreme as in the case where only nominal or only real 

bonds are available. Small differences in the risk-return trade offs are not extremely 

magnified in this case, because each bond also plays a significant diversification role 

in the formation of the optimal portfolios, since the correlations of the bonds' returns 

are now considerably less than perfect. 

With respect to the hedging demands, their magnitude depends on the investor's 

horizon as well as on his degree of relative risk aversion. In particular, hedging 

demands tend to increase in absolute value as the horizon increases and tend to 

decrease as the degree of risk aversion increases. It is interesting to observe that the 

investor tries to match the duration of the bonds with his horizon. In other words, 

he tries to optimally combine the bonds so as to create a synthetic bond portfolio 

that has a maturity corresponding to his horizon. These results verify the argument 

of Brennan and Xia (2002). 

An interesting issue to examine is how the definition of the riskless asset is mod- 

ified, as the horizon of the investor increases. It is well known that an infinitely 

risk-averse myopic investor (-y --* oo, T= 0) with utility over nominal wealth would 

assign a zero portfolio weight to the available risky bonds, investing his wealth only 

in the instantaneously nominal riskless asset that yields the nominal risk-free rate r. 

On the other hand, for the myopic investor with utility over real terminal wealth, 
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the portion of wealth invested in the instantaneously nominal riskless asset is not 

exactly equal to one. This can be seen by setting y -º oo and T=0 in (3.31). This 

substitution yields 0o =1- iT (BT S2B)-1(-BT S)Qn, which is equal to 1.05 in the 

particular case we examine, as reported in Panel A of Table 3.6. The explanation 

for this result is that the available assets are nominal, while the myopic investor we 

examine seeks to form a mean-variance efficient portfolio in real terms. Therefore, 

he should take into account the inflation risk loadings of the various bonds. In par- 

ticular, while the total demand for the nominal bonds is iT q5 = -0.05, the internal 

allocation exhibits significant long and short positions, exploiting the differences in 

the inflation risk loadings. 

Examining the optimal portfolio choice of a long-term investor (T > 0), we set 

ry = 100,000 to approximate infinite relative risk aversion. Panel A of Table 3.6 

reports the portfolio choices among five nominal bonds as the investor's horizon 

increases up to T= 10 years. These results show that the instantaneously nominal 

riskless asset is not risk-free for a long-term investor, due to the reinvestment risk 

that it generates, as explained in Stiglitz (1970). 

Moreover, the results show that none of the nominal zero-coupon bonds can play 

the role of the riskless asset, even when the maturity of the bond is identical to the 

horizon of the investor. This finding can be explained by the fact that the investor 

cares about his real terminal wealth but has access only to nominal bonds and it 

reflects the argument that a nominal bond cannot be a perfect hedging instrument 

for shocks in the real wealth process. This is true even when the inflation risk is 

relatively low, because the infinitely risk averse long-term investor would not like to 

be exposed. to any unhedgeable shock affecting his real wealth. Consequently, the 

investor attempts to proxy the non-existing riskless asset by taking positions in the 

available nominal bonds and the optimal mix depends on his horizon as well as on 

the available bond maturities. 
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The introduction of a real bond market allows us to examine how this infinitely 

risk-averse investor would behave, if he could allocate his wealth among real zero- 

coupon bonds, priced under the real SDF. For the myopic case (T = 0), the risk-free 

asset is the instantaneously real riskless asset yielding r- it + uni. Setting -y --+ o0 

and T=0 in (3.60), we get OR =0 and OR = 1. Panel B of Table 3.6 reports 

this case as well as the optimal bond portfolio choice for non-myopic investment 

horizons. The striking result is that the infinitely risk averse long-term investor, who 

cares about his real wealth at a terminal date, should allocate his wealth to a single 

zero-coupon bond that has a duration equal to his horizon. 

The previous result has been proved theoretically by Wachter (2003) and it is 

also stated in Liu (2007), but it has not been shown empirically in the literature, 

to the best of our knowledge. 15 Moreover, this finding underlines the importance 

of introducing real bonds in an economy (see Viard, 1993 inter alia for a discus- 

sion). It should be noted that this result offers an explanation for the existence of 

assets with negative expected excess returns, as the real bonds exhibited in a sig- 

nificant portion of our sample (see Figure 3.7). In particular, these bonds are held 

by long-term investors who are attracted by the significant hedging value that these 

assets incorporate. The traditional myopic framework could not have justified their 

existence. 

The framework we have been using allows us also to examine the sensitivities of 

the investor's wealth with respect to shifts in the underlying macroeconomic factors. 

In particular, these sensitivities are affected by the agent's degree of risk aversion as 

well as his investment horizon. In the case of an investor who derives utility from his 

real terminal wealth and faces a complete nominal bond market, his wealth elasticities 

are given by äz c, where G is defined in (3.30). For the current analysis, it proves 
"This is because Campbell and Viceira (2001) consider utility over consumption and access 

to zero-coupon bonds, while Sangvinatsos and Wachter (2005) consider utility over real terminal 
wealth but access only to nominal zero-coupon bonds. 
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more informative to report the norm of these elasticities, given by (äx 
c)T 

(8X G 
The top panel in Figure 3.8 reports this norm as the horizon increases for various 

levels of relative risk aversion. The results show that, for low levels of relative risk 

aversion (ry < 10) and long investment horizons, these elasticities are extremely high. 

Only a combination of short horizons and very high levels of risk aversion would yield 

a low norm of elasticities. This effect explains the significant shifts in the hedging 

demands that we report in our portfolio choice results when the investment horizon 

or the degree of relative risk aversion is modified. Unreported results show that the 

wealth elasticity with respect to the inflation central tendency is the dominant one. 

For a significant portion of investors, it is reasonable to assume that they seek to 

maximize utility over interim consumption, not just over wealth at a terminal date. 

This is because an investor may have set a series of intermediate consumption goals 

(mortgage payments, fixed liabilities etc. ). This behaviour significantly modifies the 

hedging demand of the investor as this can be seen by comparing (3.42) with (3.31). 

As Wachter (2002) notes, the introduction of consumption significantly reduces the 

effective horizon of the investor. 

Consequently, it is interesting to examine the impact of consumption on the 

wealth sensitivities with respect to the underlying risk factors. We calculate the 

wealth elasticities in the case of an agent with utility over real interim consumption, 

given by eX ý, where G is defined in (3.40). The bottom panel in Figure 3.8 presents 

the norm of these elasticities, given by V(86UY 1)T(ac 1) for various levels of relative - ýX G1 

risk aversion as the horizon increases, setting 3=0.06. In comparison to the terminal 

wealth case, these elasticities are much smaller now, confirming the reduction in the 

effective investment horizon when interim consumption is introduced. Nevertheless, 

for low degrees of relative risk aversion as well as for long horizons, the wealth 

sensitivities remain large. These large sensitivities, arising due to the high market 

prices of risk estimated by the term structure model, are difficult to be reconciled 
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with the smoothness characterizing actual consumption data, hence this finding is 

equivalent to a premium puzzle in the bond markets. We need. a very high degree of 

risk aversion and a very short horizon, even in the presence of consumption, in order 

to get low levels of wealth elasticities. 

3.6.2 Portfolio choice in incomplete markets 

The multi-factor term structure model of Dewachter et al. (2006) allowed us to ex- 

amine the formation of portfolios with five zero-coupon bonds, within a complete 

market setting. Nevertheless, there are a series of reasons why an investor may ac- 

tually allocate his wealth to a restricted set of bonds. In particular, this section 

examines the portfolio choice among two or three zero-coupon bonds and the corre- 

sponding riskless asset. Within our setup, this leads to an incomplete market setting, 

which was analyzed in Section 3.5. 

More specifically, it is common for institutional investors to face short selling 

constraints, disabling them to fully exploit the differences in the bonds' risk-return 

profiles by holding leveraged positions. Most importantly, transaction costs may 

actually make these risk-returns differences disappear for bonds of similar maturities. 

As Figure 3.4 and Figure 3.7 show, the expected excess returns are very similar for 

bonds with close maturities and they tend to strongly co-move through time. For 

example, the expected excess return of the 5-year nominal zero-coupon bond was, 

on average, only 0.34% higher than the expected excess return offered by the 3-year 

nominal zero-coupon bond for our sample period. Hence, transaction costs of the 

order of 0.2% could make bonds of very close maturities practically redundant. 

Liquidity considerations would offer an additional reason why an investor may 

be willing to hold positions in a restricted set of bonds. While our portfolio choice 

exercise implicitly assumes that the zero-coupon bonds with prespecfied maturities 

are always available, this may not be true in practice. In particular, bonds of spe- 
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cific maturities may not be liquid enough, hence an investor may not be able to 

fully capture the corresponding perceived expected returns that are implied by the 

estimated term structure model. " Consequently, this investor may prefer to hold a 

restricted set of highly liquid bonds and avoid loading illiquidity risk to his portfo- 

lio. Finally, it should be reminded that most of the dynamic bond portfolio studies 

make use of two or three risk factors to price bonds (see Campbell and Viceira, 2001 

and Sangvinatsos and Wachter, 2005 correspondingly). The low dimension of these 

models simplifies the asset allocation problem, indicating that investors should form 

portfolios that are composed of only two or three bonds. 

We firstly examine the portfolio choice among a 3-year and a 10-year nominal 

zero-coupon bond and the nominal instantaneously riskless asset. Panel A of Table 

3.7 presents the optimal allocations for ry =4 and ry = 10, as the horizon increases 

from T=0 to T= 10 years. For the specific macroeconomic conditions that we 

have selected, the corresponding excess returns and their covariances imply that the 

myopic demand for the 10-year bond is much higher than the demand for the 3-year 

bond. Furthermore, the demand for the nominal instantaneously riskless asset is 

quite high. Nevertheless, long-term investors have significant hedging bond demands 

that dominate the corresponding total demands as the horizon increases. Moreover, 

the magnitude of the hedging demand is greater for low levels of relative risk aversion 

and the investor should actually borrow at the instantaneously riskless rate. 

The next issue to examine in this subsection is the impact of macroeconomic shifts 

on optimal portfolio choice. This is an attractive feature of our study with respect to 

the rest of the literature, since we employ an essentially affine term structure model 

with a clear' macroeconomic interpretation. Hence, unlike Campbell and Viceira 

(2001) and Brennan and Xia (2002) who assume constant term premia, both myopic 
"See Amihud and Mendelson (1991) for the impact of transaction costs and liquidity on bond 

yields. 
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and hedging demands in our model are affected by the level of the underlying risk 

factors. In other words, the long-term investor is involved in market timing both 

in his myopic and his hedging demand, as it is evident from (3.31). Moreover, the 

modifications of the underlying risk factors are due to specific macroeconomic effects, 

in contrast to the latent factor model used by Sangvinatsos and Wachter (2005). 

As it was mentioned in Section 3.3.3, the central tendency of inflation, ir*, has a 

dominant effect on bond returns. Consequently, we examine the impact on portfolio 

choice when this tendency increases or decreases by one standard deviation, keeping 

the rest of the factors constant. The portfolio choices reported in Panel B of Table 

3.7 show that the increase in this central tendency implies a significant increase in the 

excess returns of the 3-year and the 10-year bond. As a result, the risk-return trade 

off of these bonds is modified, making the 3-year bond much more attractive now 

in comparison to the benchmark case. Not only the myopic demand for this bond 

is higher, but this is also true for the corresponding hedging demands. The total 

demand for the 10-year bond is lower for short horizons and it significantly increases 

only when the investor's horizon approaches the ten years. The total hedging demand 

still decreases as the degree of relative risk aversion increases, but its magnitude is 

now larger in comparison to the benchmark case. 

On the other hand, a decrease in the central tendency of inflation has the opposite 

effect, as the results in panel C of Table 3.7 show. The reduction in the bonds' premia 

modifies their risk-return trade off in such a way that the myopic investor sells short 

the 3-year bond. There is some hedging role for' this bond, but this has become 

very limited and only for investment horizons close to the bond's maturity. For long 

horizons, the investor has a significantly negative hedging demand for this bond, since 

he mainly makes use of the 10-year bond as a hedging instrument. The magnitude 

of the total bond demand is now quite a lot smaller in comparison to the benchmark 

macroeconomic conditions, prevailing in 1975: Q1. 
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Pricing real bonds within our setup, we concluded that they exhibit a different 

behaviour in comparison to nominal bonds. This observation motivates us to ex- 

amine the optimal allocation of real wealth when a 3-year and a 10-year real bond 

are available, apart from the instantaneously real risk free rate. Panel A of Table 

3.8 shows the myopic as well as the total bond demands, as the investor's horizon 

increases for the macroeconomic conditions prevailing in 1975: Q1. Even though both 

bonds have negative expected excess returns, the risk-return trade off that they ex- 

hibit motivates the myopic investor to hold a significant long position in the 3-year 

bond by selling short the 10-year real bond. As the horizon increases, the hedging 

demand for the 10-year bond becomes increasingly positive. In general, the investor 

attempts to combine the bonds' maturities so as to match his horizon. 

Since the factor loadings of the macroeconomic risks are modified in the case of 

real bonds, it is interesting to examine the impact of macroeconomic change in this 

case too. Panel B of Table 3.8 shows the optimal portfolio choice when the inflation 

central tendency is increased by one standard deviation, while Panel C of Table 3.8 

presents the case of the corresponding reduction in the inflation central tendency. 

In the first case, the increase in the premium of the 3-year real bond significantly 

increases both the myopic and the hedging demand for this bond for short horizons. 

On the other hand, the reduction in the central tendency of inflation reduces the 

reward for holding both the 3-year and the 10-year real bond. Consequently, the 

magnitude of both the myopic and the hedging bond demands becomes lower in 

comparison to the benchmark case. 

Expanding the asset space to include a third nominal bond leads to larger long and 

short positions. Panel A of Table 3.9 shows the allocation of wealth to the nominal 

zero-coupon bonds with 1,5 and 10-year maturities for various investment horizons 

when the investor maximizes utility over real terminal wealth. The magnitude of the 

hedging demands depends crucially on the horizon and it tends to decrease as the 

146 



investor becomes more risk averse. The inclusion of another bond gives the investor 

more flexibility in his attempt to create a hedging bond portfolio with duration that 

matches his horizon. The 10-year nominal bond plays a significant hedging role 

mainly for investors with long horizons. 

Panel B of Table 3.9 reports the corresponding optimal portfolio choices when an 

investor can allocate his wealth among real zero-coupon bonds with 1,5 and 10-year 

maturities. The 1-year bond offers a significantly higher premium in comparison 

to the negative premia offered by the 5-year and 10-year bonds. Consequently, the 

myopic investor should take a significant long position in the 1-year bond, selling 

short the 5-year bond. On the other hand, the 10-year bond incorporates significant 

hedging value for a long-term investor, especially when his horizon is longer than 

5 years. These results also show that access to multiple real bonds may offer the 

required flexibility to long-term investors who seek to hedge away shocks to their 

real wealth process in an optimal way. 

Subsequently, we examine the optimal asset allocation to one real and two nom- 

final bonds. This is an interesting combination to examine because the investor can 

actually improve the diversification of his portfolio, extract the premia from nominal 

bonds and make use of the real bond's hedging value. It should be reminded that 

when deriving the optimal portfolio choice for this case, the real bond's SDE under 

the nominal SDF, given by (3.52), is appropriately used in equation (3.84). Panel 

C of Table 3.9 shows the portfolio choice results. Bond demands are much lower in 

magnitude and less sensitive to shifts in the investment horizon and the degree of 

relative risk aversion. This is due to the much lower correlation in the returns of the 

available bonds. The 5-year real bond plays a hedging role, especially for an investor 

with a horizon close to five years. The 1-year bond is used mainly for its attractive 

risk-return profile, while the 10-year nominal bond plays a very significant hedging 

role for horizons longer than five years. 
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3.6.3 Sensitivity analysis 

The last issue to examine is how sensitive are the portfolio choices that we previously 

presented to the choice of the benchmark date 1975: Q1. The extreme swings in the 

maximal Sharpe ratio, illustrated in Figure 3.5, indicate that both the myopic and 

the hedging demands will be subject to extreme swings too. This is due to the fact 

that under time-varying risk premia, the investor should be involved in market timing 

for investment as well as for hedging purposes. The large shifts in the macroeconomic 

factors as well as the very high wealth elasticities of the power utility investor with 

respect to these factors predict these extreme swings in portfolio choices. 

We plot in Figure 3.9 the total myopic bond demand for a power utility investor 

with ry = 10, who has access to a 3-year and a 10-year nominal zero-coupon bond 

for the period 1964: Q1 to 1998: Q4 (solid line). The vector of the myopic bond 

demands is given by the first two terms in equation (3.84). The total myopic bond 

demand exhibits significant shifts through time, verifying the argument that the time- 

variation in the bond premia is a very important issue that even a myopic investor 

should take into account. The evolution of the total myopic demand resembles the 

evolution of the maximal Sharpe ratio that is illustrated in Figure 3.5. 

More impressive are the extreme shifts in the total hedging bond demand. Figure 

3.9 illustrates the evolution of the sum of the hedging demands for these two nominal 

bonds. The vector of the hedging demands is given by the third term in equation 

(3.84) for a power utility investor with -y = 10, who has a horizon of T=3 and 

T= 10 years correspondingly. For both cases, the shifts are extreme for even small 

changes in the macroeconomic factors. Furthermore, the magnitude of the total 

hedging demand is very high and overwhelmingly dominates the corresponding total 

myopic bond demand for every single period. It is also very interesting to observe 

that the total hedging bond demand is almost the same for both investment hori- 
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zons, to the extent that the two lines are indistinguishable. As we have previously 
analyzed, the investment horizon plays a crucial role for the internal composition of 

the hedging bond portfolio, not for its total magnitude. The magnitude as well as 

the extreme shifts in the total hedging bond demand are consequences of the huge 

wealth elasticities of the long-term power utility investor, illustrated in Figure 3.8, 

as well as the considerable variation in the investment opportunity set. Therefore, 

these results underline our previous conclusions, showing that the time-variation in 

bond premia is an extremely important issue that a long-term investor should not 

neglect in his attempt to hedge away undesirable shocks. 

We repeat the previous sensitivity analysis for the case of a power utility investor 

with ry = 10, who has access to a 3-year and a 10-year real zero-coupon bond for the 

period 1964: Q1 to 1998: Q4. Figure 3.10 illustrates the total myopic bond demand 

(solid line), the total hedging bond demand for an investor with a horizon of T=3 

years (triangle-marked line) as well as the corresponding total hedging bond demand 

when the investment horizon is T= 10 years (dashed line). The vector of the myopic 

bond demands is given by the first term in equation (3.96), while the vector of the 

hedging bond demands is given by the second term in (3.96). 

