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Abstract 

In the context of Fixed-Priority Scheduling in Real-Time Systems, we investigate schedul- 

ing mechanisms for supporting systems where, in addition to timing constraints, their per- 

formance with respect to additional QoS requirements must be improved. This type of 

situation may occur when the worst-case resource requirements of all or some running 

tasks cannot be simultaneously met due to task contention. 
Solutions to these problems have been proposed in the context of both fixed-priority 

and dynamic-priority scheduling. In fixed-priority scheduling, the typical approach is to 

artificially modify the attributes or structure of tasks, and/or usually require non-standard 

run-time support. In dynamic-priority scheduling approaches, utility functions are em- 

ployed to make scheduling decisions with the objective of maximising the utility. The 

main difficulties with these approaches are the inability to formulate and model appropri- 

ately utility functions for each task, and the inability to guarantee hard deadlines without 

executing computationally costly algorithms. 

In this thesis we propose a different approach. Firstly, we introduce the concept of 

relative importance among tasks as a new metric for expressing QoS requirements. The 

meaning of this importance relationship is to express that in a schedule it is desirable to 

run a task in preference to other ones. This model is more intuitive and less restrictive 

than traditional utility-based approaches. Secondly, we formulate a scheduling problem 
in terms of finding a feasible assignment of fixed priorities that maximises the new QoS 

metric, and propose the DI and DI+ algorithms that find optimal solutions. 

By extensive simulation, we show that the new QoS metric combined with the DI algo- 

rithm outperforms the rate monotonic priority algorithm in several practical problems such 

as minimising jitter, minimising the number of preemptions or minimising the latency. In 

addition, our approach outperforms EDF in several scenarios. 
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Chapter 1 

Introduction 

Scheduling on computing systems has been studied for around fifty years. The first tech- 

niques were adopted from results developed in the operational research area and since then 

it has evolved almost independently. While operational research scheduling is concerned 

with the utilisation of people, equipment and raw materials, computing systems schedul- 
ing is concerned with the utilisation of processors, programs, memory, UO devices, and so 

on. 

Scheduling can be defined as "a plan for performing work or achieving an objective, 

specifying the order and allotted time for each part" [1]. Another definition is termed 

by Pinedo [2], who states that "scheduling deals with the allocation of scarce resources 

to tasks over time. It is a decision-making process with the goal of optimising one or 

more objectives ". The scarce resources can be CPU's, I/O devices or energy sources. 
The tasks can be application programs, execution threads or messages travelling through 

a network. Each task can have different properties that distinguish it among others such as 

processing times, release dates and deadlines. Examples of objectives are the minimisation 

of deadlines missed, maximisation of resources, or minimisation of energy consumption. 

Three main parts are identified: resources, tasks and objectives. These three elements 

together define a scheduling problem and the research domain dealing with these problems 
is scheduling theory. 

Theoretically, computer systems can execute a number of different algorithms pro- 

vided that sufficient time and storage space are available. Computing programs spend 

I 



1.1 Real-Time Systems 2 

time performing the calculations, and memory to store the program and related data. In 

this context, a program is realizable if the program can both be fitted in memory and give 

valid results within reasonable time. The memory issue does not permit ambiguities, the 

program and all related data must reside in memory (primary and/or secondary). Con- 

trarily, the time issue can be interpreted in several ways depending on the circumstances. 

Precisely, the time issue has split up computer systems in two well defined areas: general- 

purpose computing systems, where average time performance is sufficient and real-time 

systems where specific timing constraints must be fulfilled. 

Thus, on conventional computing systems the results are satisfactory whether they are 

obtained in a unspecified but finite time. On the other hand, in real-time systems time is 

essential; the results are valid only if they are always produced within specific time delays. 

1.1 Real-Time Systems 

A Real-Time System is a computing system that must react within precise timing con- 

straints to events in its environment [3]. Timing constraints are expressed as a function 

of committed completion times called deadlines. Real-time systems can be categorized 

according to the criticality of their deadlines. In a hard real-time system, it is compulsory 

that responses occur within specific deadlines [3]. In a soft real-time systems, the tim- 

ing constraints can be satisfied acceptably well with acceptable predictability depending 

on application specific requirements [4]. More recently, there have been defined systems 

where it is tolerable to miss some deadlines, if it happens in a predictable way. For in- 

stance, some systems allow that a task misses any n in m deadlines in a time interval. 

These are called weakly-hard real-time systems and they are characterized by the distribu- 

tion of their met and missed deadlines during a window of time[5]. Thus, real time systems 

can be classified according to their timing constraints as hard, weakly-hard or soft. 

As in any other engineering discipline, a Real-Times System has a life cycle model di- 

vided in different phases such as requirements, design, implementation, testing, operations 

and maintenance. 

During the specification of requirements, several Quality of Service (QoS) require- 
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ments (e. g. safety, reliability, performance) are defined. These requirements form a mul- 

tidimensional set of interrelated requisites that must be conveyed throughout all stages of 

the development cycle. Normally, conflicts among requirements exist and then tradeoffs 

have to be defined to help the designers with their decisions. Assigning importances to 

the requirements is a mechanism to specify such tradeoffs. In effect, not all requirements 

are equally important; some may be essential while others may be desirable, and therefore 

each requirement should be rated according to importance to make these differences clear 

and explicit [6]. 

During the design phase a real-time system can be structured as a set of concurrent 

tasks with deadlines to meet. The tasks share some scarce computer resources that must 
be allocated optimally by a scheduling algorithm in order to obtain the greater benefit 

possible. A single task provides some benefit to the system when it achieves all or part of 

one or more QoS requirements. Thus, the scheduling problem consists of how to meet the 

deadlines while maximising the QoS. 

1.2 Motivation: Problems with Deadlines and QoS 

Scheduling problems where simultaneously timing and QoS requirements have to be ful- 

filled have been widely studied in the context of non-critical systems [7] [8] [9]. Most 

approaches rely on on-line scheduling algorithms that try to maximise an overall system 

value metric. Unfortunately, the applicability of such results is not possible in commercial 

systems due to the lack of support for on-line scheduling facilities. 

On the other hand, almost all commercial real-time kernels (e. g. QNX, PDOS, Vx 

Works), real-time operating systems (e. g. RT Linux, RT-Mach), run-time environments 
for languages (e. g. Ada95, Real-Time Specification for Java) and industry standards 
(e. g. POSIX, OSEK) provide support for fixed-priority scheduling only. Fixed-Priority 

Scheduling (FPS) is a framework formed by policies for assigning static priorities, feasi- 

bility tests to decide if a priority assignment can fulfil the timing constraints, and run-time 

support algorithms to execute the tasks according to their priorities such that at all times the 

task with the highest priority is always executing. FPS is considered an industry standard 

providing good performance, predictability and flexibility. Many government agencies 
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and system integrators recommend it as the method of choice [ 10] [ 11 ]. 

In this thesis we argue that fixed priority scheduling is a robust and proven technology 

and that significant improvements in quality of additional performance and QoS metrics 

can be achieved by adequate priority assignment of tasks. 

When all deadlines have to be guaranteed, the only priority assignment that is usually 

considered is the Deadline Monotonic Priority Assignment (DMPA) (equivalent to Rate 

Monotonic Priority Assignment when deadline is equal to period). However, among all the 

possible feasible priority assignments there may be other feasible assignments that may be 

better according to other QoS metrics. When there are at least two different optimality 

criteria, it is said that it is a multicriteria problem [12]. 

In this thesis we focus on multicriteria scheduling problems where all tasks need to 

meet all their deadlines, and where tasks have additional QoS requirements that result in 

different perception of the quality of a system when tasks do complete by their deadline, 

without modifying both the base scheduling mechanism and the task characteristics. In 

contrast some research in the literature concentrates on increasing some QoS measure by 

modifying the two above system properties. The next section clarifies this idea. 

1.2.1 Example: Problem with Deadlines and Output Jitter 

Consider the problem of a system where the QoS relies only on a subset of the tasks which 

are sensitive to output jitter. The output jitter is the variation in the inter-completion 

times of successive instances of the same task [13]. It is known that in standard real- 

time scheduling approaches the presence of output jitter causes degradation in control 

performance and may lead to instability. In multitasking systems, scheduling algorithms 
introduce some forms of jitter such as sample jitter (i. e. variations in their release time), 

output jitter, or a combination of both [ 14]. Let us concentrate on the output jitter problem 

such that in the rest of the example, jitter, means output jitter. 

In FPS, any particular task suffers jitter due to the variation in the interference pro- 
duced from high priority tasks. Thus, it may be the case that under a particular priority 

assignment algorithm such as DMPA, some of the tasks that are sensitive to jitter are as- 
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task C T=D R Description ROJ 

a 2 10 2 Alarm 0 

x 1 16 3 Pilot instruction 0.125 

y 2 16 5 Flaying gears 0.125 
b 1 16 6 Cabin temp & press. 0.125 
z 3 32 9 Temp. sensor 0.0625 
c 2 32 13 Pressure sensor 0.0625 
d 1 32 14 Speed control 0.0625 
e 3 56 23 Human interface 0.357 

Table 1.1: Task set S8 ordered in non-increasing order of deadlines. It is feasible under 
DMPA. The relative output jitter (ROJ) is shown. Note that the subset of interest {x 

,y, 
z} suffers jitter. The utilisation factor is 0.69. 
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Figure 1.1: Precedence relationships 

signed lower priorities and therefore suffer from jitter. Moreover, the interference of high 

priority tasks can be related to other QoS issues in tasks with low priorities. 

Jitter problems are dealt with by techniques such as designing special purpose task 

models, using jitter compensation schemes in feedback controllers, optimising the selec- 

tion of task attributes (e. g. deadlines, offsets), or a mixture of them [15] [14] [16]. Those 

techniques are powerful as they can be used to effectively reduce jitter. However, it is our 

thesis that there exist priority assignments that are both feasible and are able to reduce 

jitter. 

Consider the task set S8 of Table 1.1. This task set is taken from [ 16] and corresponds 

to an aircraft control system. All tasks have to complete by their deadlines and the tasks 

in subset Sg = {x, y, z} have jitter requirements. In addition, the tasks have precedence 

relationships z -p d, c --ý d, x-b and x --+ y, where, for instance, z -* d means that z 

must finish before d. 

Note that the task set is feasible under DMPA and fulfills the precedence constraints but 
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its QoS with respect to the output jitter could be improved. This example is solved in [16] 

by introducing offsets (using a technique with exponential complexity), re-assigning dead- 

lines to maintain the schedulability under DMPA and finally, testing feasibility by simu- 

lation. Instead of modifying the task characteristics, a simple but alternative approach 

consists of performing an exhaustive search on the 8! possible priority assignments look- 

ing for a one that fulfills timing and precedence requirements, and minimises the jitter. 

The hyperperiod of S8 is small (1120 time units) and therefore, the 8! priority assignments 

can be simulated and the jitter for the subset Sg computed and stored. 

The results of such simulation are plotted in Figure 1.2. The simulation uses the worst- 

case computation time C all the time. For each fixed-priority assignment, (1) a feasibility 

test is performed and (2) a simulation to measure the jitter is executed: 

1. A priority assignment is feasible if it passes the response time test, which consists 

of computing the response time Rj of each task and comparing it with the respective 
deadline Dj such that if Rj < Dj, Vj, the priority assignment is feasible [3]. 

2. The relative output jitter (ROJ) of a particular task j is the variation in the inter- 

completion times of the successive instances of the same task divided by its pe- 

riod [13]. 

A point (x, y) on the graph corresponds to a different priority assignment as follows: 

"x= max{Rj/Dj} Vj E S8. This metric indicates whether the priority assign- 

ment guarantees or does not guarantee the deadlines of all tasks (see section 4.7.1 

(page 74)). If x<1 the priority assignment is feasible; otherwise it is infeasible. 

When x=1 or very close to 1, it indicates at least one task finishes very close to 

its deadline. We use this metric because it is more expressive than a simple yes/no 

answer. 

"y= max{ROJE } Vj E S8: This metric indicates how much jitter this priority 

assignment produces. It is the maximum Relative Output Jitter of any task in the 

subset S'g under a particular priority assignment (see definition 4.6.5, page 70). 
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Figure 1.2: Jitter of the subset S8' = {x, y, z} for the 8! priority assignments. 
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For instance, the task set in Table 1.1 is ordered by DMPA. Applying both above 

metrics gives: 

DMPAmax{Rj/Dj} = max{Rj/Dj}, Vj E S8 

= 0.4375 

and 

DMPAROJ = max{ROJk}, `k E S8 

= 0.125 

Thus, the priority assignment given by DMPA is located at (0.4375,0.125) in Fig- 

ure 1.2. 

Though there are 8! = 40320 points in Figure 1.2, most of them are overlapped indi- 

cating that a number of priority assignments produce the same jitter result and the same 

maximum response time. Observe that in the bottom end of the graph, on the feasible 

side, there are six points. They correspond to feasible priority assignments with zero out- 

put jitter. For example, Table 1.2 shows two assignments with zero output jitter but only 

solution S2 fulfills the precedence constraints. 
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Sl R ROJ 
x 1 0 
y 3 0 
z 6 0 
b 7 0.187 
d 8 0 
a 10 0.8 
c 14 0.0625 
e 23 0.357 

S2 R ROJ 
x 1 0 
y 3 0 
z 6 0 
b 7 0.187 
a 9 0.218 
c 13 0.2 
d 14 0.0625 
e 23 0.357 

8 

Table 1.2: Two alternative feasible solutions for task set S8. Both minimise ROJ but only 
the second one meets the precedence constraints 

Summary 

This example shows that scheduling problems with hard deadlines and QoS requirements 

expressed as quantitative metrics can be solved not only using complicated algorithms but 

also with pure fixed-priority assignment approaches. Unfortunately, current analysis for 

FPS lacks mechanisms for finding such priority assignments and, naturally, enumerating 

all assignments is in the general case impracticable. Consequently, finding algorithms that 

convert this intractable problem into a tractable one is a challenge. 

In this thesis we present a general mechanism that solves problems like that illustrated 

above in pseudo-polynomial time (instead of trying all N! different priority orderings). 
This makes such problems tractable even for large task sets. Even though we use the 

example of output jitter, the approach presented here is generic and can be applied to a 

wide variety of scheduling problems in fixed-priority systems. 

1.2.2 Discussion 

Though quantitative metrics can be defined to express several QoS requirements, it seems 

clear that not all system requirements can be expressed quantitatively. In fact, there exist 

qualitative requirements that depend on particular desires of users or system designers that 

are difficult to formulate and model appropriately. 

For example, assume that the system described above is developed with the priority 

assignment of Table 1.1, and only during the testing phase it is discovered that improve- 
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ments in quality are required. A first improvement consists in the reduction of output jitter 

and therefore, the priority assignment S2 (see Table 1.2) is optimal in that sense. However, 

for any decision maker, S2 could not be the best solution, for instance: 

1. users could not be satisfied with the responsiveness of the human interface; different 

levels of satisfaction may be perceived by different users. 

2. a system designer may note that the worst-case response time of the Alarm task is 

very close to its deadline and, in an overload situation, its deadline could be missed; 
thus, he may prefer a higher priority for task a. 

Thus, the first issue is how to express appropriately such qualitative QoS requirements 

and afterwards, the next issue is how to solve the scheduling problem. 

Expressing QoS 

Traditional scheduling theory in real-time systems use utility functions to describe the 

satisfaction obtained when completing some computations. This satisfaction may be qual- 
itative and/or quantitative. A limitation is that an appropriated utility function has to be 

formulated for each task. Clearly, it cannot be determined easily. In fact, there does not 

exists a methodology for their design [8] and the assignment of utility functions to tasks 

is usually imprecise. These disadvantages have been noted in other areas. For example, 
instead of utility functions, pure ordinal relationships that specify which of any two bun- 

dles of commodities individuals prefer are utilised in economics. The relationship reflects 

the extent to which a thing is preferred to others. Ordinal preference relationships is a 

concept that may be introduced in real-time systems for expressing QoS requirements. 

Scheduling with QoS 

Assuming that QoS may be expressed appropriately, a scheduling problem may be for- 

mulated and its solution may be proposed. Naturally, less expensive solutions are the 

preferred ones. For example, with regard to the two above observations to the solution S2 

proposed, increasing computing resources or performing some optimisations to the code 
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could be costly solutions. On the other hand, an inexpensive alternative consists in ma- 

nipulating the priorities for raising "as higher as possible" the priorities of tasks without 

modifying the improvements already obtained. How to achieve such priority assignment 
is the main idea of our research: In fixed-priority scheduling there exist feasible priority 

assignments that meet additional QoS requirements. The problem consists on how to find 

such priority assignments without performing exhaustive search. 

1.3 Thesis Aims 

The following statement synthesizes the thesis proposal: 

In the context of fixed priority scheduling of real-time systems, multicriteria problems 

can be solved combining novel and established techniques based on assignment of pri- 

orities. Optimal or near-optimal solutions can be proposed and evaluated. A solution 

consists of a feasible priority assignment that maximises/minimises a novel QoS metric 
based on simple ordinal importance relationships. The solution proposed is generic and 

can be applied to a wide variety of scheduling problems in hard real-time systems. 

We investigate the problem of finding priority orderings that simultaneously satisfy 
QoS and timing (deadline) requirements. The problem of finding an assignment of pri- 

orities that maximises a set of QoS constraints and satisfies all deadlines is know to be 

NP-Hard. We argue that the intrinsic complexity of the problem stems from the value sys- 

tem usually utilised to face the problem, and in particular due to the scale of measurement 

and the intrinsic comparison of value between tasks. Nevertheless, the assignment of val- 

ues to tasks is usually imprecise and complex utility-based scheduling algorithms based on 

these values are therefore based on imprecise input data. Instead, we propose a weaker no- 

tion of QoS, a simple importance relationship between tasks rather than an absolute value 

attached to each task. The meaning of this importance relationship is to express that in a 

schedule it is desirable to run a task in preference to another one. This simplified model 

captures even complex QoS metrics between tasks. Thus, the aim is to develop algorithms 

based on the concept of importance to express QoS requirements, such that combined with 

well-established feasibility test and other techniques, scheduling problems with deadlines 

and QoS requirements can be solved. 
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1.3.1 Contributions 

In this thesis we present a general mechanism that allows solutions to several scheduling 

problems based on the simple assignment of fixed-priorities to tasks in pseudo-polynomial 
time. The main contributions are: 

" The development of a metric for expressing QoS requirements based on the concept 

of relative importance among tasks. 

" The development of algorithms that find optimal solutions for problems with hard 

deadlines and the metric of relative importance. 

"A set of heuristics based on simple rules for assigning importance to tasks. These 

heuristics combined with our algorithms, provide solutions to problems with hard 

deadlines and QoS requirements such as jitter, preemptions and latency. 

1.3.2 Research Approach 

Relative importance among tasks is a preference for executing a task with regard to the 

other tasks in the system. By associating different importance to tasks, importance order- 
ings can be defined. For instance, the ordering where the first task has the highest value of 
importance, the second task has the second highest importance, the third one has the third 

highest importance and so on, is the highest importance ordering. 

We observe that such orderings can be arranged lexicographically and indexed by im- 

portance. The lexicographic index permits to define a QoS metric as the lexicographic 

distance between any ordering and the highest importance one. This importance metric 

expresses a distance from a level of quality to the maximum one. Thus, minimising this 

distance maximises the QoS. Based on these concepts, a scheduling problem is formulated 

as finding a feasible priority ordering that maximises the metric of importance. 

In order to solve the above scheduling problem, we present the DI (Deadline and Im- 

portance) algorithm that finds in a polynomial number of steps, an optimal priority order- 
ing that meets hard deadlines (D < T) and that satisfies the importance metric. Optimality 

in this context means that there is no other feasible schedule with higher importance. The 
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DI algorithm is posteriorly extended in the DI+ algorithm which provides support for 

precedence constraints, arbitrary deadlines (D <T or D> T) and weakly-hard timing 

constraints. The correctness of the algorithm is proved. 

The DI and DI+ algorithms find an optimal solution in O((INr2 + N)/2) steps (in the 

worst-case) where N is the number of tasks. This makes the problem tractable even for 

large task sets. However, the complexity of the solution depends on the complexity of the 
feasibility test due to performing a feasibility test at each step. For instance, the complexity 

of DI is pseudo-polynomial when the feasibility test is the response time analysis [3]. 

We also observe that the concept of importance is semi-abstract but representable by a 

specific metric (i. e. the importance metric); consequently, it could be used to solve other 

problems if analogies with the relative importance concept are found. In this context, we 

propose that if a particular problem with QoS metric ZQOS can be related with a problem 

with Importance metric Z1, then solving the problem with ZI also will solve the problem 

with ZQOS. 

In order to demostrate the validity of the above statement a case study is presented in 

chapter 7. It is separated in two parts: 

" In the first one, we simulate different simple priority assignments to observe how 

good or bad they are with respect to different QoS metrics. Examples of priority 

orderings tested are shortest deadline first, largest deadline first, shortest worst-case 

computation time first; examples of metrics are minimising the output jitter, min- 
imising the number of preemptions, and minimising the latency. The results of the 

experiments show that some of these assignments of priorities are particularly good 

with respect to the QoS metrics but, naturally, they do not guarantee the deadlines. 

" Those priority assignments that are good with regard to a particular metric are used 

as assignments of importance and then, by applying the DI algorithm, we find good 

or near-optimal solutions for such QoS and deadline problems. The case study 

also compares the solutions found with the corresponding Earliest Deadline First 

scheduling solutions. Remarkably, it is shown that contrary to previously published 

results[ 17], the fixed-priority scheduling solutions obtained outperform EDF in a 

number of scenarios. 
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This thesis provides algorithms that produce fixed-priority orderings of superior qual- 
ity than those obtained by current FPS theory. The QoS is improved without modifying 

the installed base of fixed-priority systems. 

1.3.3 Thesis Organisation 

The remainder of this thesis is organized as follows: 

Chapter 2. A Review On Preemptive Fixed Priority Scheduling 

This chapter reviews the main concepts on preemptive fixed-priority scheduling for unipro- 

cessor real-time systems utilised in our research. In fixed-priority scheduling the priority 

assignment and the feasibility analysis are the two main areas of research. With respect 

to priority assignments, our review covers from Rate Monotonic Priority Assignment (to 

solve problems with deadlines equal to periods) to swapping algorithms (to solve problems 

with arbitrary deadlines or weakly-hard constraints). With respect to feasibility analysis, 
it covers from the utilisation-based test to the weakly-hard analysis. 

Chapter 3. A Review On Scheduling with QoS 

In real-time systems the concept of importance among tasks is usually defined in terms of 

utility functions. In this chapter, we briefly make a review of some scheduling mechanisms 

for improving the QoS measured in terms of utility. It starts with a concise review of how 

the system requirements are mapped from the specification to the design. Afterwards, a 

summary of how the utility is perceived in a system at different levels of abstraction is 

presented. Finally, a review of scheduling approaches for improving QoS is presented. 

Chapter 4. Importance 

In this chapter we propose a model for expressing QoS requirements in real-time systems 
based on the concept of relative importance among tasks. We define importance in terms 

of predilection for executing tasks in preference to other tasks in a system as well as 
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predilection for executing tasks in specific orders. The concept is based on preferential 

statements of the form "cr is more important than 0". We define a QoS metric using this 

concept and propose its use in the context of fixed-priority scheduling. In addition, we 
define some scheduling problems in terms of fixed-priorities; solutions to these problems 

are proposed in the following chapters applying our model of importance. 

Chapter 5. Fixed-Priority Scheduling with Deadlines and Importance: 
The DI Algorithm 

In this chapter we present the DI algorithm that solves the scheduling problem where hard 

deadlines and importance criterion have to be optimised. The problem is formulated as 
finding an optimal priority ordering that maximises the importance criterion. Optimality 

in this context means that there is no other feasible schedule with higher importance. The 

DI algorithm finds such optimal priority assignment in O((N2 + N)/2) where N is the 

number of tasks. 

Chapter 6. Fixed-Priority Scheduling with Deadlines and Conditional Importance: 
The DI+ Algorithm 

In this chapter the concept of conditional relative importance is added to our model of 

importance. Conditional relative importance statements express preferences for executing 

a task with regard to other ones in the system subject to conditional clauses. This concept 

allows implementing priority relationships constraints such as precedence constraints and 

allows including importance as a hard requirement. We formulate the scheduling problem 

with deadlines and conditional importance and introduce the DI+ algorithm for solving 

it. DI+ is DI with some modifications such that the feasibility test can be substituted by 

other tests. In particular, by including feasibility tests for tasks with arbitrary deadlines or 

weakly-hard constraints and including the swapping algorithm for finding feasible priority 

orderings, DI+ is enabled to cope with such problems. 
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Chapter 7. Evaluation 

In this chapter we evaluate different heuristics for assigning importance such that when 

used with the DI algorithm, solutions to multicriteria problems are presented. In order to 

improve the quality of a system, we assume that each task is characterized not only by 

a deadline but also by an importance value which is correlated with a quantitative QoS 

metric. A heuristic assigns importance to tasks pursuing to minimise (or maximise) a 
QoS metric and then the DI algorithm finds a feasible solution. The performance of this 

approach is then evaluated. The best combination DI algorithm with heuristic is proposed 

as a fixed-priority solution for improving the quality of the system. Metrics considered are 
for the total number of preemptions, output jitter, latency and average response time. 

Chapter 8. Conclusions and Future Work 

The final comments about the research results are given in this chapter. In addition, some 
directions for further research are also presented. 



Chapter 2 

A Review On Preemptive Fixed Priority 
Scheduling 

This chapter is an introduction to the concepts in preemptive fixed-priority scheduling for 

uniprocessor real-time systems utilised in our research. It is not our intention to cover 

all topics but only those required to understand the subsequent chapters. It includes Rate 

Monotonic scheduling, Deadline Monotonic scheduling and scheduling in weakly-hard 

systems. 

2.1 Real-time Systems 

A real-time system performs some activities and responds within timing constraints to 

events in its environment. Timing constraints are expressed in terms of committed com- 

pletion times called deadlines. We use the terms deadline and timing constraint inter- 

changeably. Usually, real-time systems can be classified according to the semantics of the 

deadlines. A hard real-time system has critical deadlines that must be met; otherwise a 

catastrophic system failure can occur. A soft real-time system has non-critical deadlines 

and hence missing some deadlines occasionally is not catastrophic but it is an undesirable 

effect [3]. In a weakly-hard real-time system [5] some deadlines can be missed but their 

number and/or frequency must be bounded and well determined. Naturally, a system can 
have a mixture of tasks with critical or non-critical deadlines. 

An embedded system is a special-purpose computer system built into a larger sys- 

16 
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tem, which does not interact directly with humans in a regular manner. For instance, a 

car controller system only receives inputs from sensors and sends outputs to actuators. 
Real-time systems are typically embedded. In addition, it is said that a real-time system 
is synchronous when their activities are coordinated by a clock that keeps track of time. 
An asynchronous system interacts with the world at any time. Clearly, a mixture of syn- 

chronous and asynchronous activities can coexist [3]. 

A real-time system is usually designed as a set of activities to be executed concurrently 

and continuously on a single or multiple processors. Each of these activities models a part 

of the system that interacts with each other and with the environment. These activities are 

usually called the process model. In our context, it will assumed that the process model 

corresponds to a single processor system only. 

2.1.1 Process Model 

A process model is represented as a task set S= {a, b, c,.. .... 
} with cardinality N. For 

scheduling purposes, a task set can be ordered totally in different ways. Such an ordering 
is usually a totally ordered task set. An activity or task is either a computer process or a 

single thread of control that is executed by a single processor. Each task has a number of 
distinctive features many of which are described next; the subscript j usually refers to a 
task. 

A task becomes ready for execution at its release time (r) , executes its first compu- 

tation at beginning time (b) 
, and concludes at its completion time (c) 

. The difference 

between its completion time and its release time is called the response-time. The amount 

of processor time required to complete, if it executes alone, is called the task execution 

time. The execution time is not always the same, it varies depending on different circum- 

stances but the worst-case execution time (C) must be calculated for deterministic systems. 
On the system life-time, a task has an initial release time (ro) at time zero and afterwards it 

is released (or invoked) for execution a number of times along the time axis. Each release 
is called an instance and is separated from the previous ones by a time interval; this time 
interval can be random, quasi-random but with a minimal separation known, or constant. 
For instance, when the time interval is a constant T, it is said that the task is periodic with 
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period T invoked at times kT with invocations k=0,1,2, 
.... The longest response-time 

of all instances of a task is called the worst-case response-time (R) 
. In addition, some- 

times it is useful to specify a task release in terms of an initial time plus a constant 0 called 

offset such that the task is invoked at times IST + 0. 

At each release, it is expected that a task completes before its deadline (D) .A 
hard 

deadline is one that is critical for the system functionality and therefore a task missing one 
is considered a system failure. A soft deadline is non-critical for the system functionality 

and therefore a task missing one occasionally is tolerated depending on different circum- 

stances. For instance, a task with a soft deadline may typically produce useful results even 
if it finishes late; however, there are tasks where their results are useless when a deadline 

is missed; these soft deadlines are called firm deadlines. More general soft deadlines can 
be expressed as a value-function where a task has a value when it completes before its 

deadline and such value changes (usually the value decreases) as its lateness increases. 

Commonly, tasks with soft deadlines are expected to complete as early as possible. 

In addition, some tasks can tolerate missing deadlines not in occasional terms but in 

a predictable way. This kind of timing constraints is called weakly-hard. In effect, a 

weakly-hard constraint is an exact description (in a window of time) of a required pattern 

of missed/met deadlines that a task must fulfil in the worst-case. For instance, it is said 

that a task "meets any m in k deadlines" if in any window of k consecutive instances of the 

task, there are at least m instances that meet their deadline [18]. 

