
Fixed-Priority Scheduling Algorithms
with

Multiple Objectives
in

Hard Real-Time Systems

Armando Aguilar-Soto

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science.

The University of York
Department of Computer Science

2006

Para Mama, Papa, Paty, Tere, Gabriel
...

y todas las personas que amo!

Abstract

In the context of Fixed-Priority Scheduling in Real-Time Systems, we investigate schedul-

ing mechanisms for supporting systems where, in addition to timing constraints, their per-

formance with respect to additional QoS requirements must be improved. This type of

situation may occur when the worst-case resource requirements of all or some running

tasks cannot be simultaneously met due to task contention.
Solutions to these problems have been proposed in the context of both fixed-priority

and dynamic-priority scheduling. In fixed-priority scheduling, the typical approach is to

artificially modify the attributes or structure of tasks, and/or usually require non-standard

run-time support. In dynamic-priority scheduling approaches, utility functions are em-

ployed to make scheduling decisions with the objective of maximising the utility. The

main difficulties with these approaches are the inability to formulate and model appropri-

ately utility functions for each task, and the inability to guarantee hard deadlines without

executing computationally costly algorithms.

In this thesis we propose a different approach. Firstly, we introduce the concept of

relative importance among tasks as a new metric for expressing QoS requirements. The

meaning of this importance relationship is to express that in a schedule it is desirable to

run a task in preference to other ones. This model is more intuitive and less restrictive

than traditional utility-based approaches. Secondly, we formulate a scheduling problem
in terms of finding a feasible assignment of fixed priorities that maximises the new QoS

metric, and propose the DI and DI+ algorithms that find optimal solutions.

By extensive simulation, we show that the new QoS metric combined with the DI algo-

rithm outperforms the rate monotonic priority algorithm in several practical problems such

as minimising jitter, minimising the number of preemptions or minimising the latency. In

addition, our approach outperforms EDF in several scenarios.

Acknowledgements

" The most gratitude to Dr Guillem Bernat for supervising my research and for his

invaluable support, friendship and encouragement.

" Special thanks to Professor Andy Wellings for his valuable opinion and suggestions.

" Kind appreciation to Professor Alan Bums for his support, and all members of the

Real-Time Systems Group at the University of York for their friendship and feed-

back.

9 Thanks to my sponsorship, the National Council of Science and Technology of Mex-

ico (CONACYT).

11

IÜ

Author Declaration

9 The research presented in this thesis was undertaken from October 2002 to Septem-

ber 2006. Unless otherwise is indicated, all ideas and text are the author's own.

" Chapter 5 and parts of chapter 4 and 7 were published in the paper: A. Aguilar-Soto

and G. Bernat, Bicriteria Fixed-Priority Scheduling in Hard Real-Time Systems:
Deadline and Importance, 4th International Conference on Real-Time and Networks
Systems RTNS 2006.

Contents

Abstract i

1 Introduction 1

1.1 Real-Time Systems
2

1.2 Motivation: Problems with Deadlines and QoS
........... ...

3

1.2.1 Example: Problem with Deadlines and Output Jitter
4

1.2.2 Discussion 8

1.3 Thesis Aims
.............................. ... 10

1.3.1 Contributions
11

1.3.2 Research Approach
...................... ... 11

1.3.3 Thesis Organisation 13

2A Review On Preemptive Fixed Priority Scheduling 16

2.1 Real-time Systems 16

2.1.1 Process Model 17

2.2 Scheduling Tasks 21

2.2.1 Table-Driven Scheduling 22

2.2.2 Priority-Driven Scheduling 22

2.2.3 Discussion 24

2.3 Fixed-Priority Scheduling 25

2.3.1 Rate-Monotonic Analysis 26

2.3.2 Deadline-Monotonic Analysis 27

2.3.3 Dependent Tasks
.................... 29

2.3.4 Release Jitter
...................... 32

2.3.5 Arbitrary Deadlines
................... 33

2.3.6 Aperiodic Tasks
.................... 35

iv

CONTENTS V

2.3.7 Weakly-Hard Tasks 36

2.4 Summary
.................................. 39

3A Review On Scheduling with QoS 40

3.1 Introduction 40

3.2 From Requirements to Scheduling Problems 41

3.2.1 Requirements 41

3.2.2 Design 43

3.2.3 The Scheduling Problem 45

3.2.4 Summary 47

3.3 Types of Utility 47

3.3.1 Levels of Abstraction
................ 48

3.3.2 Levels of Perspective
................. 49

3.3.3 Summary
....................... 51

3.4 Dynamic-Priority Scheduling with QoS
........... 51

3.4.1 Discussion
...................... 54

3.5 Fixed-Priority Scheduling with QoS
............. 54

3.5.1 Discussion
...................... 56

4 Importance 58
4.1 Introduction

............................ 58
4.2 Process Model 59
4.3 Tasks Orderings

.......................... 60
4.4 Relative Importance Statements

................. 61
4.5 Defining Importance 63

4.5.1 Task Importance 63
4.5.2 Index of Importance Zj 64

4.5.3 Tasks Equally Important 66
4.6 Scheduling Problems 67

4.6.1 Problem: Deadlines and Importance 68
4.6.2 Problem: Deadlines and Preemptions 68
4.6.3 Problem: Deadlines and Absolute Output Jitter

..... 69
4.6.4 Problem: Deadlines and Relative Output Jitter

....... 70
4.6.5 Problem: Deadlines and Maximum Latency

........ 70

CONTENTS Vi

4.6.6 Problem: Deadlines and Relative Maximum Latency 71

4.6.7 Problem: Deadlines and Average Response-Time
...... ... 72

4.7 Representing Bicriteria Problems 73

4.7.1 Deadlines Metric
....................... ... 74

4.8 Using Importance in Scheduling Problems
.............. ... 75

4.8.1 Importance at Task Level 75

4.8.2 Importance at Application Level 81

4.8.3 Summary
........................... ... 86

5 FPS with Deadlines and Importance: The DI Algorithm 88

5.1 Introduction
............................ 88

5.2 Process Model
........................... 89

5.3 Problem Description
....................... 89

5.4 Solving the Deadlines and Importance Problem
......... 92

5.4.1 Organizing the Search Space
............... 92

5.4.2 The Algorithm DI 94

5.4.3 An Example
....................... 99

5.4.4 Summary
......................... 99

6 FPS with Deadlines and Conditional Importance: The DI+ Algorithm 100

6.1 Introduction
................................ . 100

6.2 Conditional Relative Importance
..................... . 101

6.2.1 Task Conditional Importance
................... . 102

6.2.2 Index of Conditional Importance Zj
............... . 103

6.2.3 Problem: Deadlines and Conditional Importance
........ . 104

6.3 Conditional Importance in Scheduling Problems
............. . 104

6.3.1 A-constraints
........................... . 104

6.3.2 Precedence Relationships
..................... . 105

6.3.3 Example
............................. . 106

6.4 The DI+ Algorithm
............................ . 107

6.4.1 Modifications to DI
........................ . 108

6.4.2 Example
............................. . 111

6.5 Extending the DI+ Algorithm
....................... . 113

6.5.1 An Example
........................... . 114

CONTENTS vii

6.6 Summary
.................................. 116

7 Evaluation 117

7.1 Introduction
............................... .. 117

7.2 Experimental Setup 118

7.2.1 Task Sets 119

7.2.2 Window of Time 119

7.2.3 Number of Task Sets
...................... .. 120

7.2.4 Characterizing the Feasibility of the Task Sets Generated
... .. 125

7.3 Finding Heuristics for Assigning Importance
.............. .. 126

7.3.1 Total Number of Preemptions
................. .. 128

7.3.2 Output Jitter
.......................... .. 129

7.3.3 Latency
............................. .. 130

7.3.4 Maximum Relative Average Response-Time
......... .. 130

7.4 Evaluating the DI Algorithm with Heuristics
.............. .. 131

7.4.1 Problem: Deadlines and Total Number of Preemptions
.... .. 139

7.4.2 Problem: Deadlines and Absolute Output Jitter
........ .. 143

7.4.3 Problem: Deadlines and Relative Output Jitter 147
7.4.4 Problem: Deadlines and Maximum Latency

.......... .. 151
7.4.5 Problem: Deadlines and Relative Maximum Latency

..... .. 155
7.4.6 Problem: Deadlines and Average Response-Time

....... .. 159
7.4.7 Summary

............................ .. 163
7.5 DI Algorithm vs Swapping Algorithm

................. .. 164
7.5.1 Maximising the Importance Metric

.............. .. 165
7.5.2 Maximising/Minimising a QoS Metric

............. .. 166
7.6 DI+ Algorithm: QoS and Priority Constraints

............. .. 168

8 Conclusions and Further Work 172
8.1 Review of Contributions

.......................... 172
8.1.1 Importance

............................. 173
8.1.2 DI and DI+ Algorithms

....................... 174
8.1.3 Solutions to Multicriteria Problems

................ 175
8.2 Suggestions for Further Work

........................ 177
8.3 Final Remark 178

CONTENTS

Appendix A. Notation

VIII

179

Appendix B. Bibliography 181

List of Figures

1.1 Precedence relationships 5

1.2 Jitter of the subset S8 = {x, y, z} for the 8! priority assignments.
7

3.1 Attribute Taxonomy for Performance
................... 44

3.2 From Requirements to Tasks 45

3.3 Utility functions
............................... 52

4.1 A Bicriteria Solution Space for a task set under criteria Zl and Z2. Pareto-

optimal solutions are indicated by Greek small letters. The solution s is not

pareto-optimal because it is strictly dominated by at least another solution;

e. g. Z1(w) < Z1(s) and Z2(w) < Z2(s)
.................. 73

4.2 Plotting all priority orderings of task set S5. S' is infeasible (ZD (SI) =
229/80 = 2.86). SD is feasible but has low importance index (ZI(SD) =
119). The ZI-optimal solution is S* = (b ead c) located in (ZD (S*)

,
Z1(S*)) _

(0.88,43)
.................................. 78

4.3 Total Number of Preemptions and Relative Output Jitter of subset {a, b} c

S5 computed during its hyperperiod for all 5! priority orderings. The

P-optimal and y "-optimal solutions are indicated.
............ 80

4.4 Total Number of Preemptions computed during the hyperperiod for all 5!

priority orderings of S5. The P-optimal solution is indicated. The results

of some simple rules for assigning priorities are also illustrated as well as

the result of simulating S5 under EDF 82

4.5 All priority assignments of set S5 ordered lexicographically starting from

the ordering (a bcd e) (i. e. the LC rule). Lines illustrate that following the

lexicographic order the first feasible ordering found is the optimal S*.
.. 84

ix

LIST OF FIGURES X

4.6 All priority assignments of set . S5 ordered lexicographically starting from

_ the ordering (c bda e) labelled as (5 432 1) (i. e. the CT rule). S

(c ebd a) _ (514 3 2) and the P-optimal is (b eda c) = (413 2 5)
86

5.1 Plotting all priority orderings of S5. S' is not feasible. SD is feasible but

has low importance metric. SA is the Swapping algorithm. The optimal
bicriteria S* is (b ead c)

90

5.2 Task set S5 and priority orderings SD (DMPA), S' (Importance), S . 'A (swap-

ping algorithm with S' as input), and the optimal S*. The lexicographic

order is S' >- S* >_ SA >_ SD
....................... 90

5.3 Similar to Figure 5.1 but the priority orderings are connected according to

their lexicographic order. Circles enclose groups of either feasible or near
feasible orderings distributed around the indices 23,47,71,95 and 119.

The orderings corresponding to these indices have a similar pattern: a task

plus a suffix ordered by DMPA.
92

5.4 DI applied to S5 showing the sequence of operations.
98

6.1 Precedence relationships
106

6.2 5! Priority orderings of set Sw ordered lexicographically. There are 32

weakly-hard feasible priority orderings 115

7.1 Variation on number of preemptions, absolute and relative output jitter

with respect to the time window simulated 121

7.2 Variation on maximum latency, relative maximum latency, and relative

average response time with respect to the time window simulated 122

7.3 Variation of results of different metrics with respect to the number of task

sets simulated. When more than 100 task sets are simulated, low variation

is observed
123

7.4 Number of feasible priority assignments. Under RMPA all tasks sets are

feasible. The heuristics get worse as the utilisation increase
....... 124

7.5 Total Number of Preemptions under different priority assignments. Only

RMPA and EDF guarantee deadlines. The best heuristic is LC. Note that

in (c) RMPA is close to the worst possible value (i. e. MAX)
....... 132

LIST OF FIGURES xi

7.6 Total Number of Preemptions Normalized under different priority assign-

ments. Only RMPA and EDF guarantee deadlines. The best heuristic is

LC. Note that in (c) RMPA is close to the worst possible value
133

7.7 Absolute Output Jitter under different heuristics. The best ones are T/C

and 1/C 134

7.8 Relative Output Jitter under different heuristics. Assigning priorities by

shorter deadlines is by far the best option
135

7.9 Maximum Latency under different priority assignments. It seems that LT,

T/C and LC are the best heuristics
.....................

136

7.10 Relative Maximum Latency under different priority assignments. In gen-

eral, among the heuristic, the best is 1/C
137

7.11 Maximum Relative Average Response-Time under different priority as-

signments. Among the heuristics, the best ones are T/C and 1/C.
....

138

7.12 PLOTS A TYPE. Guaranteeing Deadlines and Minimizing the Total Num-

ber of Preemptions. FP. pt computed by exhaustive search is the best. In

general, DI(LC) is the best tractable solution excepting when U>0.8 and

the metric includes all tasks. In this case EDF is better
.......... 140

7.13 PLOTS B TYPE. Guaranteeing Deadlines and Minimizing the Total Num-

ber of Preemptions for different task sets 141

7.14 PLOTS C TYPE. Comparing DI(LC) against EDF for the Deadlines and
Total Number of Preemptions problem. While on average one outcome is

better than the other one, it is not necessarily true for a number of solutions 142

7.15 PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Absolute

Output Jitter. DI(1/C) and D(T/C) produce good results. 144

7.16 PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Absolute

Output Jitter 145

7.17 PLOTS C TYPE. Comparing DI(l/C) against EDF for the Deadlines and
Absolute Output Jitter problem. While on average one outcome is better

than the other one, it is not necessarily true for a number of solutions .. 146

7.18 PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Relative

Output Jitter. Assigning priorities by shorter period is the best solution in

FPS 148

LIST OF FIGURES xii

7.19 PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Relative

Output Jitter
149

7.20 PLOTS C TYPE. RMPA against EDF for the Deadlines and Relative Out-

put Jitter problem. While on average one outcome is better than the other

one, it is not necessarily true for a number of solutions
150

7.21 PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Maximum

Latency under different priority assignments. Our best solution is DI(LC) 152

7.22 PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Maximum

Latency 153

7.23 PLOTS C TYPE. Comparing DI(LL) against EDF for the Deadlines and

the Maximum Latency problem. While on average one outcome is better

than the other one, it is not necessarily true for a number of solutions .. 154

7.24 PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Relative

Maximum Latency. In all cases, both DI(1 /C) and DI(T/C) outperform
EDF. Note that DI(1/C) is a near-optimal solution 156

7.25 PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Relative

Maximum Latency 157

7.26 PLOTS C TYPE. Comparing DI(1/C) against EDF for the Deadlines and
the Relative Maximum Latency problem. Observe the excellent perfor-

mance of DI(1/C) 158

7.27 PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Maximum

Relative Average Response-Time. In all cases, both DI(1/C) and DI(T/C)

are near-optimal solutions and outperform EDF
.............. 160

7.28 PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Maximum

Relative Average Response-Time 161

7.29 PLOTS C TYPE. Comparing DI(T/C) against EDF for the Deadlines and
the Maximum Relative Average Response-Time problem. Observe the

excellent performance of DI(T/C)
..................... 162

7.30 For high utilisations, the number of feasible tasks sets decreases and there-
fore, the distance between SD and S* gets smaller. The distance between

SA and S* increases slightly 165

7.31 The solutions S' and S`1 move dramatically away from S* conforming
the number of tasks increases.

....................... 166

LIST OF FIGURES X111

7.32 Comparing DI(LC) against A(LC) results for the problem of minimising

the total number of preemptions
169

7.33 Guaranteeing Deadlines and Priority Constraints { P7 > Pl ,
P6 > P5 }

for different QoS metrics. Note that constraining the freedom for assign-

ing priorities reduces the chance for improving the QoS metric. The DI

solution does not meet the priority constraints
170

7.34 Guaranteeing Deadlines and Priority Constraints { P7 > Pl ,
P6 > P5 }

for different QoS metrics. Note that constraining the freedom for assign-
ing priorities reduces the chance for improving the QoS metric. The DI

solution does not meet the priority constraints
171

List of Tables

1.1 Task set S8 ordered in non-increasing order of deadlines. It is feasible

under DMPA. The relative output jitter (ROJ) is shown. Note that the

subset of interest {x
,y, z} suffers jitter. The utilisation factor is 0.69. .5

1.2 Two alternative feasible solutions for task set S8. Both minimise ROJ but

only the second one meets the precedence constraints
8

4.1 When in {a, b, c} all tasks have different importance, there are 6 different

indices of importance; when a and b have the same importance, there are

only 3 different indexes
........................... 66

4.2 Task set S5 with importance values I. a is the highest importance task and

e is the lowest one. Note that is is feasible under DMPA. 76

4.3 Relative output jitter (y T el) and total number of preemptions (P) for tasks a

and b obtained by the simulating of the orderings SD, S' and S* (smallest

figures are better)
.............................. 77

4.4 Simple rules for assigning priorities. For example, under the rule 1/C,

priorities assigned to tasks are inversely proportional to the length of C.

Its contrary is LC, where priorities assigned to tasks are proportional to

the length of C............................... 81

5.1 Executing the swapping algorithm with input SI = (a bcd e). The result
is the ordering SA = (e abd c) 91

6.1 Task set S8 with their precedence constraints. It is ordered by DMPA.
.. 106

6.2 DI algorithm with input S8' labelled by importance (8 765432 1). The

solution (8 i65324 1) is found in 10 steps from a universe of 8!
..... 107

6.3 DI+ algorithm with input Sg labelled by importance (8 765432 1) with

constraints A={ P6 > P3
.
P1 > P3, P8 > P5, P8 > P7 }......... 112

xiv

LIST OF TABLES xv

6.4 Task set Sw with Weakly-Hard Constraints
114

7.1 Simple rules for assigning priorities
126

7.2 Classification according to the performance. 1 is the best and 4 the worst

scheduling solution.
164

7.3 Comparing solutions obtained with DI and swapping algorithms for dif-

ferent utilisation with heuristics LC and T/C. Note how similar the results

are. From 1000 priority orderings, the column "Identical" shows the num-
ber of identical ones

167

Chapter 1

Introduction

Scheduling on computing systems has been studied for around fifty years. The first tech-

niques were adopted from results developed in the operational research area and since then

it has evolved almost independently. While operational research scheduling is concerned

with the utilisation of people, equipment and raw materials, computing systems schedul-
ing is concerned with the utilisation of processors, programs, memory, UO devices, and so

on.

Scheduling can be defined as "a plan for performing work or achieving an objective,

specifying the order and allotted time for each part" [1]. Another definition is termed

by Pinedo [2], who states that "scheduling deals with the allocation of scarce resources

to tasks over time. It is a decision-making process with the goal of optimising one or

more objectives ". The scarce resources can be CPU's, I/O devices or energy sources.
The tasks can be application programs, execution threads or messages travelling through

a network. Each task can have different properties that distinguish it among others such as

processing times, release dates and deadlines. Examples of objectives are the minimisation

of deadlines missed, maximisation of resources, or minimisation of energy consumption.

Three main parts are identified: resources, tasks and objectives. These three elements

together define a scheduling problem and the research domain dealing with these problems
is scheduling theory.

Theoretically, computer systems can execute a number of different algorithms pro-

vided that sufficient time and storage space are available. Computing programs spend

I

1.1 Real-Time Systems 2

time performing the calculations, and memory to store the program and related data. In

this context, a program is realizable if the program can both be fitted in memory and give

valid results within reasonable time. The memory issue does not permit ambiguities, the

program and all related data must reside in memory (primary and/or secondary). Con-

trarily, the time issue can be interpreted in several ways depending on the circumstances.

Precisely, the time issue has split up computer systems in two well defined areas: general-

purpose computing systems, where average time performance is sufficient and real-time

systems where specific timing constraints must be fulfilled.

Thus, on conventional computing systems the results are satisfactory whether they are

obtained in a unspecified but finite time. On the other hand, in real-time systems time is

essential; the results are valid only if they are always produced within specific time delays.

1.1 Real-Time Systems

A Real-Time System is a computing system that must react within precise timing con-

straints to events in its environment [3]. Timing constraints are expressed as a function

of committed completion times called deadlines. Real-time systems can be categorized

according to the criticality of their deadlines. In a hard real-time system, it is compulsory

that responses occur within specific deadlines [3]. In a soft real-time systems, the tim-

ing constraints can be satisfied acceptably well with acceptable predictability depending

on application specific requirements [4]. More recently, there have been defined systems

where it is tolerable to miss some deadlines, if it happens in a predictable way. For in-

stance, some systems allow that a task misses any n in m deadlines in a time interval.

These are called weakly-hard real-time systems and they are characterized by the distribu-

tion of their met and missed deadlines during a window of time[5]. Thus, real time systems

can be classified according to their timing constraints as hard, weakly-hard or soft.

As in any other engineering discipline, a Real-Times System has a life cycle model di-

vided in different phases such as requirements, design, implementation, testing, operations

and maintenance.

During the specification of requirements, several Quality of Service (QoS) require-

1.2 Motivation: Problems with Deadlines and QoS 3

ments (e. g. safety, reliability, performance) are defined. These requirements form a mul-

tidimensional set of interrelated requisites that must be conveyed throughout all stages of

the development cycle. Normally, conflicts among requirements exist and then tradeoffs

have to be defined to help the designers with their decisions. Assigning importances to

the requirements is a mechanism to specify such tradeoffs. In effect, not all requirements

are equally important; some may be essential while others may be desirable, and therefore

each requirement should be rated according to importance to make these differences clear

and explicit [6].

During the design phase a real-time system can be structured as a set of concurrent

tasks with deadlines to meet. The tasks share some scarce computer resources that must
be allocated optimally by a scheduling algorithm in order to obtain the greater benefit

possible. A single task provides some benefit to the system when it achieves all or part of

one or more QoS requirements. Thus, the scheduling problem consists of how to meet the

deadlines while maximising the QoS.

1.2 Motivation: Problems with Deadlines and QoS

Scheduling problems where simultaneously timing and QoS requirements have to be ful-

filled have been widely studied in the context of non-critical systems [7] [8] [9]. Most

approaches rely on on-line scheduling algorithms that try to maximise an overall system

value metric. Unfortunately, the applicability of such results is not possible in commercial

systems due to the lack of support for on-line scheduling facilities.

On the other hand, almost all commercial real-time kernels (e. g. QNX, PDOS, Vx

Works), real-time operating systems (e. g. RT Linux, RT-Mach), run-time environments
for languages (e. g. Ada95, Real-Time Specification for Java) and industry standards
(e. g. POSIX, OSEK) provide support for fixed-priority scheduling only. Fixed-Priority

Scheduling (FPS) is a framework formed by policies for assigning static priorities, feasi-

bility tests to decide if a priority assignment can fulfil the timing constraints, and run-time

support algorithms to execute the tasks according to their priorities such that at all times the

task with the highest priority is always executing. FPS is considered an industry standard

providing good performance, predictability and flexibility. Many government agencies

1.2 Motivation: Problems with Deadlines and QoS 4

and system integrators recommend it as the method of choice [10] [11].

In this thesis we argue that fixed priority scheduling is a robust and proven technology

and that significant improvements in quality of additional performance and QoS metrics

can be achieved by adequate priority assignment of tasks.

When all deadlines have to be guaranteed, the only priority assignment that is usually

considered is the Deadline Monotonic Priority Assignment (DMPA) (equivalent to Rate

Monotonic Priority Assignment when deadline is equal to period). However, among all the

possible feasible priority assignments there may be other feasible assignments that may be

better according to other QoS metrics. When there are at least two different optimality

criteria, it is said that it is a multicriteria problem [12].

In this thesis we focus on multicriteria scheduling problems where all tasks need to

meet all their deadlines, and where tasks have additional QoS requirements that result in

different perception of the quality of a system when tasks do complete by their deadline,

without modifying both the base scheduling mechanism and the task characteristics. In

contrast some research in the literature concentrates on increasing some QoS measure by

modifying the two above system properties. The next section clarifies this idea.

1.2.1 Example: Problem with Deadlines and Output Jitter

Consider the problem of a system where the QoS relies only on a subset of the tasks which

are sensitive to output jitter. The output jitter is the variation in the inter-completion

times of successive instances of the same task [13]. It is known that in standard real-

time scheduling approaches the presence of output jitter causes degradation in control

performance and may lead to instability. In multitasking systems, scheduling algorithms
introduce some forms of jitter such as sample jitter (i. e. variations in their release time),

output jitter, or a combination of both [14]. Let us concentrate on the output jitter problem

such that in the rest of the example, jitter, means output jitter.

In FPS, any particular task suffers jitter due to the variation in the interference pro-
duced from high priority tasks. Thus, it may be the case that under a particular priority

assignment algorithm such as DMPA, some of the tasks that are sensitive to jitter are as-

1.2 Motivation: Problems with Deadlines and QoS 5

task C T=D R Description ROJ

a 2 10 2 Alarm 0

x 1 16 3 Pilot instruction 0.125

y 2 16 5 Flaying gears 0.125
b 1 16 6 Cabin temp & press. 0.125
z 3 32 9 Temp. sensor 0.0625
c 2 32 13 Pressure sensor 0.0625
d 1 32 14 Speed control 0.0625
e 3 56 23 Human interface 0.357

Table 1.1: Task set S8 ordered in non-increasing order of deadlines. It is feasible under
DMPA. The relative output jitter (ROJ) is shown. Note that the subset of interest {x

,y,
z} suffers jitter. The utilisation factor is 0.69.

Z

Pressure
sensor d

Speed
cý control

Tem.
sensor a

Alarm

b
Cabin temx

pressure
Pilot

instruction. y
F1 in

e gearsg
Hurijan

interface

Figure 1.1: Precedence relationships

signed lower priorities and therefore suffer from jitter. Moreover, the interference of high

priority tasks can be related to other QoS issues in tasks with low priorities.

Jitter problems are dealt with by techniques such as designing special purpose task

models, using jitter compensation schemes in feedback controllers, optimising the selec-

tion of task attributes (e. g. deadlines, offsets), or a mixture of them [15] [14] [16]. Those

techniques are powerful as they can be used to effectively reduce jitter. However, it is our

thesis that there exist priority assignments that are both feasible and are able to reduce

jitter.

Consider the task set S8 of Table 1.1. This task set is taken from [16] and corresponds

to an aircraft control system. All tasks have to complete by their deadlines and the tasks

in subset Sg = {x, y, z} have jitter requirements. In addition, the tasks have precedence

relationships z -p d, c --ý d, x-b and x --+ y, where, for instance, z -* d means that z

must finish before d.

Note that the task set is feasible under DMPA and fulfills the precedence constraints but

1.2 Motivation: Problems with Deadlines and QoS 6

its QoS with respect to the output jitter could be improved. This example is solved in [16]

by introducing offsets (using a technique with exponential complexity), re-assigning dead-

lines to maintain the schedulability under DMPA and finally, testing feasibility by simu-

lation. Instead of modifying the task characteristics, a simple but alternative approach

consists of performing an exhaustive search on the 8! possible priority assignments look-

ing for a one that fulfills timing and precedence requirements, and minimises the jitter.

The hyperperiod of S8 is small (1120 time units) and therefore, the 8! priority assignments

can be simulated and the jitter for the subset Sg computed and stored.

The results of such simulation are plotted in Figure 1.2. The simulation uses the worst-

case computation time C all the time. For each fixed-priority assignment, (1) a feasibility

test is performed and (2) a simulation to measure the jitter is executed:

1. A priority assignment is feasible if it passes the response time test, which consists

of computing the response time Rj of each task and comparing it with the respective
deadline Dj such that if Rj < Dj, Vj, the priority assignment is feasible [3].

2. The relative output jitter (ROJ) of a particular task j is the variation in the inter-

completion times of the successive instances of the same task divided by its pe-

riod [13].

A point (x, y) on the graph corresponds to a different priority assignment as follows:

"x= max{Rj/Dj} Vj E S8. This metric indicates whether the priority assign-

ment guarantees or does not guarantee the deadlines of all tasks (see section 4.7.1

(page 74)). If x<1 the priority assignment is feasible; otherwise it is infeasible.

When x=1 or very close to 1, it indicates at least one task finishes very close to

its deadline. We use this metric because it is more expressive than a simple yes/no

answer.

"y= max{ROJE } Vj E S8: This metric indicates how much jitter this priority

assignment produces. It is the maximum Relative Output Jitter of any task in the

subset S'g under a particular priority assignment (see definition 4.6.5, page 70).

1.2 Motivation: Problems with Deadlines and QoS

1

0.8

ä>

0.6
a n

O
a)
io 0.4
a)

0.2

0

c
Feasible Unfeasible

00

0000

0000

00 000

o o 0 0

0 0 0

0 00 0 0 0 0 0

0 00 0 00 0 0 0 0 0 0 0
0 co 00 0 0

0 00 00 CO 0 0 0 0 0 0 0 0
OOO 00 0 0 00 0 00000

0 0 0 00 0
000000 00 000 0 000O0

0 OO 0 0 0
000 00 00 0 00 0 00000

0 00000

00 00 00 cos 00 0 Si 0 00000
DMPA

0.4 0.6 0.8 1 1.2 1.4 1.6

max{R/D; }

Figure 1.2: Jitter of the subset S8' = {x, y, z} for the 8! priority assignments.

7

For instance, the task set in Table 1.1 is ordered by DMPA. Applying both above

metrics gives:

DMPAmax{Rj/Dj} = max{Rj/Dj}, Vj E S8

= 0.4375

and

DMPAROJ = max{ROJk}, `k E S8

= 0.125

Thus, the priority assignment given by DMPA is located at (0.4375,0.125) in Fig-

ure 1.2.

Though there are 8! = 40320 points in Figure 1.2, most of them are overlapped indi-

cating that a number of priority assignments produce the same jitter result and the same

maximum response time. Observe that in the bottom end of the graph, on the feasible

side, there are six points. They correspond to feasible priority assignments with zero out-

put jitter. For example, Table 1.2 shows two assignments with zero output jitter but only

solution S2 fulfills the precedence constraints.

1.2 Motivation: Problems with Deadlines and QoS

Sl R ROJ
x 1 0
y 3 0
z 6 0
b 7 0.187
d 8 0
a 10 0.8
c 14 0.0625
e 23 0.357

S2 R ROJ
x 1 0
y 3 0
z 6 0
b 7 0.187
a 9 0.218
c 13 0.2
d 14 0.0625
e 23 0.357

8

Table 1.2: Two alternative feasible solutions for task set S8. Both minimise ROJ but only
the second one meets the precedence constraints

Summary

This example shows that scheduling problems with hard deadlines and QoS requirements

expressed as quantitative metrics can be solved not only using complicated algorithms but

also with pure fixed-priority assignment approaches. Unfortunately, current analysis for

FPS lacks mechanisms for finding such priority assignments and, naturally, enumerating

all assignments is in the general case impracticable. Consequently, finding algorithms that

convert this intractable problem into a tractable one is a challenge.

In this thesis we present a general mechanism that solves problems like that illustrated

above in pseudo-polynomial time (instead of trying all N! different priority orderings).
This makes such problems tractable even for large task sets. Even though we use the

example of output jitter, the approach presented here is generic and can be applied to a

wide variety of scheduling problems in fixed-priority systems.

1.2.2 Discussion

Though quantitative metrics can be defined to express several QoS requirements, it seems

clear that not all system requirements can be expressed quantitatively. In fact, there exist

qualitative requirements that depend on particular desires of users or system designers that

are difficult to formulate and model appropriately.

For example, assume that the system described above is developed with the priority

assignment of Table 1.1, and only during the testing phase it is discovered that improve-

1.2 Motivation: Problems with Deadlines and QoS 9

ments in quality are required. A first improvement consists in the reduction of output jitter

and therefore, the priority assignment S2 (see Table 1.2) is optimal in that sense. However,

for any decision maker, S2 could not be the best solution, for instance:

1. users could not be satisfied with the responsiveness of the human interface; different

levels of satisfaction may be perceived by different users.

2. a system designer may note that the worst-case response time of the Alarm task is

very close to its deadline and, in an overload situation, its deadline could be missed;
thus, he may prefer a higher priority for task a.

Thus, the first issue is how to express appropriately such qualitative QoS requirements

and afterwards, the next issue is how to solve the scheduling problem.

Expressing QoS

Traditional scheduling theory in real-time systems use utility functions to describe the

satisfaction obtained when completing some computations. This satisfaction may be qual-
itative and/or quantitative. A limitation is that an appropriated utility function has to be

formulated for each task. Clearly, it cannot be determined easily. In fact, there does not

exists a methodology for their design [8] and the assignment of utility functions to tasks

is usually imprecise. These disadvantages have been noted in other areas. For example,
instead of utility functions, pure ordinal relationships that specify which of any two bun-

dles of commodities individuals prefer are utilised in economics. The relationship reflects

the extent to which a thing is preferred to others. Ordinal preference relationships is a

concept that may be introduced in real-time systems for expressing QoS requirements.

Scheduling with QoS

Assuming that QoS may be expressed appropriately, a scheduling problem may be for-

mulated and its solution may be proposed. Naturally, less expensive solutions are the

preferred ones. For example, with regard to the two above observations to the solution S2

proposed, increasing computing resources or performing some optimisations to the code

1.3 Thesis Aims 10

could be costly solutions. On the other hand, an inexpensive alternative consists in ma-

nipulating the priorities for raising "as higher as possible" the priorities of tasks without

modifying the improvements already obtained. How to achieve such priority assignment
is the main idea of our research: In fixed-priority scheduling there exist feasible priority

assignments that meet additional QoS requirements. The problem consists on how to find

such priority assignments without performing exhaustive search.

1.3 Thesis Aims

The following statement synthesizes the thesis proposal:

In the context of fixed priority scheduling of real-time systems, multicriteria problems

can be solved combining novel and established techniques based on assignment of pri-

orities. Optimal or near-optimal solutions can be proposed and evaluated. A solution

consists of a feasible priority assignment that maximises/minimises a novel QoS metric
based on simple ordinal importance relationships. The solution proposed is generic and

can be applied to a wide variety of scheduling problems in hard real-time systems.

We investigate the problem of finding priority orderings that simultaneously satisfy
QoS and timing (deadline) requirements. The problem of finding an assignment of pri-

orities that maximises a set of QoS constraints and satisfies all deadlines is know to be

NP-Hard. We argue that the intrinsic complexity of the problem stems from the value sys-

tem usually utilised to face the problem, and in particular due to the scale of measurement

and the intrinsic comparison of value between tasks. Nevertheless, the assignment of val-

ues to tasks is usually imprecise and complex utility-based scheduling algorithms based on

these values are therefore based on imprecise input data. Instead, we propose a weaker no-

tion of QoS, a simple importance relationship between tasks rather than an absolute value

attached to each task. The meaning of this importance relationship is to express that in a

schedule it is desirable to run a task in preference to another one. This simplified model

captures even complex QoS metrics between tasks. Thus, the aim is to develop algorithms

based on the concept of importance to express QoS requirements, such that combined with

well-established feasibility test and other techniques, scheduling problems with deadlines

and QoS requirements can be solved.

1.3 Thesis Aims 11

1.3.1 Contributions

In this thesis we present a general mechanism that allows solutions to several scheduling

problems based on the simple assignment of fixed-priorities to tasks in pseudo-polynomial
time. The main contributions are:

" The development of a metric for expressing QoS requirements based on the concept

of relative importance among tasks.

" The development of algorithms that find optimal solutions for problems with hard

deadlines and the metric of relative importance.

"A set of heuristics based on simple rules for assigning importance to tasks. These

heuristics combined with our algorithms, provide solutions to problems with hard

deadlines and QoS requirements such as jitter, preemptions and latency.

1.3.2 Research Approach

Relative importance among tasks is a preference for executing a task with regard to the

other tasks in the system. By associating different importance to tasks, importance order-
ings can be defined. For instance, the ordering where the first task has the highest value of
importance, the second task has the second highest importance, the third one has the third

highest importance and so on, is the highest importance ordering.

We observe that such orderings can be arranged lexicographically and indexed by im-

portance. The lexicographic index permits to define a QoS metric as the lexicographic

distance between any ordering and the highest importance one. This importance metric

expresses a distance from a level of quality to the maximum one. Thus, minimising this

distance maximises the QoS. Based on these concepts, a scheduling problem is formulated

as finding a feasible priority ordering that maximises the metric of importance.

In order to solve the above scheduling problem, we present the DI (Deadline and Im-

portance) algorithm that finds in a polynomial number of steps, an optimal priority order-
ing that meets hard deadlines (D < T) and that satisfies the importance metric. Optimality

in this context means that there is no other feasible schedule with higher importance. The

1.3 Thesis Aims 12

DI algorithm is posteriorly extended in the DI+ algorithm which provides support for

precedence constraints, arbitrary deadlines (D <T or D> T) and weakly-hard timing

constraints. The correctness of the algorithm is proved.

The DI and DI+ algorithms find an optimal solution in O((INr2 + N)/2) steps (in the

worst-case) where N is the number of tasks. This makes the problem tractable even for

large task sets. However, the complexity of the solution depends on the complexity of the
feasibility test due to performing a feasibility test at each step. For instance, the complexity

of DI is pseudo-polynomial when the feasibility test is the response time analysis [3].

We also observe that the concept of importance is semi-abstract but representable by a

specific metric (i. e. the importance metric); consequently, it could be used to solve other

problems if analogies with the relative importance concept are found. In this context, we

propose that if a particular problem with QoS metric ZQOS can be related with a problem

with Importance metric Z1, then solving the problem with ZI also will solve the problem

with ZQOS.

In order to demostrate the validity of the above statement a case study is presented in

chapter 7. It is separated in two parts:

" In the first one, we simulate different simple priority assignments to observe how

good or bad they are with respect to different QoS metrics. Examples of priority

orderings tested are shortest deadline first, largest deadline first, shortest worst-case

computation time first; examples of metrics are minimising the output jitter, min-
imising the number of preemptions, and minimising the latency. The results of the

experiments show that some of these assignments of priorities are particularly good

with respect to the QoS metrics but, naturally, they do not guarantee the deadlines.

" Those priority assignments that are good with regard to a particular metric are used

as assignments of importance and then, by applying the DI algorithm, we find good

or near-optimal solutions for such QoS and deadline problems. The case study

also compares the solutions found with the corresponding Earliest Deadline First

scheduling solutions. Remarkably, it is shown that contrary to previously published

results[17], the fixed-priority scheduling solutions obtained outperform EDF in a

number of scenarios.

