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Abstract 

Reinforcement learning (RL) methods are a family of techniques which allow an 
agent to improve its performance of a given task by learning from direct interaction 

with the environment it is situated in. Key to this approach is the notion of a reward 
signal, a numerical value observed by the agent which gives immediate feedback 

on the quality of its action choices. Using this signal, the agent can learn a policy 
which maximizes the total reward accumulated over time. 

While many RL algorithms have theoretical convergence guarantees, achiev- 
ing fast convergence to the optimum can be problematic in practice. There are 

particular problems with large-scale domains. As' the learning environment be- 

comes more complex and difficult to describe, theAime required for an RL agent 
to learn an optimal policy grows very rapidly. This effect is known as the curse of 
dimensionality. 

In this thesis, two different approaches to scaling-up RL are investigated. The 

first approach exploits parallel hardware to generate high-quality policies for sim- 

ulated RL environments. An agent learns from simulated experience on each node 

of a parallel cluster. The agents periodically exchange weights from their approxi- 

mate value functions. This allows a group of agents to converge more quickly than 

a single learner without compromising the final quality of the learned policy. 
The second approach is a hybrid method combining symbolic planning and RL. 

A high-level knowledge base is used to generate a symbolic plan which provides 

structure for the learned policy. Abstract symbolic operators are implemented in 

terms of low-level actions using RL. This approach is shown to scale to much larger 

RL problems than is feasible with either standard or hierarchical RL algorithms. 
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Chapter I 

Introduction 

This thesis focuses on techniques for reinforcement learning (RL). RL methods 

allow agents to learn to choose actions effectively by observing the value of a reward 
signal. The reward signal gives an agent immediate feedback about the quality of 
each of its action choices. RL methods have been applied successfully in a wide 
variety of domains, but remain infeasible in many others. This is because when an 
agent's environment has a large number of possible configurations, standard RL 

algorithms are not able to find good action selection policies within a reasonable 
time. 

In this work, two different sets of techniques are investigated which can be used 

to extend the applicability of RL to more difficult learning environments. The first 

set of techniques allows parallel hardware to be exploited so that a high quality 

policy for action selection can be learned much faster than would be possible on a 

sequential computer. The second set of techniques uses symbolic planning in com- 
bination with RL to provide a high level structure which constrains and accelerates 
the learning process. A wide-ranging empirical study is used to demonstrate the 

advantages of these techniques over standard RL methods. 
This chapter begins with a high-level overview of reinforcement learning, fol- 

lowed by a description of the problems faced by RL in large-scale learning envi- 

ronments. The two principal topics of the thesis are then discussed: the use of 

parallelism in RL, and the combination of symbolic planning and RL. The intro- 

duction ends with a summary of the contributions of the thesis and an overview of 

the content of the remaining chapters. 

1.1 Reinforcement Learning 

One of the primary goals of Artificial Intelligence (AI) is the creation of intelli- 

gent agents (Russell and Norvig, 2003), which have the ability to sense external 
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stimuli, perceive the state of an environment, reason using knowledge about the 

environment, learn from past experience in the environment, and act to affect the 

environment according to internal goals. While each of these five abilities are con- 
sidered to some degree in this work, the focus of the thesis is on learning in agents. 
There are many advantages of giving an agent the ability to learn from experi- 

ence. If the dynamics of ail environment are known to change over time, an agent 

call gradually modify its action choices to maintain a good level of performance. 
Adaptivity also adds some degree of robustness to an agent. If a situation arises 
that the agent's designer did not foresee, it may still be possible for the agent to 
learn ail acceptable behaviour for this unforeseen situation. In multi-agent systems 
(Alonso et al., 2003), adaptivity can allow an agent to learn how to behave in a 
particular group or configuration. This is particularly important in open multi- 

agent systems, where new, unfamiliar agents may arrive at any time, and the agent 
must learn quickly to perform well in their presence. 

A reinforcement learning (RL) problem (Sutton and Barto, 1998) is most easily 

characterized using the idea of ail agent situated in an environment. The state of 
the environment call be observed by the agentl. At each time step in a discrete 

series, the agent must select ail action to perform. After the action is performed, 
the environment enters a new state. In addition, the agent receives a reward or 

reinforcement for performing the action in that state. The reward indicates to the 

agent whether the choice of the action was good or bad, and as a scalar quantity 
it also indicates exactly how good or bad it was. 

Ail important aspect of RL is reasoning about future rewards. It may be pos- 

sible to achieve ail extremely large reward in the future if the correct sequence of 
low-reward actions is followed. If this is the case, it is worth learning to follow this 

particular sequence, since the total reward accumulated over time will be greater. 
This leads to what is known as the temporal credit assignment problem. If after a 
long series of actions a large reward is received, it can be difficult to identify which 

of the actions in the sequence were instrumental in achieving the reward and which 

of the actions were not required at all. 
Q-1carning (Watkins, 1989), for example, is a popular RL algorithm which 

effectively solves the temporal credit assignment problem. If the sets of states and 

actions are finite, then under certain conditions Q-1earning is guaranteed in theory 

to converge to ail optimal2 policy for choosing actions. Q-learning also performs 

well in practice if the sets of states and actions are not too large. Good performance 

with Q-1earning can even be achieved in some cases where the environment is non- 
'Sometimes only part of the state may be directly observed, with other parts remaining hidden. 
'Various criteria for optimality are given in Chapter 2. 

19 



stationary (where the dynamics are changing over time) or non-Markovian (when 

there is some hidden state that cannot be directly observed). 

1.2 The Curse of Dimensionality 

Scaling-up reinforcement learning to more challenging learning environments is dif- 

ficult because of the effect known as the curse of dimensionality, or alternatively 

as the state space explosion. Standard RL algorithms make the assumption that 

the learning environment can only be in one of a finite number of possible config- 

urations. However, in most cases the state of the environment is naturally broken 

down into a set of state variables, each of which can be assigned a finite number 

of values. Complex learning environments tend to have many state variables, with 

each state variable having a wide range of possible values. As more complex envi- 

roninents are considered, the size of the overall state space increases rapidly. This 

in turn produces a rapid growth in the time required to learn a near-optimal policy 

with RL. Beyond a certain level of environmental complexity, RL algorithms which 

enumerate every possible state of the environment are simply not feasible. 

Further complications arise in domains with continuous state variables (e. g. a 

robot situated in it three dimensional Euclidean space). While it is obviously pos- 

sible to discretize these variables, even a coarse discretization of a few continuous 

state variables will create a large number of states. It would be preferable to use 

an algorithin which could deal directly with these continuous quantities. 
In recent years there have been many techniques developed which allow mod- 

ified RL algorithins to learn in some of these more complex domains. As part 

of this thesis, I present a comprehensive survey of these techniques in Chapter 3. 

Probably the most important addition to the standard RL algorithms is the use 

of gertemlization. Generalization is possible when states of the environment which 
have similar (but not identical) state features have a similar long term value. If 

this is the case, the exact table-based data structure used by algorithms such as 
Q-1carning can be replaced with a function approximation. Since experience in one 

state will now affect the estimated values of lots of similar states, good policies may 
be achieved much more quickly. A good set of features for the approximator must 

usually be selected by hand, as is the case for most machine learning methods. 
In this thesis, I examine two approaches to scaling-up reinforcement learning 

which have received relatively little attention: the use of parallel computing to 

reduce the time required to obtain a high-quality policy, and the use of symbolic 

planning techniques in combination with reinforcement learning. 
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1.3 Parallelization and RL 

While there has been considerable progress in pushing forward the frontier of what 
is achievable with reinforcement learning, there remain many interesting problems 
which are of borderline feasibility. Standard RL algorithms may take several hours 

or even days of computation time to converge to a high quality policy for these 

problems. Given the computational effort required, it is reasonable to ask the 

question "can parallel computing hardware be used to obtain a high quality policy 

more quickly than is currently possible on a uniprocessor computer? " 
Despite the significant computational requirements of RL algorithms, there 

has been very little research undertaken on parallel approaches to RL problems. 
This is somewhat surprising, considering that parallel approaches to the closely 
related problem of planning in Alark-ov decision processes (MDPs) have been fairly 

well explored (Archibald, 1992; Wingate and Seppi, 2004). The lack of attention 
may be related to the fact that the essentially sequential interaction between a 

reinforcement learner and its environment does not yield directly to a natural 

parallelization. 
The reason that parallelism has relevance for RL arises from the predominant 

use of simulated lcaT7iing environments for the purpose of training RL agents. If 

an environment is simulated, it is relatively easy to situate a number of identical 

instances of the simulation on different nodes of a parallel computer. If a set of 

agents can interact with these instances in parallel, then by sharing intermediate 

results it is likely that the set of agents can converge towards a high-quality policy 

more quickly than a single agent learning in isolation. 

The assumption of a simulated environment does exclude interesting cases such 

as an embodied agent situated in a real-life environment, or a software agent learn- 

ing whilst deployed in an unpredictable open multi-agent system. In practice, 
however, generating experience in these non-simulated environments is usually ex- 

pensive, and finding a high-quality policy for a large-scale RL problem will usually 
involve some degree of environmental simulation. A parallelization technique which 

requires a simulated environment will therefore be relevant for a wide range of ex- 
isting problem domains. 

Hence the first hypothesis to be investigated as part of this work is as follows: 

Hypothesis I 
It is possible to exploit parallel hardware in reinforcement learning 

to achievc a speedup without sacrificing policy quality. 

In this thesis, a series of increasingly efficient methods for parallel reinforcement 
learning are presented. Each of these methods uses a set of agents, where each 
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agent resides on one node of a distributed-memory parallel computer. Each agent 
interacts with a local instance of the simulated environment. The agents individ- 

ually use standard RL techniques, including the use of generalization. Each agent 
learns an approximate value function which is represented using linear function 

approximation. Ensuring that the parallel method is effective in combination with 

generalization ensures that the method will have practical use for the most difficult 

RL problems, which are likelY to be infeasible without some degree of generaliza- 

tion. 

In the parallel method described in this work, the agents exchange information 

about their policies (in the form of approximator weight values) over the intercon- 

nection network of the parallel computing system. By using other agents' weight 

values to modify the local approximator weights, agents as a group are able to con- 

verge more quickly towards a high-quality policy. The agents are able to achieve 
this without each agent being restricted to a small area of the problem state space. 
All of the agents are able to explore the environment in an unrestricted manner. 

The first parallel method presented in this thesis involves every agent broad- 

casting its entire set of weights periodically. The impact of the communication 

costs of this method means that a parallel speedup can only be achieved for a 
limited number of problem doinains. Subsequent methods improve on the perfor- 

inance of the first method, by prioritizing the communication of weights which have 

recently undergone rapid change, and also with the effective use of asynchronous 

message passing. 
This thesis includes a wide-ranging empirical evaluation of these methods using 

it cluster of Linux workstations. Five different example RL problems (some of which 

are well-known benchmark problems for RL algorithms) are used to illustrate the 

size of the speed-ups that can be achieved. 

1.4 Symbolic Planning and RL 

Symbolic planning (also known as classical planning), like reinforcement learning, is 

a mechanisin for reasoning about useful sequences of actions. Unlike RL, symbolic 

planning is typically applied to deterministic domains where the only objective is 

to reach one of a set of goal states using the shortest number of actions. In addition, 

the outcomes of actions are known a priori, and do not have to be learned through 

trial and error. 
Symbolic planning inethods use a relational representation of state, which is 

generally based on a variant of first-order logic. Popular representations for sym- 
bolic planning include the STRIPS representation (Fikes and Nilsson, 1971) and 
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the situation calculus (McCarthy, 1963). Relational representations of value func- 

tions and policies have become increasingly popular for RL (van Otterlo, 2005) in 

domains involving objects and inter-object relationships. 
In contrast to most other work in this area, this thesis is not concerned with 

relational versions of existing RL algorithms. Instead, one of the goals of the thesis 

is to investigate synergistic combinations of symbolic planning and RL in a hybrid 

approach. In the approach considered here, a symbolic plan forms the high level 

structure of a solution to the learning problem, with RL being used to fill in the 

low-level details of the solution. This approach is called PLANQ-learning within 

this thesis, and the second hypothesis to be investigated as part of this work is as 
follows: 

Hypothesis 2 
A hybrid planning-learning system based on a high-level STRIPS- 

based planner and low-level reinforcement learning will exhibit better 

scaling properties than both standard and hierarchical RL algorithms 
for goal-oriented learning problems. 

To evaluate how well PLANQ-learning scales up to larger problem instances, a fam- 

ily of grid-world based learning problems is defined in this thesis. Progressively 

more difficult problems (with larger state spaces) can be created by increasing the 

value of a parameter which controls the size of the problem. This allows the perfor- 

inance of a learning algorithin to be assessed as a quantitative measure of problem 

scale is increased. In this work, it is shown that PLANQ-learning scales well to 

some extremely large problems in this family, where alternative approaches such 

as standard Q-learning and hierarchical reinforcement learning perform poorly. 

1.5 Contributions 

The work in this thesis focuses oil the use of parallelization and symbolic planning 

as a source of techniques to scale-up reinforcement learning to large scale problems. 
The principal contributions of the thesis are as follows: 

1. A novel approach to parallel RL, where a group of agents learning in par- 

allel can quickly find a high-quality solution to a single-agent RL problem 
by peHodically exchanging approximator weights over an interconnection net- 

work. In contrast to previous approaches, each agent may explore the entire 

state-space of the problem, not being restricted to a sub-region of this space. 

2. Three novel methods for parallel RL which are based on the above approach. 
The visit-count merge method involves calculating a weighted average of the 
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agents' value function approximations to produce a merged value function. 

The selective merge method is based on broadcasting each agent's largest re- 

cent changes to its value function approximation. The asynchronous selective 

merge method achieves an extra boost in performance by removing the need 
for synchronization between the agents. 

3. A wide-ranging empirical evaluation of the three parallel IRL methods. The 

evaluation is based on the parallel speedups which can be achieved using 
different numbers of nodes in a cluster of Linux workstations. Five different 
learning problems are used in the evaluation. These learning problems vary 
in difficulty but also exhibit a range of characteristics, such as the level of 
stochasticity in the action effects, whether they are continuing or episodic 
problems, and whether they are goal-oTiented problems. 

4. The PLANQ-learning method, a novel combination of high-level STRIPS 

planning and low-level reinforcement learning. Empirical evidence is pre- 

sented in the thesis to show that PLANQ-learning scales significantly better 

than both standard RL methods and hierarchical RL methods in learning 

problems where the high level solution structure can be modelled with a 
STRIPS knowledge base. 

1.6 Thesis Structure 

The remaining content of this thesis is structured as follows: 

Chapter 2 presents an overview of basic reinforcement learning techniques. 
The key concepts of agent, environment, state, action and reward are described. 

The formalization of RL problems as Mark-ov decision processes (MDPs) is dis- 

cussed, and details are provided of some of the standard RL algorithms, namely 
Q-1carning, SARSA, TD-learning and policy search. Terminology useful for de- 

scribing the characteristics of particular RL algorithms is introduced. Readers 

already familiar with reinforcement learning techniques may prefer to skip this 

section. 
Chapter 3 contains an extensive survey of existing methods for scaling-up 

reinforcement learning to larger, more difficult problems. The existing body of re- 

search is divided into the following five broad categories: efficient exploration, value 
function approximation, hierarchical reinforcement learning, symbolic representa- 
tions, and parallel reinforcement learning. For each of these categories, common 
threads of existing research are grouped together, and within each category I will 

assess the potential of these techniques for reducing the impact of the curse of 
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dimensionality. 

Chapter 4 begins with a motivation for the use of parallel hardware to per- 
form RL, and goes on to state the assumptions underlying the work on parallel RL 

presented in the thesis. The basic operation of a parallel approach where a group of 

parallel agents merge their value function approximations is then presented. The 

criteria used to evaluate the parallel methods in the thesis are given, including a de- 

scription of each of the single-agent learning domains which will be used to produce 
benchmark results. A number of different mechanisms to merge tile approximator 

weights are proposed, and are first evaluated using a simulation of parallel agents. 
The most successful of these mechanisms, the visit-count merge method, is also 

evaluated in a more realistic setting, using a cluster of Linux workstations. As 

part of the evaluation, results are presented that show how communication be- 

tween the agents is a vital component of the proposed parallel approach. Tile 

effect oil performance of the choice of how often tile agents exchange information 

is also examined. 
Chapter 5 introduces a new approach to the use of communication in tile par- 

allel method. Rather than exchanging the absolute values of approximator weights 

over the network, agents instead broadcast the recent changes observed in their 

local weight value. In addition, agents no longer communicate information about 

till their weights, only the ones which have undergone the greatest recent change. 
This approach is known here as the selective merge method. Since each agent now 

only communicates partial information about how its weights have changed, a new 

mechanism is required for combining information received from other members of 

the group. This mechanism is known as a combination function. Several candi- 
dates for the combination function are proposed, and each is evaluated using tile 

cluster of workstations. While different combination functions produce the best 

performance in different learning problems, the overall performance using any of 

the combination functions is much better than that achieved with the visit-count 

merge method in Chapter 4. 

Chapter 6 presents a method which builds on the selective merge method 
defined in Chapter 5, and increases tile parallel speedup that can be achieved 
by eliminating the synchronization penalty involved in the selective merge. Tile 

methods proposed in Chapters 4 and 5 have a distinct communication phase, where 

each agent broadcasts information to the other agents and "vaits to receive all tile 

information before updating its local value function. Tile asynchronous selective 

7neryc method oil the other hand has no distinct phase of communication. Instead, 

each agent call decide independently when to inform other agents of changes to 

its value ftinction, and incoming messages can be used to update tile local value 
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function as soon as they arrive. Since updates to the value function approximator 

must now be derived from individual incoming messages, a different mechanism is 

required for asynchronous updates. Several update functions are proposed for this 

mechanism, and their performance is evaluated using the cluster of workstations. 
One of these update functions is shown to produce the best aggregate performance 

over all the example domains, producing large improvements in performance over 

the previous synchronous methods. 
With Chapter 7 we leave the topic of parallelism, and begin an investigation of 

how symbolic planning can be combined with reinforcement learning to producing 

it hybrid method which exhibits good scaling properties. The PLANQ-learning 

method is defined, which combines high-level STRIPS planning with low-level Q- 

learning. A family of grid-world evaluation domains is presented, which can be 

scaled up quantitatively to more difficult problems by modifying one of the domain 

parameters. An initial comparison of this method with the standard Q-learning 

algorithm shows that PLANQ performs significantly better in smaller domains, 

but that this advantage decreases as larger domains are considered. An analysis 

shows that this effect is due to the lack of a state- abstraction mechanism. This 

Inechanisin is added to PLANQ, which is then compared with the hierarchical 

I-ISNIQ-1carning algorithm, which can exploit the same state abstraction. The 

results of the evaluation show that PLANQ always requires fewer environmental 
time steps than HSNIQ to converge to a high-quality policy, and in addition that 

less total computation time is required by PLANQ once the learning domain exceeds 

it certain size. PLANQ is shown to remain feasible for much larger learning domains 

than IiSNIQ. 

In Chapter 8 the overall conclusions of this thesis are drawn. Both the suc- 

cesses and shortcomings of the techniques presented in this work are examined. 
The potential for future research to extend this work is also assessed, with some 

of the important remaining questions being sketched in some detail. 
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Chapter 2 

Background: Reinforcement 

Learning 

This chapter provides a basic introduction to reinforcement learning (RL). As well 

as introducing standard RL concepts, the chapter also presents the formal basis 

of RL using the Alark-ov decision process (MDP). Algorithms for planning and 
learning in XIDPs are presented, as well as the terminology required to describe 

different aspects of these algorithms. Finally, the concept of partial observability 
in RL is described. 

A reader who is already familiar with these concepts may wish to skim through 

this material and proceed on to Chapter 3, which presents an extensive review 

of existing methods for scaling-up RL to large-scale problems. Alternatively, for a 

more comprehensive introduction to basic RL techniques, the reader should refer to 

either Sutton and Barto (1998), Kaelbling et al. (1996) or Bertsekas and Tsitsiklis 

(1996). 

2.1 Basic Concepts 

The concept of it reinforcement learning problem is easiest to describe by consid- 

cring an agent situated in some environment, as shown in Figure 2.1. The agent 

can sense information about the state of the environment. The agent can also 

affect the environment by taking one of a set of actions available to it. After each 

action is taken, the agent receives a feedback signal from the environment called 
the reward, which determines how well the agent is performing the target task in 

the environment. The goal in a reinforcement learning problem is to learn which 

action to take in each state to Maximize some measure of optimality based on the 

rewards received over time. 
Formulating a learning problem in this way has a number of advantages. In 
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Figure 2.2: A Markov Decision Process with five states, two actions (a and b), and 

a single stochastic transition. Reward is assumed to be zero if not marked for a 
transition. 

e R(s, a, s') -R is the reward function defining the expected reward' received 

when such a transition is made. 

A particular strategy for choosing actions in an MDP is known as a policy, and 
is specified formally as a function 7r(s, a) --+ (0,1], which defines the probability 

p(als) of selecting each action in a given state. Writing 7rt for the policy at time t, 

if the policy changes over time (7ri, :A 7rt, ) then the series 1-7ro, 71) 7r2, ... 
I is said to 

be a non-statiortary policy. A stationar-y policy 7r has the property that Vt. 7rt = 7r. 
A detenninistic policy, usually written as 7r(s), maps each state with probability 

I to 11 Single action. 
To compare different policies, it is necessary to define an optimality criterion, 

a measure of the quality of a particular policy. A number of different optimality 

criteria have been defined, of which the most common are given below. Here rt 
is the reward received after taking an action on time step t. The notation EI} 

indicates the cz-7)cciation of the expression in the braces given that policy 7r will 
be used to select actions. For the third criterion we also require a discount factor 

,yE [0,1). 

9 Total Return over a Finite Horizon 
N-1 

optiinality(7r) =E7r E rt 
I 
t=O 

e Average Returm over art Infinite Horizon 

optiinality(7r) = E, lim 
N-1 

rt 
N-oo 

E 
t=O 

'Each transition can potentially havc its own random distribution of rewards, so to fully specify 
the NIDP, we should also specify these distributions. ror defining optimality criteria and most 

algorithms, modelling the expected value for each transition is sufficient. 
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Of these, the total discounted return over an infinite horizon is the most common 

and well-understood optimality criterion, and this is the one that will be used from 

this point forward. For further information on average reward and finite horizon 

MDPs the reader is referred to Bertsekas (2001). 

Here we define a value function V'(s) as the expected total discounted return 

when starting in state s and using policy 7r to choose actions (assuming some fixed 

value of -y). Intuitively, V(s) represents the utility of a particular state of the 

MDP under policy 7r. The discount factor -y is used to determine the relative 

worth of future rewards in comparison to rewards available immediately in the 

current state. The value of -y is chosen to be less than 1 to give V'(s) a finite 

value for each state. The values of V'(s) at different states can be related using 
the transition and reward functions as follows: 

V'(s) = 
1: E 

7r(s, a). T(s, a, s'). [R(s, a, s') + -yV'(s')] 
a s' 

This formula, which forms the foundations of most of the algorithms for plan- 

ning and learning in MDPs, relates the value of a state to the expected immediate 

reward in that state and the value of the successor state(s). 
An optimal policy 7r* is a policy which, according to our optimality criterion, 

performs better in the MDP than any other policy 7r. More formally, the policy 

ir* satisfies: 

V7rVS. 
(V'*(s) 

ý! V'(s)) 

While the goal of MDP planning and learning is usually to find 7r*, MDP solu- 
tion methods are often based on a calculation of the value function for the optimal 

policy V'*, also denoted by V*. Once V* has been calculated, the parameters of 
the MDP can be used to calculate an optimal deterministic policy 7r*: 

7r* (s) = arg inax 1: T(s, a, s') [R(s, a, s) + -f V* (s')] (2.1) 
a 

st 

2.3 Planning in MDPs 

If all the parameters of the MDP (S, A, T and R) are known, dynamic programming 

methods (Bellman, 1957) can be used to determine the optimal policy and value 
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function. An important algorithm for dynamic programming is value iteration, a 

method for calculating V*. The algorithm represents (with a table of real numbers) 

a current estimate of V*(s) for each state s. We will write this estimate as V(s). 

Before the algorithm begins the values in the table may be initialized arbitrarily. 
The algorithm is based on re-estimating each V(s) based on the current value 

estimates for the successor states of s. Each re-estimating update to the table of 

values is known as a Bellman back-up, and is defined as: 

V(s) 4-- max 1: T(s, a, s') [R(s, a, s') + -yV(s)] a 
51 

It can be shown that by repeatedly iterating over the set of states and perform- 
ing the Bellman backup for each state in the table of values, each V(s) value will 

eventually converge to V*(s). 

Policy iteration is another important dynamic programming algorithm, which 

consists of alternate periods of estimation and maximization. Given a deterministic 

starting policy 7ro, another form of value iteration is used to estimate the value 
function V'O for that policy. We use the following update rule: 

V(s) +-- 
1: T(s, -7ro(s), s') [R(s, 7ro(s), s') + -yV(s')] 

sl 

By iterating over the set of states, each V(s) value will converge to V 7ro (5) 

using this update rule. Once the value function is sufficiently well estimated, a 

new improved policy 7ri is constructed by maximizing based on V'O. We make 

greedy choices at each state based on the values of successor states, using the 
following formula: 

, 7r, (s) = arg max E T(s, a, s') [R(s, a, s) + -yV'O (s')] 
a 

st 

Now we can go oil to calculate VII in the next estimation phase, and make 

greedy choices in this new value function to find W2. These alternating phases of 

estimation and maximization are repeated until two subsequent policies 7rn and 

7r, +, are unchanged, at which point the algorithm has converged. 

2.4 Learning in MDPs 

Reinforcement learning algorithms operate under different assumptions than algo- 

rithms for MDP planning. The only parameters of the MDP known at the start of 
learning are the state and action sets S and A. The transition and reward functions 

T and R must be estimated during learning by interaction with the environment. 
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Despite these differences, MDP planning and RL are closely related, and most RL 

algorithms are based on either a value iteration or a policy iteration approach. 
To determine the optimal policy 7r* for a reinforcement learning problem, it 

is insufficient to learn V*, since Equation 2.1 cannot be applied if T and R are 

unknown. One way to calculate both V* and 7r* is to learn the related function 

Q*(s, a), defined as: 

(s, a) =E T(s, a, s') 
[R(s, 

a, s') + -y max Q* (s, a') 
st 

a' 

I 

While V* (s) is the optimal value function defined over states, Q* (s, a) is the 

optimal value function defined over state-action pairs. From Q* (s, a) ive can readily 
calculate both V* and 7r* as follows: 

(s) = max Q* (s, a) a 

7r* (s) = arg max Q* (s, a) a 

Q-Icarning 

The Q-learning algorithm (Watkins, 1989) is a method for learning the Q* function, 

and is probably the most well known reinforcement learning algorithm. It is popu- 
lar both for its simplicity of implementation and its strong theoretical convergence 

results, and it exhibits good learning performance in practice. 
Q-learning is similar to the value iteration dynamic programming method, in 

that a table of real numbers is used to store the current estimate Q(s, a) of Q* 

for each s and a, and that re-estimation is made on the basis of the estimates of 

successor states. Each value in the table is initialized arbitrarily, usually by setting 
it to zero or assigning it a small random value. An experience tuple < s, a, r, s' > 
is a small excerpt from the trace of an agent's interaction with the environment. 
The full trace has the form Iso, ao, ro, si, al, ri, 52, ... 1. As experience tuples are 

generated through interaction with the environment, the value function is updated 

using the following rule: 

(s, a) a) Q (s, a) +a (r + -y max Q (s', a')) a' 

The learning rate aE [0,1] determines the extent to which the existing Q(s, a) 

estimate contributes to the new estimate. The purpose of the learning rate is to 

allow each Q(s, a) estimate to slowly converge to the expected future rewards in 

the face of stochastic MDP transitions (or a stochastic reward function). In theory, 
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this algorithm is guaranteed to converge to the optimal value function Q* as long 

as each state-action pair is visited an infinite number of times in the limit and the 

value of a is decayed in the correct way (Watkins and Dayan, 1992). To achieve 

good results in practice, a careful choice of exploration strategy is required. 
An exploration strategy is a mechanism for making a trade-off between explo- 

ration and exploitation. Exploration introduces randomness into the action choice, 
in order to explore the state space for rewards which have not yet been encoun- 
tered. In contrast, exploitation is the choosing of actions which lead to the best 

rewards discovered so far. Usually a strategy will start off taking mainly explo- 

rative actions, introducing a greater proportion of exploitative actions as learning 

proceeds. A good choice of exploration strategy is a prerequisite for timely con- 

vergence in practice. Exploration strategies are discussed in more detail in Section 

3.3. 

SARSA 

The SARSA algorithm (Rummery and Niranjan, 1994) is closely related to Q- 

learning. It uses the same data structure (a table of state-action values) and has a 

very similar update rule. However, while Q-learning converges to the optimal value 
function Q* (s, a), the SARSA algorithm converges to the value function Q 7r (s, a). 
Assume for the moment that 7r is stationary, i. e. the action choice in each state is 

fixed, and is not affected by the current value estimates or any exploration policy. 
The value of Q' (s, a) in this context is the expected return if we start in state 8, 

execute action a, then use policy 7r to choose all subsequent actions. 
The algorithm gets its name' from the letters used in the experience tuples 

generated during learning. If the agent takes action a in state s, receives reward r, 

and then proceeds in the next time step to take action a' in state s', the experience 
tuple < s, a, r, si, at > is generated. The rule to update the value function based 

on this tuple is: 

Q (s , a) *-- (1 - a) Q (s, a) +a (r + yQ (s', a')) 
The update rule differs from Q-learning in the way that the successor state 

value is estimated. In Q-learning the maximum value out of all the actions in 

the successor state is used as the estimate. In SARSA the value of the action 

actually chosen by the learning agent at the next time step is used instead. A 

'Rummery and Niranjan (1994) actually called this algorithm Modified Q-1carning (MQ-L), 
but the alternative SARSA designation popularized by Sutton (1996) is the one which seems to 

have stuck. 

33 



slight modification to the proof of Jaakkola et al. (1994) can be used to establish 
the theoretical convergence of SARSA to the value function Q'. 

In addition, the SARSA algorithm can also be used to learn the optimal value 
function Q*. This is achieved by relaxing the restriction that 7r has to be stationary. 
If the learner can take exploratory actions, but gradually tends towards greedy 

choices in the estimated value function, then the estimates will converge towards 
Q* instead of Q'. Singh et al. (2000) provide a theoretical proof that SARSA 

will converge to Q* when an appropriate exploration strategy is employed. This 

approach also works well in practice, and we shall see later that it is preferable to 

the Q-learning algorithm in some specific situations. 

TD(A) 

Tile reinforcement learning algorithms discussed so far, Q-Learning and SARSA, 

both update the value of state-action pairs based upon the estimated value of 
the state one time step later. An alternative to this approach is to also use the 

estimated values of states encountered two or more time steps later to re-estimate 
the original state's value. This is the intuitive idea behind the TD(A) algorithm 
(Sutton, 1988). 

TD(, \) learns the state value function V' for the control policy 7r used by the 

agent to select actions. Because TD(A) does not learn individual action values, it is 

most useful when we are only concerned with evaluating the quality of an existing 

policy, or if there is some external model of transition behaviour. 

A parameter A (where 0<A< 1) is used to determine the degree to which the 

value of a state encountered n time steps later contributes to the value of the state 
being updated. The value of the state n steps later contributes a factor of An-, 

less than the immediate successor state. 
TD(A) is usually implemented using an eligibility trace. The eligibility trace for 

a state s is a value e, which determines the extent to which s should be updated 

using the value of the current state st. At every time step each of the e, values is 

updated as follows 3: 

-yAe,, if s St 
e, 

yAe,, +I if s st 

Once the eligibility trace values have been updated, the current estimate of 

each state value can also be updated: 
'An eligibility trace updated in this way is known as an accumulating trace. An alternative 

approach is the replacing trace which sets the eligibility of the current state to 1 instead of 
incrementing it by 1. 
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Jt +- rt+l + -yV(st+, ) - V(st) 

V(s) 4-- V(s) + ae, Jt 

The best value for A varies depending on the problem being solved. TD(A) 

with a good choice of A generally converges after fewer steps in the environment 
than TD(O) (which only uses the value of the immediate successor state in each 
update). This improvement in convergence speed has resulted in eligibility traces 
being more widely applied in reinforcement learning algorithms. For instance, 
SARSA and Q-learning have been extended with eligibility traces to produce the 
SARSA(A) algorithm (Rummery, 1995) and two different Q(A) variants developed 

by Watkins (1989) and Peng and Williams (1996) respectively. 
A theoretical proof of convergence of the TD(A) algorithm is given in Jaakkola 

et al. (1994). 

Policy Search 

It is worth noting that not all algorithms for solving RL problems necessarily in- 

volve the manipulation of value function data structures. A number of researchers, 

notably in the area of autonomous robotics, have found that in some situations 
it is better to avoid value functions all together, retain only some form of policy 

representation, and search in a space of policies. In these methods, the policy is 

usually specified as a parameterized function 7r(s, ý), making the goal of the search 
to find a good set of parameters W. The major advantage of this approach is that an 

agent designer's prior knowledge about what kind of structure good policies should 
have can be embedded into the parameterized function 7r, leaving the fine-tuning 

of the parameter vector Wto the agent itself. This is a much easier task than trying 

to learn a non-structured value function for a complex structured task. 
Each policy that is considered as part of the search must be evaluated to de- 

termine its quality compared to other policies that have been considered. The 

efficient use of sampled experience to compare the quality of policies is one of the 

topics studied by Peslikin (2001). Typically the search strategy is to determine the 

gradient in the policy quality with respect to the parameters ý and adjust the pa- 

rameters in the direction of the gradient's steepest ascent (Williams, 1992; Baxter 

and Bartlett, 2000). Alternative search strategies include exhaustive enumeration 

over a finite horizon (Pynadath and Tambe, 2002) and global search methods such 

as genetic algorithms and simulated annealing (Rosenstein and Barto, 2001). 
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2.5 Properties of Reinforcement Learning Algorithms 

There are many other RL algorithms which will not be covered in detail here. 

However, it will be useful for the discussion in subsequent sections to define a 

number of features which can be used to classify different RL algorithms. 

Online vs. Offline 

If an algorithm is intended to interact directly with the environment and learn 

new information after each action is taken, it is termed an online algorithm. If 

instead the algorithm is designed to learn from an execution trace which records 
the states, actions and rewards which occurred during an episode interacting with 
the environment, it is termed an offline algorithm. 

On-policy vs. Off-policy 

Algorithms which learn a state-action value function from the experiences gener- 

ated by an agent following a control policy 7r can be classed as one of two types. 
An on-policy algorithm learns the value function Q1, i. e. the value function for 

the policy being followed by the agent. SARSA is an example of an on-policy 

algorithm. 
An off-policy algorithm learns the optimal value function Q* no matter which 

control policy 7r is followed 4. The control policy 7r may be completely unrelated to 

the optimal policy 7r*. Q-learning is an example of an off-policy algorithm. 
On-policy algorithms can also be used to learn Q*, but only if the agent grad- 

ually adapts its control policy towards greedy choices in the estimated value func- 

tion. Off-policy algorithms allow a more flexible choice of control policy, but can 
be problematic in combination with function approximation (see Section 3.4). 

Model-based vs. Model-free 

A model-based reinforcement learning algorithm is one which builds an explicit 

model of an MDP which describes the learning agent's environment. The parame- 
ters of this model are estimated based on the experiences acquired by interacting 

with the environment. This MDP model can then be used either to simulate ex- 

periences for the learning algorithm, or to perform Bellman backup operations in 

the current (estimated) value function. In both cases, convergence to the optimal 

value function can be obtained after fewer experiences in the environment, at the 
'As long as there is sufficient exploration of the state space. Policy 7r must visit every state- 

action pair infinitely often as time goes to infinity. 
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expense of more computation time per step in the environment. Prioritized sweep- 
ing (Moore and Atkeson, 1993) is a good example of a model-based algorithm. 
An algorithm such as Q-learning which builds no MDP model, and learns based 

on value function updates from experience tuples only, is known as a model-free 

algorithm. 

Complexity Measures 

The efficiency of RL algorithms in terms of various resources can be compared 

using the following complexity measures: 

Mernory Cornplexity The amount of memory required for data structures to 
learn and store a near-optimal policy. 

Sample Complexity The number of experience tuples obtained from interaction 

with the environment required to learn a near-optimal policy. 

Computational Complexity The computation time expended to process a sin- 

gle experience tuple after interacting with the environment. 

Selecting a reinforcement learning algorithm for a particular domain often involves 

a trade-off between sample complexity and computational complexity. In domains 

where experiences in the environment are time-consuming or expensive, such as in 

autonomous robotics, minimizing sample complexity will be the primary concern. 
In other domains where simulated environments can be used to generate fast, cheap 

experience, a simpler method with a worse sample complexity may be preferred if 

this reduces the required learning time. 

2.6 Partial Observability 

An implicit assumption underlying the discussion so far is that the learning agent 

can detect with 100% accuracy the complete current state of the environment, 

and use this state to make the optimal action choice. In most real-world domains 

this assumption does not hold, and the true state of the environment is always 

uncertain. Autonomous mobile robotics is a good example of such a domain. 

