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Abstract 

In this PhD thesis I investigate the implications of heterogeneity and aggregation in 

macroeconomic models. The importance of aggregation lies on the fact that when 

heterogeneity is allowed, we cannot expect macro models to have the same characteristics 

as the underlying micro models. In particular, a direct consequence of aggregation is that 

the dynamic properties of the micro model do not hold in general for the macro model. 

Despite this problem, modern macroeconomics tends to model aggregate data alone, 

through the construction of models where the individual consumer or firm is related to 

aggregate, data under the guise of a "representative agenf'. In this thesis, I present a 

heterogeneous real business cycle model where I allow for cross sectional heterogeneity in 

the dynamics of the firm productivities. I show that heterogeneity allows the model to 

generate very persistent dynamics that can mimic impressively those of actual data. This is 

because, the dynamics of the model are now the result of the interactions between 

heterogeneous firms. Another problem that often arises with heterogeneity is that through 

aggregation, the dynamics that describe the co-movements between two variables can be 

more persistent and complex than the dynamics observed for the individual behaviour. 

Standard co-integration techniques are not able to deal with such persistent co-movements 

since they cannot distinguish between persistent deviations from the equilibrium and 

spurious relations. Therefore, many intuitive economic relations are often empirically 

rejected. To this purpose, I introduce in the thesis a methodology which can test robustly for 

co-integration between two variables, which deviate persistently from their long-run 

equilibrium. I test for a co-integration in the Uncovered Interest Parity and the Purchasing 

Power Parity with my approach and unlike the standard approaches, it does not reject the 

hypothesis that they hold in the long run. 
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Chapter I 

Introduction 

Aggregation is an inevitable aspect of economics. On one side, most of the observed 00 4D 
macroeconomic time series are the result of the aggreg , ation among heterogeneous units, 00 ZD C> 

such as commodities, productivities, firms or households. On the other, modern macro- 

economic theories link behavioral relations of individual a"ents to the dynamics of the 

macroeconomic variables. 
Historically, given the close link between the concepts of aggregation and hetero- 0 C) 

geneity, Nve can trace its origin back to the Adam Smith's principle of the "invisible 

hand". According to this principle, the interaction of heterogeneous agents, each of 
them pursuing the selfish ends, leads to equilibrium which is socially satisfactory. 0 

FA-om the second half of this century, important authors such as Gorman (1953), 

Klein (1953), Theil (1954), Muellbauer (1976,1981) and Stoker (1984,1986) have 

studied ag regation in many areas of economics, including production, income, invest- 09 0 1ý 
nient and employment. In particular, they analyzed the conditions under which macro 

models reflect and provide interpretable conditions on the behavior of the micro units. 
Their works are also known as the "deterministic approach" to aggre ration in contra- 00 
position to the more recent "stochastic approach" that has become quite popular in 

the last two decades. 
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This modern theory of aggregation has developed quite rapidly and can be basically 
C, 0 

divided into two major approaches. The first involves modelling aggregate data alone, 

through the construction of models where individual consumer or firm is related to 

aaaregate data under the guise of a "representative agent". These models have become 

the workhorses of modern real business cycle (RBC) theory. They explain aggregate 

behaviors as if they were a large scale magnification of the behavior of a representative 

rational agent. In the past years, these models have been extended to many areas C. 
of macroeconoinics such as monetary analysis', international economics' and labor 

markets 3. 

The other aggregation approach is based on adopting a framework that allows 00 
individual data and aggregate data to be modelled under one consistent format. In 00 4: 1 
particular, an individual model is specified together with some assumptions that allow C> 

us to formulate an aggregate model which is consistent with the individual model. 
Such approach combines individual heterogeneity with a tractable and parsimonious 

model for the aggregate data. This idea was initially put forward by Robinson (1978) 
CND r5 

and Granger (1980) who were the first to study the asymptotic behavior of aggregate C> 00 
heterogeneous time series models. Rýirther developments can be found in Forni and 

Lippi (1997), Chambers (1998), Lewbel (1994) and Zaffaroni (2004), just to mention 

some important contributions. 
A characteristic of these models is that when heterogeneity is allowed, Nve cannot 

expect the macro model to be characterized by the same dynamic properties as the 

underlying micro model. For example, it is a well-known result4 that averaging a large 

number of linear micro models would generate long memory in the aggregate process, 0 
even if its micro-components are strictly stationary. 

'See Dotsey et. al. (1999), Altig, Christiano et. al. (2005) and Smets and Wouters (2003), just to 

mention some relevant work. 
2See Back-us and Kelioe (1992), Baxter (1995) and Ambler et. al (2004) 
3 See for instance, Nlerz (1995), Den Hann et. al. (2000). 
4 See Granger (1980) and more recently Zaffaroni (2004). 

0 
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A direct consequence of this "aggregation effect" is that the basic properties of the 4: 1 0 
micro model do not hold in general for the macro model. This is true for many econo- 

metric procedures, such as cointegration and Granger causality, that need therefore be 

redefined in such a context. 
Although (linear) aggregation has been originally designed for time series models, in 0 C)o 0 CD 

the last years there have been a few attempts to combine this approach with neoclassical 

representative agent models. In fact, since the reduced form of single agent models can 0 
be represented as a linear model with some autoregressive components, some authors 

have tried to merge the two approaches by imposing heterogeneity in the reduced form 0 C) 
of these models. See Miclielacci and Zaffaroni (2000) for an application to international 

economics, and Krussel and Smiths (1998) to labor market. 

However, none of the proposed approaches have been able so far to develop a well 

"rounded model of individual behaviors that trace at agarregate level the implications g 00 0 
of such behaviors. In fact, they fail either to account for heterogeneity in modelling 

a---reaate variables or to provide a framework that links individual heterogeneity and 00 10 4D 
structural modelling of aggregate data. 

On one side, representative agent models, despite their popularity, have not pro- 0 

%, ided any conceptual foundation or realistic condition for ignoring compositional het- 0 
erog, eneity in the dynamics of aggregate data. They are also often characterized by 0 C, 
properties that are at odds with empirical evidence' giving rise to behavior, so called 

'. puzzles", that cannot be reconciled with stylized facts 6. Bor instance, a well-known 

puzzle that curses representative agent models is the "Nveak transmission mechanism". C) 
In fact, according to the findings of Cogley and Nason (1995), these models have to C> 00 
rely on implausible exogenous sources of dynamics to replicate the persistence and the 

volatility observed in actual data. 

'See Basu (1998), King and Rebello (1999), Forni and Lippi (1999) and Cogley and Nason (1995). 0 

'Some very popular puzzles are the uncovered interest rate puzzle, the purchase parity puzzle and 

the "'excess smoothness" of consumption puzzle. 
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On the other, although linear aggregation focuses on heterogeneity, it lacks a micro- 000 
founded structure for the individual behaviors that allows us to trace the implications 

of such behaviors at aggregate level. In other words, it fails to provide a framework 

where individual heterogeneity is incorporated in a structural modelling of a-, regate 0 09 
data. In fact, if on one side linear agaregation helps to reconcile the dynamics of micro 00 0 
data with those of aggregate data see Borni and Lippi (1999), on the other it cannot 00 01 
provide by construction any explanation underlying these differences. For example, in 

a recent paper, Altissimo, Nlojon and Zaffaroni (2005) show that linear aggre "ation 

can conciliate slow macroeconomic adjustment with fast adjustment at microlevel in 

the euro area inflation. 

Despite the relevance of their findings, their framework cannot provide any explana- 

tion of the causes underlying the inflation persistence in the euro area. This is because 

linear aggregation lacks a structural model describing micro behaviors. 0 tD 
An important contribution in this direction has been recently given by Abadir and 

Talmain (2002). They show that the introduction of firm heterogeneity in a dynamic 

general equilibrium (DGE) model would generate a new form of aggregating micro 0 00 0 
behaviors. In particular, differently from the previous approaches that either assume no 
heterogeneity or impose heterogeneity "ad hoc" in the reduced form of the model, they t> 0 
exploit the aggregation formula that arises from the micro structure of the model. This 04D 471 
creates a framework that allows us to study actual observed aggregate data patterns 

as they are related to the characteristic of a specific economy. 

The purpose of this thesis is to inake a "little step" toward investigating the im- C> 
plications of this structural aggregation approach. In particular, we show that b C. 0 0y 

combining the structure of a general equilibrium model together with heterogeneity, it 

is possible to solve many of the problems that characterize the two single approaches: 

the representative agent approach and linear aggregation. Co 00 0 
On one side, through heterogeneity we can reconcile the dynamic properties of a 0n 

DCE model with those of actual data and give a new insight into the propagation mech- 
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anism of the models. We show that, in this framework, cycles and fluctuations emerge 

not as the result of the reaction of one individual to some substantial exogenous shocks 

(like in representative agent models), but as a natural result of the interactions be- 

tween heterogeneous agents. Endogenous fluctuations arise very naturally in a context 00 
of many interacting agents. 

On the other side, differently from linear ag regation we can link through the 09 00 
structure of the DGE model the properties of the microstructure of the model to the 

patterns of aggregate data. In fact, ive are able to inap and quantify the effect of 00 0 

structural parameters of the model on the time series patterns of the aggregate data. 

We start by showing in chapter 2 how heterogeneity and structural aggregation can Cý Cý 0 ýD 
reconcile the dynamic properties of a DGE model with some stylized fact on actual 

data. In particular Nve foe-Lis on the dynamics of the U. S. GNP. A well-known problem 
that curses real business cycle models is the "Nveak propagation mechanism puzzle". 

This puzzle was discovered in a recent paper by Cogley and Nason (1995). Testing 0 
through simulations a wide range of RBC models they showed that none of them is able C, C. 
to reproduce the persistence and the volatility that is observed in the U. S. GNP data. 

They concluded that these models are plagued with a Nveak propagation mechanism 

since they must rely on implausibly large exogenous sources of dynamics to replicate 

the dynamics of actual data. This point was also raised by Rotemberg and Woodford 

(1996)Iand Muellbauer (1997). Although more sophisticated versions of RBC models 
have been proposed to make its dynamics consistent with data, none of them has been 

able to give exhaustive results. A survey on these models call be found in King and 
Reb6l1o (1999) and Rebello (2005). 

In this chapter we show how heterogeneity and structural aggregation can give a new C3 00 ý15 
insight into the propagation ineclianism of these models. For this purpose Nve present 0 C> 

a heterogeneous RBC (HRBC) model where we allow for cross sectional heterogeneity 

in the dynamics of the model's firm productivities. 
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Specifically, we consider the monopolistic competition model introduced by Abadir 

and Talmain (2002) and model firm heterogeneity using micro data for 450 U. S. sectors. 

Assuming that the productivity of each firm evolves according to an autoregressive 

process, we estimate its parameters from the U. S. micro data. We then calibrate the 

other parameters of the model and compare the time series of the simulated data 

with the ones of the U. S. data using the same test proposed by Cogley and Nason 10 C> 
(1995). In particular, we calculate the probability to observe the persistence and the 

volatility of the U. S. GNP under the null hypothesis that the data wereggenerated by 

g the HRBC. Surprisin. lyl we fail to reject the null hypothesis. This means that the 

HRBC model generates dynamics that can mimic those of the data. This result shows 

that heterogeneity in the firm productivity allows the model to build up an internal 

transmission mechanism that is actually missing in representative firm models. Another C> 
implication of this result is that whenever the conclusions of a single-a., ent model are 

empirically rejected, we cannot discern whether we are rejecting the implicit properties 

of the model or we are rejecting the assumption that the economy is represented by a 

single individual. 0 
This chapter represents a novelty in the DGE literature for the following reasons. 

First, we propose an approach to estimate the microstructure of the economy and model 

parsimoniously firm heterogeneity. In this respect, even if heterogeneity of the economic CD 0 

agents is a ver intuitive and plausible assumption, it has not been implemented so 0y 
far in a structural model calibrated using micro data for a specific economy. Then, 

we test extensively the dynamics of the model and show that through heterogeneous 

firm the output dynamics of the model can reproduce' the persistence and volatility 

observed in the U. S. GDP. This is more ambitious achievement for a RBC model that 

can usually aims to match few correlations of the data. Finally, it has to be noticed 
'Even if Abadir and Talinain showed that their model could theoretically match the properties of 

the U. S. GNP, they did not estimate the micro structure for these economics and test whether their 

intuition would hold empirically. 
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that our results are even more striking if Nve consider that our approach is demanding 

the model to replicate both the structure of the micro-data dynamics and the pattern 

of the macroeconomic data. 

As already mentioned, a direct consequence of aggregation is that the properties 04D 
of a micro model do not hold in general for the macro model. This is also true for 

the dynamics that describe the evolving of a certain (cointegrating) relation between iD 0 C) 

two variable at the micro level. In particular, aggregation can make these dynamics C5C5 0 
change dramatically at macro level by generating long memory and non linearities. 

Evidence of long memory in the co-movements of many macroeconomic variables have 

already been found by Clieung (1993), Diebold et al. (1991) and Abadir et. al. (2006). 

This means that although there is an equilibrium relation between economic variables 

spanning the Iong-run, these variables can be away from such equilibrium for a very 0 IM 
long length of time. As recently shown in a numbers of papers, see for instance Gon- 

zalo and Lee (1998), standard cointegration techniques are not able to deal with such 

persistent co-movements since they cannot distinguish between long-memory equilib- 

rium and spurious relations. In particular, both the Engle-Granger procedure and the 

Johansen's full-Information maximum likelihood display have very low power against 

the alternative of Ion-, memory co-movements. 
To this purpose we present in chapter 3a methodolog to test for the presence of oy 

long memory co-movements when the two variables are non-stationary and there exists 0 
a linear combination that is characterized as a Ion- memory process. 0 

The contribution of this chapter is the following. First, we provide with a method- 

olo, c:,, y that, differently from standard cointegration technique, is able to detect the 

presence of Iong, -memory co-movements. In this respect, the test we propose displays 

both higli size under the null (of spurious relation) and high power under the alternative 
(Iong memory relation). Then, it also reduces the small sample bias in the estimation of 0 
the Iong-run relation by more than 41% compared to standard ordinar least squares. en y 
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This methodology has the potential to help solve many of the puzzles that arise in 

macroeconomics. For instance, we apply our procedure to the Johansen and Juselius 

(1992) data base for the UK purchasing-power parity (PPP) and uncovered interest rate 

parity (UIP). It is a well-known result that cointegration is rejected for these variables 

even if it is economically plausible'. We show instead that with our approach the null of 

no cointegration is rejected at 95%, implying the existence of long memory equilibrium 

among these variables. This difference in the results can be interpreted in the following 

way. Testing with standard cointegration approaches imposes very strict conditions on 

the Iong-run relation among the variables: first, it assumes that the relation is linear, 

then deviations from the long-run equilibrium must be strictly stationary. In the 

light of the evidence produced in this thesis, these conditions are not very likely to be 

satisfied by actual data. Therefore, it should not be very surprising that we often reject 

cointegration even when a certain long. -run relation emerges from economic theory. On 
C, r> 

the other side, the approach we propose is able to test for the existence of a Ion-i-un 
C, 

relation, whilst allowing for possible non-linearities and persistent deviations from its 

long-run that are not forced to be strictly stationary. 0 
In chapter 4, we compare structural aggregation with standard linear aggregation. 0 

In particular, we confront the statistical properties of a process generated by Abadir and 4n 
Talmain's framework with those of a linear aggregate process. The importance of such 00 

comparison arises from the different implications they have on dynamic properties of 

garitlim evolves the aggregate process. Given a stochastic sequence t= 00 0 
Ixi, t}' whose lo 

as linear process, a linear aggregate process is defined as 00 0 
N 

Xt = N-1 In xi, t 

On the other side, the process that arises from Abadir and Talmain's formula is 

N 

Zt=ln N-'X: xi, t 

'See Harris (1992). 
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pp- 

Abadir and Talmain's approach differs from the linear aggregation in two aspects. 00 t) 
First, it is by construction coherent with the micro-structure of a monopolistic compe- 

tition framework. Then, as can be readily seen, its aggregation formula is consistent enin C> 
with the way economic data is assembled in national accounts. In fact, most of the 

macroeconomic time series, available in the national statistical database, are obtained 
by adding up the levels rather than the logaritbm of disa rorregated data. Thus, the 00 00 0 
need to compare these two approaches arises from the fact that while the former is the 

one usually studied in the time series analysis, the latter is the one that arises from 

the "true" data generating process in national accountancy. 
Although some authors9 claim that the Xt can represent, as first order approxi- C. 

mation, the dynamics of Zt, we show that this is true only if certain conditions on 
the volatility of the microdata are satisfied. In fact, only under these conditions it is 

possible to show that the autocovariance functions of Xt represent the leading term 

of a small variance expansion of the autocovariance function of Zt. We also assess the 

accuracy of this approximation throu. 1i simulations. Specifically, we generate a panel 

of microdata jxj, t}tcý. j for different distributions of the volatilities of the micro models. 
Then, we aggregate them according to both scheme in order to get the processes Xt and 
Zt. Finally, we compare the autocovariance functions of the two ag regate processes. 219 
Our result show that when the distribution of the volatilities of the micro models is 

dense in a neighborhood of zero, then the two processes generate similar dynamics in 0 
terms of persistence and volatility. Conversely, if this condition does not hold, their 

dynamics can be dramatically different due to the effects of the non-linearities that 

characterize Zt. In particular, linear aggregation tends to underestimate both the 00 0 
volatility and the persistence that would arise by a correct a" regation procedure. In 09 ýý 
this situation, the assumption of linearity of the a- regate process is not innocuous, (D9 0 
not even as first order approximation. 

9Sce for instance Forni and Lippi (1997) 
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Chapter 2 

Output dynamics in a 

heterogeneous RBC model 

2.1 Introduction 

In their seminal paper on the time series properties of real business cycles (RBC) 

models, Cogley and Nason (1995) showed that standard represent ative-agent RBC 

models are plagued by a "weak propagation mechanism". Specifically, this kind of 

model lacks an internal propagation mechanism that would transform a low amplitude, 

weakly correlated input signal into a highly correlated output signal of significantly 

larger amplitude. In fact, by testin., through simulations a wide range of RBC models 

they showed that none of them is capable to reproduce the persistence and volatility' 

that are observed in the actual time series for the U. S. GNP2. They conclude that 

the only way to close this gap between actual and simulated data dynamics is to allow 
'Persistence is measured using the autocorrelations, while volatility, using the impulse-response 

function. 
'They also considered models that rely on counterfactual. external sources of dynamics such as tem- 

poral aggregation, serially correlated increments to the productivity, and high order AR representation 

for transitory shocks. Although these assumptions help to reduce the gap between the persistence in 

simulated and actual data it does not give any improvement in terms of volatility. 
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these models to rely on implausibly large exogenous sources of dynamics. Xlore recently, 

this point has also been claimed by Rotemberg and Woodford (1996) and Muellbauer 

(1997). 