1.3 Thesis Aims 13

This thesis provides algorithms that produce fixed-priority orderings of superior qual-
ity than those obtained by current FPS theory. The QoS is improved without modifying

the installed base of fixed-priority systems.

1.3.3 Thesis Organisation

The remainder of this thesis is organized as follows:

Chapter 2. A Review On Preemptive Fixed Priority Scheduling

This chapter reviews the main concepts on preemptive fixed-priority scheduling for unipro-

cessor real-time systems utilised in our research. In fixed-priority scheduling the priority

assignment and the feasibility analysis are the two main areas of research. With respect

to priority assignments, our review covers from Rate Monotonic Priority Assignment (to

solve problems with deadlines equal to periods) to swapping algorithms (to solve problems

with arbitrary deadlines or weakly-hard constraints). With respect to feasibility analysis,
it covers from the utilisation-based test to the weakly-hard analysis.

Chapter 3. A Review On Scheduling with QoS

In real-time systems the concept of importance among tasks is usually defined in terms of

utility functions. In this chapter, we briefly make a review of some scheduling mechanisms

for improving the QoS measured in terms of utility. It starts with a concise review of how

the system requirements are mapped from the specification to the design. Afterwards, a

summary of how the utility is perceived in a system at different levels of abstraction is

presented. Finally, a review of scheduling approaches for improving QoS is presented.

Chapter 4. Importance

In this chapter we propose a model for expressing QoS requirements in real-time systems
based on the concept of relative importance among tasks. We define importance in terms

of predilection for executing tasks in preference to other tasks in a system as well as

1.3 Thesis Aims 14

predilection for executing tasks in specific orders. The concept is based on preferential

statements of the form "cr is more important than 0". We define a QoS metric using this

concept and propose its use in the context of fixed-priority scheduling. In addition, we
define some scheduling problems in terms of fixed-priorities; solutions to these problems

are proposed in the following chapters applying our model of importance.

Chapter 5. Fixed-Priority Scheduling with Deadlines and Importance:
The DI Algorithm

In this chapter we present the DI algorithm that solves the scheduling problem where hard

deadlines and importance criterion have to be optimised. The problem is formulated as
finding an optimal priority ordering that maximises the importance criterion. Optimality

in this context means that there is no other feasible schedule with higher importance. The

DI algorithm finds such optimal priority assignment in O((N2 + N)/2) where N is the

number of tasks.

Chapter 6. Fixed-Priority Scheduling with Deadlines and Conditional Importance:
The DI+ Algorithm

In this chapter the concept of conditional relative importance is added to our model of

importance. Conditional relative importance statements express preferences for executing

a task with regard to other ones in the system subject to conditional clauses. This concept

allows implementing priority relationships constraints such as precedence constraints and

allows including importance as a hard requirement. We formulate the scheduling problem

with deadlines and conditional importance and introduce the DI+ algorithm for solving

it. DI+ is DI with some modifications such that the feasibility test can be substituted by

other tests. In particular, by including feasibility tests for tasks with arbitrary deadlines or

weakly-hard constraints and including the swapping algorithm for finding feasible priority

orderings, DI+ is enabled to cope with such problems.

1.3 Thesis Aims 15

Chapter 7. Evaluation

In this chapter we evaluate different heuristics for assigning importance such that when

used with the DI algorithm, solutions to multicriteria problems are presented. In order to

improve the quality of a system, we assume that each task is characterized not only by

a deadline but also by an importance value which is correlated with a quantitative QoS

metric. A heuristic assigns importance to tasks pursuing to minimise (or maximise) a
QoS metric and then the DI algorithm finds a feasible solution. The performance of this

approach is then evaluated. The best combination DI algorithm with heuristic is proposed

as a fixed-priority solution for improving the quality of the system. Metrics considered are
for the total number of preemptions, output jitter, latency and average response time.

Chapter 8. Conclusions and Future Work

The final comments about the research results are given in this chapter. In addition, some
directions for further research are also presented.

Chapter 2

A Review On Preemptive Fixed Priority
Scheduling

This chapter is an introduction to the concepts in preemptive fixed-priority scheduling for

uniprocessor real-time systems utilised in our research. It is not our intention to cover

all topics but only those required to understand the subsequent chapters. It includes Rate

Monotonic scheduling, Deadline Monotonic scheduling and scheduling in weakly-hard

systems.

2.1 Real-time Systems

A real-time system performs some activities and responds within timing constraints to

events in its environment. Timing constraints are expressed in terms of committed com-

pletion times called deadlines. We use the terms deadline and timing constraint inter-

changeably. Usually, real-time systems can be classified according to the semantics of the

deadlines. A hard real-time system has critical deadlines that must be met; otherwise a

catastrophic system failure can occur. A soft real-time system has non-critical deadlines

and hence missing some deadlines occasionally is not catastrophic but it is an undesirable

effect [3]. In a weakly-hard real-time system [5] some deadlines can be missed but their

number and/or frequency must be bounded and well determined. Naturally, a system can
have a mixture of tasks with critical or non-critical deadlines.

An embedded system is a special-purpose computer system built into a larger sys-

16

2.1 Real-time Systems 17

tem, which does not interact directly with humans in a regular manner. For instance, a

car controller system only receives inputs from sensors and sends outputs to actuators.
Real-time systems are typically embedded. In addition, it is said that a real-time system
is synchronous when their activities are coordinated by a clock that keeps track of time.
An asynchronous system interacts with the world at any time. Clearly, a mixture of syn-

chronous and asynchronous activities can coexist [3].

A real-time system is usually designed as a set of activities to be executed concurrently

and continuously on a single or multiple processors. Each of these activities models a part

of the system that interacts with each other and with the environment. These activities are

usually called the process model. In our context, it will assumed that the process model

corresponds to a single processor system only.

2.1.1 Process Model

A process model is represented as a task set S= {a, b, c,..
} with cardinality N. For

scheduling purposes, a task set can be ordered totally in different ways. Such an ordering
is usually a totally ordered task set. An activity or task is either a computer process or a

single thread of control that is executed by a single processor. Each task has a number of
distinctive features many of which are described next; the subscript j usually refers to a
task.

A task becomes ready for execution at its release time (r) , executes its first compu-

tation at beginning time (b)
, and concludes at its completion time (c)

. The difference

between its completion time and its release time is called the response-time. The amount

of processor time required to complete, if it executes alone, is called the task execution

time. The execution time is not always the same, it varies depending on different circum-

stances but the worst-case execution time (C) must be calculated for deterministic systems.
On the system life-time, a task has an initial release time (ro) at time zero and afterwards it

is released (or invoked) for execution a number of times along the time axis. Each release
is called an instance and is separated from the previous ones by a time interval; this time
interval can be random, quasi-random but with a minimal separation known, or constant.
For instance, when the time interval is a constant T, it is said that the task is periodic with

2.1 Real-time Systems 18

period T invoked at times kT with invocations k=0,1,2,
.... The longest response-time

of all instances of a task is called the worst-case response-time (R)
. In addition, some-

times it is useful to specify a task release in terms of an initial time plus a constant 0 called

offset such that the task is invoked at times IST + 0.

At each release, it is expected that a task completes before its deadline (D) .A
hard

deadline is one that is critical for the system functionality and therefore a task missing one
is considered a system failure. A soft deadline is non-critical for the system functionality

and therefore a task missing one occasionally is tolerated depending on different circum-

stances. For instance, a task with a soft deadline may typically produce useful results even
if it finishes late; however, there are tasks where their results are useless when a deadline

is missed; these soft deadlines are called firm deadlines. More general soft deadlines can
be expressed as a value-function where a task has a value when it completes before its

deadline and such value changes (usually the value decreases) as its lateness increases.

Commonly, tasks with soft deadlines are expected to complete as early as possible.

In addition, some tasks can tolerate missing deadlines not in occasional terms but in

a predictable way. This kind of timing constraints is called weakly-hard. In effect, a

weakly-hard constraint is an exact description (in a window of time) of a required pattern

of missed/met deadlines that a task must fulfil in the worst-case. For instance, it is said

that a task "meets any m in k deadlines" if in any window of k consecutive instances of the

task, there are at least m instances that meet their deadline [18].

In this context, tasks can be classified orthogonally according to their release and tim-

ing constraints as follows:

Task Categorization
Arrival Hard Deadline Soft Deadline Weakly-Hard Constraint
Periodic hard periodic task soft periodic task wh periodic task
Minimal known sporadic task aperiodic task wh aperiodic task
Random N/A aperiodic task wh aperiodic task

A periodic task has a period T and can have a hard, soft, or weakly-hard constraint; an

aperiodic task does not have a period and can have a soft or weakly-hard constraint; in the

literature, hard aperiodic tasks are not defined because there is no way of guaranteeing such
hard deadlines; sporadic tasks have a minimal inter-arrival time (also denoted by T) and a

2.1 Real-time Systems 19

hard deadline. Note that adding columns for a wider classification of deadlines increases

the above categorization. In general, several classifications can be defined depending on
the semantics of task releases and deadlines, but this is the usual one.

Finally, tasks can be interrupted or even not released depending on the application. A

task is rescindable if it can be revoked or not released at any time; when a task has to be

executed until completion it is called a non-rescindable task.

Preemptions

When executing, a computer task can be suspended at any time, at specific points or not

allowed to suspend at all. A task that can be suspended at any time and resumed from

the point of suspension without affecting its behavior is called a preemptive task. A task
is non preemptive when it is not allowed to suspend it. A task is self-preemptive when
it is organized in non-preemptive blocks such that at the end of each of these blocks the

task offers a de-scheduling request to the system; if a high priority task is ready it start
its execution, otherwise the next block of the current task is executed [19]. The process

of saving and restoring sufficient information of a task such that it can be resumed after
being interrupted is called a context switching.

Release Jitter

Normally, it is assumed that a task is released as soon as it arrives (i. e. when it is able to

run). However, it may occur that the task is subject to a bounded delay between its arrival

and release, and then it is said to exhibit release jitter. Release jitter J is the worst-case
delay between the arrival time and the release time of a task [19].

Release jitter takes place due to system implementation techniques as, for example, a

tick-driven scheduler. A tick-driven scheduler periodically polls task arrivals at fixed time

ticks; at these times the scheduler performs its scheduling decisions. It could be the case

that a task arrives just a tick later from the last poll checking such that the task arrival

will be noted at the next scheduler period when the task will be released (i. e. put on the

run queue). For a periodic task, release jitter can be avoided by choosing its period to be

2.1 Real-time Systems 20

multiple of the period of the scheduler. For a sporadic task, it cannot be avoided as its

release time cannot be exactly determined; its release jitter is determined by the polling

period of the process that awakes it or the polling period of the scheduler [3].

Dependency Relationships

It is said that two tasks are independent when the results of their computations do not
depend on each other; otherwise, they are dependent; for instance, dependent tasks require

communicating data or synchronizing their computations.

Some dependent tasks interact accessing mutually exclusive resources for both com-

munication and synchronization purposes. Tasks that share common resources have to

use synchronization primitives such as semaphores, monitors or protected objects to gain

exclusive access to the resources [3]. Thus, a task will experience blocking when it is

stopped in a semaphore waiting for the release of the resource. In real-time systems, the

worst-case blocking time must be determined.

Other aspect of dependent tasks is when a task cannot start until another task has

completed. In this case it is said that a precedence relationship exists. Data is often passed

between these tasks but they never execute together and therefore, mutual exclusion over

this data does not need be enforced.

Value

Sometimes the notion of value is attached to a task. The value V is a scalar that expresses

the weight or the intrinsic benefit obtained by running a task [20]; in other words, value

is an artifact that expresses a measure of quality and conveys how valuable is the task for

the system. Note that value is not a value-function as defined in the literature [4] as a

value-function combines urgency (deadlines) and benefit (value) in a single expression.

2.2 Scheduling Tasks

Other Properties

21

In the above description, a task executes at each release a single stream of computations

with a processing time, inter-arrival time, deadline and so on. However, in some ap-

plications tasks can have multiple deadlines in the same release, or can have different

computation times, or periods from release to release [19].

Furthermore, in more complex schemes (as described in [21]), a task x can be broken

down into a series of operations or optional sub-tasks, where each one can have a process-
ing time, inter-arrival time, deadline and so on. A mono-operation task consists on one

operation and a multi-operation task consists on several operations Xk with k=1,2,
....

The operations can be

" mutually inclusive: x= (x1 and x2 and x3 ...
),

" mutually exclusive: x= (x1 or x2 or x3 ...
),

" or a mixture of both, for instance: x= (xiand (x2 or x3)and ...
).

For instance, in many real-time systems the set of functions that a system is required

to provide may change over time. Mode change protocols allow currently running tasks

to be deleted or changed, or new tasks to be added [22] [23]. Mode change protocols use

tasks with mutually exclusive operations. Other example is the mandatory/optional task

model [24] where mandatory operations have critical deadlines and optional operations

can be rescindable. These are mutually inclusive operations.

2.2 Scheduling Tasks

Real-time systems must guarantee in some degree that the timing constraints of all tasks

are met. The scheduling algorithm is a fundamental tool for guaranteeing such constraints.

In real-time systems scheduling algorithms are executed off-line, on-line or a combination

of both. In general, scheduling algorithms can be categorized as table-driven approaches

or priority-driven approaches.

2.2 Scheduling Tasks 22

Table-driven approaches create a schedule off-line, which is stored in a static table to

be posteriorly executed. Priority-driven approaches create a schedule assigning priorities

such that at run-time a dispatching mechanism executes the tasks according to their prior-
ities. Priority-driven is divided in two major schemes named fixed-priority and dynamic-

priority. Infixed-priority the execution's order is based on off-line priority assignments,

and in dynamic priority the execution's order is based on on-line priority assignments (see

Liu [24], Bums and Wellings [3] and Buttazo [25]).

2.2.1 Table-Driven Scheduling

In the table-driven approach, all tasks characteristics must be known a priori because the

scheduling decisions are taken off-line. In effect, prior knowledge of all data allows com-

puting one or more possible schedules, which can be stored in a table. At run-time, an
initialisation phase allocates all the resources required by the tasks and the first task in

the table is selected for execution. When it finishes the rest of the tasks in the table

are executed sequentially and this sequence is repeated continuously. Some variations

of this paradigm allows identifying free time slots that are used for implementing some

mechanism to dispatch aperiodic tasks. Table-driven scheduling allows "complex and so-

phisticated algorithms because the schedule is computed off-line" [24]. Thus, different

scheduling solutions can be tried and more than one objective can be pursued. For ex-

ample, if more than one feasible plan is found, different heuristics can be applied looking

to minimize other criteria such as minimizing the average response time. Examples of

table-driven approaches are the clock-driven [24] and the cyclic executive [3].

Although table-driven scheduling is a highly predictable approach that solves many
kinds of problems, it is mainly used for small, simple systems which do not need dynamic

capabilities [26]; moreover, it is very complex to maintain and it is inflexible since any

change to the tasks may require rebuilding the table [3].

2.2.2 Priority-Driven Scheduling

In the context of scheduling, a priority establishes an order of importance or urgency

with respect to the timing constraints. In the priority-driven scheduling approach, the task

2.2 Scheduling Tasks 23

execution order is based on priorities assigned to tasks such that at all times the task with

the highest priority is always executing. This paradigm has three main components:

1. A priority assignment algorithm. An algorithm which creates a plan by assigning

priorities to tasks.

2. A feasibility test. An algorithm which checks conditions that are necessary and/or

sufficient for a task set to be scheduled.

3. A run-time dispatching algorithm. An algorithm which executes the plan by dis-

patching the tasks in priority order.

Thus, the priority assignment establishes the order at which the tasks will be executed,

and the feasibility test checks whether the timing constraints will be fulfilled; finally the

dispatching algorithm schedules the tasks.

A task set ordered according to their priorities forms a priority ordering. We will use

the terms priority assignment and priority ordering interchangeably. For a given task set,

a priority ordering is feasible if the timing constraints of all tasks are met. A task set is

schedulable by a specific scheduling algorithm if such algorithm produces a feasible prior-
ity ordering. When all task sets for which a feasible priority ordering exists are schedulable
by an scheduling algorithm, it is said that such an algorithm is optimal [25].

The priority-driven approach is divided into fixed-priority and dynamic-priority schedul-
ing. In fixed-priority scheduling static priorities are assigned and they do not change over

time. In dynamic-priority scheduling priorities might change from invocation to invoca-

tion.

Fixed-priority scheduling. In the fixed-priority scheduling approach, the execution

order of the tasks is based on off-line static assignment of priorities. The Rate Monotonic

Priority Assignment (RMPA) algorithm [27] is the best known algorithm for assigning
fixed-priorities. In RMPA, the priorities are assigned according to the rule "tasks with

shorter periods have higher priorities". RMPA is optimal when tasks deadlines are equal

to their respective periods (i. e. T= D). In the Deadline Monotonic Priority Assignment

(DMPA) algorithm [28], the priorities are assigned according to the rule "tasks with shorter

2.2 Scheduling Tasks 24

deadlines have higher priorities". DMPA is optimal when tasks deadlines do not exceed

their respective periods (i. e. D< T). DMPA subsumes RMPA. Optimality implies that

if a feasible priority ordering over a task set exists, then DMPA is also feasible. On some

process models where DMPA is not optimal, more complex algorithms for finding feasible

priority assignments are utilised such that the one presented by Audsley in [29]. This Swap

algorithm starts with an infeasible priority assignment and performs swaps of priorities

until a feasible one is found.

Dynamic-priority scheduling. In the dynamic-priority scheduling approach, the exe-

cution order of the tasks is based on dynamic assignment of priorities, such that at run-time
the task with the highest priority is always executing. The Earliest Deadline First (EDF)

algorithm [27] forms the base for all dynamic-priority scheduling in real-time systems. In

EDF, the priorities are assigned on-line according to the rule "the ready task with the near-

est deadline has the highest priority". EDF is an optimal dynamic preemptive algorithm

on single processor systems that can theoretically utilise all the processor capacity; for

the simple process model defined in [27], all deadlines (with D= T) will be met under
EDF if EN

1
(C/TZ) < 1. In addition, other dynamic-priority algorithms are also found

in the literature such as the Least Laxity First algorithm (LLF) where "the task with the

smallest laxity has the higher priority" [30]; the Value-Density algorithm where the prior-
ities are assigned according to the ratio ß01 (i. e. value at time t divided by computation

time) [31]. In the Maximum Urgency First algorithm (MUF) the task with the maximum

urgency has the higher priority; in this approach, urgency is defined as a tuple consisting of

two fixed priorities and a dynamic priority; one of the fixed priorities has precedence over

the dynamic priority and the dynamic one has precedence over the other fixed priority; at

run-time, the algorithm described in [32] computes the maximum urgency as a function of

the three priorities.

2.2.3 Discussion

Depending upon the application, scheduling schemes exhibit different advantages and dis-

advantages which are debated in the community (see Locke [33], Xu and Parnas [10],

Buttazzo [17]). In terms of predictability and flexibility, fixed-priority driven scheduling
is localized in the middle between table driven (the most predictable) and dynamic-priority

2.3 Fixed-Priority Scheduling 25

driven (the most flexible) schemes. This particularity is appreciated by many government

agencies and system integrators who recommend it as the method of choice [10]. As

a consequence, the majority of commercial real time operating systems and languages

and standards support fixed-priorities only. The main focus of this thesis is fixed-priority

scheduling in real-time systems which is now presented on detail.

2.3 Fixed-Priority Scheduling

Liu and Layland proved in [27] a set of fundamental results known as the rate mono-
tonic analysis that form the base of the fixed-priority scheduling theory. Rate Monotonic

imposes some restrictions to the task model that have been posteriorly relaxed for al-
lowing tasks to have deadlines less than their periods [34], deadlines greater than their

periods [35], arbitrary offsets [36], precedence constraints [19], variations in computation
time and period [19], shared resources [37], etc. The literature in this area is large and
for such reason, only the fundamental concepts will be reviewed starting from the basic

rate-monotonic analysis.

Basic task model. A task set S consists on N independent preemptive tasks to be

scheduled in a single processor system where:

" Each task consists of an infinite number of invocation requests, each one separated
by a minimum time T. For a periodic task it defines its period and for a sporadic

task it defines its minimal inter-arrival time.

" Tasks have deadlines D relative to the actual release such that if the task is invoked

at time t, it should have finished by t+D.

" The worst-case computation time C is known for each task (with C< D) and during

this time the task does not suspend itself.

" All tasks share a common release ro.

" Tasks have a priority P where P�, aj. is the highest and 1 is the lowest priority one;

without loss of generality we assume that two tasks do not share the same priority.

UNIVEHSI1
OF YORK

LPRA!
.

2.3 Fixed-Priority Scheduling 26

" All tasks are non-rescindable; e. g. they cannot be aborted or skipped.

All periodic tasks are assumed to be released together at time zero. The tasks will be

released together again at their hyperperiod. The hyperperiod is the least common multiple

of the periods of the tasks and it is denoted by H such that H= lcm{T. } `d jES.

2.3.1 Rate-Monotonic Analysis

The Rate-Monotonic analysis applies to a set S of N periodic tasks with the above basic

task model and where all tasks have a deadline equal to their period (D = T). Liu and
Layland proved in [27] the following results.

Theorem 2.3.1. The longest response time of a task occurs when it is invoked simultane-

ously with all higher priority tasks.

The time when all tasks are invoked simultaneously is called a critical instant. A

critical instant occurs when all tasks are released at time zero.

Theorem 2.3.2. A fixed priority assignment is feasible provided that the task deadlines at
the critical instant are met.

Thus, for a fixed-priority assignment to be feasible, only the first deadline of each task

must be met when all tasks are scheduled at time zero.

Liu and Layland proposed the Rate-Monotonic Priority Assignment (RMPA) algo-

rithm, which consists on assigning fixed-priorities assigned inversely proportional to the

tasks periods. The RMPA algorithm is optimal among all static priority assignment algo-

rithms. In addition, the Utilisation-Bound test for checking the feasibility of the assign-

ment is also introduced in [27].

Definition 2.3.3 (Rate-Monotonic Priority Assignment). A task set S is in rate-monotonic

priority ordering if
Pa> Pbý-%la<Ib

.
for any two tasks a, b in S.

2.3 Fixed-Priority Scheduling 27

Theorem 2.3.4 (Utilisation-Bound test). For a set S of N tasks, the Rate Monotonic Pri-

ority Assignment yields a feasible priority ordering if

U< N(21/N - 1)

where U= EN
1 Cj/Tj is known as the utilisation factor of the task set.

The bound converges to [27]:

um (N(21/N-1)) =1n2-- 0.69314
N-boo

However, experimental results with randomly generated task sets show that this bound can
be as higher as 0.85 [3]. The utilisation-bound tests is sufficient (i. e. any task set passing
the test will be schedulable) but not necessary (i. e. failing the test does not imply it is

unschedulable).

The feasibility analysis of the RMPA algorithm can also be performed using a suf-
ficient but not necessary test called the Hyperbolic bound [38]. This test has the same

complexity as the above test but it is less pessimistic allowing to accept task sets that

would be rejected using the Utilisation-bound approach.

Theorem 2.3.5 (Hyperbolic-Bound test). For a set S of N tasks, the Rate Monotonic

Priority Assignment yields a feasible priority ordering if
N

fl(Uj + 1) <2
j=1

where Uj = Cj /Tj is the utilisation factor of task j.

With the Rate-Monotonie analysis, Liu and Layland founded the basis of fixed-priority

scheduling in real-time systems by proving that giving higher priorities to tasks with

shorter periods, scheduling problems with deadlines can be solved optimally. Over the

years, the assumptions of strict periodic tasks and D=T were relaxed causing the next

milestone in the area: the Deadline-Monotonic approach [34].

2.3.2 Deadline-Monotonic Analysis

The Deadline-Monotonic Analysis extends the basic task model allowing tasks with dead-

lines less than or equal to the periods, and sporadic tasks. The approach consists of the

2.3 Fixed-Priority Scheduling 28

Deadline-Monotonic Priority Assignment (DMPA) for assigning fixed-priorities and the
Response-Time test for checking the feasibility of the assignment. The Response-Time

test is based on the exact analysis for finding the worst-case response time of a task when
it is released at its critical instant assuming that D<T. This assumption permits to incor-

porate sporadic tasks without alteration to the task model [34]. The next results are proved
in [28], [34], [39], [35].

Leung and Whitehead [28] proved that the RMPA is no longer optimal when D<T.

However, assigning higher priorities to tasks with shorter deadlines is still optimal among
fixed-priority algorithms. This assignment policy is known as the Deadline-Monotonic

Priority Assignment (DMPA) algorithm.

Definition 2.3.6 (Deadline-Monotonic Priority Assignment). A task set S is in deadline-

monotonic priority ordering if

Pa>Pb Da, <Db

for any two tasks a, b in S.

The Response-Time test (or completion-time test) is a sufficient and necessary (i. e.
the set is unschedulable if it fails the test) schedulability test based on the response-time

equation defined [34], [39]:

Definition 2.3.7 (Response-Time equation). The Response-Time equation computes the

worst-case response time Rj of any task j when it is released at its critical instant:

W°=Cj

ci (2.3.1) Wn+l = cj +
E

j Ti
iEhp(j)

where ic hp(j) is the set of higher priority processes than j. This recurrence equation
finishes when either Wý +i =W or Yt

3ý`+1 > Dj. If tit +1 = U`?, then the response

time R; is tit ; otherwise, the response time of task j will be greater that its deadline. The

convergence of the response-time equation is guaranteed [35] if U<1.

Theorem 2.3.8 (Response-Time test). Given a task set S where Dj < 7j Vi, a fixed-

priority ordering is feasible if and only if Rj < Dj for all j.

2.3 Fixed-Priority Scheduling

In the Response-Time test note that:

29

" It is independent of the priority assignment; i. e. it can be used to determine the
feasibility of any fixed-priority assignment.

" The condition Rj < Dj must be verified for each task.

" The test has pseudo-polynomial complexity because the response-time equation is

pseudo-polynomial; i. e. the number of steps to compute the response time depends

not only on the number of tasks but also on the values of C, T and D, and hence the

number of steps cannot be determined in advance.

Motivated by the necessity of fulfilling more realistic system requirements, the analy-
sis based on fixed-priorities has been extended to include dependent tasks, release jitter,

arbitrary deadlines, aperiodic tasks and more. Some of those extensions are reviewed next.

2.3.3 Dependent Tasks

Two tasks are dependent if the activities conducted by one depend on the initiation or
termination of activities conducted by the other task. Dependent tasks could involve inter-

task communication or synchronization, or precedence constraints.

Tasks Synchronisation

In practice, tasks interact as for example when accessing mutually exclusive resources
(e. g. shared protected data). Task synchronization primitives can be used to control ac-

cess to such critical resources. However, when applying synchronisation primitives (e. g.

semaphores) deadlocks or priority inversion phenomenons can occur [3]. Deadlock is a

situation wherein two or more tasks competing for a resource are waiting for the other to
finish but it never does, and then they wait forever. Priority inversion is produced when a
higher priority task is prevented from executing by a lower priority one. Priority inversion

leads to unbounded blocking times and therefore deadlines cannot be guaranteed. These

problems can be controlled by the set of priority inheritance protocols [37].

2.3 Fixed-Priority Scheduling 30

Priority Inheritance Protocol. Under the Priority Inheritance Protocol, when a high

priority task is blocked by a lower priority one, the lower priority task inherits the priority
of the higher priority one, thus preventing middle priority tasks from executing. However,

this protocol suffers from several problems such as tasks having transitive blocking and
the protocol does not prevent deadlocks [37].

Priority Ceiling Protocol. In the Priority Ceiling Protocol (PCP), each resource is

assigned a priority ceiling, which is a priority equal to the highest priority of any task

which may lock the resource [37]. At run-time, there exists a system ceiling that is the
highest priority ceiling of any currently locked semaphore. In addition to its static priority,
a task has also a dynamic priority that is the maximum of its static priority and the one that
it inherits due to blocking of higher priority tasks. Thus, during the protocol operation,
a given task can only lock the resource when its dynamic priority is strictly higher than
the system ceiling. If so, its priority is temporarily raised to the system ceiling such that

no task that may lock the resource is able to get scheduled. Let Bo, be the duration of
the longest critical section executed by a task of lower priority than a task a, guarded by

a semaphore whose priority ceiling is greater than or equal to the priority of a. Sha et

al. [37] proved that:

1. Task a can be blocked by a lower priority task for at most Ba time units.

2. The priority ceiling protocol is deadlock free.

3. Transitive blocking is prevented.

In addition, the protocol provides mutual exclusion access to the resource. The main

problem of PCP is its implementation cost and run-time overhead.

Immediate Priority Ceiling Protocol. In the Immediate Priority Ceiling Protocol

(IPCP), when a task access a resource, IPCP raises immediately its priority up to ceiling

of the resource and lowers its priority only when the task leaves the resource [37]. IPCP

also prevents deadlocks, transitive blocking and provides mutual exclusion access to the

resource. IPCP is easier to implement and has lower run-time overhead than the PCP.

IPCP is the currently policy in programming languages as Real-Time Java and Ada, and
in standards as POSIX [3].

2.3 Fixed-Priority Scheduling 31

Response-Time Equation with Blocking. Let K be the number of critical sections
(resources) under PCP or IPCP, the maximum time Bj a task j can be blocked is equal to

the execution time C(k) of the longest critical section k in any of the lower priority tasks

that are accessed by higher priority tasks [3]:

Bj = max{T(k, j)C(k)}
k=l

where

"T (k, j) = 1: if k is used by at least one task with a priority lower than Pj, and at
least one task with a priority greater or equal to Pj

.

"T (k, j) = 0: otherwise.

In order to take into account task synchronisation, the response time equation 2.3.1 is

updated as follows [3]:

w9=C,

ujn
3

+1
=Cj+Bj [!:: 1ci

iEhp(j)

(2.3.2)

Note that maximum blocking will not occur in some scenarios. For example, when a

set of periodic tasks with the same period are released at the same time, then no preemption

will take place and hence blocking will not occur. Consequently, the feasibility test with

the response-time computed with equation 2.3.2 is pessimistic [3].

Precedence Constraints

Another kind of dependence between tasks is when a task b depends on some results of a

task a (e. g. task b cannot start until task a has completed). It this case it is said that "a

precedes b" and we denote it as a -* b.

Precedence relationships are important hard constraints in many systems where tasks

involved in an activity are dependent on other ones. Simple precedence relationships can

2.3 Fixed-Priority Scheduling 32

be implemented for tasks with the same period by modifying tasks priorities. In effect, in

priority scheduling, in order to ensure precedence of a over b (with Ta, = Tb) is necessary
to consider their task release time ra, and rb such that [16]:

1. if ra, < rb then Pa must be greater than Pb, or

2. if Ta < rb then Pa, is must be equal to or greater than Pb.

In [19], a simple transformation technique for assigning priorities to tasks with prece-
dence requirements is explained. The technique applies to tasks that share the same period

and consists of modifying their deadlines such that the priorities are enforced to the order

required when DMPA is utilised.

2.3.4 Release Jitter

Release jitter J is the worst-case delay between the arrival time and the release time of

a task [19]. In the above analysis, it is assumed that all tasks are periodic with periods

which are exact multiples of the scheduler period. Thus, they can be released as soon as
they arrive and hence, they do not suffer release jitter. However, there are situations where
tasks could suffer release jitter. For example: (i) periodic tasks non-synchronized with
the scheduler period and (ii) sporadic tasks which are not released as soon as the event on

which they are waiting has occurred (see [3]).

To take into account task release jitter, the response-time equation 2.3.2 is updated as
follows [3]:

wo=C;

[, tý+1=C; +B; +
Wý + Ji

T
ci

iehp(j)

(2.3.3)

where J1 is the release jitter of higher priority tasks than j. Finally, the response-time
is calculates as R; =[i +1 + Jj.

2.3 Fixed-Priority Scheduling

2.3.5 Arbitrary Deadlines

33

Arbitrary deadlines refers to tasks with D<T or D>T; i. e. deadlines can be greater

than their periods. When D>T, the critical instant assumption of a task meeting its first

deadline will meet all the successive deadlines does not hold. Consequently, neither the

DMPA nor RMPA are optimal anymore even if a feasible priority exist. In this case, the

extended response-time equation provides an exact analysis for computing the worst-case

response time. In addition, a feasible priority ordering can be determined by a priority

swapping algorithm [3].

Extended Response-Time Equation

In order to compute the worst-case response time of a task j when Dj > Tj, a number

of releases must be considered. In this case, there are potentially overlapping releases of
different instances of j and then the analysis given in [35] must be utilised. Assuming

that an overlapping release will be delayed until any previous one has completed, for any

potentially overlapping release a separate window W (q) is defined, where q=0,1,2, ...
identifies a particular window of time. Thus, the response time equation 2.3.3 is extended

as follows [3]:

WO (q) = Cj

Wj+l(R') = (q+1)Cj+Bj+
Wj (q)+Jj

C, Z
(2.3.4)

Ti
iEhp(j)

(q)) For each q, a stable value that stops the loop can be found (i. e. W3+1 (q) = W3'

and then the response time for each q is given by

Rß (4') = Wj"+1(q) - qI + Jj

Thus, different releases are calculated until aq is found such that Rj (q) < Tj. Finally,

the worst-case response time is the maximum value of all Rj (q) computed:

R; =max {R; (q)for q=0,1,2,... }

2.3 Fixed-Priority Scheduling 34

Algorithm 1 Swapping Algorithm
Require: a is a priority ordering

1: ok: = false
2: forj: =N-1to0do
3: for next :=j to 0 do
4: Swap(a, j, next)
5: if F(a, j) = true then
6: ok := true
7: exit inner loop
8: end if
9: end for

10: if not ok then
11: exit loop {infeasible}
12: end if
13: end for
Ensure: ok is true

Assignment of Priorities

When tasks have arbitrary deadlines, DMPA is not optimal [3]. In this case the the Swap-

ping algorithm may be used. This algorithm is based on the following theorem proved

in [29]:

Theorem 2.3.9. I fa task j is feasible at the lowest priority level, then if a feasible priority

ordering exists for the complete task set, an ordering exists with j assigned at this lowest

priority level.

The Swapping algorithm receives as input an infeasible priority assignment and finds

a feasible one (if such priority assignment exists) by swapping pairs of task priorities.

Assuming a priority ordering a where index a [O] corresponds to the highest priority task

and a[N - 1] to the lowest priority one, the swapping algorithm (see algorithm 1) tries

to accommodate feasible tasks starting from the N-1 to the 0 position. The function

F(a, j) returns true when a task at jth position is feasible. Note that this function may

be implemented using any of the above recurrent response-time equations. When a task

in the N-1 position is found feasible it is fixed in that position, and then the algorithm

tries to accommodate another task in the N-2 position and so on, until it accommodates

successfully all tasks. However, when a task in a jth position is infeasible, it is swapped

with the (j - 1)th task, and if it is also infeasible with the (j - 2)th and so on; when

2.3 Fixed-Priority Scheduling 35

no task can be fitted then there does not exist a feasible ordering and the algorithm ends

unsuccessfully.

When the feasibility test F(a, j) is exact (i. e. necessary and sufficient), the priority or-
dering is optimal. Otherwise the priority ordering is as good as the quality of the test [19].

2.3.6 Aperiodic Tasks

Aperiodic tasks have random release times and therefore a deterministic worst-case ana-
lysis cannot be done; consequently, only aperiodic tasks with soft deadlines can be han-

dled. In FPS, scheduling problems where in addition to hard tasks, soft aperiodic tasks

have to be included in the plan, incorporate at least two objectives: (1) to guarantee that

all hard deadlines and (2) to minimize the response time of the aperiodic tasks. Thus,

the problem is how to schedule aperiodic tasks without causing that hard ones to miss

their deadlines. Server algorithms such as the Sporadic Server [40], Extended Priority

Exchange Server [41] or slack stealing algorithms such as Dual Priority Scheduling [42]

accomplish these two objectives. Of special interest is the Sporadic Server because for

FPS analysis purposes, it can be treated as a single periodic task, and consequently it can
be incorporated into the FPS analysis.

Conceptually, a server is a periodic task with a capacity (execution time) and a re-

plenish time (period). The capacity is set to the maximum possible such that the task set

and the server remain schedulable. When the server is executed (released), its capacity is

utilised to service aperiodic tasks. These tasks are stored in a queue and if it is nonempty

when the server is released, the tasks are executed. At the beginning of specific times

(e. g each period), the capacity is replenished (a computation time is assigned). When the

server executes a task, it consumes its capacity and it becomes exhausted when the capac-
ity is zero. The server is suspended when either its capacity is exhausted or the queue is

empty. The simplest server is the Polling Server which works as above and has a main
drawback: if the server is released when the queue is empty, the server will be suspended

and its capacity will be lost. Therefore, the bandwidth-preserving servers algorithms have

been developed to preserve its capacity when they are released [24].

The Sporadic Server is a the bandwidth-preserving server. When the queue becomes

2.3 Fixed-Priority Scheduling 36

empty, the sporadic server preserves its capacity deferring its assigned time slot. If a
task arrives and the server has capacity, the task will be executed. The sporadic server
replenishes just the capacity consumed at sporadic times (variable times). In contrast,
other servers such as the Deferrable Server replenishes its whole capacity at the start of
each period (fixed times) [24].

2.3.7 Weakly-Hard Tasks

A weakly-hard real-time system is a system that tolerates occasional losses of deadlines

if the distribution of its met and lost deadlines is precisely bounded within a window of
time [5]. Thus, while in the above analysis task timing constraints are represented by a
single deadline, in weakly-hard systems timing task constraints have to be expressed by

more complex artifacts. It implies the development of new priority assignment algorithms
and feasibility tests.

A weakly-hard constraint is an exact description in a window of time of a required
pattern of miss/met deadlines that in the worst-case a task must fulfil. Given a task system,

a pattern of miss/met deadlines of any task in a window of time can be computed either
by simulation or analytically. This pattern can be represented by a binary sequence called

µ-pattern [18], where for each task release: 1 represents a deadline met and 0 represents

a deadline missed.

p-pattern

Definition 2.3.10 (µ-pattern [18]). A it-pattern is the worst-case pattern of met and lost

deadlines of a task j and is defined as

_I
if R; (k) < Dj

µj (h)
0 otherwise

where k is the krh activation of j.

Thus, a µ-pattern is a sequence of 1/0 indicating that at any particular release a task

either met or lost its deadline. For instance, the µ-pattern of a task that never miss a
deadline is a sequence of 1 s; a task that miss just one deadline and it occurs only at critical

2.3 Fixed-Priority Scheduling 37

L

instant has a µ-pattern µ= 01111... 1 of length L, where the length is the number of

activations during its hyperperiod.

Computing the /i-pattern of a task requires computing the worst-case response time

Rj (k) at each invocation k, within the first hyperperiod at its priority level. This can be

done by either simulation or analysis.