The results show that the shifts in the total myopic bond demand as well as in 

the total hedging bond demand are of great magnitude for the case of real bonds 

too. A visual inspection of Figure 3.10 shows that the evolution of the total myopic 

and total hedging bond demands follow closely the evolution of the maximal Sharpe 

ratio. This finding confirms again the argument that the power utility investor should 

rebalance his bond portfolio according to the shifts in the macroeconomy. Moreover, 

the magnitude of the total hedging bond demand of the power utility investor with 

ry = 10 is greater than the corresponding total myopic bond demand for every period 

in our sample. Nevertheless, the difference in their magnitudes is less pronounced as 

compared to the case of nominal zero-coupon bonds. Given this evidence, it should 
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be finally noted that the period we employed as our benchmark in this study, i. e. 

1975: Q1, was selected on the basis that it yielded a low magnitude of myopic and 
hedging demands, facilitating our analysis. 

3.7 Conclusion 

This chapter examined the dynamic bond portfolio choice of a long-term, power 

utility investor. Using the macro-finance term structure model of Dewachter et 

al. (2006), we were able to provide a clear macroeconomic interpretation for the 

formation of bond premia and to examine how shifts in the macroeconomy affect the 

formation of portfolios. We have also documented how the concept of the riskless 

asset is defined in the case of utility over terminal real wealth, when the investor has 

access either to nominal or real bonds. Until now, this issue has been explored in 

the literature only separately for each case. 

Our results can be of significant importance for institutional investors, such as 

pension funds. Matching the duration of a nominal bond with the investment horizon 

is a legitimate practice for infinitely risk averse agents who have utility over nominal 

wealth at a terminal date. However, if the investors are interested in real wealth, this 

practice does not provide a safe strategy, because the nominal bond is risky in real 

terms. In this case, a real bond with the appropriate duration becomes the riskless 

asset. Furthermore, in the presence of consumption or liabilities and payments in 

the case of pension funds, the effective investment horizon is considerably reduced. 

This framework has also allowed us to provide reconciliation for the existence 

of assets with low or even negative expected excess returns, such as long-term real 

bonds. T aditional mean-variance theory cannot provide an explanation why an 

investor should hold these bonds. Our results verify the popular opinion that these 

bonds are mainly held for hedging purposes, especially when investors care for real 
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wealth and consumption. Moreover, the real bonds could be included in a broader 

portfolio because their returns exhibit much lower correlation with the returns of 

nominal bonds, hence they may be useful instruments for diversification. 

With respect to the term structure literature, we provide an evaluation of the 

essentially affine models from an asset allocation perspective. While the focus of 

the literature is on fitting past and predicting future yields, the covariance and 

correlation structure that estimated models imply for the bond returns is relatively 

neglected. It is shown that this is a major concern if one wishes to implement these 

models for portfolio choice, because the estimated volatilities are extremely low and 

the correlations of the returns are extremely high. A potential solution is to use 

a term structure model that allows for time-varying conditional volatilities, as in 

Spencer (2007), or to adopt a Bayesian approach for portfolio choice, as in Garlappi 

et al. (2007), assuming parameter uncertainty that effectively increases the returns' 

volatilities. 

Last, the high market prices of risk yield extreme wealth sensitivities to move- 

ments in the underlying risk factors, generating hedging demands of large magnitude. 

This effect becomes moderate only if we assume very short horizons and very high 

degrees of relative risk aversion. It is hard to reconcile these large sensitivities within 

the commonly used power utility framework in the presence of horizon effects. Con- 

sequently, we document a premium puzzle in the bond market' too. Future research 

could examine whether the myopic loss aversion framework of Benartzi and Thaler 

(1995) or the framework of loss aversion with narrow framing, as recently examined 

in Barberis et al. (2006), may yield more realistic conclusions. 
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3.8 Appendix 

Proof of Proposition 3.1 

Employing the conjectured functional form for G, we can substitute the cor- 

responding terms into the PDE (3.28) and recalling the definition of the price of 

risk 6 as well as the fact that the nominal risk-free rate is given by r= Si X and 

r- 7r = (Sl - S2)TX, where Sl = (0 1 10 0)T and S2 = (0 10 0 0)T, this PDE can 

be written as: 

(1 
- 1)(6 -Ö2)TX +1 Y'T 

(Q+QT)X +l ,T d+ 
1 

XTKT(Q+QT)X+ 

y 2y ^i 2y 

+1dTKX +1 -ryATSTSA+ 1 -7ATEX +1 -7XT, =TS-2EX- 
ly 272 72 272 

-1 27cr 
SA -1 2yQnS-1EX + (1 - 1)anSA + (1 - 1)QnS-1=X+ 

'Y 7 

+y(1 - )OnS[2(Q+QT)X +d] + 
12y2 

QnQn+ 2y2dTSSTd+ 

-{'8y2XT(Q+QT)SST(Q+QT)X + 21 
dTSST(Q + QT)X+ 

+4yTr(SST (Q + QT)) + 
12ry2 

AT ST S(Q + QT)X + 
12ry2 

XT ET (Q + QT)X+ 

+1-^I ATSTSd+1 7dTEX+ 1XTQX+1dTX+16=0 (3.97) 
. 72 rye 2y 'Y 'Y 

where c, d, Q stand for the derivatives of c, d and Q with respect to time t. 

From the previous expression, gathering terms in XT [. ]X, X and the scalar term, 

we get the following system of ODEs: 
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dTSSTd+ 4Tr(SST(Q + QT))+ 6+V) d+ 12 yATSTSA+ 
2, y 77 

+1 7ATSTSd- 1-rycnSA+(1-ry)a 
SA+(1- 

1)cr 
Sd+1-ryQnýn=0 

'Y 2'Y 

(3.98) 

dT + (1 
- y) (bl 

- 52)T +2 Y'T 
(Q + QT) + dT K+1- 'y AT -1- 

ry 
UT. -1, =+ 

77 

+(l - i)UII"'-1ý + 2_dT SST (Q + QT) + 
12, 

yryAT'ST'S(Q 
+ QT)+ 

+2(1- 
1 TS(Q+QT)+ 1 

yrydTE=0 
(3.99) 

ly 
)an 

Q+KT(Q+QT)+1,, 
ry=TS-2=+ 

4y(Q+QT)SST(Q+QT)+1 
ry=T(Q+QT)=0 

(3.100) 

along with the corresponding terminal conditions. This is a system of 31 ODEs. 

Furthermore, substituting the functional form of G into (3.29), we get the optimal 

portfolio choice in (3.31). 

Proof of Corollary 3.1 

The expression for the optimal consumption-wealth ratio is derived by substi- 

tuting the definitions of O(Z, X, H, t) and G(Z, X, H, t) into equations (3.36) and 

(3.38). For the optimal portfolio choice, we have that the diffusion component of the 

dynamics of G(Z, X, t) is given by ä6Z0 - Qn) + 86IIQn + S. Consequently, the 

optimal portfolio choice, 0, should satisfy: 

TT 
aG 

T 
OG 

T 
ÖC 

T cý (-s s) = ýZ z( - an) + än non + (S äx) (3.101) 
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Substituting into this equation the definitions of 6 and G, we get the optimal 

portfolio choice in (3.42). The ODEs are the same as in the terminal wealth case, be- 

cause we can equivalently solve PDE (3.28) involving G instead of the corresponding 

PDE involving G. 

Proof of Proposition 3.2 

Substituting the conjectured functional form for GR into the PDE (3.57), we end 

up with exactly the same equation as in (3.97) with respect to QR(t), dR(t) and 

cR(t). As a result, the ODEs that QR(t), dR(t) and cR(t) should satisfy are of the 

same form as in (3.98) - (3.100). 

Substituting the conjectured form of the function GR(ZR, X, t) into (3.58), we 

get the optimal portfolio choice in (3.60). 

Proof of Corollary 3.2 

The expression for the optimal consumption-wealth ratio is derived by substitut- 

ing the definitions of GR(ZR, X, t) and GR(ZR, X, t) into equations (3.64) and (3.62). 

Solving the equivalent PDE (3.57), we end up with equation (3.97). As a result, the 

system of ODEs for QR(t), dR(t) and cR(t) are of the same form as in (3.98) - (3.100). 

Since the investor has access to real bonds, his real wealth dynamics are given 

by: 

d(ff) ° (ORT [- BR(T )T S(ý -o n)] +r- 7r + Qne)dt - Cdt 

+Wq( -BR(rr)T S)dw (3.102) 

Consequently, given the diffusion component of the dynamics of 6R (ZR, X, t), 

the optimal portfolio choice should satisfy 

GRORT (-BRT S) = ÖZR 
ZR ýb 

- 0. )T + (S 
ax 

)T (3.103) 
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Substituting the conjectured form of the function GR into this equation, we get 

the optimal portfolio choice in (3.68). 

Proof of Proposition 3.3 

Substituting the conjectured form for GI into (3.81), the optimal portfolio choice 

should satisfy: 

(ýI )T (-BT'S) = 
1ST 

+1 (v»)T + (1 -1 )III +1 (1 XT (QI 
, +, QIT) + dIT )S (3.104) 

l777 'y2 

According to the argument of He and Pearson (1991), v* should guarantee that 

the unhedgeable parts of Qn and S should drop out. Note that Qn can be written as: 

orn 
T- T- fin(-BT S)T (BT SZB)-1(-BT S) + [Qn 

- Qn(-BT S)T (BT S2B)-1(-BT S)] 

(3.105) 

where the first component is the projection of Qn onto the available assets and 

the second component is the residual of the projection, (a )1. Similarly, S can be 

written as: 

S= S(-BT S)T (BT S2B)-1 (-BT S) + [S 
- S(-BT S)T (BT S2B)-1(-BT S)] (3.106) 

where S1 =S- S(-BTS)T(BTS2B)-1(-BTS) is the residual of the projection 

of S onto the available assets. It should be noted that under complete markets; 

(aT)1=0andS--=0. 

So, v' should satisfy the following condition: 

ýýýIIT ýIT - ('S1)T [(2 
(QI + QIT)X + d, )] (3.107) 
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Substituting this expression into the optimal portfolio choice (3.104), we get: 

(OI )T (-BT S) = 
'eT 

+ (1 
- 

71)(0, 
T 

- (aII)1) +1l XT (QI + QIT) + C, IT) (S - S. ") 

(OI )T (-BT S) = ryýT + ý1 
- 

^1 
)o (-BT S)T (BT S2B)-1 (-BT S)-}-1 

+_(2XT (QI + QIT) +dIT)S(-BTS)T(BTS2B)-l(-BTS) 3.108) 

Multiplying this expression by (-BT S)T (BT S2B)-1 and taking the transpose, 

we derive the optimal portfolio choice expression in (3.84). 

Moreover, substituting the conjectured form for G' and the expression for v* into 

the PDE (3.80), we can derive an equation from which, if we collect the terms in 

XT [. ]X, X and the scalar correspondingly, we get the following system of ODEs: 

T7 SSTl/`ýI + QIT))+ CI +7ý1Tdl + 
12 ryATSTSA-F dITSSTdl + 

7 

+1 
7ATSTSdI 

-1 
-7a SA + (1 - 7')L7 SA-i- (1 -')LITSdI + 

'YUTUý-i- 

77 27 
C1 7)2(orT)1SdI 

- 
12 7dITSJSTdl 

+ (1 
- , Y)2(1 -1 

)(QII)1orII'- 

^I -y 

-F(1 - ry)(1 - 1)dIT S1Qn +_ 
(1 

2ý)3 
(QII)l[(UII)1]T- 

- 

(1 

,ý 

)Z 
(a T -Y ) 

(SI)Td, +1- dIT S1(S1)T dl =0 (3.109) 
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dIT + ý1 
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- 62)T + bT (QI + QIT) + dITK +1y 
7ATr 

-1y 
yorT S-1'+ 

-}-(1 - , Y)Un. '-lu 
+, 

2- 
dITý+S, Tlnl + QIT) + 

12ryoYATS. 
TS(QI + QIT)+ l`w 1 

+2ý1 - 
1)OTS(QI+QIT), 
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1 ')'dITü+ (1 
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law 

UTS(QI +QIT)- 
ly 27 1 

-1 
- ryd1TS1S(QI 

+ QIT) +12y (y 
- 1)cr ('S1)T(QI + QIT)_ 

-1--y 
(cT ) (S1)T(QI +, QIT) +1- 

-fdITS1('S1)T (QI + QIT) =0 (3.110) 

QI +KT(QI QIT) +1 
, Yy, 

=TS-2vi- 

4y 
(QI + QIT)SST(QI + QIT) +1 

, ý, 

ryT (QI + QIT)+ 

+14y (QI 
,+ QIT)Si(S1)T(QI + QIT) _1 

-'Y (QI + QIT)s1S(QI , +, QIT) 

(3.111) 

along with the corresponding terminal conditions. 

Proof of Proposition 3.4 

Substituting the conjectured form for GIR into (3.93), the optimal portfolio choice 

satisfies: 

(0IR) T(-BRTS)= 
1(Z-Qn)T+1(V`)T+1(2XT(QIR+Q1 

')+dIRT)S (3.112) 

Again, V* should guarantee that the unhedgeable part of S should drop out. 

Hence, V* should satisfy the following condition: 
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V" = _(S-L)T [( 
2 

(QIR + QIRT)X + dIR)] (3.113) 

where S1 =S- S(-BRT S)T (BRT S2BR)-1(_BRTS) is the residual of the pro- 
jection of S on the available real bonds. 

Substituting the expression for V' into (3.112), we get: 

(GIR)T (-BRT S) =1 (S 
- QII)T +1 (1 XT (QIR + QIRT) + dlm')(S - S1) _ 

-y 2 

= (b 
- QII)T + (2XT (QIR + QIRT) + dlRT)S(-BRTS)T (BRTSZBR)-1(-BRTS) 

(3.114) 

Multiplying this expression by (-BRT S)T (BRTSZBR)-1 and taking the trans- 

pose, we derive the optimal portfolio choice expression in (3.96). 

Substituting the conjectured form for GI R and the expression for V* into the PDE 

(3.92), we can derive an expression from which, if we gather the terms in XT [. ]X, X 

and the scalar, we get the following system of ODEs: 

CIR +ýTd IR + 
12yryAT 

ST SA +1 dIRT SST d IR + 4Tr(SST 
(QIR + QIRT))+ 

--1-ryATSTSdIR- 
1-rya 

SA-+ -(1-ry)ýnSA-I-(1- 
1)orT IR+1-ryorTorr, 

rSd 27 
- 1dIRTS. 

1S. dIR + (1 - -')(1 - 1)dIRTSIQII +1- dIRTS1(S1)Td! R 
=0 

'Y 'Y 2'Y 

(3.115) 

158 
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2'YT 
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ryAT= 
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ryQnS-1 
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+(1 -'º) S-1E + 
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RTSST(QrR + Qh )+1- ATST S(QIR + Qr )+ 
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, +, 
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'Y 
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1dIRTS±S(QIR 
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- 1)OrrI S1)T(QIR + QI )_0 (3.116) 

IR + KT(QIR + QI )+1 
'y 

'Y=T 5-2p=-i- 

+4ry (QIR + QIRT`ssT(QIR QIRT) + 4y (QIR + QIRT)S1(S1)T(QIR + QIRT` 

+1 
ry'f 

T(QIR + QIRT) _ 
12ryy(QIR 

+ QIRT)s1S(QIR + QIRT) =0 (3.117) 

along with the corresponding terminal conditions. 
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Table 3.1: Estimated coefficients 

y7p lr# P* 

rcb, -0.3146 -1.0748 -0.4555 (0.0638)"" (0.1765)"" (0.1711)" 

ßc, 1. 0.3854 -0.2452 -0.1319 (0.064)"" (0.0446)" (0.0249)"" 

rcP,, -0.0685 -5.1575 -5.3035 (0.0197)"" (0.4009)" (0.3718)0* 

K,.,. -0.0036 (0.0012)0* 

KP*,. -0.4849 (0.0347)" 

0. 0.0224 0.0137 
(0.0367) (0.0057)- 

A. -63.9951 34.8309 32.5392 -21.9563 (65.1136) (63.3615) (14.2244)0* (11.0275)0" 

0.0082 -0.3672 -0.9849 -1.1884 -1.5318 (0.003)'" (0.1068)" (0.2204)0* (0.3716)" (0.4773)0" 

v2 0.000279 0.000146 0.001545 0.000067 0.000253 
(0.000043)" (0.000019)" (0.000042)"" (0.000010)" (0.000043)"' 

Notes: This table shows the estimated parameters for'the dynamics in X and the 
market price of risk ý as reported in Table II of Dewachter et al. (2006). Robust standard 
errors are given in the parentheses. ** and * indicate statistical significance at the 5% and 
the 10% level correspondingly. 
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Table 3.2: Covariances and Correlations of Nominal bonds 

Panel A: Covariance Matrix 

1-yr 2-yr 3-yr 5-yr 7-yr 10-yr 
1-yr 0.0004 
2-yr 0.0007 0.0014 
3-yr 0.0009 0.0019 0.0026 
5-yr 0.0013 0.0026 0.0037 0.0054 
7-yr 0.0016 0.0032 0.0046 0.0069 0.0088 
10-yr 0.0019 0.0041 0.0058 0.0088 0.0115 0.0153 

Panel B: Correlation Matrix 

1-yr 2-yr 3-yr 5-yr 7-yr 10-yr 
1-yr 1 

2-yr 0.974 1 
3-yr 0.947 0.994 1 
5-yr 0.897 0.964 0.987 1 
7-yr 0.848 0.927 0.961 0.993 1 
10-yr 0.782 0.871 0.916 0.968 0.991 1 

Notes: Panel A shows the covariance matrix of the nominal zero-coupon bond returns 
for various maturities. Panel B shows the corresponding correlation matrix. 
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Table 3.3: Covariances and Correlations of Real bonds (real SDF) 

Panel A: Covariance Matrix 

1-yr 2-yr 3-yr 5-yr 7-yr 10-yr 
1-yr 0.0005 
2-yr 0.0009 0.0018 
3-yr 0.0013 0.0025 0.0035 
5-yr 0.0017 0.0034 0.0048 0.0066 
7-yr 0.0019 0.0038 0.0066 0.0075 0.0087 
10-yr 0.0021 0.0041 0.0075 0.0081 0.0094 0.0104 

Panel B: Correlation Matrix 

1-yr 2-yr 3-yr 5-yr 7-yr 10-yr 
1-yr 1 
2-yr 0.982 1 
3-yr 0.964 0.995 1 
5-yr 0.933 0.976 0.991 1 
7-yr 0.91 0.956 0.975 0.995 1 