In the past few years many different extensions of RBC models have been pro- 

posed to make its dynamics consistent with those of actual data (in particular with 

U. S. GNP), but none of them has been able to give exhaustive results. In fact, they 

managed at most to replicate a few correlations of the data rather than matching the 

entire pattern of the autocorrelation function (ACF). For this purpose, Hansen (1985), 

Burnside et al. (1993) and Burnside and Eichenbaurn (1996) have incorporated factor 

hoarding, Rotemberg and Woodford (1996) considered oil shocks in order to capture 

supply-side shocks, and Baxter and King (1993) have incorporated habit formation. A 

detailed survey on these approaches can be found in King and Rebello (1999) and Re- 

bello (2005). A common assumption that characterizes these RBC models is that the 

economy is composed of a representative firm 3 whose productivity dynamics are driven 

by a log-linear process, either as stationary fluctuations around a linear deterministic 

trend or as ARIMA process. As Nve will show below, this assumption plays a crucial 

role in determining the dynamics of these models. 

Recently, an important contribution on this topic has been given by Abadir and 

Talmain (2002). They introduce firm heterogeneity in a general equilibrium model and C. 
show that it would lead to an aggregate output being a nonlinear aggregation of the 0 C5 n0 
firm total factor productivities. They derive the time series properties of this aggregate 

process and show that they are very different from those of the lo-linear processes, 0 
that drive the dynamics of the individual firm. In fact, it is characterized by long 

memory, nonlinearities and mean reversion despite its persistence. Allost importantly, 

they show that this process can successfully predict the ACF structure of the U. S. and 
U. K. GNP. 

3 or by a continuum of firms that face the same constant return technology. 
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The intuition behind their approach relies on a fundamental theorem in time se- 

ries analysis: the aggregation of single linear dynamic micro-relationships generates a 0 
process that has very different properties from its single component. For instance, it is 0 
a well-known result4 that the linear aggregation of a large number of ARTMA processes 

1- LT agregate process that displays long memory and requires fractional 
gives rise to an a. 

differencing to achieve a stationary ARMA representation. Earlier works on linear a- 

gregation include Robinson (1978), Granger (1980) and Lewbel (1994). The novelty 

of Abadir and Talmain's (2002) approach is to consider structural CES aggregation, 

that arise from the microstructure of the model, rather than the arithmetic average of 

ARMA processes as is usually done in the literature. ftorn a macroeconomic point of 

view this means considering heterogeneity in the structural form of the model rather 

than in the reduced form'. F`nrtlier references on this topic are Forni and Lippi (1997), 

Sowell (1992) and Zaffaroni (2004) while some economic application can be found in 

Nlichelacci and Zaffaroni (2000), Pesaran (2003), and Altissimo, 'XIojon and Zaffaroni 

(2005). 

In this paper Nve present a heterogeneous Real Business Cycle (HRBC) model where C3 
we introduce firm heterogeneity using micro-data for the U. S. manufacturing industries. C. 

XNle compare the time series properties of the model-generated data with those of the 0 
U. S. data following the approach in Cogley and Nason (1995). The main contribution C> 
is to show that by allowing for cross sectional firm heterogeneity, a simple RBC has a 0 4n 
striking capability to replicate the dynamics of the U. S. GNP, both in terms of per- 0 
sistence and volatility. Specifically, we consider a monopolistic competition framework 

and model firm heterogeneity using micro data for 450 U. S. sectors. Assuming that the C. C> 
productivity of each sector evolves according to an auto regressive process of order one, C3 0 

'See Granger (1980) and Lippi and Zaffaroni (1998). 
'This difference nii-lit seem subtle but it has important implications for the time series properties 

of the model generated data. In fact, in the latter case it implies solving the form structural model 0 
for a representative agent and then allowing for heterogeneity in the reduced form (see Micliclacci and 00 
Zaffaroni (2000)), while the former considers heterogencity directly in the structural form. 0 
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we estimate the distributions of the autoregressive parameters and standard deviations 0 
for all sectors. We then parameterize these distributions and use the model to generate 

time series for the aggregate output. Finally, we calculate the probability to observe 

the persistence and volatility in the U. S. GNP under the null hypothesis that the data 

were generated by the HRBC model. Our simulations strongly reject the hypothesis 

that both the volatility and persistence of the simulated data are significantly different 

from those of U. S. data. This result is quite surprising and it has not been achieved 

so far with this kind of model. This means that heterogeneity in the dynamics of the 

firm productivities is fundamental to build up an endogenous transmission mechanism 

in the RBC model, which generates output dynamics that mimic those of the U. S. 

economy. 
The approach presented in this paper can be seen as a novelty in the RBC literature 

for the following reason. Even if heterogeneity of the economic agents is a very intuitive 

and plausible assumption, it has not been implemented so far in a structural model 

calibrated using micro data for a specific economy. On one side, most macroeconomic 

models assume that the economy is composed of homogenous firms that face the same 

productivity dynamics. On the other, even if by allowing for heterogeneity Abadir and 

Talmain's model could theoretically match the ACF of U. S. and U. K. GNP, they did 

not estimate the microstructure for these economies and test whether their intuition 

would hold empirically. 

In this respect, our results give a new insight into the "weak propagation mechanism 00 

puzzle". They clearly show that the inability of RBC models to replicate the observed 
dynamics is due to the non-neutral effects of the representative agent hypothesis that 

characterizes not only RBC models but most of the models employed in macroeco- 

nomics. In fact, this assumption crucially affects the dynamics of the model-simulated 
data and it does not allow for any interaction among agents within the same sectors. 
Consequently, it can produce misleading results and poor consistency of the model with 
the data, 
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The paper is organized as follows. In the next section, we describe the HRBC model. 0 
Section 3 analyzes the statistical properties of the aggregate process and compares them 

with those of lo., linear processes. Section 4 presents the estimation procedure for the 

parameters of the distributions that account for firm heterogeneity. In section 5, Nve n 
describe the approach to test for significant differences between the dynamic properties 0 
of actual and model generated data. Finally, in section 6 Nve present our simulation 

results. 

2.2 The model 

The model' is a dynamic general equilibrium framework with monopolistic competition 

and it is characterized by a representative agent and two firm sectors. The final sector 
is composed of competitive firms that produce an output I"t using intermediate goods 

qi as input. The intermediate sector is composed of heterogeneous firms that are 

monopolistic competitors and produce a differentiated output usin., capital and labor. 

It has to be mentioned that we tried to keep the model as standard as possible for two 

reasons. First, in order to isolate the effects of heterogeneity on the dynamic properties 

of the model, we did not want to incorporate any other endogenous mechanism that 

could have affected either its persistence or volatility, e. g. labor adjustment costs or 

gestation lags. These mechanisms would make the model more realistic but in the light 

of our results they would play a minor role, compared to heterogeneity, in explaining 

the persistence and volatility observed in the data. Then, in order to compare directly 

our results with those in Cogley and Nason (1995) we decided to use a model which is 

as close as possible to the one they used in their paper. 
'Differently from Abadir and Talmain (2002) we remove the hypothesis of 100% capital deprecia- 

tion. This modification is more realistic but it complicates the solution of the model since it can no 
Ionger be solved by recursive methods. 0 
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2.2.1 The household's problem 

The economy is populated by an infinitely-lived individual that consumes a final good 

Ct and inclastically supplies labor lt which has been normalized to one. His instanta- 

neous utility function is given by 

ut= 

witli -y > 0. 

(2.1) 

The household's problem is to choose JCt+j}ýO in order to maximize the present 

value of the expected future consumption 

Et t3' 
=0 

I: 
I- -Y 

subject to his budget constraint 0 

Ct = I, Vt + (Rt + (I - 6)) l(t + 7, t- I<t+l 

which is composed by the real wage 14, 't, the rental cost of capital Rt, the profit 7-. t 0 

of the firms and the stock of capital Kt that depreciates every period at the rate J. 

The first order condition for the consumer's intertemporal problem is given by 

Cý` =, 3Et [(Rt+l + (1 - J)) Cý+'jj 

2.2.2 The final goods sector 

Tile firm in the final good sector produces a homogeneous good, Yt, using N CD 
intermediate goods qj according to the CES ag regate production function C, 09 0 

I iv 
qP t] 

p 
(2.2) 
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where p>0. 

This kind of production function exhibits constant return to scale, diminishing 

marginal productivity and constant elasticity of substitution. 
FAirthermore, since this firm operates in a competitive environment it makes zero 

profit and it takes the price as given. 

Therefore, the problem of the firm is to minimize its costs according to 

N 

min pi, tqi, t qi 

subject to eq. 2.2. 

The solution of this minimization problem is a demand for the intermediate good 

qi, t given by 
C> 

1-P 
qi, t = (pi, t) -L1P -N 

P. Yt 
1 

(2.3) 
NI (_L) 1'*P 

]P 

i= Pi 

Since Nve are assuming perfect competition, the aggregate price fit is equal to the mar- 0 
ginal (and av-erage) cost and it can be derived using eq. 2.3 as 

N 
IV 

pi (pi, 
t) 1-P 

Yt 
Np 

pi 

p 

pp J-P P I-P E(pi, 
t)-l-p 

E(pi, 
t)- NP (pi, t) NP 

I-P 

I-P 

Now, if we rearrange eq. 2.4 as 

(2.4) 

I-P 
N (2.5) 

Ipp (fit) 
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ive can use eq. 2.5 in the firm demand qj to express it as function of the sector and 

aggregate price, i. e. CIC) 0 

l-P NP 
qi, t = (P i, t, It 

Npp 
[Ei=l (Pi) 

p, 
= (Pi, t) 

[N-Pp 1-p p I" 
tt 

1-P t (2.6) 
(Pit, 

t N 

Eq. 2.6 expresses the first order condition of the firm demand for intermediate 

input qj as function of the relative price of the input and aggregate demand Yt. 00 C5 

2.2.3 The intermediate sector 

The intermediate sector is composed of N monopolistically competitive firms owned 

by the household where each faces a demand curve given by 2.6. Every firm -uses both 

labor lt and capital At to produce output according to the constant return technology 

ct Ia 
qi, t = Oi, tICi"tli, -t (2.7) 

where Oi, t is the technolo,, ical process of the firm i which is assumed to be different 

for each firm, and as shown below, evolves as a geometric auto-regressive process of 

order one. 
The firm i chooses 1j, t and Ki, t to minimize its total cost, given by 

1,1, 'tli, t + RtI(i, t 

subject to 

qi, t = Oi, tICi" ljlý" 
't i't 
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The first order conditions related to this problem give a capital/ labor ratio given 
by 

a 14"t 
(2.8) 

Ij, t (I - a) Rt 

which tells us that the firm will choose the labor and capital according to their relative 

price. Since ag regate labour is standardized to one we have that the aggregate demand 09 C3 
of capital is given by 

NN 
Kt I<-i, t = 

1: 

i=l 
(1 - a) Rt 

N 
Ea 11"t 

(2.9) (1 - a) Rt (1 - a) Rt 
Ki, t (2.10) li't 

where the last equality is obtained using the RHS of eq. 2.8 in eq. 2.9. Now, if we 0 
rc-arrang,, e the production function 2.7 for 1j, t and use eq. 2.10 we get 

qi, t qi, t 
I't 0 j, t Ki'lt 

qi, t 
0 i, t IQ' 

which expresses the demand for labor as function of the output qi, t and aOCgreCgate 

capital. In the same way, by substituting eq. 2.11 in eq. 2.10 we get the demand for 

capital as function of aggregate capital and firm output CIO 0 
I '-c' 

Ki't = 
Ct 

qi, t 0i't 

It is now possible to derive the firm profit maximizing price. In fact, given firm 

demand for capital and labour, the production cost of a unit of output is given by 

Zi, t == 
RtKt" 

+ 
Ivt 

0i't 0 i, t I<-t- 
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Since from 2.9 Rt =' L17 I then (I a) Kt 

Zi, t + 0i't 0 i, t Kt 

a Jývt 
I(ý- 

+- 
li"t 

(1 - a) Oi, t Oi, tK' t 
147t 

1-a 0i'tKt" 

We can now calculate the price that maximizes the firm profit by maximizing the 

profit 

(pi, t - zi, t) qi. t 

given the demand derived in eq. 2.6 and the unit cost in eq. 2.12. The solution to this 

problem is a price equal to 

pi't +p P) Zi, t 

1+ P) (1)1,17t 
(2.13) 

p1-a0j, t Kta 

where the second term in (1+1P P-) represents the mark-up of the firm added to the 

cost of producing an extra unit of output. 

eq. 2.13 is very informative on how heterogeneity Nvorks in this model. Since, apart 0 
from the technoloOical process Oi, t, all the terms in marginal cost zi, t are the same for 

all the firms, according to eq. 2.13 a firm with a technolog above the average has the C> Cly 0 
incentive to IoNver the price and therefore expand its market share. The inverse is true 

for firms that operate with obsolete technology, whose market share will consequently 

reduce. This effect would be completely excluded in models with a representative firm. 

Finally, by substituting eq. 2.13 in the expression for the aggregate price defined 00 0 
in eq. 2.4, we can express the aggregate price as function of aggregate productivity, C) 0 00 0 

- 
11117t 

I a) Kt'O' t 

28 

(2.14) 



where 
ot =I (2.15) 

is the ag regate productivity of the economy and v=ý t>9 0 1-P* 
The aggregate productivity Ot is the result of the structural aggregation of the single On 0 C, 

productivities and it is a nonlinear function of the firm productivities. The nonlinear- 
ities come from the parameter v which is related to the mark-up of the economy. The 

properties of this process are described in more detail in the next section. However, 

eq. 2.15 shows that degree of imperfect competition of the economy, i. e. v, affects the 0 
dynamics of the ag regate productivity Ot. A complete description of these effects can 09 0 
be, found in Abadir and Talmain (2002). They showed that, as the monopoly power 
increases, i. e. v-1 --+ oo, the memory of the aguegate process increases while, as the 00 
economy becomes more competitive, i. e. v-1 ---ý 0, the memory of Ot decreases 7 

2.2.4 Aggregation and economy constraints 

It is now possible to derive the agg-Tegate production function showing the relation OzD 0 
between total final goods output and total factors inputs. Recalling the demand for 0 
the interinediate good in eq. 2.6 and observing that by eq. 2.13 and eq. 2.14 the ratio C5 0 

-f Oia of is equal to Pf -, , Nve get pi't pi't Oý t 
I 

qi, t =I ýi -It 
Yr 

ol t 
where Ot is the aggregate productivity defined in the previous paragraph. (ncn. 00 

71n this respect, it is interesting to analyze the propagation effect of a firm productivity shock 00 
at aggregate level for different degee of competition v. If the economy is characterized by small 00 00 
number of firms with hi0i monopolistic power, the effects of a shock on one of these firm productivity 0 
will be considerable at aggregate level. On the other side, if the economy is very competitive, the 0 
importance of a single firm is irrelevant to the entire system and therefore, the effect productivity of 

a firm productivity shock is negligible at aggregate level. In other words, the higher the monopolistic ?D00 
power in the economy is, the stronger are the effects of single firm shock on the economy as a whole. 00 
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eq. 2.16 represents the demand for the good i as function of both aggregate and 
firm productivity. 

Using this formulation for qi, t in the equation for the demand for labor in eq. 2.11 

Nve get 

qi, t 
Oi, tKtc, 

y 
(2.17) 

1 -1ý 0 j, t Kt' N 
t 

and aggregating over i gives an aggregate production function defined as 00 0 4: 5 00 

i-p 
,, 

N 
t 

01-P 

-E- IC, ot 
"'t 

i=l 
IV 

t ot t 

0 
K" 

OT 
11 

t 
I(t 

tt 

- 
L] v yt 

0tý- 
Kta 

which implies 

Yt = OtIct, (2.18) 

The ag regate production function in eq. 2.18 gives an insight, into the transmission C59 0 
mechanism generated by the model and can be used to draw a comparison with the rep- 

resentative firm model'. In the representative case, we have that all the productivities 

are the same, therefore eq. 2.18 becomes 

I 
Yt (ýv) Kt' = ýtK" 

tt 

where 0 is the aggregate technology for the representative case, i. e. 
NI bv 

= 
bv 

ot) ZD N i= tt 

SThis case is equivalent to assuming an intermediate sector that produces a single good. 0 
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An economic model is said to be characterized by a strong transmission mechanism 

if it can transform a weak input signal into a strong output signal. 

Now, as eq. 2.18 and eq. 2.19 show, output dynamics are determined by movements 

in the productivity and movements in the capital that are induced by output dynamics. 

The effects of this last source of dynamics are negligible in a RBC model, see Cogley and 

Nason' (1993), therefore, in the representative firm model, productivity movements are 

completely transmitted to output without any structural modifications. This means 

that the transmission mechanism of the single firm model is very weak since an output 

innovation coincide with a firm productivity innovation. 

The same is not true in the heterogenous firm model. First, as we show in detail 0 
below, an input signal on the firm productivity Oi, t will generate an aggregate signal 0 00 CD CD 
Ot whose properties can be very different from those of its components. In other 

words, a weak-ly correlated innovation on firm productivity builds up persistence at 

a ... regate level through aggregation; the transmission mechanism is generated by the 00 CD 0 c5c, 0 

a-aregation of heterogeneous firms. This means that both the amplitude and the 

persistent of Ot are determined by the structure of the firm heterogeneity. Therefore, 

we can have a variety of output dynamics according to different degrees of heterogeneity. 

Rirthermore, by comparing eq. 2.18 with eq. 2.19, differently from the representative 

case, the parameter v influences the properties of the productivity signal, in particular 

its amplitude. 

Finally, to close the model, we need to define the aggrecrate economy resource OCI 4D 

constraint for the final goods 

Yt = Ct + It 

where It is the investment and a law for the evolution of the capital 
gThey solve analytically the model and show that all output dynamics are determined by produc- 

tivity dynamics and there is a very little contribution from the internal propagation mcclianism of the 

model. 

31 



Kt-ý-, = It + (i - 5) Kt 

The equilibrium for this economy is a vector of quantities (Yt, Ct, ýt, 1, Ct+, ) such 

that all agents are maximizing subject to their respective constraints, supply equals 

demand in each market, and all the resource constraints are satisfied, given the values 

of the predetermined variable Kt and exogenous variable Oi, t. C5 
In the next paragraph we describe the properties of the aggregate process Ot. 

C> 0 C5 

2.3 The aggregate process and its statistical prop- 

erties 

In this paragraph Nve illustrate the dynamic properties of the agaregate productivity, C> OC> 4: 3 

compare them with those of lo-linear processes and also draw the differences between ?D 
our aggregation approach and standard linear aggregation. Let us recall the aggregate 00 0 ot) 4ý 00 0 
productivity as defined in eq. 2.16 

N ov 
ot 

Ei=l 
i't 

N 
(2.20) 

Following Abadir and Talmain, we assume that its single components Oi, t evolve 0 
according to a geometric AR(l) process 0 

In Oi, t =p+ ai In Oi, t- I+ Ei, t (2.21) 

where jail <1 for ever i and ei, t - IN(O, w'i). Both ai and wi are i. i. d. random yI 

variables drawn from some underlyin., probability distribution function (pdf) f (a) and 
f (w) that will be parameterized below. While the statistical properties (conditioned 

on ai and wi) of the single productivities In Oi, t are well-defined, the distribution of the 

a's and w's will entirely determine the properties of Ot as N --+ oo . 
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The statistical properties of Ot were first discovered by Abadir and Talmain (2002) 

who showed that it is characterized by long memory, non-stationarity and mean rever- 

sion. 