In [18], several algorithms to compute analytically a µ-pattern are described. First,

the worst-case finalization time Fj (k)
, at invocation k, within the first hyperperiod is

computed. Fj (k) is the sum of three factors:

1. the computation time of the first k invocations

2. the time that higher priority tasks have been computing before Fj (k)

3. the time the processor has not been used by higher priority tasks

The algorithms for computing Fj (k) are rather complex and can be consulted in [18].

Once that Fj (k) is computed, the worst-case response time is

Rj (k) = F'j (k) - rj (k)

where rj (k) is the kth release. Finally, for each release k its worst-case response time can
be calculated and the µ-pattern is obtained applying definition 2.3.10.

Weakly-Hard Constraints

In some systems the effect of missed deadlines can be different depending on whether they

are missed consecutively or non-consecutively; thus, the tolerance to missed deadlines is

established within a window of m consecutive invocations of a task. In this context, four

types of weakly-hard constraints are defined in [5].

Definition 2.3.11 (Weakly-Hard Constraints). Let m (i > 1) be any window of consecu-

tive invocations of a task, and n (0 < ii < iii) the number of invocations in such window:

. (ii. ra): a task meets any ni in m deadlines if there are at least n invocations in any

order that meet the deadline.

2.3 Fixed-Priority Scheduling 38

" (n, m): a task meets row n in m deadlines if there are at least n consecutive invo-

cations that meet the deadline.

" (n, m): a task misses any n in m deadlines if no more than n deadlines are missed.

" (n, m): a task misses row n in m deadlines if it is never the case that n consecutive
invocations miss their deadline.

The first two weakly-hard constraints express task sensitivity to the consecutiveness

of deadlines met, and the last two to the consecutiveness of deadlines missed. Note that a
task that must met all their deadlines (i. e. a hard task) is a particular case of a weakly-hard
task. This task is called a strong weakly-hard task and it has a µ-pattern of Is.

Feasibility Test

A weakly-hard real-time system is schedulable if it can be guaranteed that at run-time

all weakly-hard temporal constraints are always satisfied. Given a task set ordered by

priorities, the feasibility analysis requires:

1. Computing the worst-case µ-pattern of each task at its corresponding priority level.

2. Checking if the µ-pattern satisfies the weakly-hard constraint.

Naturally, a task set can have tasks with either hard deadlines or weakly-hard con-

straints. All tasks must be tested with the response-time equation but only the infeasible

ones with weakly-hard constraints require the two above steps. A function W (a, k) that

returns true when the jth task in the priority ordering oz meets the weakly-hard constraints
is described in [18]. Function W (a, k) starts checking the strict feasibility of the jth task

according to the FPS feasibility test;

" if feasible, it will not miss any deadline and therefore it is also weakly-hard feasible;

. if infeasible and with a strict hard deadline, it is infeasible;

2.4 Summary 39

" otherwise, the task miss some deadlines but it has a weakly-hard constraint and then

the µ-pattern of task j is computed and it is checked against its constraint. True is

returned if the µ-pattern fulfills the weakly-hard constraint.

Priority Assignment

Neither DMPA nor RMPA priority assignment algorithms are optimal for task sets with

weakly-hard constraints. Fortunately, the Swapping algorithm (see page 34) may be used
to find a feasible priority assignment by substituting the boolean function F(a, j) with
W (a, j) [5].

2.4 Summary

On Fixed Priority Scheduling (FPS), the assignment of priorities and the feasibility analy-

sis are the two main areas of work. The former establishes the order in which the tasks will
be executed and the latter checks whether the time constraints will be fulfilled. RMPA,

DMPA and the Swapping algorithm are the most known priority assignment algorithms.
On the other hand, the utilisation-based test and the response-time analysis test (with all
its variations for computing the worst-case response time) are the most known feasibility

tests. In addition, complex feasibility tests for weakly-hard constraints exist. All these al-

gorithms allow solving problems with complex task models when only timing constraints

are involved. However, when the objective includes other quality requirements, FPS ex-
hibits some weaknesses that are discussed in the next chapter.

Chapter 3

A Review On Scheduling with QoS

3.1 Introduction

In real-time systems researchers have been investigating scheduling mechanisms for sup-

porting systems where, in addition to timing constraints, their performance with respect to

additional QoS requirements must be improved. This type of situation can occur when the

worst-case resource requirements of all or some running tasks cannot be simultaneously

met.

In some scenarios, systems are split up into tasks that are designed and tested sepa-

rately. When the system is integrated, it may be the case that the resource requirements

of tasks cannot be simultaneously met due to task contention. In this case, the schedul-

ing mechanism must allocate greater resources to more important tasks. This allocation

can be off-line or on-line. In other scenarios, worst-case resource requirements cannot be

determined in advance and then, it is the responsibility of the scheduler to allocate the

resources to the most important tasks at run-time.

Thus, allocating greater resources to important tasks is essential to improve the QoS of

a system. In real-time systems, the concept of importance among tasks is usually defined

in terms of utility functions. In this chapter, we briefly make a review of some scheduling

mechanisms for improving the QoS measured in terms of utility. In addition, a concise

review of how the system requirements are mapped from the specification to the design

is also presented. It conveys the idea that scheduling problems in real-time systems are

40

3.2 From Requirements to Scheduling Problems 41

inherently multicriteria and include both timeliness and QoS requirements.

3.2 From Requirements to Scheduling Problems

Real-time systems are not different from other computer applications; they have a life cy-

cle divided in different phases starting from the requirements specification to maintenance.
During the specification of requirements QoS requirements are defined. During the design

phase, the system is structured as a set of activities that achieve one or more requirements

and then a scheduling problem is formulated; further, the scheduling problem must be

solved.

3.2.1 Requirements

The requirements specification phase is the period of time during which the requirements
for the software product are defined and documented [43]. Requirements are usually se-

parated into Functional and Non-Functional. Functional requirements describe "what"

the system should do (e. g. a car air bag must protect the driver in the case of a colli-

sion), while any other requirement is considered non-functional as, for example, "how

well" a functional requirement shall be accomplished (e. g. the car air bag must be always

triggered within 30 milliseconds after the crash sensor detects a collision at high speed).
In general, any requirement not considered functional is dichotomously considered non-
functional [44].

The IEEE Standard Glossary of Software Engineering Terminology [43] distinguishes

on the one hand, functional requirements, and on the other hand design, implementation,

interface and performance requirements. According to Gilb [45], functional requirements

are of less use when designing because "it is usually fairly self-evident what functional-

ity is required. It is actually the other categories that determine the choice of design".

Therefore, non-functional requirements are determinant during the design phase and con-

sequently, in the definition of the scheduling problem.

3.2 From Requirements to Scheduling Problems 42

Non-Functional Requirements

Several classifications of requirements can be found in the literature. The IEEE standard
830-1998 on Software Requirements Specification [6] sub-classifies non-functional (NF)

requirements into external interface, performance, attributes and design constraints, where

attributes are qualities such as reliability, availability, portability, maintainability, etc. It

is noted that requirements can have different levels of importance or stability because

typically not all requirements are equally important. "Some requirements may be essential,

especially for life-critical applications, while others may be desirable" [6]. Naturally, it

implies the existence of preferences to achieve more important requirements first with

respect to the least important ones.

In [44], it is noted that some requirements can be objective or subjective. When mea-

surable, the requirements can be expressed in a quantitative form that is precise, unam-
biguous and verifiable. Nevertheless, sometimes it is also wanted to state the requirements
in a qualitative form, as for example when stating achievement goals ("the system shall

achieve good performance"). Such goals can be verified only after deployment, or with
the help of prototypes such that stakeholders can subjectively judge whether or not the re-

quirement is fulfilled. Alternatively, they can be "verified indirectly by decomposing it or
by deriving metrics that (hopefully) are highly correlated with the given requirement" [44].

In general, NF requirements have some fundamental principles [45], [46], [44]:

" They are either quantitative or qualitative, and testable for presence in their imple-

mentation. If a requirement is quantitative, it is quantifiable in at least one scale of

measure.

" Some are binary (hard) and some are specified in a scale of measure (soft).

" They reflect objective and/or subjective importances.

" They can be in conflict with others for shared resources and therefore, priorities

must be assigned to resolve the conflicts.

" They change as the necessities, values and priorities change during the life cycle.

3.2 From Requirements to Scheduling Problems 43

In hard real-time systems, some quality requirements such as reliability and safety have

higher importance with respect to other requirements. Indeed, they must be considered as
hard, and they must be specified in a quantitative form to be precise, unambiguous and ver-
ifiable. Other quality requirements (e. g. portability and maintainability) and performance

requirements (e. g. throughput) can be considered secondary. These requirements could be

hard or soft, and could be expressed quantitatively or qualitatively. For example, consider

a requirement enunciated as a goal: "the system shall achieve good performance". It is a

soft requirement expressed in a qualitative form. It can be verified only after deployment,

or with the help of prototypes to judge whether or not the requirement is fulfilled [47].

Note that hard or soft requirements are not necessarily related directly to the concepts

of hard or soft real-time systems. For example, consider a requirement enunciated as: "the

system has to execute in the X, Y and Z hardware configurations" (e. g. a piece of software
for a mobile phone). It is a mandatory portability requirement which is satisfied or not

satisfied (i. e. hard) for a soft real-time system.

On summary, NF requirements form a multidimensional set of interrelated necessities

that vary with time. NF requirements must be conveyed throughout all stages of the life

cycle development; first to the design phase, after to the implementation and so on. At

some point of the design, the system is structured as concurrent tasks that posteriorly

will be scheduled. Thus, the formulation of the scheduling problem depends on how the

requirements are mapped to the design.

3.2.2 Design

Design refers to the process of defining the architecture, components and other character-

istics of a system intended to satisfy the requirements [43]. Design can be divided in two

stages:

" Architectural design. In this stage, the system is structured into its constituent com-

ponents. Choices are made about hardware and software. A systematic breakdown

of the system into smaller parts is performed and each part is described using a

method of documentation [3].

3.2 From Requirements to Scheduling Problems 44

bute Att

timuli 4

-+ Mode
normal

I- overload
Source

- clock interrupt
- internal event
- external event

Frequency
periodic 1::

aperiodic

Taxonomy for Performance

chitecture Parameters Responses

Resource -. Throughput

- CPU's avg/worst-case
- memory I- criticality
- RTOS

-. Latency
Consumption

-jitter
cpu time - avg/worst case

I- devices - criticality
Scheduling policy -. Precedence
T-

off-line partial/total order
- on-line

1::
criticality

- premption policy

Figure 3.1: Attribute Taxonomy for Performance

" Detailed design. This stage incorporates some crucial objectives such as structuring

the system in concurrent tasks, supporting the development of reusable components

through information hiding, and analysing the performance of the design to deter-

mine its real-time properties [3]. In this stage the scheduling problem is defined.

Naturally, the architecture and detailed design are not sequential activities but they can
be considered as coroutines. NF requirements are inputs for the architectural design. The

architectural design makes decisions that must satisfy the NF requirements, while it deals

with sensitive points (i. e. decisions that affect one of the requirements, if changed) and

tradeoff points (i. e. decisions that affect more than one requirement, if changed) [48].

In order to elicit architectural information relevant to NF requirements, taxonomies of

the requirements can be depicted. Figure 3.1 shows a modified version of a taxonomy

presented in [48]. A performance requirement is broken down into their attributes. Three

categories of attributes are identified:

9 Stimuli are the events that cause the architecture to respond or change.

. Architectural parameters are components that will affect a response.

" Responses are quantities measurable or observable related with the requirement.

3.2 From Requirements to Scheduling Problems 45

Requi ements Design--ý

Architecture Deltail
............... : Definition: : Attributes: Tasks

R1 o Attr.

R2 Attr.

Rn Attr. Rrf--

Ta

ý
Tb

Tc

--*Td

Tz

Figure 3.2: From Requirements to Tasks

Taxonomies are helpful to understand how the requirements can be mapped to the

tasks and other components during the detailed design stage. For instance, one aspect of

the response such as the latency (i. e. the length of time a task takes to respond to an event)
is a function of the stimuli (e. g. external events) and the architectural parameters (e. g.

cpu's, cpu time consumption).

Outcomes of the architectural design form the inputs for the detailed design. During

this phase, the system is structured as a set of concurrent tasks. Clearly, a single require-

ment can be mapped into one or more tasks (see Figure 3.2). A task is modelled according

to the architecture defined such that it achieves all or part of one or more requirements

when it completes; this achievement constitutes the benefit or utility that the task will give

to the system. Naturally, it is desirable that the benefit can be detected quantitatively but,

as it was argued in 3.2.1, some requirements are expressed qualitatively such that they can

only be verified after deployment or indirectly by correlated metrics.

3.2.3 The Scheduling Problem

Understandably, the tasks will provide the maximum benefit if sufficient resources exist.

However, these resources are normally scarce and the tasks must compete for them, re-

suiting in a scheduling problem. Problems where the optimality is expressed by a single

criterion are called single criterion problems. In a multicriteria scheduling problem the

optimality is expressed using two or more criteria.

Evidently, solving scheduling problems with multiple criteria is not simple. Some of

3.2 From Requirements to Scheduling Problems 46

the difficulties refer to the complexity involved in their solution and in the meaning of

optimality. The theory shows that a scheduling problem for an arbitrary set of periodic
tasks is NP-hard. Thus, adding a second criterion increases its complexity and hence, it

also is a NP-hard problem. On the other hand, maximising one criterion could decrease

the value of the other criteria in the problem. Scheduling solutions to problems where it

is not possible to increase the value of one objective without decreasing the value of the

other are called Pareto-Optimal solutions [2].

It is accepted [12] that when solving multicriteria problems, no simple algorithm can
be applied and instead, the use of a combination of approaches such as procedures based

on dispatching rules, branch and bound techniques, and local search techniques must be

implemented. With respect to optimality, if tradeoffs between criteria can be established,

optimal solutions can be defined. Otherwise, the concept of pareto-optimality has to be

applied.

In the scheduling literature, NF requirements are usually referred as QoS requirements.
In a problem where timing and QoS requirements must be satisfied, the scheduling mecha-

nism must optimize the QoS requirements without violating the timing constraints. During

the design, QoS requirements are mapped to the task set that constitute the system. This

mapping will be uniform if all task are responsible for achieving all QoS requirements.
Clearly it is not always true. Instead, individual tasks or subsets of tasks could be respon-

sible for achieving specific goals. In this context, QoS requirements can be considered as
local or global with respect to tasks. Consider the following examples:

Local QoS: Consider a control system composed by several tasks where a specific one

may implement the control algorithm. Control algorithms are sensitive to output
jitter (i. e. the variation in the inter-completion times of successive instances of

the same task). Its large variation could degrade the control performance or even

cause instability of the system affecting other QoS requirements such as efficiency,

reliability and even safety. Clearly, the scheduling algorithm must allocate more

resources to this highly important task.

Global QoS: Consider a preemptive priority-based system with maximum requirements

of performance. A timely but slow or inefficient system cannot be considered viable.

3.3 Types of Utility 47

Worst-case and best-case performance are reciprocally related to the worst-case and

best-case execution times [49]. The system influence the task execution time due

to the context switching. Context switching wastes processor time and disrupt task

execution affecting some performance attributes such as latency (i. e. the length of

time it takes to respond to an event) and throughput (i. e. the number of events

responses that have been completed over a given observation interval). Therefore,

a system with lower number of preemptions is more efficient than one with higher

number of preemptions.

3.2.4 Summary

The past sections have shown that NF requirements are a multidimensional set of interre-

lated requisites that must be fulfilled throughout all stages of the cycle development. Since

conflicts among requirements exist, tradeoffs must be allowed to help the designers with

their decisions. Assigning importances to the requirements is a mechanism to specify such

tradeoffs. NF requirements are usually referred as QoS requirements.

During the design phase, a system can be structured as a set of concurrent tasks where

a single task provides some benefit to the system when it achieves all or part of one or

more requirements. In real-time systems, the benefit is mainly measured with respect to

the timing requirements. However, it is clear that there exist a number of additional QoS

requirements that must be also fulfilled Moreover, QoS requirements can be local or

global with respect to tasks achievements.

Thus, while timeliness is defined as a function of deadlines, how to measure QoS is

still a matter of discussion and research. In real-time systems QoS is usually expressed in

terms of utility (or benefit or value). Different types of utility exist depending on how it is

defined and used.

3.3 Types of Utility

In real-time systems the concept of utility captures the importance of different tasks being

executed. This utility can be perceived in different ways depending on how the utility is

3.3 Types of Utility 48

defined or employed. In this sense, types of utility can be identified in terms of [50]:

9 the level of abstraction; (e. g. utility as a function of time or resources).

" the perspective from which the utility is perceived (e. g. task or user perspective).

3.3.1 Levels of Abstraction

Utility can refer to one of several different levels of abstraction, ranging from a low-level

view of the system in terms of tasks characteristics (e. g. deadlines) to a high-level view

of the system in terms of applications, user goals and resource allocations. The level of

abstraction influences how utility is defined. For instance, utility can be expressed as a
function of task completion time (task-level abstraction), as a function of resource alloca-
tion (resource-level abstraction), or as a function of the quality of the system observed by

the user (output-level abstraction) [50].

Task-Level Abstraction

At the task-level abstraction, utility is described by time-utility functions [31]. These func-

tions express the utility obtained by tasks when they complete at a particular distance from

their deadlines. In addition, utility can also be described by weakly-hard constraints [5].

These constraints express the task utility in terms of a level of tolerance for missing some
deadlines in specific patterns.

Resource-Level Abstraction

At the resource-level abstraction, utility is described by complex models where several

resources (e. g. processors, devices) have associated utility-functions. The utility can vary

with respect to time (i. e. utility increases/decreases with the time), or with respect to

the resources available (i. e. utility increases/decreases with the availability of resources).

Models described in [51] [52] [53] use this concept.

3.3 Types of Utility

Output-Level Abstraction

49

At the output-level abstraction, utility is described as a function of the output quality of
the system as observed by the user and/or the environment [50]. QoS metrics are defined

to indicate at which level of quality an application is executing. In addition, the imple-

mentation of different algorithms in an application may produce different output quality.
Thus, at the output-level abstraction, utility may not necessarily be a function of a QoS

metric but it may be a function of the system implementation.

For instance, in [13] two EDF-based scheduling algorithms for minimising jitter are

proposed. One has pseudo-polynomial complexity and provides better results than the

other one which has polynomial complexity. If high processing resources are available
to the application, the pseudo-polynomial algorithm can be used to obtain high output

quality; if medium processing resources are available the polynomial algorithm can be

used; otherwise EDF is a good option.

3.3.2 Levels of Perspective

Utility can refer to one of several different levels of perspective from which the utility is

perceived by tasks, applications or users [50]. The level of perspective influences how the

utility is employed. For instance, utility can be used as a priority for executing tasks (task

perspective), as a policy for assigning resources to applications (application perspective),

or as a measure of the necessities of users of a system (user perspective).

Task Perspective

Task perspective reflects the necessities of each task in an application. From this per-

spective, each task is greedy with respect to processor and other resources; the utility for

completing all or part of its computation is measured individually. For instance, utility can
be used to determine which task executes at any given time or which task can be admit-

ted or discarded to maximise the utility. Value-based scheduling theory is based on this

concept. In section 3.4, we describe this approach in more detail.

3.3 Types of Utility 50

Application Perspective

Application perspective reflects the necessities of applications in a system where each ap-

plication may be constituted by one or more tasks. From this perspective, applications are

greedy with respect to system resources; the utility is a function of the amount of resources

allocated to each application. In some real-time systems the utility is relatively fixed as
long as the timing deadlines are met, while in other systems the utility may increase or de-

crease according to the available resources. Changes in tasks may or may not modify the

utility perceived by the application. When dealing with applications, utility of individual

tasks could not be considered.

For instance, in [53] a complex approach for maximising overall system utility and

satisfying multi-resource constraints in the context of a phased-array radar system is de-

scribed. The idea is to maintain at run-time a complex model of QoS requirements that

includes utility-functions, weights and other data such that an algorithm can allocate re-

sources to tasks. The approach determines the resource settings of the tasks and attempts

to maximize the global utility. Afterwards, an admission control algorithm runs a schedu-
lability test. If the task set is not schedulable, the resources available to tasks are reduced

and the admission control algorithm is executed again. This iterative process runs until a
feasible task set is found.

User Perspective

The user perspective reflects the needs of users of the system. From this perspective,

utility is the degree of user satisfaction obtained when one or more applications are run-

ning. Naturally, different users have different perception levels and the perception can be

quantitative or qualitative.

When quantitative, the utility perceived can be verified by QoS metrics. Typical QoS

metrics that alter the user perception are latency, throughput, and jitter [54]. Other system

properties that also have influence on the quality perceived include preemptions, fault

tolerance, and energy consumption. When qualitative, the utility may be verified indirectly

by deriving metrics that are correlated with a particular requirement.

3.4 Dynamic-Priority Scheduling with QoS

3.3.3 Summary

51

The concept of utility varies depending of the level of abstraction and the perspective from

which it is perceived. Naturally, a system includes both types of utility in some degree.

Utility captures the importance of different activities such that when the resources are

scarce a scheduling algorithm can allocate greater resources to important tasks with the

objective of fulfill a set of QoS requirements. In general, this scheduling problem is NP-
Hard. In the literature a number of scheduling algorithms based on dynamic-priority and
fixed-priority paradigms with different tradeoffs between timeliness and QoS are found.

The next section reviews some of them.

3.4 Dynamic-Priority Scheduling with QoS

When dynamic-priority scheduling algorithms include QoS requirements, such that algo-

rithms trade-off timeliness against QoS at run-time. When deadlines must be guaranteed,

most of the algorithms are too complex to be implemented in real applications. Thus,

these algorithms are more oriented to soft real-time systems although their complexity is

still very high. In general, most of soft real-time systems use time-utility functions to

express the QoS.

Time-utility functions describe the utility obtained when a task completes; the utility

can remain static or can vary with the time [7]. Time-utility functions can be interpreted

as quality functions, reward functions, or penalty functions; such a function may either
be maximised or minimised depending on its definition. Metrics such as the utility ac-

crued (or value accrued) during a window of time are usually utilised. Thus, a scheduling

problem is formulated in terms of meeting the timing requirements and maximising the

utility [55]. Including timeliness and utility into the scheduling decisions is sought by the

value-based or reward-based schemes.

Under value-based schemes, a task has a function V (t) (t) that defines the value to the sys-

tem for completing the task at time t (see Figure 3.3). Value-based schemes are founded

in two approaches: the Value-Density Scheduling algorithm where the utility is used as

a priority and the Best-Effort algorithm where the utility is used as an admission policy.

3.4 Dynamic-Priority Scheduling with QoS

Utility Utility

,

time
RD

t Utty

t �z,

Utility

nIS

ne

I: ri : trjr (lri ýird't-`'tr p

Figure 3.3: Some utility-functions (source [56])

52

le

These two above schemes apply for sets of independent tasks which are preemptive, pe-

riodic or aperiodic, with worst-case computation time, deadline and V (t) known. These

schemes rely on the next observations [31]:

1. In non-overload conditions, if all deadlines can be met by some schedule, the EDF

algorithm meets all deadlines.

2. In overload conditions, a schedule organized in decreasing order by value-density,

produces a total value at each point in time that is at least as high as any other

schedule.

3. Most value functions have their highest value prior to the deadline.

Value-Density Scheduling Algorithm [57]: The Value-Density Scheduling (VDS)

algorithm executes tasks according to "the highest value-density, the highest the priority"

rule. The value-density is computed as V/C, where V is usually the maximum value

assigned to the task (e. g. V, a, x in figure 3.3) and C is the expected worst-case execution

time. Thus, a priority P= V/C is assigned to a task when it is submitted to the system

and the task with the highest priority is executed. The priority P remains fixed until task

completion. In [31] is showed that the performance of VDS varies depending on the value
function chosen but in general terms, it performs better than other scheduling algorithms

under overload situations, in addition to having low overhead.

The Best Effort Scheduling algorithm [57]: The Best Effort Scheduling (BES) al-

gorithm creates a sequence of the available tasks ordered by the EDF rule, which is then

sequentially checked for its probability of overload using a heuristic. At any point in the

sequence, where this overload probability passes a user-defined threshold, the task prior

3.4 Dynamic-Priority Scheduling with QoS 53

to the overload with the minimum value-density is removed from the sequence. The re-

moval process is repeated until the overload probability is reduced to acceptable levels.

This procedure finally results in a sequence of processes in EDF order that does not cause

an overload condition. Thus, BES achieves a high total utility under overload situations.
However, its biggest disadvantage lies in their lack of predictability and sub optimality

since it may discard tasks, which will be able to be scheduled under a clairvoyant al-

gorithm [58]. In addition, experimental results in [59] showed that executing the BES

algorithm on the same processor as application tasks may result in very large overheads

under overload conditions. For example, under a load of 200% or more, over 80% of the

processors time was spent in the scheduler deciding which task to run next [59].

In general, value-based schemes are oriented to enhance the system performance under

normal operating loads and to reduce any performance degradation due to overload con-
ditions [9]. Studies of the impact of different utility priority assignments have been pub-
lished in the context of overloaded systems [60] [9] and real-time systems databases [61].

Different algorithms that improve the original BES algorithm are presented in [62] [63];

some recent advances in all these topics are reviewed in [55].

When utility is a function of resource allocation, there are best-effort schemes with

complex admission policies designed to trade-off quality and timeliness at run-time. Mod-

els described in [51] [52] [53] assume a system with multiple concurrent applications each

operating at different levels of quality based on resources available. In the so-called QoS

negotiation model [64] [65], services must guarantee predictable performance under spec-
ified load and failure conditions, and ensure graceful degradation when these conditions

are violated. In [66] a best-effort scheme include energy savings objectives [66].

When utility is a function of output quality, the EDF algorithm provides good results

with respect to jitter, latency, and total number of preemptions [17]. However, the biggest

disadvantage of EDF is its lacks of predictability on some situations such as when a task

misses a deadline. In effect, when a task misses its deadline may cause all subsequent

tasks to miss their deadlines (i. e. the so-called domino effect) causing unpredictable output

quality results. Variations of the EDF algorithm specifically designed for reducing jitter

can be found in [13] [67] [14].

3.5 Fixed-Priority Scheduling with QoS 54

3.4.1 Discussion

Scheduling schemes based on utility functions have several drawbacks namely:

1. They are heuristics.

2. They do not guarantee hard timing constraints, beyond the special case when it is

reduced to a EDF scheduler.

3. There is not a methodology for the design of utility functions [8].

4. It is assumed, a priori, that arithmetic operations can be performed with the utility
functions, which it is not necessarily true [68].

5. They have higher overhead than fixed-priority based algorithms.

Drawbacks (1) and (2) have relegated utility-based scheduling into the domain of soft
dynamic-priority real time systems. Points (3) and (4) are related with the meaning of

value. Prasad et al. [68] have shown that the assignment and the use of values are not

separate issues but are linked. Any assignment of values must conform to a scale of mea-

surements and the scheduling scheme must be cognizant of the scale utilized to perform

only meaningful operations.

3.5 Fixed-Priority Scheduling with QoS

Fixed-priority scheduling algorithms that include QoS requirements meet timeliness and
fulfill QoS as a secondary objective. They guarantee hard deadlines and hence they are

oriented to hard real-time systems; since that the priority assignment is off-line, the run-

time costs are minimal. However, most of these algorithms require non-standard fixed-

priority run-time support. Consequently, most of them are not directly implementable in

standard fixed-priority systems.

In general terms, utility functions are not used in fixed-priority scheduling due to the

high complexity of computing a set fixed-priorities that fulfill deadlines and maximise the

sum of utilities.

3.5 Fixed-Priority Scheduling with QoS 55

When utility is a function of output quality perceived, there are some scheduling al-

gorithms in the literature. For example, in [69] a fixed-priority assignment algorithm
improves system fault resilience in fault-tolerant hard real-time systems. This approach is

very attractive because the fault resilience of task sets is maximized only with the adequate

priority assignment.

In [70], fixed-priorities are computed using a branch and bound algorithm with the ob-
jective of both meeting hard deadlines and minimising a function of the response time. The

task model assumes periodic tasks with a weight that models the importance of the task

in terms of worst-case response time. According to these weights, feasible fixed-priorities

are computed such that the mean weighted response time of the tasks is minimised. Un-

fortunately, the algorithm is inefficient; for instance, given a time limit of one hour for

finding a priority ordering, no solution was found for some sets with 18 tasks; moreover,

no solution at all was found for task sets with more than 28 tasks.

From the FPS perspective, solutions based on pure fixed-priority assignments (as in [69])

are ideal because they improve the QoS at zero cost for the implemented scheduling mech-

anism. Unfortunately, most of the approaches concentrate on increasing some QoS mea-

sure by modifying either the base scheduling mechanism or the task characteristics. For

instance, approaches for reducing the number of preemptions in FPS have been published

but such solutions introduce additional problems such as requiring non-standard runtime

support [71], or multiplying the number of tasks to be scheduled by at least a factor of

two [72]. Output jitter problems are dealt with using techniques such as designing special

purpose task models, using jitter compensation schemes in feedback controllers, optimis-

ing the selection of task attributes, or a mixture of all them [15] [14] [16]. In the energy

consumption problem, the use of energy must be bounded to guarantee stability and/or

extended the lifetime of a system. In this case, the system includes specialized hardware

(e. g. Dynamic Voltage Scaling processor [73] or I/O Device Power States [74]) and the

solutions are pairs (priority, power-state) such that at run-time both the priority and the

power-state are applied. A number of papers related to this problem have been published

and some solutions can be found in [75] and [76].

3.5 Fixed-Priority Scheduling with QoS 56

3.5.1 Discussion

Scheduling with QoS requirements has been extensively studied in the context of dynamic-

priority real-time systems. However, the solutions proposed are too complex to be imple-

mented in real applications. Moreover, the dynamic scheduling paradigm lacks support of

commercial real-time operating systems and programming languages.

In the context of fixed-priority scheduling, solutions have been proposed although

mostly relying on modifications to the FPS base scheduling mechanism or changes to

the task set characteristics. Therefore, such solutions cannot be implemented directly in

standard FPS systems.

In general terms, utility functions offer a generic paradigm for expressing QoS require-

ments. Unfortunately, they have not been included in FPS. Indeed, utility-based schedul-
ing is synonymous of dynamic scheduling in soft real-time systems.

We argue that utility functions have not been included in FPS because they are too

complex for analysis, and such complexity is an obstacle to formulate appropriately the

scheduling problem with deadlines and QoS requirements. This difficulty has been recog-

nized in other areas such as economics and game theory, where utility functions have been

used for several decades

" Economics: In economics, utility-functions assign numbers on a cardinal scale to

represent preferences of individuals (e. g. pleasure, happiness) toward goods [77].

This concept is called cardinal utility. Clearly, the difficulty is how to establish

the relation between object and subject. Another problem is that although com-

parisons between goods normally make sense, it is difficult to make comparison

between individuals. By contrast, modern theory starts with a preference ordering

as its primitive. This preference is an ordinal relation between any two bundles of

commodities that specifies which one the individual prefers. This concept is called

ordinal utility. The utility reflects the extent to which a thing or an action is preferred

to others [78] [79].

" Game Theory: In game theory, each point in the space of a decision can be mapped

to a payoff (utility) function. This limits its applicability to problems where the pay-

3.5 Fixed-Priority Scheduling with QoS 57

off functions can be mathematically defined for all players. Furthermore, in many

problems the main difficulty lies in the ability to formulate a model appropriate
for the payoff functions. Instead of calculating payoffs, in theory of ordinal games
the players may have preferences that can be expressed as a rank-ordering of the

various options available to them. Moreover, these preferences may be completely

subjective in nature rejecting certain biases or experiences [80].

In effect, although utility is conceptually simple, there are inherent difficulties (see

[68]) in defining an adequate utility-function for each task, that posteriorly has to be com-
bined with other ones to make a meaningful decision. Therefore, instead of attaching

a utility-function to each task, we may observe the problem defining ordinal preference

relationships among tasks to measure the QoS. These preferences are called importance

relationships.

Chapter 4

Importance

4.1 Introduction

In order to improve the QoS of a system, scheduling algorithms allocate larger resources

to the most important tasks. In real-time systems, the concept of importance among tasks

is usually defined in terms of utility functions that, although powerful, can be very difficult

to both derive and use.

In this chapter, we propose a different approach. We define importance in terms of

predilection for executing tasks in preference to other tasks in a system as well as predilec-

tion for executing tasks in specific orders. Thus, importance expresses that in a schedule it

is desirable to run a task or groups of tasks in preference to other ones without specifying

how much this preference would be. This concept is based on preferential statements of

the form

"it is more important to execute a than 0"

This model is more intuitive and less restrictive than approaches based on the concept of

utility. We define a QoS metric based on this concept and propose its use in the context of

fixed-priority scheduling in two specific levels of abstraction:

1. For improving QoS at task level by assigning higher priorities to higher importance

tasks while the deadlines are guaranteed. For instance, tasks sensitive to preemp-

58

4.2 Process Model 59

tions are assigned higher priorities than other ones if such an assignment guarantees
deadlines.

2. For improving QoS at application level by finding feasible priority assignments that
improve output quality. For instance, if it is known that a particular assignment

of priorities f is effective for reducing the total number of preemptions but such

an assignment is infeasible, then finding a feasible one P* similar to P not only

will guarantee the deadlines but also will potentially reduce the total number of

preemptions.

Thus, in the next sections we define importance among tasks and importance among

orderings of priorities. Afterwards, we define a metric to measure the importance and
formulate the scheduling problem with deadlines and importance. In addition, we also
define some scheduling problems with deadlines and a secondary QoS metric that can be

empirically correlated with the concept of importance such that solving a problem with
importance produce similar results as solving the problem with the corresponding QoS

metric. We present some examples to clarify this idea since solutions to these problems

will be proposed in the following chapters.

4.2 Process Model

We consider an extension of the traditional process model utilised in FPS, where a task

set must be scheduled on a single processor system. In order to increase the quality of

a system, we assume that tasks are characterized not only by a deadline but also by an

importance value.

The tuple (C, T, D, P, B, J, I) characterises a task j where C is the worst case com-

putation time, 7' is the period or the minimal inter-arrival time between two consecutive

releases, depending whether it is periodic or sporadic; D is the deadline of the task relative

to the actual release; the deadline is less than or equal to the period (D G T); P is the

priority of the task where 1 is the lowest priority; without loss of generality we assume

that two tasks do not share the same priority. The blocking factor B is the maximum inter-

ference that a task may suffer from lower priority tasks due to a sharing resource protocol

4.3 Tasks Orderings 60

such as the priority ceiling protocol. The release jitter J is the maximum elapsed time be-

tween the programmed initial release time and the real ready-to-run time, which is usually

zero for periodic tasks. The tasks are preemptive, they are released at time zero and they
do not suspend themselves.

Finally, I is a natural number which represents the importance of the task with regard
to the other tasks in the system. We assume that all I parameters are different and hence,

a task set can be totally ordered with respect to I. Moreover, I is a number in the range

of 1 to N where N is the number of tasks and therefore, it is used for indexing tasks in S.

Refer to section 4.5.1 for a further definition of importance and refer to section 4.5.3 for a
discussion about some issues when two tasks share the same importance.

4.3 Tasks Orderings

For a given task set S= {a, b, c.... }, an ordering on S with relation i ("precedes ") is

Sa = (a bc...) such that aabica.. .

For instance, given the relation D= "has a shorter deadline than ", and a task set
S= {a, b, c} with Da > Db > D., its ordering under this relation is SD = (c b a).
We use {} to denote a task set and () to denote an ordering. In general, Greek small
letters usually denote orderings or sub-orderings. Note that orderings can be indexed as a

vector. Following these conventions:

" For a given task set S, we denote S the set of all possible N! orderings of S, and
SF the set of all feasible orderings of S. Note that SF CS

" The ordering defines a priority assignment over the tasks such that

if (ab) then Pa>Pb

Therefore, an assignment of priorities and a priority ordering will be interchangeable

terms.

" SD is the ordering by DMPA (the deadline monotonic priority assignment).

4.4 Relative Importance Statements 61

" SI is the ordering with priorities assigned according to the rule "the higher the
importance, the higher the priority ". For instance, in a task set {a, b, c} with Ib >
I, > Ia, the ordering SI is (b c a). We will refer to SI as the highest importance

ordering.

" All orderings in S are organized as the ordering of dictionaries using the lexico-

graphic rule. For example, if the first task in an ordering a is more important than
the first task in an ordering 0 then oz will be more important than 0 and therefore,

a will precede 3 in the dictionary. In case of ties, the second task in both order-
ings will be compared, and so on. The operator >- is used to denote lexicographic

precedence between tasks as well as between orderings (see section 4.5).

4.4 Relative Importance Statements

In areas such as Economics and Game Theory it has been recognized that expressing
benefit with utility functions is too complex and it is not always possible to attach an

utility function to each individual. However, by defining ordinal relationships, similar

results can be achieved with the advantage that conceptually it is simpler.

One way for expressing benefit in terms of ordinal relationships is using preferential

statements. An example of preferential statement is "I prefer the value xo for variable X

if Y= yo and Z= zo". Such statements are used in, for example, Artificial Intelligence

applications for eliciting user preferences from a set of possible actions. The rationale is

that for making good decisions, it must be possible to assess and compare different alter-

natives. The alternatives are given by users that probably do not have time, the knowledge,

or the expertise required to specify complex multi-attribute utility functions. Therefore,

qualitative information should be obtained from users by simple preferential representa-

tion [81].

Observe that a preferential statement as stated above is not so simple. In fact, complex
frameworks as described in [82] are required to gather sets of preferential statements to

reduce required information to derive conclusions. However, there exists a class of simpler

preferential statements of the form

4.4 Relative Importance Statements

"it is more important to me that the value of X be higher than the value of Y";

these statements are called relative importance statements.

The simplest relative importance statements are the following [81]:

" relative importance: "X is more important than Y"

62

" conditional relative importance: "X is more important than Y if some conditions

are fulfilled"

In this chapter we will concentrate only in relative importance. We consider apart con-
ditional relative importance in chapter 6. Relative importance statements can also be inte-

grated in complex frameworks as in [81]; nevertheless they are more intuitive than general

preference statements. Relative importance statements could be used to express subjec-
tive preferences derived from qualitative analysis (i. e. based on opinions, behaviours or

experiences).

For instance, in some safety-critical real-time database applications, both timely ex-

ecution of transactions and data temporal consistency are important requirements. Un-

fortunately, preemptions produced by priority based scheduling may cause the data read
by the transactions to become temporally inconsistent by the time the data is used. Such

inconsistencies may compromise the application safety (i. e. its ability to keep operating
free of catastrophic consequences to the environment, equipment or people) and reliability
(i. e. its ability to keep operating according to its specification). Thus, assuming that a

task x implements a safety-critical transaction and a task y implements something else,
it is reasonable to elicit that safety and reliability will be jeopardized if x is preempted
frequently by y; the statement "executing x is more important than executing y" expresses

this as a QoS requirement without necessity of specifying how much safety or reliability

are compromised.