Robotic sensors tend to be noisy, reporting imperfect information about the world. 
Robots are also situated at some location of the world, which means that the robot 

may only be able to observe events which take place at the same location. Events 

which occur at other locations may remain unknown for some time. 
To formalise the notion of a problem which is only partially observable, we can 

extend the definition of an MDP (see Section 2.2) to define a partially-observable 
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Markov Decision Process, or POMDP. An example of a POMDP is shown in Figure 
2.3. A POMDP is described by a tuple < S, A) T, R, Q, 0 >, where S, A, T and 
R have the same definitions as in the MDP. The first additional parameter Q is 

a finite set of observations which represent the possible experiences the agent can 
have at each time step. The second parameter is a function O(s, a, o) --ý [0,1] 

which defines the probability of making observation oE 11 after taking action a 
and ending up in state s'. Note that one and only one member of Q is observed 
on each time step. 

a I, o5 
___ /--) al, o7 

a2,06 
S2 

r=5 
a2,02 

al, 03\_/a2,04 

( S, 2 al, ol 

Pr = 0.4 

Pr = 0.6 

Figure 2.3: POMDP with four states, two actions, seven observations, and a single 

stochastic transition. Reward is assumed to be zero if not marked for a transition. 

If all the parameters of the POMDP are known, and JSJ, JAJ and JQJ are all fairly 

small, then an exact solution of the POMDP can be found. A POMDP induces 

an MDP over belief states. Each element bi of the current belief state 9 represents 
the probability that the current state is si. The state space of the induced MDP 

is the continuous space of beliefs B. In addition, the optimal t-step value function 

Vt(g) (the value of a belief state given that we can only take t further actions) 
has a piecewise- linear form. This means we can represent each Vt as a finite set 

of vectors. With this representation we can use value-iteration to calculate Vt for 

increasing values of t, gradually approaching the infinite horizon value function V*. 

Some examples of exact POMDP algorithms are the witness algorithm (Kaelbling 

et al., 1998), Incremental Pruning (Cassandra et al., 1997) and the linear support 

algorithm (Cheng, 1988). 

The complexity of exact POMDP algorithms is such that they are only appro- 

priate for solving quite small problems. Pineau et al. (2003) present an approach 

similar to the exact methods, but limit the number of vectors that can be used 
to represent the intermediate value functions, resulting in a close approximation 
to the optimum for medium-sized POMDPs. For POMDPs with a large number 

of states, explicitly representing the belief state ý and performing a full Bayesian 
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update each time step is infeasible, so some researchers have investigated approxi- 
mate belief state representations, such as the approach by Roy and Gordon (2002) 
based on principal component analysis. 

There are also a variety of approaches which avoid value iteration over belief 

states. Simmons and Koenig (1995) solve an POMDP problem as if the underlying 
states were fully observable, and use the resulting MDP solution as a heuristic to 

guide action choice in the POMDP - Policy search can also be used to exhaustively 
evaluate policies over a finite horizon (Pynadath and Tambe, 2002). 

Empirical studies of POMDP planning have shown it to be much harder than 
MDP planning, a view which is supported by complexity results for the two plan- 
ning problems (Madani, 2000). Learning in POMDP environments is possibly even 
more difficult, since a typical partially observable RL setting would involve experi- 
ence tuples of the form < at, ot, rt >, with the agent having no prior knowledge of 
T) R, or 0, and often not knowing the number of underlying states IS1. Estimat- 
ing these unknown parameters is similar to the task of learning a Hidden Markov 
Model from observed data, but researchers who have modified the Baum-Welch 

algorithm (Rabiner, 1989) to learn POMDP models have found that this approach 
is computationally expensive (Chrisman, 1992; McCallum, 1996). An alternative 
approach is to learn a predictive model (Chrisman, 1992) to estimate the number 
and properties of the hidden states. This model may be based on a memory which 
stores the most recent actions and observations (Lin and Mitchell, 1992; McCal- 
lum, 1996), or use a more complex representation such as that of TD Networks 
(Tanner and Sutton, 2005) or predictive state representations (Wolfe et al., 2005). 
The predictive model can either be used to build an explicit POMDP model for 

planning, or combined with a model-free learning algorithm, using the predictive 
model only to identify the current hidden state. 

In some circumstances it is possible to learn in a POMDP environment in a 
completely model-free fashion, with no attempt to identify the hidden state. For 

example, the HQ-learning algorithm (Wiering and Schmidliuber, 1997) is a hier- 

archical model-free approach to learning in goal-oriented POMI)Ps. HQ-1earning 
is applicable when the task of reaching the goal is a linear sequence of sub-tasks, 
where each sub-task can be solved with a reactive policy mapping observations to 

actions5. HQ-1earning relies on an implicit memory of past observations, since the 

active sub-task is an indicator of progress along the sequence. There are other 
model-free approaches (Littman, 1994; Cliff and Ross, 1994) which use explicit 
memonj bits to record some part of the observation history. These approaches 
have a key advantage over a finite history window in that an agent can remember 

'HQ-Iearning is described in more detail on page 71. 
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the important parts of the observation history compactly, even if the observations 
happened an arbitrarily long time in the past. 

Partial-observability adds a further dimension of difficulty to many real-life 

problems. While much progress has been made in POMDP planning, state of the 

art algorithms remain computationally expensive, and representations for learning 

in POMDP environments are still evolving. Given the difficulty of planning and 
learning in POMDPs, modelling a large RL problem as a POMDP is impractical. 

It is likely in future that hierarchical environment models will limit the use of 
POMDP techniques to small sub-problems (see section 3.5 for a survey of existing 
hierarchical RL methods). Partial observability is a minor topic in this thesis, 

which will mostly be concerned with fully observable problems that can be modelled 

as MDPs. 
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Chapter 3 

Background: Scaling-Up RL 

In this chapter, tile focus of attention is shifted to the problem of reinforcement 
learning in large-scale domains. The state-space explosion is presented as the pri- 
mary challenge to overcome in order to scale-up RL. A wide range of techniques 
have been proposed for this purpose. A categorization of these techniques is de- 
fined in Section 3.2. Each category denotes a family of techniques which can be 

used to modify standard RL algorithms to allow them to be applied to a wider 
range of problems. This categorization is used to structure a comprehensive survey 
of existing techniques for scaling-up RL. At the end of the chapter, some broad 

conclusions are drawn from the complete survey. 

3.1 The State Space Explosion 

Reinforcement learning has been applied successfully in a variety of domains. It 

is an attractive approach when, for example, it is easier to define a good reward 
function than a full model of the environment, or when an environment is easily 

simulated but the principles behind an optimal policy for that environment are 

poorly understood. However, there remain many RL problems with no known 

optimal policy that are infeasible to solve with standard algorithms. Once the 

space of state-action pairs grows beyond a certain size, the time for standard 

algorithms to converge becomes too great, and in some situations there may not 

even be enough memory to store the entire table of state-action values. Standard 

algorithms are also based on a finite space of state-action pairs. There are many 
interesting learning problems where the state-action space is infinite, and usually 
in such cases the space is also continuous. 

The key problem which arises when reinforcement learning is applied to large- 

scale problems is referred to as the state space explosion. It was also described 
by Bellman (1957) as the curse of dimensionality. The "flat" state space S used 
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by a traditional reinforcement learner can usually be expressed as the Cartesian 

product of n simpler state variables, X1 x X2 x ... x Xn. Even if these were only 
binary state variables, ISI would be equal to 2'. As we scale-up to larger problems 
by increasing the number of state variables, the size of the state space S grows 

exponentially. Since the time required to learn an optimal policy grows at least as 
fast as the size of the state space for existing table-based RL algorithms (Strehl 

et al., 2006), the learning time will also grow exponentially as n is increased. 
It is clear that in the fully general case of an arbitrary MDP with 2n states 

(still assuming binary state variables), there is an inescapable limit on how large 

we can allow n to grow and still be able to find the optimal policy in a feasible 

time. Thankfully, real-life learning problems rarely exhibit the full generality of an 

unconstrained MDP. In a particular region of the state space, there may be only 

a few state variables which are relevant to the action choice. Alternatively, there 

may be a large group of states with similar state features which can be considered 
interchangeable in terms of state value and optimal action choice. 

3.2 Categorization of Scaling-Up Techniques 

In recent years, a wide range of techniques have been proposed to tackle the prob- 
lem of scaling-up RL methods to solve larger and more difficult learning problems. 
To structure the survey of these existing techniques, they will be classified into the 
following five categories: 

Exploration Strategy Since an RL agent begins with no knowledge of its envi- 

ronment, the agent must take explorative actions to discover the effects of 

each action and the states which contain large rewards. Once an environ- 

ment has been well-explored, the agent normally tends towards exploitative 

actions which lead to the best rewards. To speed up the learning process, 

some researchers have focused on reducing the number of explorative actions 

required to learn the behaviour of the environment, meaning that the agent 

can move more quickly to exploit the rewards. 

Value Function Approximation Many RL algorithms are based on a value 
function data structure. In its simplest form, a value function is a table of 

numbers which stores for each state an estimate of expected future reward. 
For large state spaces, representing an exact value function not only uses 

a lot of memory, but also causes many algorithms to converge more slowly. 
Replacing the exact table with an approximation means that the learning 

agent requires less memory and is better able to generalize from experience. 
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Hierarchical Reinforcement Learning In order to speed up learning, hierar- 

chical RL methods employ a divide and conquer approach. An RL problem 
is decomposed into smaller sub-problems, and the results are combined to 

generate the overall policy. The problem decomposition can be carried out 
by creating an abstraction hierarchy of actions (temporal abstraction) and/or 

of states (state abstraction). 

Symbolic Representations for Reinforcement Learning A symbolic repre- 

sentation of states and actions is often more compact than the extensional 

representation (which explicitly enumerates each state) used by standard RL 

algorithms. Symbolic representations also support mechanisms for reason- 
ing using acquired knowledge, which can be used to accelerate the learning 

process. 

Parallel Reinforcement Learning A number of agents learning in parallel can 
be used to find optimal policies for single-agent learning problems more 

quickly than a single agent learning in isolation. These methods can exploit 
the computing power of systems such as multiprocessor computers, clusters 

of computers and grid computing systems. The agents combine their results 
through a communication medium such as a shared memory or a network 
which supports message passing. 

In the following five sections I will survey existing work in each of these categories to 

determine in each case the advantages and disadvantages of the general approach, 
tile types of problem which will benefit most from the techniques in each category, 

and the limitations which are evident in each case. 

3.3 Exploration Strategy 

A key property of the standard reinforcement learning setting is that the agent ini- 

tially has no information about the way the environment behaves. The dynamics of 
the environment (Le. the transition and reward functions) can only be determined 

by performing actions in the environment and observing the results. 
The goal in reinforcement learning is to find the optimal policy. But because the 

environment is initially unknown, there emerges a fundamental trade-off between 

choosing actions to gather information about the environment and choosing the 

actions which have (so far) proved to lead to the greatest rewards. This is usually 
described as a trade-off between exploration and exploitation. 

Exploration Actions are chosen with the goal of discovering new information 

about the reward and transition behaviour of the environment. 
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Exploitation Actions are chosen which are likely to lead to the greatest rewards 

which have been discovered so far during learning. 

Theoretical results in RL are usually based the notion of asymptotic optimality. 
An RL algorithm is asymptotically optimal if over an infinite learning time the 

algorithm is guaranteed to reach a point when all subsequent action choices are 

optimal. Applying RL algorithms in practice, however, requires that the learning 

time be both finite and feasibly short. In practice it cannot generally be guaranteed 
that an optimal policy will be learned. The best we can do is establish a high 

probability that a policy close to optimal will be learned in the available time. 

Sometimes an RL task is formulated as entirely separate phases of exploration 

and exploitation. The initial exploration phase could simply be used to build 

as accurate a model of the environment as possible. This is known as system 
identification, an approach which essentially ignores the reward function during 

learning. Dynamic programming can then be used to determine a policy for the 

exploitation phase based on the learned model. 
However, not all information about the environment is of equal value to the 

agent. During the exploitation phase the agent's goal is to accumulate rewards. 
Information about how large rewards can be obtained is more valuable to the 

agent than any other information about the environment. The specific problem 

of exploration for future exploitation was identified and investigated by Wyatt 

(1997). Note that during a separate exploration phase the accumulated reward 
is unimportant-the goal is simply to learn as much as possible about where the 

rewards are. 
Separate exploration and exploitation phases are rare however, and usually 

some form of exploration strategy is used to choose actions. An exploration strategy 

encapsulates both exploration and exploitation in a single algorithm for action 

selection. It provides a trade-off between early exploration (to learn about the 

environment) and later exploration (to maximize reward). Exploration strategies 

which are partially exploitative are very effective in practice, regardless of whether 

the reward accumulated during learning is considered important'. This is because 

they tend to focus the exploration effort around paths in the MDP which lead to 

large rewards, as shown in Figure 3.1. This means that a suboptimal path leading 

to a reward can be quickly refined to the path which achieves that particular reward 

most quickly. However, random exploration away from such paths is still required 

to find larger rewards which have not yet been encountered. 
'The difference in accumulated reward between the agent during learning and the optimal 

policy is known as tile regret. 
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Fip,, ure 3.1: Exploration policies which are also partially exploitative focus the n 
exploration effort armind paths which are already known to lead to large rewards. 

The choice ()f exploration strategy is critical to achieving timely convergence 
to the optimal If there is insufficient exploration. the algorithin is likely to 

converge to a sid)-optimal policY. If exploitation is delayed too long, the exploration 
effort will be spread too) thinly over the state space and convergence will be slow. 

3.3.1 Common Exploration Strategies 

The tA, () most con"'ImIlY "sed explm-ation strategies both provide a mechanism to 
balance exploratio" I)OW(vil the two extremes of the fircco1y policy (which always 

picks the action with the larý, Ivst Q(. s. (, ) vallie) and the uniform random policy 
(Which assigns the Same pr()babilitY of* selection to every action in a state). 

(: -greedy Strategy 

The (-grc(, dY or scmi-arlifol"', "a"dom c. "plorahon strategy (Watkins, 1989) is a 

simple Inechallism for trading off the exploration of the uniforin random policy 

against the exploitatiol, ofthe n, vee(IN, policy. There is a small probability f at each 

time step of' pickinA an action at random. otherwise the greedy policy is followed. 

Witil a good choice of* the value for (. the policy will quicklY converge to one which 

selects the opt i"'al act i0l, Wit 11 Pi'obabilitY (I - (: ) - 

Boltzmann Strategy 

The Bolfý: 'mwm m, soffiruix exploration stratcgy (bice, 1959) is a slightly more, 

sophisticated strategy. It is based on the Boltzmann distribution, Which has its 

origins in statistical mechanics, but also occurs in computer science in algorithins 

such as ()ptinlisation bY simulated annealing (Kirkpatrick et al., 1983). While 

C-greed. v mssiAils equal J)n)babilitY to all actions when a random selection is per- 

forined. the B(Atzmann strat( ... v weights the probabilities using the Q(s, a) values 

for the current state. So while the action choice is still random, actions leading to 

highcr rewards will liave a greater probability of being selected (see Figure 3.2). 
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Q(s, a) = 10 

ab Q(s, b) =5 

dc Q(S, C) =0 C 

Q(s, d) = -I 

Probability of choosing action 
a b c d 

C- greedy 
C=0.2 0.85 0.05 0.05 0.05 

Boltzmann 
T=2.5 0.85 0.12 0.02 

1 
0.01 

Boltzmann 
T=5.0 0.62 0.23 0.08 0.07 

Figure 3.2: The c-greedy strategy chooses the greedy action with probability (1 - 6) 
and otherwise chooses randomly using a uniform distribution. The Boltzmann 

strategy does not explicitly distinguish greedy and random actions. Instead the 

overall probability of choosing an action is weighted by the action's Q(s, a) value. 

How much the probabilities are affected by the state-action values is determined by 
the temperature parameter T. This allows us to choose from a spectrum of policies 
ranging smoothly from fully-random to fully-greedy, depending on our choice of 
value for T. High temperatures make the action choice more random, low temper- 

atures encourage greedy behaviour. In state s, the probability of selecting action 
an is given by the distribution: 

P(a,, ) 
eQ(s, a,, )IT 

eQ(s, ai)IT 

Decaying Parameter Values 

Both the c-greedy and Boltzmann strategies are compatible with the theoretical 

conditions for Q-learning to converge to the optimal value function. In addition, 
they both tend to focus the exploration effort along paths in the state space which 
have been shown to lead to good rewards, resulting in fast convergence. However, 
for fixed values of the c and T parameters, the control policy will continue to 

select sub-optimal actions, even when the value function is arbitrarily close to 
the optimum Q* (s, a). In practice, once the value function is reasonably close to 
Q* (s, a) it is desirable to make greedy choices in the value function. This can be 

achieved by gradually decaying the value of parameter c (or T). 

For the SARSA algorithm, decaying the value of c (or T) is even more important 

if we want to learn the optimal value function. Since SARSA is an on-policy 

algorithm, it will converge to the optimal value function only if the control policy 
tends towards greedy actions over time. Without decaying the parameter values 
SARSA will converge to the value function for the control policy, not the value 
function for the optimal policy. 
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Successful applications of the E-greedy and Boltzmann strategies are strongly 

dependent on: 

choosing a good initial parameter value to ensure enough exploration occurs. 

2. decaying the parameter at the correct rate so that exploitation can take place 

once the value function is close to the optimum. 

Unfortunately there is no analytic method to determine a suitable initial value and 
decay rate for a given problem. Suitable values therefore need to be determined 

by trial and error. 

3.3.2 Directed Exploration Strategies 

The c-greedy and Boltzmann strategies require no extra state to be stored in ad- 
dition to the table of Q(s, a) values. There is therefore no explicit record of which 

areas of the underlying MDP have been explored. Instead we rely on the fact that 

if enough random actions are taken over a long time interval it is probabilistically 
likely that all areas of the MDP will be explored. This is what makes the choice of 
the initial value and decay rate of c or T so vital to the success of these strategies. 
Since there is no way to detect when enough exploration has taken place these 

values must be selected by trial and error. 
More complex exploration strategies have been developed which store addi- 

tional information during learning to track the progress of exploration. This al- 
lows a more informed decision to be made as to when enough exploration has taken 

place. Thrun (1992) uses the term directed to describe such exploration strategies. 
In contrast, c-greedy and Boltzmann are known as undirected exploration strate- 

gies. In addition, Thrun (1992) proposes a classification of exploration strategies 
based on which information influences exploration decisions: 

Utility-based Strategies which are based on the estimated value of each state- 

action pair, Le. value function information. Actions which lead to large 

rewards are explored more often. The e-greedy and Boltzmann strategies are 

examples of utility-based strategies. 

Counter-based Strategies which store a count of the number of times each state- 

action pair is visited. Actions which have small counter values are explored 

more often, which drives the agent towards areas of state space which are 

not well-explored. See Sato et al. (1988) for an example. 

Recency-based Strategies which measure how much time has passed since each 

state-action pair was visited. Actions which have not been visited for some 
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time are favoured for exploration, which again drives the agent towards 

poorly-explored areas of state space. See Sutton (1990) for an example. 

Error-based Strategies which measure how much the Q(s, a) value of each state- 

action pair changes during updates. Actions which have recently undergone 
large changes in value are assumed to have larger error. These actions are 
favoured for exploration in order to reduce the error. See Thrun and M61ler 

(1991) for an example. 

Directed exploration strategies can also be either local or distal (Wyatt, 1997). 

Local strategies only use information about the current state (such as counters or 

recency information) to decide whether to explore. Distal strategies consider in 

addition the long-tenn exploratory benefits of actions. For instance, consider a 

state with two actions which have both been well-explored, but where the second 

of these actions would allow the agent to reach an unexplored state in several time 

steps. A local strategy in this state would not detect the exploratory benefit of 
the second action, whereas a distal strategy would. Measures of exploratory worth 

such as those described by Thrun (1992) can be back-propagated in distal strate- 

gies using dynamic programming or temporal difference updates. For a detailed 

discussion and an empirical comparison of local and distal strategies the reader is 

referred to Meuleau and Bourgine (1999). 

Most directed strategies are heuristic approaches without any formal justifica- 

tion. They are generally inexpensive computationally, allowing them to outperform 

undirected strategies both in terms of sample complexity and computational effort. 
The main disadvantage of heuristic approaches is that they often require parameter 

selection and tuning for each new application domain. 

Kearns and Singh (2002) describe a model-based algorithm utilizing a counter- 
based exploration strategy. This algorithm is interesting because its learning time 

can be polynornially bounded, whether the time is measured by environment time 

steps or computational operations. Given upper bounds on the mean and variance 

of the reward function in any state of an MDP, there is probability of (1 - 5) 

that their algorithm will learn a policy where the discounted return in all states 
is >V* (s) -c in a time bounded by an expression polynomial in -,! and This 

is mainly of theoretical interest, but it does suggest that in the future it may be 

possible to develop efficient directed methods which also have a formal basis. 

3.3.3 Bayesian Approaches to Exploration 

Asymptotic convergence results for Q-learning and SARSA make very few assump- 

tions about the MDP in which learning takes place (Jaakkola et al., 1994; Singh 
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et al., 2000). The only major restriction is that the variance of the rewards received 
from each state-action pair must be finite. When such a wide range of environ- 
ments are possible it is difficult to estimate the potential benefit of an exploratory 
action. Thankfully most of the problems we want to solve with RL do not re- 
quire this generality. The mean and variance of the reward function can usually 
be bounded. In other cases the reward function may be completely known before 
learning begins, leaving only the transition probabilities unknown. When we have 
this kind of prior knowledge about the distribution of the underlying MDP model, 
a mathematically rigorous -way to reason about exploration is to use a Bayesian 

statistical framework. 

In Bayesian statistics, a prior distribution models the initial uncertainty. As 

new data is collected a posterior distribution can be calculated which reflects how 
the uncertainty has changed after observing the data. In RL the unknown param- 
eters are the transition probabilities and reward distribution for each state-action 
pair. The transition probabilities define a multinomial distribution over successor 
states. The uncertainty in these probabilities can therefore be modelled with a 
Dirichlet distribution'. Rewards may be drawn from any underlying distribution, 
but are usually modelled using a Gaussian distribution. 

Given a model of our uncertainty in the underlying MDP, how can we decide 

when it is worth exploring? Since integrating probabilities over the entire distri- 
bution of MDP models is unlikely to be feasible, approaches to date have been 
based oil sampling the distribution of models. In Dearden et al. (1999) dynamic 

programming is used oil the sampled models to generate estimates of the optimal 
Q(s, a) values for the underlying MDP. A separate Gaussian distribution is then 

used to model uncertainty in each set of Q(s, a) estimates, which is used to guide 
exploration based on an information gain criterion. Strens (2000) proposes a sim- 
pler scheme where a single sample from the distribution of models (a "hypothesis") 
is generated at the start of each of a series of finite length "trials. " Dynamic pro- 
gramming is used to create an optimal policy for the hypothesis model. This policy 
is then used to select actions during the trial. 

Approaches based on sampling from a distribution of MDP models are compu- 
tationally expensive, since optimal policies for each sampled model must be found 
by dynamic programming. To avoid this expense, a number researchers have pro- 
posed Bayesian-inspired approaches on a smaller scale. One such approach is to 

adopt a local view each state of the MDP as a bandit problem. A bandit problem 
2 in most cases a state-action pair has only has a non zero transition probability for a few 

destination states. Therefore it is usually necessary for efficiency reasons to model the distribution 

with a representation suited to a sparse distribution. See Dearden et al. (1999) for further details. 

49 



(Berry and Fristedt, 1985) is a single state problem where the goal is to identify by 
trial and error which of the available actions has the highest expected reward. Op- 

timal solutions (in a Bayesian sense) can be calculated for many bandit problems 
(Gittins, 1989). We can view each state of an MDP as a bandit problem where the 
"reward" for taking an action is the optimal discounted return Q* (8, a). Unfortu- 

nately, in RL the value of Q*(s, a) is initially unknown, and must be approximated 
by its estimate Q(s, a). The local bandit problem for each state is therefore non- 

stationary, which makes some kind of forgetting mechanism necessary if Q(s, a) is 

used for the bandit's reward. 
The interval estimation method (Kaelbling, 1993b) is a non-Bayesian strategy 

which adopts the local bandit problem view. Uncertainty in the value of each state- 

action pair is modelled using a Gaussian distribution. Some small probability a 
is chosen, and for each action an upper bound is calculated so that the true value 
is below the bound with probability (1 - a). The action with the highest upper 
bound is always chosen for execution. If the action turns out to be a poor choice, 
the upper bound will be reduced as the statistics are updated. If the action is a 
good choice, the upper bound will remain high and the action will continue to be 

selected in that state. 
Meuleau and Bourgine (1999) present a method similar to interval estimation, 

based on a Bayesian technique for bandit problems using Gittins indices (Gittins, 

1989). A related Bayesian approach which models the uncertainty of each Q(s, a) 
value during the progress of Q-learning is presented by Dearden et al. (1998). 

3.3.4 External Sources of Exploration 

In the standard reinforcement learning setting the learning agent is tabula rasa. 
This means that the agent begins the learning process with absolutely no knowledge 

about how its environment behaves. In the Bayesian RL framework the tabula rasa 

assumption is relaxed, since the agent is provided with a prior distribution which 

models and quantifies the agent's uncertainty of the behaviour of the environment. 
In both cases the responsibility for making intelligent exploration decisions rests 

entirely with the agent. 
In particularly complex environments with sparse rewards, the learning time 

can be shortened significantly by using an external source to perform the initial 

exploration (Smart and Kaelbling, 2000). The external source could be a human 

controlling the system, or a hand-coded policy. This introduces an element of 
teaching into the RL process, making the initial phase of learning similar to be- 

havioural cloning (Sammut, 1996). The advantage of this approach is that sparse 

rewards can be quickly uncovered by the external source, but the reinforcement 

50 



learner can go on to learn a policy which improves on the performance of the exter- 

nal source. Bentivegna et al. (2004) use such techniques to develop robotic systems 

capable of playing air-hockey and a marble-maze game. 

The disadvantage of this approach is that the quality of the learned policy is 

strongly dependent on the quality of the external source. If the external source is 

very sub-optimal, it is possible that exploration will be insufficient to avoid con- 

verging to a local optimum. In the worst case, if there is no known reasonable 

hand-coded policy for a domain, and the task is beyond a human controller, this 

approach is probably inapplicable. Conversely, Driessens and D2eroski (2002) dis- 

covered that it can be problematic if the external source is too close to the optimal 

policy, since a learner observing only optimal actions may not be able to distinguish 

between good and bad action choices. 

3.3.5 Limitations of Improving the Exploration Strategy 

Extensive previous research and continued interest in exploration techniques re- 
flects the fundamental nature of the exploration-exploitation trade-off in RL. A 

good exploration strategy is vital for learning the optimal policy in a reasonable 

time. A variety of both simple and complex strategies were surveyed in this sec- 
tion. The more complex strategies require fewer explorative actions at the expense 

of greater computational effort. Simple strategies such as e-greedy and Boltzmann 

tend to be preferred when the environment is simulated, since environmental expe- 

rience is cheap and plentiful. Directed and Bayesian strategies become most useful 

when experience in the environment is limited or expensive to obtain. 
Despite the gains that the directed exploration strategies afford us, there is a 

limit to how far they can make large reinforcement learning problems tractable. 

The difficulty of large reinforcement learning problems is primarily due to the ex- 

ponential growth of the state space as the number of state features is increased. 

While it may not be necessary to visit all of these states if there is a known bound 

on the reward function, it remains likely that a large subset of the state space must 

be repeatedly visited to establish the optimal policy within some reasonable error 

bound. So even if we had access to a perfect exploration strategy, the sample com- 

plexity would still increase exponentially. To tackle this problem, we need either to 

use some technique to reduce the size of the state space, or to generalise between 

similar states so that we do not need to visit all state-action pairs. Techniques for 

dealing with the state space explosion are discussed in Sections 3.4,3.5 and 3.6. 
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3.4 Value Function Approximation 

In many situations, representing the function Q(s, a) --+ R explicitly as a table of 
real numbers will result in some degree of redundancy. If two states are similar in 
terms of state features, it is likely that a given action will have similar value if taken 
in either of the two states. To take advantage of this property, a representation is 

required for Q(s, a) which will allow us to generalise between similar states. There 

are a number of advantages to generalisation: 

4, By removing redundancies in the table of Q(s, a) values, the function can be 
represented more compactly in memory. 

4, Each update from experience affects more than one state, which can acceler- 
ate convergence to the optimal value function. 

o Values of states which were not encountered during learning can be estimated. 

e Learning can take place in domains with continuous state spaces. 

This form of gencralisation in reinforcement learning is known as value function 

approximation, since the goal is to create an approximation of the entire value 
function from a limited number of examples. Numerous existing techniques for 
function approximation can be used from the fields of inductive concept learning, 

pattern recognition and statistical curve fitting. In this section the application of 
such techniques to reinforcement learning is considered. 

Historical Remarks 

Recent research has focused on applying function approximation techniques to the 

popular Q-learning (Watkins, 1989) and TD(A) (Sutton, 1988) algorithms, which 
ivere both originally presented with the assumption of an exact tabular repre- 
sentation. However, learning an approximate value function is a concept which 
originated in early game-playing programs. In his seminal work on the design of 

chess programs, Shannon (1950) first suggested that a program could learn from 

the outcome of each game it played by changing the coefficients of the evaluation 
function used to rate positions of the board. Samuel (1959) implemented such a 

program to play the game of checkers, using among other techniques an ad hoc 

method for re-estimating the value of board positions based on the estimated value 

of a board position encountered several moves later, a technique with many simi- 
larities to the more general TD(A) algorithm. The evaluation function in Samuel's 

program is a linear combination of numerical features of the board position. 
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Figure 3.3: Instead of performing backup operations in a table data structure, 

experience can be used to generate training examples for a function approximator. 

There has also been a wide range of research on combining function approxi- 

mation with dynamic programming (see Section 2.3), using approximators such as 

orthogonal polynomials (Bellman and Dreyfus, 1959) and splines (Daniel, 1976). 

However, most of these approaches assume that an exact model of the environ- 

ment is available for use in calculations, and so they are not directly applicable to 

reinforcement learning. 

3.4.1 Fundamentals of Approximation 

Consider using an algorithm such as TD(A) (Sutton, 1988) to calculate the value 
function V' for some policy 7r. The estimated value function at time t is written as 
Vt. When function approximation is combined with the TD(A) algorithm, Vt is no 

longer represented as an exact table, but in a compact form which approximates 

the table. The approximator is often a parameterized function, which represents 

Vt using a fixed size parameter vector Ot. Other approximators are based on a 

finite database of experiences recorded during training. In either case, the number 

of parameters or experience data points is usually much smaller than the total 

number of states. 
Each TD(A) backup, which would usually update individual values in the table 

representation, can now be used as a training example for the function approxi- 

mator, as shown in Figure 3.3. For example, in the simplified case of TD(O), the 

value of the state encountered at time t, Vt(st), is re-estimated using the value of 

the subsequent state as rt+l +, yVt(st+, ). To improve the function approximation, 

we use the tuple (st, rt+l +, yVt(st+l)) as a training example for the approximator. 

This approach allows us to choose from a wide range of existing supervised 

learning algorithms for purposes of function approximation. Not all supervised 
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learning techniques are equally appropriate however. The distribution of training 

examples will appear non-stationary until Vt becomes a good approximation of 
V71. Some neural-network methods require multiple passes over a static training 

set, and would be poorly suited for reinforcement learning. 

Note that although much of the discussion in this section is framed in terms of 
learning the state value function V'(s), these methods can apply equally well to 

approximate the state-action value function Q(s, a). 

3.4.2 Comparing Function Approximation Techniques 

How can we compare the performance of two function approximation methods? 
Since many supervised learning methods seek to minimize the mean squared error 
(MSE) over the training examples, a criterion often used to compare function 

approximations in a reinforcement learning context is: 

MSE(ý't) P(s) [V7r(s) - Vit(S)]2 

Here P(s) is a probability distribution which weights the error values accord- 
ing to the likelihood of arriving in a particular state. Note that for on-line re- 
inforcement learning, P(s) is dependent on the policy being used to explore the 

environment. If we change the policy over time (e. g. to approach the optimum) 
then P(s) will also change over time. This is a source of instability when function 

approximation is combined with on-line learning. 

It is arguable whether this is the best criterion with which to grade approxima- 
tions, since the greedy policy derived from a parameter vector fit' which minimizes 
MSE(6't) can often be outperformed by a greedy policy derived from some other 

value of Ot. However, on the basis that a value function which minimizes the MSE 

will result in good performance, there are two important properties of our method 
to be determined: 

How close to the optimum is the Vt which minimizes MSE(Ot)? In other 

words, what is the most accurate value function representable in our function 

approximator? 

fo Does the combination of the reinforcement learning and function approxi- 

mation methods selected guarantee convergence to this minimal MSE(jt) 

approximation? 

It is the second of these properties which is most problematic, and is discussed in 

more detail in Section 3.4.7. 
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3.4.3 Linear Approximation Methods 

Function approximators based on a linear combination of basis functions offer a 

number of advantages. They are backed by strong mathematical theory. There 

are also efficient algorithms for performing gradient descent on the parameters 

of a linear approximator. These algorithms converge to a global optimum which 

minimizes the MSE over a static training set. 
The functional structure of a linear approximator is illustrated in Figure 3.4. 

Given a set of n basis functions 10i(s)} and a vector of n parameters W, we can 

express the linear approximation of the value function as: 

Vt (S) Oi Oi (S) 

The correct choice of the basis functions 10i(s)} is an important factor in 

determining the success of a linear approximator. In making this choice, we can 

exploit any prior knowledge we may have about the learning problem to select input 

features which are good discriminators for the value function. Feature selection is 

a vital stage for most supervised learning methods, both linear and non-linear. 

Approximate state value 

Summation unit 

Adjustable parameters 

Input features 

Figure 3.4: Linear approximation architecture for learning a value function. 

Coarse Coding 

We could use the unmodified state variables (whether discrete or continuous) as 

the basis functions, but this is unlikely to be a successful approach, given the 

limited representational power of a linear approximator. A more suitable set of 

basis functions can be constructed using coarse coding (Hinton et al., 1986). Each 

feature in coarse coding is defined as a region of the state space, and the basic 

approach is to use a large set of overlapping features which between them cover the 

whole state space. Coarse coding generally uses binary features, which have value 1 
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if the currcnt state lics within the "('('('I)tiv(' field of the feature. and otherwise have. 

value 0. It turns out that usim, relatively coarse features with significant overlap is 

more effective in most situations than usintg fine-tgrained disJoint features, although 
if features are too coarsc then it becomes difficult to represent fine-grained changes 

ill the true vallic function. 

Tile Coding 

Tile codiny: 1 (Albus. 19SI) is a forin of coarse coding which has proved to be a 

popular function approximation tcchnique for reinforcement learning (Watkins, 

1989: Lin and Kini. 199l: Slitton. 1996). In tile coding. we define sets of features, 

each Set beille14 kill c-1,11(i ustillc 1)(111ition of the state spacc. Each of these sets is 

known as a tilinfl. and cad, fCaturc in the s, (, t is called a tile. The multiple tilings 

are each offsct bv a diffcrent aniount in the state space (see Figure 3.5), which 
ill1proves thc gencralisation achievable bY tile approximator. The tilings need not 
bc uniform grids. an arbitrary partitioninP. - strategy (-kill be used. Tile coding is 

generally combilled with lm. shrng techni(Ilics to reduce memory requirements. This 

compl-csses a large tiling Into a sinaller set of' tiles'. vach tile being, composed of 

several noll-colitig"llou", 1-cgions spread randomly over the state space. 

Tiling I Tiling 2 

21) state Current Tiling Active 
space state feature 

Figure 3.5: Tilc coding uses coarsc binarY statc features, arranged into a number 

of' ovel-lappill., tilings. n 

3.4.4 Memory-Based Approximators 

Mcnlory-buscd appro. 1-1111(itovs arc it faillilyof approximation inethod", which are not 

ba-sed on it parameterized functional model. Instead a finite number of training 

examples are simplY stored in memory for later use. After training, the values of 

new states arc it pproxi II lilt cd using, a subset of examples whose state features are 

,, lost similar to I he new state. The set is determined (is and wheil a new state 
: 'A tile coding amn-oximator is sometimes known a. s it Cvf-cbc11ar Model Articulation Controller 

(CAIAC) since this wiLs Ow original nanic used by Albus (1981). 

56 



value needs to be estimated, i. e. at query time rather than at learning time. This 

kind of approach is sometimes known as instance-based learning or lazy learning. 

The k-nearest neighbour algorithm (Cover and Hart, 1967) is an example of a 

memory-based approximator. Using this algorithm, the approximate value of a 

state would be the mean value of the k most similar states encountered during 

training, where k is some constant. Sheppard and Salzberg (1997) use a variant of 

k-nearest neighbour as a value function approximator for Q-learning, resulting in 

a method which they term lazy Q-learning. 

Kernel Methods 

Kernel methods (Shawe-Taylor and Cristianini, 2004) are powerful memory-based 

machine learning methods that have only recently been used for reinforcement 
learning. The core idea in these methods is to map examples into an implicit feature 

space O(x) (where x is the vector of state variables and 0 is a mapping to a rich 

space of state features). Since O(x) can contain a large (or even infinite) number 

of features, or be expensive to evaluate for other reasons, we avoid evaluating O(x) 

explicitly by defining a kernel function k: 

(x, x') = (0 (x), 0 

The value of k x, xI is the inner product of two states mapped into the rich 
feature space, which can be seen informally as a measure of the similarity of the 

two states. Note that evaluating 0 is not necessary to calculate k. 0 remains an 
implicit feature space arising from the choice of kernel function k. Kernel methods 

not only benefit from the computational saving of avoiding the evaluation of 0, but 

also allow powerful domain-independent kernel-based algorithms to be developed, 

which can then be tailored to a specific application with a domain-specific kernel 

function. Kernel methods can generalise very effectively from only a very small 

number of stored training examples. 
Some researchers have begun assessing how kernel methods can be used for 

value-function approximation in RL. Ormoneit and Sen (2002) demonstrate the 

robustness of a kernel-based reinforcement learning algorithm in a theoretical con- 

text. The empirical performance of reinforcement learning algorithms based on 
Support Vector Machines (Dietterich and Wang, 2002) and Gaussian processes 
(Rasmussen and Kuss, 2004) has also been investigated. A limitation of these 

approaches is that they all rely on offline processing. Developing effective online 

kernel-based reinforcement learning algorithms is an active area of research. 
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3.4.5 Decision 'IYee Approximators 

A number of researchers have developed function approximation approaches which 
draw their inspiration from decision tree 4 learning algorithms such as ID3 (Quin- 
lan, 1986). Chapman and Kaelbling (1991) presented the G-algoHthm, which in- 

crementally builds a tree-structured value function. In the G-algorithm, a state 
is represented as a binary string, with each bit in the string mapped to a binary 

state feature. As experience is gathered, a standard statistical test known as the 
Student's W test is used to determine which of the bits in the string are relevant to 

making optimal action choices, and the decision tree is split each time a relevant 
bit is discovered. Note that this approach will only have good performance in situ- 
ations where the applicability of each action depends only on a small subset of the 

state features. This work was later extended in scope by Pyeatt and Howe (1998), 

who removed the assumption of binary state features. They also compared the 

performance of four different statistical tests for splitting the decision tree nodes. 
An example of a Q-function represented as a decision tree is shown in Figure 3.6. 