10-yr 0.885 0.932 0.951 0.975 0.99 1 

Notes: Panel A shows the covariance matrix of the real zero-coupon bond returns for 

various maturities. Panel B shows the corresponding correlation matrix. 
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Table 3.4: Mixture of nominal and real bonds (nominal SDF) 

Panel A: Covariance Matrix 

1-yr (N) 3-yr (R) 5-yr (N) 7-yr (R) 10-yr (N) 
1-yr (N) 0.0004 
3-yr (R) 0.0009 0.0042 
5-yr (N) 0.0013 0.0037 0.0054 
7-yr (R) 0.0016 0.0061 0.0061 0.0093 
10-yr (N) 0.0019 0.0054 0.0088 0.0091 0.0153 

Panel B: Correlation Matrix 

1-yr (N) 3-yr (R) 5-yr (N) 7-yr (R) 10-yr (N) 
1-yr (N) 1 
3-yr (R) 0.741 1 
5-yr (N) 0.897 0.773 1 
7-yr (R) 0.819 0.965 0.859 1 
10-yr (N) 0.782 0.673 0.968 0.766 1 

Notes: Panel A shows the covariance matrix of a mixture of nominal and real zero- 
coupon bond returns for various maturities. For consistency, we have used the dynamics of 
the real bonds' returns under the nominal SDF, as they are given by the SDE (3.52). (N) 
indicates a nominal bond while (R) indicates a real bond. Panel B shows the corresponding 
correlation matrix. 
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Table 3.5: Portfolio choice among five bonds 

Panel A: 5 Nominal bonds 

y=4 y= 10 

Premia T=0 T=1 T=5 T=10 T=0 T=1 T=5 T=10 

1-yr (N) 0.20% 20.88 24.76 30.34 21.93 10.57 15.10 21.21 13.09 

3-yr (N) 0.65% -218.49 -243.74 -281.20 -231.35 -102.24 -127.45 -166.48 -118.55 
5-yr (N) 0.91% 757.66 810.83 820.84 729.94 334.49 385.80 410.69 317.84 

7-yr (N) 1.17% -788.08 -825.91 -779.61 -723.58 -339.46 -376.39 -350.25 -287.31 
10-yr (N) 1.71% 236.62 243.95 219.23 212.55 100.15 107.57 89.40 79.37 

Panel B: 5 Nomina l and real bonds under the nominal SDF 

y=4 y= 10 

Premia T=0 T=1 T=5 T=10 T=0 T=1 T=5 T=10 

1-yr (N) 0.20% -1.47 -1.85 -5.81 -5.22 -0.81 -0.56 -3.69 -3.44 
3-yr (R) 0.28% 17.32 17.81 15.63 15.19 7.27 7.74 6.09 5.42 

5-yr (N) 0.91% 11.59 13.72 15.65 13.21 4.64 5.64 7.52 5.72 

7-yr (R) -1.39% -16.57 -16.75 -13.67 -13.93 -6.79 -6.95 -4.46 -4.41 
10-yr (N) 1.71% -2.45 -3.23 -2.42 0.06 -0.97 -1.34 -1.01 1.09 

Notes: This Table shows the optimal portfolio choice of an investor who has utility over 
real terminal wealth and access to five bonds. Panel A shows the portfolio choice among five 

nominal bonds as derived in (3.31) for the macroeconomic conditions prevailing in 1975: Q1 
(y = -5.89%, 7r = 10.43%, p= -5.21%, lr* = 4.55% and p* = 0.67%). Panel B shows 
the corresponding portfolio choice among 3 nominal and 2 real bonds. The dynamics for 
the returns of these 2 real bonds that have been employed in Panel B are given by the SDE 
in (3.52) and they are stated under the nominal SDF. The hedging demand for horizon 
T is given by the difference between the total demand for horizon T and the demand for 
T=0 (myopic demand). The allocation to the nominal instantaneously'riskless asset is 

equal to one minus the sum of the total bond demands in each case. 
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Table 3.6: Bond portfolio choice for an infinitely risk-averse investor 

Panel A: 5 Nominal bonds 

T=0 T=1 T=3 T=5 T=7 T=10 
1-yr (N) 3.69 4.90 9.44 10.41 8.69 6.09 
3-yr (N) -24.74 -23.43 -50.18 -52.05 -40.38 -26.79 
5-yr (N) 52.21 45.98 88.61 78.96 49.93 25.56 
7-yr (N) -40.38 -33.41 -55.75 -38.44 -12.52 3.57 
10-yr (N) 9.17 6.99 8.97 2.23 -4.64 -7.38 

Instantaneously 
1.05 -0.03 -0.09 -0.10 -0.08 -0.05 

risk-free asset 

Panel B: 5 Real bonds 

T=0 T=1 T=3 T=5 T=7 T=10 
1-yr (R) 0.00 1.00 0.00 0.00 0.00 0.00 
3-yr (R) 0.00 0.00 1.00 0.00 0.00 0.00 
5-yr (R) 0.00 0.00 0.00 1.00 0.00 0.00 
7-yr (R) 0.00 0.00 0.00 0.00 1.00 0.00 

10-yr (R) 0.00 0.00 0.00 0.00 0.00 1.00 
Instantaneously 

1.00 0.00 0.00 0.00 0.00 0.00 
risk-free asset 

Notes: This Table shows the optimal portfolio choice of an infinitely risk averse investor 
(ry = 100,000), who has utility over real terminal wealth and access to five bonds. Panel 
A shows the portfolio choice among five nominal bonds for the macroeconomic conditions 
prevailing in 1975: Q1. Panel B shows the corresponding portfolio choice when the investor 
has access to five real bonds. The hedging demand for horizon T is given by the difference 
between the total demand for horizon T and the demand when T=0 (myopic demand). 
The allocation to the corresponding instantaneously riskless asset is equal to one minus 
the sum of the total bond demands in each case, provided in the last line of each panel. 
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Table 3.7: Portfolio choice among two nominal bonds 

Panel A: Benchmark case 1975: Q1 

y=4 y=10 
Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10 

3-yr 0.65% 0.05 5.17 4.66 1.94 0.03 3.79 3.88 2.01 
10-yr 1.71% 0.26 0.29 1.28 3.12 0.10 0.02 0.63 2.12 

Panel B: Increase in the inflation central tendency 

y=4 y=10 
Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10 

3-yr 0.88% 0.84 9.39 8.77 5.47 0.35 6.07 6.13 3.82 
10-yr 1.96% 0.002 -0.24 0.94 3.15 -0.004 -0.23 0.52 2.32 

Panel C: Decrease in the inflation central tendency 

y=4 y=10 
Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10 

3-yr 0.42% -0.74 0.94 0.56 -1.59 -0.28 1.52 1.64 0.19 
10-yr 1.46% 0.52 0.82 1.62 3.09 0.20 0.26 0.74 1.91 

Notes: This Table shows the optimal portfolio choice of an investor who has utility 
over real terminal wealth and access to two nominal bonds, given by (3.84). Panel A 

shows the portfolio choice for the macroeconomic conditions prevailing in 1975: Q1 (y = 
-5.89%, 7r = 10.43%, p= -5.21%, 7r* = 4.55% and p* = 0.67%). Panel B shows the 
corresponding portfolio choice when the inflation central tendency 7r* is increased by one 
standard deviation (a, r. = 0.81%), while Panel C shows the corresponding choice when the 
inflation central tendency i* is decreased by one standard deviation. The hedging demand 
for horizon T is given by the difference between the total demand for horizon T and the 
demand when T=0 (myopic demand). The allocation to the nominal instantaneously 
riskless asset is equal to one minus the sum of the total bond demands in each case. 

166 



Table 3.8: Portfolio choice among two real bonds 

Panel A: Benchmark case 1975: Q1 

^y=4 ry=10 
Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10 

3-yr -0.25% 4.76 5.17 3.13 0.03 1.90 2.63 1.38 -0.82 
10-yr -1.59% -3.01 -0.85 1.16 3.33 -1.20 -0.02 1.41 3.04 

Panel B: Increase in the inflation central tendency 

y=4 y=10 
Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10 

3-yr 0.12% 5.65 6.32 3.89 0.19 2.26 3.12 1.59 -1.05 
10-yr -1.14% -3.39 -0.02 2.37 4.96 -1.36 0.52 2.24 4.21 

Panel C: Decrease in the inflation central tendency 

y=4 -y=10 
Premia T=0 T=3 T=5 T=10 T=0 T=3 T=5 T=10 

3-yr -0.62% 3.87 4.01 2.37 -0.14 1.55 2.14 1.16 -0.59 
10-yr -2.06% -2.63 -1.68 -0.05 1.69 -1.05 -0.56 0.58 1.87 

Notes: This Table shows the optimal portfolio choice of an investor who has utility over 

real terminal wealth and access to real bonds, given by (3.96). Panel A shows the portfolio 
choice for the macroeconomic conditions prevailing in 1975: Q1 (y = -5.89%, it = 10.43%, 

p= -5.21%, 7r* = 4.55% and p* = 0.67%). Panel B shows the corresponding portfolio 
choice when the inflation central tendency i* is increased by one standard deviation (o = 
0.81%), while Panel C shows the corresponding choice when the inflation central tendency 

7r* is decreased by one standard deviation. The hedging demand for horizon T is given 
by the difference between the total demand for horizon T and the demand when T=0 
(myopic demand). The allocation to the real instantaneously riskless asset is equal to one 
minus the sum of the total bond demands in each case. 
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Table 3.9: Portfolio choice among three bonds 

Panel A: 3 Nominal bonds (nominal SDF) 

y=4 y= 10 

Premia T=0 T=1 T=5 T=10 T=0 T=1 T=5 T=10 
1-yr (N) 0.20% 1.74 0.73 -5.96 -3.89 0.14 -0.25 -5.77 -4.31 
5-yr (N) 0.91% -1.61 1.27 8.66 4.09 -0.27 1.53 8.08 4.74 

10-yr (N) 1.71% 0.99 -0.07 -1.07 2.13 0.25 -0.42 -1.66 0.91 

Panel B: 3 Real bonds (real SDF) 

y=4 y= 10 

Premia T=0 T=1 T=5 T=10 T=0 T=1 T=5 T=10 

1-yr (R) 0.34% 29.69 31.68 30.51 31.71 11.87 13.42 12.52 13.40 

5-yr(R) -1.37% -12.96 -13.45 -15.90 -20.92 -5.18 -5.44 -6.64 -10.67 
10-yr(R) -1.59% 3.83 4.47 9.46 13.76 1.53 1.87 5.13 8.78 

Panel C: 3 Nominal and real bonds under the nominal SDF 

y=4 y= 10 

Premra T=O T=1 T=5 T=10 T=O T=1 T=5 T=10 

1-yr (N) 0.20% 2.98 4.71 4.81 2.28 0.87 2.00 1.99 1.17 

5-yr(R) -0.84% -1.42 -0.99 0.83 -0.37 -0.46 -0.14 1.08 0.63 

10-yr (N) 1.71% 0.60 0.63 3.15 3.74 0.23 0.23 1.30 2.43 

Notes: This Table shows the optimal portfolio choice of an investor who has utility over 
real terminal wealth and access to three bonds for the macroeconomic conditions prevailing 
in 1975: Q1. Panel A shows the allocation among three nominal bonds, given by (3.84), 

while Panel B shows the allocation among three real bonds, given by (3.96). Panel C 

shows the corresponding allocation among two nominal and one real bond. The dynamics 
for the returns of the real bond are given by the SDE in (3.52) and they are stated under 
the nominal SDF. The hedging demand for horizon T is given by the difference between 
the total demand for horizon T and the demand when T=0 (myopic demand). The 

allocation to the instantaneously riskless asset is equal to one minus the sum of the total 
bond demands in each case. 
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Figure 3.1: Output gap, inflation and inflation central tendency 
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This figure plots the output gap y (dotted line) and the inflation series ir (solid line), 

along with the filtered series for the central tendency of inflation lr* (dashed line) 
during the sample period 1964: Q1 to 1998: Q4. 
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Figure 3.2: Real interest rate and real interest rate central tendency 
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This figure plots the filtered series of the real interest rate p (solid line) and the 

central tendency of the real interest rate p* (dashed line), during the sample period 
1964: Q1 to 1998: Q4. 
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Figure 3.3: Factor Loadings of nominal zero-coupon bonds 

NOMINAL BOND FACTOR LOADINGS 
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This figure plots the loadings of the output gap y (dotted line), inflation ir (solid line), 

real rate p (double dot-dashed line), inflation central tendency 7r* (dashed line) and 
real rate central tendency p' (dot-dashed line) on the nominal zero-coupon bonds, 

adjusted for the corresponding maturities, i. e. b(T)/T. 
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Figure 3.4: Expected excess returns of nominal zero-coupon bonds 

EXPECTED EXCESS RETURNS OF NOMINAL BONDS UNDER THE NOMINAL SDF 
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This figure shows the expected excess returns of the nominal zero-coupon bonds with 
maturities of 1,3,5,7 and 10 years over the sample period 1964: Q1 to 1998: Q4 

172 



Figure 3.5: Maximal Sharpe Ratio 
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This figure plots the Maximal Sharpe ratio, given by the norm /, over the sample 
period 1964: Q1 to 1998: Q4. 
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Figure 3.6: Factor Loadings of real zero-coupon bonds 

REAL BOND FACTOR LOADINGS 
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This figure plots the loadings of the output gap y (dashed line), inflation it (dotted 
line), real rate p (dot-dashed line), inflation central tendency 7r* (double dot-dashed 

line) and real rate central tendency p' (solid line) on the real zero-coupon bonds, 

adjusted for the corresponding maturities, i. e. bR(rr)/T. 
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Figure 3.7: Expected excess returns of real zero-coupon bonds 

EXPECTED EXCESS RETURNS OF REAL BONDS UNDER THE REAL SDF 
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This figure shows the expected excess returns of the real zero-coupon bonds under the 

real SDF with maturities of 1,3,5,7 and 10 years, over the sample period 1964: Q1 to 
1998: Q4 
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Figure 3.8: Wealth sensitivities with respect to the risk factors 
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This figure shows the norm of the wealth sensitivities to the underlying risk factors 

for various degrees of Relative Risk Aversion (ßß. A), as the investment horizon 
increases. The top panel shows these norms for the case of an investor with utility 

over real terminal wealth, given by (äx cT ac 1) The bottom panel shows the OX G 
corresponding norms for the case of an investor with utility over interim real 

consumption with 6=0.06, given by (eX )T (äX ) 
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Figure 3.9: Total myopic and hedging portfolio choices for 2 nominal bonds 
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This figure shows the total myopic bond portfolio choice (solid line) of a power 

utility investor with coefficient of relative risk aversion y= 10, who has access to a 
3-year and a 10-year nominal zero-coupon bonds for the period 1964: Q1 to 1998: Q4. 

This sum is given by iT OmY0 where 0""0' consists of the first two terms in 

equation (3.84). The triangle-marked line shows the total hedging bond demand for 

the power utility investor with ry = 10, who has a horizon of T=3 years and access 
to the same nominal bonds. The dashed line shows the corresponding total hedging 

bond demand for the investor with a horizon of T= 10 years. For each case, this 
sum is given by iT ohedgi"`9, where (hedging is given by the third term in equation 

(3.84). 
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Figure 3.10: Total myopic and hedging portfolio choices for 2 real bonds 
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This figure shows the total myopic bond portfolio choice (solid line) of a power 

utility investor with coefficient of relative risk aversion ry = 10, who has access to a 
3-year and a 10-year real zero-coupon bonds for the period 1964: Q1 to 1998: Q4. This 

sum is given by iT OmY°P`c where myopic consists of the first term in equation (3.96). 

The triangle-marked line shows the total hedging bond demand for the power utility 
investor with -y = 10, who has a horizon of T=3 years and access to the same real 
zero-coupon bonds. The dashed line shows the corresponding total hedging bond 

demand for the investor with a horizon of T= 10 years. For each case, this sum is 

given by iTq5hedgin9, where ghed9''n9 is given by the second term in equation (3.96). 
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Chapter 4 

Performance Measures and 

Incentives: Loading negative 

coskewness to outperform the 

CAPM 

4.1 Introduction 

The most important development in financial markets during the last decades is 

their domination by institutional investors. The Office of National Statistics (ONS) 

reports that the individual ownership of the companies listed in the London Stock 

Exchange (LSE) has decreased from 54% in 1963 to just 12.8% in 2006. One of the 

most successful investment vehicles is the unit trust. ' According to the Investment 

Company Institute (ICI), the 1,903 unit trusts with a British domicile were managing 

$786 bil. in December 2006.2 
'The term "unit trust" corresponds to the most commonly used term "open-end mutual fund". 

Henceforth, the two terms will be interchangeably used. 
2See the 2007 ICI Fact Book for further details. 
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The outstanding success of mutual funds is due to the fact that they provide access 

to professional management and a highly diversified portfolio even for investors with 

low initial capital. In a world of perfect competition and symmetric information, 

investing in actively managed mutual funds would be an optimal solution. However, 

the delegated nature of fund management creates a series of problems related to 

asymmetric information. 

The informational asymmetries between the mutual fund shareholder (principal) 

and the manager (agent) may cause problems in three levels (see Spencer, 2000, 

for an analytical discussion). Firstly, there is the case of adverse selection. The 

most capable managers are more likely to get employed in different types of invest- 

ment vehicles, where the compensation structure is directly linked to performance. 

Closed-end funds, hedge funds and private banking services could attract the best 

managers. Secondly, there is the moral hazard problem. Once the investment has 

taken place, the manager could attempt to expropriate wealth from the investors, 

most commonly by charging a high expense ratio. The third issue refers to the ex 

post state verification, i. e. the problem of fairly evaluating the investment outcome. 

To resolve the last problem, it is necessary to have an objective way of measuring 

managerial ability. 

Measuring investment performance has attracted a lot of attention in the litera- 

ture and various measures have been suggested, according to which managers should 

be classified and rewarded. The most commonly used measures are the Sharpe ratio, 

the Treynor ratio and Jensen's alpha, the intercept of the CAPM. The literature 

on US mutual funds using these measures is voluminous, dating back to Treynor 

(1965) and Sharpe (1966). For UK funds, these measures have been employed for 

performance evaluation purposes inter alia by Leger (1997), Blake and Timmermann 

(1998), Quigley and Sinquefield (2000) as well as Thomas and Tonks (2001). 

All these measures have their roots in the static mean-variance world of Markowitz 
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(1952). Consequently, there are a series of inherent problems in these measures, since 

they neglect the intertemporal risk premia priced in capital markets (see the seminal 

work of Merton, 1973, and the recent study of Campbell and Vuolteenaho, 2004) as 

well as the risk premia arising due to the deviation of asset returns from normality 

(see Kraus and Litzenberger, 1976 and Harvey and Siddique, 2000). 