In this context, tasks can be classified orthogonally according to their release and tim- 

ing constraints as follows: 

Task Categorization 
Arrival Hard Deadline Soft Deadline Weakly-Hard Constraint 
Periodic hard periodic task soft periodic task wh periodic task 
Minimal known sporadic task aperiodic task wh aperiodic task 
Random N/A aperiodic task wh aperiodic task 

A periodic task has a period T and can have a hard, soft, or weakly-hard constraint; an 

aperiodic task does not have a period and can have a soft or weakly-hard constraint; in the 

literature, hard aperiodic tasks are not defined because there is no way of guaranteeing such 
hard deadlines; sporadic tasks have a minimal inter-arrival time (also denoted by T) and a 



2.1 Real-time Systems 19 

hard deadline. Note that adding columns for a wider classification of deadlines increases 

the above categorization. In general, several classifications can be defined depending on 
the semantics of task releases and deadlines, but this is the usual one. 

Finally, tasks can be interrupted or even not released depending on the application. A 

task is rescindable if it can be revoked or not released at any time; when a task has to be 

executed until completion it is called a non-rescindable task. 

Preemptions 

When executing, a computer task can be suspended at any time, at specific points or not 

allowed to suspend at all. A task that can be suspended at any time and resumed from 

the point of suspension without affecting its behavior is called a preemptive task. A task 
is non preemptive when it is not allowed to suspend it. A task is self-preemptive when 
it is organized in non-preemptive blocks such that at the end of each of these blocks the 

task offers a de-scheduling request to the system; if a high priority task is ready it start 
its execution, otherwise the next block of the current task is executed [19]. The process 

of saving and restoring sufficient information of a task such that it can be resumed after 
being interrupted is called a context switching. 

Release Jitter 

Normally, it is assumed that a task is released as soon as it arrives (i. e. when it is able to 

run). However, it may occur that the task is subject to a bounded delay between its arrival 

and release, and then it is said to exhibit release jitter. Release jitter J is the worst-case 
delay between the arrival time and the release time of a task [19]. 

Release jitter takes place due to system implementation techniques as, for example, a 

tick-driven scheduler. A tick-driven scheduler periodically polls task arrivals at fixed time 

ticks; at these times the scheduler performs its scheduling decisions. It could be the case 

that a task arrives just a tick later from the last poll checking such that the task arrival 

will be noted at the next scheduler period when the task will be released (i. e. put on the 

run queue). For a periodic task, release jitter can be avoided by choosing its period to be 
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multiple of the period of the scheduler. For a sporadic task, it cannot be avoided as its 

release time cannot be exactly determined; its release jitter is determined by the polling 

period of the process that awakes it or the polling period of the scheduler [3]. 

Dependency Relationships 

It is said that two tasks are independent when the results of their computations do not 
depend on each other; otherwise, they are dependent; for instance, dependent tasks require 

communicating data or synchronizing their computations. 

Some dependent tasks interact accessing mutually exclusive resources for both com- 

munication and synchronization purposes. Tasks that share common resources have to 

use synchronization primitives such as semaphores, monitors or protected objects to gain 

exclusive access to the resources [3]. Thus, a task will experience blocking when it is 

stopped in a semaphore waiting for the release of the resource. In real-time systems, the 

worst-case blocking time must be determined. 

Other aspect of dependent tasks is when a task cannot start until another task has 

completed. In this case it is said that a precedence relationship exists. Data is often passed 

between these tasks but they never execute together and therefore, mutual exclusion over 

this data does not need be enforced. 

Value 

Sometimes the notion of value is attached to a task. The value V is a scalar that expresses 

the weight or the intrinsic benefit obtained by running a task [20]; in other words, value 

is an artifact that expresses a measure of quality and conveys how valuable is the task for 

the system. Note that value is not a value-function as defined in the literature [4] as a 

value-function combines urgency (deadlines) and benefit (value) in a single expression. 
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In the above description, a task executes at each release a single stream of computations 

with a processing time, inter-arrival time, deadline and so on. However, in some ap- 

plications tasks can have multiple deadlines in the same release, or can have different 

computation times, or periods from release to release [19]. 

Furthermore, in more complex schemes (as described in [21 ]), a task x can be broken 

down into a series of operations or optional sub-tasks, where each one can have a process- 
ing time, inter-arrival time, deadline and so on. A mono-operation task consists on one 

operation and a multi-operation task consists on several operations Xk with k=1,2, 
.... 

The operations can be 

" mutually inclusive: x= (x1 and x2 and x3 ... 
), 

" mutually exclusive: x= (x1 or x2 or x3 ... 
), 

" or a mixture of both, for instance: x= (xiand (x2 or x3)and ... 
). 

For instance, in many real-time systems the set of functions that a system is required 

to provide may change over time. Mode change protocols allow currently running tasks 

to be deleted or changed, or new tasks to be added [22] [23]. Mode change protocols use 

tasks with mutually exclusive operations. Other example is the mandatory/optional task 

model [24] where mandatory operations have critical deadlines and optional operations 

can be rescindable. These are mutually inclusive operations. 

2.2 Scheduling Tasks 

Real-time systems must guarantee in some degree that the timing constraints of all tasks 

are met. The scheduling algorithm is a fundamental tool for guaranteeing such constraints. 

In real-time systems scheduling algorithms are executed off-line, on-line or a combination 

of both. In general, scheduling algorithms can be categorized as table-driven approaches 

or priority-driven approaches. 
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Table-driven approaches create a schedule off-line, which is stored in a static table to 

be posteriorly executed. Priority-driven approaches create a schedule assigning priorities 

such that at run-time a dispatching mechanism executes the tasks according to their prior- 
ities. Priority-driven is divided in two major schemes named fixed-priority and dynamic- 

priority. Infixed-priority the execution's order is based on off-line priority assignments, 

and in dynamic priority the execution's order is based on on-line priority assignments (see 

Liu [24], Bums and Wellings [3] and Buttazo [25]). 

2.2.1 Table-Driven Scheduling 

In the table-driven approach, all tasks characteristics must be known a priori because the 

scheduling decisions are taken off-line. In effect, prior knowledge of all data allows com- 

puting one or more possible schedules, which can be stored in a table. At run-time, an 
initialisation phase allocates all the resources required by the tasks and the first task in 

the table is selected for execution. When it finishes the rest of the tasks in the table 

are executed sequentially and this sequence is repeated continuously. Some variations 

of this paradigm allows identifying free time slots that are used for implementing some 

mechanism to dispatch aperiodic tasks. Table-driven scheduling allows "complex and so- 

phisticated algorithms because the schedule is computed off-line" [24]. Thus, different 

scheduling solutions can be tried and more than one objective can be pursued. For ex- 

ample, if more than one feasible plan is found, different heuristics can be applied looking 

to minimize other criteria such as minimizing the average response time. Examples of 

table-driven approaches are the clock-driven [24] and the cyclic executive [3]. 

Although table-driven scheduling is a highly predictable approach that solves many 
kinds of problems, it is mainly used for small, simple systems which do not need dynamic 

capabilities [26]; moreover, it is very complex to maintain and it is inflexible since any 

change to the tasks may require rebuilding the table [3]. 

2.2.2 Priority-Driven Scheduling 

In the context of scheduling, a priority establishes an order of importance or urgency 

with respect to the timing constraints. In the priority-driven scheduling approach, the task 
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execution order is based on priorities assigned to tasks such that at all times the task with 

the highest priority is always executing. This paradigm has three main components: 

1. A priority assignment algorithm. An algorithm which creates a plan by assigning 

priorities to tasks. 

2. A feasibility test. An algorithm which checks conditions that are necessary and/or 

sufficient for a task set to be scheduled. 

3. A run-time dispatching algorithm. An algorithm which executes the plan by dis- 

patching the tasks in priority order. 

Thus, the priority assignment establishes the order at which the tasks will be executed, 

and the feasibility test checks whether the timing constraints will be fulfilled; finally the 

dispatching algorithm schedules the tasks. 

A task set ordered according to their priorities forms a priority ordering. We will use 

the terms priority assignment and priority ordering interchangeably. For a given task set, 

a priority ordering is feasible if the timing constraints of all tasks are met. A task set is 

schedulable by a specific scheduling algorithm if such algorithm produces a feasible prior- 
ity ordering. When all task sets for which a feasible priority ordering exists are schedulable 
by an scheduling algorithm, it is said that such an algorithm is optimal [25]. 

The priority-driven approach is divided into fixed-priority and dynamic-priority schedul- 
ing. In fixed-priority scheduling static priorities are assigned and they do not change over 

time. In dynamic-priority scheduling priorities might change from invocation to invoca- 

tion. 

Fixed-priority scheduling. In the fixed-priority scheduling approach, the execution 

order of the tasks is based on off-line static assignment of priorities. The Rate Monotonic 

Priority Assignment (RMPA) algorithm [27] is the best known algorithm for assigning 
fixed-priorities. In RMPA, the priorities are assigned according to the rule "tasks with 

shorter periods have higher priorities". RMPA is optimal when tasks deadlines are equal 

to their respective periods (i. e. T= D). In the Deadline Monotonic Priority Assignment 

(DMPA) algorithm [28], the priorities are assigned according to the rule "tasks with shorter 
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deadlines have higher priorities". DMPA is optimal when tasks deadlines do not exceed 

their respective periods (i. e. D< T). DMPA subsumes RMPA. Optimality implies that 

if a feasible priority ordering over a task set exists, then DMPA is also feasible. On some 

process models where DMPA is not optimal, more complex algorithms for finding feasible 

priority assignments are utilised such that the one presented by Audsley in [29]. This Swap 

algorithm starts with an infeasible priority assignment and performs swaps of priorities 

until a feasible one is found. 

Dynamic-priority scheduling. In the dynamic-priority scheduling approach, the exe- 

cution order of the tasks is based on dynamic assignment of priorities, such that at run-time 
the task with the highest priority is always executing. The Earliest Deadline First (EDF) 

algorithm [27] forms the base for all dynamic-priority scheduling in real-time systems. In 

EDF, the priorities are assigned on-line according to the rule "the ready task with the near- 

est deadline has the highest priority". EDF is an optimal dynamic preemptive algorithm 

on single processor systems that can theoretically utilise all the processor capacity; for 

the simple process model defined in [27], all deadlines (with D= T) will be met under 
EDF if EN 

1 
(C/TZ) < 1. In addition, other dynamic-priority algorithms are also found 

in the literature such as the Least Laxity First algorithm (LLF) where "the task with the 

smallest laxity has the higher priority" [30]; the Value-Density algorithm where the prior- 
ities are assigned according to the ratio ß01 (i. e. value at time t divided by computation 

time) [31 ]. In the Maximum Urgency First algorithm (MUF) the task with the maximum 

urgency has the higher priority; in this approach, urgency is defined as a tuple consisting of 

two fixed priorities and a dynamic priority; one of the fixed priorities has precedence over 

the dynamic priority and the dynamic one has precedence over the other fixed priority; at 

run-time, the algorithm described in [32] computes the maximum urgency as a function of 

the three priorities. 

2.2.3 Discussion 

Depending upon the application, scheduling schemes exhibit different advantages and dis- 

advantages which are debated in the community (see Locke [33], Xu and Parnas [10], 

Buttazzo [17]). In terms of predictability and flexibility, fixed-priority driven scheduling 
is localized in the middle between table driven (the most predictable) and dynamic-priority 
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driven (the most flexible) schemes. This particularity is appreciated by many government 

agencies and system integrators who recommend it as the method of choice [10]. As 

a consequence, the majority of commercial real time operating systems and languages 

and standards support fixed-priorities only. The main focus of this thesis is fixed-priority 

scheduling in real-time systems which is now presented on detail. 

2.3 Fixed-Priority Scheduling 

Liu and Layland proved in [27] a set of fundamental results known as the rate mono- 
tonic analysis that form the base of the fixed-priority scheduling theory. Rate Monotonic 

imposes some restrictions to the task model that have been posteriorly relaxed for al- 
lowing tasks to have deadlines less than their periods [34], deadlines greater than their 

periods [35], arbitrary offsets [36], precedence constraints [19], variations in computation 
time and period [19], shared resources [37], etc. The literature in this area is large and 
for such reason, only the fundamental concepts will be reviewed starting from the basic 

rate-monotonic analysis. 

Basic task model. A task set S consists on N independent preemptive tasks to be 

scheduled in a single processor system where: 

" Each task consists of an infinite number of invocation requests, each one separated 
by a minimum time T. For a periodic task it defines its period and for a sporadic 

task it defines its minimal inter-arrival time. 

" Tasks have deadlines D relative to the actual release such that if the task is invoked 

at time t, it should have finished by t+D. 

" The worst-case computation time C is known for each task (with C< D) and during 

this time the task does not suspend itself. 

" All tasks share a common release ro. 

" Tasks have a priority P where P�, aj. is the highest and 1 is the lowest priority one; 

without loss of generality we assume that two tasks do not share the same priority. 
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" All tasks are non-rescindable; e. g. they cannot be aborted or skipped. 

All periodic tasks are assumed to be released together at time zero. The tasks will be 

released together again at their hyperperiod. The hyperperiod is the least common multiple 

of the periods of the tasks and it is denoted by H such that H= lcm{T. } `d jES. 

2.3.1 Rate-Monotonic Analysis 

The Rate-Monotonic analysis applies to a set S of N periodic tasks with the above basic 

task model and where all tasks have a deadline equal to their period (D = T). Liu and 
Layland proved in [27] the following results. 

Theorem 2.3.1. The longest response time of a task occurs when it is invoked simultane- 

ously with all higher priority tasks. 

The time when all tasks are invoked simultaneously is called a critical instant. A 

critical instant occurs when all tasks are released at time zero. 

Theorem 2.3.2. A fixed priority assignment is feasible provided that the task deadlines at 
the critical instant are met. 

Thus, for a fixed-priority assignment to be feasible, only the first deadline of each task 

must be met when all tasks are scheduled at time zero. 

Liu and Layland proposed the Rate-Monotonic Priority Assignment (RMPA) algo- 

rithm, which consists on assigning fixed-priorities assigned inversely proportional to the 

tasks periods. The RMPA algorithm is optimal among all static priority assignment algo- 

rithms. In addition, the Utilisation-Bound test for checking the feasibility of the assign- 

ment is also introduced in [27]. 

Definition 2.3.3 (Rate-Monotonic Priority Assignment). A task set S is in rate-monotonic 

priority ordering if 
Pa> Pbý-%la<Ib 

. 
for any two tasks a, b in S. 
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Theorem 2.3.4 (Utilisation-Bound test). For a set S of N tasks, the Rate Monotonic Pri- 

ority Assignment yields a feasible priority ordering if 

U< N(21/N - 1) 

where U= EN 
1 Cj/Tj is known as the utilisation factor of the task set. 

The bound converges to [27]: 

um (N(21/N-1)) =1n2-- 0.69314 
N-boo 

However, experimental results with randomly generated task sets show that this bound can 
be as higher as 0.85 [3]. The utilisation-bound tests is sufficient (i. e. any task set passing 
the test will be schedulable) but not necessary (i. e. failing the test does not imply it is 

unschedulable). 

The feasibility analysis of the RMPA algorithm can also be performed using a suf- 
ficient but not necessary test called the Hyperbolic bound [38]. This test has the same 

complexity as the above test but it is less pessimistic allowing to accept task sets that 

would be rejected using the Utilisation-bound approach. 

Theorem 2.3.5 (Hyperbolic-Bound test). For a set S of N tasks, the Rate Monotonic 

Priority Assignment yields a feasible priority ordering if 
N 

fl(Uj + 1) <2 
j=1 

where Uj = Cj /Tj is the utilisation factor of task j. 

With the Rate-Monotonie analysis, Liu and Layland founded the basis of fixed-priority 

scheduling in real-time systems by proving that giving higher priorities to tasks with 

shorter periods, scheduling problems with deadlines can be solved optimally. Over the 

years, the assumptions of strict periodic tasks and D=T were relaxed causing the next 

milestone in the area: the Deadline-Monotonic approach [34]. 

2.3.2 Deadline-Monotonic Analysis 

The Deadline-Monotonic Analysis extends the basic task model allowing tasks with dead- 

lines less than or equal to the periods, and sporadic tasks. The approach consists of the 
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Deadline-Monotonic Priority Assignment (DMPA) for assigning fixed-priorities and the 
Response-Time test for checking the feasibility of the assignment. The Response-Time 

test is based on the exact analysis for finding the worst-case response time of a task when 
it is released at its critical instant assuming that D<T. This assumption permits to incor- 

porate sporadic tasks without alteration to the task model [34]. The next results are proved 
in [28], [34], [39], [35]. 

Leung and Whitehead [28] proved that the RMPA is no longer optimal when D<T. 

However, assigning higher priorities to tasks with shorter deadlines is still optimal among 
fixed-priority algorithms. This assignment policy is known as the Deadline-Monotonic 

Priority Assignment (DMPA) algorithm. 

Definition 2.3.6 (Deadline-Monotonic Priority Assignment). A task set S is in deadline- 

monotonic priority ordering if 

Pa>Pb Da, <Db 

for any two tasks a, b in S. 

The Response-Time test (or completion-time test) is a sufficient and necessary (i. e. 
the set is unschedulable if it fails the test) schedulability test based on the response-time 

equation defined [34], [39]: 

Definition 2.3.7 (Response-Time equation). The Response-Time equation computes the 

worst-case response time Rj of any task j when it is released at its critical instant: 

W°=Cj 

ci (2.3.1) Wn+l = cj + 
E 

j Ti 
iEhp(j) 

where ic hp(j) is the set of higher priority processes than j. This recurrence equation 
finishes when either Wý +i =W or Yt 

3ý`+1 > Dj. If tit +1 = U`?, then the response 

time R; is tit ; otherwise, the response time of task j will be greater that its deadline. The 

convergence of the response-time equation is guaranteed [35] if U<1. 

Theorem 2.3.8 (Response-Time test). Given a task set S where Dj < 7j Vi, a fixed- 

priority ordering is feasible if and only if Rj < Dj for all j. 
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In the Response-Time test note that: 
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" It is independent of the priority assignment; i. e. it can be used to determine the 
feasibility of any fixed-priority assignment. 

" The condition Rj < Dj must be verified for each task. 

" The test has pseudo-polynomial complexity because the response-time equation is 

pseudo-polynomial; i. e. the number of steps to compute the response time depends 

not only on the number of tasks but also on the values of C, T and D, and hence the 

number of steps cannot be determined in advance. 

Motivated by the necessity of fulfilling more realistic system requirements, the analy- 
sis based on fixed-priorities has been extended to include dependent tasks, release jitter, 

arbitrary deadlines, aperiodic tasks and more. Some of those extensions are reviewed next. 

2.3.3 Dependent Tasks 

Two tasks are dependent if the activities conducted by one depend on the initiation or 
termination of activities conducted by the other task. Dependent tasks could involve inter- 

task communication or synchronization, or precedence constraints. 

Tasks Synchronisation 

In practice, tasks interact as for example when accessing mutually exclusive resources 
(e. g. shared protected data). Task synchronization primitives can be used to control ac- 

cess to such critical resources. However, when applying synchronisation primitives (e. g. 

semaphores) deadlocks or priority inversion phenomenons can occur [3]. Deadlock is a 

situation wherein two or more tasks competing for a resource are waiting for the other to 
finish but it never does, and then they wait forever. Priority inversion is produced when a 
higher priority task is prevented from executing by a lower priority one. Priority inversion 

leads to unbounded blocking times and therefore deadlines cannot be guaranteed. These 

problems can be controlled by the set of priority inheritance protocols [37]. 
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Priority Inheritance Protocol. Under the Priority Inheritance Protocol, when a high 

priority task is blocked by a lower priority one, the lower priority task inherits the priority 
of the higher priority one, thus preventing middle priority tasks from executing. However, 

this protocol suffers from several problems such as tasks having transitive blocking and 
the protocol does not prevent deadlocks [37]. 

Priority Ceiling Protocol. In the Priority Ceiling Protocol (PCP), each resource is 

assigned a priority ceiling, which is a priority equal to the highest priority of any task 

which may lock the resource [37]. At run-time, there exists a system ceiling that is the 
highest priority ceiling of any currently locked semaphore. In addition to its static priority, 
a task has also a dynamic priority that is the maximum of its static priority and the one that 
it inherits due to blocking of higher priority tasks. Thus, during the protocol operation, 
a given task can only lock the resource when its dynamic priority is strictly higher than 
the system ceiling. If so, its priority is temporarily raised to the system ceiling such that 

no task that may lock the resource is able to get scheduled. Let Bo, be the duration of 
the longest critical section executed by a task of lower priority than a task a, guarded by 

a semaphore whose priority ceiling is greater than or equal to the priority of a. Sha et 

al. [37] proved that: 

1. Task a can be blocked by a lower priority task for at most Ba time units. 

2. The priority ceiling protocol is deadlock free. 

3. Transitive blocking is prevented. 

In addition, the protocol provides mutual exclusion access to the resource. The main 

problem of PCP is its implementation cost and run-time overhead. 

Immediate Priority Ceiling Protocol. In the Immediate Priority Ceiling Protocol 

(IPCP), when a task access a resource, IPCP raises immediately its priority up to ceiling 

of the resource and lowers its priority only when the task leaves the resource [37]. IPCP 

also prevents deadlocks, transitive blocking and provides mutual exclusion access to the 

resource. IPCP is easier to implement and has lower run-time overhead than the PCP. 

IPCP is the currently policy in programming languages as Real-Time Java and Ada, and 
in standards as POSIX [3]. 
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Response-Time Equation with Blocking. Let K be the number of critical sections 
(resources) under PCP or IPCP, the maximum time Bj a task j can be blocked is equal to 

the execution time C(k) of the longest critical section k in any of the lower priority tasks 

that are accessed by higher priority tasks [3]: 

Bj = max{T(k, j)C(k)} 
k=l 

where 

"T (k, j) = 1: if k is used by at least one task with a priority lower than Pj, and at 
least one task with a priority greater or equal to Pj 

. 

"T (k, j) = 0: otherwise. 

In order to take into account task synchronisation, the response time equation 2.3.1 is 

updated as follows [3]: 

w9=C, 

ujn 
3 

+1 
=Cj+Bj [!:: 1ci 

iEhp(j) 

(2.3.2) 

Note that maximum blocking will not occur in some scenarios. For example, when a 

set of periodic tasks with the same period are released at the same time, then no preemption 

will take place and hence blocking will not occur. Consequently, the feasibility test with 

the response-time computed with equation 2.3.2 is pessimistic [3]. 

Precedence Constraints 

Another kind of dependence between tasks is when a task b depends on some results of a 

task a (e. g. task b cannot start until task a has completed). It this case it is said that "a 

precedes b" and we denote it as a -* b. 

Precedence relationships are important hard constraints in many systems where tasks 

involved in an activity are dependent on other ones. Simple precedence relationships can 
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be implemented for tasks with the same period by modifying tasks priorities. In effect, in 

priority scheduling, in order to ensure precedence of a over b (with Ta, = Tb) is necessary 
to consider their task release time ra, and rb such that [16]: 

1. if ra, < rb then Pa must be greater than Pb, or 

2. if Ta < rb then Pa, is must be equal to or greater than Pb. 

In [ 19], a simple transformation technique for assigning priorities to tasks with prece- 
dence requirements is explained. The technique applies to tasks that share the same period 

and consists of modifying their deadlines such that the priorities are enforced to the order 

required when DMPA is utilised. 

2.3.4 Release Jitter 

Release jitter J is the worst-case delay between the arrival time and the release time of 

a task [19]. In the above analysis, it is assumed that all tasks are periodic with periods 

which are exact multiples of the scheduler period. Thus, they can be released as soon as 
they arrive and hence, they do not suffer release jitter. However, there are situations where 
tasks could suffer release jitter. For example: (i) periodic tasks non-synchronized with 
the scheduler period and (ii) sporadic tasks which are not released as soon as the event on 

which they are waiting has occurred (see [3]). 

To take into account task release jitter, the response-time equation 2.3.2 is updated as 
follows [3]: 

wo=C; 

[, tý+1=C; +B; + 
Wý + Ji 

T 
ci 

iehp(j) 

(2.3.3) 

where J1 is the release jitter of higher priority tasks than j. Finally, the response-time 
is calculates as R; =[i +1 + Jj. 
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2.3.5 Arbitrary Deadlines 
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Arbitrary deadlines refers to tasks with D<T or D>T; i. e. deadlines can be greater 

than their periods. When D>T, the critical instant assumption of a task meeting its first 

deadline will meet all the successive deadlines does not hold. Consequently, neither the 

DMPA nor RMPA are optimal anymore even if a feasible priority exist. In this case, the 

extended response-time equation provides an exact analysis for computing the worst-case 

response time. In addition, a feasible priority ordering can be determined by a priority 

swapping algorithm [3]. 

Extended Response-Time Equation 

In order to compute the worst-case response time of a task j when Dj > Tj, a number 

of releases must be considered. In this case, there are potentially overlapping releases of 
different instances of j and then the analysis given in [35] must be utilised. Assuming 

that an overlapping release will be delayed until any previous one has completed, for any 

potentially overlapping release a separate window W (q) is defined, where q=0,1,2, ... 
identifies a particular window of time. Thus, the response time equation 2.3.3 is extended 

as follows [3]: 

WO (q) = Cj 

Wj+l(R') = (q+1)Cj+Bj+ 
Wj (q)+Jj 

C, Z 
(2.3.4) 

Ti 
iEhp(j) 

(q)) For each q, a stable value that stops the loop can be found (i. e. W3+1 (q) = W3' 

and then the response time for each q is given by 

Rß (4') = Wj"+1(q) - qI + Jj 

Thus, different releases are calculated until aq is found such that Rj (q) < Tj. Finally, 

the worst-case response time is the maximum value of all Rj (q) computed: 

R; =max {R; (q)for q=0,1,2,... } 
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Algorithm 1 Swapping Algorithm 
Require: a is a priority ordering 

1: ok: = false 
2: forj: =N-1to0do 
3: for next :=j to 0 do 
4: Swap(a, j, next) 
5: if F(a, j) = true then 
6: ok := true 
7: exit inner loop 
8: end if 
9: end for 

10: if not ok then 
11: exit loop {infeasible} 
12: end if 
13: end for 
Ensure: ok is true 

Assignment of Priorities 

When tasks have arbitrary deadlines, DMPA is not optimal [3]. In this case the the Swap- 

ping algorithm may be used. This algorithm is based on the following theorem proved 

in [29]: 

Theorem 2.3.9. I fa task j is feasible at the lowest priority level, then if a feasible priority 

ordering exists for the complete task set, an ordering exists with j assigned at this lowest 

priority level. 

The Swapping algorithm receives as input an infeasible priority assignment and finds 

a feasible one (if such priority assignment exists) by swapping pairs of task priorities. 

Assuming a priority ordering a where index a [O] corresponds to the highest priority task 

and a[N - 1] to the lowest priority one, the swapping algorithm (see algorithm 1) tries 

to accommodate feasible tasks starting from the N-1 to the 0 position. The function 

F(a, j) returns true when a task at jth position is feasible. Note that this function may 

be implemented using any of the above recurrent response-time equations. When a task 

in the N-1 position is found feasible it is fixed in that position, and then the algorithm 

tries to accommodate another task in the N-2 position and so on, until it accommodates 

successfully all tasks. However, when a task in a jth position is infeasible, it is swapped 

with the (j - 1)th task, and if it is also infeasible with the (j - 2)th and so on; when 
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no task can be fitted then there does not exist a feasible ordering and the algorithm ends 

unsuccessfully. 

When the feasibility test F(a, j) is exact (i. e. necessary and sufficient), the priority or- 
dering is optimal. Otherwise the priority ordering is as good as the quality of the test [ 19]. 

2.3.6 Aperiodic Tasks 

Aperiodic tasks have random release times and therefore a deterministic worst-case ana- 
lysis cannot be done; consequently, only aperiodic tasks with soft deadlines can be han- 

dled. In FPS, scheduling problems where in addition to hard tasks, soft aperiodic tasks 

have to be included in the plan, incorporate at least two objectives: (1) to guarantee that 

all hard deadlines and (2) to minimize the response time of the aperiodic tasks. Thus, 

the problem is how to schedule aperiodic tasks without causing that hard ones to miss 

their deadlines. Server algorithms such as the Sporadic Server [40], Extended Priority 

Exchange Server [41 ] or slack stealing algorithms such as Dual Priority Scheduling [42] 

accomplish these two objectives. Of special interest is the Sporadic Server because for 

FPS analysis purposes, it can be treated as a single periodic task, and consequently it can 
be incorporated into the FPS analysis. 

Conceptually, a server is a periodic task with a capacity (execution time) and a re- 

plenish time (period). The capacity is set to the maximum possible such that the task set 

and the server remain schedulable. When the server is executed (released), its capacity is 

utilised to service aperiodic tasks. These tasks are stored in a queue and if it is nonempty 

when the server is released, the tasks are executed. At the beginning of specific times 

(e. g each period), the capacity is replenished (a computation time is assigned). When the 

server executes a task, it consumes its capacity and it becomes exhausted when the capac- 
ity is zero. The server is suspended when either its capacity is exhausted or the queue is 

empty. The simplest server is the Polling Server which works as above and has a main 
drawback: if the server is released when the queue is empty, the server will be suspended 

and its capacity will be lost. Therefore, the bandwidth-preserving servers algorithms have 

been developed to preserve its capacity when they are released [24]. 

The Sporadic Server is a the bandwidth-preserving server. When the queue becomes 
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empty, the sporadic server preserves its capacity deferring its assigned time slot. If a 
task arrives and the server has capacity, the task will be executed. The sporadic server 
replenishes just the capacity consumed at sporadic times (variable times). In contrast, 
other servers such as the Deferrable Server replenishes its whole capacity at the start of 
each period (fixed times) [24]. 