0 

.5 
ye, 

Figure 3.6: A decision tree representing the value function for a single action in a 
continuous state space of two dimensions. 

The kd-tree data structure (Moore, 1990) has similarities both to decision trees 

and to the quad-tree data structure used in computer graphics. Function approx- 
imation using a kd-tree is a variable resolution method-the state space is repre- 

sented at a fine grain resolution only in the areas where it is needed for optimal 
decision-making. The kd-tree approach is most useful for non-linear approxima- 
tion in problems with continuous state variables and high dimensionality. This 

approach eventually developed into the Parti-game algorithm (see Section 3.5.2). 

4 In the statistics community, a decision tree mapping each input to one of a finite set of classes 
is known as a classification tree. A decision tree mapping each input to a real-valued output is 
known as a regression tree. While these names are more descriptive in some contexts, in this thesis 
I follow the convention of Pyeatt and Howe (1998) and use decision tree to refer to both kinds. 
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3.4.6 Neural Network Approximators 

The back-propagation neural network (Rumelhart et al., 1986) is a popular function 

approximator in the wider machine learning community. Many researchers have 

investigated its usefulness for reinforcement learning. An example of a multi-layer 

neural network is shown in Figure 3.7. Anderson (1987) employed a multi-layer 
back-propagation network as a function approximator for RL with the Adaptive 

Heuristic Critic (AHC) algorithm (Barto et al., 1983), using this approach to solve 
the pole-balancing problem. Lin (1992) used neural network approximations with 
both the AHC and Q-1earning algorithms, examining the performance of learning 

agents in a grid-world with food, enemies and obstacles. Tesauro (1995) trained the 

highly successful TD-GAIAMON backgammon program using the TD(A) algorithm 

and a neural network. Zhang and Dietterich (1995) learned strategies for job-shop 

scheduling using a similar approach with TD(A). 

Approximate 
state value 

Hidden layer of 
sigmoid units 

Input features 

Figure 3-7: A neural network approximator which could be used for learning a 

value function. 

Despite the positive results listed above, the combination of RL and neural 

networks can result in slow learning, convergence to a sub-optimal policy, oscil- 
lation or even divergence. Anderson (1986) used such a combination to solve the 

pole-balancing and "Towers of Hanoi" problems, and notes the slow convergence 

in both cases. Shepanski and Macy (1987) used neural network approximation in a 

simplified driving simulator. The initial learning phase (after the network weights 

were randomly initialised) exhibited great instability, and often failed to converge. 

When convergence did occur, the weights exhibited oscillatory behaviour for some 

time before becoming stable. A more complex driving simulation was used as the 

basis for experiments conducted by Barreno and Liccardo (2003) with neural net- 

work approximation for RL. These experiments exhibited convergence problems, 

while similar experiments with a linear approximator produced good results. 
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3.4.7 Convergence Problems and Guarantees 

The mixed success of the above experiments is symptomatic of more general prob- 
lems with using function approximation in RL. With most of these algorithms there 

is no formal guarantee that they will converge to a policy whose value function ap- 

proximation has a small MSE(fi't) error value (see Section 3.4.2). It is also fairly 

easy to construct particular examples to demonstrate empirically that the approx- 
imation does not always converge, and in some cases even diverges (Bradtke, 1993; 

Baird, 1995; Tsitsiklis and van Roy, 1997). 

Boyan and Moore (1995) evaluated quadratic regression, locally weighted re- 

gression, and neural networks as possible function approximators for dynamic pro- 

gramming (using the value iteration algorithm). Each of these approximation 

methods was shown to exhibit divergent behaviour in one of several simple grid- 

world problems. However, using the same set of problems, Sutton (1996) showed 
that an RL approach using the SARSA algorithm (Rummery and Niranjan, 1994) 

and linear tile coding (Albus, 1981) could learn robustly and efficiently in all of the 

problems. These results indicate that the approximation architecture must be care- 
fully matched to both the learning algorithm and the domain if good performance 
is to be achieved. 

How can we determine which function approximator will work well with a 

particular RL algorithm? Deriving a theoretical guarantee of convergence for 

the algorithm would be a useful first step. However, the formal guarantees for 

Q-1earning (Watkins and Dayan, 1992), SARSA (Singh et al., 2000) and TD(A) 

(Jaakkola et al., 1994), which were cited in Section 2.4, were all derived based 

on the assumption that an exact tabular representation was used, not a function 

approximator. Some researchers have begun extending these results to include the 

use of function approximation (Gordon, 1995; Tsitsiklis and van Roy, 1996; Gor- 

don, 2001). Perhaps the most significant result proved so far is that of Tsitsiklis 

and van Roy (1997) where it is shown that, under a number of assumptions, the 

TD(A) algorithm combined with a linear function approximator will converge to a 

near-minimal MSE solution W,,. with probability 1. The near-minimal solution is 

related to the minimal solution 6ý by the inequality: 

1- 'YA MSE(O., ) < -T ---f MSE(O*) 

Note that the parameter A strongly affects the quality of the theoretical bound 

for TD(A). If A=1 (equivalent to Monte Carlo policy evaluation) then the al- 

gorithm will eventually converge to the minimum MSE solution fiý. However, in 

practice much faster convergence can be achieved with smaller values of A. 
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A key assumption in the derivation of this bound is that the distribution of 
training examples is the on-policy distribution, i. e. training examples are generated 
by following the policy being evaluated by TD(A). The success of this approach 

suggests that an on-policy algorithm such as SARSA(A) may form a more successful 

combination with linear approximation than the off-policy Q-learning algorithm. 
In fact, for purposes of estimating the value function of a fixed policy, a modification 

of the proof of Tsitsiklis and van Roy (1997) may be used to prove convergence of 
SARSA(A) using linear approximation. This means that SARSA(A) can be used as 
the estimation step of an approximate policy iteration approach which has strong 

convergence guarantees (Perkins and Precup, 2002). However, the theoretical basis 

for SARSA(A) with linear approximation is much weaker when the control policy 

uses an exploration strategy which is greedy in the limit (Gordon, 2001). In spite 

of this, SARSA(A) with linear approximation has proved to be very successful in 

practice (Sutton, 1996) and remains a popular approach to generalization in RL. 
A different formal approach is necessary to derive guarantees for using func- 

tion approximation with an off-policy algorithm such as Q-1earning. Thrun and 
Schwartz (1993) suggest that using approximation with value iteration methods 

such as Q-learning is inherently dangerous because errors in the value function due 

to generalization can interact poorly with the "max" operator used in the definition 

of the value function. 

How can we avoid the instability which arises in approximate value iteration 

methods? One approach is not to use approximators which extrapolate from the 

observed training examples, as polynomial regression does. Gordon (1995) defines 

a class of function approximators called averagers, which includes local-weighted 

averaging, k-nearest neighbour and 136zier patches. It is shown that when the 

transition and reward functions are known in advance, approximate value iteration 

with an averager is guaranteed to converge to a function whose max norm error 
has a bounded difference from the minimum max norm error solution representable 
by the averager. 

Another possible approach is to change the form of the error being minimized 
from mean-squared error to mean-squared Bellman error or residual error (Baird, 

1995), which can be expressed as: 

= S} _V P(s) [E, f rt+l + yVt (st+j) Ist t(S)]2 
S 

In practice these methods tend to converge more slowly than the simpler func- 

tion approximators, and the formal convergence guarantees which have been proved 

so far are often inapplicable to off-policy algorithms such as Q-learning. 
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3.4.8 Limitations of Function Approximation 

It is evident that many problems still exist for function approximation in rein- 
forcement learning. Successful generalization can often be achieved with careful 

choice of algorithm and approximator, but the field still lacks a coherent formal 

framework to ensure stable convergence to a near-optimal policy. 

Function approximators of the kind discussed in this section also have two key 

limitations: 

* Function approximators are heavily reliant on prior knowledge to provide a 

set of good input features for learning. 

a Function approximators are most effective when the target value function 

has no sharp discontinuities between similar states. 

If there are only a few discontinuities in the target value function, a decision tree 

could be an effective approximator if an algorithm with an appropriate inductive 

bias is used to build the tree. A memory-based approximator could also be effective 
if enough data can be concentrated in the region of each discontinuity. For highly- 

discontinuous value functions, however, both of these methods require too much 

memory to store enough data points (or decision nodes) to accurately approximate 
the target value function. 

Sections 3.5 and 3.6 examine approaches to reinforcement learning using tech- 

niques such as hierarchical decomposition and symbolic AI methods. These ap- 

proaches can be used for solving learning problems where function approximation 
is inappropriate because of the limitations mentioned above. 

3.5 Hierarchical Reinforcement Learning 

One way to approach the problem of scaling-up reinforcement learning is to adopt 

a divide and conquer strategy. Rather than attempting to solve an MDP for 

the whole problem at once, a decomposition is performed to create a hierarchical 

structure of sub-problems. Usually the structure of the decomposition is supplied 

as prior knowledge to an algorithm. This has resulted in a family of closely related 

methods known as Hierarchical Reinforcement Learning methods. 

Many hierarchical reinforcement learning methods are not designed to find 

the true optimal policy. By using decomposition to constrain the scope of the 

learning which takes place, some solution quality is sacrificed to reduce the learning 

time required. By relaxing the requirement of true optimality, a policy with good 

performance can be found in orders of magnitude less time. Dietterich (2000b) 
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defines two forms of restricted optimality to describe the solution quality of some 

of these methods: 

Recursive Optimality A recursively optimal policy is obtained when the policy 

at each node in the learning hierarchy is optimal given the policies to which 

its child nodes have converged. 

Hierarchical Optimality Only a subset of all possible policies can be repre- 

sented with a particular learning hierarchy. The hierarchicallY optimal policy 
is the best policy in this limited subset of policies. 

A hierarchically-optimal method will return the best policy from a given policy 

space, so if the true optimal policy happens to lie in this space, it will be returned 

as the solution. However, this is very unlikely-the hierarchy is constructed to 

allow the problem to be solved in less time, not to preserve optimality. In general, 
the true optimal solution can only be found if we solve the problem in the flat state 

space, which is intractable for large problems. 
The focus of this section is on methods which decompose a learning problem 

and use reinforcement learning as the only learning technique in the resulting hi- 

erarchy. It is worth mentioning that reinforcement learning is also a common 

component technique of hybrid learning architectures. These hybrid approaches 

are often based on a combination of high-level deliberation and low-level reactivity, 

as proposed by Gat (1997). Layered learning (Stone, 1998) is one of the most suc- 

cessful hybrid approaches of this kind. Stone uses reinforcement learning to learn 

low-level behaviours in the layered learning architecture for a successful RoboCup 

team (Kitano, 1998). 

3.5.1 Parallel Decomposition 

Consider a reinforcement learning problem where each action can be interpreted 

as a number of component actions executed in parallel. If the state space of the 

problem can be expressed as a set of features, where each feature is only affected 
by one of these component actions, then a parallel decomposition is possible. Es- 

sentially, this means that choosing an optimal action in the original is equivalent 

to choosing the optimal action for each of a set of sub-problems running in parallel. 
A parallel decomposition for the MDP representing the problem results in a 

set of smaller MDPs. Each of these smaller MDPs represents one of the parallel 

sub-problems which characterise the original problem. The original state space is 

now represented by the Cartesian product of the state spaces of the smaller MDPs. 

Similarly, the original action space is represented by the Cartesian product of the 

action spaces of the smaller MDPs- 
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A traditional reinforcement learning algorithm can now be used to obtain a 

policy for each of the smaller MDPs, which are much less complex than the original 
MDP. These policies are used to select the optimal action for each sub-problem, and 
the combination of these component action choices (which can also be described as 

a joint action) is the action choice in the original MDP. This process is illustrated 

in Figure 3.8. 

Original MDP 

a, 
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Solve sepamtely 

Figure 3.8: Some MDP problems can be decomposed into parallel sub-problems, 

which can be solved separately and their policies combined into a joint action. 

Parallel decomposition is particularly appropriate for multi-agent problems. In 

many such problems each agent will spend a large proportion of its time reasoning 

and acting independently of other agents. If this the case, an MDP representing 

the entire multi-agent problem can be decomposed into an MDP for each agent. 
However, non-trivial problems rarely allow the agents to be assumed totally inde- 

pendent. There may be some shared resource that is consumed by all the agents. 
Alternatively, the coordination of individual actions may be necessary to get the 

largest pay-offs. If there are only a limited number of such interactions between 

agents, the parallel decomposition may still be applicable. 
Parallel decomposition therefore has limited applicability-it is generally only 

suitable for problems where there are several parallel processes which are either 

independent, or have weak interactions such as shared resource constraints. If 

interactions exist, the optimal actions for two sub-problems may be mutually ex- 

clusive. Such conflicts must be resolved when the joint action is constructed. 

Meuleau et al. (1998) present a method for exactly this type of problem, where 

value functions learned for the smaller MI)Ps are used as heuristics for combining 

conflicting action choices into a joint action for the larger MDP. 

Note that parallel decomposition is concerned with decomposing problems with 

parallel structure to make them easier to solve. In Section 3.7 parallel reinforcement 
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learning methods are surveyed, which exploit parallel hardware to quickly find 

solutions for RL problems which have no parallel structure. 

3.5.2 State Aggregation and State Abstraction 

State aggregation is a more generally applicable hierarchical approach. It is based 

on the grouping of sets of the original low-level MDP states into a number of high- 

level abstract states, as shown in Figure 3.9. State aggregation exploits the fact 

that very similar low-level states can be collected into a single abstract state, and 

can then all be considered identical with regard to the current learning problem. 
We can define a high-level MDP over the abstract states, which will be much easier 
to solve because the number of states is much smaller. 

State 
aggregation/ 

Original MDP MDP over abstract states 

Figure 3.9: State aggregation groups together low-level MDP states, resulting in a 
much simpler MDP to be solved over high-level abstract states. 

State abstraction is a particular form of state aggregation, which arises in sit- 
uations where the state consists of a number of state features. If it is known that 

the value of a particular state feature is not needed for selecting the optimal ac- 
tion, we can reduce the size of the state space by aggregating together states which 

only differ in terms of this feature. This is a very effective way to reduce the size 

of the state space, which grows exponentially with the number of state features. 

However, determining without prior knowledge whether a state feature is relevant 
to a given problem is difficult, so we will generally need to supply suitable state 

abstractions to an algorithm using our background knowledge. 

Hierarchical Distance To Goal 

Early research exploiting hierarchy in reinforcement learning was principally based 

around state aggregation. The Hierarchical Distance to Coal or HDG algorithm 
(Kaelbling, 1993a) solves large navigation tasks by distributing landmarks over 

the space to be navigated, and aggregating states according to their closest land- 

E Siale 
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mark. Learning paths between landmarks is much less complex than learning paths 
between arbitrary states. This approach was later extended with the concept of 

airport states (Moore et al., 1999), which constitute a hierarchy of landmarks for 

learning routes at different levels of abstraction. 

Feudal Reinforcement Learning 

Feudal reinforcement learning (Dayan and Hinton, 1993) is another early state ag- 

gregation algorithm applied to navigational learning problems. While there are no 

explicit landmarks used in this algorithm, states are similarly aggregated according 
to spatial proximity. Aggregations are themselves aggregated together to create a 
hierarchy of abstraction levels. Feudal reinforcement learning uses the concept of 

a manager, an independent reinforcement learning agent which has responsibility 

over an aggregation at some level of the hierarchy. Each manager is subordinate to 

a manager at the level above, creating a feudal hierarchy of independent learners. 

All but the lowest layer of managers take action by ceding control to a sub-manager 

to achieve some sub-goal. The lowest layer of managers performs actions directly. 

When a sub-manager achieves its goal, it receives a reward from its manager for 

doing so, and control is returned to the manager. In this way, each manager grad- 

ually learns which sub-manager to choose to take action in each of tile abstract 

states over which it has responsibility. A large state space is thereby decomposed 

into a set of independent learning problems, each with a state space bounded by 

tile maximum number of elements in an aggregation. 

Parti-Game 

The Parti-game algorithm (Moore and Atkeson, 1995) is a variable resolution state 

aggregation algorithm. Instead of creating state aggregations of similar size over 

the entire state space, the algorithm begins with a single large aggregation, and 

splits it into smaller ones in regions of the state space which require fine-grained 

discrimination to produce a good policy. For each aggregation, the algorithm 

chooses the action which has proved from experience to make the best progress 

towards a goal region. If taking this action always results in the same transition 

to a new aggregation, there is no need to split the source aggregation-an effective 

policy choice has been identified for that area of state space. However, if an 

occasion arises where an unexpected transition occurs and the action fails to make 

good progress towards the goal, there must be a state within the aggregation 

which requires a different action choice, so the aggregation is split. This variable 

resolution approach can reduce the state space considerably, and has been applied 
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successfully to problems with high dimensionality and continuous state spaces. 
However, the Parti-game algorithm makes a number of restrictive assumptions, 

and is only applicable to deterministic problems with an explicit set of goal states. 
More recently, Munos and Moore (2002) have evaluated the performance of several 
different splitting cTiteria for a closely related variable resolution method. 

3.5.3 Temporal Abstraction 

State aggregation is an effective technique for reducing the state space of a rein- 
forcement learning problem, but in the general case it may not be obvious how to 
travel from one abstract state to another. The state aggregation algorithms above 
were mostly applied to navigation problems, where moving between abstract states 
can be simple (e. g. take low-level actions heading towards the landmark which de- 
fines the destination abstract state). To apply hierarchical techniques to more 
general problems, we need policies to move between abstract states, which leads 

to the idea of temporal abstraction. 

Original MDP 

The policy assigns an action 
Findpolicyfor a2 to each state in the set 

.. small set ofstates ,aI% 
a a, a2 I Abstract 
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Make Al availablefor 
execution in the MDP 

a2 

S 16 a3 

al a5 
a4 A, 

Figure 3.10: Temporal abstraction uses a partial policy as an abstract (macro) 

action, which can be executed to make fast progress towards regions with good 

rewards. 

Temporal abstraction is intuitively the decomposition of a task into a set of 

sequential subtasks which can be used to complete the task (see Figure 3.10). 

This form of decomposition is similar to the use of subroutines in a procedural 

programming language. Perhaps because of this similarity, temporal abstraction 
has emerged as the principal technique for exploiting hierarchy in reinforcement 
learning problems in recent years. Given a reinforcement learning problem, we 
learn a policy for a small set of low-level states (perhaps the set of states in some 

aggregation). This policy is then made available as an abstract action in addition 
to the concrete actions which define the problem. This abstract action may simply 
be used at the lowest level of abstraction to make fast progress towards a goal, or 
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may be used at a higher level as a mechanism for moving between abstract states. 

H-DYNA 

The H-DYNA system (Singh, 1992) is an early example of temporal abstraction 
in reinforcement learning. Based on ideas from hierarchical planning, Singh intro- 

duces the notion of a variable temporal resolution model (VTRM) for reinforcement 
learning. A VTRM uses different temporal resolutions in different parts of the state 

space to reduce the complexity of the problem being solved. Extending the DYNA 

architecture developed by Sutton (1990), the H-DYNA architecture models the 

reinforcement learning problem at various levels of temporal abstraction. At the 
lowest level, policies are learned for taking the optimal path between a pair of 

states. These policies are then available to the high levels as abstract actions to 

achieve sub-goals effectively. Like many hierarchical reinforcement learning algo- 

rithms, H-DYNA is more useful for problems with an explicit goal state than those 

without. 

Hierarchies of Abstract Machines 

Hierarchies of Abstract Machines (Parr and Russell, 1997) or HAMs are similar 
in structure to H-DYNA, consisting of a hierarchy of learning machines, with a 
low-level machine representing an abstract action available to a high-level machine. 
Each machine is defined by a partial program, which constrains the range of policies 
the machine can learn. In the case of HAMs, the partial program is a finite state 

machine augmented with non-deterministic choice points. Reinforcement learning 

is used to determine the optimal choice at each of these points, and learning can 
take place at many levels in the hierarchy simultaneously. The HAMs approach 

was later extended by the ALisp language (see Section 3.5-4) which provides a 

much more expressive language for partial programming. 

Options 

Sutton et al. (1999) use the notion of options to formalise temporally-extended 

actions. An option is defined by a tuple (7r, 1,, 8)-a policy 7r defined over a subset 
So of the full state space S, a set of input states ICS,, in which the option can 
be initiated, and a function 3: S,, - [0,1] which determines the probability the 

option will terminate in a given state. Options are made available for execution 
in addition to the primitive actions, and act as effective macro-actions for making 

progress towards a goal region, accelerating the reinforcement learning process. 
When an option is initiated for execution, the policy 7r is used to choose actions, 
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and after each action the option will probabilistically terminate according to the 

value of 3 for the resultant state. On termination, control is returned to the 

agent which initiated the option, so that a new option or primitive action can be 

selected for execution. A scheme of hierarchical options of the form (P, 1,, 3) can be 

constructed by replacing the policy 7r for choosing primitive actions with a policy 

I-L which can select other options for execution as well as primitive actions. 

Semi-Markov Decision Processes 

The semi-Markov decision process (SMDP) (Howard, 1971) is commonly used as a 
formal model of temporal abstraction in reinforcement learning. In this model, the 

number of time steps between one decision and the next is a random variable, and 
this is interpreted as the system remaining in the current state for a random waiting 
time, then making an instantaneous transition to the next state. The transition 

behaviour of the model is defined by a joint probability distribution P(s', -r1s, a), 
the probability that choosing action a in state s will result in a transition to state 

s' after 7- time steps. It is straightforward to derive forms of the Bellman equations 

and the Q-update rule in this model, and to prove convergence results for some 

of the temporal abstraction algorithms described above. Barto and Mahadevan 

(2003) describe SMI)Ps in more detail, and show how the options, HAMs and 
MAXQ methods (MAXQ is discussed in Section 3.5.4) may be formalised using an 
SMDP model. 

3.5.4 Combining Temporal Abstraction with State Abstraction 

Temporal abstraction has proved to be a very effective way of decomposing large 

reinforcement learning problems into smaller, more tractable pieces. However, 

while temporal abstraction simplifies the learning problem, it does not address the 

state space explosion in the way that state aggregation techniques do. So while a 

subtask may be comparatively simple to learn, a huge state space will still render 
the problem intractable. 

Using the full state space for learning a subtask will include many irrelevant 

state features. These features are not needed to make policy choices within the 

subtask, and increase the size of the state space exponentially. State abstraction is 

a technique for tackling exactly this sort of problem. For each subtask we need only 

consider the smallest number of state features necessary to construct an effective 

policy (see Figure 3.11). Hierarchical reinforcement learning offers the greatest 

gains when temporal abstraction is combined with state abstraction. 
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Figure 3.11: In this example, temporal abstraction is used to break the overall task 

into subtasks. State abstraction is then used to annotate each subtask with the 

relevant state variables for solving it. 

MAXQ 

The MAXQ decomposition method developed by Dietterich (2000b) was one of the 

first ways to combine these two forms of abstraction. MAXQ has many similarities 

to the options framework (Sutton et al., 1999), but places a greater emphasis 

on the use of hierarchy during the process of learning. Within each task in the 

hierarchy, the goal is to learn values for Q(p, s, a), the expected return when task p 
is completed if, %ve choose to execute subtask a in state s. The MAXQ value function 

decomposition partitions Q(p, s, a) into two parts: V(a, s), the expected return 

while executing subtask a, and C(p, s, a), the expected return from completing p 

after a has finished executing. Partitioning the rewards in this way allows powerful 

state abstractions to be used which can greatly reduce the effective state space for 

the problem. 
Combining the MAXQ decomposition with Q-learning for each policy subtask 

produces the MAXQ-Q algorithm. Using this algorithm, learning can take place at 

all levels of the hierarchy simultaneously, with the algorithm eventually converging 

to a recursively optimal solution. Dietterich derives the formal conditions for safely 

employing state abstraction in MAXQ-Q (in other words, using state abstraction 

without compromising the quality of the final policy). 

ALisp 

ALisp (Andre, 2003) is another recent method combining state abstraction with 

temporal abstraction. ALisp extends the partial programming approach of the 

HAMs (Parr and Russell, 1997) method, and is essentially the Lisp language aug- 

mented with non-deterministic choice points (where the reinforcement learning 
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takes place) and subroutine calls to lower levels of the hierarchy. The sum of re- 
wards is partitioned in a similar way to the MAXQ method, but the algorithm con- 
verges to a hierarchically optimal solution, which is an improvement over MAXQ. 
State abstraction is achieved by the user annotating the choice points in an ALisp 

program with the names of the state features which are relevant to that learning 

choice. Andre (2003) also presents the formal conditions for safe state abstraction 
in the ALisp framework. 

3.5.5 Learning Sub-Goal Hierarchies 

All the hierarchical methods described so far assume that a hierarchy is supplied 
by the user before learning begins. There has been some research into determining 

useful task decompositions without prior knowledge. This obviously makes the 

learning problem much more difficult, and there has been very limited success in 

this area. 
The SKILLS algorithm (Thrun and Schwartz, 1995) searches for abstract ac- 

tions using a description length argument, which specifies the number of states 

each abstract action should cover. The algorithm starts with a single state for a 

skill, and grows the set of states defining the skill while learning a policy which 

maximizes reward in that region. While effective, the algorithm is slow. In the 

example grid navigation domain, the time required to find useful skills is an order 

of magnitude greater than the time needed to find a near-optimal policy. 
In more recent research, McGovern and Barto (2001) use the concept of diverse 

density to identify states which occur somewhere in every successful episode, but 

not at all in failed episodes. Reaching such a state becomes a sub-goal, and an 

option (Sutton et al., 1999) is created for each of them. $m§ek and Barto (2004) 

present a similar approach based on the relative novelty of states. The novelty of 

a state decreases the more times it is visited. The relative novelty of some state in 

an experience trace is defined as the ratio of the novelties of the states immediately 

preceding and following the state. States with high relative novelty are candidates 
for sub-goals. 

There have been several approaches which are based on properties of the graph 
formed by the underlying MDP's states and transitions. ýim§ek et al. (2005) use 

a graph built from a recent experience trace, and search for a cut (a small set of 

edges to remove) which would divide it into densely connected subgraphs. States 

on either side of the cut are candidates for sub-goals. Mannor et al. (2004) pursue 

a bottom-up approach based on state aggregation, where small clusters of states 

are gradually combined together to minimize inter-cluster edges. 
It is worth mentioning several algorithms for POMDP learning (see Section 2.6) 
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which are based on automatic construction of a hierarchy. HQ-1earning (Wiering 

and Sclimidhuber, 1997) is based on decomposition of a goal-oriented POMDP into 

a sequence of Markovian sub-tasks. Each sub-task is defined by an observation 
which must occur for the sub-task to end. A number of Q-1earners are arranged 
in a fixed sequence. Each learner gradually determines which sub-task to achieve 
and how to achieve it by mapping observations to actions. When a sub-task is 

completed, control is always passed to the next Q-learner in the sequence. Sun and 
Simmons (1999) extended this approach so that each Q-learner can be activated 
more than once in the sequence. Since the hierarchy in these two approaches is 

essentially flat they are unlikely to scale well to larger problems. 
McCallum (1996) introduces a POMDP learning technique called Utile Dis- 

tinction Memonj (UDM) which constructs a hierarchical state abstraction during 
learning. It based on a statistical test which estimates whether distinguishing two 

states (based on a finite observation history) will allow an improved policy to be 

represented. The technique is similar to decision tree function approximation (see 
Section 3.4-5) but in addition to estimating whether state/observation variables 
are relevant for optimal decision making, the technique estimates when the recent 
histonj of observations is also relevant. 

3.6 Symbolic Representations for RL 

A fundamental feature of standard reinforcement learning algorithms, and a key 
factor contributing to the state space explosion, is the extensional representation 
of states. In an extensional representation each state si ES is explicitly named, 
and important data structures such as the value function are based on this explicit 
naming scheme. Algorithms based on this extensional representation are very 
efficient for small state spaces, but have the disadvantage of an exponential growth 
in learning time as the number of state variables is increased. 

In traditional AI disciplines such as classical planning, an intensional represen- 
tation is much more common. In an intensional representation states (and more 
importantly, sets of states) are represented by a set of state features. For instance, 

if the state S is the Cartesian product of state variables X1 ... X,,, we can use 
the feature X1 =3 to describe the set of all states which have value 3 for state 

variable X1, whatever values the other n-1 variables take. If each state variable 

can have i possible values, X1 =3 represents a set of i'-' states-hence the inten- 

sional representation of some sets of states can be exponentially smaller in n than 

a representation which explicitly enumerates each of the states in the set. 
An intensional or symbolic representation allows us to represent sets of states 
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in a more compact fashion. However, algorithms for symbolic reasoning are usually 
based on searching for solutions in a search space of size exponential in the number 

of state variables (Bylander, 1994), so a trade-off emerges between representational 

complexity and time complexity. 

It is worth noting that some of the methods discussed in Sections 3.4 and 3.5 

derive part of their usefulness from an implicit symbolic representation of state. 

For instance, each node of the decision tree function approximator (Pyeatt and 

Howe, 1998) uses a symbolic state feature as a decision criterion. Also, the state 

abstraction offered by the ALisp language (Andre, 2003) is based on identifying 

the relevant symbolic state features for each procedure in the partial program. 

This section surveys recent approaches which use symbolic representations to 

make reinforcement learning feasible in domains where there are a large number 

of state variables to consider. Representation techniques from other Al disciplines 

such as classical planning, Bayesian networks, probabilistic planning, and logic pro- 

gramming are among those evaluated for their suitability for use in reinforcement 

learning. 

3.6.1 Classical Planning and Reinforcement Learning 

A classical AI planning problem uses a restricted first order representation of state 
to provide a basis for reasoning efficiently about sequences of actions to achieve 

a given goal. In this section, we will consider planners which use the STRIPS 

representation (Fikes and Nilsson, 1971), although much of the discussion applies 

equally well to more complex representations such as ADL (Pednault, 1989), prob- 

abilistic STRIPS (Kuslimerick et al., 1995) and the situation calculus (McCarthy, 

1963). 

Planning With STRIPS 

In STRIPS an individual state is represented by a set of positive ground literals, 

and the set of goal states by a conjunction of positive literals. Each STRIPS 

operator (or action) is defined by the changes it makes to the set of positive literals 

which constitute an applicable state. This is usually compactly encoded as three 

elements, a set of preconditions, an add-list and a delete-list. A solution to a 
STRIPS planning problem consists of a sequence of operators which transform the 

initial state to one of the set of goal states. 
A planning problem and a reinforcement learning problem share some key 

structural components. In both paradigms we have a current state, which can 
be transformed into a new state by means of an action (or operator). Both are 
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also concerned with identifying useful sequences of actions. This suggests a close 

relationship between the two problems, and that we may be able to use plan- 

ning techniques to improve the performance of reinforcement learning algorithms. 
However, there are also key differences between the two problems. The effects of 

planning operators are deterministic, and the operator effects are given as prior 

knowledge to the planner. Also, in the planning problem we are primarily inter- 

ested in reaching one of a set of goal states. In contrast, the goal in reinforcement 

learning is to maximize some optimality criterion such as the total discounted re- 

ward. It is not always possible to express this maximizing goal as a set of goal 

states. 

STRIPS Planning vs. Dynamic Programming 

The relationship between classical planning and dynamic programming is discussed 

in some detail by Boutilier et al. (1999). This relationship can be illustrated by 

transforming a STRIPS problem into an MDP problem for solution by a dynamic 

programming algorithm. This transformation can be defined as follows: 

a The state space of the MDP enumerates all the sets of positive ground literals 

which represent valid situations in the problem domain. 

9 The actions of the MDP are the ground instances of each STRIPS operator. 

e The reward function of the MDP is 1 in all the goal states of the planner 
(which are terminal), and 0 everywhere else. 

* Taking an action in a state which does not satisfy the preconditions of the 

corresponding STRIPS operator results in a self-transition. 

Taking an action in a state which satisfies the preconditions results in a 
transition to a new state determined by the add and delete lists of the STRIPS 

operator. 

The value function for this MDP can be obtained by dynamic programming. This 

determines for each state the action which leads to the nearest goal state. There- 

fore, from the value function it is possible to read out the shortest plan for any 
initial state. A planner's solution only applies to a single initial state. Despite this 

advantage, the state space explosion means that solving any significant planning 

problem in this way is generally intractable. But the close relationship between 

the two problems suggests that representations from AI planning are likely to be 

important in developing dynamic programming and reinforcement learning algo- 

rithms which can solve larger problems. 
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Richer Planning Representations 

The reverse transformation, from an arbitrary MDP to a STRIPS planning prob- 
lem is not possible, since neither actions with stochastic effects, nor reward func- 

tions which are not goal-oriented can be represented in the STRIPS framework. 

However, more expressive representation languages for AI planning have been de- 

veloped since STRIPS, some of which can express one or more of these qualities. 

Probabilistic planning algorithms such as BURIDAN (Kushmerick et al., 1995) can 

represent the stochastic effects of actions, but the systems which have been built 

so far have exhibited very poor performance compared to deterministic planners. 

In terms of reasoning about rewards and the relative quality of several plans to 

achieve a goal, decision theoretic planning systems such as DRIPS (Haddawy and 

Suwandi, 1994) may provide insight into which intensional representations could 

be useful for reinforcement learning. 

Macro-Operators and Hierarchical Planning 

Some techniques developed to solve large-scale planning problems turn out to have 

natural analogues in reinforcement learning. The strongest influences are evident 
in the hierarchical reinforcement learning methods previously discussed in Sec- 

tion 3.5. A macro-operator (Korf, 1987) is a useful sequence of planning operators 

which is considered as an atomic unit for the purposes of state space search. Macro- 

operators have influenced methods like the options framework (Sutton et al., 1999) 

which are based on temporal abstraction. A similar influence can be observed in 

the state abstraction hierarchies of methods such as ALisp (Andre, 2003), which 
have many conceptual similarities to hierarchical planning algorithms such as AB- 

STRIPS (Sacerdoti, 1974). 

Methods Combining Planning And Reinforcement Learning 

So far, there has been relatively little research using symbolic planning representa- 

tions to augment the capabilities of reinforcement learning methods. One exception 

is the technique developed by Boutilier et al. (1997) to solve MDPs with reward 
functions expressible as an additive combination of sub-goals. The technique uses 

partially- ordered plans as the intermediate representation of solutions for each of 

the sub-goals. These plans are then used as the basis for creating an overall solu- 

tion of the MDP by merging the sub-goal solutions and prioritizing the sub-goals 

with the largest associated rewards. 
RACHEL (Ryan, 2002a, b) is a hybrid system which combines RL with techniques 

from teleo-reactive planning (Nilsson, 1994). At the centre of this approach is the 
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concept of a reinforcement-learned teleo-operator (RL-TOP). An RL-TOP uses 

symbolic preconditions and effects to define the intended outcome of a behaviour, 

while leaving the implementation of the behaviour to be learned by RL. This means 

that the operator can be used in a planning algorithm, but it also means that a 

reward function for learning the operator behaviour can be automatically generated 

from the operator's symbolic preconditions and effects. 
The RACHEL system uses what is known as semi-universal planning. A uni- 

versal plan contains a path to the goal for every possible symbolic state, but is 

typically too costly to calculate and store in memory. A semi-universal plan is 

typically much smaller, and is generated by storing in memory all the failed paths 

generated during a search for a valid plan. In addition, if during plan execution 

a state is encountered which the plan does not cover, the plan is extended with 

a path from this new state to the goal. The use of semi-universal plans in the 

RACHEL system reduces the cost of replanning when an operator fails. In addi- 

tion, the teleo-reactive approach allows the system to exploit shorter plans which 

unexpectedly become possible due to exogenous events. 

3.6.2 Factored Representation of MDPs 

One intensional approach which has become popular for solving large dynamic pro- 

gramming problems is to describe an MDP with a factored representation (Boutilier 

et al., 1999). Each state variable which is part of the overall MDP state can be 

referenced by a symbolic name, and is termed a factor of the MDP- Based on these 

factors, compact representations can be defined for the effects of actions, the re- 

ward function, the value function, and other elements of the MDP. Some of these 

representations are described in this section. Although much of this work assumes 
that the parameters of the MDP are known (and usually that the factored rep- 

resentations of actions and reward function are also known) it is likely that such 

representations will be useful in the future for scaling-up reinforcement learning 

methods. 
A factored representation of an action compactly encodes the following prop- 

erties: 

9 Factors in the current state which affect the result of the action. 

4, F actorswhich can change in the next state if the action is applied. 

e The conditional probability of each change, given the current state. 
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Dynamic Bayesian Networks 

If we have a factored representation for every action, this represents a compact 

encoding of the transition function of the MDP. One way to encode this information 

is to use a Dynamic Bayesian Network (Dean and Kanazawa, 1989), as shown in 

Figure 3.12. The form of the network used here is sometimes referred to as a 
2TBN or two-stage temporal Bayesian network. The example in Figure 3.12 uses 

only binary state variables, but the approach applies equally well to multi-valued 

state variables. The conditional probability table (CPT) for each node at time t+1 

determines the probability that the state variable has a particular value at this 

time, given the values of relevant state variables at time t. Any state variables not 

relevant to the action are not represented. If there are only a few relevant state 

variables, this is much more compact than a flat representation of the transition 

probabilities. 

xt Yt ft 
f f 1.0 0.0 
f t 1.0 0.0 
t f 0.0 1.0 
t t 0.5 0.5 

xt Yt ft 
f f 1.0 0.0 

---------- Cý: - f t 0.0 1.0 
t f 1.0 0.0 
t t 0.5 0.5 

Pr(Z t+ = val) 
zt ft 
f 0.8 0.2 
t 0.0 1.0 

Time t Time t+1 Conditional Probability Tables 

Figure 3.12: Factored action representation based on a dynamic Bayesian network. 