Severe criticism to the CAPM assumptions comes from utility theory too. The 

assumption of quadratic preferences is clearly rejected since it implies increasing 

absolute risk aversion. A desirable property of a utility function is that agents are 

averse to negative skewness and have a preference for payoffs exhibiting positive 

skewness. This behaviour is termed prudence (see Kimball, 1990). Furthermore, 

experimental evidence indicates that there is an asymmetrically higher impact on 

utility by losses in comparison to gains, leading to utility frameworks such as Prospect 

Theory (Kahneman and Tversky, 1979) or Disappointment Aversion (Gul, 1991). 

These value functions imply that agents are even more averse to negative skewness. 

Nevertheless, aversion to negative skewness is a crucial feature that has been 

relatively neglected in asset pricing. Notable exceptions are the studies of Harvey and 

Siddique (2000), Dittmar (2002) and Smith (2007) for the US market as well as Hung 

et al. (2004) for the UK market. The latter study exploits the Huang-Litzenberger 

Stochastic Discount Factor (SDF) approach to examine whether a coskewness or 

a cokurtosis risk factor is priced in the London Stock Exchange. In particular, 

the squared and the cubic excess market returns have been added as additional 

regressors to a Fama-French asset pricing model. The results of this study do not 

lead to unambiguous results with respect to whether higher co-moments risk premia 

are priced. 

The recent performance evaluation literature uses Carhart's alpha, the intercept 

of the Carhart (1997) regression that extends the CAPM by adding the size, value 

and momentum strategies as risk factors. The literature on US mutual funds is 
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vast. The studies of Bollen and Busse (2004), Chen et al. (2004) and Kosowski et 

al. (2006) provide recent examples. Cuthbertson et al. (2007) provide an excellent 

survey of the literature. With respect to the UK, multi-factor models have been used 

by Tonks (2005) for the performance evaluation of pension funds as well as by Otten 

and Bams (2002), Fletcher and Forbes (2002) and Cuthbertson et al. (2006) for the 

evaluation of equity trusts. These studies provide overwhelming evidence that the 

majority of the funds exhibit negative managerial ability. 

Nevertheless, there are two major problems with this measure: Firstly, there is 

no robust, universally accepted theoretical reason why these strategies should be 

considered as risk factors. As a result, we run into the problem of characterizing 

randomly fluctuating returns as risk factors. Secondly, this measure attributes re- 

turns to specific strategies, not their fundamental source of risk. Consequently, there 

will always be the incentive for fund managers to construct alternative strategies 

that outperform this measure too. For instance, there are a series of studies suggest- 

ing that portfolios of stocks sorted on the basis of their liquidity may yield positive 

Carhart alphas (see Acharya and Pedersen, 2005), giving rise to an illiquidity risk 

factor (see Pastor and Stambaugh, 2003). 

This chapter has two main aims: The first is to review the assumptions on which 

the most commonly used performance measures are based and to examine the in- 

centives that these measures generate. Fund managers try to distinguish themselves 

from their peers on the basis of these measures and they respond to this incentive 

by adopting investment strategies that generate excess returns and help them out- 

perform. The second aim is to propose an appropriate performance measure for 

risk-averse and prudent investors that is based on sound economic theory and to 

evaluate the performance of UK equity unit trusts according to this measure. 

In particular, the Harvey and Siddique (2000) asset pricing model, which adds 

a zero-cost negative coskewness strategy as an extra factor to the CAPM, is pro- 
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posed to be the most appropriate one for a prudent investor. This model takes into 

account the risk premia formed in capital markets due to the participants' aversion 

to negative skewness. 3 The intercept of this model, which we term as the Harvey- 

Siddique alpha, is employed as a measure to evaluate the performance of UK equity 

unit trusts during the period January 1991- December 2005. To the best of our 

knowledge, the only study that has explicitly used the Harvey-Siddique model for 

performance evaluation purposes is Moreno and Rodriguez (2005) for the case of 

Spanish funds. A series of other performance evaluation studies have incorporated 

the concept of skewness into their analysis. For instance, Fletcher and Forbes (2004) 

use the Huang-Litzenberger SDF approach for the evaluation of UK equity unit 

trusts, while Ding and Shawky (2007) employ this framework for the evaluation of 

hedge funds. Skewness has been also taken into account by studies utilizing the Data 

Envelopment Analysis framework (see Joro and Na, 2006). 

In order to perform our analysis, the returns of a zero-cost coskewness spread 

portfolio have been calculated for the UK, showing that the average monthly return 

of this strategy was 2.09% p. a. over the period January 1991-December 2005. Pre- 

viewing our results, the median unit trust investing in the FTSE All Share universe 

had a Harvey-Siddique alpha of -2.36% p. a., while the corresponding median Jensen 

alpha was -1.77% p. a. and the median Carhart alpha was -2.32% p. a. With respect 

to the managers' incentives, it is shown that almost all of the examined trusts had 

a positive loading on the negative coskewness spread strategy. Most interestingly, 

the trusts with the highest Jensen alphas were those with the highest loadings on 

the negative coskewness factor. We also provide evidence that the nonnormality 

of the trusts' performance distribution can be partly attributed to heterogeneous 

risk-taking, with the coskewness strategy being a main source of this heterogeneity. 

3Adcock (2007) stresses the importance of taking skewness into account when measuring portfolio 
performance. 
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The main message is that prudent investors should employ the Harvey-Siddique 

alpha in order to neutralize the incentive of trust managers to load coskewness risk. 

For these investors, most of the UK unit trusts exhibited a significantly negative 

managerial ability. However, managers were very successful in reaping the nega- 

tive coskewness premium priced in the market, boosting their returns and correctly 

responding to their incentives, since they have been evaluated according to mean- 

variance measures that regard this premium to be a "free lunch". 

The rest of this chapter is organized as follows: Section 4.2 discusses the rela- 

tionship between skewness, preferences and asset pricing. Section 4.3 reviews the 

most commonly used performance measures, discussing the incentives they generate 

and Section 4.4 provides the details of the data and the related methodological is- 

sues. Section 4.5 discusses the results of the unit trusts' performance evaluation and 

Section 4.6 presents some further results, while Section 4.7 concludes. 

4.2 Why is negative coskewness risk priced in the 

markets? 

4.2.1 Skewness and preferences 

Given the discussion in Chapter 1, it is expected that a risk-averse and prudent 

investor has a preference over a positively skewed payoff distribution and an aver- 

sion towards a negatively skewed one. There is significant evidence in the markets 

supporting this argument. The popular portfolio insurance products are protecting 

investors against downside risk. Moreover, modern risk management mainly deals 

with the avoidance of extreme negative returns. The most characteristic example is 

the measurement of Value-at-Risk (VaR). 

Furthermore, option-implied distributions, especially after the October 1987 crash, 
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are typically negatively skewed. In particular, deep out-of-the-money puts, which 

are popular instruments for portfolio insurance, have quite high prices relative to 

the ones implied by the Black and Scholes (1973) model. As a result, the implied 

volatility-strike price graph exhibits a "smirk", in contrast to the constant volatility 

assumption of Black and Scholes. This feature of option prices has been termed 

crashophobia (see Jackwerth, 2004). On the other hand, the preference for posi- 

tive skewness is evident in lotteries. Agents are willing to participate in lotteries 

with positively skewed payoffs (see for example, Golec and Tamarkin, 1998), even 

though these have negative expected values, i. e. they are unfair games. It is worth 

mentioning that the participation in such unfair games increases as positive skew- 

ness increases (e. g. jackpots in lotteries). A similar explanation has been offered by 

Tufano (2008) for the success of UK premium bonds. 

The impact of skewness is often examined using the power utility function, that 

treats symmetrically utility gains and losses caused by a wealth change of the same 

magnitude. Actually, this is also a property of the mean-variance analysis. Despite 

this assumption, there is significant experimental evidence that agents are mainly 

averse to losses, not just to volatility. The Prospect Theory of Kahnemann and 

Tversky (1979) as well as the Disappointment Aversion framework of Gul (1991) 

imply that investors maintain an asymmetric attitude towards losses as compared 

to gains. In general, this class of value functions captures the feature of first-order 

risk aversion (see Segal and Spivak, 1990) and implies that investors are even more 

averse to negative skewness in comparison to power utility agents. 

There are a number of regulatory and psychological issues related to loss aver- 

sion. Moreover, pension funds and insurance companies usually face legal obligations 

to pay out fixed or quasi-fixed amounts. The same holds true for households with 

liabilities over mortgages, loan installments or fees. Habit formation is another ex- 

ample of anchoring one's preferences around a reference point and being reluctant 
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to accept any wealth level below that point. This mixture of obligations and prefer- 

ences make pension funds, insurance companies and individuals extremely averse to 

negative movements in asset prices. 

4.2.2 Coskewness in asset pricing 

The central problem in Asset Pricing is to find a valid SDF, M, for future payoffs. 

Formally, the SDF is assumed to be positive (see Harrison and Kreps, 1979), it is 

unique under complete markets and satisfies the following relationship: 

Pt = Et [Ma+BXt+e] X4.1) 

where Pt is the price of an asset at time t and Xt+8 denotes the asset's payoff at 

time t+s. 

In a one-period ahead framework, Rs+l = Xp =1+ Rt+l is employed to re-write 

equation (4.1) as: 

1= Et[Mt+iR +i1 (4.2) 

It is straightforward to derive the following relationships (see Smith and Wickens, 

2002), which relate the SDF, the gross return of a risky asset, Rt+l, as well as that 

of a risk-free asset, rt 

1= Et(Mt+i)(1 + rt) = Et(Mt+i) =1 (4.3) 
1 +rt 

and 

Et(R +i) = 
1- Cov(Mt+i, RG i) (4.4) 

Combining these two equations we get a central result in asset pricing theory: 
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Et(Rt+i) - rt = -(1 + rt)Cov(Mt+i, Rt+i) (4.5) 

This equation implies that the expected excess return of a risky asset depends on 

the covariance of the SDF with this risky return. 

Harvey and Siddique (2000) use the marginal rate of substitution U' W` 1 as a U, (WO 
SDF to show the implications of this specification. Taking a first-order Taylor series 

expansion of U'(Wt+l) around Wt, we get the standard CAPM analysis. However, 

there is no particular reason why the truncation of the Taylor series expansion should 

occur at the first order. If the truncation takes place at the second order, then: 

U Wt Wt+j - Wt)Z 
U (Wt+, ) U '(Wt) +U (Wt)(Wt+i - Wt) +( 

)( 
2! 

Ul(Wt+i) 
1} 

U� (Wt)Wt 
t+i + 

U,,, (Wt)W2 
R, t+l = U (Wt) U '(Wt) 2U (Wt) 

U,,, (W )Wt U�(Wt)Wt a =1- ryR,,,, t+1+ 2U"(Wt) U'(Wt) 
Rm, t+l 

= 1- ryRºn, t+l +1 77]Rm t+l 
(4.6) 

where we have used the simple budget constraint Wt+l = Wt(1 + R,,,, t+i) with RT, 

being the market return, the definition of the Arrow-Pratt measure of Relative Risk 

Aversion, y=- u"u W )Wt and the coefficient of Relative Prudence 71 -- uu (WOW ` 

as defined by Kimball (1990). Furthermore, defining u" 
(WO _ -y and ca 

`)W? =1 ryr7 the SDF implied by (4.6) can now be written as: zu (wt) 2 

1 t+l =1+ bR�,, t+i + cRm, t+l (4.7) 

This is not a linear SDF, since the squared market returns are involved. Recalling 

the fundamental asset pricing equation (4.5) of the SDF approach, the expected 
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excess return of an asset now depends on the covariance of this asset's returns not 

only with the market return but also with the squared market return. This is exactly 

what coskewness measures. In the case of a prudent and risk-averse investor, we have 

that 77 >0=c>0, so the fundamental equation of asset pricing (4.5) can be written 

as: 

Et(Rt+l) - rt = -(1 + rt ); Cov(R,,,,, t+i, Rt+l) - (1 + rt)cCov(R,,,,, t+i, Rt+i) (4.8) 

Therefore, for a given level of Cov(R,,, t+1, Rt+1), we have two cases with respect 

to Cov(R, t+1, Rt+1). On the one hand, if Cov(Rm, t+1, Rt+1) > 0, then Et(Rt+l) - rt 

is now lower in comparison to the case of c=0. This implies that if the risky asset's 

returns are positively coskewed with the market returns, then this asset will bear a 

lower risk premium. On the other hand, if Cov(Rm, t+1, Rt+1) < 0, then Et(Rt+l) -rt 

is now higher. In other words, a prudent investor seeks an extra risk premium in 

order to hold an asset, the returns of which are characterized by negative coskewness. 

Therefore, if financial markets are populated by prudent investors, expected returns 

should be higher for assets exhibiting negative coskewness. This is a key result in 

our analysis, predicting the existence of a negative coskewness premium. 

4.3 Performance measures and incentives in fund 

management 

4.3.1 Raw returns 

Since the work of Markowitz (1952), it has been understood that there exists a direct 

positive relationship between risk and returns. However, managers and funds are still 
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often ranked according to their raw returns. The new breed of funds, appearing as 

"absolute return" seeking funds, reflects the lack of understanding of the link between 

risk and return. Using raw returns as a performance measure essentially means that 

the investor is indifferent to risk, i. e. his utility is not decreasing in volatility/risk, 

and risk premia are thought to be "free lunches". If a manager is evaluated according 

to raw returns, he will be incentivised to undertake the highest possible risk. 

4.3.2 Sharpe ratio 

Most of the performance studies have been evaluating investment strategies according 

to their risk-adjusted returns. One of the most commonly used measures of risk- 

adjusted performance is the Sharpe ratio due to Sharpe (1966): 

SR = 
E(Rp) - rf (4.9) 

UP 

where E(RP) is the average fund's return over a specific period, rf is the risk-free 

rate and up is the standard deviation of the fund's returns in the same period. Using 

this measure, fund managers do not have the incentive to invest in more volatile 

assets, since higher volatility essentially penalizes their excess returns. 

The Sharpe ratio is a purely mean-variance measure, neglecting higher moments. 

Nevertheless, these higher moments bear risk premia in a market with prudent in- 

vestors, as previously discussed. Consequently, the rational response of the fund 

manager is to invest in assets that exhibit negative skewness in order to reap the 

corresponding risk premium and be classified as a Winner. 

There are a series of examples documenting the existence of these strategies. 

Investing in emerging countries' bonds as well as non-investment grade bonds is a 

straightforward case. These bonds have a higher probability of default in comparison 

to investment grade bonds. As a result, their returns are more negatively skewed 
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and they provide higher yields. If a manager matches bonds with the same volatility 

but with different degrees of skewness, he will achieve a higher Sharpe ratio- until 

the default occurs. 

Goetzmann et al. (2007) analyze methods of maximizing a portfolio's Sharpe 

ratio using derivatives. Shorting different fractions of out-of-the-money puts and calls 

creates a negatively skewed distribution of returns and leads to the maximum Sharpe 

ratio. Their example also shows that hedge funds and other investment vehicles, that 

use derivative assets, can manipulate their Sharpe ratio. Leland (1999) provides an 

example of a dynamic strategy of cash and stocks as well as static strategies using 

options that generate negative skewness and outperform in terms of the Sharpe ratio. 

Finally, Adcock (2005) shows how to exploit skewness in order to construct a hedge 

fund that has superior mean-variance performance. Given this evidence, such funds 

should not be evaluated by mean-variance measures. 

The inappropriateness of the Sharpe ratio for skewed returns is also mentioned 

in Ziemba (2005), who suggests a modification of the Sharpe ratio to emphasize 

the importance of the downside risk. The Symmetric Downside-Risk Sharpe Ratio 

(DSR) is given by: 

DSR = 
E(R) - rf (4.10) 

with T 

?_ [1/(T - 1)] E(Rn, 
t - E(RR))? (4.11) 

t=1 

and the returns used are only those below the average E(Rp). Essentially, this 

measure adjusts the excess returns by using the semi-variance instead of variance. 
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4.3.3 Jensen Alpha and Treynor Ratio 

Within the CAPM framework, Jensen (1968) introduced the intercept of the following 

regression as a measure for the fund manager's ability: 

rp, t = Jensen + Qprm, 
t + Et (4.12) 

where rp, t stands for the excess returns of the trust, r,,,,, t the excess return of a 

suitable market index and ßP the fund's CAPM beta. The intercept (a Jensen) shows 

whether the manager has added any value over and above the return justified by the 

risk he had undertaken. The concept of risk here is summarized in the CAPM beta. 

Closely related is the measure proposed by Treynor (1965): 

TR - 
E(Rp) - rf 

op (4.13) 

Following the spirit of the Sharpe ratio, the Treynor ratio adjusts excess returns for 

the corresponding CAPM beta risk (ßP). 

As it has been discussed, the CAPM is a static mean-variance measure, neglecting 

all other sources of risk, in particular those arising due to the higher moments and 

the stochastic evolution of the underlying risk factors affecting the asset returns. 

Consequently, if evaluated according to the CAPM, managers are incentivised to 

employ strategies which load intertemporal and higher co-moments risks in their 

portfolios. It is known that fund managers construct strategies that exploit patterns 

such as the size, value and momentum "anomalies" in order to add value to their 

portfolios. Temporary success of these strategies generates a positive Jensen alpha 

classifying the manager as a Winner. These strategies are supposed to have zero 

CAPM beta risk but they are not necessarily riskless. 
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4.3.4 Carhart Alpha 

The basic doctrine of financial theory is that "free lunches", in the spirit of Harrison 

and Kreps (1979), should be ruled out. 4 Furthermore, since the Fama-French (1993) 

and momentum (see Jegadeesh and Titman, 1993) strategies are very simple to 

construct and implement, their returns cannot be regarded as genuinely added value. 

Reflecting these arguments, Carhart (1997) suggested the intercept of the four-factor 

model: 

rp, t = aCarhart + Qprm, 
t +, ß1SMBt + ß2HMLt + 03MOMt + Et (4.14) 

i. e. the Carhart alpha, as a performance measure. 

The Carhart regression (4.14) essentially attributes the fund's returns generated 

by the size (SMB), value (HML) and momentum (MOM) strategies to the corre- 

sponding risk factors. The intercept of this regression (aCarhart) reveals the value 

the manager has added to his portfolio above what the beta risk could justify and 

these known strategies could generate. The most important feature of this measure 

is that it neutralizes the incentive to adopt these strategies, since they are recognized 

as risk factors. 