Thus, an alternative form of expressing QoS requirements is using these relative im-

portance statements. Instead of defining a utility function for each task, a simple ordinal

number representing the importance of a task will be defined. This number will identify

the relative importance of a task with respect to the relative importance of other tasks in

4.5 Defining Importance 63

the system. Moreover, different orderings by importance can be defined and compared fol-

lowing the lexicographic rule. This permits to define the relative importance of an ordering

with respect to other orderings. The next section defines these concepts.

4.5 Defining Importance

4.5.1 Task Importance

Definition (Relative Importance). Relative importance is a binary relation >- in a task set
S such that for any pair of tasks x and y,

"x >- y" is interpreted as "task x is more important than task y"

The relation >- has the following properties. For all x, y and z in S:

" It is not the case that x >- x (irreflexive).

9 If x >- y then it is not the case that y >- x (asymmetric).

" If x-y and y >- z then x >- z (transitive).

" Exactly one of x >- y or y-x is true.

Thus, the relative importance relation defines a strict total order on S. It permits to

compare any pair of tasks by importance and to assign a different natural number I to each

task such that the relation is preserved.

Definition 4.5.1 (Task Importance). Task importance is a natural number I such that for

any pair of tasks x and y, there exist task importance II and Iy respectively (with II Iy)

such that

if xr y=: ý, Ix>Iy

The number I expresses a preference for executing a task with respect to the other

tasks in the system. Thus, tasks can be compared and ordered totally according to their

relative importance.

4.5 Defining Importance 64

4.5.2 Index of Importance ZI

We note that by labeling tasks according to their importance, the set of A"! possible per-

mutations of S form a set S, which can be ordered lexicographically and indexed by

importance. For example, for a task set S3 = {a, b, c} where a is the most important and

c the least one such that IQ, > Ib > I, the 3! orderings in lexicographic order are:

S3 = {(abc) (acb) (bac) (bca) (cab) (cba)}

Note that the ordering arranged in order of importance (a b c) is the highest importance

one when compared with the other ones. The least important ordering is (c b a) because

it is contrary to the highest importance one. The rest of the orderings can be compared
following the lexicographic rule as follows:

Definition 4.5.2 (Lexicographic comparison of orderings). Let a and ,Q be two orderings
in S. We say that "a is more important than ,

Q" if comparing each element a[k] with 0[k],

starting from the leftmost to the rightmost, the first difference is in the kth task and the

importance of a[ls] is greater than the importance of, Q[k]. We denote it as a >- 0 and then

"a >- 0" is interpreted as "the ordering a is more important than the ordering 0"

In other words, if a >- /3 then we say that a precedes 0 lexicographically. This is

similar to comparing two strings.

Note that the operator - is used for comparing tasks as well as orderings. In addition,

observe that

" The lexicographic rule orders totally to (i. e. the set of N! orderings of S). For the

sake of simplicity, we will assume that is always ordered lexicographically.

" There exists a least element in S, which precedes the other orderings ones. This is

the task set S ordered in strict order of importance. We denote it as S'.

Consequently, ý is well-ordered and a function for indexing orderings in 5 can be

defined as follows:

4.5 Defining Importance 65

Definition 4.5.3 (Lexicographic Index). For all orderings in S, its lexicographic order
defines ZI :S-NU0 which is a function that indexes any element in S, such that
va, O ES

a >-ß Z* Zj(a) < ZI(ß)

Observe that the index of the highest importance ordering is zero (i. e. ZI(SI) = 0).
For instance, in S3 the orderings are compared as follows:

SI = (a b c) >- (a c b) (b a c) (b c a) (cab) (c b a)

and then

ZI((abc)) = 0, ZI((acb)) =1,... , ZI((cab)) =5

Thus, orderings can be identified unambiguously by its lexicographic index where the

ordering with index 0 is more important than the ordering with index 1 and so on. The
lexicographic index ranks all orderings with respect to the highest importance one, and
therefore:

Definition 4.5.4 (Index of Importance ZI). The lexicographic index defines an index of
importance ZI among all orderings in S.

The index of importance expresses a preference for executing a particular ordering

with respect to the other orderings in the set of possibilities S.

A significant property of the lexicographical order is that it preserves well-orders, that
is, the Cartesian product of two well-ordered sets is also a well-ordered set. Thus, the lex-

icographic order has been used in areas such as software engineering for ranking a set of

user requirements, or in artificial intelligence for ordering preferences in a system of rea-

soning. When different user requirements or preferences coexist, the lexicographic rule is

a way of combining them into a single lexicographic order [83]. This single lexicographic

order can be directly mapped to our model of importance.

Note that the index of importance is unique; i. e. Va, 0ES, a3= ZI (a) ZI (/3).

Thus, orderings can be compared and organized in unique levels of importance that reflects

a level of QoS where index 0 is the best and the quality decreases as the index increases.

4.5 Defining Importance 66

Index I,, > I6 > Ic
1 abc
2 acb
3 bac
4 bca
5 cab
6 cba

Index Ia, = I6 > Ic
I aac
2 aca
1 aac
2 aca
3 caa
3 caa

Table 4.1: When in {a, b, c} all tasks have different importance, there are 6 different in-
dices of importance; when a and b have the same importance, there are only 3 different
indexes

4.5.3 Tasks Equally Important

When in a task set the assignment of importance is unique each one of the N! priority

orderings in S is different. However, when at least two tasks have the same importance,

the orderings are not unique and can be divided into equivalent subsets that are totally

ordered.

For example, consider the set S3 and their permutations S3 (see Table 4.1). When

all tasks have different importance, each element in S3 maps to just one index of impor-

tance; however, when I,, = Ib the lexicographic order maps pairs of orderings to a single

importance index. This defines three equivalent subsets:

1. S3,1 ={ (a, b, c) ,
(b, a, c) }

2. S3,2 ={ (a, c, b)
,
(b, c, a) }

3. S3,3 ={ (c, a, b)
,
(c, b, a) }

Clearly the orderings in S3,1 are more important than the rest but it is undefined which

one is preferred. Note that if both orderings in 53,1 are feasible, an a posteriori conclusion

must be taken to decide which one is the more convenient. However if just one of them

is feasible, it is clear that it is preferred. If both are infeasible and the solution is in 53,2,

then it is necessary to test for schedulability both orderings in 1513,2 and perform the same

analysis as above. This process can be performed by exhaustive search enumerating all

feasible orderings in an equivalent subset.

4.6 Scheduling Problems 67

Thus, when some tasks have the same importance, S will not have a single highest

importance ordering SI but a set of highest importance ones {S, I. 1,2, ...
}. Which

Si, is the best one depends on the application.

Therefore, if a conflict exists for tasks equally important, its resolution is left at the

discretion of the system implementer.

4.6 Scheduling Problems

In the context of fixed-priority scheduling problems, a solution is a particular assignment

of priorities. In multicriteria fixed-priority scheduling, a single optimal solution that sat-
isfies all the criteria normally does not exist. Instead, a set of pareto-optimal solutions is

computed. A solution is pareto-optimal if it is not possible to improve such a solution

with respect to one criterion without affecting negatively on the other criteria. It implies

the need for making tradeoffs among criteria.

In hard real-time systems there is no tradeoff between timeliness and other QoS cri-

teria; meeting deadlines is mandatory and other criteria are considered secondary. In this

sense, all solutions in the pareto-optimal set have to be feasible. Consequently, tradeoffs

among QoS criteria can be done but only in the subset SF of feasible solutions (SF 9 S).

Recalling that a fixed-priority algorithm is optimal when it produces a feasible priority

assignment if a feasible one exists, we define optimality with respect to meeting deadlines

and meeting secondary criteria Z as follows:

Definition 4.6.1 (Z-optimality). An assignment of fixed priorities is Z-optimal if the as-

signment is feasible and maximises/minimises criteria Z in the set SF of feasible solutions.

With this definition of optimality, in the following sections we formulate several bicri-

teria scheduling problems where the objective is to find Z-optimal fixed-priority assign-

ments. Posteriorly in section 4.8 we show examples of how the concept of importance can

be applied to such bicriteria problems.

4.6 Scheduling Problems 68

4.6.1 Problem: Deadlines and Importance

In hard real-time systems meeting the timing constraints is fundamental while any impor-

tance requirement can be considered as a soft requirement. If a task set with priorities

assigned proportionally to task importance is feasible, then it is an optimal solution for

both hard deadlines and importance criteria. However, if it is infeasible, finding the order-
ing lexicographically closer to the highest importance one can be considered a Z-optimal

solution in the sense that there is not other feasible solution with higher importance.

For a task set S, let cx be a priority ordering in the set of all possible priority orderings
The relative importance of a with respect to S' (i. e. the ordering with the highest

importance) is given by its index of importance ZI (ci) (see definition 4.5.4).

Since Z-optimality is defined in the set SF of feasible orderings (definition 4.6.1), the

z, -optimal solution S* that maximises the importance in SF is defined as the minimum
index of importance as follows:

ZI(S*) = min {ZI(a)} (4.6.1)
VaESF

In other words, maximising the importance implies in finding the feasible ordering
lexicographically closest to S':

Scheduling Problem 1. Given a task set S and an ordering SI, to find S* which is an

ordering of fixed priorities that is feasible and is the closest one to SI.

4.6.2 Problem: Deadlines and Preemptions

In real-time systems, preemptions may cause undesired high processor utilization or even
infeasibility. Preemptions impact cache-related activities, database transactions and intro-

duce additional run-time overhead.

For a task set S and with respect to the schedule under a particular priority ordering a,
let P, (o) be the total number of preemptions of all instances of a task j in a fixed window

4.6 Scheduling Problems 69

of time. The Total Number of Preemptions of all tasks in ACS is defined as

P (a) =E Pi (a) (4.6.2)
VjEA

Observe that by defining the metric in a subset A and not in S, this metric can be used
for all tasks or for a subset of tasks. All the metrics in the following sections are defined

in the same way.

Thus, the P-optimal solution aP that minimises the total number of preemptions in the

set SF of feasible solutions is defined as

P(a') = min {fP(a)}
VaESF

Scheduling Problem 2. Given a task set S and ACS, to find a' which is an ordering of
fixed priorities that is feasible and minimises the total number of preemptions in A.

4.6.3 Problem: Deadlines and Absolute Output Jitter

It is known that in real-time control applications, the presence of jitter causes degradation

in control performance and may lead to instability of the controlled system. In multitask-
ing systems, scheduling algorithms introduce some forms of output jitter. Depending on

the application, systems can be sensitive to the absolute output jitter or the relative output
jitter or both.

For a task set S and with respect to the schedule under a particular priority ordering

a, let TAI"" and Ta" denote the minimum and maximum separation between successive

completions of a task j. The absolute output jitter is y3 (a) = max{Tý a" - Tj, T3 - Tim"'};

it measures the worst variation between successive completions of j under the schedule

generated by cr in a fixed window of time. The Absolute Output Jitter of all tasks in ACS

is defined to be the largest y; (a) as follows [13]:

y (a) = rnax{y (a) }
V3 EA

(4.6.3)

and the
-Y -optimal solution a' that minimises the absolute output jitter in the set SF- of

4.6 Scheduling Problems 70

feasible solutions is defined as

y (a') = min {y(a) } (4.6.4)
`daESF

Scheduling Problem 3. Given a task set S and ACS, to find a' which is an ordering of
fixed priorities that is feasible and minimises the absolute output jitter in A.

4.6.4 Problem: Deadlines and Relative Output Jitter

For a task set S and with respect to the schedule under a particular priority ordering a,
the relative output jitter of a task is yl (a) = y3 (a)/Tj. It is its absolute output jitter

measured as a fraction of its period during a fixed window of time. For instance, a schedule

with a relative output jitter of 20% guarantees that the variation of the output of j is in

[0.8Tj, 1.2Tj]. The Relative Output Jitter of all tasks in ACS under a particular priority

ordering a is defined to be the largest g(a) as follows [13]:

(cti) = max{Y, "1(a) }
VjEA

(4.6.5)

and the y mal-optimal solution a' m' that minimises the relative output jitter in the set SF

of feasible solutions is defined as

j` (a' mal)
= min {, "(oz) }

VaESF
(4.6.6)

Scheduling Problem 4. Given a task set S and ACS, to find a-"` which is an ordering

offixed-priorities that is feasible and minimises the relative output jitter in A.

4.6.5 Problem: Deadlines and Maximum Latency

The input-output latency is an important parameter in control systems. Assuming that a

control task gets inputs at the beginning of each instance and deliver outputs at the end,

minimising the latency improves the responsiveness of the system. Depending on the

application, the system may be sensitive to maximum latency, relative maximum latency

or both.

4.6 Scheduling Problems 71

For a task set S and with respect to the schedule under a particular priority ordering

a, the difference between the completion time and the beginning time of a task j is the

input-output latency (i. e. c3 - bj). Different instances k of the same task have different

latencies. Thus, lets define L, j (a) = max{ci, k - bj, k} as the maximum latency of different

instances of a task j in a fixed window of time and under the priority ordering a. The

Maximum Latency of all tasks in ACS is defined to be the largest Lj (a) as follows [17]:

L (a) = max{Lj (a) }
VjEA

(4.6.7)

and the L-optimal solution aL that minimises the maximum latency in the set SF of
feasible solutions is defined as

L(aL) = min {L(a)}

VaESF
(4.6.8)

Scheduling Problem 5. Given a task set S and ACS, to find aL which is an ordering

of fixed priorities that is feasible and minimises the maximum latency in A.

4.6.6 Problem: Deadlines and Relative Maximum Latency

For a task set S and with respect to the schedule under a particular priority ordering a, the

relative maximum latency of a task j in a fixed window of time is its maximum latency

divided by its worst-case computation time, i. e. L71(a) = Lj(a)/Cj. Thus, the relative

maximum latency measures the worst input-output latency of a task in proportion to its

computation time. The Relative Maximum Latency of all tasks in ACS is defined to be

the largest L1(a) as follows:

L ml (a) = max{Lý 1(a) }
VjEA

(4.6.9)

and the L rel -optimal solution a' 1 that minimises the relative maximum latency in the

set 5p, of feasible solutions is defined as

rel(a`rel) = min {LM'(a)}

VaESF
(4.6.10)

Scheduling Problem 6. Given a task set S and ACS, to find ci L'am` which is an ordering

offixed-priorities that is feasible and minimises the relative maximum latency in A.

4.6 Scheduling Problems 72

4.6.7 Problem: Deadlines and Average Response-Time

Improving the responsiveness of a system improves the quality perceived for its users.
At system level, reducing the response-time of a task implies to reduce the time between

the arrival and completion times; consequently tasks spend less time in the ready queue

accelerating the flow time and increasing the system performance. The responsiveness of

a task during a period of time can be measured by averaging the response-time of all its

instances.

For a task set S and with respect to the schedule under a particular priority ordering

a, the average response-time of a task j is the sum of all the response-times divided by its

number of releases, i. e. Rj(a) = Em ý1 Rj, k/M where R;, k is the response-time of the
kth release of j and M is the number of releases in a fixed window of time.

We define the relative average response-time as Rj (a)/Cj; it indicates how well a task

completes soon. For example, in our task model, all instances of the highest priority task

should complete at Cj (assuming no interference by low priority tasks) and therefore, its

relative average response-time is 1. The rest of tasks have values higher than 1; larger ratio

Rj (a)/Cj indicates that task j stays active on the system for longer time.

We define the Maximum Relative Average Response-Time as the maximum Rj (cr)/Cj

of all tasks in ACS:

R(a) = max{Rj(a)/Cj} (4.6.11)
VjEA

The i-optimal solution ozR that minimises the maximum relative average response-
time in the set SF of feasible solutions is defined as

R (aR) = min {R, (a) } (4.6.12)
VOESF

Scheduling Problem 7. Given a task set S and ACS, to find c which is an ordering of
fixed-priorities that is feasible and minimises the maximum relative average response-time
in A.

4.7 Representing Bicriteria Problems

N
N

Z2(a)

Z2(s)

Z2(w)

" l ti S S ons o u pace

(0: - =-
 .

................ .. ".. 7 .7..
4ý Z1(a) Z1((0) Z1(s) ZI

73

Figure 4.1: A Bicriteria Solution Space for a task set under criteria Z1 and Z2. Pareto-
optimal solutions are indicated by Greek small letters. The solution s is not pareto-optimal
because it is strictly dominated by at least another solution; e. g. Z1(w) < Z1(s) and
Z2(w) < Z2(s).

4.7 Representing Bicriteria Problems

Multicriteria scheduling problems are better understood when they are represented graphi-

cally. In effect, graphical representation of multicriteria problems assists both, to illustrate

the problem and to identify clues to solve it. When only two criteria are involved in a

scheduling problem, all pareto-optimal solutions can be represented in a Cartesian plane

such that all tradeoffs between criteria can be shown.

For example, lets assume that for a task set S two criteria Z1 and Z2 are defined

such that the optimum tends to zero. By evaluating all orderings in 5 using both criteria,

the space of possible solutions is obtained. This is illustrated in Figure 4.1 that shows

all tradeoffs between criteria. A point (Z1(a), Z2(a)) represents a particular priority

assignment a evaluated by both metrics. With respect to Z1, points {X, 6, E} at the left

side are the optimal solutions. With respect to Z2, the point {µ} is the optimal one.

The pareto-optimal set is formed by finding all the solutions not strictly dominated

4.7 Representing Bicriteria Problems 74

by other solution. A solution w strictly dominates a solution s, if Z1(w) < Z1(s) and
Z2(w) < Z2(s), this is, the solution w is better than s in both criteria. For instance,

in Figure 4.1, s is not pareto-optimal because it is dominated by w. Observe that w is

pareto optimal because it is no strictly dominated. In effect, with respect to Z1, t'ý is

dominated by the solutions at its left-side; for instance {a, X. J, c, 0} dominate w (i. e.
Z1(a) < Z1(w), Z1(x) < Z1(w), ... ,

Z1(0) < ZI(w)); however, all these solutions do

not dominate with respect to Z2 (i. e. Z2(a) 54 Z2(w), Z2(X) ' Z2(w), ... ,
Z2(0) 't

Z2(w)). Note that the single point that minimises simultaneously both criteria does not

exist.

Naturally, in order to represent a problem in this form, we need expressive metrics.
In this sense, the yes/no answer given by the feasibility test is useless. With the only

purpose of illustrating graphically bicriteria problems with deadlines, we introduced the

next metric.

4.7.1 Deadlines Metric

On FPS, any fixed-priority ordering a is feasible if and only if Rj < Dj ,VjEa.
Therefore, for all j in a we have

Ri < Di
R'

<1R. < max
Rý

<1 D.
7

where max{ D} corresponds to the task j with the tightest deadline in a. 1

Introducing

we are able to define:

Rj
ZD(a) = max `djEa Dj

Definition 4.7.1. An ordering a is feasible if ZD(a) <1 where

ZD(a) = max
Rj

(4.7.1)
VjEa Dj

4.8 Using Importance in Scheduling Problems 75

Note that, if ZD <1 the ordering a is feasible; otherwise it is infeasible. Furthermore,

when ZD =1 or very close to 1, it indicates at least one task finishes very close to its

deadline. This metric give us more expressiveness that a simple yes/no answer.

4.8 Using Importance in Scheduling Problems

In this section we present examples of how the model of importance introduced can be

applied to practical scheduling problems in real-time systems. For illustrative purposes,

we assume a hypothetical real-time system composed of a task set of 5 periodic tasks
(see Table 4.2). Observe that this set is biased in the sense that periods, deadlines and

computation times are monotonically correlated. However, this does not affect the purpose

of the example. In the evaluation chapter, we perform our experiments with unbiased task

sets.

4.8.1 Importance at Task Level

In order to illustrate the concept of importance in a problem, let us consider a hypotheti-

cal hard real-time system with several QoS requirements, which must be implemented in

a fixed-priority real-time operating system. The requirements are to reduce the relative

output jitter and to reduce the number of preemptions.

The system has five tasks. The tasks have deadlines less than or equal to their periods.
Table 4.2 shows the tasks set with their respective worst-case response times Rj, computed

with the response time analysis equation.

" Task a implements a control algorithm which is essential for the stability of the

system and consequently, it is highly sensitive to output jitter effects; the control

algorithm is also affected by the context switching caused by preemptions.

" Task b reads inputs from sensors and stores them in a database. The database repre-

sents the external environment and then, the data freshness is essential for reliability.
Task b is sensitive to preemptions because frequent interruptions in the middle of a

4.8 Using Importance in Scheduling Problems 76

T T D C R I R/D
e 100 80 13 13 1 0.16
d 240 240 37 50 2 0.21
c 330 330 55 118 3 0.36
b 350 350 56 174 4 0.50
a 480 400 68 292 5 0.73

Table 4.2: Task set S5 with importance values I. a is the highest importance task and e is
the lowest one. Note that is is feasible under DMPA.

transaction could cancel it. Since sometimes the sensor readings are used by the

control algorithm, task bis moderately sensitive to jitter.

9 Similar reasoning can be given to tasks c, d, e; for example, we can say task c is

moderately sensitive to preemptions, and task e is indifferent to both jitter and pre-

emptions effects. For the sake of simplicity, we omit additional description because

in this specific problem we are only interested in improving QoS for tasks a and b.

Firstly, the tasks will be rated by importance. Observe that, in terms of dependability

(i. e. the ability to deliver service that can justifiably be trusted [3]), the above description

suggests that tasks a and b are more important than tasks c, d, e and hence, la and Ib will

be greater than I, Id and Ie.

Afterwards we decide whether a is more important than b or vice versa. Lets assume

that reducing jitter is more important than reducing the number of preemptions for several

reasons; for example, we can say that output jitter jeopardizes some aspects of depend-

ability such as safety (i. e absence of catastrophic consequences on the users and/or the

environment), or reliability (i. e continuity of correct service). Under this reasoning, "a is

more important than b" and hence, we assign importance 1,, =5 and 'b =4 to tasks a

and b respectively. From the subset {c, d, e}, task c seems more important than both d and

c because c is sensitive to preemptions, and then I, = 3. Finally, task e is indifferent to

both jitter and preemptions effects and hence, we can assign the lowest importance to e

(i. e. I,, = 1). Consequently Id =2 (see Table 4.2).

In order to determine the best solution, we compute S5 (i. e. the 5! priority orderings

of task set S5) and simulate all the priority orderings (using the maximum C) during the

hyperperiod (184800 time units). During the simulation, the relative output jitter (y '11)

4.8 Using Importance in Scheduling Problems 77

Orderings S S S*
rel p 9re p , re ,p

task a 0.435 490 0.0 0 0.171 275
task b 0.3 514 0.19 55 0.0 0

Table 4.3: Relative output jitter (y rel) and total number of preemptions (P) for tasks a and
b obtained by the simulating of the orderings SD, S' and S* (smallest figures are better)

and the total number of preemptions (P) is registered for each task. The results of the

simulation will be analysed from the perspective of the Deadlines and Importance pro-
blem, the Deadlines and Preemptions problem and, the Deadlines and Relative Output

Jitter problem.

Importance vs Deadlines. Figure 4.2 shows the plot of all possible priority orderings

of task set S5. Points (X, y) are computed by enumerating all 120 priority orderings and

evaluating each ordering a in both the metric ZD and the index of importance ZI obtaining
(ZD (a), Zi(a)). Thus, a point indicates if a is feasible and which is the distance of a to the
highest importance ordering S'. In other words, the plot illustrate the space of solutions
for the Deadlines and Importance scheduling problem (see 4.6.1).

SD = (e dcb a) is the priority ordering by deadlines. This ordering is feasible and
hence, from the point of view of the timing constraints, it is satisfactory. However, both

tasks suffer jitter and high number of preemptions. Table 4.3 shows that for task a, yael =
0.435 and Pa = 490; for task b, yb e' = 0.3 and Pb = 514. From the point of view of the

QoS requirements, it is disappointing.

S' = (a bcd e) is the priority ordering by importance. From the point of view of the

QoS requirements, it is rather satisfactory because task a suffers zero jitter and preemp-

tions, and task b suffers low jitter and preemptions (see Table 4.3). Unfortunately SI is

infeasible because the task e misses its deadline. In effect, under S', Re is 229 and then,

De R. In terms of the metric ZD we have ZD(SI) = 229/80 = 2.86 54 1.

Performing exhaustive search over the set of all feasible priority assignments, it can be

shown that there are 32 feasible ones. Among them none assigns the highest or the second

one higher priority to a. However, there are four priority assignments where the highest

4.8 Using Importance in Scheduling Problems 78

U

O
G

ýa-t, -
bcdca'
bcdac
becda
bccad
bcadcý
beacJ
bdcca
bdcac
bdcca
bdcac
bdacc
bdacc
bccda
bccad
bcdca
bcdac
bcaed
bcade
bacdc
baccd
badec
badce
bacde /
bac

ww, va

SD
I

Vý

.IO decba

0 U

cedba
Qý%^ \

ý, bedca

öA

edcb
b

Representing the Deadlines and Importance Problem

i- Feasible -o Infeasible 01

-- 95

"i
----- -r -------------- ---------------- ----- --------- --------_:.. 71

".
-- - -------- -----47

---------------------- --------------- ------------------------- 23

n
te'

µvcuc i ----- _T V ,. -G

0.5 . 73
.
88 1 1.5 2

Zp Metric

2.5 2.86
00

Figure 4.2: Plotting all priority orderings of task set S5. S' is infeasible (ZD(SI) _
229/80 = 2.86). SD is feasible but has low importance index (ZI(SD) = 119). The
ZI-optimal solution is S* = (be ad c) located in (ZD(S*), ZI(S*)) _ (0-88,43)

priority is assigned to b:

SI = (abcde) >- ...
(beadc) >- (becda) >- (bedac) >- (bedca) >- ...

SD

Note that (b ead c) is the lexicographically closest one to S'; thus, S* = (b ead e).
Therefore, this priority ordering is the ZI-optimal solution for the scheduling problem

with deadlines and importance. This solution is represented graphically in Figure 4.2; it

corresponds to the point (ZD(S*), ZI(S*)) = (0.88,43).

In Figure 4.2, S' is infeasible but it is the solution with the highest importance. The

DMPA solution SD is feasible but its index of importance is 119, which is the worst. This

example is an extreme case where SI is completely opposite to SD. The Zj-optimal is

S* = (b ead c) which has the highest importance in the set of feasible solutions.

By observing Table 4.3, we note that S* is not only the Zi-optimal solution with re-

spect to the deadlines and importance problem but also it is a good solution with respect
to minimising the total number of preemptions and the relative output jitter for tasks a and

4.8 Using Importance in Scheduling Problems 79

b. Thus, it seems clear that only with raising priorities of important tasks, QoS improve-

ments are achieved. It can be illustrated by plotting the QoS metrics with respect to the
ZD metric for all priority orderings.

Preemptions vs Deadlines. In Figure 4.3(a), for each priority ordering a, a point
(ZD(a), P(a)) is evaluated. With respect to ZD all tasks are included to determine if the

ordering is feasible. With respect to P only tasks in the subset {a, b} are included. For

instance, the metric for preemptions under S* give us

P (S*) = -'Pa
(S*) + Pb(S*) = 275 +0= 275

In Figure 4.3(a), the ordering S* = (b ead c) is shown and corresponds to the P-optimal

solution. In effect, the ZI-optimal solution is also the P-optimal solution. Moreover,

the ordering (b eac d) is also P-optimal because it also produces 275 preemptions. In

fact many solutions are overlapped indicating equivalent solutions for different priority

orderings.

Relative Output Jitter vs Deadlines. In Figure 4.3(b), for each priority ordering a,

a point (ZD (a), y'el (a)) is evaluated. As above, with respect to ZD all tasks are included

to determine if the ordering is feasible. With respect to., ?l only tasks in the subset {a, b}

are included. For instance, the metric for relative output jitter under S* give us

7ml(S*) =Yä, (S*)+-7171 (S*) =0.171 0=0.171

In Figure 4.3(b), the y mal-optimal solution is indicated and corresponds to four different

orderings: (e dba c), (e bda c), (d eba c), (b eda c). Note that S* is very close to the

y mal-optimal. As above, many solutions are overlapped indicating equivalent solutions for

different priority orderings.

Therefore, a solution for the problem where a subset of tasks has different QoS require-

ments is obtained by assigning higher importance to this subset and solving the scheduling

problem with deadlines and importance.

4.8 Using Importance in Scheduling Problems

1100

1000

900

800
0

700

600

500

0
z 400
E
[12 300

200

l00

0

Total Number of Preemptions of All Priority Orderings of S5 -- Tasks {a, b }

0.5

0.7

0.6

0.5

12

0.4
lu

ý= 0.3

0.2

0.1 L-
0.5

3 1 1.5 2 2.5
Zp Metric

(a) The P-optimal solution is indicated and it coincides with S*
Relative Output Jitter of All Priority Orderings of S5 -- Tasks {a, b}

1 1.5 2 2.5
ZD Metric

(b) The y "'-optimal solution is indicated and it is close to S*

3

80

Figure 4.3: Total Number of Preemptions and Relative Output Jitter of subset {a, b} c
S5 computed during its hyperperiod for all 5! priority orderings. The P-optimal and
y 'l-optimal solutions are indicated.

4.8 Using Importance in Scheduling Problems 81

PA Priority Assignment Rule
I IT the shorter the period, the higher the priority
I /C the shorter the computation time, the higher the priority
LT the larger the period, the higher the priority
LC the larger the computation time, the higher the priority
T/C the larger the ratio T/C, the higher the priority
C/T the larger the ratio C/T, the higher the priority

Table 4.4: Simple rules for assigning priorities. For example, under the rule 1/C, priorities
assigned to tasks are inversely proportional to the length of C. Its contrary is LC, where
priorities assigned to tasks are proportional to the length of C

4.8.2 Importance at Application Level

Observe that in the above example, QoS requirements of individual tasks can be achieved
by raising priorities. However, when the objective is to maximise/minimise a QoS metric

which include to all tasks, individual requirements are less important than the QoS met-

ric. In fact, raising the priority of a particular task could impact negatively on other tasks

reducing the total benefit. Therefore, assigning importance based on individual task pref-

erences is ineffective; the assignment of importance must be based on global application

requirements.

Consider the problem of minimising the total number of preemptions. Note that at

any particular priority, a task with larger C has greater probability of being preempted
frequently (by higher priority tasks) than a task with lower C; but also it can be noted that

tasks with short periods and high priorities produce frequent interruptions to low priority

tasks. Consequently, it does make sense to assign priorities to tasks in proportion of larger

C or T, or functions that combine both parameters with the objective of provide some kind

of improvements for this particular problem. Based on this idea, Table 4.4 shows some

simple rules for assigning priorities. For instance, the rule 1/T is the Rate Monotonic

Priority Assignment algorithm, while the rule LT is its contrary; i. e. under the rule LT, the

task with the largest period gets the highest priority and the task with the shortest period

gets the lowest priority.

In order to observe the effect of assigning fixed-priorities with those rules, we perform

an experiment considering the task set S5 and the problem of minimising the total number

of preemptions. We perform the experiment by computing the 5! priority orderings of S5

4.8 Using Importance in Scheduling Problems

Total Number of Preemptions of All Priority Orderings of S5- All Tasks Included

1800

1600

1400

a E
0

1200

E 1000

800

600

Ann

feasible infeasible
1/C
DM

o
®oo

/C
o0 EDF 000

o
o

0
P-optimal 80

00
00 o_

o

LT
LC

C/I

0.5 1 1.5 2 2.5 3

ZD Metric

82

Figure 4.4: Total Number of Preemptions computed during the hyperperiod for all 5!
priority orderings of S5. The P-optimal solution is indicated. The results of some simple
rules for assigning priorities are also illustrated as well as the result of simulating S5 under
EDF

and simulating all the priority orderings during the hyperperiod. In addition, for compar-

ative purpose we simulate the task set under the EDF scheduling algorithm. During the

simulation, the total number of preemptions is registered for all tasks. The results of the

experiment are shown in Figure 4.4. Several points are overlapped indicating equivalent

solutions for different priority orderings.

Preemptions vs Deadlines. In Figure 4.4, a point (ZD(oz), p(a)) is evaluated for

each priority ordering a. Both metrics ZD and P are applied to all tasks in the system.

There is just one P-optimal solution and this corresponds to (c eba d); its total number of

preemptions is 1178. The priority orderings of the rules in Table 4.4 are indicated in the

plot. Observe that for this particular task set:

9 The worst solution is DMPA (1606 preemptions).

" Due to the biased task set, the rules 1 /T, 1 /C and DMPA produce the same priority

ordering; it also applies for the rules LT and LC.

" When comparing against DMPA, there exist a number of feasible priority orderings

with better performance with respect to the total number of preemptions.

4.8 Using Importance in Scheduling Problems 83

" Rules for assigning priorities may produce excellent results with respect to minimis-
ing preemptions (e. g. LC, C/T) but unfortunately they do not guarantee deadlines.

" Some of these simple rules can be good heuristics for this scheduling problem. For

example rule T/C is feasible and is better than DMPA.

" As expected, EDF (1380 preemptions) is better than DMPA . However, a number of
fixed-priority orderings are better than EDF.

Clearly, the problem of finding the T-optimal solution is NP-hard. Nevertheless, in

the context of our model of importance heuristics can be proposed to approximate such a

solution.

Assigning Importance by Heuristics

In our model of importance, we assume that a higher importance ordering exists and con-

sequently, it is the objective to be achieved. We also assume that the index of importance of

a particular priority ordering reflects a QoS requirement. Thus, in order to apply our model
to a particular QoS metric, such metric should have a structure similar to the importance

model; i. e. there should exist a priority ordering S' which should be the one that max-
imises/minimises the metric, and the rest of the priority orderings should decrease/increase

the values of the metric following the lexicographic order. In general, finding a QoS metric

conforming these assumptions is unrealistic.

Nevertheless, we do some experiments which show that in some cases good approx-
imations to these assumptions can be achieved depending on how the S' ordering is se-
lected. For instance, continuing with the above example, we follow the next steps:

1. A priority ordering is nominated as the most important with respect to the preemp-

tions metric, and then importance is assigned to tasks according to this ordering.
This will be the S' ordering.

2. The scheduling problem with deadlines and importance is solved; i. e. the ZI-optimal

solution S* is found.

4.8 Using Importance in Scheduling Problems 84

3. The scheduling problem with deadlines and preemptions metric is solved by simu-
lation; i. e. the P-optimal solution is found by simulating the N! orderings.

4. Finally, the goodness of the approach is measured comparing how far is ZI-optimal

from P -optimal with respect to the total number of preemptions.

In Figure 4.4, note that there exist some priority orderings that achieve the minimum

number of preemptions; one of such orderings is a logical candidate to be S'. However,

since we do not know how to find it we will use the orderings obtained by the rules LC

and C/T as heuristics for approximating them.

Rule LC as the assignment of importance. We assign importance to tasks according
to the rule LC and nominate it as the highest importance ordering; i. e. S' = (a bcd e).
The ZI-optimal solution S* is computed by testing the feasibility of the priority orderings
following the lexicographic order starting from S' until the first feasible ordering is found.

It is illustrated in Figure 4.5.

Priority Orderings In Lexicographic Order Starting From Rule LC

U
.ý

N

N

=S

ZD Metric

Figure 4.5: All priority assignments of set S5 ordered lexicographically starting from the
ordering (a bcd e) (i. e. the LC rule). Lines illustrate that following the lexicographic order
the first feasible ordering found is the optimal S*.

Observe that the lines connect the orderings following the lexicographic order; if we

start from the point SI and follow the lines, the first feasible ordering is S* = (b ead e).
By simulating S* on its hyperperiod, we compute 1189 preemptions. On the other hand,

0.5
.
73

.
88 1 1.5 2 2.5 2.86 3

4.8 Using Importance in Scheduling Problems 85

the P-optimal solution is computed by simulating all the priority orderings of S;; on its

hyperperiod. The P-optimal solution corresponds to the ordering (be da c) with 1178

preemptions.

Thus, the ZI-optimal solution S* is the lexicographically closest solution to SI but it

is not the P-optimal solution. However it is very close and therefore we can conjecture

that solving the deadlines and importance scheduling problem with importance assigned
by the rule LC is a good heuristic for the deadlines and preemptions scheduling problem.

Finally, note that Figure 4.5 and Figure 4.2 contain the same points. This is because

the ordering SI is the same in both examples. In effect, the task set S5 ordered by the rule

LC is (a bcd e), which coincides with the assignment of importance in Table 4.2. This

permits to enumerate the lexicographic order easily by using the tasks identifiers (i. e. a, b,

c, ..., etc). However, in the following experiment the ordering SI is rather different and

then we will identify the orderings by labeling tasks with the importance values.

Rule C/T as the assignment of importance. We repeat the above experiment but

assigning importance according to the rule C/T; i. e. S' = (c bda e). Note that it is more
difficult to enumerate the lexicographic order starting from this ordering; for example,

the four orderings with higher index of importance are S' = (c bda e) >- (c bde a) >-
(c bad e) >- (c bae d). For this reason, we will label the orderings with their importance

values. Since SI = (c bda e), importance is assigned as follows: I, = 5, Ib = 4, Id = 3,

Ia = 2, Ie = 1. Thus, the four orderings with higher index of importance are SI =
(54321) >- (54312) >- (54231) >- (54213).

The ZI-optimal solution is computed as above and then S* = (c ebd a) = (514 3 2).

By simulating S* on its hyperperiod, we compute 1278 preemptions. On the other hand,

the P-optimal solution is (b eda c) = (413 2 5) with 1178 preemptions. In Figure 4.6, we

can see that S* has moved away from P-optimal. It indicates that the heuristic LC (1189

preemptions) was better than C/T in this particular scenario.

Thus, we conjecture that a heuristic for solving the deadlines and preemption pro-
blem may be obtained by assigning importance according to the LC rule and solving the

scheduling problem with deadlines and importance. In chapter 7, we perform experiments

with a number of task sots that confirm this observation.

4.8 Using Importance in Scheduling Problems

Priority Orderings In Lexicographic Order Starting From Rule C/I

1234.

2134

3124

4123
4132

5123

5143

5432

Z. Metric

U

V

N

= S'

86

Figure 4.6: All priority assignments of set S5 ordered lexicographically starting from the
ordering (c bda e) labelled as (5 43 21) (i. e. the C/T rule). S* _ (c ebd a) = (514 3 2)
and the P-optimal is (b eda c) = (413 2 5)

4.8.3 Summary

In these examples, we show that there exist feasible priority orderings that are Z-optimal

at task level as well as at application level. For small tasks sets, these solutions can be

found by simulating the N! priority orderings. Naturally, it is not a viable solution for

many practical problems. Finding P-optimal or y "-optimal solutions seem to be NP-hard

scheduling problems.

The examples also show that the concept of importance can be correlated with these

two QoS metrics such that solving the problem with importance produce similar results

as solving the problem with the QoS metrics. While in the above examples, the deadlines

and importance problem was solved by exhaustive search, in chapter 5 we will show that

it can be solved in pseudo-polynomial time by the DI algorithm. By this way, we propose

a tractable approach for some NP-hard problems.