Probabilistic STRIPS Operators 

An alternative factored action representation is based on the concept of a probabilis- 
tic STRIPS operator (Kushmerick et al., 1995). Like a regular STRIPS operator 
(Fikes and Nilsson, 1971), the effects of the action are represented with an add list 

and a delete list. However, the probabilistic STRIPS operator has a number of 

such lists-the one to be used depends on the values of relevant variables in the 

current state. This is encoded as a decision tree, as shown in Figure 3.13. Each 

leaf node in the decision tree is a set of possible effects lists, each tagged with a 

Pr(Xt+l = vat) 
xt yt ft 
ff1.0 0.0 
ft1.0 0.0 
tf0.0 1.0 
tt0.5 0.5 

Pr(Yt+l = vat) 
xt yt ft 
ff1.0 0.0 
ft0.0 1.0 
tf1.0 0.0 
tt0.5 0.5 
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probability. This probability determines how likely it is that this list of effects will 
occur if the action is applied in a state corresponding to a particular path through 

the decision tree. This is good for representing compactly situations where the 

stochastic effects on several state variables are correlated. If, on the other hand, 

there are several independent stochastic effects on different state variables, the 

2TBN representation is likely to be more compact. 

t 

yz tf 

0.2 

+Z tftfn ne 0.8 

-X -Y 0.5 -X -Y +Z 0.1 1 none 1.0 1 +z 0 

none 0.5 

1 

-x -Y 0.4 none 0 
+Z 0.1 
none 0.4 

Figure 3.13: A probabilistic STRIPS operator representing the same action. 

Factored Reward Functions 

A factored representation can also be defined for the reward function. Like the 

action representations, there are several ways to do this, but one of the simplest 
is to use a decision tree data structure, and store at the leaf node the reward 

associated with states corresponding to that path through the decision tree (see 

Figure 3.14). If rewards are associated with state-action pairs rather than states, 

we will require one of these trees for each of the actions. 

x 
t 

.0 ý-ý 
y 

zz 
+5 +6 -1 0 

Figure 3.14: A factored representation of the reward function of an MDP. 
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Model Minimization 

Now that we have represented the MDP compactly, the next challenge is to de- 

velop algorithms which can take these factored data structures and calculate sim- 
ilarly compact representations of the optimal policy and the value function. One 

approach by Dearden and Boutilier (1997) uses data from the factored representa- 
tion to rank the state variables according to their degree of influence on the reward 
function. Given this ranking, a subset of the most relevant variables can be deter- 

mined, and an abstract MDP with a smaller state space can be solved using this 

subset. This solution may then be used to "seed" a solution in the original MDP, 

reducing the time to convergence. A similar approach by Dean and Givan (1997) 

uses a factored representation to aggregate states between which it is not necessary 
to distinguish in order to act optimally. This technique is used to progressively 
build up a minimal model, the solution of which induces an optimal solution of the 

original MDP- 

Factored Policies and Value Functions 

Both the above algorithms only use the factored representation to reduce the state 

space that need be considered by a standard dynamic programming algorithm. The 

Structured Policy Iteration (SPI) algorithm developed by Boutilier et al. (2000) 

is one of the few algorithms which maintains a factored representation through 

to its eventual output. This may be significant if we need to solve a problem 

where the subset of potentially relevant state variables is still very large. The 

SPI algorithm employs factored representations based on decision trees for both 

value functions and policies. The value function for a specific policy is constructed 

starting from the tree for the reward function. A transformation of the tree based 

on the Bellman backup is repeatedly applied. This transformation uses the factored 

action representations to extend branches of the tree and update the state values 

at the leaves of the tree. Policies are successively improved by building the value 
function tree for one policy, then building a new policy tree with greedy choices in 

the value function. 

The SPUDD (Stochastic Planning using Decision Diagrams) algorithm (Hoey 

et al., 1999) extends the decision tree representation of the SPI algorithm, using 

algebraic decision diagrams (ADDs) to represent conditional probability tables and 

value functions. SPUDD is a value iteration style algorithm which can be used to 

solve factored MDPs. 
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3.6.3 Relational Representations for RL 

The factored approaches in the previous section use intensional representations 
based on state variables to solve structured MDPs efficiently. These representa- 

tions are all inherently propositional-they can only express the possible values 

for each of the state variables. If the learning domain involves many objects, and 

relations between the objects are part of the state description, then a propositional 

representation is likely to be inefficient. This has led some researchers to consider 

using first order representations of state for reinforcement learning. 

Symbolic Dynamic Programming 

Symbolic Dynamic Programming (Boutilier et al., 2001) is a first order approach 
based on the situation calculus (McCarthy, 1963). It does assume the MDP pa- 

rameters are known, but the representations involved may still prove useful for 

reinforcement learning. The preconditions and effects of each action in the MDP 

are represented in an extended version of the situation calculus, thus allowing uni- 

versal (V) and existential (3) quantification to be used to express sets of states 

very concisely. To express stochastic effects, the calculus is extended with the 

choice operator, which represents a stochastic choice between two deterministic 

effects. When a stochastic action is applied, the system decides probabilistically 

which of the two deterministic effects to apply-so while the symbolic reasoning 
is restricted to deterministic situations, the addition of the choice operator allows 

the correct calculation of state values in stochastic domains. The reward func- 

tion is expressed by partitioning the state space into sets of states using situation 

calculus expressions, and annotating each set with a reward value. A version of 

the Bellman update rule is then defined over the first order representation, and is 

repeatedly applied to obtain a value function compactly represented by situation 

calculus expressions (in a similar way to the reward function). 

A disadvantage of using the situation calculus is that computationally expensive 

theorem proving techniques are needed to apply the inference rules. The relational 
Bellman operator, or REBEL (Kersting et al., 2004), is an alternative symbolic 
dynamic programming algorithm based on a STRIPS-like representation. 

Relational Reinforcement Learning 

Another technique for learning in first-order worlds is Relational Reinforcement 

Learning (D2eroski et al., 2001). In this approach, formulae from a STRIPS-like 

representation are the basis of a decision tree which compactly represents the value 
function for a paramete7ized action such as move (A, B) (where A and B are first or- 
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der variables). An example of a decision tree learned by relational reinforcement 
learning is shown in Figure 3.15. The decision tests in the nodes of the decision 

tree are based on relations, which can reference the variables of the parameterized 

action, e. g. clear(A). D2eroski et al. (2001) evaluate several different algorithms 
for building the decision tree, based on existing learning techniques such as TILDE 

(Blockeel and De Raedt, 1998). The input to the decision tree learning algorithm 
is a set of situations encountered during a learning episode, each annotated with 
the action taken and the total rewards accumulated in the rest of the episode. 
While the representation is much more restrictive than the situation calculus, it 

still allows us to represent very compactly the effect of an action on a large number 

of objects. It can also take advantage of a fast decision tree learning algorithm, 

rather than having to use a theorem prover to calculate the value function. Re- 

lational reinforcement learning can be seen as the application of inductive logic 

programming techniques to the reinforcement learning problem. 

on (A, B) 
\110 

Action 
- 

move(D, E) 1 1 
0.0 clear (A) 

ýýno : 
Current Goal 

1.0 clear(E) on(A, B) 

: 7/\110 

0.9 0.81 

Figure 3.15: Example of a value function learned by the Relational Reinforcement 

Learning method (D2eroski et al., 2001). 

Although relational reinforcement learning is a relatively new technique, it 

is becoming increasingly popular, and many researchers are seeking to improve 

and extend the approach. Alternatives to the decision tree approximator used by 

D2eroski et al. (2001) are being investigated, such as the method using instance- 

based regression developed by Driessens and Ramon (2003). Another successful 

approach encodes state-action pairs as graphs, then uses a kernel function (see 

Section 3.4.4) over the graphs as the basis of the approximation (Ciirtner et al., 
2003). Relational reinforcement learning has become one of machine learning's 

"hot topics" in recent years, resulting in a range of new approaches which combine 
ideas from classical planning, probabilistic logic learning, and the broader machine 
learning community. A comprehensive survey of the state of the art in relational 
RL and its relationship to research in other areas can be found in van Otterlo 

(2005). 
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3.7 Parallel Reinforcement Learning 

In the preceding four sections, a wide range of techniques have been surveyed which 
can be used to apply RL to large-scale problems. While there has been substantial 

progress towards this goal, there remain many problems of borderline feasibility 

which can require many hours or even days to learn a high-quality policy. In 

these situations it is reasonable to ask whether a parallel computing architecture 

could be used to generate the policy more quickly. It is not immediately clear 
that this should be possible, since the characteristic interaction between an agent 

and its environment in RL is essentially a sequential process. However, where it 

is possible to simulate the target environment, the benefits of a parallel approach 
become evident. Parallel techniques for generating RL policies are surveyed in 

this section, and this broad approach will be referred to as parallel reinforcement 
leaming. 

The section begins with an overview of concepts from parallel computing which 

will be used throughout the thesis. Since limited space precludes an in-depth 

discussion of this topic, the reader is referred to Hwang and Xu (1998) for more 
details on the theory and practice of parallel computation. 

3.7.1 Overview of Parallel Computing 

There has been such a variety of parallel computing systems built over the years 
that it is important to try to classify parallel systems in a way which captures 

some of their key properties. Flynn's taxonomy (Flynn, 1972) can be used to 

classify a parallel computer according to the number of instruction streams and 
data streams: 

SISD - Single Instruction Single Data A sequential computer with no par- 
allelism. 

SIMI) - Single Instruction Multiple Data A machine with a single control 

unit which controls several subordinate processing units, each with its own 
data stream. 

MISD - Multiple Instruction Single Data For example, pipelined architec- 
tures where each piece of data proceeds in turn through a sequence of pro- 

cessing units. 

MIMD - Multiple Instruction Multiple Data Consists of a number of pro- 

cessors, each of which can run a different program and operate on its own 

data stream. 
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Flynn's taxonomy only captures the most basic. dimensions of a parallel system, 

and in particular there are a wide variety of MIMD machines which require further 

differentiation. Bertseka-s and Tsitsiklis (1989) list the following dimensions for 

classifying parallel systems: 

Type and number of processors Massively parallel systems have thousands of 

processors. Coars(, -gmiacd parallel systems have more of the. order of 10- 20. 

Presence/absence of a global control mechanism This roughly corresponds 

to the number of instruction streams in Flynn's taxonomy. 

Synchronous vs. asynchronous operation Is there a global clock shared by 

all the processors which keeps thein in lock-step'? 

Processor interconnections How do the processors exchange information? The 

two main alternatives are shamd-nm7nory and message-passing architectures. 

From the wide variety of possible parallel systenis, two kinds of NIINID systems 

are particulm-lY popular. 
A syinitictric 'tit, ultiprocc, ssor (SMP) computer uses a set of identical processors, 

where each processor has its own on-chip cache. These processors are connected to 

a sharcd-inciriory, either using a high speed bus or a crossbar switch. Maintaining 

cachc colu'r-c"Icc (consistency between the on-chip caches and the shared global 

memory) in such systems is a key architectural challenge. The processors are 

sylianctric in that they have equal access to shared inemory and any 1/0 devices 

attached to the computer. The SNIP architecture is illustrated in Figure 3.16. 

Figure 3.16: The architecture of a symmetric multiprocessor (SMP) computer. 

Each processor is marked with a P. 

A clu. stcr of ivorkstations consists of a number of nodes, where each node is a 

computer in its own right. Each node has one or more processors, a local ineinory 

and usually also a local hard disk. The nodes are connected using either a low-cost 

switched Ethernet network or a high-speed interconnect designed specifically for 
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building clusters. A cluster of workstations is a message-passing or distributed- 

nicinory parallel systein inessages are passed between the nodes over the net- 

work. The architecture of a cluster of workstations is illustrated in Figure 3.17. 

Workstation I Workstation 2 Workstation 3 

Memory Memory Memory 

F -PI F -PI F-P I 

Interconnection Network 

Figui-v3.17: Tli(,, ti-(-Iiit(ý(-tiii-(, ()fa(-Ittst(, i-ofworkstatioiis. Eacliprocessorisinarked 

With it P. 

Abstract Models of Parallel Computers 

In order to analYse parallel algorithms witholit needin? gn to reference a particular 

parallel system. it is liseful to define an absti-act model of parallel computation to 

facilitate forinal malYsis. 
The most popular such inodel is the PRAA1 model (Fortune and Wyllie, 1978), 

in which a parallcl ra'r) (10 lit- accc, ss tnacIiin c (PRAM) consists of n processors which 
have access to a shared memory. Each processor call execute a single instruction at 

each time-stcl). or The processors are tightly synchronized, and communicate 
by reading and writing to shared variables in the mernory. The complexity of a 
I-IRANI algorithin is usually defined as a function of the problem size N and the 

numbcr of processors it. Communication overheads are not modelled, which ineans 

that algorithins which perforin well on the abstract PRANI will not always be 

practical oil it rcal parallel computer. 
The bulk sytichrotiou. s parallcl (BSP) model (Valiant, 1990) addresses some 

of the problems that the PRANI model exhibits. A BSP computer consists of n 

nodes (each of which has a processor and local memory) that are linked using 

a communication network. A BSP computation proceeds in phases, as shown in 

Figure 3.18. At the start of a phase, each node performs a local computation 

that lasts at most it, cycles. There follows a phase of communication between the 

nodes, where each node Sends no inore than 1) inessages and receives no more than 

it messages. This phasc takes no more than gh cycles. Finally there is a barher 

synchronization, lasting at most I cycles, to ensure that all com municat ions are 

finished. The entire phase, consisting of the three stages, is known as a superstep. 
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Processes 

Time 

Local 
computations 

Communication 
phase 

Barrier synchronization 

rý Fý rý F] F] 

superstep 

Figure : 3.18: The bulk synchronous parallel (BSP) model of parallel computation. 

Tlic time for a superstep can be estimated as v, + gh + 1. The paraineters g and 
I call be chosen to 1-cflect the properties of a particular parallel systern, which 

allows the 1)(Tforl, 1,111CC of all algorithm on that system to be predicted. The BSP 

iliodel can produce pood predictions for both shared-meniory and inessage-passing 

systems by accuratel. v inodcllinp communication overhead in either case. 
Note that these Inodels can onlY be used to analyse algorithins which are syii- 

chronmis at either the cycle or superstep level. To analyse algoritlinis which pro- 

ceed almost c"InpletclY aýsynchroiioiisly, a inore complex model for analysis must 
I)e used (Co1c, and ZaJiuck. 1989). 

Properties of Parallel Algorithms 

it is Itsefill to define it 11111111wr ()f quantitative properties which (! an be used to 

cmnparc parallel algorithins, for a given problem. Suppose that for some problem 

and algorithin the ti"V to soIN(, the problem se(ji ient i ally is TI, but the problem 

(-an be solved in time T, using n. parallel processors. These thnes could be in terms 

(A cycles in in abstract model. or they could be. actual timings in seconds of a real 

parallcl system. The parallel speedup S,, achieved by the n processors is defined 

as: 
Sit- 

T, 
T", 

It is generally the case that 0<S,, < ii. If S, =n the algorithin is said to 

achieve lincar spccdup. It is inore often the case that communication and other 

overheads prevent full linear speedup from being achieved. If S, < 1, the parallel 

algorithm activilly takes inorc time to solve the problern. 
A related measure is the parallel cfficiency E, which is a number between 0 

and I I'vilich indiCiltCS 11OW close we can get to a linear speedup using 71 nodes. 

E, = 
S, ý - 

T, 
71 nT, 
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The workload IV is it measure of how inuch work is required to solve the whole 

problem, and can be ineasured in machine instructions, floating-point operations, 

or in terins of more abstract processing units. The processing speed P, ' of the 

algorithm is derin(A as: 
P11 Tn 

The peak pruccssing speed of each processor is written as Ppeak. Load balancing 

is an important aspect of parallel algorithm design. If the workload is divided 

equally between the processors, we can keep each processor close to its peak speed. 

In Inost Cases, unbalanced 1011(IS and communication delays ensure that each pro- 

m-isor spends some of its time idle. The utilization U,, is a measure of how well an 

algorithm minimim-i the processor idle time. 

ull = 

P. 

lIPpeak 

Approaches to Parallel Programming 

There are three primary approaches to parallel prograinining. These are shared- 

incinory programming, inessage-passing programming, and data-parallel program- 

Ining. 
Shar-rd-incinory programming allows processes to communicate by reading and 

writing shaird vaiiables. Typically it global address space shared by the processes 

is divided into regions of private local memory for each process, and regions of 

shared inemory accessible 1)), multiple proce&ses. A problem in shared memory 

programming is that, variahk-t-i can become inconsistent when two processes at- 

tempt simultancous acm-is. To prevent this, a inutual exclusion inechanisin (often 

supported 1)), hardware) is required to protect some sequences of instructions. Such 

it sequence is called it critical scciion, and these sections are the source of cominu- 

nication overheads in shared memory programs. While modern operating systems 

provide support for shurml-inemory programming, there is currently no widely ac- 

cepted platform-indepentlent standard. The POSIX Threads (Pthreads) library is 

it popular choice for sharexi-memory programming on Unix-like systems. OpenAIP 

is the inoit promising platform-independent standard to emerge. 
While sliared-incinory programming maps well to SMP systems, prograinining 

using messagc-passing is usually more appropriate for cluster computing. At its 

most basic, III(_-;. sIIgL-passing involm-i one process calling a Send function to trans- 

fer it sequence of bytes to another process calling it Receive function. These 

functions are usually provided in it library that can be used in an existing language 

such its C++. In synchronous int--isage passing, the Send function will block un- 

til the remote prom-m calls the corresponding Receive function. In asynchronous 
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message passing, non-blocking Send and Receive functions are used, with incom- 
ing inessages placed on a queue until they are consumed by a Receive function 

call. Messages may be copied to a buffer in system memory, or be transmitted 
directly from all area of user inemory. While inessage-passing programs can be im- 

plenientcxI using platforni-depwident libraries such as Windows sockets, there are 
two very popular platforin-indepeadent standards: the Afessage-Passing Interface 
(AIPI) and Par-ulld Virtual Machine (PVAf) standards. An implementation of the 
MPI standard is used as the basis for implementing the parallel algorithms in this 

th(--iis. 

Data-pamIld programming, which has little relevance to this thesis, is typically 

supported with additional language features rather than a library, and can concisely 
exprm,; proceduru-i such ws arithmetic operations on large vectors of numbers. 

3.7.2 Parallel Dynamic Programming 

Parallel approaclit--i for planning in MDPs tire typically based on partitioning the 
state space5. If there art. - it processors available, tile MDP's state space S is divided 
into disjoint subsets SI, S2,..., S,,. It is preferable that these subsets are all the 
saine size, to balance the load oil the processors. Processor i uses a value iteration 

update to calculate- new (t. itiniates for all tile states in Si. The now updates are 
then broadcast to all tile other prom-ssors. Each processor maintains a buffer to 
store the most recently received estiinat(--i received from other processor, which 
are used in the value iteration updat(--i. In tile simple synchronous version of this 
algorithin, each 1)roct--; sor must wait to receive estimates from all the others before 
tile next set of updatt--i Call be calell lilt cd. 

Variations C1111 be Made to this approach to improve performance. Archibald 

et it]. (1093) present it pipelined version of this algorithin. Each partition Si is 
further partition(41 into f Sets SO, SO, -, Sij. The updating and communication 
phwit--i call now Ill. - overlapped, with 1)roc(--&sor i broadcasting updates to Sij while 
concurrently updating Sjj+j. 

Ali wsynchronous version of the basic algorithin is presented along with a con- 
vergence proof in Berts&ts and Tsitsiklis (1989). The asynchronous algorithm no 
longer rcquirc-, updatt--i and broadcasts to occur at the same rate. Multiple updates 
of each state ! it partition Sj call occur between broadcasts, and the most recent 

from another processor call be used without needing to wait for estimates 
from tiny other 1)roc(!:,, or. This wsynchroilous algorithin is shown to converge for 
infinite-horizon discounted hIDPs under the assumption that there exists T>0 

r1t. Is A%o pa-'sible to partition the nction wace, but most, moblems of interest have such a 
timall numbrr of actions that thk kind of parallelization is not efftvtive. 
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such that for all proct--isors i and all time intervals of length T, processor i performs 

at 1w ust one update of ever), state in Si and performs at least one broadcast. 

There are many hlDP problems where, for all states s, there are non-zero transi- 

tion probabilities for only it sinall set of neighbour states N(s), wherc IN(s) I< IS1. 

These are problems with it strong element of locality to the state. Solving these 

problems with the above algorithnis; can use significantly fewer communications if 

estimates of state s are only sent to processor i if there exists some S' E Si where 

sE N(s'). The memory requirements for each processor i are also reduced, since 

each only needs to buffer L-stiniatL-s for the set of states 15'Is E Si, s' E N(s), s' V 

Sj). The use of neighbour states in this way was proposed by Bertsekas (1982). 

Of course, the number of neighbouring states for each partition depends greatly on 

how the partitions (Sj) are constructed. If each partition consists of states which 

inhabit it local region of state space, the number of neighbouring states can be 

kept sinall. An algorithin which constructs and exploits partitions of this kind is 

presented 1)), Wingate and Seppi (2004). 

3.7.3 Parallelizing Reltirorcenient Learning 

lit comparison to the above work- in dynainic prograinining, parallelization of RL 

techniques Ims little attention. This is surprising given that intich existing 
111, research is carried out using simulated environments. A simulation can easily 
be replicated for each 1)roc(--.;. sor in It parallel computer. Therefore it should be 

posisible for each proct, -ýsor to run it learning algorithin, and for intermediate results 

to he exchanged bawmn them. More often, the attention of researchers has been 

directed towards innIti-agent reinforccinent learning, where several agents learn 

different but, relatcd tasIcs in cither it coopenitive (Kapetatink-is and Kudenko, 2005) 

or competitive (Littman, 2001) setting. 
I'll(. - paralicl RL and inulti-agent. RL settings have somewhat different assuinp- 

tions and goals. Parallel III, is primarily concerned with finding policies for (sini- 

Illated) Single-agent Icarning prublerns more quickly by exploiting parallel liard- 

war(!. hitilti-agmt, Ill., iiivolv(--,, agents which are situated in the same enviroilinent 
(producing it intilti-agent 1carning problem) where interactions between tile agents 

complicate tile achievement Of all effective cooperative/competitive policy. There 

is some, (Icgr(, %, of em.,.,; over between the two arems though, with multi-agent tecli- 

Iii(Ilm-i Such IL4 advice exchange (Nmies and Oliveira, 2003) having sonic relevance 
for parallel RL. 

Wilitellead (1991) investigated III, in it restricted class of INIDPs (deterministic, 

goal-oriented k-dimensional grids). One of the methods in this paper, Learning By 

Watching has :, everal agents learning in identical environments, which are able 
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to "watch" the other agents, and use these watched experiences to update their 

value functions. The expected time (in environment time steps) for a population 

of it agents is shown to be Although a parallel implementation is not 
tlie focits of this work, it does describe a technique appropriate for parallel RL: 

capericrice broadcast. While ill this paper watching other agents is essentially free, 

ill most situations communicating experience tuples will have a cost. Experience 

broadcast is most useful for parallel RL when the cost of generating experience is 

large compared to the cost of updating a value function. 

Tan (1993) also investigatu-i experience broadcast in the context of inulti-agent 

RL. The performance of experience broadcast in a predator-prey domain is com- 

pared with two other approachu-i. Policy- a vcraying involves a set of agents com- 
bining their value functions by setting each value to the mean of all the agents' 

estilliatu-i. Sallic-policy Updating oil the other hand requires that all the agents 

share it single vallie-ftinction ditta structure, stich that the effects of all update 

inade by one agent are immediately visible to all the other agents. It should be 

noted that these results tire not based oil it true parallel implementation. The costs 

of communication are ignored in the results, althotigh Tali does try to broadly cliar- 

acterize the network bandwidth consumed by each of the inethods. Alimadabadi 

and Asadpotir (2002) extend the policy-averaging approach of Tali (1993) by in- 

troducing it iminber of niewitiru-i for the czpertness of all agent at a given task. A 

weighte-d average of I)olici(--; can then be defined, favouring the most expert agents. 
Parallelism is considered more explicitly by Kretchinar (2002) for the purpose 

of solving bandit probleins (Berry and Fristedt, 1985). These are essentially single- 

state MIN's, wherv the goal is to explore the available actions ill order to converge 

quickly to the one with the optimal return. In 1(retchinar's approach each parallel 

agent stores all t. -itiniate of the return for each action, its well as a record of how 

llially thiles each action Ims 1wen tried. After all action is taken by each of the 

agents, they combine their t-t-iffinates with it weighted average. Each agent's action 

vallie. uitilliate is Weighted by the number of times the agent lias tried the action. 
Excellent parallel tipmAtips tire shown in the empirical evaluation of this inethod, 

which is bastA on it sinitilaHon of parallel agents. There is no cost assigned to 

inter-agent comintinications. 
A parallel version of the TD(A) algorithin was proposed in Maillard et al. 

(2005), which was inipleniented using the MPI iii(--; sagc passing standard and eval- 

nated using it clitstcr or workstations. The state space of each agent is represented 

using it netiral network-, and the changes in each agent's weights are periodically 

added together 1)), exchanging weights over the network. This work is currently at a 

very early stage, but is conceptually similar to some of the new inethods developed 
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ill this tll(---iis. 
Note that policy scarch inethods for RL (see Section 2.4) are in many ways 

more naturally parallelizable than value-function based approaches. It may be for 

this reason that there have bmn no specific studies of parallelism in policy search- 

parallelism is siniply used in some researchers' implementatiorts. There are three 

main ways to use piLrallelization. The policy scarch spacc can be divided among 
the agents for exhaustive search, or searched simultaneously using a genetic algo- 

rithin. The calculation of it policy gradient can be parallelized for gradient-based 

methods. Finally, the policy cvaluation required to compare candidate policies can 
be parallelived by agents sinitilating episodes in parallel. 

3.8 Conclusions 

In this section, some broad conclusions tire drawn from the areas of research sur- 
veyed in this chapter. 

Exploration Strategy 

The choice of a good (uplonition stryjtcgy remains an important part of applying 
reinforcement learning to any given problem. Without a good strategy reinforce- 

ment learning will almost certainly perform poorly. The more complex strategies 

can reduce the required number of explorative steps in the environment by an 

order of maguitude (at the expense of computation time and space). However, 

improvements in the strategy do not address the key problem of the state space 

cýrplosion, and exploration time is likely to remain closely linked to the size of the 

state Space. 

Value Minction Approximation 

runction uppwrilliatioll ellablt--i reinforcement learning to be applied in domains 

with a large set of states, or even in domains which have it continuous state space. 
It also allows the reinforcement learner to guicralisc and make good decisions 

ill states that have not yet been encountered during learning. There have been 

great tiuccmsu-i in applybig tli(--ic inethods to some domains, but it is often hard to 

reproduce this succe: -ý,; in similar domains. 

The relatively strong theoretical basis which has been established for reinforce- 
inent Icarnhig using firicar and inernory-based approxiinators should stimulate more 
research which appliui the-se methods to the most difficult problems. If a similar 
theoretical bwsis cannot be (--itablislied for neural networks, it may still be possible 
to determine empirical guidelines for using this approximator for RL. Ultimately 
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though, the sucm-isful application of function approximation in RL relies most 
strongly on choosing it good set of input features for learning. 

Hierarchical Reinforcement Learning 

Using hierarchical reinforcement learving methods to constrain the learning effort 

required for it given problem has proved useftil for learning in large domains where 
function approximation is ineffective. Methods which make use of both temporal 

abstraction and state abstraction are the most successful. Hierarchical approaches 

are limited by the quality of the hierarchy supplied to the algoritlim. A great deal 

of prior knowledge about the problem structure can be encoded in the hierarchy, 

rt--iulthig in fiLst learning and policies with good performance. If there is little prior 
knowledge abont the problem, constructing it hierarchy can be difficult. A poor 
hierarchy can r(---itilt in inany of the best policies being excluded from being learned. 

While there hiv; bmni some rt--iearch on automatic construction of hierarchies, 

building it hierarchy from scratch is likely to remain it slow process for the largest 

problems. But, being r(--Aricted to it fixed hierarchy means that the best result that 

call be obtained may 01113' be Optimal with respect to the chosen hierarchy. This 

may besome way short of the true optimal. This suggests that future improvements 

to hierarchical inethods may be biLsed on extensions or transformations of an 

existing hievirchy suppliul mi prior ktiowle(IgL, to till algorithm. 

Symbolic Representatimis 

Reinforccinent Icarning methods which exploit symbolic representations are ail al- 
ternative approach to Icarning in doinains that exhibit, significant internal struc- 
ture. Algorithms bascd oil factoird representations of MDPs allow prior knowledge 

about the internal structure of ail NIDP to be compactly encoded. First-order 

repr "-entations call he employed for doinains with inany objects and/or inany 
inter-objcct. relations. 

Relational reinforcement learning is a technique which lins been developed quite 

rccently, and is likely to be widely applied in the future to suitable doinains. The 

successful combination of inductive logic programming techniques with reinforce- 
inent, learning in this approach suggests that other symbolic learning inethods such 
its explunation-bascil Icaniing could be used for it similar purpose (see Dietterich 

and Mann, 1997). There is also the potential in this area for symbolic reasoning 
to be combined with relational RL to create powerful hybrid planning/learning 
systents. 
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Parallel Roinrorcement Learning 

in comparison to the other techniques for scaling-up, parallel RL methods have 

not been widely investigated. Mechanisms such as experience broadcast and pol- 

icy averaging have been propos(A and evaluated with simulated agents. Very few 

studi(N have emuninLA implementations on real parallel hardware, where message 

passing and shared-niemory access both have costs which must be taken into ac- 

count to achieve good performance. Almost all of the existing research assumes 

that it table-blLsed value function is in use. Parallel inethods which allow function 

approximation to be used would broaden the applicability of parallel RL. Xleasures; 

of an agent's expcrience (or czpcriness) appear to be valuable for combining infor- 

ination from several agents. Policy search RL methods are often more naturally 

parallelizable than value-function based approaches. 

Discussion 

Developing Inethods to solve large RL problenis remains a vibrant area of research. 

A huge variety of techniques have been proposed, as this survey has shown. How- 

ever, while there has been substantial progress, many learning problems remain 

infemsible for the current generation of algorithms. In addition, many of the tech- 

niques only perform well in special cas(--i of learning problems. 

The primary focus of this thesis is the area of parallel reinforcement learning, 

which has received little attention compared to some of the other techniques. One 

goal of this tht--iis is to examine the possibility of parallel RL in the presence of 

valuefunction approximation, since most previous work on parallelism has assurned 

IL table-based value function. Another goal of the thesis is to develop inethods 

which are practical for implementation on real parallel hardware, as many existing 

methods do not take into account the cost of inter-agent communication. This 

material is covered in Chapters 4,5 and 6. 

A secondary topic in this thu-iis is the use of symbolic planning to provide 

hierarchical structure for RL policies. This is it hybrid approach which dra%vs on 

tecliniquo, from both the syrnbolic represcritations and hierarchical RL sections of 

the above survey. The purpose of this part of the thesis is to show that symbolic 

planning is an efrective way to automatically construct hierarchies for learning, 

which is an inkportant goal in hierarchical RL. This material is covered in Chapter 

7. 
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Chapter 4 

Merging Approximate Value 

Functions 

In this chapter I present it family of methods for parallel reinforcement learning 

(see Section 3.7), based on the notion of it set of agents which learn in parallel 

and periodically ineryc their value function approximations. After motivating this 

approach and describing the core method, several instantiations of the method 

Which 11se different Incryiny functions are defined. These instantiations are eval- 

unted and compared using it simulation of parallel agents. I examine the effect 

on parallel speedup of both the number of agents and the period between merges. 

A comparison is also inude with it baseline method where agents learn in parallel, 

but in isolation (i. e. with no merging). Finally, the inethod is implemented on 

it cluster of worLstations to asst--; s its practicality for speeding up learning in a 

realistic parallcl setting. 

4.1 Motivation and Assumptions 

In Chapter 3 it wide variety of teclini(jim-i were surveyed which can be used to 

extend the feasibility of 111, to larger and more complex learning environments. 
While it great deal of progress lias been made in this area, there remain inany 
RL problems of intem-it that are only borderline feasible, requiring hours or days 

of learning time to coiwerge to the optimal policy. In such borderline cases, it 

is reasonable to ask whether panillcl hanlivare could be used to reduce the time 

required to find the optimal policy. The hardware available may take a variety of 
forins: it computer with it multi-core processor, a multi-prmessor server, a cluster 

of workstations or emit it grid cvniptiting infrastructure. 

It is not obvious that parallel methods can be applied to RL problems. RL 

agents are typically characterized it,; learning froin a sequential stream of ezperience 
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embodied RL agents-autonomous robots which interact directly with some real- 

world environment. In practice, the cost in time and difficulty of collecting a large 

volume of robot interaction data usually makes some degree of environmental simu- 
lation inevitable. It is therefore reasonable to adopt the assumption of a simulated 

environment. 
Note that the value function learned by each agent predicts values over the 

entire state space of the simulation. This is quite different from the traditional 

approach in parallel dynamic programming (see Section 3.7.2) where the state space 
is partitioned into a number of regions, with each agent only updating the values 

of states in its assigned region. There are a number of reasons why a partitioned 

approach may not be appropriate for parallel RL, where the transition and reward 
functions are not known: 

A lot of effort in RL is focused on sampling the environment's transition and 

reward behaviour. Speeding up the sampling process by combining results 
from several agents is only possible if the agents learn in the same areas of 

state space. 

is A key strength of RL is that value function updates are focused on states 

with a high visitation probability under the current policy of the learning 

agent. Restricting each agent to learning within a partition would change 
the overall distribution of updates. 

Since the transition function is initially unknown, a suitable partition (with 

a small number of inter-partition transitions) would either have to be de- 

rived from external problem knowledge, or would require modification during 

learning as the state space was explored. 

Because the agents are not restricted to disjoint partitions, they do not each have 

an exclusive specialization. This means there may be some duplication of effort in 

the population of agents. The advantage of this approach is that all the agents 

can focus on those states with a high visitation probability, and that the effort of 

sampling reward and transition behaviour can be divided amongst the agents. 
A final point to mention is that there are great benefits to adopting an approx- 

imate representation (see Section 3.4) for the value functions used by the agents. 
Consider the goal of using parallel RL to speed-up learning in problems of bor- 

derline feasibility. Restricting a parallel method to table-based value functions 

would allow the method to be applied only to the most simple problems. Many 

RL problems of interest will be infeasible without value function approximation, 

with or without parallel methods. Allowing a parallel method to be combined with 
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value function approximation gives the method a much wider applicability. In 

addition, the generalizing power of function approximation broadens the effect of 
each piece of information exchanged between the agents, and the compactness of 

an approximate representation may reduce the overall bandwidth required for the 

communication channel. 

4.2 A Merging Method 

Based on these motivating ideas, I will now present the general form taken by the 

methods studied in this chapter. In essence, the core idea is for parallel learn- 

ing agents to periodically merge their (approximate) value functions to accelerate 

convergence. 

Method Overview 

Each individual agent in this method uses standard RL techniques to learn from 

experience in its local simulation instance. A precise description of the techniques 

used is given later in this section. 
The novel aspect of the merging method is the way in which the agents exchange 

information to improve their collective performance. This information exchange 
takes place by merging value function approximations (VFAs). Intuitively, a merge 
takes several VFAs and combines their content to form a new VIA. The new VIA 

should ideally preserve information known by all tile agents, but also incorporate 

recent changes to the value function discovered by individual agents. 
The method alternates between a learning phase and a merging phase. In the 

learning phase, each of tile learning agents operates in isolation, interacting with a 
local simulation instance and updating its private VIA. There is no communication 
in this phase. The learning phase lasts for p simulation time steps (i. e. each agent 

collects p, experience tuples). This quantity p is known here as tile merge period of 
tile method. 

The merging phase is illustrated in Figure 4.2. Separate from the learning 

agents, a single manager agent takes responsibility for the merge operation. The 

phase begins with each learning agent communicating the weights of its private 
VIA to the manager agent. The manager agent computes the merged VIA using 
these weights. It then broadcasts the weights of the merged VIA to the learning 

agents. Each learning agent updates the weights of its private VIA to those of the 

merged VIA. This means that there is no diversity in the agent population at the 

start of each learning phase. Diverse experiences are achieved only through the 

randomness of explorative actions. 
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Manager I Merged 
value function 

Agents -------- - 

Approx; ior 
---------------- -- weights Simulat ion instance 

Figure 4.2: The nwrying phasc of the core method. Each learning agent sends its 

approxiniator wei, 11,11ts to the Manager agent. The manager agent creates a mcTyed 

valuc fit'nction, froll, the weiphts and broadcasts the result back to the learning 

agents. 