Despite the significance of this contribution, the Carhart measure has two main 

disadvantages. Firstly, managers would still try to find patterns in stock returns in 

order to outperform on the basis of this measure too. Even though the Carhart model 

reduces the possible opportunities, there exist other such strategies that generate 

abnormal returns within this model (see e. g. the illiquidity risk factor in Pastor 

and Stambaugh, 2003). The need for a more general measure capturing all these 

'Accepting "free lunches" would be equivalent to discarding asset allocation. If there exist 
strategies that add value to portfolios without undertaking any further risk, then the optimal 
portfolio choice collapses to an infinite demand schedule for these strategies. 

192 



types of risks is obvious. Secondly, there is no robust theory explaining why the size, 

value and momentum strategies are characterized as risk factors. Hence, this model 

may misinterpret randomly fluctuating returns for risk factors, penalizing genuinely 

added value. Consequently, a measure based on sound economic theory is needed. 

4.3.5 Harvey-Siddique alpha 

Given the theoretical motivation of Section 4.2, it is argued that a prudent investor 

should evaluate his investments according to the following model: 

rp, t = aHS + ßprm, t + c(S- - S+)t + Ct (4.15) 

where (S- - S+) stands for the returns of the negative coskewness spread strategy, 

defined in the next section. The intercept of this model, (aHs), termed as the Harvey- 

Siddique alpha, will give us the value added by the manager over and above the 

covariance and negative coskewness risks. 

As Harvey and Siddique (2000, p. 1276) point out, this asset pricing model 

has two main advantages over a model that includes the squared market returns as a 

factor (e. g. as in Kraus and Litzenberger, 1976): Firstly, the measure of standardized 

coskewness is constructed by residuals, so it is by construction independent of the 

market return and, secondly, Pp in (4.15) is similar to the standard CAPM beta. 

Moreover, standardized coskewness is unit free and analogous to a factor loading. 

Apart from the parsimony in comparison to the Carhart (1997) measure, the Harvey- 

Siddique alpha is also more general since it captures the excess returns from every 

possible strategy that loads negative skewness to the portfolio and it is based on an 

asset pricing model built within a rigorous utility theory framework. 
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4.4 Data and Methodology 

We follow the methodology of Harvey and Siddique (2000) to construct the zero-cost 

negative coskewness portfolio (S- - S+). Using 60 monthly excess returns r;, t, we 

regress the market model for each individual stock i 

ri, t = ai +, ßirm, t + 6i, t (4.16) 

extracting the residuals Ei, t, which are by definition orthogonal to the excess 

market returns r�,, t. Therefore, these residuals are net of the systematic risk as this 

is measured by the covariance of the stock returns with the market returns. However, 

they still incorporate the coskewness risk. Therefore, we can get a measure of the 

standardized coskewness of each stock's returns with the market returns. This is 

given by: 

E[e, tE2 , t] Qi, sxn = (4.17) 
F'[e 

t]F'[ým, t1 

where Ei, t is the residual previously extracted from the market model for stock 

i at time t and e1z, t is the deviation of the excess market return at time t from the 

average excess market return in the examined period. 

Ranking the stocks according to this coskewness measure, we form a value- 

weighted portfolio of the 30% stocks with the most positively coskewed returns (S+), 

while the 30% stocks with the most negatively coskewed returns form another port- 

folio (S-). The next step is to find the returns of these portfolios on the 61st month. 

The spread of these two portfolios' returns (S- - S+) will yield the return generated 

by the self-financing strategy of buying the stocks with the most negatively coskewed 

returns and selling short the stocks with the most positively coskewed returns. 

To construct the coskewness measure, QSKD, we employ data for monthly returns 
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and market values of all stocks being listed in the FTSE All Share Index during the 

period 1986-2005 with at least 61 observations. The number of stocks utilized to 

create the coskewness portfolios varied from 413 (with market value of £339,404 

million) in December 1991 to 581 in January 2004 (with market value of £1,045,331 

million). The risk-free rate is given by the interbank monthly rate and the market 

returns are the returns of the FTSE-All Share Index. The source for the data and the 

FTSE All Share Index listings is Thomson Datastream and Worldscope respectively. 

The coskewness portfolios' returns are constructed for the period January 1991- 

December 2005. Table 4.1 presents the average returns of the zero-cost coskewness 

spread portfolio (S- - S+) and the market excess returns for various periods. A 

striking feature of the zero-cost portfolio is that it yielded, on average, a return 

of 2.09% p. a., over the period 1991-2005, having a very low standard deviation. 

Figure 4.1 shows these returns along with the excess market returns. The subperiod 

analysis showed that the negative coskewness risk was more highly priced in the last 

subperiod, i. e. January 2001- December 2005. 

Following Cuthbertson et al. (2006), we proxy the size strategy returns (SMB) 

as the difference between the monthly returns of the Hoare Govett Small Cap and 

the FTSE 100 indices and the value strategy returns (HML) as the spread between 

the monthly returns of the MSCI UK Growth and the MSCI UK Value indices. The 

returns of the momentum strategy (MOM) were calculated by ranking all available 

stocks at time t according to their returns between the months t- 12 and t-1. 

The top 30% (value-weighted) of these stocks were classified as Winners and the 

bottom 30% as Losers. The spread of their monthly returns at t+1 is taken as the 

momentum strategy return. The portfolios were rebalanced on a monthly basis. 

Table 4.1 indicates that the Size and Value strategies yielded positive returns 

mainly during the subperiod January 2001- December 2005. Estimating the measures 

of standardized coskewness of these strategies for the period January 2001- December 
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SKD 
m= -0.257 for the Size (SMB) strategy and 13'4 = -0.107 2005, these were , Qs 

for the Value (HML) strategy. The Momentum (MOM) strategy yielded a positive 

average return throughout the examined period, but this was even higher during the 

last subperiod. The measure of standardized coskewness had a value of 011, JJ_ 
o= 

-0.43 for the last subperiod. Hence, all -0.08 for the whole period and 0m SKD 

these strategies had negatively coskewed returns, especially when they yielded high 

average returns. As a result, a trust manager who followed these strategies was 

loading negative skewness to his portfolio, extracting the corresponding premium. 

For the UK unit trusts, the Lipper Fund Database is used to acquire Net Asset 

Values (NAV) on a monthly basis. 5 We select the unit trusts which are marked for 

sale in the UK and they have domicile either in the UK or overseas. The performance 

evaluation study refers to unit trusts which have the FTSE All Share Index as a fund 

manager benchmark in the Lipper Database, justifying the use of the returns of this 

index as a proxy for market returns. To alleviate the problem of survivorship bias, 

the database we utilize also includes unit trusts which have ceased operations before 

2005. To have a meaningful performance study, only trusts with more than 61 

observations of NAVs were employed. This selection leaves us with 273 unit trusts 

having more than 60 monthly returns for the period January 1991- December 2005. 

The minimum number of trusts in our final dataset is 150 in 1991 and the maximum 

number is 273 in 2004. Table 4.2 provides the number of trusts for each subperiod 

as well as their average excess returns. 

5It should be noted that the NAY is calculated after the deduction of management fees and 
other expenses. 
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4.5 Unit trusts' performance 

4.5.1 Average returns and Sharpe ratios 

The average excess returns earned by the equity trusts are given in Panel A of Table 

4.2. An interesting observation is that the trusts exhibited consistently lower returns 

in comparison to the excess returns of the FTSE All Share Index in the whole sample 

period as well as in the three examined subperiods. The high fees they charged is 

regarded tobe the main reason why this underperformance is observed. ' Non-stock 

holdings could provide another explanation, but the lack of holdings data does not 

allow us to test it formally. However, the results of the CAPM analysis showed that 

the average beta of the trusts was 0.93, providing some evidence for this argument. 

Panel A of Table 4.2 also provides the average Sharpe ratios of the trusts for 

the period January 1991- December 2005. For the calculation of this average, the 

individual Sharpe ratio of each trust with more than 60 monthly returns was firstly 

calculated. It should be reminded that during bear market phases, Sharpe ratios 

can take negative values. The purpose of calculating this ratio is to compare it with 

the Downside-Risk Sharpe Ratio (DSR) that replaces the variance of the monthly 

returns with their semi-variance. The average DSRs are also reported in Panel A of 

Table 4.2. The most important finding is that the average DSR is much lower (in 

absolute value) in comparison to the average Sharpe ratio regardless of the examined 

period. The explanation for this finding is that the returns' semi-variance was much 

higher than their variance; consequently, the excess returns were much more severely 

penalized under the DSR measure. 

The previous result is consistent for all of the individual trusts and shows that 

the trusts' returns were indeed negatively skewed. This is an interesting finding 

6Khorana et al. (2008) claim that the equity trusts marked for sale in the UK had an average 
Total Expense Ratio of 1.42% p. a. in 2002. The corresponding Total Shareholer Cost was 2.48%. 
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for prudent investors who are averse to negative skewness as well as for loss averse 

investors who are even more averse to this feature. It also shows that if the DSR, 

replaces the Sharpe ratio as a performance measure, the managers will be incentivized 

to avoid large negative returns, meeting the preferences of their clients. 

4.5.2 Jensen alpha 

Focusing now on measures based on asset pricing models, the first measure to employ 

is Jensen's alpha, given by the intercept of regression (4.12). Over the period January 

1991- December 2005, the median trust had a Jensen alpha of -1.77% p. a. Figure 

4.2 shows the distribution of the estimated Jensen alphas for all the trusts during 

this period. It is evident that the majority of the trusts have negative alphas, but 

their distribution is positively skewed. This finding implies that there are a few 

trusts who have quite high positive alphas. Having ranked the trusts according to 

their alphas, Table 4.3 shows the corresponding values for various percentiles of the 

distribution. The upper 25% of the trusts had a positive alpha, though very few of 

these estimates were statistically significant. On the other hand, the bottom 45% of 

the trusts exhibited alphas of less than -2% p. a.. These results are in accordance 

with the previous literature, as this is reviewed in Cuthbertson et al. (2007). 

The common practice of ranking trusts according to their alpha point estimates 

could be misleading, since the standard error of the estimate is not taken into account. 

It has been suggested by Kosowski et al. (2006) that ranking trusts according to 

their t-statistics is more appropriate, since this adjusts the point estimate for its 

in-sample variability (standard error). Table 4.4 presents such a ranking, using the 

corresponding t-values.? Using a 95% confidence interval for the t-statistic, only 5% 

of the trusts exhibited significantly positive managerial ability. On the other hand, 

71n this study, reported t-values use Newey-West (1987) heteroskedasticity and autocorrelation 
consistent standard errors. 
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more than 30% of the trusts exhibited significantly negative managerial ability. 

An immediate conclusion from the shape of the alphas' distribution is that accord- 

ing to this static, mean-variance measure, managerial ability existed, but only for a 

very small portion of the trust managers. Furthermore, even the quadratic investors 

who chose the bottom 30% trusts would have been significantly better off if they 

had invested in a low-cost index fund. Since we deal with net returns, high expenses 

and management fees could well be a reason for the significant underperformance 

of many trusts. The nonnormality of the alphas' distribution can be explained in 

two ways: Either managers exhibit heterogeneous abilities, with a few of them being 

highly skilful or these managers adopted heterogeneous risk-taking strategies. The 

next subsections investigate further these hypotheses. 

4.5.3 Carhart alpha 

This subsection evaluates the trusts by using the intercept of the Carhart asset pricing 

model in (4.14) as a performance measure. The rankings of the trusts according to 

their Carhart alphas, along with the corresponding t-statistics and p-values are given 

in Table 4.3, while Table 4.4 provides the rankings according to the t-values of the 

Carhart alpha point estimates. In comparison to Jensen's alpha, the main conclusion 

is that the achieved performance is now much lower for every percentile of the trusts' 

distribution. Figure 4.3 plots the distribution of the trusts' Carhart alphas. 

In particular, the median trust's Carhart alpha was -2.32% p. a. over the period 

January 1991- December 2005. Therefore, it is argued that attributing the returns 

of the size, momentum and value strategies to the corresponding risk factors, as 

the Carhart regression does, significantly diminishes the performance of the trust 

managers. Interestingly, there were only very few funds that exhibited a positive and 

8The Kolmogorov-Smirnov test was employed to formally test the hypothesis of normality for 
the standardized alphas. The hypothesis of normality was rejected at levels even lower than 1%. 
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statistically significant alpha over this period. This result points to the argument 

that, if an investor considers the documented "anomalies" as risk factors, he would 

be much better off by investing in a low-cost index fund rather than the median UK 

equity unit trust. Nevertheless, the relative ranking of the funds according to their 

Carhart alphas is similar to their corresponding ranking according to their Jensen 

alphas. Formally, the Spearman's correlation coefficient of these two rankings is 

p=0.916.9 

With respect to managerial incentives, Figure 4.4 depicts the loadings of the 

trusts' returns on the size, value and momentum factors over the whole sample period. 

It is interesting to observe that the managers mainly followed size strategies. There 

is no evidence for a unanimous adoption of value and momentum strategies, since the 

estimates of the corresponding loadings are evenly distributed around zero for the 

examined trusts. In particular, while 199 of the trusts had a significantly (at the 5% 

level) positive loading on the size strategy, only 48 of them had a significantly positive 

loading on the momentum strategy and just 11 of them on the value strategy. These 

findings are in line with Cuthbertson et al. (2006) and in contrast to the stylized 

facts of the US literature (see Carhart, 1997), i. e. that the managers consistently 

follow value and momentum strategies. 

The explanation for this finding lies in the fact that these strategies yielded highly 

volatile returns which were not consistently positive throughout our sample period. 

Consequently, we would not expect managers to stick to specific strategies, especially 

when these are not performing well. This is a fundamental issue demonstrating the 

main disadvantage of the Carhart model, that is to assume that managers follow 

specific strategies even though these do not persistently yield positive returns and do 

BEd. - 
'The Spearman's rank correlation coefficient -is given by p= 1- 

nn -1 + with di = xi-yi, where 

xi and yj are correspondingly the rankings of fund i according to the measures under examination 

and n is the number of funds. 
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not rigorously represent any specific risk factor. This is also an important issue when 

comparing asset pricing models on the basis of a selection criterion. In particular, 

we employ the Schwartz Information Criterion (SIC), that captures the trade off 

between obtaining the better fit model and using the fewest possible regressors. 10 

Our regression analysis shows that on the basis of this criterion, for the 38% of 

the funds the CAPM should be preferred. The reason is that for these funds, the 

enhancement of the explanatory power in the Carhart model is not sufficient to 

justify the use of three additional regressors. Therefore, the parsimony of the asset 

pricing model is a highly desirable property. 

4.5.4 Harvey-5iddique alpha 

This subsection presents the results of the unit trusts' evaluation using the Harvey- 

Siddique asset pricing model given in (4.15). Interestingly, the examined trusts had 

a median Harvey-Siddique alpha of -2.36% p. a. This is much lower than the median 

Jensen alpha. Figure 4.2 plots the distribution of the Harvey-Siddique alphas along 

with the distribution of the Jensen alphas. It is evident that the whole distribution is 

shifted to the left, as we switch from the Jensen alpha to the Harvey-Siddique alpha. 

The main explanation for this difference is that trust managers followed coskew- 

ness strategies, earning positive returns which were regarded as "abnormal returns" 

according to the CAPM. If a manager had genuinely added value to his portfolio, 

without adding negative skewness, then there should be no difference between the 

results derived by these two measures. 

To verify this conjecture, it is interesting to note that 263 out of the total 273 

trusts had a positive loading (coefficient c) on the coskewness factor and this positive 
1OFormally, the Schwartz Information Criterion (SIC) takes the value SIC= nln(ßns) + (k + 

1) in(n), where n is the number of observations, RSS is the sum of squared residuals and k is the 

number of explanatory variables in the model. This expression is an increasing function of RSS 

and k. The model with the lower value is preferred. 
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loading was statistically significant at the 5% level for 175 funds during the examined 

period. Figure 4.5 plots the density of the loadings on the coskewness strategy 

(solid line), showing that more than 90% of the trusts had a positive coefficient 

estimate and more than the 50% of the trusts had a coefficient point estimate of 

more than 0.25. This finding confirms that the majority of the funds were employing 

strategies which essentially loaded negative skewness, without this implying that they 

consciously followed the specific negative coskewness spread strategy we analyzed in 

the previous section. " The Spearman correlation coefficient for the rankings of the 

trusts according to their Jensen and Harvey-Siddique alphas is found to be p=0.969. 

Ranking the trusts according to their Harvey-Siddique alphas, Table 4.3 reports 

their estimates for various percentiles of this distribution. It is striking to observe 

that only the 16% of the trusts had positive alphas. On the other hand, the 55% of 

the funds had an alpha of less than -2% p. a.. Ranking the trusts according to the 

t-values of these alphas in Table 4.4, the results are equivalent. Only 3 funds had 

significantly positive alphas at the 5% level, while 41% of the trusts had significantly 

negative alpha estimates. With respect to the distribution of the alphas, this is 

now closer to normality, 12 being less positively skewed in comparison to the Jensen 

alphas' distribution. 

Interestingly, the two trusts with the highest Jensen alphas (15.5% and 13.71% 

p. a. correspondingly), which account for the extreme positive tail of the distribution, 

are the trusts with the 2nd and 8th (out of 273) highest loadings of the coskewness 

risk factor (with coefficient point estimates of c=1.53 and c=0.98 correspondingly). 

Hence, the conjecture of heterogeneous risk-taking we previously made is supported 
11 Fund management practice shows that managers try to find and exploit patterns in stock 

returns in order to generate portfolios that beat the measures according to which they are evaluated. 
Therefore, a negative coskewness strategy does not necessarily mean that the manager consciously 

picks stocks with this characteristic, but that the strategies he implements actually mimick this 

statistical characteristic. 
12The null hypothesis of normality is marginally rejected at the 5% level using the Kolmogorov- 

Smirnov test. 
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by the results and part of this heterogeneity is due to the negative coskewness risk. 

With respect to the explanatory power of the Harvey-Siddique model, we found that 

this should be preferred to the CAPM on the basis of the SIC for all of the trusts 

we examined. The enhancement in the explanatory power through the addition of 

the coskewness risk factor comes at the minimum possible cost, i. e. only one extra 

regressor, leading to lower values of SIC for each trust. As a result, the parsimony 

of the Harvey-Siddique model is verified to be a highly attractive characteristic for 

the sample of trusts we examine. 