2.3.7 Weakly-Hard Tasks 

A weakly-hard real-time system is a system that tolerates occasional losses of deadlines 

if the distribution of its met and lost deadlines is precisely bounded within a window of 
time [5]. Thus, while in the above analysis task timing constraints are represented by a 
single deadline, in weakly-hard systems timing task constraints have to be expressed by 

more complex artifacts. It implies the development of new priority assignment algorithms 
and feasibility tests. 

A weakly-hard constraint is an exact description in a window of time of a required 
pattern of miss/met deadlines that in the worst-case a task must fulfil. Given a task system, 

a pattern of miss/met deadlines of any task in a window of time can be computed either 
by simulation or analytically. This pattern can be represented by a binary sequence called 

µ-pattern [ 18], where for each task release: 1 represents a deadline met and 0 represents 

a deadline missed. 

p-pattern 

Definition 2.3.10 (µ-pattern [18]). A it-pattern is the worst-case pattern of met and lost 

deadlines of a task j and is defined as 

_I 
if R; (k) < Dj 

µj (h) 
0 otherwise 

where k is the krh activation of j. 

Thus, a µ-pattern is a sequence of 1/0 indicating that at any particular release a task 

either met or lost its deadline. For instance, the µ-pattern of a task that never miss a 
deadline is a sequence of 1 s; a task that miss just one deadline and it occurs only at critical 
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L 

instant has a µ-pattern µ= 01111... 1 of length L, where the length is the number of 

activations during its hyperperiod. 

Computing the /i-pattern of a task requires computing the worst-case response time 

Rj (k) at each invocation k, within the first hyperperiod at its priority level. This can be 

done by either simulation or analysis. 

In [18], several algorithms to compute analytically a µ-pattern are described. First, 

the worst-case finalization time Fj (k) 
, at invocation k, within the first hyperperiod is 

computed. Fj (k) is the sum of three factors: 

1. the computation time of the first k invocations 

2. the time that higher priority tasks have been computing before Fj (k) 

3. the time the processor has not been used by higher priority tasks 

The algorithms for computing Fj (k) are rather complex and can be consulted in [18]. 

Once that Fj (k) is computed, the worst-case response time is 

Rj (k) = F'j (k) - rj (k) 

where rj (k) is the kth release. Finally, for each release k its worst-case response time can 
be calculated and the µ-pattern is obtained applying definition 2.3.10. 

Weakly-Hard Constraints 

In some systems the effect of missed deadlines can be different depending on whether they 

are missed consecutively or non-consecutively; thus, the tolerance to missed deadlines is 

established within a window of m consecutive invocations of a task. In this context, four 

types of weakly-hard constraints are defined in [5]. 

Definition 2.3.11 (Weakly-Hard Constraints). Let m (i > 1) be any window of consecu- 

tive invocations of a task, and n (0 < ii < iii) the number of invocations in such window: 

. (ii. ra): a task meets any ni in m deadlines if there are at least n invocations in any 

order that meet the deadline. 



2.3 Fixed-Priority Scheduling 38 

" (n, m): a task meets row n in m deadlines if there are at least n consecutive invo- 

cations that meet the deadline. 

" (n, m): a task misses any n in m deadlines if no more than n deadlines are missed. 

" (n, m): a task misses row n in m deadlines if it is never the case that n consecutive 
invocations miss their deadline. 

The first two weakly-hard constraints express task sensitivity to the consecutiveness 

of deadlines met, and the last two to the consecutiveness of deadlines missed. Note that a 
task that must met all their deadlines (i. e. a hard task) is a particular case of a weakly-hard 
task. This task is called a strong weakly-hard task and it has a µ-pattern of Is. 

Feasibility Test 

A weakly-hard real-time system is schedulable if it can be guaranteed that at run-time 

all weakly-hard temporal constraints are always satisfied. Given a task set ordered by 

priorities, the feasibility analysis requires: 

1. Computing the worst-case µ-pattern of each task at its corresponding priority level. 

2. Checking if the µ-pattern satisfies the weakly-hard constraint. 

Naturally, a task set can have tasks with either hard deadlines or weakly-hard con- 

straints. All tasks must be tested with the response-time equation but only the infeasible 

ones with weakly-hard constraints require the two above steps. A function W (a, k) that 

returns true when the jth task in the priority ordering oz meets the weakly-hard constraints 
is described in [ 18]. Function W (a, k) starts checking the strict feasibility of the jth task 

according to the FPS feasibility test; 

" if feasible, it will not miss any deadline and therefore it is also weakly-hard feasible; 

. if infeasible and with a strict hard deadline, it is infeasible; 
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" otherwise, the task miss some deadlines but it has a weakly-hard constraint and then 

the µ-pattern of task j is computed and it is checked against its constraint. True is 

returned if the µ-pattern fulfills the weakly-hard constraint. 

Priority Assignment 

Neither DMPA nor RMPA priority assignment algorithms are optimal for task sets with 

weakly-hard constraints. Fortunately, the Swapping algorithm (see page 34) may be used 
to find a feasible priority assignment by substituting the boolean function F(a, j) with 
W (a, j) [5]. 

2.4 Summary 

On Fixed Priority Scheduling (FPS), the assignment of priorities and the feasibility analy- 

sis are the two main areas of work. The former establishes the order in which the tasks will 
be executed and the latter checks whether the time constraints will be fulfilled. RMPA, 

DMPA and the Swapping algorithm are the most known priority assignment algorithms. 
On the other hand, the utilisation-based test and the response-time analysis test (with all 
its variations for computing the worst-case response time) are the most known feasibility 

tests. In addition, complex feasibility tests for weakly-hard constraints exist. All these al- 

gorithms allow solving problems with complex task models when only timing constraints 

are involved. However, when the objective includes other quality requirements, FPS ex- 
hibits some weaknesses that are discussed in the next chapter. 



Chapter 3 

A Review On Scheduling with QoS 

3.1 Introduction 

In real-time systems researchers have been investigating scheduling mechanisms for sup- 

porting systems where, in addition to timing constraints, their performance with respect to 

additional QoS requirements must be improved. This type of situation can occur when the 

worst-case resource requirements of all or some running tasks cannot be simultaneously 

met. 

In some scenarios, systems are split up into tasks that are designed and tested sepa- 

rately. When the system is integrated, it may be the case that the resource requirements 

of tasks cannot be simultaneously met due to task contention. In this case, the schedul- 

ing mechanism must allocate greater resources to more important tasks. This allocation 

can be off-line or on-line. In other scenarios, worst-case resource requirements cannot be 

determined in advance and then, it is the responsibility of the scheduler to allocate the 

resources to the most important tasks at run-time. 

Thus, allocating greater resources to important tasks is essential to improve the QoS of 

a system. In real-time systems, the concept of importance among tasks is usually defined 

in terms of utility functions. In this chapter, we briefly make a review of some scheduling 

mechanisms for improving the QoS measured in terms of utility. In addition, a concise 

review of how the system requirements are mapped from the specification to the design 

is also presented. It conveys the idea that scheduling problems in real-time systems are 

40 
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inherently multicriteria and include both timeliness and QoS requirements. 

3.2 From Requirements to Scheduling Problems 

Real-time systems are not different from other computer applications; they have a life cy- 

cle divided in different phases starting from the requirements specification to maintenance. 
During the specification of requirements QoS requirements are defined. During the design 

phase, the system is structured as a set of activities that achieve one or more requirements 

and then a scheduling problem is formulated; further, the scheduling problem must be 

solved. 

3.2.1 Requirements 

The requirements specification phase is the period of time during which the requirements 
for the software product are defined and documented [43]. Requirements are usually se- 

parated into Functional and Non-Functional. Functional requirements describe "what" 

the system should do (e. g. a car air bag must protect the driver in the case of a colli- 

sion), while any other requirement is considered non-functional as, for example, "how 

well" a functional requirement shall be accomplished (e. g. the car air bag must be always 

triggered within 30 milliseconds after the crash sensor detects a collision at high speed). 
In general, any requirement not considered functional is dichotomously considered non- 
functional [44]. 

The IEEE Standard Glossary of Software Engineering Terminology [43] distinguishes 

on the one hand, functional requirements, and on the other hand design, implementation, 

interface and performance requirements. According to Gilb [45], functional requirements 

are of less use when designing because "it is usually fairly self-evident what functional- 

ity is required. It is actually the other categories that determine the choice of design". 

Therefore, non-functional requirements are determinant during the design phase and con- 

sequently, in the definition of the scheduling problem. 
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Non-Functional Requirements 

Several classifications of requirements can be found in the literature. The IEEE standard 
830-1998 on Software Requirements Specification [6] sub-classifies non-functional (NF) 

requirements into external interface, performance, attributes and design constraints, where 

attributes are qualities such as reliability, availability, portability, maintainability, etc. It 

is noted that requirements can have different levels of importance or stability because 

typically not all requirements are equally important. "Some requirements may be essential, 

especially for life-critical applications, while others may be desirable" [6]. Naturally, it 

implies the existence of preferences to achieve more important requirements first with 

respect to the least important ones. 

In [44], it is noted that some requirements can be objective or subjective. When mea- 

surable, the requirements can be expressed in a quantitative form that is precise, unam- 
biguous and verifiable. Nevertheless, sometimes it is also wanted to state the requirements 
in a qualitative form, as for example when stating achievement goals ("the system shall 

achieve good performance"). Such goals can be verified only after deployment, or with 
the help of prototypes such that stakeholders can subjectively judge whether or not the re- 

quirement is fulfilled. Alternatively, they can be "verified indirectly by decomposing it or 
by deriving metrics that (hopefully) are highly correlated with the given requirement" [44]. 

In general, NF requirements have some fundamental principles [45], [46], [44]: 

" They are either quantitative or qualitative, and testable for presence in their imple- 

mentation. If a requirement is quantitative, it is quantifiable in at least one scale of 

measure. 

" Some are binary (hard) and some are specified in a scale of measure (soft). 

" They reflect objective and/or subjective importances. 

" They can be in conflict with others for shared resources and therefore, priorities 

must be assigned to resolve the conflicts. 

" They change as the necessities, values and priorities change during the life cycle. 
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In hard real-time systems, some quality requirements such as reliability and safety have 

higher importance with respect to other requirements. Indeed, they must be considered as 
hard, and they must be specified in a quantitative form to be precise, unambiguous and ver- 
ifiable. Other quality requirements (e. g. portability and maintainability) and performance 

requirements (e. g. throughput) can be considered secondary. These requirements could be 

hard or soft, and could be expressed quantitatively or qualitatively. For example, consider 

a requirement enunciated as a goal: "the system shall achieve good performance". It is a 

soft requirement expressed in a qualitative form. It can be verified only after deployment, 

or with the help of prototypes to judge whether or not the requirement is fulfilled [47]. 

Note that hard or soft requirements are not necessarily related directly to the concepts 

of hard or soft real-time systems. For example, consider a requirement enunciated as: "the 

system has to execute in the X, Y and Z hardware configurations" (e. g. a piece of software 
for a mobile phone). It is a mandatory portability requirement which is satisfied or not 

satisfied (i. e. hard) for a soft real-time system. 

On summary, NF requirements form a multidimensional set of interrelated necessities 

that vary with time. NF requirements must be conveyed throughout all stages of the life 

cycle development; first to the design phase, after to the implementation and so on. At 

some point of the design, the system is structured as concurrent tasks that posteriorly 

will be scheduled. Thus, the formulation of the scheduling problem depends on how the 

requirements are mapped to the design. 

3.2.2 Design 

Design refers to the process of defining the architecture, components and other character- 

istics of a system intended to satisfy the requirements [43]. Design can be divided in two 

stages: 

" Architectural design. In this stage, the system is structured into its constituent com- 

ponents. Choices are made about hardware and software. A systematic breakdown 

of the system into smaller parts is performed and each part is described using a 

method of documentation [3]. 
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Figure 3.1: Attribute Taxonomy for Performance 

" Detailed design. This stage incorporates some crucial objectives such as structuring 

the system in concurrent tasks, supporting the development of reusable components 

through information hiding, and analysing the performance of the design to deter- 

mine its real-time properties [3]. In this stage the scheduling problem is defined. 

Naturally, the architecture and detailed design are not sequential activities but they can 
be considered as coroutines. NF requirements are inputs for the architectural design. The 

architectural design makes decisions that must satisfy the NF requirements, while it deals 

with sensitive points (i. e. decisions that affect one of the requirements, if changed) and 

tradeoff points (i. e. decisions that affect more than one requirement, if changed) [48]. 

In order to elicit architectural information relevant to NF requirements, taxonomies of 

the requirements can be depicted. Figure 3.1 shows a modified version of a taxonomy 

presented in [48]. A performance requirement is broken down into their attributes. Three 

categories of attributes are identified: 

9 Stimuli are the events that cause the architecture to respond or change. 

. Architectural parameters are components that will affect a response. 

" Responses are quantities measurable or observable related with the requirement. 
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Figure 3.2: From Requirements to Tasks 

Taxonomies are helpful to understand how the requirements can be mapped to the 

tasks and other components during the detailed design stage. For instance, one aspect of 

the response such as the latency (i. e. the length of time a task takes to respond to an event) 
is a function of the stimuli (e. g. external events) and the architectural parameters (e. g. 

cpu's, cpu time consumption). 

Outcomes of the architectural design form the inputs for the detailed design. During 

this phase, the system is structured as a set of concurrent tasks. Clearly, a single require- 

ment can be mapped into one or more tasks (see Figure 3.2). A task is modelled according 

to the architecture defined such that it achieves all or part of one or more requirements 

when it completes; this achievement constitutes the benefit or utility that the task will give 

to the system. Naturally, it is desirable that the benefit can be detected quantitatively but, 

as it was argued in 3.2.1, some requirements are expressed qualitatively such that they can 

only be verified after deployment or indirectly by correlated metrics. 

3.2.3 The Scheduling Problem 

Understandably, the tasks will provide the maximum benefit if sufficient resources exist. 

However, these resources are normally scarce and the tasks must compete for them, re- 

suiting in a scheduling problem. Problems where the optimality is expressed by a single 

criterion are called single criterion problems. In a multicriteria scheduling problem the 

optimality is expressed using two or more criteria. 

Evidently, solving scheduling problems with multiple criteria is not simple. Some of 
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the difficulties refer to the complexity involved in their solution and in the meaning of 

optimality. The theory shows that a scheduling problem for an arbitrary set of periodic 
tasks is NP-hard. Thus, adding a second criterion increases its complexity and hence, it 

also is a NP-hard problem. On the other hand, maximising one criterion could decrease 

the value of the other criteria in the problem. Scheduling solutions to problems where it 

is not possible to increase the value of one objective without decreasing the value of the 

other are called Pareto-Optimal solutions [2]. 

It is accepted [12] that when solving multicriteria problems, no simple algorithm can 
be applied and instead, the use of a combination of approaches such as procedures based 

on dispatching rules, branch and bound techniques, and local search techniques must be 

implemented. With respect to optimality, if tradeoffs between criteria can be established, 

optimal solutions can be defined. Otherwise, the concept of pareto-optimality has to be 

applied. 

In the scheduling literature, NF requirements are usually referred as QoS requirements. 
In a problem where timing and QoS requirements must be satisfied, the scheduling mecha- 

nism must optimize the QoS requirements without violating the timing constraints. During 

the design, QoS requirements are mapped to the task set that constitute the system. This 

mapping will be uniform if all task are responsible for achieving all QoS requirements. 
Clearly it is not always true. Instead, individual tasks or subsets of tasks could be respon- 

sible for achieving specific goals. In this context, QoS requirements can be considered as 
local or global with respect to tasks. Consider the following examples: 

Local QoS: Consider a control system composed by several tasks where a specific one 

may implement the control algorithm. Control algorithms are sensitive to output 
jitter (i. e. the variation in the inter-completion times of successive instances of 

the same task). Its large variation could degrade the control performance or even 

cause instability of the system affecting other QoS requirements such as efficiency, 

reliability and even safety. Clearly, the scheduling algorithm must allocate more 

resources to this highly important task. 

Global QoS: Consider a preemptive priority-based system with maximum requirements 

of performance. A timely but slow or inefficient system cannot be considered viable. 
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Worst-case and best-case performance are reciprocally related to the worst-case and 

best-case execution times [49]. The system influence the task execution time due 

to the context switching. Context switching wastes processor time and disrupt task 

execution affecting some performance attributes such as latency (i. e. the length of 

time it takes to respond to an event) and throughput (i. e. the number of events 

responses that have been completed over a given observation interval). Therefore, 

a system with lower number of preemptions is more efficient than one with higher 

number of preemptions. 

3.2.4 Summary 

The past sections have shown that NF requirements are a multidimensional set of interre- 

lated requisites that must be fulfilled throughout all stages of the cycle development. Since 

conflicts among requirements exist, tradeoffs must be allowed to help the designers with 

their decisions. Assigning importances to the requirements is a mechanism to specify such 

tradeoffs. NF requirements are usually referred as QoS requirements. 

During the design phase, a system can be structured as a set of concurrent tasks where 

a single task provides some benefit to the system when it achieves all or part of one or 

more requirements. In real-time systems, the benefit is mainly measured with respect to 

the timing requirements. However, it is clear that there exist a number of additional QoS 

requirements that must be also fulfilled Moreover, QoS requirements can be local or 

global with respect to tasks achievements. 

Thus, while timeliness is defined as a function of deadlines, how to measure QoS is 

still a matter of discussion and research. In real-time systems QoS is usually expressed in 

terms of utility (or benefit or value). Different types of utility exist depending on how it is 

defined and used. 

3.3 Types of Utility 

In real-time systems the concept of utility captures the importance of different tasks being 

executed. This utility can be perceived in different ways depending on how the utility is 
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defined or employed. In this sense, types of utility can be identified in terms of [50]: 

9 the level of abstraction; (e. g. utility as a function of time or resources). 

" the perspective from which the utility is perceived (e. g. task or user perspective). 

3.3.1 Levels of Abstraction 

Utility can refer to one of several different levels of abstraction, ranging from a low-level 

view of the system in terms of tasks characteristics (e. g. deadlines) to a high-level view 

of the system in terms of applications, user goals and resource allocations. The level of 

abstraction influences how utility is defined. For instance, utility can be expressed as a 
function of task completion time (task-level abstraction), as a function of resource alloca- 
tion (resource-level abstraction), or as a function of the quality of the system observed by 

the user (output-level abstraction) [50]. 

Task-Level Abstraction 

At the task-level abstraction, utility is described by time-utility functions [31 ]. These func- 

tions express the utility obtained by tasks when they complete at a particular distance from 

their deadlines. In addition, utility can also be described by weakly-hard constraints [5]. 

These constraints express the task utility in terms of a level of tolerance for missing some 
deadlines in specific patterns. 

Resource-Level Abstraction 

At the resource-level abstraction, utility is described by complex models where several 

resources (e. g. processors, devices) have associated utility-functions. The utility can vary 

with respect to time (i. e. utility increases/decreases with the time), or with respect to 

the resources available (i. e. utility increases/decreases with the availability of resources). 

Models described in [51] [52] [53] use this concept. 
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Output-Level Abstraction 
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At the output-level abstraction, utility is described as a function of the output quality of 
the system as observed by the user and/or the environment [50]. QoS metrics are defined 

to indicate at which level of quality an application is executing. In addition, the imple- 

mentation of different algorithms in an application may produce different output quality. 
Thus, at the output-level abstraction, utility may not necessarily be a function of a QoS 

metric but it may be a function of the system implementation. 

For instance, in [13] two EDF-based scheduling algorithms for minimising jitter are 

proposed. One has pseudo-polynomial complexity and provides better results than the 

other one which has polynomial complexity. If high processing resources are available 
to the application, the pseudo-polynomial algorithm can be used to obtain high output 

quality; if medium processing resources are available the polynomial algorithm can be 

used; otherwise EDF is a good option. 

3.3.2 Levels of Perspective 

Utility can refer to one of several different levels of perspective from which the utility is 

perceived by tasks, applications or users [50]. The level of perspective influences how the 

utility is employed. For instance, utility can be used as a priority for executing tasks (task 

perspective), as a policy for assigning resources to applications (application perspective), 

or as a measure of the necessities of users of a system (user perspective). 

Task Perspective 

Task perspective reflects the necessities of each task in an application. From this per- 

spective, each task is greedy with respect to processor and other resources; the utility for 

completing all or part of its computation is measured individually. For instance, utility can 
be used to determine which task executes at any given time or which task can be admit- 

ted or discarded to maximise the utility. Value-based scheduling theory is based on this 

concept. In section 3.4, we describe this approach in more detail. 
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Application Perspective 

Application perspective reflects the necessities of applications in a system where each ap- 

plication may be constituted by one or more tasks. From this perspective, applications are 

greedy with respect to system resources; the utility is a function of the amount of resources 

allocated to each application. In some real-time systems the utility is relatively fixed as 
long as the timing deadlines are met, while in other systems the utility may increase or de- 

crease according to the available resources. Changes in tasks may or may not modify the 

utility perceived by the application. When dealing with applications, utility of individual 

tasks could not be considered. 

For instance, in [53] a complex approach for maximising overall system utility and 

satisfying multi-resource constraints in the context of a phased-array radar system is de- 

scribed. The idea is to maintain at run-time a complex model of QoS requirements that 

includes utility-functions, weights and other data such that an algorithm can allocate re- 

sources to tasks. The approach determines the resource settings of the tasks and attempts 

to maximize the global utility. Afterwards, an admission control algorithm runs a schedu- 
lability test. If the task set is not schedulable, the resources available to tasks are reduced 

and the admission control algorithm is executed again. This iterative process runs until a 
feasible task set is found. 

User Perspective 

The user perspective reflects the needs of users of the system. From this perspective, 

utility is the degree of user satisfaction obtained when one or more applications are run- 

ning. Naturally, different users have different perception levels and the perception can be 

quantitative or qualitative. 

When quantitative, the utility perceived can be verified by QoS metrics. Typical QoS 

metrics that alter the user perception are latency, throughput, and jitter [54]. Other system 

properties that also have influence on the quality perceived include preemptions, fault 

tolerance, and energy consumption. When qualitative, the utility may be verified indirectly 

by deriving metrics that are correlated with a particular requirement. 
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The concept of utility varies depending of the level of abstraction and the perspective from 

which it is perceived. Naturally, a system includes both types of utility in some degree. 

Utility captures the importance of different activities such that when the resources are 

scarce a scheduling algorithm can allocate greater resources to important tasks with the 

objective of fulfill a set of QoS requirements. In general, this scheduling problem is NP- 
Hard. In the literature a number of scheduling algorithms based on dynamic-priority and 
fixed-priority paradigms with different tradeoffs between timeliness and QoS are found. 

The next section reviews some of them. 

3.4 Dynamic-Priority Scheduling with QoS 

When dynamic-priority scheduling algorithms include QoS requirements, such that algo- 

rithms trade-off timeliness against QoS at run-time. When deadlines must be guaranteed, 

most of the algorithms are too complex to be implemented in real applications. Thus, 

these algorithms are more oriented to soft real-time systems although their complexity is 

still very high. In general, most of soft real-time systems use time-utility functions to 

express the QoS. 

Time-utility functions describe the utility obtained when a task completes; the utility 

can remain static or can vary with the time [7]. Time-utility functions can be interpreted 

as quality functions, reward functions, or penalty functions; such a function may either 
be maximised or minimised depending on its definition. Metrics such as the utility ac- 

crued (or value accrued) during a window of time are usually utilised. Thus, a scheduling 

problem is formulated in terms of meeting the timing requirements and maximising the 

utility [55]. Including timeliness and utility into the scheduling decisions is sought by the 

value-based or reward-based schemes. 

Under value-based schemes, a task has a function V (t) (t) that defines the value to the sys- 

tem for completing the task at time t (see Figure 3.3). Value-based schemes are founded 

in two approaches: the Value-Density Scheduling algorithm where the utility is used as 

a priority and the Best-Effort algorithm where the utility is used as an admission policy. 
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These two above schemes apply for sets of independent tasks which are preemptive, pe- 

riodic or aperiodic, with worst-case computation time, deadline and V (t) known. These 

schemes rely on the next observations [31 ]: 

1. In non-overload conditions, if all deadlines can be met by some schedule, the EDF 

algorithm meets all deadlines. 

2. In overload conditions, a schedule organized in decreasing order by value-density, 

produces a total value at each point in time that is at least as high as any other 

schedule. 

3. Most value functions have their highest value prior to the deadline. 

Value-Density Scheduling Algorithm [57]: The Value-Density Scheduling (VDS) 

algorithm executes tasks according to "the highest value-density, the highest the priority" 

rule. The value-density is computed as V/C, where V is usually the maximum value 

assigned to the task (e. g. V, a, x in figure 3.3) and C is the expected worst-case execution 

time. Thus, a priority P= V/C is assigned to a task when it is submitted to the system 

and the task with the highest priority is executed. The priority P remains fixed until task 

completion. In [31 ] is showed that the performance of VDS varies depending on the value 
function chosen but in general terms, it performs better than other scheduling algorithms 

under overload situations, in addition to having low overhead. 

The Best Effort Scheduling algorithm [57]: The Best Effort Scheduling (BES) al- 

gorithm creates a sequence of the available tasks ordered by the EDF rule, which is then 

sequentially checked for its probability of overload using a heuristic. At any point in the 

sequence, where this overload probability passes a user-defined threshold, the task prior 
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to the overload with the minimum value-density is removed from the sequence. The re- 

moval process is repeated until the overload probability is reduced to acceptable levels. 

This procedure finally results in a sequence of processes in EDF order that does not cause 

an overload condition. Thus, BES achieves a high total utility under overload situations. 
However, its biggest disadvantage lies in their lack of predictability and sub optimality 

since it may discard tasks, which will be able to be scheduled under a clairvoyant al- 

gorithm [58]. In addition, experimental results in [59] showed that executing the BES 

algorithm on the same processor as application tasks may result in very large overheads 

under overload conditions. For example, under a load of 200% or more, over 80% of the 

processors time was spent in the scheduler deciding which task to run next [59]. 

In general, value-based schemes are oriented to enhance the system performance under 

normal operating loads and to reduce any performance degradation due to overload con- 
ditions [9]. Studies of the impact of different utility priority assignments have been pub- 
lished in the context of overloaded systems [60] [9] and real-time systems databases [61 ]. 

Different algorithms that improve the original BES algorithm are presented in [62] [63]; 

some recent advances in all these topics are reviewed in [55]. 

When utility is a function of resource allocation, there are best-effort schemes with 

complex admission policies designed to trade-off quality and timeliness at run-time. Mod- 

els described in [51] [52] [53] assume a system with multiple concurrent applications each 

operating at different levels of quality based on resources available. In the so-called QoS 

negotiation model [64] [65], services must guarantee predictable performance under spec- 
ified load and failure conditions, and ensure graceful degradation when these conditions 

are violated. In [66] a best-effort scheme include energy savings objectives [66]. 

When utility is a function of output quality, the EDF algorithm provides good results 

with respect to jitter, latency, and total number of preemptions [17]. However, the biggest 

disadvantage of EDF is its lacks of predictability on some situations such as when a task 

misses a deadline. In effect, when a task misses its deadline may cause all subsequent 

tasks to miss their deadlines (i. e. the so-called domino effect) causing unpredictable output 

quality results. Variations of the EDF algorithm specifically designed for reducing jitter 

can be found in [13] [67] [14]. 
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3.4.1 Discussion 

Scheduling schemes based on utility functions have several drawbacks namely: 

1. They are heuristics. 

2. They do not guarantee hard timing constraints, beyond the special case when it is 

reduced to a EDF scheduler. 

3. There is not a methodology for the design of utility functions [8]. 

4. It is assumed, a priori, that arithmetic operations can be performed with the utility 
functions, which it is not necessarily true [68]. 

5. They have higher overhead than fixed-priority based algorithms. 

Drawbacks (1) and (2) have relegated utility-based scheduling into the domain of soft 
dynamic-priority real time systems. Points (3) and (4) are related with the meaning of 

value. Prasad et al. [68] have shown that the assignment and the use of values are not 

separate issues but are linked. Any assignment of values must conform to a scale of mea- 

surements and the scheduling scheme must be cognizant of the scale utilized to perform 

only meaningful operations. 

3.5 Fixed-Priority Scheduling with QoS 

Fixed-priority scheduling algorithms that include QoS requirements meet timeliness and 
fulfill QoS as a secondary objective. They guarantee hard deadlines and hence they are 

oriented to hard real-time systems; since that the priority assignment is off-line, the run- 

time costs are minimal. However, most of these algorithms require non-standard fixed- 

priority run-time support. Consequently, most of them are not directly implementable in 

standard fixed-priority systems. 

In general terms, utility functions are not used in fixed-priority scheduling due to the 

high complexity of computing a set fixed-priorities that fulfill deadlines and maximise the 

sum of utilities. 
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When utility is a function of output quality perceived, there are some scheduling al- 

gorithms in the literature. For example, in [69] a fixed-priority assignment algorithm 
improves system fault resilience in fault-tolerant hard real-time systems. This approach is 

very attractive because the fault resilience of task sets is maximized only with the adequate 

priority assignment. 

In [70], fixed-priorities are computed using a branch and bound algorithm with the ob- 
jective of both meeting hard deadlines and minimising a function of the response time. The 

task model assumes periodic tasks with a weight that models the importance of the task 

in terms of worst-case response time. According to these weights, feasible fixed-priorities 

are computed such that the mean weighted response time of the tasks is minimised. Un- 

fortunately, the algorithm is inefficient; for instance, given a time limit of one hour for 

finding a priority ordering, no solution was found for some sets with 18 tasks; moreover, 

no solution at all was found for task sets with more than 28 tasks. 