Before proceeding with the parameterization of the beta and generalized gamma 

densities, it is important to stress a point about the effects of a constant term in 

the single productivities. It is a well-known results in aggregation literature" that the 
C3 ZD 

statistical properties of the ag regate process Ot can differ substantially from those of its 
Og C, 

single components Oi, t and in particular, stationarity of the latter does not necessarily 

imply stationarity of the former. Here, although we are ag regating asymptotically 0 4: 59 00 

stationary processes, if InOi, t has mean different from zero and the distribution of the 

micro parameters ai is dense around the unit root, then the aggregate process Ot will 

exhibit a drift because of the dominant effects of near unit roots on the aggregate 00 

process. The intuition behind this result can be roughly explained by noting that for 

ai very close to one, the mean of InOi, t can be approximated, using LHopital's rule, by 

E (In Oi, t) E ý7 3 
(IL 

ai + aiEi, t-j 
j=o j=o 

IL 
alý 
ai 

lit 

Thus, if we allow for a constant term and almost unit root in eq. 2.21, then InOt 

will be characterized by a mean whose leading term evolves according to a linear trend. 

This argument is consistent with the findino-S of Diebold and Senhadji (1996), Rude- 

busch (1993) and Diebold and Rudebusch (1989) where, using a long span of annual 

data, they produce evidence in support of trend-stationarity and long memory rather 

than difference stationarity in the aggregate U. S. GNP. 00 CD 
In the light of the above considerations and since we are mainly interested in the 

cyclical properties of the aggregate process In Ot, in the simulations below we will also 00 
"See Granger (1980), Lewbel (1994) and Lippi and Zafftroni (1998). 

0 
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consider a demeaned version of the process. In other Nvords, using the transformation 40 
It = (1 - aj) In 0 in eq. 2.21, Nve can consider the alternative formulation 

In Oi, t = ai In Oi, t-l + ei, t (2.22) 

with In Oi, t = In Oi, t - In 0. This formulation has the effect of removing a drift from 0 
the ag recrate process but it does not alter its memory. 09 0 

The pdf f (a) and f (w) have been chosen in the following way". Since we exclude 
the presence of unit roots, Nve can assume ai E (0,1) and parameterize f (a) as a Beta 

density with parameters g,, and h,, 

9,1(l _C, )h, 10<a< 

f (a) B(gý, hý) (2.23) 
I 

otherwise 

where B(g,,, h,, )is the Beta function. On the other side, since W2 E R+ ive can i 

assume that the vuriate w is distributed according to a Generalized Gamma density 0 
with parameters A, g,, and h,, 

exp(-Ii,, w-) w>o r(g, ) (2.24) 
0 otherwise 

Abadir and ThImain (2002) decompose the shock eij into common and idiosyncratic components, 

ei, t = ßjut + vi, t; ut - IN (0, u) ; vi, t - IN (0, si) 

and assume that both the loadings of the common shock )3i and the standard deviation si are dis- 

tributed according to a generalized gamma density. We decided not to decompose the shock for two 

reasons. First, we are primarily interested in studying the effects of heterogeneity on the dynamics of 

aggregate process rather than in analyzing the decomposition of the U. S. TFP. Then, the assumption 

that the loadings, 6i are distributed as a generalized gamma density is quite restrictive. In fact, since 

this density is defined only on R+, it would not allow for any negative response of the productivities 0 
to a common shock. 
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where 17 (g,, ) is the Gamma function. Both distributions are plausible densities to 

represent heterogeneity as N -+ oo. The beta density can take on many shapes in the 

interval (0,1) as the parameters g,, and h,, vary. Particularly, the case g" >1 and h" 

<I is very important since the pdf becomes strictly increasin 1, .- and dense around 1. 

This implies that roots close to the unit value (but strictly smaller) are more likely 

to be drawn from such distribution, and consequently the persistence of the aggregate 

process will increase. The Generalized Gamma is a very rich distribution with support 

on [0, oo) that incorporates many known densities as special cases. As we will see 
below, the parameters of the distributions f (a) and f (w) together with the parameter 

v completely determine the dynamics of the aggregate process. 
The statistical properties for the process Ot in the set up just described can be found 

in the appendix, while a detailed analysis of the effects of the parameter's distribution 

on the persistence and volatility of the aggregate process is given in Abadir and Talmain 00 0 
(2002). It is only important to recall here that the leading term of the autocorrelation 
function of the logarithm of Ot is given by 

ý4 

224. Cor(lnýt, lnýt+k) I+ (4hw ak ) (2.25) 

where a is an arbitrary constant. As it can be clearly seen, the parameters A, h" 

and v completely determine the rate of decay of the autocorrelation function of the 

process. 
The functional form in eq. 2.25 gives rise to a wide range of ACF shapes depending 

on the degree of heterogeneity of the single components. According to the results of CD ID C. 
Abadir et al. (2006), this functional form characterizes the autocorrelation function of 

many economic aggregate variables such as GNP, inflation rates and excliancre rates. CýO 0 CD 
Sonic examples of these autocorrelation functions are shown in the figures 2.1-2.3. 

figure 2.1 to 2.3 
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Specifically, figure 2.1 plots the autocorrelation function of the logarithm of the U. S. 

GNP per capita that will be used in our analysis; figure 2.2, the autocorrelation function 

of the U. S. inflation rate12 ; figure 2.3, the autocorrelation function of the Federal FýInd 

Rate. 

Before proceeding with the estimation of the density f (a) and f (w), we give some C, 
insight on the difference between our approach and linear ag regation (i. e. the arith- C5 09 
metic mean of the geometric AR(1) process in 2.21) that has also been proposed in 

similar RBC contexts". As mentioned earlier, this distinction is quite important since 
linear aggregation implies heterogeneity in the reduced form model, while our approach, 0 4ý 0 
in the structural model. This difference can be easily seen by recalling the AR(I) 

process in eq. 2.21 and ag regating over i. Linear agaregation implies an aggregate 09 C> C5 00 0 On 0 

process YN, t given by 

NN 

YN, t ý N-1 In Oi, t = N-1 E ei't (2.26) 
i=l 

1- aiL 

(where L denotes the lag operator) while the logarithm of Ot is equal to C, 0 
N 

In (0t) =In N-1 exp 
Ei't (2.27) 

1- aiL 

It can be readily seen that the dynamics of the two processes can be quite different 

and the statistical properties 14 of 2.26 can only represent, as first order approximation, 

those of In Ot, omitting eventual statistical non linearities that could arise from higher 

terms in a logarithm expansion. C, 

2.4 Estimation of the heterogeneity parameters 
121t is calculated as the logarithm of the first difference of the Consumer Price Index. 
13Sce Michelacci and Zaffaroni (2000) for instance. 
"Details on the statistical properties of linear aggregate process can be found in Granger (1980) or 

Zaffaroni (2004). 
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In this paragraph we describe the procedure to estimate the parameters of the cross 

sectional distributions f (a) and f (w) defined above. For this purpose we use microdata 

for U. S. industry taken from the NBER manufacturing productivity database. This set 

contains annual informations on 459 manufacturina industries" for the period 1958- 

1996. A detailed description of the manufacturing establishments and the variables 

included in the database can be found in Bartelsman and Cray (1996). The original 

purpose of this database was to estimate the production functions of U. S. industries 

using industry level data, but recently it has been also used in a variety of research 

projects. We use it to estimate the parameters for the Beta and Generalized Gamma 

densities in the following way. 
First, using the NBER data we construct for each sector the time series of the 

total factor productivity (TFP). The TFP gives a measure of the Solow residual for 

the U. S. industries, and consequently it might well represent the productivity of each 

firm (sector) in our model. Then, for each TPF series we fit an AR(l) process and 

estimate its autoregressive parameter and standard deviation. To save space, Nve do not 

report the diagnostic results, but it has to be mentioned that the AR(1) is an adequate 

representation for more than 95% of the sectors under consideration". Finally, from 

the distributions of the autoregressive parameters and standard deviations Nve estimate 

respectively the parameters of the Beta (eq. 2.23) and the Generalized Gamma densities 

(eq. 2.24). 

Specifically, the Solow residuals have been constructed following the approach in 

Olley and Pakes (1996) and Bartelsman and Dhrymes (1998). For each industry the 

Total Factor Productivity (TFP) has been calculated as 

In TFPi, t = In Qi, t - akIn Ki, t - aL In Li, t - am In. Ali, t 
15A very few sectors have been removed from the sample because they had extremely large variance. 

Such outlier would affect the estimation of the parameters of the Gamma distribution. 
16 More specifically, 22 sectors are characterized by autocorrelated residuals while 13 sectors present 

omitted nonlinearities. 
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where Qi, t is the real gross output for the industry i in year t, and Ki, t, Li, t, and 

jkli, t are respectively capital, labor and intermediate inputs. 

Then, for each series InTFPi, t Nve estimate the coefficient It, the autoregressive 

parameter ai and the standard deviation wi of ej, t, in the AR(l) representation" 

lnTFPi, t ý It + ai InTFPi, t-l + Ei, t (2.28) 

In figure 2.4 Nve plot the histogram of the estimated di and cZij. C> 

fi-Ure 2.4 0 

Finally, using non-linear least squares ive fit a beta and a generalized gamma densities 

to the empirical distribution of the Ws and CD's. In particular, for the estimation of the 

parameters of the generalized gamma distribution we follow the approach in Cohen 

ýýIiitten (1988). In the next table Nve report the estimated values for the parameters 

of the txvo densities. 

g,, 23.7133 h,, ý 1.1723 A ý 0.03358682 

g, 4092.834 li,, = 4811.156 v= 10 

Table 2.1: Parameters for Generalized Gamma and Beta Density 

The value for the elasticity's v has been taken from Chari, Kehoe and McGrattan 

(2000). Visual inspection of the two plots in figure 2.5 confirms the goodness of fit 

between the empirical and fitted distributions and consequently the plausibility of the 

assumed density functions. 

figure 2.5 
17XVc recall that including a constant in eq. 2.28 iinplies generating an aggregate process cliaracterized Z, 0 t5o 0 

by a drift. Therefore, in order to compare the dynamic of the simulated data with the detrended GDP 

we also remove the sample mean from each series InTFPi, t to transform it into a zero-inean process 

with p=0. 

"Since there is no unique agreement on the values of v, we also run simulation with v equal to 5 

and 7 but we did not observe significant difference in the results. 
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It has to be mentioned that since quarterly data for TFP are not available, Nve use 

a frequency conversion to obtain estimates of the coefficient ai and the variance wi' for 

the quarterly data". Finally, using the estimated distributions Nve are able to generate 

the ag recrate productivity according to the formula Og 0 

v --- v 
i=l TFPi, t 

N 

It has to be mentioned that the estimated mean of the constant terms p is equal 

to 0.006325. This value will be used in the simulations to generate time series with a 
drift for the artificial GNP. 

2.5 Methodology 

In this section, Nve present the approach to test for significant differences in the dy- 

namics of actual and artificial data. 

The aim of this chapter is to compare the persistence and volatility of the model- 
or 

generated data with those of the U. S. data, and to test whether they could be created 
by the same data generating process. It has to be noticed that in our context this is a 0 
very demanding burden to put on the model as it is required to match the relationship 
between micro and macro data, in addition to the traditional demand to replicate the 

pattern of the macroeconomic data. 

A drawback of the approach presented in this chapter is the high degree of non- In 
linearities in the model. In fact, since the a-, regate process does not have a recursive 119 
representation, the model has to be solved numerically'. Bor this reason, Nve used the 
Parametrized Expectation approach with a rate of convergence of 10-8, see De Haan 

19See chapter 16 of Wei (1990) for details on annual to quarterly frequency conversion. 
2OThe only way to have a closed form solution with our agggregate process is to assume 100 % capital 

depreciation as in Abadir and Talmain. The advantage of this method is the immediate interpretation 0 
of the solution parameter, but unfortunately there are only a few situations when it can be applied. 
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and Marcet (1994) for further details on this solution method. It has to be mentioned 

that in this context log-linearizing is not possible. In fact, apart from altering the 

dynamic structure of the aggregate productivity", it would give rise to an extremely 00 
large system of equations to be solved; in the case considered in this chapter Ave would 

have more than 5000 linear equations. 
Once the model has been solved, we use the reduced form to generate artificial data 

for the output and to compare its time series properties with the data for the U. S. 

real pre-capita GNP". Specifically, for each artificial sample we calculate the auto- 

covariances, the auto correlations and the variogram 23 and collect them into empirical C) 
distributions. Finally, we use these distributions to calculate the probability to observe 

a certain statistic (precisely the generalized Q-statistics) for U. S. GNP under the null 

hypothesis that the data were generated by our RBC model. 

Compared to Cogley and Nason (1995) we use different statistics to measure the 0 

persistence and volatility of the data. Regarding the volatilit Nve choose the autoco- CD C, y 

variance function rather than the Impulse-Response (IR) function. We believe that, 

compared to the IR, the autocovariance function is a better measure of the amplitude 

of innovations in the aggregate productivity. In fact, the former would require the 

construction of a structural VAR whose results might be sensitive to its specification. 

Rýirtbermore, even if the structural VAR were properly specified, the IR would not give 

more information than the autocovariance function on the volatility the process. 

Regarding the persistence, we used the autocorrelation function together with an- 

other measure of persistence, the variogram, which is known to be more consistent than 

the ACF for very persistent data and short samples. 

21Tlie effect of v would be completely lost by linearizing the aggregate productivity. C5 CD "Our definition of output is the quarterly real GNP per capita, taken from national economic 

accounts of the Bureau of Economic Accounts. The sample size is 228 observations. 
21Sce below for the definition of variogram and the appendix for more details on its properties. 
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In fact, it is a widely known result" that the estimation of the autocorrelations 
for linear processes with root close to one can be very biased, even in samples of more 

than 200 observations, as shown in the appendix. Such bias can become dramatically 

large in the case of Ion-, memory in the data as shown in Newbold and Agiakloglou 0 CD 
15. 

.g -ate process has Iong memory by construction, both the sam- (1997) Since our arr re, 0 
ple autocovariance and autocorrelations could be heavily biased even if we use samples 

with more than 200 observations. A solution to this problem is to employ a measure of 

time- dependence, known as the variogram, which is widely used in geostatistics. Given CD 
T 

a stochastic process jXt It= 1, the variogram(VR) at lag k is defined as 

VR (-rt) 
-rt+k) ý 

var(X"t+k - -1t) 
2 

where var (-) indicates the variance of the increment (-Tt+k 
- Xt) - 

Therefore, instead of focusing on the moment of the process xt, it considers the 

increments (Xt+k - Xt) with k=0,1,... A more comprehensive description of its prop- 

erties can be found in Beran (1998) and Haslett (1997). 

The variogram presents many advantacres compared to autocorrelation function. 

First, it is directly related to the autocovariance function, but differently from this 

one, it is unbiased for near unit root processes, and is also defined for certain non 
(variance) stationary processes including the random walk. 

The testing procedure has been conducted in the following way. For each artificial 

time series generated by the model we calculate the autocovariances, the autocorrela- 
2 4See Haslett (1997) for instance. 

T 2'Given the stocliastic process jXt 1,1 we define the autocorrelation at Ia. - k as 

Cor(xt+k 
, Xt) -E 

(Xt+kXt) - 1-7 (Xt+k) E (xt) 

VE 
(X2 )2 

t) -E (Xtý 
t+k) - E' (Xt+k VrE (X2 

This definition is slightly different from the usual definition COr(Xt+k, Xt) ý C"(""") since it ITX-. T- 
allows for a mean correction. The two definitions are asymptotically equivalent in strictly stationary 

processes but the former can lielp to reduce the near unit root bias although it does not eliminate it 

completely. 

41 



tions and the variogram, and store them in empirical probability distributions. Then, 

-we construct the generalized Q-statistics, as shown in the next table, and count the 

fraction of samples that yield significantly different results from those found in the U. S. 

data. The three generalized Q-statistics are defined as follow: 

Q 1^ 1 vi- (f - ? -) f N 
ý-N (fi N-' (fi - 

Q2 C)l c) a Z-1-1-ý-' 
N 

1ý2 = N-l FN (Ci 
_C -i= 

(ci 
- CY 

Q3 
I 

(fl V) (0 - V) 'D N 
f7, = -1 ýN IV i=l (bi - V) (f)i - V), E 

Table 2.2: Generalized Q-statistics for autocorrelations, autocovariances and variogram 0 

where the vectors ý and r are respectively the sample and model-generated auto- 

correlations, a and c are the sample and model-generated autocovariances, andb and v 

are the sample and model-generated varioram. Although the generalized Q-statistics 

are approximately chi-squared with degrees of freedom equal to the number of lags 00 

considered, we decided to use empirical critical values rather than asymptotic critical 

values. In fact, the large number of lags considered could seriously diminish the power 

of the test. 

We consider two different cases. In the first, ive generate data from the HRBC model 

assurning that the aggregate productivity is a zero mean process (i. e. no constant term 0 00 n 
in its AR components) and compare its dynamics with those of the linearly detrended" 

U. S. GNP. In the second case, we allow for a constant term in the single productivi ties" 

and compare the model dynamics with those of the logarithm of the U. S. GNP. This 
2'As mentioned above, a linear trend is consistent with the assumption of a constant term and 

almost unit roots in the single productivities. 0 
2 'This time the aggregate productivity lias been defined as 

0, 
Ei=, TFPi, t 

N 
InTFPi, t = iL+ajInTrýPi, t-, +ei, t 

e, 
't _ JA, (0�2 

i 

where ai and wi are drawn respectively from the estimated Beta and Generalized Gamma density. 
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means that in the first case xve focus on the cyclical properties of actual and simulated 

data, while in the second on the dynamic properties of the data as a whole. For 

the simulations Nve set the number of firms N equal to 5000 and performed 30000 

replications for each case. Finally, Nve set the lag order equal to 100 lags for the ACF 0 C) 

of the detrended data and 150 lags for data in levels. 

2.6 Simulation results 

In this paragraph Nve present the simulation results for the exercise described in the Cý 
previous paragraph. ýVe start by reporting the estimated values for three Q-statistics 

0 C) 
together with their probability Nmlues. Then, we plot the empirical and model generated 

auto correlations, autocovariances and variogram together with their 95% confidence 
bands. We show that in both cases Nve fail to reject the null hypothesis that the 

dynamics of the U. S. GNP could be generated by our HRBC model. 
We start by showing in table 2.3 the values for the Q1, Q2, and Q3 statistics with 

their probability values shown in parentheses. The second column refers to the case 
for detrended data while the third column to the case where we allow for a drift in the 

data. 