Method Detail 

Each leariiiiiA, aý,, Vllt uses 1xitcarfunction, approximation (see Section 3.4.3) to repre- 

selit an approximate vallic funct ion. Tile, features used by the, linear approximator 

are generated usilig NIC Coding (see Section 3.4-3). The SARSA(A) alggoritlinl with 

a rcp1acing cligibildy fracc (sce Section 2.4) is used to update the approximate 

value function its cXperience is acquired from the environment. Ali efficient ini- 

pleinelitation of the eligibility trace is used which maintains a size-limited list of 

ttort-zcro trace values (see Sutton and Barto, 1998, section 7.9 for further details). 

This conibillation of lillear approximation and SARSA(A) has been shown to 
be strongly convel ... ent "'llell used purely for estimation of value, functions (Perkins 

and Precup. 2002). However, in this work a SARSA(A) learner follows ail explo- 

ration policv whicl, in the limit tends towards greedy choices in the approximate 

value function. Under these conditions there, does not currently exist a proof of 

convergence for SARSA(A), although soine limited progress has been made towards 

such a proof (Gordon. 2001: Singh et al., 2000). In spite of the lack of theoretical 

guarantees, the col i lbi 'lilt ion of SARSA(A) and linear tile coding has been shown 
to work well in practice for it wide variety of doinains (Sutton, 1996). These tech- 

niques are therefore currently the most reliable basis for a parallel RL method 

which uses in approximate value function representation. 
Each agcnt chooses actions using an (-greedy exploration strategy. It is im- 

portant that (>0 so that there is some diversity in the experiences of individual 

The division of the I'lethod into local comput at ions in the learning phase and 
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global communications in the merging phase is similar to the notion of supersteps 
in the bulk synchronous parallel (BSP) model of parallel computation (see Section 

3.7-1). The choice of merge period p determines the length of each learning phase. 
Since the merging phase is potentially quite time consuming, both in terms of 

communicating weights and the manager's computation time, p must be large 

enough for the agents to learn enough new information to warrant the expense of 

a merging phase. However, if p, is too large then the agents will not communicate 

often enough to achieve a good parallel speedup. The influence of parameter p, is 

investigated further in Section 4.8. 

Underlying this approach is the key assumption that all the agents use the same 

set of learning features 10i}. Since these features are generated using tile-coding, 

this implies that the number, resolution and offsets of the tilings are the same for 

each of the agents. This has some important advantages: 

9 No mechanism is required for projecting from one set of basis functions onto 

another. 

oA weight Oi has the same meaning for every agent. 

e Tile only weights from other agents that are relevant for adjusting one agent's 

value for Oi are the other agents' values for Oi. 

A set of weights can be communicated using either the full vector of weights 
0, or using a sparse set of index-value tuples I (i, Oi)}. 

Under these assumptions, the ith weight of the merged approximator, 01n, will only z 
depend on each learning agent's estimate for Oi. This allows a family of merge 

methods to be defined, each based on a function f. The function f is used by the 

manager agent to calculate each weight of the merged VFA as follows: 

Oln :f (01, ii 02, i) ... I 
On, i) 

Here Oj, i is the itil weight of agent j, and there are n agents in total. The function 

f will be known here as a merge function. A number of different merge functions 

that can be used with this method are investigated in Section 4.4. The general form 

of the merge method (given a specific merge function f) is shown in Algorithms 1 

and 2. 

4.3 Evaluating Parallel Learners 

At this point, in order to evaluate a number of possible choices for the merge 
function f, it is necessary to define the criteria by which the success of the merging 
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Algorithm 1 Pseudocode for learning agent. 
while time elapsed "ýý tend do 

for step =I to p do 

Execute a simulation step. 
Update weights f0j} 

end for 

Send weights f Oi I to manager agent. 
Receive merged weights JO! } from manager agent. z 

for all i do 
Oi +. - oi, 

end for 

_end 
while 

Algorithm 2 Pseudocode for manager agent. 
while time elapsed < tend do 

for j=1 ton do 

Receive weights 10j, i} from agent 

end for 

for all i do 
Oln 'ý-- f (Ol, i 7 

02, i i ... I 
On, i) 

end for 

for j= 1 ton do 

Send merged weights 10im} to agent 

end for 

wait until next merging phase. 

end while 
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method will be judged. In this section I will describe the measurements which will 
be recorded as part of an empirical evaluation. In addition, I will give details 

of two implementations of the method which will be used to generate results. 
Finally, several learning problems will be defined which will be used to evaluate 
the implementations of the method. 

The goal of the work described in this thesis is to speed up the learning of 

policies for single-agent RL problems using parallel hardware. However, there are 

a number of properties of RL which must be addressed in order to apply concepts 

such as parallel speedup and parallel efficiency (defined in Section 3.7.1). A key 

property of RL algorithms is that they converge to an optimal (or near-optimal) 

value function (or policy) rather than calculating the optimal value function. RL 

algorithms based on value functions gradually reduce the error in the estimate 

of the optimal value of each state. In many cases, the true optimum may never 
be reached-the best we can do is make the error arbitrarily small. To directly 

compare the time used by two RL algorithms, it is therefore necessary to specify 

some error bound e for the final value function. It is also informative to compare 
the rate of convergence of two RL algorithms, since this will allow us to make 

predictions for a range of different values for c. 
The other key property of RL algorithms is that they are probabilistic. Since 

most algorithms take some number of random exploratory actions, and many en- 

vironments have stochastic state transitions, it is not possible to guarantee that 

a particular error bound e can be achieved in a fixed time t. However, as t --+ 00 
it is possible to have a probability of achieving the error bound that is arbitrarily 

close to 1. Therefore, in order to directly compare the time taken by two RL algo- 

rithms, it is not only necessary to specify an error bound c but also a probability 5 

of achieving the error bound. These ideas are similar to those used in the Probably 

Approximately Correct (PAC) model of learning (Valiant, 1984). 

Error in the value function is by no means the only way to judge the success 

of an RL algorithm. A value function with large errors may be very effective for 

choosing actions if the ranking of actions is similar to the optimal value function. 

This idea leads to metrics which measure the performance or quality of a policy 

as learning proceeds. One such measure is the average reward collected over some 
interval, which characterizes how well a learning agent seeks out the highest rewards 
in the domain. This measure changes depending on the reward function used. 
To examine whether different reward functions allow desirable behaviours to be 

learned more quickly, an external measure of performance is required which does 

not depend on reward. 
The evaluation domains used in this work (see Section 4.3.1) are all episodic, 
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and the desirable behaviour in each of these domains is to either maximize or 
minimize the number of simulation steps in each episode. This allows the use of 
an easily measured indicator of performance, the mean number of steps per episode 
over a given interval. This measure will allow us to vary both the RL algorithm 
and the reward function to achieve the best performance in a given domain. 

The term experiment will be used here to denote a single run of the parallel 
method, with n agents starting with the same initial VIA weights, performing 
learning episodes in parallel and communicating every p time steps. Each ex- 
periment ends after a fixed time limit, with time defined using one of the three 

quantities to be defined shortly. Since the agents' experiences are different, the per- 
formance measure of mean steps per episode will vary across the group of agents 
to some degree. It could be argued that to measure the performance of a parallel 
RL algorithm, some collective measure of the overall performance achieved by the 

group is needed. However, since each agent learns a VFA to cover the whole state 

space, and information exchanged between the agents accelerates convergence for 

all members of the group equally, it is sufficient to nominate a representative agent 
from the group and record the performance of this agent over time. The fact that 

each merge results in the agents having identical VFAs means that over time it is 
highly unlikely that any agent's performance will differ greatly from that of the 

representative agent. 
Because the outcome of an experiment is probabilistic, results must be collected 

over a number of different experiments, each starting with a different random 

seed. The expected performance of the algorithm is found by taking the mean of 
the performances achieved in each of the experiments, i. e. the mean over the set 

of experiments of the mean steps per episode achieved in a given time interval. 

The standard deviation and standard error of the mean over experiments will 
be examined to establish confidence intervals to compare the performance of two 

algorithms. The variance of the episode length within a single experiment will not 
be examined in detail. 

To determine the speedup (or rate of convergence) achieved by an RL algorithm, 
it is necessary to measure the performance achieved after a given time. But how 

should the learning time be measured? There are three key quantities for measuring 
the elapsed learning time: 

Simulation Episodes The number of episodes completed in the simulation by a 
single parallel agent (not the total over all the agents). 

Simulation Steps The number of time steps completed in the simulation by a 
single parallel agent (not the total over all the agents). 
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Real Time The number of seconds elapsed since the parallel experiment was 
started. 

For the most part the use of episodes as a measure of time will be be avoided. This 

is because the goal in our evaluation domains is to maximize or minimize episode 
length. This causes the length of episodes to vary significantly from the start to 

the end of an experiment, which tends to distort the reported rate of convergence 
if time is measured in episodes. 

Simulation steps and real time both have their advantages. Measuring the 

simulation steps consumed by each parallel agent allows an assessment of how 

efficiently a parallel method combines data from multiple experience sources. The 

cost of communication is not included in this parallel measure, which can be viewed 

as an analogue of the sample complexity of a sequential RL algorithm. 
The elapsed real time includes not only the time spent simulating the envi- 

ronment, but also the time required to update the VFA and the time used for 

communication. It is a measurement which captures more of the costs associated 

with the parallel method, and is good for assessing the performance achievable in 

practice. However, measuring real time has the disadvantage that any results will 
be specific to both the parallel system in use and the implementation details of the 

parallel method. The processor speed, memory size and speed, and the network 
latency and bandwidth are the system properties which will most significantly af- 
fect the result. In addition, if the parallel system is shared between a number of 

users, variations in the load of the system can adversely affect the results. In this 

work, the real time measurements were collected during periods of very light sys- 
tem load, with the parallel method consuming almost all of the available processing 

and network resources. 
I will now describe the two implementations which were used to collect results. 

A Simulation of Parallel Agents 

The first implementation is a simple simulation of parallel agents, which requires 

no parallel hardware to be available, and does not even require operating system 

support for threads or inter-process communication. The simulation was written 

using C++, and runs within a single process. Supposewe use merge period p for a 

particular experiment. During a learning phase, the agents in sequence each exe- 

cute p time steps in the environment. The VIA for each agent is stored separately 
in memory. After the learning phase is finished, the effects of a communication 

phase are calculated. Note that sending of individual messages between the agents 
is not modelled. Instead, each weight Oj" of the merged VIA is calculated using the 
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agents' VFAs which are stored in memory. Once the merged VFA is calculated, 
the weights are copied into each of the agents' VFAs, modelling the effect of a 
broadcast from the manager agent. 

Results from the simulation are reported using time steps in the simulated en- 

vironment to measure time. After each learning and communication phase, the 

elapsed time is reported as p, time steps, even though the sequential computa- 
tion time required for n agents is 0(np) for the learning phase and 0(nf) for the 

communication phase (f is the number of approximator features). The memory 

required is also 0(nf). Reporting the results in this way allows us to assess the 

potential parallel speedup achievable if the agents were learning in parallel, and 

communication was essentially free. Obviously we cannot achieve these conditions 

on a real parallel system. In spite of this, these results are very useful for com- 

paring different parallel RL algorithms, since it is easy to examine properties such 

as how efficiently the agents can combine sampled experience, or whether the con- 

vergence properties of the underlying single-agent algorithm are affected. We can 

examine these properties without requiring access to parallel hardware or mak- 
ing assumptions about the processing power or network bandwidth of the target 

system. 

An Implementation on a Cluster of Workstations 

While the above simulation is useful for determining some properties of parallel 
RL methods, there are some questions that remain difficult to answer using only 

simulated results. For example, what is the actual parallel speedup that can be 

achieved when communication has a given cost? Which parallel RL methods are 

practical for implementation on an symmetric multiprocessor computer or on a 

cluster of workstations? How can we compare two parallel RL algorithms, one 

of which is more computationally intensive but requires fewer communications? 
A richer simulation than the one described above (one which explicitly models 

communication costs) may be used to answer some of these questions. However, 

simulating large numbers of agents solving difficult RL problems will make exper- 
iments very time consuming. It is also difficult to accurately model all the forms 

of communication overhead observed on a real parallel system. 
For these reasons, it will be useful to run some experiments on real parallel 

hardware. Results using real hardware will also be useful to assess how practical 

a parallel RL algorithm is for implementation on a particular kind of hardware. 

The performance achieved will be measured against real time, which unfortunately 

will tie the results to particular properties of the hardware and implementation 

used here. In spite of this, the results will be useful for predicting performance on 
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similar hardware with different specifications. 
This thesis focuses on a distributed memory model of parallel computation us- 

ing message-passing. The main advantage of concentrating on this model is that 

an effective message-passing algorithm can easily be replicated on a shared mem- 

ory computer (message passing can be emulated by copying messages into data 

structures in shared memory). In this sense message-passing algorithms have a 

greater generality, since they can be used to achieve good performance on both 

distributed memory and shared memory computers. Parallel RL algorithms writ- 
ten specifically for shared memory machines may achieve even better performance, 
but this was not a topic investigated as part of this research. 

The hardware used for the experiments reported in this thesis was a Beowulf 

cluster of 20 Linux workstations. Each workstation had a lGhz Pentium III pro- 

cessor, 768MB of memory and a local hard disk drive. The nodes were connected 

using a 10OMbs Ethernet network' based on a single Hewlett Packard switch. The 

implementation was written using C++ and version 1.2.5.2 of the MPICH par- 

allel programming library. MPICH is an implementation of the Message Passing 

Interface (MPI) standard (Pacheco, 1997). Initially we implemented a manager 

agent to do the merging (as described in Section 4.2), but for efficiency reasons this 

was later replaced by the agents performing a distributed computation without a 

manager agent. Further details are given in Section 4.7. 

4.3.1 Evaluation Domains 

I will now describe the single-agent RL problems which will be used for the purpose 

of evaluating the parallel methods described in this thesis. 

Mountain-Car Task 

The first evaluation domain we will use is the Mountain-Car Task, as described 

in Sutton and Barto (1998). This is probably the most well known benchmark 

problem for RL algorithms. A car situated in a steep-sided valley between two 

mountains must learn how to reach the goal at the top of one of the mountains 
(see Figure 4.3). The car's engine is not powerful enough to accelerate up the 

mountain from rest. Instead the car must reverse part of the way up the opposite 
hill, then accelerate forward to achieve sufficient inertia to reach the goal. 

The state of the Mountain-Car task is described by the position xt and velocity 

vt of the car. There are three actions, which set the car's acceleration at to either 
'Note that 10OMbs Ethernet is a cheap but not particularly fast network for a cluster. High 

speed cluster interconnects have a lower latency than Ethernet and commonly achieve 2-lOGbps 

bandwidth. 

104 



Gravity 

Figure 4.3: The Mountain-Car task. 

-11 0 or +1. At each time step, the state is updated according to a simplified 

physical model: 

Xt+i ý Xt + Vt 

vt+l = vt + 0.00lat - 0.0025 cos(3xt) 

After xt+l and vt+l have been calculated, their values are bounded so that 

they remain in the ranges -1.2 -< xt+l < 0.5 and -0.07 -< vt+l :50.07. The car 
begins each episode at rest at position x= -0.5. When the car reaches the goal 

at position x=0.5 the episode is terminated. An optimal policy should minimize 
the number of steps required to reach the goal from the starting position. We have 

defined and used two different reward functions for this problem: 

1. r= -1 on every step except when the goal is reached, when r=0. 

2. r=0 on every step except when the goal is reached, when r=1. 

The approximator features were generated using 10 tilings of size 9x9 for each of 
the 3 actions. This results in a total of 2430 features. Random offsets are generated 
for each of the tilings at the start of a run of the experiment. Results graphed using 
the average of a set of runs therefore reflect the average over the distribution of 
tiling offsets. 

The Mountain-Car task is a detenninistic problem with a continuous state 

space. However, non-Markovian effects arising from the limited resolution of the 

coarse binary features mean that in the early stages of learning the environment 

can appear stochastic to a learning agent with an approximate value function. 
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Pole-Balancing Task 

The next evaluation domain we will consider is the Pole-Balancing Task, which 
is based on the detailed description provided in Barto et al. (1983). Like the 
Mountain-Car task, this is a deterministic control problem with a continuous 

state space which is popular for benchmarking RL algorithms. However, the Pole- 
Balancing task is different in character to the Mountain-Car task because our goal 
in this problem is to learn to maximize the length of episodes. 

In this task, a cart is situated on a track which constrains it to move in a single 
dimension. A pole is hinged to the top of the cart so that the top of the pole can 
swing freely (see Figure 4.4). The goal of this task is to keep the pole balanced near 
the vertical for as long as possible. There are only two actions available at each 
time step: the cart can accelerate at full power in either direction along the track. 
This kind of problem, where action in one of two opposite directions can not be 
less than full power, is known as a bang-bang control problem. In addition, there 
is only a small length of track available, so the cart must keep the pole balanced 

without hitting either end of the track. 

0 

Figure 4.4: Tile Pole-Balancing task. 

The state of this problem is described using four variables. The first two are 
the cart position x and its rate of change ,L The second two are the angle of the 

pole 0 and its rate of change ý. At each time step we first calculate values for the 

acceleration of the cart and the angular acceleration of the pole: 

ý2 

g sin Ot - cos Ot 
Ft + lmp 

t sin Ot 

dt = -I- 
M, + mp 

[4 Mp COS2 Ot] 

3 m, +m 
Ft + lmp [ý2 

sin Ot - 
#t cos Otl t 

MC + mp 
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Constant I Description I 

9 Gravitational acceleration 9.8ms-2 
f. 

ax Maximum force applied to cart 1ON 

MC Mass of the cart Ikg 

MP Mass of the pole O. 1kg 
Half-pole length 0.5m 

Simulation time step 0.02s 

Table 4.1: Numerical constants used in the Pole-Balancing environment model. 

Depending on the action chosen at time t, the force Ft applied to the cart is 

either Ft = or Ft = -f,,,, The various constants used in the model are 
defined in Table 4.1. Note that in contrast to the model used in Barto et al. (1983) 

the effects of friction on the cart wheels and the pole hinge are ignored here. Now 
Euler's method can be used to update the state variables over some time step 7-. 

Xt+i ý Xt +Týýt 

ýbt+l Lbt + 7-ýt 

Ot+i ot + T6t 

ýt+j 6t + rdt 

Each episode begins with all four state variables set to 0.0. If the system state 
moves outside the bounds -2.4 <x<2.4 and -12' <0< 12' then the episode is 
deemed to have failed, and is terminated. Two different reward functions can be 

used to allow the learner to maximize the episode length: 

1. r=1 on every step except when the episode terminates, when r=0. 

2. r=0 on every step except when the episode terminates, when r= -1. 

The approximator features were generated using 4 tilings for each of the 2 actions. 
Each tiling partitions each of the x, i and ý dimensions into 4 equally-sized regions. 
The 0 dimension is partitioned into 8 equally-sized regions. There are therefore 

512 features per tiling, and a total of 4096 features in the entire approximator. 
Random offsets were generated for the tilings at the start of each run. 

Acrobot Task 

The Acrobot Task described in Sutton and Barto (1998) is another well-known 
RL problem which is similar in character to the Mountain-Car task. Like the 
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------------- The tip must swing above this line 

Actuator applies torque Fixed position Link I 
across this joint joint 

ink L2 
J 

02 

Tip 

Figure 4.5: The Acrobot task. 

Mountain-Car task, it is a deterministic continuous-state control problem where 
the objective is to minimize the number of steps required to reach a goal state. 
However, it is generally considered to be the more difficult control problem, since 
the state has 4 dimensions instead of 2 and the motion in the system is more 

complex. 
The name of the task derives from the way the simple robot modelled by the 

task is similar to an acrobat swinging on a high bar. The robot consists of two 
links connected by a joint in a2 dimensional space (see Figure 4.5). One end of 
the first link is attached to another joint which has a fixed position in space. The 

only actuator available to the robot can apply torque across the joint which joins 

the links. This is similar to the way an acrobat can build up momentum on the 
high bar by bending at the waist. The goal of the task is to swing the tip of the 

second link (the acrobat's feet) above a particular height. 

Four continuous state variables are required to describe the environment: 01, 
ý17 02 and ý2. The equations of motion which describe the rate of change of ý, and 
ý2 are as follows. 

ýj -dj-'(dA + 01) 

2 
M212 +122 

Z) ý2 
c2 2_ 

!L 
7' + 01-02) 

di di 

M112 (12 +12 d cl 
+ M2 1 c2 + 211 lc2 COS 02) + 11 + IT2 

(12 d2 M2 c2 
+ lllc2 COS 02) + 12 

-1 
62 

M211 C2 2 Sin 02 - 2M211IJ261 sin 02 

+(Mllcl + M211)9 COS(01 - 7r/2) + 02 

02 M21c2g COS(01 + 02 - 7r/2) 

The values of the constants used in this physical model are given in Table 4.2. 

The torque r (in N-m) applied to the actuator joint takes values -1,0 or +1 
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Constant Description 
_I 

9 Gravitational acceleration S-2 9.8m 

M1 Mass of link 1 lkg 

M2 Mass of link 2 1kg 

11 Length of link 1 lm 
12 Length of link 2 lm 

1CI Length to centre of mass of link 1 0.5m 
1c2 Length to centre of mass of link 2 0.5m 

11 Moment of inertia of link 1 lkgM2 

12 Moment of inertia of link 2 lkgm2 

Table 4.2: Numerical constants used in the Acrobot environment model. 

depending which of the three available actions is chosen. Given that di and ý2 can 
be calculated using these equations, we can use Euler's method to update the state 

variables 01, ýli 02 and ý2- While the RL agent chooses a new action every 0.2s, 

within each of these time steps we use smaller substeps of 0.05s to calculate new 

values for the state variables using Euler's method. 
Each episode begins with all state variables set to 0.0, i. e. with the acrobot 

hanging straight down at rest. The angular velocities are bounded to remain within 
the ranges -47r -< 

ý1 :5 47r and -97r -< 
ý2 !ý 97r. The goal is to raise the tip 1.45m, 

above the fixed position joint, at which point the episode ends. Two different 

reward functions can be used in order to minimize the episode length: 

1. r= -I on every step except when the goal is reached, when r=0. 

2. r=0 on every step except when the goal is reached, when r=1. 

The learning features for the RL agent are generated as follows. There are four 

continuous dimensions to the state space: 01,61) 02 and 62. There are therefore 

4 ways to select a group of 3 dimensions (leaving one out each time). For each 

possible group of 3, we create 3 randomly offset tilings which divide each dimension 

in the group into 8 regions. This results in a total of 12 tilings for each action, and 
therefore a total of 18,432 learning features. 

Stochastic Grid World Task 

In addition to the three well known RL problems described above, a domain was 

needed which would allow problems of increasing difficulty to be defined in order 
to investigate performance in large-scale problems. For this purpose, we used a 

109 



stocliwstic grid world doinain which has soine similarity to the Puddle-world domain 

(slittoll. 1996). 

Goal region 

Wall 

"Sticky" 
areas 

Start 

Figurc 4.6: A bitinap image defininp, ail instance of the stochastic grid world task. 
I tý n t) 

Ali instance of the grid world is defined bY a bitinap image file, such as the 

olic shown in Figure 4.6. A red pixel indicates the starting point of ail agent at 

the beegilinin" of evcry episode. Four actions are available to the agent: up, down, 

1cft, and right. Each action moves the apent it distance s in the specified direction. 

The units of' -s it"(' mcas', red in pixels, but s is ilot constrained to be 1, or even 

a whole 1111111ber of pixels. The distance s (-ail be any real number. This means 

t1lat, in contrast to some grid world domains, the state space is not a discrete grid 

J)jlt a cordinuous 2D state space Ux, y)Ix c [0, x,,, ]ýy c This allows a 

doillaill instance dMilled bY it single image to be inade progressively more diffictilt 

by reducing tit(, distance s. Alternatively, more difficult problems cail be created 

by keephip-, the step size collstant, and generating larger images. 

Black pixels iii the image (Icnote tralls. which are impassable. The edges of the 

image are also impassable. Any movement action which Nvould take the agent into 

it wall or off the cdge ofthe inia, 4c will fail, leaving the agent at the saille position. 

A group of grccii pixels indicatcs it goal region to which the agent inust travel. 

The overall objective is to the number of steps required to reach the goal 

region. 
Blue pixels represent sticky arc(i. s. When the current state (-r. y) of the agent is 

within a stick. v area. any movement actions taken in that state will have stochastic 

outcomes. The more saturated the blue area is, the greater the probability that 

a movement will fail. leavin, 12, the at-pnt in the same position. Suppose the pixel 

corresponding to (. i*. y) hws a colour (r. g. b). where r, g. bE [0.1]. Sticky areas are 

(jefilled as those where b=1, r<I and v=g. The probability of an action failing 

in a sticky area is defined as: 

1)(fail) = 0.9(1 - I-) 
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The two reward functions used for this problem are the same as those used in 
the Mountain-Car and Acrobot tasks: 

1. r= -1 on every step except when the goal is reached, when r=0. 

2. r=0 on every step except when the goal is reached, when r=1. 

For approximation we use a single two dimensional tiling, which has a similar effect 
to using a table-based representation and a simple discretization of the continuous 
state space (although the offset of the tiling remains random). The number of tiles 

and the move distance s vary according to how difficult we want the problem to 
be. Here are two particular instances that are based on the 256x256 image shown 
in Figure 4.6: 

Low Difficulty A 30x3O tiling generates features for each of the four actions, 
resulting in a total of 3600 features. Movement distance s=2. 

High Difficulty A 64x64 tiling generates features for each of the four actions, 
resulting in a total of 16,384 features. Movement distance s=1. 

4.4 Comparing Merging Functions 

In this Section, I will present several candidates for the merge function f, whose 

purpose was described in detail in Section 4.2. The motivation behind the choice 
of each of candidate function is given, in addition to an evaluation of each function 

using the Mountain-Car task and a simulation of parallel agents. 

4.4.1 The Minimum Merge Function 

A simple approach to exploration in RL is the use of optimistic initial values. By 

initialising an agent's value function so that all state-action pairs appear to lead 

to high rewards, the agent can follow a greedy policy (no actions are explicitly 

explorative) and still converge to the optimum in deterministic domains. This 

works because in a given state, each action in turn becomes the greedy choice as 

updates to the value function reduce the value of overestimated actions. Once the 

value of the best action is reduced to its true optimal value, the value remains 

unchanged, and so at this stage the greedy action is in effect the optimal action. 
This can be seen as a process of reducing the upper bound on each action value 

until the largest bound in each state is tight. 

A parallel approach based on a similar idea is for each parallel agent to work on 

reducing the upper bounds. The agents' results can then be combined by taking 
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the minimum upper bound established by the group for each state-action pair. 
Thus we initially overestimate the value of each state-action pair, and thereafter 

at each merge preserve the minimum value estimate from the set of agents. The 
form of merge function f is therefore: 

(01, ii 02, i? ... 7 
On, i) = min Oj, i i 

Note that a purely greedy policy can not be used for the parallel approach since 
tile agents would have identical experiences, and parallel speedup by merging is 

only possible if there is some diversity in the set of agents. Therefore, each agent 

must take some number of explorative actions. 
The minimum merge function was evaluated using the Mountain-Car task. 

Each of tile agents used the SARSA(, \) algorithm with an c-greedy exploration 

strategy as described in Section 4.2. All weights of the agents' VFAs were ini- 

tialised to 0. Reward function #1 (see Section 4.3.1) was used, meaning that a 

reward of -1 was given on every time step except when the goal was reached. Ini- 

tialising the weights to zero means that the return for every state-action is initially 

overestimated. 
Tile parameters used were as follows: merge period p 250, exploration pa- 

rameter e=0.05, learning rate a=0.5, discount factor -y 0.99, and eligibility 
trace parameter \=0.9. Each episode was ended after 300 steps if the goal was 

not reached, and results were averaged over 200 runs. The results are shown in 

Figure 4.7. 

Over the first 5 to 10 thousand time steps having a larger number of agents 

means that performance is improved at a faster rate, which indicates that agents 

are successfully combining information about which actions have a poor return. 
However, in the later stages of the experiment, the performance becomes worse at 

a rate that increases with tile number of agents. This indicates that the use of min- 
imum merging breaks tile conditions for convergence of the underlying SARSA(A) 

algorithm. 
Performance becomes worse in the later stages because of the stochasticity 

introduced by the e-greedy exploration strategy. Tile use of occasional explorative 

actions mean that the value of states can be underestimated when a random action 

choice results in a low return. A single-agent learner is probabilistically likely to 

eventually correct this underestimate. The parallel agents, however, are less likely 

to correct the underestimate, since merging preserves the minimum value of each 

weight. Unless all the agents revise a weight upwards in the same merge period p, 

an underestimated weight cannot be corrected. The underestimates will eventually 

propagate throughout tile value function, making the performance worse and worse. 
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Figure 4.7: Results for the minimum merge function in the Mountain-Car task. 

4.4.2 The Maximum Merge Function 

The maximum merge function is the dual of the minimum merge function. The 

intuitive idea behind this approach is that the VFAs are initialised to underestimate 
the value of each state-action pair, and the agents gradually revise these values 

upwards as rewards are discovered in the environment. The values can be viewed 

as lower bounds on the return of an action. Agents can merge their experience 
by keeping the maximum lower bound established for each state-action pair. The 

maximum merge function f takes the form: 

(01, ii 02, ii ... 7 
On, i) : --: MaX Oj, i 

i 

Reward function #2 (see Section 4.3.1) is used in this experiment, where the 

only reward is +1 on time steps when the goal is reached. Initialising all the weights 
to 0 would be a simple way to underestimate the value of all state-action pairs. 
However, since the reward will be 0 until the first time the goal is reached, updates 
to the value function would have no effect during this period-all the weights would 

remain at 0. The result would be that there is no way for the agent to track which 

state-action pairs have already been visited, forcing the agent to follow essentially 

a random walk behaviour until the goal is accidentally discovered. This means the 

time to find a good policy will be at least an order of magnitude longer than the 

earlier experiment. 
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To avoid this, each weight is initialised to some small value Oi, it > 0. This value 
is chosen to be small enough so that each state-action pair is still underestimated. 
Since Oi,,, it is non-zero, updates to the value function do have an effect, and state- 
action pairs which have been explored will have lower values than those which 
have not until the goal is found. The e-greedy strategy can now find the goal in a 
reasonable time. 

The Mountain-Car task evaluation for the maximum merge function used the 

settings given in Section 4.4.1, except that reward function #2 was used and 0j"it 
0.0001 instead of 0. The results are shown in Figure 4.8. 
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Figure 4.8: Results for the maximum merge function in the Mountain-Car task. 

Observe that in these results there is a delay at the start of the experiment 
until the agents begin to achieve a performance better that 300 steps per episode. 
The delay appears to be longer the more agents there are. However, once the delay 

is over, multiple agents improve performance more quickly than the single agent. 
In the later stages of the experiment performance starts to become worse for the 
larger sets of parallel agents. 

The initial delay corresponds to the time before the goal has been reached by 

any of the agents. During this phase of learning, the agents gradually reduce the 
initial weights as the environment is explored, effectively marking out which actions 

are better explored. The maximum merge interferes with this phase, causing the 

agents as a group to forget some parts of the exploration as the maximum value of 
each weight is taken. The more agents there are, the greater the interference with 
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this initial phase of exploration. 
A mechanism to eliminate this increased delay can be introduced as follows. 

Define some value 01i,,, it which separates the weight values into two distinct regions. 
Weights < 01i,, it only arise from the initial exploration phase, before any rewards 

are found in the environment. Any weight > 01i .. it must have been updated on a 

path to a goal, and ought to work well with the maximum merge function. Once 

the maximum merged weights j0! IJ have been calculated, each agent only copies 
into its value function those merged weights greater than 01i,,, it: 

if Oj` > Ojj,,, jt then Ojt+1 +- Oj' 

else Ojt+1 +- Of 
tI 

The results for an experiment using this mechanism are shown in Figure 4.9. 

The experimental settings are identical to those used for the results in Figure 4.8 

except that the above mechanism is used with 01j,,, it = 0.0002. The results show 
that this mechanism eliminates the extra delay exhibited in the first experiment. 
However, since merging is essentially inhibited for the first 2 to 3 thousand steps, 
there is no way that this phase of the experiment can be speeded up by adding 

more agents. 
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Figure 4.9: Results for the maximum merge function with Oji .. it = 0.0002 in the 

Mountain-Car task. 

The results in Figure 4.9 show more clearly the rapid improvement in per- 
formance achieved by the maximum merging function in the early stages of the 
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experiment. The improvement in learning speed is much greater than that seen 

with the minimum merge (see Figure 4.7). This could be because learning with 

reward function #2 is inherently more parallelizable. Alternatively, it could be 

because the maximizing behaviour of the merging function is closer in character to 

a Bellman update than the minimum merging function. In any case, in the later 

stages of the experiment performance again becomes worse, suggesting that the 

stochasticity introduced by the e-greedy strategy causes state-action values to be 

repeatedly overestimated, interfering with convergence. 

4.4.3 The Mean Merge Function 

Tile mean merge function simply calculates each merged weight using the mean of 

all the agents' estimates for the weight: 
n 

(Ol, i 7 
02, i) ... I 

On, i) 
n 

T, oj, i 
j=l 

The mean merge function is a natural way to combine weight estimates from 

a number of agents, where equal significance is given to each agent's estimate. 
While there is no mechanism to prioritize information about large rewards discov- 

ered by only one or two of the agents, this mechanism will improve estimates of 
immediate stochastic rewards, and provide an approximate summary of the "group 

knowledge" of the set of agents. 
Since the mean merge requires no assumptions about optimistic or pessimistic 

initial values, we can use either of the two reward functions defined in Section 4.3.1. 

In either case each weight is initially set to Oi.,, it = 0.0001. The rest of the settings 
for these experiments are identical to those given in Section 4.4.1. 

The results for the mean merge function using reward function #1 and #2 

are shown in Figures 4.10 and 4.11 respectively. In these experiments, we do 

not observe worsening performance towards the end of the experiment as we did 

with the earlier merge functions. This suggests that the mean merge function 

does not break the convergent properties of the underlying SARSA(A) algorithm. 
However, we do not see the rapid improvements in performance that were observed 

using the minimum and maximum merges (compare Figures 4.7 and 4.10, and also 
Figures 4.9 and 4.11. ) While the mean merge function provides better estimates of 

stochastic returns, it performs poorly because large weight changes discovered by 

a single agent will be drowned out in the average by the rest of the agents making 

small or no changes. 
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Figure 4.10: Results for the mean merge function using reNvard function #1 in the 
Mountain-Car task. 
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Figure 4.11: Results for the mean merge function using reward function #2 in the 
Mountain-Car task. 
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4.4.4 The Visit-Count Merge Function 

One of the reasons that the mean merge is poor at combining the agents' knowledge 
is that there is no mechanism for measuring the relative experience of the agents 
in different areas of the state space. Suppose we want to combine the agents' 
estimates for one of the weights Oi. Suppose also that only one of the agents in the 

set has actually visited an area of state space where feature Oi was active. This 

agent will have updated the value of Oi several times, but the other agents will still 
have the initial value for 0j. In such a situation it is clear that one of the agents has 

a much better estimate of Oi, but the mean merge function weights all the agents' 
estimates equally, and so some of the valuable information discovered by this one 
agent may be lost in the process of merging. 

The weights 10j} provide only the best current estimate of each weight. It is not 
possible to extract a measure of experience directly from the set of weights. The 

minimum and maximum merge functions got around this problem by considering 
the agent which had most extended the lower/upper bound on Oi to be the most 
experienced. To improve on the performance of the mean merge function it is 

necessary to store additional data to measure the experience of each agent. 
For each feature Oi, an agent will now store a visit-count ci in addition to a 

weight Oi. The visit-count ci measures the number of times feature Oi has been 

active during the current merge period (of length p). At the beginning of a merge 
period, all the jcj} values are set to zero. Every time a state is visited where Oi is 

active, the value of ci is incremented. The visit-count merge function can now be 

used to calculate the merged value function: 

o,, i7 cl, i) ... ) Cn, i) = 

E3=1 cj, ioj, i 

Ej=i cj, i 
Here cj, i is the ith visit-count of agent j. Note that this function takes the 

agents' visit counts as arguments as well as the agents' weights. It is essentially 

a weighted average, with greater emphasis given to those agents with larger visit- 

counts for a particular feature. Note also that if one of the features has been 

continually inactive for all the agents since the last merge (i. e. Vj. (cj, i = 0)) then 

the value of f is undefined. When these situations are detected, Oj' is assigned 
the value of Oi before the merge took place (all the agents will have retained an 
identical value for Oi in such cases). 

The results for reward functions #1 and #2 using the visit-count merge function 

are shown in Figures 4.12 and 4.13 respectively. The settings for the experiment 

are identical to those used in Section 4.4.3 (other than the use of a different merge 
function). 
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Figure 4.12: Results for the visit-count merge function using reward function #1 

in the Mountain-Car task. 
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Figure 4.13: Results for the visit-count merge function using reward function #2 

in the Mountain-Car task. 
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The visit-count merge function improves performance in the Mountain-Car task 

more than any of the other merge functions. Like the mean merge function, con- 
vergence of the underlying SARSA(A) algorithms is not affected-the performance 
does not get worse towards the end of the experiment. Additionally in the early 

stages of the experiments we observe rapid improvements in performance, similar 
to those observed using the minimum and maximum merge functions, but without 
the eventual divergent behaviour. It is fairly clear that identifying the relative 

experience of the agents in each area of the state space is an important step in 

exploiting value function information from several agents. 
The visit-count merge function achieved the best improvement in performance 

for all the domains we used with the simulation of parallel agents. Some results 
for the visit-count merge function in the Pole-Balancing and Acrobot domains are 

shown in Figures 4.14 and 4.15 respectively. 
The results for the Pole-Balancing experiment shown in Figure 4.14 were gener- 

ated using a reward function where a reward of +1 was received on every time-step 

except on terminal steps. At the beginning of each run weights were initialized to 
0. Episodes were allowed to continue for a maximum of 20,000 steps. A merge 

period p of 100 was used. The other parameters were a=0.2,6 = 0.1, -Y = 0.99 

and A=0.5. Results were averaged over 200 runs. 
The Acrobot experiment (see Figure 4.15) used a reward function where a 

reward of -1 was received on every non-terminal time step. Weights were initialized 

to 0 at the beginning of each run. Episodes were allowed to continue for a maximum 

of 600 steps. A merge period p of 100 was used. The other parameters were a=0.1, 

e=0.05, -y = 1.0 and A=0.9. Results were averaged over 100 runs. 
Similar results were obtained for both the instances of the Stochastic Grid 

World task, with the visit-count merge function producing the best performance 

out of the four merge functions evaluated. Graphs for these results are not included 

in this section, but later in the chapter a graph (Figure 4.22) is included which 
illustrates the performance (in the simulation of parallel agents) of the visit-count 

merge function in the low-difficulty Stochastic Grid World. 