" At the task level, we propose to raise the priorities of tasks with a specific QoS

metric by assigning higher importance to such tasks and solving the deadline and
importance problem.

9 At the application level we propose to use heuristics for determining a priority or-

0.5
.
73

.
88 1 1.5 2 2.5 2.86 3

4.8 Using Importance in Scheduling Problems 87

dering that solves a problem with a specific QoS metric. This ordering is used as

an assignment of importance and then solving the deadline and importance problem

will produce a feasible solution similar to the infeasible one.

Both these approaches are explored in chapter 7, where we will evaluate some heuris-

tics for assigning importance and we will evaluate the DI algorithm with such heuristics
for solving the scheduling problems defined in this chapter.

Chapter 5

Fixed-Priority Scheduling with
Deadlines and Importance:
The DI Algorithm

5.1 Introduction

In this chapter we present the DI algorithm that solves the scheduling problem defined in

section 4.6.1 (page 68): Given a task set S and an ordering S', to find S* which is an

ordering of fixed priorities that is feasible and is the closest one to S'.

Roughly speaking, the idea of the DI algorithm consists on starting from the ordering
by importance S' and then checking its schedulability. As the system may not be feasible,

go to the next importance ordering (maintaining the minimal lexicographic distance) by

swapping tasks and check for schedulability again. Keep on this process until the system
is made schedulable or at least the deadline monotonic ordering is reached.

Note that this process is similar to the swapping algorithm. However, assuming that an

ordering is represented as a vector where the leftmost task is the most important and the

rightmost is the least important one, the swapping algorithm swaps tasks on right-to-left

order stopping when a feasible ordering is found. On the other hand, the DI algorithm

swaps tasks on left-to-right order following the lexicographic order and keeping the mini-

mal distance to SI.

88

5.2 Process Model

5.2 Process Model

We use the model described in section 4.2 with the following additional notations:

89

" Any ordering (a bc... jk... xy z) can be represented as (O w) where the prefix 0

is (a bc... j) and the suffix w is (k
... xy z). The meta-ordering (0 *) denotes all

the orderings in S starting with prefix 0.

" For any ACS, 6(A) is an ordering with priorities assigned according to the Dead-
line Monotonic Priority Assignment where the function 6 orders A according to

the relation "has a shorter deadline than ". SD is the ordering by DMPA; i. e.
SD = 6(S).

" For aES, the function -T(a) returns true when a is feasible, i. e. the ordering a
passes the FPS schedulability test; otherwise returns false.

5.3 Problem Description

Consider the example presented in section 4.8.1 (page 75) where a hypothetical system

with several QoS requirements must be implemented. The space of all possible fixed-

priority orderings for the task set S5 is plotted in Figure 5.1. It shows all 5! = 120 priority

orderings of S5 plotted with ZD and ZI metrics.

Observe that SD is feasible but it has low index of importance. S' is infeasible since
task e has a response time of 229 but a deadline of 80 and therefore it is not schedulable.
The ZI-optimal solution S* = (b ead c) has an index of importance of 44. Figure 5.2

shows the response time for these priority assignments.

We observe that an approach for solving this problem consists on utilising the Swap-

ping algorithm. The Swapping algorithm works receiving an infeasible priority ordering

and finding a feasible one (if it exists) by swapping pairs of tasks on right-to-left order and
stopping when a feasible ordering is found. In our example, the swapping algorithm will
receive the infeasible ordering by importance SI = (a bcd e).

5.3 Problem Description

*- Feasible --N Infeasible

edcba /.: 119

S'

decba S -' ... --...... 95

'd i, '. "' bLy,

...... 71 v cedba -

o bedca ;..; q7 o

Saedcb
........ %.. 23

" S'

abcde 0

0.5 1 1.5 2 2.5

4 Metric

90

Figure 5.1: Plotting all priority orderings of S5. S' is not feasible. S' is feasible but
has low importance metric. SA is the Swapping algorithm. The optimal bicriteria S* is
(be ade)

Task set S5

T T D C I
e 100 80 13 1
d 240 240 37 2
c 330 330 55 3
b 350 350 56 4
a 480 400 68 5

SL) s s
T R T R T R
e 13 a 68 e 13
d 50 b 124 a 81
c 118 c 179 b 150
b 174 d 216 d 187
a 292 e 229 c 292

Optimal S*
T R
b 56
e 69
a 150
d 187
c 292

Figure 5.2: Task set S5 and priority orderings SD (DMPA), S' (Importance), SA (swap-
ping algorithm with S' as input), and the optimal S*. The lexicographic order is SI >-
. S* . SA SD

5.3 Problem Description 91

Sequence R Feasible next swap
testing e: abcde 229 NO = de
testing d: abced 255 NO cHd
testing c: abdec 292 YES fix c
testing e: abdec 174 NO eHd
testing d: abedc 187 YES fix d
testing e: abedc 137 NO = be
testing b: aebdc 150 YES = fix b
testing e: aebdc 81 NO = aHe
testing a: eabdc 81 YES fix a
testing e: eabdc 13 YES fix e

Table 5.1: Executing the swapping algorithm with input S' = (a bcd e). The result is the
ordering SA = (e abd c)

The sequence of steps executed by the swapping algorithm is depicted in Table 5.1.

The algorithm finds SA = (e abd c) , which is a feasible solution but it is far from the

optimal one. This is no surprising because it was not developed for this specific problem.
However, it could be the case that the swapping algorithm could find a good approxima-
tion to the optimal and therefore it may be considered as a heuristic for the deadline and
importance problem.

We can figure out a solution for finding S* looking carefully at Figure 5.3; it contains

the same data as Figure 5.1 but the points are connected successively following the lex-

icographic order. Note that there are groups of either feasible or near feasible orderings
(enclosed by a circle) distributed around the indices 23,47,71,95 and 119. In addition

note on the left side, which orderings correspond to such points. The index 23 corresponds

to (a edc b) where (a) is the most important task plus a suffix (e dc b) ordered by DMPA.

The index 47 is (b edc a) where (b) is the second most important task plus a suffix ordered
by DMPA. The rest have the same pattern: a prefix 0 plus a suffix w ordered by DMPA.

Our algorithm uses this pattern to reduce the search space.

5.4 Solving the Deadlines and Importance Problem

ii-- Feasible -olio Infeasible

e dcba
v DMPA

d ecba
DV

A
73
0

c edba
D-v

b edca
iG DMPA

a edcb v DM PA

abcde I-

0.5

Zo Metric

119

95

b
r-

71

än'
47

23

0

92

Figure 5.3: Similar to Figure 5.1 but the priority orderings are connected according to their
lexicographic order. Circles enclose groups of either feasible or near feasible orderings
distributed around the indices 23,47,71,95 and 119. The orderings corresponding to
these indices have a similar pattern: a task plus a suffix ordered by DMPA.

5.4 Solving the Deadlines and Importance Problem

This section is divided in two parts:

1. In the first one we will show how the set 5 of all possible priority assignments can
be organized into a tree, and how whole subtrees can be skipped by identifying some
local minimums.

2. In the second one, we present the algorithm DI, which performs a branch and bound

search into the tree defined. In the worst-case it performs N22 N steps to find the

solution. The algorithm is described and its optimality is proved.

5.4.1 Organizing the Search Space

The search space consists of the set of all possible priority orderings S ordered lexico-

graphically and organized as a tree. The root of the tree is S' = (a bc... z). The im-

1 1.5 2 2.5

5.4 Solving the Deadlines and Importance Problem 93

mediate sons of this tree are the N subtrees (a *), (b *), (c *), ... ,
(z *) ordered lexico-

graphically. Each one of these subtrees has N -1 sub-subtrees where each one has N-2

ones and so on. For example, (a *) has (a b *), (a c *), (a d *), ... ,
(a z *). Therefore,

any subtree can be represented as (ý *). A vertex is represented as (0 w).

The reason for organizing the space into subtrees with this configuration comes from

an interesting property related with the optimality of DMPA and the generality of the FPS

test:

" First, DMPA is optimal in the sense that if a set is schedulable by any fixed-priority

ordering then it also is schedulable under DMPA.

" Second, the FPS test is necessary and sufficient and it is independent of the assign-

ment of priorities.

Consider an ordering SI = (a bc d) and an ordering SD = (d cb a). Suppose that we

apply the FPS test to SI and we find that SI is feasible. The optimality of DMPA indicates

that it is not necessary to apply the test to SD because if SI is feasible then SD is also
feasible; but the contrary is not true, if SD is feasible we cannot assure anything about the
feasibility of SI or any other combination. However we can affirm that if SD is infeasible

then any ordering of these four tasks will also be infeasible.

Now, consider that we extend S' with an arbitrary task such that we have an ordering
(x dcb a) (remember that (d cb a) is ordered by DMPA) and we apply the FPS test. If
(x dcb a) is feasible, then there are some orderings in (x *) that are feasible. However, if

(x dcb a) is infeasible we can affirm that no ordering in (x *) is feasible.

Note that (: c dcb a) consists of a prefix (x) and a suffix (d cb a) which is ordered
by DMPA. This can be denoted as a vertex (0 b(w)) where 0 and w are arbitrary sub-

orderings and 6 is a function that re-order w according to DMPA. Using this notation, the

next theorem resumes the above observations.

Theorem 5.4.1 (Prefix Theorem). If the ordering (0 b(w)) is infeasible then any ordering
in (0 *) is also infeasible.

5.4 Solving the Deadlines and Importance Problem 94

Proof. By contradiction, suppose that there exist a feasible ordering S' in (q5 *), which is

not (0 8(w)) because it is infeasible.

Thus, S' = (0 w) is feasible and S6 = (0 8(w)) is infeasible. Both orderings share the

same prefix 0 and differ only by the suffix.

Note that if w is empty or has only one task then w= b(w) and hence S' = Sb.
Consequently, Sb is feasible and this contradicts the hypothesis. Otherwise, the feasibility

of S' and the infeasibility S6 depend only on the order of tasks in w; all tasks in 0 are not
affected by any change in w.

The proof of optimality of DMPA and the proof of optimality of DMPA in the pres-
ence of blocking with resources managed under the priority ceiling protocol shows us
that, because S' is feasible, exchanging any pair of tasks (in w) non-ordered by shorter
deadline give us a feasible ordering S". Following the same process we obtain orderings
S", S"",

... ,
Sn which are also feasible. The last one is Sn with its w ordered by DMPA.

S" is identical to Sa and therefore S6 is feasible. This contradicts the hypothesis and
concludes the proof Q

Thus, we can know if all the orderings in (0 *) are infeasible by testing just one of
them, the one with w ordered by DMPA, i. e. (0 S(w)). In addition, this theorem produces
the next corollary that will be used to prove the optimality of the algorithm proposed.

Corollary 5.4.2. If an ordering (0 w) is feasible then (0 8(c. ß)) is also feasible.

The Prefix theorem 5.4.1 affirms that in a tree search, we can discard a whole subtree
if its root is infeasible; otherwise we need to look inside it. This process is applied re-
cursively to each subtree performing, by this way, a branch and bound search but only on
specific nodes.

5.4.2 The Algorithm DI

The algorithm DI (Deadline & Importance) examines the root of subtrees in lexicographic

order from the closest to S' to the remotest one and from the top to the bottom. There are
two preconditions that must be fulfilled:

5.4 Solving the Deadlines and Importance Problem 95

" The ordering SD must be feasible; otherwise no feasible solution exists.

" The ordering SI must be infeasible; otherwise we do not need to perform a search

because S' is the solution.

The next variables are used:

"0 is a vector of tasks representing the prefix of the actual subtree indexed.

9w is a vector of tasks which is the complement of 0.

"k indexes the k th task of w such that w [k] is a task acquired orderly from left to

right; i. e. from the highest importance important task to the least important one in

the lexicographic order.

" 'r is w[k]. T is used to build a new prefix (0 T) for indexing the subtree (0T *).

" delete(a, T) is a function that delete a task T from the ordering a.

" wa is b(w); i. e. w ordered by DMPA.

" wa_T is wb without T. When a new prefix (q 'r) is created, its corresponding suffix is

Wa-T

" Stest is the root to be tested.

"9 is a function that returns true, if an ordering passes the FPS schedulability test.

Let S be a task set with orderings SD and S', feasible and infeasible respectively.
The algorithm builds keys to index each subtree in lexicographic order. A key is built by

appending to 0a task 'r (step 3) from w. The lexicographical order is achieved following

the sequence in w which is S'. The key indices the subtree (0 'r *) and hence we build

its root S',
ti, = (OT (steps 4-5). Stest is tested (step 6) and if it is feasible, it is

saved as a partial solution S*, T is deleted from both w and wö, 0 is updated and the index

k is reset (steps 7-11); otherwise, k is advanced to the next 'r. DI stops when there are not

more subtrees to visit. Note that the worst-case is when the only solution is SD and its

order is contrary to S'. In this case, the root of the first A' subtrees will be tested and the

5.4 Solving the Deadlines and Importance Problem 96

Algorithm 2 DI (Deadline and Importance)
Require: SD feasible, SI infeasible

1: Seto 01, w S', w6 SD, k=0
2: while SizeOf(w) >1 do
3: let T=w [k]
4: let w5_, - = delete (w6, T)
5: build Stest (0 T wb_T)
6: if 3 (Stest) then
7: S* Stest

8: 0 (0 T)
9: w= delete(w) 'r)

10: wa wa-T
11: k0

12: else
13: k =k+1
14: end if

15: end while

Nth will be Stest = SD; afterwards, the next level of N-1 subtrees will be tested and the

(N - 1)th will be again Stest = SD and so on. Thus, in the worst-case, the solution will

always be SD. DI will always stop due to the fact that in the worst-case an ordering by

DMPA is built and therefore w is always reduced.

Complexity. The worst-case occurs when the only solution is SD and its order is

contrary to S'. In such case the loop is executed N times and w is reduced to N-1

elements; afterward the loop is executed N-1 times and w is reduced to N-2 elements

and so on. Therefore the loop executes N+ (N - 1) + (N - 2) + ... +1= N2+N
2

times. At each iteration, a feasibility test of complexity E is performed and therefore the

complexity of the algorithm DI is O (E x N22 N)
. Thus, the algorithm finds the solution

in a polynomial number of steps but the total complexity depends on the complexity E of

the response-time test, which is pseudo-polynomial.

DI proof

Theorem 5.4.3. The algorithm DI yields an optimal solution for the problem 1 of guar-

anteeing all deadlines and minimizing the distance to S'.

Proof: By contradiction. Suppose that there exists an ordering S° which is the optimal

5.4 Solving the Deadlines and Importance Problem 97

solution; i. e. it is both feasible and is lexicographically closest to SI. Therefore, the

solution S* found by DI is not the optimal solution one and then:

" 1) SI >- S* >- S°, if S* is infeasible. This is, the solution S* is lexicographically

closest to SI but it is infeasible.

9 2) SI >- S° >- S*, if S* is feasible. This is, the solution S* is feasible but S° is both

feasible and lexicographically closest to SI.

Clearly, the first case is not true because the DI algorithm starts with a feasible ordering

and in all their iterations the algorithm accepts only feasible solutions. Consequently, S*
is always feasible. Thus, we need to consider only the second case.

Note the following facts about S° and S*:

9 They are lexicographically different but before a task j they are identical; i. e. they

share the same prefix 0= (a bc... J) and differ on their suffix.

S° _ (ý w°) where w° = (k
... l

...
)

S*_(ýw*) wherew*= (l... k...)

If 0 is empty then they are different from the first element.

" Note that k >- l because S° >- S*, we

" S° and S* share the same vertex (q5 wa) where cab = 8(w°) = S(w*).

" S° is feasible and therefore (0 wb) is also feasible (corollary 5.4.2). Thus, in the nth
iteration when DI finds (0 w6), it is accepted and stored as the nth partial solution
Sn = (0 we). Consequently, the partial solution S,;, and the optimal solution S°

share the same prefix and differ only by the suffix (w6 and w° respectively).

DI builds and tests new orderings by joining the actual prefix 0 with a task T and
ordering the rest of the tasks by DMPA (steps 3-6). Once that DI builds the partial so-
lution S*, the next task to be tested is either k or 1. Since k 1, the next task to be

5.4 Solving the Deadlines and Importance Problem

N-- Feasible -M Infeasible

edcba 119

decba !

cedba
as
C

bedca

aedcb G

Step Schedule a Feasible ß

1 aedcb a No abode
-- -------------------- - -- - ------- 2 bedca b Yes abcde

3 baedc ba No acde
4 bceda be No acde
5 bdeca bd No acde

--- --.... 6 bedca be Yes acde
7 beads bea Yes acd
8 beacd bea No cd
9 beads beat Yes c

U-

abcde I-

0.5

0

1 1.5 2 2.5

ZD Metric

Figure 5.4: DI applied to S5 showing the sequence of operations.

98

appended to the prefix 0 is k, and therefore the ordering (0 k b(... I
...

)) is tested before

that (0 16(... k
...

)), which is in the path of the solution S*.

The ordering tested is

...
ý% Stest - ýý % b(... 1

Two cases may occur:

" If St*, is feasible, DI will accept it and never will find S* because they both are in

different paths. This is not possible because S* is found by DI.

. If Stest test is infeasible then S° must be infeasible since both share the same prefix
(Theorem 5.4.1). Therefore, S° is lexicographically closest to SI but it is infeasible.

This contradicts the hypothesis.

This concludes the proof.

95

71
Q..
cd

47

23

El

5.4 Solving the Deadlines and Importance Problem 99

5.4.3 An Example

Applying the algorithm DI to the tasks set S5, it finds the ordering S* in nine steps (Fig-

ure 5.4). At the beginning, 0 is empty and w is (abcde). The first element is acquired to

create a key (a) to test the vertex (a edcb) (ýl in the graph); the test fails and then the

subtree (a *) is skipped. The next element in w is obtained and (b edca) is tested (®2);

it is feasible and then (b) is appended to 0 and (b) is deleted from both w and w6. The

next three orderings tested (3Q, ®, 55) are infeasible, and therefore only the index k is up-
dated. Afterwards, (b edca) and (b eadc) are tested successively and saved (@, T); the

next ordering fails (®) and the next one passes the test (9Q). w has length 1 and DI stops.

5.4.4 Summary

In the context of fixed priority scheduling, we present the DI algorithm which finds the op-
timal solution to the deadlines (D < T) and importance problem defined in section 4.6.1.

This problem consists on finding a feasible priority ordering that minimises the lexico-

graphic distance to the ordering SI. Our approach is optimal in the sense that the priority

ordering found by DI is feasible and no other feasible priority ordering exists closest to
Si.

The DI algorithm performs a branch and bound search into the space formed by the
N! possible orderings. This space of solutions is ordered lexicographically by importance.

Due to some properties of the optimality of the deadline monotonic priority assignment,

and some particular characteristics of the lexicographic order, we identify patterns into

the search space that permits to solve the problem in O((N2 + N)/2) steps; however the

complexity of DI depends on the complexity of the fixed-priority feasibility test. In our

case, the complexity of DI is pseudo-polynomial because it uses the response time analysis
test. In chapter 7, the DI algorithm will be evaluated.

Chapter 6

Fixed-Priority Scheduling with
Deadlines and Conditional Importance:
The DI+ Algorithm

6.1 Introduction

In this chapter, importance is extended to include conditional relative importance, which
is a natural generalization of simple relative importance. Conditional relative importance

expresses preferences for executing a task with regard to other ones in the system subject

to conditional clauses. This concept is based on preferential statements of the form "it

is more important to execute a than 0 if some conditions are fulfilled". Observe that

the statement is formed by a relative importance statement plus a conditional statement.

Thus, conditional relative importance will be represented as a number I plus one or more

conditional clauses. This concept allows implementing priority relationships constraints

such as precedence constraints and allows including importance as a hard requirement.

We formulate the scheduling problem with deadlines and conditional importance and
introduce the DI+ algorithm for solving it. DI+ is DI with some modifications. In particu-
lar, the feasibility test and the priority constraint test are grouped into a single function that

is called as a subroutine. This does not affect the logic of the original DI algorithm and

allows including the feasibility tests for tasks with arbitrary deadlines or weakly-hard con-

straints, as well as including the swapping algorithm for finding feasible priority orderings

when DMPA is not optimal.

100

6.2 Conditional Relative Importance 101

6.2 Conditional Relative Importance

When specifying a system, there are situations where a particular QoS requirement can be

mandatory (e. g. a safety requirement) or can be conditioned to fulfill other requirements
(e. g. a performance requirement conditioned to a reliability one). During the design, these

mandatory and/or conditioned QoS requirements must be mapped to the task set. In this

case, there exist dependence relationships among tasks that are compulsory for assuring
the system correctness.

In order to cope with situations where dependence relationships exist, we include con-
ditional relative importance statements in our model. A Conditional Relative Importance

statement has the form

x is more important than y only if A holds

which means that the relative importance of x and y is conditioned to a set of A conditions.
Note that when A is empty, a simple relative importance statement is obtained.

The statement "it is more important to execute x before y only if both z precedes x

and z precedes y", is an example of conditional relative importance statement expressing

precedence constraints. Note that the set of constraints A is the union of a conditional

clause associated to x ("z precedes x ") and other associated to y ("z precedes y ").

Definition (Conditional Relative Importance). Conditional relative importance is a rela-
tion of relative importance >- in S and a set of constraints A such that for any pair of tasks

x and y, with sets of constraints A and Ay respectively

". r >- y, A., y " is interpreted as "x is more important than y only if)xy holds ".

where A.,, = A, U Ay. In other words, x is more important than y only if the constraints

A.,. and Ay are fu filled. The set of constraints of a task can have zero or more clauses.

Similar to relative importance (see section 4.5.1, page 63), conditional relative impor-

tance have to maintain the strict total order properties; i. e. for all x, y and z in S:

6.2 Conditional Relative Importance

" It is not the case that x >- x, A (irreflexive).

" If x >- y,)., y then it is not the case that y >- x, A, (asymmetric).

" If x >- y, A and y >- z, A,,,, then x >- z, Axz (transitive).

" Exactly one of x-y, Axy or y >- x, Ayx is true.

102

Thus, conditional relative importance permits to compare any pair of tasks and to as-
sign a different natural number I to each task such that the relation is preserved.

6.2.1 Task Conditional Importance

Definition 6.2.1 (Task Conditional Importance). Task conditional importance is a pair
I= (I, A) constituted by a natural number I and a set of constraints A associated to
the task. Thus, for any pair of tasks x and y with constraints Ax and Ay, there exist task

conditional importance Ix = (Ii, Ax) and Iy = (Iy, Ay) respectively (with I., Iy) such
that

ýý y, =*
1 >Iy

where Axy =AU Ay and Ix > Iy if and only if II > Iy

Task conditional importance expresses a preference for executing a task with respect
to the other tasks in the system only if the constraints A are fulfilled. Observe that the con-
straints A must be selected to maintain the uniqueness of all I such that Vx, yES, x
y= II Iy. Thus, tasks can be compared and ordered totally according to their condi-
tional relative importance.

With respect to the constraints, we note the following:

" In a set of two tasks S2 = {a, b} the ordering (a b) is formed when la > I6 and then
the set of constraints is Aab. The ordering (b a) is formed when Ib >'a and then the
set of constraints is Aha. Since Aab = Aba, set of constraints for any ordering of S2 is
the union of the constraints of each task.

6.2 Conditional Relative importance 103

" In a set of three tasks S3 = {a, b, c}, the ordering (a b c) is formed when Ia > Ib

and 'a > I, and lb > L, and therefore, the set of constraints is {Aab U "ac U)"bc},

which is {Aa U Ab U Aa U Ac U Ab U Ac} = {Aa U Ab UAI. Clearly, for other orderings

of S3, the set of constraints is also the union of the constraints of each task; i. e.

{Aa U Ab U A}.

Thus, by generalizing the above observations: given a task set S= {a, b, c.... } with

constraints { Aa, Ab, An,
...

}, the set of constraints of any ordering a in S is the union of

the constraints of each task, this is, A= {Aa U Ab U Ac U ...
}.

6.2.2 Index of Conditional Importance ZI

Similar to the index of relative importance, the set of N! possible permutations of S form

a set S, which can be ordered lexicographically and indexed by conditional importance.

The ordering with the highest conditional importance is S' such that all orderings in S

can be compared and ordered lexicographically with respect to S' using the lexicographic

index as defined in section 4.5.2:

13 ZI (a) < ZI (, Q)

The lexicographic index ranks all orderings with respect to S' and therefore:

Definition 6.2.2 (Index of Conditional Importance ZI). The lexicographic index defines an
index of conditional importance ZI among all orderings in S such that for any orderings

a, 0 E Sand A:

"a is more important than ,Q only if A holds" ZI(a) < Zj(/3)

Thus, the index of importance expresses a preference for executing a particular order-
ing with respect to the other orderings in the set of possibilities S subject to A constraints.

Since it is assumed that all conditional importances I are different, the index of im-

portance is unique; i. e. Va, tii c S, a0Z, (a) ZI(0). Thus, orderings can be

compared and organized in unique levels of importance that reflects a level of QoS where
index 0 is the best and the quality decreases as the index increases.

6.3 Conditional Importance in Scheduling Problems 104

6.2.3 Problem: Deadlines and Conditional Importance

In addition to meeting deadlines (D < T), in some hard real-time systems fulfilling both

hard and soft QoS requirements non-related with the deadlines is an issue. It is our thesis

that in some cases, hard and soft QoS requirements can be expressed in terms of condi-

tional importance. A scheduling problem with deadlines and conditional importance can
be formulated as follows:

Scheduling Problem 8. Given a task set S, a set of constraints A and an ordering SI, to

find S* which is an ordering of fined priorities that is feasible, meets A, and is the closest

one to SI.

Note that if the constraints A are removed, the problem is reduced to the deadlines and
importance problem.

6.3 Conditional Importance in Scheduling Problems

Conditional relative importance is a natural generalization of simple relative importance

statements but they can be rather difficult to express in the context of priority-based

scheduling. Therefore, A will be limited to a set of simple restrictions for assigning prior-
ities. These restrictions will be called A-constraints. For instance, given tasks x and y and

z with priorities PP, Py and P, z respectively, a statement with A= {Py > P2} could be "x

is more important than y only if Py > Pz".

6.3.1 A-constraints

A-constraints is a set of hard priority constraints A denoting statements of the form

"Pa > Pb" or "Pa > K" or "K > Pb"

for any two tasks a and b, and a constant KEN; more formally:

6.3 Conditional Importance in Scheduling Problems 105

Definition 6.3.1 (A-constraints). Let S be a task set, A-constraints is a set of priority

constraints on S such that any priority constraint A in A-constraints can be

- Aab {a, bES: Pa>Pb}

-
AaK=fa ES, KEN: Pa >KI

-
V6-{bES, KEN: K>Pb}

For instance, consider the task set {a, b, c} and priorities 3,2,1 where 3 is the highest

priority and 1 the lowest one; the 3! orderings are

(a b c) (a c b) (b a c) (b c a) (cab) (c b a)

Consider the constraint A,, 1 = {PP > 1}, which means that the priority of c cannot be the

lowest one; that is, all orderings where PP =1 will not meet the constraint and therefore

(a b c) and (b a c) are not viable solutions. Now consider the set of A-constraints A=

{A, 1,)'a, c} = {Pc > 1, Pa > Pc}; only the ordering (a c b) meets all the constraints.

The following section shows how A-constraints is used for implementing precedence

relationships between tasks.

6.3.2 Precedence Relationships

Precedence relationships are important hard constraints in many systems where tasks in-

volved in an activity depends on other ones. Simple precedence relationships can be in-

cluded in our model of importance by conditional relative importance statements of the

form "x is more important than y only if z precedes x". For the sake of simplicity, we will
denote "z precedes x" as "z -f x".

In priority scheduling, "x is more important than y" is expressed by assigning priorities

such that PP > Py. In addition, in order to ensure precedence of z over x, it is necessary to

consider the task release time r such that [16]:

"if rz < r,, then P, z > Pr" or "if r, z < r., then P, z > Pte"

6.3 Conditional Importance in Scheduling Problems 106

Z

Pressure
sensor d

Speed

c control
Tem.
sensor a

Alarm

b
abin temp
pressure x

Pilot.
instruction y

e
gears-P

H an inter ace

Figure 6.1: Precedence relationships

task C T=D R
a 2 10 2
x 1 16 3
y 2 16 5
b 1 16 6
z 3 32 9
c 2 32 13
d 1 32 14
e 3 56 23

Precedence A-constraints

zed Pz>Pd
cad Pc >Pd
x- b Px>Pb
xy Px > Py

Table 6.1: Task set S8 with their precedence constraints. It is ordered by DMPA.

Because in our model tasks can be released simultaneously (r, z = r.,) we need to assure the

strict priority assignment P, z > Px. This is a A-constraint Azx (definition 6.3.1) and then

by doing Ix = (Ix, A,.,) and Iy = (Iy, 0)

"Ix > Iy" "Pr > Py only if Pz > Pr"

6.3.3 Example

Getting back to the example in chapter 1, the following precedence relationships exist
(see Figure 6.1 and Table 6.1): {z -* d, c -* d, x -i b, x -p y}, and therefore the

A-constraints is A= {Pz > Pa, P. ý > Pd, P > Pb, Px > Py}.

S° = (ax ybzcd e) is the priority ordering given by DMPA which is feasible. Note

that the constraints in A-constraints are fulfilled but in terms of importance (output jitter

in the example) improvements are required.

The task subset with jitter requirements is {x. y, z}; tasks related with this subset and
therefore relatively important are {b, c, d}; finally {a, e} are the least important ones. We

6.4 The DI+ Algorithm 107

w [k] Stest Feasible?

step w k T T W6-T) _ \'Stestý

1 87654321 0 8 82756431 yes
2 7654321 0 7 87254321 yes
3 654321 0 6 87625431 yes
4 54321 0 5 87652431 yes
5 4321 0 4 87654231 no
6 4321 1 3 87653241 yes
7 421 0 4 87653421 no
8 421 1 2 87653241 yes
9 41 0 4 87653241 yes
10 1 0 1 87653241 yes

Table 6.2: DI algorithm with input S8 labelled by importance (8 765432 1). The solution
(8 76532 41) is found in 10 steps from a universe of 8!

assign the importance IEI to the tasks of Table 6.1 as follows: {II > Iy > Ix > Ib >
Ic > Id > I,, > Ie}. Therefore, the highest importance ordering is Sg = (x yzbcda e),

which is infeasible since the response time of task a is 12.

Lets apply the DI algorithm to this example. In order to show the sequence of steps
followed by DI, let us label by importance the ordering S8 as follows:

S8 = (xyzbcdae) = (87654321)

Applying DI to S8 produce the sequence of steps depicted in Table 6.2 resulting in the

ordering S1= (x yzbdac e). Observe that S1 is lexicographically closer to Sg and there-

fore it is better in terms of importance than DMPA but it does not fulfill the precedence

constraint c-d (i. e. PP Pd). However, given the same input S8, a solution is found by

the DI+ algorithm introduced in the following section.

6.4 The DI+ Algorithm

The Deadlines and Conditional Importance scheduling problem is solved by the DI+ algo-

rithm, which is an extension of the DI algorithm. DI+ takes as input the ordering SI and a

set of A-constraints, and finds the solution S* performing a specialized branch and bound

6.4 The DI+ Algorithm

search in N22 N steps in the worst case.

108

Similar to the DI algorithm, DI+ also tests vertices (ý b(w)) in the search space fol-

lowing the lexicographic pattern specified by its input SI. However, in this case testing a

vertex (0 8(w)) for feasibility also implies testing their A-constraints. Therefore, the main
difference between DI and DI+ is the feasibility test. While in DI the feasibility test is

with respect to the deadlines, in DI+ it is with respect to both deadlines and A-constraints.

Consequently the proof of optimality of DI also works for DI+; if the test is sufficient and

necessary the algorithm is optimal. In addition, the complexity of DI+ increases due to the

test of the A-constraints.

In both the DI and DI+ algorithms, when a vertex (0 8(cß)) is feasible, 0 is fixed and

tasks in 0 cannot be withdrawn in the future (i. e. there is not backtracking). Consequently,

in DI+ the A-constraints of all tasks in 0 have to be verified. Thus, 0 is accepted in any
iteration of DI+ only when (O 6(w)) is feasible and the A-constraints of all of all tasks

in the prefix are fulfilled. Therefore, an algorithm for testing the A-constraints has to be

provided to DI+.

Definition 6.4.1. Given an ordering a and a set of A-constraints, let T be a function

which tests the constraints such that

7 (a, A) -
true all tasks in a meet A-constraints
false otherwise

6.4.1 Modifications to DI

The DI+ algorithm (algorithm 4 in page 110) examines the vertices of subtrees in lex-

icographic order from the closest one to S' to the remotest one, and from the top to the

bottom in the same form that the DI algorithm but with some minor modifications: the

stop condition, the feasibility test, and a final check to verify whether a solution was found

at the end. More specifically:

1. DI+ accepts a set of A-constraints which can be empty; in such a case DI+ reduces

to DI.

6.4 The DI+ Algorithm 109

2. In DI+ there is not guarantee that the suffix w is always decreasing (in DI does). This

takes place, for example, when at each iteration of DI+ the feasibility test (steps 5-

6) fails; in this case, tasks from w will never be moved to the prefix 0 and then the
length of w will remain constant while the index k is increased. Consequently, the

algorithm has to verify that the index k does not overrun w (step 2).

3. In DI a feasible solution is always returned (e. g. DMPA in the worst case) but in

DI+ such feasible solution could not exist (e. g. DMPA is feasible but constraints are
not fulfilled). A feasible solution has been found when w is empty; otherwise it does

not exist because the A-constraints are not been satisfied.

In addition, steps 5 and 6 of the DI algorithm are modified. The following lines indicate

that an ordering Stest is built by joining the prefix (0 r) with the suffix which is

then tested for feasibility.

5: build "Stest (c T u)6--r)"

6: if . '(Ste, t) then

These two steps are re-written as follows:

5: build "Stest FA((o T) '
(w6-r)

,
A)"

6: if (Stest null) then

where FA is a function that receives a prefix (0 T), a suffix (w
_T) and the A-constraints.

FA builds the ordering (c T wb_T) and test its feasibility. If it is feasible, FA tests all the

tasks in the prefix (0 7-) with respect to their constraints in A; constraints no related to

tasks in the prefix are ignored. If the prefix passes the test then the ordering (0 T W6-,) is

returned; otherwise FA returns a null ordering. The algorithm 3 implements F. \.

Let S be a task set with orderings SD and SI ; SD must be feasible. The algorithm
builds keys to index each subtree in lexicographic order. A key is built by appending to 0

a task T (step 3) from w. The lexicographical order is achieved following the sequence in w
which is S'. The key indexes the subtree (OT*) and hence FA builds and test (OT, wa_T)

6.4 The DI+ Algorithm

Algorithm 3 F, ß(0, w, A)

1: built a (0, w)
2: if F (a) and T (0, A) then
3: return a
4: else
5: return null
6: end if

110

Algorithm 4 DI+ (Deadline and Importance Extended)

Require: SD feasible, S', A =A-constraints
1: Set0, #= 01, w=S', w6 ý_ SD, k=0
2: while SizeOf(w) >k do
3: let rr w [k]
4: let w6-, ý-- delete (w6, T)
5: build Stest 9n ((O Y) ,

(wb-T)
,
A)

6: if (. 5'test null) then
7: 5* = 'test

8: 0 (0 T)
9: w delete(w, T)

10: wb wa-T
11: k40

12: else

13: k4k+1
14: end if
15: end while
Ensure: w is empty

(steps 4-5). If FA returns Stest null, then Stest is saved as a partial solution S*, T is

deleted from both w and w6,0 is updated and the index k is reset (steps 7-11); otherwise,
k is advanced to the next 'r. DI+ stops when there are no more subtrees to visit. A feasible

solution has been found when w is empty; otherwise the A-constraints were not fulfilled.

Complexity

Two possible worst-case scenarios exist: (1) when the only solution is SD and its order
is contrary to S' and (2) when the A-constraints are not met. In both cases the loop is

executed N times and w is reduced to N-1 elements; afterward the loop is executed
V-1 times and w is reduced to N-2 elements and so on. Therefore the loop executes
X+ (X - 1) + (. V - 2) + ... +1= N22 N times. At each iteration, TA is executed. Its

6.4 The DI+ Algorithm 111

Algorithm 5 V(q, A)
Require: tasks 'r E0 and constraints A= {A1,. \2,

...
}

: for all 7i c0 do
2: for all Ai E Ado
3: if NOT(Tj meets A) then
4: return FALSE
5: end if
6: end for
7: end for
8: return TRUE

complexity is the complexity El of the feasibility test r plus the complexity E2 of the

function T. Therefore the complexity of the algorithm DI+ is O((E1+E2) x N22 N). Thus,

the algorithm finds the solution in a polynomial number of steps but the total complexity

is at least pseudo-polynomial due to the FPS test.

6.4.2 Example

Lets continue with the example of chapter 1 (see Table 6.1), where some tasks have jitter

requirements. First at all, we need to provide an algorithm for checking the A-constraints.

Algorithm 5 is a function V that receives as input the tasks in prefix 0 and a set of

A-constraints ; i. e. it implements T(a, A) (see definition 6.4.1). V (0, A) returns true when

all tasks in 0 meet the constraints; otherwise it returns false. The complexity of this

algorithm varies depending on the size of 0 and A tested but in the worst-case is O(N x M)

where N and M are the number of tasks and the number of constraints respectively. This

algorithm assumes that the ordering given by DMPA meets the A-constraints ; i. e. if there

exists a constraint Pa, > Pb then Da, < Db. Although simplistic it is sufficient for this

example since the tasks in Table 6.1 meet this assumption. This simplifies the complexity

of algorithm 5.

We define in section 6.3.3 the highest importance ordering as S8 = (x yzbcda e) and

show that the solution found by DI was S1. Applying DI+ to S8 (see Table 6.3) give us

S2:

" SI: DI(SI) produces (. ryzbdace) _ (87653241

6.4 The DI+ Algorithm 112

w [k] Stest FA

step w k T T W6--r/ `f (Stest)
V (0, A)

1 87654321 0 8 82756431 yes yes: P8 > P7iP8> P5
2 7654321 0 7 87256431 yes yes: P8>P7
3 65432 1 0 6 8762543 1 yes yes: P6 > P3
4 54321 0 5 8765243 1 yes yes: P8 > P5
5 4321 0 4 87654231 no yes: P4> P3

6 4321 1 3 87653241 yes no: P4 P3iP6 > P3
7 432 1 2 2 87652431 yes yes: P2 VA
8 43 1 0 4 87652431 yes yes: P4 > P3

9 31 0 3 87652431 yes yes: P6>P3iP4>P3
10 1 0 1 87652431 yes yes: P2 VA

Table 6.3: DI+ algorithm with input S8 labelled by importance (8 765432 1) with con-
straints A={Ps> P3, P4>P3, P8>P5, Pa>P7}

" S2: DI+(S8, A) produces (x yzbacd e) _ (8 765 243 1)

Observe that Sl is lexicographically closer to Sg than S2 but S1 does not meet the

A-constraints. Note that both solutions are identical until the element 4. This is because

the first four tasks of the input Sg were found feasible until step 5 (see Tables 6.2 and 6.3).