Q-statistics (niodel no drift) Q-statistics (niodel with drift) 

Ql(autocorrelations) 95.8058 65.8545 

(0.3259) (0.2318) 

Q2(autoco-,, arianccs) 39.7783 131.7139 

(0.1572) (0.2749) 

Q3(variogram) 29.6422 79.1103 

(0.2055) (0.3539) 

Table 2.3: Estimated generalized Q-statistics for autocorrelations, autocovariances and 
variogram 
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As it can be readily seen, none of the test considered is significant". This implies 

that we can not reject the hypothesis that our simulated data can reproduce both the 

persistence and the volatility that is observed in the data. In particular, Q2 and Q3 

are important since they imply that our artificial data can match not only the persis- 

tence but also the volatility of the actual data at all lags. It has to be mentioned that 

Cogley and Nason could not achieve these results even with models characterized by 

counterfactual external sources of dynamics. This shows that through heterogeneity 

and non-linear aggregation the model is able to generate a strong internal propaga- 

tion mechanism which does not need to rely on implausibly large exogenous shocks to 

replicate the dynamics of actual data. The goodness of this fit is also confirmed by a 

visual inspection of the figures 2.6-2.11 where we plot the autocovariance, the autocor- 

relation function and the variogram for the artificial and U. S. data together with the 

95% confidence bands. Figures 2.6-2.8 show the autocovariance, the autocorrelations 

and the N-ariogram for the detrended data, while figures 2.9-2.11 for the data in levels. 

figure 2.6 to 2.11 

Althou., li these figures contain the same information as the Q-statistics considered 

above, they allow us to see graphically how closely the simulated data match the C3 
persistence and the volatility of the actual data. In fact, it can be readily seen that the 

autocovariance function, the autocorrelation function and the variogram for the U. S. 

data lies inside the confidence band at all laaS. This is a novel result for a RBC model 

that can usually match few correlations of the data. 

Finally, it can be noticed that the variogram in figure 8 confirms the presence of 0 
long memory in the detrended U. S. GNP. In fact, it is characterized by a slow rate of 0 
convergence, that is typical of long memory process, as opposed to the very fast rate 

of stationary process or to the explosive rate of unit root process (see the appendix for 

more details). 

"As already mentioned in a previous footnote, we got better results with v=7 and similar results 

with v=5. 
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We can conclude that, according to the results shown in this section, a possible 0 
solution to the "Nveak propagation mechanism" puzzle can be found in heterogeneity 

00 
and structural ag regation. In fact, comparing our results with those of other represen- 09 C5 
tative RBC models, such a degree of gOodness of fit for the persistence and volatility 0 tD 
that characterize the actual data has not been achieved so far. 

2.7 Conclusion 

In this chapter we present a heterogeneous RBC model where firms face different pro- 

ductivity dynamics. NVe model such heterogeneity using the NBER manufacturing 

data base for 459 U. S. firms. By assuming that the total factor productivity can be 

represented by an AR(1) process, we estimate the distributions for the autoregressive 

parameters and the standard deviations for each sector. Then, we use these distribu- 

tions to calibrate the microstructure of the model. We study the time series properties 

of the model-generated data and compare them with those of U. S. data. Our simula- 

tions strongly reject the hypothesis that the persistence and the volatility generated 

by HRBC model are significantly different from those of the U. S. GNP. This shows 

that, cross sectional heterogeneity in the firm dynamics allows the model to build up 

an endogenous strong propagation mechanism, which solves the "weak propagation 

mechanism puzzle" that characterizes standard RBC models. 

In this chapter, we were mainly concerned with the effects of heteroaCnous produc- 0 

tivity dynamics on the aggregate TFP and output dynamics. However, our approach CND 0 
could be extended to many areas of macroeconomics to build up more exhaustive and 

complete heterogeneous models. The extensions in these directions could be numerous. 

The ideal would be to construct a micro founded model with a complete heterogeneous 

microstructure and calibrate it using industry sector data. This could lead to, for in- 

stance, heterogeneous production functions with different degrees of capital utilizations 

and capital depreciations. On the consumer side, it would be interesting to consider the 
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implications of consumers with different discount factors, risk aversion and preferences 

on the properties of a RBC model. This could lead to the aggregation of heterogeneous 0 C. 
rational expectation models 29 that have the potential to help solve many of the modern 

economic puzzles such as inflation and unemployment persistence. 

2gAn attempt in this direction has been done by Pesaran (2003). 
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Figure 2.2: Autocorrelation function U. S. inflation rate and fitted functional form 
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2.9 Appendix I 

In this appendix we derive the autocorrelation function of In Ot. During the derivation, C5 
we make a few uses of the following two lemmas. 

Lemma I For xa Generalized Gamn2a, variate with density function 

Aligxx Agx -I A) (X) =x- exp(-Ilxx r (g,, ) 

where AE (2, oo) and 9., E R+, then 

3 +g. -IA 
-g 

A22 

X2)] 

22 
A/T b ̀2 b b2 

E [xexp (b 
- exp F (gx) b5i 21ix 4lix 

( 

(2hx):! 
for v+ Agx E R+ and large bE R+. 

Proof. See Abadir and Talmain(2002). m 

Lemina 2 Let g (t) E R+ be a strictly increasing function of t, then 

fa gý-1(1 
- a) 

hý-l 
exp(g (t) a)da ý-- exp(g (t)) 

F (h, ) 
(2.29) 

o [g h. 

for la7ye t and h,, > 0. 

Remark I This lemma is of intrinsic mathematical interest since for g,, = a, h,, = 
b-a and g (t) =t it represents an asymptotic expansion for 

Ia b-1(j 
_ a)a-b-1 exp(ta)da =- 

F (b a) r (a) 
Al (b, a, t) 

0 IP (b) - 

which is the integral representation of a confluent hypergeometric function where 

If (b, a, t) is a Kummer's function; see pg. 505 of Abramowitz and Stegun (1972) for I 

more details. 
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Proof of Lemma 2. The above lemma can be easily proven by a direct application 

of Watson's lemma 30 after having replaced a by (1 - a) in eq. 2.29. u 

We evaluate the autocorrelation function of In Ot only for the case when its single 

components have zero mean (i. e. /i = 0). In fact, this is the only case where the 

derivation of the ACF of In Ot is different from the one in the appendix of Abadir and 
Talmain's paper. Let us recall the AR(1) processes defined above, In Oi, t ý ai In Oj, t-j + 

ej, t. Since Oi, t ý exp(v X: T 
I atsi, t), it is easy to show that t= 

INTt 
E (0t) 

NZ 
E4 (eXp(V 1: a Ei't) 

i=l t=l 
Nt 2t 

j: (exp( - ai' 
v2w 

2)) 
exp( 

ai )v 2w2 

2 (1 - N 
i=l 

2 (1 - a? ) i 

where the approximation holds for large N. If ive substitute for the Beta density 

function defined in eq. 2.23, and approximate the exponential term using Fflopital's CD 
rule Nve get, 

E (Ot) E� ag'-1(1 - a)h'-' 
(exp( a2t 

)V 2w2 da 
B (ga 

3 
ha) 

02 (1 - a2) 

agý-1(1 _ a)h. -1 
(exp( ta2(t-1) 

)v2w2 da i B(ga, ha) 2 

Replacing a by a2(h) and noticing that 1- a2(ti 1) -- 
1-a 

e 00 2(t-1) 9'ý S 

E (0t) = B(g, h,, )2 (t - 1) 
fo 

71 
(I 

-W ýB (_q,,, h,, ) (2 (t - 
))hý 

a2(tl 1) ) h. -1 exp 
ta 

)V 2w2 da 
2 

a 
b-l(1 

_ a)h. -' exp ( ta )V 2w2 da (2.30) 
10 (2 

Applying Lemma 2 with g (t) = '2w2 t to the integral in eq. 2.30, 
02 C5 

F (h,, ) (1 )ho 

e E (0t) ý-- E,, 
1))h. 

-t -,, -'2 -, 2 XP(V2t2 W2)) 

(B 

(g, h,, ) (2 (t -22 
r (ii,, ) 

-E, W-2hý exp( 
v 

2t2 

w 2) 

, xh_ B(g, h,, ) (V2t (t 1))h- 2 

"See Keener (1988). 
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Finally, by lernmal and the fact that B (g, h,, ) -- 
r(gý)r(hý) 

E (0t) 

L2t 224A 
22v (V2t) 23 -g-,, /F, 17 + h,, ) 

t) 2t 2(I 

r (gc, ) r, (g ) (V2t (t 
- 

))hý -4-h 
exp 2 2h,, 2 

w (2h,, )'-2 

Now, since CO'l)(Ot+k, Ot) ý E(Ot+k, Ot) -E (Ot+k) E (0t) 
, we only need to evaluate 

E(Ot+k, Ot). We can start by approximating the exponential term using Pflopital rule, 

E(Ot+k) Ot) 

2t a 2t+k I-ai 1- at 22S22ia 
t4,2 

k 2)] jE,, 
[exp (2 

(1 - a? ) 
vw, +2 (1 - a2) 

v ws +_ 
aia. )v ascis 

S 
22 

aj)'--'exp E. j ag vw B (h, gct)2 

Jo 

2 
2(t+k-1) 

)hý (t + k) a. 22+ V2 1 t+k-1 a. - a., -1 exp _V w tat- a wiws ]Jdaidas 10 
2Si 

Replacing ai by a2 
(t --IT 

and a. by a 
_2FI +-k --l 

I 

and since a 
2(t-1) 

0iSi- 2(t-1) 

E(Ot+k3 Ot) 

h, l 
tai 22 E, a2(t-1) a 

2(t -IT 
exp 2vw B (g, ha) (4 (t 1) (t +k- 1)) 

JO 
ii 

--- 1 
--1 

h, l (t+k)al 22222 2(t+k-1) 2(t+k-I "I E,,,, a. +v ta a wjw, ]daida, a. exp v ws i 2 

ai)h, l tai 22 E,,, a2 exp vw B (g, ha) (4 (t 1) (t +k- ))hý 12i 

2(t+k- 1) as)hý -1 
(t + k) a, 1 .1 22222 

as exp v ws +v tas ai wiw ]daidas 
02 s) 

Using the Lemma 2, the quantity inside the expectation E,,,, (-) can be approximated 

by 

11 
)hý (t +k) a-I 2W2 + V2ta'2a2l W, W, (I - a, exp a. 

10 
2v 

Jda, 

r (h,, ) t+k 2W2 2tC, I 
2 

(L+-k'V2W2 )hý exp 2vs 
+v i wiws 

2s 
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Hence, 

E(Ot+k7 Ot) 

(h,, ) 
aiaetý'ý -1 aj)hý -1 exp 

tai 
v2W2 

ni B h,, ) (4 (t 1) (t + 1))h- 
Ei 

2 

-hý 
E, 

t+k,, 2W2) 
2(t-1) t+k22 2tCt 

W, WS exp vW+v ]dai 
2i2i) 

B (g, h,, ) 1r (h,, ) tai 'I WiW 
1) (t k 

Ozi ai)hý -1 exp -V-W 
2+ 

V2ta? S (4 (t -_ 
))hý 

Ewi E"ý 
[fo 

2 

t+kv 2W? 
-hý 

exp 
t+kv2W 2))j dai 

21) 

(( 

2i 

In the same way the integral with respect to ai can be approximated by 
C, 

)hý-l eXp 
tai 22 2ta 21 W, W, a ai 2v wt +vi dai 

t 
') 22 

(. LV2W? ) ha exp 
((2 

v LIJ +v twiws 
21 
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and 

E(Ot+k7 Ot) 

r (h,, )2 t2 2) 
-hý 

pt V2W? 
) 

+ V2tW, W, 
B (4 (t 1) (t + 

-ý_- -I) hý Ewi Ew- 
(2vwi 

ex 2 4) 

t+kv2w 2) 
exp 

t+kv 2W? 

2i 
(( 

2 

F (h,, )2 

B (g, h,, ) (4t (t - 1) (t + k) (t +k- 1)) 

-h , 
t+k 2 

exp v W? 
(( 

2 IM 

-h. 
exp 

tv 2W? + V2tW, Ws 
((2 

,) 

r, (Ilc, )2 
2) -hý eXp 

t 
2W? 

00 (V2tW, W., )j 

B (g, h,, ) (4t (t - 1) (t + k) (t +k- 1)F 

(2 

j! 
j=o 

2) CXJ p( 
(t + kV2W? ) 

21 

F (h,, )2 (V2t 3 
2hý+j t22 

1))h. LL) exp -V LL) h,, ) (t (t - 1) (t + k) (t +k-1: j! 
(2 

i 
j=o 

W-2hý+j 
t+k2 2))] 

t exp 
(( 

2v wi 

where the infinite summation has been obtained using a binomial expansion. 
We can evaluate the expectations with respect to wi and w, using the lemma 1, 
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Now the autocorrelation function can be obtained as Cor(Ot+k, Ot) - 
COV(Ot+k, Ot) 

AfV'2r(Ot+k)V'2r(Ot) 

COr(Ot+k) Ot) 

(exp 

L, 4 t2 )2 
exp Xp 

(V4(t+k 

-x 

(2(40ý)-X 

-2)y) - 1) 

A 

2(4htýý ) 

It has to be noticed that the formula for the autocorrelation function is the same as 

the one in Abadir and Talmain. 

This can be explained by the fact that in Abadir and Talmain's set up, neither 

p nor the parameters of distribution of variance of the idiosyncratic shocks affect the 

autocorrelation function of Ot. Finally, the leading term of the ACF of In Ot in eq. 2.25 

can be obtained by applying the small variance expansions in section 3.2 of Abadir and 
Talmain (2002). 

2.10 Appendix 2 

In this appendix we present the small sample properties of the vario. rarn and the 

autocorrelation function for persistence processes. As already mentioned, a detailed 

description of the statistical properties of the variogram, which goes beyond the purpose 

of this paper, can be found in Haslett (1997) and Beran (1998). In this section, using 

simulations we show that for very persistent processes the sample variograrn has a 

faster convergency rate than the sample autocorrelation function. As mentioned above 

jXt}T the variogram is defined for a time series t=1 as 

E(-'17t+k - Xt)2 VR (Xt) Xt+k) ý'2- 

It is easy to show that for strictly stationary processes it is directly related to the 

autocovariance function c (k) and to the autocorrelation function r (k) by 

VR (1t) Xt+k) ýC (0) 1_ c(k) 

c (0) 
) 

=c (0) (1 -r (k)) 
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When dealing, with linear processes with root close to one, the estimation of the 

autocorrelation function can be very biased, even in reasonably large samples (more 

than 200 observations). In fact, as the root of the process approaches one the sample 

moments converge at a slower rate to the population moments. This bias becomes 

dramatically large for random walks or when long memory is present in the data (see 

Newbold and Agiakloglou (1997)). 
00 

This problem is shown in the figure below, where we plot the theoretical and sample 

autocorrelation functions for two AR(1) processes 31 with roots respectively equal to 

0.95 and 1. 

Sample & Theoretical Aulocorrelation Function for AR(I) 

Sample Autocorrelations 
0.8 

Theoretical Auto correlation-, 
0.6 

0.4 

0.2 

0. 
0 10 20 30 40 so 60 

Sample & Theoretical Autocorrelation Function for RW 

0,5 

Sample Aulacorrelations 

-------- 
- ------------- 

Theo: relical Autocorrelations 
01 

0 10 20 30 40 so 60 

Figure 2.12: Sample and theoretical autocorrelation function of the AR(I) process and 

randoin walk 
3'The artificial series have been generated using the following data generating process: 00 

Xt = ckxt- I+ et et - IN (0,0.0 1) 

with xo =0 and t= 228. 

The sample autocorrelations have been calculated averaging over 1000 replications. 0 C5 
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As can be readily seen, as the root of the process approaches one, the bias in 

the ACP of the simulated data becomes extremely large. This result can have some 

implications when comparing the dynamics of the simulated data with actual data. 

In fact, it is common practice in macroeconomics to start from the autocorrelations 

structure of some economic variables, make some assumptions on their data generating 

process and then try to mimic their autocorrelations with the model simulated data. In 

the light of the above results, if the data are very persistent, the ACF of the simulated 

data will be biased even if the data generating process is correctly specified. 

In the next plot we present the same result for the variogram. As it can be readily 

seen, the sample and theoretical variogram are indistinguishable at all lags and the 

reduction in the bias is remark-able. 

x 10-3 Sample & Theoretical Variogram for AR(I) 
1. 

Sample Variogram 

-Theoretical Variogram 

0.5 

0 
0 10 

ý0- ý0- 
40 50 60 

x 10,3 Sample &Theoretical Variogram for. AR(I) 

I ----- Sample Variogram I 
3 -Theoretical Variogram I L= re ! 

-j 
2 

't, ca, V, "ogr 

0 to 26 
ý0- 

40 6C) 60 

Fig-Lire 2.13: Theoretical and Sample Variogram for AR(I) process and random walk 

Althouah the N-ariogram for the aggregate process Ot, has not been derived yet", C5 0 CD 0 
Nve expect its sample variograrn to be unbiased in the light of above results. In fact, 

even if the process has long memory and therefore is more persistent than the AR(1) 
0 

32Given the structure of the process it would be very difficult to derive it analytically. 
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process considered above, it still has less memory than a random walk. Since the 

sample vario, rarn of the random walk is unbiased, as shown in figure 2.13, this implies 

that the xariograrn of the long memory process Ot should also be unbiased. 
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Chapter 3 

Long memory co-movements in 

macroeconomic time series: a 

modified E-G approach 

3.1 Introduction 

Since the seminal papers of Granger (1981) and Engle and Granger (1987) the concepts 

of integration and cointegration have developed in many areas of both econometrics 

and applied macroeconomics. By a well-known definition two time-series xi, t and X2, t 

are said to be cointegrated of order CI(J, b) if they are individually integrated of order 0 4: 5 
1 (6) and there exists a linear combination et ý Xl, t -)3X2, t that is integrated of order 
I (J - b). 

In the past years, many approaches have been proposed to test for cointegration; 

see Watson (1995) for a survey on the these approaches. In particular, they have been 

designed for the case when J=I and bý1. Under this assumption, Xl, t and X2, t are 
1 (1) variables and they are cointegrated if there exists a linear combination et that is 0 
1 (0). This case is very appealing for applied economist since it allows us to estimate 
long run steady states as linear combination of non stationary variables. Rirthermore, 
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movements from the steady state equilibrium can be represented usin, > standard ARMA 

models. 

Recently, this notion of cointegration has been criticized by a number of researchers 0 
who have claimed that the distinction between 1(0) and 1(1) is rather arbitrary- They 

have proposed instead to allow et to be integrated of order 1(d) with 0 :5d<1 
(i. e. fractionally Integrated) or more generally to belong to the class of long memory 

processes. 
Long memory cointegration implies that although there is an equilibrium relation 00 

between economic variables spanning the long-run, these variables can be away from 

such equilibrium for a very long period of time. C3 
ýtandard cointeggiation techniques cannot be applied in this context since they 

cannot distinguish between Iong-memory co-movements and spurious relations. Bor 

instance, the two most popular cointegration approaches, the Engle-Cranger (E-G) 

two-step procedure and the Johansen's full-Information maximum likelihood' (FIML) 

cannot deal with the hypothesis of Iong-memory cointegration. On one side, as Gonzalo 

and Lee (1998) and Anderson and Gredenhoff (1994) show, the FIML is not robust 

to dynamic misspecification and gives rise to pitfalls and spurious regressions if the 

dynamics of long-iiin regression residuals Et departs from the 1(1) assumption. On 

the other side, Diebold and Rudebusch (1991b), Lee and Schmidt (1996), Hassler and 

Wolters (1994) and Gonzalo and Lee (1998) show that the ADF test, which plays a 

crucial role in the E-C approach, has low power against the alternative of long memory 

despite its asymptotic consistency'. In particular, testing for individual unit root is not 

enough if the data generating process has long-memory or dynamic behaviors different 

from those of a unit root process. 

'See Jobansen (1988 and 1995). 
217or the case wbere et is a fractional ARNIA process, few approaches have been proposed to take 

this type of alternative explicitly into consideration. A review of this subject can be found in Dolado, 

Gonzalo and Mayoral (2002). The approacli proposed here does not force et to belong strictly to the 

class of FARINIA process. 