4.4.5 Comparison Summary 

The minimum and maximum merge functions initially allow the group of agents to 

converge more quickly towards the optimal policy. The maximum merge function 

in particular produces rapid policy improvement with larger numbers of agents. 
However, eventually both of these merge functions cause the agents to diverge 

from the optimum, with the divergence occurring more quickly the greater the 

number of agents there are in the group. 
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Figure 4.14: Results for the visit-count merge function in the Pole-Balancing task. 
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Figure 4.15: Results for the visit-count merge function in the Acrobot task. 
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The mean merge function, on the other hand, will reliably converge to the 

optimal policy. However, the rate of convergence improves relatively slowly as 
more agents are added to the group. The rapid policy improvement exhibited by 

the maximum merge function in the initial stages cannot be reproduced. 
The visit-count merge function requires more information to be exchanged be- 

tween the agents, but produces the best performance out of the four merge func- 

tions evaluated. Policy improvement in the initial stages is almost as rapid as 
that of the maximum merge function, but without the risk of divergence in the 

later stages. The visit-count merge produced the best performance in all of the 

evaluation domains tested: the Mountain Car task, the Pole-Balancing task, the 

Acrobot task and the two instances of the Stochastic Grid World task. 

4.5 Decaying Parameters and Binary Search 

An interesting property of the results shown in Figures 4.12,4.13 and 4.15 is that 

the final quality of policy learned is different depending on the number of parallel 

agents used. This remains true even if the experiments are run over arbitrarily 
long periods of time. The reason this effect arises is down to two key properties of 
the experiment: 

9 The learning rate a and exploration parameter c have fixed non-zero values. 

e The visit-count merge function is based on (weighted) averaging. 

The use of fixed values for a and c means that no matter how long the experiment 
is, each agent will continue to take the same proportion of random actions and 

update its VFA according to the outcome. One consequence of this is that at all 
times during the experiment there will be a small chance that a series of exploratory 

actions will result in poor rewards, with subsequent updates significantly changing 
the VFA. This means that there will always remain a small chance of making a 
large step away from the optimal policy. A second consequence is that a true 

optimal policy may never be found if the return from a given state is significantly 
different depending on whether a greedy or an e-greedy strategy is followed. 

The averaging behaviour of the visit-count merge function seems to have a 

noise-reducing effect, which reduces the chance of making a large step away from 

the optimum. While each of the individual agents in the group will have the 

same chance as the single agent of making a change which moves away from the 

optimum, it is likely that others in the group will not make such a change at exactly 
the same time. Once the VFAs are averaged across the agent group, the step away 
from the optimum is much smaller. Over time, this means that a group of agents 
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can maintain a policy much closer to the optimum than a single agent, provided 

that a and c remain fixed and that merge phases occur every p steps throughout 

the agents' lifetimes. 

In practice, we are only likely to have parallel hardware available for a limited 

time, after which a policy must be extracted from one of the group of agents. 

Additionally, the parallel hardware may only support a small number of parallel 

agents. In order to learn a policy arbitrarily close to the optimum without requiring 

large numbers of agents, it is necessary that parameters a and f decay over the 

course of the experiment. By running a given experiment for a longer time with a 

slower rate of decay, we can get closer to the highest quality policy representable 

using the VIA. 

Singh et al. (2000) proved that tabular SARSA(O) with e-greedy exploration 

converges to the optimal value function Q* if a decays in a way that satisfies the 

Robbins-Monro criteria (Robbins and Monro, 1951) and c tends towards zero over 

time at a rate which ensures that each state-action pair is explored infinitely often 

in the limit. However, while this proof of asymptotic optimality suggests that 

decaying a and c will also be necessary for approximate SARSA(A) to approach 

the optimum, it provides no indication of how fast to decay their values if only a 

finite learning time is available. The goal in this context is to approach as close to 

the optimal approximation as is possible in the limited time available. 

To my knowledge there has not been an analytical study of appropriate mech- 

anisms to decay these parameters over a finite time. However, previous empirical 

work (Rummery and Niranjan, 1994; Loch and Singh, 1998; Claus and Boutilier, 

1998) has shown that good results can be achieved in practice by decaying these 

parameters to zero at a steady rate over the time available. Appropriate initial pa- 

rameter values (before decay begins) must be determined for each learning domain. 

In this thesis a and c are decayed linearly using identical rates, since this approach 

seemed to produce the best policies in the empirical evaluation. This means that 

over the course of a run each agent's control policy becomes increasingly greedy. 

In addition, the decreasing learning rate allows the expectation of the value of each 

stochastic action to be more closely approximated. 

For the purposes of parameter decay, time is measured as the proportion com- 

pleted of a single run of an experiment (recall from Section 4.3 that the time limit 

for a run may be measured in episodes, time steps or real time). Define time t=0 

as the start of the run and t=1 as the end of the run. The values of the initial 

parameters at time t=0 are defined as ao and co. A time t1j,,, E [0,1] is chosen 

to be the time at which the parameters must have decayed to zero. The a and e 
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parameters now become functions over time: 

a max 0, ao(tlim - t) 
tum 

c(t) max 0, fo(tli. - t) 
t1i. 

In practice it may be inefficient to recalculate the values of a and C on every 
time step. It is sufficient to choose some small number of time steps q (e. g. q= 25 
in the following experiments) to define an interval or quantum. After every q 
time steps new values for the parameters are calculated using the above equations. 
This works well as long as q is much smaller than the total number of time steps 

experienced by an agent in a single run. 
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Figure 4.16: Results in the Mountain-Car task, decaying the values of a and c 
linearly towards zero over 90% of the learning time. 

Figure 4.16 shows the results of an experiment using the Mountain-Car task 

and the visit-count merge function. Reward function #1 is used, in addition to 

parameters y=0.99, A=0.9, Oi,, it = 0.0001 and p= 250. Results are averaged 

over 200 runs. This makes the experimental settings the same as in Figure 4.12 

except that a and c now undergo linear decay, using parameters ao = 0.5,60 = 0.1 

and t1i.. = 0.9. This means that in the last 10% of the experiment time the VIA 

is not modified, and so we can assess the quality of the learned policy without the 

effects of noise from exploration or learning updates. It can be observed in Figure 

4.16 that the mean episode length at the end of the experiment is much better (for 

I Agent 
2 Agents 
4 Agents 
8 Agents 
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all numbers of agents) than that achieved in Figure 4.12. Furthermore, the larger 

numbers of agents achieve a better quality of policy in the given time. 
Eliminating the noise from learning at the end of the experiment now allows 

the policy quality to be properly assessed. In addition, by running experiments 

over longer periods and continuing to decay over 90% of the experiment time, the 

rate of linear decay of a and c becomes slower. In a manner similar to that of 

simulated annealing, a slower decay of these parameters means that there is a 

greater chance over the decay time of settling into a policy which is very close 
to the optimum. Ideally, if we ran the experiment over a long enough time we 

would expect all groups of agents to have a high probability of finding the optimal 
VFA parameters. Unfortunately, the visit-count merge does not seem to behave in 

exactly this way. 
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Figure 4.17: Results in the Mountain-Car task, where a and e still decay linearly, 

but the experiment takes place over a longer period of time. 

Figure 4.17 shows the results of an experiment identical to that shown in Figure 

4.16 except that the length of the experiment is 100,000 steps rather than 25,000 

steps. While the single agent learner and 2-agent group achieve a average final 

quality close to 120, both the 4 and 8 agent groups settle on a policy quality 

which is closer to 125. This is a trend which continues to occur even in much 
longer experiments. It seems that the noise-reducing effect of weighted-averaging 
discussed above has an adverse effect on the latter stages of learning. Learning in 

the mountain car problem can be divided into two distinct stages. The first stage 
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involves exploring the state space randomly until a reasonable path to the goal is 
found. This corresponds to the first 15,000 steps in Figure 4.17. The second stage 

consists of a gradual refinement of the best known path to the goal, by means of 

a decaying number of exploratory actions. The noise-reducing effect appears to 

reduce the probability of large changes to the VFA during the refinement stage. 
This means that in some cases the optimal VFA may not be found, since the learner 

may get stuck on an approximation which accurately estimates state value when 

c has a small positive value but which produces sub-optimal performance once c 
decays to zero. 

Ignoring for the moment the fact that the single agent can get closer to the op- 
timum in the long term, it will be useful at various points in this thesis to compare 
the time required for a given number of agents (using some algorithm) to achieve 

a particular quality of policy (for now restricting our attention to "good" policies 

rather than optimal ones). However, this task is complicated by the addition of 
decaying parameter values. Observe that in Figure 4.17 the group of 8 agents learn 

an average policy quality of 125 in 100,000 steps, but in Figure 4.16 the group can 

achieve an average quality closer to 120 in only 25,000 steps. This is because the 

shape of the graph in the "refinement" stage is predominately determined by the 

rate of decay of a and c. The rate of decay must be slow enough to achieve the 

desired quality, but any slower and the learning time is essentially wasted. To 

properly compare the learning times for different numbers of agents, the rate of 
decay must be different for each group. 

To achieve different rates of parameter decay, we will keep the proportion t1j", 

of the experiment over which the linear decay occurs fixed at 0.9. We will vary 
the experiment time independently for each group of agents. Since there is no 

analytical method for determining the minimum experiment time for each group, 

we will use binanj search to find the minimum for each group within a specified 
tolerance. Before beginning the binary search, we determine the number of steps 

required for a single agent to achieve the specified policy quality. This is the initial 

upper bound on the experiment time. The initial lower bound for the search is 0. 

At each stage in the search, the mid-point between the upper and lower bounds 

is calculated, and an experiment is run using this as the experiment time. Each 

experiment started as part of the binary search uses a fixed number of agents n 

and reports the average quality achieved over r runs, where each run lasts for the 

specified experiment time. If the specified quality bound is achieved, the mid-point 
becomes the new upper bound. If it is not achieved the mid-point becomes the 

new lower bound. 
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Writing u and 1 for the upper and lower bounds, the binary search ends when 
u-1< J1, where J is some level of tolerance which defines how accurately the 

minimum must be determined. Throughout this thesis a tolerance of 5% (i. e. 
0.05) is used. 

The results of the binary search approach for the Mountain-Car task using 
the visit-count merge function are shown in Figure 4.18. The settings for this 

experiment are identical to those used in Figure 4.16, except that the initial upper 
bound on the experiment length was set to 50,000 steps. The bound on average 

policy quality that the agents had to achieve was 130 steps per episode. These 

results show that the improvements achieved using merging fall some way short of 
linear speed-up, even in the absence of any communication costs. We can move 

closer to linear speed-up by reducing the merge period p to a smaller value than 

250, but a very small merge period will not be feasible once communication has a 

realistic cost. The choice of merge period p is considered in more depth in Section 

4.8. 
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Figure 4.18: Results in the Mountain-Car task, where binary search is used to 

determine for each number of agents the shortest learning time that can still achieve 

a mean episode length of 130. 
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4.6 Examining Parallelism Without Merging 

At this point it is worth asking the following question: to what extent is VFA 

merging a necessary (or even useful) component of this parallel RL approach? It 

may be the case that the best benefits of parallelism arise because, when there 

are several agents searching for a good policy, it is more likely that one of them 

will stumble across such a policy even without VIA merging. Alternatively, the 

use of VFA merging may be a vital component, allowing each agent to build upon 
intermediate results discovered by other agents. 

To assess the benefits of communication and merging, it is useful to define a 
baseline algorithm which uses neither. The approach in the baseline algorithm is for 

the n agents to learn in parallel, but also in isolation. There is no communication 
between the agents. During a single run of the experiment, each of the agents 
learns in essentially the same manner as a single-agent learner. At the end of the 

run, each agent reports the mean episode length that was achieved in the final 10% 

of the experiment. At this point a and e will have decayed to zero, and so the 

quality of the policy can be assessed without exploratory actions. The agent which 

achieves the highest quality is deemed to be the best, and we store the learning 

curve for this agent, discarding results from the others. Over a series of runs, at 

each time step we report the average of the performance achieved by the best agent 
in each of the runs. This baseline algorithm will be referred to as the BESTOF 

method. A major advantage of the BESTOF method is that its performance will 
be similar even if communication costs are extremely large. 

Experiments with the BESTOF method using the domains defined in Section 

4.3.1 have shown that its performance depends primarily on the character of the 
learning environment. A particularly important characteristic is the distribution 

of the learning curves achieved on different runs of a single-agent learner. Fig- 

ure 4.19 is a boxplot graph illustrating the distribution for a single agent in the 
Mountain-Car task. The experimental settings were identical to those given for 

the experiment shown in Figure 4.16. The distribution was measured over 200 

separate runs of the single agent. The distribution in Figure 4.19 shows that while 

most of the agents cluster around the mean performance (the quantity plotted in 

previous graphs), there are a number of outliers of both good and poor quality. Of 

the outliers of good quality, some achieve a near-optimal policy in as few as 15,000 

time steps. 
Agents learning using the BESTOF method behave essentially as single-agent 

learners, and so each will have a learning curve drawn from the distribution in 

Figure 4.19. However, the fact that we can choose the best agent at the end of 
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Figure 4.19: A graph showing the distribution of learning curves for a single-agent 
learner over a series of runs in the Mountain-Car task. The limits of the box 

represent the 25 th and 75t" quartiles, the line in the box represents the median, 

and the whiskers represent the maximum and minimum values. 
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Figure 4.20: Performance of agents using the BESTOF method in the Mountain- 

Car task. 

129 



each run means that as the number of agents n is increased, the mean performance 
of the best agents approaches that of the outliers (see Figure 4.20). As the number 
of agents is increased, the group of agents will on average find a policy of a given 
quality in less time. These results were generated using a binary search to establish 
the minimum time for each group of agents to achieve on average a quality of 130 

steps per episode. By comparing these results with those shown in Figure 4.18, we 
can observe that the resulting speedup is not much worse than those obtained using 
the visit-count merge, with the extra advantage that the BESTOF method remains 
practical even when communication costs are very high. However, it should also 
be clear from the distribution shown in Figure 4.19 that no matter how large we 
make the number of agents n, it is very unlikely we will find a good policy in fewer 

than 15,000 steps. 
In some domains, however, the BESTOF method can perform particularly 

poorly. Figure 4.21 shows the results of the BESTOF method in the Stochastic 

Grid World domain. For purposes of comparison, Figure 4.22 shows results in 

the same domain using the visit-count merge function. The settings for these two 

experiments were as follows. The low-difficulty grid size was used. The decay 

of a and c was defined by parameters ao = 0.2, co = 0.1 and t1j,,, = 0.9. The 

other parameters were -y = 0.99 and A=0.9. Initial weight valueS2 were set to 

Oi,, it =1x 10-8. Reward function #2 was used, where the only non-zero reward is 

given when the goal is reached. Episodes were terminated after 10,000 time steps if 

the goal had not been reached. The visit-count merging experiment used a merge 

period of p= 10000 steps. Results were averaged over 10 runs. 

Comparing the two graphs, it is clear that in this domain the BESTOF method 

can only achieve very small speedups. In contrast, the visit-count merging agents 

can achieve large speedups in this domain, since they are not limited by the perfor- 
mance of outliers in the distribution of single-agent learning-curves. This demon- 

strates that communication between the agents will be vital for achieving good 

parallel performance in many domains. 

Small control problems such as the Mountain-Car and Pole-Balancing tasks 
have the property that once a reasonable policy is found, it can be very rapidly 

'A small positive value for Oi. it prevents the exploration behaviour from degenerating into a 

random walk (see Section 4.4.2). The value of Oi,, it in this experiment is a heuristic choice to 
facilitate rapid convergence to a short goal path. It is informed by the fact that the goal can be 

reached in under 120 steps from the initial state. When the goal is reached for tile first time, 

the TD(A) update in the initial state will be approximately a(-YA)"O, which is about 2x 10-7. 
Setting Oi, it =1X 10-8 ensures that this update will make actions which were used to reach the 

goal immediately appear more valuable. Therefore as soon as the goal is found for the first time, 

exploratory effort will be focused closely around this first (sub-optimal) path to the goal. 
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Figure 4.21: Performance of agents using the BESTOF method in the Stochastic 

Grid World task (low difficulty version). 
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Figure 4.22: Performance of agents using the visit-count merge function in the 

Stochastic Grid World task (low difficulty version). 
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refined to approach the optimal policy. Learning time in these tasks is dominated 

by the period of unguided random exploration that continues until a reasonable 

policy is found by accident. Because of this property, the BESTOF method can 

achieve good speed-ups for small groups of agents. For larger numbers of agents, 
however, the improvements that can be obtained diminish very quickly as agents 

are added. 
In the Stochastic Grid World Task it is extremely unlikely that a single agent 

will find a path to the goal completely by accident. Instead, the agent (through 

random exploration) gradually discovers which areas of the large state space con- 
tain poor rewards. Updates to the VIA means that these states are marked as 
having a low-value expectation, which leads the e-greedy exploration strategy to 

focus on relatively unexplored areas of the state space. This means the agent can 

gradually eliminate possible locations of the goal until it is found. By merging the 

agents' approximations, the labour required for this process of elimination can be 

divided among the agents, greatly reducing the time required to find the goal and 

converge towards the optimal policy. This division of labour is not possible with 
the BESTOF method, since no communication can take place between the agents. 

From these results, a general conclusion may be drawn that communication 
between the agents must play an important role if a parallel RL method is to be 

useful in a wide variety of domains. Otherwise the method will always be limited 

in performance by the properties of the distribution of single-agent learning-curves. 

4.7 A True Parallel Implementation 

In this section I will describe an evaluation of the VIA merging approach using an 
implementation on a real parallel system. The system used as the basis for this 

implementation was the cluster of workstations described in Section 4.3. The C++ 

implementation used the MPICH v1.2.5.2 library for the required communication 

operations. MPICH is an implementation of the Message Passing Interface (MPI) 

standard (Pacheco, 1997). 

4.7.1 An Initial Implementation. 

The initial implementation closely followed the architecture illustrated in Figure 

4.2. In this original design, a central manager agent entirely separate from the 

learning agents took responsibility for the merging process. The manager would 

receive VIA weights from all the agents, calculate the merged VIA using the 

specified merge function f, and distribute the result to each of the learning agents 
before learning recommenced. However, assigning a dedicated parallel process to 
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the manager agent is somewhat wasteful of processing resources, since most of the 

time the manager is idle or waiting for inessages. To avoid this, ill the initial parallel 

implementation onc of the learning agents takes responsibility for the manager's 
dutics. Each of the ii agents has a rank, a whole number between 0 and ii -I 

which uniquelly identifies the agent. The agent with rank 0 always performs the 
functions of the manager at merge time. 

We restrict our attention in this section to inerging with the visit-munt increge 

flinction, since this was shown in Section 4.4 to reliably produce the best perfor- 

111ancc out of' the considered inerg-c functions in all the evaluation domains. For 

agent 0 to calculate the visit-count merge function, all agents with rank54 0 must 

send a vector of approximator weights and a vector of visit counts to agent 0. After 

the merged VFA lia.,; been calculated, agent 0 must send a vector of inerged ap- 

proxiniator weights to all the other agents. A Gantt chart illustrating this process 

is shown in Fi, nirc 4.23. 

a 

Agents 

I 

KEY 
D Send data 

El Receive data 

Compute merge function 

Figure 4.23: Gantt chart illustrating the exchange of inessages required to complete 

each inergin. - operation in the initial parallel implementation. 

Messages are excl 1,111- ed between agents using the MPI-Send and MPI-Recv li- 

brarY functions lWoVidcd by NIPICH. These functions represent the most basic 

pojilt -to-point communication inechanisin provided by the, NIPICH library. These 

functions can be lised to scild arbitrary length vectors of data valucs from one 

agent to a sing1c destination agent. The type of the data values, inay be aily of the 

C++ primitive types. III our implementation. the approxiiiiator weights are rep- 

133 



resented as 32-bit floating point numbers, and the visit counts are represented as 
32-bit integers. The agents use this representation for both internal representation 
(used during learning) and the content of messages exchanged. The MPI-Send and 
MPI-Recv functions are blocking calls. MPI-Send will only return once a matching 
call to MPI-Recv has been started at the destination agent, and only when the mes- 
sage data has been safely copied out of user memory. MPI-Recv will only return 
once the full message from the source agent has been successfully received. MPICH 

also provides non-blocking functions for point-to-point communication, which will 
be used later in Chapters 5 and 6. 

Preliminary experiments with this first implementation revealed that the length 

of time required for a merge operation was growing too quickly as the number of 
parallel agents was increased. It was not possible to achieve significant speed- 
ups in any of the evaluation domains. To investigate this effect, we used logging 
functionality in the MPICH library to collect precise timings for the series of merge 
periods performed in a single run of the algorithm. The timings reported in Table 

4.3 were generated in the low-difficulty Stochastic Grid World task. A merge period 

of P= 10000 was used. In contrast to the feature set described in Section 4.3.1, 

this particular set of experiments used 4 tilings of dimension 32x32. There are 4 

actions, so this makes the total number of approximator features 16,384. Given 

that 4 bytes are required to store either a single weight or a single visit count, each 
message sent to agent 0 is approximately 128KB in size, and each message sent 
from agent 0 is approximately 64KB in size. Note that the errors reported here 

are the range of the timings observed, not the standard deviation. 

Number of Agents Time for Merge Operati 

2 33±2 

4 82±2 

6 131±2 

8 181±3 

10 233±5 

12 280±2 

14 332±3 

16 381±3 

Table 4.3: Timings for the visit-count merge operation in the Stochastic Grid 
World task using the initial parallel implementation. 

Each of the timings is measured from the time at which the first agent tries to 
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send its message to agent 0 to the time at which the last of the agents receives the 

merged weights from agent 0. From the measurements given in Table 4.3 we can 
observe that the growth in the merging time is close to O(n), where n is the number 
of agents. The timings are dominated by the growth of communication costs. Each 

period of learning in the simulation (between the merges) lasts consistently around 
30ms. The time for agent 0 to calculate the merged weights varies approximately 
linearly, but only takes 15ms even when there are 16 agents. It is clear that the 

parallel RL method will not be practical on real parallel hardware if the cost of 

communicating grows at such a rate. 

4.7.2 Distributed Computation of the Merge Function 

To reduce the effect of growing communication costs on our algorithm, it is neces- 

sary to abandon the notion of a manager agent which performs the computation 

required to calculate the merged VFA. While this remains a useful conceptualiza- 
tion of the method, a practical parallel implementation must spread the workload 

more equally among the available agents, instead of assigning agent 0 to do all the 

work. 
Recall from Section 4.4.4 the form of the visit-count merge function f: 

n 
j=l cj, ioj, i (ol, i7 ... I 

On, i i Cl, i i ... i Cn, i) n 
j=i Ci, i 

Each of the two summations in this function can be calculated using a dis- 

tributed computation. To understand this computation, it will be useful to consider 

a couple of simple examples. Suppose we have n agents, where each agent i has 

stored in local memory a vector ii7,. All the vectors are of the same dimension d. 

Suppose also that we want to calculate the vector sum 9' = Ei 4 and store the 

result in the memory of agent 0. If d is large, both communicating the vectors and 

calculating the sum will be expensive operations. The naive approach of sending all 

the vectors to agent 0 and then adding them together produces a major bottleneck 

at agent 0. It is more efficient to arrange the summation using a tree structure, as 

shown in Figure 4.24. 

The example in Figure 4.24 results in the same number of messages (seven) 

being sent over the network as if all the agents had sent their vectors directly 

to agent 0. However, because the messages sent during each stage have different 

destinations, they can travel simultaneously over the switched Ethernet network. 
This removes the communication bottleneck at agent 0. In addition, the compu- 

tation of the vector sum is shared more evenly among the agents, and parts of the 

computation in the same stage can be performed in parallel. Each of the larger 
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FiAure 4.24: A,, (, iits (represented ws circles) performing a distributed computation n 
of a stim of' vectors. The arrows iidicate data communicated between two agents, 

and the greY boxes show which parts of the computation are carried out bY cach 

grey lmxcs in Figure 4.24 represents one of the agents adding the vector received 

over tlic network to its own local vector. If the number n, of vectors to be added is 

a power of two. then it agents can perform the addition '11 1092 11 stages. The time 

reylired for each Stape is fl + t2, where ti is the time required to send a vector 

hoween two ngents over the network, and t2 is the thile required for a single agent 

to add two vectors together. 

Slippose now tlmt all agents need to know the result of the summation once it 

is cmilpleted (; is is the case for our parallel RL method. ) One way to achieve this 

WOUld be to complitc the s1iiii as shown above, then have, agent 0 broadcast the 

result to all the other a0ents. The broadcast can also be implemented using a tree 

structure iii ii similar way, by reversing the direction of the communication arrows 
in Fi-tire -1.2-1. However, a inore efficient wa of achieving the saine effect is to use ny 
thc communication structure shown in Figure 4.25. This type of communication 

structiti-c is sometimes known as a butterfly. It can be interpreted as a set of 

trees. one rooted at eitch agent, with the common subtrees combined together to 

produce it dircctcd (icyclic graph (DAG). Since the communications within each of 

the stapes cmi be performed simultaneously, this operation can be completed in 

t he saine number of stages (1092 it, ) as the operation shown in Figure 4.24. 

This discussion has thus far relied on the assumption that it is a power of 

two. If it is not a imwer of two then additional communications are needed to 

ensmv that all the agents end tip with the correct suni. In such cases the required 

136 



Stage 3 

Stage 2 

Stage I 

Stage 0 

01234567 

Agents 

Figure 4.25: A distributed sum of vectors where the result is required by all the 

participating agents. Intermediate results at each stage are shown in a circle for 

every agent. 

number of stages has an upper bound of 2 11092 nj. This approach is known as 

a recursive doubling algorithm. For further details on the use of the recursive 
doubling algorithm in MPICH, the reader should refer to Benson et al. (2003). 

The MPICH library provides implementations of the distributed summations 
in Figures 4.24 and 4.25 with the functions MPI-Reduce and MPI-Allreduce re- 

spectively. The two summations in the visit-count merge functions will now be 

implemented using the MPI-Allreduce function. The pseudocode for the algo- 

rithm followed by each of the agents is shown in Algorithm 3. 
A new series of timings for the merge operation was collected for this new par- 

allel implementation. They are shown in Table 4.4, where the errors again reflect 
the range of the timings rather than the standard deviation. The settings used 

were identical to those described at the beginning of this section, except that this 

new implementation was used. The results show with this new implementation, as 
the number of agents n is increased the growth of communication costs is O(logn) 

rather than O(n). Note that when n is not a power of two additional stages of 

communication are required, which is why the groups of 10,12 and 14 agents take 
longer to merge than the 16 agent group. 

Still using this new implementation, two further sets of timings were collected. 
The purpose of these further timings were to investigate the effect of the number of 

approximator features on the time required for merging. The experiments used for 
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Algorithm 3 Agent pseudocode for the improved parallel implementation (based 

on the visit-count merge function. ) 

fInitialization} 

for all i do 

Oi - Oi. it 
Ci 4-- 0 

end for 

IMain loop} 

while time elapsed < tend do 

for step =1 to p do 

Execute a simulation step. 
Update %veight vector W 

For each active feature Oi increment the visit-count ci. 

end for 

il 4-- MPI-Allreduce (6. W, MPI-SUM) jParallel summation} 

cF4- MPI-Allreduce (6, MPI-SUM) jParallel surnmation} 

for all i do 

if di 00 then 
Oi ni/di 
Ci 0 

end if 

end for 

end while 
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Number of Agents I Time for Merge Operati 

2 25±2 
4 51±5 

6 92±5 

8 80±15 

10 119±3 

12 105±5 

14 120±10 

16 100±10 

Table 4.4: Timings for the visit-count merge operation in the Stochastic Grid 
World task using the improved parallel implementation. 

Number of Agents I Time for Merge Operati 

2 11±1 
4 21±3 
8 30±2 
16 43±5 

Table 4.5: Timings for the improved implementation in the Stochastic Grid World 

task, using half the previous number of features. 

Number of Agents Time for Merge Operati 

2 53±3 
4 102±5 
8 149±2 
16 198±7 

Table 4.6: Timings for the improved implementation in the Stochastic Grid World 

task, using twice the previous number of features. 
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the timings in Tables 4.3 and 4.4 both used 4 tilings of size 32x32 for each of the 4 

actions. The timings shown in Table 4.5 were collected using 2 tilings of the same 
size (halving the total number of features). The timings shown in Table 4.6 were 
collected using 8 tilings of the same size (doubling the total number of features). 
These two sets of data provide some evidence that as the number of features f is 
increased, the growth of communication costs is 0(f). This makes sense because 
doubling the number of features means that the number of weights and visit counts 
is doubled, so every single message that needs to be communicated between the 

agents becomes twice as large. 

4.7.3 Experiments using the Improved Parallel Implementation 

While the above improvements to the implementation achieved a slow asymptotic 
growth of communication costs, there remains a large constant factor not reflected 
by the use of "big 0" notation. The domains used for evaluation in this work 
use between 2000 and 20,000 weights in each VFA. Each agent also maintains and 
communicates a similar number of visit-count values. Communicating large vectors 
of weights (and visit-counts) between the agents results in a large delay while the 
data travels over the intercommunication network. 

In the experiments carried out using the cluster of workstations, it was found 

that the visit-count merging approach could not achieve a parallel speed-up in 

any of the simple control problems considered (i. e. the Mountain-Car task, the 

Pole-Balancing task and the Acrobot task). Figure 4.26 shows one set of results 

collected for 2 agents learning in the Mountain-Car task. A range of different 

values were tried for the merge period p. Reward function #2 was used, and a and 

c were decayed linearly using parameters ao = 0.5, co = 0.1 and t1i.. = 0.9. The 

other parameters were -y = 0.99, A=0.9 and Oi,, it = 0.0001. Results were averaged 

over 200 runs. 

Since each agent only has time to simulate about 60,000 steps within the 0.35 

second time limit for this experiment, the performance of the two agents using 
p= 150,000 is essentially the same as that of a single-agent learner (i. e. no merging 

operations occur within the duration of the experiment for these agents. ) The 

results in Figure 4.26 show that, regardless of the value we pick for the merge period 

p, two agents cannot significantly speed-up learning in the Mountain-Car task using 
the improved parallel implementation. In fact, when p< 1000 performance in this 
domain is significantly worse. This is because any improvement in convergence 
speed achieved by the agents sharing intermediate results is cancelled out by the 

extra time spent sending, waiting for and receiving messages. Similar results were 
obtained for the Pole-Balancing and Acrobot tasks, and for greater numbers of 
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Figure 4.26: Learning curves generated with the cluster of workstations for 2 agents 
in the Mountain-Car task. Each curve uses a different value for the merge period 
p. 

agents in these domains. 

In the Stochastic Grid World task, however, it was possible to achieve learning 

speed-ups using the cluster of workstations. Results for the low-difficulty instance 

of the grid world are shown in Figure 4.27. Reward function #2 was used, in 

addition to parameters ao = 0.2, co = 0.1, t1j,, = 0.9, y=0.99, A=0.9, p= 
10,000 and Oi. it =1X 10-8. Results were averaged over 10 runs (the variation in 

performance on different runs is small compared to the Mountain-Car task). 
The results in Figure 4.27 show that a reasonable parallel speedup can be 

achieved with different numbers of agents. However, the speedup falls some way 

short of the ideal case of linear speedup. Comparing this graph with the one in 

Figure 4.22 (an experiment with similar settings using the simulation of paral- 
lel agents) allows us to assess the degree to which realistic communication costs 
degrade the performance measured in simulation. 

The relatively large speedups achieved by the groups of 2 and 4 agents remain 
significant on the cluster of workstations, outpacing the logarithmic growth in 

communication costs. However, in the simulation we observed diminishing returns 
as the number of agents was scaled up to 8 and 16. As the speedup effect of 
merging is diminishing, the growth of communication costs continues at a similar 
rate. This results in a very small parallel speedup moving from 4 to 8 agents, and a 
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Figure 4.27: Performance of the visit-count merge method on the cluster using the 
(low-difficulty) Stochastic Grid World task. 

very similar performance as we move from 8 to 16 agents. With the implementation 
in its current state, it is only useful to scale-up to a maximum of 8 agents. 

Parallel speedups were also achieved using the more difficult instance of the 
Stochastic Grid World task. This (high-difficulty) instance of the task requires on 
average about twice as many simulation steps to reach the goal from the initial 

state, uses a greater number of features in the VFA and requires an order of 
magnitude more real time to learn a near-optimal policy. Results for the high- 
difficulty instance are shown in Figure 4.28. Reward function #1 was used, in 

addition to parameters ao = 0.2, co = 0.1, t1j,,, = 0.9, -y = 1.0, A=0.95, p= 50,000 

and Oi,, it = 0. Results were again averaged over 10 runs. 
A similar pattern of speedups is achieved in this experiment, although overall 

the results are slightly worse. 2 agents converge to a near-optimal policy in about 
20% less time than a single agent, which is obviously some way short of the 50% 

that would be necessary for linear speedup. 4 agents improve over the performance 
of 2 agents, but not by much. Groups of 8 and 16 agents seem to learn slightly 
faster in the early stages of the experiment, but can only converge completely to a 
near-optimal policy in the time required by 4 agents. 

Tile results presented in Figures 4.27 and 4.28 show that agents implemented 

using distributed-memory parallel hardware can learn good solutions to RL prob- 
lems more quickly than a single-agent learner. However, using our particular 
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Figure 4.28: Performance of the visit-count merge method on the cluster using the 
(high-difficulty) Stochastic Grid World task. 

implementation with the hardware resources available resulted in a high cost of 
communication relative to the total learning time. This meant that where parallel 
speedups were achieved, they were only significant for groups of 2 or 4 agents, and 
for many domains not even this could be achieved (see Figure 4.26). These results 
suggest that to develop a parallel RL method which is practical to use with a clus- 
ter a workstations, the efficient use of network bandwidth must be emphasised to 

a much greater degree. 

4.8 The Influence of the Merge Period 

In the experiments discussed so far in this chapter, the value used for the merge 
period p in each domain has been specified, but no justification has been provided 
for the particular values chosen. In this section I will examine more closely the 
influence of the merge period on the overall performance of the visit-count merge 
method, and address the problem of selecting a suitable value for p. 

The merge period controls how often the agents are able to share value function 
information. A smaller merge period means that information exchanges are more 
frequent. Intuitively, the more frequent the exchange of information, the greater 
the probability that an agent can exploit information discovered by one of its peers 
before the agent discovers the same information for itself. In other words, frequent 
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information exchange reduces the level of duplicated effort. 
For example, consider the low-difficulty version of the Stochastic Grid World 

task. The graph in Figure 4.29 plots learning curves for 2 simulated parallel agents 

using a variety of values for the merge period p. Since the curves were generated 

using the simulation of parallel agents, the communication time required to merge 

the VFAs is not included in these results. The curve for p=2,500,000 is essentially 
identical to that of a single-agent learner, since the results are only plotted for 

the first 2,000,000 simulation steps. The full settings for this experiment were as 
follows. Reward function #2 was used, and results were averaged over 50 runs. The 

experiment lasted for 4,000,000 simulation steps, with a and f decaying linearly to 

zero over 90% of this time. The other parameters used were ao = 0.2, CO = 0.1, 

-y = 0.99, A=0.9 and Oinit =1X 10-8. 
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Figure 4.29: Varying the merge period p for 2 agents in the low-difficulty Stochastic 

Grid World, using the simulation of parallel agents. 

As progressively smaller values of p are used, the number of simulation steps 

required for the agents to converge is gradually reduced, improving significantly 

over the performance of a single agent. The fastest convergence which can be 

obtained seems to be limited to about half the steps required by the single-agent, 

which would correspond to a linear speedup for 2 agents. Note that in Figure 4.29 

the curves for p= 100 and p= 1000 both converge very close to this limit. There 

is therefore little incentive to use a merge period smaller than 1000 in this domain, 

since it will not improve the performance any further. 
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We will now consider an experiment using almost exactly the same settings on 
the cluster of workstations. The main difference between the two experiments is 

that on the cluster, each run finishes after 6.0 seconds of real time instead of after 
4x 106 simulation steps. This means that the communication penalty incurred 
by the merge operation does now have an effect on the results, shown in Figure 

4.30. The full extent of this penalty for a given merge period is shown in Table 

4.7, which reports the percentage of the total experiment time consumed by the 
distributed calculation of merged value functions. 
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Figure 4.30: Varying the merge period p for 2 agents in the low-difficulty Stochastic 

Grid World, using the cluster of workstations. 

Merge Period I Proportion of time communicating 
5000 36.2% 

10,000 22.3% 

20,000 13.2% 
40,000 7.5% 
80,000 4.3% 
160,000 2.6% 

Table 4.7: Proportion of experiment time expended on communication by the 2 

agents for different merge period values. 
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The distribution of the learning curves on the cluster is quite different from 

those obtained in simulation. As we observed in Figure 4.29, there comes a point 
when reducing the merge-period p no longer reduces the number of simulation steps 
required for convergence. On the cluster, however, reducing the merge-period p 
will always increase the overall proportion of the experiment time that the agents 
must dedicate to communication. This reduces the time available for simulation 
and VFA updates, to some extent cancelling out the increased sample efficiency 
obtained by more frequent merging. 