There are two main conclusions from these results: The first is that prudent in- 

vestors, who are averse to negative skewness and should use the Harvey-Siddique 

alpha to evaluate their trust managers, would have been better off by investing in a 

low-cost index fund, as compared to more than 80% of the available trusts over the 

period January 1991- December 2005. The second conclusion is that managers were 

very successful in reaping the negative coskewness premium, presenting it as "added 

value" and higher Jensen alpha. Figure 4.6 presents in a scatterplot the estimate 

of the Jensen alpha for each trust versus the estimate of the negative coskewness 

strategy loading (c), demonstrating this positive relationship. The Pearson correla- 

tion coefficient of these two variables is 0.45. More formally, regressing the Jensen 

alpha point estimates on the coskewness factor loadings, we get the following result 

(t-values are given in the parentheses): 

aJensen = -0.0318 + 0.0593 c R2 = 24.3% 
(-11.8) (9.32) 

The regression results show that a large part of the variation in the Jensen alphas 

can be explained by the trusts' coskewness factor loadings alone. This relationship 

is strongly significant. This finding confirms the argument that the trusts with the 

highest Jensen alphas were on average those that loaded most of the negative coskew- 
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ness risk. In other words, it can be argued that unit trusts would have been useful 

investment vehicles for agents with quadratic preferences that regard the coskewness 

premium as a "free lunch", but not for prudent investors. 

Comparing the results derived from the Harvey-Siddique models with correspond- 

ing results derived from the Carhart model, we find that for 63% of the examined 

trusts the Harvey-Siddique model should be preferred on the basis of the SIC. Again, 

the parsimony of this model is a highly attractive feature. The distribution of the 

Harvey-Siddique alphas is very similar to the distribution of the Carhart alphas, as 

this can be seen from Figure 4.3. This result provides support for the argument that 

the coskewness factor may partly capture the information contained in the Carhart 

regressors. Finally, the Spearman correlation coefficient between the trusts' rankings 

according to the Carhart and Harvey-Siddique alphas is p=0.9362. 

4.6 Further results 

4.6.1 Adding the coskewness factor to the Fama-French and 

Carhart models 

In this subsection we examine whether the previous results are modified if we take 

the Fama-French or the Carhart model as the benchmark and augment it by adding 

the negative coskewness factor (S- - S+). This approach has been taken by Hung 

et al. (2004) in an asset pricing context and by Ding and Shawky (2007) in a 

performance evaluation context. In particular, we examine if the addition of the 

coskewness factor affects the conclusions with respect to trusts' managerial ability, 

whether the evidence for the loading of the negative coskewness risk is robust to 

the inclusion of other risk factors as well as whether the augmented models exhibit 

superior explanatory power. 
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As it has been previously discussed, the Fama French model adds to the CAPM 

a size and a value risk factor. Consequently, the Fama-French alpha (aFF) is the 

intercept of the following regression model: 

rp, t = aFF + , Qpr n, t + Q1SMBt + , Q2HMLt + et (4.18) 

Employing this asset pricing model for the 273 trusts of our sample during the 

period January 1991- December 2005, we estimate their Fama-French alphas. Figure 

4.7 exhibits the distribution of these trusts' alphas. This is very similar to the 

distribution of the Carhart alphas illustrated in Figure 4.3. The magnitude of the 

Fama-French alphas is also similar to the Carhart ones. In particular, the median 

trust has a Fama French alpha of -2.19% p. a. It is interesting to note that 220 

of these trusts had a negative Fama-French alpha point estimate and for 113 of 

them this point estimate is significantly negative at the 5% level. The Spearman 

rank correlation coefficient between the Fama-French and the Carhart measures is 

extremely high, equal to p=0.979. 

Adding the negative coskewness factor to the Fama-French model, the augmented 

regression to be estimated is given by: 

rp, t = aFF+CSK + Qprm, t + Q1SMBt + ß2HMLt + c(S- - S+)t + Et (4.19) 

The intercept of this model, aFF+CSK, shows the value that the manager added to 

the portfolio once the returns generated by the size, value and coskewness strategies 

have been attributed to the corresponding risk factors. We estimate this augmented 

model and the distribution of the corresponding alphas is plotted in Figure 4.7. 

The inclusion of the coskewness factor shifts the whole distribution of the Fama- 
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French alphas to the left. The median trust had an augmented Fama-French alpha 

of -2.57% p. a. The estimated alpha was negative for 231 of the trusts, while this 

estimate was significantly negative at the 5% level for 123 of these trusts. With 

respect to the trusts' rankings according to these two measures, their Spearman 

correlation coefficient is equal to p=0.974. 

The dotted curve in Figure 4.5 illustrates the density of the estimated coskewness 

factor loadings (c) derived from regression (4.19). The magnitude of these loadings 

is slightly reduced relative to the Harvey-Siddique model, but they are still predom- 

inantly positive. In particular, 234 out of the total 273 trusts had a positive loading 

on the coskewness factor and for 101 of -these trusts this loading was significantly 

positive at the 5% level. The explanation we put forward for this finding is that 

the value and size factors partly capture the negative coskewness risk. Nevertheless, 

the fact that the estimated coskewness loadings do not evaporate in the presence of 

these factors leads to the conclusion that the coskewness factor we have employed in 

this study carries important information for the trusts' returns. 

On the basis of the SIC, the augmented Fama-French model should be preferred to 

its standard version for 32% of the examined trusts. This is an important result if we 

take into account the fact that the SIC heavily penalizes the inclusion of an additional 

regressor. To stress the importance of the coskewness factor, it should be noted that 

comparing the standard Fama-French model with the Harvey-Siddique one on the 

basis of the SIC, the latter is preferred for 66% of the trusts. The explanatory power 

of the Harvey-Siddique model coupled with its attractive parsimony make it the 

preferred one. 

We repeat the previous analysis, adding now the negative coskewness factor to 

the Carhart model which is given in (4.14). Hence, the augmented Carhart model is 

now given by: 
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rp, t = aCarhart+CSK + ßprm, 
t + ß1SMBt + Q2HMLt + ß3MOMt + c(S- - S+)t + et 

(4.20) 

The intercept of this model, &Carhart+CSK, shows the value the manager added to 

the portfolio once the returns generated by the size, value, momentum and coskew- 

ness strategies have been attributed to the corresponding risk factors. The estimated 

alphas are very similar to the ones derived by the augmented Fama-French model, 

to the extent that the two distributions are not distinguishable. The median trust 

has an augmented Carhart alpha of -2.52% p. a. For 232 of the trusts, the esti- 

mated alpha was negative, while this estimated value was significantly negative for 

124 trusts. The ranking of the trusts based on the augmented Carhart model is very 

similar to the ranking based on its standard version. The corresponding Spearman 

rank correlation coefficient is equal to p=0.979. 

The estimated loadings on the coskewness factor (c) are very similar to the ones 

derived by the augmented Fama French model. Their distribution is illustrated by 

the dashed curve in Figure 4.5. Even though their magnitude is slightly reduced 

with respect to the Harvey-Siddique model, they are still positive for 229 of the 

examined trusts. Moreover, for 106 of these trusts the coskewness factor loading 

was significantly positive at the 5% level. Therefore, the argument that the trusts' 

managers loaded negative coskewness to their portfolios during the examined period 

holds true even when we include the commonly used value, size and momentum risk 

factors. 

Comparing the Carhart model with its augmented version on the basis of the 

SIC, the Carhart model is preferred for the 65% of the trusts. These results provide 

further support for the argument that the Carhart factors mimick the coskewness 

factor to some extent. In other words, the addition of the coskewness factor to the 
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Carhart model is not expected to immensely enhance the explanatory power of the 

augmented model. Nevertheless, the finding that the inclusion of the coskewness 

factor leads to a lower SIC value for the rest 35% of the trusts acts as a warning 

for the fitness of the Carhart model. The information contained in the negative 

coskewness factor is of great importance for the appropriate performance attribution 

of a large number of funds. 

4.6.2 Subperiod analysis 

Due to the high turnover of trust managers as well as the different market phases they 

face, it is interesting to examine whether the previous findings are robust for shorter 

time periods. Therefore, the total period is split into three subperiods of 5 years each. 

Panel A of Table 4.2 provides the average returns the trusts achieved as well as their 

Sharpe ratios and their DSRs. Panel B of Table 4.2 presents their average Jensen, 

Carhart and Harvey-Siddique alphas. The average DSRs are consistently lower (in 

absolute value) in comparison to the average Sharpe ratios for all three subperiods. 

With respect to their average returns, there has been a significant improvement in the 

subsequent subperiods as compared to the initial period of January 1991- December 

1995, when trusts underperformed the market by more than 400 bps. 

There are three possible explanations for this improvement: The first is that there 

may have been a decrease in the expenses of the industry due to higher competition 

provoked by the entry of new trusts, so more of the managers' ability was finally 

captured by the individual shareholder. 13 The second explanation is that the trusts 

may have been more exposed to beta risk from 1996 onwards. This hypothesis cannot 

be supported by the data, since the average beta estimate of the trusts remained 

relatively stable and close to 0.93 for all three subperiods. The third explanation is 

that managers may have added more of the coskewness premium to their portfolios 

13This hypothesis is not testable, since no data on UK unit trusts' expenses were available. 
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during the last two subperiods. 

As Table 4.1 presents, the coskewness spread strategy yielded high positive re- 

turns after 1995. These returns were as high as 3.39% p. a. during the period January 

2001- December 2005. Interestingly, the number of funds having positive loadings of 

the coskewness risk increased as this premium was increasing. During the period 

January 1991- December 1995 there were 113 trusts out of the total 150 having a 

positive loading (and only 26 of them being statistically significant at the 5% confi- 

dence level), from January 1996 to December 2000 there were 167 out of 197 trusts 

with positive loadings (with 46 of them being statistically significant), while during 

the period January 2001- December 2005, as many as 252 out of the total 265 trusts 

were loading negative coskewness risk (with 160 of these coefficients being statisti- 

cally significant). This was actually the period that the value, size and momentum 

strategies yielded high positive returns, characterized by negative coskewness. Hence, 

trust managers responded very quickly to the existence of this premium, employing 

strategies that mimicked negative coskewness. Moreover, they correctly acted ac- 

cording to their incentives, since most of them were evaluated either through their 

raw returns or through mean-variance measures. 

The previous analysis explains the significant improvement in the trusts' Jensen 

alphas over the subperiods presented in Table 4.5, where the median trust had a 

Jensen alpha of -4.1% p. a. during the period January 1991- December 1995 and then 

significantly improved to -2.01% p. a. and -1.4% p. a. in the next subperiods. Hence, 

these results provide further evidence that the trusts were successful in reaping the 

negative coskewness premium, actually increasing their exposure to this risk during 

the period its premium was at its highest levels. While this strategy would have 

yielded a significant gain for a quadratic investor, it does not do so for a prudent 

one, because at the same time it loads the negative skewness risk that he is averse 

to. 
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With respect to Carhart alphas, Table 4.5 presents the trusts' rankings accord- 

ing to their point estimates and Table 4.6 presents their rankings according to their 

t-values for these three subperiods. The general conclusion is that alphas arc sig- 

nificantly reduced as we switch from the CAPM to the Carhart model. The most 

significant reduction in the performance, however, takes place in the third subperiod, 

January 2001- December 2005. As the results show, even the top-ranked trust had 

a Carhart alpha of only 4.93% p. a. in comparison to a Jensen alpha of 11.11% p. a., 

while the median trust scored quite badly, achieving a Carhart alpha of -2.81% p. a. 

Moreover, the investors who selected the bottom 30% of the trusts experienced a 

significantly negative performance of less than -3.73% p. a. 

The explanation for this significant modification of the results is that during the 

third subperiod of our sample the size, value and momentum strategies yielded very 

high positive returns. Hence, for the managers who followed these strategies during 

this subperiod, these returns were translated into a higher Jensen alpha, but not 

into a high Carhart alpha, since they were attributed as premia to the corresponding 

factors. This result shows how different conclusions an investor can extract using 

different asset pricing models for performance evaluation. 

In order to examine the evolution of managerial ability for a prudent investor, 

Table 4.5 presents the Harvey-Siddique alphas and their t-statistics for the three 

subperiods across various percentiles of the distribution. With respect to their point 

estimates, in all three periods, less than 30% of the trusts had positive alphas. 

The median trust severely underperformed during the period 1991-1995 exhibiting a 

Harvey-Siddique alpha of -4.25% p. a. This performance was significantly improved 

in the period 1996-2000, but the median trust still had an alpha of -2.43% p. a. 

Nevertheless, this improvement was not continued in 2001-2005, since the median 

fund achieved a Harvey-Siddique alpha of -2.68% p. a. 

Figure 4.8 plots the distributions of the trusts' Harvey-Siddique alphas for each 
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of the subperiods. While the distribution of alphas in 1996-2000 was shifted to the 

right in comparison to the previous subperiod, it was then shifted to the left during 

the period 2001-2005, exhibiting a large concentration of values around the mean. 

Ranking trusts according to the t-values of their Harvey-Siddique alphas in Table 

4.6, it is surprising to see that in the second and the third subperiod, apart from the 

top two trusts, there. was no other trust with a significantly positive alpha. On the 

other hand, in all three subperiods, more than 30% of the trusts had significantly 

negative Harvey-Siddique alphas. 

4.6.3 Bootstrap analysis 

The previous subsections relied on t-statistics to examine the significance of the 

performance measures' point estimates. This is a valid procedure under the Gauss- 

Markov assumption of normality for the regressions' residuals. Nevertheless, the 

nonnormality of the alphas' distribution and the evidence of heterogeneous risk- 

taking may cast doubts on the validity of the normality assumption, especially for 

the trusts at the tails of the alphas' distribution. If the residuals are not normally 

distributed, then the t-statistics may lead to spurious results and the extreme alpha 

estimates may be due to sampling variability, i. e. luck. 

We perform the Jarque-Bera (JB) test for normality in the residuals derived by 

the various asset pricing models we have employed. 14 For the market model, 177 out 

of the 273 funds have non-normal residuals (at the 5% level). The number of trusts 

with non-normal residuals drops to 173 when we employ the Fama-French model 

and 166 for the Carhart model. Using the Harvey-Siddique model we had 172 trusts 

with, non-normal residuals at the 5% level. Hence, there is sufficient evidence that 
14The Jarque-Bera test is a goodness-of-fit measure of departure from normality, based on the 

sample kurtosis and skewness. The test statistic JB is defined as JB =6 (SZ +K 433), where n is 
the number of observations, S is the measure of skewness and K is the degree of kurtosis. The JB 
statistic follows a X2(2) distribution, having as its null hypothesis that the data are drawn from a 
normal distribution. 
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the normality assumption is violated for a large portion of these funds. In order to 

examine the impact of sampling variability on the results discussed in the previous 

sections, this subsection employs a simple bootstrap methodology (see Hall, 1992, 

for an introduction) at the individual fund level. 15 

In particular, we employ the following bootstrap procedure, accordingly adjusted 

for the Harvey-Siddique asset pricing model. Extracting the time series of residuals 

{Ei, t, t= Tio, ..., 
Til} for each trust i from the regression: 

rt = &HS +, ßrm, t + c(S- - S+)t + Et (4.21) 

we draw a sample with replacement for each of these trusts and create a pseudo- 

time series of resampled residuals {E6t,, to = sTo, ..., sTi, }, where bl is an index for the 

bootstrap number and where each of the time series indices sbI0, ..., sTi1 are drawn 

randomly from [Tio, 
..., 

Till - 

Using this pseudo-time series of resampled residuals, we construct for each trust 

ia time-series of monthly excess returns ri, for each bootstrapped sample b', em- 

ploying the already estimated set of coefficients {&Hs, ß, c}: 

rt, = ätts + Qr, n., t + c(S- - S+)t + Etc (4.22) 

Tiol ..., sTi1. We subsequently use these pseudo-returns for t= Tio, ..., Tsl and tE = Al 

to re-estimate regression (4.15) for each bootstrap sample bJ and we get an alpha 

estimate {ä6HS}. Repeating the previous steps 1,000 times, we have a set of 1,000 

alpha estimates for each fund i, having bootstrapped its residuals. This distribution 

of bootstrapped alphas can help us derive confidence intervals for the point estimate 

15Kosowski et al. (2006) suggest a novel cross-sectional bootstrap methodology to distinguish 
"skill" from "luck" in US mutual funds. Cuthbertson et al. (2006) also employ this novel bootstrap 

methodology to evaluate UK unit trusts for a series of commonly used performance measures. In 

contrast, our study employs a simpler, fund-by-fund bootstrap approach. 
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without imposing any parametric assumption on the fund's residuals. 

The aim of this subsection is to derive the distribution of the bootstrapped al- 

phas for each of the funds in Table 4.3, i. e. for different percentiles of the Harvey- 

Siddique alphas' distribution for the entire sample period. This will help us derive 

more robust conclusions with respect to the statistical significance of the estimated 

Harvey-Siddique alphas. In particular, the last line of Table 4.3 reports the corre- 

sponding p-values derived by the bootstrap methodology. The results show that the 

conclusions regarding the significance of the estimated Harvey-Siddique alphas do 

not get modified if we use the bootstrapped residuals. 

Figure 4.9 illustrates the bootstrapped alphas' distribution (solid curve) for a 

series of funds. The vertical line shows the corresponding point estimate of the 

Harvey-Siddique alpha. We also plot the density of alphas under the conventional 

regression analysis (dashed line), in order to have a benchmark of comparison. The 

inference under the bootstrap methodology is not considerably different from the 

standard approach. In particular, apart from the top trust in Panel Al, the two 

alternative distributions are almost identical for the rest of the trusts. 

Controlling for the impact of sampling variation is more crucial when the resid- 

uals' distribution is asymmetric. However, as it can be seen from Figure 4.9, the 

derived bootstrapped alphas' distributions for a series of funds are relatively sym- 

metric, hence there is no noteworthy difference in terms of statistical inference as 

compared to the parametric case of the standard regression analysis. This is a quite 

interesting result, in light of the skewed bootstrapped alphas' distributions derived 

in Kosowski et al. (2006). The explanation we put forward is that the inclusion of a 

coskewness factor may considerably contribute to the symmetry of the residuals' dis- 

tribution, since it attributes highly skewed returns to the corresponding risk factor, 

unlike other models that would regard them as residuals. The nonnormality in the 

regressions' residuals under the Harvey-Siddique model is mainly due to their excess 
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kurtosis. 

4.6.4 Can the Harvey-Siddique model explain the trusts' re- 

turns? 

This subsection examines the explanatory power of the Harvey-Siddique asset pricing 

model with respect to the funds' returns. There are two main issues that are of 

interest: Firstly, it is examined whether this model captures in a better way the 

variability of the funds' returns and, secondly, we consider whether the factor loadings 

of this model can explain the level of the funds' average returns. In particular, we 

make use of the 148 funds that had 180 monthly observations (no missing value) 

during the period January 1991- December 2005. 