From the FPS perspective, solutions based on pure fixed-priority assignments (as in [69]) 

are ideal because they improve the QoS at zero cost for the implemented scheduling mech- 

anism. Unfortunately, most of the approaches concentrate on increasing some QoS mea- 

sure by modifying either the base scheduling mechanism or the task characteristics. For 

instance, approaches for reducing the number of preemptions in FPS have been published 

but such solutions introduce additional problems such as requiring non-standard runtime 

support [71], or multiplying the number of tasks to be scheduled by at least a factor of 

two [72]. Output jitter problems are dealt with using techniques such as designing special 

purpose task models, using jitter compensation schemes in feedback controllers, optimis- 

ing the selection of task attributes, or a mixture of all them [15] [14] [16]. In the energy 

consumption problem, the use of energy must be bounded to guarantee stability and/or 

extended the lifetime of a system. In this case, the system includes specialized hardware 

(e. g. Dynamic Voltage Scaling processor [73] or I/O Device Power States [74]) and the 

solutions are pairs (priority, power-state) such that at run-time both the priority and the 

power-state are applied. A number of papers related to this problem have been published 

and some solutions can be found in [75] and [76]. 
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3.5.1 Discussion 

Scheduling with QoS requirements has been extensively studied in the context of dynamic- 

priority real-time systems. However, the solutions proposed are too complex to be imple- 

mented in real applications. Moreover, the dynamic scheduling paradigm lacks support of 

commercial real-time operating systems and programming languages. 

In the context of fixed-priority scheduling, solutions have been proposed although 

mostly relying on modifications to the FPS base scheduling mechanism or changes to 

the task set characteristics. Therefore, such solutions cannot be implemented directly in 

standard FPS systems. 

In general terms, utility functions offer a generic paradigm for expressing QoS require- 

ments. Unfortunately, they have not been included in FPS. Indeed, utility-based schedul- 
ing is synonymous of dynamic scheduling in soft real-time systems. 

We argue that utility functions have not been included in FPS because they are too 

complex for analysis, and such complexity is an obstacle to formulate appropriately the 

scheduling problem with deadlines and QoS requirements. This difficulty has been recog- 

nized in other areas such as economics and game theory, where utility functions have been 

used for several decades 

" Economics: In economics, utility-functions assign numbers on a cardinal scale to 

represent preferences of individuals (e. g. pleasure, happiness) toward goods [77]. 

This concept is called cardinal utility. Clearly, the difficulty is how to establish 

the relation between object and subject. Another problem is that although com- 

parisons between goods normally make sense, it is difficult to make comparison 

between individuals. By contrast, modern theory starts with a preference ordering 

as its primitive. This preference is an ordinal relation between any two bundles of 

commodities that specifies which one the individual prefers. This concept is called 

ordinal utility. The utility reflects the extent to which a thing or an action is preferred 

to others [78] [79]. 

" Game Theory: In game theory, each point in the space of a decision can be mapped 

to a payoff (utility) function. This limits its applicability to problems where the pay- 
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off functions can be mathematically defined for all players. Furthermore, in many 

problems the main difficulty lies in the ability to formulate a model appropriate 
for the payoff functions. Instead of calculating payoffs, in theory of ordinal games 
the players may have preferences that can be expressed as a rank-ordering of the 

various options available to them. Moreover, these preferences may be completely 

subjective in nature rejecting certain biases or experiences [80]. 

In effect, although utility is conceptually simple, there are inherent difficulties (see 

[68]) in defining an adequate utility-function for each task, that posteriorly has to be com- 
bined with other ones to make a meaningful decision. Therefore, instead of attaching 

a utility-function to each task, we may observe the problem defining ordinal preference 

relationships among tasks to measure the QoS. These preferences are called importance 

relationships. 



Chapter 4 

Importance 

4.1 Introduction 

In order to improve the QoS of a system, scheduling algorithms allocate larger resources 

to the most important tasks. In real-time systems, the concept of importance among tasks 

is usually defined in terms of utility functions that, although powerful, can be very difficult 

to both derive and use. 

In this chapter, we propose a different approach. We define importance in terms of 

predilection for executing tasks in preference to other tasks in a system as well as predilec- 

tion for executing tasks in specific orders. Thus, importance expresses that in a schedule it 

is desirable to run a task or groups of tasks in preference to other ones without specifying 

how much this preference would be. This concept is based on preferential statements of 

the form 

"it is more important to execute a than 0" 

This model is more intuitive and less restrictive than approaches based on the concept of 

utility. We define a QoS metric based on this concept and propose its use in the context of 

fixed-priority scheduling in two specific levels of abstraction: 

1. For improving QoS at task level by assigning higher priorities to higher importance 

tasks while the deadlines are guaranteed. For instance, tasks sensitive to preemp- 
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tions are assigned higher priorities than other ones if such an assignment guarantees 
deadlines. 

2. For improving QoS at application level by finding feasible priority assignments that 
improve output quality. For instance, if it is known that a particular assignment 

of priorities f is effective for reducing the total number of preemptions but such 

an assignment is infeasible, then finding a feasible one P* similar to P not only 

will guarantee the deadlines but also will potentially reduce the total number of 

preemptions. 

Thus, in the next sections we define importance among tasks and importance among 

orderings of priorities. Afterwards, we define a metric to measure the importance and 
formulate the scheduling problem with deadlines and importance. In addition, we also 
define some scheduling problems with deadlines and a secondary QoS metric that can be 

empirically correlated with the concept of importance such that solving a problem with 
importance produce similar results as solving the problem with the corresponding QoS 

metric. We present some examples to clarify this idea since solutions to these problems 

will be proposed in the following chapters. 

4.2 Process Model 

We consider an extension of the traditional process model utilised in FPS, where a task 

set must be scheduled on a single processor system. In order to increase the quality of 

a system, we assume that tasks are characterized not only by a deadline but also by an 

importance value. 

The tuple (C, T, D, P, B, J, I) characterises a task j where C is the worst case com- 

putation time, 7' is the period or the minimal inter-arrival time between two consecutive 

releases, depending whether it is periodic or sporadic; D is the deadline of the task relative 

to the actual release; the deadline is less than or equal to the period (D G T); P is the 

priority of the task where 1 is the lowest priority; without loss of generality we assume 

that two tasks do not share the same priority. The blocking factor B is the maximum inter- 

ference that a task may suffer from lower priority tasks due to a sharing resource protocol 
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such as the priority ceiling protocol. The release jitter J is the maximum elapsed time be- 

tween the programmed initial release time and the real ready-to-run time, which is usually 

zero for periodic tasks. The tasks are preemptive, they are released at time zero and they 
do not suspend themselves. 

Finally, I is a natural number which represents the importance of the task with regard 
to the other tasks in the system. We assume that all I parameters are different and hence, 

a task set can be totally ordered with respect to I. Moreover, I is a number in the range 

of 1 to N where N is the number of tasks and therefore, it is used for indexing tasks in S. 

Refer to section 4.5.1 for a further definition of importance and refer to section 4.5.3 for a 
discussion about some issues when two tasks share the same importance. 

4.3 Tasks Orderings 

For a given task set S= {a, b, c.... }, an ordering on S with relation i ("precedes ") is 

Sa = (a bc... ) such that aabica.. . 

For instance, given the relation D= "has a shorter deadline than ", and a task set 
S= {a, b, c} with Da > Db > D., its ordering under this relation is SD = (c b a). 
We use {} to denote a task set and () to denote an ordering. In general, Greek small 
letters usually denote orderings or sub-orderings. Note that orderings can be indexed as a 

vector. Following these conventions: 

" For a given task set S, we denote S the set of all possible N! orderings of S, and 
SF the set of all feasible orderings of S. Note that SF CS 

" The ordering defines a priority assignment over the tasks such that 

if (ab) then Pa>Pb 

Therefore, an assignment of priorities and a priority ordering will be interchangeable 

terms. 

" SD is the ordering by DMPA (the deadline monotonic priority assignment). 
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" SI is the ordering with priorities assigned according to the rule "the higher the 
importance, the higher the priority ". For instance, in a task set {a, b, c} with Ib > 
I, > Ia, the ordering SI is (b c a). We will refer to SI as the highest importance 

ordering. 

" All orderings in S are organized as the ordering of dictionaries using the lexico- 

graphic rule. For example, if the first task in an ordering a is more important than 
the first task in an ordering 0 then oz will be more important than 0 and therefore, 

a will precede 3 in the dictionary. In case of ties, the second task in both order- 
ings will be compared, and so on. The operator >- is used to denote lexicographic 

precedence between tasks as well as between orderings (see section 4.5). 

4.4 Relative Importance Statements 

In areas such as Economics and Game Theory it has been recognized that expressing 
benefit with utility functions is too complex and it is not always possible to attach an 

utility function to each individual. However, by defining ordinal relationships, similar 

results can be achieved with the advantage that conceptually it is simpler. 

One way for expressing benefit in terms of ordinal relationships is using preferential 

statements. An example of preferential statement is "I prefer the value xo for variable X 

if Y= yo and Z= zo". Such statements are used in, for example, Artificial Intelligence 

applications for eliciting user preferences from a set of possible actions. The rationale is 

that for making good decisions, it must be possible to assess and compare different alter- 

natives. The alternatives are given by users that probably do not have time, the knowledge, 

or the expertise required to specify complex multi-attribute utility functions. Therefore, 

qualitative information should be obtained from users by simple preferential representa- 

tion [81 ]. 

Observe that a preferential statement as stated above is not so simple. In fact, complex 
frameworks as described in [82] are required to gather sets of preferential statements to 

reduce required information to derive conclusions. However, there exists a class of simpler 

preferential statements of the form 
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"it is more important to me that the value of X be higher than the value of Y"; 

these statements are called relative importance statements. 

The simplest relative importance statements are the following [81]: 

" relative importance: "X is more important than Y" 
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" conditional relative importance: "X is more important than Y if some conditions 

are fulfilled" 

In this chapter we will concentrate only in relative importance. We consider apart con- 
ditional relative importance in chapter 6. Relative importance statements can also be inte- 

grated in complex frameworks as in [81 ]; nevertheless they are more intuitive than general 

preference statements. Relative importance statements could be used to express subjec- 
tive preferences derived from qualitative analysis (i. e. based on opinions, behaviours or 

experiences). 

For instance, in some safety-critical real-time database applications, both timely ex- 

ecution of transactions and data temporal consistency are important requirements. Un- 

fortunately, preemptions produced by priority based scheduling may cause the data read 
by the transactions to become temporally inconsistent by the time the data is used. Such 

inconsistencies may compromise the application safety (i. e. its ability to keep operating 
free of catastrophic consequences to the environment, equipment or people) and reliability 
(i. e. its ability to keep operating according to its specification). Thus, assuming that a 

task x implements a safety-critical transaction and a task y implements something else, 
it is reasonable to elicit that safety and reliability will be jeopardized if x is preempted 
frequently by y; the statement "executing x is more important than executing y" expresses 

this as a QoS requirement without necessity of specifying how much safety or reliability 

are compromised. 

Thus, an alternative form of expressing QoS requirements is using these relative im- 

portance statements. Instead of defining a utility function for each task, a simple ordinal 

number representing the importance of a task will be defined. This number will identify 

the relative importance of a task with respect to the relative importance of other tasks in 
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the system. Moreover, different orderings by importance can be defined and compared fol- 

lowing the lexicographic rule. This permits to define the relative importance of an ordering 

with respect to other orderings. The next section defines these concepts. 

4.5 Defining Importance 

4.5.1 Task Importance 

Definition (Relative Importance). Relative importance is a binary relation >- in a task set 
S such that for any pair of tasks x and y, 

"x >- y" is interpreted as "task x is more important than task y" 

The relation >- has the following properties. For all x, y and z in S: 

" It is not the case that x >- x (irreflexive). 

9 If x >- y then it is not the case that y >- x (asymmetric). 

" If x-y and y >- z then x >- z (transitive). 

" Exactly one of x >- y or y-x is true. 

Thus, the relative importance relation defines a strict total order on S. It permits to 

compare any pair of tasks by importance and to assign a different natural number I to each 

task such that the relation is preserved. 

Definition 4.5.1 (Task Importance). Task importance is a natural number I such that for 

any pair of tasks x and y, there exist task importance II and Iy respectively (with II Iy) 

such that 

if xr y=: ý, Ix>Iy 

The number I expresses a preference for executing a task with respect to the other 

tasks in the system. Thus, tasks can be compared and ordered totally according to their 

relative importance. 
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4.5.2 Index of Importance ZI 

We note that by labeling tasks according to their importance, the set of A"! possible per- 

mutations of S form a set S, which can be ordered lexicographically and indexed by 

importance. For example, for a task set S3 = {a, b, c} where a is the most important and 

c the least one such that IQ, > Ib > I, the 3! orderings in lexicographic order are: 

S3 = {(abc) (acb) (bac) (bca) (cab) (cba)} 

Note that the ordering arranged in order of importance (a b c) is the highest importance 

one when compared with the other ones. The least important ordering is (c b a) because 

it is contrary to the highest importance one. The rest of the orderings can be compared 
following the lexicographic rule as follows: 

Definition 4.5.2 (Lexicographic comparison of orderings). Let a and ,Q be two orderings 
in S. We say that "a is more important than , 

Q" if comparing each element a[k] with 0[k], 

starting from the leftmost to the rightmost, the first difference is in the kth task and the 

importance of a[ls] is greater than the importance of, Q[k]. We denote it as a >- 0 and then 

"a >- 0" is interpreted as "the ordering a is more important than the ordering 0" 

In other words, if a >- /3 then we say that a precedes 0 lexicographically. This is 

similar to comparing two strings. 

Note that the operator - is used for comparing tasks as well as orderings. In addition, 

observe that 

" The lexicographic rule orders totally to (i. e. the set of N! orderings of S). For the 

sake of simplicity, we will assume that is always ordered lexicographically. 

" There exists a least element in S, which precedes the other orderings ones. This is 

the task set S ordered in strict order of importance. We denote it as S'. 

Consequently, ý is well-ordered and a function for indexing orderings in 5 can be 

defined as follows: 
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Definition 4.5.3 (Lexicographic Index). For all orderings in S, its lexicographic order 
defines ZI :S-NU0 which is a function that indexes any element in S, such that 
va, O ES 

a >-ß Z* Zj(a) < ZI(ß) 

Observe that the index of the highest importance ordering is zero (i. e. ZI(SI) = 0). 
For instance, in S3 the orderings are compared as follows: 

SI = (a b c) >- (a c b) (b a c) (b c a) (cab) (c b a) 

and then 

ZI((abc)) = 0, ZI((acb)) =1,... , ZI((cab)) =5 

Thus, orderings can be identified unambiguously by its lexicographic index where the 

ordering with index 0 is more important than the ordering with index 1 and so on. The 
lexicographic index ranks all orderings with respect to the highest importance one, and 
therefore: 

Definition 4.5.4 (Index of Importance ZI). The lexicographic index defines an index of 
importance ZI among all orderings in S. 

The index of importance expresses a preference for executing a particular ordering 

with respect to the other orderings in the set of possibilities S. 

A significant property of the lexicographical order is that it preserves well-orders, that 
is, the Cartesian product of two well-ordered sets is also a well-ordered set. Thus, the lex- 

icographic order has been used in areas such as software engineering for ranking a set of 

user requirements, or in artificial intelligence for ordering preferences in a system of rea- 

soning. When different user requirements or preferences coexist, the lexicographic rule is 

a way of combining them into a single lexicographic order [83]. This single lexicographic 

order can be directly mapped to our model of importance. 

Note that the index of importance is unique; i. e. Va, 0ES, a3= ZI (a) ZI (/3). 

Thus, orderings can be compared and organized in unique levels of importance that reflects 

a level of QoS where index 0 is the best and the quality decreases as the index increases. 
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Index I,, > I6 > Ic 
1 abc 
2 acb 
3 bac 
4 bca 
5 cab 
6 cba 

Index Ia, = I6 > Ic 
I aac 
2 aca 
1 aac 
2 aca 
3 caa 
3 caa 

Table 4.1: When in {a, b, c} all tasks have different importance, there are 6 different in- 
dices of importance; when a and b have the same importance, there are only 3 different 
indexes 

4.5.3 Tasks Equally Important 

When in a task set the assignment of importance is unique each one of the N! priority 

orderings in S is different. However, when at least two tasks have the same importance, 

the orderings are not unique and can be divided into equivalent subsets that are totally 

ordered. 

For example, consider the set S3 and their permutations S3 (see Table 4.1). When 

all tasks have different importance, each element in S3 maps to just one index of impor- 

tance; however, when I,, = Ib the lexicographic order maps pairs of orderings to a single 

importance index. This defines three equivalent subsets: 

1. S3,1 ={ (a, b, c) , 
(b, a, c) } 

2. S3,2 ={ (a, c, b) 
, 
(b, c, a) } 

3. S3,3 ={ (c, a, b) 
, 
(c, b, a) } 

Clearly the orderings in S3,1 are more important than the rest but it is undefined which 

one is preferred. Note that if both orderings in 53,1 are feasible, an a posteriori conclusion 

must be taken to decide which one is the more convenient. However if just one of them 

is feasible, it is clear that it is preferred. If both are infeasible and the solution is in 53,2, 

then it is necessary to test for schedulability both orderings in 1513,2 and perform the same 

analysis as above. This process can be performed by exhaustive search enumerating all 

feasible orderings in an equivalent subset. 
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Thus, when some tasks have the same importance, S will not have a single highest 

importance ordering SI but a set of highest importance ones {S, I. 1,2, ... 
}. Which 

Si, is the best one depends on the application. 

Therefore, if a conflict exists for tasks equally important, its resolution is left at the 

discretion of the system implementer. 

4.6 Scheduling Problems 

In the context of fixed-priority scheduling problems, a solution is a particular assignment 

of priorities. In multicriteria fixed-priority scheduling, a single optimal solution that sat- 
isfies all the criteria normally does not exist. Instead, a set of pareto-optimal solutions is 

computed. A solution is pareto-optimal if it is not possible to improve such a solution 

with respect to one criterion without affecting negatively on the other criteria. It implies 

the need for making tradeoffs among criteria. 

In hard real-time systems there is no tradeoff between timeliness and other QoS cri- 

teria; meeting deadlines is mandatory and other criteria are considered secondary. In this 

sense, all solutions in the pareto-optimal set have to be feasible. Consequently, tradeoffs 

among QoS criteria can be done but only in the subset SF of feasible solutions (SF 9 S). 

Recalling that a fixed-priority algorithm is optimal when it produces a feasible priority 

assignment if a feasible one exists, we define optimality with respect to meeting deadlines 

and meeting secondary criteria Z as follows: 

Definition 4.6.1 (Z-optimality). An assignment of fixed priorities is Z-optimal if the as- 

signment is feasible and maximises/minimises criteria Z in the set SF of feasible solutions. 

With this definition of optimality, in the following sections we formulate several bicri- 

teria scheduling problems where the objective is to find Z-optimal fixed-priority assign- 

ments. Posteriorly in section 4.8 we show examples of how the concept of importance can 

be applied to such bicriteria problems. 
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4.6.1 Problem: Deadlines and Importance 

In hard real-time systems meeting the timing constraints is fundamental while any impor- 

tance requirement can be considered as a soft requirement. If a task set with priorities 

assigned proportionally to task importance is feasible, then it is an optimal solution for 

both hard deadlines and importance criteria. However, if it is infeasible, finding the order- 
ing lexicographically closer to the highest importance one can be considered a Z-optimal 

solution in the sense that there is not other feasible solution with higher importance. 

For a task set S, let cx be a priority ordering in the set of all possible priority orderings 
The relative importance of a with respect to S' (i. e. the ordering with the highest 

importance) is given by its index of importance ZI (ci) (see definition 4.5.4). 

Since Z-optimality is defined in the set SF of feasible orderings (definition 4.6.1), the 

z, -optimal solution S* that maximises the importance in SF is defined as the minimum 
index of importance as follows: 

ZI(S*) = min {ZI(a)} (4.6.1) 
VaESF 

In other words, maximising the importance implies in finding the feasible ordering 
lexicographically closest to S': 

Scheduling Problem 1. Given a task set S and an ordering SI, to find S* which is an 

ordering of fixed priorities that is feasible and is the closest one to SI. 

4.6.2 Problem: Deadlines and Preemptions 

In real-time systems, preemptions may cause undesired high processor utilization or even 
infeasibility. Preemptions impact cache-related activities, database transactions and intro- 

duce additional run-time overhead. 

For a task set S and with respect to the schedule under a particular priority ordering a, 
let P, (o) be the total number of preemptions of all instances of a task j in a fixed window 
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of time. The Total Number of Preemptions of all tasks in ACS is defined as 

P (a) =E Pi (a) (4.6.2) 
VjEA 

Observe that by defining the metric in a subset A and not in S, this metric can be used 
for all tasks or for a subset of tasks. All the metrics in the following sections are defined 

in the same way. 

Thus, the P-optimal solution aP that minimises the total number of preemptions in the 

set SF of feasible solutions is defined as 

P(a') = min {fP(a)} 
VaESF 

Scheduling Problem 2. Given a task set S and ACS, to find a' which is an ordering of 
fixed priorities that is feasible and minimises the total number of preemptions in A. 

4.6.3 Problem: Deadlines and Absolute Output Jitter 

It is known that in real-time control applications, the presence of jitter causes degradation 

in control performance and may lead to instability of the controlled system. In multitask- 
ing systems, scheduling algorithms introduce some forms of output jitter. Depending on 

the application, systems can be sensitive to the absolute output jitter or the relative output 
jitter or both. 

For a task set S and with respect to the schedule under a particular priority ordering 

a, let TAI"" and Ta" denote the minimum and maximum separation between successive 

completions of a task j. The absolute output jitter is y3 (a) = max{Tý a" - Tj, T3 - Tim"'}; 

it measures the worst variation between successive completions of j under the schedule 

generated by cr in a fixed window of time. The Absolute Output Jitter of all tasks in ACS 

is defined to be the largest y; (a) as follows [ 13]: 

y (a) = rnax{y (a) } 
V3 EA 

(4.6.3) 

and the 
-Y -optimal solution a' that minimises the absolute output jitter in the set SF- of 
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feasible solutions is defined as 

y (a') = min {y(a) } (4.6.4) 
`daESF 

Scheduling Problem 3. Given a task set S and ACS, to find a' which is an ordering of 
fixed priorities that is feasible and minimises the absolute output jitter in A. 

4.6.4 Problem: Deadlines and Relative Output Jitter 

For a task set S and with respect to the schedule under a particular priority ordering a, 
the relative output jitter of a task is yl (a) = y3 (a)/Tj. It is its absolute output jitter 

measured as a fraction of its period during a fixed window of time. For instance, a schedule 

with a relative output jitter of 20% guarantees that the variation of the output of j is in 

[0.8Tj, 1.2Tj ]. The Relative Output Jitter of all tasks in ACS under a particular priority 

ordering a is defined to be the largest g(a) as follows [13]: 

(cti) = max{Y, "1(a) } 
VjEA 

(4.6.5) 

and the y mal-optimal solution a' m' that minimises the relative output jitter in the set SF 

of feasible solutions is defined as 

j` (a' mal) 
= min {, "(oz) } 

VaESF 
(4.6.6) 

Scheduling Problem 4. Given a task set S and ACS, to find a-"` which is an ordering 

offixed-priorities that is feasible and minimises the relative output jitter in A. 

4.6.5 Problem: Deadlines and Maximum Latency 

The input-output latency is an important parameter in control systems. Assuming that a 

control task gets inputs at the beginning of each instance and deliver outputs at the end, 

minimising the latency improves the responsiveness of the system. Depending on the 

application, the system may be sensitive to maximum latency, relative maximum latency 

or both. 
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For a task set S and with respect to the schedule under a particular priority ordering 

a, the difference between the completion time and the beginning time of a task j is the 

input-output latency (i. e. c3 - bj ). Different instances k of the same task have different 

latencies. Thus, lets define L, j (a) = max{ci, k - bj, k} as the maximum latency of different 

instances of a task j in a fixed window of time and under the priority ordering a. The 

Maximum Latency of all tasks in ACS is defined to be the largest Lj (a) as follows [ 17]: 

L (a) = max{Lj (a) } 
VjEA 

(4.6.7) 

and the L-optimal solution aL that minimises the maximum latency in the set SF of 
feasible solutions is defined as 

L(aL) = min {L(a)} 

VaESF 
(4.6.8) 

Scheduling Problem 5. Given a task set S and ACS, to find aL which is an ordering 

of fixed priorities that is feasible and minimises the maximum latency in A. 

4.6.6 Problem: Deadlines and Relative Maximum Latency 

For a task set S and with respect to the schedule under a particular priority ordering a, the 

relative maximum latency of a task j in a fixed window of time is its maximum latency 

divided by its worst-case computation time, i. e. L71(a) = Lj(a)/Cj. Thus, the relative 

maximum latency measures the worst input-output latency of a task in proportion to its 

computation time. The Relative Maximum Latency of all tasks in ACS is defined to be 

the largest L1(a) as follows: 

L ml (a) = max{Lý 1(a) } 
VjEA 

(4.6.9) 

and the L rel -optimal solution a' 1 that minimises the relative maximum latency in the 

set 5p, of feasible solutions is defined as 

rel(a`rel) = min {LM'(a)} 

VaESF 
(4.6.10) 

Scheduling Problem 6. Given a task set S and ACS, to find ci L'am` which is an ordering 

offixed-priorities that is feasible and minimises the relative maximum latency in A. 
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4.6.7 Problem: Deadlines and Average Response-Time 

Improving the responsiveness of a system improves the quality perceived for its users. 
At system level, reducing the response-time of a task implies to reduce the time between 

the arrival and completion times; consequently tasks spend less time in the ready queue 

accelerating the flow time and increasing the system performance. The responsiveness of 

a task during a period of time can be measured by averaging the response-time of all its 

instances. 

For a task set S and with respect to the schedule under a particular priority ordering 

a, the average response-time of a task j is the sum of all the response-times divided by its 

number of releases, i. e. Rj(a) = Em ý1 Rj, k/M where R;, k is the response-time of the 
kth release of j and M is the number of releases in a fixed window of time. 

We define the relative average response-time as Rj (a)/Cj; it indicates how well a task 

completes soon. For example, in our task model, all instances of the highest priority task 

should complete at Cj (assuming no interference by low priority tasks) and therefore, its 

relative average response-time is 1. The rest of tasks have values higher than 1; larger ratio 

Rj (a)/Cj indicates that task j stays active on the system for longer time. 

We define the Maximum Relative Average Response-Time as the maximum Rj (cr)/Cj 

of all tasks in ACS: 

R(a) = max{Rj(a)/Cj} (4.6.11) 
VjEA 

The i-optimal solution ozR that minimises the maximum relative average response- 
time in the set SF of feasible solutions is defined as 

R (aR) = min {R, (a) } (4.6.12) 
VOESF 

Scheduling Problem 7. Given a task set S and ACS, to find c which is an ordering of 
fixed-priorities that is feasible and minimises the maximum relative average response-time 
in A. 
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Figure 4.1: A Bicriteria Solution Space for a task set under criteria Z1 and Z2. Pareto- 
optimal solutions are indicated by Greek small letters. The solution s is not pareto-optimal 
because it is strictly dominated by at least another solution; e. g. Z1(w) < Z1(s) and 
Z2(w) < Z2(s). 

4.7 Representing Bicriteria Problems 

Multicriteria scheduling problems are better understood when they are represented graphi- 

cally. In effect, graphical representation of multicriteria problems assists both, to illustrate 

the problem and to identify clues to solve it. When only two criteria are involved in a 

scheduling problem, all pareto-optimal solutions can be represented in a Cartesian plane 

such that all tradeoffs between criteria can be shown. 

For example, lets assume that for a task set S two criteria Z1 and Z2 are defined 

such that the optimum tends to zero. By evaluating all orderings in 5 using both criteria, 

the space of possible solutions is obtained. This is illustrated in Figure 4.1 that shows 

all tradeoffs between criteria. A point (Z1(a), Z2(a)) represents a particular priority 

assignment a evaluated by both metrics. With respect to Z1, points {X, 6, E} at the left 

side are the optimal solutions. With respect to Z2, the point {µ} is the optimal one. 

The pareto-optimal set is formed by finding all the solutions not strictly dominated 
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by other solution. A solution w strictly dominates a solution s, if Z1(w) < Z1(s) and 
Z2(w) < Z2(s), this is, the solution w is better than s in both criteria. For instance, 

in Figure 4.1, s is not pareto-optimal because it is dominated by w. Observe that w is 

pareto optimal because it is no strictly dominated. In effect, with respect to Z1, t'ý is 

dominated by the solutions at its left-side; for instance {a, X. J, c, 0} dominate w (i. e. 
Z1(a) < Z1(w), Z1(x) < Z1(w), ... , 

Z1(0) < ZI(w)); however, all these solutions do 

not dominate with respect to Z2 (i. e. Z2(a) 54 Z2(w), Z2(X) ' Z2(w), ... , 
Z2(0) 't 

Z2(w)). Note that the single point that minimises simultaneously both criteria does not 

exist. 

Naturally, in order to represent a problem in this form, we need expressive metrics. 
In this sense, the yes/no answer given by the feasibility test is useless. With the only 

purpose of illustrating graphically bicriteria problems with deadlines, we introduced the 

next metric. 

4.7.1 Deadlines Metric 

On FPS, any fixed-priority ordering a is feasible if and only if Rj < Dj ,VjEa. 
Therefore, for all j in a we have 

Ri < Di 
R' 

<1R. < max 
Rý 

<1 D. 
7 

where max{ D} corresponds to the task j with the tightest deadline in a. 1 

Introducing 

we are able to define: 

Rj 
ZD(a) = max `djEa Dj 

Definition 4.7.1. An ordering a is feasible if ZD(a) <1 where 

ZD(a) = max 
Rj 

(4.7.1) 
VjEa Dj 
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Note that, if ZD <1 the ordering a is feasible; otherwise it is infeasible. Furthermore, 

when ZD =1 or very close to 1, it indicates at least one task finishes very close to its 

deadline. This metric give us more expressiveness that a simple yes/no answer. 

