
Scaling-Up Reinforcement Learning

using Parallelization and Symbolic Planning

Matthew Jon Grounds

Submitted for the degree of Doctor of Philosophy

The University of York

Department of Computer Science

April 2007

Abstract

Reinforcement learning (RL) methods are a family of techniques which allow an
agent to improve its performance of a given task by learning from direct interaction

with the environment it is situated in. Key to this approach is the notion of a reward
signal, a numerical value observed by the agent which gives immediate feedback

on the quality of its action choices. Using this signal, the agent can learn a policy
which maximizes the total reward accumulated over time.

While many RL algorithms have theoretical convergence guarantees, achiev-
ing fast convergence to the optimum can be problematic in practice. There are

particular problems with large-scale domains. As' the learning environment be-

comes more complex and difficult to describe, theAime required for an RL agent
to learn an optimal policy grows very rapidly. This effect is known as the curse of
dimensionality.

In this thesis, two different approaches to scaling-up RL are investigated. The

first approach exploits parallel hardware to generate high-quality policies for sim-

ulated RL environments. An agent learns from simulated experience on each node

of a parallel cluster. The agents periodically exchange weights from their approxi-

mate value functions. This allows a group of agents to converge more quickly than

a single learner without compromising the final quality of the learned policy.
The second approach is a hybrid method combining symbolic planning and RL.

A high-level knowledge base is used to generate a symbolic plan which provides

structure for the learned policy. Abstract symbolic operators are implemented in

terms of low-level actions using RL. This approach is shown to scale to much larger

RL problems than is feasible with either standard or hierarchical RL algorithms.

Contents

List of Figures 7

List of Tables 14

List of Algorithms 15

Acknowledgements 16

Declaration 17

I Introduction 18
1.1 Reinforcement Learning 18
1.2 The Curse of Dimensionality 20
1.3 Parallelization and RL 21
1.4 Symbolic Planning and RL 22
1.5 Contributions 23
1.6 Thesis Structure 24

2 Background: Reinforcement Learning 27
2.1 Basic Concepts 27

2.2 The Markov Decision Process 28

2.3 Planning in MDPs 30

2.4 Learning in MDPs 31

2.5 Properties of Reinforcement Learning Algorithms 36

2.6 Partial Observability 37

3 Background: Scaling-Up RI 41

3.1 The State Space Explosion 41

3.2 Categorization of Scaling-Up Techniques 42

3.3 Exploration Strategy 43

3.3.1 Common Exploration Strategies 45

3.3.2 Directed Exploration Strategies 47

3

3.3.3 Bayesian Approaches to Exploration 48
3.3.4 External Sources of Exploration 50
3.3.5 Limitations of 1mproving the Exploration Strategy 51

3.4 Value Function Approximation 52

3.4.1 Fundamentals of Approximation 53

3.4.2 Comparing Function Approximation Techniques 54

3.4.3 Linear Approximation Methods 55

3.4.4 Memory-Based Approximators 56

3.4.5 Decision Tree Approximators 58

3.4.6 Neural Network Approximators 59

3.4.7 Convergence Problems and Guarantees 60

3.4.8 Limitations of Function Approximation 62

3.5 Hierarchical Reinforcement Learning 62

3.5.1 Parallel Decomposition 63

3.5.2 State Aggregation and State Abstraction 65

3.5.3 Temporal Abstraction 67

3.5.4 Combining Temporal Abstraction with State Abstraction . 69

3.5.5 Learning Sub-Coal Hierarchies 71

3.6 Symbolic Representations for RL 72

3.6.1 Classical Planning and Reinforcement Learning 73

3.6.2 Factored Representation of MDPs 76

3.6.3 Relational Representations for RL 80

3.7 Parallel Reinforcement Learning 82

3.7.1 Overview of Parallel Computing 82

3.7.2 Parallel Dynamic Programming 87

3.7.3 Parallelizing Reinforcement Learning 88

3.8 Conclusions
90

4 Merging Approximate Value Functions 93

4.1 Motivation and Assumptions
93

4.2 A Merging Method
96

4.3 Evaluating Parallel Learners
98

4.3.1 Evaluation Domains
104

4.4 Comparing Merging Functions
111

4.4.1 The Minimum Merge Function
111

4.4.2 The Maximum Merge Function
113

4.4.3 The Mean Merge Function
116

4.4.4 The Visit-Count Merge Function 118

4

4.4.5 Comparison Summary
..................... 120

4.5 Decaying Parameters and Binary Search 122

4.6 Examining Parallelism Without Merging 128

4.7 A True Parallel Implementation
.................... 132

4.7.1 An Initial Implementation 132

4.7.2 Distributed Computation of the Merge Function
...... 135

4.7.3 Experiments using the Improved Parallel Implementation . 140

4.8 The Influence of the Merge Period 143

4.9 Summary and Conclusions
.......................

148

5 Selective Merging 150

5.1 Motivation 150

5.2 Method Definition and Implementation 152

5.3 Combining Changes from Several Agents 156

5.3.1 Criteria for Combining Changes Together 156

5.3.2 The Problem of Overshooting 158

5.3.3 Candidates for the Combination Function 160

5.4 Evaluation using the Cluster of Workstations 162

5.5 Varying the Merge Period and Message Size 180

5.6 Summary and Conclusions 183

6 Asynchronous Merging 186

6.1 The Benefits of Asynchronous Message Passing 187

6.2 Tile Asynchronous Merging Method 190

6.2.1 Tile Basic Procedure 190

6.2.2 Updating after Message Received 192

6.2.3 Scheduling the Message Broadcasts 200

6.3 Evaluation of Asynchronous Merging
207

6.4 Comparison with Synchronous Selective Method 223

6.5 Asynchronously exchanging absolute weight values 227

6.6 Summary and Conclusions
236

7 Combining R. L with Symbolic Planning 239

7.1 The STRIPS Planning Representation
240

7.2 The PlanQ Learning Method
241

7.3 Evaluation Domain
242

7.4 Experiment 1: Results
244

7.5 Problems with Experiment 1..................... 246

7.6 Adding State Abstraction
248

5

7.7 Experiment 2: Results 249
7.8 Computational Requirements 252
7.9 Discussion 253
7.10 Summary and Conclusions 256

8 Conclusions 258
8.1 Parallel Reinforcement Learning 258

8.1.1 Summary of Experimental Results 259

8.1.2 Research Benefits 261

8.1.3 Research Limitations 262

8.1.4 Future Research Directions 264

8.2 Symbolic Planning and RL 267

8.2.1 Summary of Experimental Results 267

8.2.2 Research Benefits 268

8.2.3 Research Limitations 269

8.2.4 Future Research Directions 269

8.3 Concluding Remarks 271

Glossary of Mathematical Symbols 273

Glossary of Abbreviations 275

List of References 276

6

List of Figures

2.1 The basic components of a reinforcement learning problem. 28
2.2 A Markov Decision Process (MDP)

.................. 29
2.3 A Partially Observable Markov Decision Process (POMDP). 38

3.1 Behaviour of an exploration strategy with some exploitation. 45
3.2 Comparing the e-greedy and Boltzmann exploration strategies. 46

3.3 The basic approach to value function approximation 53

3.4 Linear approximation architecture for learning a value function.
. 55

3.5 Using tile coding to generate a set of binary state features.
... 56

3.6 A decision tree representing the value function for a single action. . 58

3.7 A neural network approximator for learning a value function.
... 59

3.8 Example of parallel decomposition
................... 64

3.9 Example of state aggregation 65

3.10 Example of temporal abstraction 67

3.11 Temporal and state abstractions arranged in a hierarchy
....... 70

3.12 Factored action representation: a dynamic Bayesian network. ... 77

3.13 Factored action representation: a probabilistic STIUPS operator. . 78

3.14 Factored reward function representation 78

3.15 Value function learned by relational reinforcement learning. 81

3.16 Architecture of a symmetric multiprocessor (SMP) computer. ... 83

3.17 Architecture of a cluster of workstations
84

3.18 Bulk synchronous parallel (BSP) model of parallel computation. . 85

4.1 The basic architecture required for parallel reinforcement learning. 94

4.2 The core method: agents which periodically merge value functions. 97

4.3 The Mountain-Car task 105

4.4 The Pole-Balancing task 106

4.5 The Acrobot task 108

4.6 A particular instance of the Stochastic Grid-World task 110

4.7 Results for the minimum merge function (Mountain-Car task). .. 113

7

4.8 Results for the maximum merge function (Mountain-Car task). .. 114
4.9 Results for the maximum merge function (Mountain-Car task) when

Oji,,, it = 0.0002 115
4.10 Results for the mean merge function (Mountain-Car task) using

reward function #1 117

4.11 Results for the mean merge function (Mountain-Car task) using

reward function #2 117

4.12 Results for the visit-count merge function (Mountain-Car task) us-
ing reward function #1 119

4.13 Results for the visit-count merge function (Mountain-Car task) us-
ing reward function #2 119

4.14 Results for the visit-count merge function (Pole-Balancing task). . 121

4.15 Results for the visit-count merge function (Acrobot task) 121

4.16 Results for the visit-count merge function (Mountain-Car task) as
the values of a and c are decayed 124

4.17 Results for the visit-count merge function (Mountain-Car task) as

a and c are decayed over a longer period of time 125

4.18 Results for the visit-count merge function (Mountain-Car task) us-
ing a binary search to find the shortest possible learning time. ... 127

4.19 Distribution of learning curves for a single-agent leamer in the

Mountain-Car task 129

4.20 Results for the BESTOF method in the Mountain-Car task. 129

4.21 Results for the BESTOP method in the (low-difficulty) Stochastic

Grid World task 131

4.22 Results for the visit-count merge method in the (low-difficulty) Sto-

chastic Grid World task 131

4.23 Messages exchanged by the initial parallel merge implementation. . 133

4.24 Distributed computation of a sum of vectors 136

4.25 Distributed computation of a sum of vectors where the result is

required by all the participating agents
137

4.26 Varying the merge period for 2 agents learning in the Mountain-Car

task on the cluster of workstations
141

4.27 Performance of the visit-count merge method on the cluster using

the (low-difficulty) Stochastic Grid World task
142

4.28 Performance of the visit-count merge method on the cluster using

the (high-difficulty) Stochastic Grid World task
143

4.29 Varying the merge period p for 2 agents in the low-difficulty Stochas-

tic Grid World, using the simulation of parallel agents 144

8

4.30 Varying the merge period p for 2 agents in the low-difficulty Stochas-

tic Grid World, using the cluster of workstations 145

4.31 Varying the merge period p for 16 agents in the low-difficulty Stoch-

astic Grid World, using the cluster of workstations 147

5.1 Overview of the selective merge operation 154

5.2 Using a simple summation for g(C). Results for the selective merge

method in the Pole-Balancing task, collected using the cluster of

workstations 159

5.3 Using a simple summation for g(C). Results for the selective merge

method in the (low-difficulty) Stochastic Grid World task, collected
using the cluster of workstations 159

5.4 Comparing the combination functions using 2 agents in the low-
difficulty Stochastic Grid World task 164

5.5 Comparing the combination functions using 4 agents in the low-
difficulty Stochastic Grid World task 164

5.6 Comparing the combination functions using 8 agents in the low-

difficulty Stochastic Grid World task 165
5.7 Comparing the combination functions using 16 agents in the low-

difficulty Stochastic Grid World task 165

5.8 Comparing the performance of a single agent, the visit-count merge

and the selective merge in the low-difficulty Stochastic Grid World

task 166

5.9 Comparing the combination functions using 2 agents in the high-

difficulty Stochastic Grid World task 168

5.10 Comparing the combination functions using 4 agents in the high-

difficulty Stochastic Grid World task 168

5.11 Comparing the combination functions using 8 agents in the high-

difficulty Stochastic Grid World task 169

5.12 Comparing the combination functions using 16 agents in the high-

difficulty Stochastic Grid World task 169

5.13 Comparing the performance of a single agent, the visit-count merge

and the selective merge in the high-difficulty Stochastic Grid World

task
170

5.14 Comparing the combination functions using 2 agents in the Pole-

Balancing task 171

5.15 Comparing the combination functions using 4 agents in the Pole-

Balancing task
171

9

5.16 Comparing the combination functions using 8 agents in the Pole-
Balancing task 172

5.17 Comparing the combination functions using 16 agents in the Pole-
Balancing task 172

5.18 Comparing the combination functions using 2 agents in the Moun-

tain Car task 174
5.19 Comparing the combination functions using 4 agents in the Moun-

tain Car task 174
5.20 Comparing the combination functions using 8 agents in the Moun-

tain Car task 175
5.21 Comparing the combination functions using 16 agents in the Moun-

tain Car task 175
5.22 Comparing the combination functions using 2 agents in the Acrobot

task 177
5.23 Comparing the combination functions using 4 agents in the Acrobot

task 177
5.24 Comparing the combination functions using 8 agents in the Acrobot

task 178
5.25 Comparing the combination functions using 16 agents in the Acrobot

task 178
5.26 The performance of 16 selective merging agents as p is varied. 180

5.27 The performance of 16 selective merging agents as f,
is varied. 181

5.28 The performance of 16 selective merging agents as both p and

are varied simultaneously 182

6.1 Messages exchanged between agents using the (synchronous) selec-
tive merging method in the Acrobot task 188

6.2 Messages exchanged in the Acrobot task by the asynchronous selec-
tive merging method 189

6.3 Example of how overshooting can occur when two agents simulta-

neously discover a change to weight 194

6.4 A second example of overshooting where two agents broadcast an
identical change in quick succession 196

6.5 Uniform schedule. Message send events for 16 agents in the early

stages of the Stochastic Grid World task (high difficulty) 202

6.6 Uniform schedule. Message send events for 16 agents in the later

stages of the Stochastic Grid World task (high difficulty) 202

10

6.7 Staggered schedule. Message send events for 16 agents in the early
stages of the Stochastic Grid World task (high difficulty) 204

6.8 Exponential schedule. Message send events for 16 agents in the early
stages of the Stochastic Grid World task (high difficulty) 205

6.9 Comparison of the performance of three scheduling mechanisms us-
ing 16 agents in the Stochastic Grid World task (high difficulty). . 206

6.10 Comparing asynchronous update functions with 2 agents in the low-
difficulty Stochastic Grid World task 208

6.11 Comparing asynchronous update functions with 4 agents in the low-
difficulty Stochastic Grid World task 208

6.12 Comparing asynchronous update functions with 8 agents in the low-
difficulty Stochastic Grid World task 209

6.13 Comparing asynchronous update functions with 16 agents in the
low-difficulty Stochastic Grid World task 209

6.14 Comparing asynchronous update functions with 2 agents in the high-
difficulty Stochastic Grid World task 211

6.15 Comparing asynchronous update functions with 4 agents in the high-
difficulty Stochastic Grid World task 211

6.16 Comparing asynchronous update functions with 8 agents in the high-
difficulty Stochastic Grid World task 212

6.17 Comparing asynchronous update functions with 16 agents in the
high-difficulty Stochastic Grid World task 212

6.18 Comparing asynchronous update functions with 2 agents in the Pole-
Balancing task 214

6.19 Comparing asynchronous update functions with 4 agents in the Pole-

Balancing task 214

6.20 Comparing asynchronous update functions with 8 agents in the Pole-

Balancing task 215

6.21 Comparing asynchronous update functions with 16 agents in the
Pole-Balancing task 215

6.22 Comparing asynchronous update functions with 2 agents in the
Mountain-Car task 217

6.23 Comparing asynchronous update functions with 4 agents in the

Mountain-Car task 217

6.24 Comparing asynchronous update functions with 8 agents in the
Mountain-Car task 218

6.25 Comparing asynchronous update functions with 16 agents in the
Mountain-Car task 218

11

6.26 Comparing asynchronous update functions with 2 agents in the Ac-

robot task 220
6.27 Comparing asynchronous update functions with 4 agents in the Ac-

robot task 220
6.28 Comparing asynchronous update functions with 8 agents in the Ac-

robot task 221
6.29 Comparing asynchronous update functions with 16 agents in the

Acrobot task 221

6.30 Comparing the performance of the synchronous and asynchronous

selective methods in the low-difficulty Stochastic Grid World task. 223

6.31 Comparing the performance of the synchronous and asynchronous

selective methods in the high-difficulty Stochastic Grid World task. 224

6.32 Comparing the performance of the synchronous and asynchronous
selective methods in the Pole-Balancing task 225

6.33 Comparing the performance of the synchronous and asynchronous

selective methods in the Mountain-Car task 226

6.34 Comparing the performance of the synchronous and asynchronous

selective methods in the Acrobot task 226

6.35 Using the low-difficulty Stochastic Grid World task to compare the

asynchronous selective method with an alternative method based on

absolute weight values 231

6.36 Using the high-difficulty Stochastic Grid World task to compare the

asynchronous selective method with an alternative method based on

absolute weight values 232

6.37 Using the Pole Balancing task to compare the asynchronous selective

method with an alternative method based on absolute weight values. 233

6.38 Using the Mountain Car task to compare the asynchronous selective

method with an alternative method based on absolute weight values. 234

6.39 Using the Acrobot task to compare the asynchronous selective me-
thod with an alternative method based on absolute weight values. 235

7.1 An instance of the evaluation domain
243

7.2 The operator NORTH from the evaluation domain 245

7.3 A PDDL problem description for n, =2................ 245

7.4 Results for experiment 1, where n, =3 and ng =5.......... 247

7.5 Results for experiment 1, where n, =5 and ng =5.......... 247

7.6 Learning the NORTH operator without state abstraction 248

7.7 Abstractions used by the PLANQ and HSMQ learning agents 249

12

7.8 Results for experiment 2, where n, =2 and n., =5.......... 251
7.9 Results for experiment 2, where n, =4 and ng =5.......... 251
7.10 Results for experiment 2, where n, =6 and ng =5.......... 251
7.11 CPU time required to achieve 95% optimal performance if ng = 5. 253
7.12 Alternative encoding of a PDDL problem description for n, = 3. . 254

7.13 Alternative encoding in PDDL of operator NORTH 254

7.14 CPU time required to achieve 95% optimal performance if ng =5
and the new planner and PDDL encoding are used 255

7.15 Graph showing the growth in the maximum CPU time required to

construct a single plan as n, is increased 255

13

List of Tables

4.1 Numerical constants used in the Pole-Balancing environment model. 107
4.2 Numerical constants used in the Acrobot environment model. ... 109
4.3 Timings for the visit-count merge operation in the Stochastic Grid

World task using the initial parallel implementation 134
4.4 Timings for the visit-count merge operation in the Stochastic Grid

World task using the improved parallel implementation 139
4.5 Timings for the improved implementation in the Stochastic Grid

World task, using half the previous number of features 139
4.6 Timings for the improved implementation in the Stochastic Grid

World task, using twice the previous number of features 139

4.7 Proportion of experiment time expended on communication by the
2 agents for different merge period values 145

4.8 Proportion of experiment time expended on communication by the
16 agents for different merge period values 147

5.1 Lists the best performing combination function(s) for each combi-

nation of a domain and a number of agents 179

6.1 Lists the best performing update function(s) for each combination

of a domain and a number of agents 222

14

List of Algorithms

I Pseudocode for learning agent 9fl

2 Pseudocode for manager agent 99

3 Agent pseudocode for the improved parallel implementation. ... 138

4 Agent pseudocode for the selective merge method 155

5 Agent pseudocode for the asynchronous merge method 193

6 An update function which simply adds in the remote change. ... 194

7 The cancel function is used to cancel out part of the local change. 195

8 The filter function is used to exclude part of an incoming change. 197

9 Update function 1. Uses only the cancel function 199

10 Update function 2. Uses only the filter function 199

11 Update function 3. Uses both the filter and cancel functions. ... 199

12 Agent pseudocode for the Abs-Async method. Messages sent by the

agent contain only the absolute weight values, not the weight changes. 229

13 The Hierarchical Semi-Markov Q-learning (HSMQ) algorithm. ... 250

15

Acknowledgements

I would first like to thank my supervisor Daniel Kudenko for his guidance and

collaboration during the years of research leading towards this PhD thesis. Daniel

has helped me weather the highs and lows of the PhD process, encouraged me to

explore a wide range of ideas during my time at the University of York, and has

helped ine develop the skills I will need for a future career in research. He has also

provided a raft of suggestions that have improved both the content and polish of
this document.

I grateftilly acknowledge the financial support of QinetiQ Ltd which has made
this research possible' -I would also like to thank Malcolm Strens of QinetiQ for his

personal support during the development of this work. Through our conversations
I have acquired a deeper understanding of my subject, while at the same time lie

lias kept me aware of the problems that arise in industrial applications.
I would also like to thank my friends and colleagues at the University of

York who have made my journey all the more interesting and enjoyable. Spiros

Kapetanakis has been a good friend from the day I arrived, and has always been

willing to licar about my work and to assist me in developing new ideas. Enda

Ridge lias lielped me improve the quality of my statistics, and on many occasions
lins listened to my woes over a liot cup of coffee. I should also thank Joss Wright for

teaching me how to play Go, which lias been instrumental in helping me relax after

a hard day at the office. Thanks also to Heather Barber, Thimal Jayasooriya and
Joseph Marshall for reading chapters of my thesis and suggesting improvements.

Finally, I want to thank my wife Amelia for lier love, understanding, humour

and belief that I could fiiiisli! I couldnt have done it without you.

'This report was carried out under the terms of Contract CU004/26749 for the Director of
ruture Systems L, Technologies Division, QitictiQ Ltd, Farnborough.

16

Declaration

I hereby declare that the research presented in this thesis is original work under-
taken by myself, Mattliew Jon Grounds, unless otherwise indicated in the text.
This research was undertaken between October 2003 and November 2006. Where

appropriate, previous results and techniques upon which this thesis builds are ac-
knowledged with clear references to external sources. Some parts of this thesis
have appeared previously in the papers listed below. In each of these papers, the

major contributions were made by myself with input from my supervisor, Daniel
lCudenko.

Nfattliew Grounds, Daniel Kudenko and David White. Parallel Re-
inforcement Learning by Merging nýnction Approximations. In Sixth
European Workshop on Adaptive and Learning Agents and Multi-Agent
Systcrits, Brussels, April 2006.

Mattliew Grounds and Daniel Kudenko. Combining Reinforcement
Learning with Symbolic Planning. In Fifth European Work-shop on
Adaptive Agents and Alulti-Agent Systems, Paris, March 2005.

17

Chapter I

Introduction

This thesis focuses on techniques for reinforcement learning (RL). RL methods

allow agents to learn to choose actions effectively by observing the value of a reward
signal. The reward signal gives an agent immediate feedback about the quality of
each of its action choices. RL methods have been applied successfully in a wide
variety of domains, but remain infeasible in many others. This is because when an
agent's environment has a large number of possible configurations, standard RL

algorithms are not able to find good action selection policies within a reasonable
time.

In this work, two different sets of techniques are investigated which can be used

to extend the applicability of RL to more difficult learning environments. The first

set of techniques allows parallel hardware to be exploited so that a high quality

policy for action selection can be learned much faster than would be possible on a

sequential computer. The second set of techniques uses symbolic planning in com-
bination with RL to provide a high level structure which constrains and accelerates
the learning process. A wide-ranging empirical study is used to demonstrate the

advantages of these techniques over standard RL methods.
This chapter begins with a high-level overview of reinforcement learning, fol-

lowed by a description of the problems faced by RL in large-scale learning envi-

ronments. The two principal topics of the thesis are then discussed: the use of

parallelism in RL, and the combination of symbolic planning and RL. The intro-

duction ends with a summary of the contributions of the thesis and an overview of

the content of the remaining chapters.

1.1 Reinforcement Learning

One of the primary goals of Artificial Intelligence (AI) is the creation of intelli-

gent agents (Russell and Norvig, 2003), which have the ability to sense external

18

stimuli, perceive the state of an environment, reason using knowledge about the

environment, learn from past experience in the environment, and act to affect the

environment according to internal goals. While each of these five abilities are con-
sidered to some degree in this work, the focus of the thesis is on learning in agents.
There are many advantages of giving an agent the ability to learn from experi-

ence. If the dynamics of ail environment are known to change over time, an agent

call gradually modify its action choices to maintain a good level of performance.
Adaptivity also adds some degree of robustness to an agent. If a situation arises
that the agent's designer did not foresee, it may still be possible for the agent to
learn ail acceptable behaviour for this unforeseen situation. In multi-agent systems
(Alonso et al., 2003), adaptivity can allow an agent to learn how to behave in a
particular group or configuration. This is particularly important in open multi-

agent systems, where new, unfamiliar agents may arrive at any time, and the agent
must learn quickly to perform well in their presence.

A reinforcement learning (RL) problem (Sutton and Barto, 1998) is most easily

characterized using the idea of ail agent situated in an environment. The state of
the environment call be observed by the agentl. At each time step in a discrete

series, the agent must select ail action to perform. After the action is performed,
the environment enters a new state. In addition, the agent receives a reward or

reinforcement for performing the action in that state. The reward indicates to the

agent whether the choice of the action was good or bad, and as a scalar quantity
it also indicates exactly how good or bad it was.

Ail important aspect of RL is reasoning about future rewards. It may be pos-

sible to achieve ail extremely large reward in the future if the correct sequence of
low-reward actions is followed. If this is the case, it is worth learning to follow this

particular sequence, since the total reward accumulated over time will be greater.
This leads to what is known as the temporal credit assignment problem. If after a
long series of actions a large reward is received, it can be difficult to identify which

of the actions in the sequence were instrumental in achieving the reward and which

of the actions were not required at all.
Q-1carning (Watkins, 1989), for example, is a popular RL algorithm which

effectively solves the temporal credit assignment problem. If the sets of states and

actions are finite, then under certain conditions Q-1earning is guaranteed in theory

to converge to ail optimal2 policy for choosing actions. Q-learning also performs

well in practice if the sets of states and actions are not too large. Good performance

with Q-1earning can even be achieved in some cases where the environment is non-
'Sometimes only part of the state may be directly observed, with other parts remaining hidden.
'Various criteria for optimality are given in Chapter 2.

19

stationary (where the dynamics are changing over time) or non-Markovian (when

there is some hidden state that cannot be directly observed).

1.2 The Curse of Dimensionality

Scaling-up reinforcement learning to more challenging learning environments is dif-

ficult because of the effect known as the curse of dimensionality, or alternatively

as the state space explosion. Standard RL algorithms make the assumption that

the learning environment can only be in one of a finite number of possible config-

urations. However, in most cases the state of the environment is naturally broken

down into a set of state variables, each of which can be assigned a finite number

of values. Complex learning environments tend to have many state variables, with

each state variable having a wide range of possible values. As more complex envi-

roninents are considered, the size of the overall state space increases rapidly. This

in turn produces a rapid growth in the time required to learn a near-optimal policy

with RL. Beyond a certain level of environmental complexity, RL algorithms which

enumerate every possible state of the environment are simply not feasible.

Further complications arise in domains with continuous state variables (e. g. a

robot situated in it three dimensional Euclidean space). While it is obviously pos-

sible to discretize these variables, even a coarse discretization of a few continuous

state variables will create a large number of states. It would be preferable to use

an algorithin which could deal directly with these continuous quantities.
In recent years there have been many techniques developed which allow mod-

ified RL algorithins to learn in some of these more complex domains. As part

of this thesis, I present a comprehensive survey of these techniques in Chapter 3.

Probably the most important addition to the standard RL algorithms is the use

of gertemlization. Generalization is possible when states of the environment which
have similar (but not identical) state features have a similar long term value. If

this is the case, the exact table-based data structure used by algorithms such as
Q-1carning can be replaced with a function approximation. Since experience in one

state will now affect the estimated values of lots of similar states, good policies may
be achieved much more quickly. A good set of features for the approximator must

usually be selected by hand, as is the case for most machine learning methods.
In this thesis, I examine two approaches to scaling-up reinforcement learning

which have received relatively little attention: the use of parallel computing to

reduce the time required to obtain a high-quality policy, and the use of symbolic

planning techniques in combination with reinforcement learning.

20

1.3 Parallelization and RL

While there has been considerable progress in pushing forward the frontier of what
is achievable with reinforcement learning, there remain many interesting problems
which are of borderline feasibility. Standard RL algorithms may take several hours

or even days of computation time to converge to a high quality policy for these

problems. Given the computational effort required, it is reasonable to ask the

question "can parallel computing hardware be used to obtain a high quality policy

more quickly than is currently possible on a uniprocessor computer? "
Despite the significant computational requirements of RL algorithms, there

has been very little research undertaken on parallel approaches to RL problems.
This is somewhat surprising, considering that parallel approaches to the closely
related problem of planning in Alark-ov decision processes (MDPs) have been fairly

well explored (Archibald, 1992; Wingate and Seppi, 2004). The lack of attention
may be related to the fact that the essentially sequential interaction between a

reinforcement learner and its environment does not yield directly to a natural

parallelization.
The reason that parallelism has relevance for RL arises from the predominant

use of simulated lcaT7iing environments for the purpose of training RL agents. If

an environment is simulated, it is relatively easy to situate a number of identical

instances of the simulation on different nodes of a parallel computer. If a set of

agents can interact with these instances in parallel, then by sharing intermediate

results it is likely that the set of agents can converge towards a high-quality policy

more quickly than a single agent learning in isolation.

The assumption of a simulated environment does exclude interesting cases such

as an embodied agent situated in a real-life environment, or a software agent learn-

ing whilst deployed in an unpredictable open multi-agent system. In practice,
however, generating experience in these non-simulated environments is usually ex-

pensive, and finding a high-quality policy for a large-scale RL problem will usually
involve some degree of environmental simulation. A parallelization technique which

requires a simulated environment will therefore be relevant for a wide range of ex-
isting problem domains.

Hence the first hypothesis to be investigated as part of this work is as follows:

Hypothesis I
It is possible to exploit parallel hardware in reinforcement learning

to achievc a speedup without sacrificing policy quality.

In this thesis, a series of increasingly efficient methods for parallel reinforcement
learning are presented. Each of these methods uses a set of agents, where each

21

agent resides on one node of a distributed-memory parallel computer. Each agent
interacts with a local instance of the simulated environment. The agents individ-

ually use standard RL techniques, including the use of generalization. Each agent
learns an approximate value function which is represented using linear function

approximation. Ensuring that the parallel method is effective in combination with

generalization ensures that the method will have practical use for the most difficult

RL problems, which are likelY to be infeasible without some degree of generaliza-

tion.

In the parallel method described in this work, the agents exchange information

about their policies (in the form of approximator weight values) over the intercon-

nection network of the parallel computing system. By using other agents' weight

values to modify the local approximator weights, agents as a group are able to con-

verge more quickly towards a high-quality policy. The agents are able to achieve
this without each agent being restricted to a small area of the problem state space.
All of the agents are able to explore the environment in an unrestricted manner.

The first parallel method presented in this thesis involves every agent broad-

casting its entire set of weights periodically. The impact of the communication

costs of this method means that a parallel speedup can only be achieved for a
limited number of problem doinains. Subsequent methods improve on the perfor-

inance of the first method, by prioritizing the communication of weights which have

recently undergone rapid change, and also with the effective use of asynchronous

message passing.
This thesis includes a wide-ranging empirical evaluation of these methods using

it cluster of Linux workstations. Five different example RL problems (some of which

are well-known benchmark problems for RL algorithms) are used to illustrate the

size of the speed-ups that can be achieved.

1.4 Symbolic Planning and RL

Symbolic planning (also known as classical planning), like reinforcement learning, is

a mechanisin for reasoning about useful sequences of actions. Unlike RL, symbolic

planning is typically applied to deterministic domains where the only objective is

to reach one of a set of goal states using the shortest number of actions. In addition,

the outcomes of actions are known a priori, and do not have to be learned through

trial and error.
Symbolic planning inethods use a relational representation of state, which is

generally based on a variant of first-order logic. Popular representations for sym-
bolic planning include the STRIPS representation (Fikes and Nilsson, 1971) and

22

the situation calculus (McCarthy, 1963). Relational representations of value func-

tions and policies have become increasingly popular for RL (van Otterlo, 2005) in

domains involving objects and inter-object relationships.
In contrast to most other work in this area, this thesis is not concerned with

relational versions of existing RL algorithms. Instead, one of the goals of the thesis

is to investigate synergistic combinations of symbolic planning and RL in a hybrid

approach. In the approach considered here, a symbolic plan forms the high level

structure of a solution to the learning problem, with RL being used to fill in the

low-level details of the solution. This approach is called PLANQ-learning within

this thesis, and the second hypothesis to be investigated as part of this work is as
follows:

Hypothesis 2
A hybrid planning-learning system based on a high-level STRIPS-

based planner and low-level reinforcement learning will exhibit better

scaling properties than both standard and hierarchical RL algorithms
for goal-oriented learning problems.

To evaluate how well PLANQ-learning scales up to larger problem instances, a fam-

ily of grid-world based learning problems is defined in this thesis. Progressively

more difficult problems (with larger state spaces) can be created by increasing the

value of a parameter which controls the size of the problem. This allows the perfor-

inance of a learning algorithin to be assessed as a quantitative measure of problem

scale is increased. In this work, it is shown that PLANQ-learning scales well to

some extremely large problems in this family, where alternative approaches such

as standard Q-learning and hierarchical reinforcement learning perform poorly.

1.5 Contributions

The work in this thesis focuses oil the use of parallelization and symbolic planning

as a source of techniques to scale-up reinforcement learning to large scale problems.
The principal contributions of the thesis are as follows:

1. A novel approach to parallel RL, where a group of agents learning in par-

allel can quickly find a high-quality solution to a single-agent RL problem
by peHodically exchanging approximator weights over an interconnection net-

work. In contrast to previous approaches, each agent may explore the entire

state-space of the problem, not being restricted to a sub-region of this space.

2. Three novel methods for parallel RL which are based on the above approach.
The visit-count merge method involves calculating a weighted average of the

23

agents' value function approximations to produce a merged value function.

The selective merge method is based on broadcasting each agent's largest re-

cent changes to its value function approximation. The asynchronous selective

merge method achieves an extra boost in performance by removing the need
for synchronization between the agents.

3. A wide-ranging empirical evaluation of the three parallel IRL methods. The

evaluation is based on the parallel speedups which can be achieved using
different numbers of nodes in a cluster of Linux workstations. Five different
learning problems are used in the evaluation. These learning problems vary
in difficulty but also exhibit a range of characteristics, such as the level of
stochasticity in the action effects, whether they are continuing or episodic
problems, and whether they are goal-oTiented problems.

4. The PLANQ-learning method, a novel combination of high-level STRIPS

planning and low-level reinforcement learning. Empirical evidence is pre-

sented in the thesis to show that PLANQ-learning scales significantly better

than both standard RL methods and hierarchical RL methods in learning

problems where the high level solution structure can be modelled with a
STRIPS knowledge base.

1.6 Thesis Structure

The remaining content of this thesis is structured as follows:

Chapter 2 presents an overview of basic reinforcement learning techniques.
The key concepts of agent, environment, state, action and reward are described.

The formalization of RL problems as Mark-ov decision processes (MDPs) is dis-

cussed, and details are provided of some of the standard RL algorithms, namely
Q-1carning, SARSA, TD-learning and policy search. Terminology useful for de-

scribing the characteristics of particular RL algorithms is introduced. Readers

already familiar with reinforcement learning techniques may prefer to skip this

section.
Chapter 3 contains an extensive survey of existing methods for scaling-up

reinforcement learning to larger, more difficult problems. The existing body of re-

search is divided into the following five broad categories: efficient exploration, value
function approximation, hierarchical reinforcement learning, symbolic representa-
tions, and parallel reinforcement learning. For each of these categories, common
threads of existing research are grouped together, and within each category I will

assess the potential of these techniques for reducing the impact of the curse of

24

dimensionality.

Chapter 4 begins with a motivation for the use of parallel hardware to per-
form RL, and goes on to state the assumptions underlying the work on parallel RL

presented in the thesis. The basic operation of a parallel approach where a group of

parallel agents merge their value function approximations is then presented. The

criteria used to evaluate the parallel methods in the thesis are given, including a de-

scription of each of the single-agent learning domains which will be used to produce
benchmark results. A number of different mechanisms to merge tile approximator

weights are proposed, and are first evaluated using a simulation of parallel agents.
The most successful of these mechanisms, the visit-count merge method, is also

evaluated in a more realistic setting, using a cluster of Linux workstations. As

part of the evaluation, results are presented that show how communication be-

tween the agents is a vital component of the proposed parallel approach. Tile

effect oil performance of the choice of how often tile agents exchange information

is also examined.
Chapter 5 introduces a new approach to the use of communication in tile par-

allel method. Rather than exchanging the absolute values of approximator weights

over the network, agents instead broadcast the recent changes observed in their

local weight value. In addition, agents no longer communicate information about

till their weights, only the ones which have undergone the greatest recent change.
This approach is known here as the selective merge method. Since each agent now

only communicates partial information about how its weights have changed, a new

mechanism is required for combining information received from other members of

the group. This mechanism is known as a combination function. Several candi-
dates for the combination function are proposed, and each is evaluated using tile

cluster of workstations. While different combination functions produce the best

performance in different learning problems, the overall performance using any of

the combination functions is much better than that achieved with the visit-count

merge method in Chapter 4.

Chapter 6 presents a method which builds on the selective merge method
defined in Chapter 5, and increases tile parallel speedup that can be achieved
by eliminating the synchronization penalty involved in the selective merge. Tile

methods proposed in Chapters 4 and 5 have a distinct communication phase, where

each agent broadcasts information to the other agents and "vaits to receive all tile

information before updating its local value function. Tile asynchronous selective

7neryc method oil the other hand has no distinct phase of communication. Instead,

each agent call decide independently when to inform other agents of changes to

its value ftinction, and incoming messages can be used to update tile local value

25 UNIVERSITY
OF YORK

I

LOW
"I

function as soon as they arrive. Since updates to the value function approximator

must now be derived from individual incoming messages, a different mechanism is

required for asynchronous updates. Several update functions are proposed for this

mechanism, and their performance is evaluated using the cluster of workstations.
One of these update functions is shown to produce the best aggregate performance

over all the example domains, producing large improvements in performance over

the previous synchronous methods.
With Chapter 7 we leave the topic of parallelism, and begin an investigation of

how symbolic planning can be combined with reinforcement learning to producing

it hybrid method which exhibits good scaling properties. The PLANQ-learning

method is defined, which combines high-level STRIPS planning with low-level Q-

learning. A family of grid-world evaluation domains is presented, which can be

scaled up quantitatively to more difficult problems by modifying one of the domain

parameters. An initial comparison of this method with the standard Q-learning

algorithm shows that PLANQ performs significantly better in smaller domains,

but that this advantage decreases as larger domains are considered. An analysis

shows that this effect is due to the lack of a state- abstraction mechanism. This

Inechanisin is added to PLANQ, which is then compared with the hierarchical

I-ISNIQ-1carning algorithm, which can exploit the same state abstraction. The

results of the evaluation show that PLANQ always requires fewer environmental
time steps than HSNIQ to converge to a high-quality policy, and in addition that

less total computation time is required by PLANQ once the learning domain exceeds

it certain size. PLANQ is shown to remain feasible for much larger learning domains

than IiSNIQ.

In Chapter 8 the overall conclusions of this thesis are drawn. Both the suc-

cesses and shortcomings of the techniques presented in this work are examined.
The potential for future research to extend this work is also assessed, with some

of the important remaining questions being sketched in some detail.

26

Chapter 2

Background: Reinforcement

Learning

This chapter provides a basic introduction to reinforcement learning (RL). As well

as introducing standard RL concepts, the chapter also presents the formal basis

of RL using the Alark-ov decision process (MDP). Algorithms for planning and
learning in XIDPs are presented, as well as the terminology required to describe

different aspects of these algorithms. Finally, the concept of partial observability
in RL is described.

A reader who is already familiar with these concepts may wish to skim through

this material and proceed on to Chapter 3, which presents an extensive review

of existing methods for scaling-up RL to large-scale problems. Alternatively, for a

more comprehensive introduction to basic RL techniques, the reader should refer to

either Sutton and Barto (1998), Kaelbling et al. (1996) or Bertsekas and Tsitsiklis

(1996).

2.1 Basic Concepts

The concept of it reinforcement learning problem is easiest to describe by consid-

cring an agent situated in some environment, as shown in Figure 2.1. The agent

can sense information about the state of the environment. The agent can also

affect the environment by taking one of a set of actions available to it. After each

action is taken, the agent receives a feedback signal from the environment called
the reward, which determines how well the agent is performing the target task in

the environment. The goal in a reinforcement learning problem is to learn which

action to take in each state to Maximize some measure of optimality based on the

rewards received over time.
Formulating a learning problem in this way has a number of advantages. In

27

Reward Signal

< Sensors (state)

I Effectors (action>%)

Agent Environment

Fil-mv 2.1: Thc bwsic components of a reinforccinent learning problem.

(. ()lit rmst to a S11111 r-risf d learning method. it is not necessary to have a set of

training example-, alilwtated with the action for the agent. Initiall. v the

agent (alld (well the designer) can be c(mipletcly igniorant of the best action for

'111N, statc. It iý, also) 11111lecessarv to have all existill" ilmdel of how actions affect

the enviromment. As Imig Is the relvard filliction characterizes which situations

jil-v the III(). -, t flesirable fOr a given twsk. and the sets of Imssible states and actions

lure known. a reini'm-cement learning algorithm can find the ()ptinial action c1mice

fin- cach State.
livillfin-ccinclit learning is a natural choice for agent-bmsed problems in arews

like wit(nionko"s "()I)()ti('s (Stone, 1998) and virtual environments (Guestrin et al.,

9()(H). I It iwcvcr. reinforceinvio learning can also be very useful in domains not typ-

icallY dial-aclerisf-d ius agcnt problems. such ms low-level motor control (Kirchner,

199S). (I. N. 11amic chalulf-I ailm-ation (Singh and Bertsekas. 1996). and search-control

fon- ý-'clicdlllillg pr(oblems (Zhang and Dietterich, 1995).

2.2 The Nlarkov Decision Process

'N lli%'4'11 I'Villf()I-Acillent lcarniw, pr(A)lcin can be fOrnialized its it Afarkov Dcci, slorl
(11clinum. 1957) or NIDP. An example of an NIDP is shown in Figure 2.2.

An M DI I iý, fivscribed by it t uple <- S. A. T, I? > where:

0SI., the Set of possible staff's.

40 A I., t lic Set of available actions.

0 T(s, a. S,)- [(). I I is t he fran-Sitio it function defining t Ile prohabi I it N, (I istri-

hution p(S'j. S. a). the pr(Ombilitly that taking action a in state s will result in

a transition to state St.

2S

Pr = 0.8

r=5 Pr = 0.2 b
ab S5 sl

abba

S4 b
S2

aa
S3

Figure 2.2: A Markov Decision Process with five states, two actions (a and b), and

a single stochastic transition. Reward is assumed to be zero if not marked for a
transition.

e R(s, a, s') -R is the reward function defining the expected reward' received

when such a transition is made.

A particular strategy for choosing actions in an MDP is known as a policy, and
is specified formally as a function 7r(s, a) --+ (0,1], which defines the probability

p(als) of selecting each action in a given state. Writing 7rt for the policy at time t,

if the policy changes over time (7ri, :A 7rt,) then the series 1-7ro, 71) 7r2, ...
I is said to

be a non-statiortary policy. A stationar-y policy 7r has the property that Vt. 7rt = 7r.
A detenninistic policy, usually written as 7r(s), maps each state with probability

I to 11 Single action.
To compare different policies, it is necessary to define an optimality criterion,

a measure of the quality of a particular policy. A number of different optimality

criteria have been defined, of which the most common are given below. Here rt
is the reward received after taking an action on time step t. The notation EI}

indicates the cz-7)cciation of the expression in the braces given that policy 7r will
be used to select actions. For the third criterion we also require a discount factor

,yE [0,1).

9 Total Return over a Finite Horizon
N-1

optiinality(7r) =E7r E rt
I
t=O

e Average Returm over art Infinite Horizon

optiinality(7r) = E, lim
N-1

rt
N-oo

E
t=O

'Each transition can potentially havc its own random distribution of rewards, so to fully specify
the NIDP, we should also specify these distributions. ror defining optimality criteria and most

algorithms, modelling the expected value for each transition is sufficient.

29

9 Total Discounted Return over an Infinite Horizon

00
optimality(7r)

E7r E
ly

t
rt

t

t=O

I

Of these, the total discounted return over an infinite horizon is the most common

and well-understood optimality criterion, and this is the one that will be used from

this point forward. For further information on average reward and finite horizon

MDPs the reader is referred to Bertsekas (2001).

Here we define a value function V'(s) as the expected total discounted return

when starting in state s and using policy 7r to choose actions (assuming some fixed

value of -y). Intuitively, V(s) represents the utility of a particular state of the

MDP under policy 7r. The discount factor -y is used to determine the relative

worth of future rewards in comparison to rewards available immediately in the

current state. The value of -y is chosen to be less than 1 to give V'(s) a finite

value for each state. The values of V'(s) at different states can be related using
the transition and reward functions as follows:

V'(s) =
1: E

7r(s, a). T(s, a, s'). [R(s, a, s') + -yV'(s')]
a s'

This formula, which forms the foundations of most of the algorithms for plan-

ning and learning in MDPs, relates the value of a state to the expected immediate

reward in that state and the value of the successor state(s).
An optimal policy 7r* is a policy which, according to our optimality criterion,

performs better in the MDP than any other policy 7r. More formally, the policy

ir* satisfies:

V7rVS.
(V'*(s)

ý! V'(s))

While the goal of MDP planning and learning is usually to find 7r*, MDP solu-
tion methods are often based on a calculation of the value function for the optimal

policy V'*, also denoted by V*. Once V* has been calculated, the parameters of
the MDP can be used to calculate an optimal deterministic policy 7r*:

7r* (s) = arg inax 1: T(s, a, s') [R(s, a, s) + -f V* (s')] (2.1)
a

st

2.3 Planning in MDPs

If all the parameters of the MDP (S, A, T and R) are known, dynamic programming

methods (Bellman, 1957) can be used to determine the optimal policy and value

30

function. An important algorithm for dynamic programming is value iteration, a

method for calculating V*. The algorithm represents (with a table of real numbers)

a current estimate of V*(s) for each state s. We will write this estimate as V(s).

Before the algorithm begins the values in the table may be initialized arbitrarily.
The algorithm is based on re-estimating each V(s) based on the current value

estimates for the successor states of s. Each re-estimating update to the table of

values is known as a Bellman back-up, and is defined as:

V(s) 4-- max 1: T(s, a, s') [R(s, a, s') + -yV(s)] a
51

It can be shown that by repeatedly iterating over the set of states and perform-
ing the Bellman backup for each state in the table of values, each V(s) value will

eventually converge to V*(s).

Policy iteration is another important dynamic programming algorithm, which

consists of alternate periods of estimation and maximization. Given a deterministic

starting policy 7ro, another form of value iteration is used to estimate the value
function V'O for that policy. We use the following update rule:

V(s) +--
1: T(s, -7ro(s), s') [R(s, 7ro(s), s') + -yV(s')]

sl

By iterating over the set of states, each V(s) value will converge to V 7ro (5)

using this update rule. Once the value function is sufficiently well estimated, a

new improved policy 7ri is constructed by maximizing based on V'O. We make

greedy choices at each state based on the values of successor states, using the
following formula:

, 7r, (s) = arg max E T(s, a, s') [R(s, a, s) + -yV'O (s')]
a

st

Now we can go oil to calculate VII in the next estimation phase, and make

greedy choices in this new value function to find W2. These alternating phases of

estimation and maximization are repeated until two subsequent policies 7rn and

7r, +, are unchanged, at which point the algorithm has converged.

2.4 Learning in MDPs

Reinforcement learning algorithms operate under different assumptions than algo-

rithms for MDP planning. The only parameters of the MDP known at the start of
learning are the state and action sets S and A. The transition and reward functions

T and R must be estimated during learning by interaction with the environment.

31

Despite these differences, MDP planning and RL are closely related, and most RL

algorithms are based on either a value iteration or a policy iteration approach.
To determine the optimal policy 7r* for a reinforcement learning problem, it

is insufficient to learn V*, since Equation 2.1 cannot be applied if T and R are

unknown. One way to calculate both V* and 7r* is to learn the related function

Q*(s, a), defined as:

(s, a) =E T(s, a, s')
[R(s,

a, s') + -y max Q* (s, a')
st

a'

I

While V* (s) is the optimal value function defined over states, Q* (s, a) is the

optimal value function defined over state-action pairs. From Q* (s, a) ive can readily
calculate both V* and 7r* as follows:

(s) = max Q* (s, a) a

7r* (s) = arg max Q* (s, a) a

Q-Icarning

The Q-learning algorithm (Watkins, 1989) is a method for learning the Q* function,

and is probably the most well known reinforcement learning algorithm. It is popu-
lar both for its simplicity of implementation and its strong theoretical convergence

results, and it exhibits good learning performance in practice.
Q-learning is similar to the value iteration dynamic programming method, in

that a table of real numbers is used to store the current estimate Q(s, a) of Q*

for each s and a, and that re-estimation is made on the basis of the estimates of

successor states. Each value in the table is initialized arbitrarily, usually by setting
it to zero or assigning it a small random value. An experience tuple < s, a, r, s' >
is a small excerpt from the trace of an agent's interaction with the environment.
The full trace has the form Iso, ao, ro, si, al, ri, 52, ... 1. As experience tuples are

generated through interaction with the environment, the value function is updated

using the following rule:

(s, a) a) Q (s, a) +a (r + -y max Q (s', a')) a'

The learning rate aE [0,1] determines the extent to which the existing Q(s, a)

estimate contributes to the new estimate. The purpose of the learning rate is to

allow each Q(s, a) estimate to slowly converge to the expected future rewards in

the face of stochastic MDP transitions (or a stochastic reward function). In theory,

32

this algorithm is guaranteed to converge to the optimal value function Q* as long

as each state-action pair is visited an infinite number of times in the limit and the

value of a is decayed in the correct way (Watkins and Dayan, 1992). To achieve

good results in practice, a careful choice of exploration strategy is required.
An exploration strategy is a mechanism for making a trade-off between explo-

ration and exploitation. Exploration introduces randomness into the action choice,
in order to explore the state space for rewards which have not yet been encoun-
tered. In contrast, exploitation is the choosing of actions which lead to the best

rewards discovered so far. Usually a strategy will start off taking mainly explo-

rative actions, introducing a greater proportion of exploitative actions as learning

proceeds. A good choice of exploration strategy is a prerequisite for timely con-

vergence in practice. Exploration strategies are discussed in more detail in Section

3.3.

SARSA

The SARSA algorithm (Rummery and Niranjan, 1994) is closely related to Q-

learning. It uses the same data structure (a table of state-action values) and has a

very similar update rule. However, while Q-learning converges to the optimal value
function Q* (s, a), the SARSA algorithm converges to the value function Q 7r (s, a).
Assume for the moment that 7r is stationary, i. e. the action choice in each state is

fixed, and is not affected by the current value estimates or any exploration policy.
The value of Q' (s, a) in this context is the expected return if we start in state 8,

execute action a, then use policy 7r to choose all subsequent actions.
The algorithm gets its name' from the letters used in the experience tuples

generated during learning. If the agent takes action a in state s, receives reward r,

and then proceeds in the next time step to take action a' in state s', the experience
tuple < s, a, r, si, at > is generated. The rule to update the value function based

on this tuple is:

Q (s , a) *-- (1 - a) Q (s, a) +a (r + yQ (s', a'))
The update rule differs from Q-learning in the way that the successor state

value is estimated. In Q-learning the maximum value out of all the actions in

the successor state is used as the estimate. In SARSA the value of the action

actually chosen by the learning agent at the next time step is used instead. A

'Rummery and Niranjan (1994) actually called this algorithm Modified Q-1carning (MQ-L),
but the alternative SARSA designation popularized by Sutton (1996) is the one which seems to

have stuck.

33

slight modification to the proof of Jaakkola et al. (1994) can be used to establish
the theoretical convergence of SARSA to the value function Q'.

In addition, the SARSA algorithm can also be used to learn the optimal value
function Q*. This is achieved by relaxing the restriction that 7r has to be stationary.
If the learner can take exploratory actions, but gradually tends towards greedy

choices in the estimated value function, then the estimates will converge towards
Q* instead of Q'. Singh et al. (2000) provide a theoretical proof that SARSA

will converge to Q* when an appropriate exploration strategy is employed. This

approach also works well in practice, and we shall see later that it is preferable to

the Q-learning algorithm in some specific situations.

TD(A)

Tile reinforcement learning algorithms discussed so far, Q-Learning and SARSA,

both update the value of state-action pairs based upon the estimated value of
the state one time step later. An alternative to this approach is to also use the

estimated values of states encountered two or more time steps later to re-estimate
the original state's value. This is the intuitive idea behind the TD(A) algorithm
(Sutton, 1988).

TD(, \) learns the state value function V' for the control policy 7r used by the

agent to select actions. Because TD(A) does not learn individual action values, it is

most useful when we are only concerned with evaluating the quality of an existing

policy, or if there is some external model of transition behaviour.

A parameter A (where 0<A< 1) is used to determine the degree to which the

value of a state encountered n time steps later contributes to the value of the state
being updated. The value of the state n steps later contributes a factor of An-,

less than the immediate successor state.
TD(A) is usually implemented using an eligibility trace. The eligibility trace for

a state s is a value e, which determines the extent to which s should be updated

using the value of the current state st. At every time step each of the e, values is

updated as follows 3:

-yAe,, if s St
e,

yAe,, +I if s st

Once the eligibility trace values have been updated, the current estimate of

each state value can also be updated:
'An eligibility trace updated in this way is known as an accumulating trace. An alternative

approach is the replacing trace which sets the eligibility of the current state to 1 instead of
incrementing it by 1.

34

Jt +- rt+l + -yV(st+,) - V(st)

V(s) 4-- V(s) + ae, Jt

The best value for A varies depending on the problem being solved. TD(A)

with a good choice of A generally converges after fewer steps in the environment
than TD(O) (which only uses the value of the immediate successor state in each
update). This improvement in convergence speed has resulted in eligibility traces
being more widely applied in reinforcement learning algorithms. For instance,
SARSA and Q-learning have been extended with eligibility traces to produce the
SARSA(A) algorithm (Rummery, 1995) and two different Q(A) variants developed

by Watkins (1989) and Peng and Williams (1996) respectively.
A theoretical proof of convergence of the TD(A) algorithm is given in Jaakkola

et al. (1994).

Policy Search

It is worth noting that not all algorithms for solving RL problems necessarily in-

volve the manipulation of value function data structures. A number of researchers,

notably in the area of autonomous robotics, have found that in some situations
it is better to avoid value functions all together, retain only some form of policy

representation, and search in a space of policies. In these methods, the policy is

usually specified as a parameterized function 7r(s, ý), making the goal of the search
to find a good set of parameters W. The major advantage of this approach is that an

agent designer's prior knowledge about what kind of structure good policies should
have can be embedded into the parameterized function 7r, leaving the fine-tuning

of the parameter vector Wto the agent itself. This is a much easier task than trying

to learn a non-structured value function for a complex structured task.
Each policy that is considered as part of the search must be evaluated to de-

termine its quality compared to other policies that have been considered. The

efficient use of sampled experience to compare the quality of policies is one of the

topics studied by Peslikin (2001). Typically the search strategy is to determine the

gradient in the policy quality with respect to the parameters ý and adjust the pa-

rameters in the direction of the gradient's steepest ascent (Williams, 1992; Baxter

and Bartlett, 2000). Alternative search strategies include exhaustive enumeration

over a finite horizon (Pynadath and Tambe, 2002) and global search methods such

as genetic algorithms and simulated annealing (Rosenstein and Barto, 2001).

35

2.5 Properties of Reinforcement Learning Algorithms

There are many other RL algorithms which will not be covered in detail here.

However, it will be useful for the discussion in subsequent sections to define a

number of features which can be used to classify different RL algorithms.

Online vs. Offline

If an algorithm is intended to interact directly with the environment and learn

new information after each action is taken, it is termed an online algorithm. If

instead the algorithm is designed to learn from an execution trace which records
the states, actions and rewards which occurred during an episode interacting with
the environment, it is termed an offline algorithm.

On-policy vs. Off-policy

Algorithms which learn a state-action value function from the experiences gener-

ated by an agent following a control policy 7r can be classed as one of two types.
An on-policy algorithm learns the value function Q1, i. e. the value function for

the policy being followed by the agent. SARSA is an example of an on-policy

algorithm.
An off-policy algorithm learns the optimal value function Q* no matter which

control policy 7r is followed 4. The control policy 7r may be completely unrelated to

the optimal policy 7r*. Q-learning is an example of an off-policy algorithm.
On-policy algorithms can also be used to learn Q*, but only if the agent grad-

ually adapts its control policy towards greedy choices in the estimated value func-

tion. Off-policy algorithms allow a more flexible choice of control policy, but can
be problematic in combination with function approximation (see Section 3.4).

Model-based vs. Model-free

A model-based reinforcement learning algorithm is one which builds an explicit

model of an MDP which describes the learning agent's environment. The parame-
ters of this model are estimated based on the experiences acquired by interacting

with the environment. This MDP model can then be used either to simulate ex-

periences for the learning algorithm, or to perform Bellman backup operations in

the current (estimated) value function. In both cases, convergence to the optimal

value function can be obtained after fewer experiences in the environment, at the
'As long as there is sufficient exploration of the state space. Policy 7r must visit every state-

action pair infinitely often as time goes to infinity.

36

expense of more computation time per step in the environment. Prioritized sweep-
ing (Moore and Atkeson, 1993) is a good example of a model-based algorithm.
An algorithm such as Q-learning which builds no MDP model, and learns based

on value function updates from experience tuples only, is known as a model-free

algorithm.

Complexity Measures

The efficiency of RL algorithms in terms of various resources can be compared

using the following complexity measures:

Mernory Cornplexity The amount of memory required for data structures to
learn and store a near-optimal policy.

Sample Complexity The number of experience tuples obtained from interaction

with the environment required to learn a near-optimal policy.

Computational Complexity The computation time expended to process a sin-

gle experience tuple after interacting with the environment.