The overall effect on performance is therefore as follows. When we start with a 
very large value for p, and gradually reduce it, performance gradually improves over 
that of a single agent, but not by as much as was achieved in simulation. Eventually 

there comes a point where the increase in communication costs outweighs the 
benefits of more frequent merging, and reducing the value of p causes performance 
to become progressively worse. There is therefore some optimal value for p in this 

experiment at the point where these two effects are perfectly balanced. The closest 
merge period in Figure 4.30 to the optimum is p= 20,000, where the overall time 
dedicated to communication is 13.2% of the total experiment time. 

Figure 4.31 shows a similar experiment on the cluster of workstations using 16 

agents rather than 2. While the overall pattern is quite similar to that in Figure 
4.30, an interesting outcome of this experiment is that the optimal merge period 
for the experiment with 16 agents is different from the optimum for 2 agents. The 

closest merge period to the optimum in Figure 4.31 is p= 10,000, where the overall 
time dedicated to communication is 49.7% of the total experiment time (see Table 
4.8. ) Note how such a large amount of time must be dedicated to communication 
in order to achieve as much as possible of the 16x speedup achievable in simulation. 
Note also that although there are different optimal values of p for 2 and 16 agents, 
choosing a single value for p between 10,000 and 20,000 will produce results which 
are close to optimal for both numbers of agents in this domain. 

At this point it is reasonable to ask how we can choose a good (or even optimal) 
value for p, given a particular domain and some number n of available agents. 
Performing a series of experiments (as shown above) to approach the optimal value 
for p is impractical given that the stated goal of this thesis is to speed up RL using 
parallel hardware. By the time we have run enough experiments to choose the 

optimal value for p, it is likely that a single agent could have already solved the 

problem. 
On the other hand, it is unlikely that we can derive an analytic method for 

determining the optimal value of p. This is because the sample complexity of 
the group of agents using the visit-count merge operation is difficult to model 
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Figure 4.31: Varying the merge period p for 16 agents in the low-difficulty Stoch- 

astic Grid World, using the cluster of workstations. 

Merge Period I Proportion of time communicating 

5000 64.8% 

10,000 49.7% 

20,000 35.2% 

40,000 22.7% 

80,000 14.7% 

160,000 10.3% 

Table 4.8: Proportion of experiment time expended on communication by the 16 

agents for different merge period values. 
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analytically. Empirical results have shown that the performance of the agents 
depends on (at least) the merge period p, the number of agents n, the number of 
features f, and the overall difficulty of the target learning domain. Deriving an 

analytical model of convergence is also complicated by the fact that the rate of 

convergence of RL algorithms has seen little theoretical study to date. 

Therefore for practical applications of the visit-count merge method in new 
domains, the merge period p must be chosen using a mixture of trial and error and 

reference to previous applications of the method in domains of similar scale and/or 
difFICUlty 3. This approach is helped by the fact the performance of the method is 

relatively insensitive to small changes in the value of p, as shown in Figures 4.30 

and 4.31. This means that as long as the value of p is only a few times smaller or 
larger than the optimum value, the overall performance will only be degraded by 

a small amount. It may be possible in the future to develop a heuristic method for 

selecting p based on the processing power of the parallel nodes, the bandwidth of 
the network, and some measure of the overall difficulty of a given learning domain. 

4.9 Summary and Conclusions 

The following material has been presented in this chapter: 

Motivation for the use of parallel hardware to find near-optimal solutions to 
RL problems more quickly than is possible with sequential computation. 

*A description of the necessary assumptions to use parallel hardware for RL. 

oA general approach to parallel RL based on merging value function approx- 
imations. 

Several instantiations of the general approach using a series of merge func- 

tions. 

9 An evaluation of each merge function using a simulation of parallel agents. 

A description of how decaying a and e parameters in combination with a 
binanj search can be used to compare parallel RL methods by final solution 

quality. 

*A comparison of the merging method to a parallel RL method which does 

not merge. 

'There are already several RL parameters (such as a, c, -y and A) which require this kind of 

selection. 
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9 An evaluation of the visit-count merge function using real parallel hardware; 

a cluster of work-stations. 

* An analysis of how the choice of merge period p affects performance, in both 

the simulation and on the cluster. 

From this material we can draw the following broad conclusions: 

In the simulation of parallel agents, a group of agents which merge their value 
functions require significantly fewer simulation steps per agent to converge 
to a near-optimal policy than a single-agent learner. 

While the maximum and minimum merge functions exhibited divergent be- 
haviour, the body of empirical evidence collected suggests that both the 

mean and visit-count merge functions allow (and accelerate) convergence to 

a near-optimal policy. 

The visit-count merge function achieves better performance in simulation 
than all the other merge functions in all the domains tested. This is mainly 
because it uses a measure of experience to weight the agents' value estimates. 

om As the merge period p is reduced, the simulated agents approach the limit of 
linear speedup over the single-agent learner. 

The cluster implementation showed that the communication overhead of the 

merging method is so large that in many domains a parallel speedup could 

not be achieved with the available hardware. 

In spite of the large overhead, significant parallel speedups were obtained 
in several instances of the Stochastic Grid World task, demonstrating the 

practical potential of parallel RL. 

An appropriate choice of the merge period p is a prerequisite for achiev- 
ing good performance on parallel hardware. The overall performance of the 

method is not very sensitive to small changes in the value of p. 

While the efficiency of the merge function could probably be improved, it 
is the reduction of network bandwidth requirements which is most likely to 

allow a related parallel RL method to achieve better results in practice. 

In Chapter 51 will go on to examine how parallel speedups can still be achieved 

while drastically reducing the communication costs of the merging method de- 

scribed in this chapter. 
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Chapter 5 

Selective Merging 

In the previous chapter, a parallel RL method based on merging value function 

approximations (VFAs) was presented. This method was shown to require fewer 

simulation steps per parallel agent as the number of agents n was increased. How- 

ever, the method was also expensive in terms of communication overhead, which 

meant that speedups on real parallel hardware could not be achieved in all of our 

evaluation domains. 

In this chapter, I will present a new parallel RL method based on a similar 

notion of merging, but with a much lower communication overhead. This method 
is based on agents exchanging their recent changes to the VFA weights. Commu- 

nication overhead is greatly reduced by each agent broadcasting only the largest 

of its recent changes. Several candidate mechanisms are proposed for combining 

changes received from several agents, and are evaluated using an implementation 

on the cluster of workstations. I will also examine the effect of varying both the 

period between consecutive communications and the number of changes sent in 

each communication. 

5.1 Motivation 

The parallel RL method described in Chapter 4 was based on a periodic merge 

operation. During this operation, for every feature Oi a merged weight O! n was 

calculated from all the agents' most recent estimates of Oi. This meant that every 
weight of every agent had to be communicated over the network at least once during 

the merge operation. The advantage of this approach is that the merged VFA is an 
estimated summary of the total group knowledge over the whole state space. The 
key disadvantage is that a large quantity of data must be exchanged between the 

agents. Even using an efficient distributed computation to calculate the merged 
VFA results in a significant delay while the operation is completed. This consumes 
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time which could have been spent learning in the simulated environment. 
If every agent must communicate every weight in its VIA, there will be a 

great deal of redundant information exchanged between the agents. For example, 

suppose that for some RL problem there is a subset of the total feature set 

containing features which are only active when the agent visits a particular region 

of state space. Suppose that none of the agents have visited this region by the 

time one of the merge operations takes place. During the merge operation, weights 
(and possibly visit-counts) will be communicated for all the features in this sub- 

set, despite the fact that the agents derive no useful information at all from this 

communication. 
To remove this redundancy, it could be suggested that only weights that have 

been updated since the last merge (i. e. those with a non-zero visit count) should 
be communicated to the other agents. However, consider the following alternative 

example. Feature Oi has been active many times for all the agents since the last 

merge, which means that each agent has made many updates to weight Oi. After all 
the updates have been made, the agents' updated values for Oi show little change 
from the result of the previous merge. This is a situation which occurs when state- 

action values in some region of the state space are already predicted well by the 
VFA. Transmitting all the agents' weights to make such a small adjustment to Oi 

is not redundant as such, but is clearly less informative to the group than the large 

weight adjustments which occur when one agent finds a previously undiscovered 
high reward region of state space. 

In this chapter a new parallel RL method is defined in which each agent pri- 

oTitizes its most informative weight adjustments. This means that our focus will 

shift away from an agent's absolute value of Oi and onto the recent change AOi in 

the agent's value of Oi. Messages sent to other agents will no longer contain values 

of Oi, but values of AOi instead. It is reasonably simple to make this adjustment, 

since all the agents use the same value Oinit for the starting value of Oi, and the 

use of reliable message transport means that every agent is guaranteed to receive 

all the transmitted values of AOi. Therefore, an agent can calculate a new value 
for Oi as each change arrives, allowing the agents as a group to derive identical' 

values for Oi. 

The method defined in this section is based on the following principle for choos- 
ing which information is Nvorth communicating to the other agents: 

'Assuming that the agents are running on a homogeneous cluster or on an SMP machine. 
If the agents are running on a heterogeneous cluster, there is the possibility that differences in 

the floating point implementation will cause the agents' calculated values of Oi to differ to some 

extent. 
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The most informative elements of the weight change vector AW are 
the elements which have the largest absolute values, and these are the 

changes which should be sent to the other agents in the group. 

While there may be some situations in which this principle could be misleading 
(e. g., if two actions in a state have a similar mean reward but very different vari- 

ances), in the majority of cases it will allow the prioritization of the most significant 

changes to the VFA as learning progresses. 
Note that none of the selective methods described in this chapter employ the 

visit-counts which were the basis of the best method described in Chapter 4. This 

is because having information about the change undergone by a weight makes 
the information about the number of updates to the weight much less valuable2. 
Methods which transmit visit-counts in addition to weight changes seem to increase 

communication costs without making much difference to the convergence rate, and 
therefore perform poorly by comparison. 

5.2 Method Definition and Implementation 

Like the merging method of Chapter 4, the selective merging method studied in 

this chapter is based on a periodic merge operation which occurs after every agent 
has performed a set of p simulation steps. I will continue to refer to p as the merge 

period parameter. 
The selective merging method makes extensive use of the weight change vector 

Aý. Maintaining a copy of this vector during learning would require a change to 

the underlying SARSA(A) implementation so that AO was updated each time 0 

changed. To avoid having to modify the implementation and make it less efficient, 

each agent instead stores a vector Wref, which holds the last known "group" value 
for each weight. The SARSA(A) implementation continues to update 0 only, and it 

is easy to calculate AW= W- Wref when required. Each element AOj of the weight 

change vector signifies the change made to weight Oi since the "group" value was 
last determined. At the beginning of each run, the values of Oi and 071 are set to 

the initial value of Oi,, it for all i. This makes the initial value of each AOi zero. 
At the start of a merge operation, each agent calculates the weight change vec- 

tor AW. The agent is now able to rank the set of weight indices I= 10,1, ... ' (f - 1)} 

using the absolute weight change JAOij for each index i. An additional parame- 
ter f,,,,, defines how many of the weight changes will be communicated by each 

'Though not valueless. Informing an agent that a weight has a high visit count but a small 

change may increase the agent's confidence in the value of the weight. However, if rewards are 

sparse then this confidence could be misleading in the early stages of learning. 
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agent during a single merge operation. The choice of parameter f .... involves an- 

other trade-off between growing communication costs and sample efficiency during 

learning. The effect of parameters p and f,,,,, on the performance of the selective 

merging method will be examined in more detail in Section 5.5. Even if is 

much smaller than the total number of weights f, it may still possible to speed up 

convergence significantly. 
In the original merge method described in Chapter 4, the message format con- 

sisted of a vector containing the values of all f weights. Each of these transmitted 

values was associated with one of the features Oi by the fact that the value ap- 

peared in the it" position of the vector. In the selective merging method, only 

a subset of elements of the weight change vector Aý are sent during each merge 

operation. This means that we cannot identify the associated feature using the 

position of each AOj value in the message. Instead, each message contains a set 

of (i, AOi) tuples. The first member of the tuple identifies which of the f approxi- 

inator weights is being referred to, and the second member is the recent change in 

weight Oi observed by the sending agent. Each agent constructs a message in this 

way and broadcasts it to all agents in the group including itself 3. 

Towards the end of the merge operation, an agent will have received a message 
from each agent in the group (including itself). The final stage of the merge 

operation is to incorporate all of the changes received in the messages into the 

agent's local data structures. There are three cases to consider for each feature 

Oj, as illustrated in Figure 5.1. The first case is if none of the messages contain a 

change AOj associated with Oi. In this case we make no update to Oi or 07f. Note 

that this allows small changes to accumulate over several merge periods, eventually 

resulting in a large change which will be submitted. 
The second case is if only one of the messages contains a change AOi associated 

with Oi. In this case both Oi and ore of Oref if are set to the value i+ AOj. This 

ensures that after this particular merge operation all the agents will start measuring 

changes from the same "group" estimate for the weight value. Note that a side- 

effect of this update is that any small change discovered by an agent which was 

not transmitted will be lost after the update. 
The third case is if more than one message contains a change AOi associated 

with Oi. If the set C contains all the change values associated with weight Oi, then 

a (partial) function g: P(R) --+ R is required to combine the information received 
from all the agents who discovered a significant change in Oi. Making a suitable 

'This allows the algorithm for updating the VFA to be defined as an operation performed on a 

set of messages, without distinguishing the local agent's message in any way. The implementation 

on the cluster of workstations simply keeps the local message in memory until it is required. 
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Agent I 

Agent 2 

Agent 3 -77 
-------------------------- I ----------------------------------------- 

Result 

Figure 5.1: The sclcctive nicTe operation. With the approxiniator weights repre- 

sented as a one dimensional vector, the light grey regions indicate weight changes 

transmitted by each of the agents. The resulting inerged weights consist of un- 

(. 11,111"ed weights (White), weights (! hanged by a single agent (light grey), and 

weights where changes from several agents inust be combined together (dark grey). 

choice foi- function g is non-trivial, and a number of different candidates for such 

it function will be considered in Section 5.3. 

For it given choice of the combination function g, the procedure followed by an 

agcnt using the selective merging algorithm is shown in Algorithm 4. 

Note that at the high level (or equivalently at the superstep level) selective 

merging is a synchronous algorithin. While each agent can execute its p simulation 

steps without requiring any synchronization, the merge operation requires that each 

agent waits for it message from every member of the group before it (-an update its 

VFA and proceed with the next p simulation steps. 
While the merge operation is synchronous at the high level, the inessage send 

and receive operations used in Algorithm 4 were actually implemented using non- 
blocking asynchronous point-to-point operations provided by the MPICH library. 

This contrasts with the synchronous collective operations that were used in the 

improved impIcillentation of the original merging method (see Section 4.7). 

In ()in- implementation, a message (consisting of a vector of (i, AOj) tuples as de- 

scribed above) is constructed in a buffer of user-allocated memory. The MPI-Isend 

function is used to initiate an asynchronous send to each of the agents in the 

group. An agent waits for messages from the rest of the group using MPI-Probe. 

XA'hcn MPI-Probe returns, indicating that a message has been sent by one of the 

other agents, the agent uses MPI-Recv to receive the message into a temporary 

user buffer. Each incoming buffer is processed immediately, allowing part of the 

calculation towards a vector of y(C) values to be completed. 

The use of Lsynchronous inessage passing at the low level outperformed any of 

t he NIPICH collective operations or synchronous point-to-point operations. There 

are two inain rewsons for this. The order in which messages are received and 
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Algorithm 4 Agent pseudocode for the selective merge method. 
f Initialization 

for all i do 
Oi 4-- Oinit 

oref 4-- 
0. 

. 
i intt 

end for 

IMain Loop} 

while time elapsed < tend do 

fLearning Pliase} 

for step =1 to p do 

Execute a simulation step and update weight vector W. 

end for 

lConstruct Message and Send} 

Calculate Aý= W- W"f. 

Rank each index i according to the value of IAOi I. 

best *-- { the highest ranked indices 

m +- I(i, AOi) IiE best} 

Send message m to all agents (including self). 

fReceive Message and Update Weights} 

mset i-- IMessages received from self and others} 
for all i do 

cset - JAOi ImE mset, (i, AOj) E m} 
if Icsetl =0 {Case 1} then 

INo update} 

else if lesetl =1 ICase 2} then 
Oýcf 4__ Oref + CO 

2i 1where co is the only element of cset} 
Oi +- Oýef 

z 

else if Icsetl >1 ICase 3} then 
Oýef _- Oýef +9 

2z 
(cset) 

0i 4_ oref 

end if 

end for 

end while 
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processed is not significant in the selective merge method, so it is more efficient to 

use MPI-Probe to retrieve the first message received than imposing a fixed order 
to receive the messages. In addition, as we shall see in Section 5.3, it is possible to 

perform incremental computation of the required g(C) values as and when messages 
are received. This allows communication and computation to be overlapped to 

some degree, which is more efficient than waiting for a collective communication 
to complete before beginning to calculate the g(C) values. 

5.3 Combining Changes from Several Agents 

Section 5.1 described the core procedure followed by the selective merging method, 
while temporarily leaving undefined the g(C) function for combining changes re- 

ceived from several different agents. In this section, we will more closely examine 
the purpose of this function, and motivate a number of candidates for the algorithm 
which will be evaluated in Section 5.4. 

5.3.1 Criteria for Combining Changes Together 

It is first necessary to consider what criteria are important for selecting the g(C) 
function. From a high level perspective, our method must be effective at combining 
information from several agents, some parts of which will be complementary, and 
other parts of which will be conflicting. At the lower level, the changes made by 

each of the agents to Oi must be combined into a single representative change. Each 

of these change values represents an agent's accumulation of all the recent value 
function updates where feature Oi was active. An update to Oi occurs for one (or 

more) of the following three reasons: 

1. Stochasticity arising from either the transition and reward functions or the 

exploration strategy means that once a weight is close to the actual expected 
value, small updates in both the positive and negative directions will occur 
in response to noise in the sampled value. 

2. The VFA must generalize over the state space using only a few features. Once 

the VFA accurately approximates the true value function, states encountered 
during learning will have both positive and negative generalization error, 
resulting in a series of small updates to the weights in both directions. 

3. The weights are initialized arbitrarily at the start of learning, which means 
that early estimates of feature value are highly biased. As sampled experience 
is collected, more accurate estimates of long term reward are propagated 
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backwards through the state space, reducing the initial bias. Weight updates 

which reduce bias are unidirectional. 

Weight updates corresponding to reasons 1 and 2 are those which arise from vari- 

ance in tile samples once a weight approaches its true expected value. However, 

weight updates corresponding to reason 3 are fundamentally different in character, 

producing a series of large updates in a single direction until the large initial bias 

in the weight values is reduced. 
Now consider a set of changes C which were made by several agents to feature 

Oi over the last merge period. How can these changes be combined in a way which 
improves upon tile performance achieved by a single agent? It is fairly clear that 
taking the mean of tile values contained in C will improve the effect of updates 
corresponding to reasons 1 and 2. Using tile mean of the changes in this way results 
in tile estimate of Oi staying much closer to the expectation as updates in response 
to sampled experience. The agents essentially combine their individual estimates 
to obtain an improved group estimate of the expected value. 

However, consider the effect of using tile mean of the changes in the follow- 

ing situation. Through random exploration, a single agent discovers a previously 

unknown high reward region, and updates Oi to reflect this. None of the other 

agents manage to find this region, and only make very small changes to the value 

of Oi. This means that C will contain one very large change and a series of small 

changes (both positive and negative). Assuming that the small changes are rela- 
tively insignificant, the effect of taking tile mean of these changes is to reduce the 

magnitude of the large change by a factor of n (where n is the number of agents. ) 

This would actually result in a slower rate of convergence than that of a single 

agent learner4. 

This example illustrates tile conflict which has to be addressed when choosing 

a function g(C). When a large reward is discovered for the first time, the change 
in value must be propagated quickly through both the value function and the 

population of agents. However, it is also desirable that function g(C) improves the 

estimation of tile expected return once the initial bias has been eliminated. 
This conflict is an example of a more general property of machine learning 

algorithms, namely tile bias/variance dilemma (Geman et al., 1992). The average 

mean squared error (MSE) in the approximation of the optimal value function can 
be decomposed into two parts: bias and variance. Denoting tile optimal value 

4 In practice the selective merge method actually performs much better than this as long as 

f,,,,, is much smaller than the total number of features f. If this is the case, then the process of 

ranking the weight changes in order of magnitude makes it fairly unlikely that C will contain a 

large number of very small changes. 
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function by Q*, using ý for the approximation learned after real time T, and 
denoting the expectation after time T as ET, bias and variance in this context of 
this chapter can be expressed as follows: 

bias(s, a)= (Q*(s, a) -ETfO(s, a)})2 

variance (s, a) = ET f (o (s, a) - ET 10 (s, a) 1)21 

The overall bias and variance of the approximator at time T can be obtained 
by integrating over the state-action space. Intuitively, the bias is the squared 
difference between the expected approximation value and the true optimal value, 
and the variance is the expected deviation of the approximation value from the 

expected approximation. 
The bias/variance dilemma is related to the problem of overfitting an approxi- 

mation to a set of training data. If the approximation fits the data too closely, the 
bias tends to be small but the variance will be large. To get a small generalization 

error it is important to achieve a good trade-off between the size of the bias and 
the size of the variance. 

Thus the issues involved in choosing the combination function g(C) can be 

interpreted in terms of the effects on bias and variance. For example, a simple 
mean function for g(C) will result in a reduction of variance in the value estimates, 
but bias is likely to be reduced more slowly over time. 

5.3.2 The Problem of Overshooting 

Consider how a single SARSA(A) learning agent updates its VFA. The evolution 

of each weight over time can be described by a summation of small changes caused 

as experience is collected. In the limit (assuming that a and c are decayed appro- 

priately) this summation will tend towards the expected value of the associated 
feature. But what if n agents were simultaneously contributing changes to the 

same summation? Would the value of each weight approach the expectation more 

quickly? To answer this question, the combination function g(C) can be defined 

as: 
g(c) = 11 

CEC 

This simplistic approach exhibits some serious problems. Results for the Pole- 

Balancing task (in Figure 5.2) show that 2 agents using this combination function 

learn a policy of higher quality than the single-agent. Unfortunately, if 4 or more 

agents are used the agents do not converge to any useful policy. Results for the 
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Figure 5.2: Using a simple summation for g(C). Results for the selective merge 
method in the Pole-Balancing task, collected using the cluster of workstations. 

10000 

9000 

8000 

7000 

6000 

5000 

4000 
C) 

3000 

2000 

1000 

n 

------------ --- -- ----- W-R -------- 

I Agent 
2 Agents 
4 Agents 
8 Agents 

16 Agents 

X-X ýj 

Y-X4 e\XI ;K(, 

0123456 
Learning Time (seconds) 
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Stochastic Grid World (in Figure 5.3) exhibit a similar pattern. The 2 agent group 
does learn more quickly in the initial stages of each run, but produces noisy results 

and takes a lot longer to settle on a near optimal policy. If 4 or more agents are 

used, selective merging does not converge. Full details of the parameter settings 

used for these experiments are given in Section 5.4. 

The problem with the summation is that there is no mechanism for dealing with 

agents which make identical changes. For example, suppose there are n agents just 

beginning a run of selective merging. Suppose also that there is a reward close 
to the initial state that can be found with very little exploration. Each of the 

agents receives the reward a number of times during the first merge period, so 
that the state in which the reward is available has an estimated value similar to 

the reward value. Now when the selective merge occurs, and these changes are 

summed together, the new estimated value of the state could be as much as n 
times the true expected value of the state. Overshooting the expected return of a 

state in this way is a major problem. It is likely that overshooting will set up an 

oscillation about the true value of the state, which may even cause it to diverge to 
infinity. 

5.3.3 Candidates for the Combination Function 

I will now define four candidates for the combination function g(C). Each of these 

candidates has been selected to avoid the overshooting problem observed in Section 

5.3.2. In addition, I will use the criteria discussed in Section 5.3.1 to assess the 

potential of each of the candidates for successfully combining changes to the VIA 

weights. The four candidates are evaluated in detail in Section 5.4. 

Combination Function I- Capped summation 

The first combination function uses a summation as described in Section 5.3.2, 

except that this time the result of the summation is bounded so that it cannot be 

greater than the largest element of the set C or less than the smallest element of 
the set C. 

g(C) = bound min(c) Ec, max(c) 
CEC 

CEC 
CEC 

where 

bound(l, x, u) f if x<1 then 1 

else if x>u then u 

else x 
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This bounded summation has some of the same properties of the simple sum- 

mation: propagation of new rewards is fast because large changes contribute the 

most to the sum, but the variance of value estimates close to the true expected 

value may be increased. However, bounding the summation has two additional 

effects. Firstly, the increase in variance is bounded as the number of agents n is 

increased, since each combined weight change cannot exceed the greatest magni- 
tude of weight change achieved by a single agent. Secondly, in a situation where 

several agents discover identical changes, the combined value will no longer greatly 

overshoot the expectation since the summation is bounded. 

Combination Function 2- Change of largest magnitude 

The second combination function selects the change in set C which has the largest 

magnitude (absolute value). This change is then used as the combined change 

value. 

g(C) = arg max Ic 
CEC 

The effects are similar to those of function I despite the fact that the mecha- 

nism is quite different. New rewards are propagated quickly because they produce 

changes of high magnitude. However, there will be greater variance in the value 

estimates close to the true expected value, since choosing changes of the largest 

magnitude favours sampled values on the margins of the value distribution. 

Combination Function 3- Mean of the changes 

The third combination function is a simple mean, used as the example in Section 

5.3.1. 

g(c) =I, ici 
) 

-, 
CEC 

As indicated earlier, this function will perform well at reducing variance in 

the value estimates close to the true expected value. However, it is possible that 

rewards which are difficult to discover will propagate more slowly through the 

value function, because large changes from agents which do find the reward will be 

reduced in magnitude by agents which do not. 

Combination Function 4- Weighted Average 

Tile fourth combination function is a weighted average, which is similar to the 

mean used in function 3 except that each member of the set has a contribution 
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-weighted by the magnitude of the change. The weighted sum of the changes is 

normalized by dividing by the sum of the change magnitudes. 

T-C. Icl 

_q(C) = CEC 
I: ICI 

CEC 

The result of using this weighted average as the combination function is that 

outliers in the set C have a much more significant effect on the result than when a 

simple mean is used. If one change c is much greater in magnitude than the others 
in set C, the combined change will be very close to c. This means that newly- 
discovered rewards propagate quickly through the value function. If, on the other 
hand, most of the changes in set C are of similar magnitude, the result g(C) will 
be closer to the mean of the members of C, allowing value estimates to converge 

more quickly to the estimation. Note that for states where the future return has a 

very high variance, the tendency of g(C) to favour outlying changes may interfere 

with reducing the variance of value estimates. 
This combination function can be seen as making a trade-off between propa- 

gating new rewards quickly and improving convergence to the long term expected 

value of states. 

5.4 Evaluation using the Cluster of Workstations 

The evaluation carried out for the selective merging method involved testing the 

performance (with different numbers of agents) of each of the four combination 
functions in each of the evaluation domains defined in Section 4.3.1. The motiva- 
tion behind each of these functions (given in Section 5.3.3) included an informal 

assessment of which functions would be most appropriate in some situations. How- 

ever, the performance that can be achieved in practice depends on a range of factors 

including the stochasticity of the underlying domain, the form of the reward func- 

tion used, and the choice of algorithm parameters p and f, ""'. The evaluation 
domains used here exhibit a range of different characteristics, allowing an assess- 

ment of the likely performance of the selective merging method in a broad range 

of situations. 

Stochastic Grid World (low-difficulty) 

The first results presented here examine the performance of the selective merging 

method in the low-difficulty Stochastic Grid World task. Figures 5.4-5.7 allow 
the performance of the four combination functions to be compared for groups of 
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2,4,8 and 16 agents. In this series of experiments, reward function #2 was 
used, and results were averaged over 10 runs. Episodes were terminated if they 

reached 10,000 steps. The parameters used for the selective merging algorithm 

were p= 10000 and f,,,, n = 256. Recall that for this domain, the total number 

of features f= 3600. RL parameters a and e decay linearly during each run, 

according to the parameters ao = 0.2, co = 0.1 and tli,,, = 0.9. The remaining 

parameters were -y = 0.99, A=0.9 and Oinit =IX 10-8. These settings were also 
used for the earlier Stochastic Grid World experiment presented in Section 5.3.2. 

The first observation that can be made about Figures 5.4-5.7 is that the results 

are very similar whichever combination function is used. This is an indication that 

the exact form of the combination function may not be as important to the suc- 

cess of the selective merging method as was initially thought (although preventing 

overshooting does seem to be a vital property). The only significant exception to 

this rule is the unreliable performance of combination functions 1 and 2 when there 

are 16 agents (see Figure 5.7). With combination function 1, the 16 agents initially 

converge quickly towards a good policy, but an increase in the overall variance of 
the value estimates prevents the agents from settling near the optimum until 1.5 

seconds have elapsed. In addition, in at least one run (out of the 10 total runs) 
both combination functions 1 and 2 cause the 16 agent group to diverge from the 

optimum as decaying parameters a and e approach zero. 
Combination functions 1 and 2 both increase variance in the value estimates, 

but the effect is much less pronounced using combination function 2. In con- 
trast, combination functions 3 and 4 are methods based on averaging the changes, 

resulting in a decrease in variance in most cases. Once the performance of the 

agents converges to around 500 steps per episode, the subsequent performance (of 

agents using the averaging combination functions) changes very little, even though 

exploratory actions and value function updates continue to be made. 
Surprisingly, the results for combination function 3 (the mean of the changes) 

show convergence almost as rapid as for any of the other combination functions. 

This suggests that newly-discovered rewards propagate just as quickly through 

the value function. Propagation is not slowed by combination function 3 as was 

predicted earlier. One reason this could be the case is that during each merge 

operation, the agents each transmit only a small number (256) of changes out of 
the total possible (3600). This reduces the probability that one or more agents will 
broadcast small changes to a weight at the same time as another agent broadcasts 

a large change to the same weight (large changes are much more likely to be 

broadcast). It is reasonable to suppose that as f .... approaches the total number 

of features f, the degradation of convergence due to combination function 3 will 
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difficulty Stochastic Grid World task. 

I ý. 

Combination function I 
Combination function 2 
Combination function 3 
Combination function 4 

10 

0123456 
Learning Time (seconds) 

Figure 5.5: Comparing the combination functions using 4 agents in the low- 

difficulty Stochastic Grid World task. 

10000 

9000 

8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

n 

164 



I 

Combination function I 
Combination function 2 
Combination function 3 
Combination function 4 

0123456 
Learning Time (seconds) 

10000 

9000 

8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

n 
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be much greater. 
In Figure 5.8 the performance of the selective merge method is compared di- 

rectly with the performance of the visit-count merge method (which was described 

in Chapter 4). Combination function 3 was used with the selective method, since 
this produced very reliable results, as shown above. From the comparison it is 

clear that selective merging has a greater potential for achieving parallel speedups 

on the cluster of workstations. The visit-count merge method could not achieve 

convergence in a time less than 1.6s as the number of agents was increased. In- 

creasing the number of agents from 4 to 16 made only a very small difference to 

the performance of the group. 
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Figure 5.8: Comparing the performance of a single agent, the visit-count merge 

and the selective merge in the low-difficulty Stochastic Grid World task. 

In contrast, using the selective merging algorithm, the rate of convergence 

continued to improve all the way up to 16 agents. With 16 agents convergence could 
be achieved in slightly over 1.0s. Even using only 4 agents, a significantly better 

speedup could be achieved than if 16 agents were used with the visit-count merge. 
Diminishing returns were still observed as the number of agents was increased, but 

for all numbers of agents that were tried the parallel speedup achieved was greater 

than that achieved using the visit-count merge. 
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Stochastic Grid World (high-difficulty) 

Experiments were also carried out using the high-difficulty Stochastic Grid World 

task. These results were very similar in character to the results for the low-difficulty 

task. The speed of convergence is very similar no matter which combination func- 

tion is used. Combination functions 1 and 2 still produce more variance in the 

value estimates. Graphs showing the results for the high-difficulty Stochastic Grid 

World task are given in Figures 5.9-5.12. 

In the high-difficulty grid world reward function #1 was used, and results were 

averaged over 10 runs. Episodes were terminated if they reached 10,000 steps. 
The parameters used for the selective merging algorithm were p= 100,000 and 
f.,,, = 1024. Recall that for this domain, the total number of features f= 16,384. 
RL parameters a and e decay linearly during each run, according to the parameters 

ao = 0.2, co = 0.1 and t1i.. = 0.9. The remaining parameters were -Y = 1.0, 
A=0.95 and Oinit = 0- 

While the rate of convergence is very similar for all the combination functions, 

Figures 5.11 and 5.12 show that (for 8 or 16 agents) combination functions 1 and 
2 consistently converge faster in the early stages of a run. However, this is offset 
by the fact that in the later stages these combination functions have a greater 

probability of moving away from the optimum due to an increase in the variance 

of the value estimates. Combination functions 3 and 4 perform much better in 

this later stage, remaining quite close to the optimum after the initial phase of 

convergence. 
A direct comparison between the selective merge method and the visit-count 

merge method (described in Chapter 4) is shown in Figure 5.13. The 4 and 16 

agent groups using the visit-count merge converge in about the same time to a 

policy of good quality, even though in the initial stages of a run the 16 agent group 

appears to converge faster. There is therefore no advantage in using more than 

4 agents for this task if the visit-count merge is used. Using the selective merge 

method (with combination function 3) the 4 agent group converges in a similar 
time, but the 16 agent group allows a significant parallel speedup to be achieved, 

with a good policy being found in under 30s. 

Pole Balancing 

Using the visit-count method from Chapter 4 it was not possible to achieve a real- 
time speedup for the Pole-Balancing task on the cluster of workstations. However, 

with the selective merging method it is possible to achieve such a speedup, or 

alternatively to learn a higher quality policy in the same amount of allotted real- 
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Figure 5.10: Comparing the combination functions using 4 agents in the high- 

difficulty Stochastic Grid World task. 
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Figure 5.13: Comparing the performance of a single agent, the visit-count merge 

and the selective merge in the high-difficulty Stochastic Grid World task. 

time. Figures 5.14-5.17 show results for groups of 2,4,8 and 16 agents, allowing 
the performance of the four combination functions to be compared for the different 

group sizes. The available learning time is fixed at 1.0s, and the groups of agents 
try to learn the highest quality policy that can be achieved in this time. In this 

series of experiments, reward function #1 was used, and results were averaged over 
100 runs. Episodes were terminated if they reached 20,000 steps. The parameters 

used for the selective merging algorithm were p= 2000 and 128. Recall 

that for this domain, the total number of features f= 4096. RL parameters a and 

c decay linearly during each run, according to the parameters ao = 0.25, Co = 0.2 

and tli,,, = 0.9. The remaining parameters were y=0.99, A=0.5 and Oi,, it = 0. 

These settings were also used for the earlier Pole-Balancing experiment presented 
in Section 5.3.2. 

The results for different combination functions in this task are much more 

varied than those obtained in the Stochastic Grid World task. There are clear 
differences in the quality that can be achieved in the available time. Combination 

functions 1 and 2 appear to perform best, with 16 agents achieving (on average) 

an episode length of around 16,000 in the time. Combination function 3, which 

uses a mean, performs particularly badly, with 16 agents only able to achieve an 

average episode length of 12,000. Combination function 4 performs a bit better 

for the larger numbers of agents, but using 2 agents the performance is almost 
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indistinguishable from that of a single agent. 
The tendency of combination functions I and 2 to increase variance in the value 

estimates appears to be much less significant in the Pole-Balancing task than in 

the Stochastic Grid World task. This may be related to the fact that the Pole- 
Balancing task is a deterministic problem with a continuous state space. This 

means that variance in the value estimates now arises from the use of random 
(exploratory) actions and the effects of generalization error in the VFA. The poor 

performance of combination functions 3 and 4 show that averaging the changes 
received from a number of agents can result in reward information discovered by 

only one of the agents being degraded or lost. This degradation has the most 
significant effect when there are a large number of agents. 

Since no speedup could be achieved for this domain using the visit-count merge 
method, the selective merge method represents a significant step forward in terms 

of the (comparatively) simple RL control problems considered in this thesis. While 

the improvements in policy quality achieved by the groups of agents are not mas- 

sive, this remains an effective demonstration that parallelization will be useful for 

accelerating RL in a wide variety of domains, not just the largest or most complex 

problems. 

Mountain-Car 

Like in the Pole-Balancing task, it was not possible to achieve a real-time speedup 
in the Mountain-Car task using the visit-count merge method on the cluster of 

workstations. With the selective merging method it is possible to achieve such a 
speedup. Figures 5.18-5.21 show results for different numbers of agents, allowing 
the performance of the four combination functions to be compared. 

In this series of experiments, reward function #2 was used, and results were 

averaged over 100 runs. Episodes were terminated if they reached 500 steps. The 

parameters used for the selective merging algorithm were p= 2000 and f ..... = 128. 