64 



In this chapter we present a methodolog to test for the presence of cointegration oy CD 
when two variables are 1(1) and there exists a linear combination that behaves as a 

long memory process. The contribution of this chapter is twofold. First, differently 

from standard cointegration technique, our approach is able to detect the presence 

of long-memory co-movements. Then, the test we propose is characterized by high 

size under the null (of spurious relation) and high power under the alternative (long 

memory relation). Furthermore, it also reduces the small sample bias in the estimation 

of the long-run relation by more than 41% compared to ordinary least square (OLS). 

We apply our procedure to the Johansen and Juselius (1992) data base for the UK 

purebasing-power parity (PPP) and uncovered interest rate parity (UIP) and show 

that the null of no cointegration is rejected at 95% in contradiction with what was 

previously shown with standard single equation techniques, see Harris (1992). 

Evidence of long memory in the co-movements of many macroeconomic variables 

was already found by Cheung and Lai (1993), Diebold et. al. (1991) and Abadir and 
Talmain (2005). On one side, Cheung and Lai suggest that deviations from the PPP 

equilibrium could follow a mean reverting long memory process. On the other, Abadir C> 0 

and Talmain show that most economic variables are characterized by a high degree of 

persistence and nonlinearities that, if not properly accounted for, can bias standard 

econometric techniques and give rise to economic puzzles and counterintuitive results. 
To this purpose, they propose a method to disentangle the relations between variables 
from the effects of their persistence. In this paper we go beyond their findings and 

propose a procedure to test for such Iong-memory co-movements and show that null of 

no cointegration is rejected at 95% for the PPP-U1P database. 

Our approach combines the Engle and Granger cointegration approach with the 

quasi-maximurn-lik-elihood (QTVIL) procedure for long memory process introduced by 

Abadir and Talmain (2005). 

The difference between our approach and standard cointegration technique can 
be understood by analyzing the assumption that characterized the two approaches. 0 
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Testing with standard cointegration techniques imposes very strict conditions on the 

long-run relation among the variables: first, it assumes that the relation is strictly 

linear, then the variables must adjust towards this equilibrium at a relatively fast rate 
(1(0) hypothesis). Therefore, it should not be very surprising that such "cointegra- 

tion" is rejected even when the Ion-run relation between variables seems economically 

plausible (as the PPP-UIP theorem). NN'hat is really important when testing for cointe- 

gration is not stationarity but mean reversion toward the long run equilibrium. Strict 

stationarity is a sufficient but not necessary condition to have mean reversion. In fact, 

there exist many processes that are not stationary but still mean reverting 3 0 

Conversely, the approach we propose is able to test for the existence of a Iong-run 

relation, whilst allowing for possible non-linearities and persistent deviations from its C, 
long-run that are not forced to be strictly stationary. 0 

This chapter is organized as follows. In the next section, we recall the Engle and CD 
Granger approach and describe the moving block and the stationary bootstrap. In 

section 3, we test for cointegration for the PPP-UIP database using standard E-C 

approach. In section 4, we describe our modified testing procedure. Then, in section 
5, we apply our procedure to the PPP-UIP to test for the presence of a Iona memory 

equilibrium relation. Finally, in section 6, we run some simulations to calculate the 

empirical size and power of our testing procedure and the reduction in the small sample 

estimation bias given by the QML estimator relatively to standard OLS estimator. 

3.2 Testing for cointegration and Bootstrap ADF- 
'For instance, any process which is I(d) with dE (0,1) would fall into this category. They are 0 

called fractionally integrated processes and details on their properties can be found in Beran (1998) 

and llosking (1981). 
0 
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test 

In this section we recall the E-C cointegration's approach and describe how to calculate 0 
stationary bootstrap (SB) and moving block bootstrap (MBB) confidence intervals, 

under the null of no cointegration. 
The E-G approach is a very intuitive two step procedure. In the first step Nve 

estimate by ordinary least square the relation 

'1; 1, t ý 01ý2, t + Et (3.1) 

also called cointegrating vector, while in the second we test whether the regression In C) 
residuals Et are strictly stationary. To this purpose, Nve run the regression 

'ýý6t ý P6t-l + PlAýý4-1 +-+ PkA6t-k + Ut (3.2) 

and construct the t-value statistic tp for the estimated parameter P, which is called 

ADF statistic of order k or ADF(k). If we reject the hypothesis that P=0, then 

et has an ARTMA representation and the variables xi, t and X2, t are cointegrated with 0 
cointegratingvector [1, - Otherwise, if we fail to reject the hypothesis 0 then 

Et is non stationary and eq. 3.1 is a spurious relation. 

It is a well-known result that the ADF statistics converges, under the null of no- 

cointegration, to a non-standard distribution. The critical values for this distribution 0 
have been derived by Said and Dickey (1984) using simulation. These critical values, as C> 
well as those of other cointegration approaches, are justified on asymptotic grounds. It 

is well-known that in a context of cointegration regression models, asymptotic critical 

values are not very reliable unless the sample size is very large. This implies that 

testing for cointegration in small samples can give rise to substantial estimation bias 0 CD 
as Nvell as size distortion in the associated tests of significance. A solution to this 0 
problem has been proposed by Li and Maddala (1997) who suggest that bootstrap 

'See Li and Nladdala (1997) for more details. 
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methods can provide some corrections, in the Eý-G approach, to both estimation bias 

and size distortions. Using various type of bootstrap methods, in particular moving 

block bootstrap and stationary bootstrap, they show the superiority of bootstrap-based 

critical values over asymptotic critical values. On the basis of their results we decided 

to use bootstrapped rather than asymptotic critical values in all the ADF tests shown 
below. 

We now describe briefly the moving block and stationary bootstrap which will be 

implemented in the next sections, and also discuss some general issues about their 

implementation in testing for the significance of the parameter p in eq. 3 

A complete exposition of the statistical properties of the bootstrap can be found in 

Hall (1992), Efron and Tibshirani (1992) and Sbao and Tu (1995). The idea behind the 

bootstrap is the following. Let us consider a sample of i. i. d. variables fxl,..., x, } with 

underlying distribution F and a parameter of the population 0 (F) on which we want to 

inake inference. Let us define (F) the estimated parameter from Ixi, ..., x,, I. Then, 

the bootstrap distribution of (F) can be derived by re-sampling with replacement 
from jxj,... 

' x,, j and by calculating from each re-sample the parameter ý (F). This 

, generates a distribution P of parameters ý (F) that provides, under general conditions, 

an approximation of true distribution F. 

In time series analysis data are generally not i. i. d., therefore different approaches, 

such as movin., block bootstrap (XIMB) and stationary bootstrap (SB), have been pro- 

posed to capture the dependence structure of the data. The moving block bootstrap 

was introduced by Carlstein (1986) who considers non-overlapping blocks and further 

developed by KiLmsch (1989) who proposed instead overlapping blocks. In particular, 

given a time series sample jxj, 
---, Xn} , 

KtInsch proposed to construct n-1+I blocks 

of data of length 1, Bj =f xj, xj+,,..., xj+, -Jl 
jn-1+1 and to resample 

with replacement from those blocks. A different type of block bootstrap is the sta- 

tionary bootstrap where the block length 1 is sampled from the geometric distribution 

P (1 = m) = (1 - p)"_1 p with m=1,2,... and pE (0,1) 
, while the starting date j of 0 
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the first observation of the block is chosen according to a uniform distribution on [1, n] . 
If j+1-1 exceed the index n of the last observation -Zým then the block- is constructed 

as Bj = 
fxj, 

---I Xn) Xl,..., Xi-n+j-ll - 

This kind of bootstrap has been introduced by Politis and Romano (1994) after 
discovering that the time series generated by the MBB bootstrap may not be stationary 

even if the original series jxj, 
..., x,, } is stationary. 

We proceed now with the description step by step of the algorithm to calculate C: > 
bootstrap critical values for the ADF tP-statistics, under the null hypothesis of no 

cointegration: 

1) Estimate the cointegrating vector yt ýa+, 8xt + et by OLS and get the regression 0 C, 0 
residual 9t = yt -&+, 8xt 

2) Run the ADF(k) regression 

. ný (3.3) IMt ý Pc-t-I + PIA-t-I + --- + Pk-Aýt-k + ? it 

and calculate the ADF-statistic for the estimated P, defined as tp = PISE(P), where 
SE(P) is the standard deviation of P. 

3) Estimate the ADF(k) regression under the null of no cointegration (i. e. imposing 

P=o ), 
0 (3.4) P01Aýt-l + "' + PokAýt-k + Ut 

and calculate rearession residuals 
4) We can use the residuals ft' to derive a bootstrap distribution for the tp-statistics t 

under the null hypothesis of no cointegration, in the following way. For the stationary 0 C) 
0 '0 0 bootstrap, choose a value of p and form N blocks Bi = Ifit 
I ilt-11-1 I, i=N 

where for each Bi, 1 is sampled from a geometric distribution and t from an uniform 
distribution as described above. For the moving block bootstrap choose a block length 

0 -0 -0 1 and construct n-1+1 blocks Bi =f uj) 113+1-1 j=1, ... ' n-1+I and 

resample with replacement N times from these blocks. 
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5) For each resampled bloCk5 Bi = Jftq, ito-I +I Jj fiq 
-1 

1, we can use the boot 

strapped residuals Ift'j) and equation 3.4 to construct a time-series of residuals JýOit I It 
t=1 

under the null of no cointegration6. 

6) Calculate for each bootstrapped sample JýOi,, J't= iN the ADF statistics 1 
V and store it in order to generate an empirical distribution of V P P* 

7) Finally, define t' and P respectively as the 2.5% lower and upper quantile of PP 

< [L the distribution of the ip and reject the null if t>P or t PPPP 
A few points are vorth mentioning about the procedure just described. It is un- 

avoidable when using bootstrap technique in a regression context to face two funda- 0 t5 
mental choices: first, we need to choose what variable to bootstrap and then how to 

construct its simulated counterpart. Regarding the first issue, we can choose to boot- C, 
strap either the original data or the regression residuals; then whatever variable we C5 0 
have chosen, we must decide how to generate its simulated bootstrap sample. 

This last point can be made more clear by recalling step 4. There, we choose to 

use, as bootstrap sample, the residuals ft' from the ADF regression estimated under t C) 
the null of no cointegoration. Another possible could have been to choose instead itt, 

the regression residuals from the original ADF regression in eq. 3.3, and use them in 

step 4-7 instead of fito. 

Concerning the first choice, we decided to use the regression residuals rather than 

the actual data for the following reason. Although there are some authorS7 that suggest 0 
bootstrapping the regressors rather than the residuals, it is not considered to be the 

best choice in a cointegration context since it discards some useful information used 
in the residual based approach. For instance, in testing whether yt =a+ 8xt + Et 

cointearatinc, relation if we choose to bootstrap the regressors yt and xt would not 4: 1 in 

5citlier nioving block or stationary bootstrap re-sample. 
'We need to assunie that the first iýO, -X-k+1 are equal to zero and ý'Iis equal to the first obser- 

vation fLP of the Bootstrap block. 
7See Li and Aladdala (1997). 
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take into account the information that under the null hypothesis the residuals Et are 
I(l), while under the alternative they are 1(0). 

Regarding the second issue, the scheme Nve chose in step 4-6 is, according to the ýn 0 
findings of Li and Maddala (1997), the most reliable under the null since it does not 0 

depend on the OLS estimated parameters P and P1, ***) Pk- In fact, if the null is true 

but the OLS gives an estimate of p which is far away from zero, then the bootstrap 

distribution based for instance on fit will give a poor approximation of the distribution 

of the true errors under the null. On the contrary, the bootstrap distribution of p 
based on the residuals ft' will be close to the true distribution if then null hypothesis t 
is true. Conversely, if the null is not true then it will be very different from the true 

distribution. More details on these issues can be found in Li and Maddala (1997), van 
Giersbergen and Kiviet (2002) and Basawa et al. (1991). 

3.3 The PPP-UIP cointegration analysis 

In this section we show how standard methods can reject cointegration for a long nin 

equilibrium that arise from economic theory. 

We reconsider the PPP-UIP data discussed in Johansen and Juselius (1992), Harris 

(1995) and Rahbek and Mosconi (1999), and to test for cointegratioll using the E-C 

approach. A full description of this data, and the source, goes beyond the purpose of 

this chapter and it can be found in the given references. The database is composed by 

quarterly, seasonally adjusted, time series from 1972-1 to 1987-2 for the UK wholesale 

price index (p, "), the UK trade weighted foreign wholesale price' index (ptw), the three- 

month UK treasury bill rate (i") 
, the three month Eurodollar interest rate (ied) 

, and tt 
uk the UK effective exchange rate (et ). The purpose is to test whether the PPP and 

'The wholesale price index is a more palusible N-ariable than retail price index for an empirical 

analysis of the PPP. In fact, it is likely that for many goods, trading costs for the consumer are much 

larger than those faced by the wholesaler. 
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the UIP relations, that arise from economic theory, hold empirically. In fact, economic 

theory suggests that in the long run Nve should expect price differentials between two 

countries to be equal to the nominal exchange rate differential (PPP)', and the nominal 

interest rate differentials to be equal to the expected changes in the exchange rates 

(UIP). 

In other terms, Nve would expect that 

uk 
_w= 

uk Pt Pt t (PPP) (3.5) 

iuk - ied k) uk 
ttE 

(e' -e (UIP) (3.6) tt 

Now, if the markets are efficient, we would expect that deviations from the PPP 

would influence expected changes in exchange rate, in other words 00 

(e, k) =p 
uk pw ttt 

Hence, the above equations 3.5 and 3.6 can be linked together as 

iuk - ied = uk 
_w_ 

uk 
tt Pt Pt et (3.7) 

We can estimate this Ion-run relation" in eq. 3.7 by running the regression 4ý 

uk =k ied + St w+ a2ettl + a3ittik + a4 t (3.8) Pt aO + C(IPt 

The OLS estimates to-ether with some dia,, nostics are shown in the followin- table 000 
9This definition of the PPP relation is also known as the absolute version which is assumed to be 

valid only in the lon. - run. 
101n order to account for the possibility that the prices are 1 (2), we also used the different specifi- 

cation suggested in Ralibek and Mosconi (1999) 
0 

uk -k ird Pt p'=ao+aAp'+a2eut +a3iuk+a4 tttt 

However, since we failed to reject the null of no cointegration we report the cointegration results only 

for the standard case. 
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uk =k iuk - ied + ot - 2.18 + 16 w+0.13 e' + 0.33 0.78 P t t t pt t (-1.74) (0.77) (1.132) (-2.78) (25: 96) 

R2 
= 0.985 or 2=0.1464 D-W=0.1464 

L-B= 141 RESET = 14.54 
(0.00) (0.00) 

Table 3.1: OLS estimate of the UIP-PPP regression 

It can be readily seen that the residuals diagnostic reveals the presence of omitted 

nonlinearities and highly autocorrelated residuals. Rirthermore, a very low D-IT' sta- 

tistic together with a very high 10 could be a sign that the above relation is a spurious 00 
regression. CD 

Following the E-G approach, Nve use the estimated regression residuals ýt to test 

whether the relation estimated in table 3.1 has any economic meaning or is simply a 0 
spurious relation 

In the next table, Nve report the ADF" statistic for ýt together with its asymptotiC12 C. 

critical values and both the stationary and moving block bootstrap 95% critical values, 

named respectively ACI, SBCI and -i%, IBBCI 

tp-statistics 95% ACI 95% SBCI 95% MBBCI 

-0.965320 -2.937 -2.5558 -2.2027 

Table 3.2: ADF statistics and asymptotic, stationary bootstrap and moving block 

bootstrap critical values 

The null of no cointe.; ration cannot be rejected at 95% and therefore we should 

conclude that the relation Nve found in table 3.1 is spurious. 

This result is not surprising since it is quite well-known, see Harris (1995) for 

instance, that the hypothesis of cointegration is rejected for the PPP-UIP relation. 0 
"We run the ADF test up to five lags in the ADF regression. Since we fail to reject the in all cases, 00 

we report the results on when one lag is considered. 0 
12The asymptotic critical values are taken from Said and Dickey (1984). 
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Many economist" have tried to justify this counter-intuitive result and the issue is 

still controversial". Some of the justification for such empirical failure are related to 

trade barriers, pricing to market, international trade costs 15 such as transport costs, 

product heterogeneity, indirect tax differences, etc. ". P'urtbermore, the presence of 

omitted nonlinearities in eq. 3.8 is empirically consistent with the presence of trade 

costs (see Micheal et al. (1997) and Taylor (2001)). 

As we show below, the result presented in this section is an artifact caused by the 

long memory of the residuals and the incapability of standard methodology to account 0 
for such degree of persistence. In fact, we would find evidence of a Iong-run relation 
in the PPP-UIP database only if this relation were strictly linear and the variables 

con verged toward their equilibrium values at a relatively fast rate. These hypotheses 

implies, in economic terms, perfect competition in the foreign (goods and exchange 

rates) markets which is rejected by empirical evidence. Hence, for these reasons, even 
if the existence of a PPP-UIP long run equilibrium seems economically plausible, we 

would expect the speed of convergence to be very slow due to market failures mentioned 

in the previous paragraph. The possibility that deviations from the UIP and PPP 

equilibrium could follow a mean reverting long memory process was already suggested 
by Cheung and Lai (1993), Abuaf and Jorian (1990), Imbs et al. (2005) and Abadir and 
Talmain (2005). Our results also confirm the presence of such long memory. In fact, 

by an inspection of fig. 3.1, the autocorrelation function (ACF) of Et does not converge 

toward zero exponentially as implied by the 1(0) assumption, but clearly it does not 

support evidence of a possible unit-root either. Its slow rate of decay could support 
13SCC Obstfeld and Rogoff (2000) for a good survey on PPP failure. 
"Abadir and Talmain (2005) bave recently solved the UIP puzzle witli the saine quasi ML approach 

altbough in a different context since they did not test explicitly for cointegration. 
"The effects of these costs would liave been much bigger if we had used retail price rather than 

wholesale price. 
160ther explanation that have been advocate to explain the PPP empirical failure are related to 

differences in the price index weight, in the productivity growdis and in the proportion of tradeable 

to non tradeable. 
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the presence of long memory. 

figure 3.1 

3.4 A modified Engle-Granger approach to test for 

long-memory cointegration 

In this section Nve present our approach to test for the existence of a long-memory 

relation between the PPP-UIP variables. As mentioned above, testing for cointegration (D 
in a E-C context is equivalent to test whether in the representation 

)d (1) 072) L (L) Et =8 (L) et et - IN(ol 
e 

(3.9) 

the parameter d is equal to one (i. e. no cointegration) or equal to zero (i. e. cointe- 

gration) where 1) (L) and 0 (L) are polynomial on the lag operator L. This implies that g0 
in both cases Nve are assuming that deviations from the long run equilibrium evolves C) 0 
according to an ARINIA model. CD 

Recently, some researchers have started to doubt the ability of ARIMA process 

to fit the dynamics of many economic variables, in favor of the more general class 

of long memory processes. Considerable evidence of long memory in macroeconomic 0 
times series has be found in the Nvorks of SoNvell (1992), Rudebuscli(1989), Diebold and 

Rudebuscli(1991a), Baillie and Bollerslev (1994), Baillie et al. (1996), Haubrich and Lo 

(1993), Crato and Rothman(1994), Hassler and Wolters (1995) and Abadir et al. (2006). 