Selecting a reinforcement learning algorithm for a particular domain often involves

a trade-off between sample complexity and computational complexity. In domains

where experiences in the environment are time-consuming or expensive, such as in

autonomous robotics, minimizing sample complexity will be the primary concern.
In other domains where simulated environments can be used to generate fast, cheap

experience, a simpler method with a worse sample complexity may be preferred if

this reduces the required learning time.

2.6 Partial Observability

An implicit assumption underlying the discussion so far is that the learning agent

can detect with 100% accuracy the complete current state of the environment,

and use this state to make the optimal action choice. In most real-world domains

this assumption does not hold, and the true state of the environment is always

uncertain. Autonomous mobile robotics is a good example of such a domain.

Robotic sensors tend to be noisy, reporting imperfect information about the world.
Robots are also situated at some location of the world, which means that the robot

may only be able to observe events which take place at the same location. Events

which occur at other locations may remain unknown for some time.
To formalise the notion of a problem which is only partially observable, we can

extend the definition of an MDP (see Section 2.2) to define a partially-observable

37

Markov Decision Process, or POMDP. An example of a POMDP is shown in Figure
2.3. A POMDP is described by a tuple < S, A) T, R, Q, 0 >, where S, A, T and
R have the same definitions as in the MDP. The first additional parameter Q is

a finite set of observations which represent the possible experiences the agent can
have at each time step. The second parameter is a function O(s, a, o) --ý [0,1]

which defines the probability of making observation oE 11 after taking action a
and ending up in state s'. Note that one and only one member of Q is observed
on each time step.

a I, o5
___ /--) al, o7

a2,06
S2

r=5
a2,02

al, 03_/a2,04

(S, 2 al, ol

Pr = 0.4

Pr = 0.6

Figure 2.3: POMDP with four states, two actions, seven observations, and a single

stochastic transition. Reward is assumed to be zero if not marked for a transition.

If all the parameters of the POMDP are known, and JSJ, JAJ and JQJ are all fairly

small, then an exact solution of the POMDP can be found. A POMDP induces

an MDP over belief states. Each element bi of the current belief state 9 represents
the probability that the current state is si. The state space of the induced MDP

is the continuous space of beliefs B. In addition, the optimal t-step value function

Vt(g) (the value of a belief state given that we can only take t further actions)
has a piecewise- linear form. This means we can represent each Vt as a finite set

of vectors. With this representation we can use value-iteration to calculate Vt for

increasing values of t, gradually approaching the infinite horizon value function V*.

Some examples of exact POMDP algorithms are the witness algorithm (Kaelbling

et al., 1998), Incremental Pruning (Cassandra et al., 1997) and the linear support

algorithm (Cheng, 1988).

The complexity of exact POMDP algorithms is such that they are only appro-

priate for solving quite small problems. Pineau et al. (2003) present an approach

similar to the exact methods, but limit the number of vectors that can be used
to represent the intermediate value functions, resulting in a close approximation
to the optimum for medium-sized POMDPs. For POMDPs with a large number

of states, explicitly representing the belief state ý and performing a full Bayesian

38

update each time step is infeasible, so some researchers have investigated approxi-
mate belief state representations, such as the approach by Roy and Gordon (2002)
based on principal component analysis.

There are also a variety of approaches which avoid value iteration over belief

states. Simmons and Koenig (1995) solve an POMDP problem as if the underlying
states were fully observable, and use the resulting MDP solution as a heuristic to

guide action choice in the POMDP - Policy search can also be used to exhaustively
evaluate policies over a finite horizon (Pynadath and Tambe, 2002).

Empirical studies of POMDP planning have shown it to be much harder than
MDP planning, a view which is supported by complexity results for the two plan-
ning problems (Madani, 2000). Learning in POMDP environments is possibly even
more difficult, since a typical partially observable RL setting would involve experi-
ence tuples of the form < at, ot, rt >, with the agent having no prior knowledge of
T) R, or 0, and often not knowing the number of underlying states IS1. Estimat-
ing these unknown parameters is similar to the task of learning a Hidden Markov
Model from observed data, but researchers who have modified the Baum-Welch

algorithm (Rabiner, 1989) to learn POMDP models have found that this approach
is computationally expensive (Chrisman, 1992; McCallum, 1996). An alternative
approach is to learn a predictive model (Chrisman, 1992) to estimate the number
and properties of the hidden states. This model may be based on a memory which
stores the most recent actions and observations (Lin and Mitchell, 1992; McCal-
lum, 1996), or use a more complex representation such as that of TD Networks
(Tanner and Sutton, 2005) or predictive state representations (Wolfe et al., 2005).
The predictive model can either be used to build an explicit POMDP model for

planning, or combined with a model-free learning algorithm, using the predictive
model only to identify the current hidden state.

In some circumstances it is possible to learn in a POMDP environment in a
completely model-free fashion, with no attempt to identify the hidden state. For

example, the HQ-learning algorithm (Wiering and Schmidliuber, 1997) is a hier-

archical model-free approach to learning in goal-oriented POMI)Ps. HQ-1earning
is applicable when the task of reaching the goal is a linear sequence of sub-tasks,
where each sub-task can be solved with a reactive policy mapping observations to

actions5. HQ-1earning relies on an implicit memory of past observations, since the

active sub-task is an indicator of progress along the sequence. There are other
model-free approaches (Littman, 1994; Cliff and Ross, 1994) which use explicit
memonj bits to record some part of the observation history. These approaches
have a key advantage over a finite history window in that an agent can remember

'HQ-Iearning is described in more detail on page 71.

39

the important parts of the observation history compactly, even if the observations
happened an arbitrarily long time in the past.

Partial-observability adds a further dimension of difficulty to many real-life

problems. While much progress has been made in POMDP planning, state of the

art algorithms remain computationally expensive, and representations for learning

in POMDP environments are still evolving. Given the difficulty of planning and
learning in POMDPs, modelling a large RL problem as a POMDP is impractical.

It is likely in future that hierarchical environment models will limit the use of
POMDP techniques to small sub-problems (see section 3.5 for a survey of existing
hierarchical RL methods). Partial observability is a minor topic in this thesis,

which will mostly be concerned with fully observable problems that can be modelled

as MDPs.

40

Chapter 3

Background: Scaling-Up RL

In this chapter, tile focus of attention is shifted to the problem of reinforcement
learning in large-scale domains. The state-space explosion is presented as the pri-
mary challenge to overcome in order to scale-up RL. A wide range of techniques
have been proposed for this purpose. A categorization of these techniques is de-
fined in Section 3.2. Each category denotes a family of techniques which can be

used to modify standard RL algorithms to allow them to be applied to a wider
range of problems. This categorization is used to structure a comprehensive survey
of existing techniques for scaling-up RL. At the end of the chapter, some broad

conclusions are drawn from the complete survey.

3.1 The State Space Explosion

Reinforcement learning has been applied successfully in a variety of domains. It

is an attractive approach when, for example, it is easier to define a good reward
function than a full model of the environment, or when an environment is easily

simulated but the principles behind an optimal policy for that environment are

poorly understood. However, there remain many RL problems with no known

optimal policy that are infeasible to solve with standard algorithms. Once the

space of state-action pairs grows beyond a certain size, the time for standard

algorithms to converge becomes too great, and in some situations there may not

even be enough memory to store the entire table of state-action values. Standard

algorithms are also based on a finite space of state-action pairs. There are many
interesting learning problems where the state-action space is infinite, and usually
in such cases the space is also continuous.

The key problem which arises when reinforcement learning is applied to large-

scale problems is referred to as the state space explosion. It was also described
by Bellman (1957) as the curse of dimensionality. The "flat" state space S used

41

by a traditional reinforcement learner can usually be expressed as the Cartesian

product of n simpler state variables, X1 x X2 x ... x Xn. Even if these were only
binary state variables, ISI would be equal to 2'. As we scale-up to larger problems
by increasing the number of state variables, the size of the state space S grows

exponentially. Since the time required to learn an optimal policy grows at least as
fast as the size of the state space for existing table-based RL algorithms (Strehl

et al., 2006), the learning time will also grow exponentially as n is increased.
It is clear that in the fully general case of an arbitrary MDP with 2n states

(still assuming binary state variables), there is an inescapable limit on how large

we can allow n to grow and still be able to find the optimal policy in a feasible

time. Thankfully, real-life learning problems rarely exhibit the full generality of an

unconstrained MDP. In a particular region of the state space, there may be only

a few state variables which are relevant to the action choice. Alternatively, there

may be a large group of states with similar state features which can be considered
interchangeable in terms of state value and optimal action choice.

3.2 Categorization of Scaling-Up Techniques

In recent years, a wide range of techniques have been proposed to tackle the prob-
lem of scaling-up RL methods to solve larger and more difficult learning problems.
To structure the survey of these existing techniques, they will be classified into the
following five categories:

Exploration Strategy Since an RL agent begins with no knowledge of its envi-

ronment, the agent must take explorative actions to discover the effects of

each action and the states which contain large rewards. Once an environ-

ment has been well-explored, the agent normally tends towards exploitative

actions which lead to the best rewards. To speed up the learning process,

some researchers have focused on reducing the number of explorative actions

required to learn the behaviour of the environment, meaning that the agent

can move more quickly to exploit the rewards.

Value Function Approximation Many RL algorithms are based on a value
function data structure. In its simplest form, a value function is a table of

numbers which stores for each state an estimate of expected future reward.
For large state spaces, representing an exact value function not only uses

a lot of memory, but also causes many algorithms to converge more slowly.
Replacing the exact table with an approximation means that the learning

agent requires less memory and is better able to generalize from experience.

42

Hierarchical Reinforcement Learning In order to speed up learning, hierar-

chical RL methods employ a divide and conquer approach. An RL problem
is decomposed into smaller sub-problems, and the results are combined to

generate the overall policy. The problem decomposition can be carried out
by creating an abstraction hierarchy of actions (temporal abstraction) and/or

of states (state abstraction).

Symbolic Representations for Reinforcement Learning A symbolic repre-

sentation of states and actions is often more compact than the extensional

representation (which explicitly enumerates each state) used by standard RL

algorithms. Symbolic representations also support mechanisms for reason-
ing using acquired knowledge, which can be used to accelerate the learning

process.

Parallel Reinforcement Learning A number of agents learning in parallel can
be used to find optimal policies for single-agent learning problems more

quickly than a single agent learning in isolation. These methods can exploit
the computing power of systems such as multiprocessor computers, clusters

of computers and grid computing systems. The agents combine their results
through a communication medium such as a shared memory or a network
which supports message passing.

In the following five sections I will survey existing work in each of these categories to

determine in each case the advantages and disadvantages of the general approach,
tile types of problem which will benefit most from the techniques in each category,

and the limitations which are evident in each case.

3.3 Exploration Strategy

A key property of the standard reinforcement learning setting is that the agent ini-

tially has no information about the way the environment behaves. The dynamics of
the environment (Le. the transition and reward functions) can only be determined

by performing actions in the environment and observing the results.
The goal in reinforcement learning is to find the optimal policy. But because the

environment is initially unknown, there emerges a fundamental trade-off between

choosing actions to gather information about the environment and choosing the

actions which have (so far) proved to lead to the greatest rewards. This is usually
described as a trade-off between exploration and exploitation.

Exploration Actions are chosen with the goal of discovering new information

about the reward and transition behaviour of the environment.

43

Exploitation Actions are chosen which are likely to lead to the greatest rewards

which have been discovered so far during learning.

Theoretical results in RL are usually based the notion of asymptotic optimality.
An RL algorithm is asymptotically optimal if over an infinite learning time the

algorithm is guaranteed to reach a point when all subsequent action choices are

optimal. Applying RL algorithms in practice, however, requires that the learning

time be both finite and feasibly short. In practice it cannot generally be guaranteed
that an optimal policy will be learned. The best we can do is establish a high

probability that a policy close to optimal will be learned in the available time.

Sometimes an RL task is formulated as entirely separate phases of exploration

and exploitation. The initial exploration phase could simply be used to build

as accurate a model of the environment as possible. This is known as system
identification, an approach which essentially ignores the reward function during

learning. Dynamic programming can then be used to determine a policy for the

exploitation phase based on the learned model.
However, not all information about the environment is of equal value to the

agent. During the exploitation phase the agent's goal is to accumulate rewards.
Information about how large rewards can be obtained is more valuable to the

agent than any other information about the environment. The specific problem

of exploration for future exploitation was identified and investigated by Wyatt

(1997). Note that during a separate exploration phase the accumulated reward
is unimportant-the goal is simply to learn as much as possible about where the

rewards are.
Separate exploration and exploitation phases are rare however, and usually

some form of exploration strategy is used to choose actions. An exploration strategy

encapsulates both exploration and exploitation in a single algorithm for action

selection. It provides a trade-off between early exploration (to learn about the

environment) and later exploration (to maximize reward). Exploration strategies

which are partially exploitative are very effective in practice, regardless of whether

the reward accumulated during learning is considered important'. This is because

they tend to focus the exploration effort around paths in the MDP which lead to

large rewards, as shown in Figure 3.1. This means that a suboptimal path leading

to a reward can be quickly refined to the path which achieves that particular reward

most quickly. However, random exploration away from such paths is still required

to find larger rewards which have not yet been encountered.
'The difference in accumulated reward between the agent during learning and the optimal

policy is known as tile regret.

44

space

4t
ý

-- ý

0 Current state

Large reward

-
Best path so far

Focus of exploration

NP(h C

lei

Uniformly random strategy Mostly greedy strategy
with some randomness

Ii

Fip,, ure 3.1: Exploration policies which are also partially exploitative focus the n
exploration effort armind paths which are already known to lead to large rewards.

The choice ()f exploration strategy is critical to achieving timely convergence
to the optimal If there is insufficient exploration. the algorithin is likely to

converge to a sid)-optimal policY. If exploitation is delayed too long, the exploration
effort will be spread too) thinly over the state space and convergence will be slow.

3.3.1 Common Exploration Strategies

The tA, () most con"'ImIlY "sed explm-ation strategies both provide a mechanism to
balance exploratio" I)OW(vil the two extremes of the fircco1y policy (which always

picks the action with the larý, Ivst Q(. s. (,) vallie) and the uniform random policy
(Which assigns the Same pr()babilitY of* selection to every action in a state).

(: -greedy Strategy

The (-grc(, dY or scmi-arlifol"', "a"dom c. "plorahon strategy (Watkins, 1989) is a

simple Inechallism for trading off the exploration of the uniforin random policy

against the exploitatiol, ofthe n, vee(IN, policy. There is a small probability f at each

time step of' pickinA an action at random. otherwise the greedy policy is followed.

Witil a good choice of* the value for (. the policy will quicklY converge to one which

selects the opt i"'al act i0l, Wit 11 Pi'obabilitY (I - (:) -

Boltzmann Strategy

The Bolfý: 'mwm m, soffiruix exploration stratcgy (bice, 1959) is a slightly more,

sophisticated strategy. It is based on the Boltzmann distribution, Which has its

origins in statistical mechanics, but also occurs in computer science in algorithins

such as ()ptinlisation bY simulated annealing (Kirkpatrick et al., 1983). While

C-greed. v mssiAils equal J)n)babilitY to all actions when a random selection is per-

forined. the B(Atzmann strat(... v weights the probabilities using the Q(s, a) values

for the current state. So while the action choice is still random, actions leading to

highcr rewards will liave a greater probability of being selected (see Figure 3.2).

45

Q(s, a) = 10

ab Q(s, b) =5

dc Q(S, C) =0 C

Q(s, d) = -I

Probability of choosing action
a b c d

C- greedy
C=0.2 0.85 0.05 0.05 0.05

Boltzmann
T=2.5 0.85 0.12 0.02

1
0.01

Boltzmann
T=5.0 0.62 0.23 0.08 0.07

Figure 3.2: The c-greedy strategy chooses the greedy action with probability (1 - 6)
and otherwise chooses randomly using a uniform distribution. The Boltzmann

strategy does not explicitly distinguish greedy and random actions. Instead the

overall probability of choosing an action is weighted by the action's Q(s, a) value.

How much the probabilities are affected by the state-action values is determined by
the temperature parameter T. This allows us to choose from a spectrum of policies
ranging smoothly from fully-random to fully-greedy, depending on our choice of
value for T. High temperatures make the action choice more random, low temper-

atures encourage greedy behaviour. In state s, the probability of selecting action
an is given by the distribution:

P(a,,)
eQ(s, a,,)IT

eQ(s, ai)IT

Decaying Parameter Values

Both the c-greedy and Boltzmann strategies are compatible with the theoretical

conditions for Q-learning to converge to the optimal value function. In addition,
they both tend to focus the exploration effort along paths in the state space which
have been shown to lead to good rewards, resulting in fast convergence. However,
for fixed values of the c and T parameters, the control policy will continue to

select sub-optimal actions, even when the value function is arbitrarily close to
the optimum Q* (s, a). In practice, once the value function is reasonably close to
Q* (s, a) it is desirable to make greedy choices in the value function. This can be

achieved by gradually decaying the value of parameter c (or T).

For the SARSA algorithm, decaying the value of c (or T) is even more important

if we want to learn the optimal value function. Since SARSA is an on-policy

algorithm, it will converge to the optimal value function only if the control policy
tends towards greedy actions over time. Without decaying the parameter values
SARSA will converge to the value function for the control policy, not the value
function for the optimal policy.

46

Successful applications of the E-greedy and Boltzmann strategies are strongly

dependent on:

choosing a good initial parameter value to ensure enough exploration occurs.

2. decaying the parameter at the correct rate so that exploitation can take place

once the value function is close to the optimum.

Unfortunately there is no analytic method to determine a suitable initial value and
decay rate for a given problem. Suitable values therefore need to be determined

by trial and error.

3.3.2 Directed Exploration Strategies

The c-greedy and Boltzmann strategies require no extra state to be stored in ad-
dition to the table of Q(s, a) values. There is therefore no explicit record of which

areas of the underlying MDP have been explored. Instead we rely on the fact that

if enough random actions are taken over a long time interval it is probabilistically
likely that all areas of the MDP will be explored. This is what makes the choice of
the initial value and decay rate of c or T so vital to the success of these strategies.
Since there is no way to detect when enough exploration has taken place these

values must be selected by trial and error.
More complex exploration strategies have been developed which store addi-

tional information during learning to track the progress of exploration. This al-
lows a more informed decision to be made as to when enough exploration has taken

place. Thrun (1992) uses the term directed to describe such exploration strategies.
In contrast, c-greedy and Boltzmann are known as undirected exploration strate-

gies. In addition, Thrun (1992) proposes a classification of exploration strategies
based on which information influences exploration decisions:

Utility-based Strategies which are based on the estimated value of each state-

action pair, Le. value function information. Actions which lead to large

rewards are explored more often. The e-greedy and Boltzmann strategies are

examples of utility-based strategies.

Counter-based Strategies which store a count of the number of times each state-

action pair is visited. Actions which have small counter values are explored

more often, which drives the agent towards areas of state space which are

not well-explored. See Sato et al. (1988) for an example.

Recency-based Strategies which measure how much time has passed since each

state-action pair was visited. Actions which have not been visited for some

47

time are favoured for exploration, which again drives the agent towards

poorly-explored areas of state space. See Sutton (1990) for an example.

Error-based Strategies which measure how much the Q(s, a) value of each state-

action pair changes during updates. Actions which have recently undergone
large changes in value are assumed to have larger error. These actions are
favoured for exploration in order to reduce the error. See Thrun and M61ler

(1991) for an example.

Directed exploration strategies can also be either local or distal (Wyatt, 1997).

Local strategies only use information about the current state (such as counters or

recency information) to decide whether to explore. Distal strategies consider in

addition the long-tenn exploratory benefits of actions. For instance, consider a

state with two actions which have both been well-explored, but where the second

of these actions would allow the agent to reach an unexplored state in several time

steps. A local strategy in this state would not detect the exploratory benefit of
the second action, whereas a distal strategy would. Measures of exploratory worth

such as those described by Thrun (1992) can be back-propagated in distal strate-

gies using dynamic programming or temporal difference updates. For a detailed

discussion and an empirical comparison of local and distal strategies the reader is

referred to Meuleau and Bourgine (1999).

Most directed strategies are heuristic approaches without any formal justifica-

tion. They are generally inexpensive computationally, allowing them to outperform

undirected strategies both in terms of sample complexity and computational effort.
The main disadvantage of heuristic approaches is that they often require parameter

selection and tuning for each new application domain.

Kearns and Singh (2002) describe a model-based algorithm utilizing a counter-
based exploration strategy. This algorithm is interesting because its learning time

can be polynornially bounded, whether the time is measured by environment time

steps or computational operations. Given upper bounds on the mean and variance

of the reward function in any state of an MDP, there is probability of (1 - 5)

that their algorithm will learn a policy where the discounted return in all states
is >V* (s) -c in a time bounded by an expression polynomial in -,! and This

is mainly of theoretical interest, but it does suggest that in the future it may be

possible to develop efficient directed methods which also have a formal basis.

3.3.3 Bayesian Approaches to Exploration

Asymptotic convergence results for Q-learning and SARSA make very few assump-

tions about the MDP in which learning takes place (Jaakkola et al., 1994; Singh

48

et al., 2000). The only major restriction is that the variance of the rewards received
from each state-action pair must be finite. When such a wide range of environ-
ments are possible it is difficult to estimate the potential benefit of an exploratory
action. Thankfully most of the problems we want to solve with RL do not re-
quire this generality. The mean and variance of the reward function can usually
be bounded. In other cases the reward function may be completely known before
learning begins, leaving only the transition probabilities unknown. When we have
this kind of prior knowledge about the distribution of the underlying MDP model,
a mathematically rigorous -way to reason about exploration is to use a Bayesian

statistical framework.

In Bayesian statistics, a prior distribution models the initial uncertainty. As

new data is collected a posterior distribution can be calculated which reflects how
the uncertainty has changed after observing the data. In RL the unknown param-
eters are the transition probabilities and reward distribution for each state-action
pair. The transition probabilities define a multinomial distribution over successor
states. The uncertainty in these probabilities can therefore be modelled with a
Dirichlet distribution'. Rewards may be drawn from any underlying distribution,
but are usually modelled using a Gaussian distribution.

Given a model of our uncertainty in the underlying MDP, how can we decide

when it is worth exploring? Since integrating probabilities over the entire distri-
bution of MDP models is unlikely to be feasible, approaches to date have been
based oil sampling the distribution of models. In Dearden et al. (1999) dynamic

programming is used oil the sampled models to generate estimates of the optimal
Q(s, a) values for the underlying MDP. A separate Gaussian distribution is then

used to model uncertainty in each set of Q(s, a) estimates, which is used to guide
exploration based on an information gain criterion. Strens (2000) proposes a sim-
pler scheme where a single sample from the distribution of models (a "hypothesis")
is generated at the start of each of a series of finite length "trials. " Dynamic pro-
gramming is used to create an optimal policy for the hypothesis model. This policy
is then used to select actions during the trial.

Approaches based on sampling from a distribution of MDP models are compu-
tationally expensive, since optimal policies for each sampled model must be found
by dynamic programming. To avoid this expense, a number researchers have pro-
posed Bayesian-inspired approaches on a smaller scale. One such approach is to

adopt a local view each state of the MDP as a bandit problem. A bandit problem
2 in most cases a state-action pair has only has a non zero transition probability for a few

destination states. Therefore it is usually necessary for efficiency reasons to model the distribution

with a representation suited to a sparse distribution. See Dearden et al. (1999) for further details.

49

(Berry and Fristedt, 1985) is a single state problem where the goal is to identify by
trial and error which of the available actions has the highest expected reward. Op-

timal solutions (in a Bayesian sense) can be calculated for many bandit problems
(Gittins, 1989). We can view each state of an MDP as a bandit problem where the
"reward" for taking an action is the optimal discounted return Q* (8, a). Unfortu-

nately, in RL the value of Q*(s, a) is initially unknown, and must be approximated
by its estimate Q(s, a). The local bandit problem for each state is therefore non-

stationary, which makes some kind of forgetting mechanism necessary if Q(s, a) is

used for the bandit's reward.
The interval estimation method (Kaelbling, 1993b) is a non-Bayesian strategy

which adopts the local bandit problem view. Uncertainty in the value of each state-

action pair is modelled using a Gaussian distribution. Some small probability a
is chosen, and for each action an upper bound is calculated so that the true value
is below the bound with probability (1 - a). The action with the highest upper
bound is always chosen for execution. If the action turns out to be a poor choice,
the upper bound will be reduced as the statistics are updated. If the action is a
good choice, the upper bound will remain high and the action will continue to be

selected in that state.
Meuleau and Bourgine (1999) present a method similar to interval estimation,

based on a Bayesian technique for bandit problems using Gittins indices (Gittins,

1989). A related Bayesian approach which models the uncertainty of each Q(s, a)
value during the progress of Q-learning is presented by Dearden et al. (1998).

3.3.4 External Sources of Exploration

In the standard reinforcement learning setting the learning agent is tabula rasa.
This means that the agent begins the learning process with absolutely no knowledge

about how its environment behaves. In the Bayesian RL framework the tabula rasa

assumption is relaxed, since the agent is provided with a prior distribution which

models and quantifies the agent's uncertainty of the behaviour of the environment.
In both cases the responsibility for making intelligent exploration decisions rests

entirely with the agent.
In particularly complex environments with sparse rewards, the learning time

can be shortened significantly by using an external source to perform the initial

exploration (Smart and Kaelbling, 2000). The external source could be a human

controlling the system, or a hand-coded policy. This introduces an element of
teaching into the RL process, making the initial phase of learning similar to be-

havioural cloning (Sammut, 1996). The advantage of this approach is that sparse

rewards can be quickly uncovered by the external source, but the reinforcement

50

learner can go on to learn a policy which improves on the performance of the exter-

nal source. Bentivegna et al. (2004) use such techniques to develop robotic systems

capable of playing air-hockey and a marble-maze game.

The disadvantage of this approach is that the quality of the learned policy is

strongly dependent on the quality of the external source. If the external source is

very sub-optimal, it is possible that exploration will be insufficient to avoid con-

verging to a local optimum. In the worst case, if there is no known reasonable

hand-coded policy for a domain, and the task is beyond a human controller, this

approach is probably inapplicable. Conversely, Driessens and D2eroski (2002) dis-

covered that it can be problematic if the external source is too close to the optimal

policy, since a learner observing only optimal actions may not be able to distinguish

between good and bad action choices.

3.3.5 Limitations of Improving the Exploration Strategy

Extensive previous research and continued interest in exploration techniques re-
flects the fundamental nature of the exploration-exploitation trade-off in RL. A

good exploration strategy is vital for learning the optimal policy in a reasonable

time. A variety of both simple and complex strategies were surveyed in this sec-
tion. The more complex strategies require fewer explorative actions at the expense

of greater computational effort. Simple strategies such as e-greedy and Boltzmann

tend to be preferred when the environment is simulated, since environmental expe-

rience is cheap and plentiful. Directed and Bayesian strategies become most useful

when experience in the environment is limited or expensive to obtain.
Despite the gains that the directed exploration strategies afford us, there is a

limit to how far they can make large reinforcement learning problems tractable.

The difficulty of large reinforcement learning problems is primarily due to the ex-

ponential growth of the state space as the number of state features is increased.

While it may not be necessary to visit all of these states if there is a known bound

on the reward function, it remains likely that a large subset of the state space must

be repeatedly visited to establish the optimal policy within some reasonable error

bound. So even if we had access to a perfect exploration strategy, the sample com-

plexity would still increase exponentially. To tackle this problem, we need either to

use some technique to reduce the size of the state space, or to generalise between

similar states so that we do not need to visit all state-action pairs. Techniques for

dealing with the state space explosion are discussed in Sections 3.4,3.5 and 3.6.

51

3.4 Value Function Approximation

In many situations, representing the function Q(s, a) --+ R explicitly as a table of
real numbers will result in some degree of redundancy. If two states are similar in
terms of state features, it is likely that a given action will have similar value if taken
in either of the two states. To take advantage of this property, a representation is

required for Q(s, a) which will allow us to generalise between similar states. There

are a number of advantages to generalisation:

4, By removing redundancies in the table of Q(s, a) values, the function can be
represented more compactly in memory.

4, Each update from experience affects more than one state, which can acceler-
ate convergence to the optimal value function.

o Values of states which were not encountered during learning can be estimated.

e Learning can take place in domains with continuous state spaces.

This form of gencralisation in reinforcement learning is known as value function

approximation, since the goal is to create an approximation of the entire value
function from a limited number of examples. Numerous existing techniques for
function approximation can be used from the fields of inductive concept learning,

pattern recognition and statistical curve fitting. In this section the application of
such techniques to reinforcement learning is considered.

Historical Remarks

Recent research has focused on applying function approximation techniques to the

popular Q-learning (Watkins, 1989) and TD(A) (Sutton, 1988) algorithms, which
ivere both originally presented with the assumption of an exact tabular repre-
sentation. However, learning an approximate value function is a concept which
originated in early game-playing programs. In his seminal work on the design of

chess programs, Shannon (1950) first suggested that a program could learn from

the outcome of each game it played by changing the coefficients of the evaluation
function used to rate positions of the board. Samuel (1959) implemented such a

program to play the game of checkers, using among other techniques an ad hoc

method for re-estimating the value of board positions based on the estimated value

of a board position encountered several moves later, a technique with many simi-
larities to the more general TD(A) algorithm. The evaluation function in Samuel's

program is a linear combination of numerical features of the board position.

52

> Use last reward :0
to estimate value ;C
ofprevious state 0Z

S 1, [Xi): Xn 0 V(S t+l t+l t+,) Extract state > F) Estimate
qZ state value features

<"

0

Inputfeatures r t+1 + '67(s
t+d

Train the
approximator

Create training

st ,r t+ I+ 'y ýI(s
t+,

)
example

Figure 3.3: Instead of performing backup operations in a table data structure,

experience can be used to generate training examples for a function approximator.

There has also been a wide range of research on combining function approxi-

mation with dynamic programming (see Section 2.3), using approximators such as

orthogonal polynomials (Bellman and Dreyfus, 1959) and splines (Daniel, 1976).

However, most of these approaches assume that an exact model of the environ-

ment is available for use in calculations, and so they are not directly applicable to

reinforcement learning.

3.4.1 Fundamentals of Approximation

Consider using an algorithm such as TD(A) (Sutton, 1988) to calculate the value
function V' for some policy 7r. The estimated value function at time t is written as
Vt. When function approximation is combined with the TD(A) algorithm, Vt is no

longer represented as an exact table, but in a compact form which approximates

the table. The approximator is often a parameterized function, which represents

Vt using a fixed size parameter vector Ot. Other approximators are based on a

finite database of experiences recorded during training. In either case, the number

of parameters or experience data points is usually much smaller than the total

number of states.
Each TD(A) backup, which would usually update individual values in the table

representation, can now be used as a training example for the function approxi-

mator, as shown in Figure 3.3. For example, in the simplified case of TD(O), the

value of the state encountered at time t, Vt(st), is re-estimated using the value of

the subsequent state as rt+l +, yVt(st+,). To improve the function approximation,

we use the tuple (st, rt+l +, yVt(st+l)) as a training example for the approximator.

This approach allows us to choose from a wide range of existing supervised

learning algorithms for purposes of function approximation. Not all supervised

53

learning techniques are equally appropriate however. The distribution of training

examples will appear non-stationary until Vt becomes a good approximation of
V71. Some neural-network methods require multiple passes over a static training

set, and would be poorly suited for reinforcement learning.

Note that although much of the discussion in this section is framed in terms of
learning the state value function V'(s), these methods can apply equally well to

approximate the state-action value function Q(s, a).

3.4.2 Comparing Function Approximation Techniques

How can we compare the performance of two function approximation methods?
Since many supervised learning methods seek to minimize the mean squared error
(MSE) over the training examples, a criterion often used to compare function

approximations in a reinforcement learning context is:

MSE(ý't) P(s) [V7r(s) - Vit(S)]2

Here P(s) is a probability distribution which weights the error values accord-
ing to the likelihood of arriving in a particular state. Note that for on-line re-
inforcement learning, P(s) is dependent on the policy being used to explore the

environment. If we change the policy over time (e. g. to approach the optimum)
then P(s) will also change over time. This is a source of instability when function

approximation is combined with on-line learning.

It is arguable whether this is the best criterion with which to grade approxima-
tions, since the greedy policy derived from a parameter vector fit' which minimizes
MSE(6't) can often be outperformed by a greedy policy derived from some other

value of Ot. However, on the basis that a value function which minimizes the MSE

will result in good performance, there are two important properties of our method
to be determined:

How close to the optimum is the Vt which minimizes MSE(Ot)? In other

words, what is the most accurate value function representable in our function

approximator?

fo Does the combination of the reinforcement learning and function approxi-

mation methods selected guarantee convergence to this minimal MSE(jt)

approximation?

It is the second of these properties which is most problematic, and is discussed in

more detail in Section 3.4.7.

54

3.4.3 Linear Approximation Methods

Function approximators based on a linear combination of basis functions offer a

number of advantages. They are backed by strong mathematical theory. There

are also efficient algorithms for performing gradient descent on the parameters

of a linear approximator. These algorithms converge to a global optimum which

minimizes the MSE over a static training set.
The functional structure of a linear approximator is illustrated in Figure 3.4.

Given a set of n basis functions 10i(s)} and a vector of n parameters W, we can

express the linear approximation of the value function as:

Vt (S) Oi Oi (S)

The correct choice of the basis functions 10i(s)} is an important factor in

determining the success of a linear approximator. In making this choice, we can

exploit any prior knowledge we may have about the learning problem to select input

features which are good discriminators for the value function. Feature selection is

a vital stage for most supervised learning methods, both linear and non-linear.

Approximate state value

Summation unit

Adjustable parameters

Input features

Figure 3.4: Linear approximation architecture for learning a value function.

Coarse Coding

We could use the unmodified state variables (whether discrete or continuous) as

the basis functions, but this is unlikely to be a successful approach, given the

limited representational power of a linear approximator. A more suitable set of

basis functions can be constructed using coarse coding (Hinton et al., 1986). Each

feature in coarse coding is defined as a region of the state space, and the basic

approach is to use a large set of overlapping features which between them cover the

whole state space. Coarse coding generally uses binary features, which have value 1

55

if the currcnt state lics within the "('('('I)tiv(' field of the feature. and otherwise have.

value 0. It turns out that usim, relatively coarse features with significant overlap is

more effective in most situations than usintg fine-tgrained disJoint features, although
if features are too coarsc then it becomes difficult to represent fine-grained changes

ill the true vallic function.

Tile Coding

Tile codiny: 1 (Albus. 19SI) is a forin of coarse coding which has proved to be a

popular function approximation tcchnique for reinforcement learning (Watkins,

1989: Lin and Kini. 199l: Slitton. 1996). In tile coding. we define sets of features,

each Set beille14 kill c-1,11(i ustillc 1)(111ition of the state spacc. Each of these sets is

known as a tilinfl. and cad, fCaturc in the s, (, t is called a tile. The multiple tilings

are each offsct bv a diffcrent aniount in the state space (see Figure 3.5), which
ill1proves thc gencralisation achievable bY tile approximator. The tilings need not
bc uniform grids. an arbitrary partitioninP. - strategy (-kill be used. Tile coding is

generally combilled with lm. shrng techni(Ilics to reduce memory requirements. This

compl-csses a large tiling Into a sinaller set of' tiles'. vach tile being, composed of

several noll-colitig"llou", 1-cgions spread randomly over the state space.

Tiling I Tiling 2

21) state Current Tiling Active
space state feature

Figure 3.5: Tilc coding uses coarsc binarY statc features, arranged into a number

of' ovel-lappill., tilings. n

3.4.4 Memory-Based Approximators

Mcnlory-buscd appro. 1-1111(itovs arc it faillilyof approximation inethod", which are not

ba-sed on it parameterized functional model. Instead a finite number of training

examples are simplY stored in memory for later use. After training, the values of

new states arc it pproxi II lilt cd using, a subset of examples whose state features are

,, lost similar to I he new state. The set is determined (is and wheil a new state
: 'A tile coding amn-oximator is sometimes known a. s it Cvf-cbc11ar Model Articulation Controller

(CAIAC) since this wiLs Ow original nanic used by Albus (1981).

56

value needs to be estimated, i. e. at query time rather than at learning time. This

kind of approach is sometimes known as instance-based learning or lazy learning.

The k-nearest neighbour algorithm (Cover and Hart, 1967) is an example of a

memory-based approximator. Using this algorithm, the approximate value of a

state would be the mean value of the k most similar states encountered during

training, where k is some constant. Sheppard and Salzberg (1997) use a variant of

k-nearest neighbour as a value function approximator for Q-learning, resulting in

a method which they term lazy Q-learning.

Kernel Methods

Kernel methods (Shawe-Taylor and Cristianini, 2004) are powerful memory-based

machine learning methods that have only recently been used for reinforcement
learning. The core idea in these methods is to map examples into an implicit feature

space O(x) (where x is the vector of state variables and 0 is a mapping to a rich

space of state features). Since O(x) can contain a large (or even infinite) number

of features, or be expensive to evaluate for other reasons, we avoid evaluating O(x)

explicitly by defining a kernel function k:

(x, x') = (0 (x), 0

The value of k x, xI is the inner product of two states mapped into the rich
feature space, which can be seen informally as a measure of the similarity of the

two states. Note that evaluating 0 is not necessary to calculate k. 0 remains an
implicit feature space arising from the choice of kernel function k. Kernel methods

not only benefit from the computational saving of avoiding the evaluation of 0, but

also allow powerful domain-independent kernel-based algorithms to be developed,

which can then be tailored to a specific application with a domain-specific kernel

function. Kernel methods can generalise very effectively from only a very small

number of stored training examples.
Some researchers have begun assessing how kernel methods can be used for

value-function approximation in RL. Ormoneit and Sen (2002) demonstrate the

robustness of a kernel-based reinforcement learning algorithm in a theoretical con-

text. The empirical performance of reinforcement learning algorithms based on
Support Vector Machines (Dietterich and Wang, 2002) and Gaussian processes
(Rasmussen and Kuss, 2004) has also been investigated. A limitation of these

approaches is that they all rely on offline processing. Developing effective online

kernel-based reinforcement learning algorithms is an active area of research.

57

3.4.5 Decision 'IYee Approximators

A number of researchers have developed function approximation approaches which
draw their inspiration from decision tree 4 learning algorithms such as ID3 (Quin-
lan, 1986). Chapman and Kaelbling (1991) presented the G-algoHthm, which in-

crementally builds a tree-structured value function. In the G-algorithm, a state
is represented as a binary string, with each bit in the string mapped to a binary

state feature. As experience is gathered, a standard statistical test known as the
Student's W test is used to determine which of the bits in the string are relevant to

making optimal action choices, and the decision tree is split each time a relevant
bit is discovered. Note that this approach will only have good performance in situ-
ations where the applicability of each action depends only on a small subset of the

state features. This work was later extended in scope by Pyeatt and Howe (1998),

who removed the assumption of binary state features. They also compared the

performance of four different statistical tests for splitting the decision tree nodes.
An example of a Q-function represented as a decision tree is shown in Figure 3.6.

0

.5
ye,

Figure 3.6: A decision tree representing the value function for a single action in a
continuous state space of two dimensions.

The kd-tree data structure (Moore, 1990) has similarities both to decision trees

and to the quad-tree data structure used in computer graphics. Function approx-
imation using a kd-tree is a variable resolution method-the state space is repre-

sented at a fine grain resolution only in the areas where it is needed for optimal
decision-making. The kd-tree approach is most useful for non-linear approxima-
tion in problems with continuous state variables and high dimensionality. This

approach eventually developed into the Parti-game algorithm (see Section 3.5.2).

4 In the statistics community, a decision tree mapping each input to one of a finite set of classes
is known as a classification tree. A decision tree mapping each input to a real-valued output is
known as a regression tree. While these names are more descriptive in some contexts, in this thesis
I follow the convention of Pyeatt and Howe (1998) and use decision tree to refer to both kinds.

58

9.2 3 9.8 4.7

3.4.6 Neural Network Approximators

The back-propagation neural network (Rumelhart et al., 1986) is a popular function

approximator in the wider machine learning community. Many researchers have

investigated its usefulness for reinforcement learning. An example of a multi-layer

neural network is shown in Figure 3.7. Anderson (1987) employed a multi-layer
back-propagation network as a function approximator for RL with the Adaptive

Heuristic Critic (AHC) algorithm (Barto et al., 1983), using this approach to solve
the pole-balancing problem. Lin (1992) used neural network approximations with
both the AHC and Q-1earning algorithms, examining the performance of learning

agents in a grid-world with food, enemies and obstacles. Tesauro (1995) trained the

highly successful TD-GAIAMON backgammon program using the TD(A) algorithm

and a neural network. Zhang and Dietterich (1995) learned strategies for job-shop

scheduling using a similar approach with TD(A).

Approximate
state value

Hidden layer of
sigmoid units

Input features

Figure 3-7: A neural network approximator which could be used for learning a

value function.

Despite the positive results listed above, the combination of RL and neural

networks can result in slow learning, convergence to a sub-optimal policy, oscil-
lation or even divergence. Anderson (1986) used such a combination to solve the

pole-balancing and "Towers of Hanoi" problems, and notes the slow convergence

in both cases. Shepanski and Macy (1987) used neural network approximation in a

simplified driving simulator. The initial learning phase (after the network weights

were randomly initialised) exhibited great instability, and often failed to converge.

When convergence did occur, the weights exhibited oscillatory behaviour for some

time before becoming stable. A more complex driving simulation was used as the

basis for experiments conducted by Barreno and Liccardo (2003) with neural net-

work approximation for RL. These experiments exhibited convergence problems,

while similar experiments with a linear approximator produced good results.

59

3.4.7 Convergence Problems and Guarantees

The mixed success of the above experiments is symptomatic of more general prob-
lems with using function approximation in RL. With most of these algorithms there

is no formal guarantee that they will converge to a policy whose value function ap-

proximation has a small MSE(fi't) error value (see Section 3.4.2). It is also fairly

easy to construct particular examples to demonstrate empirically that the approx-
imation does not always converge, and in some cases even diverges (Bradtke, 1993;

Baird, 1995; Tsitsiklis and van Roy, 1997).

Boyan and Moore (1995) evaluated quadratic regression, locally weighted re-

gression, and neural networks as possible function approximators for dynamic pro-

gramming (using the value iteration algorithm). Each of these approximation

methods was shown to exhibit divergent behaviour in one of several simple grid-

world problems. However, using the same set of problems, Sutton (1996) showed
that an RL approach using the SARSA algorithm (Rummery and Niranjan, 1994)

and linear tile coding (Albus, 1981) could learn robustly and efficiently in all of the

problems. These results indicate that the approximation architecture must be care-
fully matched to both the learning algorithm and the domain if good performance
is to be achieved.

How can we determine which function approximator will work well with a

particular RL algorithm? Deriving a theoretical guarantee of convergence for

the algorithm would be a useful first step. However, the formal guarantees for

Q-1earning (Watkins and Dayan, 1992), SARSA (Singh et al., 2000) and TD(A)

(Jaakkola et al., 1994), which were cited in Section 2.4, were all derived based

on the assumption that an exact tabular representation was used, not a function

approximator. Some researchers have begun extending these results to include the

use of function approximation (Gordon, 1995; Tsitsiklis and van Roy, 1996; Gor-

don, 2001). Perhaps the most significant result proved so far is that of Tsitsiklis

and van Roy (1997) where it is shown that, under a number of assumptions, the

TD(A) algorithm combined with a linear function approximator will converge to a

near-minimal MSE solution W,,. with probability 1. The near-minimal solution is

related to the minimal solution 6ý by the inequality:

1- 'YA MSE(O.,) < -T ---f MSE(O*)

Note that the parameter A strongly affects the quality of the theoretical bound

for TD(A). If A=1 (equivalent to Monte Carlo policy evaluation) then the al-

gorithm will eventually converge to the minimum MSE solution fiý. However, in

practice much faster convergence can be achieved with smaller values of A.

60

A key assumption in the derivation of this bound is that the distribution of
training examples is the on-policy distribution, i. e. training examples are generated
by following the policy being evaluated by TD(A). The success of this approach

suggests that an on-policy algorithm such as SARSA(A) may form a more successful

combination with linear approximation than the off-policy Q-learning algorithm.
In fact, for purposes of estimating the value function of a fixed policy, a modification

of the proof of Tsitsiklis and van Roy (1997) may be used to prove convergence of
SARSA(A) using linear approximation. This means that SARSA(A) can be used as
the estimation step of an approximate policy iteration approach which has strong

convergence guarantees (Perkins and Precup, 2002). However, the theoretical basis

for SARSA(A) with linear approximation is much weaker when the control policy

uses an exploration strategy which is greedy in the limit (Gordon, 2001). In spite

of this, SARSA(A) with linear approximation has proved to be very successful in

practice (Sutton, 1996) and remains a popular approach to generalization in RL.
A different formal approach is necessary to derive guarantees for using func-

tion approximation with an off-policy algorithm such as Q-1earning. Thrun and
Schwartz (1993) suggest that using approximation with value iteration methods

such as Q-learning is inherently dangerous because errors in the value function due

to generalization can interact poorly with the "max" operator used in the definition

of the value function.

How can we avoid the instability which arises in approximate value iteration

methods? One approach is not to use approximators which extrapolate from the

observed training examples, as polynomial regression does. Gordon (1995) defines

a class of function approximators called averagers, which includes local-weighted

averaging, k-nearest neighbour and 136zier patches. It is shown that when the

transition and reward functions are known in advance, approximate value iteration

with an averager is guaranteed to converge to a function whose max norm error
has a bounded difference from the minimum max norm error solution representable
by the averager.

Another possible approach is to change the form of the error being minimized
from mean-squared error to mean-squared Bellman error or residual error (Baird,

1995), which can be expressed as:

= S} _V P(s) [E, f rt+l + yVt (st+j) Ist t(S)]2
S

In practice these methods tend to converge more slowly than the simpler func-

tion approximators, and the formal convergence guarantees which have been proved

so far are often inapplicable to off-policy algorithms such as Q-learning.

61

3.4.8 Limitations of Function Approximation

It is evident that many problems still exist for function approximation in rein-
forcement learning. Successful generalization can often be achieved with careful

choice of algorithm and approximator, but the field still lacks a coherent formal

framework to ensure stable convergence to a near-optimal policy.

Function approximators of the kind discussed in this section also have two key

limitations:

* Function approximators are heavily reliant on prior knowledge to provide a

set of good input features for learning.

a Function approximators are most effective when the target value function

has no sharp discontinuities between similar states.

If there are only a few discontinuities in the target value function, a decision tree

could be an effective approximator if an algorithm with an appropriate inductive

bias is used to build the tree. A memory-based approximator could also be effective
if enough data can be concentrated in the region of each discontinuity. For highly-

discontinuous value functions, however, both of these methods require too much

memory to store enough data points (or decision nodes) to accurately approximate
the target value function.

Sections 3.5 and 3.6 examine approaches to reinforcement learning using tech-

niques such as hierarchical decomposition and symbolic AI methods. These ap-

proaches can be used for solving learning problems where function approximation
is inappropriate because of the limitations mentioned above.

3.5 Hierarchical Reinforcement Learning

One way to approach the problem of scaling-up reinforcement learning is to adopt

a divide and conquer strategy. Rather than attempting to solve an MDP for

the whole problem at once, a decomposition is performed to create a hierarchical

structure of sub-problems. Usually the structure of the decomposition is supplied

as prior knowledge to an algorithm. This has resulted in a family of closely related

methods known as Hierarchical Reinforcement Learning methods.

Many hierarchical reinforcement learning methods are not designed to find

the true optimal policy. By using decomposition to constrain the scope of the

learning which takes place, some solution quality is sacrificed to reduce the learning

time required. By relaxing the requirement of true optimality, a policy with good

performance can be found in orders of magnitude less time. Dietterich (2000b)

62

defines two forms of restricted optimality to describe the solution quality of some

of these methods:

Recursive Optimality A recursively optimal policy is obtained when the policy

at each node in the learning hierarchy is optimal given the policies to which

its child nodes have converged.

Hierarchical Optimality Only a subset of all possible policies can be repre-

sented with a particular learning hierarchy. The hierarchicallY optimal policy
is the best policy in this limited subset of policies.

A hierarchically-optimal method will return the best policy from a given policy

space, so if the true optimal policy happens to lie in this space, it will be returned

as the solution. However, this is very unlikely-the hierarchy is constructed to

allow the problem to be solved in less time, not to preserve optimality. In general,
the true optimal solution can only be found if we solve the problem in the flat state

space, which is intractable for large problems.
The focus of this section is on methods which decompose a learning problem

and use reinforcement learning as the only learning technique in the resulting hi-

erarchy. It is worth mentioning that reinforcement learning is also a common

component technique of hybrid learning architectures. These hybrid approaches

are often based on a combination of high-level deliberation and low-level reactivity,

as proposed by Gat (1997). Layered learning (Stone, 1998) is one of the most suc-

cessful hybrid approaches of this kind. Stone uses reinforcement learning to learn

low-level behaviours in the layered learning architecture for a successful RoboCup

team (Kitano, 1998).

3.5.1 Parallel Decomposition

Consider a reinforcement learning problem where each action can be interpreted

as a number of component actions executed in parallel. If the state space of the

problem can be expressed as a set of features, where each feature is only affected
by one of these component actions, then a parallel decomposition is possible. Es-

sentially, this means that choosing an optimal action in the original is equivalent

to choosing the optimal action for each of a set of sub-problems running in parallel.
A parallel decomposition for the MDP representing the problem results in a

set of smaller MDPs. Each of these smaller MDPs represents one of the parallel

sub-problems which characterise the original problem. The original state space is

now represented by the Cartesian product of the state spaces of the smaller MDPs.

Similarly, the original action space is represented by the Cartesian product of the

action spaces of the smaller MDPs-

63

A traditional reinforcement learning algorithm can now be used to obtain a

policy for each of the smaller MDPs, which are much less complex than the original
MDP. These policies are used to select the optimal action for each sub-problem, and
the combination of these component action choices (which can also be described as

a joint action) is the action choice in the original MDP. This process is illustrated

in Figure 3.8.

Original MDP

a,

c

E
a, a2 decomposi on de

Use in the
original MDP

_ta
ri

I-C Joint action

Solve sepamtely

Figure 3.8: Some MDP problems can be decomposed into parallel sub-problems,

which can be solved separately and their policies combined into a joint action.

Parallel decomposition is particularly appropriate for multi-agent problems. In

many such problems each agent will spend a large proportion of its time reasoning

and acting independently of other agents. If this the case, an MDP representing

the entire multi-agent problem can be decomposed into an MDP for each agent.
However, non-trivial problems rarely allow the agents to be assumed totally inde-

pendent. There may be some shared resource that is consumed by all the agents.
Alternatively, the coordination of individual actions may be necessary to get the

largest pay-offs. If there are only a limited number of such interactions between

agents, the parallel decomposition may still be applicable.
Parallel decomposition therefore has limited applicability-it is generally only

suitable for problems where there are several parallel processes which are either

independent, or have weak interactions such as shared resource constraints. If

interactions exist, the optimal actions for two sub-problems may be mutually ex-

clusive. Such conflicts must be resolved when the joint action is constructed.

Meuleau et al. (1998) present a method for exactly this type of problem, where

value functions learned for the smaller MI)Ps are used as heuristics for combining

conflicting action choices into a joint action for the larger MDP.

Note that parallel decomposition is concerned with decomposing problems with

parallel structure to make them easier to solve. In Section 3.7 parallel reinforcement

64

learning methods are surveyed, which exploit parallel hardware to quickly find

solutions for RL problems which have no parallel structure.

3.5.2 State Aggregation and State Abstraction

State aggregation is a more generally applicable hierarchical approach. It is based

on the grouping of sets of the original low-level MDP states into a number of high-

level abstract states, as shown in Figure 3.9. State aggregation exploits the fact

that very similar low-level states can be collected into a single abstract state, and

can then all be considered identical with regard to the current learning problem.
We can define a high-level MDP over the abstract states, which will be much easier
to solve because the number of states is much smaller.

State
aggregation/

Original MDP MDP over abstract states

Figure 3.9: State aggregation groups together low-level MDP states, resulting in a
much simpler MDP to be solved over high-level abstract states.

State abstraction is a particular form of state aggregation, which arises in sit-
uations where the state consists of a number of state features. If it is known that

the value of a particular state feature is not needed for selecting the optimal ac-
tion, we can reduce the size of the state space by aggregating together states which

only differ in terms of this feature. This is a very effective way to reduce the size

of the state space, which grows exponentially with the number of state features.

However, determining without prior knowledge whether a state feature is relevant
to a given problem is difficult, so we will generally need to supply suitable state

abstractions to an algorithm using our background knowledge.

Hierarchical Distance To Goal

Early research exploiting hierarchy in reinforcement learning was principally based

around state aggregation. The Hierarchical Distance to Coal or HDG algorithm
(Kaelbling, 1993a) solves large navigation tasks by distributing landmarks over

the space to be navigated, and aggregating states according to their closest land-

E Siale
ag gregation

65

mark. Learning paths between landmarks is much less complex than learning paths
between arbitrary states. This approach was later extended with the concept of

airport states (Moore et al., 1999), which constitute a hierarchy of landmarks for

learning routes at different levels of abstraction.

Feudal Reinforcement Learning

Feudal reinforcement learning (Dayan and Hinton, 1993) is another early state ag-

gregation algorithm applied to navigational learning problems. While there are no

explicit landmarks used in this algorithm, states are similarly aggregated according
to spatial proximity. Aggregations are themselves aggregated together to create a
hierarchy of abstraction levels. Feudal reinforcement learning uses the concept of

a manager, an independent reinforcement learning agent which has responsibility

over an aggregation at some level of the hierarchy. Each manager is subordinate to

a manager at the level above, creating a feudal hierarchy of independent learners.

All but the lowest layer of managers take action by ceding control to a sub-manager

to achieve some sub-goal. The lowest layer of managers performs actions directly.

When a sub-manager achieves its goal, it receives a reward from its manager for

doing so, and control is returned to the manager. In this way, each manager grad-

ually learns which sub-manager to choose to take action in each of tile abstract

states over which it has responsibility. A large state space is thereby decomposed

into a set of independent learning problems, each with a state space bounded by

tile maximum number of elements in an aggregation.

Parti-Game

The Parti-game algorithm (Moore and Atkeson, 1995) is a variable resolution state

aggregation algorithm. Instead of creating state aggregations of similar size over

the entire state space, the algorithm begins with a single large aggregation, and

splits it into smaller ones in regions of the state space which require fine-grained

discrimination to produce a good policy. For each aggregation, the algorithm

chooses the action which has proved from experience to make the best progress

towards a goal region. If taking this action always results in the same transition

to a new aggregation, there is no need to split the source aggregation-an effective

policy choice has been identified for that area of state space. However, if an

occasion arises where an unexpected transition occurs and the action fails to make

good progress towards the goal, there must be a state within the aggregation

which requires a different action choice, so the aggregation is split. This variable

resolution approach can reduce the state space considerably, and has been applied

66

successfully to problems with high dimensionality and continuous state spaces.
However, the Parti-game algorithm makes a number of restrictive assumptions,

and is only applicable to deterministic problems with an explicit set of goal states.
More recently, Munos and Moore (2002) have evaluated the performance of several
different splitting cTiteria for a closely related variable resolution method.

3.5.3 Temporal Abstraction

State aggregation is an effective technique for reducing the state space of a rein-
forcement learning problem, but in the general case it may not be obvious how to
travel from one abstract state to another. The state aggregation algorithms above
were mostly applied to navigation problems, where moving between abstract states
can be simple (e. g. take low-level actions heading towards the landmark which de-
fines the destination abstract state). To apply hierarchical techniques to more
general problems, we need policies to move between abstract states, which leads

to the idea of temporal abstraction.

Original MDP

The policy assigns an action
Findpolicyfor a2 to each state in the set

.. small set ofstates ,aI%
a a, a2 I Abstract

Action A,

Make Al availablefor
execution in the MDP

a2

S 16 a3

al a5
a4 A,

Figure 3.10: Temporal abstraction uses a partial policy as an abstract (macro)

action, which can be executed to make fast progress towards regions with good

rewards.

Temporal abstraction is intuitively the decomposition of a task into a set of

sequential subtasks which can be used to complete the task (see Figure 3.10).

This form of decomposition is similar to the use of subroutines in a procedural

programming language. Perhaps because of this similarity, temporal abstraction
has emerged as the principal technique for exploiting hierarchy in reinforcement
learning problems in recent years. Given a reinforcement learning problem, we
learn a policy for a small set of low-level states (perhaps the set of states in some

aggregation). This policy is then made available as an abstract action in addition
to the concrete actions which define the problem. This abstract action may simply
be used at the lowest level of abstraction to make fast progress towards a goal, or

67

may be used at a higher level as a mechanism for moving between abstract states.

H-DYNA

The H-DYNA system (Singh, 1992) is an early example of temporal abstraction
in reinforcement learning. Based on ideas from hierarchical planning, Singh intro-

duces the notion of a variable temporal resolution model (VTRM) for reinforcement
learning. A VTRM uses different temporal resolutions in different parts of the state

space to reduce the complexity of the problem being solved. Extending the DYNA

architecture developed by Sutton (1990), the H-DYNA architecture models the

reinforcement learning problem at various levels of temporal abstraction. At the
lowest level, policies are learned for taking the optimal path between a pair of

states. These policies are then available to the high levels as abstract actions to

achieve sub-goals effectively. Like many hierarchical reinforcement learning algo-

rithms, H-DYNA is more useful for problems with an explicit goal state than those

without.

Hierarchies of Abstract Machines

Hierarchies of Abstract Machines (Parr and Russell, 1997) or HAMs are similar
in structure to H-DYNA, consisting of a hierarchy of learning machines, with a
low-level machine representing an abstract action available to a high-level machine.
Each machine is defined by a partial program, which constrains the range of policies
the machine can learn. In the case of HAMs, the partial program is a finite state

machine augmented with non-deterministic choice points. Reinforcement learning

is used to determine the optimal choice at each of these points, and learning can
take place at many levels in the hierarchy simultaneously. The HAMs approach

was later extended by the ALisp language (see Section 3.5-4) which provides a

much more expressive language for partial programming.