4.8 Using Importance in Scheduling Problems 

In this section we present examples of how the model of importance introduced can be 

applied to practical scheduling problems in real-time systems. For illustrative purposes, 

we assume a hypothetical real-time system composed of a task set of 5 periodic tasks 
(see Table 4.2). Observe that this set is biased in the sense that periods, deadlines and 

computation times are monotonically correlated. However, this does not affect the purpose 

of the example. In the evaluation chapter, we perform our experiments with unbiased task 

sets. 

4.8.1 Importance at Task Level 

In order to illustrate the concept of importance in a problem, let us consider a hypotheti- 

cal hard real-time system with several QoS requirements, which must be implemented in 

a fixed-priority real-time operating system. The requirements are to reduce the relative 

output jitter and to reduce the number of preemptions. 

The system has five tasks. The tasks have deadlines less than or equal to their periods. 
Table 4.2 shows the tasks set with their respective worst-case response times Rj, computed 

with the response time analysis equation. 

" Task a implements a control algorithm which is essential for the stability of the 

system and consequently, it is highly sensitive to output jitter effects; the control 

algorithm is also affected by the context switching caused by preemptions. 

" Task b reads inputs from sensors and stores them in a database. The database repre- 

sents the external environment and then, the data freshness is essential for reliability. 
Task b is sensitive to preemptions because frequent interruptions in the middle of a 
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T T D C R I R/D 
e 100 80 13 13 1 0.16 
d 240 240 37 50 2 0.21 
c 330 330 55 118 3 0.36 
b 350 350 56 174 4 0.50 
a 480 400 68 292 5 0.73 

Table 4.2: Task set S5 with importance values I. a is the highest importance task and e is 
the lowest one. Note that is is feasible under DMPA. 

transaction could cancel it. Since sometimes the sensor readings are used by the 

control algorithm, task bis moderately sensitive to jitter. 

9 Similar reasoning can be given to tasks c, d, e; for example, we can say task c is 

moderately sensitive to preemptions, and task e is indifferent to both jitter and pre- 

emptions effects. For the sake of simplicity, we omit additional description because 

in this specific problem we are only interested in improving QoS for tasks a and b. 

Firstly, the tasks will be rated by importance. Observe that, in terms of dependability 

(i. e. the ability to deliver service that can justifiably be trusted [3]), the above description 

suggests that tasks a and b are more important than tasks c, d, e and hence, la and Ib will 

be greater than I, Id and Ie. 

Afterwards we decide whether a is more important than b or vice versa. Lets assume 

that reducing jitter is more important than reducing the number of preemptions for several 

reasons; for example, we can say that output jitter jeopardizes some aspects of depend- 

ability such as safety (i. e absence of catastrophic consequences on the users and/or the 

environment), or reliability (i. e continuity of correct service). Under this reasoning, "a is 

more important than b" and hence, we assign importance 1,, =5 and 'b =4 to tasks a 

and b respectively. From the subset {c, d, e}, task c seems more important than both d and 

c because c is sensitive to preemptions, and then I, = 3. Finally, task e is indifferent to 

both jitter and preemptions effects and hence, we can assign the lowest importance to e 

(i. e. I,, = 1). Consequently Id =2 (see Table 4.2). 

In order to determine the best solution, we compute S5 (i. e. the 5! priority orderings 

of task set S5) and simulate all the priority orderings (using the maximum C) during the 

hyperperiod (184800 time units). During the simulation, the relative output jitter (y '11) 



4.8 Using Importance in Scheduling Problems 77 

Orderings S S S* 
rel p 9re p , re ,p 

task a 0.435 490 0.0 0 0.171 275 
task b 0.3 514 0.19 55 0.0 0 

Table 4.3: Relative output jitter (y rel) and total number of preemptions (P) for tasks a and 
b obtained by the simulating of the orderings SD, S' and S* (smallest figures are better) 

and the total number of preemptions (P) is registered for each task. The results of the 

simulation will be analysed from the perspective of the Deadlines and Importance pro- 
blem, the Deadlines and Preemptions problem and, the Deadlines and Relative Output 

Jitter problem. 

Importance vs Deadlines. Figure 4.2 shows the plot of all possible priority orderings 

of task set S5. Points (X, y) are computed by enumerating all 120 priority orderings and 

evaluating each ordering a in both the metric ZD and the index of importance ZI obtaining 
(ZD (a), Zi(a)). Thus, a point indicates if a is feasible and which is the distance of a to the 
highest importance ordering S'. In other words, the plot illustrate the space of solutions 
for the Deadlines and Importance scheduling problem (see 4.6.1). 

SD = (e dcb a) is the priority ordering by deadlines. This ordering is feasible and 
hence, from the point of view of the timing constraints, it is satisfactory. However, both 

tasks suffer jitter and high number of preemptions. Table 4.3 shows that for task a, yael = 
0.435 and Pa = 490; for task b, yb e' = 0.3 and Pb = 514. From the point of view of the 

QoS requirements, it is disappointing. 

S' = (a bcd e) is the priority ordering by importance. From the point of view of the 

QoS requirements, it is rather satisfactory because task a suffers zero jitter and preemp- 

tions, and task b suffers low jitter and preemptions (see Table 4.3). Unfortunately SI is 

infeasible because the task e misses its deadline. In effect, under S', Re is 229 and then, 

De R. In terms of the metric ZD we have ZD(SI) = 229/80 = 2.86 54 1. 

Performing exhaustive search over the set of all feasible priority assignments, it can be 

shown that there are 32 feasible ones. Among them none assigns the highest or the second 

one higher priority to a. However, there are four priority assignments where the highest 
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Figure 4.2: Plotting all priority orderings of task set S5. S' is infeasible (ZD(SI) _ 
229/80 = 2.86). SD is feasible but has low importance index (ZI(SD) = 119). The 
ZI-optimal solution is S* = (be ad c) located in (ZD(S*), ZI(S*)) _ (0-88,43) 

priority is assigned to b: 

SI = (abcde) >- ... 
(beadc) >- (becda) >- (bedac) >- (bedca) >- ... 

SD 

Note that (b ead c) is the lexicographically closest one to S'; thus, S* = (b ead e). 
Therefore, this priority ordering is the ZI-optimal solution for the scheduling problem 

with deadlines and importance. This solution is represented graphically in Figure 4.2; it 

corresponds to the point (ZD(S*), ZI(S*)) = (0.88,43). 

In Figure 4.2, S' is infeasible but it is the solution with the highest importance. The 

DMPA solution SD is feasible but its index of importance is 119, which is the worst. This 

example is an extreme case where SI is completely opposite to SD. The Zj-optimal is 

S* = (b ead c) which has the highest importance in the set of feasible solutions. 

By observing Table 4.3, we note that S* is not only the Zi-optimal solution with re- 

spect to the deadlines and importance problem but also it is a good solution with respect 
to minimising the total number of preemptions and the relative output jitter for tasks a and 
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b. Thus, it seems clear that only with raising priorities of important tasks, QoS improve- 

ments are achieved. It can be illustrated by plotting the QoS metrics with respect to the 
ZD metric for all priority orderings. 

Preemptions vs Deadlines. In Figure 4.3(a), for each priority ordering a, a point 
(ZD(a), P(a)) is evaluated. With respect to ZD all tasks are included to determine if the 

ordering is feasible. With respect to P only tasks in the subset {a, b} are included. For 

instance, the metric for preemptions under S* give us 

P (S*) = -'Pa 
(S*) + Pb(S*) = 275 +0= 275 

In Figure 4.3(a), the ordering S* = (b ead c) is shown and corresponds to the P-optimal 

solution. In effect, the ZI-optimal solution is also the P-optimal solution. Moreover, 

the ordering (b eac d) is also P-optimal because it also produces 275 preemptions. In 

fact many solutions are overlapped indicating equivalent solutions for different priority 

orderings. 

Relative Output Jitter vs Deadlines. In Figure 4.3(b), for each priority ordering a, 

a point (ZD (a), y'el (a)) is evaluated. As above, with respect to ZD all tasks are included 

to determine if the ordering is feasible. With respect to., ?l only tasks in the subset {a, b} 

are included. For instance, the metric for relative output jitter under S* give us 

7ml(S*) =Yä, (S*)+-7171 (S*) =0.171 0=0.171 

In Figure 4.3(b), the y mal-optimal solution is indicated and corresponds to four different 

orderings: (e dba c), (e bda c), (d eba c), (b eda c). Note that S* is very close to the 

y mal-optimal. As above, many solutions are overlapped indicating equivalent solutions for 

different priority orderings. 

Therefore, a solution for the problem where a subset of tasks has different QoS require- 

ments is obtained by assigning higher importance to this subset and solving the scheduling 

problem with deadlines and importance. 
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y 'l-optimal solutions are indicated. 
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PA Priority Assignment Rule 
I IT the shorter the period, the higher the priority 
I /C the shorter the computation time, the higher the priority 
LT the larger the period, the higher the priority 
LC the larger the computation time, the higher the priority 
T/C the larger the ratio T/C, the higher the priority 
C/T the larger the ratio C/T, the higher the priority 

Table 4.4: Simple rules for assigning priorities. For example, under the rule 1/C, priorities 
assigned to tasks are inversely proportional to the length of C. Its contrary is LC, where 
priorities assigned to tasks are proportional to the length of C 

4.8.2 Importance at Application Level 

Observe that in the above example, QoS requirements of individual tasks can be achieved 
by raising priorities. However, when the objective is to maximise/minimise a QoS metric 

which include to all tasks, individual requirements are less important than the QoS met- 

ric. In fact, raising the priority of a particular task could impact negatively on other tasks 

reducing the total benefit. Therefore, assigning importance based on individual task pref- 

erences is ineffective; the assignment of importance must be based on global application 

requirements. 

Consider the problem of minimising the total number of preemptions. Note that at 

any particular priority, a task with larger C has greater probability of being preempted 
frequently (by higher priority tasks) than a task with lower C; but also it can be noted that 

tasks with short periods and high priorities produce frequent interruptions to low priority 

tasks. Consequently, it does make sense to assign priorities to tasks in proportion of larger 

C or T, or functions that combine both parameters with the objective of provide some kind 

of improvements for this particular problem. Based on this idea, Table 4.4 shows some 

simple rules for assigning priorities. For instance, the rule 1/T is the Rate Monotonic 

Priority Assignment algorithm, while the rule LT is its contrary; i. e. under the rule LT, the 

task with the largest period gets the highest priority and the task with the shortest period 

gets the lowest priority. 

In order to observe the effect of assigning fixed-priorities with those rules, we perform 

an experiment considering the task set S5 and the problem of minimising the total number 

of preemptions. We perform the experiment by computing the 5! priority orderings of S5 
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Figure 4.4: Total Number of Preemptions computed during the hyperperiod for all 5! 
priority orderings of S5. The P-optimal solution is indicated. The results of some simple 
rules for assigning priorities are also illustrated as well as the result of simulating S5 under 
EDF 

and simulating all the priority orderings during the hyperperiod. In addition, for compar- 

ative purpose we simulate the task set under the EDF scheduling algorithm. During the 

simulation, the total number of preemptions is registered for all tasks. The results of the 

experiment are shown in Figure 4.4. Several points are overlapped indicating equivalent 

solutions for different priority orderings. 

Preemptions vs Deadlines. In Figure 4.4, a point (ZD(oz), p(a)) is evaluated for 

each priority ordering a. Both metrics ZD and P are applied to all tasks in the system. 

There is just one P-optimal solution and this corresponds to (c eba d); its total number of 

preemptions is 1178. The priority orderings of the rules in Table 4.4 are indicated in the 

plot. Observe that for this particular task set: 

9 The worst solution is DMPA (1606 preemptions). 

" Due to the biased task set, the rules 1 /T, 1 /C and DMPA produce the same priority 

ordering; it also applies for the rules LT and LC. 

" When comparing against DMPA, there exist a number of feasible priority orderings 

with better performance with respect to the total number of preemptions. 
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" Rules for assigning priorities may produce excellent results with respect to minimis- 
ing preemptions (e. g. LC, C/T) but unfortunately they do not guarantee deadlines. 

" Some of these simple rules can be good heuristics for this scheduling problem. For 

example rule T/C is feasible and is better than DMPA. 

" As expected, EDF (1380 preemptions) is better than DMPA . However, a number of 
fixed-priority orderings are better than EDF. 

Clearly, the problem of finding the T-optimal solution is NP-hard. Nevertheless, in 

the context of our model of importance heuristics can be proposed to approximate such a 

solution. 

Assigning Importance by Heuristics 

In our model of importance, we assume that a higher importance ordering exists and con- 

sequently, it is the objective to be achieved. We also assume that the index of importance of 

a particular priority ordering reflects a QoS requirement. Thus, in order to apply our model 
to a particular QoS metric, such metric should have a structure similar to the importance 

model; i. e. there should exist a priority ordering S' which should be the one that max- 
imises/minimises the metric, and the rest of the priority orderings should decrease/increase 

the values of the metric following the lexicographic order. In general, finding a QoS metric 

conforming these assumptions is unrealistic. 

Nevertheless, we do some experiments which show that in some cases good approx- 
imations to these assumptions can be achieved depending on how the S' ordering is se- 
lected. For instance, continuing with the above example, we follow the next steps: 

1. A priority ordering is nominated as the most important with respect to the preemp- 

tions metric, and then importance is assigned to tasks according to this ordering. 
This will be the S' ordering. 

2. The scheduling problem with deadlines and importance is solved; i. e. the ZI-optimal 

solution S* is found. 
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3. The scheduling problem with deadlines and preemptions metric is solved by simu- 
lation; i. e. the P-optimal solution is found by simulating the N! orderings. 

4. Finally, the goodness of the approach is measured comparing how far is ZI-optimal 

from P -optimal with respect to the total number of preemptions. 

In Figure 4.4, note that there exist some priority orderings that achieve the minimum 

number of preemptions; one of such orderings is a logical candidate to be S'. However, 

since we do not know how to find it we will use the orderings obtained by the rules LC 

and C/T as heuristics for approximating them. 

Rule LC as the assignment of importance. We assign importance to tasks according 
to the rule LC and nominate it as the highest importance ordering; i. e. S' = (a bcd e). 
The ZI-optimal solution S* is computed by testing the feasibility of the priority orderings 
following the lexicographic order starting from S' until the first feasible ordering is found. 

It is illustrated in Figure 4.5. 

Priority Orderings In Lexicographic Order Starting From Rule LC 
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Figure 4.5: All priority assignments of set S5 ordered lexicographically starting from the 
ordering (a bcd e) (i. e. the LC rule). Lines illustrate that following the lexicographic order 
the first feasible ordering found is the optimal S*. 

Observe that the lines connect the orderings following the lexicographic order; if we 

start from the point SI and follow the lines, the first feasible ordering is S* = (b ead e). 
By simulating S* on its hyperperiod, we compute 1189 preemptions. On the other hand, 
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the P-optimal solution is computed by simulating all the priority orderings of S;; on its 

hyperperiod. The P-optimal solution corresponds to the ordering (be da c) with 1178 

preemptions. 

Thus, the ZI-optimal solution S* is the lexicographically closest solution to SI but it 

is not the P-optimal solution. However it is very close and therefore we can conjecture 

that solving the deadlines and importance scheduling problem with importance assigned 
by the rule LC is a good heuristic for the deadlines and preemptions scheduling problem. 

Finally, note that Figure 4.5 and Figure 4.2 contain the same points. This is because 

the ordering SI is the same in both examples. In effect, the task set S5 ordered by the rule 

LC is (a bcd e), which coincides with the assignment of importance in Table 4.2. This 

permits to enumerate the lexicographic order easily by using the tasks identifiers (i. e. a, b, 

c, ..., etc). However, in the following experiment the ordering SI is rather different and 

then we will identify the orderings by labeling tasks with the importance values. 

Rule C/T as the assignment of importance. We repeat the above experiment but 

assigning importance according to the rule C/T; i. e. S' = (c bda e). Note that it is more 
difficult to enumerate the lexicographic order starting from this ordering; for example, 

the four orderings with higher index of importance are S' = (c bda e) >- (c bde a) >- 
(c bad e) >- (c bae d). For this reason, we will label the orderings with their importance 

values. Since SI = (c bda e), importance is assigned as follows: I, = 5, Ib = 4, Id = 3, 

Ia = 2, Ie = 1. Thus, the four orderings with higher index of importance are SI = 
(54321) >- (54312) >- (54231) >- (54213). 

The ZI-optimal solution is computed as above and then S* = (c ebd a) = (514 3 2). 

By simulating S* on its hyperperiod, we compute 1278 preemptions. On the other hand, 

the P-optimal solution is (b eda c) = (413 2 5) with 1178 preemptions. In Figure 4.6, we 

can see that S* has moved away from P-optimal. It indicates that the heuristic LC (1189 

preemptions) was better than C/T in this particular scenario. 

Thus, we conjecture that a heuristic for solving the deadlines and preemption pro- 
blem may be obtained by assigning importance according to the LC rule and solving the 

scheduling problem with deadlines and importance. In chapter 7, we perform experiments 

with a number of task sots that confirm this observation. 
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Figure 4.6: All priority assignments of set S5 ordered lexicographically starting from the 
ordering (c bda e) labelled as (5 43 21) (i. e. the C/T rule). S* _ (c ebd a) = (514 3 2) 
and the P-optimal is (b eda c) = (413 2 5) 

4.8.3 Summary 

In these examples, we show that there exist feasible priority orderings that are Z-optimal 

at task level as well as at application level. For small tasks sets, these solutions can be 

found by simulating the N! priority orderings. Naturally, it is not a viable solution for 

many practical problems. Finding P-optimal or y "-optimal solutions seem to be NP-hard 

scheduling problems. 

The examples also show that the concept of importance can be correlated with these 

two QoS metrics such that solving the problem with importance produce similar results 

as solving the problem with the QoS metrics. While in the above examples, the deadlines 

and importance problem was solved by exhaustive search, in chapter 5 we will show that 

it can be solved in pseudo-polynomial time by the DI algorithm. By this way, we propose 

a tractable approach for some NP-hard problems. 

" At the task level, we propose to raise the priorities of tasks with a specific QoS 

metric by assigning higher importance to such tasks and solving the deadline and 
importance problem. 

9 At the application level we propose to use heuristics for determining a priority or- 
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dering that solves a problem with a specific QoS metric. This ordering is used as 

an assignment of importance and then solving the deadline and importance problem 

will produce a feasible solution similar to the infeasible one. 

Both these approaches are explored in chapter 7, where we will evaluate some heuris- 

tics for assigning importance and we will evaluate the DI algorithm with such heuristics 
for solving the scheduling problems defined in this chapter. 



Chapter 5 

Fixed-Priority Scheduling with 
Deadlines and Importance: 
The DI Algorithm 

5.1 Introduction 

In this chapter we present the DI algorithm that solves the scheduling problem defined in 

section 4.6.1 (page 68): Given a task set S and an ordering S', to find S* which is an 

ordering of fixed priorities that is feasible and is the closest one to S'. 

Roughly speaking, the idea of the DI algorithm consists on starting from the ordering 
by importance S' and then checking its schedulability. As the system may not be feasible, 

go to the next importance ordering (maintaining the minimal lexicographic distance) by 

swapping tasks and check for schedulability again. Keep on this process until the system 
is made schedulable or at least the deadline monotonic ordering is reached. 

Note that this process is similar to the swapping algorithm. However, assuming that an 

ordering is represented as a vector where the leftmost task is the most important and the 

rightmost is the least important one, the swapping algorithm swaps tasks on right-to-left 

order stopping when a feasible ordering is found. On the other hand, the DI algorithm 

swaps tasks on left-to-right order following the lexicographic order and keeping the mini- 

mal distance to SI. 

88 
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5.2 Process Model 

We use the model described in section 4.2 with the following additional notations: 

89 

" Any ordering (a bc... jk... xy z) can be represented as (O w) where the prefix 0 

is (a bc... j) and the suffix w is (k 
... xy z). The meta-ordering (0 *) denotes all 

the orderings in S starting with prefix 0. 

" For any ACS, 6(A) is an ordering with priorities assigned according to the Dead- 
line Monotonic Priority Assignment where the function 6 orders A according to 

the relation "has a shorter deadline than ". SD is the ordering by DMPA; i. e. 
SD = 6(S). 

" For aES, the function -T(a) returns true when a is feasible, i. e. the ordering a 
passes the FPS schedulability test; otherwise returns false. 

5.3 Problem Description 

Consider the example presented in section 4.8.1 (page 75) where a hypothetical system 

with several QoS requirements must be implemented. The space of all possible fixed- 

priority orderings for the task set S5 is plotted in Figure 5.1. It shows all 5! = 120 priority 

orderings of S5 plotted with ZD and ZI metrics. 

Observe that SD is feasible but it has low index of importance. S' is infeasible since 
task e has a response time of 229 but a deadline of 80 and therefore it is not schedulable. 
The ZI-optimal solution S* = (b ead c) has an index of importance of 44. Figure 5.2 

shows the response time for these priority assignments. 

We observe that an approach for solving this problem consists on utilising the Swap- 

ping algorithm. The Swapping algorithm works receiving an infeasible priority ordering 

and finding a feasible one (if it exists) by swapping pairs of tasks on right-to-left order and 
stopping when a feasible ordering is found. In our example, the swapping algorithm will 
receive the infeasible ordering by importance SI = (a bcd e). 
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Figure 5.1: Plotting all priority orderings of S5. S' is not feasible. S' is feasible but 
has low importance metric. SA is the Swapping algorithm. The optimal bicriteria S* is 
(be ade) 

Task set S5 

T T D C I 
e 100 80 13 1 
d 240 240 37 2 
c 330 330 55 3 
b 350 350 56 4 
a 480 400 68 5 

SL) s s 
T R T R T R 
e 13 a 68 e 13 
d 50 b 124 a 81 
c 118 c 179 b 150 
b 174 d 216 d 187 
a 292 e 229 c 292 

Optimal S* 
T R 
b 56 
e 69 
a 150 
d 187 
c 292 

Figure 5.2: Task set S5 and priority orderings SD (DMPA), S' (Importance), SA (swap- 
ping algorithm with S' as input), and the optimal S*. The lexicographic order is SI >- 
. S* . SA SD 
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Sequence R Feasible next swap 
testing e: abcde 229 NO = de 
testing d: abced 255 NO cHd 
testing c: abdec 292 YES fix c 
testing e: abdec 174 NO eHd 
testing d: abedc 187 YES fix d 
testing e: abedc 137 NO = be 
testing b: aebdc 150 YES = fix b 
testing e: aebdc 81 NO = aHe 
testing a: eabdc 81 YES fix a 
testing e: eabdc 13 YES fix e 

Table 5.1: Executing the swapping algorithm with input S' = (a bcd e). The result is the 
ordering SA = (e abd c) 

The sequence of steps executed by the swapping algorithm is depicted in Table 5.1. 

The algorithm finds SA = (e abd c) , which is a feasible solution but it is far from the 

optimal one. This is no surprising because it was not developed for this specific problem. 
However, it could be the case that the swapping algorithm could find a good approxima- 
tion to the optimal and therefore it may be considered as a heuristic for the deadline and 
importance problem. 

We can figure out a solution for finding S* looking carefully at Figure 5.3; it contains 

the same data as Figure 5.1 but the points are connected successively following the lex- 

icographic order. Note that there are groups of either feasible or near feasible orderings 
(enclosed by a circle) distributed around the indices 23,47,71,95 and 119. In addition 

note on the left side, which orderings correspond to such points. The index 23 corresponds 

to (a edc b) where (a) is the most important task plus a suffix (e dc b) ordered by DMPA. 

The index 47 is (b edc a) where (b) is the second most important task plus a suffix ordered 
by DMPA. The rest have the same pattern: a prefix 0 plus a suffix w ordered by DMPA. 

Our algorithm uses this pattern to reduce the search space. 
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Figure 5.3: Similar to Figure 5.1 but the priority orderings are connected according to their 
lexicographic order. Circles enclose groups of either feasible or near feasible orderings 
distributed around the indices 23,47,71,95 and 119. The orderings corresponding to 
these indices have a similar pattern: a task plus a suffix ordered by DMPA. 

5.4 Solving the Deadlines and Importance Problem 

This section is divided in two parts: 

1. In the first one we will show how the set 5 of all possible priority assignments can 
be organized into a tree, and how whole subtrees can be skipped by identifying some 
local minimums. 

2. In the second one, we present the algorithm DI, which performs a branch and bound 

search into the tree defined. In the worst-case it performs N22 N steps to find the 

solution. The algorithm is described and its optimality is proved. 

5.4.1 Organizing the Search Space 

The search space consists of the set of all possible priority orderings S ordered lexico- 

graphically and organized as a tree. The root of the tree is S' = (a bc... z). The im- 

1 1.5 2 2.5 



5.4 Solving the Deadlines and Importance Problem 93 

mediate sons of this tree are the N subtrees (a *), (b *), (c *), ... , 
(z *) ordered lexico- 

graphically. Each one of these subtrees has N -1 sub-subtrees where each one has N-2 

ones and so on. For example, (a *) has (a b *), (a c *), (a d *), ... , 
(a z *). Therefore, 

any subtree can be represented as (ý *). A vertex is represented as (0 w). 

The reason for organizing the space into subtrees with this configuration comes from 

an interesting property related with the optimality of DMPA and the generality of the FPS 

test: 

" First, DMPA is optimal in the sense that if a set is schedulable by any fixed-priority 

ordering then it also is schedulable under DMPA. 

" Second, the FPS test is necessary and sufficient and it is independent of the assign- 

ment of priorities. 

Consider an ordering SI = (a bc d) and an ordering SD = (d cb a). Suppose that we 

apply the FPS test to SI and we find that SI is feasible. The optimality of DMPA indicates 

that it is not necessary to apply the test to SD because if SI is feasible then SD is also 
feasible; but the contrary is not true, if SD is feasible we cannot assure anything about the 
feasibility of SI or any other combination. However we can affirm that if SD is infeasible 

then any ordering of these four tasks will also be infeasible. 

Now, consider that we extend S' with an arbitrary task such that we have an ordering 
(x dcb a) (remember that (d cb a) is ordered by DMPA) and we apply the FPS test. If 
(x dcb a) is feasible, then there are some orderings in (x *) that are feasible. However, if 

(x dcb a) is infeasible we can affirm that no ordering in (x *) is feasible. 

Note that (: c dcb a) consists of a prefix (x) and a suffix (d cb a) which is ordered 
by DMPA. This can be denoted as a vertex (0 b(w)) where 0 and w are arbitrary sub- 

orderings and 6 is a function that re-order w according to DMPA. Using this notation, the 

next theorem resumes the above observations. 

Theorem 5.4.1 (Prefix Theorem). If the ordering (0 b(w)) is infeasible then any ordering 
in (0 *) is also infeasible. 
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Proof. By contradiction, suppose that there exist a feasible ordering S' in (q5 *), which is 

not (0 8(w)) because it is infeasible. 

Thus, S' = (0 w) is feasible and S6 = (0 8(w)) is infeasible. Both orderings share the 

same prefix 0 and differ only by the suffix. 

Note that if w is empty or has only one task then w= b(w) and hence S' = Sb. 
Consequently, Sb is feasible and this contradicts the hypothesis. Otherwise, the feasibility 

of S' and the infeasibility S6 depend only on the order of tasks in w; all tasks in 0 are not 
affected by any change in w. 

The proof of optimality of DMPA and the proof of optimality of DMPA in the pres- 
ence of blocking with resources managed under the priority ceiling protocol shows us 
that, because S' is feasible, exchanging any pair of tasks (in w) non-ordered by shorter 
deadline give us a feasible ordering S". Following the same process we obtain orderings 
S", S"", 

... , 
Sn which are also feasible. The last one is Sn with its w ordered by DMPA. 

S" is identical to Sa and therefore S6 is feasible. This contradicts the hypothesis and 
concludes the proof Q 

Thus, we can know if all the orderings in (0 *) are infeasible by testing just one of 
them, the one with w ordered by DMPA, i. e. (0 S(w)). In addition, this theorem produces 
the next corollary that will be used to prove the optimality of the algorithm proposed. 

Corollary 5.4.2. If an ordering (0 w) is feasible then (0 8(c. ß)) is also feasible. 

The Prefix theorem 5.4.1 affirms that in a tree search, we can discard a whole subtree 
if its root is infeasible; otherwise we need to look inside it. This process is applied re- 
cursively to each subtree performing, by this way, a branch and bound search but only on 
specific nodes. 

5.4.2 The Algorithm DI 

The algorithm DI (Deadline & Importance) examines the root of subtrees in lexicographic 

order from the closest to S' to the remotest one and from the top to the bottom. There are 
two preconditions that must be fulfilled: 
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" The ordering SD must be feasible; otherwise no feasible solution exists. 

" The ordering SI must be infeasible; otherwise we do not need to perform a search 

because S' is the solution. 

The next variables are used: 

"0 is a vector of tasks representing the prefix of the actual subtree indexed. 

9w is a vector of tasks which is the complement of 0. 

"k indexes the k th task of w such that w [k] is a task acquired orderly from left to 

right; i. e. from the highest importance important task to the least important one in 

the lexicographic order. 

" 'r is w[k]. T is used to build a new prefix (0 T) for indexing the subtree (0T *). 

" delete(a, T) is a function that delete a task T from the ordering a. 

" wa is b(w); i. e. w ordered by DMPA. 

" wa_T is wb without T. When a new prefix (q 'r) is created, its corresponding suffix is 

Wa-T 

" Stest is the root to be tested. 

"9 is a function that returns true, if an ordering passes the FPS schedulability test. 