With respect to the variability of these funds' returns, using the CAPM, the 

average R2 was as high as 80.4%. This is an expected as well as a necessary result, 

if the selected benchmark is an appropriate one for the funds we evaluate. Adding 

the coskewness factor, the average adjusted R2 for these funds using the Harvey- 

Siddique model is 81.27%. This is again an anticipated result because the returns 

of the added coskewness factor (S- - S+) are not highly variable as Table 4.1 and 

Figure 4.1 show. On the other hand, the average adjusted R2 of the funds using 

the Carhart model is 85.4%. The increase in the explanatory power of the Carhart 

model is due to the fact that the added size, value and momentum factors are highly 

variable as Table 4.1 shows. It should be reminded that due to the definition of the 

least squares methodology, the more volatile the regressors are, the more flexible the 

model is to fit the dependent variable. 

These results show that the CAPM does a very good job in capturing the co- 

. movement of the funds' returns with, their benchmark's returns. Consequently, the 

addition of extra factors cannot considerably increase the R2 of the multi-factor mod- 
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els, especially when these exhibit low variability, as the coskewness factor does. The 

motivation for the use of this extra factor is the failure of the CAPM to explain the 

level of the funds' average returns. This is a common finding in the empirical asset 

pricing literature, implying that the beta of the fund with respect to its benchmark is 

not an appropriate measure of risk. If this was true, then there should be a positive 

relationship between the funds' betas and their average excess returns. Figure 4.10 

plots the average excess returns of the 148 funds against their estimated CAPM be- 

tas, showing that the positive relationship predicted by the standard financial theory 

does not hold. More specifically, the slope coefficient of this relationship is negative 

but statistically insignificant. The average excess returns of the funds are not related 

to their beta risk exposure. 

On the other hand, Figure 4.11 plots the average funds' excess returns against 

their coskewness factor loadings, (c), as estimated by the Harvey-Siddique model. 

It is interesting to document a strong and statistically significant positive relation- 

ship between the level of the funds' average excess returns and their exposure to 

the coskewness risk. This very important result implies that the most appropriate 

measure of risk is the coskewness factor loading of the fund. It should be noted that 

the beta estimates for the funds derived by the Harvey-Siddique model are the same 

with the beta estimates derived by the CAPM, since the coskewness risk factor is 

by construction orthogonal to the beta risk. Consequently, we can argue that the 

Harvey-Siddique model dominates the CAPM, because it inherits its high explana- 

tory power for the variability of the funds' returns and it additionally manages to 

explain their cross-sectional average returns, revealing what is the appropriate con- 

cept of risk that is priced in the markets and yields the corresponding premia that 

the funds reap. 
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4.7 Conclusion 

Higher moments in asset returns is a relatively neglected issue in the investment 

performance evaluation literature. This issue becomes even more important, if one 

takes into account the experimental evidence that large negative returns affect utility 

asymmetrically more than positive returns do. Consequently, a prudent investor 

should not use mean-variance measures to evaluate his investments, because they 

neglect his actual preferences and regard the negative coskewness premium as a 

"free lunch". 

In the case of delegated asset management, this issue is very crucial, since the fund 

manager, if evaluated through mean-variance measures, will falsely interpret that 

the fund shareholder has no preferences over skewness and he will be incentivized to 

follow tactical asset allocation strategies that load this type of risk, in order to reap 

the corresponding premium. Clearly, this situation generates a mismatch between 

objectives and outcomes, leading to erroneous conclusions with respect to the ex post 

state verification of the investment performance. 

The limitations of the static, mean-variance measures motivate the adoption of a 

performance measure that adjusts for the negative coskewness risk, documented to be 

priced in the UK stock market. The Harvey-Siddique two-factor asset pricing model 

is qualified to be appropriate for a prudent investor and it has a sound theoretical 

basis, unlike the Carhart asset pricing model. The intercept of this model, which we 

term as the Harvey-Siddique alpha, will reveal the genuine outperformance for such 

an investor, resolving the ex post verification problem. 

This measure was employed for the evaluation of the UK equity unit trusts that 

had the FTSE All Share Index as their benchmark for the period January 1991- 

December 2005. The vast majority of the trusts exhibited a negative Harvey-Siddique 

alpha, significantly underperforming their benchmark. Actually, the median under 
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performance of the trusts (-2.32%) for prudent investors was of greater magnitude 

than the current average expense ratio they charge (circa 1.5%). 

Interestingly, most of the trusts loaded negative coskewness to their portfolios, 

capturing part of the corresponding premium and correctly responding to their in- 

centives, since they are currently being evaluated through mean-variance measures. 

This finding shows how a prudent investor would misinterpret this premium for gen- 

uinely added value, if he was using such a measure too. Hence, the call for the shift 

of interest from outperforming to matching investors' preferences and objectives be- 

comes even more important, reflecting the advice of Charles Ellis (2005, p. 115) not 

to play "the Loser's Game of trying to beat the market- a game that almost every 

investor will eventually lose". 

217 



Table 4.1: Excess Market, Size, Value, Momentum and Coskewness returns 

Excess (S- - S+) Size Value Momentum 

Market Strategy strategy strategy strategy 

Panel A: Total Period 1991-2005 

Aver. Monthly Returns 

St. Deviation 

0.42% 

4.01% 

0.174% 

0.96% 

0.175% 

3.65% 

0.18% 

2.81% 

0.169% 

1.39% 

Panel B: Subperiod 1991-1995 

Aver. Monthly Returns 

St. Deviation 

0.73% 

4.09% 

0.021% 

0.62% 
-0.08% 
3.63% 

0.09% 

2.14% 

0.15% 

0.74% 

Panel C: Subperiod 1996-2000 

Aver. Monthly Returns 

St. Deviation 

0.63% 

3.71% 

0.21% 

1.07% 
-0.001% 
4.01% 

0.001% 

3.52% 

0.09% 

1.64% 

Panel D: Subperiod 2001-2005 

Aver. Monthly Returns -0.09% 0.28% 0.61% 0.44% 0.26% 

St. Deviation 4.21% 1.11% 3.31% 2.61% 1.62% 

Notes: This Table presents the average monthly returns and the corresponding standard 
deviation of the coskewness, the size, the value and the momentum strategy along with 
the excess market returns. Panel A presents the results for the total period January 

1991- December 2005, Panel B the corresponding results for the subperiod January 1991- 

December 1995, Panel C for the subperiod January 1996- December 2000 and Panel D for 

the subperiod January 2001- December 2005. 
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Table 4.2: Unit trusts' descriptive statistics 

Panel A: Trusts' returns and Sharpe Ratios 

Number of Trusts' Average Average Sharpe Average Downside 
Periods 

trusts >_ 60 obs. Fxcess Returns (p. a. ) Ratio Sharpe Ratio 

1991-1995 150 4.61% 0.089 0.051 

1996-2000 197 5.76% 0.116 0.065 

2001-2005 265 -2.01% -0.04 -0.022 
1991-2005 273 2.93% 0.039 0.024 

Panel B: Trusts' Jensen, Carhart and Harvey-Siddique alphas 

Average Jensen Average Carhart Average I Iarvey- 

alpha (p. a. ) alpha (p. a. ) Siddique alpha (p. a. ) 

1991-1995 -3.65% -3.37% -3.81% 
1996-2000 -1.30% -1.57% -1.91% 
2001-2005 -0.98% -2.68% -2.33% 
1991-2005 -1.23% -1.97% -2.12% 

Notes: Panel A presents the number of trusts with more than 60 observations, their 

average annualized excess returns as well as the average Sharpe ratios and Downside Sharpe 

ratios during the whole sample period period, January 1991- December 2005, and the 

subperiods January 1991- December 1995, Janurary 1996- December 2000 and January 

2001- December 2005. Panel B reports the average annualized Jensen, Carhart and Harvey- 

Siddique alphas of the trusts for the same periods. 
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Table 4.3: Alpha rankings, Total Period 1991-2005 

Top 1% 5% 10% 30% median 70% 90% 95% 99% Bottom 

Jensenalpha 15.51% 9.05% 4.57% 2.31% -0.37% -1.77% -2.96% -4.32% -4.89% -6.08% -15.67% 
t-stat 1.97 1.96 2.31 1.35 -0.27 -0.97 -3.59 -3.38 -2.62 -3.89 -3.97 

p-value 0.03 0.03 0.01 0.09 0.37 0.25 <0.01 <0.01 0.01 <0.01 <0.01 

Cadiart alpha 13.68% 4.92% 3.01% 1.08% -1% -2.32% -3.37% -4.66% -5.48% -7.15% -16.49% 

t-stat 1.98 3.2 0.98 0.51 -2.64 -1.56 -3.88 -4.25 -2.42 -2.57 -4.23 

p-value 0.03 <0.01 0.25 0.35 0.01 0.13 <0.01 <0.01 0.01 0.01 <0.01 

H-S alpha 11.20% 6.45% 2.87% 0.88% -1.20% -2.36% -3.69% -4.97% -5.68% -6.94% -17.07% 

t-stat 1.43 1.84 1.01 0.49 -0.88 -2.34 -3.53 -3.61 -2.37 -4.27 -4.28 

p-value 0.14 0.08 0.21 0.35 0.29 0.01 <0.01 <0.01 0.01 <0.01 <0.01 

boots. p-value 0.06 0.03 0.14 0.31 0.18 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Notes: This Table presents the rankings of the trusts over the whole sample period, Jan- 

uary 1991- December 2005, based on the estimates of the annualized Jensen, Carhart and 
Harvey-Siddique (H-S) alphas. In particular, the annualized alpha estimates for various 

percentiles of the trusts' rankings are reported along with their corresponding t-statistics 

and p-values. Reported t-values use Newey-West (1987) heteroskedasticity and autocor- 

relation consistent standard errors. The last line of the Table reports the corresponding 

p-values for the Harvey-Siddique alpha of each fund, as they are derived from the bootstrap 

methodology discussed in Section 4.6.3. 
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Table 4.4: t-statistics rankings, Total period, 1991-2005 

Top 1% 5% 10% 30% median 70% 90% 95% 99% Bottom 

t-Jensen4ha 2.81 2.61 1.91 0.85 -0.18 -1.14 -2.05 -3.59 -4.18 -4.80 -6.96 
Jensen alpha 13.71% 6.99% 6.05% 1.73% -0.40% -1.32% -3.24% -5.21% -3.28% -6.07% -3.25% 

p-value <0.01 0.01 0.07 0.27 0.39 0.21 0.05 <0.01 <0.01 <0.01 <0.01 

t-Carhartalpha 3.20 1.98 1.38 0.64 -0.65 -1.55 -2.47 -4.03 -4.39 -4.97 -7.14 
Carhart alpha 4.92% 13.6% 1.45% 1.57% -1.17% -3.64% -1.87% -4.45% -3.45% -5.96% -3.35% 

p-vahx <0.01 0.03 0.16 0.33 0.33 0.08 <0.01 <0.01 <0.01 <0.01 <0.01 

t-H-S alpha 2.20 1.98 1.31 0.40 -0.71 -1.54 -2.60 -3.90 -4.58 -5.33 -6.70 
H-S alpha 5.85% 9.55% 6.12% 1.41% -1.45% -1.55% -4.17% -4.82% -4.46% -4.70% -3.21% 

p-value 0.01 0.03 0.09 0.37 0.25 0.08 0.01 <0.01 <0.01 <0.01 <0.01 

Notes: This Table presents the rankings of the trusts over the whole sample period, 
January 1991- December 2005, based on the t-statistics of the Jensen, Carhart and Harvey- 

Siddique alphas. In particular, the t-statistics for various percentiles of the trusts' rankings 

are reported along with their corresponding annualized alphas and p-values. Reported t- 

values use Newey-West (1987) heteroskedasticity and autocorrelation consistent standard 

errors. 

II 
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Table 4.5: Alpha rankings, Subperiod Analysis 

Top 1% 5% 10% 30% median 70% 90% 95% 99% Bottom 
Panel A: January 1991- December 1995 

Jensen alpha 14.83% 7.13% 3.01% 1.48% -2.41% -4.10% -5.44% -7.21% -8.31% -14.79% -15.05% 
t-stat 2.88 2.18 1.45 0.27 -1.86 -2.86 -3.58 -2.62 -2.77 -3.16 -3.49 

p-vakc <0.01 0.04 0.14 0.38 0.07 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 
Carhartalpha 12.91% 8.45% 3.67% 1.15% -2.23% -3.68% -5.03% -6.86% -7.91% -13.57% -14.07% 

t-stat 3.36 2.43 2.22 0.41 -1.14 -2.12 -2.96 -4.52 -3.80 -4.39 -3.47 

p-value <0.01 0.02 0.03 0.36 0.21 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 
H-S alpha 14.23% 6.50% 2.71% 0.97% -2.58% -4.25% -5.49% -7.33% -8.70% -15.12% -15.25% 

t-stat 2.82 2.14 1.35 0.18 -1.50 -1.44 -3.58 -1.25 -2.98 -3.23 -3.51 
p-vag <0.01 0.04 0.16 0.39 0.13 0.14 <0.01 0.18 <0.01 <0.01 <0.01 

Panel B: January 1996- December 2000 

Jensen alpha 19.97% 13.76% 6.44% 3.05% -0.51% -2.01% -3.11% -4.98% . 6.02% -7.65% -9.03% 
t-stat 1.93 1.75 1.66 1.34 -0.12 -1.27 -0.44 -1.94 -1.95 -2.25 . 3.48 

p-vahia 0.06 0.09 0.1 0.16 0.39 0.17 0.36 0.06 0.06 0.03 <0.01 

Carhart alpha 16.42% 10.64% 4.67% 1.83% -0.5% -1.99% -3.28% -4.86% -6.1% -7.77% -9.41% 
t-stat 2.26 2.22 0.75 0.72 -0.22 -1.08 -2.18 -0.90 -2.61 -3.71 -4.07 

p-value 0.03 0.03 0.29 0.28 0.39 0.22 0.04 0.26 0.01 <0.01 <0.01 

H-S alpha 14.19% 11.11% 4.36% 1.95% -0.72% -2.43% -3.54% -5.36% -6.81% -8.21% -10.13% 
t-stat 1.48 1.43 1.21 0.41 -0.28 -1.03 -1.94 -2.11 -3.32 -2.44 -4.01 

p-value 0.13 0.14 0.19 0.36 0.38 0.23 0.06 0.03 <0.01 0.01 <0.01 
Panel C: January 2001- December 2005 

Jensenalpha 11.11% 10.02% 5.32% 2.73% -0.04% -1.40% -2.73% -3.93% -5.07% -11.69% -20.78% 
t-stat 2.24 2.24 1.27 1.03 -0.01 -0.78 -1.47 . 2.39 -2.84 -2.54 -2.06 

p-value 0.03 0.03 0.17 0.23 0.4 0.29 0.13 0.02 <0.01 0.01 0.05 

Carhart alpha 4.93% 4.69% 2.37% 0.39% -1.38% -2.81% -3.73% -5.37% -6.85% -12.5% -25.7% 
t-stat 2.16 1.38 0.98 0.23 -0.62 -1.79 -3.18 -2.41 -3.33 -2.93 -2.53 

p-value 0.04 0.15 0.25 0.39 0.32 0.09 <0.01 0.02 <0.01 <0.01 0.01 

11-S alpha 8.97% 8.01% 3.13% 0.76% -1.35% -2.68% -3.65% -4.86% -5.87% -11.94% -26.24% 
t-stat 2.01 2.07 0.82 0.21 -0.82 -0.96 -2.61 -1.47 -2.02 -2.50 -2.61 

p-value 0.05 0.04 0.28 0.38 0.28 0.25 0.01 0.14 0.05 0.01 <0.01 

Notes: This Table presents the rankings of the trusts based on the estimates of the 

annualized Jensen, Carhart and Harvey-Siddique alphas for the three subperiods examined: 

January 1991- December 1995, January 1996- December 2000 and January 2001- December 

2005. In particular, the annualized alpha estimates for various percentiles of the trusts' 

rankings are reported along with their corresponding t-statistics and p-values. Reported 

t-values use Newey-West (1987) heteroskedasticity and autocorrelation consistent standard 

errors. 
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Table 4.6: t-statistics rankings, Subperiod Analysis 

Top 1% 5% 10% 30% median 70% 90% 95% 99% Bottom 

Panel A: January 1991- December 1995 

t-Jensen 2.88 2.18 1.14 0.27 -0.98 -1.86 -2.70 -3.18 -3.56 -4.63 . 4.74 

Jensen alpha 14.83% 7.13% 2.23% 1.48% -2.06% -2.41% -6.29% - 6.92% -8.76% -8.89% -9.84% 

1, -vak <0.01 0.04 0.21 0.38 0.25 0.07 0.01 <0.01 <0.01 <0.01 <0.01 

t-Carhart 3.36 2.57 1.53 0.48 -1.14 -1.90 -2.72 -3.47 -3.84 -4.52 -4.92 
Carhart alpha 12.91% 5.55% 5.52% 0.67% -2.23% -3.35% -6.15% - 14.07% -5.31% -6.86% -9.2% 

p-value <0.01 0.01 0.08 0.36 0.21 0.05 <0.01 <0.01 <0.01 <0.01 <0.01 

t-H-S 2.81 2.14 1.08 0.18 -1.00 -1.86 -2.71 -3.24 -3.68 -4.69 . 4.74 

H-S alpha 14.23% 6.50% 2.43% 0.97% -4.56% -2.43% -5.80% -6.25% -5.75% -9.84% -9.06% 

p-value <0.01 0.04 0.22 0.39 0.24 0.07 0.01 <0.01 <0.01 <0.01 <0.01 

Panel B: January 1996-December 2000 

t-Jensen 2.38 1.94 1.35 0.77 -0.20 -0.78 -1.49 -2.27 -2.52 -3.45 -4.85 

Jensen alpha 11.78% 19.97% 3.05% 4.56% -0.73% -2.46% -2.58% -3.09% -3.99% . 6.93% -3.07% 

p-va1ue 0.02 0.06 0.16 0.29 0.39 0.29 0.13 0.03 0.02 <0.01 <0.01 

t-Carhart 2.65 2.63 1.47 0.75 -0.18 -0.97 -1.64 -2.42 -2.68 -3.71 -4.86 

Carhartalpha 10.49% 7.64% 2.16% 4.67% -0.5% -1.59% -4.97% -4.04% -3.71% -7.7% -3.12% 

p-value 0.01 0.01 0.14 0.31 0.39 0.25 0.1 0.02 0.01 <0.01 <0.01 

t-H-S 2.16 1.65 1.13 0.63 -0.29 -0.96 -1.64 -2.31 -2.77 -3.49 . 4.73 

H-S alpha 10.83% 7.90% 2.59% 5.94% -0.70% -2.44% -5.36% -5.02% -4.87% -6.19% -3.06% 

p-value 0.04 0.1 0.21 0.32 0.38 0.25 0.1 0.03 <0.01 <0.01 <0.01 
Panel C: January 2001-December 2005 

t-Jensen 2.74 2.27 1.70 0.96 -0.02 -0.72 -1.46 -2.29 -2.63 -4.43 -5.30 

Jemenalpha 10.97% 9.78% 8.58% 4.39% -0.03% -1.53% -3.24% -4.93% -3.58% -3.21% -2.95% 

p-vakie <0.01 0.03 0.09 0.25 0.40 0.31 0.14 0.03 0.01 <0.01 <0.01 

t-Carhart 2.17 1.38 0.98 0.18 -0.82 -1.57 -2.11 -2.95 -3.29 -5.01 -6.20 

Carhartalpha 4.93% 4.69% 2.37% 0.41% -1.23% -3.92% -4.52% -7.29% -5.71% -3.71% -4.15% 

p-value 0.04 0.16 0.25 0.39 0.27 0.12 0.04 <0.01 <0.01 <0.01 <0.01 

t-H-S 2.07 1.77 0.99 0.27 -0.62 -1.27 -2.00 -2.85 -3.02 -4.21 -5.69 

H-S alpha 8.01% 4.32% 3.96% 0.89% -2.88% -3.30% -3.97% -4.81% -3.60% -3.17% -3.80% 

p-vakc 0.05 0.08 0.24 0.38 0.33 0.18 0.05 <0.01 <0.01 <0.01 <0.01 

Notes: This Table presents the rankings of the trusts based on the t-statistics of the 

Jensen, Carhart and Harvey-Siddique alphas for the three subperiods examined: January 

1991- December 1995, January 1996- December 2000 and January 2001- December 2005. 