In particular, Abadir and Talmain (2002,2005), have recentlY shown that the dy- 

namics of most macroeconomic variables follow a new type of mean-reverting long- 

memory process. This process is characterized by a very slow decay of the ACP whose 
leading term can be represented by the functional form 

a [1 - cos (w7)] 
(3.10) 

1+ bTc 
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where a, w, b, c are parameters to be estimated. This functional form can closely fit 

the ACF of man macroeconomic time series, including all the variables studied in the y0 

seminal Nelson and Plosser (1982) paper; see Abadir ct. al. (2006). 

It turn out that can also describe very Nvell the rate of decay of the ACF of ýt. In 

fact, estimating eq. 3.10 for the ACF of 9t gives 

_1-1.047 
[1 - cos (0.287627-)] 

pt 
-1+0.3225-rO-17045 

(3.11) 

which, as shown in figure 3.2, reveals a striking accuracy of this functional form in 

fitting the ACF of ýt. 

figure 3.2 

Abadir and Talmain (2005) show that it is possible to use this functional form to 

disentangle co-movements between variables from the effects of their own persistence. 

In fact, we can use it to correct the ori. ginal variables to account for autocorrelations 

and eventual non-linearities that could otherwise lead to biased estimates and spurious 

results, as extensively discussed in the introduction of this paper. This can be easily 

done, by using eq. 3.11 to construct the estimated autocorrelation matrix iý for ýt, i. e., 

PT-2 

PT-1 PT-2 

PT-2 PT-1 

PT-2 

(3.12) 

and implementing it either in a generalized least square approach or in a ML frame- 

work. In fact, since eq. 3.10 requires only four parameters it can make any CLS 

procedure easy to implement". 

1711, fact, the implementation of GLS would require the estimation of (T - 1) parameters, which is 

generally impossible with the exception of some special cases. 
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To the light of these consideration Nve have modified the E-G approach in the 

following way: 

1) Estimate the Iong-run relation yt =a+, 6xt + Et by maximizing the likelihood 

I Rl exp 
(-2 

(yt -a-, 8xt)'R-1 (yt -a-, 6xt)) 

with respect to a and, 3 and the parameters (a, b, c, w) of the functional form, 

pe 
a [I 

- cos (wT)] 

1+ b7c 

This can be done with any two step procedure'8 for a given starting values for 

a, b, c and w. 
2) Calculate the regression residuals ýt = yt ýxt and estimate the ADF Z3 

regression 0 
'ý'ýt ý 02_ýt-l ++ Ut (3.13) 

maximizing the lik-elillood functions 

1 2 
2 AIL(p, pl,..., Pk) ý (2-,, ) 1! ý I exp - Wt - Ot-l) -1 

(-2 
Wt - Ot-1) 

where 

ICZ? ij : (ý)jj = P,, (I i -j I); 

PU a [i - cos (w-r)] 
I+ b7-c 

with respect to 0 and the parameters of the functional form P,, (7) fitted to the 

ACF of ut. 

3) Evaluate the t-statistic t, ý for the parameter estimated ý in eq. 3.13. 

4) Calculate the bootstrap critical values tL and P for tp using the approach de- PP 
scribed in section 2. 

5) Reject the null hypothesis of no cointegration if either tp < il-' or t>P! 
ppp 

'SAIthough this can appear as a unconstrained optimization problem, it is not since Aý has to be 0 
positive definite. 
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In the last section of this chapter Nve investigate the improvement of this approach 

on the size and the power of the ADF test. In the next section we show how it can 

help to detect a long memory equilibrium between the PPP-UIP data. 

3.5 The PPP-UIP cointegration test revised 

In this section we apply the above procedure to the PPP-UIP database and show that 

we reject the liýTothesis of no cointegration. We start with the estimation eq. 3.8 using 0 
the QML procedure, and then test for long-memory cointegration. The estimation 

results together with some residual diagnostics are shown in table 3.3 C5 C) 

uk =-' -0.02 
iuk 

_ 0.61 ied Pt 1.48 + 1.47 p' +0 14 e" + Et t t t ' t (-2.45) (23.56) (1 
. 60) (-2.44) (-0.12) 

R2=0.9989 a2=0.0006 D-I, V = 2.011 

L-B=4.155 RESET = 2.00 
(0.25) (0.12) 

Table 3.3: UIP-PPP regression with modified procedure C. 

It can be clearly seen that all the problems that emerged with the standard E-C 

approach, specifically autocorrelated residuals and omitted non-li neari ties, have disap- 

peared. Rirthermore, a high R' together and a D-W very close to 2, eliminate any 

possibility of an eventual spurious regression. 

We now estimate the ADF regression (using again the QNIL approach), and calcu- 00 
late the statistic tp and its bootstrapped critical values tL and ill 

pp 
We present in the next table the tp-statistic together with the SB and MBB critical 

x, alue'9 and its asymptotic critical values 

" To get the bootstrapped critical value we choose a number of draws equal to 1000. ror the 

moving block bootstrap we set a block leii-th equal to 15, while for the stationary bootstrap a values 0 
of p (the parameter of the geometric distribution) equal to 0.04, which gives an average sample length 0 
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tp-statistics 95% SBCI 95% MMBCI 95% ACI 

-2.8012 -2.6028 -2.416 -2.937 

Table 3A ADF statistics for modified regression with stationary bootstrap, moving 

block bootstrap and asymptotic critical values 

We reject the null hypothesis of no cointegration. This result gives evidence that 

there exists a long ineinory cointegrating relation among the PPP and UIP variables. 000 C> 
Although such relation is not strictly stationary, as required by standard cointegration, CD tý 
it is still mean reverting. This -very slow adjustment, is not, however, completely unre- C) 
alistic. As already mentioned, it is consistent with the assumption of market failures 

that characterize the foreign goods and exchange rate markets. Thus, as anticipated 

above, it is possible to detect a Iong--run stable relation between the variables if Nve 

allow for possible non-linearities and fluctuations from the long-run equilibrium, that 

are characterized by a strong persistence that cannot be captured by strictly station- 0 
ary processes. In the next section, through simulation Nve give more support to this C, 
intuition. 

3.6 Simulations 

In this section Nve run some simulation to compare the standard E-C cointegration 0 
approach with the procedure described above. Specifically, we evaluate the empirical 

size and poxver20 of the ADF test in the E-G original framework and in our modified 

procedure. Rirthermore, ive also calculate the difference in the small-sample estima- 

of 25. We have also tried to simulate for different sample length but we didn't observe significant 00 
differences in the results. 

20We remind that the size of a test is the probability of rejectin. - the null hypothesis when this is 

true while the power is the probability of rejecting the null when the alternative is true. 0 
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tion bias between the QML procedure and standard OLS. The simulation has been 

conducted as follows. 

Por the sake of comparison with similar works (Engle and Granger (1987), Cheung 

and Lai (1993) and Gil-Alana (2003) for instance) we use artificial data xi, t and X2, t 

generated by the bivariate system 

-7; 1, t + 
-'1; 2, t Ut 

2x,, t + X2, t Vt 

We consider two different data generating processes (DGP). In the first, we assume 

no cointegration and define (1 - L) ut and (1 - L) vt = 71t where both ýt and 77t 0 
are IN (0,1) variables. Given this data generating process, we evaluate the size of the ?0 
ADF test for both the standard E-G approach and our modified procedure. 

In the second, we assume that vt is a long memory process with the same ACF 0 
structure as ýt, the equilibrium error from the PPP-UIP relation, and evaluate the 

power of the ADF test for the two approaches. Under this assumption, xi, t and X2, t 

are by construction non stationary variables but they are linked together by the coin- 

tegrating vector [1, - 0.51 which describes the long memory equilibrium between the 

two variables. 
The artificial data for vt is constructed in the following way. First, starting from the 

estimated functional form" in eq. 3.11, we construct the -vuriance-covariance matrix i? 

of &t, as defined in 3.12. Then, using the Cholesk-y factorization we decompose f? into 

rr' where r is lower triangular. Finally, given the sequence {77tjT 
I of IN (0,1) t= 

210riginally this exercise was conducted using the estimated functional form for the UIP regression 0 C, 
in Abadir and Talmain (2005). After we decided to introduce the empirical application for the PPP- 

UIP database we believe it is more coherent to use the functional form estimated above. In any case, 

using the functional form in Abadir and Talmain did not give significantly different results from the 

one presented below. 
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variables we construct vt as 

Vt = Fqt 

This transformation as the effect to generate in vt the same autocorrelation structure 

as ýt. 

In the first simulation xve evaluate the empirical size and the power for the standard 

E-C cointegration approach. Bollowing Li andAIaddala, (1997) we have set the number 

of replication to 500. Bor each replication, we apply the original E-C approach, as 

described in previous section, and evaluate the ADF tp-statistic and its bootstrapped 

2.5% lower and upper quantiles tL and ill. When x, and X2 are generated according PP 
to the first DGP described above, we calculate the percentage of time that the null 

hypothesis is rejected when it is true (size of the test). Conversely, when the artificial 

data is generated according to the second DGP, we calculate the percentage of time 

that the test rejects the false null hypothesis of no cointegration (power of the test). 

In the following tables we report the empirical size and power of the ADF test22 for 

the standard E-G approach, calculated respectively using moving block and stationary 

bootstrap for a sample length respectively equal to 100 and 200. 
CD 

22It has to be mentioned that when the null is true we have set k, the number of la-S in the ADF- 
0 

regression, equal to 1 (i. e. the true data generating process under the null). On the other side, when 

the alternative is true we have chosen a number of lags equal to three in order to remove all the 

autocorrelations from the residuals. This was done since using the same number of lags for both cases 

it would have reduced even more the power and the size of the ADF-test. It is important to note that 

the modified approach is not sensitive to the choice of k since the procedure is designed to account 
for any auto correlations in the residuals. 
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No cointegration (Standard E-G) 
0 

Sample Size MBB SB 

T= 100 0.130 0.126 

T= 200 0.056 0.070 

Table 3.5: Sample size of the ADF test in E, -G approach when null of no cointegration 0 
is true. Nominal size: 0.05 

Long memory cointegration (Standard E-C) 

Sample PoNver MBB SB 

T= 100 0.014 0.002 

T= 200 0.148 0.072 

Table 3.6: Sample power of the ADF test in FG approach when null of no cointegration 0 
is true. Nominal size: 0.05 

First, using bootstrapped critical values the ADF test has a size which is close to 

the nominal, especially for a sample length of 200 observations. This result confirms 0 
the findings in Li and Aladdala (1997) that bootstrap critical values improve the size of 0 
the ADF test under the null hypothesis. Then, most importantly, when the alternative 
hypotbesis of Ion-memory cointegration is true, the ADF test bas ver low power. C, C5 y 
In fact, it rejects the null hypothesis at most 15 % of times when the alternative is 

true. This means that the ADF test, in the standard E-G context, is not capable of 
distinguishing between long memory and unit root even in fairly large samples. This 

0 C, 

result has an important implication for the macroeconomist. It shows that rejection 

of a long run equilibrium by the ADF test is not conclusive evidence for excluding 0 
any relations between economic data. In fact, the E-C approaches would lead to the 

conclusion that no equilibrium relation exists between the variables, any time that this 

is not strictly 1 (0) 
. 
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We now repeat the same exercise for our modified approach and show that it can 
deal properly with this problem. In table 3.7 and 3.8 Nve report the empirical size and 

power of the ADF test in our modified framework. 

No cointegration (Modified E-G) 

Sample Size MBB SB 

T= 100 0.09 0.08 

T= 200 0.08 0.03 

Table 3.7: Sample size of the ADF test in modified approach when null of no cointe- 

gration is true. Nominal size: 0.05 

Long memory cointegration (XIodified E-G) 0 
Sample Power MBB SB 

T= 100 0.864 0.89 

T= 200 0.98 0.984 

Table 3.8: Sample power of the ADF test in FG approach when null of no cointegration 0 
is true. Nominal size: 0.05 

The rejection frequencies under the null does not present any si.; -nificant different 

with the standard case; in fact, we can reject at most 10% of times the null of no 

cointegration when it is true. On the other side, the power of the test has a striking 
improvement. In fact, the rejection frequency is very high and close to its nominal 

values even for short samples. Already with a sample length of 100 observations Nve are 

able to reject 90% of the times the null of no cointegration. Therefore, on one side our 

approach is as reliable as the standard approach when there is no relation among the 

variables; on the other, is capable to detect a Iong run equilibrium when the fluctuation 

from such equilibrium are not strictly stationary. 
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This shows that our approach provides a robust procedure for disentan. iing long 

memory co-movements in the variables from their persistence and eventual non linear- 

ities. 

Therefore, allowing (and accounting) for possible non linearities and long memory 0 
it is possible to detect the true cointegrating relation and long memory fluctuations 

00 

around the long run equilibrium. 
In the last simulation ive evaluate the small sample estimation bias for both the 

approaches and show that our modified procedure leads to a substantial improvement. 

AVe use the OLS estimate 13"' and QML estimate 3QAIL for the cointegrating pa- 00 
rameter (equal to -0.5 in the data generating process), from the previous exercise, and 

evaluate the mean of the small-sample bias for both approaches, defined as 

BN+0.5) 
N 

N 
i=l 

('69AIL 

B (, BQAfL) 
+0.5) 

(3.14) 
N 

where N is the number of replication in the simulation. 
In table 3.9 we report the small sample bias, for the estimation of the cointegrating 

vector respectively for the QML approach and OLS estimation. 

Bias in cointegrating parameter estimation 
Sample size B (OQAfL) B (, B"') 

T= 100 0.0098423 0.016869 

T= 200 0.0064476 0.008687 

Table 3.9: Sample power of the ADF test in E-C approach when null of no cointegration 
is true. Nominal size: 5 

For a sample size of 100 observation, the small sample bias for the least square esti- 

mator, 6"' is about 0.017 while the bias for the QML estimator, 8QAfL is 0.0098 which is 
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41% smaller. When number of observation double the bias decreases for both estimator 

but the 0"' is still significantly more biased than 8QAfL. In both cases our procedure 

is able to reduce significantly the estimation bias compared to standard OLS that is 

usually implemented in E-C approach. This improvement can be justified consider- 

ing that with the QML procedure we account for eventual omitted non-linearities and 

strong autocorrelations in the regression residuals. To the light of the results presented 

in this section, we can conclude that the inability of the standard E, -G approach to 

test for long memory co-movements relies on the strict conditions, linearity and strict 

stationarity, that it imposes on the Ion-run relation among the variables. Once the 0 CD 
approach is modified to account for long memory fluctuation around their equilibrium 0 
relation, it becomes a robust tool to test for cointegration. 

Summarizing, the main results of this section are the followings. Consistently with 
findings of Li and IMaddala (1997), the ADF test based on bootstrap critical values 

is characterized by high size under the null hypothesis. On the other side, when the 

alternative of long memory co-movements is true, the ADF test displays very low power 

in the standard E-G approach. By accounting for the Ion-, memory in the data it is 

possible to increase significantly the empirical power of the ADF test. In fact, the ADF 

test in our modified procedure displays a power which is close to the nominal. Finally, 

estimating the cointegrating vector by QML described above leads to a substantial 

reduction in the small sample bias compared to the standard OLS estimator. In the 

light of these results, the failure of the standard F'G approach to test for long memory 

co-movements relies on the strict conditions, linearity and strict stationarity, that it 

imposes on the long-run relation among thevariables. Since most of the macroeconomic C> 
data seem to be characterized by long memory and mean reversion, it is not surprising 

that the E, -C approach rejects cointegration even when a long-run equilibrium seems 

economically plausible (as for the PPP-UIP theorem). 
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3.7 Conclusion 

Standard cointegration analysis technique such as the E, -C approach and the FIML 

imposes very strict restrictions of the data generating process of the data. In fact, in 

order to find an equilibrium relation among economic variables, this should be strictly 

linear and characterized by a fast convergence rate toward the equilibrium. It might 

be plausible that these conditions do not hold empirically and therefore it is very 

likely that cointegration is rejected even when economically plausible. In this work- we 

show that once these two assumptions are relieved, we can find the existence of a long 

memory equilibrium among the variables. To this purpose we presented a methodology 

to test for the presence of cointegration when the variables are I(1) and there exists a 

linear combination that is characterized as Iona memory process rather than as standard 

ARXIA process. We showed that, differently from standard cointegration technique, our 

approach is able to detect the presence of a Iong-memory co-movements. Rirthermore, 

we reported for this test both hih size under the null hypothesis and high power under 

the alternative. Our approach also reduced the small sample bias in the estimation of 

the cointegrating vector by more than 41% compared to standard ordinary least square 

estimate. We applied our procedure to the data base for the UK purchasing-power 

parity and uncovered interest rate parity and showed that the null of no cointegration 

was rejected at 95% in contradiction with what was previously shown with standard 

single equation technique. 0 
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Figure 3.2: Autocorrelation function of the PPP-UIP regression residuals and estimated 
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Chapter 4 

Aggregation of almost unit root 

processes 

4.1 Introduction 

Aggregation is an inevitable aspect of both applied and theoretical macrocconomics. 00 
On one side, most of the observed macroeconomic time series are the result of summing 

a large number of heterogeneous units, such as commodities, firms or households. On C> 
the other, many macroeconomic theories are based on the aggregation of individual 

agents whose inter-temporal optimal decision rule is expressed as a linear model that 

contains some autoregressive component. For instance, the reduced form of many 
linearized microfounded models is represented by an ARTMA model (see for instance 

King et al. (1988) and Michelacci and Zaffaroni (2000)). 

Cross-sectional aggregation was first considered in the seminal works of Robinson 00 C5 
(1978) and Granger (1980). A detailed reference with some economic applications can CD 
be found in Forni and Lippi (1997), Chambers (1998), Lewbel (1994) and Zaffaroni 

(2004). 

The importance of aggregation in time series anal sis derives from the fact that in 0y 
the statistical properties of an aggregate process can be dramatically different from 
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those of its components. In particular, it is a well-known result' that averaging a large 
CD 

number of ARXIA processes generates long memory in the aggregate process, even if C. 
its single components are strictly stationary. 

Since the quoted Nvorks of Granger and Robinson, long memory and aggregation 0 
have gained much popularity both in theoretical and applied macrocconomics. On one 

side some researchers (see Diebold and Rudebusch (1989), Sowell (1992) and Abadir 

et. al. (2006) among others) have claimed that non-stationary long memory processes 

are a valid alternative to standard ARIMA processes to represent the dynamics of 

many economic time series. In particular, Diebold and Rudebusch (1989) and Abadir et 

al. (2006), using a long span of U. S. database, have produced strong evidence in support 

of long memory rather than difference stationarity in many economic variables. On 

the other, heterogeneity and aggregation have been recently employed to explain some 00 4D 
"economic puzzles". Specifically, Altissimo, Mojon and Zaffaroni (2005) show that 

aggregation can help to reconcile slow macroeconomic adjustment with fast adjustment 

at microlevel in the euro area inflation; Abadir and Talmain (2005) use it to solve the 

"uncovered interest rate parity puzzle", and Imbs et al. (2005) to explain persistent 
deviations from the purcbasing power parity. 0 

The most popular case of aggregation in time series literature involves AR(I) 

processes. Specifically, given the AR(1) process 

Inxi, t = ailnxi, t-, +ei, t; i=1,.., N 

(0, W2) ei't IN7 i (4.2) 

where xi, t is the observed variables and the coefficients ai and the shock ei, t vary 

across the N units, a linear aggregate process is defined as the arithmetic mean of the C>0 
AR(l)'s just defined, i. e. 