Options

Sutton et al. (1999) use the notion of options to formalise temporally-extended

actions. An option is defined by a tuple (7r, 1,, 8)-a policy 7r defined over a subset
So of the full state space S, a set of input states ICS,, in which the option can
be initiated, and a function 3: S,, - [0,1] which determines the probability the

option will terminate in a given state. Options are made available for execution
in addition to the primitive actions, and act as effective macro-actions for making

progress towards a goal region, accelerating the reinforcement learning process.
When an option is initiated for execution, the policy 7r is used to choose actions,

68

and after each action the option will probabilistically terminate according to the

value of 3 for the resultant state. On termination, control is returned to the

agent which initiated the option, so that a new option or primitive action can be

selected for execution. A scheme of hierarchical options of the form (P, 1,, 3) can be

constructed by replacing the policy 7r for choosing primitive actions with a policy

I-L which can select other options for execution as well as primitive actions.

Semi-Markov Decision Processes

The semi-Markov decision process (SMDP) (Howard, 1971) is commonly used as a
formal model of temporal abstraction in reinforcement learning. In this model, the

number of time steps between one decision and the next is a random variable, and
this is interpreted as the system remaining in the current state for a random waiting
time, then making an instantaneous transition to the next state. The transition

behaviour of the model is defined by a joint probability distribution P(s', -r1s, a),
the probability that choosing action a in state s will result in a transition to state

s' after 7- time steps. It is straightforward to derive forms of the Bellman equations

and the Q-update rule in this model, and to prove convergence results for some

of the temporal abstraction algorithms described above. Barto and Mahadevan

(2003) describe SMI)Ps in more detail, and show how the options, HAMs and
MAXQ methods (MAXQ is discussed in Section 3.5.4) may be formalised using an
SMDP model.

3.5.4 Combining Temporal Abstraction with State Abstraction

Temporal abstraction has proved to be a very effective way of decomposing large

reinforcement learning problems into smaller, more tractable pieces. However,

while temporal abstraction simplifies the learning problem, it does not address the

state space explosion in the way that state aggregation techniques do. So while a

subtask may be comparatively simple to learn, a huge state space will still render
the problem intractable.

Using the full state space for learning a subtask will include many irrelevant

state features. These features are not needed to make policy choices within the

subtask, and increase the size of the state space exponentially. State abstraction is

a technique for tackling exactly this sort of problem. For each subtask we need only

consider the smallest number of state features necessary to construct an effective

policy (see Figure 3.11). Hierarchical reinforcement learning offers the greatest

gains when temporal abstraction is combined with state abstraction.

69

Travel from London
to New York

Drive car to
Heathrow airport
..................
Petrol in tank
Road map
Traffic condilions

Board flight to
New York
..................
Tenninal number
Boarding pass
Gate number

Take taxi-cab
to hotel
..................
Taxi rank locatim
Dollars in cash
Name of hotel

Task

Subtasks

.............

Relevant state

Figure 3.11: In this example, temporal abstraction is used to break the overall task

into subtasks. State abstraction is then used to annotate each subtask with the

relevant state variables for solving it.

MAXQ

The MAXQ decomposition method developed by Dietterich (2000b) was one of the

first ways to combine these two forms of abstraction. MAXQ has many similarities

to the options framework (Sutton et al., 1999), but places a greater emphasis

on the use of hierarchy during the process of learning. Within each task in the

hierarchy, the goal is to learn values for Q(p, s, a), the expected return when task p
is completed if, %ve choose to execute subtask a in state s. The MAXQ value function

decomposition partitions Q(p, s, a) into two parts: V(a, s), the expected return

while executing subtask a, and C(p, s, a), the expected return from completing p

after a has finished executing. Partitioning the rewards in this way allows powerful

state abstractions to be used which can greatly reduce the effective state space for

the problem.
Combining the MAXQ decomposition with Q-learning for each policy subtask

produces the MAXQ-Q algorithm. Using this algorithm, learning can take place at

all levels of the hierarchy simultaneously, with the algorithm eventually converging

to a recursively optimal solution. Dietterich derives the formal conditions for safely

employing state abstraction in MAXQ-Q (in other words, using state abstraction

without compromising the quality of the final policy).

ALisp

ALisp (Andre, 2003) is another recent method combining state abstraction with

temporal abstraction. ALisp extends the partial programming approach of the

HAMs (Parr and Russell, 1997) method, and is essentially the Lisp language aug-

mented with non-deterministic choice points (where the reinforcement learning

70

takes place) and subroutine calls to lower levels of the hierarchy. The sum of re-
wards is partitioned in a similar way to the MAXQ method, but the algorithm con-
verges to a hierarchically optimal solution, which is an improvement over MAXQ.
State abstraction is achieved by the user annotating the choice points in an ALisp

program with the names of the state features which are relevant to that learning

choice. Andre (2003) also presents the formal conditions for safe state abstraction
in the ALisp framework.

3.5.5 Learning Sub-Goal Hierarchies

All the hierarchical methods described so far assume that a hierarchy is supplied
by the user before learning begins. There has been some research into determining

useful task decompositions without prior knowledge. This obviously makes the

learning problem much more difficult, and there has been very limited success in

this area.
The SKILLS algorithm (Thrun and Schwartz, 1995) searches for abstract ac-

tions using a description length argument, which specifies the number of states

each abstract action should cover. The algorithm starts with a single state for a

skill, and grows the set of states defining the skill while learning a policy which

maximizes reward in that region. While effective, the algorithm is slow. In the

example grid navigation domain, the time required to find useful skills is an order

of magnitude greater than the time needed to find a near-optimal policy.
In more recent research, McGovern and Barto (2001) use the concept of diverse

density to identify states which occur somewhere in every successful episode, but

not at all in failed episodes. Reaching such a state becomes a sub-goal, and an

option (Sutton et al., 1999) is created for each of them. $m§ek and Barto (2004)

present a similar approach based on the relative novelty of states. The novelty of

a state decreases the more times it is visited. The relative novelty of some state in

an experience trace is defined as the ratio of the novelties of the states immediately

preceding and following the state. States with high relative novelty are candidates
for sub-goals.

There have been several approaches which are based on properties of the graph
formed by the underlying MDP's states and transitions. ýim§ek et al. (2005) use

a graph built from a recent experience trace, and search for a cut (a small set of

edges to remove) which would divide it into densely connected subgraphs. States

on either side of the cut are candidates for sub-goals. Mannor et al. (2004) pursue

a bottom-up approach based on state aggregation, where small clusters of states

are gradually combined together to minimize inter-cluster edges.
It is worth mentioning several algorithms for POMDP learning (see Section 2.6)

71

which are based on automatic construction of a hierarchy. HQ-1earning (Wiering

and Sclimidhuber, 1997) is based on decomposition of a goal-oriented POMDP into

a sequence of Markovian sub-tasks. Each sub-task is defined by an observation
which must occur for the sub-task to end. A number of Q-1earners are arranged
in a fixed sequence. Each learner gradually determines which sub-task to achieve
and how to achieve it by mapping observations to actions. When a sub-task is

completed, control is always passed to the next Q-learner in the sequence. Sun and
Simmons (1999) extended this approach so that each Q-learner can be activated
more than once in the sequence. Since the hierarchy in these two approaches is

essentially flat they are unlikely to scale well to larger problems.
McCallum (1996) introduces a POMDP learning technique called Utile Dis-

tinction Memonj (UDM) which constructs a hierarchical state abstraction during
learning. It based on a statistical test which estimates whether distinguishing two

states (based on a finite observation history) will allow an improved policy to be

represented. The technique is similar to decision tree function approximation (see
Section 3.4-5) but in addition to estimating whether state/observation variables
are relevant for optimal decision making, the technique estimates when the recent
histonj of observations is also relevant.

3.6 Symbolic Representations for RL

A fundamental feature of standard reinforcement learning algorithms, and a key
factor contributing to the state space explosion, is the extensional representation
of states. In an extensional representation each state si ES is explicitly named,
and important data structures such as the value function are based on this explicit
naming scheme. Algorithms based on this extensional representation are very
efficient for small state spaces, but have the disadvantage of an exponential growth
in learning time as the number of state variables is increased.

In traditional AI disciplines such as classical planning, an intensional represen-
tation is much more common. In an intensional representation states (and more
importantly, sets of states) are represented by a set of state features. For instance,

if the state S is the Cartesian product of state variables X1 ... X,,, we can use
the feature X1 =3 to describe the set of all states which have value 3 for state

variable X1, whatever values the other n-1 variables take. If each state variable

can have i possible values, X1 =3 represents a set of i'-' states-hence the inten-

sional representation of some sets of states can be exponentially smaller in n than

a representation which explicitly enumerates each of the states in the set.
An intensional or symbolic representation allows us to represent sets of states

72

in a more compact fashion. However, algorithms for symbolic reasoning are usually
based on searching for solutions in a search space of size exponential in the number

of state variables (Bylander, 1994), so a trade-off emerges between representational

complexity and time complexity.

It is worth noting that some of the methods discussed in Sections 3.4 and 3.5

derive part of their usefulness from an implicit symbolic representation of state.

For instance, each node of the decision tree function approximator (Pyeatt and

Howe, 1998) uses a symbolic state feature as a decision criterion. Also, the state

abstraction offered by the ALisp language (Andre, 2003) is based on identifying

the relevant symbolic state features for each procedure in the partial program.

This section surveys recent approaches which use symbolic representations to

make reinforcement learning feasible in domains where there are a large number

of state variables to consider. Representation techniques from other Al disciplines

such as classical planning, Bayesian networks, probabilistic planning, and logic pro-

gramming are among those evaluated for their suitability for use in reinforcement

learning.

3.6.1 Classical Planning and Reinforcement Learning

A classical AI planning problem uses a restricted first order representation of state
to provide a basis for reasoning efficiently about sequences of actions to achieve

a given goal. In this section, we will consider planners which use the STRIPS

representation (Fikes and Nilsson, 1971), although much of the discussion applies

equally well to more complex representations such as ADL (Pednault, 1989), prob-

abilistic STRIPS (Kuslimerick et al., 1995) and the situation calculus (McCarthy,

1963).

Planning With STRIPS

In STRIPS an individual state is represented by a set of positive ground literals,

and the set of goal states by a conjunction of positive literals. Each STRIPS

operator (or action) is defined by the changes it makes to the set of positive literals

which constitute an applicable state. This is usually compactly encoded as three

elements, a set of preconditions, an add-list and a delete-list. A solution to a
STRIPS planning problem consists of a sequence of operators which transform the

initial state to one of the set of goal states.
A planning problem and a reinforcement learning problem share some key

structural components. In both paradigms we have a current state, which can
be transformed into a new state by means of an action (or operator). Both are

73

also concerned with identifying useful sequences of actions. This suggests a close

relationship between the two problems, and that we may be able to use plan-

ning techniques to improve the performance of reinforcement learning algorithms.
However, there are also key differences between the two problems. The effects of

planning operators are deterministic, and the operator effects are given as prior

knowledge to the planner. Also, in the planning problem we are primarily inter-

ested in reaching one of a set of goal states. In contrast, the goal in reinforcement

learning is to maximize some optimality criterion such as the total discounted re-

ward. It is not always possible to express this maximizing goal as a set of goal

states.

STRIPS Planning vs. Dynamic Programming

The relationship between classical planning and dynamic programming is discussed

in some detail by Boutilier et al. (1999). This relationship can be illustrated by

transforming a STRIPS problem into an MDP problem for solution by a dynamic

programming algorithm. This transformation can be defined as follows:

a The state space of the MDP enumerates all the sets of positive ground literals

which represent valid situations in the problem domain.

9 The actions of the MDP are the ground instances of each STRIPS operator.

e The reward function of the MDP is 1 in all the goal states of the planner
(which are terminal), and 0 everywhere else.

* Taking an action in a state which does not satisfy the preconditions of the

corresponding STRIPS operator results in a self-transition.

Taking an action in a state which satisfies the preconditions results in a
transition to a new state determined by the add and delete lists of the STRIPS

operator.

The value function for this MDP can be obtained by dynamic programming. This

determines for each state the action which leads to the nearest goal state. There-

fore, from the value function it is possible to read out the shortest plan for any
initial state. A planner's solution only applies to a single initial state. Despite this

advantage, the state space explosion means that solving any significant planning

problem in this way is generally intractable. But the close relationship between

the two problems suggests that representations from AI planning are likely to be

important in developing dynamic programming and reinforcement learning algo-

rithms which can solve larger problems.

74

Richer Planning Representations

The reverse transformation, from an arbitrary MDP to a STRIPS planning prob-
lem is not possible, since neither actions with stochastic effects, nor reward func-

tions which are not goal-oriented can be represented in the STRIPS framework.

However, more expressive representation languages for AI planning have been de-

veloped since STRIPS, some of which can express one or more of these qualities.

Probabilistic planning algorithms such as BURIDAN (Kushmerick et al., 1995) can

represent the stochastic effects of actions, but the systems which have been built

so far have exhibited very poor performance compared to deterministic planners.

In terms of reasoning about rewards and the relative quality of several plans to

achieve a goal, decision theoretic planning systems such as DRIPS (Haddawy and

Suwandi, 1994) may provide insight into which intensional representations could

be useful for reinforcement learning.

Macro-Operators and Hierarchical Planning

Some techniques developed to solve large-scale planning problems turn out to have

natural analogues in reinforcement learning. The strongest influences are evident
in the hierarchical reinforcement learning methods previously discussed in Sec-

tion 3.5. A macro-operator (Korf, 1987) is a useful sequence of planning operators

which is considered as an atomic unit for the purposes of state space search. Macro-

operators have influenced methods like the options framework (Sutton et al., 1999)

which are based on temporal abstraction. A similar influence can be observed in

the state abstraction hierarchies of methods such as ALisp (Andre, 2003), which
have many conceptual similarities to hierarchical planning algorithms such as AB-

STRIPS (Sacerdoti, 1974).

Methods Combining Planning And Reinforcement Learning

So far, there has been relatively little research using symbolic planning representa-

tions to augment the capabilities of reinforcement learning methods. One exception

is the technique developed by Boutilier et al. (1997) to solve MDPs with reward
functions expressible as an additive combination of sub-goals. The technique uses

partially- ordered plans as the intermediate representation of solutions for each of

the sub-goals. These plans are then used as the basis for creating an overall solu-

tion of the MDP by merging the sub-goal solutions and prioritizing the sub-goals

with the largest associated rewards.
RACHEL (Ryan, 2002a, b) is a hybrid system which combines RL with techniques

from teleo-reactive planning (Nilsson, 1994). At the centre of this approach is the

75

concept of a reinforcement-learned teleo-operator (RL-TOP). An RL-TOP uses

symbolic preconditions and effects to define the intended outcome of a behaviour,

while leaving the implementation of the behaviour to be learned by RL. This means

that the operator can be used in a planning algorithm, but it also means that a

reward function for learning the operator behaviour can be automatically generated

from the operator's symbolic preconditions and effects.
The RACHEL system uses what is known as semi-universal planning. A uni-

versal plan contains a path to the goal for every possible symbolic state, but is

typically too costly to calculate and store in memory. A semi-universal plan is

typically much smaller, and is generated by storing in memory all the failed paths

generated during a search for a valid plan. In addition, if during plan execution

a state is encountered which the plan does not cover, the plan is extended with

a path from this new state to the goal. The use of semi-universal plans in the

RACHEL system reduces the cost of replanning when an operator fails. In addi-

tion, the teleo-reactive approach allows the system to exploit shorter plans which

unexpectedly become possible due to exogenous events.

3.6.2 Factored Representation of MDPs

One intensional approach which has become popular for solving large dynamic pro-

gramming problems is to describe an MDP with a factored representation (Boutilier

et al., 1999). Each state variable which is part of the overall MDP state can be

referenced by a symbolic name, and is termed a factor of the MDP- Based on these

factors, compact representations can be defined for the effects of actions, the re-

ward function, the value function, and other elements of the MDP. Some of these

representations are described in this section. Although much of this work assumes
that the parameters of the MDP are known (and usually that the factored rep-

resentations of actions and reward function are also known) it is likely that such

representations will be useful in the future for scaling-up reinforcement learning

methods.
A factored representation of an action compactly encodes the following prop-

erties:

9 Factors in the current state which affect the result of the action.

4, F actorswhich can change in the next state if the action is applied.

e The conditional probability of each change, given the current state.

76

Dynamic Bayesian Networks

If we have a factored representation for every action, this represents a compact

encoding of the transition function of the MDP. One way to encode this information

is to use a Dynamic Bayesian Network (Dean and Kanazawa, 1989), as shown in

Figure 3.12. The form of the network used here is sometimes referred to as a
2TBN or two-stage temporal Bayesian network. The example in Figure 3.12 uses

only binary state variables, but the approach applies equally well to multi-valued

state variables. The conditional probability table (CPT) for each node at time t+1

determines the probability that the state variable has a particular value at this

time, given the values of relevant state variables at time t. Any state variables not

relevant to the action are not represented. If there are only a few relevant state

variables, this is much more compact than a flat representation of the transition

probabilities.

xt Yt ft
f f 1.0 0.0
f t 1.0 0.0
t f 0.0 1.0
t t 0.5 0.5

xt Yt ft
f f 1.0 0.0

---------- Cý: - f t 0.0 1.0
t f 1.0 0.0
t t 0.5 0.5

Pr(Z t+ = val)
zt ft
f 0.8 0.2
t 0.0 1.0

Time t Time t+1 Conditional Probability Tables

Figure 3.12: Factored action representation based on a dynamic Bayesian network.

Probabilistic STRIPS Operators

An alternative factored action representation is based on the concept of a probabilis-
tic STRIPS operator (Kushmerick et al., 1995). Like a regular STRIPS operator
(Fikes and Nilsson, 1971), the effects of the action are represented with an add list

and a delete list. However, the probabilistic STRIPS operator has a number of

such lists-the one to be used depends on the values of relevant variables in the

current state. This is encoded as a decision tree, as shown in Figure 3.13. Each

leaf node in the decision tree is a set of possible effects lists, each tagged with a

Pr(Xt+l = vat)
xt yt ft
ff1.0 0.0
ft1.0 0.0
tf0.0 1.0
tt0.5 0.5

Pr(Yt+l = vat)
xt yt ft
ff1.0 0.0
ft0.0 1.0
tf1.0 0.0
tt0.5 0.5

77

probability. This probability determines how likely it is that this list of effects will
occur if the action is applied in a state corresponding to a particular path through

the decision tree. This is good for representing compactly situations where the

stochastic effects on several state variables are correlated. If, on the other hand,

there are several independent stochastic effects on different state variables, the

2TBN representation is likely to be more compact.

t

yz tf

0.2

+Z tftfn ne 0.8

-X -Y 0.5 -X -Y +Z 0.1 1 none 1.0 1 +z 0

none 0.5

1

-x -Y 0.4 none 0
+Z 0.1
none 0.4

Figure 3.13: A probabilistic STRIPS operator representing the same action.

Factored Reward Functions

A factored representation can also be defined for the reward function. Like the

action representations, there are several ways to do this, but one of the simplest
is to use a decision tree data structure, and store at the leaf node the reward

associated with states corresponding to that path through the decision tree (see

Figure 3.14). If rewards are associated with state-action pairs rather than states,

we will require one of these trees for each of the actions.

x
t

.0 ý-ý
y

zz
+5 +6 -1 0

Figure 3.14: A factored representation of the reward function of an MDP.

78

Model Minimization

Now that we have represented the MDP compactly, the next challenge is to de-

velop algorithms which can take these factored data structures and calculate sim-
ilarly compact representations of the optimal policy and the value function. One

approach by Dearden and Boutilier (1997) uses data from the factored representa-
tion to rank the state variables according to their degree of influence on the reward
function. Given this ranking, a subset of the most relevant variables can be deter-

mined, and an abstract MDP with a smaller state space can be solved using this

subset. This solution may then be used to "seed" a solution in the original MDP,

reducing the time to convergence. A similar approach by Dean and Givan (1997)

uses a factored representation to aggregate states between which it is not necessary
to distinguish in order to act optimally. This technique is used to progressively
build up a minimal model, the solution of which induces an optimal solution of the

original MDP-

Factored Policies and Value Functions

Both the above algorithms only use the factored representation to reduce the state

space that need be considered by a standard dynamic programming algorithm. The

Structured Policy Iteration (SPI) algorithm developed by Boutilier et al. (2000)

is one of the few algorithms which maintains a factored representation through

to its eventual output. This may be significant if we need to solve a problem

where the subset of potentially relevant state variables is still very large. The

SPI algorithm employs factored representations based on decision trees for both

value functions and policies. The value function for a specific policy is constructed

starting from the tree for the reward function. A transformation of the tree based

on the Bellman backup is repeatedly applied. This transformation uses the factored

action representations to extend branches of the tree and update the state values

at the leaves of the tree. Policies are successively improved by building the value
function tree for one policy, then building a new policy tree with greedy choices in

the value function.

The SPUDD (Stochastic Planning using Decision Diagrams) algorithm (Hoey

et al., 1999) extends the decision tree representation of the SPI algorithm, using

algebraic decision diagrams (ADDs) to represent conditional probability tables and

value functions. SPUDD is a value iteration style algorithm which can be used to

solve factored MDPs.

79

3.6.3 Relational Representations for RL

The factored approaches in the previous section use intensional representations
based on state variables to solve structured MDPs efficiently. These representa-

tions are all inherently propositional-they can only express the possible values

for each of the state variables. If the learning domain involves many objects, and

relations between the objects are part of the state description, then a propositional

representation is likely to be inefficient. This has led some researchers to consider

using first order representations of state for reinforcement learning.

Symbolic Dynamic Programming

Symbolic Dynamic Programming (Boutilier et al., 2001) is a first order approach
based on the situation calculus (McCarthy, 1963). It does assume the MDP pa-

rameters are known, but the representations involved may still prove useful for

reinforcement learning. The preconditions and effects of each action in the MDP

are represented in an extended version of the situation calculus, thus allowing uni-

versal (V) and existential (3) quantification to be used to express sets of states

very concisely. To express stochastic effects, the calculus is extended with the

choice operator, which represents a stochastic choice between two deterministic

effects. When a stochastic action is applied, the system decides probabilistically

which of the two deterministic effects to apply-so while the symbolic reasoning
is restricted to deterministic situations, the addition of the choice operator allows

the correct calculation of state values in stochastic domains. The reward func-

tion is expressed by partitioning the state space into sets of states using situation

calculus expressions, and annotating each set with a reward value. A version of

the Bellman update rule is then defined over the first order representation, and is

repeatedly applied to obtain a value function compactly represented by situation

calculus expressions (in a similar way to the reward function).

A disadvantage of using the situation calculus is that computationally expensive

theorem proving techniques are needed to apply the inference rules. The relational
Bellman operator, or REBEL (Kersting et al., 2004), is an alternative symbolic
dynamic programming algorithm based on a STRIPS-like representation.

Relational Reinforcement Learning

Another technique for learning in first-order worlds is Relational Reinforcement

Learning (D2eroski et al., 2001). In this approach, formulae from a STRIPS-like

representation are the basis of a decision tree which compactly represents the value
function for a paramete7ized action such as move (A, B) (where A and B are first or-

80

der variables). An example of a decision tree learned by relational reinforcement
learning is shown in Figure 3.15. The decision tests in the nodes of the decision

tree are based on relations, which can reference the variables of the parameterized

action, e. g. clear(A). D2eroski et al. (2001) evaluate several different algorithms
for building the decision tree, based on existing learning techniques such as TILDE

(Blockeel and De Raedt, 1998). The input to the decision tree learning algorithm
is a set of situations encountered during a learning episode, each annotated with
the action taken and the total rewards accumulated in the rest of the episode.
While the representation is much more restrictive than the situation calculus, it

still allows us to represent very compactly the effect of an action on a large number

of objects. It can also take advantage of a fast decision tree learning algorithm,

rather than having to use a theorem prover to calculate the value function. Re-

lational reinforcement learning can be seen as the application of inductive logic

programming techniques to the reinforcement learning problem.

on (A, B)
\110

Action
-

move(D, E) 1 1
0.0 clear (A)

ýýno :
Current Goal

1.0 clear(E) on(A, B)

: 7/\110

0.9 0.81

Figure 3.15: Example of a value function learned by the Relational Reinforcement

Learning method (D2eroski et al., 2001).

Although relational reinforcement learning is a relatively new technique, it

is becoming increasingly popular, and many researchers are seeking to improve

and extend the approach. Alternatives to the decision tree approximator used by

D2eroski et al. (2001) are being investigated, such as the method using instance-

based regression developed by Driessens and Ramon (2003). Another successful

approach encodes state-action pairs as graphs, then uses a kernel function (see

Section 3.4.4) over the graphs as the basis of the approximation (Ciirtner et al.,
2003). Relational reinforcement learning has become one of machine learning's

"hot topics" in recent years, resulting in a range of new approaches which combine
ideas from classical planning, probabilistic logic learning, and the broader machine
learning community. A comprehensive survey of the state of the art in relational
RL and its relationship to research in other areas can be found in van Otterlo

(2005).

81

3.7 Parallel Reinforcement Learning

In the preceding four sections, a wide range of techniques have been surveyed which
can be used to apply RL to large-scale problems. While there has been substantial

progress towards this goal, there remain many problems of borderline feasibility

which can require many hours or even days to learn a high-quality policy. In

these situations it is reasonable to ask whether a parallel computing architecture

could be used to generate the policy more quickly. It is not immediately clear
that this should be possible, since the characteristic interaction between an agent

and its environment in RL is essentially a sequential process. However, where it

is possible to simulate the target environment, the benefits of a parallel approach
become evident. Parallel techniques for generating RL policies are surveyed in

this section, and this broad approach will be referred to as parallel reinforcement
leaming.

The section begins with an overview of concepts from parallel computing which

will be used throughout the thesis. Since limited space precludes an in-depth

discussion of this topic, the reader is referred to Hwang and Xu (1998) for more
details on the theory and practice of parallel computation.

3.7.1 Overview of Parallel Computing

There has been such a variety of parallel computing systems built over the years
that it is important to try to classify parallel systems in a way which captures

some of their key properties. Flynn's taxonomy (Flynn, 1972) can be used to

classify a parallel computer according to the number of instruction streams and
data streams:

SISD - Single Instruction Single Data A sequential computer with no par-
allelism.

SIMI) - Single Instruction Multiple Data A machine with a single control

unit which controls several subordinate processing units, each with its own
data stream.

MISD - Multiple Instruction Single Data For example, pipelined architec-
tures where each piece of data proceeds in turn through a sequence of pro-

cessing units.

MIMD - Multiple Instruction Multiple Data Consists of a number of pro-

cessors, each of which can run a different program and operate on its own

data stream.

82

Flynn's taxonomy only captures the most basic. dimensions of a parallel system,

and in particular there are a wide variety of MIMD machines which require further

differentiation. Bertseka-s and Tsitsiklis (1989) list the following dimensions for

classifying parallel systems:

Type and number of processors Massively parallel systems have thousands of

processors. Coars(, -gmiacd parallel systems have more of the. order of 10- 20.

Presence/absence of a global control mechanism This roughly corresponds

to the number of instruction streams in Flynn's taxonomy.

Synchronous vs. asynchronous operation Is there a global clock shared by

all the processors which keeps thein in lock-step'?

Processor interconnections How do the processors exchange information? The

two main alternatives are shamd-nm7nory and message-passing architectures.

From the wide variety of possible parallel systenis, two kinds of NIINID systems

are particulm-lY popular.
A syinitictric 'tit, ultiprocc, ssor (SMP) computer uses a set of identical processors,

where each processor has its own on-chip cache. These processors are connected to

a sharcd-inciriory, either using a high speed bus or a crossbar switch. Maintaining

cachc colu'r-c"Icc (consistency between the on-chip caches and the shared global

memory) in such systems is a key architectural challenge. The processors are

sylianctric in that they have equal access to shared inemory and any 1/0 devices

attached to the computer. The SNIP architecture is illustrated in Figure 3.16.

Figure 3.16: The architecture of a symmetric multiprocessor (SMP) computer.

Each processor is marked with a P.

A clu. stcr of ivorkstations consists of a number of nodes, where each node is a

computer in its own right. Each node has one or more processors, a local ineinory

and usually also a local hard disk. The nodes are connected using either a low-cost

switched Ethernet network or a high-speed interconnect designed specifically for

83

building clusters. A cluster of workstations is a message-passing or distributed-

nicinory parallel systein inessages are passed between the nodes over the net-

work. The architecture of a cluster of workstations is illustrated in Figure 3.17.

Workstation I Workstation 2 Workstation 3

Memory Memory Memory

F -PI F -PI F-P I

Interconnection Network

Figui-v3.17: Tli(,, ti-(-Iiit(ý(-tiii-(, ()fa(-Ittst(, i-ofworkstatioiis. Eacliprocessorisinarked

With it P.

Abstract Models of Parallel Computers

In order to analYse parallel algorithms witholit needin? gn to reference a particular

parallel system. it is liseful to define an absti-act model of parallel computation to

facilitate forinal malYsis.
The most popular such inodel is the PRAA1 model (Fortune and Wyllie, 1978),

in which a parallcl ra'r) (10 lit- accc, ss tnacIiin c (PRAM) consists of n processors which
have access to a shared memory. Each processor call execute a single instruction at

each time-stcl). or The processors are tightly synchronized, and communicate
by reading and writing to shared variables in the mernory. The complexity of a
I-IRANI algorithin is usually defined as a function of the problem size N and the

numbcr of processors it. Communication overheads are not modelled, which ineans

that algorithins which perforin well on the abstract PRANI will not always be

practical oil it rcal parallel computer.
The bulk sytichrotiou. s parallcl (BSP) model (Valiant, 1990) addresses some

of the problems that the PRANI model exhibits. A BSP computer consists of n

nodes (each of which has a processor and local memory) that are linked using

a communication network. A BSP computation proceeds in phases, as shown in

Figure 3.18. At the start of a phase, each node performs a local computation

that lasts at most it, cycles. There follows a phase of communication between the

nodes, where each node Sends no inore than 1) inessages and receives no more than

it messages. This phasc takes no more than gh cycles. Finally there is a barher

synchronization, lasting at most I cycles, to ensure that all com municat ions are

finished. The entire phase, consisting of the three stages, is known as a superstep.

84

Processes

Time

Local
computations

Communication
phase

Barrier synchronization

rý Fý rý F] F]

superstep

Figure : 3.18: The bulk synchronous parallel (BSP) model of parallel computation.

Tlic time for a superstep can be estimated as v, + gh + 1. The paraineters g and
I call be chosen to 1-cflect the properties of a particular parallel systern, which

allows the 1)(Tforl, 1,111CC of all algorithm on that system to be predicted. The BSP

iliodel can produce pood predictions for both shared-meniory and inessage-passing

systems by accuratel. v inodcllinp communication overhead in either case.
Note that these Inodels can onlY be used to analyse algorithins which are syii-

chronmis at either the cycle or superstep level. To analyse algoritlinis which pro-

ceed almost c"InpletclY aýsynchroiioiisly, a inore complex model for analysis must
I)e used (Co1c, and ZaJiuck. 1989).

Properties of Parallel Algorithms

it is Itsefill to define it 11111111wr ()f quantitative properties which (! an be used to

cmnparc parallel algorithins, for a given problem. Suppose that for some problem

and algorithin the ti"V to soIN(, the problem se(ji ient i ally is TI, but the problem

(-an be solved in time T, using n. parallel processors. These thnes could be in terms

(A cycles in in abstract model. or they could be. actual timings in seconds of a real

parallcl system. The parallel speedup S,, achieved by the n processors is defined

as:
Sit-

T,
T",

It is generally the case that 0<S,, < ii. If S, =n the algorithin is said to

achieve lincar spccdup. It is inore often the case that communication and other

overheads prevent full linear speedup from being achieved. If S, < 1, the parallel

algorithm activilly takes inorc time to solve the problern.
A related measure is the parallel cfficiency E, which is a number between 0

and I I'vilich indiCiltCS 11OW close we can get to a linear speedup using 71 nodes.

E, =
S, ý -

T,
71 nT,

85

The workload IV is it measure of how inuch work is required to solve the whole

problem, and can be ineasured in machine instructions, floating-point operations,

or in terins of more abstract processing units. The processing speed P, ' of the

algorithm is derin(A as:
P11 Tn

The peak pruccssing speed of each processor is written as Ppeak. Load balancing

is an important aspect of parallel algorithm design. If the workload is divided

equally between the processors, we can keep each processor close to its peak speed.

In Inost Cases, unbalanced 1011(IS and communication delays ensure that each pro-

m-isor spends some of its time idle. The utilization U,, is a measure of how well an

algorithm minimim-i the processor idle time.

ull =

P.

lIPpeak

Approaches to Parallel Programming

There are three primary approaches to parallel prograinining. These are shared-

incinory programming, inessage-passing programming, and data-parallel program-

Ining.
Shar-rd-incinory programming allows processes to communicate by reading and

writing shaird vaiiables. Typically it global address space shared by the processes

is divided into regions of private local memory for each process, and regions of

shared inemory accessible 1)), multiple proce&ses. A problem in shared memory

programming is that, variahk-t-i can become inconsistent when two processes at-

tempt simultancous acm-is. To prevent this, a inutual exclusion inechanisin (often

supported 1)), hardware) is required to protect some sequences of instructions. Such

it sequence is called it critical scciion, and these sections are the source of cominu-

nication overheads in shared memory programs. While modern operating systems

provide support for shurml-inemory programming, there is currently no widely ac-

cepted platform-indepentlent standard. The POSIX Threads (Pthreads) library is

it popular choice for sharexi-memory programming on Unix-like systems. OpenAIP

is the inoit promising platform-independent standard to emerge.
While sliared-incinory programming maps well to SMP systems, prograinining

using messagc-passing is usually more appropriate for cluster computing. At its

most basic, III(_-;. sIIgL-passing involm-i one process calling a Send function to trans-

fer it sequence of bytes to another process calling it Receive function. These

functions are usually provided in it library that can be used in an existing language

such its C++. In synchronous int--isage passing, the Send function will block un-

til the remote prom-m calls the corresponding Receive function. In asynchronous

86

message passing, non-blocking Send and Receive functions are used, with incom-
ing inessages placed on a queue until they are consumed by a Receive function

call. Messages may be copied to a buffer in system memory, or be transmitted
directly from all area of user inemory. While inessage-passing programs can be im-

plenientcxI using platforni-depwident libraries such as Windows sockets, there are
two very popular platforin-indepeadent standards: the Afessage-Passing Interface
(AIPI) and Par-ulld Virtual Machine (PVAf) standards. An implementation of the
MPI standard is used as the basis for implementing the parallel algorithms in this

th(--iis.

Data-pamIld programming, which has little relevance to this thesis, is typically

supported with additional language features rather than a library, and can concisely
exprm,; proceduru-i such ws arithmetic operations on large vectors of numbers.

3.7.2 Parallel Dynamic Programming

Parallel approaclit--i for planning in MDPs tire typically based on partitioning the
state space5. If there art. - it processors available, tile MDP's state space S is divided
into disjoint subsets SI, S2,..., S,,. It is preferable that these subsets are all the
saine size, to balance the load oil the processors. Processor i uses a value iteration

update to calculate- new (t. itiniates for all tile states in Si. The now updates are
then broadcast to all tile other prom-ssors. Each processor maintains a buffer to
store the most recently received estiinat(--i received from other processor, which
are used in the value iteration updat(--i. In tile simple synchronous version of this
algorithin, each 1)roct--; sor must wait to receive estimates from all the others before
tile next set of updatt--i Call be calell lilt cd.

Variations C1111 be Made to this approach to improve performance. Archibald

et it]. (1093) present it pipelined version of this algorithin. Each partition Si is
further partition(41 into f Sets SO, SO, -, Sij. The updating and communication
phwit--i call now Ill. - overlapped, with 1)roc(--&sor i broadcasting updates to Sij while
concurrently updating Sjj+j.

Ali wsynchronous version of the basic algorithin is presented along with a con-
vergence proof in Berts&ts and Tsitsiklis (1989). The asynchronous algorithm no
longer rcquirc-, updatt--i and broadcasts to occur at the same rate. Multiple updates
of each state ! it partition Sj call occur between broadcasts, and the most recent

from another processor call be used without needing to wait for estimates
from tiny other 1)roc(!:,, or. This wsynchroilous algorithin is shown to converge for
infinite-horizon discounted hIDPs under the assumption that there exists T>0

r1t. Is A%o pa-'sible to partition the nction wace, but most, moblems of interest have such a
timall numbrr of actions that thk kind of parallelization is not efftvtive.

87

such that for all proct--isors i and all time intervals of length T, processor i performs

at 1w ust one update of ever), state in Si and performs at least one broadcast.

There are many hlDP problems where, for all states s, there are non-zero transi-

tion probabilities for only it sinall set of neighbour states N(s), wherc IN(s) I< IS1.

These are problems with it strong element of locality to the state. Solving these

problems with the above algorithnis; can use significantly fewer communications if

estimates of state s are only sent to processor i if there exists some S' E Si where

sE N(s'). The memory requirements for each processor i are also reduced, since

each only needs to buffer L-stiniatL-s for the set of states 15'Is E Si, s' E N(s), s' V

Sj). The use of neighbour states in this way was proposed by Bertsekas (1982).

Of course, the number of neighbouring states for each partition depends greatly on

how the partitions (Sj) are constructed. If each partition consists of states which

inhabit it local region of state space, the number of neighbouring states can be

kept sinall. An algorithin which constructs and exploits partitions of this kind is

presented 1)), Wingate and Seppi (2004).

3.7.3 Parallelizing Reltirorcenient Learning

lit comparison to the above work- in dynainic prograinining, parallelization of RL

techniques Ims little attention. This is surprising given that intich existing
111, research is carried out using simulated environments. A simulation can easily
be replicated for each 1)roc(--.;. sor in It parallel computer. Therefore it should be

posisible for each proct, -ýsor to run it learning algorithin, and for intermediate results

to he exchanged bawmn them. More often, the attention of researchers has been

directed towards innIti-agent reinforccinent learning, where several agents learn

different but, relatcd tasIcs in cither it coopenitive (Kapetatink-is and Kudenko, 2005)

or competitive (Littman, 2001) setting.
I'll(. - paralicl RL and inulti-agent. RL settings have somewhat different assuinp-

tions and goals. Parallel III, is primarily concerned with finding policies for (sini-

Illated) Single-agent Icarning prublerns more quickly by exploiting parallel liard-

war(!. hitilti-agmt, Ill., iiivolv(--,, agents which are situated in the same enviroilinent
(producing it intilti-agent 1carning problem) where interactions between tile agents

complicate tile achievement Of all effective cooperative/competitive policy. There

is some, (Icgr(, %, of em.,.,; over between the two arems though, with multi-agent tecli-

Iii(Ilm-i Such IL4 advice exchange (Nmies and Oliveira, 2003) having sonic relevance
for parallel RL.

Wilitellead (1991) investigated III, in it restricted class of INIDPs (deterministic,

goal-oriented k-dimensional grids). One of the methods in this paper, Learning By

Watching has :, everal agents learning in identical environments, which are able

88

to "watch" the other agents, and use these watched experiences to update their

value functions. The expected time (in environment time steps) for a population

of it agents is shown to be Although a parallel implementation is not
tlie focits of this work, it does describe a technique appropriate for parallel RL:

capericrice broadcast. While ill this paper watching other agents is essentially free,

ill most situations communicating experience tuples will have a cost. Experience

broadcast is most useful for parallel RL when the cost of generating experience is

large compared to the cost of updating a value function.

Tan (1993) also investigatu-i experience broadcast in the context of inulti-agent

RL. The performance of experience broadcast in a predator-prey domain is com-

pared with two other approachu-i. Policy- a vcraying involves a set of agents com-
bining their value functions by setting each value to the mean of all the agents'

estilliatu-i. Sallic-policy Updating oil the other hand requires that all the agents

share it single vallie-ftinction ditta structure, stich that the effects of all update

inade by one agent are immediately visible to all the other agents. It should be

noted that these results tire not based oil it true parallel implementation. The costs

of communication are ignored in the results, althotigh Tali does try to broadly cliar-

acterize the network bandwidth consumed by each of the inethods. Alimadabadi

and Asadpotir (2002) extend the policy-averaging approach of Tali (1993) by in-

troducing it iminber of niewitiru-i for the czpertness of all agent at a given task. A

weighte-d average of I)olici(--; can then be defined, favouring the most expert agents.
Parallelism is considered more explicitly by Kretchinar (2002) for the purpose

of solving bandit probleins (Berry and Fristedt, 1985). These are essentially single-

state MIN's, wherv the goal is to explore the available actions ill order to converge

quickly to the one with the optimal return. In 1(retchinar's approach each parallel

agent stores all t. -itiniate of the return for each action, its well as a record of how

llially thiles each action Ims 1wen tried. After all action is taken by each of the

agents, they combine their t-t-iffinates with it weighted average. Each agent's action

vallie. uitilliate is Weighted by the number of times the agent lias tried the action.
Excellent parallel tipmAtips tire shown in the empirical evaluation of this inethod,

which is bastA on it sinitilaHon of parallel agents. There is no cost assigned to

inter-agent comintinications.
A parallel version of the TD(A) algorithin was proposed in Maillard et al.

(2005), which was inipleniented using the MPI iii(--; sagc passing standard and eval-

nated using it clitstcr or workstations. The state space of each agent is represented

using it netiral network-, and the changes in each agent's weights are periodically

added together 1)), exchanging weights over the network. This work is currently at a

very early stage, but is conceptually similar to some of the new inethods developed

89

ill this tll(---iis.
Note that policy scarch inethods for RL (see Section 2.4) are in many ways

more naturally parallelizable than value-function based approaches. It may be for

this reason that there have bmn no specific studies of parallelism in policy search-

parallelism is siniply used in some researchers' implementatiorts. There are three

main ways to use piLrallelization. The policy scarch spacc can be divided among
the agents for exhaustive search, or searched simultaneously using a genetic algo-

rithin. The calculation of it policy gradient can be parallelized for gradient-based

methods. Finally, the policy cvaluation required to compare candidate policies can
be parallelived by agents sinitilating episodes in parallel.

3.8 Conclusions

In this section, some broad conclusions tire drawn from the areas of research sur-
veyed in this chapter.

Exploration Strategy

The choice of a good (uplonition stryjtcgy remains an important part of applying
reinforcement learning to any given problem. Without a good strategy reinforce-

ment learning will almost certainly perform poorly. The more complex strategies

can reduce the required number of explorative steps in the environment by an

order of maguitude (at the expense of computation time and space). However,

improvements in the strategy do not address the key problem of the state space

cýrplosion, and exploration time is likely to remain closely linked to the size of the

state Space.

Value Minction Approximation

runction uppwrilliatioll ellablt--i reinforcement learning to be applied in domains

with a large set of states, or even in domains which have it continuous state space.
It also allows the reinforcement learner to guicralisc and make good decisions

ill states that have not yet been encountered during learning. There have been

great tiuccmsu-i in applybig tli(--ic inethods to some domains, but it is often hard to

reproduce this succe: -ý,; in similar domains.

The relatively strong theoretical basis which has been established for reinforce-
inent Icarnhig using firicar and inernory-based approxiinators should stimulate more
research which appliui the-se methods to the most difficult problems. If a similar
theoretical bwsis cannot be (--itablislied for neural networks, it may still be possible
to determine empirical guidelines for using this approximator for RL. Ultimately

90

though, the sucm-isful application of function approximation in RL relies most
strongly on choosing it good set of input features for learning.

Hierarchical Reinforcement Learning

Using hierarchical reinforcement learving methods to constrain the learning effort

required for it given problem has proved useftil for learning in large domains where
function approximation is ineffective. Methods which make use of both temporal

abstraction and state abstraction are the most successful. Hierarchical approaches

are limited by the quality of the hierarchy supplied to the algoritlim. A great deal

of prior knowledge about the problem structure can be encoded in the hierarchy,

rt--iulthig in fiLst learning and policies with good performance. If there is little prior
knowledge abont the problem, constructing it hierarchy can be difficult. A poor
hierarchy can r(---itilt in inany of the best policies being excluded from being learned.

While there hiv; bmni some rt--iearch on automatic construction of hierarchies,

building it hierarchy from scratch is likely to remain it slow process for the largest

problems. But, being r(--Aricted to it fixed hierarchy means that the best result that

call be obtained may 01113' be Optimal with respect to the chosen hierarchy. This

may besome way short of the true optimal. This suggests that future improvements

to hierarchical inethods may be biLsed on extensions or transformations of an

existing hievirchy suppliul mi prior ktiowle(IgL, to till algorithm.

Symbolic Representatimis

Reinforccinent Icarning methods which exploit symbolic representations are ail al-
ternative approach to Icarning in doinains that exhibit, significant internal struc-
ture. Algorithms bascd oil factoird representations of MDPs allow prior knowledge

about the internal structure of ail NIDP to be compactly encoded. First-order

repr "-entations call he employed for doinains with inany objects and/or inany
inter-objcct. relations.

Relational reinforcement learning is a technique which lins been developed quite

rccently, and is likely to be widely applied in the future to suitable doinains. The

successful combination of inductive logic programming techniques with reinforce-
inent, learning in this approach suggests that other symbolic learning inethods such
its explunation-bascil Icaniing could be used for it similar purpose (see Dietterich

and Mann, 1997). There is also the potential in this area for symbolic reasoning
to be combined with relational RL to create powerful hybrid planning/learning
systents.

91

Parallel Roinrorcement Learning

in comparison to the other techniques for scaling-up, parallel RL methods have

not been widely investigated. Mechanisms such as experience broadcast and pol-

icy averaging have been propos(A and evaluated with simulated agents. Very few

studi(N have emuninLA implementations on real parallel hardware, where message

passing and shared-niemory access both have costs which must be taken into ac-

count to achieve good performance. Almost all of the existing research assumes

that it table-blLsed value function is in use. Parallel inethods which allow function

approximation to be used would broaden the applicability of parallel RL. Xleasures;

of an agent's expcrience (or czpcriness) appear to be valuable for combining infor-

ination from several agents. Policy search RL methods are often more naturally

parallelizable than value-function based approaches.

Discussion

Developing Inethods to solve large RL problenis remains a vibrant area of research.

A huge variety of techniques have been proposed, as this survey has shown. How-

ever, while there has been substantial progress, many learning problems remain

infemsible for the current generation of algorithms. In addition, many of the tech-

niques only perform well in special cas(--i of learning problems.

The primary focus of this thesis is the area of parallel reinforcement learning,

which has received little attention compared to some of the other techniques. One

goal of this tht--iis is to examine the possibility of parallel RL in the presence of

valuefunction approximation, since most previous work on parallelism has assurned

IL table-based value function. Another goal of the thesis is to develop inethods

which are practical for implementation on real parallel hardware, as many existing

methods do not take into account the cost of inter-agent communication. This

material is covered in Chapters 4,5 and 6.

A secondary topic in this thu-iis is the use of symbolic planning to provide

hierarchical structure for RL policies. This is it hybrid approach which dra%vs on

tecliniquo, from both the syrnbolic represcritations and hierarchical RL sections of

the above survey. The purpose of this part of the thesis is to show that symbolic

planning is an efrective way to automatically construct hierarchies for learning,

which is an inkportant goal in hierarchical RL. This material is covered in Chapter

7.

92

Chapter 4

Merging Approximate Value

Functions

In this chapter I present it family of methods for parallel reinforcement learning

(see Section 3.7), based on the notion of it set of agents which learn in parallel

and periodically ineryc their value function approximations. After motivating this

approach and describing the core method, several instantiations of the method

Which 11se different Incryiny functions are defined. These instantiations are eval-

unted and compared using it simulation of parallel agents. I examine the effect

on parallel speedup of both the number of agents and the period between merges.

A comparison is also inude with it baseline method where agents learn in parallel,

but in isolation (i. e. with no merging). Finally, the inethod is implemented on

it cluster of worLstations to asst--; s its practicality for speeding up learning in a

realistic parallcl setting.

4.1 Motivation and Assumptions

In Chapter 3 it wide variety of teclini(jim-i were surveyed which can be used to

extend the feasibility of 111, to larger and more complex learning environments.
While it great deal of progress lias been made in this area, there remain inany
RL problems of intem-it that are only borderline feasible, requiring hours or days

of learning time to coiwerge to the optimal policy. In such borderline cases, it

is reasonable to ask whether panillcl hanlivare could be used to reduce the time

required to find the optimal policy. The hardware available may take a variety of
forins: it computer with it multi-core processor, a multi-prmessor server, a cluster

of workstations or emit it grid cvniptiting infrastructure.

It is not obvious that parallel methods can be applied to RL problems. RL

agents are typically characterized it,; learning froin a sequential stream of ezperience

93

iL"111114-d that tills wil. ý tilt. ('III\. solm c (A exp'liclice available. it

WoUld 4 ho. po-, si I Af .to1)a ral It -I izo- tI it -)i it at it)it ex pe lit led oil vach ex I wriel I(v
tili)l(-. 'I'lliS COIJI(l 1W ll. -44I to Update a large set of nemal network weights more

quickly. or to perform extra planning ill thf- manner of DYNA (Stitton. 1990).

If gf-m-rating experience is relativelY clicap. this approach is milikelY to improve

greatly over a simpli, w(Inviinal Q-1varning agent.
flowever, --mppo---

it A-(-r(- possible to situate two or more agents ill s(, pamtc but

id, ratcal enviromm-nts If vach of the environments behaves as if it liýis the saille

tinflurlyhig MDP then exim-rivnce ill anY of the environments is interchangeable.

'I'lif, ctivirotiments arv ill vIfo4 t parallel somirces of' experience. If' ill addition there

is it WaY the ago-lit., call (ollimunicate with vat It othcr. there is the potential for

till-ill to %harv, cip r-ifrl(, t ill Nnne niminvi. Identical environnients of this kind are

if Hit, environinents art, simulat(d ()it it compiter.

Tilt- parallel itr(, Iiitf-(ttirv we mssume is available is shown ill Figure 4.1. Thcre

are it mmilm-r of paridlel processo-t, (-it(It of which supports an agent learning ill par-

allf-I lising all idt-lit i(. Ikl silliulat ion of it -oriollf -agcni problem. Durim, Icarning each

agent uplati-, it. -. own private valtic fmi(lion. There is it cliannel for inter-process

Colillillillif J164 ill. which Ina
.N.

Im, hms(NI ()it cithcr Shill141-111CIIJOry or ill intercoliliec-

tion tiviwork. Usitig lbis clialkliel. information call Ill- exchilliged betw(4,11 agents,

allowilig olic itgelit 14) vXploit information Ivikrnt4l bY another. Thi,, (-, ill acceler-

ate convergenct, 14) an optimal policY. The exact form of' the information being

(, X('Iljjllg44I Will IPV diSCII.. "41 litter ill this chapter. Now that it is important that

agetits have diffury-W expo-riclices ill the simulation, which is simple to achieve if

v\11141latilill 11. ttri, v so-lects a small proportion of random actions.

-Fva-lue!
7

Simulation, * (A 9w q, "j,

Simulation'PO
CASCý)

function]

Valtic
i simuLition

(Aýcnt
turictionl

II, ýIII.; iII, -p. I I. ti 1, i . 11 111 11 1-týII,. III, ,%%--f%(I, II, i-"'l W, tI) 11 .; IIIIiIII)ý IIýII

ido-Ill ical '11111ilitt it Ims of it "illgif-ligellf 4.11vil-millielit .

Adopting I hiý im hile-4 I me implies that our method can oIllY be us441 for simu-

latid Ifl. vnvironmviit., (hic cotild argue that this excludes the interesting cwse of

94

embodied RL agents-autonomous robots which interact directly with some real-

world environment. In practice, the cost in time and difficulty of collecting a large

volume of robot interaction data usually makes some degree of environmental simu-
lation inevitable. It is therefore reasonable to adopt the assumption of a simulated

environment.
Note that the value function learned by each agent predicts values over the

entire state space of the simulation. This is quite different from the traditional

approach in parallel dynamic programming (see Section 3.7.2) where the state space
is partitioned into a number of regions, with each agent only updating the values

of states in its assigned region. There are a number of reasons why a partitioned

approach may not be appropriate for parallel RL, where the transition and reward
functions are not known:

A lot of effort in RL is focused on sampling the environment's transition and

reward behaviour. Speeding up the sampling process by combining results
from several agents is only possible if the agents learn in the same areas of

state space.

is A key strength of RL is that value function updates are focused on states

with a high visitation probability under the current policy of the learning

agent. Restricting each agent to learning within a partition would change
the overall distribution of updates.

Since the transition function is initially unknown, a suitable partition (with

a small number of inter-partition transitions) would either have to be de-

rived from external problem knowledge, or would require modification during

learning as the state space was explored.

Because the agents are not restricted to disjoint partitions, they do not each have

an exclusive specialization. This means there may be some duplication of effort in

the population of agents. The advantage of this approach is that all the agents

can focus on those states with a high visitation probability, and that the effort of

sampling reward and transition behaviour can be divided amongst the agents.
A final point to mention is that there are great benefits to adopting an approx-

imate representation (see Section 3.4) for the value functions used by the agents.
Consider the goal of using parallel RL to speed-up learning in problems of bor-

derline feasibility. Restricting a parallel method to table-based value functions

would allow the method to be applied only to the most simple problems. Many

RL problems of interest will be infeasible without value function approximation,

with or without parallel methods. Allowing a parallel method to be combined with

95

value function approximation gives the method a much wider applicability. In

addition, the generalizing power of function approximation broadens the effect of
each piece of information exchanged between the agents, and the compactness of

an approximate representation may reduce the overall bandwidth required for the

communication channel.

4.2 A Merging Method

Based on these motivating ideas, I will now present the general form taken by the

methods studied in this chapter. In essence, the core idea is for parallel learn-

ing agents to periodically merge their (approximate) value functions to accelerate

convergence.

Method Overview

Each individual agent in this method uses standard RL techniques to learn from

experience in its local simulation instance. A precise description of the techniques

used is given later in this section.
The novel aspect of the merging method is the way in which the agents exchange

information to improve their collective performance. This information exchange
takes place by merging value function approximations (VFAs). Intuitively, a merge
takes several VFAs and combines their content to form a new VIA. The new VIA

should ideally preserve information known by all tile agents, but also incorporate

recent changes to the value function discovered by individual agents.
The method alternates between a learning phase and a merging phase. In the

learning phase, each of tile learning agents operates in isolation, interacting with a
local simulation instance and updating its private VIA. There is no communication
in this phase. The learning phase lasts for p simulation time steps (i. e. each agent

collects p, experience tuples). This quantity p is known here as tile merge period of
tile method.

The merging phase is illustrated in Figure 4.2. Separate from the learning

agents, a single manager agent takes responsibility for the merge operation. The

phase begins with each learning agent communicating the weights of its private
VIA to the manager agent. The manager agent computes the merged VIA using
these weights. It then broadcasts the weights of the merged VIA to the learning

agents. Each learning agent updates the weights of its private VIA to those of the

merged VIA. This means that there is no diversity in the agent population at the

start of each learning phase. Diverse experiences are achieved only through the

randomness of explorative actions.

96

Manager I Merged
value function

Agents -------- -

Approx; ior
---------------- -- weights Simulat ion instance

Figure 4.2: The nwrying phasc of the core method. Each learning agent sends its

approxiniator wei, 11,11ts to the Manager agent. The manager agent creates a mcTyed

valuc fit'nction, froll, the weiphts and broadcasts the result back to the learning

agents.

Method Detail

Each leariiiiiA, aý,, Vllt uses 1xitcarfunction, approximation (see Section 3.4.3) to repre-

selit an approximate vallic funct ion. Tile, features used by the, linear approximator

are generated usilig NIC Coding (see Section 3.4-3). The SARSA(A) alggoritlinl with

a rcp1acing cligibildy fracc (sce Section 2.4) is used to update the approximate

value function its cXperience is acquired from the environment. Ali efficient ini-

pleinelitation of the eligibility trace is used which maintains a size-limited list of

ttort-zcro trace values (see Sutton and Barto, 1998, section 7.9 for further details).

This conibillation of lillear approximation and SARSA(A) has been shown to
be strongly convel ... ent "'llell used purely for estimation of value, functions (Perkins

and Precup. 2002). However, in this work a SARSA(A) learner follows ail explo-

ration policv whicl, in the limit tends towards greedy choices in the approximate

value function. Under these conditions there, does not currently exist a proof of

convergence for SARSA(A), although soine limited progress has been made towards

such a proof (Gordon. 2001: Singh et al., 2000). In spite of the lack of theoretical

guarantees, the col i lbi 'lilt ion of SARSA(A) and linear tile coding has been shown
to work well in practice for it wide variety of doinains (Sutton, 1996). These tech-

niques are therefore currently the most reliable basis for a parallel RL method

which uses in approximate value function representation.
Each agcnt chooses actions using an (-greedy exploration strategy. It is im-

portant that (>0 so that there is some diversity in the experiences of individual

The division of the I'lethod into local comput at ions in the learning phase and

97

global communications in the merging phase is similar to the notion of supersteps
in the bulk synchronous parallel (BSP) model of parallel computation (see Section

3.7-1). The choice of merge period p determines the length of each learning phase.
Since the merging phase is potentially quite time consuming, both in terms of

communicating weights and the manager's computation time, p must be large

enough for the agents to learn enough new information to warrant the expense of

a merging phase. However, if p, is too large then the agents will not communicate

often enough to achieve a good parallel speedup. The influence of parameter p, is

investigated further in Section 4.8.

Underlying this approach is the key assumption that all the agents use the same

set of learning features 10i}. Since these features are generated using tile-coding,

this implies that the number, resolution and offsets of the tilings are the same for

each of the agents. This has some important advantages:

9 No mechanism is required for projecting from one set of basis functions onto

another.

oA weight Oi has the same meaning for every agent.

e Tile only weights from other agents that are relevant for adjusting one agent's

value for Oi are the other agents' values for Oi.

A set of weights can be communicated using either the full vector of weights
0, or using a sparse set of index-value tuples I (i, Oi)}.

Under these assumptions, the ith weight of the merged approximator, 01n, will only z
depend on each learning agent's estimate for Oi. This allows a family of merge

methods to be defined, each based on a function f. The function f is used by the

manager agent to calculate each weight of the merged VFA as follows:

Oln :f (01, ii 02, i) ... I
On, i)

Here Oj, i is the itil weight of agent j, and there are n agents in total. The function

f will be known here as a merge function. A number of different merge functions

that can be used with this method are investigated in Section 4.4. The general form

of the merge method (given a specific merge function f) is shown in Algorithms 1

and 2.