Let S be a task set with orderings SD and S', feasible and infeasible respectively. 
The algorithm builds keys to index each subtree in lexicographic order. A key is built by 

appending to 0a task 'r (step 3) from w. The lexicographical order is achieved following 

the sequence in w which is S'. The key indices the subtree (0 'r *) and hence we build 

its root S', 
ti, = (OT (steps 4-5). Stest is tested (step 6) and if it is feasible, it is 

saved as a partial solution S*, T is deleted from both w and wö, 0 is updated and the index 

k is reset (steps 7-11); otherwise, k is advanced to the next 'r. DI stops when there are not 

more subtrees to visit. Note that the worst-case is when the only solution is SD and its 

order is contrary to S'. In this case, the root of the first A' subtrees will be tested and the 
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Algorithm 2 DI (Deadline and Importance) 
Require: SD feasible, SI infeasible 

1: Seto 01, w S', w6 SD, k=0 
2: while SizeOf(w) >1 do 
3: let T=w [k] 
4: let w5_, - = delete (w6, T) 
5: build Stest (0 T wb_T) 
6: if 3 (Stest) then 
7: S* Stest 

8: 0 (0 T) 
9: w= delete(w) 'r) 

10: wa wa-T 
11: k0 

12: else 
13: k =k+1 
14: end if 

15: end while 

Nth will be Stest = SD; afterwards, the next level of N-1 subtrees will be tested and the 

(N - 1)th will be again Stest = SD and so on. Thus, in the worst-case, the solution will 

always be SD. DI will always stop due to the fact that in the worst-case an ordering by 

DMPA is built and therefore w is always reduced. 

Complexity. The worst-case occurs when the only solution is SD and its order is 

contrary to S'. In such case the loop is executed N times and w is reduced to N-1 

elements; afterward the loop is executed N-1 times and w is reduced to N-2 elements 

and so on. Therefore the loop executes N+ (N - 1) + (N - 2) + ... +1= N2+N 
2 

times. At each iteration, a feasibility test of complexity E is performed and therefore the 

complexity of the algorithm DI is O (E x N22 N) 
. Thus, the algorithm finds the solution 

in a polynomial number of steps but the total complexity depends on the complexity E of 

the response-time test, which is pseudo-polynomial. 

DI proof 

Theorem 5.4.3. The algorithm DI yields an optimal solution for the problem 1 of guar- 

anteeing all deadlines and minimizing the distance to S'. 

Proof: By contradiction. Suppose that there exists an ordering S° which is the optimal 
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solution; i. e. it is both feasible and is lexicographically closest to SI. Therefore, the 

solution S* found by DI is not the optimal solution one and then: 

" 1) SI >- S* >- S°, if S* is infeasible. This is, the solution S* is lexicographically 

closest to SI but it is infeasible. 

9 2) SI >- S° >- S*, if S* is feasible. This is, the solution S* is feasible but S° is both 

feasible and lexicographically closest to SI. 

Clearly, the first case is not true because the DI algorithm starts with a feasible ordering 

and in all their iterations the algorithm accepts only feasible solutions. Consequently, S* 
is always feasible. Thus, we need to consider only the second case. 

Note the following facts about S° and S*: 

9 They are lexicographically different but before a task j they are identical; i. e. they 

share the same prefix 0= (a bc... J) and differ on their suffix. 

S° _ (ý w°) where w° = (k 
... l 

... 
) 

S*_(ýw*) wherew*= (l... k... ) 

If 0 is empty then they are different from the first element. 

" Note that k >- l because S° >- S*, we 

" S° and S* share the same vertex (q5 wa) where cab = 8(w°) = S(w*). 

" S° is feasible and therefore (0 wb) is also feasible (corollary 5.4.2). Thus, in the nth 
iteration when DI finds (0 w6), it is accepted and stored as the nth partial solution 
Sn = (0 we). Consequently, the partial solution S,;, and the optimal solution S° 

share the same prefix and differ only by the suffix (w6 and w° respectively). 

DI builds and tests new orderings by joining the actual prefix 0 with a task T and 
ordering the rest of the tasks by DMPA (steps 3-6). Once that DI builds the partial so- 
lution S*, the next task to be tested is either k or 1. Since k 1, the next task to be 
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Figure 5.4: DI applied to S5 showing the sequence of operations. 
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appended to the prefix 0 is k, and therefore the ordering (0 k b(... I 
... 

)) is tested before 

that (0 16(... k 
... 

)), which is in the path of the solution S*. 

The ordering tested is 

... 
ý% Stest - ýý % b(... 1 

Two cases may occur: 

" If St*, is feasible, DI will accept it and never will find S* because they both are in 

different paths. This is not possible because S* is found by DI. 

. If Stest test is infeasible then S° must be infeasible since both share the same prefix 
(Theorem 5.4.1). Therefore, S° is lexicographically closest to SI but it is infeasible. 

This contradicts the hypothesis. 

This concludes the proof. 
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5.4.3 An Example 

Applying the algorithm DI to the tasks set S5, it finds the ordering S* in nine steps (Fig- 

ure 5.4). At the beginning, 0 is empty and w is (abcde). The first element is acquired to 

create a key (a) to test the vertex (a edcb) (ýl in the graph); the test fails and then the 

subtree (a *) is skipped. The next element in w is obtained and (b edca) is tested (®2 ); 

it is feasible and then (b) is appended to 0 and (b) is deleted from both w and w6. The 

next three orderings tested (3Q, ®, 55) are infeasible, and therefore only the index k is up- 
dated. Afterwards, (b edca) and (b eadc) are tested successively and saved (@, T); the 

next ordering fails (®) and the next one passes the test (9Q). w has length 1 and DI stops. 

5.4.4 Summary 

In the context of fixed priority scheduling, we present the DI algorithm which finds the op- 
timal solution to the deadlines (D < T) and importance problem defined in section 4.6.1. 

This problem consists on finding a feasible priority ordering that minimises the lexico- 

graphic distance to the ordering SI. Our approach is optimal in the sense that the priority 

ordering found by DI is feasible and no other feasible priority ordering exists closest to 
Si. 

The DI algorithm performs a branch and bound search into the space formed by the 
N! possible orderings. This space of solutions is ordered lexicographically by importance. 

Due to some properties of the optimality of the deadline monotonic priority assignment, 

and some particular characteristics of the lexicographic order, we identify patterns into 

the search space that permits to solve the problem in O((N2 + N)/2) steps; however the 

complexity of DI depends on the complexity of the fixed-priority feasibility test. In our 

case, the complexity of DI is pseudo-polynomial because it uses the response time analysis 
test. In chapter 7, the DI algorithm will be evaluated. 



Chapter 6 

Fixed-Priority Scheduling with 
Deadlines and Conditional Importance: 
The DI+ Algorithm 

6.1 Introduction 

In this chapter, importance is extended to include conditional relative importance, which 
is a natural generalization of simple relative importance. Conditional relative importance 

expresses preferences for executing a task with regard to other ones in the system subject 

to conditional clauses. This concept is based on preferential statements of the form "it 

is more important to execute a than 0 if some conditions are fulfilled". Observe that 

the statement is formed by a relative importance statement plus a conditional statement. 

Thus, conditional relative importance will be represented as a number I plus one or more 

conditional clauses. This concept allows implementing priority relationships constraints 

such as precedence constraints and allows including importance as a hard requirement. 

We formulate the scheduling problem with deadlines and conditional importance and 
introduce the DI+ algorithm for solving it. DI+ is DI with some modifications. In particu- 
lar, the feasibility test and the priority constraint test are grouped into a single function that 

is called as a subroutine. This does not affect the logic of the original DI algorithm and 

allows including the feasibility tests for tasks with arbitrary deadlines or weakly-hard con- 

straints, as well as including the swapping algorithm for finding feasible priority orderings 

when DMPA is not optimal. 

100 
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6.2 Conditional Relative Importance 

When specifying a system, there are situations where a particular QoS requirement can be 

mandatory (e. g. a safety requirement) or can be conditioned to fulfill other requirements 
(e. g. a performance requirement conditioned to a reliability one). During the design, these 

mandatory and/or conditioned QoS requirements must be mapped to the task set. In this 

case, there exist dependence relationships among tasks that are compulsory for assuring 
the system correctness. 

In order to cope with situations where dependence relationships exist, we include con- 
ditional relative importance statements in our model. A Conditional Relative Importance 

statement has the form 

x is more important than y only if A holds 

which means that the relative importance of x and y is conditioned to a set of A conditions. 
Note that when A is empty, a simple relative importance statement is obtained. 

The statement "it is more important to execute x before y only if both z precedes x 

and z precedes y", is an example of conditional relative importance statement expressing 

precedence constraints. Note that the set of constraints A is the union of a conditional 

clause associated to x ("z precedes x ") and other associated to y ("z precedes y "). 

Definition (Conditional Relative Importance). Conditional relative importance is a rela- 
tion of relative importance >- in S and a set of constraints A such that for any pair of tasks 

x and y, with sets of constraints A and Ay respectively 

". r >- y, A., y " is interpreted as "x is more important than y only if )xy holds ". 

where A.,, = A, U Ay. In other words, x is more important than y only if the constraints 

A.,. and Ay are fu filled. The set of constraints of a task can have zero or more clauses. 

Similar to relative importance (see section 4.5.1, page 63), conditional relative impor- 

tance have to maintain the strict total order properties; i. e. for all x, y and z in S: 
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" It is not the case that x >- x, A (irreflexive). 

" If x >- y, )., y then it is not the case that y >- x, A, (asymmetric). 

" If x >- y, A and y >- z, A,,,, then x >- z, Axz (transitive). 

" Exactly one of x-y, Axy or y >- x, Ayx is true. 
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Thus, conditional relative importance permits to compare any pair of tasks and to as- 
sign a different natural number I to each task such that the relation is preserved. 

6.2.1 Task Conditional Importance 

Definition 6.2.1 (Task Conditional Importance). Task conditional importance is a pair 
I= (I, A) constituted by a natural number I and a set of constraints A associated to 
the task. Thus, for any pair of tasks x and y with constraints Ax and Ay, there exist task 

conditional importance Ix = (Ii, Ax) and Iy = (Iy, Ay) respectively (with I., Iy) such 
that 

ýý y, =* 
1 >Iy 

where Axy =AU Ay and Ix > Iy if and only if II > Iy 

Task conditional importance expresses a preference for executing a task with respect 
to the other tasks in the system only if the constraints A are fulfilled. Observe that the con- 
straints A must be selected to maintain the uniqueness of all I such that Vx, yES, x 
y= II Iy. Thus, tasks can be compared and ordered totally according to their condi- 
tional relative importance. 

With respect to the constraints, we note the following: 

" In a set of two tasks S2 = {a, b} the ordering (a b) is formed when la > I6 and then 
the set of constraints is Aab. The ordering (b a) is formed when Ib >'a and then the 
set of constraints is Aha. Since Aab = Aba, set of constraints for any ordering of S2 is 
the union of the constraints of each task. 
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" In a set of three tasks S3 = {a, b, c}, the ordering (a b c) is formed when Ia > Ib 

and 'a > I, and lb > L, and therefore, the set of constraints is {Aab U "ac U )"bc}, 

which is {Aa U Ab U Aa U Ac U Ab U Ac} = {Aa U Ab UAI. Clearly, for other orderings 

of S3, the set of constraints is also the union of the constraints of each task; i. e. 

{Aa U Ab U A}. 

Thus, by generalizing the above observations: given a task set S= {a, b, c.... } with 

constraints { Aa, Ab, An, 
... 

}, the set of constraints of any ordering a in S is the union of 

the constraints of each task, this is, A= {Aa U Ab U Ac U ... 
}. 

6.2.2 Index of Conditional Importance ZI 

Similar to the index of relative importance, the set of N! possible permutations of S form 

a set S, which can be ordered lexicographically and indexed by conditional importance. 

The ordering with the highest conditional importance is S' such that all orderings in S 

can be compared and ordered lexicographically with respect to S' using the lexicographic 

index as defined in section 4.5.2: 

13 ZI (a) < ZI (, Q) 

The lexicographic index ranks all orderings with respect to S' and therefore: 

Definition 6.2.2 (Index of Conditional Importance ZI). The lexicographic index defines an 
index of conditional importance ZI among all orderings in S such that for any orderings 

a, 0 E Sand A: 

"a is more important than ,Q only if A holds" ZI(a) < Zj(/3) 

Thus, the index of importance expresses a preference for executing a particular order- 
ing with respect to the other orderings in the set of possibilities S subject to A constraints. 

Since it is assumed that all conditional importances I are different, the index of im- 

portance is unique; i. e. Va, tii c S, a0Z, (a) ZI(0). Thus, orderings can be 

compared and organized in unique levels of importance that reflects a level of QoS where 
index 0 is the best and the quality decreases as the index increases. 
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6.2.3 Problem: Deadlines and Conditional Importance 

In addition to meeting deadlines (D < T), in some hard real-time systems fulfilling both 

hard and soft QoS requirements non-related with the deadlines is an issue. It is our thesis 

that in some cases, hard and soft QoS requirements can be expressed in terms of condi- 

tional importance. A scheduling problem with deadlines and conditional importance can 
be formulated as follows: 

Scheduling Problem 8. Given a task set S, a set of constraints A and an ordering SI, to 

find S* which is an ordering of fined priorities that is feasible, meets A, and is the closest 

one to SI. 

Note that if the constraints A are removed, the problem is reduced to the deadlines and 
importance problem. 

6.3 Conditional Importance in Scheduling Problems 

Conditional relative importance is a natural generalization of simple relative importance 

statements but they can be rather difficult to express in the context of priority-based 

scheduling. Therefore, A will be limited to a set of simple restrictions for assigning prior- 
ities. These restrictions will be called A-constraints. For instance, given tasks x and y and 

z with priorities PP, Py and P, z respectively, a statement with A= {Py > P2} could be "x 

is more important than y only if Py > Pz". 

6.3.1 A-constraints 

A-constraints is a set of hard priority constraints A denoting statements of the form 

"Pa > Pb" or "Pa > K" or "K > Pb" 

for any two tasks a and b, and a constant KEN; more formally: 
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Definition 6.3.1 (A-constraints ). Let S be a task set, A-constraints is a set of priority 

constraints on S such that any priority constraint A in A-constraints can be 

- Aab {a, bES: Pa>Pb} 

- 
AaK=fa ES, KEN: Pa >KI 

- 
V6-{bES, KEN: K>Pb} 

For instance, consider the task set {a, b, c} and priorities 3,2,1 where 3 is the highest 

priority and 1 the lowest one; the 3! orderings are 

(a b c) (a c b) (b a c) (b c a) (cab) (c b a) 

Consider the constraint A,, 1 = {PP > 1}, which means that the priority of c cannot be the 

lowest one; that is, all orderings where PP =1 will not meet the constraint and therefore 

(a b c) and (b a c) are not viable solutions. Now consider the set of A-constraints A= 

{A, 1, )'a, c} = {Pc > 1, Pa > Pc}; only the ordering (a c b) meets all the constraints. 

The following section shows how A-constraints is used for implementing precedence 

relationships between tasks. 

6.3.2 Precedence Relationships 

Precedence relationships are important hard constraints in many systems where tasks in- 

volved in an activity depends on other ones. Simple precedence relationships can be in- 

cluded in our model of importance by conditional relative importance statements of the 

form "x is more important than y only if z precedes x". For the sake of simplicity, we will 
denote "z precedes x" as "z -f x". 

In priority scheduling, "x is more important than y" is expressed by assigning priorities 

such that PP > Py. In addition, in order to ensure precedence of z over x, it is necessary to 

consider the task release time r such that [16]: 

"if rz < r,, then P, z > Pr" or "if r, z < r., then P, z > Pte" 
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Figure 6.1: Precedence relationships 

task C T=D R 
a 2 10 2 
x 1 16 3 
y 2 16 5 
b 1 16 6 
z 3 32 9 
c 2 32 13 
d 1 32 14 
e 3 56 23 

Precedence A-constraints 

zed Pz>Pd 
cad Pc >Pd 
x- b Px>Pb 
xy Px > Py 

Table 6.1: Task set S8 with their precedence constraints. It is ordered by DMPA. 

Because in our model tasks can be released simultaneously (r, z = r., ) we need to assure the 

strict priority assignment P, z > Px. This is a A-constraint Azx (definition 6.3.1) and then 

by doing Ix = (Ix, A,., ) and Iy = (Iy, 0) 

"Ix > Iy" "Pr > Py only if Pz > Pr" 

6.3.3 Example 

Getting back to the example in chapter 1, the following precedence relationships exist 
(see Figure 6.1 and Table 6.1): {z -* d, c -* d, x -i b, x -p y}, and therefore the 

A-constraints is A= {Pz > Pa, P. ý > Pd, P > Pb, Px > Py}. 

S° = (ax ybzcd e) is the priority ordering given by DMPA which is feasible. Note 

that the constraints in A-constraints are fulfilled but in terms of importance (output jitter 

in the example) improvements are required. 

The task subset with jitter requirements is {x. y, z}; tasks related with this subset and 
therefore relatively important are {b, c, d}; finally {a, e} are the least important ones. We 
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w [k] Stest Feasible? 

step w k T T W6-T) _ \'Stestý 

1 87654321 0 8 82756431 yes 
2 7654321 0 7 87254321 yes 
3 654321 0 6 87625431 yes 
4 54321 0 5 87652431 yes 
5 4321 0 4 87654231 no 
6 4321 1 3 87653241 yes 
7 421 0 4 87653421 no 
8 421 1 2 87653241 yes 
9 41 0 4 87653241 yes 
10 1 0 1 87653241 yes 

Table 6.2: DI algorithm with input S8 labelled by importance (8 765432 1). The solution 
(8 76532 41) is found in 10 steps from a universe of 8! 

assign the importance IEI to the tasks of Table 6.1 as follows: {II > Iy > Ix > Ib > 
Ic > Id > I,, > Ie}. Therefore, the highest importance ordering is Sg = (x yzbcda e), 

which is infeasible since the response time of task a is 12. 

Lets apply the DI algorithm to this example. In order to show the sequence of steps 
followed by DI, let us label by importance the ordering S8 as follows: 

S8 = (xyzbcdae) = (87654321) 

Applying DI to S8 produce the sequence of steps depicted in Table 6.2 resulting in the 

ordering S1= (x yzbdac e). Observe that S1 is lexicographically closer to Sg and there- 

fore it is better in terms of importance than DMPA but it does not fulfill the precedence 

constraint c-d (i. e. PP Pd). However, given the same input S8, a solution is found by 

the DI+ algorithm introduced in the following section. 

6.4 The DI+ Algorithm 

The Deadlines and Conditional Importance scheduling problem is solved by the DI+ algo- 

rithm, which is an extension of the DI algorithm. DI+ takes as input the ordering SI and a 

set of A-constraints, and finds the solution S* performing a specialized branch and bound 



6.4 The DI+ Algorithm 

search in N22 N steps in the worst case. 
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Similar to the DI algorithm, DI+ also tests vertices (ý b(w)) in the search space fol- 

lowing the lexicographic pattern specified by its input SI. However, in this case testing a 

vertex (0 8(w)) for feasibility also implies testing their A-constraints. Therefore, the main 
difference between DI and DI+ is the feasibility test. While in DI the feasibility test is 

with respect to the deadlines, in DI+ it is with respect to both deadlines and A-constraints. 

Consequently the proof of optimality of DI also works for DI+; if the test is sufficient and 

necessary the algorithm is optimal. In addition, the complexity of DI+ increases due to the 

test of the A-constraints. 

In both the DI and DI+ algorithms, when a vertex (0 8(cß)) is feasible, 0 is fixed and 

tasks in 0 cannot be withdrawn in the future (i. e. there is not backtracking). Consequently, 

in DI+ the A-constraints of all tasks in 0 have to be verified. Thus, 0 is accepted in any 
iteration of DI+ only when (O 6(w)) is feasible and the A-constraints of all of all tasks 

in the prefix are fulfilled. Therefore, an algorithm for testing the A-constraints has to be 

provided to DI+. 

Definition 6.4.1. Given an ordering a and a set of A-constraints, let T be a function 

which tests the constraints such that 

7 (a, A) - 
true all tasks in a meet A-constraints 
false otherwise 

6.4.1 Modifications to DI 

The DI+ algorithm ( algorithm 4 in page 110) examines the vertices of subtrees in lex- 

icographic order from the closest one to S' to the remotest one, and from the top to the 

bottom in the same form that the DI algorithm but with some minor modifications: the 

stop condition, the feasibility test, and a final check to verify whether a solution was found 

at the end. More specifically: 

1. DI+ accepts a set of A-constraints which can be empty; in such a case DI+ reduces 

to DI. 
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2. In DI+ there is not guarantee that the suffix w is always decreasing (in DI does). This 

takes place, for example, when at each iteration of DI+ the feasibility test (steps 5- 

6) fails; in this case, tasks from w will never be moved to the prefix 0 and then the 
length of w will remain constant while the index k is increased. Consequently, the 

algorithm has to verify that the index k does not overrun w (step 2). 

3. In DI a feasible solution is always returned (e. g. DMPA in the worst case) but in 

DI+ such feasible solution could not exist (e. g. DMPA is feasible but constraints are 
not fulfilled). A feasible solution has been found when w is empty; otherwise it does 

not exist because the A-constraints are not been satisfied. 

In addition, steps 5 and 6 of the DI algorithm are modified. The following lines indicate 

that an ordering Stest is built by joining the prefix (0 r) with the suffix which is 

then tested for feasibility. 

5: build "Stest (c T u)6--r)" 

6: if . '(Ste, t) then 

These two steps are re-written as follows: 

5: build "Stest FA((o T) ' 
(w6-r) 

, 
A)" 

6: if (Stest null) then 

where FA is a function that receives a prefix (0 T), a suffix (w 
_T) and the A-constraints. 

FA builds the ordering (c T wb_T) and test its feasibility. If it is feasible, FA tests all the 

tasks in the prefix (0 7-) with respect to their constraints in A; constraints no related to 

tasks in the prefix are ignored. If the prefix passes the test then the ordering (0 T W6-, ) is 

returned; otherwise FA returns a null ordering. The algorithm 3 implements F. \. 

Let S be a task set with orderings SD and SI ; SD must be feasible. The algorithm 
builds keys to index each subtree in lexicographic order. A key is built by appending to 0 

a task T (step 3) from w. The lexicographical order is achieved following the sequence in w 
which is S'. The key indexes the subtree (OT*) and hence FA builds and test (OT, wa_T) 
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Algorithm 3 F, ß(0, w, A) 

1: built a (0, w) 
2: if F (a) and T (0, A) then 
3: return a 
4: else 
5: return null 
6: end if 
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Algorithm 4 DI+ (Deadline and Importance Extended) 

Require: SD feasible, S', A =A-constraints 
1: Set0, #= 01, w=S', w6 ý_ SD, k=0 
2: while SizeOf(w) >k do 
3: let rr w [k] 
4: let w6-, ý-- delete (w6, T) 
5: build Stest 9n ((O Y) , 

(wb-T) 
, 
A) 

6: if (. 5'test null) then 
7: 5* = 'test 

8: 0 (0 T) 
9: w delete(w, T) 

10: wb wa-T 
11: k40 

12: else 

13: k4k+1 
14: end if 
15: end while 
Ensure: w is empty 

(steps 4-5). If FA returns Stest null, then Stest is saved as a partial solution S*, T is 

deleted from both w and w6,0 is updated and the index k is reset (steps 7-11); otherwise, 
k is advanced to the next 'r. DI+ stops when there are no more subtrees to visit. A feasible 

solution has been found when w is empty; otherwise the A-constraints were not fulfilled. 

Complexity 

Two possible worst-case scenarios exist: (1) when the only solution is SD and its order 
is contrary to S' and (2) when the A-constraints are not met. In both cases the loop is 

executed N times and w is reduced to N-1 elements; afterward the loop is executed 
V-1 times and w is reduced to N-2 elements and so on. Therefore the loop executes 
X+ (X - 1) + (. V - 2) + ... +1= N22 N times. At each iteration, TA is executed. Its 
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Algorithm 5 V(q, A) 
Require: tasks 'r E0 and constraints A= {A1,. \2, 

... 
} 

: for all 7i c0 do 
2: for all Ai E Ado 
3: if NOT(Tj meets A) then 
4: return FALSE 
5: end if 
6: end for 
7: end for 
8: return TRUE 

complexity is the complexity El of the feasibility test r plus the complexity E2 of the 

function T. Therefore the complexity of the algorithm DI+ is O((E1+E2) x N22 N ). Thus, 

the algorithm finds the solution in a polynomial number of steps but the total complexity 

is at least pseudo-polynomial due to the FPS test. 

6.4.2 Example 

Lets continue with the example of chapter 1 (see Table 6.1), where some tasks have jitter 

requirements. First at all, we need to provide an algorithm for checking the A-constraints. 

Algorithm 5 is a function V that receives as input the tasks in prefix 0 and a set of 

A-constraints ; i. e. it implements T(a, A) (see definition 6.4.1). V (0, A) returns true when 

all tasks in 0 meet the constraints; otherwise it returns false. The complexity of this 

algorithm varies depending on the size of 0 and A tested but in the worst-case is O(N x M) 

where N and M are the number of tasks and the number of constraints respectively. This 

algorithm assumes that the ordering given by DMPA meets the A-constraints ; i. e. if there 

exists a constraint Pa, > Pb then Da, < Db. Although simplistic it is sufficient for this 

example since the tasks in Table 6.1 meet this assumption. This simplifies the complexity 

of algorithm 5. 

We define in section 6.3.3 the highest importance ordering as S8 = (x yzbcda e) and 

show that the solution found by DI was S1. Applying DI+ to S8 (see Table 6.3) give us 

S2: 

" SI: DI(SI) produces (. ryzbdace) _ (87653241 
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w [k] Stest FA 

step w k T T W6--r/ `f (Stest) 
V (0, A) 

1 87654321 0 8 82756431 yes yes: P8 > P7iP8> P5 
2 7654321 0 7 87256431 yes yes: P8>P7 
3 65432 1 0 6 8762543 1 yes yes: P6 > P3 
4 54321 0 5 8765243 1 yes yes: P8 > P5 
5 4321 0 4 87654231 no yes: P4> P3 

6 4321 1 3 87653241 yes no: P4 P3iP6 > P3 
7 432 1 2 2 87652431 yes yes: P2 VA 
8 43 1 0 4 87652431 yes yes: P4 > P3 

9 31 0 3 87652431 yes yes: P6>P3iP4>P3 
10 1 0 1 87652431 yes yes: P2 VA 

Table 6.3: DI+ algorithm with input S8 labelled by importance (8 765432 1) with con- 
straints A={Ps> P3, P4>P3, P8>P5, Pa>P7} 

" S2: DI+(S8, A) produces (x yzbacd e) _ (8 765 243 1) 

Observe that Sl is lexicographically closer to Sg than S2 but S1 does not meet the 

A-constraints. Note that both solutions are identical until the element 4. This is because 

the first four tasks of the input Sg were found feasible until step 5 (see Tables 6.2 and 6.3). 

In the next iteration, task labelled as 3 (Id= 3) is selected and a prefix (8 765 3) is built. 

The ordering tested for feasibility is ((8 765 3) 24 1), which is feasible and accepted in 

Sl; at this point S2 needs to verify the A-constraints and hence it calls to V (0, A), and 

then notes that P4 P3. Thus, it is rejected and both solutions will follow different paths. 

In summary, the DI+ algorithm provides support for some hard priority constraints 

that we call A-constraints. It works for tasks sets where the deadlines are less than or 

equal to the periods. It can be easily integrated into the software development cycle to 

play with different importance assignments and different priority constraints until finding 

fixed-priority orderings that meet particular QoS necessities. Note that DI+ can be easily 

adapted to store the partial solutions shown in Tables 6.2 and 6.3 in order to provide 

additional information to decision makers. 

Naturally, there exist systems where the assumptions of strict hard deadlines or dead- 

lines less than or equal to the periods do not hold. In the following section we sketch how 

the DI+ algorithm can be extended to cope with problems where tasks can have arbitrary 

deadlines or weakly-hard constraints. 
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6.5 Extending the DI+ Algorithm 

The DI+ algorithm depends mainly on both the feasibility test and the optimality of the 

DMPA algorithm. Nevertheless, in the presence of tasks with arbitrary deadlines or tasks 

with weakly-hard deadlines, such FPS algorithms are no longer valid. However, by sub- 

stituting the feasibility test with the extended version of the response time analysis test 

or with the feasibility test for weakly-hard systems respectively, DI+ can cope with such 
kind of problems. In addition, since DMPA is not optimal the swapping algorithm (on 

substitution of DMPA) has to be included in the solution for the problem. In this sense, 

we define the following functions: 

Definition 6.5.1 (Feasibility test with arbitrary deadlines). For aES, let I'E(a) be a 
function that implements the feasibility test using the extended response time equation 
(section 2.3.5), such that 3E(a) returns true when a is feasible and false otherwise. 

Definition 6.5.2 (Feasibility test with weakly-hard deadlines). For aES, let 3w(a) be a 

function that implements the feasibility test using the algorithms for weakly-hard systems 

(section 2.3.7), such that Tw (a) returns true when a is feasible and false otherwise. 

Definition 6.5.3 (Swapping algorithm with TE or 3 w). For any priority ordering a= 
(O w) and a feasibility test TE (or 3 w), let 60(w) be a function that implements the swap- 

ping algorithm (with 3E or Tw) maintaining Ofixed and only swapping tasks in w such 

that 

_ 
w* if w* was found such that (0 w*) is feasible 

Se(w) 
null otherwise 

With respect to the feasibility test, by using 3E or Jw for testing priority orderings 

we solve part of the problem of including tasks with arbitrary deadlines or weakly-hard 

constraints in DI+. 

With respect to the swapping algorithm, observe that in each iteration the DI+ algo- 

rithm tests vertices (0 5(w)) relaying on the fact that if this vertex is infeasible, then there 

are not any feasible orderings in the subtree (0 *) (i. e. the Prefix theorem). The suffix 

of this vertex is ordered by 6 according to the DMPA rule since it is an optimal ordering. 
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Algorithm 6 r; Vo, w, A) 

1: w* 60(w) 

2: if w* = null then 
3: return false 
4: end if 
5: built a w*) 
6: if 7 (0, A) then 
7: return a 
8: else 
9: return null 

10: end if 
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However, in this case it does not hold but we can substitute 6 with ä0 that implements the 

swapping algorithm which is optimal. Observe that the result is equivalent, if (q 60(w)) is 

infeasible, then non-feasible orderings exist in the subtree (0 *). 