In the next iteration, task labelled as 3 (Id= 3) is selected and a prefix (8 765 3) is built.

The ordering tested for feasibility is ((8 765 3) 24 1), which is feasible and accepted in

Sl; at this point S2 needs to verify the A-constraints and hence it calls to V (0, A), and

then notes that P4 P3. Thus, it is rejected and both solutions will follow different paths.

In summary, the DI+ algorithm provides support for some hard priority constraints

that we call A-constraints. It works for tasks sets where the deadlines are less than or

equal to the periods. It can be easily integrated into the software development cycle to

play with different importance assignments and different priority constraints until finding

fixed-priority orderings that meet particular QoS necessities. Note that DI+ can be easily

adapted to store the partial solutions shown in Tables 6.2 and 6.3 in order to provide

additional information to decision makers.

Naturally, there exist systems where the assumptions of strict hard deadlines or dead-

lines less than or equal to the periods do not hold. In the following section we sketch how

the DI+ algorithm can be extended to cope with problems where tasks can have arbitrary

deadlines or weakly-hard constraints.

6.5 Extending the DI+ Algorithm 113

6.5 Extending the DI+ Algorithm

The DI+ algorithm depends mainly on both the feasibility test and the optimality of the

DMPA algorithm. Nevertheless, in the presence of tasks with arbitrary deadlines or tasks

with weakly-hard deadlines, such FPS algorithms are no longer valid. However, by sub-

stituting the feasibility test with the extended version of the response time analysis test

or with the feasibility test for weakly-hard systems respectively, DI+ can cope with such
kind of problems. In addition, since DMPA is not optimal the swapping algorithm (on

substitution of DMPA) has to be included in the solution for the problem. In this sense,

we define the following functions:

Definition 6.5.1 (Feasibility test with arbitrary deadlines). For aES, let I'E(a) be a
function that implements the feasibility test using the extended response time equation
(section 2.3.5), such that 3E(a) returns true when a is feasible and false otherwise.

Definition 6.5.2 (Feasibility test with weakly-hard deadlines). For aES, let 3w(a) be a

function that implements the feasibility test using the algorithms for weakly-hard systems

(section 2.3.7), such that Tw (a) returns true when a is feasible and false otherwise.

Definition 6.5.3 (Swapping algorithm with TE or 3 w). For any priority ordering a=
(O w) and a feasibility test TE (or 3 w), let 60(w) be a function that implements the swap-

ping algorithm (with 3E or Tw) maintaining Ofixed and only swapping tasks in w such

that

_
w* if w* was found such that (0 w*) is feasible

Se(w)
null otherwise

With respect to the feasibility test, by using 3E or Jw for testing priority orderings

we solve part of the problem of including tasks with arbitrary deadlines or weakly-hard

constraints in DI+.

With respect to the swapping algorithm, observe that in each iteration the DI+ algo-

rithm tests vertices (0 5(w)) relaying on the fact that if this vertex is infeasible, then there

are not any feasible orderings in the subtree (0 *) (i. e. the Prefix theorem). The suffix

of this vertex is ordered by 6 according to the DMPA rule since it is an optimal ordering.

6.5 Extending the DI+ Algorithm

Algorithm 6 r; Vo, w, A)

1: w* 60(w)

2: if w* = null then
3: return false
4: end if
5: built a w*)
6: if 7 (0, A) then
7: return a
8: else
9: return null

10: end if

114

However, in this case it does not hold but we can substitute 6 with ä0 that implements the

swapping algorithm which is optimal. Observe that the result is equivalent, if (q 60(w)) is

infeasible, then non-feasible orderings exist in the subtree (0 *).

The function Fý in algorithm 6 implements these changes. By substituting LTA by

F; in the DI+ algorithm we include arbitrary deadlines or weakly-hard constraints in the

scheduling problem with deadlines and importance.

6.5.1 An Example

Consider a tasks set Sw = {a, b, c, d, e} with simple relative importances la > Ib >

I, > Id > Ie such that SI = (a bcd e) is an infeasible ordering under the response time

feasibility test. Moreover, the task set ordered by DMPA (SD) is also infeasible since task

a misses its deadline (Ra = 511) (see Table 6.4).

task C D=T R Any (n, m) I
e 80 80 17 (7,20) 1
d 110 110 41 (1,1) 2
c 270 270 142 (4,7) 3
b 280 280 263 (1,1) 4
a 420 420 511 (2,4) 5

Table 6.4: Task set Sw with Weakly-Hard Constraints

Let assume us that some tasks tolerate missing several deadlines if it occurs in a de-

termined pattern such as that defined by the weakly-hard constraints model (see defini-

tion 2.3.11). In particular, tasks a, c and e have weakly-hard constraints of the type (n, m)

6.5 Extending the DI+ Algorithm 115

(a task meets any n in m deadlines), and tasks b and d have strong weakly-hard constraints

(i. e. they have hard deadlines).

Applying the weakly-hard feasibility test to SD (i. e _TW(SD)), it can be shown that

the task a meets its weakly hard constraint (any 2 in 4 deadlines) and the rest of the tasks

meet all the deadlines. Thus, the set is weakly-hard feasible but it has the lowest index of

importance because SD is exactly the contrary to S' (see Figure 6.2).

120

100

80

c
U

J -- CL 60

8

40

20

n

Index of Importance vs Waekly-Hard Deadlines for SW

0.8 0.9 1 1.1 1.2 1.3 1.4

Weakly-Hard Deadlines

Figure 6.2: 5! Priority orderings of set Sw ordered lexicographically. There are 32 weakly-
hard feasible priority orderings

Executing the swapping algorithm with input S' produces an ordering SA = (b dae c)

with index of importance 37. In this solution, tasks {b, d, a} do not miss any deadline

and tasks {e, c} meet their weakly-hard constraints. Thus, this solution is better than the

DMPA solution since the two tasks with higher importance do not miss any deadline.

The optimal solution S* = (a dbe c) found by DI+ has index 13. This is even better

since the task with the highest importance has the highest priority. Also tasks {a, d, b} do

not miss any deadline and tasks {e, c} meet their weakly-hard constraints.

6.6 Summary

6.6 Summary

116

Conditional relative importance is a generalization of simple relative importance, which
adds hardness to the importance concept and captures some dependence relationships
among tasks. In our model, dependence relationships are limited to a set of simple restric-
tions for assigning higher priority to a higher importance task only if a set of constraints
called A-constraints are fulfilled.

We present the DI+ algorithm which finds the optimal solution to the deadlines (D <
T) and conditional importance problem defined in section 6.2.3. DI+ is an extension of
DI that finds a feasible priority ordering that minimises the lexicographic distance to the

ordering with the highest conditional importance. The DI+ algorithm finds a solution to
the motivational example described in chapter 1.

We extend DI+ for including tasks with deadlines greater than their periods or with

weakly-hard constraints by substituting the response time feasibility test with its extended

version or with the feasibility test for weakly-hard systems respectively. Finally, since
DMPA is not optimal, at each iteration the DI+ algorithm orders the corresponding suffix
by using the swapping algorithm.

Chapter 7

Evaluation

7.1 Introduction

In this chapter, we propose solutions to the multicriteria scheduling problems defined in

chapter 4. A solution is an assignment of fixed-priorities found by combining the DI

algorithm with a heuristic for assigning importance.

The chapter is divided into two main sections:

" In the first one, we want to discover heuristics for assigning importance. By testing

the simple rules for assigning fixed-priorities depicted in Table 4.4 (page 81), we
determine which are the best ones with respect to a QoS metric without considering

the deadlines. Afterwards, we propose them as heuristics for assigning importance.

" In the second one, we are interested in judging the DI algorithm jointly with the

heuristics discovered. In general, such heuristics produce infeasible solutions. How-

ever, feasible solutions are found when the heuristic is used as input for the DI al-

gorithm. If any combination shows good performance with respect to a QoS metric,

then we propose such combination as a technique for solving the scheduling pro-

blem with deadlines and QoS metric.

Since in [17] it is compared RMPA against EDF under several QoS metrics, and those

results may be refuted by our approach, in our experiments we will include these two poli-

cies. In effect, experiments carried out by Buttazzo [17] have shown that EDF outperforms

117

7.2 Experimental Setup 118

RMPA for a number of metrics. Our experiments confirm the results of [17] in the sense
that EDF exhibits better performance than RMPA. However, we find that our approach

outperforms EDF in most of the scenarios tested.

As the swapping algorithm can be considered as a good heuristic for the scheduling

problem where the DI algorithm is optimal, in section 7.5 we compare both algorithms. In

addition, a simple evaluation of the DI+ algorithm for task sets with priority constraints is

presented in section 7.6.

7.2 Experimental Setup

The experiments carried out in this thesis require the simulation of schedules of task sets
during a fixed window of time as follows: firstly, we generate a number of synthetic
task sets; afterwards, each task set is simulated under a scheduling policy, and several

performance metrics are recorded to be compared. Three attributes that affect the accuracy

of the results of the simulation can be identified:

" Task set: how a task set is created.

" Window of time: for a given task set, how long to run each simulation.

" Number of task sets: how many task sets must be simulated to get representative

results.

The criteria for selecting these attributes are described in the next sections. In sum-

mary, the parameters defined consist of 1000 synthetic sets of N tasks randomly generated

with periods uniformly distributed in [100,1000] and computation times adjusted to fix any

utilisation U. Deadlines are equal to the periods. We vary U=0.5,0.55,0.60,0.65,0.70,

0.75,0.80,0.85,0.90,0.95 and vary N=5.... 14. All task sets generated are feasible

under RMPA. Simulations were performed in parallel on two desktop PC computers. The

discrete event simulator used in our experiments was specifically built for this research

using algorithms described in [84].

7.2 Experimental Setup 119

7.2.1 Task Sets

An important factor that affects the result of simulating scheduling algorithms is the

method for generating random task sets. In [85], it is noted that the problem is the proba-
bility density function of the random variables used to generate the task set parameters. It

is shown how the typical random generation routine bias the simulation of some specific

scheduling algorithm. In this sense, they propose the UUniFast algorithm [85] for gener-

ating task sets with uniform distribution. The UUniFast algorithm receives an utilisation
U and the number of tasks N for producing utilisations Uj uniformly distributed in (0, U]

subject to U= Eý NJ Uff. We use this algorithm for generating our task sets.

A set of N tasks for a utilisation U is generated as follows: The UUniFast algorithm is

executed with parameters N and U; it produces UU, j=1, ... ,
N. Posteriorly, we chose

periods Tj uniformly distributed in [100,1000] and compute worst-case computation times

as Cj = UjTj. Doing Dj = Tj and assigning priorities according to RMPA, we perform a

schedulability test using the response time analysis. If the task set is feasible the task set
is stored; otherwise it is discarded. Note that because all task sets generated are feasible

under RMPA, they are also feasible under EDF.

7.2.2 Window of Time

In order to determine the window of time to be used in the simulations, we perform some

experiments simulating 10 task sets for different time windows using RMPA and EDF

policies. We take measures of different metrics to observe the limits beyond which the

performance does not improve; i. e. major increase in time ticks simulated results in none

or minor variation of the corresponding metric. Results are plotted in Figures 7.1 and 7.2.

Each point corresponds to 10 tasks sets of 10 tasks each task set with U=0.75.

Figure 7.1 (page 121) shows the variation on the number of preemptions, absolute and

relative output jitter with respect to the window of time simulated. With respect to the

total number of preemptions, the variation is linear and therefore almost any window is

representative. With respect to output jitter, the data is steady after 100,000 ticks.

Figure 7.2 (page 122) shows the variation on maximum latency, relative maximum

7.2 Experimental Setup 120

latency, and relative average response time with respect to the window of time simulated.
With respect to maximum latency, the data is steady after 100,000 ticks. With respect
to relative maximum latency, the data is not completely steady but after 70,000 ticks the

variation is minimal. With respect to relative average response time, the data is almost

steady after 100,000 ticks.

These results suggest that for our task sets, it is sufficient a window of 100,000 ticks
for performing the simulations; beyond this size the performance does not improve sub-

stantially.

7.2.3 Number of Task Sets

In order to determine the number of task sets to be used in the simulations we perform

some experiments simulating groups of 10,100,800 and 1000 task sets during 100,000

ticks under RMPA and at different utilisation. We take measures of different metrics to

observe the limits beyond which the performance does not improve; i. e. major increase in

the number of task sets simulated results in none or minor variation of the corresponding

metric. Results are plotted in Figure 7.3 (page 123).

We perform the same experiment for the six metrics as above but the results are similar

and therefore we only show the ones where higher variation is observed. In fact, except for

the relative maximum latency metric, the rest of the metrics show lower variability after

simulating 100 task sets. Figures (a) and (b) show that it could be sufficient to perform

simulations with 100 task sets. In these two plots, we omit data for 800 task sets because

its line is overlapped with the line of 1000 task sets. Figure (c) shows that for the relative

maximum latency metric, the variability is high but it reduces when more than 800 task

sets are included.

These results suggest that for our task sets, it should be sufficient to simulate (at least)

100 tasks sets excepting when the relative maximum latency is the metric; in this last case

it is necessary to simulate between 800 and 1000 task sets. We select 1000 task sets to get

representative results.

7.2 Experimental Setup

120

100

N
C
O

E 80
m m ä
ö 60
m
10 E
Z 40

20

-.

01
0 20000 40000 60000 80000 100000 120000 140000 160000

Simulation Window (time ticks)

(a) The variation is linear. Thus, almost any window is representative
10 Sets of 10 Tasks -U=0.75

335

330

325

5 320

O
315

0
Co a

310

305

300
0

0.395

0.39

0.385

5
a
0 0.38

0.375

0.37

0.365
0 20000 40000 60000 80000 100000 120000 140000 160000

Simulation Window (time ticks)

(c) The data is almost steady after 90,000 ticks

ý-
$--

-. -

121

Figure 7.1: Variation on number of preemptions, absolute and relative output jitter with
respect to the time window simulated

10 Sets of 10 Tasks-U=0.75

20000 40000 60000 80000 100000 120000 140000 160000
Simulation Window (time ticks)

(b) The data is steady after 100,000 ticks

10 Sets of 10 Tasks -U=0.75

7.2 Experimental Setup

340

330

320

310
r U

m 300
J

E 290
E

280

270

260

250

240
0

19

18

17

16
C N
m 15 J

E
14

E

13

> 12

11

10

9

8

-0

MPA 0-
EDF ------

0 2000 4000 6000 8000 10000 12000 14000 16000
Simulation Window (time ticks)

(b) The data is not completely steady but after 70,000 ticks the variation is

minimal

9

8.5
m

E
F-

08 a N
d

Q

a 7.5
N

.Z b
d

7

6.5 L
0

10 Sets of 10 Tasks -U=0.75

Simulation Window (time ticks)

(c) The data is practically steady after 100,000 ticks

1

__$__

122

Figure 7.2: Variation on maximum latency, relative maximum latency, and relative average
response time with respect to the time window simulated

20000 40000 60000 80000 100000 120000 140000 160000
Simulation Window (time ticks)

(a) The data is steady after 100,000 ticks

10 Sets of 10 Tasks -U=0.75

10 Sets of 10 Tasks -U=0.75

7.2 Experimental Setup

[10,100,10001 Sets of 10 Tasks - 100,000 Ticks -- DMPA policy

120

110

U) 100
0

E 90

ä
ö 80

E
Z 70

a
0 60

50

An

10 -- ---
100 ---x--

1000 -ý

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Utilisation

(a) The variation is low when more than 100 task sets are simulated
[10,100,1000] Sets of 10 Tasks -- 100,000 Ticks -- DMPA policy

V. /

0.65

0.6

0.55
ID
:'0.5

0 0.45

ro 0.4
d
Ir 0.35

0.3

0.25

n1ý

10 *-
100 ---x--

1000 -ý-

123

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Utilisation

(b) The variation is low when more than 100 task sets are simulated

[10,100,800,1000] Sets of 10 Tasks -- 100,000 Ticks -- DMPA policy
28

26

24

c
22

E

20

> 18
M

16

14

12

10 --* --
100 ---x--
800 fl......

1000 +

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Utilisation

(c) The variation is low when more than 800 task sets are simulated

Figure 7.3: Variation of results of different metrics with respect to the number of task sets
simulated. When more than 100 task sets are simulated, low variation is observed

7.2 Experimental Setup 124

1000 Sets of 7 Tasks - All Tasks

1000 RMPA $

900 LT ---
T /C

n LC -ý 600 C/T

4R 700 a ,,

600 oa..
Ll -..

CD U 500 oqo

m d
E 400 \q R

Z 300
a '''.

ý. b

200

.

100

0
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilisation

(a) Among all heuristics, C/T produces the greater number of feasible ones

N ca a) IL
ö
a)
E
z z

0
--ý- o--

-- -o-

1000

900

800

700

600

500

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(b) All heuristics produce the same number of feasible assignments

400

300

200

100

0

-. -

V
--

--
-ý-

-- -O- -

1000

900

800

700
0
a600 CD LL

500

E 400

z 300

200

1000

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilisation

(c) All heuristics produce the same number of feasible assignments

Figure 7.4: Number of feasible priority assignments. Under RMPA all tasks sets are
feasible. The heuristics get worse as the utilisation increase

1000 Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix

1000 Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix

7.2 Experimental Setup 125

7.2.4 Characterizing the Feasibility of the Task Sets Generated

We do an experiment to observe how many feasible priority assignments are found by

the heuristics to be evaluated. This experiment is for sets of seven tasks. For other task

sets the tendency is similar. The results are shown in Figure 7.4. Each point corresponds
to the number of feasible priority assignments computed for all tasks sets under different

utilisation. For instance, all task sets are feasible under RMPA, while task sets with fixed-

priorities assigned under the heuristics miss deadlines.

Figure 7.4 (a) (page 124) shows the results when all tasks are included in the assign-

ment. Observe that the number of feasible priority assignments decreases as the utilisation
increases. Among all heuristics, C/T produces the greater number of feasible ones fol-

lowed by 1/C. It seems coherent because C/T can be considered as 1/T (i. e. RMPA) with

weights C and then many assignments will be equivalent. On the other hand, it is known

that 1/C reduces the makespan (i. e. the difference between the start and finish time of

a sequence tasks) and then shorter tasks have higher priorities for completing soon; this

reduces the interference and increases the schedulability. Finally, note the LT rule; it is the

contrary to RMPA and it is clearly the worst priority assignment with respect to deadlines.

We do an experiment to observe the effect of raising priorities in a subset of tasks

and ordering such subset using the heuristics. Each task set S of 7 tasks is split up in

two subsets A and A'. Tasks in A are more important than the ones in A' and therefore

higher priorities are assigned. In addition, A is ordered according to a heuristic. Lower

priorities are assigned to tasks in A' following the RMPA algorithm. In other words, we

have priority orderings with a prefix ordered by a heuristic and a suffix ordered according

to RMPA.

Figure 7.4 (b) and (c) (page 124) shows the result of raising the priorities of subsets A

labelled as {3,5,7} and {4,5,6,7} (see below for explanation of the meaning of labels).

Note that all heuristics produce the same number of feasible assignments. This indicates

that (in our synthetic task sets) it does not matter which is the order of the high priority

tasks, the feasibility or unfeasibility resides in the order of the lower priority ones.

This last result is significant for our evaluation. This means that when assigning im-

7.3 Finding Heuristics for Assigning Importance

PA Priority Assignment Rule
1/T the shorter the period, the higher the priority
I /C the shorter the computation time, the higher the priority
LT the larger the period, the higher the priority
LC the larger the computation time, the higher the priority
T/C the larger the ratio TIC, the higher the priority
C/T the larger the ratio C/T, the higher the priority

Table 7.1: Simple rules for assigning priorities

126

portance with the heuristics, higher importance tasks will remain practically fixed in their

positions while only the lower ones will be changed. Thus, algorithms that exchange pri-

orities starting from the lower importance tasks will achieve good solutions in terms of the
lexicographic order. In addition, note that some heuristics produce a significant number of
feasible priority assignments. As a consequence of this scenario, the DI algorithm and the

swapping algorithm produce almost the same results. For example, a peculiar result is that
in all our experiments, when importance is assigned with the rule "the shorter computa-
tion, the higher the importance" (1 /C rule), the DI algorithm and the swapping algorithm

always produce the same priority ordering.

7.3 Finding Heuristics for Assigning Importance

A performance evaluation of the fixed-priority assignment rules depicted in Table 7.1 (this

is the same table from page 81) is carried on to determine how good (or bad) they are with

regard to a QoS metric. If at least one of such priority assignments shows good perfor-

mance, it is considered a good heuristic and is selected as a rule for assigning importance.

In order to measure effectively the performance of the simple rules, the maximum

and minimum values achievable (with respect to a particular metric) for any fixed-priority

assignment are determined by exhaustive search in the N! priority orderings of a task set.

Thus, all results are between the maximum and minimum achievable and therefore, they

can be normalized. The experiments were conducted for tasks sets of 5,6 and 7 tasks. The

results obtained are similar and therefore, only results for 7 tasks are shown.

In order to identify orderings similar to RMPA, we label tasks as {1,2,
.... i} where

7.3 Finding Heuristics for Assigning Importance 127

1 corresponds to the task with the shortest period and 7 to the one with the largest period;
thus, the ordering by RMPA is (12 3456 7). The experiments are as follows:

" All tasks included. Priorities are assigned to tasks according to the rules in Table 7.1.

The orderings are simulated and the QoS metrics are recorded for all seven tasks.

" Tasks 3,5,7 in the prefix. Orderings are built with a prefix ordered by the rules in

Table 7.1 and a suffix ordered by RMPA. Tasks in the prefix are A= {3,5,7}. The

orderings are simulated and the QoS metric is measured only for tasks in the prefix.
Note that (12 4 6) is the suffix for all the orderings in this experiment.

" Tasks 4,5,6,7 in the prefix. As above, but the tasks in the prefix are A= {4,5,6.7}.

Note that (12 3) is the suffix for all the orderings in this experiment.

We noted in our experiments that, in general, it is difficult to distinguish the differences

among the results when plotting absolute values. For this reason, in some plots we nor-

malize all the data with respect to the maximum and minimum achievable. This problem
is illustrated in the first experiment.

The results are illustrated by drawing plots of different priority assignments with re-

spect to a QoS metric plotted as a function of the total system utilisation. Each point

corresponds to the average results of 1000 task sets. The results are displayed such that

minimum values of the QoS metric are better.

For instance, let assume us that the metric is the total number of preemptions. Accord-

ing to section 4.6.2 (page 68), for a set S of N tasks and with respect to the schedule under

a particular priority ordering a, lets PS (a) be the total number preemptions in a window

of time (i. e. 100,000 ticks) of all instances of all tasks in S (note that Ps(a) corresponds to

equation 4.6.2 in section 4.6.2). By simulating the N! priority assignments of S, we have

a set Ps = {PS(ak) :k=1,2, ... ,
N! } which has the total number of preemptions of all

orderings of S. The maximum and minimum total number of preemptions of a task set S

under any priority assignment are PS max = max{ PS} and PS in = nein{ Ps} respectively.

Thus, the total number of preemptions normalized for a particular priority assignment a is

PS((}) = (ps(t) - pmin)/(PS ax - BPS n).

7.3 Finding Heuristics for Assigning Importance 128

Since we have task sets S1, S2i
... ,

S1000 with identical utilisation, for a particular

priority assignment a of Si with total number of preemptions Psl (a), its average total

number of preemptions is computed by the function

FP (a) =
000 Psi (a) 1

i=l
1000

and the average total number of preemptions normalized is computed by the function

1(a) =
1000 -

l Psi (a)

1000
(7.3.1)

In addition, the maximum and minimum average total number of preemptions are
1000

p max 1000
Pn

MAX =
ýz-1 Si and MIN =

ýi-1 Si
1000 1000

respectively.

For the other metrics, P can be substituted by the corresponding metric y, . rel, L, L rel

or R,.

7.3.1 Total Number of Preemptions

The first experiment compares how good are the heuristics with regard to the total number

of preemptions. The results are shown in Figures 7.5 and 7.6.

In Figure 7.5(a) (page 132), each point corresponds to the average total number of

preemptions of 1000 task sets for different utilisation. By using the above equations,
FT (a) is computed for a in { RMPA, 1/C, LT, T/C, LC, C/T }; for instance, FT (RMPA) =
45, Fy (1/C) = 56 and FT (LC) = 31 when the utilisation is 0.5. In addition, the results for

the EDF schedule, and the maximum (MAX) and minimum (MIN) average total number

of preemptions are also plotted. Note that it is difficult to distinguish the differences among

the results of the different priority assignments. For this reason, we draw the plot of the

normalized data in Figure 7.6.

In Figure 7.6(a) (page 133), the total number of preemptions normalized is depicted.

The equation 7.3.1 is used; for instance, FP (RMPA) = 0.52, F, (1/C) = 0.94 and

7.3 Finding Heuristics for Assigning Importance 129

F, (LC) = 0.06 when the utilisation is 0.5. Observe that the differences are now evident.

None of the orderings achieve the minimum total number of preemptions possible.

When all tasks are included (Figures 7.5(a) and 7.6(a)), the best heuristic is LC fol-

lowed by C/T. Note that EDF shows great performance. When only a subset is included

(Figures 7.5(b, c) and 7.6(b, c)), the best heuristics are LC and C/T, which are almost over-
lapped. In fact, all heuristics produce good results for a task subset for all QoS metrics

of this study. This is coherent because all tasks in the subset have higher priorities and

therefore suffer less interference. Naturally, RMPA and EDF perform poorly because they

both are unaware of local requirements; it also applies for all metrics in this study. We can

conclude that the rules LC and C/T are good heuristics for assigning importance when the

total number of preemptions is the QoS metric.

7.3.2 Output Jitter

This experiment compares how good are the heuristics with regard to the absolute output

jitter and the relative output jitter. In Figure 7.7 (page 134), each point corresponds to

the average absolute output jitter of 1000 task sets for different utilisation. By observing

Figure 7.7(a), it seems that the best heuristics are 1/C, T/C and LT when all tasks are in-

cluded. Therefore, we will assume that these are the best heuristics. However, as depicted

in Figure 7.4, T/C and LT are the rules that produce less feasible priority assignments and

hence, it may be difficult to find feasible priority orderings similar to them. When only a

task subset is included, the best are 1/C and T/C (Figure 7.7(b, c)).

In Figure 7.8 (page 134), the results of the average relative output jitter are shown.

When all tasks are included, all heuristics show bad performance (Figure 7.8(a)). Note

how EDF outperforms all fixed-priority assignments. RMPA performs better than all the

heuristics and it is close to the minimal relative output jitter achievable. As a local metric

(Figure 7.8(b, c)), 1/T is the best heuristic followed by 1/C.

As in the preemptions experiment, the plots suggest that increasing the priority is suf-

ficient to reduce the output jitter effects with respect to a task subset. We can conclude

that with respect to output jitter:

7.3 Finding Heuristics for Assigning Importance 130

" for absolute output jitter, the rules TIC, LT and I IC could be suitable to be used as
importance assignments.

" for relative output jitter, ordering by RMPA produce the best results followed by C/T.

As a local metric, the best ones are YT and 11C.

7.3.3 Latency

The results of the experiments with latency are depicted in Figures 7.9 and 7.10. In Fig-

ure 7.9 (page 136), the maximum latency results are shown. As a global metric (Fig-

ure 7.9(a)), the best heuristics are LT and T/C. Unfortunately, when these priority assign-

ments were used as inputs for the DI algorithm, the results were worse than the results

produced by RMPA. It is because, as depicted in Figure 7.4 (page 124), these two rules

are the worst with respect to feasibility and hence, it may be difficult to find feasible prior-
ity orderings rather close to them to be useful. As a local metric (Figure 7.9(b, c)), the best

is LC even so as in the above experiments, the plot suggests that increasing the priority is

sufficient to improve the performance with respect to the metric.

In Figure 7.10 (page 137), the relative maximum latency results are shown. In general,
The best heuristic is 1/C followed by T/C. We can conclude that with respect to latency:

" for maximum latency, the rules LT, T/C and I IC could be suitable to be used as
importance assignments.

" for relative maximum latency, 1/C and T/C are the best ones.

7.3.4 Maximum Relative Average Response-Time

The results of the experiments with respect to the maximum relative average response-

time are depicted in Figure 7.11 (page 138). In all cases, the best heuristic is T/C which

shows excellent performance, followed by 1/C and LT.

We can conclude that in this case the rule T/C is excellent and the rules 1/C and LT

are good heuristics.

7.4 Evaluating the DI Algorithm with Heuristics 131

In the next section we will use the heuristics with the DI algorithm for finding solutions

to multicriteria scheduling problems. (Continue in page 131).

7.4 Evaluating the DI Algorithm with Heuristics

The best heuristics discovered in the above sections are used for assigning importance

such that when used as input for the DI algorithm, solutions to the scheduling problems
defined in chapter 4 are proposed. The results are plotted in groups as follows:

PLOTS A. The solutions obtained by combining the DI algorithm with at least two heuris-

tics for assigning importance are evaluated. In order to effectively compare their

performance, the maximum and minimum values achievable and the Z-optimal so-

lution (FP,, pt in the plots) are determined by exhaustive search. Results of the exper-

iments for sets of 5,6 and 7 tasks are similar and therefore, only results for 7 tasks

are shown.

PLOTS B. The combination DI with heuristic is computed for sets of N tasks (where N=

5,6,... , 14) with utilisations U= {0.5,0.7,0.9}. The results are not normalized

since we do not compute the N! possible solutions.

PLOTS C. Since that each point in any plot of type A corresponds to the average result

of 1000 task sets, there exists information that is hidden and is really interesting to

show. This information is shown in Plots C where we compare the results of the

best combination DI algorithm with heuristics against EDF for only three of these

points corresponding to U= {0.5,0.7,0.9}. Since each point corresponds to 1000

task sets, there are 1000 points corresponding to the EDF results and 1000 points

corresponding to the DI-heuristic results. We order the EDF data such that a baseline

is formed when plotted. The DI data is also ordered with respect to the EDF data

such that if both results were exactly the same, a single line will be showed. Since

this is not true, the DI data appear scattered around the EDF baseline. Points above

the baseline are worse and points below are better than the EDF results. These plots

correspond to sets of 7 tasks.

7.4 Evaluating the DI Algorithm with Heuristics

1000 Tasks Sets of 7 Tasks - All Tasks Included

200 MPA 0
EDF --$--

180 1/C --4--
LT ... o---

T/C ----
160 LC -v c C/T o-

140 k7 9
MAX - fS
MIN o E

m
CD
a 120

100
.,.,

.. 9 .

80

60

40 -. =

Best 20
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilisation

(a) The best is LC; note how close it is to MIN (the best achievable)
1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix

250 RMPA 0
EDF ---

o--- 1/T
1/C fl

200 LT - -& -
T/C - _o. _. V) LC --v
C/T - a_

E MAX
150 MIN

CL
0

E loo
z'

0

a
a-

-- -e
m
F

-^ý

50

Best 0
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilisation

(b) The best is LC although the rest show good performance

1000 Tasks Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix
180

160

°
140

ö
E1

m
CL 100 $

80
E
Z 60
ö

40

20

Best 0
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Utilisation

(c) The best is LC

1

--o

--0--

132

Figure 7.5: Total Number of Preemptions under different priority assignments. Only
RMPA and EDF guarantee deadlines. The best heuristic is LC. Note that in (c) RMPA
is close to the worst possible value (i. e. MAX)

7.4 Evaluating the DI Algorithm with Heuristics

1000 Tasks Sets of 7 Tasks - All Tasks Included
1 MPA $

ID - o-----© ----© - --o --a. --.. 0
EDF $--

4- 1/C 0
8 n LT o
N 0.8 p T/C --

LC - E C/T - o-- ö

2 0.6 `--
v

E

Ö0 4 . _0- .. -- "" 45
'ý -o-

... 0
O

z
ro 0.2
0
F- v

Best 0
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilisation

(a) The best is LC; note how close it is to MIN (the best achievable)
1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix

1

0.8
E
0
z
cm ö 0.6
in
E
aý m ä
ö 0.4
äý
E
z
0 0.2
0 (-

Best 0

RN
E

PA $
DF ------
1/T - o-.

LT --
F/C
LC -- -o
D/T

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(b) The best is LC although the rest show good performance

1000 Tasks Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix

1

10 a) ca N 0.8
E
0

Z

CC

.20.6 a
E
CD m ä
ö 0.4
ffi
E
Z z

0.2

Best 0

-- 21--- - AB im
----- $

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(c) The best is LC

MPA $
EDF --$-

1/T o..
1/C Ei
LT - T/C --d
LC -- -o

C/T e. _.

133

Figure 7.6: Total Number of Preemptions Normalized under different priority assign-
ments. Only RMPA and EDF guarantee deadlines. The best heuristic is LC. Note that
in (c) RMPA is close to the worst possible value

7.4 Evaluating the DI Algorithm with Heuristics

1000 Tasks Sets of 7 Tasks - All Tasks Included

MPA $
EDF --$-
1/C
LT o

T/C 0.8 LC v. _..
N ý"

e Cff

ö
0.6

n e
ä -- ---
0 0.4

-
;.

6iý o a a-- -----0-- .

2 0 a
. t7..

Best 0 -4
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilisation

(a) The best heuristic is T/C followed by LT and 1/C

1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix
1 RMPA $

EDF $
1/T
1/C

0.8 $e
-- T/C o. _..

to ------ C/T e E
ö
Z 0.6

5
a p 0.4

ö

0.2

' J-4
Best °

0
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilisation

(b) The best heuristic is 1 /C followed by T/C

1000 Tasks Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix
1 RMPA

EDF $
1/T
1/C
LT - 0.8

------- III ---- -- jig ----
T/C

N -- LC
E $ Cr e_

0
ö
Z 0.6
`m

5
CL Q

m

0.4

5
ö

0.2

Best 0
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilisation

(c) The best heuristic is 1/C followed by T/C

134

Figure 7.7: Absolute Output Jitter under different heuristics. The best ones are T/C and
1/C

7.4 Evaluating the DI Algorithm with Heuristics

1

0.8

'9 N

0.6 0
z

0.4
5

0
0.2

c
m

0

Best
-0.2

L
0.45

A$
F ------ C 4-
T0

C --v- fT -O- -

(a) All heuristics show bad performance. RMPA is the best fixed-priority as-
signment. EDF is by far the best solution achievable

0.6

1000 Tasks Sets of 7 Tasks - All Tasks Included

1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix

0.5
N

E 0.4 - ------ fa------

0.3
5
a
5
0

0.2 - -

ý v o- 0 0 a -
0.1

Best --- --- - 0 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(b) The best is 1/T followed by 1/C

0.6
1000 Tasks Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix

0.5 -------

'0 --'a--- --- jim N
---ý_____-

E 0.4
ö
Z

0.3

0.2

0.1
Q Q_ . _.... Q ___ß Q. _

- G--,
_ -O_-

..... Q ß _

Best 0
o _. o. o ---

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(c) The best is I /T followed by I IC

MPA $-
EDF --- -

l/T
t/C
LT -« T/C --d -
LC .. -ý. . C/T -e-

1

IPA $
EDF -- ---

irr
1/C ý_..
LT --0-

T/C - _d. _..
LC -- -v- -

C/T - e-

1

135

Figure 7.8: Relative Output Jitter under different heuristics. Assigning priorities by shorter
deadlines is by far the best option.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

7.4 Evaluating the DI Algorithm with Heuristics

0.9 MPA $
° EOF ---

0.6 1/C ff-..
LT t>-_

T/C
0.7 LC v

N a. _... _o .. _. _. _©
c/T -o

`° 0.6 o Q_

0.5 04a la

(U 0.4 M___ ez.:.
gA

E 0.3

0.2

0.1

Best 0
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilisation

(a) Among the heuristics, LT and T/C show the best performance.

1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix
1

0.9

0.8

iýa 0.7 fa
-0

E
6 0.6

g 0.5

cu E 0.4
3 E 0.3
I

0.2

0.1

f =-
-`- : Best 0

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(b) The best is LC

1000 Tasks Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix

0.9

0.8

^' i 0.7 ------ ýa

Z 0.6

c 0.5

E 0.4

E 0.3

0.2

0.1

Best 0
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Utilisation

(c) The best is LC

1

--0-

P...

viPA $
EDF -$

i/T o---
1/C
LT --o--

T/C --d -
LC -- -v -

C/T - a. _.

1

136

Figure 7.9: Maximum Latency under different priority assignments. It seems that LT, T/C

and LC are the best heuristics

1000 Tasks Sets of 7 Tasks - All Tasks Included

7.4 Evaluating the DI Algorithm with Heuristics

1000 Tasks Sets of 7 Tasks - All Tasks Included
1

0.9
. -Q

°o00
o-- -- o

N 0.8
M
6

0.7
z

0.6

0.5 0---
E 0 0.

0 4 __ta------0_-
9 . _ -M-----

1. G, 121-
0.3

> tr ý-a -a ß..
_

0.2
cl

i
D

0.1 - ... ý

Best 0

.
---D------

D---- '

---- - ---- -- ---
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilisation

(a) In general, 1/C and T/C show the best performance

1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix
0 8 . R

0.7

0.6 QL
E

Z
0.5

c
N

J 0.4
E
E

0.3

0.2

0.1

-_ - v o_ - _ __ _o _ 1ý, _-
Best 0

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(b) The best is 1/C

1000 Tasks Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix
0.8 1

:: j' 11,11 :
0.7 ----

1 11: 11
-

E 0.6 - ------ß_

z°
c

0.5

CD

0.4
E

0.3

CD 0.2

0.1

e v6dod ri
Best 0

n
in

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(c) The best is 1 /C

MPA $
EDF ------
1/C 4
LT o--

T/C ----
LC - C/T ---o-

MPA $
EDF ------

1! T
1/C
LT -[q- -

T/C --o LC ... P- . C/T -e-

UPA $
EDF --$-

1/T
1/C g
LT - -0- -

T/C
LC --v C(T - a. _.

137

Figure 7.10: Relative Maximum Latency under different priority assignments. In general,
among the heuristic, the best is 1/C.

7.4 Evaluating the DI Algorithm with Heuristics

1000 Tasks Sets of 7 Tasks - All Tasks Included

0.9 ß--- o ----- _

cc 0.8
E
° z 0.7
(0 E
i- 0.6 ----- ----- ------
cim ci Q 0.5
6
Q'
m

0.4

0.3 x x...: _

0.1
--X

+-------- + ----x--... _. __

Best 0
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Utilisation

(a) T/C shows excellent followed by 1/C and LT

1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix
0 9 .

0.8 -0------® d O-
0

E

ö
0.7

Z
a) 0.6
E

0.5
Cc

0.4

0.3

m
¢ 0.2

0.1 * -----
Best _Z 0

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(b) The best are T/C and 1/C

1000 Tasks Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix

0.9

0.8
----- ----- O6

F?