4.3 Evaluating Parallel Learners

At this point, in order to evaluate a number of possible choices for the merge
function f, it is necessary to define the criteria by which the success of the merging

98

Algorithm 1 Pseudocode for learning agent.
while time elapsed "ýý tend do

for step =I to p do

Execute a simulation step.
Update weights f0j}

end for

Send weights f Oi I to manager agent.
Receive merged weights JO! } from manager agent. z

for all i do
Oi +. - oi,

end for

_end
while

Algorithm 2 Pseudocode for manager agent.
while time elapsed < tend do

for j=1 ton do

Receive weights 10j, i} from agent

end for

for all i do
Oln 'ý-- f (Ol, i 7

02, i i ... I
On, i)

end for

for j= 1 ton do

Send merged weights 10im} to agent

end for

wait until next merging phase.

end while

99

method will be judged. In this section I will describe the measurements which will
be recorded as part of an empirical evaluation. In addition, I will give details

of two implementations of the method which will be used to generate results.
Finally, several learning problems will be defined which will be used to evaluate
the implementations of the method.

The goal of the work described in this thesis is to speed up the learning of

policies for single-agent RL problems using parallel hardware. However, there are

a number of properties of RL which must be addressed in order to apply concepts

such as parallel speedup and parallel efficiency (defined in Section 3.7.1). A key

property of RL algorithms is that they converge to an optimal (or near-optimal)

value function (or policy) rather than calculating the optimal value function. RL

algorithms based on value functions gradually reduce the error in the estimate

of the optimal value of each state. In many cases, the true optimum may never
be reached-the best we can do is make the error arbitrarily small. To directly

compare the time used by two RL algorithms, it is therefore necessary to specify

some error bound e for the final value function. It is also informative to compare
the rate of convergence of two RL algorithms, since this will allow us to make

predictions for a range of different values for c.
The other key property of RL algorithms is that they are probabilistic. Since

most algorithms take some number of random exploratory actions, and many en-

vironments have stochastic state transitions, it is not possible to guarantee that

a particular error bound e can be achieved in a fixed time t. However, as t --+ 00
it is possible to have a probability of achieving the error bound that is arbitrarily

close to 1. Therefore, in order to directly compare the time taken by two RL algo-

rithms, it is not only necessary to specify an error bound c but also a probability 5

of achieving the error bound. These ideas are similar to those used in the Probably

Approximately Correct (PAC) model of learning (Valiant, 1984).

Error in the value function is by no means the only way to judge the success

of an RL algorithm. A value function with large errors may be very effective for

choosing actions if the ranking of actions is similar to the optimal value function.

This idea leads to metrics which measure the performance or quality of a policy

as learning proceeds. One such measure is the average reward collected over some
interval, which characterizes how well a learning agent seeks out the highest rewards
in the domain. This measure changes depending on the reward function used.
To examine whether different reward functions allow desirable behaviours to be

learned more quickly, an external measure of performance is required which does

not depend on reward.
The evaluation domains used in this work (see Section 4.3.1) are all episodic,

100

and the desirable behaviour in each of these domains is to either maximize or
minimize the number of simulation steps in each episode. This allows the use of
an easily measured indicator of performance, the mean number of steps per episode
over a given interval. This measure will allow us to vary both the RL algorithm
and the reward function to achieve the best performance in a given domain.

The term experiment will be used here to denote a single run of the parallel
method, with n agents starting with the same initial VIA weights, performing
learning episodes in parallel and communicating every p time steps. Each ex-
periment ends after a fixed time limit, with time defined using one of the three

quantities to be defined shortly. Since the agents' experiences are different, the per-
formance measure of mean steps per episode will vary across the group of agents
to some degree. It could be argued that to measure the performance of a parallel
RL algorithm, some collective measure of the overall performance achieved by the

group is needed. However, since each agent learns a VFA to cover the whole state

space, and information exchanged between the agents accelerates convergence for

all members of the group equally, it is sufficient to nominate a representative agent
from the group and record the performance of this agent over time. The fact that

each merge results in the agents having identical VFAs means that over time it is
highly unlikely that any agent's performance will differ greatly from that of the

representative agent.
Because the outcome of an experiment is probabilistic, results must be collected

over a number of different experiments, each starting with a different random

seed. The expected performance of the algorithm is found by taking the mean of
the performances achieved in each of the experiments, i. e. the mean over the set

of experiments of the mean steps per episode achieved in a given time interval.

The standard deviation and standard error of the mean over experiments will
be examined to establish confidence intervals to compare the performance of two

algorithms. The variance of the episode length within a single experiment will not
be examined in detail.

To determine the speedup (or rate of convergence) achieved by an RL algorithm,
it is necessary to measure the performance achieved after a given time. But how

should the learning time be measured? There are three key quantities for measuring
the elapsed learning time:

Simulation Episodes The number of episodes completed in the simulation by a
single parallel agent (not the total over all the agents).

Simulation Steps The number of time steps completed in the simulation by a
single parallel agent (not the total over all the agents).

101

Real Time The number of seconds elapsed since the parallel experiment was
started.

For the most part the use of episodes as a measure of time will be be avoided. This

is because the goal in our evaluation domains is to maximize or minimize episode
length. This causes the length of episodes to vary significantly from the start to

the end of an experiment, which tends to distort the reported rate of convergence
if time is measured in episodes.

Simulation steps and real time both have their advantages. Measuring the

simulation steps consumed by each parallel agent allows an assessment of how

efficiently a parallel method combines data from multiple experience sources. The

cost of communication is not included in this parallel measure, which can be viewed

as an analogue of the sample complexity of a sequential RL algorithm.
The elapsed real time includes not only the time spent simulating the envi-

ronment, but also the time required to update the VFA and the time used for

communication. It is a measurement which captures more of the costs associated

with the parallel method, and is good for assessing the performance achievable in

practice. However, measuring real time has the disadvantage that any results will
be specific to both the parallel system in use and the implementation details of the

parallel method. The processor speed, memory size and speed, and the network
latency and bandwidth are the system properties which will most significantly af-
fect the result. In addition, if the parallel system is shared between a number of

users, variations in the load of the system can adversely affect the results. In this

work, the real time measurements were collected during periods of very light sys-
tem load, with the parallel method consuming almost all of the available processing

and network resources.
I will now describe the two implementations which were used to collect results.

A Simulation of Parallel Agents

The first implementation is a simple simulation of parallel agents, which requires

no parallel hardware to be available, and does not even require operating system

support for threads or inter-process communication. The simulation was written

using C++, and runs within a single process. Supposewe use merge period p for a

particular experiment. During a learning phase, the agents in sequence each exe-

cute p time steps in the environment. The VIA for each agent is stored separately
in memory. After the learning phase is finished, the effects of a communication

phase are calculated. Note that sending of individual messages between the agents
is not modelled. Instead, each weight Oj" of the merged VIA is calculated using the

102

agents' VFAs which are stored in memory. Once the merged VFA is calculated,
the weights are copied into each of the agents' VFAs, modelling the effect of a
broadcast from the manager agent.

Results from the simulation are reported using time steps in the simulated en-

vironment to measure time. After each learning and communication phase, the

elapsed time is reported as p, time steps, even though the sequential computa-
tion time required for n agents is 0(np) for the learning phase and 0(nf) for the

communication phase (f is the number of approximator features). The memory

required is also 0(nf). Reporting the results in this way allows us to assess the

potential parallel speedup achievable if the agents were learning in parallel, and

communication was essentially free. Obviously we cannot achieve these conditions

on a real parallel system. In spite of this, these results are very useful for com-

paring different parallel RL algorithms, since it is easy to examine properties such

as how efficiently the agents can combine sampled experience, or whether the con-

vergence properties of the underlying single-agent algorithm are affected. We can

examine these properties without requiring access to parallel hardware or mak-
ing assumptions about the processing power or network bandwidth of the target

system.

An Implementation on a Cluster of Workstations

While the above simulation is useful for determining some properties of parallel
RL methods, there are some questions that remain difficult to answer using only

simulated results. For example, what is the actual parallel speedup that can be

achieved when communication has a given cost? Which parallel RL methods are

practical for implementation on an symmetric multiprocessor computer or on a

cluster of workstations? How can we compare two parallel RL algorithms, one

of which is more computationally intensive but requires fewer communications?
A richer simulation than the one described above (one which explicitly models

communication costs) may be used to answer some of these questions. However,

simulating large numbers of agents solving difficult RL problems will make exper-
iments very time consuming. It is also difficult to accurately model all the forms

of communication overhead observed on a real parallel system.
For these reasons, it will be useful to run some experiments on real parallel

hardware. Results using real hardware will also be useful to assess how practical

a parallel RL algorithm is for implementation on a particular kind of hardware.

The performance achieved will be measured against real time, which unfortunately

will tie the results to particular properties of the hardware and implementation

used here. In spite of this, the results will be useful for predicting performance on

103

similar hardware with different specifications.
This thesis focuses on a distributed memory model of parallel computation us-

ing message-passing. The main advantage of concentrating on this model is that

an effective message-passing algorithm can easily be replicated on a shared mem-

ory computer (message passing can be emulated by copying messages into data

structures in shared memory). In this sense message-passing algorithms have a

greater generality, since they can be used to achieve good performance on both

distributed memory and shared memory computers. Parallel RL algorithms writ-
ten specifically for shared memory machines may achieve even better performance,
but this was not a topic investigated as part of this research.

The hardware used for the experiments reported in this thesis was a Beowulf

cluster of 20 Linux workstations. Each workstation had a lGhz Pentium III pro-

cessor, 768MB of memory and a local hard disk drive. The nodes were connected

using a 10OMbs Ethernet network' based on a single Hewlett Packard switch. The

implementation was written using C++ and version 1.2.5.2 of the MPICH par-

allel programming library. MPICH is an implementation of the Message Passing

Interface (MPI) standard (Pacheco, 1997). Initially we implemented a manager

agent to do the merging (as described in Section 4.2), but for efficiency reasons this

was later replaced by the agents performing a distributed computation without a

manager agent. Further details are given in Section 4.7.

4.3.1 Evaluation Domains

I will now describe the single-agent RL problems which will be used for the purpose

of evaluating the parallel methods described in this thesis.

Mountain-Car Task

The first evaluation domain we will use is the Mountain-Car Task, as described

in Sutton and Barto (1998). This is probably the most well known benchmark

problem for RL algorithms. A car situated in a steep-sided valley between two

mountains must learn how to reach the goal at the top of one of the mountains
(see Figure 4.3). The car's engine is not powerful enough to accelerate up the

mountain from rest. Instead the car must reverse part of the way up the opposite
hill, then accelerate forward to achieve sufficient inertia to reach the goal.

The state of the Mountain-Car task is described by the position xt and velocity

vt of the car. There are three actions, which set the car's acceleration at to either
'Note that 10OMbs Ethernet is a cheap but not particularly fast network for a cluster. High

speed cluster interconnects have a lower latency than Ethernet and commonly achieve 2-lOGbps

bandwidth.

104

Gravity

Figure 4.3: The Mountain-Car task.

-11 0 or +1. At each time step, the state is updated according to a simplified

physical model:

Xt+i ý Xt + Vt

vt+l = vt + 0.00lat - 0.0025 cos(3xt)

After xt+l and vt+l have been calculated, their values are bounded so that

they remain in the ranges -1.2 -< xt+l < 0.5 and -0.07 -< vt+l :50.07. The car
begins each episode at rest at position x= -0.5. When the car reaches the goal

at position x=0.5 the episode is terminated. An optimal policy should minimize
the number of steps required to reach the goal from the starting position. We have

defined and used two different reward functions for this problem:

1. r= -1 on every step except when the goal is reached, when r=0.

2. r=0 on every step except when the goal is reached, when r=1.

The approximator features were generated using 10 tilings of size 9x9 for each of
the 3 actions. This results in a total of 2430 features. Random offsets are generated
for each of the tilings at the start of a run of the experiment. Results graphed using
the average of a set of runs therefore reflect the average over the distribution of
tiling offsets.

The Mountain-Car task is a detenninistic problem with a continuous state

space. However, non-Markovian effects arising from the limited resolution of the

coarse binary features mean that in the early stages of learning the environment

can appear stochastic to a learning agent with an approximate value function.

105

Pole-Balancing Task

The next evaluation domain we will consider is the Pole-Balancing Task, which
is based on the detailed description provided in Barto et al. (1983). Like the
Mountain-Car task, this is a deterministic control problem with a continuous

state space which is popular for benchmarking RL algorithms. However, the Pole-
Balancing task is different in character to the Mountain-Car task because our goal
in this problem is to learn to maximize the length of episodes.

In this task, a cart is situated on a track which constrains it to move in a single
dimension. A pole is hinged to the top of the cart so that the top of the pole can
swing freely (see Figure 4.4). The goal of this task is to keep the pole balanced near
the vertical for as long as possible. There are only two actions available at each
time step: the cart can accelerate at full power in either direction along the track.
This kind of problem, where action in one of two opposite directions can not be
less than full power, is known as a bang-bang control problem. In addition, there
is only a small length of track available, so the cart must keep the pole balanced

without hitting either end of the track.

0

Figure 4.4: Tile Pole-Balancing task.

The state of this problem is described using four variables. The first two are
the cart position x and its rate of change ,L The second two are the angle of the

pole 0 and its rate of change ý. At each time step we first calculate values for the

acceleration of the cart and the angular acceleration of the pole:

ý2

g sin Ot - cos Ot
Ft + lmp

t sin Ot

dt = -I-
M, + mp

[4 Mp COS2 Ot]

3 m, +m
Ft + lmp [ý2

sin Ot -
#t cos Otl t

MC + mp

106

... >-
0x

Constant I Description I

9 Gravitational acceleration 9.8ms-2
f.

ax Maximum force applied to cart 1ON

MC Mass of the cart Ikg

MP Mass of the pole O. 1kg
Half-pole length 0.5m

Simulation time step 0.02s

Table 4.1: Numerical constants used in the Pole-Balancing environment model.

Depending on the action chosen at time t, the force Ft applied to the cart is

either Ft = or Ft = -f,,,, The various constants used in the model are
defined in Table 4.1. Note that in contrast to the model used in Barto et al. (1983)

the effects of friction on the cart wheels and the pole hinge are ignored here. Now
Euler's method can be used to update the state variables over some time step 7-.

Xt+i ý Xt +Týýt

ýbt+l Lbt + 7-ýt

Ot+i ot + T6t

ýt+j 6t + rdt

Each episode begins with all four state variables set to 0.0. If the system state
moves outside the bounds -2.4 <x<2.4 and -12' <0< 12' then the episode is
deemed to have failed, and is terminated. Two different reward functions can be

used to allow the learner to maximize the episode length:

1. r=1 on every step except when the episode terminates, when r=0.

2. r=0 on every step except when the episode terminates, when r= -1.

The approximator features were generated using 4 tilings for each of the 2 actions.
Each tiling partitions each of the x, i and ý dimensions into 4 equally-sized regions.
The 0 dimension is partitioned into 8 equally-sized regions. There are therefore

512 features per tiling, and a total of 4096 features in the entire approximator.
Random offsets were generated for the tilings at the start of each run.

Acrobot Task

The Acrobot Task described in Sutton and Barto (1998) is another well-known
RL problem which is similar in character to the Mountain-Car task. Like the

107

------------- The tip must swing above this line

Actuator applies torque Fixed position Link I
across this joint joint

ink L2
J

02

Tip

Figure 4.5: The Acrobot task.

Mountain-Car task, it is a deterministic continuous-state control problem where
the objective is to minimize the number of steps required to reach a goal state.
However, it is generally considered to be the more difficult control problem, since
the state has 4 dimensions instead of 2 and the motion in the system is more

complex.
The name of the task derives from the way the simple robot modelled by the

task is similar to an acrobat swinging on a high bar. The robot consists of two
links connected by a joint in a2 dimensional space (see Figure 4.5). One end of
the first link is attached to another joint which has a fixed position in space. The

only actuator available to the robot can apply torque across the joint which joins

the links. This is similar to the way an acrobat can build up momentum on the
high bar by bending at the waist. The goal of the task is to swing the tip of the

second link (the acrobat's feet) above a particular height.

Four continuous state variables are required to describe the environment: 01,
ý17 02 and ý2. The equations of motion which describe the rate of change of ý, and
ý2 are as follows.

ýj -dj-'(dA + 01)

2
M212 +122

Z) ý2
c2 2_

!L
7' + 01-02)

di di

M112 (12 +12 d cl
+ M2 1 c2 + 211 lc2 COS 02) + 11 + IT2

(12 d2 M2 c2
+ lllc2 COS 02) + 12

-1
62

M211 C2 2 Sin 02 - 2M211IJ261 sin 02

+(Mllcl + M211)9 COS(01 - 7r/2) + 02

02 M21c2g COS(01 + 02 - 7r/2)

The values of the constants used in this physical model are given in Table 4.2.

The torque r (in N-m) applied to the actuator joint takes values -1,0 or +1

108

Constant Description
_I

9 Gravitational acceleration S-2 9.8m

M1 Mass of link 1 lkg

M2 Mass of link 2 1kg

11 Length of link 1 lm
12 Length of link 2 lm

1CI Length to centre of mass of link 1 0.5m
1c2 Length to centre of mass of link 2 0.5m

11 Moment of inertia of link 1 lkgM2

12 Moment of inertia of link 2 lkgm2

Table 4.2: Numerical constants used in the Acrobot environment model.

depending which of the three available actions is chosen. Given that di and ý2 can
be calculated using these equations, we can use Euler's method to update the state

variables 01, ýli 02 and ý2- While the RL agent chooses a new action every 0.2s,

within each of these time steps we use smaller substeps of 0.05s to calculate new

values for the state variables using Euler's method.
Each episode begins with all state variables set to 0.0, i. e. with the acrobot

hanging straight down at rest. The angular velocities are bounded to remain within
the ranges -47r -<

ý1 :5 47r and -97r -<
ý2 !ý 97r. The goal is to raise the tip 1.45m,

above the fixed position joint, at which point the episode ends. Two different

reward functions can be used in order to minimize the episode length:

1. r= -I on every step except when the goal is reached, when r=0.

2. r=0 on every step except when the goal is reached, when r=1.

The learning features for the RL agent are generated as follows. There are four

continuous dimensions to the state space: 01,61) 02 and 62. There are therefore

4 ways to select a group of 3 dimensions (leaving one out each time). For each

possible group of 3, we create 3 randomly offset tilings which divide each dimension

in the group into 8 regions. This results in a total of 12 tilings for each action, and
therefore a total of 18,432 learning features.

Stochastic Grid World Task

In addition to the three well known RL problems described above, a domain was

needed which would allow problems of increasing difficulty to be defined in order
to investigate performance in large-scale problems. For this purpose, we used a

109

stocliwstic grid world doinain which has soine similarity to the Puddle-world domain

(slittoll. 1996).

Goal region

Wall

"Sticky"
areas

Start

Figurc 4.6: A bitinap image defininp, ail instance of the stochastic grid world task.
I tý n t)

Ali instance of the grid world is defined bY a bitinap image file, such as the

olic shown in Figure 4.6. A red pixel indicates the starting point of ail agent at

the beegilinin" of evcry episode. Four actions are available to the agent: up, down,

1cft, and right. Each action moves the apent it distance s in the specified direction.

The units of' -s it"(' mcas', red in pixels, but s is ilot constrained to be 1, or even

a whole 1111111ber of pixels. The distance s (-ail be any real number. This means

t1lat, in contrast to some grid world domains, the state space is not a discrete grid

J)jlt a cordinuous 2D state space Ux, y)Ix c [0, x,,,]ýy c This allows a

doillaill instance dMilled bY it single image to be inade progressively more diffictilt

by reducing tit(, distance s. Alternatively, more difficult problems cail be created

by keephip-, the step size collstant, and generating larger images.

Black pixels iii the image (Icnote tralls. which are impassable. The edges of the

image are also impassable. Any movement action which Nvould take the agent into

it wall or off the cdge ofthe inia, 4c will fail, leaving the agent at the saille position.

A group of grccii pixels indicatcs it goal region to which the agent inust travel.

The overall objective is to the number of steps required to reach the goal

region.
Blue pixels represent sticky arc(i. s. When the current state (-r. y) of the agent is

within a stick. v area. any movement actions taken in that state will have stochastic

outcomes. The more saturated the blue area is, the greater the probability that

a movement will fail. leavin, 12, the at-pnt in the same position. Suppose the pixel

corresponding to (. i*. y) hws a colour (r. g. b). where r, g. bE [0.1]. Sticky areas are

(jefilled as those where b=1, r<I and v=g. The probability of an action failing

in a sticky area is defined as:

1)(fail) = 0.9(1 - I-)

110

The two reward functions used for this problem are the same as those used in
the Mountain-Car and Acrobot tasks:

1. r= -1 on every step except when the goal is reached, when r=0.

2. r=0 on every step except when the goal is reached, when r=1.

For approximation we use a single two dimensional tiling, which has a similar effect
to using a table-based representation and a simple discretization of the continuous
state space (although the offset of the tiling remains random). The number of tiles

and the move distance s vary according to how difficult we want the problem to
be. Here are two particular instances that are based on the 256x256 image shown
in Figure 4.6:

Low Difficulty A 30x3O tiling generates features for each of the four actions,
resulting in a total of 3600 features. Movement distance s=2.

High Difficulty A 64x64 tiling generates features for each of the four actions,
resulting in a total of 16,384 features. Movement distance s=1.

4.4 Comparing Merging Functions

In this Section, I will present several candidates for the merge function f, whose

purpose was described in detail in Section 4.2. The motivation behind the choice
of each of candidate function is given, in addition to an evaluation of each function

using the Mountain-Car task and a simulation of parallel agents.

4.4.1 The Minimum Merge Function

A simple approach to exploration in RL is the use of optimistic initial values. By

initialising an agent's value function so that all state-action pairs appear to lead

to high rewards, the agent can follow a greedy policy (no actions are explicitly

explorative) and still converge to the optimum in deterministic domains. This

works because in a given state, each action in turn becomes the greedy choice as

updates to the value function reduce the value of overestimated actions. Once the

value of the best action is reduced to its true optimal value, the value remains

unchanged, and so at this stage the greedy action is in effect the optimal action.
This can be seen as a process of reducing the upper bound on each action value

until the largest bound in each state is tight.

A parallel approach based on a similar idea is for each parallel agent to work on

reducing the upper bounds. The agents' results can then be combined by taking

ill

the minimum upper bound established by the group for each state-action pair.
Thus we initially overestimate the value of each state-action pair, and thereafter

at each merge preserve the minimum value estimate from the set of agents. The
form of merge function f is therefore:

(01, ii 02, i? ... 7
On, i) = min Oj, i i

Note that a purely greedy policy can not be used for the parallel approach since
tile agents would have identical experiences, and parallel speedup by merging is

only possible if there is some diversity in the set of agents. Therefore, each agent

must take some number of explorative actions.
The minimum merge function was evaluated using the Mountain-Car task.

Each of tile agents used the SARSA(, \) algorithm with an c-greedy exploration

strategy as described in Section 4.2. All weights of the agents' VFAs were ini-

tialised to 0. Reward function #1 (see Section 4.3.1) was used, meaning that a

reward of -1 was given on every time step except when the goal was reached. Ini-

tialising the weights to zero means that the return for every state-action is initially

overestimated.
Tile parameters used were as follows: merge period p 250, exploration pa-

rameter e=0.05, learning rate a=0.5, discount factor -y 0.99, and eligibility
trace parameter \=0.9. Each episode was ended after 300 steps if the goal was

not reached, and results were averaged over 200 runs. The results are shown in

Figure 4.7.

Over the first 5 to 10 thousand time steps having a larger number of agents

means that performance is improved at a faster rate, which indicates that agents

are successfully combining information about which actions have a poor return.
However, in the later stages of the experiment, the performance becomes worse at

a rate that increases with tile number of agents. This indicates that the use of min-
imum merging breaks tile conditions for convergence of the underlying SARSA(A)

algorithm.
Performance becomes worse in the later stages because of the stochasticity

introduced by the e-greedy exploration strategy. Tile use of occasional explorative

actions mean that the value of states can be underestimated when a random action

choice results in a low return. A single-agent learner is probabilistically likely to

eventually correct this underestimate. The parallel agents, however, are less likely

to correct the underestimate, since merging preserves the minimum value of each

weight. Unless all the agents revise a weight upwards in the same merge period p,

an underestimated weight cannot be corrected. The underestimates will eventually

propagate throughout tile value function, making the performance worse and worse.

112

300

280

260

-E-
240

"a
220

200

180

140

I Agent
2 Agents M-1.1 x

,b4 Agents ---
8 Agents

.
tj

OE31: 1

qýý0

Cl

13 ET
tiý, "i

a 13

,0,.

a 13 13
[31313(3

160

0 5000 10000 15000 20000 25000
Learning Steps per Agent

Figure 4.7: Results for the minimum merge function in the Mountain-Car task.

4.4.2 The Maximum Merge Function

The maximum merge function is the dual of the minimum merge function. The

intuitive idea behind this approach is that the VFAs are initialised to underestimate
the value of each state-action pair, and the agents gradually revise these values

upwards as rewards are discovered in the environment. The values can be viewed

as lower bounds on the return of an action. Agents can merge their experience
by keeping the maximum lower bound established for each state-action pair. The

maximum merge function f takes the form:

(01, ii 02, ii ... 7
On, i) : --: MaX Oj, i

i

Reward function #2 (see Section 4.3.1) is used in this experiment, where the

only reward is +1 on time steps when the goal is reached. Initialising all the weights
to 0 would be a simple way to underestimate the value of all state-action pairs.
However, since the reward will be 0 until the first time the goal is reached, updates
to the value function would have no effect during this period-all the weights would

remain at 0. The result would be that there is no way for the agent to track which

state-action pairs have already been visited, forcing the agent to follow essentially

a random walk behaviour until the goal is accidentally discovered. This means the

time to find a good policy will be at least an order of magnitude longer than the

earlier experiment.

113

To avoid this, each weight is initialised to some small value Oi, it > 0. This value
is chosen to be small enough so that each state-action pair is still underestimated.
Since Oi,,, it is non-zero, updates to the value function do have an effect, and state-
action pairs which have been explored will have lower values than those which
have not until the goal is found. The e-greedy strategy can now find the goal in a
reasonable time.

The Mountain-Car task evaluation for the maximum merge function used the

settings given in Section 4.4.1, except that reward function #2 was used and 0j"it
0.0001 instead of 0. The results are shown in Figure 4.8.

300

280

-5 260

------------ BRý . --- --k -M -W, - 'm

Xx QI
Agent

q2 Agents
4 Agents ---
8 Agents

DO 13

ý ,, ýx
% fý

.)K

Xo

)K
'K

qN 130

)K
(311 04 Pa

-,. ky
-Xý ;Fxx >(-X >(-X X-X

240

220

200

180
0 5000 10000 15000 20000 25000

Learning Steps per Agent

Figure 4.8: Results for the maximum merge function in the Mountain-Car task.

Observe that in these results there is a delay at the start of the experiment
until the agents begin to achieve a performance better that 300 steps per episode.
The delay appears to be longer the more agents there are. However, once the delay

is over, multiple agents improve performance more quickly than the single agent.
In the later stages of the experiment performance starts to become worse for the
larger sets of parallel agents.

The initial delay corresponds to the time before the goal has been reached by

any of the agents. During this phase of learning, the agents gradually reduce the
initial weights as the environment is explored, effectively marking out which actions

are better explored. The maximum merge interferes with this phase, causing the

agents as a group to forget some parts of the exploration as the maximum value of
each weight is taken. The more agents there are, the greater the interference with

114

this initial phase of exploration.
A mechanism to eliminate this increased delay can be introduced as follows.

Define some value 01i,,, it which separates the weight values into two distinct regions.
Weights < 01i,, it only arise from the initial exploration phase, before any rewards

are found in the environment. Any weight > 01i .. it must have been updated on a

path to a goal, and ought to work well with the maximum merge function. Once

the maximum merged weights j0! IJ have been calculated, each agent only copies
into its value function those merged weights greater than 01i,,, it:

if Oj` > Ojj,,, jt then Ojt+1 +- Oj'

else Ojt+1 +- Of
tI

The results for an experiment using this mechanism are shown in Figure 4.9.

The experimental settings are identical to those used for the results in Figure 4.8

except that the above mechanism is used with 01j,,, it = 0.0002. The results show
that this mechanism eliminates the extra delay exhibited in the first experiment.
However, since merging is essentially inhibited for the first 2 to 3 thousand steps,
there is no way that this phase of the experiment can be speeded up by adding

more agents.

300

280

.5 260

240

220

200

i 5zn

I Agent
2 Agents

0'. 4 Agents
r" 8 Agents

cl
ZaE30 od 0ý I

13 El 0
M. 1,

x:., ox-,,
Pb

C3 x
p

XK
*,

0,

cl . 'M
tj

1..,
13

Xýv mr

X

0
;W p X, x

p, IWx
-ý, ci xw

klcxx-, ýxW xxY. X-)ý
I f3f3l3Q : ww*.. 4

cl 13
[3 13,

0 5000 10000 15000 20000 25000
Learning Steps per Agent

Figure 4.9: Results for the maximum merge function with Oji .. it = 0.0002 in the

Mountain-Car task.

The results in Figure 4.9 show more clearly the rapid improvement in per-
formance achieved by the maximum merging function in the early stages of the

115

experiment. The improvement in learning speed is much greater than that seen

with the minimum merge (see Figure 4.7). This could be because learning with

reward function #2 is inherently more parallelizable. Alternatively, it could be

because the maximizing behaviour of the merging function is closer in character to

a Bellman update than the minimum merging function. In any case, in the later

stages of the experiment performance again becomes worse, suggesting that the

stochasticity introduced by the e-greedy strategy causes state-action values to be

repeatedly overestimated, interfering with convergence.

4.4.3 The Mean Merge Function

Tile mean merge function simply calculates each merged weight using the mean of

all the agents' estimates for the weight:
n

(Ol, i 7
02, i) ... I

On, i)
n

T, oj, i
j=l

The mean merge function is a natural way to combine weight estimates from

a number of agents, where equal significance is given to each agent's estimate.
While there is no mechanism to prioritize information about large rewards discov-

ered by only one or two of the agents, this mechanism will improve estimates of
immediate stochastic rewards, and provide an approximate summary of the "group

knowledge" of the set of agents.
Since the mean merge requires no assumptions about optimistic or pessimistic

initial values, we can use either of the two reward functions defined in Section 4.3.1.

In either case each weight is initially set to Oi.,, it = 0.0001. The rest of the settings
for these experiments are identical to those given in Section 4.4.1.

The results for the mean merge function using reward function #1 and #2

are shown in Figures 4.10 and 4.11 respectively. In these experiments, we do

not observe worsening performance towards the end of the experiment as we did

with the earlier merge functions. This suggests that the mean merge function

does not break the convergent properties of the underlying SARSA(A) algorithm.
However, we do not see the rapid improvements in performance that were observed

using the minimum and maximum merges (compare Figures 4.7 and 4.10, and also
Figures 4.9 and 4.11.) While the mean merge function provides better estimates of

stochastic returns, it performs poorly because large weight changes discovered by

a single agent will be drowned out in the average by the rest of the agents making

small or no changes.

116

300

280

260

i ME NM I Agent
2 Agents
4 Agents
8 Agents

I 9k ,
co

6""x-

n6l* a*, K
Wod

Dom

240

"0
0 220

cu 200 u

180

160

lAn
0 5000 10000 15000 20000 25000

Learning Steps per Agent

Figure 4.10: Results for the mean merge function using reNvard function #1 in the
Mountain-Car task.

300

280

260

240
"U

220

200

180

i rn

I Agent
2 Agents
4 Agents ---
8 Agents

I lp

6% X.
m,

ýoy,

MK

060 x

-Xýx
13 VO, 6*m Ix

DO

0 5000 10000 15000 20000 25000
Learning Steps per Agent

Figure 4.11: Results for the mean merge function using reward function #2 in the
Mountain-Car task.

117

4.4.4 The Visit-Count Merge Function

One of the reasons that the mean merge is poor at combining the agents' knowledge
is that there is no mechanism for measuring the relative experience of the agents
in different areas of the state space. Suppose we want to combine the agents'
estimates for one of the weights Oi. Suppose also that only one of the agents in the

set has actually visited an area of state space where feature Oi was active. This

agent will have updated the value of Oi several times, but the other agents will still
have the initial value for 0j. In such a situation it is clear that one of the agents has

a much better estimate of Oi, but the mean merge function weights all the agents'
estimates equally, and so some of the valuable information discovered by this one
agent may be lost in the process of merging.

The weights 10j} provide only the best current estimate of each weight. It is not
possible to extract a measure of experience directly from the set of weights. The

minimum and maximum merge functions got around this problem by considering
the agent which had most extended the lower/upper bound on Oi to be the most
experienced. To improve on the performance of the mean merge function it is

necessary to store additional data to measure the experience of each agent.
For each feature Oi, an agent will now store a visit-count ci in addition to a

weight Oi. The visit-count ci measures the number of times feature Oi has been

active during the current merge period (of length p). At the beginning of a merge
period, all the jcj} values are set to zero. Every time a state is visited where Oi is

active, the value of ci is incremented. The visit-count merge function can now be

used to calculate the merged value function:

o,, i7 cl, i) ...) Cn, i) =

E3=1 cj, ioj, i

Ej=i cj, i
Here cj, i is the ith visit-count of agent j. Note that this function takes the

agents' visit counts as arguments as well as the agents' weights. It is essentially

a weighted average, with greater emphasis given to those agents with larger visit-

counts for a particular feature. Note also that if one of the features has been

continually inactive for all the agents since the last merge (i. e. Vj. (cj, i = 0)) then

the value of f is undefined. When these situations are detected, Oj' is assigned
the value of Oi before the merge took place (all the agents will have retained an
identical value for Oi in such cases).

The results for reward functions #1 and #2 using the visit-count merge function

are shown in Figures 4.12 and 4.13 respectively. The settings for the experiment

are identical to those used in Section 4.4.3 (other than the use of a different merge
function).

118

300

280

260

-t
240

"ri
220

200

180

160

140

0.,

I Agent
2 Agents
4 Agents
8 Agents

0 5000 10000 15000 20000 25000
Learning Steps per Agent

Figure 4.12: Results for the visit-count merge function using reward function #1

in the Mountain-Car task.

300

280

260

240

220

200

180

160

140

il I Agent 1
2 Agents
4 Agents ---

1*ý. 8 Agents

ýý ý. ', x xx
)<

x-Y,

Ix I x

.X.

cl 1: 3
Wi.

IVIm 'A,
K

)ý
5ýý t3,

%
'W.

A Oý
YlK

>(xy
Q X.

'*W*

.
13

13 M
13

2-\)k. * W, -*Kx

12 130
)KX')K-W,)K,, X A,

ýK.
AwW,)k '*,,, W

3ii3K, *w-Wll V
U Oi3f3C)j3j3oEl n l3(3E3E3

OQ
12E20 , El

'aa OE'(3E3 GE]

0 5000 10000 15000 20000 25000
Learning Steps per Agent

Figure 4.13: Results for the visit-count merge function using reward function #2

in the Mountain-Car task.

119

The visit-count merge function improves performance in the Mountain-Car task

more than any of the other merge functions. Like the mean merge function, con-
vergence of the underlying SARSA(A) algorithms is not affected-the performance
does not get worse towards the end of the experiment. Additionally in the early

stages of the experiments we observe rapid improvements in performance, similar
to those observed using the minimum and maximum merge functions, but without
the eventual divergent behaviour. It is fairly clear that identifying the relative

experience of the agents in each area of the state space is an important step in

exploiting value function information from several agents.
The visit-count merge function achieved the best improvement in performance

for all the domains we used with the simulation of parallel agents. Some results
for the visit-count merge function in the Pole-Balancing and Acrobot domains are

shown in Figures 4.14 and 4.15 respectively.
The results for the Pole-Balancing experiment shown in Figure 4.14 were gener-

ated using a reward function where a reward of +1 was received on every time-step

except on terminal steps. At the beginning of each run weights were initialized to
0. Episodes were allowed to continue for a maximum of 20,000 steps. A merge

period p of 100 was used. The other parameters were a=0.2,6 = 0.1, -Y = 0.99

and A=0.5. Results were averaged over 200 runs.
The Acrobot experiment (see Figure 4.15) used a reward function where a

reward of -1 was received on every non-terminal time step. Weights were initialized

to 0 at the beginning of each run. Episodes were allowed to continue for a maximum

of 600 steps. A merge period p of 100 was used. The other parameters were a=0.1,

e=0.05, -y = 1.0 and A=0.9. Results were averaged over 100 runs.
Similar results were obtained for both the instances of the Stochastic Grid

World task, with the visit-count merge function producing the best performance

out of the four merge functions evaluated. Graphs for these results are not included

in this section, but later in the chapter a graph (Figure 4.22) is included which
illustrates the performance (in the simulation of parallel agents) of the visit-count

merge function in the low-difficulty Stochastic Grid World.

4.4.5 Comparison Summary

The minimum and maximum merge functions initially allow the group of agents to

converge more quickly towards the optimal policy. The maximum merge function

in particular produces rapid policy improvement with larger numbers of agents.
However, eventually both of these merge functions cause the agents to diverge

from the optimum, with the divergence occurring more quickly the greater the

number of agents there are in the group.

120

12000

10000

-: s 8000

"0 6000 -

cu u 4000

I Agent
2 Agents

13U 4 Agents ... 11 13
8 Agents ---e oil

PIJQ POE3
d ý' .4

1: 1
11 1313

-11)ý
11

Aw

aQb li,
d

VE-)K)i
,w

*Ikl)ý

PO
; t3cla X-X xY>, Xx

Q
[30

1313U)K*w)K wW1
xx-x4cx

13
1: 3 :

A'*4
X"

X/-x

I
XK X4

p

0dX,
X-X

20001,1

0
0 50000 100000 150000 200000 250000 300000

Learning Steps per Agent

Figure 4.14: Results for the visit-count merge function in the Pole-Balancing task.

600

550

500

450

400
"a

350

300

250

200

150

inn

I Agent
2 Agents
4 Agents
8 Agents

C31J

0U'; K

ýi-; ý
wo xw.

ýý

x->e 11X. 4 -x -W9K RX.
U E3 00 13

13

lvv 0 5000 10000 15000 20000 25000 30000 35000
Learning Steps per Agent

Figure 4.15: Results for the visit-count merge function in the Acrobot task.

121

The mean merge function, on the other hand, will reliably converge to the

optimal policy. However, the rate of convergence improves relatively slowly as
more agents are added to the group. The rapid policy improvement exhibited by

the maximum merge function in the initial stages cannot be reproduced.
The visit-count merge function requires more information to be exchanged be-

tween the agents, but produces the best performance out of the four merge func-

tions evaluated. Policy improvement in the initial stages is almost as rapid as
that of the maximum merge function, but without the risk of divergence in the

later stages. The visit-count merge produced the best performance in all of the

evaluation domains tested: the Mountain Car task, the Pole-Balancing task, the

Acrobot task and the two instances of the Stochastic Grid World task.

4.5 Decaying Parameters and Binary Search

An interesting property of the results shown in Figures 4.12,4.13 and 4.15 is that

the final quality of policy learned is different depending on the number of parallel

agents used. This remains true even if the experiments are run over arbitrarily
long periods of time. The reason this effect arises is down to two key properties of
the experiment:

9 The learning rate a and exploration parameter c have fixed non-zero values.

e The visit-count merge function is based on (weighted) averaging.

The use of fixed values for a and c means that no matter how long the experiment
is, each agent will continue to take the same proportion of random actions and

update its VFA according to the outcome. One consequence of this is that at all
times during the experiment there will be a small chance that a series of exploratory

actions will result in poor rewards, with subsequent updates significantly changing
the VFA. This means that there will always remain a small chance of making a
large step away from the optimal policy. A second consequence is that a true

optimal policy may never be found if the return from a given state is significantly
different depending on whether a greedy or an e-greedy strategy is followed.

The averaging behaviour of the visit-count merge function seems to have a

noise-reducing effect, which reduces the chance of making a large step away from

the optimum. While each of the individual agents in the group will have the

same chance as the single agent of making a change which moves away from the

optimum, it is likely that others in the group will not make such a change at exactly
the same time. Once the VFAs are averaged across the agent group, the step away
from the optimum is much smaller. Over time, this means that a group of agents

122

can maintain a policy much closer to the optimum than a single agent, provided

that a and c remain fixed and that merge phases occur every p steps throughout

the agents' lifetimes.

In practice, we are only likely to have parallel hardware available for a limited

time, after which a policy must be extracted from one of the group of agents.

Additionally, the parallel hardware may only support a small number of parallel

agents. In order to learn a policy arbitrarily close to the optimum without requiring

large numbers of agents, it is necessary that parameters a and f decay over the

course of the experiment. By running a given experiment for a longer time with a

slower rate of decay, we can get closer to the highest quality policy representable

using the VIA.

Singh et al. (2000) proved that tabular SARSA(O) with e-greedy exploration

converges to the optimal value function Q* if a decays in a way that satisfies the

Robbins-Monro criteria (Robbins and Monro, 1951) and c tends towards zero over

time at a rate which ensures that each state-action pair is explored infinitely often

in the limit. However, while this proof of asymptotic optimality suggests that

decaying a and c will also be necessary for approximate SARSA(A) to approach

the optimum, it provides no indication of how fast to decay their values if only a

finite learning time is available. The goal in this context is to approach as close to

the optimal approximation as is possible in the limited time available.

To my knowledge there has not been an analytical study of appropriate mech-

anisms to decay these parameters over a finite time. However, previous empirical

work (Rummery and Niranjan, 1994; Loch and Singh, 1998; Claus and Boutilier,

1998) has shown that good results can be achieved in practice by decaying these

parameters to zero at a steady rate over the time available. Appropriate initial pa-

rameter values (before decay begins) must be determined for each learning domain.

In this thesis a and c are decayed linearly using identical rates, since this approach

seemed to produce the best policies in the empirical evaluation. This means that

over the course of a run each agent's control policy becomes increasingly greedy.

In addition, the decreasing learning rate allows the expectation of the value of each

stochastic action to be more closely approximated.

For the purposes of parameter decay, time is measured as the proportion com-

pleted of a single run of an experiment (recall from Section 4.3 that the time limit

for a run may be measured in episodes, time steps or real time). Define time t=0

as the start of the run and t=1 as the end of the run. The values of the initial

parameters at time t=0 are defined as ao and co. A time t1j,,, E [0,1] is chosen

to be the time at which the parameters must have decayed to zero. The a and e

123

parameters now become functions over time:

a max 0, ao(tlim - t)
tum

c(t) max 0, fo(tli. - t)
t1i.

In practice it may be inefficient to recalculate the values of a and C on every
time step. It is sufficient to choose some small number of time steps q (e. g. q= 25
in the following experiments) to define an interval or quantum. After every q
time steps new values for the parameters are calculated using the above equations.
This works well as long as q is much smaller than the total number of time steps

experienced by an agent in a single run.

300

280

260

240

220
78
. 14

200

9i
180

160

140

120

t)

13)1ý'.
xx.

-)", r3

A-A
cl '***W,. x-X,,,,

MC3
rý3% -4. x W, w OU 13 - lw , 00f3,13ti,

AAAýý I
0 5000 10000 15000 20000

Learning Steps per Agent
25000

Figure 4.16: Results in the Mountain-Car task, decaying the values of a and c
linearly towards zero over 90% of the learning time.

Figure 4.16 shows the results of an experiment using the Mountain-Car task

and the visit-count merge function. Reward function #1 is used, in addition to

parameters y=0.99, A=0.9, Oi,, it = 0.0001 and p= 250. Results are averaged

over 200 runs. This makes the experimental settings the same as in Figure 4.12

except that a and c now undergo linear decay, using parameters ao = 0.5,60 = 0.1

and t1i.. = 0.9. This means that in the last 10% of the experiment time the VIA

is not modified, and so we can assess the quality of the learned policy without the

effects of noise from exploration or learning updates. It can be observed in Figure

4.16 that the mean episode length at the end of the experiment is much better (for

I Agent
2 Agents
4 Agents
8 Agents

124

all numbers of agents) than that achieved in Figure 4.12. Furthermore, the larger

numbers of agents achieve a better quality of policy in the given time.
Eliminating the noise from learning at the end of the experiment now allows

the policy quality to be properly assessed. In addition, by running experiments

over longer periods and continuing to decay over 90% of the experiment time, the

rate of linear decay of a and c becomes slower. In a manner similar to that of

simulated annealing, a slower decay of these parameters means that there is a

greater chance over the decay time of settling into a policy which is very close
to the optimum. Ideally, if we ran the experiment over a long enough time we

would expect all groups of agents to have a high probability of finding the optimal
VFA parameters. Unfortunately, the visit-count merge does not seem to behave in

exactly this way.

300

280

260

-E 240

220
"U
0

200

cu cu 180

160

140

I'm

I Agent
2 Agents
4 Agents
8 Agents

'K K

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Learning Steps per Agent

Figure 4.17: Results in the Mountain-Car task, where a and e still decay linearly,

but the experiment takes place over a longer period of time.

Figure 4.17 shows the results of an experiment identical to that shown in Figure

4.16 except that the length of the experiment is 100,000 steps rather than 25,000

steps. While the single agent learner and 2-agent group achieve a average final

quality close to 120, both the 4 and 8 agent groups settle on a policy quality

which is closer to 125. This is a trend which continues to occur even in much
longer experiments. It seems that the noise-reducing effect of weighted-averaging
discussed above has an adverse effect on the latter stages of learning. Learning in

the mountain car problem can be divided into two distinct stages. The first stage

125

involves exploring the state space randomly until a reasonable path to the goal is
found. This corresponds to the first 15,000 steps in Figure 4.17. The second stage

consists of a gradual refinement of the best known path to the goal, by means of

a decaying number of exploratory actions. The noise-reducing effect appears to

reduce the probability of large changes to the VFA during the refinement stage.
This means that in some cases the optimal VFA may not be found, since the learner

may get stuck on an approximation which accurately estimates state value when

c has a small positive value but which produces sub-optimal performance once c
decays to zero.

Ignoring for the moment the fact that the single agent can get closer to the op-
timum in the long term, it will be useful at various points in this thesis to compare
the time required for a given number of agents (using some algorithm) to achieve

a particular quality of policy (for now restricting our attention to "good" policies

rather than optimal ones). However, this task is complicated by the addition of
decaying parameter values. Observe that in Figure 4.17 the group of 8 agents learn

an average policy quality of 125 in 100,000 steps, but in Figure 4.16 the group can

achieve an average quality closer to 120 in only 25,000 steps. This is because the

shape of the graph in the "refinement" stage is predominately determined by the

rate of decay of a and c. The rate of decay must be slow enough to achieve the

desired quality, but any slower and the learning time is essentially wasted. To

properly compare the learning times for different numbers of agents, the rate of
decay must be different for each group.

To achieve different rates of parameter decay, we will keep the proportion t1j",

of the experiment over which the linear decay occurs fixed at 0.9. We will vary
the experiment time independently for each group of agents. Since there is no

analytical method for determining the minimum experiment time for each group,

we will use binanj search to find the minimum for each group within a specified
tolerance. Before beginning the binary search, we determine the number of steps

required for a single agent to achieve the specified policy quality. This is the initial

upper bound on the experiment time. The initial lower bound for the search is 0.

At each stage in the search, the mid-point between the upper and lower bounds

is calculated, and an experiment is run using this as the experiment time. Each

experiment started as part of the binary search uses a fixed number of agents n

and reports the average quality achieved over r runs, where each run lasts for the

specified experiment time. If the specified quality bound is achieved, the mid-point
becomes the new upper bound. If it is not achieved the mid-point becomes the

new lower bound.

126

Writing u and 1 for the upper and lower bounds, the binary search ends when
u-1< J1, where J is some level of tolerance which defines how accurately the

minimum must be determined. Throughout this thesis a tolerance of 5% (i. e.
0.05) is used.

The results of the binary search approach for the Mountain-Car task using
the visit-count merge function are shown in Figure 4.18. The settings for this

experiment are identical to those used in Figure 4.16, except that the initial upper
bound on the experiment length was set to 50,000 steps. The bound on average

policy quality that the agents had to achieve was 130 steps per episode. These

results show that the improvements achieved using merging fall some way short of
linear speed-up, even in the absence of any communication costs. We can move

closer to linear speed-up by reducing the merge period p to a smaller value than

250, but a very small merge period will not be feasible once communication has a

realistic cost. The choice of merge period p is considered in more depth in Section

4.8.

300

280

260

--3 240
'JO 3

u 220
0

200

: ý, 180

160

140

1 In

I Agent
2 Agents
4 Agents
8 Agents

f3

WIN Y'll

If

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Learning Steps per Agent

Figure 4.18: Results in the Mountain-Car task, where binary search is used to

determine for each number of agents the shortest learning time that can still achieve

a mean episode length of 130.

127

4.6 Examining Parallelism Without Merging

At this point it is worth asking the following question: to what extent is VFA

merging a necessary (or even useful) component of this parallel RL approach? It

may be the case that the best benefits of parallelism arise because, when there

are several agents searching for a good policy, it is more likely that one of them

will stumble across such a policy even without VIA merging. Alternatively, the

use of VFA merging may be a vital component, allowing each agent to build upon
intermediate results discovered by other agents.

To assess the benefits of communication and merging, it is useful to define a
baseline algorithm which uses neither. The approach in the baseline algorithm is for

the n agents to learn in parallel, but also in isolation. There is no communication
between the agents. During a single run of the experiment, each of the agents
learns in essentially the same manner as a single-agent learner. At the end of the

run, each agent reports the mean episode length that was achieved in the final 10%

of the experiment. At this point a and e will have decayed to zero, and so the

quality of the policy can be assessed without exploratory actions. The agent which

achieves the highest quality is deemed to be the best, and we store the learning

curve for this agent, discarding results from the others. Over a series of runs, at

each time step we report the average of the performance achieved by the best agent
in each of the runs. This baseline algorithm will be referred to as the BESTOF

method. A major advantage of the BESTOF method is that its performance will
be similar even if communication costs are extremely large.

Experiments with the BESTOF method using the domains defined in Section

4.3.1 have shown that its performance depends primarily on the character of the
learning environment. A particularly important characteristic is the distribution

of the learning curves achieved on different runs of a single-agent learner. Fig-

ure 4.19 is a boxplot graph illustrating the distribution for a single agent in the
Mountain-Car task. The experimental settings were identical to those given for

the experiment shown in Figure 4.16. The distribution was measured over 200

separate runs of the single agent. The distribution in Figure 4.19 shows that while

most of the agents cluster around the mean performance (the quantity plotted in

previous graphs), there are a number of outliers of both good and poor quality. Of

the outliers of good quality, some achieve a near-optimal policy in as few as 15,000

time steps.
Agents learning using the BESTOF method behave essentially as single-agent

learners, and so each will have a learning curve drawn from the distribution in

Figure 4.19. However, the fact that we can choose the best agent at the end of

128

300

280

260

240

220

200

180

160

140

120

inn
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Leaming Steps per Agent

Figure 4.19: A graph showing the distribution of learning curves for a single-agent
learner over a series of runs in the Mountain-Car task. The limits of the box

represent the 25 th and 75t" quartiles, the line in the box represents the median,

and the whiskers represent the maximum and minimum values.

300

280

260

I Agent
2 Agents
4 Agents
8 Agents

240

220
m

200

180

160

140

120 L
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Leaming Steps per Agent

Figure 4.20: Performance of agents using the BESTOF method in the Mountain-

Car task.

129

each run means that as the number of agents n is increased, the mean performance
of the best agents approaches that of the outliers (see Figure 4.20). As the number
of agents is increased, the group of agents will on average find a policy of a given
quality in less time. These results were generated using a binary search to establish
the minimum time for each group of agents to achieve on average a quality of 130

steps per episode. By comparing these results with those shown in Figure 4.18, we
can observe that the resulting speedup is not much worse than those obtained using
the visit-count merge, with the extra advantage that the BESTOF method remains
practical even when communication costs are very high. However, it should also
be clear from the distribution shown in Figure 4.19 that no matter how large we
make the number of agents n, it is very unlikely we will find a good policy in fewer

than 15,000 steps.
In some domains, however, the BESTOF method can perform particularly

poorly. Figure 4.21 shows the results of the BESTOF method in the Stochastic

Grid World domain. For purposes of comparison, Figure 4.22 shows results in

the same domain using the visit-count merge function. The settings for these two

experiments were as follows. The low-difficulty grid size was used. The decay

of a and c was defined by parameters ao = 0.2, co = 0.1 and t1j,,, = 0.9. The

other parameters were -y = 0.99 and A=0.9. Initial weight valueS2 were set to

Oi,, it =1x 10-8. Reward function #2 was used, where the only non-zero reward is

given when the goal is reached. Episodes were terminated after 10,000 time steps if

the goal had not been reached. The visit-count merging experiment used a merge

period of p= 10000 steps. Results were averaged over 10 runs.

Comparing the two graphs, it is clear that in this domain the BESTOF method

can only achieve very small speedups. In contrast, the visit-count merging agents

can achieve large speedups in this domain, since they are not limited by the perfor-
mance of outliers in the distribution of single-agent learning-curves. This demon-

strates that communication between the agents will be vital for achieving good

parallel performance in many domains.

Small control problems such as the Mountain-Car and Pole-Balancing tasks
have the property that once a reasonable policy is found, it can be very rapidly

'A small positive value for Oi. it prevents the exploration behaviour from degenerating into a

random walk (see Section 4.4.2). The value of Oi,, it in this experiment is a heuristic choice to
facilitate rapid convergence to a short goal path. It is informed by the fact that the goal can be

reached in under 120 steps from the initial state. When the goal is reached for tile first time,

the TD(A) update in the initial state will be approximately a(-YA)"O, which is about 2x 10-7.
Setting Oi, it =1X 10-8 ensures that this update will make actions which were used to reach the

goal immediately appear more valuable. Therefore as soon as the goal is found for the first time,

exploratory effort will be focused closely around this first (sub-optimal) path to the goal.

130

I

I Agent
2 Agents
4 Agents
8 Agents

16 Agents

19

0 500000 lc+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
Learning Steps per Agent

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Figure 4.21: Performance of agents using the BESTOF method in the Stochastic

Grid World task (low difficulty version).

0
2i

ci
(L)

')K

A'. x I Agent
2A gents
4 Agents
8 Agents

16 Agents

0 500000 le+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
Learning Steps per Agent

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Figure 4.22: Performance of agents using the visit-count merge function in the

Stochastic Grid World task (low difficulty version).

131

refined to approach the optimal policy. Learning time in these tasks is dominated

by the period of unguided random exploration that continues until a reasonable

policy is found by accident. Because of this property, the BESTOF method can

achieve good speed-ups for small groups of agents. For larger numbers of agents,
however, the improvements that can be obtained diminish very quickly as agents

are added.
In the Stochastic Grid World Task it is extremely unlikely that a single agent

will find a path to the goal completely by accident. Instead, the agent (through

random exploration) gradually discovers which areas of the large state space con-
tain poor rewards. Updates to the VIA means that these states are marked as
having a low-value expectation, which leads the e-greedy exploration strategy to

focus on relatively unexplored areas of the state space. This means the agent can

gradually eliminate possible locations of the goal until it is found. By merging the

agents' approximations, the labour required for this process of elimination can be

divided among the agents, greatly reducing the time required to find the goal and

converge towards the optimal policy. This division of labour is not possible with
the BESTOF method, since no communication can take place between the agents.

From these results, a general conclusion may be drawn that communication
between the agents must play an important role if a parallel RL method is to be

useful in a wide variety of domains. Otherwise the method will always be limited

in performance by the properties of the distribution of single-agent learning-curves.

4.7 A True Parallel Implementation

In this section I will describe an evaluation of the VIA merging approach using an
implementation on a real parallel system. The system used as the basis for this

implementation was the cluster of workstations described in Section 4.3. The C++

implementation used the MPICH v1.2.5.2 library for the required communication

operations. MPICH is an implementation of the Message Passing Interface (MPI)

standard (Pacheco, 1997).

4.7.1 An Initial Implementation.

The initial implementation closely followed the architecture illustrated in Figure

4.2. In this original design, a central manager agent entirely separate from the

learning agents took responsibility for the merging process. The manager would

receive VIA weights from all the agents, calculate the merged VIA using the

specified merge function f, and distribute the result to each of the learning agents
before learning recommenced. However, assigning a dedicated parallel process to

132

the manager agent is somewhat wasteful of processing resources, since most of the

time the manager is idle or waiting for inessages. To avoid this, ill the initial parallel

implementation onc of the learning agents takes responsibility for the manager's
dutics. Each of the ii agents has a rank, a whole number between 0 and ii -I

which uniquelly identifies the agent. The agent with rank 0 always performs the
functions of the manager at merge time.

We restrict our attention in this section to inerging with the visit-munt increge

flinction, since this was shown in Section 4.4 to reliably produce the best perfor-

111ancc out of' the considered inerg-c functions in all the evaluation domains. For

agent 0 to calculate the visit-count merge function, all agents with rank54 0 must

send a vector of approximator weights and a vector of visit counts to agent 0. After

the merged VFA lia.,; been calculated, agent 0 must send a vector of inerged ap-

proxiniator weights to all the other agents. A Gantt chart illustrating this process

is shown in Fi, nirc 4.23.

a

Agents

I

KEY
D Send data

El Receive data

Compute merge function

Figure 4.23: Gantt chart illustrating the exchange of inessages required to complete

each inergin. - operation in the initial parallel implementation.

Messages are excl 1,111- ed between agents using the MPI-Send and MPI-Recv li-

brarY functions lWoVidcd by NIPICH. These functions represent the most basic

pojilt -to-point communication inechanisin provided by the, NIPICH library. These

functions can be lised to scild arbitrary length vectors of data valucs from one

agent to a sing1c destination agent. The type of the data values, inay be aily of the

C++ primitive types. III our implementation. the approxiiiiator weights are rep-

133

resented as 32-bit floating point numbers, and the visit counts are represented as
32-bit integers. The agents use this representation for both internal representation
(used during learning) and the content of messages exchanged. The MPI-Send and
MPI-Recv functions are blocking calls. MPI-Send will only return once a matching
call to MPI-Recv has been started at the destination agent, and only when the mes-
sage data has been safely copied out of user memory. MPI-Recv will only return
once the full message from the source agent has been successfully received. MPICH

also provides non-blocking functions for point-to-point communication, which will
be used later in Chapters 5 and 6.