The function Fý in algorithm 6 implements these changes. By substituting LTA by 

F; in the DI+ algorithm we include arbitrary deadlines or weakly-hard constraints in the 

scheduling problem with deadlines and importance. 

6.5.1 An Example 

Consider a tasks set Sw = {a, b, c, d, e} with simple relative importances la > Ib > 

I, > Id > Ie such that SI = (a bcd e) is an infeasible ordering under the response time 

feasibility test. Moreover, the task set ordered by DMPA (SD) is also infeasible since task 

a misses its deadline (Ra = 511) (see Table 6.4). 

task C D=T R Any (n, m) I 
e 80 80 17 (7,20) 1 
d 110 110 41 (1,1) 2 
c 270 270 142 (4,7) 3 
b 280 280 263 (1,1) 4 
a 420 420 511 (2,4) 5 

Table 6.4: Task set Sw with Weakly-Hard Constraints 

Let assume us that some tasks tolerate missing several deadlines if it occurs in a de- 

termined pattern such as that defined by the weakly-hard constraints model (see defini- 

tion 2.3.11). In particular, tasks a, c and e have weakly-hard constraints of the type (n, m) 
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(a task meets any n in m deadlines), and tasks b and d have strong weakly-hard constraints 

(i. e. they have hard deadlines). 

Applying the weakly-hard feasibility test to SD (i. e _TW(SD)), it can be shown that 

the task a meets its weakly hard constraint (any 2 in 4 deadlines) and the rest of the tasks 

meet all the deadlines. Thus, the set is weakly-hard feasible but it has the lowest index of 

importance because SD is exactly the contrary to S' (see Figure 6.2). 
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Figure 6.2: 5! Priority orderings of set Sw ordered lexicographically. There are 32 weakly- 
hard feasible priority orderings 

Executing the swapping algorithm with input S' produces an ordering SA = (b dae c) 

with index of importance 37. In this solution, tasks {b, d, a} do not miss any deadline 

and tasks {e, c} meet their weakly-hard constraints. Thus, this solution is better than the 

DMPA solution since the two tasks with higher importance do not miss any deadline. 

The optimal solution S* = (a dbe c) found by DI+ has index 13. This is even better 

since the task with the highest importance has the highest priority. Also tasks {a, d, b} do 

not miss any deadline and tasks {e, c} meet their weakly-hard constraints. 
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6.6 Summary 
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Conditional relative importance is a generalization of simple relative importance, which 
adds hardness to the importance concept and captures some dependence relationships 
among tasks. In our model, dependence relationships are limited to a set of simple restric- 
tions for assigning higher priority to a higher importance task only if a set of constraints 
called A-constraints are fulfilled. 

We present the DI+ algorithm which finds the optimal solution to the deadlines (D < 
T) and conditional importance problem defined in section 6.2.3. DI+ is an extension of 
DI that finds a feasible priority ordering that minimises the lexicographic distance to the 

ordering with the highest conditional importance. The DI+ algorithm finds a solution to 
the motivational example described in chapter 1. 

We extend DI+ for including tasks with deadlines greater than their periods or with 

weakly-hard constraints by substituting the response time feasibility test with its extended 

version or with the feasibility test for weakly-hard systems respectively. Finally, since 
DMPA is not optimal, at each iteration the DI+ algorithm orders the corresponding suffix 
by using the swapping algorithm. 
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Evaluation 

7.1 Introduction 

In this chapter, we propose solutions to the multicriteria scheduling problems defined in 

chapter 4. A solution is an assignment of fixed-priorities found by combining the DI 

algorithm with a heuristic for assigning importance. 

The chapter is divided into two main sections: 

" In the first one, we want to discover heuristics for assigning importance. By testing 

the simple rules for assigning fixed-priorities depicted in Table 4.4 (page 81), we 
determine which are the best ones with respect to a QoS metric without considering 

the deadlines. Afterwards, we propose them as heuristics for assigning importance. 

" In the second one, we are interested in judging the DI algorithm jointly with the 

heuristics discovered. In general, such heuristics produce infeasible solutions. How- 

ever, feasible solutions are found when the heuristic is used as input for the DI al- 

gorithm. If any combination shows good performance with respect to a QoS metric, 

then we propose such combination as a technique for solving the scheduling pro- 

blem with deadlines and QoS metric. 

Since in [ 17] it is compared RMPA against EDF under several QoS metrics, and those 

results may be refuted by our approach, in our experiments we will include these two poli- 

cies. In effect, experiments carried out by Buttazzo [ 17] have shown that EDF outperforms 

117 
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RMPA for a number of metrics. Our experiments confirm the results of [ 17] in the sense 
that EDF exhibits better performance than RMPA. However, we find that our approach 

outperforms EDF in most of the scenarios tested. 

As the swapping algorithm can be considered as a good heuristic for the scheduling 

problem where the DI algorithm is optimal, in section 7.5 we compare both algorithms. In 

addition, a simple evaluation of the DI+ algorithm for task sets with priority constraints is 

presented in section 7.6. 

7.2 Experimental Setup 

The experiments carried out in this thesis require the simulation of schedules of task sets 
during a fixed window of time as follows: firstly, we generate a number of synthetic 
task sets; afterwards, each task set is simulated under a scheduling policy, and several 

performance metrics are recorded to be compared. Three attributes that affect the accuracy 

of the results of the simulation can be identified: 

" Task set: how a task set is created. 

" Window of time: for a given task set, how long to run each simulation. 

" Number of task sets: how many task sets must be simulated to get representative 

results. 

The criteria for selecting these attributes are described in the next sections. In sum- 

mary, the parameters defined consist of 1000 synthetic sets of N tasks randomly generated 

with periods uniformly distributed in [ 100,1000] and computation times adjusted to fix any 

utilisation U. Deadlines are equal to the periods. We vary U=0.5,0.55,0.60,0.65,0.70, 

0.75,0.80,0.85,0.90,0.95 and vary N=5.... 14. All task sets generated are feasible 

under RMPA. Simulations were performed in parallel on two desktop PC computers. The 

discrete event simulator used in our experiments was specifically built for this research 

using algorithms described in [84]. 
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7.2.1 Task Sets 

An important factor that affects the result of simulating scheduling algorithms is the 

method for generating random task sets. In [85], it is noted that the problem is the proba- 
bility density function of the random variables used to generate the task set parameters. It 

is shown how the typical random generation routine bias the simulation of some specific 

scheduling algorithm. In this sense, they propose the UUniFast algorithm [85] for gener- 

ating task sets with uniform distribution. The UUniFast algorithm receives an utilisation 
U and the number of tasks N for producing utilisations Uj uniformly distributed in (0, U] 

subject to U= Eý NJ Uff. We use this algorithm for generating our task sets. 

A set of N tasks for a utilisation U is generated as follows: The UUniFast algorithm is 

executed with parameters N and U; it produces UU, j=1, ... , 
N. Posteriorly, we chose 

periods Tj uniformly distributed in [ 100,1000] and compute worst-case computation times 

as Cj = UjTj. Doing Dj = Tj and assigning priorities according to RMPA, we perform a 

schedulability test using the response time analysis. If the task set is feasible the task set 
is stored; otherwise it is discarded. Note that because all task sets generated are feasible 

under RMPA, they are also feasible under EDF. 

7.2.2 Window of Time 

In order to determine the window of time to be used in the simulations, we perform some 

experiments simulating 10 task sets for different time windows using RMPA and EDF 

policies. We take measures of different metrics to observe the limits beyond which the 

performance does not improve; i. e. major increase in time ticks simulated results in none 

or minor variation of the corresponding metric. Results are plotted in Figures 7.1 and 7.2. 

Each point corresponds to 10 tasks sets of 10 tasks each task set with U=0.75. 

Figure 7.1 (page 121) shows the variation on the number of preemptions, absolute and 

relative output jitter with respect to the window of time simulated. With respect to the 

total number of preemptions, the variation is linear and therefore almost any window is 

representative. With respect to output jitter, the data is steady after 100,000 ticks. 

Figure 7.2 (page 122) shows the variation on maximum latency, relative maximum 
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latency, and relative average response time with respect to the window of time simulated. 
With respect to maximum latency, the data is steady after 100,000 ticks. With respect 
to relative maximum latency, the data is not completely steady but after 70,000 ticks the 

variation is minimal. With respect to relative average response time, the data is almost 

steady after 100,000 ticks. 

These results suggest that for our task sets, it is sufficient a window of 100,000 ticks 
for performing the simulations; beyond this size the performance does not improve sub- 

stantially. 

7.2.3 Number of Task Sets 

In order to determine the number of task sets to be used in the simulations we perform 

some experiments simulating groups of 10,100,800 and 1000 task sets during 100,000 

ticks under RMPA and at different utilisation. We take measures of different metrics to 

observe the limits beyond which the performance does not improve; i. e. major increase in 

the number of task sets simulated results in none or minor variation of the corresponding 

metric. Results are plotted in Figure 7.3 (page 123). 

We perform the same experiment for the six metrics as above but the results are similar 

and therefore we only show the ones where higher variation is observed. In fact, except for 

the relative maximum latency metric, the rest of the metrics show lower variability after 

simulating 100 task sets. Figures (a) and (b) show that it could be sufficient to perform 

simulations with 100 task sets. In these two plots, we omit data for 800 task sets because 

its line is overlapped with the line of 1000 task sets. Figure (c) shows that for the relative 

maximum latency metric, the variability is high but it reduces when more than 800 task 

sets are included. 

These results suggest that for our task sets, it should be sufficient to simulate (at least) 

100 tasks sets excepting when the relative maximum latency is the metric; in this last case 

it is necessary to simulate between 800 and 1000 task sets. We select 1000 task sets to get 

representative results. 
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7.2.4 Characterizing the Feasibility of the Task Sets Generated 

We do an experiment to observe how many feasible priority assignments are found by 

the heuristics to be evaluated. This experiment is for sets of seven tasks. For other task 

sets the tendency is similar. The results are shown in Figure 7.4. Each point corresponds 
to the number of feasible priority assignments computed for all tasks sets under different 

utilisation. For instance, all task sets are feasible under RMPA, while task sets with fixed- 

priorities assigned under the heuristics miss deadlines. 

Figure 7.4 (a) (page 124) shows the results when all tasks are included in the assign- 

ment. Observe that the number of feasible priority assignments decreases as the utilisation 
increases. Among all heuristics, C/T produces the greater number of feasible ones fol- 

lowed by 1/C. It seems coherent because C/T can be considered as 1/T (i. e. RMPA) with 

weights C and then many assignments will be equivalent. On the other hand, it is known 

that 1/C reduces the makespan (i. e. the difference between the start and finish time of 

a sequence tasks) and then shorter tasks have higher priorities for completing soon; this 

reduces the interference and increases the schedulability. Finally, note the LT rule; it is the 

contrary to RMPA and it is clearly the worst priority assignment with respect to deadlines. 

We do an experiment to observe the effect of raising priorities in a subset of tasks 

and ordering such subset using the heuristics. Each task set S of 7 tasks is split up in 

two subsets A and A'. Tasks in A are more important than the ones in A' and therefore 

higher priorities are assigned. In addition, A is ordered according to a heuristic. Lower 

priorities are assigned to tasks in A' following the RMPA algorithm. In other words, we 

have priority orderings with a prefix ordered by a heuristic and a suffix ordered according 

to RMPA. 

Figure 7.4 (b) and (c) (page 124) shows the result of raising the priorities of subsets A 

labelled as {3,5,7} and {4,5,6,7} (see below for explanation of the meaning of labels). 

Note that all heuristics produce the same number of feasible assignments. This indicates 

that (in our synthetic task sets) it does not matter which is the order of the high priority 

tasks, the feasibility or unfeasibility resides in the order of the lower priority ones. 

This last result is significant for our evaluation. This means that when assigning im- 
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PA Priority Assignment Rule 
1/T the shorter the period, the higher the priority 
I /C the shorter the computation time, the higher the priority 
LT the larger the period, the higher the priority 
LC the larger the computation time, the higher the priority 
T/C the larger the ratio TIC, the higher the priority 
C/T the larger the ratio C/T, the higher the priority 

Table 7.1: Simple rules for assigning priorities 
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portance with the heuristics, higher importance tasks will remain practically fixed in their 

positions while only the lower ones will be changed. Thus, algorithms that exchange pri- 

orities starting from the lower importance tasks will achieve good solutions in terms of the 
lexicographic order. In addition, note that some heuristics produce a significant number of 
feasible priority assignments. As a consequence of this scenario, the DI algorithm and the 

swapping algorithm produce almost the same results. For example, a peculiar result is that 
in all our experiments, when importance is assigned with the rule "the shorter computa- 
tion, the higher the importance" (1 /C rule), the DI algorithm and the swapping algorithm 

always produce the same priority ordering. 

7.3 Finding Heuristics for Assigning Importance 

A performance evaluation of the fixed-priority assignment rules depicted in Table 7.1 (this 

is the same table from page 81) is carried on to determine how good (or bad) they are with 

regard to a QoS metric. If at least one of such priority assignments shows good perfor- 

mance, it is considered a good heuristic and is selected as a rule for assigning importance. 

In order to measure effectively the performance of the simple rules, the maximum 

and minimum values achievable (with respect to a particular metric) for any fixed-priority 

assignment are determined by exhaustive search in the N! priority orderings of a task set. 

Thus, all results are between the maximum and minimum achievable and therefore, they 

can be normalized. The experiments were conducted for tasks sets of 5,6 and 7 tasks. The 

results obtained are similar and therefore, only results for 7 tasks are shown. 

In order to identify orderings similar to RMPA, we label tasks as {1,2, 
.... i} where 
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1 corresponds to the task with the shortest period and 7 to the one with the largest period; 
thus, the ordering by RMPA is (12 3456 7). The experiments are as follows: 

" All tasks included. Priorities are assigned to tasks according to the rules in Table 7.1. 

The orderings are simulated and the QoS metrics are recorded for all seven tasks. 

" Tasks 3,5,7 in the prefix. Orderings are built with a prefix ordered by the rules in 

Table 7.1 and a suffix ordered by RMPA. Tasks in the prefix are A= {3,5,7}. The 

orderings are simulated and the QoS metric is measured only for tasks in the prefix. 
Note that (12 4 6) is the suffix for all the orderings in this experiment. 

" Tasks 4,5,6,7 in the prefix. As above, but the tasks in the prefix are A= {4,5,6.7}. 

Note that (12 3) is the suffix for all the orderings in this experiment. 

We noted in our experiments that, in general, it is difficult to distinguish the differences 

among the results when plotting absolute values. For this reason, in some plots we nor- 

malize all the data with respect to the maximum and minimum achievable. This problem 
is illustrated in the first experiment. 

The results are illustrated by drawing plots of different priority assignments with re- 

spect to a QoS metric plotted as a function of the total system utilisation. Each point 

corresponds to the average results of 1000 task sets. The results are displayed such that 

minimum values of the QoS metric are better. 

For instance, let assume us that the metric is the total number of preemptions. Accord- 

ing to section 4.6.2 (page 68), for a set S of N tasks and with respect to the schedule under 

a particular priority ordering a, lets PS (a) be the total number preemptions in a window 

of time (i. e. 100,000 ticks) of all instances of all tasks in S (note that Ps(a) corresponds to 

equation 4.6.2 in section 4.6.2). By simulating the N! priority assignments of S, we have 

a set Ps = {PS(ak) :k=1,2, ... , 
N! } which has the total number of preemptions of all 

orderings of S. The maximum and minimum total number of preemptions of a task set S 

under any priority assignment are PS max = max{ PS} and PS in = nein{ Ps} respectively. 

Thus, the total number of preemptions normalized for a particular priority assignment a is 

PS((}) = (ps(t) - pmin)/(PS ax - BPS n). 
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Since we have task sets S1, S2i 
... , 

S1000 with identical utilisation, for a particular 

priority assignment a of Si with total number of preemptions Psl (a), its average total 

number of preemptions is computed by the function 

FP (a) = 
000 Psi (a) 1 

i=l 
1000 

and the average total number of preemptions normalized is computed by the function 

1(a) = 
1000 - 

l Psi (a) 

1000 
(7.3.1) 

In addition, the maximum and minimum average total number of preemptions are 
1000 

p max 1000 
Pn 

MAX = 
ýz-1 Si and MIN = 

ýi-1 Si 
1000 1000 

respectively. 

For the other metrics, P can be substituted by the corresponding metric y, . rel, L, L rel 

or R,. 

7.3.1 Total Number of Preemptions 

The first experiment compares how good are the heuristics with regard to the total number 

of preemptions. The results are shown in Figures 7.5 and 7.6. 

In Figure 7.5(a) (page 132), each point corresponds to the average total number of 

preemptions of 1000 task sets for different utilisation. By using the above equations, 
FT (a) is computed for a in { RMPA, 1/C, LT, T/C, LC, C/T }; for instance, FT (RMPA) = 
45, Fy (1/C) = 56 and FT (LC) = 31 when the utilisation is 0.5. In addition, the results for 

the EDF schedule, and the maximum (MAX) and minimum (MIN) average total number 

of preemptions are also plotted. Note that it is difficult to distinguish the differences among 

the results of the different priority assignments. For this reason, we draw the plot of the 

normalized data in Figure 7.6. 

In Figure 7.6(a) (page 133), the total number of preemptions normalized is depicted. 

The equation 7.3.1 is used; for instance, FP (RMPA) = 0.52, F, (1/C) = 0.94 and 
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F, (LC) = 0.06 when the utilisation is 0.5. Observe that the differences are now evident. 

None of the orderings achieve the minimum total number of preemptions possible. 

When all tasks are included (Figures 7.5(a) and 7.6(a)), the best heuristic is LC fol- 

lowed by C/T. Note that EDF shows great performance. When only a subset is included 

(Figures 7.5(b, c) and 7.6(b, c)), the best heuristics are LC and C/T, which are almost over- 
lapped. In fact, all heuristics produce good results for a task subset for all QoS metrics 

of this study. This is coherent because all tasks in the subset have higher priorities and 

therefore suffer less interference. Naturally, RMPA and EDF perform poorly because they 

both are unaware of local requirements; it also applies for all metrics in this study. We can 

conclude that the rules LC and C/T are good heuristics for assigning importance when the 

total number of preemptions is the QoS metric. 

7.3.2 Output Jitter 

This experiment compares how good are the heuristics with regard to the absolute output 

jitter and the relative output jitter. In Figure 7.7 (page 134), each point corresponds to 

the average absolute output jitter of 1000 task sets for different utilisation. By observing 

Figure 7.7(a), it seems that the best heuristics are 1/C, T/C and LT when all tasks are in- 

cluded. Therefore, we will assume that these are the best heuristics. However, as depicted 

in Figure 7.4, T/C and LT are the rules that produce less feasible priority assignments and 

hence, it may be difficult to find feasible priority orderings similar to them. When only a 

task subset is included, the best are 1/C and T/C (Figure 7.7(b, c)). 

In Figure 7.8 (page 134), the results of the average relative output jitter are shown. 

When all tasks are included, all heuristics show bad performance (Figure 7.8(a)). Note 

how EDF outperforms all fixed-priority assignments. RMPA performs better than all the 

heuristics and it is close to the minimal relative output jitter achievable. As a local metric 

(Figure 7.8(b, c)), 1/T is the best heuristic followed by 1/C. 

As in the preemptions experiment, the plots suggest that increasing the priority is suf- 

ficient to reduce the output jitter effects with respect to a task subset. We can conclude 

that with respect to output jitter: 
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" for absolute output jitter, the rules TIC, LT and I IC could be suitable to be used as 
importance assignments. 

" for relative output jitter, ordering by RMPA produce the best results followed by C/T. 

As a local metric, the best ones are YT and 11C. 

7.3.3 Latency 

The results of the experiments with latency are depicted in Figures 7.9 and 7.10. In Fig- 

ure 7.9 (page 136), the maximum latency results are shown. As a global metric (Fig- 

ure 7.9(a)), the best heuristics are LT and T/C. Unfortunately, when these priority assign- 

ments were used as inputs for the DI algorithm, the results were worse than the results 

produced by RMPA. It is because, as depicted in Figure 7.4 (page 124), these two rules 

are the worst with respect to feasibility and hence, it may be difficult to find feasible prior- 
ity orderings rather close to them to be useful. As a local metric (Figure 7.9(b, c)), the best 

is LC even so as in the above experiments, the plot suggests that increasing the priority is 

sufficient to improve the performance with respect to the metric. 

In Figure 7.10 (page 137), the relative maximum latency results are shown. In general, 
The best heuristic is 1/C followed by T/C. We can conclude that with respect to latency: 

" for maximum latency, the rules LT, T/C and I IC could be suitable to be used as 
importance assignments. 

" for relative maximum latency, 1/C and T/C are the best ones. 

7.3.4 Maximum Relative Average Response-Time 

The results of the experiments with respect to the maximum relative average response- 

time are depicted in Figure 7.11 (page 138). In all cases, the best heuristic is T/C which 

shows excellent performance, followed by 1/C and LT. 

We can conclude that in this case the rule T/C is excellent and the rules 1/C and LT 

are good heuristics. 
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In the next section we will use the heuristics with the DI algorithm for finding solutions 

to multicriteria scheduling problems. ( Continue in page 131 ). 

7.4 Evaluating the DI Algorithm with Heuristics 

The best heuristics discovered in the above sections are used for assigning importance 

such that when used as input for the DI algorithm, solutions to the scheduling problems 
defined in chapter 4 are proposed. The results are plotted in groups as follows: 

PLOTS A. The solutions obtained by combining the DI algorithm with at least two heuris- 

tics for assigning importance are evaluated. In order to effectively compare their 

performance, the maximum and minimum values achievable and the Z-optimal so- 

lution (FP,, pt in the plots) are determined by exhaustive search. Results of the exper- 

iments for sets of 5,6 and 7 tasks are similar and therefore, only results for 7 tasks 

are shown. 

PLOTS B. The combination DI with heuristic is computed for sets of N tasks (where N= 

5,6,... , 14) with utilisations U= {0.5,0.7,0.9}. The results are not normalized 

since we do not compute the N! possible solutions. 

PLOTS C. Since that each point in any plot of type A corresponds to the average result 

of 1000 task sets, there exists information that is hidden and is really interesting to 

show. This information is shown in Plots C where we compare the results of the 

best combination DI algorithm with heuristics against EDF for only three of these 

points corresponding to U= {0.5,0.7,0.9}. Since each point corresponds to 1000 

task sets, there are 1000 points corresponding to the EDF results and 1000 points 

corresponding to the DI-heuristic results. We order the EDF data such that a baseline 

is formed when plotted. The DI data is also ordered with respect to the EDF data 

such that if both results were exactly the same, a single line will be showed. Since 

this is not true, the DI data appear scattered around the EDF baseline. Points above 

the baseline are worse and points below are better than the EDF results. These plots 

correspond to sets of 7 tasks. 
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Figure 7.5: Total Number of Preemptions under different priority assignments. Only 
RMPA and EDF guarantee deadlines. The best heuristic is LC. Note that in (c) RMPA 
is close to the worst possible value (i. e. MAX) 
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Figure 7.6: Total Number of Preemptions Normalized under different priority assign- 
ments. Only RMPA and EDF guarantee deadlines. The best heuristic is LC. Note that 
in (c) RMPA is close to the worst possible value 
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Figure 7.7: Absolute Output Jitter under different heuristics. The best ones are T/C and 
1/C 
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Figure 7.8: Relative Output Jitter under different heuristics. Assigning priorities by shorter 
deadlines is by far the best option. 
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Figure 7.9: Maximum Latency under different priority assignments. It seems that LT, T/C 

and LC are the best heuristics 
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Figure 7.10: Relative Maximum Latency under different priority assignments. In general, 
among the heuristic, the best is 1/C. 
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Figure 7.11: Maximum Relative Average Response-Time under different priority assign- 
ments. Among the heuristics, the best ones are T/C and 1/C. 
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7.4.1 Problem: Deadlines and Total Number of Preemptions 

Using the LC and C/T rules for assigning importance our experiment compares how good 
the DI algorithm is when used with these two rules for minimising the total number of 
preemptions while guaranteeing the deadlines. In the plots, FP0Pt is the P-optimal solution 
computed by exhaustive search. 

In Figure 7.12(a) (page 140), when all tasks are included, DI(LC) is in general better 

than EDF. In fact, the distance between the P-optimal solution and DI(LC) is less than 7%. 

In Figure 7.12(b, c), for task subsets, DI with both rules achieves excellent results. This 
is because DI tries to maintain intact the priorities of higher importance tasks, affecting 

mainly the priorities of the lower important ones. Note how close of the optimal solution 
both DI(LL) and DI(C/T) are. 

In Figure 7.13 (page 141), when the number of tasks per set increases, DI(LL) im- 

proves notably with respect to RMPA and EDF. This is because C in each task decreases 

since the period is fixed. Consequently, a task can complete sooner reducing the chance of 
being preempted. In addition, the number of task releases decreases when the number of 
tasks increases. 

Finally, in Figure 7.14 points corresponds to the total number of preemptions obtained 

when a task set is scheduled by either EDF or DI(LL). For instance, Figure 7.14(a) cor- 

responds to 1000 sets of 7 tasks with U=0.5. The average number of preemptions is 

42.3 for EDF and 32.4 for DI(LL). Thus, all the data displayed in this plot corresponds to 

the single point EDF= (7,42.3) and DI(LC)= (7,32.4) in Figure 7.13(a), and also corre- 

sponds to the single point EDF= (0.5,0.418) and DI(LC)= (0.5,0.101) in Figure 7.12(a). 

Figure 7.14 shows that while on average one solution is better than the other one, it is 

not necessarily true for a number of solutions. Note that in general DI(LL) is better than 

EDF and even in Figure 7.14(c), where on average EDF is better than DI(LC), there exist 

a number of solutions where DI(LC) outperforms EDF. 

Remark 7.4.1. These experiments show that assigning importance according to the rule 
the largest computation time, the higher the importance" and finding a feasible solution 

with the DI algorithm provides a near-optimal solution for the scheduling problem offind- 
ing a feasible fixed-priority assignment that minimises the total number of preemptions. 
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Figure 7.12: PLOTS A TYPE. Guaranteeing Deadlines and Minimizing the Total Number 
of Preemptions. FPopt computed by exhaustive search is the best. In general, DI(LC) is 
the best tractable solution excepting when U>0.8 and the metric includes all tasks. In 
this case EDF is better 
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Figure 7.13: PLOTS B TYPE. Guaranteeing Deadlines and Minimizing the Total Number 
of Preemptions for different task sets 
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7.4.2 Problem: Deadlines and Absolute Output Jitter 

Using the T/C, LT and 1/C rules for assigning importance, our experiment compares how 

good the DI algorithm is when used with these three rules for minimising the absolute 
output jitter. The results are depicted in Figures 7.15,7.16 and 7.17 (pages 144- 146). 

In Figure 7.15(a), when all tasks are included DI(l/C) is our best solution performing 
better than EDF for low utilisation. Both DI(1/C) and DI(T/C) are also better than RMPA. 
Note that the y-optimal solution (FP0Pt) achieves excellent results for low and medium 

utilisation; it suggests that further improvements could be obtained with additional re- 

search in algorithms for assigning importance. On the other hand, Figure 7.15(b, c) shows 
that DI(1 /C) and D(T/C) produce excellent results for task subsets. 

In Figure 7.16, when the number of tasks per set increases, DI(1/C) is notably better 

than both RMPA and EDF for low and medium utilisation. 

In Figure 7.17 points corresponds to the absolute output jitter obtained when a task set 
is scheduled by either EDF or DI(1/C). It shows how the DI(1/C) solution is scattered with 

respect to EDF. Note that although EDF is much better than DI(1 /C) when U=0.9, there 

exist a number of solutions where DI(1/C) outperforms EDF. 

Remark 7.4.2. The experiments show that assigning importance according to the rule 

"the larger 11C, the higher the importance" and finding a feasible solution with the DI 

algorithm provides a good solution for the scheduling problem of finding a feasible frxed- 

priority assignment that minimises the absolute output jitter. 
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Figure 7.15: PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Absolute Out- 

put Jitter. DI(l/C) and D(T/C) produce good results. 
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Figure 7.16: PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Absolute Out- 
put Jitter 
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Figure 7.17: PLOTS C TYPE. Comparing DI(I/C) against EDF for the Deadlines and Ab- 

solute Output Jitter problem. While on average one outcome is better than the other one, 
it is not necessarily true for a number of solutions 
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7.4.3 Problem: Deadlines and Relative Output Jitter 

Using the 1 IT, 1 /C and C/T rules for assigning importance, we compare how good the DI 

algorithm is when used with these three rules for minimising the relative output jitter. The 

results are depicted in Figures 7.18,7.19 and7.20 (pages 148,149 and 150). 

In Figure 7.18(a), when all task are included, RMPA is a good solution and is close to 
the 

. fir``-optimal solution (FP0Pt). DI(C/T) and DI(1/C) are bad solutions. Note that EDF 

outperforms any fixed-priority solution for almost all utilisation. In Figure 7.18(b, c), for 

task subsets, improvements are obtained with DI(1/T) which is very close to y"`-optimal 
solution. 

In Figure 7.19, note that RMPA and EDF perform very similar for low and medium 
utilisation, but for high utilisation EDF is much better. 

Figure 7.20 shows the outstanding performance of EDF with respect to RMPA for 

this problem. Note that in this case the average truly reflects the superiority of EDF with 

respect to RMPA. 