ö
0.7

Z 0.6
E

0.5
N
m

Q

0.4
i

0.3

m
0.2

0.1 -
". -

Best -- -- _
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Utilisation

(c) The best are T/C and 1/C

NPA $
EDF -0-
1/c +--
LT x

T/C -
LC - -o_ C/T -- --- -

1

1

f-'

ß--

--A.. _.

MPA $
EDF --0-

1! T
1/C .. -+. _...
LT --

T/C --)K -
LC --[} C! T _. A.. -.

1

138

Figure 7.11: Maximum Relative Average Response-Time under different priority assign-
ments. Among the heuristics, the best ones are T/C and 1/C.

7.4 Evaluating the DI Algorithm with Heuristics 139

7.4.1 Problem: Deadlines and Total Number of Preemptions

Using the LC and C/T rules for assigning importance our experiment compares how good
the DI algorithm is when used with these two rules for minimising the total number of
preemptions while guaranteeing the deadlines. In the plots, FP0Pt is the P-optimal solution
computed by exhaustive search.

In Figure 7.12(a) (page 140), when all tasks are included, DI(LC) is in general better

than EDF. In fact, the distance between the P-optimal solution and DI(LC) is less than 7%.

In Figure 7.12(b, c), for task subsets, DI with both rules achieves excellent results. This
is because DI tries to maintain intact the priorities of higher importance tasks, affecting

mainly the priorities of the lower important ones. Note how close of the optimal solution
both DI(LL) and DI(C/T) are.

In Figure 7.13 (page 141), when the number of tasks per set increases, DI(LL) im-

proves notably with respect to RMPA and EDF. This is because C in each task decreases

since the period is fixed. Consequently, a task can complete sooner reducing the chance of
being preempted. In addition, the number of task releases decreases when the number of
tasks increases.

Finally, in Figure 7.14 points corresponds to the total number of preemptions obtained

when a task set is scheduled by either EDF or DI(LL). For instance, Figure 7.14(a) cor-

responds to 1000 sets of 7 tasks with U=0.5. The average number of preemptions is

42.3 for EDF and 32.4 for DI(LL). Thus, all the data displayed in this plot corresponds to

the single point EDF= (7,42.3) and DI(LC)= (7,32.4) in Figure 7.13(a), and also corre-

sponds to the single point EDF= (0.5,0.418) and DI(LC)= (0.5,0.101) in Figure 7.12(a).

Figure 7.14 shows that while on average one solution is better than the other one, it is

not necessarily true for a number of solutions. Note that in general DI(LL) is better than

EDF and even in Figure 7.14(c), where on average EDF is better than DI(LC), there exist

a number of solutions where DI(LC) outperforms EDF.

Remark 7.4.1. These experiments show that assigning importance according to the rule
the largest computation time, the higher the importance" and finding a feasible solution

with the DI algorithm provides a near-optimal solution for the scheduling problem offind-
ing a feasible fixed-priority assignment that minimises the total number of preemptions.

7.4 Evaluating the DI Algorithm with Heuristics

1

'9
0.8

E
0
z
CC

.20.6 ä
E
m
m
IL
ö 0.4
m
n E
0 z

0.2
F

Best 0

1000 Tasks Sets of 7 Tasks - All Tasks Included - Deadlines Guaranteed

00

, er

o sa =ýy

-v_ -e--
v

RMPA $
EDF ----- DI(LC)

DIL rr) o Pupt --

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(a) By far, DI(LL) outperforms RMPA. It also is better than EDF for U<0.8

1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix - Deadlines Guaranteed

0
ro 0.8
E
0
Z
a
0 0.6
ä
E
m m
CL
ö 0.4
äý
E
z
75ý 0.2
r

Best

e -e -- -- - ------ -

A

i

IIII

RMPA $
EDF ------ DI(LC) v

DI C/1ý o
P� -$-

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(b) Both DI(LL) and DI(C/T) are very close of the optimal solution

N 0.8
E
0
z

0 0.6
ä
E

ä
Z 0.4

a
E
z
mý 0.2
F

Best n

1000 Tasks Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix - Deadlines Guaranteed

RMPA $
EDF ------ DI(LC) -- v

DI(C/T)
FPopt ---- -

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(c) Both DI(LL) and DI(C/T) are very close of the optimal solution

140

Figure 7.12: PLOTS A TYPE. Guaranteeing Deadlines and Minimizing the Total Number
of Preemptions. FPopt computed by exhaustive search is the best. In general, DI(LC) is
the best tractable solution excepting when U>0.8 and the metric includes all tasks. In
this case EDF is better

7.4 Evaluating the DI Algorithm with Heuristics

50

0
CL
E
m 40
ä
ö
m

E 35
z

ö
r

30

70

65

1000 Tasks Sets - All Tasks Included -U=0.5

45

ia jim

7

17

10-

0

RMPA $
EDF ------I

D(CL/T;

25 '
45 6789 10 11 12 13 14 15

Number of Tasks

(a) DI(LC) outperforms both RMPA and EDF

1000 Tasks Sets - All Tasks Included -U=0.7

C
O
CL
E

60 91
CL
ö

E 55
z

ö
H

50

125

120

"

v. b

o

v

RMPA $
EDF ------

D(CL) o

45 'IIIIIIIII11

456789 10 11 12 13 14 15

Number of Tasks

(b) DI(LC) outperforms both RMPA and EDF

1000 Tasks Sets - All Tasks Included -U=0.9

0 115
0 . ti
E 110
m ä

_ö
105

E
Z 100

95

90

AS

RMPA $
EDF ------

DI(LC) --
D(C/T) o

456789 10 11 12 13 14 15
Number of Tasks

(c) DI(LL) outperforms both RMPA and EDF

141

Figure 7.13: PLOTS B TYPE. Guaranteeing Deadlines and Minimizing the Total Number
of Preemptions for different task sets

7.4 Evaluating the DI Algorithm with Heuristics

1000 Tasks Sets - All Tasks Included -U=0.5
14U

120

ö 100 L
a
E
m
CD 80

m
E 60 E
Z

40 ö

20

0

EDF +
DI(LC) 0

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(a) On average the number of preemptions is 42.3 for EDF and 32.4 for DI(LL)

1000 Tasks Sets - All Tasks Included -U=0.7
1bU

140

w 120
0
ä

100
m ä

80

E
Z 60

40

20

n

EDF +
DI(LC) 0

142

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(b) On average the number of preemptions is 64.4 for EDF and 58.1 for DI(LL)

1000 Tasks Sets - All Tasks Included -U=0.9
Z4U

220

200

In ö 180
0 a E 160
m m
a 140
ö
$ 120
E
Z 100

80

60

40

,; on

EDF +
DI(LC) 0

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(c) On average the number of preemptions is 111.3 for EDF and 113 for
DI(LL)

Figure 7.14: PLOTS C TYPE. Comparing DI(LC) against EDF for the Deadlines and Total
Number of Preemptions problem. While on average one outcome is better than the other
one, it is not necessarily true for a number of solutions

7.4 Evaluating the DI Algorithm with Heuristics 143

7.4.2 Problem: Deadlines and Absolute Output Jitter

Using the T/C, LT and 1/C rules for assigning importance, our experiment compares how

good the DI algorithm is when used with these three rules for minimising the absolute
output jitter. The results are depicted in Figures 7.15,7.16 and 7.17 (pages 144- 146).

In Figure 7.15(a), when all tasks are included DI(l/C) is our best solution performing
better than EDF for low utilisation. Both DI(1/C) and DI(T/C) are also better than RMPA.
Note that the y-optimal solution (FP0Pt) achieves excellent results for low and medium

utilisation; it suggests that further improvements could be obtained with additional re-

search in algorithms for assigning importance. On the other hand, Figure 7.15(b, c) shows
that DI(1 /C) and D(T/C) produce excellent results for task subsets.

In Figure 7.16, when the number of tasks per set increases, DI(1/C) is notably better

than both RMPA and EDF for low and medium utilisation.

In Figure 7.17 points corresponds to the absolute output jitter obtained when a task set
is scheduled by either EDF or DI(1/C). It shows how the DI(1/C) solution is scattered with

respect to EDF. Note that although EDF is much better than DI(1 /C) when U=0.9, there

exist a number of solutions where DI(1/C) outperforms EDF.

Remark 7.4.2. The experiments show that assigning importance according to the rule

"the larger 11C, the higher the importance" and finding a feasible solution with the DI

algorithm provides a good solution for the scheduling problem of finding a feasible frxed-

priority assignment that minimises the absolute output jitter.

7.4 Evaluating the DI Algorithm with Heuristics

1

0.6

E
ö

0.6

ö 0.4
d 5
ö
N

L
aW0.2

Best n

1000 Tasks Sets of 7 Tasks - All Tasks Included - Deadlines Guaranteed

tr,

- e-

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(a) DI(I/C) is our best solution even so it is far from the optimal one. DI(T/C)
is also better than RMPA

1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix - Deadlines Guaranteed

0.8
N

E
0

0.6
m

0 0.4

ö

0.2

Best n

$j
-ý

DMPA $
EDF ------ DI(1/C }

DI(LD; o
DI(D/C) - FPopt - -e

RMPA $
EDF -- ---

DI(1/C
DI(LT) o

DI(TIC) --- FPopt - -e

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(b) DI(I /C) and D(T/C) produce excellent results

I

-g 0.8
N

tu

E
ö

0.6

g
0 0.4

ö N

0.2

Best n

1000 Tasks Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix - Deadlines Guaranteed

0
0,

,b.
0 0

D
0

13

Q -m e

RMPA
EDF $

DI(1/C) ff
DI(L o

DI(7/C - FPopt - -e -

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(c) DI(1 /C) and D(T/C) produce good results even so they outperforms EDF

only for U<0.85

144

Figure 7.15: PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Absolute Out-

put Jitter. DI(l/C) and D(T/C) produce good results.

7.4 Evaluating the DI Algorithm with Heuristics

250

240

230

1000 Tasks Sets - All Tasks Included -U=0.5

o"

RMPA $
EDF ------ DI(1/C - ff-

D(T/C; _ o__.

220

» 210

0
m 200
D 0

190

180

170

1Rn
4

360

350

340

330

56789 10 11 12 13 14 15
Number of Tasks

(a) DI(1/C) is the best

1000 Tasks Sets - All Tasks Included -U=0.7

D

-0

d D.

d Q

(a'
la

'

Aff -

0' ,

RMPA $
EDF ------ DI(1/C) ff

D(T/C) o

G)
320

0 310

300

290

280

270

San ýVV 4

580

560

540

520

- 500

0
m 480 5
ö

460

440

420

400

56789 10 11 12 13 14 15
Number of Tasks

(b) DI(1/C) is better than EDF

1000 Tasks Sets - All Tasks Included -U=0.9

la- - ---21 it -- ,, -- -115 ig 65 ia

RMPA $
EDF -----

DI(1/C ---ff D(T/C; .. _... o. _....

456789 10 11 12 13 14 15
Number of Tasks

(c) The best is EDF

145

Figure 7.16: PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Absolute Out-
put Jitter

7.4 Evaluating the DI Algorithm with Heuristics

350

300

(D 250

0 200

C) N
Q 150

100

,; n

1000 Tasks Sets - All Tasks Included -U=0.5

0 0
o

000ý0 ý6b
_. _.....

o
.....

o(9D...
°° o°O 0 00 °ý (yÖý°ý

0 00
°° °

o°° o0 Cb

0o r oo
°oe: ' 0*B°

oý o® o ow

ID %

@®ý°gý®oow°o° OýýaCPo" 0e

'°00 n0000 ý....

0

EDF
DI(1/C) 0

VV 0 100 200 300 400 500 600 700 800 900 1000
Task Set

(a) On average the absolute output jitter is 184.6 for EDF and 171.6 for DI(1/C)

1000 Tasks Sets - All Tasks Included -U=0.7
J3U

500

450

400

350

O
2' 300

ö

250

200

150

100

0

° °o
o°

0O 00J
0 0O0?

O°O µ1y=ý
iO

OO O$ OO
*00 00

0°O o(ý
00 0

ooW°ý oo® o boo

000 0°88
°pö° ®oýO@°o

@P 0

00°°
00

EDF +
DI(1/C) 0

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(b) On average the absolute output jitter is 278.8 for EDF and 279.8 for DI(1/C)

1000 Tasks Sets - All Tasks Included -U=0.9
1 UUU

900

800

m 700

0 600
m 7

y 500

400

300

5-nn

f 0
000

0° °° ®o
000

0 00 0°°
°0

oo0o0° o° °o
°

00 0 ý...
ý °0

°o
°° ýd o @o° äo0 0o°0 o8oomooä.

°®o
ö88

OO8
%

ýz
ý'

-J
0 (ID %a00

e

EDF +
DI(1/C) 0

`VV 0 100 200 300 400 500 600 700 800 900 1000
Task Set

(c) On average the absolute output jitter is 421.3 for EDF and 502.5 for DI(1/C)

146

Figure 7.17: PLOTS C TYPE. Comparing DI(I/C) against EDF for the Deadlines and Ab-

solute Output Jitter problem. While on average one outcome is better than the other one,
it is not necessarily true for a number of solutions

7.4 Evaluating the DI Algorithm with Heuristics 147

7.4.3 Problem: Deadlines and Relative Output Jitter

Using the 1 IT, 1 /C and C/T rules for assigning importance, we compare how good the DI

algorithm is when used with these three rules for minimising the relative output jitter. The

results are depicted in Figures 7.18,7.19 and7.20 (pages 148,149 and 150).

In Figure 7.18(a), when all task are included, RMPA is a good solution and is close to
the

. fir``-optimal solution (FP0Pt). DI(C/T) and DI(1/C) are bad solutions. Note that EDF

outperforms any fixed-priority solution for almost all utilisation. In Figure 7.18(b, c), for

task subsets, improvements are obtained with DI(1/T) which is very close to y"`-optimal
solution.

In Figure 7.19, note that RMPA and EDF perform very similar for low and medium
utilisation, but for high utilisation EDF is much better.

Figure 7.20 shows the outstanding performance of EDF with respect to RMPA for

this problem. Note that in this case the average truly reflects the superiority of EDF with

respect to RMPA.

Remark 7.4.3. The experiments show that assigning importance according to the rule
"the shorter II IT, the higher the importance" (i. e. RMPA when all tasks are included)

and finding a feasible solution with the DI algorithm provides a good solution for the

scheduling problem of finding a feasible fixed priority assignment that minimises the rel-

ative output jitter.

7.4 Evaluating the DI Algorithm with Heuristics

0.4

0.35

0.3

E 0.25
ö
z 0.2

0.15

0.1

0.05
T

0

1000 Tasks Sets of 7 Tasks - All Tasks Included - Deadlines Guaranteed

a _o ------ ©.
0 fl

0 D
0

Q o.

0

y-o. os
Best_, 1

RMPA -9-
EDF --$- DI(1/C D-

DI(C/T) o
FPapt - -e -

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(a) RMPA is the best FPS solution

0.8

E
ö
Z 0.6

p 0.4

a)

0.2

Best n

1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix - Deadlines Guaranteed

11
g

RMPA $
EDF ---a-- DI(1/C -a-- DI(C/Tý o--

DI(1/T) -- FPop1 - -0 -

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(b) DI(I/T) is the best FPS solution

I

0.8

la

E
Z5
Z 0.6

CL
0.4

M

0.2

Best n

1000 Tasks Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix - Deadlines Guaranteed

RMPA $
EDF ------ DI(1/C -ff--

DI(C
Dý1/T) -

o: =-;:
8

D , tr' 0 0'.

o00ý
Ei

ga
e

E3 -el
- -0

o- e

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(c) DI(I/T) is the best FPS solution

148

Figure 7.18: PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Relative Output
Jitter. Assigning priorities by shorter period is the best solution in FPS

7.4 Evaluating the DI Algorithm with Heuristics 149

0.8

0.7

ai 0.6

ö 0.5
N

0
cc 0.4

0.3

0.85

0.8

0.75

0.7
N
= 0.65

ö 0.6
O

0.55

a) 0.5
Q

0.45

0.4

0.35

n14

1000 Tasks Sets - All Tasks Included -U=0.5

RMPA $
EDF

DI 11C 4-
D(T/D; o_ -o

0
o.

rY

o"

- .. -. D- ©. -- ---- D ____ . ©---- --- G--- --- EI

0

o
........

0.2 ir
456 789 10 11 12 13 14 15

Number of Tasks

(a) RMPA is the best FPS solution
1000 Tasks Sets - All Tasks Included -U=0.7

o
0

0

EI

-o ra - o:

O

----- ----- ------
ja iie ilk ja 12

RMPA $
EDF ------ DI C ff-

D(C/T; __ o __

VV 45

0.9

0.85

0.8

6789 10 11 12 13 14 15
Number of Tasks

(b) DI(1/T) is the best FPS solution
1000 Tasks Sets - All Tasks Included -U=0.9

0

-o
0

-D
5 0.75

0.7

0
z 0.65

0.6

0.55

0.5
0.45

18-- --im- lim
ja ii,

RMPA $
EDF --$-- Di(1/C) cl

o

456789 10 11 12 13 14 15
Number of Tasks

(c) DI(I /T) is the best FPS solution

Figure 7.19: PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Relative Output
Jitter

7.4 Evaluating the DI Algorithm with Heuristics 150

1000 Tasks Sets - All Tasks Included -U=0.5
0.4 EDF +

°0
MPA o

0.35 °
000

°o0 00
m 0.3 00°

0 (D OaD 110)

0.25
00°o. . qID(ý,

1 °0 0 o'
y o3 'no C, 0o

2 0.2 ooC,
°

®vqý
°o 0° oo

o°o

0.15 °

0.1
0 100 200 300 400 500 600 700 800 900 1000

Task Set

(a) On average the relative output jitter is 0.225 for EDF and 0.231 for RMPA

1000 Tasks Sets - All Tasks Included -U=0.7
0.55

EDF +
00 MPA 0 00

0.5 o Do °0
°o0 0000 00

0°o
00 °

0.45 o00°
$® ° $o 0o 000 000

®oo 00 ® 00
°o 00o

ý
o0o p°° cc) oo°o0

cc) 0
ä 0.4

°°
ö°o °°o oe ö 8, a

o 00 00 ý o, o
6°öo

°0&l

?
,)°OO°° or) O 000 00®o 00

0.35 °Do(%cý o°®ö °®° o
09 qs '98

0o
®o ° m

oý o 0.3 0
0000°

°o 00
0.25 °o

0.2
0 100 200 300 400 500 600 700 800 900 1000

Task Set

(b) On average the relative output jitter is 0.338 for EDF and 0.360 for RMPA

1000 Tasks Sets - All Tasks Included -U=0.9
1

0 EDF +
0om RMPA 0

00
0.9 °o

0. °. _. _
0

o
0.8 o pO°® C). 00

Co0o0_ ýoOp
o00

C) 00 0 0.7 ö
oö * 160 °oa8a mop

Cow
o°o o0ý°

0°p°0

dDo 00

> 0.6 (go Q
ok

00
-oo

0.5 öm0 °ý o0
0°

00 0

0

0.4

0.3
0 100 200 300 400 500 600 700 800 900 1000

Task Set

(c) On average the relative output jitter is 0.495 for EDF and 0.607 for RMPA

Figure 7.20: PLOTS C TYPE. RMPA against EDF for the Deadlines and Relative Out-
put Jitter problem. While on average one outcome is better than the other one, it is not
necessarily true for a number of solutions

7.4 Evaluating the DI Algorithm with Heuristics 151

7.4.4 Problem: Deadlines and Maximum Latency

As it was described above, LT and T/C rules performed badly with the DI algorithm.
Therefore, we experiment with all the rules looking for the best one. The results are
depicted in Figures 7.21,7.22 and 7.23 (pages 152,153 and 154).

In Figure 7.21, RMPA and all DI solutions perform badly with respect to EDF. Our best

solution is DI(LC) but it is far from the optimal one and is near to the RMPA solution for

high utilisation. Note that the L -optimal solution is better than EDF for low and medium

utilisation. Consequently, there exists room for additional improvements in fixed-priority

assignment algorithms. For task subsets, improvements are obtained with DI(LC) and
DI(C/T) which are close to the L -optimal solution.

In Figure 7.22, note that EDF is better than RMPA and all DI solutions. Observe

that when the utilisation increases, the difference between RMPA and the DI solutions is

minimal (see Figure 7.22(c)).

In despite of EDF is on average much better than DI(LL), in Figure 7.23 can be

observed that there exists a number of solutions where DI(LL) outperforms EDF. For

instance, all data in Figure 7.23(b) corresponds to the single point EDF=(7,299.6) and
DI(LC)=(7,362.2) in Figure 7.22(b).

Remark 7.4.4. The results of these experiments shows that the DI algorithm with im-

portance assigned according to the rule "the larger computation time, the higher the im-

portance" provides a better solution than RMPA for the scheduling problem of finding a
feasible fixed-priority assignment that minimises the maximum latency.

The maximum latency of a task (i. e. the maximum elapsed time between the comple-

tion time and the beginning time) is greater in tasks with long C than in tasks with short C.

In addition, it increases due to the interference produced by lower priority tasks. Thus, in-

tuitively the remark is true because under DI(LL), a task with long C has a higher priority

and hence, it will suffer less interference from other tasks.

7.4 Evaluating the DI Algorithm with Heuristics

1

0.9

0.8

'a
0.7

E
Z 0.6

0.5
is
J

E 0.4

E
0.3

0.2

0.1

Best 0

1000 Tasks Sets of 7 Tasks - All Tasks Included - Deadlines Guaranteed

e- m

v B-

-
--e--- --- im ------A --

..
--im-'-

0

0
- --- , i _O-

RMPA $
EDF $

DI(1/C }
DI(LT;

DI(T/C)
DI(L/CC) -v- DI C -o- -

opt - -0 -

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(a) Our best solution is DI(LL), however, note how far it is from the optimal
one

1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix - Deadlines Guaranteed

0.9

0.8
D

14 N 0.7 m E
Z 0.6

c 0.5

E 0.4

D
E 0.3

0.2

0.1

Best .- 1ý -

RMPA $
EDF ------ DI L o-

Di(/C a
DI(LC) - ýr-

DI(C/T) --o - FPýPt -- -0 -

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(b) The best is DI(LL) even so all DI solutions perform good

1000 Tasks Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix - Deadlines Guaranteed
1

0.9

0.8

0.7
E
Z 0.6

c 0.5
d
E 0.4

E 0.3

0.2

yll 0.1

Best n

RMPA $
EDF --$- DI(LT) --a -

DI(T/C) o-
DI(LC)-4r

DI(C/T)
FPop1 -- -0- -

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(c) The best are DI(LC) and DI(C/T)

152

Figure 7.21: PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Maximum
Latency under different priority assignments. Our best solution is DI(LC)

7.4 Evaluating the DI Algorithm with Heuristics

215

210

1000 Tasks Sets - All Tasks Included -U=0.5

RMPA $
EDF ------ DI (LC - v-

D(C/T; o-_

o.
v G

0 0

o' 7
vo

m o ... _. _.... -- -- . v'
-------- a

U

m 205
J

E
E

200

195

190

350

340

330

456 789 10 11 12 13 14 15
Number of Tasks

(a) DI(LC) is our best solution
1000 Tasks Sets - All Tasks Included -U=0.7

U

320

310

300

290

pan

ý
tr

, in,

®,

,0 -0 _ __ la

RMPA $
EDF ------

D(CLlT; o

ýVV
4

600

580

560

540

520
m
J

E 500
m E

480

460

440

420

Ann

56789 10 11 12 13 14 15

Number of Tasks

(b) DI(LL) and DI(C/T) show similar performance

1000 Tasks Sets - All Tasks Included -U=0.9

ýý a

RMPA $
EDF ------

DI LC) -v- D(Cm .. o......

456789 10 11 12 13 14 15
Number of Tasks

(c) The difference between RMPA and the DI solutions is minimal

153

Figure 7.22: PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Maximum
Latency

7.4 Evaluating the DI Algorithm with Heuristics

1000 Tasks Sets - All Tasks Included -U=0.5
/VV

600

500

U
C

400
J

E
n

300

200

100

n

EDF
DI(LC) o

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(a) On average the maximum latency is 196.9 for EDF and 199.8 for DI(LL)

1000 Tasks Sets - All Tasks Included -U=0.7
ovu

550

500

450
T
U

400 yJ

E 350
m E

300

. ii
250

200

150

inn

EDF +
DI(LC) 0

154

vv 0 100 200 300 400 500 600 700 600 900 1000
Task Set

(b) On average the maximum latency is 299.6 for EDF and 326.2 for DI(LC)

1000 Tasks Sets - All Tasks Included -U=0.9
iuuu

900

800

700
m

E 600
D E

500

400

300

'nn

EDF +
DI(LC) 0

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(c) On average the maximum latency is 460.6 for EDF and 557.0 for DI(LL)

Figure 7.23: PLOTS C TYPE. Comparing DI(LL) against EDF for the Deadlines and the
Maximum Latency problem. While on average one outcome is better than the other one,
it is not necessarily true for a number of solutions

7.4 Evaluating the DI Algorithm with Heuristics 155

7.4.5 Problem: Deadlines and Relative Maximum Latency

Using the 1/C and T/C rules for assigning importance, our experiment compares how good

the DI algorithm is for minimising the relative maximum latency. The results are depicted

in Figures 7.24,7.25 and 7.26 (pages 156,157 and 158).

In Figure 7.24, both DI(1/C) and DI(T/C) outperform EDF in the three plots for all

utilisation values. Note that DI(1/C) is a near-optimal solution.

Figure 7.25 confirms that both DI(1/C) and DI(T/C) provide excellent solutions for

this particular problem.

The superiority of DI(1/C) with respect to EDF is confirmed in Figure 7.26. In the three

plots, observe how the stability of the DI(1/C) solution contrasts with the EDF solution.

Remark 7.4.5. The results of these experiments shows that the DI algorithm with impor-

tance assigned according to the rule "the shorter computation time, the higher the im-

portance "provide near-optimal solutions for the scheduling problem of finding a feasible

fixed priority assignment that minimises the relative maximum latency.

Note that in the previous section we got an opposite result to this one. This is because

while the maximum latency varies with respect to C, the relative maximum latency is in-

sensitive to the variation of C. For instance, consider a system of two tasks a and b with

Ca and Cb respectively, and Ta = Tb, and released at the critical instant. Independently

of the priority assignment (i. e. (a b) or (b a)) the tasks have maximum latencies Ca and

("b respectively and then the maximum latency is max{CQ, Cb}; on the other hand, they

have relative maximum latencies -=1 and C=1 and therefore, the relative maxi-

mum latency is 1. Thus, intuitively the above remark is true because under DI(1/C), tasks

complete soon and hence, their relative maximum latencies are shorter; i. e the maximum

elapsed time between the completion time and the beginning time divided by C will be

shorter.

7.4 Evaluating the DI Algorithm with Heuristics

0.6

-S 0.5
N

E
z 0.4

C m
cc

-_j 0.3
E
E

0.2
m

ari 0.1

Best 0

1000 Tasks Sets of 7 Tasks - All Tasks Included - Deadlines Guaranteed

a. -

0

o.

0
Q;

2- -e'
-13

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(a) DI(I/C) is a near-optimal solution. Both DI(I/C) and DI(T/C) outperform
EDF

1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix - Deadlines Guaranteed
V. O

0.7

N

E 0.6

ö
Z

0.5
c
d ro

0.4
E
E

0.3

0.2
Ca

WII
0.1

Best n

$-ý
ý_-_ $

0

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(b) Both DI(1/C) and DI(T/C) are excellent solutions

V. 0

0.7

NN

E 0.6
6
z

0.5
c N
m

0.4
E
E

0.3

m
0.2 m

Q

WII
0.1

Best 0

1000 Tasks Sets of 7 Tasks - 4,5,6,7 in the prefix, 1,2,3 in the suffix - Deadlines Guaranteed

RMPA $
EDF ------ DI(1/C) - -4- DI(T/C) o

FPop, - -- -

RMPA $
EDF ------ DI(1/C)

DI(T/C) A
FPopt -$-

RMPA $
EDF ------ DI(1/C) --4-

DI(T/C)
FPoot - -a_

---115 $,

i

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(c) Both DI(I/C) and DI(T/C) are excellent solutions

156

Figure 7.24: PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Relative Maxi-
mum Latency. In all cases, both DI(1 /C) and DI(T/C) outperform EDF. Note that DI(1 /C)
is a near-optimal solution.

7.4 Evaluating the DI Algorithm with Heuristics

18

16

14
U C
m

ca 12
E
E 10

>8

6

4

2
4

Number of Tasks

(a) Both D1(1 /C) and DI(T/C) are excellent solutions. Note that EDF and
RMPA perform similar

1000 Tasks Sets - All Tasks Included -U=0.7
L4

22

20

18
m
J 16
E
E 14

12

m 10

8

6

A

Z'

-- - 13 ----- --- EI

:
1

r

RMPA $
EDF --$-- D11/C a

D(T/C; o

RMPA $
EDF --$- DI(1/C) ff - D(T/C) A

_4

45

40

35

c
m

30
E

25

> 20

15

10

S

56789 10 11 12 13 14 15
Number of Tasks

(b) Both DI(1/C) and DI(T/C) are excellent solutions

1000 Tasks Sets - All Tasks Included -U=0.9

e""

Aff,

RMPA $
EDF --$-- DI(1lC - o--. ý

__ a.. _.. D(T/C)

v456789 10 11 12 13 14 15
Number of Tasks

(c) Both DI(1 /C) and DI(T/C) are excellent solutions

157

Figure 7.25: PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Relative Maxi-

mum Latency

10M Tacke Cats -All Tack- Inckic1 d- 11 =05

7.4 Evaluating the DI Algorithm with Heuristics

1000 Tasks Sets - All Tasks Included -U=0.5
4V

35

T
30

U C

25
E
E 20

15

10

5

0

EDF +
DI(1/C) o

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(a) On average the relative maximum latency is 9.06 for EDF and 4.16 for
DI(1/C)

1000 Tasks Sets - All Tasks Included -U=0.7
YJ

40

35
V
C

d 30
m
J

E 25
E

20

15

10

5

n

EDF +
DI(1/C) 0

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(b) On average the relative maximum latency is 9.52 for EDF and 5.74 for
DI(1/C)

70

60

;

IE

Q 20

10

0

1000 Tasks Sets - All Tasks Included -U=0.9

EDF +
DI(1/C) o

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(c) On average the relative maximum latency is 14.03 for EDF and 11.42 for
DI(1/C)

158

Figure 7.26: PLOTS C TYPE. Comparing DI(l/C) against EDF for the Deadlines and the
Relative Maximum Latency problem. Observe the excellent performance of DI(1 /C)

7.4 Evaluating the DI Algorithm with Heuristics 159

7.4.6 Problem: Deadlines and Average Response-Time

Using the 1/C and T/C rules for assigning importance, our experiment compares how

good the DI algorithm is for minimising the maximum relative average response-time.
The results are depicted in Figures 7.28,7.28 and 7.29 (pages 160,161 and 162).

In Figure 7.27, both DI(1 /C) and DI(T/C) are near-optimal solutions outperforming
EDF in the three plots for all utilisation. DI(T/C) is slightly better than DI(1/C).

Figure 7.25 confirms that both DI(1/C) and DI(T/C) provide excellent solutions for

this particular problem.

Figure 7.28, confirms that both DI(1/C) and DI(T/C) are provide excellent solutions for

this particular problem. Although almost overlapped, DI(T/C) is still better than DI(l/C).

The superiority of DI(T/C) with respect to EDF is confirmed in Figure 7.29. In the

three plots, observe how the stability of the DI(T/C) solution contrasts with the EDF solu-
tion.

Remark 7.4.6. The experiments show that the DI algorithm with importance assigned

according to the rule "the shorter computation time, the higher the importance" provide

near-optimal solutions for the scheduling problem of finding a feasible fixed-priority as-

signment that minimises the relative maximum latency.

7.4 Evaluating the DI Algorithm with Heuristics

0.8

-2 0.7
N

al

E 0.6 ö
Z
m E 0.5
I-
ý.
Q 0.4

O)

0.3

Cu
Q 0.2

2
ýi

0.1

Best 0

1000 Tasks Sets of 7 Tasks - All Tasks Included - Deadlines Guaranteed

/0

0ý"
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilisation

(a) Both DI(I/C) and DI(T/C) are near-optimal solutions

V. J

0.8

E 0.7
ö
Z
a) 0.6
E

0.5
co a>

0.4

0.3
ca
a)
¢ 0.2

0.1

Best n

1000 Tasks Sets of 7 Tasks - 3,5,7 in the prefix, 1,2,4,6 in the suffix - Deadlines Guaranteed

ýýýý
f r

ýý`ti

.
ýýý

-ýý/
"ý

: ý-

-ý.

RMPA $
EDF ------ DI(1/C

DI(T/C; A
FP

, pt - -0-

RMPA $
EDF -- $--

DI(1/C ff
DI(T/C;

FPop) - ----

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(b) Both DI(1 /C) and DI(T/C) are near-optimal solutions

1000 Tasks Sets of 7 Tasks - Tasks 4,5,6,7 in the prefix, 1,2,3 in the suffix - Deadlines Guaranteed
V. U

0.8
1) m
N

co 0.7
Z5
Z
m 0.6
E

0.5

dl 0.4

0.3

Cl 0.2

0.1 2
ýl

Best 0

RMPA $
EDF --$-- DI(1/C) o

DI(T/C) - P't -

-ý';
-ý -.

ý., -®ý' ýý`
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilisation

(c) Both DI(I /C) and DI(T/C) are near-optimal solutions

160

Figure 7.27: PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Maximum
Relative Average Response-Time. In all cases, both DI(1 /C) and DI(T/C) are near-optimal
solutions and outperform EDF

7.4 Evaluating the DI Algorithm with Heuristics

4.

a) E
H
m
2 3. 0 la- U) m

Q

m

fd 2

1.5
4

161

RMPA --49-
EDF - -e--

DI(1/C
D(T/Cý

Number of Tasks

(a) Both DI(I/C) and DI(T/C) are excellent solutions
1lffl Tackc Cate - All Tasks Incliiriari - 11 -07

7.5

7

6.5
E
~6 m
N
C

ä 5.5
0) m 5

4.5
aý

4
a)

3.5

3

2.5

2
4

1

16

ID E
~ 14
N

0

a U) 12

m

10
>

d

RMPA $
EDF --- -- Di(1/C 4

D(T/C; _ a__

RMPA $
EDF ---a---

DI(1/C) ---0--
D(T/C) t,

Q8

6

4
456789 10 11 12 13 14 15

Number of Tasks

(c) Both DI(1/C) and DI(T/C) are excellent solutions

Figure 7.28: PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Maximum
Relative Average Response-Time

1 Mn Tacks Sorts - All Tasks InrJi, r1 1. II- f1 a

Number of Tasks

(b) Both DI(1/C) and DI(T/C) are excellent solutions
Info Tackc Rate - All Tacks Inrluriati -II. 09

7.4 Evaluating the DI Algorithm with Heuristics

1000 Tasks Sets - All Tasks Included -U=0.5
lb

14

12
f=

10
0
a
28

m6

4

2

n

EDF
DI(T/C) 0

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(a) On average the maximum relative average response-time is 2.82 for EDF
and 1.78 for DI(T/C)

1000 Tasks Sets - All Tasks Included -U=0.7
lb

14

E 12
r

10
0 CL

8

6

CE 4

2

n

EDF +
DI(T/C) o

0 100 200 300 400 500 600 700 600 900 1000

Task Set

(b) On average the maximum relative average response-time is 3.72 for EDF

and 2.68 for DI(T/C)

1000 Tasks Sets - All Tasks Included -U=0.9
70

60

E 50 r
m
N
C

40 CL

ä 30

20

10

n

EDF +
DI(T/C) 0

162

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(c) On average the maximum relative average response-time is 7.28 for EDF

and 6.21 for DI(T/C)

Figure 7.29: PLOTS C TYPE. Comparing DI(T/C) against EDF for the Deadlines and the
Maximum Relative Average Response-Time problem. Observe the excellent performance
of Dl(T/C)

7.4 Evaluating the DI Algorithm with Heuristics 163

7.4.7 Summary

Observe that none of the solutions evaluated achieves the best possible performance with

either global or local metrics; i. e. none hits the optimal computed by exhaustive search.

In almost all cases, the DI algorithm with any rule for assigning importance exhibits

excellent performance as a local metric. This is because, in general, the impact is more

related to the fact that the priorities are raised rather than the rules used for assigning the

importance.

Table 7.2 presents a summary of the results of the evaluation (as a global metric) of the
different FPS solutions to bicriteria problems using the DI algorithm compared with the

solutions obtained with RMPA and EDF. The best results are indicated as 1s in the table

and the worst ones as 4s. Observe that:

" EDF outperforms RMPA in all scheduling problems evaluated.

" EDF outperforms our DI solutions for problems where the secondary objectives are

either to minimise the relative output jitter or to minimise the maximum latency.

" The DI solutions outperform EDF for problems where the secondary objectives are

to minimise the total number of preemptions, absolute output jitter, the relative max-
imum latency, or the relative average response-time.

Note that some results are good with respect to more than one QoS criterion and there-

fore they can be considered as multicriteria scheduling solutions. In this sense:

" EDF outperforms our DI solutions for problems where the secondary objectives are

to minimise the relative output jitter and the maximum latency.

" DI(1/C) is our best FPS solution when deadlines have to be met and the secondary

objectives are to minimise the absolute output jitter, the relative maximum latency

and the relative average response-time (note that in this last problem DI(1/C) is al-

most equal to DI(T/C) which is rated as number 1). In other words, DI(1 /C) provides

an excellent solution for a scheduling problem with four objectives.

7.5 DI Algorithm vs Swapping Algorithm

The DI Algorithm with Heuristics
1/C LC LT T/C C/T RMPA EDF

Preemptions 1 2 4 3
Absolute Output Jitter 1 3 4 2
Relative Output Jitter 3 4 2 1

Maximum Latency 2 3 4 1
Rel. Maximum Latency 1 2 4 3

Rel. Avg. Response-Time 2 1 4 3

164

Table 7.2: Classification according to the performance. 1 is the best and 4 the worst
scheduling solution.

" DI(LL) is our best solution when deadlines have to be met and the secondary objec-

tive is to minimise the total number of preemptions. This solution is also better than

RMPA when the maximum latency is included into the objectives. Consequently,

DI(LL) provides an excellent solution for a scheduling problem with three objec-

tives.

" DI(T/C) is an excellent solution when deadlines have to be met and the secondary

objectives are to minimise the relative average response-time and the relative maxi-

mum latency.

7.5 DI Algorithm vs Swapping Algorithm

In this section the DI algorithm is compared against the swapping algorithm in two sce-

narios:

" when the scheduling problem consists in finding a feasible priority assignment that

maximises the importance;

" when the scheduling problem consists in finding a feasible priority assignment that

maximises a QoS metric.