Preliminary experiments with this first implementation revealed that the length

of time required for a merge operation was growing too quickly as the number of
parallel agents was increased. It was not possible to achieve significant speed-
ups in any of the evaluation domains. To investigate this effect, we used logging
functionality in the MPICH library to collect precise timings for the series of merge
periods performed in a single run of the algorithm. The timings reported in Table

4.3 were generated in the low-difficulty Stochastic Grid World task. A merge period

of P= 10000 was used. In contrast to the feature set described in Section 4.3.1,

this particular set of experiments used 4 tilings of dimension 32x32. There are 4

actions, so this makes the total number of approximator features 16,384. Given

that 4 bytes are required to store either a single weight or a single visit count, each
message sent to agent 0 is approximately 128KB in size, and each message sent
from agent 0 is approximately 64KB in size. Note that the errors reported here

are the range of the timings observed, not the standard deviation.

Number of Agents Time for Merge Operati

2 33±2

4 82±2

6 131±2

8 181±3

10 233±5

12 280±2

14 332±3

16 381±3

Table 4.3: Timings for the visit-count merge operation in the Stochastic Grid
World task using the initial parallel implementation.

Each of the timings is measured from the time at which the first agent tries to

134

send its message to agent 0 to the time at which the last of the agents receives the

merged weights from agent 0. From the measurements given in Table 4.3 we can
observe that the growth in the merging time is close to O(n), where n is the number
of agents. The timings are dominated by the growth of communication costs. Each

period of learning in the simulation (between the merges) lasts consistently around
30ms. The time for agent 0 to calculate the merged weights varies approximately
linearly, but only takes 15ms even when there are 16 agents. It is clear that the

parallel RL method will not be practical on real parallel hardware if the cost of

communicating grows at such a rate.

4.7.2 Distributed Computation of the Merge Function

To reduce the effect of growing communication costs on our algorithm, it is neces-

sary to abandon the notion of a manager agent which performs the computation

required to calculate the merged VFA. While this remains a useful conceptualiza-
tion of the method, a practical parallel implementation must spread the workload

more equally among the available agents, instead of assigning agent 0 to do all the

work.
Recall from Section 4.4.4 the form of the visit-count merge function f:

n
j=l cj, ioj, i (ol, i7 ... I

On, i i Cl, i i ... i Cn, i) n
j=i Ci, i

Each of the two summations in this function can be calculated using a dis-

tributed computation. To understand this computation, it will be useful to consider

a couple of simple examples. Suppose we have n agents, where each agent i has

stored in local memory a vector ii7,. All the vectors are of the same dimension d.

Suppose also that we want to calculate the vector sum 9' = Ei 4 and store the

result in the memory of agent 0. If d is large, both communicating the vectors and

calculating the sum will be expensive operations. The naive approach of sending all

the vectors to agent 0 and then adding them together produces a major bottleneck

at agent 0. It is more efficient to arrange the summation using a tree structure, as

shown in Figure 4.24.

The example in Figure 4.24 results in the same number of messages (seven)

being sent over the network as if all the agents had sent their vectors directly

to agent 0. However, because the messages sent during each stage have different

destinations, they can travel simultaneously over the switched Ethernet network.
This removes the communication bottleneck at agent 0. In addition, the compu-

tation of the vector sum is shared more evenly among the agents, and parts of the

computation in the same stage can be performed in parallel. Each of the larger

135

e

4

C

vi

Stage 30 IC

i=4
vi io

Stage 2034

Y- vi vi vi
i=6 i=2 i --A

IC

Stage 10246

Stage 001234567

rv--ý Fv---ý v LIj
FV4] R [V6

L: -Oj 5] F-7ý

FiAure 4.24: A,, (, iits (represented ws circles) performing a distributed computation n
of a stim of' vectors. The arrows iidicate data communicated between two agents,

and the greY boxes show which parts of the computation are carried out bY cach

grey lmxcs in Figure 4.24 represents one of the agents adding the vector received

over tlic network to its own local vector. If the number n, of vectors to be added is

a power of two. then it agents can perform the addition '11 1092 11 stages. The time

reylired for each Stape is fl + t2, where ti is the time required to send a vector

hoween two ngents over the network, and t2 is the thile required for a single agent

to add two vectors together.

Slippose now tlmt all agents need to know the result of the summation once it

is cmilpleted (; is is the case for our parallel RL method.) One way to achieve this

WOUld be to complitc the s1iiii as shown above, then have, agent 0 broadcast the

result to all the other a0ents. The broadcast can also be implemented using a tree

structure iii ii similar way, by reversing the direction of the communication arrows
in Fi-tire -1.2-1. However, a inore efficient wa of achieving the saine effect is to use ny
thc communication structure shown in Figure 4.25. This type of communication

structiti-c is sometimes known as a butterfly. It can be interpreted as a set of

trees. one rooted at eitch agent, with the common subtrees combined together to

produce it dircctcd (icyclic graph (DAG). Since the communications within each of

the stapes cmi be performed simultaneously, this operation can be completed in

t he saine number of stages (1092 it,) as the operation shown in Figure 4.24.

This discussion has thus far relied on the assumption that it is a power of

two. If it is not a imwer of two then additional communications are needed to

ensmv that all the agents end tip with the correct suni. In such cases the required

136

Stage 3

Stage 2

Stage I

Stage 0

01234567

Agents

Figure 4.25: A distributed sum of vectors where the result is required by all the

participating agents. Intermediate results at each stage are shown in a circle for

every agent.

number of stages has an upper bound of 2 11092 nj. This approach is known as

a recursive doubling algorithm. For further details on the use of the recursive
doubling algorithm in MPICH, the reader should refer to Benson et al. (2003).

The MPICH library provides implementations of the distributed summations
in Figures 4.24 and 4.25 with the functions MPI-Reduce and MPI-Allreduce re-

spectively. The two summations in the visit-count merge functions will now be

implemented using the MPI-Allreduce function. The pseudocode for the algo-

rithm followed by each of the agents is shown in Algorithm 3.
A new series of timings for the merge operation was collected for this new par-

allel implementation. They are shown in Table 4.4, where the errors again reflect
the range of the timings rather than the standard deviation. The settings used

were identical to those described at the beginning of this section, except that this

new implementation was used. The results show with this new implementation, as
the number of agents n is increased the growth of communication costs is O(logn)

rather than O(n). Note that when n is not a power of two additional stages of

communication are required, which is why the groups of 10,12 and 14 agents take
longer to merge than the 16 agent group.

Still using this new implementation, two further sets of timings were collected.
The purpose of these further timings were to investigate the effect of the number of

approximator features on the time required for merging. The experiments used for

137

Algorithm 3 Agent pseudocode for the improved parallel implementation (based

on the visit-count merge function.)

fInitialization}

for all i do

Oi - Oi. it
Ci 4-- 0

end for

IMain loop}

while time elapsed < tend do

for step =1 to p do

Execute a simulation step.
Update %veight vector W

For each active feature Oi increment the visit-count ci.

end for

il 4-- MPI-Allreduce (6. W, MPI-SUM) jParallel summation}

cF4- MPI-Allreduce (6, MPI-SUM) jParallel surnmation}

for all i do

if di 00 then
Oi ni/di
Ci 0

end if

end for

end while

138

Number of Agents I Time for Merge Operati

2 25±2
4 51±5

6 92±5

8 80±15

10 119±3

12 105±5

14 120±10

16 100±10

Table 4.4: Timings for the visit-count merge operation in the Stochastic Grid
World task using the improved parallel implementation.

Number of Agents I Time for Merge Operati

2 11±1
4 21±3
8 30±2
16 43±5

Table 4.5: Timings for the improved implementation in the Stochastic Grid World

task, using half the previous number of features.

Number of Agents Time for Merge Operati

2 53±3
4 102±5
8 149±2
16 198±7

Table 4.6: Timings for the improved implementation in the Stochastic Grid World

task, using twice the previous number of features.

139

the timings in Tables 4.3 and 4.4 both used 4 tilings of size 32x32 for each of the 4

actions. The timings shown in Table 4.5 were collected using 2 tilings of the same
size (halving the total number of features). The timings shown in Table 4.6 were
collected using 8 tilings of the same size (doubling the total number of features).
These two sets of data provide some evidence that as the number of features f is
increased, the growth of communication costs is 0(f). This makes sense because
doubling the number of features means that the number of weights and visit counts
is doubled, so every single message that needs to be communicated between the

agents becomes twice as large.

4.7.3 Experiments using the Improved Parallel Implementation

While the above improvements to the implementation achieved a slow asymptotic
growth of communication costs, there remains a large constant factor not reflected
by the use of "big 0" notation. The domains used for evaluation in this work
use between 2000 and 20,000 weights in each VFA. Each agent also maintains and
communicates a similar number of visit-count values. Communicating large vectors
of weights (and visit-counts) between the agents results in a large delay while the
data travels over the intercommunication network.

In the experiments carried out using the cluster of workstations, it was found

that the visit-count merging approach could not achieve a parallel speed-up in

any of the simple control problems considered (i. e. the Mountain-Car task, the

Pole-Balancing task and the Acrobot task). Figure 4.26 shows one set of results

collected for 2 agents learning in the Mountain-Car task. A range of different

values were tried for the merge period p. Reward function #2 was used, and a and

c were decayed linearly using parameters ao = 0.5, co = 0.1 and t1i.. = 0.9. The

other parameters were -y = 0.99, A=0.9 and Oi,, it = 0.0001. Results were averaged

over 200 runs.

Since each agent only has time to simulate about 60,000 steps within the 0.35

second time limit for this experiment, the performance of the two agents using
p= 150,000 is essentially the same as that of a single-agent learner (i. e. no merging

operations occur within the duration of the experiment for these agents.) The

results in Figure 4.26 show that, regardless of the value we pick for the merge period

p, two agents cannot significantly speed-up learning in the Mountain-Car task using
the improved parallel implementation. In fact, when p< 1000 performance in this
domain is significantly worse. This is because any improvement in convergence
speed achieved by the agents sharing intermediate results is cancelled out by the

extra time spent sending, waiting for and receiving messages. Similar results were
obtained for the Pole-Balancing and Acrobot tasks, and for greater numbers of

140

500

400

350

300

250

200

450

A

150

P= 100
p= 300

p=
1000

p= 3000
p= 10000
p= 30000

p= 150000

-ýexxx-x-

KX-x

mititt

loo L

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Learning Time (seconds)

Figure 4.26: Learning curves generated with the cluster of workstations for 2 agents
in the Mountain-Car task. Each curve uses a different value for the merge period
p.

agents in these domains.

In the Stochastic Grid World task, however, it was possible to achieve learning

speed-ups using the cluster of workstations. Results for the low-difficulty instance

of the grid world are shown in Figure 4.27. Reward function #2 was used, in

addition to parameters ao = 0.2, co = 0.1, t1j,, = 0.9, y=0.99, A=0.9, p=
10,000 and Oi. it =1X 10-8. Results were averaged over 10 runs (the variation in

performance on different runs is small compared to the Mountain-Car task).
The results in Figure 4.27 show that a reasonable parallel speedup can be

achieved with different numbers of agents. However, the speedup falls some way

short of the ideal case of linear speedup. Comparing this graph with the one in

Figure 4.22 (an experiment with similar settings using the simulation of paral-
lel agents) allows us to assess the degree to which realistic communication costs
degrade the performance measured in simulation.

The relatively large speedups achieved by the groups of 2 and 4 agents remain
significant on the cluster of workstations, outpacing the logarithmic growth in

communication costs. However, in the simulation we observed diminishing returns
as the number of agents was scaled up to 8 and 16. As the speedup effect of
merging is diminishing, the growth of communication costs continues at a similar
rate. This results in a very small parallel speedup moving from 4 to 8 agents, and a

141

0
. t2

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

'x
I Agent

1 2 Agents
% 1. '.

4 Agents
8 Agents

16 Agents

0123456
Learning Time (seconds)

n

Figure 4.27: Performance of the visit-count merge method on the cluster using the
(low-difficulty) Stochastic Grid World task.

very similar performance as we move from 8 to 16 agents. With the implementation
in its current state, it is only useful to scale-up to a maximum of 8 agents.

Parallel speedups were also achieved using the more difficult instance of the
Stochastic Grid World task. This (high-difficulty) instance of the task requires on
average about twice as many simulation steps to reach the goal from the initial

state, uses a greater number of features in the VFA and requires an order of
magnitude more real time to learn a near-optimal policy. Results for the high-
difficulty instance are shown in Figure 4.28. Reward function #1 was used, in

addition to parameters ao = 0.2, co = 0.1, t1j,,, = 0.9, -y = 1.0, A=0.95, p= 50,000

and Oi,, it = 0. Results were again averaged over 10 runs.
A similar pattern of speedups is achieved in this experiment, although overall

the results are slightly worse. 2 agents converge to a near-optimal policy in about
20% less time than a single agent, which is obviously some way short of the 50%

that would be necessary for linear speedup. 4 agents improve over the performance
of 2 agents, but not by much. Groups of 8 and 16 agents seem to learn slightly
faster in the early stages of the experiment, but can only converge completely to a
near-optimal policy in the time required by 4 agents.

Tile results presented in Figures 4.27 and 4.28 show that agents implemented

using distributed-memory parallel hardware can learn good solutions to RL prob-
lems more quickly than a single-agent learner. However, using our particular

142

U

0
U,
0.

r. L
0
0
U

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

I Agent - ME 013X)K 2 Agents

13Q)K 4 Agents
b, 8 Agents

k% 16 Agents
6,.,

kal X,

0 10 20 30 40 50 60
Learning Time (seconds)

n

Figure 4.28: Performance of the visit-count merge method on the cluster using the
(high-difficulty) Stochastic Grid World task.

implementation with the hardware resources available resulted in a high cost of
communication relative to the total learning time. This meant that where parallel
speedups were achieved, they were only significant for groups of 2 or 4 agents, and
for many domains not even this could be achieved (see Figure 4.26). These results
suggest that to develop a parallel RL method which is practical to use with a clus-
ter a workstations, the efficient use of network bandwidth must be emphasised to

a much greater degree.

4.8 The Influence of the Merge Period

In the experiments discussed so far in this chapter, the value used for the merge
period p in each domain has been specified, but no justification has been provided
for the particular values chosen. In this section I will examine more closely the
influence of the merge period on the overall performance of the visit-count merge
method, and address the problem of selecting a suitable value for p.

The merge period controls how often the agents are able to share value function
information. A smaller merge period means that information exchanges are more
frequent. Intuitively, the more frequent the exchange of information, the greater
the probability that an agent can exploit information discovered by one of its peers
before the agent discovers the same information for itself. In other words, frequent

143

information exchange reduces the level of duplicated effort.
For example, consider the low-difficulty version of the Stochastic Grid World

task. The graph in Figure 4.29 plots learning curves for 2 simulated parallel agents

using a variety of values for the merge period p. Since the curves were generated

using the simulation of parallel agents, the communication time required to merge

the VFAs is not included in these results. The curve for p=2,500,000 is essentially
identical to that of a single-agent learner, since the results are only plotted for

the first 2,000,000 simulation steps. The full settings for this experiment were as
follows. Reward function #2 was used, and results were averaged over 50 runs. The

experiment lasted for 4,000,000 simulation steps, with a and f decaying linearly to

zero over 90% of this time. The other parameters used were ao = 0.2, CO = 0.1,

-y = 0.99, A=0.9 and Oinit =1X 10-8.

10000

9000

8000

7000

6000

5000

4000
ci ;E

3000

2000

1000

0

p= 100
p= 1000
P=5000

0.
t3 %., 'C' QIp=

20000 0
p= 80000

-P p=320000
10p= 1280000

p= 2500000

ik
INS

'm -

0 500000 1 e+06 1.5e+06 2e+06
Learning Steps per Agent

Figure 4.29: Varying the merge period p for 2 agents in the low-difficulty Stochastic

Grid World, using the simulation of parallel agents.

As progressively smaller values of p are used, the number of simulation steps

required for the agents to converge is gradually reduced, improving significantly

over the performance of a single agent. The fastest convergence which can be

obtained seems to be limited to about half the steps required by the single-agent,

which would correspond to a linear speedup for 2 agents. Note that in Figure 4.29

the curves for p= 100 and p= 1000 both converge very close to this limit. There

is therefore little incentive to use a merge period smaller than 1000 in this domain,

since it will not improve the performance any further.

144

We will now consider an experiment using almost exactly the same settings on
the cluster of workstations. The main difference between the two experiments is

that on the cluster, each run finishes after 6.0 seconds of real time instead of after
4x 106 simulation steps. This means that the communication penalty incurred
by the merge operation does now have an effect on the results, shown in Figure

4.30. The full extent of this penalty for a given merge period is shown in Table

4.7, which reports the percentage of the total experiment time consumed by the
distributed calculation of merged value functions.

10000

9000

8000

7000

6000

,a 5000

4000

3000

2000

1000

(1

p= 5000
p= 10000
p =20000
p =40000
p= 80000

p =160000

' XI I

ob
N
1.
b

0 0.5 1 1.5 2 2.5 3
Learning Time (seconds)

Figure 4.30: Varying the merge period p for 2 agents in the low-difficulty Stochastic

Grid World, using the cluster of workstations.

Merge Period I Proportion of time communicating
5000 36.2%

10,000 22.3%

20,000 13.2%
40,000 7.5%
80,000 4.3%
160,000 2.6%

Table 4.7: Proportion of experiment time expended on communication by the 2

agents for different merge period values.

145

The distribution of the learning curves on the cluster is quite different from

those obtained in simulation. As we observed in Figure 4.29, there comes a point
when reducing the merge-period p no longer reduces the number of simulation steps
required for convergence. On the cluster, however, reducing the merge-period p
will always increase the overall proportion of the experiment time that the agents
must dedicate to communication. This reduces the time available for simulation
and VFA updates, to some extent cancelling out the increased sample efficiency
obtained by more frequent merging.

The overall effect on performance is therefore as follows. When we start with a
very large value for p, and gradually reduce it, performance gradually improves over
that of a single agent, but not by as much as was achieved in simulation. Eventually

there comes a point where the increase in communication costs outweighs the
benefits of more frequent merging, and reducing the value of p causes performance
to become progressively worse. There is therefore some optimal value for p in this

experiment at the point where these two effects are perfectly balanced. The closest
merge period in Figure 4.30 to the optimum is p= 20,000, where the overall time
dedicated to communication is 13.2% of the total experiment time.

Figure 4.31 shows a similar experiment on the cluster of workstations using 16

agents rather than 2. While the overall pattern is quite similar to that in Figure
4.30, an interesting outcome of this experiment is that the optimal merge period
for the experiment with 16 agents is different from the optimum for 2 agents. The

closest merge period to the optimum in Figure 4.31 is p= 10,000, where the overall
time dedicated to communication is 49.7% of the total experiment time (see Table
4.8.) Note how such a large amount of time must be dedicated to communication
in order to achieve as much as possible of the 16x speedup achievable in simulation.
Note also that although there are different optimal values of p for 2 and 16 agents,
choosing a single value for p between 10,000 and 20,000 will produce results which
are close to optimal for both numbers of agents in this domain.

At this point it is reasonable to ask how we can choose a good (or even optimal)
value for p, given a particular domain and some number n of available agents.
Performing a series of experiments (as shown above) to approach the optimal value
for p is impractical given that the stated goal of this thesis is to speed up RL using
parallel hardware. By the time we have run enough experiments to choose the

optimal value for p, it is likely that a single agent could have already solved the

problem.
On the other hand, it is unlikely that we can derive an analytic method for

determining the optimal value of p. This is because the sample complexity of
the group of agents using the visit-count merge operation is difficult to model

146

I n

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

p= 5000
p= 10000
p= 20000
p= 40000
p= 80000

p= 160000

0 0.5 1 1.5 2 2.5 3
Learning Time (seconds)

Figure 4.31: Varying the merge period p for 16 agents in the low-difficulty Stoch-

astic Grid World, using the cluster of workstations.

Merge Period I Proportion of time communicating

5000 64.8%

10,000 49.7%

20,000 35.2%

40,000 22.7%

80,000 14.7%

160,000 10.3%

Table 4.8: Proportion of experiment time expended on communication by the 16

agents for different merge period values.

boGC, O

10

10

-K -4, '0

147

analytically. Empirical results have shown that the performance of the agents
depends on (at least) the merge period p, the number of agents n, the number of
features f, and the overall difficulty of the target learning domain. Deriving an

analytical model of convergence is also complicated by the fact that the rate of

convergence of RL algorithms has seen little theoretical study to date.

Therefore for practical applications of the visit-count merge method in new
domains, the merge period p must be chosen using a mixture of trial and error and

reference to previous applications of the method in domains of similar scale and/or
difFICUlty 3. This approach is helped by the fact the performance of the method is

relatively insensitive to small changes in the value of p, as shown in Figures 4.30

and 4.31. This means that as long as the value of p is only a few times smaller or
larger than the optimum value, the overall performance will only be degraded by

a small amount. It may be possible in the future to develop a heuristic method for

selecting p based on the processing power of the parallel nodes, the bandwidth of
the network, and some measure of the overall difficulty of a given learning domain.

4.9 Summary and Conclusions

The following material has been presented in this chapter:

Motivation for the use of parallel hardware to find near-optimal solutions to
RL problems more quickly than is possible with sequential computation.

*A description of the necessary assumptions to use parallel hardware for RL.

oA general approach to parallel RL based on merging value function approx-
imations.

Several instantiations of the general approach using a series of merge func-

tions.

9 An evaluation of each merge function using a simulation of parallel agents.

A description of how decaying a and e parameters in combination with a
binanj search can be used to compare parallel RL methods by final solution

quality.

*A comparison of the merging method to a parallel RL method which does

not merge.

'There are already several RL parameters (such as a, c, -y and A) which require this kind of

selection.

148

9 An evaluation of the visit-count merge function using real parallel hardware;

a cluster of work-stations.

* An analysis of how the choice of merge period p affects performance, in both

the simulation and on the cluster.

From this material we can draw the following broad conclusions:

In the simulation of parallel agents, a group of agents which merge their value
functions require significantly fewer simulation steps per agent to converge
to a near-optimal policy than a single-agent learner.

While the maximum and minimum merge functions exhibited divergent be-
haviour, the body of empirical evidence collected suggests that both the

mean and visit-count merge functions allow (and accelerate) convergence to

a near-optimal policy.

The visit-count merge function achieves better performance in simulation
than all the other merge functions in all the domains tested. This is mainly
because it uses a measure of experience to weight the agents' value estimates.

om As the merge period p is reduced, the simulated agents approach the limit of
linear speedup over the single-agent learner.

The cluster implementation showed that the communication overhead of the

merging method is so large that in many domains a parallel speedup could

not be achieved with the available hardware.

In spite of the large overhead, significant parallel speedups were obtained
in several instances of the Stochastic Grid World task, demonstrating the

practical potential of parallel RL.

An appropriate choice of the merge period p is a prerequisite for achiev-
ing good performance on parallel hardware. The overall performance of the

method is not very sensitive to small changes in the value of p.

While the efficiency of the merge function could probably be improved, it
is the reduction of network bandwidth requirements which is most likely to

allow a related parallel RL method to achieve better results in practice.

In Chapter 51 will go on to examine how parallel speedups can still be achieved

while drastically reducing the communication costs of the merging method de-

scribed in this chapter.

149

Chapter 5

Selective Merging

In the previous chapter, a parallel RL method based on merging value function

approximations (VFAs) was presented. This method was shown to require fewer

simulation steps per parallel agent as the number of agents n was increased. How-

ever, the method was also expensive in terms of communication overhead, which

meant that speedups on real parallel hardware could not be achieved in all of our

evaluation domains.

In this chapter, I will present a new parallel RL method based on a similar

notion of merging, but with a much lower communication overhead. This method
is based on agents exchanging their recent changes to the VFA weights. Commu-

nication overhead is greatly reduced by each agent broadcasting only the largest

of its recent changes. Several candidate mechanisms are proposed for combining

changes received from several agents, and are evaluated using an implementation

on the cluster of workstations. I will also examine the effect of varying both the

period between consecutive communications and the number of changes sent in

each communication.

5.1 Motivation

The parallel RL method described in Chapter 4 was based on a periodic merge

operation. During this operation, for every feature Oi a merged weight O! n was

calculated from all the agents' most recent estimates of Oi. This meant that every
weight of every agent had to be communicated over the network at least once during

the merge operation. The advantage of this approach is that the merged VFA is an
estimated summary of the total group knowledge over the whole state space. The
key disadvantage is that a large quantity of data must be exchanged between the

agents. Even using an efficient distributed computation to calculate the merged
VFA results in a significant delay while the operation is completed. This consumes

150

time which could have been spent learning in the simulated environment.
If every agent must communicate every weight in its VIA, there will be a

great deal of redundant information exchanged between the agents. For example,

suppose that for some RL problem there is a subset of the total feature set

containing features which are only active when the agent visits a particular region

of state space. Suppose that none of the agents have visited this region by the

time one of the merge operations takes place. During the merge operation, weights
(and possibly visit-counts) will be communicated for all the features in this sub-

set, despite the fact that the agents derive no useful information at all from this

communication.
To remove this redundancy, it could be suggested that only weights that have

been updated since the last merge (i. e. those with a non-zero visit count) should
be communicated to the other agents. However, consider the following alternative

example. Feature Oi has been active many times for all the agents since the last

merge, which means that each agent has made many updates to weight Oi. After all
the updates have been made, the agents' updated values for Oi show little change
from the result of the previous merge. This is a situation which occurs when state-

action values in some region of the state space are already predicted well by the
VFA. Transmitting all the agents' weights to make such a small adjustment to Oi

is not redundant as such, but is clearly less informative to the group than the large

weight adjustments which occur when one agent finds a previously undiscovered
high reward region of state space.

In this chapter a new parallel RL method is defined in which each agent pri-

oTitizes its most informative weight adjustments. This means that our focus will

shift away from an agent's absolute value of Oi and onto the recent change AOi in

the agent's value of Oi. Messages sent to other agents will no longer contain values

of Oi, but values of AOi instead. It is reasonably simple to make this adjustment,

since all the agents use the same value Oinit for the starting value of Oi, and the

use of reliable message transport means that every agent is guaranteed to receive

all the transmitted values of AOi. Therefore, an agent can calculate a new value
for Oi as each change arrives, allowing the agents as a group to derive identical'

values for Oi.

The method defined in this section is based on the following principle for choos-
ing which information is Nvorth communicating to the other agents:

'Assuming that the agents are running on a homogeneous cluster or on an SMP machine.
If the agents are running on a heterogeneous cluster, there is the possibility that differences in

the floating point implementation will cause the agents' calculated values of Oi to differ to some

extent.

151

The most informative elements of the weight change vector AW are
the elements which have the largest absolute values, and these are the

changes which should be sent to the other agents in the group.

While there may be some situations in which this principle could be misleading
(e. g., if two actions in a state have a similar mean reward but very different vari-

ances), in the majority of cases it will allow the prioritization of the most significant

changes to the VFA as learning progresses.
Note that none of the selective methods described in this chapter employ the

visit-counts which were the basis of the best method described in Chapter 4. This

is because having information about the change undergone by a weight makes
the information about the number of updates to the weight much less valuable2.
Methods which transmit visit-counts in addition to weight changes seem to increase

communication costs without making much difference to the convergence rate, and
therefore perform poorly by comparison.

5.2 Method Definition and Implementation

Like the merging method of Chapter 4, the selective merging method studied in

this chapter is based on a periodic merge operation which occurs after every agent
has performed a set of p simulation steps. I will continue to refer to p as the merge

period parameter.
The selective merging method makes extensive use of the weight change vector

Aý. Maintaining a copy of this vector during learning would require a change to

the underlying SARSA(A) implementation so that AO was updated each time 0

changed. To avoid having to modify the implementation and make it less efficient,

each agent instead stores a vector Wref, which holds the last known "group" value
for each weight. The SARSA(A) implementation continues to update 0 only, and it

is easy to calculate AW= W- Wref when required. Each element AOj of the weight

change vector signifies the change made to weight Oi since the "group" value was
last determined. At the beginning of each run, the values of Oi and 071 are set to

the initial value of Oi,, it for all i. This makes the initial value of each AOi zero.
At the start of a merge operation, each agent calculates the weight change vec-

tor AW. The agent is now able to rank the set of weight indices I= 10,1, ... ' (f - 1)}

using the absolute weight change JAOij for each index i. An additional parame-
ter f,,,,, defines how many of the weight changes will be communicated by each

'Though not valueless. Informing an agent that a weight has a high visit count but a small

change may increase the agent's confidence in the value of the weight. However, if rewards are

sparse then this confidence could be misleading in the early stages of learning.

152

agent during a single merge operation. The choice of parameter f involves an-

other trade-off between growing communication costs and sample efficiency during

learning. The effect of parameters p and f,,,,, on the performance of the selective

merging method will be examined in more detail in Section 5.5. Even if is

much smaller than the total number of weights f, it may still possible to speed up

convergence significantly.
In the original merge method described in Chapter 4, the message format con-

sisted of a vector containing the values of all f weights. Each of these transmitted

values was associated with one of the features Oi by the fact that the value ap-

peared in the it" position of the vector. In the selective merging method, only

a subset of elements of the weight change vector Aý are sent during each merge

operation. This means that we cannot identify the associated feature using the

position of each AOj value in the message. Instead, each message contains a set

of (i, AOi) tuples. The first member of the tuple identifies which of the f approxi-

inator weights is being referred to, and the second member is the recent change in

weight Oi observed by the sending agent. Each agent constructs a message in this

way and broadcasts it to all agents in the group including itself 3.

Towards the end of the merge operation, an agent will have received a message
from each agent in the group (including itself). The final stage of the merge

operation is to incorporate all of the changes received in the messages into the

agent's local data structures. There are three cases to consider for each feature

Oj, as illustrated in Figure 5.1. The first case is if none of the messages contain a

change AOj associated with Oi. In this case we make no update to Oi or 07f. Note

that this allows small changes to accumulate over several merge periods, eventually

resulting in a large change which will be submitted.
The second case is if only one of the messages contains a change AOi associated

with Oi. In this case both Oi and ore of Oref if are set to the value i+ AOj. This

ensures that after this particular merge operation all the agents will start measuring

changes from the same "group" estimate for the weight value. Note that a side-

effect of this update is that any small change discovered by an agent which was

not transmitted will be lost after the update.
The third case is if more than one message contains a change AOi associated

with Oi. If the set C contains all the change values associated with weight Oi, then

a (partial) function g: P(R) --+ R is required to combine the information received
from all the agents who discovered a significant change in Oi. Making a suitable

'This allows the algorithm for updating the VFA to be defined as an operation performed on a

set of messages, without distinguishing the local agent's message in any way. The implementation

on the cluster of workstations simply keeps the local message in memory until it is required.

153

Agent I

Agent 2

Agent 3 -77
-------------------------- I ---

Result

Figure 5.1: The sclcctive nicTe operation. With the approxiniator weights repre-

sented as a one dimensional vector, the light grey regions indicate weight changes

transmitted by each of the agents. The resulting inerged weights consist of un-

(. 11,111"ed weights (White), weights (! hanged by a single agent (light grey), and

weights where changes from several agents inust be combined together (dark grey).

choice foi- function g is non-trivial, and a number of different candidates for such

it function will be considered in Section 5.3.

For it given choice of the combination function g, the procedure followed by an

agcnt using the selective merging algorithm is shown in Algorithm 4.

Note that at the high level (or equivalently at the superstep level) selective

merging is a synchronous algorithin. While each agent can execute its p simulation

steps without requiring any synchronization, the merge operation requires that each

agent waits for it message from every member of the group before it (-an update its

VFA and proceed with the next p simulation steps.
While the merge operation is synchronous at the high level, the inessage send

and receive operations used in Algorithm 4 were actually implemented using non-
blocking asynchronous point-to-point operations provided by the MPICH library.

This contrasts with the synchronous collective operations that were used in the

improved impIcillentation of the original merging method (see Section 4.7).

In ()in- implementation, a message (consisting of a vector of (i, AOj) tuples as de-

scribed above) is constructed in a buffer of user-allocated memory. The MPI-Isend

function is used to initiate an asynchronous send to each of the agents in the

group. An agent waits for messages from the rest of the group using MPI-Probe.

XA'hcn MPI-Probe returns, indicating that a message has been sent by one of the

other agents, the agent uses MPI-Recv to receive the message into a temporary

user buffer. Each incoming buffer is processed immediately, allowing part of the

calculation towards a vector of y(C) values to be completed.

The use of Lsynchronous inessage passing at the low level outperformed any of

t he NIPICH collective operations or synchronous point-to-point operations. There

are two inain rewsons for this. The order in which messages are received and

154

Algorithm 4 Agent pseudocode for the selective merge method.
f Initialization

for all i do
Oi 4-- Oinit

oref 4--
0.

.
i intt

end for

IMain Loop}

while time elapsed < tend do

fLearning Pliase}

for step =1 to p do

Execute a simulation step and update weight vector W.

end for

lConstruct Message and Send}

Calculate Aý= W- W"f.

Rank each index i according to the value of IAOi I.

best *-- { the highest ranked indices

m +- I(i, AOi) IiE best}

Send message m to all agents (including self).

fReceive Message and Update Weights}

mset i-- IMessages received from self and others}
for all i do

cset - JAOi ImE mset, (i, AOj) E m}
if Icsetl =0 {Case 1} then

INo update}

else if lesetl =1 ICase 2} then
Oýcf 4__ Oref + CO

2i 1where co is the only element of cset}
Oi +- Oýef

z

else if Icsetl >1 ICase 3} then
Oýef _- Oýef +9

2z
(cset)

0i 4_ oref

end if

end for

end while

155

processed is not significant in the selective merge method, so it is more efficient to

use MPI-Probe to retrieve the first message received than imposing a fixed order
to receive the messages. In addition, as we shall see in Section 5.3, it is possible to

perform incremental computation of the required g(C) values as and when messages
are received. This allows communication and computation to be overlapped to

some degree, which is more efficient than waiting for a collective communication
to complete before beginning to calculate the g(C) values.

5.3 Combining Changes from Several Agents

Section 5.1 described the core procedure followed by the selective merging method,
while temporarily leaving undefined the g(C) function for combining changes re-

ceived from several different agents. In this section, we will more closely examine
the purpose of this function, and motivate a number of candidates for the algorithm
which will be evaluated in Section 5.4.

5.3.1 Criteria for Combining Changes Together

It is first necessary to consider what criteria are important for selecting the g(C)
function. From a high level perspective, our method must be effective at combining
information from several agents, some parts of which will be complementary, and
other parts of which will be conflicting. At the lower level, the changes made by

each of the agents to Oi must be combined into a single representative change. Each

of these change values represents an agent's accumulation of all the recent value
function updates where feature Oi was active. An update to Oi occurs for one (or

more) of the following three reasons:

1. Stochasticity arising from either the transition and reward functions or the

exploration strategy means that once a weight is close to the actual expected
value, small updates in both the positive and negative directions will occur
in response to noise in the sampled value.

2. The VFA must generalize over the state space using only a few features. Once

the VFA accurately approximates the true value function, states encountered
during learning will have both positive and negative generalization error,
resulting in a series of small updates to the weights in both directions.

3. The weights are initialized arbitrarily at the start of learning, which means
that early estimates of feature value are highly biased. As sampled experience
is collected, more accurate estimates of long term reward are propagated

156

backwards through the state space, reducing the initial bias. Weight updates

which reduce bias are unidirectional.

Weight updates corresponding to reasons 1 and 2 are those which arise from vari-

ance in tile samples once a weight approaches its true expected value. However,

weight updates corresponding to reason 3 are fundamentally different in character,

producing a series of large updates in a single direction until the large initial bias

in the weight values is reduced.
Now consider a set of changes C which were made by several agents to feature

Oi over the last merge period. How can these changes be combined in a way which
improves upon tile performance achieved by a single agent? It is fairly clear that
taking the mean of tile values contained in C will improve the effect of updates
corresponding to reasons 1 and 2. Using tile mean of the changes in this way results
in tile estimate of Oi staying much closer to the expectation as updates in response
to sampled experience. The agents essentially combine their individual estimates
to obtain an improved group estimate of the expected value.

However, consider the effect of using tile mean of the changes in the follow-

ing situation. Through random exploration, a single agent discovers a previously

unknown high reward region, and updates Oi to reflect this. None of the other

agents manage to find this region, and only make very small changes to the value

of Oi. This means that C will contain one very large change and a series of small

changes (both positive and negative). Assuming that the small changes are rela-
tively insignificant, the effect of taking tile mean of these changes is to reduce the

magnitude of the large change by a factor of n (where n is the number of agents.)

This would actually result in a slower rate of convergence than that of a single

agent learner4.

This example illustrates tile conflict which has to be addressed when choosing

a function g(C). When a large reward is discovered for the first time, the change
in value must be propagated quickly through both the value function and the

population of agents. However, it is also desirable that function g(C) improves the

estimation of tile expected return once the initial bias has been eliminated.
This conflict is an example of a more general property of machine learning

algorithms, namely tile bias/variance dilemma (Geman et al., 1992). The average

mean squared error (MSE) in the approximation of the optimal value function can
be decomposed into two parts: bias and variance. Denoting tile optimal value

4 In practice the selective merge method actually performs much better than this as long as

f,,,,, is much smaller than the total number of features f. If this is the case, then the process of

ranking the weight changes in order of magnitude makes it fairly unlikely that C will contain a

large number of very small changes.

157

function by Q*, using ý for the approximation learned after real time T, and
denoting the expectation after time T as ET, bias and variance in this context of
this chapter can be expressed as follows:

bias(s, a)= (Q*(s, a) -ETfO(s, a)})2

variance (s, a) = ET f (o (s, a) - ET 10 (s, a) 1)21

The overall bias and variance of the approximator at time T can be obtained
by integrating over the state-action space. Intuitively, the bias is the squared
difference between the expected approximation value and the true optimal value,
and the variance is the expected deviation of the approximation value from the

expected approximation.
The bias/variance dilemma is related to the problem of overfitting an approxi-

mation to a set of training data. If the approximation fits the data too closely, the
bias tends to be small but the variance will be large. To get a small generalization

error it is important to achieve a good trade-off between the size of the bias and
the size of the variance.

Thus the issues involved in choosing the combination function g(C) can be

interpreted in terms of the effects on bias and variance. For example, a simple
mean function for g(C) will result in a reduction of variance in the value estimates,
but bias is likely to be reduced more slowly over time.

5.3.2 The Problem of Overshooting

Consider how a single SARSA(A) learning agent updates its VFA. The evolution

of each weight over time can be described by a summation of small changes caused

as experience is collected. In the limit (assuming that a and c are decayed appro-

priately) this summation will tend towards the expected value of the associated
feature. But what if n agents were simultaneously contributing changes to the

same summation? Would the value of each weight approach the expectation more

quickly? To answer this question, the combination function g(C) can be defined

as:
g(c) = 11

CEC

This simplistic approach exhibits some serious problems. Results for the Pole-

Balancing task (in Figure 5.2) show that 2 agents using this combination function

learn a policy of higher quality than the single-agent. Unfortunately, if 4 or more

agents are used the agents do not converge to any useful policy. Results for the

158

I/UUU "ýX-xx
I Agent

2 Agents
4 Agents

10000 8 Agents
16 Agents

-: S 8000 -x I, X

0 6000

X
XXI x 4000

2000
>CXX-

0a- ------- I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Learning Time (seconds)

Figure 5.2: Using a simple summation for g(C). Results for the selective merge
method in the Pole-Balancing task, collected using the cluster of workstations.

10000

9000

8000

7000

6000

5000

4000
C)

3000

2000

1000

n

------------ --- -- ----- W-R --------

I Agent
2 Agents
4 Agents
8 Agents

16 Agents

X-X ýj

Y-X4 e\XI ;K(,

0123456
Learning Time (seconds)

Figure 5.3: Using a simple summation for g(C). Results for the selective merge

method in the (IoNv-difficulty) Stochastic Grid World task, collected using the clus-

ter of workstations.

159

Stochastic Grid World (in Figure 5.3) exhibit a similar pattern. The 2 agent group
does learn more quickly in the initial stages of each run, but produces noisy results

and takes a lot longer to settle on a near optimal policy. If 4 or more agents are

used, selective merging does not converge. Full details of the parameter settings

used for these experiments are given in Section 5.4.

The problem with the summation is that there is no mechanism for dealing with

agents which make identical changes. For example, suppose there are n agents just

beginning a run of selective merging. Suppose also that there is a reward close
to the initial state that can be found with very little exploration. Each of the

agents receives the reward a number of times during the first merge period, so
that the state in which the reward is available has an estimated value similar to

the reward value. Now when the selective merge occurs, and these changes are

summed together, the new estimated value of the state could be as much as n
times the true expected value of the state. Overshooting the expected return of a

state in this way is a major problem. It is likely that overshooting will set up an

oscillation about the true value of the state, which may even cause it to diverge to
infinity.

5.3.3 Candidates for the Combination Function

I will now define four candidates for the combination function g(C). Each of these

candidates has been selected to avoid the overshooting problem observed in Section

5.3.2. In addition, I will use the criteria discussed in Section 5.3.1 to assess the

potential of each of the candidates for successfully combining changes to the VIA

weights. The four candidates are evaluated in detail in Section 5.4.

Combination Function I- Capped summation

The first combination function uses a summation as described in Section 5.3.2,

except that this time the result of the summation is bounded so that it cannot be

greater than the largest element of the set C or less than the smallest element of
the set C.

g(C) = bound min(c) Ec, max(c)
CEC

CEC
CEC

where

bound(l, x, u) f if x<1 then 1

else if x>u then u

else x

160

This bounded summation has some of the same properties of the simple sum-

mation: propagation of new rewards is fast because large changes contribute the

most to the sum, but the variance of value estimates close to the true expected

value may be increased. However, bounding the summation has two additional

effects. Firstly, the increase in variance is bounded as the number of agents n is

increased, since each combined weight change cannot exceed the greatest magni-
tude of weight change achieved by a single agent. Secondly, in a situation where

several agents discover identical changes, the combined value will no longer greatly

overshoot the expectation since the summation is bounded.

Combination Function 2- Change of largest magnitude

The second combination function selects the change in set C which has the largest

magnitude (absolute value). This change is then used as the combined change

value.

g(C) = arg max Ic
CEC

The effects are similar to those of function I despite the fact that the mecha-

nism is quite different. New rewards are propagated quickly because they produce

changes of high magnitude. However, there will be greater variance in the value

estimates close to the true expected value, since choosing changes of the largest

magnitude favours sampled values on the margins of the value distribution.

Combination Function 3- Mean of the changes

The third combination function is a simple mean, used as the example in Section

5.3.1.

g(c) =I, ici
)

-,
CEC

As indicated earlier, this function will perform well at reducing variance in

the value estimates close to the true expected value. However, it is possible that

rewards which are difficult to discover will propagate more slowly through the

value function, because large changes from agents which do find the reward will be

reduced in magnitude by agents which do not.

Combination Function 4- Weighted Average

Tile fourth combination function is a weighted average, which is similar to the

mean used in function 3 except that each member of the set has a contribution

161

-weighted by the magnitude of the change. The weighted sum of the changes is

normalized by dividing by the sum of the change magnitudes.

T-C. Icl

_q(C) = CEC
I: ICI

CEC

The result of using this weighted average as the combination function is that

outliers in the set C have a much more significant effect on the result than when a

simple mean is used. If one change c is much greater in magnitude than the others
in set C, the combined change will be very close to c. This means that newly-
discovered rewards propagate quickly through the value function. If, on the other
hand, most of the changes in set C are of similar magnitude, the result g(C) will
be closer to the mean of the members of C, allowing value estimates to converge

more quickly to the estimation. Note that for states where the future return has a

very high variance, the tendency of g(C) to favour outlying changes may interfere

with reducing the variance of value estimates.
This combination function can be seen as making a trade-off between propa-

gating new rewards quickly and improving convergence to the long term expected

value of states.

5.4 Evaluation using the Cluster of Workstations

The evaluation carried out for the selective merging method involved testing the

performance (with different numbers of agents) of each of the four combination
functions in each of the evaluation domains defined in Section 4.3.1. The motiva-
tion behind each of these functions (given in Section 5.3.3) included an informal

assessment of which functions would be most appropriate in some situations. How-

ever, the performance that can be achieved in practice depends on a range of factors

including the stochasticity of the underlying domain, the form of the reward func-

tion used, and the choice of algorithm parameters p and f, ""'. The evaluation
domains used here exhibit a range of different characteristics, allowing an assess-

ment of the likely performance of the selective merging method in a broad range

of situations.

Stochastic Grid World (low-difficulty)

The first results presented here examine the performance of the selective merging

method in the low-difficulty Stochastic Grid World task. Figures 5.4-5.7 allow
the performance of the four combination functions to be compared for groups of

162

2,4,8 and 16 agents. In this series of experiments, reward function #2 was
used, and results were averaged over 10 runs. Episodes were terminated if they

reached 10,000 steps. The parameters used for the selective merging algorithm

were p= 10000 and f,,,, n = 256. Recall that for this domain, the total number

of features f= 3600. RL parameters a and e decay linearly during each run,

according to the parameters ao = 0.2, co = 0.1 and tli,,, = 0.9. The remaining

parameters were -y = 0.99, A=0.9 and Oinit =IX 10-8. These settings were also
used for the earlier Stochastic Grid World experiment presented in Section 5.3.2.

The first observation that can be made about Figures 5.4-5.7 is that the results

are very similar whichever combination function is used. This is an indication that

the exact form of the combination function may not be as important to the suc-

cess of the selective merging method as was initially thought (although preventing

overshooting does seem to be a vital property). The only significant exception to

this rule is the unreliable performance of combination functions 1 and 2 when there

are 16 agents (see Figure 5.7). With combination function 1, the 16 agents initially

converge quickly towards a good policy, but an increase in the overall variance of
the value estimates prevents the agents from settling near the optimum until 1.5

seconds have elapsed. In addition, in at least one run (out of the 10 total runs)
both combination functions 1 and 2 cause the 16 agent group to diverge from the

optimum as decaying parameters a and e approach zero.
Combination functions 1 and 2 both increase variance in the value estimates,

but the effect is much less pronounced using combination function 2. In con-
trast, combination functions 3 and 4 are methods based on averaging the changes,

resulting in a decrease in variance in most cases. Once the performance of the

agents converges to around 500 steps per episode, the subsequent performance (of

agents using the averaging combination functions) changes very little, even though

exploratory actions and value function updates continue to be made.
Surprisingly, the results for combination function 3 (the mean of the changes)

show convergence almost as rapid as for any of the other combination functions.

This suggests that newly-discovered rewards propagate just as quickly through

the value function. Propagation is not slowed by combination function 3 as was

predicted earlier. One reason this could be the case is that during each merge

operation, the agents each transmit only a small number (256) of changes out of
the total possible (3600). This reduces the probability that one or more agents will
broadcast small changes to a weight at the same time as another agent broadcasts

a large change to the same weight (large changes are much more likely to be

broadcast). It is reasonable to suppose that as f approaches the total number

of features f, the degradation of convergence due to combination function 3 will

163

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Combination function I
Combination function 2
Combination function 3
Combination function 4

0123456
Learning Time (seconds)

Figure 5.4: Comparing the combination functions using 2 agents in the low-

difficulty Stochastic Grid World task.

I ý.

Combination function I
Combination function 2
Combination function 3
Combination function 4

10

0123456
Learning Time (seconds)

Figure 5.5: Comparing the combination functions using 4 agents in the low-

difficulty Stochastic Grid World task.

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

164

I

Combination function I
Combination function 2
Combination function 3
Combination function 4

0123456
Learning Time (seconds)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Figure 5.6: Comparing the combination functions using 8 agents in the low-

difficulty Stochastic Grid World task.

0

:E

Combination function I
Combination function 2
Combination function 3
Combination function 4

!n
0123456

Learning Time (seconds)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Figure 5.7: Comparing the combination functions using 16 agents in the low-

difficulty Stochastic Grid World task.

165

be much greater.
In Figure 5.8 the performance of the selective merge method is compared di-

rectly with the performance of the visit-count merge method (which was described

in Chapter 4). Combination function 3 was used with the selective method, since
this produced very reliable results, as shown above. From the comparison it is

clear that selective merging has a greater potential for achieving parallel speedups

on the cluster of workstations. The visit-count merge method could not achieve

convergence in a time less than 1.6s as the number of agents was increased. In-

creasing the number of agents from 4 to 16 made only a very small difference to

the performance of the group.

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

(1

Single Agent
VC-Merge (4 agents)

VC-Merge (16 agents)
Selective (4 agents)

Selective (16 agents)

01 t

'BED*

02346
Learning Time (seconds)

Figure 5.8: Comparing the performance of a single agent, the visit-count merge

and the selective merge in the low-difficulty Stochastic Grid World task.

In contrast, using the selective merging algorithm, the rate of convergence

continued to improve all the way up to 16 agents. With 16 agents convergence could
be achieved in slightly over 1.0s. Even using only 4 agents, a significantly better

speedup could be achieved than if 16 agents were used with the visit-count merge.
Diminishing returns were still observed as the number of agents was increased, but

for all numbers of agents that were tried the parallel speedup achieved was greater

than that achieved using the visit-count merge.

166

Stochastic Grid World (high-difficulty)

Experiments were also carried out using the high-difficulty Stochastic Grid World

task. These results were very similar in character to the results for the low-difficulty

task. The speed of convergence is very similar no matter which combination func-

tion is used. Combination functions 1 and 2 still produce more variance in the

value estimates. Graphs showing the results for the high-difficulty Stochastic Grid

World task are given in Figures 5.9-5.12.

In the high-difficulty grid world reward function #1 was used, and results were

averaged over 10 runs. Episodes were terminated if they reached 10,000 steps.
The parameters used for the selective merging algorithm were p= 100,000 and
f.,,, = 1024. Recall that for this domain, the total number of features f= 16,384.
RL parameters a and e decay linearly during each run, according to the parameters

ao = 0.2, co = 0.1 and t1i.. = 0.9. The remaining parameters were -Y = 1.0,
A=0.95 and Oinit = 0-

While the rate of convergence is very similar for all the combination functions,

Figures 5.11 and 5.12 show that (for 8 or 16 agents) combination functions 1 and
2 consistently converge faster in the early stages of a run. However, this is offset
by the fact that in the later stages these combination functions have a greater

probability of moving away from the optimum due to an increase in the variance

of the value estimates. Combination functions 3 and 4 perform much better in

this later stage, remaining quite close to the optimum after the initial phase of

convergence.
A direct comparison between the selective merge method and the visit-count

merge method (described in Chapter 4) is shown in Figure 5.13. The 4 and 16

agent groups using the visit-count merge converge in about the same time to a

policy of good quality, even though in the initial stages of a run the 16 agent group

appears to converge faster. There is therefore no advantage in using more than

4 agents for this task if the visit-count merge is used. Using the selective merge

method (with combination function 3) the 4 agent group converges in a similar
time, but the 16 agent group allows a significant parallel speedup to be achieved,

with a good policy being found in under 30s.

Pole Balancing

Using the visit-count method from Chapter 4 it was not possible to achieve a real-
time speedup for the Pole-Balancing task on the cluster of workstations. However,

with the selective merging method it is possible to achieve such a speedup, or

alternatively to learn a higher quality policy in the same amount of allotted real-

167

C
�I,

V
:E

0 10 20 30 40 50 60
Learning Time (seconds)

il%

Figure 5.9: Comparing the combination functions using 2 agents in the high-

difficulty Stochastic Grid World task.

. r-

4.)

;E

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Combination function I
Combination function 2
Combination function 3
Combination function 4

'0

Combination function I
Combination function 2
Combination function 3
Combination function 4

0 to 20 30 40 50 60
Learning Time (seconds)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

A

Figure 5.10: Comparing the combination functions using 4 agents in the high-

difficulty Stochastic Grid World task.

168

10000

9000

8000

7000

6000
M

5000

4000

3000

2000

1000

n

Combination function I
MIS Combination function 2

Combination function 3
Combination function 4

ip

, k-M,

0 10 20 30 40 50 60
Learning Time (seconds)

Figure 5.11: Comparing the combination functions using 8 agents in the high-
difficulty Stochastic Grid World task.

10000

9000

8000

7000

6000

9 5000

4000
co

3000

2000

1000

n

i low ME III MN
Combination function I
Combination function 2
Combination function 3
Combination function 4

lid ,0-, *ýýfflw ;p R*

0 10 20 30 40 50 60
Learning Time (seconds)

Figure 5.12: Comparing the combination functions using 16 agents in the high-
difficulty Stochastic Grid World task.

169

10000

9000

8000

7000
-S

6000

0 5000

4000
cc v

3000

2000

1000

0

UQ

X4ý
m

C3

i, ED

0 -km - so-x-

Single Agent
VC-Merge (4 agents)

VC-Merge (16 agents)
Selective (4 agents)

Selective (16 agents)

0 10 20 30 40 50 60
Learning Time (seconds)

Figure 5.13: Comparing the performance of a single agent, the visit-count merge

and the selective merge in the high-difficulty Stochastic Grid World task.

time. Figures 5.14-5.17 show results for groups of 2,4,8 and 16 agents, allowing
the performance of the four combination functions to be compared for the different

group sizes. The available learning time is fixed at 1.0s, and the groups of agents
try to learn the highest quality policy that can be achieved in this time. In this

series of experiments, reward function #1 was used, and results were averaged over
100 runs. Episodes were terminated if they reached 20,000 steps. The parameters

used for the selective merging algorithm were p= 2000 and 128. Recall

that for this domain, the total number of features f= 4096. RL parameters a and

c decay linearly during each run, according to the parameters ao = 0.25, Co = 0.2

and tli,,, = 0.9. The remaining parameters were y=0.99, A=0.5 and Oi,, it = 0.

These settings were also used for the earlier Pole-Balancing experiment presented
in Section 5.3.2.

The results for different combination functions in this task are much more

varied than those obtained in the Stochastic Grid World task. There are clear
differences in the quality that can be achieved in the available time. Combination

functions 1 and 2 appear to perform best, with 16 agents achieving (on average)

an episode length of around 16,000 in the time. Combination function 3, which

uses a mean, performs particularly badly, with 16 agents only able to achieve an

average episode length of 12,000. Combination function 4 performs a bit better

for the larger numbers of agents, but using 2 agents the performance is almost

170

12000

10000

-; s 8000

9 6000

Combination function I
Combination function 2
Combination function 3
Combination function 4

[3110 OnOaO
I

C..

C

C)
4000

2000

0
ý- IIIIII

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Learning Time (seconds)

Figure 5.14: Comparing the combination functions using 2 agents in the Pole-

Balancing task.

14000

12000

10000

8000

"0

Cw
vi 6000

4000

2000

Combination function I
ýýIx

Combination function 2x X-x
Combination function 3 ...
Combination function 4 Y-X

-W,

"41
,008,13

El ýt 13

0-- 11111111
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Learning Time (seconds)

Figure 5.15: Comparing the combination functions using 4 agents in the Pole-

Balancing task.

A(-# 13
i

CIO

171

1601

140(

120(

. I--

Combination function I
Combination function 2
Combination function 3
Combination function 4

10000

"0
8000

cu
u 6000

4000

2000

0

4491 14 9
X'

WXE
ti cf x,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Learning Time (seconds)

Figure 5.16: Comparing the combination functions using 8 agents in the Pole-
Balancing task.

18000

16000

14000

-E 12000

10000
"Ci 0

8000

6000

4000

2000

n

Combination function I
Combination function 2
Combination function 3
Combination function 4

13

-p
Clilfl, 2 11

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Learning Time (seconds)

Figure 5.17: Comparing the combination functions using 16 agents in the Pole-
Balancing task.

172

indistinguishable from that of a single agent.
The tendency of combination functions I and 2 to increase variance in the value

estimates appears to be much less significant in the Pole-Balancing task than in

the Stochastic Grid World task. This may be related to the fact that the Pole-
Balancing task is a deterministic problem with a continuous state space. This

means that variance in the value estimates now arises from the use of random
(exploratory) actions and the effects of generalization error in the VFA. The poor

performance of combination functions 3 and 4 show that averaging the changes
received from a number of agents can result in reward information discovered by

only one of the agents being degraded or lost. This degradation has the most
significant effect when there are a large number of agents.

Since no speedup could be achieved for this domain using the visit-count merge
method, the selective merge method represents a significant step forward in terms

of the (comparatively) simple RL control problems considered in this thesis. While

the improvements in policy quality achieved by the groups of agents are not mas-

sive, this remains an effective demonstration that parallelization will be useful for

accelerating RL in a wide variety of domains, not just the largest or most complex

problems.

Mountain-Car

Like in the Pole-Balancing task, it was not possible to achieve a real-time speedup
in the Mountain-Car task using the visit-count merge method on the cluster of

workstations. With the selective merging method it is possible to achieve such a
speedup. Figures 5.18-5.21 show results for different numbers of agents, allowing
the performance of the four combination functions to be compared.

In this series of experiments, reward function #2 was used, and results were

averaged over 100 runs. Episodes were terminated if they reached 500 steps. The

parameters used for the selective merging algorithm were p= 2000 and f = 128.

Recall that for this domain, the total number of features f= 2430. RL parameters

a and c decay linearly during each run, according to the parameters ao = 0.5,

co = 0.1 and t1im = 0.9. The remaining parameters were -y = 0.99, A=0.9 and
0j,, it = 0.0001. Since the policy quality over a given interval is strongly dependent

on the exploration parameter c, binary search was used to determine for each group

of agents the shortest interval of real-time required to achieve an average quality

under 145 over the set of 100 runs.
The results for the Mountain-Car task do not exhibit large variations with the

use of different combination functions. Combination function 1 appears to produce
the fastest convergence speed, achieving the requisite 145 average quality in around

173

500

450

400

. 1.1

Combination function I
Combination function 2
Combination function 3
Combination function 4 --. -o

350

300
Jc

ei 250
2

200

150

inn
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Learning Time (seconds)

Figure 5.18: Comparing the combination functions using 2 agents in the Mountain-

Car task.