N 

lyt =. 
Ei=l ln xi, t (4.3) 

N 

'See Robinson (1978), Granger (1980) and Lippi and Zaffaroni (1998). 
0 
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The statistical properties of this process have been intensively studied. Apart from 

Robinson and Granger, further references are Forni and Lippi (1997) and Lippi and 0 
Zaffaroni (1998). However, they will be briefly recalled in the next section. 

In a recent paper, Abadir and Talmain (2002), introducing firm heterogeneity in a 0 
general equilibrium model, derive another approach to a-, regate data which arises from 

09 
the microstructure of the model. Specifically, they consider the following aggregate 

process 

In Zt = In Xi't (4.4) 
N 

We refer to this approach as CES or non-linear aggregation. The difference between 00 
these two approaches may seem subtle but, as we will see below, it has important im- 

plications for the dynamic properties of the aggregate process. In fact, Abadir and 

Talmain's approach differs from the linear aggregation in two aspects. First, it is co- 

herent with micro-structure of the theoretical macro-model. Then, most importantly, 

it is consistent with the way economic data are aggregated in national accounts. In 
00 CD 

fact, the majority of the macroeconomic time series, available in the national statistical 

database, are obtained by adding up the levels, rather than the logarithm of disag re- C> C, 09 

gated data. NVhilc Xt is the process usually studied in time series analysis, In Zt is the 

one that arises from the 'true' data generating process (DGP) in national accountancy. 0 
In this chapter we compare the statistical properties of these two different aggregate 

processes and derive the conditions under which their dynamics are closely related. 

For this purpose we evaluate the discrepancy between their autocovariance functions 

(ACvF) for different distributions of the variances of the shocks eip We show that if 

the w's are dense in a neighborhood of zero, then the leading term of the ACvF of In Zt 

decays at the same rate as the ACvF of Xt. Under this assumption, Xt can represent 

closely the dynamics of In Zt. Conversely, if this condition does not hold, the dynamics 

of the two processes can be dramatically different. In this case Xt is a misleading 

approximation to the true DGP since it tends to underestimate both its volatility and 

persistence. 
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Thus, although some authors, see for instance Forni and Lippi (1999), claim that 

Xt is a good approximation to In Zt, choosing Xt to describe the dynamics of some 

macroeconomic variables could lead to misspecification due to the omission of the non- 

linearities that characterize In Zt. 

Rirthermore, these non-linearities can also bias standard econometric techniques 

and give rise to spurious results. This point has been recently raised by Abadir and 
Talmain (2005) and is further discussed in the last chapter of the thesis. 

The paper is organized as follows. In the next section, we present the properties of 

Xt. We first derive its properties for the case of the ag regation of independent series, 119 
then xve extend to the case of dependent series. In section 3, Nve compare, theoretically 

and using simulations, the properties of the two ag regate processes. We also derive 
Zý 09 C, 

the conditions under which Xt approximate the leading term of the dynamics of In Zt. 
0 

4.2 Linear aggregation of near unit root AR(l) 

processes 

In this paragraph, Nve recall the general properties of the process Xt and then derive 
C> 

its ACNT when we allow for near-unit root processes in its components. 
We start by making some basic assumptions about the structure of the AR(l) 

process, defined in eq. 4.1, that will be used throughout the chapter. 

Assuinption I NVc assume that the set of parameters Oi = (ai, wi) is defined on 
0 z-- (0,1) x R+, with ai and wi mutually uncorrelated. We define Qý = (. F,, C) 

the set of the family F of absolutely continuous distribution defined on (0,1) 
, 

and C on (0, oo) , with the distribution of ai belonging to F and the distribution 

of wi belonging to L. 

This assumption states that the microstructure of the model is composed by strictly 

stationary AR(1) processes with near unit roots not being completely excluded. The 
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set E) = (0,1) x R+, excludes the extreme cases where ai =0 (i. e. In xi, t = Ej, t) and 

wi =0 (i. e. fxj, tjt' is not a stochastic sequence). 

Assumption 2 Following Abadir and Talmain (2002) Nve assume that the a's are 
distributed according to the Beta density 2 

C, 9. -1 (1 -, )h. - I 

(a) - 
B(g, hý) 

0<a< 

(4.5) 
0 otherwise 

where h,, E (0,11 and B(g, h,, ) is the Beta function. 

Assumption 2 implies that almost unit roots are not completely ruled out. In fact, 

for hc, E (0,1] the mode of the beta density lies in a neighborhood of one (i. e. '8 
(a) goes 4n 

to zero as a approaches 0). This hypothesis leads to non-stationarit of the aggregate y0 

process, in the sense of non-summable autocovariances and most of the results below 

rely on it. 

To illustrate the properties of Xt let us recall eq. 4.1-4.3 and the autocovariance 
function -yl,, x,,, 

for the AR(1) process Inxi, t, 

N 
Xt = 

F_i=l In xi, t 
N 

Inxi, t = ailnxi, t-, +ei, t 
k a2t) ai i (k) 

(4.6) 
(0, 

W2) ei, t - IN i 

(4.7) 

A few things are worth being noticed. First, it is well-known' that summing a finite C. 00 
number of ARAIA process yields another ARMA process. For example, the sum of N 

distinct AR(I) process yields an ARMA(N, N - 1). However, when N goes to infinity 

Xt does not belong to the class of ARMA process but, as Granger shows in his seminal 
'For a detailed reference of the properties of the Beta density see Evans et. a]. (2000). 
3See Granger (1980). 
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paper, it is directly related to the class of Ion-, memory process so called fractional 
in 

integrated ARTMA process 4 (FARIMA). 
0 
Then, while the statistical properties (conditioned on ai and wi) of In xi, t are Nvell 

defined, those of the aggregate processes Xt and Zt are entirely defined by the distrib- 

utions of the a's and the w's as N -+ oo. 
Finally, for values of the parameter a that are far away from one, the ACvF 

(k) can be approximated for large t by 

k 

'Ylnxi, 
t 
(k) i2 (4.8) 

This approximation also holds for distributions of the cc's that are generated by the 

density 3 (a) with h,, strictly bigger than one. 
Now, the ACvF of Xt can be recalled from Granger's results. He shows, in the 

frequency domain, that if the a's are distributed according to the modified Beta density 

f (a) =2 a2g. -1(j - a2)h. -l 
, and h,, is strictly bigger than one, then the ACvF B (h., g. ) 

of Xt, -yx, (k) js given by 

-yx, (k) = 
F(h, - 

1) r (t 
- 9-) 

B (g, h,, ) r (g,, + h,, +i 2 

It is easy to show that this is equivalent to evaluating, in a time domain, the mean of 
X: N the ACvF of the AR(1) models Inxi, t, i. e. -yx, (k) = N-' j=1 Cov (In Xi. t+k , In xi, t) 

In fact, recalling the ACvF of In xi, t in eq. 4.8 we have that 
'They are defined as 

(1 - L)d (1) (L) Xt =e (L) ut 

where dE (0,1), 4) (L) and E) (L) are polynomial in the lag operator and ut- IN (0,0,2). 
0U 

An introduction to this kind of model can be found in Gran, -, Cr and Joycux (1980), Hoskin. - (1981) 

and more recently in Beran (1998). It is important liere to recall that they require fractional differ- 

encing to achieve stationarity and do not bave surnmable autocorrelations for d>0.5. 0 
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NNk2 
a ait) 2 

, yx, (k) N-lECov(ln-"6i. t+k, lnxj, t)=N-'E W- 
i=l =, 

(1 aj2) 

Nkkk 

N-1 ai 
W2 

ai' 
. 

2) 
=E 

ai E (4.9) 
0-? aý) a? ) 

2w2 1 
(1 

ajý 
a2g. -1(1 -a 

2)h. -lda (4.10) 
B (g, h,, ) 

10 

- a2) 
w21 k+g. 

_l 
a2 (1 _ a)h. -2da (4.11) 

" (gct) ha) 
Jo 

i 
W2r (Ila 

-- 

1) r Q2" 

(4.12) 
" (ga, itj r (g,, T T,, T 1) 2 

where we approximate for large t and large N in eq. 4.9, replace a with a'2 in eq. 

4.10, and following Granger (1980), E (0j) With W2. 

A few points are worth mentioning. First, the above formula holds only for /I,, 

strictly larger than one since the Gamma function has a singularity 5 at zero. This means 

that eq. 4.12 is the ACvF of a stationary long memory process whose components In xi t 

are strictly stationary (i. e. near unit root completely ruled out). This point is also 

confirmed by the fact that eq. 4.12 is the ACvF of a fractionally integrated process of 

order d= (1 -h,, /2) which is stationary6 as long as d<0.5, which implies lic, > 1. Then, 

the above form-Lila has been derived under the assumption that Ei, t are independent. 

This excludes interesting cases such as the presence of common shocks. Generally, as 

shown below, the ACF of an aggregate process is different from the mean of the ACvF 

of its single component. In fact, the latter does not reflect the interactions between the 

components of the algaregate process. Conversely, when Abadir and Talmain analyze 

the properties of InZt, they explicitly take into account these interactions and show 

that they influence both the persistence and volatility of the aggregate process7. 00 0 

-'See Conzilles (1992) for a description of the properties and singularitics of the gamma function. 
'See Beran (1998) or Zaffaroni (2004) 
71t has to be mentioned that also Granger considered the aggregation of dependent series but lie 

00 in 
obtained its results by dropping the interaction terms as a simplifying approximation. 0 
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Following this argument, it is possible now to extend these results to ag regate 09 
processes composed by almost unit root AR(I) processes, i. e. allow h, to be less than 

one. In fact, in this case, the AGNT of Xt can be derived as 

N 

ýx, (k) = N-1ECov(lnxj. t+k-, lnxj, t) 
iýl 
N 2t) 

otýt aý, t) aý t) aý ai 2z 
(1 

- aY 22 
= N-1 J:. W. - Eliý wi =EE (u (-, ). 13) 

i a2 a2 a2i) 

2W2 1 a4i" (1 - a7t) 2g, l(j 2)h. =_ (1 _ a2 -a -1da (4.14) 
B (g, hc, ) 

10 

i) 
a 

2w 21 
ta k+2(t-l)+2g. -1(1 _ CC2)h. -1da (4.15) 

B (g, ha) 

10 

i 

w21 
ta 

k+t+g, 2(l i- a)h. -1da (4.16) 
B (g, h,, ) 

fo 
i 

1) W2t 17 (Ila) F+t- ga 2 (4.17) 
B(ga) Ila) F(ga + h,, +t+ 1) 2 

where Nve approximate for large N in eq. 4.13, use Mopital's rule in eq. 4.14 and 0 
i 

replace a with a2 in eq. 4.15. 

It can be readily seen that, differently from -yx, (k), ýx, (k) is defined for h,, < 1. 

It is possible now to compare the rate of decay of two ACvF for large k. In fact, 

using the Stirling's formula for k -+ oo, the rates of decay of the two ACvF's can be 

approximated by 

cr 2F, (h,, - -yx, (k) 
(2ý 

B (g, h,, ) F (g,, + h,, + 1) 
2 

r (h,, - 1) 
-kl-hý (4.18) 

21-h-B(g, It,, ) 

r (h,, ) r (ýý +t-g,, - 1) o, 2t 
ýX, (k) 2 

B (g, h,, ) r (g,, + h,, +t+ 
r (11") U2t 

_k -hý (4.19) 
2-h-B(g,,, h,, ) 

The above approximations show the importance of the shape of the beta density in 

determinim, the decay rate of the ACvF of Xt. 0 
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When h,, > 1, the density, 6 (a)is not dense around one and -yx, (k) tells us that Xt 

has finite variance and autocovariances decaying with an hyperbolic rate. Conversely, 

when h,, < 1, a large mass of 3 (a) will be around the unit value and ýX, (k) tells 

us that Xt has infinite variance but is still mean reverting. However, despite its non- 

stationarity it is still less persistent than a random walk. In fact, if we study the 

behavior of ýX, (k) as h,, converges to zero, which implies that 6 (a) shrinks on the 

unit value, recalling that B(ga, It,, ) = r(g. +h, ) 
, we get T(h. )F(g. ) 0 

ýxt (k F (h, ) w 
2t 

k-h. 
'ý)Ihý=O - 2-hýB(g, h,, ) 

ýhý=O 

- 
F(g,, + h,, ) F (1111) W't k-hý 

2-hýrl (h,, ) r (g,, ) lhý=O 

- 
F(g,, + h,, )w 2t 

k-hý 

2- h- r (g,, ) 

ýhý=O 

2t 

which is the ACvF of a random walk. 
This highlights the effects of heterogeneity and the distortion that is induced by 

approximating the dynamics of an aggregate process with a representative ARIMA 

process. For example, in this case, if we had fit the dynamics of Xt with a representative 
ARNIA process we would have ended up with a random walk when the true DGP is 

not a random walk. In other words, we would have lost mean reversion. Finally, it has 

to be noticed that the parameter g,,, does not influence the memory of the process but 

only its volatility. 
To summarize, the aggregation of AR(1) process with occasional near unit root 

produces a non stationary long memory process whose ACvF is characterized by a C> 
hyperbolic rate of decay. Furthermore, it is mean reverting and has less memory than 

a random walk as long as heterogeneity is allowed, i. e. h,, > 0. 0 
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We now relieve the hypothesis that ei, t are independent and generalize the results 

shown above. This is equivalent to having ei, t = wiet with Et - IN (0,1) . We also 

assume that the wi are distributed according to the gamma density 0 
0 <W < 00 

-Y (a F(O) (4.20) 
0 otherwise 

This is plausible distribution for values of the w's that are not far away from zero'. 
It can be then easily proven that the w's have mean E (w) and variance Var (w) respec- 

tively equal to E (w) and Var (w) =A-1 see Evans et all (2000) for details on the 

moments of the gamma density. It is therefore possible with this density to increase 

the variance by keeping the mean constant. This property will be useful below when 0 
we analyze the effect of different values of the shock's variance for a given value of the 

mean. 

In the following proposition Nve present the autocovariance function of Xt under the r3 
more general context where ei, t is a dependent series. 

Proposition 1 Let Xt be the process defined in eq. 4.3 with 
CO'U (ei, 

t+k, ej, t 0k=0 

0 otherwise 
If assumption 1 and 2 hold and w is distributed according to the density in eq. 4.20, 

then 

C0V (-'Yt) 
-Y't + k) 

o2 tr (h,, )2r(, qct _i_ t_ I) r (gj +t+k- 1) (4.21) 
a2B (ga, 11(1)2 r (g,, Tt-1T iij r (g,, +t+k-1+h,, ) 

Remark 2 Using the Stirling's foT7nula for large k the rate of decay of 4.21 can be 

approximated by 

CO'l) (-'Y't 
7 -Iyt+k) 

ý-- 
q2r (g,, + h, )2 r(ga+t- i)tk-hý (4.22) 
a2r (ga )2 F (9,, +t-1+h,, ) 

Sh has to be mentioned that this is a much simpler set up tban Abadir and Thliuain (2002) and 

the one assumed in the first cliapter. However, it allows a clearer interpretation of the effects of the 

parameters a and 6 on the ACvF properties of the aggregate process. 0 
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while for large k and t it can by approximated by 

'6 
2rg,, 

+ h, 2t 
COV(--lyt) 

-Y't+k) -- 
a2F (g,, )2 [(t - 1) (t +k- 1)jhý 

A few things are worth noticing. While the parameters a and 6 influence the 0 
volatility of the process, h, is the only parameter that controls the rate of decay of the 

ACvF. In other words, in linear aggregation, the shape of the distribution of the W's C50 
does not affect the memory of the process and h,, is the only parameter responsible for 

the degree of persistence of the aggregate process. This also shows that the introduction 00 0 
of dependency in the series does not play any effects on persistence either. In fact, both 

eq. 4.19 and eq. 4.22 are characterized by the same rate of decay. This is consistent 

witl 1 Granger's results for the aggregation of dependent series C5 a t) 

As we show below, the same is not generally true for In Zt. In fact, not only the mean 
but also the spread of the distribution of the w's affects its persistence. Particularly, if 

its distribution is not dense around zero, then the dependency of the series will play a 
determinant role on the persistence of the process In Zt. 

4.3 Non-linear aggregation of near unit root AR(l) 

processes 

In this section we focus on the properties of In Zt and compare them with those of Xt. 

The statistical properties for this process have been analyzed by Abadir and Talmain 

(2002). In particular, they showed that it is characterized by long memory, non sta- 

tionarity and mean reversion despite its persistence. Fýirthermore, as can be clearly 

seen, it is a highly non linear function of its geometric AR(1) components. As already 

mentioned, comparing, the properties of these two processes is important in that while 

Xt is the one usually considered in time series analysis, Zt is the process that arises 

from the data generating process in national accountancy. 

'See section 3 in Granger (1980). 0 
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We start by showing in the next proposition that if the distribution of the W'S is 

denselo around zero, then the leading term of -YInZ, (k) decays at the same rate as the 

ACvF of Xt. 

Proposition 2 Let Zt be the process defined in eq. 4.4 and assumption I and 2 hold. 

If In xi. t and In xj. t are mutually correlated and w is distributed according to the gamma 

density defined in eq. 4,20, then the leading term of the A CvF of In Zt is given by 

02t r (h,, )2 r (ga +tr (g,, +t+k- 1) 
Cov(In Zt, In Zt+k) ý-- 

a2B (gil, 11. )2 r (ga +t-1+h, ) r (ga +t+k-1+h,, ) 

Corollary I By the Stirlings fonnula for large k the rate of decay the A CvF of In Zt 

is given by 

Z /3 
2r (g,, + h,, ) 2 r(g"+t-I)t -hý Cov(ln Zt, In ljt+k) ý-- 

a2r (qc, )2 r(g,, +t-l+h, ) 
k 

Therefore, for values of the standard deviations close to zero", the leading term 

of -yl,, Z, (k) decays at the same rate as 71,, Z, (k) derived in eq. 4.22. This means that 

Xt can represent a first order approximation of the dynamics of In Zt. This result is 

consistent with what Forni and Lippi (1997) claim. 
Conversely, if the mean of the w's is far from zero or they assume occasionally large 

values, then the dynamics of the two processes become quite different. This result will 

be also confirmed by the simulations in the next section. This means that, as the W's 

increase, Xt can no longer approximate the dynamics of In Zt in that also the higher 

terms of the leading term approximation start to affect the dynamics of the aggregate 

process. Since Xt represents the leading term of this expansion it is not able to capture 

this "'higher order dynamics". 

1OThis implies that the density has mean in a neighborhood of zero and its spread is not very large. 
111t is straight forward to show that this result also holds the ease of dependent series. 
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In the next proposition Nve extend the above results to more general aggregate 

processes. 