Remark 7.4.3. The experiments show that assigning importance according to the rule 
"the shorter II IT, the higher the importance" (i. e. RMPA when all tasks are included) 

and finding a feasible solution with the DI algorithm provides a good solution for the 

scheduling problem of finding a feasible fixed priority assignment that minimises the rel- 

ative output jitter. 
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Figure 7.18: PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Relative Output 
Jitter. Assigning priorities by shorter period is the best solution in FPS 
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(c) On average the relative output jitter is 0.495 for EDF and 0.607 for RMPA 

Figure 7.20: PLOTS C TYPE. RMPA against EDF for the Deadlines and Relative Out- 
put Jitter problem. While on average one outcome is better than the other one, it is not 
necessarily true for a number of solutions 



7.4 Evaluating the DI Algorithm with Heuristics 151 

7.4.4 Problem: Deadlines and Maximum Latency 

As it was described above, LT and T/C rules performed badly with the DI algorithm. 
Therefore, we experiment with all the rules looking for the best one. The results are 
depicted in Figures 7.21,7.22 and 7.23 (pages 152,153 and 154). 

In Figure 7.21, RMPA and all DI solutions perform badly with respect to EDF. Our best 

solution is DI(LC) but it is far from the optimal one and is near to the RMPA solution for 

high utilisation. Note that the L -optimal solution is better than EDF for low and medium 

utilisation. Consequently, there exists room for additional improvements in fixed-priority 

assignment algorithms. For task subsets, improvements are obtained with DI(LC) and 
DI(C/T) which are close to the L -optimal solution. 

In Figure 7.22, note that EDF is better than RMPA and all DI solutions. Observe 

that when the utilisation increases, the difference between RMPA and the DI solutions is 

minimal (see Figure 7.22(c)). 

In despite of EDF is on average much better than DI(LL), in Figure 7.23 can be 

observed that there exists a number of solutions where DI(LL) outperforms EDF. For 

instance, all data in Figure 7.23(b) corresponds to the single point EDF=(7,299.6) and 
DI(LC)=(7,362.2) in Figure 7.22(b). 

Remark 7.4.4. The results of these experiments shows that the DI algorithm with im- 

portance assigned according to the rule "the larger computation time, the higher the im- 

portance" provides a better solution than RMPA for the scheduling problem of finding a 
feasible fixed-priority assignment that minimises the maximum latency. 

The maximum latency of a task (i. e. the maximum elapsed time between the comple- 

tion time and the beginning time) is greater in tasks with long C than in tasks with short C. 

In addition, it increases due to the interference produced by lower priority tasks. Thus, in- 

tuitively the remark is true because under DI(LL), a task with long C has a higher priority 

and hence, it will suffer less interference from other tasks. 
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Figure 7.21: PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Maximum 
Latency under different priority assignments. Our best solution is DI(LC) 
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Figure 7.22: PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Maximum 
Latency 
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(c) On average the maximum latency is 460.6 for EDF and 557.0 for DI(LL) 

Figure 7.23: PLOTS C TYPE. Comparing DI(LL) against EDF for the Deadlines and the 
Maximum Latency problem. While on average one outcome is better than the other one, 
it is not necessarily true for a number of solutions 
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7.4.5 Problem: Deadlines and Relative Maximum Latency 

Using the 1/C and T/C rules for assigning importance, our experiment compares how good 

the DI algorithm is for minimising the relative maximum latency. The results are depicted 

in Figures 7.24,7.25 and 7.26 (pages 156,157 and 158). 

In Figure 7.24, both DI(1/C) and DI(T/C) outperform EDF in the three plots for all 

utilisation values. Note that DI(1/C) is a near-optimal solution. 

Figure 7.25 confirms that both DI(1/C) and DI(T/C) provide excellent solutions for 

this particular problem. 

The superiority of DI(1/C) with respect to EDF is confirmed in Figure 7.26. In the three 

plots, observe how the stability of the DI(1/C) solution contrasts with the EDF solution. 

Remark 7.4.5. The results of these experiments shows that the DI algorithm with impor- 

tance assigned according to the rule "the shorter computation time, the higher the im- 

portance "provide near-optimal solutions for the scheduling problem of finding a feasible 

fixed priority assignment that minimises the relative maximum latency. 

Note that in the previous section we got an opposite result to this one. This is because 

while the maximum latency varies with respect to C, the relative maximum latency is in- 

sensitive to the variation of C. For instance, consider a system of two tasks a and b with 

Ca and Cb respectively, and Ta = Tb, and released at the critical instant. Independently 

of the priority assignment (i. e. (a b) or (b a)) the tasks have maximum latencies Ca and 

("b respectively and then the maximum latency is max{CQ, Cb}; on the other hand, they 

have relative maximum latencies -=1 and C=1 and therefore, the relative maxi- 

mum latency is 1. Thus, intuitively the above remark is true because under DI(1/C), tasks 

complete soon and hence, their relative maximum latencies are shorter; i. e the maximum 

elapsed time between the completion time and the beginning time divided by C will be 

shorter. 
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Figure 7.24: PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Relative Maxi- 
mum Latency. In all cases, both DI(1 /C) and DI(T/C) outperform EDF. Note that DI(1 /C) 
is a near-optimal solution. 
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Figure 7.25: PLOTS B TYPE. Guaranteeing Deadlines and Minimising the Relative Maxi- 

mum Latency 
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Figure 7.26: PLOTS C TYPE. Comparing DI(l/C) against EDF for the Deadlines and the 
Relative Maximum Latency problem. Observe the excellent performance of DI(1 /C) 
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7.4.6 Problem: Deadlines and Average Response-Time 

Using the 1/C and T/C rules for assigning importance, our experiment compares how 

good the DI algorithm is for minimising the maximum relative average response-time. 
The results are depicted in Figures 7.28,7.28 and 7.29 (pages 160,161 and 162). 

In Figure 7.27, both DI(1 /C) and DI(T/C) are near-optimal solutions outperforming 
EDF in the three plots for all utilisation. DI(T/C) is slightly better than DI(1/C). 

Figure 7.25 confirms that both DI(1/C) and DI(T/C) provide excellent solutions for 

this particular problem. 

Figure 7.28, confirms that both DI(1/C) and DI(T/C) are provide excellent solutions for 

this particular problem. Although almost overlapped, DI(T/C) is still better than DI(l/C). 

The superiority of DI(T/C) with respect to EDF is confirmed in Figure 7.29. In the 

three plots, observe how the stability of the DI(T/C) solution contrasts with the EDF solu- 
tion. 

Remark 7.4.6. The experiments show that the DI algorithm with importance assigned 

according to the rule "the shorter computation time, the higher the importance" provide 

near-optimal solutions for the scheduling problem of finding a feasible fixed-priority as- 

signment that minimises the relative maximum latency. 
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Figure 7.27: PLOTS A TYPE. Guaranteeing Deadlines and Minimising the Maximum 
Relative Average Response-Time. In all cases, both DI(1 /C) and DI(T/C) are near-optimal 
solutions and outperform EDF 
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Figure 7.29: PLOTS C TYPE. Comparing DI(T/C) against EDF for the Deadlines and the 
Maximum Relative Average Response-Time problem. Observe the excellent performance 
of Dl(T/C) 
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7.4.7 Summary 

Observe that none of the solutions evaluated achieves the best possible performance with 

either global or local metrics; i. e. none hits the optimal computed by exhaustive search. 

In almost all cases, the DI algorithm with any rule for assigning importance exhibits 

excellent performance as a local metric. This is because, in general, the impact is more 

related to the fact that the priorities are raised rather than the rules used for assigning the 

importance. 

Table 7.2 presents a summary of the results of the evaluation (as a global metric) of the 
different FPS solutions to bicriteria problems using the DI algorithm compared with the 

solutions obtained with RMPA and EDF. The best results are indicated as 1s in the table 

and the worst ones as 4s. Observe that: 

" EDF outperforms RMPA in all scheduling problems evaluated. 

" EDF outperforms our DI solutions for problems where the secondary objectives are 

either to minimise the relative output jitter or to minimise the maximum latency. 

" The DI solutions outperform EDF for problems where the secondary objectives are 

to minimise the total number of preemptions, absolute output jitter, the relative max- 
imum latency, or the relative average response-time. 

Note that some results are good with respect to more than one QoS criterion and there- 

fore they can be considered as multicriteria scheduling solutions. In this sense: 

" EDF outperforms our DI solutions for problems where the secondary objectives are 

to minimise the relative output jitter and the maximum latency. 

" DI(1/C) is our best FPS solution when deadlines have to be met and the secondary 

objectives are to minimise the absolute output jitter, the relative maximum latency 

and the relative average response-time (note that in this last problem DI(1/C) is al- 

most equal to DI(T/C) which is rated as number 1). In other words, DI(1 /C) provides 

an excellent solution for a scheduling problem with four objectives. 
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The DI Algorithm with Heuristics 
1/C LC LT T/C C/T RMPA EDF 

Preemptions 1 2 4 3 
Absolute Output Jitter 1 3 4 2 
Relative Output Jitter 3 4 2 1 

Maximum Latency 2 3 4 1 
Rel. Maximum Latency 1 2 4 3 

Rel. Avg. Response-Time 2 1 4 3 
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Table 7.2: Classification according to the performance. 1 is the best and 4 the worst 
scheduling solution. 

" DI(LL) is our best solution when deadlines have to be met and the secondary objec- 

tive is to minimise the total number of preemptions. This solution is also better than 

RMPA when the maximum latency is included into the objectives. Consequently, 

DI(LL) provides an excellent solution for a scheduling problem with three objec- 

tives. 

" DI(T/C) is an excellent solution when deadlines have to be met and the secondary 

objectives are to minimise the relative average response-time and the relative maxi- 

mum latency. 

7.5 DI Algorithm vs Swapping Algorithm 

In this section the DI algorithm is compared against the swapping algorithm in two sce- 

narios: 

" when the scheduling problem consists in finding a feasible priority assignment that 

maximises the importance; 

" when the scheduling problem consists in finding a feasible priority assignment that 

maximises a QoS metric. 
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Figure 7.30: For high utilisations, the number of feasible tasks sets decreases and there- 
fore, the distance between SD and S* gets smaller. The distance between SA and S* 
increases slightly. 

7.5.1 Maximising the Importance Metric 

This section compares the DI algorithm against the swapping algorithm when the problem 

consists in finding a feasible priority assignment that maximises the importance. The 

swapping algorithm receives an infeasible ordering and finds a feasible one (if it exists) by 

swapping pairs of task priorities. In our context, the swapping algorithm will receive an 
infeasible ordering by importance and will produce a feasible one. 

We have generated random task sets of N tasks with utilisation from 0.5 to 0.95 and 
N=4,5,6,7,8 tasks. Each task set is created by randomly choosing task's computation 

times between 2 and 50 time units, and then by randomly choosing periods to approxi- 

mate the utilisation desired. The importance is assigned according to the rule "the larger 

the deadline, the higher the importance"; note that this is an extreme case where the im- 

portance of tasks is contrary to the RMPA order. In addition, it is guaranteed that all task 

sets are feasible under rate monotonic scheduling. 

Let S be a task set with randomly chosen importances and with priority orderings S' 

(by importance), SD (by RMPA), SA (by swapping algorithm) and S* (by DI algorithm); 
in terms of the lexicographic order, the goodness of the orderings is given by the index 

metric ZI. For each set, we compute both their orderings and their indices. A point in 

Figure 7.30 represents the average index of 1000 sets of 7 tasks for a level of utilisation. 
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Figure 7.31: The solutions SD and SA move dramatically away from S* conforming the 
number of tasks increases. 

For high utilisation the number of feasible task sets decreases, and hence the difference 

between RMPA and DI is reduced. On the other hand, the difference against SA grows 

slightly. Note that by the optimality of DI, it is never the case that the index of SD or SA 

can be lower than S*. 

The plots for task sets with N equal to 4,5,6 are not depicted because they are similar 

to Figure 7.30. More interesting is to show how fast the solutions S' or SA move away 
from the optimal S*. Consider the data in Figure 7.30; computing the distances ZI(SD) - 
Zj (S*) and ZI (SA) - ZI (S*) for their respective utilisation and calculating its average 

give us the average distance S(SD) and W(SA) respectively. Computing these distances 

for different N give us Figure 7.31; this is the variation of the distance to S* with respect 

the number of tasks per set. Note how fast they move away from S* 

7.5.2 Maximising/Minimising a QoS Metric 

The swapping algorithm receives an infeasible ordering by importance and produces a 

feasible one; for instance, assuming that the rule 1/C produces an infeasible ordering, 

the swapping algorithm produces a feasible one denoted as A(1/C). In the experiments 

presented in section 7.4, the swapping algorithm was also included but the results were 

not shown since they were almost the same as those obtained with the DI algorithm and 

hence the lines are overlapped. It has an explanation. 
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Total Number of Preemptions Relative Avg. Resp-Time 
Utilisation DI(LL) A(LC) Identical DI(T/C) S(T/C) Identical 

0.50 32.4 32.5 924 1.787 1.791 953 
0.55 38.4 38.4 904 1.954 1.960 944 
0.60 44.0 44.1 892 2.134 2.139 925 
0.65 49.7 49.8 891 2.399 2.403 912 
0.70 58.1 58.2 855 2.682 2.689 896 
0.75 66.5 66.5 842 3.075 3.084 890 
0.80 75.3 75.4 838 3.662 3.668 913 
0.85 89.9 90.0 799 4.543 4.545 920 
0.90 113.0 113.1 759 6.211 6.213 926 
0.95 141.5 141.6 725 9.245 9.244 953 

Table 7.3: Comparing solutions obtained with DI and swapping algorithms for different 

utilisation with heuristics LC and T/C. Note how similar the results are. From 1000 priority 
orderings, the column "Identical" shows the number of identical ones. 

" Firstly, observing Figure 7.4(a) (page 124) note that when assigning priorities with 

the heuristics there already exist a number of feasible assignments such that DI and 

swapping algorithms results are necessarily the same. 

" Secondly, we note that when assigning importance with the heuristics, higher impor- 

tance tasks are feasible and therefore they remain practically fixed in their positions; 

only the lower priority ones are changed. 

" Thirdly, there exist a number of priority orderings that produce identical solutions, 

and many of such orderings have minor differences. 

Consequently, the results of the DI and the swapping algorithms will be either identical or 

different in some lower priority tasks. For such reasons both algorithms achieve similar 

solutions. So similar that when importance is assigned with the rule 1/C the DI algorithm 

and the swapping algorithm always produce the same priority ordering; i. e. DI(1 /C) is 

identical to A(1/C). Consequently, A(1/C) is also an excellent multicriteria scheduling 

solution. 

Table 7.3 shows the differences between DI(LL) and A(LC) as well as DI(T/C) and 

A(T/C) solutions. For instance, for utilisation 0.5 the average total number of preemptions 

for DI(LL) and A(LC) are 32.4 and 32.5 respectively. Thus DI(LL) is slightly better 

than A(LC). Observe that there are 924 identical priority orderings and therefore only 76 
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contributes to this difference. Figure 7.32 shows a better comparison between DI(LL) and 
A(LC). The baseline is formed by DI(LL); points above the baseline are worst and points 
below are best than DI(LC) results. Note that A(LC) is better in some occasions. 

7.6 DI+ Algorithm: QoS and Priority Constraints 

In this section we present a simple evaluation of the DI+ algorithm using the same task sets 

generated to evaluate DI. In order to compare DI+ against RMPA, the priority orderings 

must be both feasible and fulfill some priority constraints. By ordering tasks by RMPA, we 
label tasks as 1,2, ... , 7, and define the next priority constraints for all task sets: P> Pl 

and P6 > P5. Thus, under RMPA all task sets fulfill both the deadlines and the priority 

constraints. We selected these constraints arbitrarily and without a special reason. 

Of the six different scheduling problems with QoS requirements, we only present plots 
for five of them since no DI solution outperforms RMPA for the problem with relative 

output jitter requirements. The results are shown in Figures 7.33 and 7.34 (pages 170- 

171). Only RMPA and DI+ solutions meet the priority constraints. 

Observe that in all cases, constraining the freedom for assigning priorities reduces the 

chance for improving the QoS metric. Moreover, some results can be worse as shown in 

Figure 7.33(c), where for high utilisation the DI+(LC) solution is worse than RMPA for 

the deadlines and maximum latency problem. This is because for this particular problem, 

the difference between RMPA and the DI solutions is minimal for high utilisation (see 

Figure 7.21(a) in page 152). Consequently, by adding the constraints the DI+ solutions 

tend to be worse. 

Note that while in some cases the differences are minimal (e. g. total number of pre- 

emptions problem), in other cases the differences are significant (e. g. relative maximum 

latency problem). 

In summary, in this experiment we can observe that priority constraints simply reduce 

the space of search where the DI+ algorithm can search for a solution, but we can still 

obtain improvements in the QoS. 
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Figure 7.32: Comparing DI(LC) against A(LC) results for the problem of minimising the 
total number of preemptions 
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Figure 7.33: Guaranteeing Deadlines and Priority Constraints { P7 > PI, 1-16 > P5 } for 
different QoS metrics. Note that constraining the freedom for assigning priorities reduces 
the chance for improving the QoS metric. The DI solution does not meet the priority 
constraints 
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Figure 7.34: Guaranteeing Deadlines and Priority Constraints { P7 > PI, P6 > P5 } for 
different QoS metrics. Note that constraining the freedom for assigning priorities reduces 
the chance for improving the QoS metric. The DI solution does not meet the priority 
constraints 



Chapter 8 

Conclusions and Further Work 

This thesis has shown that fixed-priority assignments that meet simultaneously deadlines 

and QoS requirements can be obtained without performing exhaustive search in the set of 
N! possible assignments. Naturally, exhaustive search can be utilised but only for small 

task sets. 

In the context of fixed-priority scheduling in hard real-time systems, problems where 

simultaneously deadlines and QoS requirements have to be fulfilled have been studied. 

While most approaches rely on complex algorithms that artificially modify the attributes or 

structure of tasks, and/or require non-standard run-time support, we propose an alternative 

mechanism based on pure assignment of fixed priorities. In this chapter we review the 

contributions of our research and present some directions for further work. 

8.1 Review of Contributions 

It is our thesis that optimal or near-optimal solutions to scheduling problems with multiple 

objectives can be obtained by finding assignments of fixed priorities. A solution consists 

of a feasible priority assignment that minimises a metric for measuring importance. The 

solution proposed is generic and can be applied to a wide variety of scheduling problems 

in hard real-time systems. 

The main contributions of this thesis are: 

172 
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1. the development of a model for expressing QoS in terms of relative importance 

between tasks; 

2. the development of algorithms that optimally solve the scheduling problem of meet- 
ing deadlines and minimizing (as a secondary criterion) the importance criterion; 

3. the application of the algorithms and the importance criterion to solve practical mul- 
ticriteria scheduling problems. 

8.1.1 Importance 

The first main contribution of this thesis is the development of a framework for expressing 
the QoS in terms of importance relationships. We argue that the traditional approaches 
based on value have a number of deficiencies due to the intrinsic complexities involved 

in the design and utilisation of utility functions. Instead, we propose a notion of QoS 

based on relative importance and conditional relative importance preferences; the former 

expresses that in a schedule it is desirable to run a task in preference to another one, and the 

latter expresses that in a schedule it is desirable to run a task in preference to another one 

subject to conditional clauses. We affirm that executing tasks in the order of importance 

with respect to some requirements improves the QoS of a system. 

While relative importance is expressed as a number, conditional relative importance 

requires a set of conditional clauses expressed as priority assignment conditions attached 

to each task. This simplified model captures even complex QoS metrics between tasks 

including specific restrictions such as precedence constraints. 

We propose the model of importance for improving QoS in two specific levels of ab- 

straction: 

1. at task level by assigning higher priorities to higher importance tasks while the dead- 

lines are guaranteed; 

2. at application level by finding priority assignments that are both feasible and as close 

as possible to a specific assignment. 
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In this context, we propose the lexicographic rule as a measure for expressing different 

levels of importance between tasks (i. e. task importance) as well as for expressing different 

levels of importance between priority orderings (i. e. index of importance). Thus, the 

metric of importance is defined in terms of the lexicographic distance. With this metric, 

we formulate the scheduling problem as finding a feasible priority ordering that meets the 

deadlines and minimises the lexicographic distance; minimising such distance maximises 

the importance. Afterwards, we solve the scheduling problem optimally using the DI and 
DI+ algorithms. 

8.1.2 DI and DI+ Algorithms 

The second main contribution of this thesis is the DI algorithm introduced in chapter 5. 

It solves optimally the scheduling problem of finding a feasible priority assignment that 

maximises the importance. 

The DI algorithm performs a branch and bound search into the space formed by the N! 

possible orderings, ordered lexicographically by importance. Taking advantage of some 

interesting properties of the optimality of the deadline monotonic priority assignment and 

some particular characteristics of the lexicographic order, we identify some patterns in the 

search space. This permits us to solve the problem in O((N2 + N)/2) steps; however its 

complexity depends on the feasibility test; for instance, DI is pseudo-polynomial when the 

response-time test is used. Our approach is optimal in the sense that the priority ordering 

found is feasible and no other feasible priority assignment exists with higher importance. 

The DI+ algorithm was introduced in chapter 6 with the objective of solving optimally 

the scheduling problem of finding a feasible priority assignment that maximises the con- 

ditional relative importance. DI+ is DI with some modifications that allow including the 

feasibility tests for tasks with arbitrary deadlines or weakly-hard constraints, as well as 

including the swapping algorithm for finding feasible priority orderings when DMPA is 

not optimal. Dl+ permits the solution of the problem in O((N2 + N)/2) steps; however 

its complexity depends on the feasibility test and the priority assignment algorithm. While 

in problems with arbitrary deadlines the complexity is still pseudo-polynomial, problems 

with weakly-hard constraints could require (N2 + N)/2 simulations in the worst-case, 
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which is computationally costly. 
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With the DI and DI+ algorithms, a decision maker can specify a priority assignment 
based on objective or subjective considerations about the system and, if such assignment 
is infeasible, the algorithms can find a feasible one as close as possible of the assignment 
desired. Although algorithms such as the swapping algorithm can be considered as good 
heuristics for this specific problem, such solutions are not optimal and are unpredictable 
in the sense that we do not know how close they are from the optimal one (see Figure 5.1). 

The scheduling problems solved by DI and DI+ are not only theoretically interesting 

but they can also be applied to practical problems. In this sense, we propose to use them 

jointly with specific importance assignments with the objective of solving multicriteria 

scheduling problems. 

8.1.3 Solutions to Multicriteria Problems 

When used with specific importance assignments, the DI and DI+ algorithms allow finding 

near-optimal or good priority assignment for problems where the QoS can be correlated 

with the concept of importance. 

By extensive simulation, we propose heuristics for assigning importance and we evalu- 

ate its effectiveness when used jointly with the algorithms. These heuristics allow propos- 

ing simple solutions for practical multicriteria problems in real-time systems at zero cost 

for the FPS base mechanism. 

We evaluate the six different DI solutions formed with the rules from Table 7.1 with 

respect to six different scheduling problems defined in chapter 4. We also compare the DI 

solutions against the solutions obtained with RMPA and EDF. The results show that our 

approach improves the RMPA solution and outperforms EDF in some scenarios. 

Two types of scheduling problems were evaluated: (A) when all tasks are included in 

the problem and (B) when only a subset of tasks is included in the problem. The following 

results apply to both types. 

" DI(1/C) is the best solution for the Deadlines and Absolute Output Jitter, and the 
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Deadlines and Relative Maximum Latency problems. 

" DI(LC) is a near-optimal solution for the Deadlines and Total Number of Preemp- 

tions problem. It is also a better solution than RMPA for the Deadlines and Maxi- 

mum Latency problem. 

9 DI(T/C) is an excellent solution for the Deadlines and Relative Average Response- 

Time problem. 

For the Deadlines and Relative Output Jitter problem, RMPA is better than the DI 

solutions for a problem of type A. On the other hand, for a problem of type B, the solution 
DI(1/T) provides a good solution. 

For scheduling problems with three or more objectives, in Table 7.2 we can observe 

the following results, which are valid for both types of problems: 

" DI(1/C) is our best DI solution. In effect, DI(1/C) shows excellent performance 

when the deadlines have to be met and the secondary objectives are to minimise 

the absolute output jitter and the relative maximum latency and the relative average 

response-time. 

" DI(LL) provides an excellent solution for a scheduling problem where the deadlines 

have to be met and the secondary objectives are to minimise both the total number 

of preemptions and the maximum latency. 

" DI(T/C) is an excellent solution when deadlines have to be met and the secondary 

objectives are to minimise both the relative average response-time and the relative 

maximum latency. 

Thus, our approach is very attractive as it only relies on a fixed priority mechanism 

(widely supported by commercial RTOS and standards) and does not require changes to 

the attributes or structure of tasks. The priority assignment is performed off-line and 

standard schedulability tests are utilised. Moreover, the pseudo-polynomial computational 

complexity of the DI algorithm makes the approach tractable even for large tasks sets 

giving results close to the (usually non computable) optimal priority assignment. 
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In addition, our experiments show that the swapping algorithm is as effective as the DI 

algorithm when used jointly with the importance assignments for the scheduling problems 
tested. This result makes clear that the concept of importance can be used with other 

scheduling algorithms. Observe that while it is true that both algorithms perform similarly, 
the DI algorithm is more predictable than the swapping algorithm since we know the DI 

solution is the lexicographic closer one to the importance assignment. 

8.2 Suggestions for Further Work 

The scheduling algorithms for solving multicriteria problems evaluated are not Z-optimal; 

for instance, DI(1 /C) is not so close to the the g -optimal solution. Thus, there exists room 
for improvements in two components of our approach: 

" Algorithms for assigning importance. Instead of using simple rules, more effective 

algorithms for assigning importance could be developed considering more complex 
functions (e. g. I= T/C2). Moreover, weights can be added to simple rules for 

expressing preferences in a particular solution. For instance, the rule 1/C could 
becomes weight 

c 

" Improvements to the basic DI algorithm. The DI algorithm picks up tasks in the 

predetermined lexicographic order; i. e. the lexicographic order established is static. 
However, it could be the case that depending on how some of the tasks are accom- 

modated during the operation of the DI algorithm, the original lexicographic order 

can be dynamically modified. For instance, if one of the two higher priorities is not 

assigned to a specific task, then it could be preferred to assign a lower priority. 

The scheduling approaches proposed in this thesis impact on all the FPS techniques 

that use mainly RMPA or DMPA as fixed-priority assignment algorithms. In this sense we 

suggest further investigation in topics such as: 

" Real-time database systems. A real-time database is composed of real-time objects 

which are updated by periodic sensor transactions. A real-time object has associated 
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a temporal validity interval; i. e. it is useful before its temporal validity interval 

expires. Thus, one of the important design goals is to guarantee that temporal data 

remain fresh. Therefore, efficient scheduling approaches are desired to guarantee 

the freshness of temporal data of the most important objects while minimizing the 

processor workload resulting from periodic sensor transactions. Finding feasible 

priority assignments that promote higher importance transactions and reduce the 

number of preemptions will improve the performance in those systems. 

" Energy issues. In scheduling approaches related with energy management, power 

reductions are obtained by using hardware and/or software technologies. In effect, 

special hardware such as dynamic voltage scalable processors and I/O-devices with 

multiple power modes offer alternatives to save energy. With respect to software, the 

development of algorithms to make power-management decisions taking advantage 

of variations in system workload and resources is an active research area. In this 

context, FPS approaches with energy management try to guarantee deadlines and 

to minimise energy consumption without considering the importance of individual 

tasks. Adding the concept of importance will improve the quality in those systems. 

8.3 Final Remark 

Citing Burns [19] who states fixed-priority scheduling is a mature engineering approach 
for the construction of hard real-time systems, we consider that some day in a near future 

we will be able to state 

fixed priority scheduling is a sufficiently mature engineering approach for the 

construction of hard real-time systems that meet both timing and QoS requirements. 

This research strives to achieve this objective. 



Appendix A. Notation 

a, b,... Roman small letters denote tasks .............................. page 60 

a, ß.... Greek small letters denote orderings or sub-orderings ............ page 60 

{a, b, 
... 

} denote a task set ............................................. page 60 

(a, b.... ) denote an ordering ........................................... page 60 

}- operator used for comparing tasks or orderings by importance 
.... page 63 

b beginning time of a task ...................................... page 17 

B maximum blocking 
.......................................... page 59 

c completion time of a task ..................................... page 17 

C worst-case execution time of a task ............................ page 17 

D deadline of a task ............................................ page 18 

F(k) worst-case finalization time at release k 
........................ page 37 

I importance of a task .......................................... page 63 

I conditional importance of a task .............................. page 102 

J release jitter of a task ......................................... page 19 

Absolute Output Jitter metric .................................. page 69 

rel Relative Output Jitter metric .................................. page 70 

L Maximum Latency metric ..................................... page 71 

L rel Relative Maximum Latency metric ............................ page 71 

µ µ-pattern of a task with weakly-hard constraints ................. page 36 

0 offset of a task ............................................... page 18 

p priority of a task ............................................. page 59 

P Total Number of Preemptions metric ........................... page 69 

r release time of a task ......................................... page 17 

ro initial release of a task ........................................ page 17 

R response time of a task ....................................... page 18 
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R, Maximum Relative Average Response Time metric .............. page 72 

S a set of tasks ................................................. page 17 

the set of all possible N! orderings of S 
....................... . page 60 

, 
SF the set of all feasible orderings of S 

........................... . page 60 

SA task set S ordered by the swapping algorithm .................. . page 91 

SD task set S ordered by the deadline monotonic priority assignment . page 60 

Si task set S ordered by task importance 
......................... . page 61 

T period or minimal inter-arrival time of a task ................... . page 18 

U utilisation of a task set (i. e Eý 
1 Ci /Tj ) 

...................... . page 20 

V relative value (or weight) of a task ............................ . page 20 

ZD Deadlines metric ............................................ . page 74 

ZI Index of Importance metric .................................. . page 65 

ZI Index of Conditional Importance metric ....................... page 103 
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