500

450

400

350

300

250

200

150

inn

Combination function I
Combination function 2
Combination function 3
Combination function 4

12

t3cl
13

x 13
13

430

IIIII

0 0.05 0.1 0.15 0.2 0.25 0.3
Learning Time (seconds)

Figure 5.19: Comparing the combination functions using 4 agents in the Mountain-

Car task.

174

500

450

400

Combination function I
Combination function 2
Combination function 3
Combination function 4

w

wx E20

XXXI

Y-X
X-k

350

"a
0 300 J2

250
;F

200

150

inn
0 0.05 0.1 0.15 0.2 0.25

Leaming Time (seconds)

Figure 5.20: Comparing the combination functions using 8 agents in the Mountain-

Car task.

500

450

400

-E 350

u
0 300

250
;E

200

150

inn

Combination function I
Combination function 2
Combination function 3
Combination function 4

Ivu 0 0.05 0.1 0.15 0.2 0.25
Learning Time (seconds)

Figure 5.21: Comparing the combination functions using 16 agents in the

Mountain-Car task.

175

0.17 seconds when 16 agents are used (see Figure 5.21). However, the use of binary

search to produce these graphs introduces additional statistical uncertainty into

these results. Each binary search terminates when the distance between the upper

and lower bounds on the experiment time is less than 5% of the value of the lower

bound. Suppose that two of the combination functions have a true expected quality

of 145 at one of the boundaries tested by the search. Learners in the Mountain-

Car task have a high variance in the quality achieved at the end of the experiment.
Therefore the sampled mean at the binary search test points could be above or
below the threshold of 145 on trials with different random seeds. This means that
it is difficult to say with confidence that any one of the combination functions is

clearly better given only the results presented above.
However, we can draw the general conclusion that with any of the combination

functions we can achieve significant speedups over the single-agent's performance.
This was not possible with the visit-count merge method. We may also observe
that the additional speedup achieved by increasing the number of agents gradually
diminishes.

Acrobot

Tile results for the Acrobot task were similar to those in the Mountain-Car task but

with much smaller parallel speedups. A large number of VFA features are required
for the Acrobot task, but relatively little experience in the domain is required
to learn a high-quality policy. This means that communication costs are high in

comparison to the learning time required by a single agent, making it difficult to

achieve a large parallel speedup. A comparison of the performance of the four

combination functions in the Acrobot task is shown in Figures 5.22-5.25.

The experiments in the Acrobot domain used reward function #1, with the

results being averaged over 100 runs. Episodes were terminated if they reached 600

steps. The parameters used for the selective merging algorithm were p= 1000 and
f.,,, = 128. Recall that for this domain, the total number of features f= 18432.

RL parameters a and e decay linearly during each run, according to the parameters

ao = 0.1, co = 0.1 and tli,,, = 0.9. The remaining parameters were 7=1.0, A=0.9

and Oi,, it = 0. Since the policy quality over a given interval is strongly dependent

on the exploration parameter e, binary search was used to determine for each group

of agents the shortest interval of real-time required to achieve an average quality

under 140 over the set of 100 runs.
As in the other domains evaluated here, the difference in performance between

the combination functions is relatively small. However, as the number of agents in

the group is increased, there appears to be a significant advantage in using com-

176

600

550

500

450

400

"a 350

300

250

200

150

inn

Combination function I
Combination function 2
Combination function 3
Combination function 4

XKl

III

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Learning Time (seconds)

Figure 5.22: Comparing the combination functions using 2 agents in the Acrobot

task.

600

550

500

450

400

350

300

250

200

150

inn

Combination function I
Combination function 2
Combination function 3
Combination function 4

lK,

x
IP

lvv 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Learning Time (seconds)

Figure 5.23: Comparing the combination functions using 4 agents in the Acrobot

task.

177

600

550

500

450

400
"a

350

300

250

200

150

inn

Combination function I
Combination function 2
Combination function 3
Combination function 4

WA El

NO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Learning Time (seconds)

Figure 5.24: Comparing the combination functions using 8 agents in the Acrobot

task.

600

550

500

450

400

0 350
. 22
92.

300

:E
250

200

150

inn

Combination function I
Combination function 2
Combination function 3
Combination function 4

'PC

)Kk

0

I wrllýll
WIR

tl ;K

Kx q,

Ivu 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Learning Time (seconds)

Figure 5.25: Comparing the combination functions using 16 agents in the Acrobot

task.

178

bination functions 1 and 2. This suggests that the averaging effect of combination
functions 3 and 4 is having a detrimental effect on performance as the number of

agents is increased.

Summary of Evaluation

A qualitative summary of the results presented in this section is shown in Table

5.1. This table lists the best performing combination function(s) from each of the

graphs shown in Figures 5.4-5.25. The best performing combination function is

the one which makes the most rapid progress towards a high quality policy over
the course of a parallel run, without compromising the final quality of the policy

at the end of the run.

Domain Number of agents
2 4 8 16

Grid world (low-difficulty) #1/#2 #1/#2 #3/#4

Grid Nvorld (high-difficulty) #1/#2 #1/#2 #1/#2

Pole-Balancing #1 #1 #1 #1/#2

Mountain-Car #4 #1/#2 #2 #1

Acrobot 1 #1 #2 #1 #1

Table 5.1: Lists the best performing combination function(s) for each possible
domain and number of agents used. A star in the table indicates that a difference

in performance could not be discerned from the relevant graph.

A clear winner from the combination functions does not emerge from the sum-

mary in Table 5.1. Combination function #1 appears most frequently as the best

performer, followed closely by #2. In all of the cases enumerated here, combi-

nation functions #1 and #2 produce the best (or equal best) initial convergence

rate. However, both of these combination functions increase the valiance in the

value function, making it more likely that the agents could move away from the

optimal policy once they get close to it. This is most clear in Figure 5.7, where as

e and a are gradually decayed, the agents using combination functions #1 and #2

remain furthest from the optimum, and in one run out of the ten total runs the

agents diverge completely from the optimum as e and a both approach zero.
Therefore, in highly stochastic domains it may be preferable to favour combina-

tion functions #3 and #4, which are more stable in these circumstances. However,

these more stable combination functions do degrade the overall performance to

some extent. This is particularly clear in the Pole-Balancing and Acrobot do-

mains.

179

. I--

"0

;E

p= 2500 3
Maimemm...

t3 p= 5000
p= 10000
p= 20000
p= 40000

Ina t3

an
v

b

cifl

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

o 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Learning Time (seconds)

Figure 5.26: Experiment using 16 agents to solve the low-difficulty Stochastic Grid

World task using selective merging (combination function 4). Several different

values are tried for the merge period p.

5.5 Varying the Merge Period and Message Size

In the evaluation above, the parameter values for the merge period (p) and the

number of weight changes per message (f) were selected using a trial and error

approach. In this section I will conduct a closer examination of the effect these

parameter choices have on the speedup that can be achieved. This study is similar
to the one previously carried out (in Section 4.8) for the visit-count merge method.
However, the joint effects of the p and f,,,,, parameters on the performance of the

selective merge method require further investigation.

The merge period parameter p has a similar purpose in this method as in the

visit-count merge method (see Section 4.8). It controls how often the agents are

able to share information, and a good choice for p represents a trade-off between the

increase in sample efficiency as the agents share more often and the corresponding
increase in communication overhead. A graph showing results for 16 agents using

a variety of different values for p in the low-difficulty Stochastic Grid World task

is shown in Figure 5.26. The selective merge method is used with combination
function 4. The settings used for this experiment are the same as those given in

Section 5.4, with the value of f remaining fixed at 256. The optimum choice of

p for this particular number of agents appears to be a value close to 5000.

180

"o

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

f= 64 com V, x Iffali ý fcOM = 128
"I I fcOM = 256

f= 512
f, co'l 1024 'CA e., om -

X,

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Learning Time (seconds)

C)

Figure 5.27: Experiment using 16 agents to solve the low-difficulty Stochastic Grid
World task using selective merging (combination function 4). Several different

values are tried for the number of communicated changes

The number of weight changes per message f,,,, controls how much information

is transmitted by each of the agents during a single merge operation. Together with
the merge period p, these two parameters control the rate of information exchange
between the agents. The trade-off in the choice of Parameter fcom is of a similar
nature to the trade-off in the choice of p. As the value of f,,, m is increased, more
information can be exchanged between the agents during each merge operation,

allowing the resulting value function approximation to be a better combination of
the knowledge of the whole group. This means that fewer simulation steps will be

required to reach a near-optimal policy. However, increasing the value of fc, "' also
increases the overall network bandwidth required, and hence the real-time required
to complete the merge operation. A graph showing results for 16 agents using a
variety of different values for fc,,, n in the low-difficulty Stochastic Grid World task
is shown in Figure 5.27. The settings are the same as those above, with the value
of P being fixed at 10,000 (the same value used in the evaluation of Section 5.4).
The optimum choice of fcý for this particular number of agents appears to be a
value close to 256.

In the final experiment in this section, we examined the effect of varying the p
and f,,,,, parameters at the same time. The number of weight changes per message

is constrained so that it varies in direct proportion to the merge period. In

181

. im.

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

130

P= 1250, f= 64
p 2500 f co'l 128
p 5000' ý-"

- 25 6
p

-10000, ý-Om-512
I com - p= 20000, fco. = 1024

01fII L- I-- III
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Learning Time (seconds)

Figure 5.28: Experiment using 16 agents to solve the low-difficulty Stochastic Grid

World task using selective merging (combination function 4). Each time the merge
period p is doubled, f, ý,,, is also doubled.

this way the net rate of information exchange remains the same across all values

of p. Tile choice of parameter p now primarily determines the size of the "chunks"

into which the constant communication rate is divided. A graph showing results
for 16 agents with various values of p and f..... in the low-difficulty Stochastic Grid
World task is shown in Figure 5.28. Tile settings (other than p and f,,,,) used for

this experiment are the same as those used above. The optimum values for p and
f, 3,,,, under these constraints are around p= 2500 and f,,,,, = 128.

The trade-off in the choice of p is now affected by several different factors.

Tile first is the overhead per message sent, i. e. the real time consumed by an

agent broadcasting a message to the group as the number of changes per message
f. m --+ 0. This is affected by factors such as the size of the headers used by the
MPICH library and the underlying TCP/IP protocol stack, and the latency in-

herent in sending a message between two agents over the communication network.
However, the most significant contribution to the message overhead in our experi-

ments was the time required to rank the weights according to the magnitude of the

weight changes that had recently taken place. In other words, the properties of
the underlying network stack and transmission medium were not as significant as
the time required to identify each set of weight changes for broadcast.

Tile second factor affecting the trade-off is the likelihood of new reward infor-

182

mation being discovered independently by two or more agents before a merge can
take place (replication of effort). If we use a large merge period while keeping the

rate of information exchange constant, we will be able to transmit weight change
information about a much larger set of weights than if we used a small merge pe-
riod. However, there is a danger of the merge period becoming so long that many

of the agents will discover the same changes between merges. This means that even
though more weight changes can be transmitted, the usefulness of this information

will be significantly degraded, as it may already be known by many in the group.
The third factor affecting the trade-off relates to the diversity of the sets of

weight changes transmitted by the agents. In the RL problem there may be some

states with a high probability of being visited by all the agents, or rewards that

are particularly easy to discover from the initial state. If the transition and reward
functions are stochastic, then many of the weight changes made by the agents will
be associated with these highly-visited states. What we are more interested in

are the rarely visited areas of the state space, with rewards that are difficult to
find. If only a small set of changes can be transmitted during each merge, then the

changes will be dominated by the highly-visited states, regardless of how small the

merge period is. This means that if the "chunks" of information are too small, the
diversity of the sets of changes will be too low, and there will be greater replication

of effort in the group.
With such a large number of factors to consider, determining the optimum

choices for p and analytically is unlikely to be feasible. However, using a series

of experiments (such as those reported in Figures 5.26-5.28) to find parameter

values that are close to optimal is too time consuming to be practical. To improve

the practicality of this method for speeding up learning on real parallel systems,

a heuristic approach for selecting parameters p and f,,,,, is likely to be required,

although we have not identified such a heuristic during the course of this work.

5.6 Summary and Conclusions

The following material has been presented in this chapter:

e Motivation for the use of selective merging to eliminate much of the redun-
dant information transmitted between the agents by the merging method of
Chapter 4.

9A mechanism for ranking the weights of the VFA by the magnitude of recent
accumulated change for each weight.

eA description of a selective merge operation, where each agent broadcasts a

183

message containing changes to the f, ýý, highest ranked weights. This merge

operation takes place after every p simulation steps.

oA description of the notion of a combination function, which is necessary to

combine changes to the same weight received from different agents.

e The definitions of four candidate combination functions.

An evaluation of four instances of the selective merging method, one based

each of the combination functions. Each of the instances was evaluated in all

of the example RL problems defined in Section 4.3.1. The reported results

were generated using the implementation on the cluster of workstations.

e An analysis of the effect of parameters p and f..... on the parallel speedup

which can be obtained using the selective merging method with 16 agents.

From this material we can draw the following conclusions:

Selective merging can be used to achieve parallel speedups in a range of RL

problem domains, even though much less information is exchanged between

the agents compared to the merging method of Chapter 4.

On the cluster of workstations, selective merging consistently outperforms

the visit-count merge method of Chapter 4. In particular, selective merging

achieves real-time speedups in each of the three control problems defined in

Section 4.3.1. The visit-count merge method could not achieve any speedup

in these domains.

It was not possible to select a combination function g(C) to produce the best

performance of selective merging in all the evaluation domains. One reason
for this may be that there is a trade-off between quickly propagating rewards
through the VIA and reducing the variance in the value estimates. In spite

of this, in most situations any of the combination functions will work fairly

well.

do Selecting appropriate values for parameters p and f is vital for achieving

good performance using the selective merging method. While the perfor-

mance is not sensitive to small variations in these parameters, it is impor-

tant that the parameters do not differ too greatly from their optimum values.
There is not currently an analytic or heuristic method for determining the

optima, so we have to use trial and error to select these parameters.

184

In Chapter 61 will present an asynchronous parallel RL method which is based on
the selective merging method presented in this chapter, but which eliminates the

synchronization penalty exhibited by the latter method. This will allow greater

parallel speedups to be achieved in the five evaluation domains.

185

Chapter 6

Asynchronous Merging

In the previous chapter, a parallel RL method was presented which was based

on agents communicating recent changes to the weights of their value function

approximators (VFAs). This method was described as selective merging, since

each agent selects for broadcast only a small subset of changes which are large

in magnitude. This method achieved parallel speedups (of varying size) in all of
the evaluation domains. This was possible because the communication overhead of
selective mergingwas many times smaller than that of the original merging method
described in Chapter 4.

In this chapter I will present another method which is selective in the way de-

scribed in the previous chapter, but which is also asynchronous in character. The

selective merging method of Chapter 5 has distinct computation and communica-
tion phases. In the communication phase, messages from all the other agents must
be received before the VIA can be updated and the next computation phase can
begin. In contrast, the method in this chapter involves agents updating the VIA as
each message arrives and performing additional computation (learning) in between

the messages. Eliminating the synchronization penalty in this way means that the

asynchronous method can achieve even greater speedups than those reported in
Chapter 5.

The chapter begins with an examination of how the performance of selective

merging can be improved with the use of asynchronous message passing. The ba-

sic procedure for asynchronous merging is then given. Three variants of the basic

procedure are defined, each of which processes the incoming messages in a differ-

ent way. We will also examine the issue of when each agent should schedule its

communications, since agents are no longer restricted to simultaneous broadcast

in the communication phase. The relative performances of the three variants of
the asynchronous merge method are examined in each of the five evaluation do-

mains in Section 6.3. This is followed in Section 6.4 by an evaluation comparing

186

the performance of the asynchronous merge method to the selective method from
Chapter 5. Finally, in Section 6.5, the performance of the asynchronous method is

compared to an alternative asynchronous method which uses messages containing
absolute weight values and not weight changes.

6.1 The Benefits of Asynchronous Message Passing

At a high level, the selective merging method described in Chapter 5 is synchronous
in character. The method is divided into alternate computation and communication

phases. During the computation phase, each agent learns from a sequence of p
actions taken in the local (simulated) environment. No synchronization is necessary
during this phase, since the agents can operate entirely independently. However,
during a communication phase each agent must broadcast a message to the group
and wait to receive a message from every other agent. Once all the messages have

arrived, the VFA can be updated and the next computation phase can begin.

The synchronous nature of the selective merging method results in a number

of effects which can degrade performance:

At the start of each communication phase, all the agents broadcast their mes-
sages simultaneously. This results in the interconnection network becoming

congested, and overall the messages take longer to travel between the agents.

If the interconnection network is slow (perhaps because of congestion), an
agent may spend a significant amount of time idling while waiting for out-
standing messages to arrive. The idle time could potentially be used to

perform extra computation.

Suppose that all the agents discover very similar changes at the start of the

computation phase. Each agent cannot find this out until after the next com-
munication phase. This could mean that many of the changes broadcast in

the next communication phase will not be useful (because of the duplication

of effort).

There exists the potential to eliminate these effects by basing a new parallel RL

method on asynchronous message passing. This new method will no longer have

distinct computation and communication phases. Instead, the periodic broadcasts

are performed by the agents at different times (no longer simultaneous broadcasts) -
In addition, any messages received by an agent are immediately processed to in-

corporate changes into the VIA. When no messages are available for processing,

187

a 106 1 in '4

Figiirr fo I S14-owigr" exulwinge, 41 Im-twi-4,11 Agelits using the (S. N. 11chrollolls) wlective

mo-rKilIg I"t-111-1 ift the A, r, ilm)t Imsk

jua ngent will ccontimic to lm-rform It-aming iij the -himlation lintil a new

11141W. Ago. arrivr"
1114' diffl-l"'INIVI IN-11141,41-11 tilf- . udiron(iws) selet-tive merging method and the

wylic brillmoup, tip-listiol 4-implailo-red in thim 4-Impter art- illustrated by Figum, 6.1 und

6.2. Thr two, figurn, ii, ittouti, Wim-lines, f4)r the lwi) methwis, whidi idh)w its to 44-

when mmmagev, wo-re poc-sil ouid rim-eived bY
-1 agent. % (hiring a short interval ()f an

exim-rimunt uming thr A4 mlmo t"k The dutr1% wure generitted froin data h)gged bY

MIT 'If '111ting it "t expe-ritim-tits, w%ing the program (version
-1)

ilid-111dewl %%-Ili, Nfill('If I liv Iwt) diArts t-()rrv.. Ix)nqI to) exIm-riments where the inerge

IN-noml 11 HNNI ouid the numix-r 4if diangt- lm-r mm-Agi, = 12S. III Figure

ti I. the light grry an-not indiumle titliq-. mt whidl All age-lit Was idle While Waiting

to) rm-ewr a ivuvw-age fraim ciew if the tither agents. Thme arems are wit evident in

Figurr 6.2, milur the ftgelitil prik-em itwimking niesmgt-ý as and when they arrive.

Figiur 62 n1m, alluxtrntem Isom tile aciviidirmious meth(lof (list ributes tbe netw(wk

traffic mcire- rve-n1v mer tinw-

An P-%'uc-hronwL% ripprtum-li of tlii-. kind would eliminate the idling of agents

Waiting for InfvmAgra, millut. mi. %. 414-Iny III mtvmage trimsmi. msion viuj Im- um. 41 ms extra
If-Arning taim Adelitioriall%.. eliIIII lint itig ille re(Iiiirement for agents to bromlcwst

tim-ir iimv4wtgm A-III mitive network congf-i-tion bY (list ribtiting III(--, -

tiagm 11141". ovef IIIIW*
A Imp olmuout, t-oum-yu-nct. of the myrichronotis approm-li is that very Nimilar

198

. '4e 4I 0214

Figure 6.2: Messages exchanged in the Acrobot task by the asynchronous method
to be defined in Section 6.2.

changes discovered independently by many in the group can be identified more

quickly and will be transmitted less frequently. Suppose there are a total of n agents
in the group, and all of these agents discover a large change AOi almost immediately

as a parallel run begins. With the selective merge method of Chapter 5, all the

agents must complete p simulation steps before this change can be communicated,

and since AOi is large it is likely that all of the n agents will transmit this change
in their messages.

Suppose that each agent using the asynchronous approach broadcasts on aver-

age every p simulation steps. This means that the overall communication overhead

of the asynchronous approach will be similar to that of the selective merge method.
Suppose also that these broadcasts are distributed fairly evenly over time, so that

on average one of the agents will broadcast every p/n simulation steps (meclia-

nisms to achieve this distribution are considered in Section 6.2.3). Under these

assumptions, one of the agents will broadcast the change AOj after only p/n sim-

ulation steps, which means that the other agents can assume that the change is

known by the group. This in turn means that the remaining (n - 1) agents will

not include AOi in their broadcasts, freeing up space to transmit more useful in-

formation in the broadcast messages. The significance of this beneficial effect will
become greater as the number of agents n is increased.

For these reasons, it is likely that an asynchronous approach to VFA merging

will outperform the methods developed so far in Chapters 4 and 5. This is under
the assumption that the communication overhead (including the time required to

189

0.23 0232 0234 0.236 0.238 0.24 0 242 0.244 0.246 0248 0.25

, Time (seconds)

incorporate the changes in messages into the VFA) is not significantly different

from that of the selective merging method. In the next section, I will go on to

define an asynchronous merging method which will be used to validate this claim

empirically.

6.2 The Asynchronous Merging Method

The asynchronous method defined here shares several key properties with the se-
lective merge method of Chapter 5. Agents still periodically broadcast their recent

weight changes to the rest of the group. The particular weight changes that are

sent are still decided by ranking the weights in terms of the magnitude of the re-

cently observed change. The novel aspects of this new method arise because the

high level synchronicity of the previous methods is now relaxed. Messages may now
be sent and received at arbitrary times', and so the primary challenge in defining

this asynchronous method is how to update the VIA weights in response to send

and receive events. The core procedure for the asynchronous method is given in

Section 6.2.1. In Section 6.2.2 a number of ways to incorporate changes from in-

coming messages are proposed, resulting in several variants of the core procedure.
Finally, in Section 6.2.3,1 will address the question of when each agent should

schedule its message broadcasts.

6.2.1 The Basic Procedure

As was the case for the selective merge method of Chapter 5, the weight change

vector Aý is not explicitly stored. Instead we store the vector W`f, which allows
AW =W- W"f to be easily calculated whenever necessary. The advantage of this

is that the agents' SARSA(, \) learning algorithm can continue to operate solely in

terms of ý. The individual weight change AOi in the context of the asynchronous

merging method signifies the accumulated local change yet to be communicated to

the group.
The method parameters p and f,,,,, are retained from the selective merge

method. Parameter f..... has an identical purpose in the asynchronous method.
When each agent is required to broadcast a message to the group, the message will

contain the f,, m weights of highest rank. The rank of a weight Oi is determined

by the absolute weight change JAOij.

Parameter p has a slightly different purpose. In the selective merge method,

each agent would execute exactly p simulation steps between two successive (syn-

'Although, over time, the average rate of message transmission remains constant and can be

specified in advance for a given experiment.

190

chronous) merge operations. In the asynchronous method, the agents now all
broadcast at different times, but the average period between successive broadcasts

for a single agent is controlled by parameter p. There are a number of different

ways that broadcasts could be scheduled to achieve this average period. Several

mechanisms for achieving this will be considered in Section 6.2.3. For now, we will

assume that each agent can calculate (without synchronizing with its peers) when
it is next due to broadcast a message to the group.

In the selective merge method, after an agent broadcast a message it did not
immediately make changes to W or Wref. It was required to wait for a message
from every other agent before any update to the local data structures was per-

mitted. With the asynchronous method, learning must continue immediately after
the message has been broadcast. This means that Wand Wr'f must be immediately

updated to achieve a consistent state. In the absence of any information from the

rest of the group, the best option is to assign the value of Oi to Oref for each weight

of index i that was included in the broadcast message. This effectively sets AOj to

zero for the subset of weights in the message, under the assumption that the other

agents receiving the message will update their own data structures to reflect the

change to Oi.

A side-effect of these immediate updates to W`f is that if two agents broadcast

their messages in quick succession, it is possible that the local value of 07f when

a message is sent may be different from the value of Oi'f at a remote agent when
the message arrives. This means that if the remote value of 07f and the value of
AOj in the received message are used to calculate a new value for Oi, this value may
turn out to be much larger or smaller than the broadcasting agent intended. It is

possible that this will result in the remote agent overshooting the true expected

value of feature i. In order to detect and eliminate these effects, it is insufficient

to send tuples of the form (i, AOj) in the message. Instead, it is necessary to send
3-tuples of the form (i, AOj, Oj).

Updating an agent's local values of Oi and Oref in response to an incoming

3-tuple (i, AOj', Oj') presents a number of challenges. If the change in the tuple

represents new information for the agent, we want to incorporate this into the value
function in order to accelerate convergence. However, if the change has already
been discovered by the agent, we do not want to add in the same change again,

since this could lead to overshooting and interfere with convergence. A number

of mechanisms to achieve these goals are considered in Section 6.2.2, which leads

to several variations of the core asynchronous method depending on which of the

mechanisms is used. At this point, I will assume that a function update exists

which takes 4 arguments (the local values of Oi and Oref i, and the message data AOj'

191

and 0j') and returns a pair of values which can be used to update the local values
oref of Oi and i

Given some choice of the update function and a mechanism for scheduling indi-

vidual agent broadcasts, the procedure followed by an agent using the asynchronous

merge method is given in Algorithm 5.

A set of q simulation steps is performed at the start of each iteration of the main
loop. These q steps will be referred to as a learning quantum. In the remainder

of the main loop, checks are made to see if a broadcast is due or if any incoming

messages have arrived. If a broadcast is due, a message is constructed and sent
to all the other agents. If any messages have arrived, they are processed and
incorporated into local data structures using the update function.

The reason why a quantum q>1 is necessary is because it is potentially

expensive to check whether any messages have arrived. In the implementation

on the cluster of workstations, asynchronous message passing was implemented

using the MPICH functions MPI-Isend, MPI-Iprobe and MPI-Recv. The MPI-Isend

function is a non-blocking function used here to send a message to all agents other
than the sender, copying the message data in each case from a single buffer in user

memory. The MPI-Iprobe function is a non-blocking function which can be used
to check for the arrival of messages from other agents. Once a message has been

detected with MPI-Iprobe, the message data can be retrieved using the MPI-Recv

function. Our initial implementation used a quantum q=1, which meant that a

check was made for incoming messages after every simulation step. We discovered

that with this initial implementation, each agent would spend a significant amount

of its total running time executing the MPI-Iprobe function. Since it turned out
to be so expensive, it was necessary to choose a larger quantum so that fewer calls

would be made to MPI-Iprobe over the lifetime of the agent. However, q should

not be too large, since this would mean that messages may arrive at the agent and

not be processed for some time. In all the experiments reported in this chapter, it

was found that a value of q= 25 allowed messages to be detected and processed

quickly without there being an excessive number of calls to MPI-Iprobe.

In sections 6.2.2 and 6.2.3,1 will go on to describe the elements of the asyn-

chronous method which have been left undefined: how the local data structures

are updated in response to incoming messages, and how each agent can determine

when it is due to broadcast a message.

6.2.2 Updating after Message Received

To progress towards a complete definition of the asynchronous merge method, it is

now necessary to define how an agent updates its data structures when a message

192

Algorithm 5 Agent pseudocode for the asynchronous merge method.
fInitializationj

for all i do

Oi +- Oi. it
oref
i 4-- Oinit

end for

IMain loop}

while time elapsed < tend do

fLearning quantum}
for step =1 to q do

Execute a simulation step and update weight vector W.

end for

IScheduled Broadcastsj

if scheduled broadcast is due then

Calculate Aý= W- W"f.

Rank each index i according to the value of JAOj I.

best the highest ranked indices

m +- {(i, AOj, Oj) IiE bestj

Send message m to all other agents.

end if

IMessage Receive}

for each new incoming message m do

for all (i, AOj', Oj') Em do
Oi, ef, Aoi,, Oi, F +- update(Oi, iI %)

f Assign elements of result F to Oi and 0i ef

Oi +- r,
Oref i r2

end for

end for

end while

193

arrives froin anothcr agent. Ill other words, when a 3-tiiple (i, AOi, Oi) is received
ill all incoming, inessage, we must deffile how local variables Oi and 0, "f slimild be

iij)(lated. This functionalitY is encapsulated ill the update function, which will be

defilled ill this section.

The simplest iipdatc function we can use, is to simply add in the remote dif-

ference AO' while ipnorin- the resulting rernote value 0'. as shown in Algorithm In "I i
6. The local change AO, reinains, the same after tile update. This ineans that the

changes AOi and At9i are combined by addition in the value function,, but the agent

still remembers the local change AOj for later communication to the, group.

Algorithm 6_Aii_tydat(fim(limi which simply adds iii the remote, chaiige.
function - 0, " f, A, 9,, Oj)

rettirn (0, + A0i ,
Oi 'f + AO, ')

end fun-ction

The simple umlatc function given in Algorithm 6 works well if only one of the

two agents involved (the selidim, and receivin agents) has discovered a significant m9
change to Oi in the recent past. The trouble arises when both of these agents have

recentlY discovered a similar change to Oj, as illustrated in Figure 6.3.

Time

Agent I
rC t' ref 00i= =I

Agent 2

The agents quickly find an Message Message

accurate value estimate for Oi sent received The second agent
overshoots the
expected value of Oi

Figure 6.3: Example of how overshooting can occur when two agents siniultane-

olisly discover it chalige to weight. The simple updatc function given in Algorithin

6 is used.

Figure 6.3 focuses oil tile, evolution of the weights corresponding to a single

specific feature oi (i. e. i has sonle fixed value.) At the start of the timeline ill tile

194

=------- =_1J

Algorithm 7 The cancel function is used to cancel out part or all of a local change
in response to a remote change.

Oref, Aoý function CANCEL(Oj, i 1)
A0, ý. _ 0, _ Oref i

Oref + Aoý b 4-- iI

if sign(AOi) :A sign(AOi') then f keep the local change intact

a +- Oi + AOj'

else if IAOil > JAOj'j then Icancel part of the local change}

a +-- Oi

else f cancel all of the local cliange}

a +-- b

end if

return (a, b) fa and b contain new values for Oi and Oi 'f }

_end
function

figure, both agents still have Oi and 0,, f set to their initial values of zero. Soon

after the timeline begins, the two agents concurrently learn an accurate estimate

of weight Oi = 1. The first agent then sends a message to the second agent.
After the agent receiving the message has added in the remote change, its current

estimate changes to Oi = 2, overshooting the best estimate of the two agents. This

is likely to interfere with convergence as the number of agents is increased. This

demonstrates why simply adding the agents' changes together will not suffice. A

mechanism is needed for detecting identical changes discovered independently by

different agents.
The first mechanism that will be used here to eliminate the overshooting effect

involves part or all of an agent's local change being cancelled out in response to

the arrival of a remote change. This applies specifically when the changes are in

the same direction (i. e. both positive changes or both negative changes.) If the

changes are in different directions, it is important that the local change remains
intact so that the agent can later inform the group that there is some evidence that

the expected value of Oi lies in another direction. If the changes are in the same
direction, however, broadcasting the local change later would result in the group

overshooting the expectation, so in this case it is important to reduce the size of
the local change so that the agent's value for Oi remains consistent. The cancel
function (given in Algorithm 7) implements the mechanism described above.

The cancel function returns a pair of values containing new values for Oi and

195

0"'f. Note that in all cases. the cano-cl function returns a value of 0, "'f +AOj' (stored

in temporar. y variable b) as the new value for 0, "f', i. e. the remote change is always

added to the reference Nveinght. The new value (stored in temporary variable (t) to
be assipied to local weight Ot determines if part of the local change is cancelled.
In the case where the local and remote changes are in opposite directions, a is

assi, glned the value of Oi + AOj', which ineans the local change is left inunodified.
In the case where the remote chan. -e is in the saine direction as the local change,
but has a sinallrr inagnitude. a is assil-ned the old value of Oi. Since the remote

change is added to 0, ""f. what is left of the local change is the diffcrence between

the two. If the reinote chan. -e has the same direction but greater magnitude. the

new value of O"'f will be greater than the old value of Oi. so the local change must
bc completelY cancelled bY assigiiing, the value of b to a.

Time

Agent I

Agent 2

The agents quickly find an Messages Messages

accurate value estimate for 01 sent received This time both the
agents overshoot the
expected value of" Oi

Figure 6.4: A second example of overshooting where two agents broadcast ail iden-

tical change in (lifick succession. The simple updatc function given in Algorithm 6

is lised.

An updatc function based on the c(mccl function will eliminate the overshoot-
ing effect illustrated in Finnire 6.3. However, there are other situations where

overshootin. - can occur which can not be corrected by eliminating part of the lo-

cal change A0, Such situations arise because of the asynchronous nature of the

inerge method. and the fact that it is possiblc for one agent to broadcast a inessage

while an incoming inessage from another agent is still in transit. If both of these

agents have discovered very similar changes to a single weight, it is likely that both

the agents will overshoot the appropriate value for that weight. This process is
illustrated in Figure 6.4. At the time the messages arrive in this Figure, neither

of the agents has learned any local change since their last broadcasts. Since the.

196

0 re 00 ref 0 ret, ref 2

0. =o 0. =1
ý-i- ----0. =1---

-e
0. =2

Algorithm 8 The filter function is used to exclude part or all of a remote weight

change when it is detected that the change is inconsistent with the current value

of the local weight.
function FILTER(Oi, AOj, Oj)

C *-- 0

AOit +- Oj' - Oi Ithe difference between local weight and new remote weight} zt

fallow remote change only if it is in the same direction as AOI}

if sign(AOit) = sign(AOi') then
II

Ifiltered change minimizes magnitude of AOit and AOi'}

if JAOjtj < JAOj'j then
II

C +- Aoit

else
C +- AM

end if

end if

return c Ic contains the filtered change, used later to modify Oi and 0i ef

end function

only operation that can be performed by the cancel function is to reduce the local

change AOi towards zero, it is not possible to eliminate overshooting of this type

using this mechanism.
This example leads us to define a second mechanism to eliminate overshooting

effects. The intuitive purpose of this second mechanism is to filter out incoming

weight changes which are inconsistent given the current values of the relevant

weights. To detect these inconsistencies, it is necessary to compare the value of
the remote weight when the message was sent (Oi') to the local weight value (0j) of
the agent receiving the message. This is why the messages sent by agents in the

asynchronous merge method consist of a set of 3-tuples (i, AOj', Oj'). The additional

value of Oj' is necessary to detect inconsistent weight changes.
The filter function (given in Algorithm 8) implements the second mechanism.

This function returns a single value, the filtered change. This change is set to zero
if the incoming remote change is discovered to be inconsistent.

At the start of the filter function, the value of AOit = Oi'- Oi is calculated. The

value of AOil represents the change that would be needed to move from the current

value of weight Oi to the remote agent's weight value at the time the message was

sent. If the signs of AOt and the remote change AOý are different, this indicates
22

197

that tile local agent has already moved Oi in tile direction of AOj beyond the value

of Oý achieved by the remote agent. In this case, it is reasonable to ignore the
incoming change by setting the filtered change c to zero.

If tile signs of AOit and AOj' are the same the incoming change will not be

ignored. However, it may still be necessary to reduce the magnitude of the incoming

change. This is achieved by returning whichever of the two values AOit and AOj'
Z2

has tile smaller magnitude. If the current weight value Oi lies within the range
(0ý, 0ý + AO!) this will cause tile filtered change c to have a smaller magnitude than

tile incoming change AOj'. If tile current weight value lies outside this range, the
filtered change c will be identical to AO,!.

Using tile f ilter function as the mechanism for eliminating overshooting will

allow consistent values for Oi to be maintained in both of the examples given in

Figures 6.3 and 6.4. However, it also worth noting that the filter mechanism will

produce more tuples to be broadcast in some situations. For example, consider the

single message being sent in Figure 6.3. If the cancel mechanism is used, Agent

2 will have local change AOi =0 after the message is received, correctly reflecting
the fact that there is no further change worth communicating to the group. If the

filter mechanism is used, however, the incoming change AOj' =1 will be simply
filtered out, leaving Oi and 0 ief at their existing values, and therefore leaving the

local change of AOj =1 intact. This means that when the scheduled broadcast of
Agent 2 occurs, a 3-tuple for weight Oi is likely to be included, despite the fact that

Agent 1 is already well aware of this change. Sending this extra tuple does not

affect consistency, since Agent 1 will simply filter it out as inconsistent. However,

tile extra tuple does take up space in tile message which could be taken up by more
informative weight changes, so this will have an impact on the overall performance.

Having motivated and defined the filter and cancel functions, it is now possible
to define the update functions which will form the basis of three variants of the

asynchronous merge method. Update function 1 is defined in Algorithm 9, and is

based on tile cancel function only. Update function 2 is defined in Algorithm 10,

and is based on tile filter function only. Update function 3 is defined in Algorithm

11, and uses a combination of tile filter and cancel functions.

The first two update functions delegate most of their work to the cancel and
f ilter functions respectively, both of which were described in detail above. Update

function 3 requires some additional explanation. The motivation for combining the

two mechanisms is to create a method which has the robustness of filter when

messages from different agents are transmitted almost simultaneously, but which

also eliminates some of the redundant tuples sent by filter by using the cancel

mechanism to eliminate local changes that are already known by tile group.

198

Update function 3 begins by calling the filter function, and storing the result
(the filtered change) in temporary variable c. If the signs of the filtered change

and the local change AOi are the same, this indicates that the remote change has

overtaken the local change, which should be completely cancelled out. In this case
the cancel function is called, passing the value of c+ AOj for the remote change2.
If the signs of the filtered change and the local change are different, the filtered

change is simply added to both Oi and Oief, since changes in opposite directions

do not cancel each other out.

Algorithm 9 Update function 1. Uses only the cancel function.

function UPDATE1(0i, Oref, AO!, 0ý) i%2
Oref, Ao!) return CANCEL(Oi, i

end function

Algorithm A Update function 2. Uses only the filter function.
Oref, Aoý, 0ý) function UPDATE2(0j,

c *-- FILTER(Oi, AOj, Oj)
zI

Oýef + C) return (Oi +c,

end function

Algorithm 11 Update function 3. Uses both the filter and cancel functions.

function UPDATE3(0j, Oiref , AOj', Oj')

A0, __ 0, _ Oref i

c 4-- FILTER(Oj, AOi', Oi')
2z

if sign(c) = sign(AOi) then

Oref, c+ AO,) return CANCEL(Oj, i

else

return (Oi +c, Oi'f + c)

end if

end function

A comparison of these three update functions will allow the relative importance

of the filter and cancel mechanisms to be examined, as well as an assessment of
how well the two mechanisms are combined in update function 3. Three variations

of the asynchronous merge method, each based on one of these update functions,

will be fully evaluated in Section 6.3.

'Tile value of c+ AOi arises because the filtered change c measures the change from the current

weight value Oi. The cancel function, on the other hand, expects any change to be measured from

the reference weight Oi ", so the local weight change AOi must be added to c before passing this

value to the cancel function, ensuring the results are consistent.

199

Before the evaluation can take place, however, the definition of the asyn-

chronous merge method must be completed by specifying how the agents determine

when to broadcast messages to the other agents.

6.2.3 Scheduling the Message Broadcasts

The definition of the asynchronous merge method in Algorithm 5 (see Section

6.2.1) indicated that agents would periodically construct a message (of 3-tuples)

and send it to every other agent in the group. It was indicated that these broadcasts

would occur each time "a scheduled broadcast is due. " In this section, mechanisms
for scheduling the agents' individual broadcasts in a decentralized manner will be

presented.
The following basic properties were used as tenets for selecting a scheduling

meclianisin:

1. The mean period between two consecutive broadcasts of an individual agent
in the group is p simulation time steps.

2. The agents do not need to exchange messages to synchronize their scheduling

mcclianisms.

3. The broadcasts of the group should be well distributed over time, not clus-
tered together in short intervals.

The reasoning behind these properties is as follows. Requiring that the average

period between an agent's broadcasts is p, time steps means that the overall network
bandwidth consumed by the method can be controlled by parameters p and f, 3,,,,
(the number of 3-tuples per message). This is important for tuning the performance

of the method on different parallel systems. It also will allow the asynchronous

method to be compared with the selective method of Chapter 5.

Specifying that the agents do not synchronize their scheduling mechanisms con-
forms to the asynchronous character of the algorithm, and allows all the available
bandwidth to be dedicated to the exchange of weight changes. This specification

also simplifies the range of mechanisms we can consider. It would not be difficult,

for example, to mark each message with a timestamp and then use the series of
timestamps to detect when the agents are drifting out of sync with each other.
Lightweight time synchronization methods of this kind were not considered as part

of this thesis.
Distributing the agents' broadcasts widely over time is necessary to exploit the

full potential of the asynchronous merge method. In Section 6.1 the motivation
behind the asynchronous merge method was given. Two of the most advantageous

200

properties of this method only arise if the broadcasts are well distributed. The
first of these is minimizing network congestion. The second is quickly identifying

and eliminating very similar changes discovered independently by different agents.
Adhering to these basic properties does exclude some interesting alternative

scheduling mechanisms. For example, having both p and f,,,,, remain fixed implies

that each agent will consume the same bandwidth over its entire lifetime. However,

as learning progresses it becomes increasingly unlikely that an agent will discover

any new information about the environment. It might therefore be advantageous to
decrease communication in the later stages and devote more time to computation.
One way to achieve this would be to link the probability of a broadcast to the total

size of the weight changes yet to be communicated. However, such an approach

makes the overall bandwidth required more difficult to predict, making it harder to
tune the algorithm to a particular domain and parallel computer. For this reason,

variable-bandwidth scheduling is not considered in this thesis.
Throughout the research for this thesis, we experimented with three mecha-

nisms to determine when each agent should broadcast a message.

Uniform Schedule

The uniform schedule uses the simplest mechanism, which corresponds closely to

the way broadcasts occur in the (synchronous) selective method of Chapter 5.
Counting the total number of time steps t experienced by a single agent from the

start of a parallel run, each agent broadcasts a message at t=p, t= 2p, t= 3p...

etc. In other words, for every agent a broadcast occurs at t= k-p for all kEZ

Ik>0.
No communication is required between the agents. Each agent simply

monitors how many local simulation steps have been observed, and broadcasts a

message when the appropriate interval has elapsed. The mean period between

broadcasts is clearly p simulation steps in this case.
If all the agents took exactly the same time to run a simulation step and

send/receive messages, the broadcasts would occur at exactly the same time for

all the agents. In practice this is not the case. Complex simulations may require

quite different amounts of computation on different time steps, and since the agents

explore randomly to some degree it is likely they will differ in this regard. The

agents will also observe different patterns of processor cache misses, page faults

and other operating system interrupt events. Finally, network congestion and the

underlying TCP transport mechanism may introduce significant variance in the

time for a message to travel over the network.
The end result of these variations is shown in Figure 6.5. This Figure de-

picts timelines for 16 agents using the asynchronous merge method with a uniform

201

Figure 6.5: Uniform schedule. Message send events for 16 agents in the early stages

of the Stochastic Grid World task (high difficulty).

1090 10.95 11-00 11.0s 11.10 11,15 11.20 11.25 11.30 11.35 11.40 IIAS ll. SO 11.5S 11.69

Time (seconds) -

Figure 6.6: Uniform schedule. Message send events for 16 agents in the later stages

of the Stochastic Grid World task (high difficulty).

202

1.95 200 2.05 2.10 2.15 2.20 2 25 2.30 2.35 2.40 2AS 2.50 2.55 2.60

- Time (seconds) -

schedule, and was generated (using the JUMPSHOT program) from MPI logging

information. The times at which a broadcast message was sent are shown on the

timelines. The first four broadcasts in a single parallel run are shown. While the

agents' first broadcasts all occur simultaneously, variations in processing time cause
the individual broadcasts to begin to spread out. Figure 6.6 shows the timeline

much later in the same experiment. By this point, the initial synchronization of
the agents' broadcasts has been almost entirely lost, and overall the broadcasts

exhibit a more unpredictable distribution.

It is clear that the simultaneous broadcasts in the early stages of the parallel

run are less than ideal. To what extent this affects the overall performance of the

method is not obvious, and so it was decided that it would be valuable to compare
the performance of this simple mechanism with the two mechanisms defined below.

Staggered schedule

The staggered schedule is closely related to the uniform schedule. In both cases,

each agent completes a fixed period of p simulation steps between consecutive
broadcasts. However, in the staggered schedule the very first broadcast takes

place after a different number of steps for each agent. Each of the n agents has a

rank which identifies it uniquely within the group. The ranks are integers which

run from 0 to (n - 1). Counting the total number of time steps t experienced by

a single agent from the start of a parallel run, the agent with rank r broadcasts a

message at t= Lp(k + L±-')j for all kEZ, k >- 0.
n

Figure 6.7 shows the first few broadcast events for 16 agents using the staggered

schedule. The first set of broadcasts occur in sequence, distributed quite uniformly

over the time interval. As in the case of the uniform schedule, this initial uniformity

is quickly affected by variance in the processing time, and the broadcasts soon tend

towards a more random pattern. After some time the distribution of the agents'

broadcasts reach a similar pattern to that reached using the uniform schedule in

Figure 6.6.

The staggered schedule avoids the simultaneous broadcasts that occur in the

early stages using the uniform schedule, so it is reasonable to expect that the

performance of the staggered schedule will be better.

Exponential schedule

In contrast to the previous two schedules, agents following the exponential schedule
do not execute a fixed number of simulation steps between consecutive communi-

cations. Instead, the occurrence of broadcast events is modelled using a Poisson

203

UI lU

I

6S 1.70 1.? S 1.80 1.05 1.90 1.95 2.00 2. OS 2.10 2. IS 2.20 2.25 2.30 2.3S
Time (seconds)

Figure 6.7: Staggered schedule. Message send events for 16 agents in the early

stages of the Stochastic Grid World task (high difficulty).

process. This means that the time between successive broadcasts can be modelled

using an exponential distribution of mean p. In our implementation, the number

of simulation steps which must be taken before the next broadcast is calculated at
the start of a parallel run and after every subsequent broadcast. The number is

sampled from a pseudo-random variable which draws numbers using a distribution

defined by the following probability density function:

. le-, p , if x> 02
Ax) p

0 if x<0.

In essence, this results in significant variation in the period between consecutive

communications, to the extent which there may be several communications by one

agent in the time where another agent makes no communication at all. Unlike

the previous two schedules, the pattern of the first few broadcasts does not differ

significantly from the pattern achieved later in the experiment. Both exhibit quite a
random pattern, such as that shown in Figure 6.8. The other major difference from

the other two schedules is that here the variation in the period between broadcasts

is dominated by the the variance of the exponential distribution, rather than the

small variance introduced by the processor, operating system and interconnection

network of the parallel system.

204

IIIII

2.00 2.05 2.10 2. is 2.20 2.25 2.30 2.35 2.40 2.45 2. SO 2.55 2.60
Time (second$)

Figure 6.8: Exponential schedule. Message send events for 16 agents in the early

stages of the Stochastic Grid World task (high difficulty).

Comparing the scheduling mechanisms

A full evaluation of the effect of the scheduling mechanism on performance is

not included in this thesis, since the bulk of the experiments carried out for this

chapter were focused on establishing a successful method to update the VIA asyn-

chronously (discussed in Section 6.2.2). In a series of preliminary experiments, it

was discovered that the staggered schedule consistently produced the best perfor-

mance out of the three schedules across a variety of domains and update functions.

A graph comparing the performance of the three schedules in one experiment is

given in Figure 6.9. In this experiment, 16 agents using update function #1 were

evaluated in the high-difficulty Stochastic Grid World task. The merge period was

p= 100,000, and the number of tuples per message was = 1024. Reward

function #1 was used, and parameters a and c were decayed linearly according to

ao = 0.2, co = 0.1 and t1i.. = 0.9. The other parameters were -Y = 1.0, A=0.95,

0j,, it = 0. The results were averaged over 10 runs, and episodes were terminated if

they reached 10,000 steps.
In Figure 6.9 we can see that the 16 agents using the staggered schedule ap-

proach the optimal policy at the fastest rate. The exponential schedule is the next
best option, converging slightly less quickly to the optimum. The agents using the

uniform schedule initially converge at a similar rate, but ultimately the group only

205

U

U

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

Uniform
k Staggered

Exponential

0 10 20 30 40 50 60
Learning Time (seconds)

0

Figure 6.9: Comparison of the performance of three scheduling mechanisms using
16 agents in the Stochastic Grid World task (high difficulty).

converged to a near optimal policy on about half the runs. This makes the uniform

schedule seem greatly inferior, but the main reason for this poor performance is the

pairing of the uniform schedule with update function #1. Recall from Section 6.2.2

that update function #1 has no mechanism to eliminate overshooting as a result

of two agents broadcasting an identical change simultaneously. Using the uniform

schedule, the first few broadcasts are all simultaneous, and the overshooting has a
seriously detrimental effect on convergence.

When there is a mechanism to deal with this kind of overshooting (such as
that of update functions #2 and #3) the performance of the uniform schedule is

not nearly so bad, although it is still consistently outperformed by the staggered

schedule.
The exponential schedule performs worse than the staggered schedule in all the

experiments we have carried out. The main reason for this seems to be the relatively
high variance produced in the period between an agent's successive broadcasts. The

nature of the exponential distribution is such that often a pattern can be observed
in the MPI logs where an agent will broadcast several times quickly in succession,
then wait for a time up to 2 or 3 times greater than p before the next broadcast

takes place (this can be observed in Figure 6.8). As far as the asynchronous

merge method is concerned, the resulting performance would be much better if

these broadcasts occurred more uniformly. It is likely that a schedule based on a

206

random distribution with less variance than the exponential distribution (such as

a Gamma distribution) could equal (or possibly exceed) the performance achieved

with the staggered schedule.
The remainder of the results reported in this chapter are based on the stag-

gered schedule mechanism, since out of the proposed mechanisms this was found

to consistently produce the best results.

6.3 Evaluation of Asynchronous Merging

In the previous section, a detailed description of the asynchronous merging method

was given. Details were provided about how each of the agents schedules its broad-

casts to the other agents. In addition, three candidate mechanisms (known here

as update functions) for updating the local VIA in response to incoming messages

were proposed. In this section, an evaluation of the asynchronous merging method
is reported. The main purpose of this evaluation is to compare the performance
that can be achieved using each of the three update functions. A secondary out-

come of this evaluation is that the performance of the asynchronous merge method
in general may be compared with the results previously obtained for the selective

method of Chapter 5 and the merging method of Chapter 4.

The relative performance of each of the update functions is shown in each

graph in this section, as two key dimensions are varied. The first dimension is the

number of agents n used in each experiment. Experiments were performed for 2,

4,8 and 16 agents. The second dimension is the evaluation domain being used.
Experiments were performed for each of the evaluation domains defined in Section

4.3.1. Whenever possible this evaluation will use the same experimental settings
that were used in the evaluation of the selective merge method (see Section 5.4)

so that the results can be compared directly.

Stochastic Grid World (low-difficulty)

The first evaluation domain considered here is the low-difficulty Stochastic Grid

World task. Each individual graph shown in Figures 6.10-6.13 shows the resulting

performance of the asynchronous merge method with each of the three update
functions. The different graphs correspond to different numbers of agents, as the

number of agents is increased from 2 up to 16.

In this series of experiments, reward function #2 was used, and results were

averaged over 10 runs. Episodes were terminated if they reached 10,000 steps. RL

parameters a and c decay linearly during each run, according to the parameters

ao = 0.2, co = 0.1 and t1j,,, = 0.9. The remaining RL parameters were -y = 0.99,

207

C
U,

.

Update function I
Update function 2
Update function 3

0123456
Learning Time (seconds)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

A

Figure 6.10: Comparing asynchronous update functions with 2 agents in the low-

difficulty Stochastic Grid World task.

I

Update function I
Update function 2
Update function 3

0123456
Learning Time (seconds)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Figure 6.11: Comparing asynchronous update functions with 4 agents in the low-

difficulty Stochastic Grid World task.

208

C
U,

;E

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Update function I
Update function 2
Update function 3

r

. OK r*-* X "', t- ý* *"-w -x
.
)K,

0123456
Learning Time (seconds)

Figure 6.12: Comparing asynchronous update functions with 8 agents in the low-

difficulty Stochastic Grid World task.

ii

cl 4)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Update function I
Update function 2
Update function 3

0123456
Learning Time (seconds)

Figure 6.13: Comparing asynchronous update functions with 16 agents in the low-

difficulty Stochastic Grid World task.

209

A=0.9 and Oi,, it =1X 10-8 . The parameters used for the asynchronous merge

method were p= 10000 and f,,,, = 256. These experimental settings are identical

to those used in the evaluation of the selective merge method. The staggered

schedule was used by the agents to time the asynchronous broadcasts.

The graphs show that learning in this domain divides clearly into two distinct

stages. There is an initial stage where the agents start from zero knowledge about
the environment and rapidly improve the group's performance. Then there is a

stage where the improvement in performance is much more gradual, as parameters

a and e gradually decay towards zero, and the agents gradually settle into policies

close to the optimum.
Let us examine the initial stage first. Whichever update function is used there

is a similarly rapid initial improvement in performance, the rate of which increases

as the number of agents is increased. There are small differences between the

update functions though. Generally update function #1 produces the most rapid
improvements, and update function #2 is the least rapid, although the difference

between them in this area is not great.
In the latter, more gradual stage of improvement, we can observe markedly

different behaviour using update function #1. As the number of agents is increased

to 8 agents, and then to 16 agents, the performance of update function #1 becomes

more noisy and erratic. With 16 agents in particular, there seems to be an increased

probability that the learned policy will move away from the optimum after the

initial phase of rapid convergence is over. The most likely explanation for this

behaviour is that as the number of agents is increased, the likelihood of two or more

agents broadcasting simultaneously increases. Since update function #1 does not

eliminate overshooting caused by simultaneous transmission of identical changes,

convergence towards the optimum is badly affected. In contrast, the agents using

update functions #2 and #3 remain very close to the optimal policy during the

latter phase of improvement.

Stochastic Grid World (high-difficulty)

Experiments ivere also carried out using the high-difficulty Stochastic Grid World

task. Graphs showing the results for these experiments are given in Figures 6.14-

6.17.
In the high-difficulty grid world reward function #1 was used, and results

were averaged over 10 runs. Episodes -were terminated if they reached 10,000

steps. RL parameters a and e decay linearly during each run, according to the

parameters ao 0.2, co = 0.1 and t1j,,, = 0.9. The remaining RL parameters

were -y = 1.0, A 0.95 and Oi,, it = 0. The parameters used for the asynchronous

210

0
�1,

.0

C)

Update function I
x4 Update function 2

Update function 3

%, X,

0 10 20 30 40 50 60
Learning Time (seconds)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Figure 6.14: Comparing asynchronous update functions with 2 agents in the high-

difficulty Stochastic Grid World task.

0
LLI

:F

Update function I
Update function 2
Update function 3

0 10 20 30 40 50 60
Learning Time (seconds)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Figure 6.15: Comparing asynchronous update functions with 4 agents in the high-

difficulty Stochastic Grid World task.

211

. I--

m
0

J2

Update function I
Update function 2
Update function 3

0 10 20 30 40 50 60
Learning Time (seconds)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Figure 6.16: Comparing asynchronous update functions with 8 agents in the high-

difficulty Stochastic Grid World task.

C
�I,

;E

Xx
Updatefunction I

x xx Update function 2
Update function 3

X-x -x

0 10 20 30 40 50 60
Learning Time (seconds)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Figure 6.17: Comparing asynchronous update functions with 16 agents in the high-

difficulty Stochastic Grid World task.

212

merging algorithm were p= 100,000 and = 1024. These experimental settings

are identical to those used in the evaluation of the selective merge method. The

staggered schedule was used by the agents to time the asynchronous broadcasts.

The results for the high-difficulty grid world follow pattern which is similar
to that observed for the low-difficulty grid world, but the size of the differences

between the update functions are different in two key aspects.
In terms of the initial, rapid improvement in performance, there are much

larger differences between the update functions now, and the separation of the

learning curves is much clearer than it was for the low-difficulty grid world. Update

function #1 produces the most rapid improvement, with a performance that is

clearly better than update function #3. Update function #2 produces the least

rapid improvement, performing significantly worse than both of the others. The

differences between the update functions are relatively small for 2 agents, but

become much greater as the number of agents is increased.

The increased variation during the latter stage of gradual improvement per-
formance is now only clearly evident for update function #1 when 16 agents are

used. Even so, the increased variation seems to have a much lesser effect, and does

not appear to prevent a good policy being achieved after 50 seconds. It is unclear

why the size of this effect is reduced. It could be simply that learning in the larger

problem size is affected less by overshooting the expected weight values. Alterna-

tively, it could be related to the fact that we used different reward functions in

the two experiments (in the low-difficulty experiment, the only non-zero reward is

given when the goal is reached.)

Pole Balancing

The graphs in Figures 6.18-6.21 allow the results for the three update functions to

be compared in the Pole-Balancing task. In contrast to the Stochastic Grid World

experiments, the agents do not all reach the same near-optimal policy quality.
Instead the available time is fixed at 1.0s, and the group of agents tries to learn

the highest quality policy that can be achieved in the available time. In this series

of experiments, reward function #1 was used, and results were averaged over 100

runs. Episodes were terminated if they reached 20,000 steps. RL parameters a

and c decay linearly during each run, according to the parameters ao = 0.25,

co = 0.2 and t1i.. = 0.9. The remaining RL parameters were -y = 0.99, A=0.5 and
Oinit = 0. The parameters used for the asynchronous merge method were p= 2000

and = 128. These experimental settings are identical to those used in the

evaluation of the selective merge method. The staggered schedule was used by the

agents to time the asynchronous broadcasts.

213

, Eh

u "0

:E

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Update function I
Update function 2
Update function 3 ---

IXX x
x

1XI

ýK

0 0.1 0.2 0.3 0.4' 0.5 0.6 0.7 0.8 0.9 1
Learning Time (seconds)

Figure 6.18: Comparing asynchronous update functions with 2 agents in the Pole-

Balancing task.