In particular, the t-statistics for various percentiles of the trusts' rankings are reported 

along with their corresponding annualized alphas and p-values. Reported t-values use 

Newey-West (1987) heteroskedasticity and autocorrelation consistent standard errors. 
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Figure 4.1: Excess market returns and coskewness strategy returns 
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This Figure shows the monthly excess returns of the FTSE All Shard Index 

(dashed line) and the monthly returns of the zero-cost coskewness spread 

strategy (solid line), as defined in Section 4.4, during the period January 1991- 
December 2005. 
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Figure 4.2: Jensen and Harvey-Siddique alphas 
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This Figure shows the distribution of the trusts' Jensen alpha estimates 
(dash-dotted line) and the distribution of the trusts' Harvey-Siddique alpha 

estimates (solid line) during the period January 1991- December 2005. This 

distribution as well as the distributions in the following figures were smoothed 

using a kernel density estimator. We employed a Gaussian kernel function and the 

corresponding optimal bandwith (see Silverman, 1986). 
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Figure 4.3: Carhart and Harvey-Siddique alphas 
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This Figure shows the distribution of the trusts' Carhart alpha estimates 
(dash-dotted line) and the distribution of the trusts' Harvey-Siddique alpha 

estimates (solid line) during the period January 1991- December 2005. 
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Figure 4.4: Size, value and momentum factor loadings 
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This Figure plots the densities of the estimated loadings on the size (01, solid 

curve), value (, ß2, dashed curve) and momentum (Q3, dash-dotted curve) strategies 
for each trust, derived from the regression (4.14) for the period January 1991- 

December 2005. The vertical line corresponds to a zero coefficient. 
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Figure 4.5: Coskewness factor loadings 
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This Figure plots the densities of the estimated factor loadings (c) on the 

coskewness strategy from three asset pricing models. The solid curve shows the 
density of the estimated factor loadings (c) from the Harvey-Siddique regression 
(4.15) for each trust. The dotted curve shows the corresponding density of the 

estimated coskewness factor loadings derived from the augmented Fama-French 

model, given in (4.19). The dashed curve shows the density of the estimated 

coskewness factor loadings derived from the augmented Carhart model, which is 

defined in (4.20). The estimates of these loadings refer to the period January 1991- 
December 2005. 
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Figure 4.6: Jensen alphas and coskewness factor loadings 
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This Figure presents the scatterplot of the Jensen alpha estimates from regression 
(4.12) versus the, coef icient estimates (c) on the coskewness strategy from 

regression (4.15) for each trust for the period January 1991- December 2005. It 

also plots the fitted values from a standard least squares regression involving these 

variables. 
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Figure 4.7: Fama-French and Fama-French augmented alphas 
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This Figure shows the distribution of the trusts' estimated alphas derived from the 

Fama-French asset pricing model, which is given in (4.18) (solid curve) as well as 

the corresponding distribution of the alphas derived from the augmented 
Fama-French model, which is given in (4.19) (dashed curve). These alpha 

estimates of the trusts refer to the period January 1991- December 2005. 
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Figure 4.8: Subperiod Harvey-Siddique alphas 
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This Figure shows the distribution of the trusts' Harvey-Siddique alphas for the 

periods: January 1991- December 1995 (solid line), January 1996- December 2000 
(dashed line) and January 2001- December 2005 (dash-dotted line). 
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Figure 4.9: Bootstrapped Harvey-Siddique alphas 

0.06 
N 

0.04 

Panel Al: Top Trust 

0.02 

Q Y. 

2t, 
N 
C 
d 
O 
d 
c 
d Y. 

-10 0 10 20 30 
Panel BI: Top 10% 

0.2 

0.1 

0 
50 

Panel Cl: Bottom 10% 
41 
N 
C 
d 
0 

C) 
C 
G1 
Y 

0.2 

0.1 

0-. 

NJ 

Harvey-Siddique Alpha % p. a. 

0.1 

0.05 

Panel A2: Top 1% 

o6 

05 10 15 
Panel B2: Median Trust 

0.4 

0.2 

0L 
.6 -4 -2 0 

Panel CZ: Bottom Trust 
0.1 

0.05 

0 
30 -25 -20 . 15 . 10 5 

Harvey-Siddique Alpha, % p. a. 

This Figure compares the density of the bootstrapped Harvey-Siddique alphas (solid 

curve), derived through the methodology discussed in Section 4.6.3, with the 

corresponding alphas' density under the assumption of normality for the trusts' 

residuals (dashed curve). These two curves generate alternative confidence intervals 

around the actual estimate of the Harvey-Siddique alpha that is represented by the 

vertical line. The Figure plots these confidence intervals for six trusts ranked according 
to their Harvey-Siddique alpha estimate for the period January 1991- December 2005. 
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Figure 4.10: The failure of the CAPM 
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This Figure presents the scatterplot of the average monthly excess returns of 148 

funds versus their beta estimates derived by either the CAPM or the Harvey-Siddique 

model in (4.15), for the period January 1991- December 2005. It also plots the fitted 

values from a standard least squares regression involving these variables. 
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Figure 4.11: Average monthly excess returns and coskewness risk loadings 
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This Figure presents the scatterplot of the average monthly excess returns of 148 
funds versus their coefficient estimates (c) on the coskewness risk factor from 

regression (4.15) for the period January 1991- December 2005. It also plots the fitted 

values from a standard least squares regression involving these variables. 
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Chapter 5 

J 

Conclusions 

The present thesis examined two central issues in financial theory, optimal portfolio 

choice and investment performance evaluation, when some of the restrictive assump- 

tions of the traditional framework of analysis are relaxed. In particular, we firstly 

derived the optimal portfolio choice for an investor who has a long-term horizon 

and faces a set of underlying risk factors that vary stochastically through time and 

affect the investment opportunity set. The predictability of future stock and bond 

returns as well as the stochastic volatility that these returns exhibit can be modelled 

using this framework. The main conclusion of our study is that the optimal portfolio 

choice crucially depends on the horizon of the investor. A significant hedging demand 

may arise, obliging the investor to deviate from the standard mean-variance portfo- 

lio choice, suggested by Markowitz (1952) within a static framework. The hedging 

motives may be so important that the hedging demand may dominate the total de- 

mand for the risky asset. These results show that the risky assets incorporate an 

extra value apart from their premia and their diversification role; they can be used 

as hedging instruments by risk-averse, long-term investors, who seek to minimize the 

volatility of their wealth's path through time. 

The previous issues were also re-examined in a bond portfolio setting, that has 

235 



been relatively neglected in the dynamic asset allocation literature. In particular, 

the failure of the expectations hypothesis and the current developments in the term 

structure literature motivate significant timing and horizon effects in bond portfolio 

management. The time-variation in the bond premia obliges long-term investors to 

hold significant hedging positions. The use of a macro-finance term structure model 

enabled us to provide an economic interpretation for the formation of optimal port- 

folios and to examine how shifts in the macroeconomy should affect the investors' 

decisions. This framework also allowed us to introduce real bonds in the asset space 

and to examine their role for portfolio choice, documenting their significant hedg- 

ing role. Most importantly, we can rigorously confirm the popular advice that an 

infinitely risk-averse, long-term investor who seeks to maximize his utility over real 

wealth at a terminal date should hold a real zero-coupon bond with maturity that is 

equal to his horizon. 

The interesting results derived in Chapters 2 and 3, are essentially the first small 

steps in a wide avenue of future research. Abandoning the restrictive static framework 

and the unrealistic assumption of i. i. d. returns, researchers are motivated to examine 

a series of topics related to optimal asset allocation. A crucial issue that needs to be 

considered is the modelling assumptions used for the risky assets' returns and the 

dynamics of the underlying risk factors. Chapter 2 showed that this is an absolutely 

important input for any dynamic asset allocation study. The plethora of cases and 

assumptions, that yield different and, sometimes, contradicting conclusions create a 

significant obstacle that we need to overcome. Emprical asset pricing studies should 

focus on the properties of the asset returns' dynamics and the characteristics that a 

series of predictive financial and macroeconomic variables actually exhibit. Financial 

econometrics should also help us by providing the appropriate tools for the estimation 

of continuous-time models in the presence of latent variables. Even though modelling 

and estimating jump processes has attracted little attention in the literature, it is 
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an extremely important issue that will play a significant role in the future dynamic 
-11 

asset allocation studies. 

An issue related to the estimation of the asset returns' and risk factors' dynamics 

I is parameter uncertainty. The vast majority of the dynamic asset allocation studies 

make use of the point estimates of the various parameters, neglecting the statistical 

significance of these estimates. This issue becomes even more important if we take 

into account the fact that in the presence of near-unit root processes, such as the 

dividend yield and the interest rate, statistical inference becomes notoriously unreli- 

able. An obviously more realistic and more prudential approach is to incorporate this 

parameter uncertainty into the optimal portfolio choice problem. Brennan (1998), 

Barberis (2000), Xia (2001) and Garlappi et al. (2007) provide examples of this 

approach, showing to us how differently the long-term investor should behave if he 

adopts a Bayesian framework, forming priors about the parameter values employed 

in the investment decision and updating appropriately these priors as he collects 

information. It is expected that future research will focus on this issue. 

In the light of the recent developments in experimental studies and utility the- 

ory, an important limitation of the framework we adopted is the use of a smooth, 

differentiable power utility function. As we mentioned in the Introduction and in 

Chapter 4, there are a series of reasons why investors are expected to exhibit loss 

aversion. In this case, it is necessary to employ kinked utility functions for the study 

of optimal portfolio choice. Nevertheless, there are very few academic studies that 

employ these utility functions. The main reason is that the dynamic portfolio choice 

problems become notoriously difficult to solve if we use non differentiable utility 

functions. Berkelaar et al. (2004) provide significant insights for the horizon effects 

in portfolio choice under loss aversion, but they need to assume that the market 

price of risk and the interest rate are not stochastically time-varying, in order to 

derive analytical solutions. More work is definitely necessary in order to examine the 
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hedging incentives of multiperiod loss-averse investors. 

Another important limitation of Chapters 2 and 3 is that they are purely partial 

equilibrium studies. In other words, the multiperiod investor we examine is a price.. 

taker, who cannot affect asset prices, taking the parameter estimates as exogenously 

given. Having understood the impact of horizon effects on the individual portfolio 

choice, the next step is to examine the impact of horizon effects on asset prices, 

risk premia, volatility and interest rates -within a general equilibrium framework. 

There have been a series of studies examining the interplay between agents with 

heterogeneous preferences (see Basak and Shapiro, 2001) or heterogeneous beliefs 

(see Basak, 2005), but again very few studies allow for stochastically time-varying 

risk factors. A unifying approach that takes into account investors' heterogeneity in 

the presence of a stochastically time-varying opportunity set seems very appealing 

and it is expected to provide a more realistic description of the financial markets. 

The second issue that this thesis dealt with is how the deviation from the mean- 

variance world and the assumption of normality for asset returns modifies asset 

pricing and, as a result, the performance measurement of investments. In particular, 

Chapter 4 examined whether a negative coskewness risk factor is priced in the UK 

stock market and employed the Harvey-Siddique asset pricing model to evaluate a 

sample of UK equity unit trusts. Apart from showing that the negative coskewness 

risk bears a relatively high premium, this chapter also outlined the incentives that 

the use of mean-variance measures generates for fund managers. 

The main argument is that, if managers are evaluated through mean-variance 

measures, which do not take into account the negative coskewness risk, then they 

are motivated to load this type of risk in their portfolios, in order to reap the cor- 

responding premium and present it as genuine outperformance. This issue becomes 

particularly important if we take into account the fact that the majority of the in- 

dividual investors exhibit loss aversion that makes them even more averse to this 
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type of risk. Furthermore, this mismatch between the investors' preferences and the 

managers' incentives becomes even more serious, due to the delegated nature of the 

fund management procedure. There is essentially a misalignment of interests be- 

tween the principal (trust shareholder) and his agent (manager), obscuring the ex 

post state verification of the outcome of the fund management service. Interestingly, 

we show that the coskewness risk loading can explain the cross-sectional average 

excess returns of the trusts as well as their Jensen alphas. 

The results of Chapter 4 call for a more rigorous study of the empirical asset pric- 

ing models. These models have been extensively used in the literature for corporate 

finance studies, for the performance evaluation of investment strategies as well as 

for risk management purposes. The use of purely mean-variance models, such as the 

CAPM, has been clearly rejected, due to the evidence for the outperformance of size, 

value and momentum strategies. Academic research keeps discovering other factors 

that outperform the CAPM, while the industry keeps exploiting these "anomalies", 

presenting them as genuine outperformance. The use of multi-factor models, such 

as the Fama-French 3-factor model and the Carhart 4-factor model is a positive step 

forward, since the excess returns offered by these strategies are regarded to be risk 

premia rather than "free lunches". Nevertheless, these extra factors are strategy- 

specific and they are not based on any rigorous theoretical argument. Surprisingly, 

the Harvey-Siddique model, that is based on rigorous utility theory, has not yet 

attracted the attention of researchers. 

The CAPM was very attractive because it managed to synopsize the various types 

of risk in a single statistical characteristic, the covariance of an asset's returns with 

the returns of its benchmark. The Harvey-Siddique model makes use of the same 

idea, trying to capture the risks that the CAPM does not, using another statistical 

characteristic, namely the coskewness of an asset's returns with the returns of its 

benchmark. The parsimony and generality of this model are attractive features, 
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making it preferable to the strategy-specific asset pricing models. Most importantly, 

this model builds on the recent developments in utility theory, experimental studies 

as well as financial econometrics. The fact that investors are not averse to volatility 

but mainly to downside risk, exhibiting first-order risk aversion or loss aversion, 

the argument that negative news have an asymmetric impact on asset returns and 

the ample evidence that asset returns exhibit negative skewness, deviating from 

symmetry and normality, guarantee the robust foundations and the superiority of 

the Harvey-Siddique model. Consequently, this is a very promising model and it 

should be employed and tested for different markets and different asset classes in 

order to derive robust conclusions. 

On the other hand, it is very important to identify what are the fundamental 

characteristics that give rise to this negative coskewness risk. Unfortunately, mod- 

ern financial theory tends to neglect the impact of the companies' fundamentals on 

stock prices. Abandoning the mean-variance and i. i. d. world, we should explore 

more systematically the significant information that it is contained in the compa- 

nies' financial statements, the impact that macroeconomic fluctuations have on asset 

prices as well as how these are affected by institutional characteristics and market mi- 

crostructure effects. There are already a series of important studies along these lines, 

but their results are analyzed from a very narrow perspective. Negative coskewness 

may be able to provide the unifying concept for all these issues. 

More specifically, the degree of leverage and financial flexibility that a company 

exhibits is a characteristic that is expected to affect its returns in different economic 

conditions (see Gamba and Triantis, 2008). Highly leveraged and financially con- 

strained companies are the first to be badly hit in a credit "crunch". The dividend 

yield and the total payout ratio of a company is another issue that we should seri- 

ously take into account (see Boudoukh et al., 2007). Companies with high dividend 

yields and payout ratios are expected to offer "protection" to investors during a cri- 
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sis. Moreover, the quality of corporate governance is expected to have an impact 

on asset returns too (see Gompers et al., 2003). Good governance could act as a 

"shield" in a negative economic environment, while badly run companies would be 

the first to go bankrupt (see Mitton, 2002). 

Furthermore, the extent to which companies have underfunded pension funds is an 

extemely important issue, because such a deficit is ultimately a liability (see Franzoni 

and Marin, 2006). Companies with huge deficits in their pension funds are expected 

to be fiercely hit by negative shocks that further increase these deficits. With respect 

to microstructure effects, illiquidity may be another source of risk related to the 

negative coskewness risk.. Amihud (2002) and Acharya and Pedersen (2005) show 

that illiquidity risk is priced in financial markets. Investors tend to avoid assets that 

are thinly traded, exhibit wide bid-ask spreads and high transaction costs because 

they are afraid that they will have to sell these assets at a high discount, suffering 

major losses, especially in periods of "flight to quality" and "flight to safety". 

On the aggregate level, the negative coskewness risk premium is expected to 

vary through time. Therefore, since this is a systematic risk factor that is priced in 

financial markets, it is important to examine whether it is predictable as well as what 

are the underlying macroeconomic and financial variables that can help us determine 

its price. Until now, a series of variables have been used to proxy negative future 

economic conditions. The most common choices are the default spread between 

corporate bonds and the term spread between short and long-term bond maturities. 

It is argued that monetary policy significantly affects the price of the coskewness 

risk. Most of the company-specific characteristics, that we previously referred to, are 

affected by the credit conditions and the cost of money, hence monetary variables 

may determine the coskewness premium in a predictable way. Market paticipants' 

expectations may also help us to determine the price of this type of risk, hence 

opinion surveys and information derived by options and futures markets could be 
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employed in a unified approach. 

This thesis was an initial step in the complex and fascinating world of investment 

decisions, asset prices and the fund management industry. It served as an introduc- 

tion to the concepts and the problems that arise once we abandon the unrealistic 

static, mean-variance world. Every step beyond the textbook treatment of these 

topics is like diving in an ocean. At the same time, however, it provides a strong 

motivation for future research into the topics that we outlined in this last section. 

Interesting times lie ahead! 
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