Proposition 3 Let In xi, t be the zero mcan ARMA process 

(I) (L) In xi, t =0 (L) iti, t 

ui, t - IN (0, u2j) 

where (P (L) and e (L) are polynomials in the lag operator with roots inside the unit 

circle. If the distribution of the u is dense around zero then, the leading term of -yx, (k) 

decays at the same rate as ^flnZt (k) 
, i. e. 

, yl. Z, (k-) - -yxý (k) 

Thus, in general if the conditions of proposition 3 hold, then the leading term of C> 
the ACvF of a linear ag regate process coincides with the one of a non-linear ag regate 09 ZD 09 in 
process. 

This result, together with proposition 2, shows the connection between the two 

a-fregation approaches. [Airthermore, it can also be seen as building up a link between 00 0 
the non-linear ag regate models and FARINIA models. 09 C, 

We evaluate now through simulation the goodness of this approximation. For this (D 
purpose we consider two cases. Firstly, we assume the W's are uncorrelated, we generate 

a time series for each Inxi, t and aggregate them both linearly and non-linearl inorder 0y 
to get time series data for In Zt and Xt. Finally, we evaluate the differences between n 
their autocovariance functions for increasing values of the mean of the w's. The range ZD 0 

of the mean considered goes from 0.005 to 0.1. It has to be mentioned that these values 

are not completely unrealistic. In fact, the mean of the standard deviations of many 

economic longitudinal data falls within this interval, see for instance the distributions 

of the TFP's that have been presented in chapter two. 

We consider now the case when that w's are correlated and distributed as the 

gamma density defined above and evaluate the approximation error between the two 

ACvF for different values of the mean and standard deviations. 
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Specifleally, for each value of the mean in the interval defined above, we evaluate 

the effects of an increase in the spread of the gamma distribution. As mentioned above, 
for a gamma density it is always possible to increase its variance while keeping its mean 

constant. For the standard deviations we consider the interval from 0.0001 to 0.002. 

The simulation shows that the approximation error between the two ACvF increases 

not only as the mean of the ws increases but also as their variance becomes larger. 

This implies that even if the distribution of the w's has mean close to zero but is not 

concentrated around its mean, then Xt fails to be a good approximation of the dynamic 

properties of the "true" DGP. This means that the effects of isolated large variance 

processes build up instead of cancelling out, as N tends to infinity. 

In figure Fig 4.1, we show the mean of the differences, between the ACvF's of Xt 

and In Z for increasing values of E (w). 
CD 

fig-gure 4.1 

It can be clearly seen that for small values of w the two ACvF are very close, 

while for values close to 0.1 the difference becomes substantial. Specifically, since 

the difference is positive, the process In Zt is characterized by a larger volatility and 

persistence compared to Xt. 

This poor approximation for large values of the w's is not surprising since -yx, (k) 

represents the leading term of a small variance expansion of the autocovariance function 

of In Zt. As w increases, using the leading term of the approximation is not enough C) ZZ) 
since the effects of the higher order terms are no longer negligible. As we show ill the 00 CD 
next graph, the same is true as the variance of the w's becomes larger. 

In the next figure Ave plot the difference of the two ACvF for different values of the 

mean and the variance of the w's. 

figure 4.2 
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Figgaire 4.2 shows that the difference between -yl,, z, (k) and -yx, (k) increases not 

only as the mean increases but also as the variance becomes larger. This suggests 

that the distribution of the standard deviations w can affect the ACvF properties of 

the aggregate process In Zt both in terms of volatility and persistence. In fact, as the 
0 

variance of the gamma distribution increases, occasionally larger values of the W'S are 

more likely to be observed. This has the effect to increase both the volatility and the 

persistence of the process In Zt as shown in fig. 4.2. CD 
This kind of behavior can not be captured by linear ag regation since Xt tends to ,::, 9 0 

underestimate both the volatility and the persistence of In Zt. In fact the difference 

between 'YIn Zt (k) and -yx, (k) becomes considerable for large values of the W'S. This also 

shows that through non-linear aggregation the effect of these large variances builds up C) CIO 0 
ratlier than canceling out as N -* oo. 

Hence, although some authors claim that Xt and In Zt are characterized by similar 

dynamics, if the micro component of the aggregate process are very volatile, then the j tn CD 
dynamics of In Zt can not be fully captured by Xt which represent in this context a poor 

approximation of the true DGP. In this situation, the assumption of linearity of the 

aggregate process is not innocuous, not even as first order approximation, and could C30 
lead to dynamic misspecification due to the omitted non-linearities that characterize 

In Zt. 

4.4 Conclusion 

In this chapter we compare the autocovariance properties of two different approaches to 

aggregate times series processes. The first is the standard linear aggregation proposed 00 0 00 0 
by Robinson (1978) and Granger (1980) that has become very popular in time series 

analysis over the last two decades. The other, is the non linear aggregation approach 10 

recently proposed by Abadir and Talmain (2002) which is, by construction, coherent 

with the way disag regated data are put together in the national accounts database. 
4: 19 In C> 
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The importance of comparing these approaches relies on the fact that while the former 0 
has been widely studied in the literature, the latter is more consistent with the dy- 

namics of the true "ag regate data generating process". We show that, unless certain og 0 
conditions on the volatility of the microdata are satisfied, the two ways of aggregating 
data give rise to processes with very different dynamics. In particular, linear aggre- 

gation underestimates both the volatility and the persistence that would arise by the 

aff correct aggregation procedure. 
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4.6 Appendix 

All the results presented in this appendix hold under the assumption stated above. In 

particular, the inclusion of almost unit roots in the aggregate process (i. e. the distrib- 0 
ution 3 (a) is strictly increasing), stated in assumption 2, plays an important role. In 

fact, in many occasion Nve approximate the autocovariance function in a neighborhood 

of the mode of the distribution. 

Proof of Proposition 1. Let us recall the aggregate process Xt = (ENJ Inxi. t). i= 
'Now, since E (In xi. t) =0 then E (Xt) = 0. Therefore, 

NN 

COV (. 
-Y't i -, 

Y't+k) ýr (XtXt+k) 
-E Xi, t ýT2 4 Xi, t+k 

1N1N1N 

7N -r2 E+ -T2 EEE [-Xi, 
tXs, t+k] -- -T2 

EEE [Xi, 
tX$, t+kl 

i=l sjýi i=l Sý6i 

as N -4 oo, the first term converges to zero, therefore 

COV (-'Yt) 
-Y't+k) 

14 
[-Ui, 

t-Us, t+kl N2 
EEE 

i= I soi 

N t-1 t+k-1 

ýT2 
E 1: EEai Ei, t-j 

1: 
Cýj'6i, t+k-j 

i=l soi 

(j=o )( 

j=o 

)I 

Nk (1 1 a. - (aias)t) 
N2 

EE 

(I - a, ai) i=l sý4i 

IV 
[tCrk [ta, (aia, )'-' wiw, ] Es (aia, )t-l wiw, l 

i=l S34i 
11 

g. -I(i - aohý-i 9-1(l - as)hý-ltak (aja,, )t-1 daida, 
E (Wj) E (Ws) 10 

a, 
10 

a'5 SB (g, h,, )2 

ý32 t 
-2B (g, +t-1, h, ) B (g,, +t+k-1, h,, ) 

a2 B (g,,, h,, ) 
#2 tF (h,, )2 F, (gC' +t 1) r (g,, +t+k 1) (4.23) 

a 2B (g,,, h,, )2 F(g,, +t-l+h,, ) f(g,, +t+k-l+h,, ) 

where using Mopital's rule, we have replaced 2 
with tak (aia, )t-land the 

last approximations hold for large N. m 
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We recall in the next lemma a result in Abadir and Talmain (2005) for logarithmic 0 
transformation, that will be often used below. 

Lemina 3 Ror a process jZt} with elements Zt E R+, the autocovariance function 

of jIn Ztj is obtained by letting A ---+ 0 in the autocovariance function of IA-'Zt\l 
, 

when, they both exist. Additionally, the autocorrelation function of jIn Zt} is obtained 

by letting A --+ 0 in the autocorrelation, function of I Zi\ I. 

Proof. See pg. 231 of Abadir and Talmain (2005) 0 C: > 

Proof of Proposition 2. Given the AR(l) processes In xi, t = ai In xi, t-l + ei, t 
defined above, it is quite straight forivard. to show that since xi, t = exp(E, t-' aj =0 jej, t-j) 
then 

2t t+k 
-ai 1 -a2 iatý k 2s21-a Eltli's (xi, 

txs, t+k) ý e-": p 
2 (1 - a,? ) 

w+2 (1 - a2 
w+ asw3wi (4.24) 

,), 
(I - aias) 

where Etli,, is the expectation with respect to time conditioned to the distribution of 

the parameters of xi and x,. This implies that 

NN 
COV [Zt+k) Ztl Cov 

(N-1 
Xi, t+k) 

(N-1 
xi, t)l 

NN 

E 
(N-1 

Xi, t+k) 

(N-1 
xi, t) E[ 

(N-1 
Xi, t+k) 

IE (N-l 
xi, t) 

NNNN 
E Xi, t+kXi, t +E [Xi, 

t+kl N2 Xs, t+kxi, t NNE 
[xi, t] 

NNNN 

E Xs, t+L-Xi, t N 
1: E [Xi, t+kl N 

1: E [xi, t] 
Siki i=l i=l 

-2 ý-N where the last equality has been obtained using the fact that NE [xj, 
t+kxj, t] 0 

C5 i=1 
N 
i_1 

X: N for large N. By the laws of iterated expectation we have that E [1: 
Sj4i Xs, t+kXi, t 

107 



EN X, "t kri't Ei,, [Etli, 
s 80 +_ 

11 
- Therefore, 

COV [zt+k7 Zt1 

a2t+k' iat a2it 
W2 +- 

at 
W2) 

(eXp 
s ak i 

[CXP (IS- 

aia, ) , WSW) - 'A 
2(1-a? ) 2(1-a2) S 

9. -1 aj) 
hý-l 

aga-1 a. ) 
hý-l 

0 
a, 

0S 
2t+k [eXp ai2t 

W2 +a, W2 
2(1-a? ) 2(1-a2) S 

exp 
I- atiat, 

a 
kW., 

W, 

) 

_ 1)] daida, 
2 

aia, ) B (ga 5 h,, ) 

i)h. aga-1 a a gi a 
0 

In 

a2(t+k-1) 
exp w2+ 

(t+k) s2 
2i2 

(exp (tat-la t+k-1 
w, wi) - 

daida, 
iSB (gc" j1CX)2 

where Nve parameterized the a's using the beta density and the approximation has 0 
been obtained b Mopital's rule. Now, according to the results in Abadir and Talmain y0 
(2005), the leading term of the covariance function for In Zt can be obtained by a small 0 
variance expansion of the exponential term. The leading term of this expansion also 

characterizes the behavior of Cov [In Zt+k, In Zt] for values of the variance close to zero, 

which is what Nve are interested in. Therefore, 

Cov [In Zt+k,, In Zt] 

0 
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which shows that the leading term of the RHS is the same quantity derived in eq. 4.23 

m 

Proof of proposition 3. Given the AR(l) processes defined above, ive Nvant to 

prove that 
NN 

Cov In N-1 Xi, t+k In N-1 xi, t) 

NN 

Cov N-1 E In xi , t+k- 

(IrV-'I: 
InXi 

't) 
i=1 i=1 

The key of the proof is to show that for small values of the xarian( !s wi 

IiM A-2COV Zý -2COV 
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x\t) 

1(4.25) 

A-0 

1: 
i, 

i=1 i=1 

Then, the result follows from Lemma 3. In fact, applied to the RHS of eq. 4.25 gives 
NN 
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_1 X, \t) A-0 

ý 
i, t+k 

1: 
i, 

NN 
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(N 
_1 In xi, t ý1 i=1 

For space reasons we prove the theorem for the case of two variables. It can be easily 

extended to more than 2 variables by induction. However, the calculation becomes 

extremely cumbersome without changing the final result. Recalling lemma 3 Nve have 

that Cov [In (zt+k) 
, 

In (Zt)] is given by 

, 
\-2C0V [Zil 

+k, 
Zil Cov [In (zt+k) In (Zt)] = Ihn +k] A-o 

Now, for N=2 the ACvF of Ztv is equal to 

Cou (Ztv+ý,, ztv) (4.26) 
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Using a binomial expansion" for (-)' we can rewrite 

XI, t + x2, t 1 Xl, t + X2, t 1 Xl, t + X2, t Zt" =(22(2)+2(2) 
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and Cov (Zt"+k, Zt) is given by 
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JA-2COV It can be easily shown that lim, \_0 
(Zt+kl Zt is equal to zero for the terms 

of Cov (Zt"+k, Zt) that are higher than Op (A2) 
. 

Therefore, multiplying and rearranging 00 

the term in eq. 4.29 Nve can focus only on the terms that are at Most OP (, \2) 
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1 +*'*} (4.30 1, t+kX2, t3 XI, tX2, t+ 1, t+kX2, t) Xi, t 2 t+k) 
+ 

12NN7itll more than two variables we should have to use a multinomial expansion instead of the 

binomial expansion. Although it is not very complicated, it is very cumbersome. 0 
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Now, it is easy to show that by Lemma 3 all the terms in eq. 4.30 that are not Op (1) 

converge to zero as A --+ 0. In fact, for any m, n>0 

fcov (XX-m m -nXtýt) + COV (X, \-niXm 
, XýtXÄ-n t, XA lim xjl 
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Finally, the result follows by applying lemma I to eq. 4.32. n 
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Chapter 5 

Concluding Remarks 

In this last section Ave summarize the main findings of the thesis and discuss some 

further developments that could be potentially relevant in both macroeconomics and 

time series analysis. 

The main aim of the thesis was to explore some of the implications of heterogeneity 

and structural aggregation on the dynamics of a standard real business cycle model 

as well as on the long run co-movements between macroeconomic variables. Our main 
findings can be summarized in the following points. 0 C. 

1. In the second chapter, we presented a lietero. eneous RBC model where we allowed 
for cross sectional heteroaeneity in the dynamics of the firm's productivities. We C5 
modelled this heterogeneity by fitting an autorearessive process whose parame- 00C, 
ters were estimated using micro data for 450 U. S. manufacturing firms. The 

heterogeneity allows the model to build up an internal propagation mechanism, 

that is actually missing in representative firm models, and generated dynamics 

in the simulated data that could mimic those of the U. S. data. In fact, using the 

approach in Cog1ey and Nason (2005) we failed to reject the hypothesis that both 

the autocorrelation and autocovariance function of the simulated data were sig- 

nificantly different from those of U. S. GDP. This suggests that heterogeneity and 0 

112 



structural aggregation could eventually be a solution to the"weak propagation 00 
mechanism puzzle" that affects standard RBC models. 

2. In the third chapter, we presented a methodology to test for the presence long 

memory co-movements in the data when the variables are I(1) and there ex- 

ists a linear combination whose dynamics evolve as Iong memory process. This 
0 

approach combines Engle and Granger (1987) methodolog with the Maximum- 
0 OY 

Likelihood procedures for Ion,: > memory process proposed by Abadir and Talmain 

(2005). We showed that, differently from standard cointegration technique, our 

approach was able to detect the presence of Iong-memory equilibrium relations. 

The test we proposed was, in fact, characterized by both high size under the null 

hypothesis and high power under the alternative. We reported also a significant 

reduction in the small sample estimation bias of the equilibrium relation com- 

pared to ordinary least square estimate. Finally, Nve applied our procedure to the 

data base for the UK purchasing-power parity and uncovered interest rate parity C> 
and showed that the null of no cointegration was rejected at 95% in contradiction 0 
with what was previously shown with standard single equation techniques. 

3. In the fourth chapter, we compared standard linear aggregation approach, pro- 0 
posed by Robinson (1978) and Granger (1980) with the structural aggregation re- 0 
cently proposed by Abadir and Talmain (2002). We claimed that the importance 

of such comparison relies on fact that, while the former has been widely studied 

in the literature, the latter is more coherent with the way data are aggregated 
in national accounts. We showed, theoretically and through simulations, that 

unless certain conditions on the volatility of the microdata are satisfied, the two 

approaches of aggregating data give rise to processes with very different dynam- 
oo C> C) 

ics. In particular, linear aggregation tends to underestimate both the volatility 0 

and the persistence that would arise from the correct aggregation procedure. Cý 
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ýVe discuss briefly now some research topics that could have the potential for further 

development. 

A first possibility for future research is to extend the model presented in chapter 

two to more general RBC models. Since in chapter two we were mainly interested in 

output dynamics and in showing that heterogeneity in the firm productivity can solve 

the "weak propagation mechanism puzzle", we did not consider many other interesting 

aspects. These involve monetary policy, fiscal policy, financial markets as well as labor 

markets. In this respect, heterogeneity has the potential to give a new insight into many 

controversial aspects of macroeconomics such as inflation or unemployment persistence. 

Rirtliermore, since differently with linear aggregation, this kind of microfounded model CNn 
incorporates an aggregation structure, it can also help us to understand the micro CDO 0 
relations responsible for generating nonlinear dynamics in the aggregate data. CD CD 

A particularly interesting area of research is monetary policy. In fact, in the light 

of the result presented above, heterogeneity and aggregation are a good candidates in 
0 t) C, 

explaining persistence in monetary aggregates such as inflation and interests rates. The 0 00 0 
intuition is that once a strong propagation mechanism has been generated in the RBC C> CD 
model and if the monetary authority is reacting to innovations in productivity, this 

would lead to Ion-, lastin-, effects of the monetary policy. R-Irthermore, in this context, 

it would be also interesting to analyze the optimal response of a central bank to such 

movement in the aggregate output. A possible way to generate inflation persistence in 

DGE models could be through the construction of models with heterogeneous agents 0 
reacting with different degrees of persistence to nominal and real shocks. In chapter 

two, we showed that heterogeneity and aggregation succeeded to amplify significantly 0 CD C, 
the effects of micro shock in a standard RBC model. In the light of these results, we 0 
believe that through the interaction of heterogeneous agents it is possible to improve C, 00 
the ability of monetary models their to reproduce inflation persistence. 

With regards to econometrics methodolog the findings in chapter three suggest 0 OY) 0 
the need to develop new methods to deal with the high degree of persistence and non 
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linearities that characterize actual data. In particular, the approach in chapter three 

can be developed further and extended to a multivariate case, in order to test for 

the presence of more than one "long memory equilibrium" relationship between the 

variables. 
To conclude, it has to mentioned that many difficulties can arise from this approach. 

First, an immediate obstacle is the lack- of micro data necessary to estimate the micro 

structure of a heterogeneous model. Although the number of surveys on individuals, 0 CD 
such as families, consumers and firms, has increased significantly in the past few years, 

these database might not include all the information necessary to model the entire 

microstructure. Rirthermore, most of them are not Iong enough to allow reliable 

estimates. Then, the high degree of non linearities that characterizes the microstructure 

of the model, could give rise to very complicated forms of the model that could not 

be either easily solved with standard technique or clearly interpreted. We have seen in 

chapter two, for instance, that the CES aggregation of the firm's productivities gave 

rise to a highly non linear aggregate productivity. This implied that the model had 
0 On 0 

to be solved numerically since the ag regate process did not have a recursive closed 09 0 
form representation. Nevertheless, in the light of the results show in this thesis, we 

do not think that such difficulties should convince us to ignore the importance of 

heterogeneity and aggregation in explaining the complex dynamics that characterize 0 C5 

many macroeconomic variables. 
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