14000

12000

10000

80o0

6000

2
4000

2000

n

Update function I
Update function 2
Update function 3 ýK

414

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Learning Time (seconds)

Figure 6.19: Comparing asynchronous update functions with 4 agents in the Pole-

Balancing task.

214

18000

16000

14000

12000

10000

8000

6000

4000

2000

n

Update function I
Update function 2
Update function 3

X_x-x --%-x 1

A-, ()Pý4w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Learning Time (seconds)

Figure 6.20: Comparing asynchronous update functions with 8 agents in the Pole-

Balancing task.

18000

16000

14000

12000

10000

8000

6000

4000

2000

n

Update function I
Update function 2
Update function 3

**

T
I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Learning Time (seconds)

Figure 6.21: Comparing asynchronous update functions with 16 agents in the Pole-

Balancing task.

215

The relative performances of the 3 update functions in the Pole-Balancing task

exhibit a different pattern than that seen in the Stochastic Grid World tasks. Up-

date function #3 is now consistently the worst out of the three functions, although
the difference in the average quality achieved at the end of the run is not huge.

It is difficult to determine which of the other update functions is the better per-
former. It is only in the case of 8 agents (in Figure 6.20) that one of them, update
function #2, clearly outperforms the other. For other numbers of agents, there is

not a significant difference between them. No evidence of the increased variance

produced by update function #1 in the previous experiments is observed here, but

it is still possible that overshooting effects are affecting the overall performance of

update function #1.

Mountain-Car

Figures 6.22-6.25 show results for the three update functions for different numbers

of agents in the Mountain-Car task. In this series of experiments, reward function

#2 was used, and results were averaged over 100 runs. Episodes were terminated

if they reached 500 steps. RL parameters a and c decay linearly during each run,

according to the parameters ao = 0.5, co = 0.1 and t1j,,, = 0.9. The remaining RL

parameters were -y = 0.99, A=0.9 and Oi,, it = 0.0001. The parameters used for

the asynchronous merge method were p= 2000 and f = 128. Since the policy

quality over a given interval is strongly dependent on the exploration parameter 6,
binary search was used to determine for each group of agents the shortest interval

of real-time required to achieve an average quality under 145 over the set of 100

runs. These experimental settings are identical to those used in the evaluation of
the selective merge method. The staggered schedule was used by the agents to

time the asynchronous broadcasts.

In the results for the Mountain-Car task, we observe a pattern in the relative

performance of the update functions that is closer to what was observed for the

Stochastic Grid World task than what was observed in the Pole-Balancing task.

Since the gradual improvement in performance is so strongly tied to the decay of
the exploration parameter, it is difficult in some of these graphs to identify which of
the update functions has performed the best. However, we can draw some general

conclusions from the graphs. For all numbers of agents, the asynchronous method

using update function #2 requires the most time to converge to a policy of the

specified quality. Most often it is update function #1 which requires the least

time, although in the 4-agent case it is update function #3 which produces the
best performance. The performance of update function #3 seems relatively poor
for small numbers of agents, but almost as good as update function #1 for larger

216

500

450

400

e
350

"Ci
300

250

200

150

inn

Update function I
Update function 2
Update function 3

.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Learning Time (seconds)

Figure 6.22: Comparing asynchronous update functions with 2 agents in the

Mountain-Car task.

500

450

400

350

"U
300

250

200

150

inn

Update function I
Update function 2
Update function 3

*li X-.

0 0.05 0.1 0.15 0.2 0.25 0.3
Learning Time (seconds)

Figure 6.23: Comparing asynchronous update functions with 4 agents in the

Mountain-Car task.

217

500

450

400

Update function I
Update function 2
Update function 3

e
350

0 300 Ji

250

200

150

100

0 0.05 0.1 0.15 0.2 0.25 0.3
Leaming Time (seconds)

Figure 6.24: Comparing asynchronous update functions with 8 agents in the
Mountain-Car task.

500

450

400

Update function I
Update function 2
Update function 3

350

300

cn 250 u :F

200 -

150 -

'A)<)tx%,
X_X

X-.

100 11111111

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Learning Time (seconds)

Figure 6.25: Comparing asynchronous update functions with 16 agents in the
Mountain-Car task.

218

numbers of agents. In the 16-agent case, the learning curves are separated the

most, with update functions #1 and #3 requiring only slightly more than half the

time required by update function #2 to converge.

Acrobot

Graphs for the performance of the different update functions in the Acrobot task

are shown in Figures 6.26-6.29. These experiments used reward function #1, with
the results being averaged over 100 runs. Episodes were terminated if they reached
600 steps. RL parameters a and e decay linearly during each run, according to the

parameters ao = 0.1, co = 0.1 and t1i.. = 0.9. The remaining RL parameters were

,y=1.0, A=0.9 and Oi,, it = 0. The parameters used for the asynchronous merge

method were p= 1000 and f,,,,, = 128. Since the policy quality over a given inter-

val is strongly dependent on the exploration parameter c, binary search was used
to determine for each group of agents the shortest interval of real-time required
to achieve an average quality under 140 over the set of 100 runs. These experi-

mental settings are identical to those used in the evaluation of the selective merge

method. The staggered schedule was used by the agents to time the asynchronous
broadcasts.

The performance of the three evaluation functions is essentially identical when
there are only 2 agents. However, as the total number of agents is increased, a clear

pattern emerges, and the differences between the update functions become more

pronounced. Update function #1 now consistently produces the best performance,

with update function #2 producing the worst performance, and update function

#3 being somewhere between the two others.

Summary of Evaluation

A qualitative summary of the results presented in this section is shown in Table

6.1, which lists the best performing update function from each of the graphs shown
in Figures 6.10-6.29. Broadly speaking, the best performing update function is the

one which makes the most rapid progress towards a high quality problem solution

over the course of a parallel run.
From Table 6.1 it is fairly clear that the asynchronous merge method using

update function #1 has the greatest potential out of the methods proposed in this

chapter. However, there are a number of effects that remain unexplained. The

most significant unanswered question is "Why does update function #2 produce

such good results in the Pole-Balancing domain, but such bad results in all the

other domains? " The answer may be related to the fact that Pole-Balancing is the

219

600

550

500

450

Update function I
Update function 2
Update function 3

400
mi

350

300
:E

250

200

150

inn
w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Learning Time (seconds)

Figure 6.26: Comparing asynchronous update functions with 2 agents in the Ac-

robot task.

600

550

500

450
tb
r. 3 400

350

300
cl

250

200

150

100

Update function I
Update function 2
Update function 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Learning Time (seconds)

Figure 6.27: Comparing asynchronous update functions with 4 agents in the Ac-

robot task.

220

600

550

500

Update function I
Update function 2
Update function 3

450

400

350

300
cu u :E

250

200

ISO

inn
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Learning Time (seconds)

II,

Figure 6.28: Comparing asynchronous update functions with 8 agents in the Ac-

robot task.

600

550

500

450

Update function 1
Update function 2
Update function 3

-9 to

400

350

300

250

? 0, x 200 -

150 -

100 fIIII
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Learning Time (seconds)

Figure 6.29: Comparing asynchronous update functions with 16 agents in the
Acrobot task.

221

Domain Number of agents
2 4 8 16

Grid world (IoNv-difficulty) #1/#3 #1 #1 #1/#3

Grid world (high-difficulty) #1 #1 #1 #1

Pole-Balancing #1/#2 #1/#2 #2 #1/#2

Mountain-Car #1 #3 #1 #1

Acrobot #1 #1 #1 #1

Table 6.1: Lists the best performing update function(s) for each combination of a
domain and a number of agents.

only domain considered here that is not goal-oriented In all the other domains,

the agents want to reach a terminal state as quickly as possibly. In the Pole-

Balancing task, terminal states must be avoided for as long as possible by keeping

the pole balanced. This gives the Pole-Balancing task a different character from

the other domains, which may produce a different distribution of weight changes
in the agents' messages.

Another effect which could be investigated further is the tendency of update
function #1 to increase variance in the estimates of feature values. This effect can
be observed most clearly in the 16-agent experiments in the Stochastic Grid World
(see Figures 6.13 and 6.17). This increase in variance while the c and a parameters

are decaying could result in the agents settling in a worse policy on average, but

this evaluation has not clearly established that this is the case. What has been

established is that in the case of a uniform schedule, where many agents broadcast

their changes simultaneously, the asynchronous method based on update function

#1 is likely not to converge (see Figure 6.9). This demonstrates the importance of
keeping the agents' broadcasts well-distributed over time.

To conclude, it appears that the cancel mechanism (used in update functions

#1 and #3) is necessary for achieving fast convergence without overshooting in

most of the domains evaluated here (Pole-Balancing being the exception). The

filter mechanism (used in update functions #2 and #3) appears to slow conver-

gence slightly by excluding some of the incoming weight changes, but is essential
to ensure convergence when there is a high probability of agents broadcasting mes-

sages simultaneously. There is the possibility that more complex update functions

not considered in this work could approach the convergence rate of update func-

tion #1 in most cases while retaining the safety of a filter-like mechanism. This

remains a topic for future investigation.

222

6.4 Comparison with Synchronous Selective Method

In Section 6.3 a comparison was presented of the performance achieved by three

candidate mechanisms for updating the VIA in the asynchronous selective method.
Now that there exists some empirical evidence as to the suitability of these update

mechanisms to particular domains, this section proceeds to give a direct comparison

of the asynchronous selective method with the original (synchronous) selective

method presented in Chapter 5. The data used to generate the following graphs

was drawn from the results already reported in the individual evaluations of the

methods, in Sections 5.4 and 6.3. These results are reproduced together on new

graphs to facilitate a detailed comparison of the two methods. For the full details

of the experimental settings used to generate these results, the reader is referred
to the earlier sections.

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

n

Single Agent
Selective (4 agents)

S l i 16 e ect ve (agents)
Async (4 agents)

Async (16 agents)

023456
Learning Time (seconds)

Figure 6.30: Comparing the performance of the synchronous and asynchronous

selective methods in the low-difficulty Stochastic Grid World task.

Results showing the performance of a single agent, the selective merge method
(4 and 16 agent groups), and the asynchronous selective merge method (4 and 16

agent groups) in the low-difficulty Stochastic Grid World task are shown in Figure

6.30. To compare the most stable results for each approach, the selective method

used combination function #3 and the asynchronous selective method used up-
date function #3. With both the 4 and 16 agent groups the asynchronous selective

method produces the best performance out of the two parallel approaches. The

223

improvement in the 4 agent case is fairly modest, although this performance is

probably comparable to 8 agent group using the selective method. The improve-

ment in the 16 agent case is much more significant, with the time required to learn

a high-quality policy being almost halved. In this particular domain there is a

major advantage in moving to an asynchronous approach when large numbers of

parallel agents are available.

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Single Agent
Selective (4 agents)

Selective (16 agents)
Asyne (4 agents)

Async (16 agents)
x 11

0 10 20 30 40 50 60
Learning Time (seconds)

Figure 6.31: Comparing the performance of the synchronous and asynchronous

selective methods in the high-difficulty Stochastic Grid World task.

Results for the high-difficulty Stochastic Grid World task (shown in Figure

6.31) exhibit a very similar pattern, although the difference in performance of
the 16 agent group is not quite so large. Once again the selective method using

combination function #3 was compared with the asynchronous selective method

using update function #3. With both sizes of the agent group the asynchronous

selective method produces the best performance out of the two parallel approaches.
The improvement in performance of the 4 agent group is significant, but the largest

improvement is shown by the 16 agent group, where moving to the asynchronous

approach shaves off about a third of the time required to find a high-quality policy.
There is again a major advantage in following the asynchronous approach.

The results for the Pole-Balancing task (shown in Figure 6.32) were generated

with the priority of achieving the best possible performance, since the stability of
the update mechanisms seemed to be much less of a factor than in the Stochastic

Grid World tasks. To this end, the selective method was used with combination

224

18000

16000

14000

12000

10000
"0

8000

6000

4000

2000

0

Single Agent
Selective (4 agents)

Selective (16 agents) ... was Aw *W -N www

Async (4 agents) 'w . Async(16agents) - A'# XA,

lxjf
ý4

? Vu A)4 Icy
0(3ooo

/ 13 000MO

jolt 10
xir

X>I
x

ImOE31j'
po

X-11 PC!
F(x-)e

>e j3d

jd[3f2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Learning Time (seconds)

Figure 6.32: Comparing the performance of the synchronous and asynchronous

selective methods in the Pole-Balancing task.

function #1 and the asynchronous selective method was used with update func-

tion #1. In the Pole-Balancing task the goal of the agents was to learn the highest

quality policy in the available time of 1.0s. The use of the asynchronous approach
seemed to have much less of an impact in this task. With 4 agents the asyn-
chronous selective approach produced a slightly worse quality, and with 16 agents
it produced a slightly better quality. From these results it may be observed that
the asynchronous approach does not always produce an improvement in perfor-
mance, and also that such an improvement is more likely when there is a fairly
large number of parallel agents.

The results for the Mountain-Car task (shown in Figure 6.33) were also gen-
erated with the selective method using combination function #1 and the asyn-
chronous selective method using update function #1. While both the selective and
the asynchronous selective methods achieve good speedups in this domain, there is

no significant advantage in using the asynchronous approach over the basic selective
method. This is quite a different result than was achieved in domains considered

above, where there has been a significant advantage in using the asynchronous

approach when there are 16 agents available.
The results for the Acrobot task are shown in Figure 6.34. As with the Pole-

Balancing and Mountain-Car tasks, these results were generated with the selective
method using combination function #1 and the asynchronous selective method

225

500

450

400

350

Single Agent
Selective (4 agents)

Selective (16 agents)
Async (4 agents)

Async (16 agents)

-10----

mi ýf ýo

-

SO"

u
300

250 u n
200

150

inn
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Learning Time (seconds)

Figure 6.33: Comparing the performance of the synchronous and asynchronous

selective methods in the Mountain-Car task.

600

550

500

450

400

350

300

250

200

150

Inn

Single Agent
Selective (4 agents)

Selective (16 agents)
Async (4 agents)

Async (16 agents)

ýRq

Ivu 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Learning Time (seconds)

Figure 6.34: Comparing the performance of the synchronous and asynchronous

selective methods in the Acrobot task.

226

using update function #1. These results are similar in character to those achieved
in the Stochastic Grid World tasks. When there are 4 agents there is a modest

performance advantage to using the asynchronous approach. With 16 agents there
is a huge advantage to the asynchronous selective method, reducing by about a
third the time required to converge to a high-quality policy.

The overall conclusion that can be drawn from this comparison is that there are

significant benefits to adopting the asynchronous selective merge method over the
(synchronous) selective merge method. While it does not always produce the best

results of the two methods (such as the results from the Mountain-Car described

above), its performance has only ever been worse by a small factor, and in some

cases with large numbers of agents huge improvements in performance can be

obtained (such as in the Acrobot and Stochastic Grid World tasks).
Determining the particular factors which make the asynchronous method so

successful in some domains is an important topic for future investigation. One

particular line of enquiry would be to investigate the effect of the total number f

of features used by the VFA. It may be significant that the asynchronous approach

performs poorly in the Mountain-Car task, where f= 2430, but performs well in

the Acrobot task, where f= 18432. In both of these experiments the message size
fw,,, = 128, although in the Acrobot experiment messages are exchanges twice as

often. This suggests that when there are a large number of features, the property

of the asynchronous selective method to quickly eliminate identical weight changes
has a major positive impact on performance.

A limitation of the comparison given in this section is that in each exper-
iment the asynchronous selective and the selective methods are compared with
both methods using the same values for parameters p (the merge period) and f, 0"
(the message size). The advantages of this approach are that both methods use up

a similar network bandwidth and that comparison experiments are simple and fast

to carry out. The disadvantage of this approach is that the optimum parameter

choices for p and may be different depending on which method we are using.
Using near-optimal parameters (which are difficult to find) in each case may change
the relative performance of the two methods. A comprehensive comparison of the

two approaches would therefore be aided by a suitable technique for calculating

suitable values for p and fcom.

6.5 Asynchronously exchanging absolute weight values

The asynchronous selective method, as described in Section 6.2, uses the values of
the weight change vector Aýfbr two distinct purposes:

227

1. Ranking the weight indices in order of the potential benefit of communicating
information about each weight to the group.

2. Communicating the weight value changes in the form of messages containing
(i, AOj, Oj) tuples.

The results presented in Sections 5.4 and 6.3 provide strong evidence that prior-
itizing 'weight information according to the size of each JAOjj is an effective way
to reduce the bandwidth necessary for parallel RL. However, it is not clear that

the changes themselves are necessarily the best information to communicate to the

other agents. In particular, adopting the asynchronous approach described in this

chapter requires the use of some fairly complex mechanisms (see Section 6.2.2) for

incorporating weight changes from remote agents whilst avoiding the overshooting

problem. It is reasonable to ask at this point whether some of this complexity

could be avoided by the agents exchanging only absolute weight values 10j} in the

messages.
The asynchronous communication model makes it difficult to use an averaging

approach such as that used in the visit-count average method of Chapter 4. This is

because messages from the other agents arrive at different times, and each message

must be processed immediately. This means that local data structures must be

updated using only one remote agent's weight value. While it would be possible to

average these values over time by caching recently received values (using a sliding-

window for example), it is likely that such an approach would slow convergence in

the same manner as the mean-merge method (see Section 4.4.3).

Given two estimates of a weight value, one local and one from a remote agent,

we could consider taking the mean of these two estimates. However, bear in mind
that with the selective approach a remote weight value is only likely to be received
if a large change in the weight is observed by the remote agent. To reduce the VIA

error quickly in the early stages of a parallel run, it is vital that large weight changes

are quickly propagated to all the agents by prioritizing the remote agent's estimate.
This leads to the definition of a relatively simple asynchronous algorithm (defined

in Algorithm 12) based on messages containing (i, Oj) tuples (i. e. absolute weight

values). When a remote -weight value is received, the local weight is overwritten
by the remote value. In addition, the local weight change is reset to zero. Note

that this means that some locally learned information is lost when updates occur
in response to arriving messages. I will refer to this algorithm as Abs-Async (an

asynchronous method based on exchanging absolute weight values.)

Using absolute weight values instead of weight changes essentially eliminates
the problem of overshooting. The main disadvantage of the approach is that if

228

Algorithm 12 Agent pseudocode for the Abs-Async method. Messages sent ýy

the agent contain only the absolute weight values, not the weight changes.
fInitialization}

for all i do

Oi - Oi, it
oref

i +- Oinit

end for

IMain loop}

while time elapsed < t, nd do

f Learning quantum}
for step =1 to q do

Execute a simulation step and update weight vector 0.

end for

f Sclieduled Broadcastsj

if sclieduled broadcast is due then
Calculate AW= W- ý"f.

Rank each index i according to the value of JAOj I.

best +- I the f highest ranked indices

m 4-- I(i, Oj) IiE best}

Send message m to all other agents.

end if

IMessage Receive}

for each new incoming message m do

for all (i, Oý) Em do
JAssign Oj' to both Oi and Oj"f

Oi *-- 0i,
Oref 4-- Oý

it

end for

end for

while

229

the number of weights per message is fairly large, the loss of local weight

changes during updates could have a negative impact on the rate of convergence.

Experimental Details

To evaluate the potential of the Abs-Async method, its performance was compared
to that of the best performing method developed so far: the asynchronous selective

merge method using update function #1 and a staggered broadcast schedule. This

method is labelled Async in the graphs which follow.

The evaluation in this section was carried out at a later date than the other

experimental work in this thesis. The particular Beowulf cluster used for previ-

ous experiments was unavailable at this time, and so the results reported in this

section were generated using a second, more powerful cluster (details below). Un-

fortunately this means that the learning curves in this section cannot be directly

compared with those in previous sections, since the underlying system properties

are different. On the other hand, collecting data using a second parallel computing

system will provide some indication of how the parallel methods developed in this

thesis will perform on different parallel hardware.

The cluster used in these experiments consisted of 24 nodes, where each node

was a machine based on two AMD Opteron 275 dual core 2.2GHz processors. Since

there are 4 cores per node, up to four parallel RL agents can run on each node. Each

node contained 8GB of registered DDR memory on a bus with 6.4GB/s throughput.

The nodes were connected using a high performance InfiniBand interconnect with
10Gb/s bandwidth and 2us latency.

The values used for parameters p and in these experiments are different

from those used in earlier evaluations. This is so that the best possible performance

can be obtained given the particular system properties of this new cluster. In

this context, the relative performance of the two methods considered here can be

assessed as the potential speedup is pushed to the limit.

Stochastic Grid World (low-difficulty)

The graph in Figure 6.35 shows the performance of the two methods in the low-

difficulty Stochastic Grid World task. The experimental settings used were as
follows: the merge period p was set to 1000 steps, and the message size f, "" was

set to 128. This meant that the overall network bandwidth used was 5 times as

much as in the early evaluation on the old cluster. Reward function #2 was used,

and results were averaged over 10 runs. Episodes were terminated if they reached
10,000 steps. RL parameters a and e decayed linearly during each run, according

230

. IM.

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

liýcj .- Single Agent -H- Async (4 agents)
Async (16 agents)

Abs-Async (4 agents)
Abs-Async (16 agents)

was

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Learning Time (seconds)

0

Figure 6.35: Using the low-difficulty Stochastic Grid World task to compare the

asynchronous selective method with an alternative method based on absolute
weight values.

to the parameters ao = 0.2, co = 0.1 and tli,,, 0.9. The remaining RL parameters
were -y = 0.99, A=0.9 and Oi,, it =1X 10-8 Learning curves were plotted for 4

and 16 agents using the Async and Abs-Async methods. A single agent learning

curve was also included for comparison.
The results in Figure 6.35 show that the performance of the two parallel RL

methods is identical when 4 agents are used. With 16 agents the Async method
produces a small improvement in performance compared to the Abs-Async method.
Note also that using the new (more powerful) cluster means that it is possible to get
much closer to achieving a linear speedup using either of these methods (compare

Figure 6.35 with Figure 6.30 on page 223).

Stochastic Grid World (high-difficulty)

Figure 6.36 shows learning curves for both of the methods in the high-difficulty

Stochastic Grid World task. In this experiment, algorithm parameters p= 2500

and fw.. = 512, using 20 times the network bandwidth compared to the old cluster.
Reward function #1 was used, and results were averaged over 10 runs. Episodes

were terminated if they reached 10,000 steps. RL parameters a and C decayed
linearly during each run, according to the parameters ao = 0.2, Co = 0.1 and
tjj,, ý = 0.9. The remaining RL parameters were -y = 1.0, A=0.95 and Oi,, it = 0.

231

I

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0
02468 10 12

Learning Time (seconds)
14 16 18

Figure 6.36: Using the high-difficulty Stochastic Grid World task to compare
the asynchronous selective method with an alternative method based on absolute

weight values.

The results in Figure 6.36 follow a similar pattern to those observed with the
low-difficulty grid world in Figure 6.35. With 4 agents the performance of the
Async and Abs-Async methods are practically identical. Increasing the number of

agents to 16 means that the Async method converges slightly more quickly to an

accurate value function approximation.

Pole Balancing

The results for the Pole Balancing task are shown in Figure 6.37. Parameter values

p= 200 and f,,., = 64 were used, which meant that 5 times the network bandwidth

was used compared to experiments on the old cluster. Reward function #1 was

used, and results -were averaged over 100 runs. Episodes were terminated if they

reached 20,000 steps. RL parameters a and e decayed linearly during each run,

according to the parameters ao = 0.25, co = 0.2 and t1j,,, = 0.9. The remaining
RL parameters were y=0.99, A=0.5 and Oi,, it = 0.

In contrast to the experiments using the Stochastic Grid World tasks, the 4

agents using the Async method clearly outperform the 4 agents using the Abs-
Async method, producing (on average) a final policy of higher quality in the fixed

learning time of 0.25s. With 16 agents the results are less conclusive. The Async

and Abs-Async methods produce final policies of very similar quality. However,

Single Agent
Async (4 agents)

Async (16 agents)
Abs-Async(4 agents)

Abs-Async (16 agents)

232

18000

16000

14000

-: S 12000

10000
V

8000
r_

6000

4000 -

2000 -

00
0

Single Agent sammommii,
Async (4 agents)

Async (16 agents) --- w---
Abs-Async (4 agents) VEWW ON "xx

Abs-Async (16 agents)
I no

"m I
an

X
>(. N. X-xx KICID 13

X
?K

)K 'A

won
ImI

an

I
)ý

e

(a
E3i: y[j

PE1013013
a 13

UZI 13

Pro
-

Xý4

1
)(130

I

61: 11ad

X
o' k

ONE
id

ff

0.05 0.1 0.15 0.2 0.25
Learning Time (seconds)

Figure 6.37: Using the Pole Balancing task to compare the asynchronous selective

method with an alternative method based on absolute weight values.

during the first 0.15s of the learning time the Async method appears to improve

policy quality at a faster rate, reaching a plateau at a mean episode length of
17000. There may be a side effect of update function #1 in this setting which
degrades policy improvement in the later stages of learning.

Mountain Car

Results for the Mountain Car task are shown in Figure 6.38. Parameter values

P= 100 and f,,,,, = 128 were used, which meant that 20 times the network
bandwidth was used compared to experiments on the old cluster. Reward function

#2 was used, and results were averaged over 100 runs. Episodes were terminated

if they reached 500 steps. RL parameters a and e decayed linearly during each

run, according to the parameters ao = 0.5, co = 0.1 and tlin = 0.9. The remaining
RL parameters were y=0.99, A=0.9 and Oinit = 0.0001. Binary search was used
to determine for each group of agents the shortest interval of real-time required to

achieve an average episode length below 145 over the set of 100 runs.
This set of results provides the clearest demonstration yet that in some cir-

cumstances the Abs-Async method will perform significantly worse than the asyn-

chronous methods based on exchanging changes in the weights. With 4 agents the
Async method is a small amount faster. With 16 agents a policy of the same quality

can be found by Async in about two-thirds of the time required by Abs-Async.

233

500

450

400

350

"a
0 300

cl 250 u : iý
200

150

inn

Single Agent
Async (4 agents)

Async (16 agents)
Abs-Async (4 agents) ---o. -.. Abs-Async (16 agents)

0 0.02 0.04 0.06 0.08 0.1 0.12
Learning Time (seconds)

Figure 6.38: Using the Mountain Car task to compare the asynchronous selective

method with an alternative method based on absolute weight values.

Acrobot

Results for the Acrobot task are shown in Figure 6.39. Parameter values p= 100

and f,,,,, = 256 were used, which meant that 20 times the network bandwidth was

used compared to experiments on the old cluster. Reward function #1 was used,

and results were averaged over 100 runs. Episodes were terminated if they reached
600 steps. RL parameters a and c decayed linearly during each run, according to

the parameters ao = 0.1, co = 0.1 and t1im = 0.9. The remaining RL parameters

were -y = 1.0, A=0.9 and Oi,, it = 0. Binary search was used to determine for each

group of agents the shortest interval of real-time required to achieve an average

episode length below 140 over the set of 100 runs.
These results show an even greater difference in performance between Async

and Abs-Async. Using 4 agents the Async method converges about 25% more

quickly than the Abs-Async method. With 16 agents the difference is more pro-

nounced, with the Async method converging in under half the time required the
Abs-Async method. There is something about the character of this particular do-

main which seems to heavily penalize methods which are not particularly efficient
in their use of network bandwidth (consider both Figure 6.39 and Figure 6.34 on

page 226). This may be related to the fact that while a large number of features

are used (18432), the generalization of the approximator is very good, keeping the

234

.C

0
J2

cu (L)

Single Agent
Async (4 agents)

Async (16 agents)
Abs-Async (4 agents)

Abs-Async (16 agents)

t3

JK

i In ,0ý,

0 0.05 0.1 0.15 0.2 0.25 0.3
Learning Time (seconds)

600

550

500

450

400

350

300

250

200

150

inn

Figure 6.39: Using the Acrobot task to compare the asynchronous selective method

with an alternative method based on absolute weight values.

required learning time small and making parallelization particularly difficult.

Summary of Comparison

The empirical results presented in this section examine the performance of a new

method, A bs-Async, in which agents asynchronously exchange absolute weight val-

ues. The results in this section were generated using a different (more powerful)
Beowulf cluster, and so the graphs should not be compared directly to other graphs
in the thesis. The performance of Abs-Async was compared to that of the best per-
forming method developed so far in this chapter, the asynchronous merge method

using update function #1 (abbreviated here as the Async method).
The comparison showed that in some cases the two methods perform very sim-

ilarly, but in other cases Abs-Async is greatly outperformed by the Async method.
Two major factors were identified which affect the degree to which Abs-Async per-
forms worse than Async. The first factor is the number of agents involved. The

more agents that are used, the more likely it is that Async will produce the better

performance. The second factor is the character of the particular learning task at
hand. In some learning tasks (e. g. the Stochastic Grid World tasks) the two meth-

ods perform very similarly. In other tasks (e. g. the Mountain Car and Acrobot

tasks) there is a very large performance advantage in using the Async method.
The most likely reason for the poor performance of Abs-Async in certain sit-

235

uations is the way that locally-learned weight changes can be lost when updates

occur in response to messages arriving. The fact that messages only contain weights
which have undergone large recent changes does mean that most of the time no
significant information is lost. However, if a large number of agents are involved,

or if there are a large number of approximator weights, the likelihood of losing

important information in this way increases, and Abs-Async performs poorly.
The poor performance of this method provides some evidence that parallel RL

methods based on exchanging weight changes (i. e. most of the methods described

in Chapters 5 and 6) are more likely to be successful than methods based on

exchanging absolute weight values. Monitoring recent changes in the VFA makes
it easier to combine information from several agents without destroying locally-

learned information which has yet to be communicated. Methods based on weight

changes do lead to the overshooting problem, adding to the complexity of some

of the methods. However, based on the evidence presented here, a method based

on weight changes which trades off accelerated convergence against the risk of

overshooting seems to produce the best performance.

6.6 Summary and Conclusions

Tile following material has been presented in this chapter:

Motivation for the use of asynchronous message passing to improve the per-
formance of the selective merge method which was described in Chapter 5.

The general form of the asynchronous merge method. This method uses
the same mechanism (of ranking weights by the magnitude of the recent

accumulated change) for message construction as the selective merge method,
but removes the need for any synchronization step.

o Several candidate procedures (known as update functions) for updating the
local VFA in response to incoming messages from other agents.

A number of mechanisms to schedule the message broadcasts of individ-

ual agents without requiring explicit synchronization. The purpose of these

mechanisms is to keep the times at which agents send messages distributed
fairly evenly over time.

An evaluation of the proposed update functions, where the performance with
each update was tested with different numbers of agents in each of the evalu-
ation domains defined in Section 4.3.1. The reported results were generated

using the implementation on the cluster of -workstations.

236

A comparison of the performances of the asynchronous merge method and the
(synchronous) selective merge method in each of the evaluation domains. This

comparison was also based on results collected on the cluster of workstations.

A comparison of the performances of the asynchronous merge method and
an alternative asynchronous method which uses messages containing only
absolute weight values, not the changes in the weights. This comparison was
based on results collected at a later date using a different, more powerful
cluster of workstations.

From this material we can draw the following conclusions:

The asynchronous merge method can produce parallel speedups that are bet-

ter than those of the selective merge method of Chapter 5 by allowing the

agents to distribute their broadcasts more evenly over time, and to update
their local VFAs as and when messages arrive.

On the cluster of workstations, the asynchronous merge method consistently

outperforms both the visit-count merge method of Chapter 4 and the selective

merge method of Chapter 5. In particular, the relatively small speedups

obtained by the selective merge method in the Acrobot task (which has a
large number of approximator weights but a small single-agent learning time)

were greatly improved upon. Significant increases in the parallel speedup

were obtained in all of the evaluation domains tested.

e The staggered schedule for determining when agents broadcast their messages

was found to be the most robust mechanism of those proposed, outperforming
the uniform and exponential schedules in a set of preliminary experiments.

Of the three update functions evaluated, update function #1 was shown

to produce the greatest speedups in almost all situations. However using

update function #1 when there is a high probability of two or more agents

transmitting messages simultaneously may have an impact on performance,

or prevent convergence in extreme cases.

e The asynchronous merge method inherits the parameters p and f, ý.. from

the selective merge method. As it was demonstrated in Chapter 5, selecting
appropriate values for these parameters is vital for achieving good perfor-
mance using either of these methods. Since there is not currently an analytic
or heuristic method for determining the optimum values of p and it is

necessary to use some degree of trial and error to select these parameters.

237

Parallel RL methods where agents communicate changes to the VFA weights

are very effective in practice, allowing a trade-off to be made between an
increased convergence rate and the risk of overshooting. While alternative

methods based on the exchange of absolute weight values effectively eliminate
the overshooting problem, the empirical evaluation of Section 6.5 suggests
that such methods will result in degraded performance in many situations.

238

Chapter 7

Combining RL with Symbolic

Planning

This chapter moves on from the topic of parallelization investigated in the preceding

chapters, and proceeds to examine how symbolic planning can be used to constrain

and accelerate learning in an RL problem. A hybrid method called PLANQ-learning

is presented which integrates a planner based on the STRIPS representation with

the well-known Q-learning algorithm. A high-level plan that achieves the goal of

the Q-learner is computed and is then used to guide the learning process. This is

achieved by shaping the reward function based on the preconditions and effects of

the abstract plan operators. Using this approach allows a high quality policy to

be learned more quickly.
This chapter begins with a brief overview of planning using the STRIPS rep-

resentation, followed by a description of the PLANQ learning method itself. A

problem domain is then defined which will be used to evaluate the performance of

PLANQ in problems of increasing difficulty. A comparison in this domain of the

performance of a PLANQ-learner and a Q-learner produces encouraging results,

but a much greater improvement in performance is achieved by incorporating a

state- abstraction mechanism. The performance of this extended PLANQ-learner
is compared with that of an agent using HSMQ-Iearning (Dietterich, 2000a), a
hierarchical RL algorithm that is able to exploit the same state abstraction. The

results show that PLANQ is superior in its scaling-up properties both in terms of

environment time steps and in terms of computation time. It is also shown that
PLANQ exhibits high variance in the computation time expended per time step.

239

7.1 The STRIPS Planning Representation

The STRIPS representation (Fikes and Nilsson, 1971) and its descendants form the
basis of many symbolic planning systems. It is based on first-order predicate logic,
but has a number of restrictions which make it possible to search for plans without
requiring a full theorem proving system. Despite these restrictions, STRIPS is suf-
ficiently expressive to represent many interesting and difficult planning problems.
Each individual state is represented by a set of positive ground literals. The set of
goal states is described by a conjunction of positive literals. Each STRIPS operator
is represented by three components:

Preconditions The literals which must be true in a state for the operator to be

applicable in that state.

Add List The literals which become true in the state which results from applying
the operator.

Delete List The literals which become false in the state which results from ap-
plying the operator.

Two different planners based on the STRIPS representation were used during the

course of the work reported in this chapter. Both of these planners were based

on the influential GRAPHPLAN algorithm. GRAPHPLAN itself is based on a data

structure called a planning graph, a graph structure annotated with STRIPS literals

and operators. The planning graph encodes which literals can be made true after n

operators have been applied, and which literals are mutually exclusive at that time

step. The algorithm works by constructing the planning graph forwards from the

initial state (time step 0) until a time step is reached where all the goal literals are
true and not mutually exclusive. Then the planning graph is searched backwards

for a valid plan. If no plan can be found the planning graph is extended by one
time step and the backward search is repeated. GRAPHPLAN constructs plans very

quickly in domains which do not have a large number of objects.
The initial experiments reported in this chapter used the FASTFoRwARD or

FF planner (Hoffmann, 2000), which uses the GRAPHPLAN algorithm on a relaxed
version of the planning problem. The planning graph then forms the basis of a
heuristic for forward search. In later experiments a custom implementation of
the GRAPHPLAN algorithm was used, which eliminated expensive parsing and file

access operations in order to minimize the time required to generate a plan.

240

7.2 The PlanQ Learning Method

In this section a novel method for hierarchical learning in large-scale problems is

presented. This hybrid method uses symbolic plans to explicitly represent prior
knowledge of the internal structure of a (goal-oriented) MDP. By exploiting this

knowledge the number of steps in the environment required to learn an adequate

policy can be greatly reduced. I will call this approach PLANQ-1earning.

The definition of an adequate policy will vary according to the application
domain. The use of the word "adequate" emphasizes that the primary goal here is

not to find a truly optimal policy, but to find an acceptable policy in a reasonable

amount of time. The truly optimal policy may not be obtainable for a number of

reasons:

e The available knowledge of the problem structure may be incomplete, and
learning can only be accelerated by this partial knowledge.

The available knowledge of the problem structure may be inaccurate, arising

either from an error in the design of the knowledge base, or as a result of

sacrificing some accuracy to obtain a simpler abstract model of the problem.

e Limited availability of experience in the environment and/or limited compu-
tational resources.

The approach explored in this chapter uses a STRIPS knowledge base and planner

to define the desired high-level behaviour of an agent, and reinforcement learning

to learn the unspecified low-level behaviour. This can be viewed as an instance of

a layered architecture (Gat, 1997; Stone, 1998), with high-level planning and low-

level learning. One low-level behaviour must be learned for each STRIPS operator
in the knowledge base. There is no need to separately specify a reward function

for each of these operators - instead a reward function is derived directly from the

logical preconditions and effects of each STRIPS operator.
As well as a knowledge base describing the high-level operators to be learned,

the agent has access to an interface which, given a low-level reinforcement learning

state (representing low-level percepts), can construct a high-level set of STRIPS

literals which describe the state. The STRIPS output of the interface must include

the current goal of the agent. This limits the learning agent to domains where the

only reward received is associated with reaching one of a set of goal states.
Initially the agent has no plan, so it uses the above interface to turn the initial

state into a STRIPS problem description. The STRIPS planner takes this problem
description and returns a sequence of operators which solves the problem. The

241

agent has a subordinate Q-learning agent to learn each operator, so the Q-learner

corresponding to the first operator in the plan is activated.
The activated Q-1earner takes responsibility for choosing actions, while the

primary agent monitors the high-level descriptions of subsequent states. When

the high level description changes the primary agent performs one or more of the
following operations:

Goal Changed If the overall goal of the agent is detected to have changed a new

plan is needed, so the agent must run the STRIPS planner again.

Effects Satisfied If the changes specified by the Add and Delete Lists of the

operator have taken place then the Q-learner has been successful and receives

a reward of +1. The Q-learner for the next operator in the plan is then

activated.

Preconditions Violated If a precondition becomes false while the effects are

still unsatisfied then the operator is assumed to have failed. The Q-learner

receives a reward of -1 and the STRIPS planner is activated for re-planning.

Operator In Progress If the effects are unsatisfied and the preconditions in-

violate, either the effects are partially complete, or a irrelevant literal has

changed truth value. The current Q-learner receives reward 0 and continues.

The assumption that violating the preconditions indicates operator failure has

some important consequences. It means that any operator which deletes some of
its own preconditions must perform all these deletions together in the final action

of the low-level behaviour. To relax this restriction the STRIPS representation

could be extended by specifying an invariant for each operator. The invariant is a
logical formula which must remain true during the lifetime of an operator. If the

invariant ever becomes false an operator failure is deemed to have occurred. The

experiments reported in this chapter did not require invariants, but they may be

needed for other application domains.

7.3 Evaluation Domain

The evaluation domain used here is a grid world which consists of both smaller grid

squares and larger region squares which contain groups of grid squares. The region

squares represent target areas to which the mobile robot must navigate. Using

region squares for the agent's goal rather than individual grid squares means that

it will be possible to reason about goals at an abstract level which only considers
the region squares, ignoring the detail provided by individual grid squares. There

242

.......... I
..........

.......... I I
.........

Region edges
..........

.... Grid squares

Target region
....
.... Robot

-4 n =5 g

n =3 r

..........

..............

..........

.........

..........

....

....

. ..

..........

....

.....

..........

.... ..

..........

.........

Figure 7.1: An instance of the evaluation domain.

is only ()it(, acthic (i. e. goal) region square at any time. Whenever the robot enters

tlic active repion it receives a reward and a new goal region is chosen at random. n 1-1 n
The robot is situated in ()]'('of the g-rid squares, and faces in one of the four compass
directions: 'north. ca"St. south and '11yest.

To evaluate performance as the state space is scaled-up, a class of these pro])-

leins was defincd. where the regions are arranged in a square of side n,. (see Figure

7.1). Each region contains a square set of grid squares, of side ii.. There are a
22, total of I?!]/?? nrid squares which the robot can occupy. Since the destination of the

r possible destinations. Hence the size robot must be it region square, there are p. 2

of the State space S. which encodes the position and direction of the robot, as well

as the location of' the current destination region, is:

21 4 Sl = 4ng Ir

This doinain is intended to be representative of other goal-oriented doinains

n addition, the siiiplicit. N which have a sip-nificant degree of high level structure. In

of this domain makes it an ideal choice for illustration purposes. It is easy to

partition the overall problem into parts where low-level learning is to be jised
(within individual region squares) and parts where hitgh level planning is to be

lised (wivigating, between the region squares using high level movement operators).
Allowing itf, and ii, to be varied independently means that not only can we scale up

to larger problems in a quantitative fashion. but we can also control the relative
difficultv of the parts of the problein assigned to the planner and the low-level

learners.

243

There are only three actions available to the robot: turn left, turn right and
forward. Tum left turns the robot 90' anticlockwise to face a new compass direc-

tion. Turn right causes the robot to make a 90' clockwise turn. Forward will move
the robot one square forward in the direction it is currently facing. If the robot
tries to move off the edge of the map of grid squares the forward action will have

no effect.
The robot receives a reward of 0 on every step, except on a step where the

robot moves into the active region. When this happens the robot receives a reward

of 1 and a new active region is picked at random from the remaining regions. This

introduces a small element of stochasticity to the domain, but this is not significant
for the PLANQ-learner, since it will re-plan each time the goal (the active region)

changes.
The high level STRIPS representation of the evaluation domain abstracts away

the state variables corresponding to the orientation of the robot and the position of
the grid square it occupies in the current region. Reasoning with this representation
is limited to the level of regions. It allows a path to be planned between the current

and target regions using a knowledge base which encodes an adjacency relation over
the set of regions.

Each region at a position (x, y) is represented as a constant r-x-y. The predicate

adj (ri, r2, dir) encodes the fact that region r2 can be reached from region ri
by travelling in the direction dir, which can be one of the compass points N, S, E or
W. The at W predicate is used to encode the current location of the robot, and to

define the goal region to be reached.
The operators available are NORTH, SOUTH, EAST and WEST, which correspond to

low-level behaviours to be learned for moving in each of the four compass directions.

PDDL, the Planning Domain Definition Language (Ghallab et al., 1998), is

used to pass problem descriptions and solutions between the agent and the FF

planner. It forms the basis of a weakly-coupled interface between the agent and
the planner, which allows any other external planner to be used if it can manipulate
PDDL data. Examples of an operator definition and a problem description (from

the evaluation domain) in PDDL format are shown in Figures 7.2 and 7.3.

7.4 Experiment 1: Results

In the first experiment the PLANQ-1earner was evaluated using a variety of values

for n, and n.. For the purpose of comparison a standard Q-learning agent and an

agent using a hand-coded version of the optimal policy were also evaluated in the

domain.

244

(: action NORTH : parameters (? from ? to)

: precondition (and (at ? from)

(adj ? from ? to N))

: effect (and (at ? to)
(not (at ? from)))

)

Figure 7.2: The operator NORTH from the evaluation domain.

(define (problem regiongridl)
(: domain regiongriddomain)

(: objects r_0_0

r-0-1

r-1-0

r-1-1

(: init (adj r-0-0 r-1-0 E)

(adj r-0-0 r-0-1 S)

(adj r-0-1 r-1-1 E)

(adj r-0-1 r-0-0 N)

(adj r-1-0 r-0-0 W)

(adj r-1-0 r-1-1 S)

(adj r-1-1 r-0-1 W)

(adj r-1-1 r-1-0 N)

(at r-o-i)

goal
(at r-0-0)

))
Figure 7.3: A PDDL problem description for n, = 2.

245

The standard Q-learner uses the full state space S as defined above, and chooses
between the three low-level actions: turn left, turn Tight and forward. Like the
PLANQ-learner, it receives a reward of I on a step where it enters a goal region,
and a reward of 0 everywhere else. In all of these experiments the learning rate
a is 0.1 and the discount factor -y is 0.9. An e-greedy exploration strategy is used
(see Section 3.3), with the c parameter decaying linearly from 1.0 to 0.0 over the

course of the experiment. The rate of decay for c was chosen so that the decay was
as fast as possible without impacting on the final quality of the solution.

Examples of the performance of the agents over time are shown in Figures 7.4

and 7.5. The graphs in these Figures demonstrate that as larger values of nr are
considered the performance advantage of PLANQ-learning over Q-learning becomes

progressively smaller. The Q-1earning agent consistently learns the true optimal
policy. The PLANQ-1earner learns a good policy, but not quite the optimum. This
is because the planning model of the grid world does not model the cost of mak-
ing turns - the plans INORTH, EAST, NORTH, EAST} and INORTH, NORTH, EAST,
EAST} are considered equally suitable by the planner, but in reality the latter plan
has a better reward rate. This results in slightly sub-optimal performance.

In both of the experiments the PLANQ-1earner finds a good policy several times

more quickly than the Q-1earner. This is to be expected: the Q-learner must learn
both high and low-level behaviours, whereas the PLANQ-1earner need only learn

the low-level behaviour. However it can be observed that the advantage of the
PLANQ-1earner over the Q-1earner is less in the n, =5 experiment than in the

n, =3 experiment. The general trend for the PLANQ-1earner to lose advantage as
n, increases is discussed in the next section.

7.5 Problems with Experiment].

The learning speed-up achieved by the PLANQ-learner over the Q-learner can be

attributed to the temporal abstraction inherent in the STRIPS formulation of the

problem domain. The temporal abstraction allows us to express the overall problem

as a number of sequential sub-problems, each of which is easier to learn than the

overall task. Because the PLANQ-1earner can learn the sub-tasks separately, it can
finish learning more quickly than the Q-learner, which must tackle the problem as

a whole.
However, the advantage offered by temporal abstraction grows smaller as larger

domains are considered since there is no state- abstraction available to the PLANQ-

learner. A state abstraction allows state variables to be excluded from the learner's

state space if they are not relevant to learning a particular task (or subtask). For

246

0.2

0.15

0.1

cl 0.05

(1

4+
*IK-W

X

Xxx Optimal
Q-Leamer

XX
>/ PLANQ-Leamer

III
0 0.5 1 1.5 2 2.5 3 3.5

Steps taken in the environment x 10-6

Figure 7.4: Results for experiment 1, where n, =3 and n., =

0.1

0.08

U. U6
72

0.04

;40.02

n

i +-4-+++

xx

x

xxx
Optimal

Q-Leamer
Pl, ANQ-L eamer

0 10 20 30 40 50 60
Steps taken in the environment x 10,6

Figure 7.5: Results for experiment 1, where n, =5 and n., = 5.

instance, to learn the behaviour for the NORTH operator, only the direction and the

position of the agent within the current region are relevant. The identities of the

current and destination regions are irrelevant.

Without the state abstraction, the PLANQ-learner has no way of knowing that

the experience learned for moving NORTH from roj to ro, o can be exploited when

moving from r2,1 to r2,0 (where r.,, y is written to indicate the region at position
(x, V) in the region grid). This leads to situations like the one in Figure 7.6, where
the quality of a partially-learned operator can vary considerably in different regions

of the grid world.
The PLANQ-learner needs to perform enough exploration in the state space to

learn the operator separately in all of the regions in which it is applicable. As n,
is increased the time taken to perform this exploration approaches the time taken

by the Q-learner to learn the entire problem from scratch.

247

...
.

....... ...
.

.

Figure 7.6: Learning the NORTH operator without state abstraction. Blank squares
indicate states which have not yet converged to the optimal action. Note that
NORTH is never applied in a region rý, y when y=n, - 1.

7.6 Adding State Abstraction

To exploit the STRIPS representation of PLANQ effectively a state abstraction
mechanism was added to the system. Each of the STRIPS operators was annotated
with the names of the state variables which were relevant to the learning of that

operator (see Figure 7.7). The Q-learner for that operator learns with a state space
consisting only of these relevant variables. This speeds up learning by generalising
the experience from one region to improve performance in another region.

However, supplying this extra information to the PLANQ-learner gives it a
significant advantage over the Q-learner, and comparing their learning times is

unlikely to be useful. A more revealing comparison would be with a hierarchical
Q-learner (Barto and Mahadevan, 2003) which can take advantage of the temporal

and state abstractions already exploited by PLANQ.

For the purposes of this comparison, the Hierarchical Semi-Markov Q-Learning
(HSMQ) algorithm (Dietterich, 2000a) was selected. The HSMQ learning algo-
rithm is a simplified version of the MAXQ-Q learning algorithm, which was re-
viewed in Section 3.5.4. Like the MAXQ-Q algorithm the HSMQ algorithm can
learn at multiple levels of a hierarchy simultaneously while using a different state
abstraction at each node of the hierarchy. It also shares the property of MAXQ-
Q that it can be theoretically guaranteed to converge to a recursively optimal'
policy. The key difference between the two algorithms is that HSMQ does not
use the MAXQ value function decomposition. This means that the more powerful
state abstraction techniques made possible by the decomposition cannot be used

'The definition of recursive optimality is given on page 63 of Section 3.5.

248

Temporal Abstraction State Abstraction

High-level control I Relevant state variables
Current region x-pos

Policy for choosing Current region y-pos
abstract actions Destination region x-pos

Destination region y-pos

.......

North West 1: Relevant state variables
Robot direction L

East I Robot x-offset within region
Robot y-offset within region

Abstract actions

Figure 7.7: Temporal and state abstractions used by the PLANQ-learner and the

HSMQ-Iearner. Note that of these two only the HSMQ-learner learns at the high-

level as well as (simultaneously) at the low-level.

with HSMQ. For the purposes of the comparison in this chapter a relatively simple

state abstraction will be perfectly adequate. Pseudocode for the HSMQ-Iearning

algorithm is given in Algorithm 13.

The hierarchy used by the HSMQ learner (see Figure 7.7) is based on four

abstract actions corresponding to the STRIPS operators of PLANQ- The desired

behaviour of each abstract action is determined by an internal reward function

supplied as part of the hierarchy. The high-level task in the hierarchy is to find

a policy for executing the abstract actions which maximizes the reward accumu-
lated in the environment. The hierarchy also encodes those state variables which

are relevant to the learning of each operator, and those state variables which are

relevant to the learning of the high-level policy for choosing abstract actions.

7.7 Experiment 2: Results

Figures 7.8-7.10 show the results obtained by the augmented PLANQ-learner and

the HSMQ-learner for two instances of the evaluation domain. The HSMQ-Iearner

requires an increasing number of time steps to learn a recursively optimal policy

as n, is increased. In contrast the PLANQ-learner consistently achieves a policy of

a similar quality within a constant number of steps (around 100,000). Once it has

learned a good policy for achieving each of the operators in an arbitrary 5x5 region

(thanks to the state abstraction) the PLANQ-learner has enough information to

achieve a good rate of return in a region square of arbitrary size. In other words,

the number of steps needed for the PLANQ-learner to achieve a good rate of return

is dependent only on n., not on n,.

249

Algorithm 13 The Hierarchical Semi-Markov Q-learning (HSMQ) algorithm.
jVn, s, a initialise Q(n, s, a) to 0. }
lCall HSMQ (RO OTNODE (), STARTING STATE()) at the start of each episode. }

function HSMQ(node n, state s)
A4-- CIIILDREN(n) factions at the next hierarchy levell

rt. tal 0 jaccuinulate discounted reward}
kt. t,,, 0 Itime steps elapsed at this node}

While not TERM I NATION CONDITION (n, s) do

Choose action a from A according to the exploration strategy.

if a is a primitive actioii then

Execute a, and observe new state s' and reward r.
k 4- 1 {k is the time taken by the action}

else
(s', r, k) +-- HSMQ(a, s) f recurse down the hierarchyl

end if

S ABSTRACTSTATE(n, s)

S' ABSTRACTSTATE(n, s')

R LOCALREWARD(n, a, S, S')

Q(n, S, a) a)Q(n, S, a) +a (r + R) + -yk max Q (n, S', a')
I

a'EA

I

rtotal '4- ? 'total + ryktot. 1

ktotal 4-- ktow +k

S 4-- 51
end while

return (s, rt. t,, I, k7total)

end function

250

0.5

Optimal
HSMQ (using S. A.)

PLANQ (using S. A.)

0.4

0.3

0.2

0.1

n
0 0.05 0.1 0.15 0.2 0.25

Steps taken in the environment x 10-6

Figure 7.8: Results for experiment 2, where n, =2 and ng = 5.

U. IZ

0.1

0.08

0.06

0.04

0.02

0 A--- ,IIIIII
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Steps tak-en in the environment x 10,6

Figure 7.9: Results for experiment 2, where n, =4 and ng = 5.

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01
n

I Iwo
Nx-xX--

xI

Optimal

;K
HSMQ (using S. A.)

X>ex
PLANQ (using S. A.) ---

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Steps taken in the environment x 10-6

Figure 7.10: Results for experiment 2, where n, =6 and ng = 5.

251

The HSMQ-Iearner on the other hand needs to learn both the low-level abstract
actions and the high-level policy for choosing abstract actions. By exploiting both
this temporal abstraction and the state abstraction information supplied with the
hierarchy, the HSMQ-Iearner can achieve a recursively- optimal policy in orders of
magnitude less time than the original Q-learner takes to achieve a good rate of
return. However, the number of steps the HSMQ-Iearner needs to achieve this

policy does increase with nr, since the high-level policy becomes more difficult

to learn. So as the value of nr is increased, the PLANQ-learner outperforms the
HSMQ-1carner to a greater degree.

7.8 Computational Requirements

Although PLANQ achieved a good policy after fewer actions in the environment
than the other agents, it is important to consider the CPU time required to calcu-
late each action choice. Tile original implementation used the FF planner and the
STRIPS encoding shown in Figure 7.3. This scaled very poorly in terms of CPU
time. Results could only be obtained in a feasible time for values of n, < 6.

To improve the scaling properties of PLANQ a custom GRAPHPLAN planner

was written, which eliminated costly operations such as parsing and file-access,

but still provided a fully functional domain-independent planner. This reduced
the time required to generate each new plan, but overall the scaling performance

remained poor (see Figure 7.11).

Ail alternative STRIPS encoding of the evaluation domain was also adopted,
as shown in Figures 7.12 and 7.13. This involves encoding a subset of the natural
numbers with the successor relation s (a, b), and representing the x and y coordi-
nates independently as x(n) and y(n). Replacing the adjacency relation with a
successor relation means that the number of formulae in the initial conditions is
0(n,) instead of 0(n2), which makes a great improvement to the performance of r
PLANQ.

Figure 7.14 shows the amount of CPU time taken for PLANQ to learn a policy
with 95% optimal performance. While the HSMQ learning method is infeasible for

nr > 20, PLANQ can learn to make near-optimal action choices in under a minute
if nr < 50. However, as nr approaches 70 PLANQ also starts to become infeasible.
At this point the time required to learn a 95% optimal policy becomes completely
dominated by the time required for symbolic planning in the abstract model of the
domain, as shown by the measurements in Figure 7.15.

A key limitation of the PLANQ algorithm in its current form is the large vari-
ance in CPU time required per time step. On most steps an action choice can be

252

400

350

300

250

200

150
Ci. u

50

100

0"
0 1

nr

Figure 7.11: CPU time required to achieve 95% optimal performance when ng = 5.

This experiment used the new GRAPHPLAN implementation for planning, and the

first PDDL domain encoding (given in Figure 7.3).

made in a few microseconds, but if the planner needs to be invoked the choice may
be delayed for 50 or 100 milliseconds. For systems with real-time constraints this
is clearly unacceptable.

7.9 Discussion

In this series of experiments it has been shown that a symbolic planning algorithm
based on the STRIPS representation can be combined successfully with reinforce-

ment learning techniques. This results in an agent which uses an explicit symbolic
description of its prior knowledge of a learning problem to constrain the number

of action steps required to learn a policy with a good (but not necessarily optimal)

rate of return.
PLANQ-learning has some similarities to methods used in the RACHEL System

(Ryan, 2002a), which was surveyed in Section 3.6.1. The mechanism described in

this chapter for generating a reward function from a symbolic operator is also used
in the RACHEL system. The two systems differ in their use of planning techniques.

RACHEL uses semi-universal plans, which require more memory than linear plans
but result in less replanning when individual operators fail. In addition, Ryan
(2002a) focuses primarily on the benefits that teleo-reactive behaviour can bring

to an RL-based system. In contrast, this chapter focuses on performance issues as

253

(define (problem regiongrid2)
(: domain regiongriddomain)

(: objects no ni n2)

(: init (s no n1)
(S n1 n2)
U no)
ly no)

(: goal U ni)
(y n2)

Figure 7.12: Alternative encoding of a PDDL problem description for n, = 3.

(: action NORTH : parameters (? from ? to)

: precondition (and (y Urom)

(s ? to Urom))

: effect (and (y ? to)
(not (y ? from)))

)

Figure 7.13: Alternative encoding in PDDL of operator NORTH.

254

200

;ý 150

loo

50

n

PLANQ
HSMQ

0 10 20 30 40 50 60 70
nr

Figure 7.14: CPU time required to achieve 95% optimal performance when ng = 5.

This experiment used the new GRAPHPLAN implementation for planning, and the

alternative PDDL domain encoding (given in Figure 7.12).

3C
'A

25

2L

ic

01111111
0 10 20 30 40 50 60 70

nr

Figure 7.15: For each value of n, this graph shows the maximum time required for

the construction of a single plan recorded during the time required to learn a 95%

optimal policy.

255

the size of the state space is scaled-up exponentially, with particular attention paid
to the benefits of using state abstraction in combination with symbolic planning.

The STRIPS representation used in this work is limited to describing problems

which are deterministic, fully observable, and goal oriented. To overcome some

of these limitations, the PLANQ method could be adapted to use a more com-

plex planner which can reason about stochastic action effects and plan quality.
However, it is also possible that prior knowledge encoded in the limited STRIPS

representation will still be useful for speeding up the learning of many problems,

even if some aspects of those problems are inexpressible in this representation.
One limitation of PLANQ-Learning is the rigid separation of planning and

learning in the layered architecture. The high level structure must be known in

full before learning begins, and learning has the quite limited scope of implementing

the low-level actions. While some domains exhibit this kind of structure, it is more

often the case that solving high level aspects of a problem by planning alone is

infeasible, and that some learning at this level is also necessary.