7.5 DI Algorithm vs Swapping Algorithm

Avg. Index of SD , SA and S* for Sets of 7 Tasks

N 2400

1800

1200

600

0

Utilisation

165

Figure 7.30: For high utilisations, the number of feasible tasks sets decreases and there-
fore, the distance between SD and S* gets smaller. The distance between SA and S*
increases slightly.

7.5.1 Maximising the Importance Metric

This section compares the DI algorithm against the swapping algorithm when the problem

consists in finding a feasible priority assignment that maximises the importance. The

swapping algorithm receives an infeasible ordering and finds a feasible one (if it exists) by

swapping pairs of task priorities. In our context, the swapping algorithm will receive an
infeasible ordering by importance and will produce a feasible one.

We have generated random task sets of N tasks with utilisation from 0.5 to 0.95 and
N=4,5,6,7,8 tasks. Each task set is created by randomly choosing task's computation

times between 2 and 50 time units, and then by randomly choosing periods to approxi-

mate the utilisation desired. The importance is assigned according to the rule "the larger

the deadline, the higher the importance"; note that this is an extreme case where the im-

portance of tasks is contrary to the RMPA order. In addition, it is guaranteed that all task

sets are feasible under rate monotonic scheduling.

Let S be a task set with randomly chosen importances and with priority orderings S'

(by importance), SD (by RMPA), SA (by swapping algorithm) and S* (by DI algorithm);
in terms of the lexicographic order, the goodness of the orderings is given by the index

metric ZI. For each set, we compute both their orderings and their indices. A point in

Figure 7.30 represents the average index of 1000 sets of 7 tasks for a level of utilisation.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

7.5 DI Algorithm vs Swapping Algorithm

Distance from SD and SA to S*
1000000 1

100000

10000

1000

100

10

1

0.1

i
-_ _

ý- 4'(SD)

4' (S A

456789

Number of Tasks

166

Figure 7.31: The solutions SD and SA move dramatically away from S* conforming the
number of tasks increases.

For high utilisation the number of feasible task sets decreases, and hence the difference

between RMPA and DI is reduced. On the other hand, the difference against SA grows

slightly. Note that by the optimality of DI, it is never the case that the index of SD or SA

can be lower than S*.

The plots for task sets with N equal to 4,5,6 are not depicted because they are similar

to Figure 7.30. More interesting is to show how fast the solutions S' or SA move away
from the optimal S*. Consider the data in Figure 7.30; computing the distances ZI(SD) -
Zj (S*) and ZI (SA) - ZI (S*) for their respective utilisation and calculating its average

give us the average distance S(SD) and W(SA) respectively. Computing these distances

for different N give us Figure 7.31; this is the variation of the distance to S* with respect

the number of tasks per set. Note how fast they move away from S*

7.5.2 Maximising/Minimising a QoS Metric

The swapping algorithm receives an infeasible ordering by importance and produces a

feasible one; for instance, assuming that the rule 1/C produces an infeasible ordering,

the swapping algorithm produces a feasible one denoted as A(1/C). In the experiments

presented in section 7.4, the swapping algorithm was also included but the results were

not shown since they were almost the same as those obtained with the DI algorithm and

hence the lines are overlapped. It has an explanation.

7.5 DI Algorithm vs Swapping Algorithm 167

Total Number of Preemptions Relative Avg. Resp-Time
Utilisation DI(LL) A(LC) Identical DI(T/C) S(T/C) Identical

0.50 32.4 32.5 924 1.787 1.791 953
0.55 38.4 38.4 904 1.954 1.960 944
0.60 44.0 44.1 892 2.134 2.139 925
0.65 49.7 49.8 891 2.399 2.403 912
0.70 58.1 58.2 855 2.682 2.689 896
0.75 66.5 66.5 842 3.075 3.084 890
0.80 75.3 75.4 838 3.662 3.668 913
0.85 89.9 90.0 799 4.543 4.545 920
0.90 113.0 113.1 759 6.211 6.213 926
0.95 141.5 141.6 725 9.245 9.244 953

Table 7.3: Comparing solutions obtained with DI and swapping algorithms for different

utilisation with heuristics LC and T/C. Note how similar the results are. From 1000 priority
orderings, the column "Identical" shows the number of identical ones.

" Firstly, observing Figure 7.4(a) (page 124) note that when assigning priorities with

the heuristics there already exist a number of feasible assignments such that DI and

swapping algorithms results are necessarily the same.

" Secondly, we note that when assigning importance with the heuristics, higher impor-

tance tasks are feasible and therefore they remain practically fixed in their positions;

only the lower priority ones are changed.

" Thirdly, there exist a number of priority orderings that produce identical solutions,

and many of such orderings have minor differences.

Consequently, the results of the DI and the swapping algorithms will be either identical or

different in some lower priority tasks. For such reasons both algorithms achieve similar

solutions. So similar that when importance is assigned with the rule 1/C the DI algorithm

and the swapping algorithm always produce the same priority ordering; i. e. DI(1 /C) is

identical to A(1/C). Consequently, A(1/C) is also an excellent multicriteria scheduling

solution.

Table 7.3 shows the differences between DI(LL) and A(LC) as well as DI(T/C) and

A(T/C) solutions. For instance, for utilisation 0.5 the average total number of preemptions

for DI(LL) and A(LC) are 32.4 and 32.5 respectively. Thus DI(LL) is slightly better

than A(LC). Observe that there are 924 identical priority orderings and therefore only 76

7.6 DI+ Algorithm: QoS and Priority Constraints 168

contributes to this difference. Figure 7.32 shows a better comparison between DI(LL) and
A(LC). The baseline is formed by DI(LL); points above the baseline are worst and points
below are best than DI(LC) results. Note that A(LC) is better in some occasions.

7.6 DI+ Algorithm: QoS and Priority Constraints

In this section we present a simple evaluation of the DI+ algorithm using the same task sets

generated to evaluate DI. In order to compare DI+ against RMPA, the priority orderings

must be both feasible and fulfill some priority constraints. By ordering tasks by RMPA, we
label tasks as 1,2, ... , 7, and define the next priority constraints for all task sets: P> Pl

and P6 > P5. Thus, under RMPA all task sets fulfill both the deadlines and the priority

constraints. We selected these constraints arbitrarily and without a special reason.

Of the six different scheduling problems with QoS requirements, we only present plots
for five of them since no DI solution outperforms RMPA for the problem with relative

output jitter requirements. The results are shown in Figures 7.33 and 7.34 (pages 170-

171). Only RMPA and DI+ solutions meet the priority constraints.

Observe that in all cases, constraining the freedom for assigning priorities reduces the

chance for improving the QoS metric. Moreover, some results can be worse as shown in

Figure 7.33(c), where for high utilisation the DI+(LC) solution is worse than RMPA for

the deadlines and maximum latency problem. This is because for this particular problem,

the difference between RMPA and the DI solutions is minimal for high utilisation (see

Figure 7.21(a) in page 152). Consequently, by adding the constraints the DI+ solutions

tend to be worse.

Note that while in some cases the differences are minimal (e. g. total number of pre-

emptions problem), in other cases the differences are significant (e. g. relative maximum

latency problem).

In summary, in this experiment we can observe that priority constraints simply reduce

the space of search where the DI+ algorithm can search for a solution, but we can still

obtain improvements in the QoS.

7.6 DI+ Algorithm: QoS and Priority Constraints 169

1000 Tasks Sets - All Tasks Included -U=0.5
vv

70

N

O 60
Q

E
a>
ä 50

ö
d
E 40

Z

30
H

20

10

DI(LC)
A(LC) 0

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(a) The average are DI(LC)=32.4 and S(LC)=32.5. There are 924 identical
solutions

140

120

0 0
E 100
d d
EL
B 80

E
Z 60

1000 Tasks Sets - All Tasks Included -U=0.7

40

2n

ID

DI(LC) +
A(LC) 0

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(b) The average are DI(LC)=58.1 and S(LC)=58.2. There are 855 identical
solutions

1000 Tasks Sets - All Tasks Included -U=0.7
ZZU

200

180
N
C
O

160
E
d ä 140

120
E
n z 100

80

60

40

DI LC +
AýLC; o

0 100 200 300 400 500 600 700 800 900 1000
Task Set

(c) The average are DI(LC)=113 and S(LC)=113.1. There are 759 identical
solutions

Figure 7.32: Comparing DI(LC) against A(LC) results for the problem of minimising the
total number of preemptions

7.6 DI+ Algorithm: QoS and Priority Constraints

1

70 m 0.8
E
ö
z
N
C
0 0.8
a
E

ä
Z 0.4

E
z
6 0.2
F

Best

1000 Tasks Sets of 7 Tasks - All Tasks Included - Deadlines Guaranteed

.. e

. -
v-

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(a) Minimising the Total Number of Preemptions

1

10 0.8
m
N
Cs

E
0
Z 0.6
m

0 0.4
d

0
N

0.2

Best n

1000 Tasks Sets of 7 Tasks - All Tasks Included - Deadlines Guaranteed

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(b) Minimising the Absolute Output Jitter

0.9
1000 Tasks Sets of 7 Tasks - All Tasks Included - Deadlines Guaranteed

0.85

0.8

0.75
E
Z 0.7
T
V

m 0.65
m
J

E 0.6
3 E
A 0.55

0.5

0.45
Best ,, A

/

RMPA --b-
DI LC v-

DI+(LC;

RMPA -ý DI1/CF-
DI+ý1/Cý s

RMPA $
DI(LC) ---e---

DI+(LC) ---w--

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilisation

(c) Minimising the Maximum Latency

170

Figure 7.33: Guaranteeing Deadlines and Priority Constraints { P7 > PI, 1-16 > P5 } for
different QoS metrics. Note that constraining the freedom for assigning priorities reduces
the chance for improving the QoS metric. The DI solution does not meet the priority
constraints

7.6 DI+ Algorithm: QoS and Priority Constraints

0.6

" 0.5
N
Cs

E
ö
z 0.4

0.3
E
E

0.2

cu W) ýQ0.1

Best n

1000 Tasks Sets of 7 Tasks - All Tasks Included - Deadlines Guaranteed

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(a) Minimising the Relative Maximum Latency

0.8

"0 0,7
a) N

E 0.6 ö
z
a) E 0.5

ä
0.4

0.2

(1,0.3

0.1

Best

1000 Tasks Sets of 7 Tasks - All Tasks Included - Deadlines Guaranteed

RMPA $
DI(1/C) ---s--

DI+(1/C) t

RMPA $
DI(1/C) -- -

DI+(1/C)

0.45 0.5 0.55 0.6 0.65 03 0.75 0.8 0.85 0.9 0.95 1
Utilisation

(b) Minimising the Relative Average Response-Time

171

Figure 7.34: Guaranteeing Deadlines and Priority Constraints { P7 > PI, P6 > P5 } for
different QoS metrics. Note that constraining the freedom for assigning priorities reduces
the chance for improving the QoS metric. The DI solution does not meet the priority
constraints

Chapter 8

Conclusions and Further Work

This thesis has shown that fixed-priority assignments that meet simultaneously deadlines

and QoS requirements can be obtained without performing exhaustive search in the set of
N! possible assignments. Naturally, exhaustive search can be utilised but only for small

task sets.

In the context of fixed-priority scheduling in hard real-time systems, problems where

simultaneously deadlines and QoS requirements have to be fulfilled have been studied.

While most approaches rely on complex algorithms that artificially modify the attributes or

structure of tasks, and/or require non-standard run-time support, we propose an alternative

mechanism based on pure assignment of fixed priorities. In this chapter we review the

contributions of our research and present some directions for further work.

8.1 Review of Contributions

It is our thesis that optimal or near-optimal solutions to scheduling problems with multiple

objectives can be obtained by finding assignments of fixed priorities. A solution consists

of a feasible priority assignment that minimises a metric for measuring importance. The

solution proposed is generic and can be applied to a wide variety of scheduling problems

in hard real-time systems.

The main contributions of this thesis are:

172

8.1 Review of Contributions 173

1. the development of a model for expressing QoS in terms of relative importance

between tasks;

2. the development of algorithms that optimally solve the scheduling problem of meet-
ing deadlines and minimizing (as a secondary criterion) the importance criterion;

3. the application of the algorithms and the importance criterion to solve practical mul-
ticriteria scheduling problems.

8.1.1 Importance

The first main contribution of this thesis is the development of a framework for expressing
the QoS in terms of importance relationships. We argue that the traditional approaches
based on value have a number of deficiencies due to the intrinsic complexities involved

in the design and utilisation of utility functions. Instead, we propose a notion of QoS

based on relative importance and conditional relative importance preferences; the former

expresses that in a schedule it is desirable to run a task in preference to another one, and the

latter expresses that in a schedule it is desirable to run a task in preference to another one

subject to conditional clauses. We affirm that executing tasks in the order of importance

with respect to some requirements improves the QoS of a system.

While relative importance is expressed as a number, conditional relative importance

requires a set of conditional clauses expressed as priority assignment conditions attached

to each task. This simplified model captures even complex QoS metrics between tasks

including specific restrictions such as precedence constraints.

We propose the model of importance for improving QoS in two specific levels of ab-

straction:

1. at task level by assigning higher priorities to higher importance tasks while the dead-

lines are guaranteed;

2. at application level by finding priority assignments that are both feasible and as close

as possible to a specific assignment.

8.1 Review of Contributions 174

In this context, we propose the lexicographic rule as a measure for expressing different

levels of importance between tasks (i. e. task importance) as well as for expressing different

levels of importance between priority orderings (i. e. index of importance). Thus, the

metric of importance is defined in terms of the lexicographic distance. With this metric,

we formulate the scheduling problem as finding a feasible priority ordering that meets the

deadlines and minimises the lexicographic distance; minimising such distance maximises

the importance. Afterwards, we solve the scheduling problem optimally using the DI and
DI+ algorithms.

8.1.2 DI and DI+ Algorithms

The second main contribution of this thesis is the DI algorithm introduced in chapter 5.

It solves optimally the scheduling problem of finding a feasible priority assignment that

maximises the importance.

The DI algorithm performs a branch and bound search into the space formed by the N!

possible orderings, ordered lexicographically by importance. Taking advantage of some

interesting properties of the optimality of the deadline monotonic priority assignment and

some particular characteristics of the lexicographic order, we identify some patterns in the

search space. This permits us to solve the problem in O((N2 + N)/2) steps; however its

complexity depends on the feasibility test; for instance, DI is pseudo-polynomial when the

response-time test is used. Our approach is optimal in the sense that the priority ordering

found is feasible and no other feasible priority assignment exists with higher importance.

The DI+ algorithm was introduced in chapter 6 with the objective of solving optimally

the scheduling problem of finding a feasible priority assignment that maximises the con-

ditional relative importance. DI+ is DI with some modifications that allow including the

feasibility tests for tasks with arbitrary deadlines or weakly-hard constraints, as well as

including the swapping algorithm for finding feasible priority orderings when DMPA is

not optimal. Dl+ permits the solution of the problem in O((N2 + N)/2) steps; however

its complexity depends on the feasibility test and the priority assignment algorithm. While

in problems with arbitrary deadlines the complexity is still pseudo-polynomial, problems

with weakly-hard constraints could require (N2 + N)/2 simulations in the worst-case,

8.1 Review of Contributions

which is computationally costly.

175

With the DI and DI+ algorithms, a decision maker can specify a priority assignment
based on objective or subjective considerations about the system and, if such assignment
is infeasible, the algorithms can find a feasible one as close as possible of the assignment
desired. Although algorithms such as the swapping algorithm can be considered as good
heuristics for this specific problem, such solutions are not optimal and are unpredictable
in the sense that we do not know how close they are from the optimal one (see Figure 5.1).

The scheduling problems solved by DI and DI+ are not only theoretically interesting

but they can also be applied to practical problems. In this sense, we propose to use them

jointly with specific importance assignments with the objective of solving multicriteria

scheduling problems.

8.1.3 Solutions to Multicriteria Problems

When used with specific importance assignments, the DI and DI+ algorithms allow finding

near-optimal or good priority assignment for problems where the QoS can be correlated

with the concept of importance.

By extensive simulation, we propose heuristics for assigning importance and we evalu-

ate its effectiveness when used jointly with the algorithms. These heuristics allow propos-

ing simple solutions for practical multicriteria problems in real-time systems at zero cost

for the FPS base mechanism.

We evaluate the six different DI solutions formed with the rules from Table 7.1 with

respect to six different scheduling problems defined in chapter 4. We also compare the DI

solutions against the solutions obtained with RMPA and EDF. The results show that our

approach improves the RMPA solution and outperforms EDF in some scenarios.

Two types of scheduling problems were evaluated: (A) when all tasks are included in

the problem and (B) when only a subset of tasks is included in the problem. The following

results apply to both types.

" DI(1/C) is the best solution for the Deadlines and Absolute Output Jitter, and the

8.1 Review of Contributions 176

Deadlines and Relative Maximum Latency problems.

" DI(LC) is a near-optimal solution for the Deadlines and Total Number of Preemp-

tions problem. It is also a better solution than RMPA for the Deadlines and Maxi-

mum Latency problem.

9 DI(T/C) is an excellent solution for the Deadlines and Relative Average Response-

Time problem.

For the Deadlines and Relative Output Jitter problem, RMPA is better than the DI

solutions for a problem of type A. On the other hand, for a problem of type B, the solution
DI(1/T) provides a good solution.

For scheduling problems with three or more objectives, in Table 7.2 we can observe

the following results, which are valid for both types of problems:

" DI(1/C) is our best DI solution. In effect, DI(1/C) shows excellent performance

when the deadlines have to be met and the secondary objectives are to minimise

the absolute output jitter and the relative maximum latency and the relative average

response-time.

" DI(LL) provides an excellent solution for a scheduling problem where the deadlines

have to be met and the secondary objectives are to minimise both the total number

of preemptions and the maximum latency.

" DI(T/C) is an excellent solution when deadlines have to be met and the secondary

objectives are to minimise both the relative average response-time and the relative

maximum latency.

Thus, our approach is very attractive as it only relies on a fixed priority mechanism

(widely supported by commercial RTOS and standards) and does not require changes to

the attributes or structure of tasks. The priority assignment is performed off-line and

standard schedulability tests are utilised. Moreover, the pseudo-polynomial computational

complexity of the DI algorithm makes the approach tractable even for large tasks sets

giving results close to the (usually non computable) optimal priority assignment.

8.2 Suggestions for Further Work 177

In addition, our experiments show that the swapping algorithm is as effective as the DI

algorithm when used jointly with the importance assignments for the scheduling problems
tested. This result makes clear that the concept of importance can be used with other

scheduling algorithms. Observe that while it is true that both algorithms perform similarly,
the DI algorithm is more predictable than the swapping algorithm since we know the DI

solution is the lexicographic closer one to the importance assignment.

8.2 Suggestions for Further Work

The scheduling algorithms for solving multicriteria problems evaluated are not Z-optimal;

for instance, DI(1 /C) is not so close to the the g -optimal solution. Thus, there exists room
for improvements in two components of our approach:

" Algorithms for assigning importance. Instead of using simple rules, more effective

algorithms for assigning importance could be developed considering more complex
functions (e. g. I= T/C2). Moreover, weights can be added to simple rules for

expressing preferences in a particular solution. For instance, the rule 1/C could
becomes weight

c

" Improvements to the basic DI algorithm. The DI algorithm picks up tasks in the

predetermined lexicographic order; i. e. the lexicographic order established is static.
However, it could be the case that depending on how some of the tasks are accom-

modated during the operation of the DI algorithm, the original lexicographic order

can be dynamically modified. For instance, if one of the two higher priorities is not

assigned to a specific task, then it could be preferred to assign a lower priority.

The scheduling approaches proposed in this thesis impact on all the FPS techniques

that use mainly RMPA or DMPA as fixed-priority assignment algorithms. In this sense we

suggest further investigation in topics such as:

" Real-time database systems. A real-time database is composed of real-time objects

which are updated by periodic sensor transactions. A real-time object has associated

8.3 Final Remark 178

a temporal validity interval; i. e. it is useful before its temporal validity interval

expires. Thus, one of the important design goals is to guarantee that temporal data

remain fresh. Therefore, efficient scheduling approaches are desired to guarantee

the freshness of temporal data of the most important objects while minimizing the

processor workload resulting from periodic sensor transactions. Finding feasible

priority assignments that promote higher importance transactions and reduce the

number of preemptions will improve the performance in those systems.

" Energy issues. In scheduling approaches related with energy management, power

reductions are obtained by using hardware and/or software technologies. In effect,

special hardware such as dynamic voltage scalable processors and I/O-devices with

multiple power modes offer alternatives to save energy. With respect to software, the

development of algorithms to make power-management decisions taking advantage

of variations in system workload and resources is an active research area. In this

context, FPS approaches with energy management try to guarantee deadlines and

to minimise energy consumption without considering the importance of individual

tasks. Adding the concept of importance will improve the quality in those systems.

8.3 Final Remark

Citing Burns [19] who states fixed-priority scheduling is a mature engineering approach
for the construction of hard real-time systems, we consider that some day in a near future

we will be able to state

fixed priority scheduling is a sufficiently mature engineering approach for the

construction of hard real-time systems that meet both timing and QoS requirements.

This research strives to achieve this objective.

Appendix A. Notation

a, b,... Roman small letters denote tasks page 60

a, ß.... Greek small letters denote orderings or sub-orderings page 60

{a, b,
...

} denote a task set ... page 60

(a, b....) denote an ordering ... page 60

}- operator used for comparing tasks or orderings by importance
.... page 63

b beginning time of a task page 17

B maximum blocking
.. page 59

c completion time of a task page 17

C worst-case execution time of a task page 17

D deadline of a task .. page 18

F(k) worst-case finalization time at release k
........................ page 37

I importance of a task .. page 63

I conditional importance of a task page 102

J release jitter of a task ... page 19

Absolute Output Jitter metric page 69

rel Relative Output Jitter metric page 70

L Maximum Latency metric page 71

L rel Relative Maximum Latency metric page 71

µ µ-pattern of a task with weakly-hard constraints page 36

0 offset of a task ... page 18

p priority of a task ... page 59

P Total Number of Preemptions metric page 69

r release time of a task ... page 17

ro initial release of a task .. page 17

R response time of a task page 18

179

8.3 Final Remark 180

R, Maximum Relative Average Response Time metric page 72

S a set of tasks ... page 17

the set of all possible N! orderings of S
....................... . page 60

,
SF the set of all feasible orderings of S

........................... . page 60

SA task set S ordered by the swapping algorithm page 91

SD task set S ordered by the deadline monotonic priority assignment . page 60

Si task set S ordered by task importance
......................... . page 61

T period or minimal inter-arrival time of a task page 18

U utilisation of a task set (i. e Eý
1 Ci /Tj)

...................... . page 20

V relative value (or weight) of a task page 20

ZD Deadlines metric .. . page 74

ZI Index of Importance metric page 65

ZI Index of Conditional Importance metric page 103

Bibliography

[1J The American Heritage. Dictionary of the English Language. Houghton Mifflin,

fourth edition, 2000.

[2] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall, second

edition, August 2001. ISBN: 0-13-028138-7.

[3] A. Bums and A. J. Wellings. Real-Time Systems and Programming Languages. Ad-

dison Wesley, 3rd edition, 2001.

[4] H. Wu, B. Ravindran, E. D. Jensen, and P. Li. Time/Utility Function Decomposi-

tion Techniques for Utility Accrual Scheduling Algorithms in Real-Time Distributed

Systems. IEEE Trans. Comput., 54(9): 1138-1153,2005.

[5] G. Bernat, A. Burns, and A. Llamosi. Weakly Hard Real-Time Systems. IEEE

Transactions on Computers, 50(4): 308-321,2001.

[6] IEEE Standard. IEEE Recommended Practice for Software Requirements Specca-

tions, 1998. Standard 830-1998.

[7] E. D. Jensen, C. D. Locke, and H. Tokuda. A Time-Driven Scheduling Model for

Real-Time Operating Systems. In IEEE Real-Time Systems Symposium, pages 112-

122,1985.

[8] P. Li, B. Ravindran, and E. D. Jensen. Adaptive Time-Critical Resource Management

Using Time/Utility Functions: Past, Present, and Future. In Proc. of the 28th Annual

Int. COMPSAC'04 - Workshops and Fast Abstracts, Washington, DC, USA, 2004.

IEEE Computer Society.

[9] S. Aldarmi and A. Burns. Dynamic Value-Density for Scheduling Real-Time Sys-

tems. In 11th Euromicro Conference on Real-Time Systems, Jun 1999.

181

BIBLIOGRAPHY 182

[10] J. Xu and D. L. Parnas. Priority Scheduling Versus Pre-Run-Time Scheduling. Real-

Time Systems, 18(1): 7-23,2000.

[II] J. A. Stankovic and R. Rajkumar. Real-Time Operating Systems. Real-Time Systems,

28(2-3): 237-253,2004.

[12] V. T'kindt and J. Ch. Billaut. Multicriteria Scheduling Theory, Models and Al-

gorithms (Chapters 1-4). Springer-Verlag, Ist edition, August 2002. ISBN-10:

3540436170.

[13] S. Baruah, G. C. Buttazzo, S. Gorinsky, and G. Lipari. Scheduling Periodic Task
Systems to Minimize Output Jitter. In Proc of the 6th IEEE Int. Conf on Real-Time

Computing Systems and Applications, pages 62-69, Hong Kong, December 1999.

[14] P. Marti, J. M. Fuertes, K. Ramamritham, and G. Fohler. Jitter Compensation for

Real-Time Control Systems. In RTSS '01: Proc. of the 22nd IEEE Real-Time Systems

Symposium, page 39, Washington, DC, USA, 2001. IEEE Computer Society.

[15] A. Cervin. Improved Scheduling of Control Tasks. Euromicro Conference on Real-

Time Systems, 00: 0004,1999.

[16] L. David, F. Cottet, and N. Nissanke. Jitter Control in On-Line Scheduling of De-

pendent Real-Time Tasks. In RTSS '01: Proc. of the 22nd IEEE Real-Time Systems

Symposium, page 49, Washington, DC, USA, 2001. IEEE Computer Society.

[17] G. C. Buttazzo. Rate Monotonic vs. EDF: Judgment Day. Real-Time Systems,

29(1): 5-26,2005.

[18] G. Bemat. Specification and Analysis of Weakly Hard Real-Time Systems. PhD

thesis, Dep. Ciences Matematiques i Informatica, Universitat de les Illes Balears,

1998.

[19] A. Burns. Preemptive Priority-Based Scheduling: An Appropriate Engineering Ap-

proach. In Advances in Real-Time Systems, pages 225-248. Prentice-Hall, Inc., 1995.

[20] A. Bums and D. Prasad. Value-Based Scheduling of Flexible Real-Time Systems

for Intelligent Autonomous Vehicle Control. In Editors M. A. Salichs and A. Halme,

editors, Proc. of the 3rd IFAC Symposium on Intelligent Autonomous Vehicles, May

1998.

BIBLIOGRAPHY 183

[21] A. Bums, D. Prasad, A. Bondavalli, F. D. Giandomenico, K. Ramamritham, J. A.

Stankovic, and L. Stringini. The Meaning and Role of Value in Scheduling Flexible

Real-Time Systems. Journal of Systems Architecture, vol 46(4): 305-325,2000.

[22] K. W. Tindell, A. Bums, and A. J. Wellings. Mode Changes in Priority Pre-Emptively

Scheduled Systems. In IEEE Real-Time Systems Symposium, pages 100-109,1992.

[23] J. Real and A. Crespo. Mode Change Protocols for Real-Time Systems: A Survey

and a New Proposal. Real-Time Systems, 26(2): 161-197,2004.

[24] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[25] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-

rithms and Applications. Kluwer Academic Publishers, 1997.

[26] TimeSys Corp. The Concise Handbook of Real-Time Systems, v 1.3,2002.

[27] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment. J. ACM, 20(1): 46-61,1973.

[28] J. Y. T. Leung and J. Whitehead. On the Complexity of Fixed-Priority Scheduling of
Periodic Real-Time Tasks. Performance Evaluation, vol 2: 237-250,1982.

[29] N. C. Audsley. Optimal Priority Assignment and Feasibility of Static Priority Tasks

with Arbitrary Start Times. Technical report, Dept. Computer Science, University of
York, 1991.

[30] A. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real-

Time Environment. PhD thesis, MIT, Department of EE and CS, MIT/LCS/TR-297,

May 1983.

[31] E. D. Jensen, C. D. Locke, and H. Tokuda. A Time Driven Scheduling Model for

Real-Time Operating Systems, 1985.

[32] D. Stewart and P. Khosla. Real-Time Scheduling of Sensor Based Control Systems.

IEEE Workshop on Real-Time Operating Systems and Software, May 1991.

[33] C. D. Locke. Software Architecture for Hard Real-Time Applications: Cyclic Exec-

utives vs. Fixed Priority Executives. Real-Time Systems, 4(1): 37-53,1992.

BIBLIOGRAPHY 184

[34] N. C. Audsley, A. Bums, M. F. Richardson, and A. J. Wellings. Hard Real-Time

Scheduling: The Deadline Monotonic Approach. In Proc. 8th Workshop on Real-

Time Operating Systems and Software. IEEE, Atalanta, 1991.

[35] K. W. Tindell, A. Bums, and A. J. Wellings. An Extendible Approach for Analyzing

Fixed Priority Hard Real-Time Tasks. Real-Time Systems, 6(2): 133-151,1994.

[36] K. W. Tindell. Adding Time-Offsets to Schedulability Analysis. Internal Report

YCS-94-221, University of York, Computer Science Dept., 1994.

[37] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Ap-

proach to Real-Time Synchronization. IEEE Trans. Comput., 39(9): 1175-1185,

1990.

[38] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. A Hyperbolic Bound for the Rate

Monotonic Algorithm. In Proc. of the 13th Euromicro Conference on Real-Time

Systems, page 59, Washington, DC, USA, 2001. IEEE Computer Society.

[39] M. Joshep and P. Pandya. Finding Response Times in a Real-Time System. The

Computer Journal, 1(29): 390-395,1986.

[40] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic Task Scheduling for Hard Real-

Time Systems. Real-Time Systems, 1(1): 27-60,1989.

[41] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The Deferrable Server Algorithm for

Enhanced Aperiodic Responsiveness in Hard Real-Time Environments. IEEE Trans-

actions on Computers, 44(1): 73-91, Jan 1995.

[42] R. Davis. Dual Priority Scheduling: A Means of Providing Flexibility in Hard Real-

Time Systems. Report YCS230, University of York, UK, May 1994.

[43] IEEE. Standard Glossary of Software Engineering Terminology. New York, Septem-

ber 1990.

[44] M. Glinz. Rethinking the Notion of Non-Functional Requirements. In Proceedings

of the Third World Congress for Software Quality (3 WCSQ 2005), volume II, pages

55-64,2005.

BIBLIOGRAPHY 185

[45] T. Gilb. Towards the Engineering of Requirements. Requirements Engineering 2,

165-169., 1997.

[46] A. Dardenne, A. V. Lamsweerde, and S. Fickas. Goal-Directed Requirements Acqui-

sition. Science of Computer Programming, 20(1-2): 3-50,1993.

[47] A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. In

RE '01: Proc. of the 5th IEEE International Symposium on Requirements Engineer-

ing, page 249, Washington, DC, USA, 2001. IEEE Computer Society.

[48] R. Kazman, M. Klein, and P. Clements. Evaluating Software Architectures for Real-

Time Systems. In Annals of Software Engineering, volume 7 of 71-93. Springer

Netherlands, 1999.

[49] L. Thiele and R. Wilhelm. Design for Timing Predictability. Real-Time Systems,

28(2-3): 157-177,2004.

[50] L. R. Welch and S. Brandt. Toward a Realization of the Value of Benefit in Real-

Time Systems. In Proc. of the 15th International Parallel & Distributed Processing

Symposium, page 93, Washington, DC, USA, 2001. IEEE Computer Society.

[51] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. Siewiorek. A Resource Allocation

Model for QoS Management. In Proc. of the 18th IEEE Real-Time Systems Sympo-

slum (RTSS '97), page 298, Washington, DC, USA, 1997. IEEE Computer Society.

[52] C. Lee, J. P. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen. A Scalable So-

lution to the Multi-Resource QoS Problem. In Proc. of the 20th IEEE Real-Time

Systems Symposium, page 315, Washington, DC, USA, 1999. IEEE Computer Soci-

ety.

[53] S. Ghosh, J. Hansen, R. Rajkumar, and J. P. Lehoczky. Integrated Resource Man-

agement and Scheduling with Multi-Resource Constraints. In Proc. of the 25th IEEE

International Real-Time Systems Symposium (RTSS'04), pages 12-22, Washington,

DC, USA, 2004. IEEE Computer Society.

[54] K. T. Kornegay, G. Qu, and M. Potkonjak. Quality of Service and System Design. In

WVLSI '99. Proc. of the IEEE Computer Society Workshop on VLSI '99, page 112,

Washington, DC, USA, 1999. IEEE Computer Society.

BIBLIOGRAPHY 186

[55] B. Ravindran, E. D. Jensen, and P. Li. On Recent Advances in Time/Utility Function

Real-Time Scheduling and Resource Management. ISORC, 00: 55-60,2005.

[56] H. Wu, B. Ravindran, E. D. Jensen, and P. Li. Time/Utility Function Decomposition
in Soft Real-Time Distributed Systems. Technical report, The MITRE Corp., 2004.

[57] C. D. Locke. Best-Effort Decision-Making for Real-Time Scheduling. PhD thesis,

Carnegie Mellon University, 1986.

[58] K. Ramamritham and J. A. Stankovic. Scheduling Algorithms and Operating Sys-

tems Support for Real-Time Systems. In Proc. of the IEEE, volume 82, Jan. 1994.

[59] J. W. Wendorf. Implementation and Evaluation of a Time-Driven Scheduling Pro-

cessor. In Real-Time Systems Symposium, pages 172 - 180, December 1988.

[60] G. C. Buttazzo, M. Spuri, and F. Sensini. Value vs. Deadline Scheduling in Overload

Conditions. In Proc. of the 16th IEEE Real-Time Systems Symposium (RTSS '95),

page 90, Washington, DC, USA, 1995. IEEE Computer Society.

[61] J. R. Haritsa, M. J. Carey, and M. Livny. Value-Based Scheduling in Real-Time

Database Systems. The VLDB Journal, 2(2): 117-152,1993.

[62] R. K. Clark. Scheduling Dependent Real-Time Activities. PhD thesis, Carnegie

Mellon University, 1990.

[63] P. Li and B. Ravindran. Fast, Best-Effort Real-Time Scheduling Algorithms. IEEE

Trans. Comput., 53(9): 1159-1175,2004.

[64] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. QoS Negotiation in Real-Time

Systems and Its Application to Automated Flight Control. IEEE Trans. Comput.,

49(11): 1170-1183,2000.

[65] W. Lee and B. Sabata. Admission Control and QoS Negotiations for Soft Real-Time

Applications. IEEE Int. Conf on Multimedia Computing and Systems, 01,1999.

[66] H. Wu, B. Ravindran, E. D. Jensen, and P. Li. Energy-Efficient, Utility Accrual

Scheduling Under Resource Constraints for Mobile Embedded Systems. In Proc. of

the 4th ACM International Conference on Embedded Software, pages 64-73, New

York, NY, USA, 2004. ACM Press.

BIBLIOGRAPHY 187

[67] A. Mauthe and G. Coulson. Scheduling and Admission Testing for Jitter-Constrained

Periodic Threads. Multimedia Systems, 5(5): 337-346,1997.

[68] D. Prasad, A. Bums, and M. Atkins. The Valid Use of Utility in Adaptive Real-Time

Systems. Real-Time Systems, 25(2-3): 277-296,2003.

[69] G. Lima and A. Burns. An Optimal Fixed-Priority Assignment Algorithm for Sup-

porting Fault-Tolerant Hard Real-Time Systems. IEEE Transactions on Computers,

52(10): 1332-1346, Oct 2003.

[70] P. Richard. A Tool for Controlling Response Time in Real-Time Systems. In Com-

puter Performance Evaluation / TOOLS, pages 339-348,2002.

[71] Y. Wang and M. Saksena. Scheduling Fixed Priority Tasks with Preemption Thresh-

old. Proc. of the Sixth International Conference on Real-Time Computing Systems

and Applications, 1999. IEEE Computer Society.

[72] R. Dobrin and G. Fohler. Reducing the Number of Preemptions in Fixed Priority

Scheduling. In Proc. of the 16th Euromicro Conference on Real-Time Systems, vol-

ume 00, pages 144-152, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[73] R. Melhem, N. AbouGhazaleh, H. Aydin, and D. 1 Mosse. Power Management Points

in Power-Aware Real-Time Systems. In Power Aware Computing, pages 127-152.

Kluwer Academic Publishers, 2002.

[74] R. Krishnapura and S. Goddard. Dynamic Real-Time Scheduling for Energy Con-

servation in I/O Devices. In Workshop on Constraint-Aware Embedded Software,

volume 2.24th IEEE Real-Time Systems Symposium, Dec 2003.

[75] Y. Shin and K. Choi. Power Conscious Fixed Priority Scheduling for Hard Real-Time

Systems. In Proc. of the 36th ACM/IEEE Conference on Design Automation, pages

134-139. ACM Press, 1999.

[76] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Determining Optimal Processor

Speeds for Periodic Real-Time Tasks with Different Power Characteristics. In Proc.

of the 13th EuroMicro Conference on Real-Time Systems, Delft. Netherlands, Jun

2001.

BIBLIOGRAPHY 188

[77] X. Li and L. K. Soh. Applications of Decision and Utility Theory in Multi-Agent

Systems. Technical Report TR-UNL-CSE-2004-0014, Computer Science, University

of Nebraska-Lincoln, 2004.

[78] M. N. Rothbard. Toward a Reconstruction of Utility and Welfare Economics, 1956.

[79] R. P. Murphy. Utility Functions and Divided Preferences: A Note On Hismann. New

York University, July 2000.

[80] Jr. J. B. Cruz and M. A. Simaan. Ordinal Games and Generalized Nash and Stackel-

berg Solutions. Journal of Optimization Theory and Applications, 107(2): 205-222,

November 2000.

[81] R. Brafman and C. Domshlak. Introducing Variable Importance Tradeoffs into CP-

Nets. In Workshop on Planning and Scheduling with Multiple Criteria, April 2002.

[82] C. Boutilier, R. Braf nan, C. Geib, and D. Poole. A Constraint-Based Approach to

Preference Elicitation and Decision Making. In AAAI Spring Symposium on Qual-

itative Decision Theory, pages 19-28, Menlo Park, California, 1997. American As-

sociation for Artificial Intelligence.

[83] H. l Andreka, M. Ryan, and P. Schobbens. Operators and Laws for Combining Pref-

erence Relations. J. Log. Comput., 12(1), 2002.

[84] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw Hill, 3rd

edition, 2000.

[85] E. Bini and G. C. Buttazzo. Biasing Effects in Schedulability Measures. 16th Eu-

romicro Conference on Real-Time Systems, pages 196-203,2004.