In an ideal system, a closer integration of planning and learning would enable

a greater synergy to emerge from their combination. If new symbolic facts about

the environment can be discovered from experience, it should be possible to add

them to the knowledge base. Alternatively, the knowledge base could be used to

generate likely hypotheses for the learner to evaluate in the environment.

7.10 Summary and Conclusions

The following material has been presented in this chapter:

A novel hybrid method called PLANQ-learning, which combines high-level

symbolic planning with low level reinforcement learning to implement be-

haviours for abstract planning operators.

A grid-world based evaluation domain which can be quantitatively scaled up

to produce a series of more difficult problems by modifying the parameters

n, and ng.

* An evaluation in this domain comparing the performance of PLANQ-learning

with that of a standard Q-1earning agent.

* An analysis of the use of state abstraction in this domain.

9 An evaluation in this domain comparing the performance of PLANQ-Iearning

with state abstraction to a hierarchical reinforcement learner which can also
exploit the specified state abstraction.

256

9A study of the computational resource requirements of PLANQ-learning.

From this material we can draw the following conclusions:

Witliout the use of state abstraction PLANQ can only accelerate learning for

the simplest of problems. As progressively more difficult problems are con-

sidered PLANQ-Iearning offers very little benefit over standard Q-learning.

With the addition of state abstraction PLANQ-learning requires less time

to learn a high-quality policy than either a standard Q-learning agent or a
hierarchical RL agent using state abstraction.

Using the well known FASTFORWARD planner with a naive STRIPS encoding

of the domain, the computation time required to achieve a high-quality policy
became rapidly infeasible as n, was increased.

Using a GRAP11PLAN planner with a more streamlined interface, and an
improved STRIPS encoding of the domain, a high quality policy could be

feasibly achieved for much larger values of n,.

Overall, these experiments show the potential of symbolic planning as a tech-

nique for providing high level structure for RL agents, making complex learn-

ing problems feasible by constraining learning to those areas where symbolic

knowledge is inadequate or unavailable.

257

Chapter 8

Conclusions

This thesis has been concerned with developing methods for scaling-up reinforce-

ment learning, so that high-quality policies can be learned for problems which are
infeasible using standard RL algorithms. In this concluding chapter, a summary
is presented of the material contained in this thesis on the two key topics of par-

allelism and symbolic planning in RL. In addition, the limitations of the methods

presented in this thesis are examined. Finally, the benefits for the wider RL field

resulting from this research are assessed and several directions for future research

are presented.

8.1 Parallel Reinforcement Learning

The first hypothesis of this Nvork, given on page 21, stated that:

It is possible to exploit parallel hardware in reinforcement learning

to achieve a speedup without sacrificing policy quality.

To demonstrate the hypothesis, a series of novel methods for parallel RL were pre-

sented in this work. These methods are based on the assumption that a simulated

version of the target learning environment exists and that this simulation can be

replicated on each node of a parallel computer. This means that an agent can be

situated on each node, and that the group of agents can learn in parallel, each
interacting with a local copy of the simulation.

Across all of the proposed methods, each individual agent uses the SARSA(A)

algorithm (Rummery and Niranjan, 1994) in combination with a linear value func-

tion approximator. The features for the approximator are binary and are generated

using tile coding (Sutton, 1996). All of the proposed methods are based on the

periodic exchange of information about the weights of each agent's value function

approximator.

258

The three methods proposed are:

The Visit-Count Merge Method Each agent keeps a count of how many times

each binary feature is active in the local simulation. This is known as a visit-
count. Periodically the group of agents performs a distributed summation to

calculate a weighted average of the agents' weight vectors. The weighted aver-
age gives greater credence to feature-value estimates from agents with a large

visit-count for a particular feature. After each periodic merging operation,
each agent replaces its local weight vector with the weighted average.

The Selective Merge Method Agents in this method exchange recent changes
to the approximator weights instead of exchanging the absolute weight values
themselves. In addition, the agents are selective about which weight changes
are communicated. An agent sends a fixed number of weight changes with
the largest magnitudes to the other agents during each merge operation. A

merge operation consists of a simultaneous broadcast by all of the agents of
a message containing the selection of weight change values.

The Asynchronous Selective Merge Method An extension of the selective

merge method described above. Asynchronous message passing is used to

eliminate the requirement for the group of agents to synchronize during ev-

ery merge operation. This means that the broadcasts of weight changes need
not be simultaneous and can be distributed more evenly over time. In addi-
tion, agents no longer need to wait for a message from every member of the

group before their local weights can be updated. Individual messages can be

processed and incorporated into the local value function as and when they

arrive.

The selective and asynchronous selective merge methods each have a number of

variants, depending on the particular mechanism which is chosen for updating the

local value function approximator in response to incoming messages. The relative

performance of these variants was examined during the evaluation, in addition
to a comparison of the best performance achieved by each of the three methods

proposed above.

8.1.1 Summary of Experimental Results

The experimental evaluation of the parallel RL methods used two different settings,
both based on a distributed memory model of parallel computation. The first

of these settings was a simulation of parallel agents, which could be run on a

uniprocessor computer. This simulation did not model the time delay incurred

259

when messages are transmitted between the agents, so the simulation was used
primarily to show that the methods converged to good policies, ignoring whether
the utilised communication bandwidth was realistic. The second setting was a
cluster of workstations based on commodity hardware using a 10OMbs Ethernet
interconnect. The limited bandwidth of this communication network means that
the large parallel speedups that can be achieved in simulation cannot necessarily
be achieved in the more realistic setting.

Five example single-agent RL problems were chosen for the evaluation. Three

of these are well known RL benchmark problems: the Mountain-Car task, the
Pole-Balancing task and the Acrobot task. Tile other two problems are IoNv_ and
high-difficulty instances of a stochastic grid world domain defined in Section 4.3.1.
These five problems were chosen to exhibit a range of different characteristics,
such as variations in the level of stochasticity, and whether the problem is goal-
oriented or not. Successful performance over this whole set of problems should
be a good indication that a given parallel RL method will perform well for many
other problems than just the ones considered here.

The evaluation showed that the visit-count merge method produced large speed-
ups in all the evaluation domains using the simulation of parallel agents. The

speedups fell short of the perfect case of a linear speedup, predominantly due to
the fact that there is not a perfect division of labour between the agents (i. e. there
is some duplication of effort.) The success of the method using the simulation
of parallel agents shows that combining approximator weights from several paral-
lel agents is a valid mechanism for the agents to share intermediate results and
progress more quickly towards a high-quality solution.

However, such positive results for the visit-count merge method are not re-
peated when the method is evaluated using the cluster of workstations. The limited
bandwidth of the cluster interconnect proves to be a significant bottleneck. Even

using ail efficient distributed summation algorithm, each agent must transmit a
weight and a visit count over the network for every feature in this method. All of
our example problems use thousands of features, so the time required to complete
the distributed summation is significant. Since the agents wait for the complete

summation before learning is resumed, they waste a lot of time waiting for mes-
sages to arrive. Under these conditions, modest speedups can only be achieved in

the two grid world problems. No speedup is possible in the other three problems.
The selective merge method was motivated by the need to reduce the com-

munication burden of the visit-count merge method. Changes to the weights are
broadcast instead of absolute values, and only a fixed number of the largest changes

are sent in each agent broadcast. Tile evaluation shows that this approach is suc-

260

cessful, allowing speedups to be obtained in all the domains using the cluster of
workstations. However, some of the speedups are very small, especially in the Ac-

robot task. This appears to be because the Acrobot task requires a large number
of features for the approximator, but does not require many simulation steps to
converge to a good policy. This means that the communication overhead is large
in comparison to the relatively small amount of time required for a single agent to
converge.

The asynchronous selective merge method eliminates the requirement for each
agent to wait for a message from each of its peers before a new period of learning

can begin. This eliminates the synchronization penalty inherent in the two previous
methods. The evaluation shows that the time saved by making this modification
is significant, allowing much better speedups to be obtained in all the evaluation
domains. The greatest improvement is shown in the Acrobat task, where previously
only a very small speedup could be obtained using the selective merge method. This

asynchronous method is the most effective algorithm for parallel RL developed in
this work.

With regards to the variants of the latter two methods, the asynchronous selec-
tive merge method had one variant which produced the best performance in a wide
variety of situations, so this is the one to prefer. The selective merge method on

V. the other hand had no clear winner out of the proposed mechanisms for updating
the approximator weights in response to messages received from the group. The
best performing mechanism varied according to which particular RL problem was
being considered. In spite of this, the performances of all the mechanisms were
fairly similar, so there is not a large penalty for selecting one of these mechanisms
and using it for all the problems.

8.1.2 Research Benefits

Tile immediate benefit of this research to the RL community is that tile time

required to prepare and run RL experiments can be reduced, either by using dedi-

cated parallel hardware or by utilising groups of idle workstations in a laboratory.
Obviously empirical results for single-agent algorithms must still be generated for

research purposes, so parallelism should not be used in every experiment. However,

even setting up a single-agent experiment requires a number of steps beforehand

such as determining a good set of approximator features, selecting good values for
RL parameters such as tile learning rate and discount factor, and determining tile

number (and length) of runs required to achieve a good policy with high proba-
bility. Using a parallel approach for these preliminary stages could dramatically

reduce tile turnaround time for a given experiment.

261

Another way to view the immediate benefit of this research is that if a fixed

time is available for learning then a policy of higher quality can be learned in this

time. This is particularly relevant for the case when offline learning is used to find

a high quality stationary policy for deployment in some domain. In such cases it is

not unreasonable to set aside hours or days of computation time to generate this

policy. If parallel hardware can be made available, it is likely that the quality of
the deployed policy will be increased if the same time is available for learning.

In the longer term, this research is also potentially relevant to the problem

of multi-agent learning. In this thesis I have focused on single-agent learning

problems that can be simulated. This is a relatively simple way of ensuring that the

parallel agents learn a value function corresponding to the same problem. In multi-

agent learning, several agents are situated in the same environment. This means
that their actions can potentially affect each other, introducing new challenges for

machine learning researchers. However, suppose that two agents are in different

locations of the environment, so that their actions do not directly affect each other.
Suppose also that the agents are working on two similar subtasks of the overall

problem. By using abstraction to ignore state variables which are irrelevant to the

subtask, it may be possible to make the subtasks; look like two (almost) identical
but separate learning problems. If the agents also have a communication channel,
the methods described in this thesis become directly applicable. Thus the use of
parallel RL in a multi-agent context is bound up with the problem of detecting

and/or defining abstract hierarchies for planning, acting and learning in multi-

agent domains.

Parallel RL methods do not obviate the need for exploration, generalization,

abstraction and relational representation in reinforcement learning. However, nei-
ther are parallel methods incompatible with these other techniques. While the

work in this thesis has focused on SARSA(A) and linear approximation, there is

nothing which ties the approach of exchanging value function weights to either of
these specific techniques. As long as there is some representation of a value func-

tion, a variation of the methods in this work is likely to be applicable. Parallelism

is best viewed as another technique in the RL "toolbox", to be deployed when ap-

propriate in combination with one or more of these other techniques for scaling-up
RL.

8.1.3 Research Limitations

The main limitation of the methods reported in this thesis is that values for pa-

rameters p and f,, m, which are important for achieving good parallel performance,

must currently be found by trial and error. Parameter p defines the (average) num-

262

ber of simulation time steps which elapses between successive message broadcasts.

For the selective methods, parameter f,,,,, controls the number of weight changes

which can be included in a single broadcast. Together, these parameters are used
to strike a balance between communicating often enough to converge quickly to

a good policy, but not communicating so often that most of each agent's time is

spent sending, receiving and processing messages. Although the overall perfor-

mance is insensitive to small variations in these parameters, it is a prerequisite for

good performance that the parameter values are not many times smaller or larger

than tile optimum values. There are already several RL parameters (such as a, \

and c) which require a trial and error approach to tailor an algorithm to a spe-
cific domain, so it is unfortunate that these parallel methods introduce additional

parameter choices. However, there is still the possibility that a heuristic method
for selecting p and f,,, n could be defined, based on system- and domain-specific

properties that can be measured very quickly: the time required for an agent to

send a message containing tile entire set of value function weights to another agent,
and the time required for ail agent to execute a single simulation step and update
the local value function in response to this step.

In this work I have focused on a distributed-memory model of parallel compu-
tation, which maps well to clusters of workstations. An advantage of focusing on
this model is that the methods presented in this work (which are based on message
passing) should also work well on a shared-memory computer such as a symmetric

multiprocessor (SMP) computer. This is because agents can easily exchange mes-
sages by copying data into shared memory. These methods will therefore perform

well on a wide variety of parallel architectures. However, alternative approaches
to parallel RL which specifically target a shared memory model may perform even
better on SMP computers. Determining the form of these alternative approaches

and tile size of the performance improvement that can be achieved is a possible
direction for future research in this area.

A further limitation of this work is that the empirical analysis of the parallel RL

methods and the resulting conclusions about which of the methods perform best

are, to a certain degree, tied to the specific properties of the cluster of workstations

used in the evaluation. The ratio of the bandwidth of the cluster interconnect to

the processing speed of the CPU at each node is an important indicator of tile

overall performance that can be achieved. If we took the cluster used in this work

and replaced the interconnect with a faster 1 Gbs Ethernet interconnect, larger par-

allel speedups would be reported than those in this thesis. In all cluster systems
however, the efficient use of whatever bandwidth is available remains extremely
important, and with appropriate choices for tile p, and f,,,, n parameters, the meth-

263

ods reported in this thesis can be adapted to get good performance out of any

cluster of workstations.

8.1.4 Future Research Directions

There are a number of directions in which this work on parallel RL could be

extended in the future.

Selection and Update Mechanisms

In this thesis, only one mechanism was used to select which weight changes were

most important to communicate, namely those weight changes with the largest

magnitudes. This approach is quite effective, prioritizing those weights in the lo-

cal value function with the most pronounced differences from the group's existing
knowledge of the environment. However, there remains the potential for improve-

ment in this area. One flaw of the current approach is that information about

the f, ý,,, largest weight changes is always sent in every broadcast, no matter how

small these changes are. Towards the end of the experiment, when the VIA has

all but converged, many of these changes could be zero, or very close to zero.
Communicating these tiny changes is unlikely to have any benefit, so all additional

mechanism to exclude insignificant changes may improve performance. One alter-

native selection mechanism is to track the range of values observed for a particular

weight and communicate a weight change only when the value of the weight moves

outside the previously observed range. Another alternative is to track the mean

and standard deviation of each weight value over time, prioritizing communication

of weights which undergo large changes relative to the standard deviation. This

may improve performance in situations a number of state-action pairs have a very

similar mean reward but very different levels of variance.

Other Approximation Architectures

The evaluation of the parallel RL methods in this thesis used tile-coded linear

approximators based on binary features to represent the value functions of the

agents. The visit-count merge method described in Chapter 4 makes use of a

count of the number of times each binary feature is active (i. e. has value = 1), so
this method is strongly tied to the use of binary features. On the other hand, the

selective and asynchronous selective merge methods do not use visit counts, and
are therefore applicable to any linear function approximation architecture, such as
using radial basis functions to generate learning features. A further empirical study
using a variety of approximation architectures would provide stronger evidence of

264

the potential of these methods for accelerating RL with linear approximation.
The parallel RL methods described here could also be applied to non-linear

neural network approximation architectures, although the combination of neural

networks and RL has proved unreliable in previous research (see Section 3.4.6).
A more interesting question is whether these methods can be applied to memory

based (also known as instance based) approximators, which have been shown to be

stable and successful approximators for RL (see Section 3.4.4). An assumption of
this thesis has been that all agents use an identical set of learning features which

are ordered. It is important that the features are ordered, since it means that

each feature (and lience each linear approximator weight) can be identified by an
index. To specify a sparse set of changes to the set of weights, a message can be

constructed efficiently from a set of pairs, where each pair consists of an index and

a weight change. With a memory-based approximator, there is no longer a fixed

set of features. Each agent simply stores in memory all the different states that
it has visited. The agents therefore no longer have a common frame of reference
for value estimates, which means that some number of exemplar states must be

exchanged over the communication network to establish a basis for communication.
In domains which require many state variables to describe the environment, the

exchange of such exemplars will be expensive in terms of network bandwidth.

The development of parallel RL methods which use memory-based approximation

represents a major challenge for future research.

Theoretical Analysis

In this thesis, I have presented strong empirical evidence (using a wide range of

evaluation domains) that parallel RL based on merging approximator weights can

speed up learning without compromising the final quality of the learned policy.
While theoretical proofs of convergence have not been provided for the methods
described in this thesis, previous research in RL has shown that methods without

a proof may still be of great practical importance (Sutton, 1996). However, to

increase our confidence in these methods, it would be good to prove that they

converge to policies which are at least as good as those learned by (single-agent)

SARSA(A). A major difficulty here is the fact that there is not currently a proof of

convergence for the single-agent SARSA(A) algorithm if both linear approximation

and a GLIE policyl are used, as they are in this thesis.
In the short term, until a convergence proof is found (or shown not to exist) for

the single-agent algorithm, the best that we could do is to show that convergence
'GLIE stands for "Greedy in the Limit with Infinite Exploration. " See Singh et al. (2000) for

further details.

265

proofs exist for two specific situations:

1. Each of the parallel agents does not explore, but follows a fixed, stationanj
policy for its entire lifetime.

2. The parallel agents do explore, but A=0 and each agent's value function is

represented with a table (i. e. no function approximation).

In each of these cases a convergence proof exists for the restricted single-agent

algorithm. For case 1, a modified version of the proof of Tsitsiklis and van Roy
(1997) can be used to guarantee convergence. For case 2, the proof of Singh et al.
(2000) applies. Extending these results to the parallel case would provide a degree

of confidence that the mechanisms of parallel merging do not interfere with the
long term convergence of SARSA(A), even if we cannot show that the result still
holds in the most general case.

Sliared-Memory Parallel Systems

This thesis has focused on a distributed-memory model of parallel computing, under

which the parallel RL agents must use message passing to communicate interme-

diate results between themselves. This model maps well to an implementation

on a cluster of workstations using commodity hardware. An alternative approach

would be to use a shared-memory model of parallel computing, with an associated
implementation on a symmetric multiprocessor (SMP) computer. One advantage

of the methods described in this thesis is that they can easily be deployed on an
SMP computer. This would be accomplished with a message-passing implementa-

tion in which agents write message data into shared memory rather than using an
interconnection network.

In addition, a shared-memory model allows the possibility of other parallel RL

methods where the parallel agents use and update a shared value function rep-

resentation. This idea was investigated in the context of multi-agent learning by

Tan (1993), though to my knowledge there has not been an implementation us-
ing this concept on real parallel computing hardware rather than in simulation.
This approach raises the question of how the integrity of the shared value func-

tion data structure can be maintained while still allowing fast efficient read/write

access for the agents. The cost of communication in the shared-memory model
arises from locking areas of shared memory rather than delays in message trans-

mission. A study which compared the effectiveness of both the shared-memory and
distributed-memory approaches to parallel RL would also provide new insights.

266

8.2 Symbolic Planning and RL

The second hypothesis of this work, given on page 23, stated that:

A hybrid planning-learning system based on a high-level STRIPS-

based planner and low-level reinforcement learning will exhibit better

scaling properties than both standard and hierarchical RL algorithms
for goal-oriented learning problems.

To demonstrate this hypothesis the novel PLANQ-learning algorithm was presented
in this work. PLANQ-1earning is applicable to RL problems where the only non-

zero reward is received when the agent reaches one of a set of goal states (i. e.

goal-oriented problems.) A high-level STRIPS plan is used to guide the agent
towards the goal states, providing the high-level structure for the agent's policy.
Tile agent has access to an interface which, given a low-level state, will return a
high-level symbolic description of that state and the current goal. The agent also
has symbolic descriptions of a number of abstract operators, which initially have

no implementation in terms of the available low-level actions.
An efficient STRIPS planner based on the GRAPHPLAN algorithm (Blum and

Furst, 1997) constructs a high-level plan to achieve the current goal using the ab-

stract operators. Tile implementation of each operator is provided by learning a

policy at the low-level using RL. Tile reward function used to learn each low-level

policy is derived directly from the preconditions and effects of each abstract op-

erator. Tile symbolic description of the current state is monitored as the agent
interacts with the environment. The agent only receives a positive reward if the

postcondition of the current operator is achieved without violating the precondi-
tions.

8.2.1 Summary of Experimental Results

To evaluate the scaling properties of the PLANQ-learning algorithm, a determin-

istic grid-world domain was selected. Instances of this domain could be scaled up

in quantitative steps to create more difficult problems by modifying the defining

parameters of a problem instance.

The PLANQ-learning algorithm was compared with the standard Q-learning

algorithm (Watkins, 1989) in a series of increasingly difficult instances. In all

of these instances, PLANQ-learning produced the best performance out of the two

algorithms. However, the trend was observed that the difference in performance be-

tween the two algorithms became smaller as the problem instances became larger.

This trend arose because the PLANQ learner was not able to effectively generalize

267

experience gained in different areas of the state space. This result suggests that for

larger problems, high-level planning is essentially useless without state-abstraction.
Introducing a state-abstraction mechanism meant that the PLANQ-learner was

able to vastly outperform the Q-1earning agent. However, this comparison was

unfair since the Q-learning agent was not able to exploit the state abstraction

mechanism available to the PLANQ-learner. A more balanced comparison was

possible with an agent using the HSMQ-algorithm (Dietterich, 2000a), since this

algorithm is hierarchical and can make use of the state abstraction. This com-

parison showed that as the number of regions was increased, the PLANQ-learner

required a constant number of environment time steps to converge to a near-optimal

policy, whereas the number of time steps required by the HSMQ-Iearner continued
to increase. This is because the PLANQ-1earner only needs to learn low-level poli-

cies, whereas the HSMQ-Iearner needs to learn both high- and low-level policies

simultaneously.
In terms of computation time rather than environmental time steps, learning

a high-quality policy using the PLANQ-learner remained feasible for much larger

numbers of regions than either the Q-1earning or HSMQ-1earning algorithms. How-

ever, this property comes with the disadvantage of an extremely high variance in

the computation time expended per time step, since on time steps where replan-

ning is required the time delay to generate a new STRIPS plan can be significant.
Where no replanning is required, the agent's responses are almost instantaneous

by comparison.

8.2.2 Research Benefits

The PLANQ-learning algorithm demonstrates how concepts of hierarchy (see Sec-

tion 3.5) and symbolic planning (see Section 3.6) can be combined with reinforce-

ment learning to create a hybrid planning-learning method. This type of hybrid

approach is most appropriate for learning problems which can be described at a
high level as a number of distinct sequential stages. If a large-scale learning prob-
lem has this kind of structure, the results presented in this thesis have shown that
PLANQ-learning is likely to perform much better than standard flat or hierarchical

RL algorithms.
The results of the experiments reported in Chapter 7 indicate a number of im-

portant guidelines for researchers wishing to implement a hybrid learning method

of this kind. The use of state-abstraction was shown to be vital for generalization
in large, regular domains. Using a symbolic plan to structure a problem solution

without state-abstraction is not going to scale well in such domains. Optimization

of the interface between the agent and the planner was also shown to be impor-

268

taut for controlling the computational requirements of the hybrid method. This is

especially important in simulated learning environments, where it is very cheap to

generate new experiences. Finally, encoding the STRIPS domain theory to facili-

tate efficient planning is also vital for controlling computational complexity. As is

often the case with AI methods, selecting the wrong problem representation will
significantly degrade the effectiveness of the method.

8.2.3 Research Limitations

The main limitation on the applicability of PLANQ-learning to RL problems is that

an appropriate STRIPS domain theory must be found which describes a high-level

solution for a given problem. This requirement for a domain theory places a number
of restrictions on the type of problems which can be solved. The problems must
be goal-oriented (i. e. the only non-zero reward is received when a goal state is

reached) and low-level stochastic effects must be hidden by the policies learned for

the STRIPS operators. In addition, each problem must have a suitable internal

structure such that high-level planning is advantageous for achieving a good return
in the domain.

PLANQ-learning also has limitations which are exhibited by hierarchical RL

methods in general, such as the fact that a hierarchical policy will be sub-optimal
if the high level abstract operators used cannot express the true optimal policy. It

would be extremely useful if the hierarchical policy could be used as an intermediate

step towards learning the optimal policy. However, this is generally not possible

without giving up the use of state-abstraction and the major improvements in

performance which are made possible by it.

The requirement for a STRIPS domain theory and goal to describe an RL

problem can be viewed as a kind of prior problem knowledge. The requirement for

this knowledge can be seen as a limitation, since the knowledge base must generally
be created by hand before learning begins, but it can also be seen as an advantage

of the approach, since if prior knowledge of the problem does already exist it can
be exploited effectively by the PLANQ-learning algorithm.

8.2.4 Future Research Directions

There are a number of directions in which the work on PLANQ-learning could be

extended in the future.

269

Advanced Symbolic Planning

In this thesis a planner based on the GRAPHPLAN algorithm was used, which is
based on the STRIPS representation of states, goals and actions. One restriction
this places on the problems we can solve with PLANQ-learning is that only a
deterministic set of effects can be specified for each high-level operator. If the RL

policies which implement the operators have any stochastic side-effects, the agent
will expend a great deal of effort on replanning. A more advanced planner based on
probabilistic STRIPS operators (Kushmerick et al., 1995) would be able to avoid
some (or all) of the replanning, although typically algorithms for probabilistic
planning are more computationally expensive than deterministic planning.

A second restriction the STRIPS representation imposes on the problems we
can solve is the fact that operators have no cost. This will produce good results
only in domains which are purely goal-oriented, i. e. where the only objective is to

reach a goal state in as short a sequence of actions as possible. A more general
representation would allow for the fact that the various STRIPS operators accu-
inulate different levels of reward while executing in the environment. A planning

algorithm using such a representation could favour where appropriate those opera-
tors with a better return. However, in combination with probabilistic actions, this
level of generality quickly approaches the complexity of planning in a Relational

MDP (van Otterlo, 2005). Adapting the PLANQ-learning algorithm to such a gen-

eral case is likely to be extremely expensive in terms of computation time. There

is definitely an argument in favour of using as simple a planning representation

as possible to keep computation costs feasible, even if this representation is not a
perfect match to the domain in some circumstances.

Multi-Level Hierarchies

The PLANQ method described in this thesis uses a two-level hierarchy, where

symbolic planning is used for the high-level component and reinforcement learning

is used for the low-level component. While a symbolic plan can often be used to

model the high level structure of a policy, this rigidly defined hierarchy does not
have much flexibility, and cannot be applied to problems with a more complex

solution structure. A more general method would allow hierarchies with multiple
levels, where each node of the hierarchy at any of the levels can be either a symbolic

planning or a reinforcement learning node. Which type of node is used would
depend on which method was most appropriate for that part of the problem and
on which domain knowledge was already available or easy to add. It is also worth

recognising that, in some situations, a hand-coded program for selecting actions

270

would be more appropriate than either planning or RL. Allowing nodes to contain

programs as well would further broaden the number of domains for which policies

can be feasibly learned, although obviously it is impossible to guarantee that the

quality of such a policy would be near that of an (infeasible to generate) optimal

policy. Note that this approach would be quite similar to the layered learning

method of Stone (1998).

8.3 Concluding Remarks

Reinforcement learning in large-scale domains remains an extremely challenging

area of research. Auspicious theoretical guarantees of convergence (already shown
for most of the standard algorithms) belie a host of practical problems in the

application of these techniques. These include managing the scope and depth

of exploration in a domain, generalizing between states in a stable manner and

using relational representations of state to combat the curse of dimensionality.

Active research continues in each of these areas, gradually broadening the range

of problems to which RL can be applied effectively.
This thesis provides two main contributions to the overall goal of large-scale

reinforcement learning. Tile algorithms for parallel RL presented here allow parallel

computing hardware to be used for RL. This means that high-quality policies can
be found more quickly for domains which can be simulated. The significance of this

for the broader field is that problems of borderline feasibility can potentially now
be solved in minutes rather than hours, or hours rather than days. In the area of

relational representations, the hybrid PLANQ-learning algorithm presented in this

thesis shows how a symbolic plan can be used as the overall structure for an RL

policy. It has also been demonstrated that the combination of symbolic reasoning,

state-abstraction and low-level RL can feasibly generate high-quality policies for

much larger learning problems than hierarchical RL alone.
Despite the large body of existing work on scaling-up RL, fundamental prob-

lems such as the curse of dimensionality and the explorationlexploitation dilemma

continue to challenge researchers in this area. It may also be observed that as

RL researchers continue to enlarge the set of feasible application domains, a range

of techniques from other areas of Artificial Intelligence research are increasingly

incorporated. As surveyed in Chapter 3, this includes work in Bayesian statis-

tics, heuristic search, regression, classification, classical planning, decision-theoretic

planning, hierarchical task networks and inductive-logic programming. In its broad-

est sense therefore, RL encapsulates several of the most important goals in Al

research, namely planning effective action in the world whilst learning from ex-

271

perience in an interactive, agent-oriented setting. While the scope of these goals

makes a completely general RL approach seem pretty distant, the overall relevance

of RL to the "Al problem" suggests that future progress in RL may allow us to

make significant progress in the design of intelligent agents.
Increasing the number of successful practical applications of RL seems to re-

quire progress in two separate directions. The first direction involves "cleaning

up" various aspects of low-level RL. The number of ad-hoc parameter choices that

are required for many algorithms needs to be reduced. The theoretical basis for

RL in the presence of generalization requires further work. There is also a need
for standard mechanisms to address fundamental trade-offs such as exploration vs.

exploitation, or sample-complexity vs. computational complexity. These low-level

problems currently receive a great deal of attention in the research community.
The second direction is addressing the problem of scale, which may involve the

use of hierarchy, abstraction, relational representations, symbolic reasoning, or per-
haps other mechanisms for learning, organizing and applying an agent's knowledge.

While research is progressing well along a number of fronts in this direction, there

remains little understanding about how RL should be integrated with symbolic

planning, hand-coded policies, or even high-level cognitive approaches to experi-

mentation and discovery. A unifying framework is obviously unlikely, given the

overall diversity of the techniques available for scaling-up RL, but there remains
the opportunity to develop a new family of methods for reinforcement learning in

the large. By maintaining the goal of an interactive agent which receives rewards

and improves in performance with experience, but relaxing various aspects of low-

level RL which are less appropriate at a high level, a new front of RL research could
be established. This could enable the development of a whole new generation of

agents which learn from direct interaction and rewards.

272

List of Mathematical Symbols

Symbol Description

An action.
A 'set of, actions.

cA visit-count, which indicates the number of times a binary

feature is active during a given period.
J, 'Flic total wimber of features, used by a particular function

approxi II lat or.

The number of feature weights communicated by a selective

parallel RL agent in a single merge period.
An ob. servation in a partially observable environment.
An observation function, which defines the probability of

observing o after taking action a in state s.

P The inciyc pcriod, which is the period between consecutive

communications for parallcl RL methods in this thesis.
QA value function which maps each state-action pair to a value.

(2, A state-action value function corresponding to the expected

I'0111*11 Of 7T.

Q* A state-action value function corresponding to the expected

return of the optimal policy 7r*.

I' A rewird.
RA reward function, which defines the expected reward for a

transition (s, a, s').

.SA state.

SA set of states.

tA discrete thne step.

273

Symbol Description

t1im The proportion of the time for a single parallel run which is used
to decay the a and e parameters linearly towards zero.

TA transition function, which defines the probability of each
transition (s. a. s')-

VA value function which maps each state to a value.
I' 7T A value function corresponding to the expected return of

I)Oli(*. V 7T.

V* A value function corresponding to the expected return of the

optimal policy7r*.

0T he initial value of o before a period of linear decay begins.

(t The learning rate, which determines how quickly a value function
is adjusted towards new estimates of state values.
The discount factor, which determines the relative worth of short-
terni rewards and long-term rewards.
The probability of choosing a random action at each time step
when using the F-greedy exploration strategy.

(0 The initial value of F before a period of linear decay begins.
0 An adjustable weight of a function approximator.

011111 The initial value given to all the weights of the function

approxiinator.
A Tile eligibility trace parameter, determining the extent to which

new value estimates affect the values of states visited in the past.
7r A policy which maps each state-action pair to the probability of

choosing that action in that state.
7r* The optimal policy.

A learning feature (or alternatively, a basis function) for a
finicti0ii approxiniator.

Q Set of possible observations in a partially observable environment.

274

List of Abbreviations

Abbreviation Description Further Details

AHC Adaptive Heuristic Critic Section 3.4.6
AI Artificial lutelligence

BSP Bulk Synchronous Parallel Section 3.7.1

(111U Cclitral Processill" Unit
FF "Fast Forward" (planning algoritlini) Section 7.1

I IS NIQ Hicnirchical Sciiii-Markov Q-1carning Section 7.6

MDP Markov Decision Process Section 2.2

\11%11) Nhiltiplc Iiistruction Multiple Data Section 3.7.1

NIPI Message Passing Interface Section 3.7.1

NINCH Message PiLssing, hiterface CHauieleon Section 4.3

(opeu source implementation of NIPI)

NISE Mean Squared Error Section 3.4.2

111)1)11 Pliiiiiiiii- Doinaiii Definitioii Language Section 7.1

POMDP Partially Observable Section 2.6

Markov Decision Process

I)NANI Pýirallel Randoin Access Machine Section 3.7.1

RL Reinforcement Learning Section 2.1

SABSA -Stýitc Actioii Rewird State Action" Section 2.4

(the iiaine of au RL ýilgorithiii)
SMDP Semi-Markov Decision Process Section 3.5.3

SNII, SY111111etric NI lilt i-Processol, Section 3.7.1

SPI Structured Policy Iteration Section 3.6.2

SNAA) Stochastic Planning Using Section 3.6.2

Decision Diagrains

STRIPS STanford Research Institute Section 3.6.1

Problem Solver

Tciiiporal Differeiwe learning, Section 2.4

VFA Value Function Approximation Section 3.4

275

List of References

M. N. Allmadabadi and M. Asadpour. Expertness based cooperative q-learning.
IEEE Transactions on Systems, Man and Cybernetics, 32(l): 66-76,2002.

J. S. Albus. Brain, Behavior and Robotics. Byte Books, Peterborough, NH, 1981.

E. Alonso, D. Kudenko, and D. Kazakov, editors. Adaptive Agents and Multi-Agent
Systems: Adaptation and Multi-Agent Learning, volume 2636 of Lecture Notes

in Computer Science, 2003. Springer.

C. W. Anderson. Strategy learning with multilayer connectionist representations.
In Proceedings of the A International Workshop on Machine Learning, pages
103-114,1987.

C. W. Anderson. Learning and Problem Solving with Multilayer Connectionist

SyStems. PhD thesis, University of Massachusetts, Amherst, MA, 1986.

D. Andre. Programmable Reinforcement Learning Agents. PhD thesis, University

of California, Berkeley, 2003.

T. Archibald. Parallel dynamic programming. In L. Kronsj6 and D. Shumsherud-

din, editors, Advances in Parallel Algorithms. Blackwell Scientific, 1992.

T. W. Archibald, K. I. M. McKinnon, and L. C. Thomas. Serial and parallel value
iteration algorithms for discounted markov decision processes. European Journal

of Operational Research, 67(2): 188-203,1993.

L. C. Baird. Residual algorithms: Reinforcement learning with function approxima-
tion. In Proceedings of the 12th International Conference on Machine Learning,

1995.

M. Barreno and D. Liccardo. Reinforcement learning for RARS. Technical report,
EECS Department, University of California, Berkeley, May 2003.

A. Barto and S. Malladevan. Recent advances in hierarchical reinforcement learn-

ing. Discrete Event Systems, 13: 41-77,2003.

276

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike elements that can solve
difficult learning control problems. In IEEE Transactions on Systems, Man, and
Cybernetics, volume 13, pages 835-846,1983.

J. Baxter and P. L. Bartlett. Direct gradient-based reinforcement learning. In

IEEE International Symposium on Circuits and Systems, 2000.

R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton,

NJ, 1957.

R. E. Bellman and S. E. Dreyfus. Functional approximations and dynamic pro-

gramming. Math Tables and Other Aides to Computation, 13: 247-251,1959.

G. D. Benson, C. -W. Chu, Q. Huang, and S. G. Caglar. A comparison of MPICH

Allgather algorithms on switched networks. In 10th European PVMIMPI Users'

Group Conference (EuroPVMIMPP03), 2003.

D. C. Bentivegna, C. G. Atkeson, and G. Cheng. Learning tasks from observation

and practice. Robotics and Autonomous Systems, 47(2-3): 163-169,2004.

D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experi-

ments. Chapman and Hall, London, UK, 1985.

D. P. Bertsekas. Distributed dynamic programming. IEEE Transactions on Auto-

matic Control, 27: 610-616,1982.

D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,

second edition, 2001.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Nu-

meTical Methods. Prentice-Hall International, 1989.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scien-

tific, 1996.

H. Blockeel and L. De Raedt. Top-down induction of first-order logical decision

trees. A71ificial Intelligence, 101: 285-297,1998.

A. L. Blum and M. L. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90: 281-300,1997.

C. Boutilier, R. I. Brafman, and C. Geib. Prioritized goal decomposition of Markov

decision processes: Towards a synthesis of classical and decision theoretic plan-

ning. In International Joint Conference on Artificial Intelligence, 1997.

277

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural as-
sumptions and computational leverage. Journal of Artificial Intelligence Re-

search, 11: 1-94,1999.

C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming

with factored representations. Artificial Intelligence, 121(1-2): 49-107,2000.

C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first-

order XIDPs. In International Joint Conference on Artificial Intelligence, pages
690-700,2001.

J. A. Boyan and A. W. Moore. Generalisation in reinforcement learning: Safely

approximating the value function. In G. Tesauro, S. Touretzky, and T. Leen,

editors, Advances in Neural Information Processing Systems 7. MIT Press, 1995.

S. J. Bradtke. Reinforcement learning applied to linear quadratic regulation. In
Advances in Neural Information Processing Systems, volume 5, pages 295-302,

1993.

T. Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2): 165-204,1994.

A. Cassandra, M. L. Littman, and N. L. Zliang. Incremental Pruning: A simple,
fast, exact method for partially observable Markov decision processes. In Pro-

ceedings of the 13th Conference on Uncertainty in Artificial Intelligence, pages
54-61,1997.

D. Chapman and L. P. Kaelbling. Input generalization in delayed reinforcement
learning: An algoritlim and performance comparisons. In International Joint
Conference on Artificial Intelligence, pages 726-731,1991.

H. -T. Chong. A Igorithms for Partially Observable Markov Decision Processes. PhD

thesis, University of British Columbia, Vancouver, 1988.

L. Chrisman. Reinforcement learning with perceptual aliasing: The perceptual dis-

tinctions approach. In Proceedings of the Tenth National Conference on Artificial

Intelligence, 1992.

C. Claus and C. Boutilier. The dynamics of reinforcement learning in cooperative
multiagent systems. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence, pages 746-752,1998.

D. Cliff and S. Ross. Adding temporary memory to zcs. Adaptive Behavior, 3:

101-150,1994.

278

R. Cole and 0. Zajicek. The APRAM: Incorporating asynchrony into the pram.
model. In Proceedings of the 1st annual A CM symposium on Parallel Algorithms

and Architectures, pages 169-178,1989.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions

on Information Theory, 13: 21-27,1967.

J. W. Daniel. Splines and efficiency in dynamic programming. Journal of Mathe-

matical Analysis and Applications, 54: 402-407,1976.

P. D. Dayan and G. E. Hinton. Feudal reinforcement learning. In Advances in
Neural Information Processing Systems, volume 5, pages 271-278. Morgan Kauf-

mann, 1993.

T. Dean and R. Givan. Model minimization in Markov decision processes. In Pro-

ceedings of the Fourteenth National Conference on Artificial Intelligence, pages
106-111,1997.

T. Dean and X. Kanazawa. A model for reasoning about persistence and causation.
Computational Intelligence, 5(3): 142-150,1989.

R. Dearden and C. Boutilier. Abstraction and approximate decision theoretic

planning. Artificial Intelligence, 89(1-2): 219-283,1997.

R. Dearden, N. Friedman, and S. J. Russell. Bayesian Q-1earning. In AAA111AAI,

pages 761-768,1998.

R. Dearden, N. Friedman, and D. Andre. Model based bayesian exploration. In
Proc. of Fifteenth Conf. on Uncertainty in Artificial Intelligence, pages 150-159.
Morgan Kaufmann, 1999.

T. G. Dietterich. An overview of MAXQ hierarchical reinforcement learning. In
Proceedings of the 4th International Symposium on Abstraction, Reformulation

and Approximation (SARA'2000), pages 26-44,2000a.

T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value func-

tion decomposition. Journal of Artificial Intelligence Research, 13: 227-303,
2000b.

T. G. Dietterich and N. S. Flann. Explanation-based learning and reinforcement
learning: a unified view. Machine Learning, 28: 169-210,1997.

T. G. Dietterich and X. Wang. Batch value function approximation via support
vectors. In Advances in Neural Information Processing Systems, volume 14,

pages 1491-1498, Cambridge, MA, 2002. MIT Press.

279

K. Driessens and S. Meroski. Integrating experimentation and guidance in rela-
tional reinforcement learning. In Proceedings of the 19th International Confer-

ence on Machine Learning, pages 115-122,2002.

K. Driessens and J. Ramon. Relational instance based regression for relational

reinforcement learning. In Proceedings of the 20th International Conference on
Machine Learning, 2003.

S. D2eroski, L. De Raedt, and K. Driessens. Relational reinforcement learning.

Machine Learning, 43(l): 7-52,2001.

R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence, 2: 189-208,1971.

M. J. Flynn. Some computer organizations and their effectiveness. IEEE Trans-

actions on Computers, C-21: 948-960,1972.

S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings

of A CAI Symposium on Theory of Computing, pages 114-118,1978.

T. GRrtner, K. Driessens, and J. Ramon. Graph kernels and gaussian processes
for relational reinforcement learning. In Proceedings of 13th International Con-

ference on Inductive Logic Programming, pages 146-163,2003.

E. Gat. Three-layer architectures. In D. Kortenkamp, R. P. Bonasso, and R. Mur-

phy, editors, Artificial Intelligence and Mobile Robots: Case Studies of Successful

Robot Systems, chapter 8. MIT/AAAI Press, 1997.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance

dilemina. Neural Computation, 4(l): 1-58,1992.

M. Gliallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld,

and D. Wikins. PDDL-the planning domain definition language. Technical

Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision

and Control, 1998.

J. C. Gittins. Multi-armed Bandit Allocation Indices. Wiley, Chichester, NY, 1989.

G. J. Gordon. Reinforcement learning with function approximation converges to a

region. In Advances in Neural Information Processing Systems 13, pages 1040-

1046,2001.

G. J. Gordon. Stable function approximation in dynamic programming. Technical

Report CMU-CS-95-103, Carnegie Mellon University, 1995.

280

C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans to new
environments in relational MDPs. In International Joint Conference on Artificial
Intelligence, 2003.

P. HaddaNvy and M. Suwandi. Decision-theoretic refinement planning using inher-
itance abstraction. In Proceedings of the Second International Conference on
Artificial Intelligence Planning Systems, pages 266-271. AAAI Press, 1994.

G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. Distributed representations.
In D. E. Rumelliart and J. L. McClelland, editors, Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. Volume 1: Foundations.
MIT Press, 1986.

J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning using
decision diagrams. In Proceedings of the 15th Conference on Uncertainty in
Artificial Intelligence, pages 279-288,1999.

J. Hoffmann. A heuristic for domain independent planning and its use in an
enforced hill-climbing algoritlim. In Proceedings of the 12th International Sym-

posium on Methodologies for Intelligent Systems, pages 216-227,2000.

R. A. Howard. Dynamic Frobabilistic Systems: Semi-Markov and Decision Pro-

cesses. Wiley, New York, 1971.

K. Hwang and Z. Xu. Scalable Parallel Computing. WCB/McGraw-Hill, 1998.

T. Jaakkola, M. I. Jordan, and S. Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6(6): 1185-1201,1994.

L. P. Kaelbling. Hierarchical learning in stochastic domains: Preliminary results.
In Proceedings of the 10th International Conference on Machine Learning, pages
167-173,1993a.

L. P. Kaelbling. Learning in Embedded Systems. MIT Press, Cambridge MA,
1993b.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A

survey. Journal of Artificial Intelligence Research, 4: 237-285,1996.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in

partially observable stochastic domains. Artificial Intelligence, 101 (1-2): 99-134,
1998.

281

S. Kapetanakis and D. Kudenko. Reinforcement learning of coordination in liet-

erogeneous cooperative multi-agent systems. In D. Kudenko, D. Kazakov, and
E. Alonso, editors, Adaptive Agents and Multi-Agent Systems H. Springer, 2005.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49: 209-232,2002.

K. Kersting, M. Van Otterlo, and L. De Raedt. Bellman goes relational. In
Proceedings of the 21st International Conference on Machine Learning, 2004.

F. Kirchner. Q-learning of complex behaviours on a six-legged walking machine.
Journal of Robotics and Autonomous Systems, 25: 256-263,1998.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 220(4598): 671-680,1983.

H. Kitano, editor. RoboCup-97. - Robot Soccer World Cup L Springer Verlag, Berlin,

1998.

R. E. Korf. Planning as search: A quantitative approach. Artificial Intelligence,

33: 65-88,1987.

R. M. Kretchmar. Parallel reinforcement learning. In Proceedings of the 6th World
Conference on Systemics, Cybernetics, and Infonnatics (SC12002), 2002.

N. Kushmerick, S. Hanks, and D. S. Weld. An algorithm for probabilistic planning.
Artificial Intelligence, 76(1-2): 239-286,1995.

C. -S. Lin and H. Kim. CMAC-based adaptive critic self-learning control. IEEE
Ransactions on Neural Networks, 2: 530-533,1991.

L. -J. Lin. Self-improving reactive agents based on reinforcement learning, planning

and teaching. Machine Learning, 8: 293-321,1992.

L. -J. Lin and T. M. Mitchell. Reinforcement learning with hidden states. In

Proceedings of the Second International Conference on Simulation of Adaptive

Behavior. From Animals to Animats, pages 271-280,1992.

M. Littman. Memoryless policies: Theoretical limitations and practical results. In

Proceedings of the International Conference on Simulation of Adaptive Behavior.

From Animals to Animats 3, pages 297-305,1994.

M. L. Littman. Friend-or-foe q-learning in general-sum games. In Proceedings of
the 18th International Conference on Machine Learning, pages 322-328,2001.

282

J. Loch and S. Singh. Using eligibility traces to find the best memoryless policy
in partially observable markov decision processes. In Proceedings of the 15th
International Conference on Machine Learning, pages 323-331,1998.

D. Luce. Individual Choice Behavior. Wiley, New York, 1959.

0. Madani. Complexity Results for Infinite-Horizon Markov Decision Processes.

PhD thesis, University of Washington, 2000.

O. -A. Maillard, R. Coulom, and P. Preux. Parallelization of the TD(A) algorithm.
In European Workshop on Reinforcement Learning, 2005.

S. Mannor, I. Menaclie, A. Hoze, and U. Klein. Dynamic abstraction in reinforce-

inent learning via clustering. In Proceedings of the 21st International Conference

on Machine Learning, 2004.

A. K. McCallum. Reinforcement Learning with Selective Perception and Hidden
State. Phl) thesis, University of Rochester, Rochester, NY, 1996.

J. McCarthy. Situations, actions and causal laws. Technical report, Stanford

University, 1963.

A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforcement
learning using diverse density. In Proc. 18th International Conf. on Machine
Learning, pages 361-368,2001.

N. Meuleau and P. Bourgine. Exploration of multi-state environments: Local

measures and back-propagation of uncertainty. Machine Learning, 35(2): 117-
154,1999.

N. Meuleau, M. Hauskreclit, K. -E. Kim, L. Peshkin, L. P. Kaelbling, T. Dean, and
C. Boutilier. Solving very large weakly coupled Markov decision processes. In
AAAIIIAAI, pages 165-172,1998.

A. W. Moore. Efficient Memomj-based Learning for Robot Control. PhD thesis,
University of Cambridge, 1990.

A. W. Moore and C. G. Atkeson. The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state spaces. Machine Learning, 21
(3): 199-233,1995.

A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning

with less data and less time. Machine Learning, 13: 103-130,1993.

283

A. W. Moore, L. C. Baird, and L. P. Kaelbling. Multi-value-functions: Efficient

automatic action hierarchies for multiple goal MDPs. In International Joint
Conference on Artificial Intelligence, pages 1316-1323,1999.

R. Munos and A. Moore. Variable resolution discretization in optimal control.
Machine Leaming, 49(2-3): 291-323,2002.

N. Nilsson. Teleo-reactive programs for agent control. Journal of Artificial Intel-

ligence Research, 1: 139-158,1994.

L. Nunes and E. Oliveira. Cooperative learning using advice exchange. In Adaptive

Agents and Multi-Agent Systems, LNCS vol. 2636,2003.

D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning,

49(2-3): 161-178,2002.

P. S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, San Francisco,

CA, 1997.

R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. In

Advances in Neural Information Processing Systems, volume 10. The MIT Press,

1997.

E. Pednault. ADL: Exploring the middle ground between STRIPS and the situation

calculus. In Proceedings of the 1st International Conference on Principles of
Knowledge Representation and Reasoning, pages 324-332,1989.

J. Peng and R. J. Williams. Incremental multi-step Q-learning. Machine Learning,

22: 283-290,1996.

T. J. Perkins and D. Precup. A convergent form of approximate policy iteration. In
Advances in Neural Information Processing Systems 15, pages 1595-1602,2002.

L. Peshkin. Reinforcement Learning by Policy Search. PhD thesis, Massachusetts

Institute of Technology, 2001.

J. Pineau, G. J. Gordon, and S. B. Thrun. Point-based value iteration: An any-
time algoritlim for POMI)Ps. In International Joint Conference on Artificial

Intelligence, 2003.

L. D. Pyeatt and A. E. HoNve. Decision tree function approximation in reinforce-
ment learning. Technical Report TR-CS-98-112, Colorado State University, 1998.

D. V. Pynadath and M. Tambe. The communicative multiagent decision prob-
lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence
Research, 16: 389-423,2002.

284

J. R. Quinlan. Induction of decision trees. Machine Learning, l(l): 81-106,1986.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2), 1989.

C. E. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning.

In Advances in Neural Information Processing Systems, volume 16, Cambridge,

MA, 2004. MIT Press.

H. Robbins and S. Monro. A stochastic approximation method. Annals of Math-

ematical Statistics, 22(3): 400-407,1951.

M. T. Rosenstein and A. G. Barto. Robot weightlifting by direct policy search. In

International Joint Conference on Ailificial Intelligence, pages 839-846,2001.

N. Roy and G. J. Gordon. Exponential family PCA for belief compression in

POMDPs. In Advances in Neural Information Processing Systems, volume 15,

2002.

D. E. Rumelliart, G. E. Hinton, and R. J. Williams. Learning internal representa-
tions by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition.

Volume 1: Foundations. MIT Press, Cambridge, MA, 1986.

G. A. Rummery. Problem Solving with Reinforcement Learning. PhD thesis, Uni-

versity of Cambridge, Engineering Dept., 1995.

G. A. Rummery and M. Niranjan. On-line Q-1earning using connectionist systems.
Technical Report CUED/F-lNFENG/TR166, Cambridge University Engineer-

ing Dept., 1994.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall, second edition, 2003.

M. R. K. Ryan. Hierarchical Reinforcement Learning: A Hybrid Approach. PhD

thesis, University of New South Wales, School of Computer Science and Engi-

necring, Sydney, Australia, 2002a.

M. R. K. Ryan. Using abstract models of behaviours to automatically generate

reinforcement learning hierarchies. In Proceedings of the 19th International Con-

ference on Machine Learning, 2002b.

E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelli-

gence, 5: 115-135,1974.

285

C. Sammut. Automatic construction of reactive control systems using symbolic

machine learning. Knowledge Engineering Review, 11: 27-42,1996.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, 3: 210-229,1959.

M. Sato, K. Abe, and H. Takeda. Learning control of finite Markov chains with

an explicit trade-off between estimation and control. IEEE Transactions on
Systems, Man and Cybernetics, 18: 677-684,1988.

C. E. Shannon. Programming a computer for playing chess. Philosophical Maga-

zinc, 41(314), 1950.

I SliaNve-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-

bridge University Press, 2004.

J. F. Shepanski and S. A. Macy. Manual training techniques of autonomous systems
based on artificial neural networks. In IEEE 1st International Conference on
Neural Networks, pages 697-704,1987.

J. W. Sheppard and S. L. Salzberg. A teaching strategy for memory-based control.
Artificial Intelligence Review, ll(I-5): 343-370,1997.

R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable

environments. In Proceedings of the International Joint Conference on Artificial

Intelligence, pages 1080-1087,1995.

(5zgiir. ýim§ek and A. G. Barto. Using relative novelty to identify useful temporal

abstractions in reinforcement learning. In Proceedings of the 21st International

Conference on Machine Learning, 2004.

6zgfir. $m§ek, A. P. Wolfe, and A. G. Barto. Identifying useful subgoals in re-
inforcement learning by local graph partitioning. In Proceedings of the 22nd

International Conference on Machine Learning, 2005.

S. Singh and D. Bertsekas. Reinforcement learning for dynamic channel allocation
in cellular telephone systems. In Advances in Neural Information Processing
SyStems, volume 9, pages 974-980. The MIT Press, 1996.

S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari. Convergence results for

single-step on-policy reinforcement learning algorithms. Machine Learning, 38
(3): 287-308,2000.

S. P. Singh. Reinforcement learning with a hierarchy of abstract models. In Pro-

ceedings of the AAAI, pages 202-207,1992.

286

W. D. Smart and L. P. Kaelbling. Practical reinforcement learning in continu-

ous spaces. In Proceedings of the 17th International Conference on Machine

Learning, pages 903-910,2000.

P. Stone. Layered Learning in Multi-Agent Systems. PhD thesis, Carnegie Mellon

University, December 1998.

A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. PAC model-free

reinforcement learning. In Proceedings of the 23rd International Conference on
Machine Learning, 2006.

M. Strens. A bayesian framework for reinforcement learning. In Proceedings of the
Seventeenth International Conference on Machine Learning, 2000.

R. Sun and C. Simmons. Self segmentation of sequences. In Proc of International

Joint Conf, on Neural Networks. IEEE Press, 1999.

R. S. Sutton. Integrated architectures for learning, planning, and reacting based on

approximating dynamic programming. In Proceedings of the 7th International

Conference on Machine Learning, pages 216-224,1990.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine

Learning, 3: 9-44,1988.

R. S. Sutton. Generalization in reinforcement learning: Successful examples using

sparse coarse coding. In Advances in Neural Information Processing Systems,

volume 8. The MIT Press, 1996.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

Press, Cambridge, MA, 1998.

R. S. Sutton, D. Precup, and S. P. Singh. Between MI)Ps and semi-MDPs: A

framework for temporal abstraction in reinforcement learning. Artificial Intelli-

gence, 112(1-2): 181-211,1999.

M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.
In Proceedings of the Tenth International Conference on Machine Learning
(10ML-1993), pages 330-337,1993.

B. Tanner and R. S. Sutton. TD(A) Networks: TemPoral-difference networks
with eligibility traces. In Proceedings of the 22nd International Conference on
Mac/tine Learning, 2005.

G. Tesauro. Temporal difference learning and TD-Gammon. Communications of
the ACM, 38(3): 58-67,1995.

287

S. B. Thrun. The role of exploration in learning control. In D. A. White and
D. A. Sofge, editors, Handbook of Intelligent Control: Neural, Fuzzy and Adaptive

Approaches. Van Nostrand Reinhold, 1992.

S. B. Thrun and K. M61ler. Active exploration in dynamic environments. In

Advances in Neural Information Processing Systems, pages 531-538,1991.

S. B. Thrun and A. Schwartz. Finding structure in reinforcement learning. In

Advances in Neural Information Processing Systems, volume 7, pages 385-392.

The MIT Press, 1995.

S. B. Thrun and A. Schwartz. Issues in using function approximation for re-
inforcement learning. In M. Mozer, P. Smolensky, D. Touretzky, J. Elman,

and A. Weigend, editors, Proceedings of the 1993 Connectionist Models Summer

School, 1993.

J. N. Tsitsiklis and B. van Roy. Feature-based methods for large scale dynamic

programming. Machine Learning, 22: 59-94,1996.

J. N. Tsitsiklis and B. van Roy. An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 42: 674-690,

1997.

L. G. Valiant. A bridging model for parallel computation. Communications of the

ACM, 33(8): 103-111,1990.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):

1134-1142,1984.

M. van Otterlo. A survey of reinforcement learning in relational domains. Technical

Report TR-CTIT-05-31, University of Twente, The Netherlands, 2005.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge

University, U. K., 1989.

C. J. C. H. Watkins and P. D. Dayan. Q-1earning. Machine Learning, 8: 279-292,

1992.

S. D. Whitehead. A complexity analysis of cooperative mechanisms in reinforce-

ment learning. In Proceedings of the 9th National Conference on Artificial In-

telligence (AAAI-91), pages 607-613,1991.

M. Wiering and J. Schmidhuber. HQ-Iearning. Adaptive Behavior, 6(2): 219-246,

1997.

288

R. J. Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning, 8(3): 229-256,1992.

D. Wingate and K. Seppi. P3VI: A partitioned, prioritized, parallel value iterator.

In Proceedings of the 21st International Conference on Machine Learning, 2004.

B. Wolfe, M. R. James, and S. Singh. Learning predictive state representations
in dynamical systems without reset. In Proceedings of the 22nd International

Conference on Machine Learning, 2005.

J. Wyatt. Exploration and Inference in Learning from Reinforcement. PhD thesis,

University of Edinburgh, 1997.

W. Zhang and T. G. Dietterich. A reinforcement learning approach to job-shop

scheduling. In International Joint Conference on Artificial Intelligence, pages
1114-1120,1995.

289