Recall that for this domain, the total number of features f= 2430. RL parameters 

a and c decay linearly during each run, according to the parameters ao = 0.5, 

co = 0.1 and t1im = 0.9. The remaining parameters were -y = 0.99, A=0.9 and 
0j,, it = 0.0001. Since the policy quality over a given interval is strongly dependent 

on the exploration parameter c, binary search was used to determine for each group 

of agents the shortest interval of real-time required to achieve an average quality 

under 145 over the set of 100 runs. 
The results for the Mountain-Car task do not exhibit large variations with the 

use of different combination functions. Combination function 1 appears to produce 
the fastest convergence speed, achieving the requisite 145 average quality in around 
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0.17 seconds when 16 agents are used (see Figure 5.21). However, the use of binary 

search to produce these graphs introduces additional statistical uncertainty into 

these results. Each binary search terminates when the distance between the upper 

and lower bounds on the experiment time is less than 5% of the value of the lower 

bound. Suppose that two of the combination functions have a true expected quality 

of 145 at one of the boundaries tested by the search. Learners in the Mountain- 

Car task have a high variance in the quality achieved at the end of the experiment. 
Therefore the sampled mean at the binary search test points could be above or 
below the threshold of 145 on trials with different random seeds. This means that 
it is difficult to say with confidence that any one of the combination functions is 

clearly better given only the results presented above. 
However, we can draw the general conclusion that with any of the combination 

functions we can achieve significant speedups over the single-agent's performance. 
This was not possible with the visit-count merge method. We may also observe 
that the additional speedup achieved by increasing the number of agents gradually 
diminishes. 

Acrobot 

Tile results for the Acrobot task were similar to those in the Mountain-Car task but 

with much smaller parallel speedups. A large number of VFA features are required 
for the Acrobot task, but relatively little experience in the domain is required 
to learn a high-quality policy. This means that communication costs are high in 

comparison to the learning time required by a single agent, making it difficult to 

achieve a large parallel speedup. A comparison of the performance of the four 

combination functions in the Acrobot task is shown in Figures 5.22-5.25. 

The experiments in the Acrobot domain used reward function #1, with the 

results being averaged over 100 runs. Episodes were terminated if they reached 600 

steps. The parameters used for the selective merging algorithm were p= 1000 and 
f.,,, = 128. Recall that for this domain, the total number of features f= 18432. 

RL parameters a and e decay linearly during each run, according to the parameters 

ao = 0.1, co = 0.1 and tli,,, = 0.9. The remaining parameters were 7=1.0, A=0.9 

and Oi,, it = 0. Since the policy quality over a given interval is strongly dependent 

on the exploration parameter e, binary search was used to determine for each group 

of agents the shortest interval of real-time required to achieve an average quality 

under 140 over the set of 100 runs. 
As in the other domains evaluated here, the difference in performance between 

the combination functions is relatively small. However, as the number of agents in 

the group is increased, there appears to be a significant advantage in using com- 
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Figure 5.22: Comparing the combination functions using 2 agents in the Acrobot 
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bination functions 1 and 2. This suggests that the averaging effect of combination 
functions 3 and 4 is having a detrimental effect on performance as the number of 

agents is increased. 

Summary of Evaluation 

A qualitative summary of the results presented in this section is shown in Table 

5.1. This table lists the best performing combination function(s) from each of the 

graphs shown in Figures 5.4-5.25. The best performing combination function is 

the one which makes the most rapid progress towards a high quality policy over 
the course of a parallel run, without compromising the final quality of the policy 

at the end of the run. 

Domain Number of agents 
2 4 8 16 

Grid world (low-difficulty) #1/#2 #1/#2 #3/#4 

Grid Nvorld (high-difficulty) #1/#2 #1/#2 #1/#2 

Pole-Balancing #1 #1 #1 #1/#2 

Mountain-Car #4 #1/#2 #2 #1 

Acrobot 1 #1 #2 #1 #1 

Table 5.1: Lists the best performing combination function(s) for each possible 
domain and number of agents used. A star in the table indicates that a difference 

in performance could not be discerned from the relevant graph. 

A clear winner from the combination functions does not emerge from the sum- 

mary in Table 5.1. Combination function #1 appears most frequently as the best 

performer, followed closely by #2. In all of the cases enumerated here, combi- 

nation functions #1 and #2 produce the best (or equal best) initial convergence 

rate. However, both of these combination functions increase the valiance in the 

value function, making it more likely that the agents could move away from the 

optimal policy once they get close to it. This is most clear in Figure 5.7, where as 

e and a are gradually decayed, the agents using combination functions #1 and #2 

remain furthest from the optimum, and in one run out of the ten total runs the 

agents diverge completely from the optimum as e and a both approach zero. 
Therefore, in highly stochastic domains it may be preferable to favour combina- 

tion functions #3 and #4, which are more stable in these circumstances. However, 

these more stable combination functions do degrade the overall performance to 

some extent. This is particularly clear in the Pole-Balancing and Acrobot do- 

mains. 
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Figure 5.26: Experiment using 16 agents to solve the low-difficulty Stochastic Grid 

World task using selective merging (combination function 4). Several different 

values are tried for the merge period p. 

5.5 Varying the Merge Period and Message Size 

In the evaluation above, the parameter values for the merge period (p) and the 

number of weight changes per message (f ..... ) were selected using a trial and error 

approach. In this section I will conduct a closer examination of the effect these 

parameter choices have on the speedup that can be achieved. This study is similar 
to the one previously carried out (in Section 4.8) for the visit-count merge method. 
However, the joint effects of the p and f,,,,, parameters on the performance of the 

selective merge method require further investigation. 

The merge period parameter p has a similar purpose in this method as in the 

visit-count merge method (see Section 4.8). It controls how often the agents are 

able to share information, and a good choice for p represents a trade-off between the 

increase in sample efficiency as the agents share more often and the corresponding 
increase in communication overhead. A graph showing results for 16 agents using 

a variety of different values for p in the low-difficulty Stochastic Grid World task 

is shown in Figure 5.26. The selective merge method is used with combination 
function 4. The settings used for this experiment are the same as those given in 

Section 5.4, with the value of f ..... remaining fixed at 256. The optimum choice of 

p for this particular number of agents appears to be a value close to 5000. 
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Figure 5.27: Experiment using 16 agents to solve the low-difficulty Stochastic Grid 
World task using selective merging (combination function 4). Several different 

values are tried for the number of communicated changes 

The number of weight changes per message f,,,, controls how much information 

is transmitted by each of the agents during a single merge operation. Together with 
the merge period p, these two parameters control the rate of information exchange 
between the agents. The trade-off in the choice of Parameter fcom is of a similar 
nature to the trade-off in the choice of p. As the value of f,,, m is increased, more 
information can be exchanged between the agents during each merge operation, 

allowing the resulting value function approximation to be a better combination of 
the knowledge of the whole group. This means that fewer simulation steps will be 

required to reach a near-optimal policy. However, increasing the value of fc, "' also 
increases the overall network bandwidth required, and hence the real-time required 
to complete the merge operation. A graph showing results for 16 agents using a 
variety of different values for fc,,, n in the low-difficulty Stochastic Grid World task 
is shown in Figure 5.27. The settings are the same as those above, with the value 
of P being fixed at 10,000 (the same value used in the evaluation of Section 5.4). 
The optimum choice of fcý for this particular number of agents appears to be a 
value close to 256. 

In the final experiment in this section, we examined the effect of varying the p 
and f,,,,, parameters at the same time. The number of weight changes per message 

is constrained so that it varies in direct proportion to the merge period. In 
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Figure 5.28: Experiment using 16 agents to solve the low-difficulty Stochastic Grid 

World task using selective merging (combination function 4). Each time the merge 
period p is doubled, f, ý,,, is also doubled. 

this way the net rate of information exchange remains the same across all values 

of p. Tile choice of parameter p now primarily determines the size of the "chunks" 

into which the constant communication rate is divided. A graph showing results 
for 16 agents with various values of p and f..... in the low-difficulty Stochastic Grid 
World task is shown in Figure 5.28. Tile settings (other than p and f,,,, ) used for 

this experiment are the same as those used above. The optimum values for p and 
f, 3,,,, under these constraints are around p= 2500 and f,,,,, = 128. 

The trade-off in the choice of p is now affected by several different factors. 

Tile first is the overhead per message sent, i. e. the real time consumed by an 

agent broadcasting a message to the group as the number of changes per message 
f. m --+ 0. This is affected by factors such as the size of the headers used by the 
MPICH library and the underlying TCP/IP protocol stack, and the latency in- 

herent in sending a message between two agents over the communication network. 
However, the most significant contribution to the message overhead in our experi- 

ments was the time required to rank the weights according to the magnitude of the 

weight changes that had recently taken place. In other words, the properties of 
the underlying network stack and transmission medium were not as significant as 
the time required to identify each set of weight changes for broadcast. 

Tile second factor affecting the trade-off is the likelihood of new reward infor- 
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mation being discovered independently by two or more agents before a merge can 
take place (replication of effort). If we use a large merge period while keeping the 

rate of information exchange constant, we will be able to transmit weight change 
information about a much larger set of weights than if we used a small merge pe- 
riod. However, there is a danger of the merge period becoming so long that many 

of the agents will discover the same changes between merges. This means that even 
though more weight changes can be transmitted, the usefulness of this information 

will be significantly degraded, as it may already be known by many in the group. 
The third factor affecting the trade-off relates to the diversity of the sets of 

weight changes transmitted by the agents. In the RL problem there may be some 

states with a high probability of being visited by all the agents, or rewards that 

are particularly easy to discover from the initial state. If the transition and reward 
functions are stochastic, then many of the weight changes made by the agents will 
be associated with these highly-visited states. What we are more interested in 

are the rarely visited areas of the state space, with rewards that are difficult to 
find. If only a small set of changes can be transmitted during each merge, then the 

changes will be dominated by the highly-visited states, regardless of how small the 

merge period is. This means that if the "chunks" of information are too small, the 
diversity of the sets of changes will be too low, and there will be greater replication 

of effort in the group. 
With such a large number of factors to consider, determining the optimum 

choices for p and analytically is unlikely to be feasible. However, using a series 

of experiments (such as those reported in Figures 5.26-5.28) to find parameter 

values that are close to optimal is too time consuming to be practical. To improve 

the practicality of this method for speeding up learning on real parallel systems, 

a heuristic approach for selecting parameters p and f,,,,, is likely to be required, 

although we have not identified such a heuristic during the course of this work. 

5.6 Summary and Conclusions 

The following material has been presented in this chapter: 

e Motivation for the use of selective merging to eliminate much of the redun- 
dant information transmitted between the agents by the merging method of 
Chapter 4. 

9A mechanism for ranking the weights of the VFA by the magnitude of recent 
accumulated change for each weight. 

eA description of a selective merge operation, where each agent broadcasts a 
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message containing changes to the f, ýý, highest ranked weights. This merge 

operation takes place after every p simulation steps. 

oA description of the notion of a combination function, which is necessary to 

combine changes to the same weight received from different agents. 

e The definitions of four candidate combination functions. 

An evaluation of four instances of the selective merging method, one based 

each of the combination functions. Each of the instances was evaluated in all 

of the example RL problems defined in Section 4.3.1. The reported results 

were generated using the implementation on the cluster of workstations. 

e An analysis of the effect of parameters p and f..... on the parallel speedup 

which can be obtained using the selective merging method with 16 agents. 

From this material we can draw the following conclusions: 

Selective merging can be used to achieve parallel speedups in a range of RL 

problem domains, even though much less information is exchanged between 

the agents compared to the merging method of Chapter 4. 

On the cluster of workstations, selective merging consistently outperforms 

the visit-count merge method of Chapter 4. In particular, selective merging 

achieves real-time speedups in each of the three control problems defined in 

Section 4.3.1. The visit-count merge method could not achieve any speedup 

in these domains. 

It was not possible to select a combination function g(C) to produce the best 

performance of selective merging in all the evaluation domains. One reason 
for this may be that there is a trade-off between quickly propagating rewards 
through the VIA and reducing the variance in the value estimates. In spite 

of this, in most situations any of the combination functions will work fairly 

well. 

do Selecting appropriate values for parameters p and f ..... is vital for achieving 

good performance using the selective merging method. While the perfor- 

mance is not sensitive to small variations in these parameters, it is impor- 

tant that the parameters do not differ too greatly from their optimum values. 
There is not currently an analytic or heuristic method for determining the 

optima, so we have to use trial and error to select these parameters. 
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In Chapter 61 will present an asynchronous parallel RL method which is based on 
the selective merging method presented in this chapter, but which eliminates the 

synchronization penalty exhibited by the latter method. This will allow greater 

parallel speedups to be achieved in the five evaluation domains. 
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Chapter 6 

Asynchronous Merging 

In the previous chapter, a parallel RL method was presented which was based 

on agents communicating recent changes to the weights of their value function 

approximators (VFAs). This method was described as selective merging, since 

each agent selects for broadcast only a small subset of changes which are large 

in magnitude. This method achieved parallel speedups (of varying size) in all of 
the evaluation domains. This was possible because the communication overhead of 
selective mergingwas many times smaller than that of the original merging method 
described in Chapter 4. 

In this chapter I will present another method which is selective in the way de- 

scribed in the previous chapter, but which is also asynchronous in character. The 

selective merging method of Chapter 5 has distinct computation and communica- 
tion phases. In the communication phase, messages from all the other agents must 
be received before the VIA can be updated and the next computation phase can 
begin. In contrast, the method in this chapter involves agents updating the VIA as 
each message arrives and performing additional computation (learning) in between 

the messages. Eliminating the synchronization penalty in this way means that the 

asynchronous method can achieve even greater speedups than those reported in 
Chapter 5. 

The chapter begins with an examination of how the performance of selective 

merging can be improved with the use of asynchronous message passing. The ba- 

sic procedure for asynchronous merging is then given. Three variants of the basic 

procedure are defined, each of which processes the incoming messages in a differ- 

ent way. We will also examine the issue of when each agent should schedule its 

communications, since agents are no longer restricted to simultaneous broadcast 

in the communication phase. The relative performances of the three variants of 
the asynchronous merge method are examined in each of the five evaluation do- 

mains in Section 6.3. This is followed in Section 6.4 by an evaluation comparing 
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the performance of the asynchronous merge method to the selective method from 
Chapter 5. Finally, in Section 6.5, the performance of the asynchronous method is 

compared to an alternative asynchronous method which uses messages containing 
absolute weight values and not weight changes. 

6.1 The Benefits of Asynchronous Message Passing 

At a high level, the selective merging method described in Chapter 5 is synchronous 
in character. The method is divided into alternate computation and communication 

phases. During the computation phase, each agent learns from a sequence of p 
actions taken in the local (simulated) environment. No synchronization is necessary 
during this phase, since the agents can operate entirely independently. However, 
during a communication phase each agent must broadcast a message to the group 
and wait to receive a message from every other agent. Once all the messages have 

arrived, the VFA can be updated and the next computation phase can begin. 

The synchronous nature of the selective merging method results in a number 

of effects which can degrade performance: 

At the start of each communication phase, all the agents broadcast their mes- 
sages simultaneously. This results in the interconnection network becoming 

congested, and overall the messages take longer to travel between the agents. 

If the interconnection network is slow (perhaps because of congestion), an 
agent may spend a significant amount of time idling while waiting for out- 
standing messages to arrive. The idle time could potentially be used to 

perform extra computation. 

Suppose that all the agents discover very similar changes at the start of the 

computation phase. Each agent cannot find this out until after the next com- 
munication phase. This could mean that many of the changes broadcast in 

the next communication phase will not be useful (because of the duplication 

of effort). 

There exists the potential to eliminate these effects by basing a new parallel RL 

method on asynchronous message passing. This new method will no longer have 

distinct computation and communication phases. Instead, the periodic broadcasts 

are performed by the agents at different times (no longer simultaneous broadcasts) - 
In addition, any messages received by an agent are immediately processed to in- 

corporate changes into the VIA. When no messages are available for processing, 
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Figure 6.2: Messages exchanged in the Acrobot task by the asynchronous method 
to be defined in Section 6.2. 

changes discovered independently by many in the group can be identified more 

quickly and will be transmitted less frequently. Suppose there are a total of n agents 
in the group, and all of these agents discover a large change AOi almost immediately 

as a parallel run begins. With the selective merge method of Chapter 5, all the 

agents must complete p simulation steps before this change can be communicated, 

and since AOi is large it is likely that all of the n agents will transmit this change 
in their messages. 

Suppose that each agent using the asynchronous approach broadcasts on aver- 

age every p simulation steps. This means that the overall communication overhead 

of the asynchronous approach will be similar to that of the selective merge method. 
Suppose also that these broadcasts are distributed fairly evenly over time, so that 

on average one of the agents will broadcast every p/n simulation steps (meclia- 

nisms to achieve this distribution are considered in Section 6.2.3). Under these 

assumptions, one of the agents will broadcast the change AOj after only p/n sim- 

ulation steps, which means that the other agents can assume that the change is 

known by the group. This in turn means that the remaining (n - 1) agents will 

not include AOi in their broadcasts, freeing up space to transmit more useful in- 

formation in the broadcast messages. The significance of this beneficial effect will 
become greater as the number of agents n is increased. 

For these reasons, it is likely that an asynchronous approach to VFA merging 

will outperform the methods developed so far in Chapters 4 and 5. This is under 
the assumption that the communication overhead (including the time required to 
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incorporate the changes in messages into the VFA) is not significantly different 

from that of the selective merging method. In the next section, I will go on to 

define an asynchronous merging method which will be used to validate this claim 

empirically. 

6.2 The Asynchronous Merging Method 

The asynchronous method defined here shares several key properties with the se- 
lective merge method of Chapter 5. Agents still periodically broadcast their recent 

weight changes to the rest of the group. The particular weight changes that are 

sent are still decided by ranking the weights in terms of the magnitude of the re- 

cently observed change. The novel aspects of this new method arise because the 

high level synchronicity of the previous methods is now relaxed. Messages may now 
be sent and received at arbitrary times', and so the primary challenge in defining 

this asynchronous method is how to update the VIA weights in response to send 

and receive events. The core procedure for the asynchronous method is given in 

Section 6.2.1. In Section 6.2.2 a number of ways to incorporate changes from in- 

coming messages are proposed, resulting in several variants of the core procedure. 
Finally, in Section 6.2.3,1 will address the question of when each agent should 

schedule its message broadcasts. 

6.2.1 The Basic Procedure 

As was the case for the selective merge method of Chapter 5, the weight change 

vector Aý is not explicitly stored. Instead we store the vector W`f, which allows 
AW =W- W"f to be easily calculated whenever necessary. The advantage of this 

is that the agents' SARSA(, \) learning algorithm can continue to operate solely in 

terms of ý. The individual weight change AOi in the context of the asynchronous 

merging method signifies the accumulated local change yet to be communicated to 

the group. 
The method parameters p and f,,,,, are retained from the selective merge 

method. Parameter f..... has an identical purpose in the asynchronous method. 
When each agent is required to broadcast a message to the group, the message will 

contain the f,, m weights of highest rank. The rank of a weight Oi is determined 

by the absolute weight change JAOij. 

Parameter p has a slightly different purpose. In the selective merge method, 

each agent would execute exactly p simulation steps between two successive (syn- 

'Although, over time, the average rate of message transmission remains constant and can be 

specified in advance for a given experiment. 
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chronous) merge operations. In the asynchronous method, the agents now all 
broadcast at different times, but the average period between successive broadcasts 

for a single agent is controlled by parameter p. There are a number of different 

ways that broadcasts could be scheduled to achieve this average period. Several 

mechanisms for achieving this will be considered in Section 6.2.3. For now, we will 

assume that each agent can calculate (without synchronizing with its peers) when 
it is next due to broadcast a message to the group. 

In the selective merge method, after an agent broadcast a message it did not 
immediately make changes to W or Wref. It was required to wait for a message 
from every other agent before any update to the local data structures was per- 

mitted. With the asynchronous method, learning must continue immediately after 
the message has been broadcast. This means that Wand Wr'f must be immediately 

updated to achieve a consistent state. In the absence of any information from the 

rest of the group, the best option is to assign the value of Oi to Oref for each weight 

of index i that was included in the broadcast message. This effectively sets AOj to 

zero for the subset of weights in the message, under the assumption that the other 

agents receiving the message will update their own data structures to reflect the 

change to Oi. 

A side-effect of these immediate updates to W`f is that if two agents broadcast 

their messages in quick succession, it is possible that the local value of 07f when 

a message is sent may be different from the value of Oi'f at a remote agent when 
the message arrives. This means that if the remote value of 07f and the value of 
AOj in the received message are used to calculate a new value for Oi, this value may 
turn out to be much larger or smaller than the broadcasting agent intended. It is 

possible that this will result in the remote agent overshooting the true expected 

value of feature i. In order to detect and eliminate these effects, it is insufficient 

to send tuples of the form (i, AOj) in the message. Instead, it is necessary to send 
3-tuples of the form (i, AOj, Oj). 

Updating an agent's local values of Oi and Oref in response to an incoming 

3-tuple (i, AOj', Oj') presents a number of challenges. If the change in the tuple 

represents new information for the agent, we want to incorporate this into the value 
function in order to accelerate convergence. However, if the change has already 
been discovered by the agent, we do not want to add in the same change again, 

since this could lead to overshooting and interfere with convergence. A number 

of mechanisms to achieve these goals are considered in Section 6.2.2, which leads 

to several variations of the core asynchronous method depending on which of the 

mechanisms is used. At this point, I will assume that a function update exists 

which takes 4 arguments (the local values of Oi and Oref i, and the message data AOj' 
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and 0j') and returns a pair of values which can be used to update the local values 
oref of Oi and i 

Given some choice of the update function and a mechanism for scheduling indi- 

vidual agent broadcasts, the procedure followed by an agent using the asynchronous 

merge method is given in Algorithm 5. 

A set of q simulation steps is performed at the start of each iteration of the main 
loop. These q steps will be referred to as a learning quantum. In the remainder 

of the main loop, checks are made to see if a broadcast is due or if any incoming 

messages have arrived. If a broadcast is due, a message is constructed and sent 
to all the other agents. If any messages have arrived, they are processed and 
incorporated into local data structures using the update function. 

The reason why a quantum q>1 is necessary is because it is potentially 

expensive to check whether any messages have arrived. In the implementation 

on the cluster of workstations, asynchronous message passing was implemented 

using the MPICH functions MPI-Isend, MPI-Iprobe and MPI-Recv. The MPI-Isend 

function is a non-blocking function used here to send a message to all agents other 
than the sender, copying the message data in each case from a single buffer in user 

memory. The MPI-Iprobe function is a non-blocking function which can be used 
to check for the arrival of messages from other agents. Once a message has been 

detected with MPI-Iprobe, the message data can be retrieved using the MPI-Recv 

function. Our initial implementation used a quantum q=1, which meant that a 

check was made for incoming messages after every simulation step. We discovered 

that with this initial implementation, each agent would spend a significant amount 

of its total running time executing the MPI-Iprobe function. Since it turned out 
to be so expensive, it was necessary to choose a larger quantum so that fewer calls 

would be made to MPI-Iprobe over the lifetime of the agent. However, q should 

not be too large, since this would mean that messages may arrive at the agent and 

not be processed for some time. In all the experiments reported in this chapter, it 

was found that a value of q= 25 allowed messages to be detected and processed 

quickly without there being an excessive number of calls to MPI-Iprobe. 

In sections 6.2.2 and 6.2.3,1 will go on to describe the elements of the asyn- 

chronous method which have been left undefined: how the local data structures 

are updated in response to incoming messages, and how each agent can determine 

when it is due to broadcast a message. 

6.2.2 Updating after Message Received 

To progress towards a complete definition of the asynchronous merge method, it is 

now necessary to define how an agent updates its data structures when a message 
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Algorithm 5 Agent pseudocode for the asynchronous merge method. 
fInitializationj 

for all i do 

Oi +- Oi. it 
oref 
i 4-- Oinit 

end for 

IMain loop} 

while time elapsed < tend do 

fLearning quantum} 
for step =1 to q do 

Execute a simulation step and update weight vector W. 

end for 

IScheduled Broadcastsj 

if scheduled broadcast is due then 

Calculate Aý= W- W"f. 

Rank each index i according to the value of JAOj I. 

best the highest ranked indices 

m +- {(i, AOj, Oj) IiE bestj 

Send message m to all other agents. 

end if 

IMessage Receive} 

for each new incoming message m do 

for all (i, AOj', Oj') Em do 
Oi, ef, Aoi,, Oi, F +- update(Oi, iI %) 

f Assign elements of result F to Oi and 0i ef 

Oi +- r, 
Oref i r2 

end for 

end for 

end while 
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arrives froin anothcr agent. Ill other words, when a 3-tiiple (i, AOi, Oi) is received 
ill all incoming, inessage, we must deffile how local variables Oi and 0, "f slimild be 

iij)(lated. This functionalitY is encapsulated ill the update function, which will be 

defilled ill this section. 

The simplest iipdatc function we can use, is to simply add in the remote dif- 

ference AO' while ipnorin- the resulting rernote value 0'. as shown in Algorithm In "I i 
6. The local change AO, reinains, the same after tile update. This ineans that the 

changes AOi and At9i are combined by addition in the value function,, but the agent 

still remembers the local change AOj for later communication to the, group. 

Algorithm 6_Aii_tydat( fim(limi which simply adds iii the remote, chaiige. 
function - 0, " f, A, 9,, Oj) 

rettirn (0, + A0i , 
Oi 'f + AO, ') 

end fun-ction 

The simple umlatc function given in Algorithm 6 works well if only one of the 

two agents involved (the selidim, and receivin agents) has discovered a significant m9 
change to Oi in the recent past. The trouble arises when both of these agents have 

recentlY discovered a similar change to Oj, as illustrated in Figure 6.3. 

Time 

Agent I 
rC t' ref 00i= =I 

Agent 2 

The agents quickly find an Message Message 

accurate value estimate for Oi sent received The second agent 
overshoots the 
expected value of Oi 

Figure 6.3: Example of how overshooting can occur when two agents siniultane- 

olisly discover it chalige to weight. The simple updatc function given in Algorithin 

6 is used. 

Figure 6.3 focuses oil tile, evolution of the weights corresponding to a single 

specific feature oi (i. e. i has sonle fixed value. ) At the start of the timeline ill tile 

194 

=------- =_1J 



Algorithm 7 The cancel function is used to cancel out part or all of a local change 
in response to a remote change. 

Oref, Aoý function CANCEL(Oj, i 1) 
A0, ý. _ 0, _ Oref i 

Oref + Aoý b 4-- iI 

if sign(AOi) :A sign(AOi') then f keep the local change intact 

a +- Oi + AOj' 

else if IAOil > JAOj'j then Icancel part of the local change} 

a +-- Oi 

else f cancel all of the local cliange} 

a +-- b 

end if 

return (a, b) fa and b contain new values for Oi and Oi 'f } 

_end 
function 

figure, both agents still have Oi and 0,, f set to their initial values of zero. Soon 

after the timeline begins, the two agents concurrently learn an accurate estimate 

of weight Oi = 1. The first agent then sends a message to the second agent. 
After the agent receiving the message has added in the remote change, its current 

estimate changes to Oi = 2, overshooting the best estimate of the two agents. This 

is likely to interfere with convergence as the number of agents is increased. This 

demonstrates why simply adding the agents' changes together will not suffice. A 

mechanism is needed for detecting identical changes discovered independently by 

different agents. 
The first mechanism that will be used here to eliminate the overshooting effect 

involves part or all of an agent's local change being cancelled out in response to 

the arrival of a remote change. This applies specifically when the changes are in 

the same direction (i. e. both positive changes or both negative changes. ) If the 

changes are in different directions, it is important that the local change remains 
intact so that the agent can later inform the group that there is some evidence that 

the expected value of Oi lies in another direction. If the changes are in the same 
direction, however, broadcasting the local change later would result in the group 

overshooting the expectation, so in this case it is important to reduce the size of 
the local change so that the agent's value for Oi remains consistent. The cancel 
function (given in Algorithm 7) implements the mechanism described above. 

The cancel function returns a pair of values containing new values for Oi and 
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0"'f. Note that in all cases. the cano-cl function returns a value of 0, "'f +AOj' (stored 

in temporar. y variable b) as the new value for 0, "f', i. e. the remote change is always 

added to the reference Nveinght. The new value (stored in temporary variable (t) to 
be assipied to local weight Ot determines if part of the local change is cancelled. 
In the case where the local and remote changes are in opposite directions, a is 

assi, glned the value of Oi + AOj', which ineans the local change is left inunodified. 
In the case where the remote chan. -e is in the saine direction as the local change, 
but has a sinallrr inagnitude. a is assil-ned the old value of Oi. Since the remote 

change is added to 0, ""f. what is left of the local change is the diffcrence between 

the two. If the reinote chan. -e has the same direction but greater magnitude. the 

new value of O"'f will be greater than the old value of Oi. so the local change must 
bc completelY cancelled bY assigiiing, the value of b to a. 

Time 

Agent I 

Agent 2 

The agents quickly find an Messages Messages 

accurate value estimate for 01 sent received This time both the 
agents overshoot the 
expected value of" Oi 

Figure 6.4: A second example of overshooting where two agents broadcast ail iden- 

tical change in (lifick succession. The simple updatc function given in Algorithm 6 

is lised. 

An updatc function based on the c(mccl function will eliminate the overshoot- 
ing effect illustrated in Finnire 6.3. However, there are other situations where 

overshootin. - can occur which can not be corrected by eliminating part of the lo- 

cal change A0, Such situations arise because of the asynchronous nature of the 

inerge method. and the fact that it is possiblc for one agent to broadcast a inessage 

while an incoming inessage from another agent is still in transit. If both of these 

agents have discovered very similar changes to a single weight, it is likely that both 

the agents will overshoot the appropriate value for that weight. This process is 
illustrated in Figure 6.4. At the time the messages arrive in this Figure, neither 

of the agents has learned any local change since their last broadcasts. Since the. 
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Algorithm 8 The filter function is used to exclude part or all of a remote weight 

change when it is detected that the change is inconsistent with the current value 

of the local weight. 
function FILTER(Oi, AOj, Oj) 

C *-- 0 

AOit +- Oj' - Oi Ithe difference between local weight and new remote weight} zt 

fallow remote change only if it is in the same direction as AOI} 

if sign(AOit) = sign(AOi') then 
II 

Ifiltered change minimizes magnitude of AOit and AOi'} 

if JAOjtj < JAOj'j then 
II 

C +- Aoit 

else 
C +- AM 

end if 

end if 

return c Ic contains the filtered change, used later to modify Oi and 0i ef 

end function 

only operation that can be performed by the cancel function is to reduce the local 

change AOi towards zero, it is not possible to eliminate overshooting of this type 

using this mechanism. 
This example leads us to define a second mechanism to eliminate overshooting 

effects. The intuitive purpose of this second mechanism is to filter out incoming 

weight changes which are inconsistent given the current values of the relevant 

weights. To detect these inconsistencies, it is necessary to compare the value of 
the remote weight when the message was sent (Oi') to the local weight value (0j) of 
the agent receiving the message. This is why the messages sent by agents in the 

asynchronous merge method consist of a set of 3-tuples (i, AOj', Oj'). The additional 

value of Oj' is necessary to detect inconsistent weight changes. 
The filter function (given in Algorithm 8) implements the second mechanism. 

This function returns a single value, the filtered change. This change is set to zero 
if the incoming remote change is discovered to be inconsistent. 

At the start of the filter function, the value of AOit = Oi'- Oi is calculated. The 

value of AOil represents the change that would be needed to move from the current 

value of weight Oi to the remote agent's weight value at the time the message was 

sent. If the signs of AOt and the remote change AOý are different, this indicates 
22 
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that tile local agent has already moved Oi in tile direction of AOj beyond the value 

of Oý achieved by the remote agent. In this case, it is reasonable to ignore the 
incoming change by setting the filtered change c to zero. 

If tile signs of AOit and AOj' are the same the incoming change will not be 

ignored. However, it may still be necessary to reduce the magnitude of the incoming 

change. This is achieved by returning whichever of the two values AOit and AOj' 
Z2 

has tile smaller magnitude. If the current weight value Oi lies within the range 
(0ý, 0ý + AO! ) this will cause tile filtered change c to have a smaller magnitude than 

tile incoming change AOj'. If tile current weight value lies outside this range, the 
filtered change c will be identical to AO,!. 

Using tile f ilter function as the mechanism for eliminating overshooting will 

allow consistent values for Oi to be maintained in both of the examples given in 

Figures 6.3 and 6.4. However, it also worth noting that the filter mechanism will 

produce more tuples to be broadcast in some situations. For example, consider the 

single message being sent in Figure 6.3. If the cancel mechanism is used, Agent 

2 will have local change AOi =0 after the message is received, correctly reflecting 
the fact that there is no further change worth communicating to the group. If the 

filter mechanism is used, however, the incoming change AOj' =1 will be simply 
filtered out, leaving Oi and 0 ief at their existing values, and therefore leaving the 

local change of AOj =1 intact. This means that when the scheduled broadcast of 
Agent 2 occurs, a 3-tuple for weight Oi is likely to be included, despite the fact that 

Agent 1 is already well aware of this change. Sending this extra tuple does not 

affect consistency, since Agent 1 will simply filter it out as inconsistent. However, 

tile extra tuple does take up space in tile message which could be taken up by more 
informative weight changes, so this will have an impact on the overall performance. 

Having motivated and defined the filter and cancel functions, it is now possible 
to define the update functions which will form the basis of three variants of the 

asynchronous merge method. Update function 1 is defined in Algorithm 9, and is 

based on tile cancel function only. Update function 2 is defined in Algorithm 10, 

and is based on tile filter function only. Update function 3 is defined in Algorithm 

11, and uses a combination of tile filter and cancel functions. 

The first two update functions delegate most of their work to the cancel and 
f ilter functions respectively, both of which were described in detail above. Update 

function 3 requires some additional explanation. The motivation for combining the 

two mechanisms is to create a method which has the robustness of filter when 

messages from different agents are transmitted almost simultaneously, but which 

also eliminates some of the redundant tuples sent by filter by using the cancel 

mechanism to eliminate local changes that are already known by tile group. 
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Update function 3 begins by calling the filter function, and storing the result 
(the filtered change) in temporary variable c. If the signs of the filtered change 

and the local change AOi are the same, this indicates that the remote change has 

overtaken the local change, which should be completely cancelled out. In this case 
the cancel function is called, passing the value of c+ AOj for the remote change2. 
If the signs of the filtered change and the local change are different, the filtered 

change is simply added to both Oi and Oief, since changes in opposite directions 

do not cancel each other out. 

Algorithm 9 Update function 1. Uses only the cancel function. 

function UPDATE1(0i, Oref, AO!, 0ý) i%2 
Oref, Ao! ) return CANCEL(Oi, i 

end function 

Algorithm A Update function 2. Uses only the filter function. 
Oref, Aoý, 0ý) function UPDATE2(0j, 

c *-- FILTER(Oi, AOj, Oj) 
zI 

Oýef + C) return (Oi +c, 

end function 

Algorithm 11 Update function 3. Uses both the filter and cancel functions. 

function UPDATE3(0j, Oiref , AOj', Oj') 

A0, __ 0, _ Oref i 

c 4-- FILTER(Oj, AOi', Oi') 
2z 

if sign(c) = sign(AOi) then 

Oref, c+ AO, ) return CANCEL(Oj, i 

else 

return (Oi +c, Oi'f + c) 

end if 

end function 

A comparison of these three update functions will allow the relative importance 

of the filter and cancel mechanisms to be examined, as well as an assessment of 
how well the two mechanisms are combined in update function 3. Three variations 

of the asynchronous merge method, each based on one of these update functions, 

will be fully evaluated in Section 6.3. 

'Tile value of c+ AOi arises because the filtered change c measures the change from the current 

weight value Oi. The cancel function, on the other hand, expects any change to be measured from 

the reference weight Oi ", so the local weight change AOi must be added to c before passing this 

value to the cancel function, ensuring the results are consistent. 
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Before the evaluation can take place, however, the definition of the asyn- 

chronous merge method must be completed by specifying how the agents determine 

when to broadcast messages to the other agents. 

6.2.3 Scheduling the Message Broadcasts 

The definition of the asynchronous merge method in Algorithm 5 (see Section 

6.2.1) indicated that agents would periodically construct a message (of 3-tuples) 

and send it to every other agent in the group. It was indicated that these broadcasts 

would occur each time "a scheduled broadcast is due. " In this section, mechanisms 
for scheduling the agents' individual broadcasts in a decentralized manner will be 

presented. 
The following basic properties were used as tenets for selecting a scheduling 

meclianisin: 

1. The mean period between two consecutive broadcasts of an individual agent 
in the group is p simulation time steps. 

2. The agents do not need to exchange messages to synchronize their scheduling 

mcclianisms. 

3. The broadcasts of the group should be well distributed over time, not clus- 
tered together in short intervals. 

The reasoning behind these properties is as follows. Requiring that the average 

period between an agent's broadcasts is p, time steps means that the overall network 
bandwidth consumed by the method can be controlled by parameters p and f, 3,,,, 
(the number of 3-tuples per message). This is important for tuning the performance 

of the method on different parallel systems. It also will allow the asynchronous 

method to be compared with the selective method of Chapter 5. 

Specifying that the agents do not synchronize their scheduling mechanisms con- 
forms to the asynchronous character of the algorithm, and allows all the available 
bandwidth to be dedicated to the exchange of weight changes. This specification 

also simplifies the range of mechanisms we can consider. It would not be difficult, 

for example, to mark each message with a timestamp and then use the series of 
timestamps to detect when the agents are drifting out of sync with each other. 
Lightweight time synchronization methods of this kind were not considered as part 

of this thesis. 
Distributing the agents' broadcasts widely over time is necessary to exploit the 

full potential of the asynchronous merge method. In Section 6.1 the motivation 
behind the asynchronous merge method was given. Two of the most advantageous 
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properties of this method only arise if the broadcasts are well distributed. The 
first of these is minimizing network congestion. The second is quickly identifying 

and eliminating very similar changes discovered independently by different agents. 
Adhering to these basic properties does exclude some interesting alternative 

scheduling mechanisms. For example, having both p and f,,,,, remain fixed implies 

that each agent will consume the same bandwidth over its entire lifetime. However, 

as learning progresses it becomes increasingly unlikely that an agent will discover 

any new information about the environment. It might therefore be advantageous to 
decrease communication in the later stages and devote more time to computation. 
One way to achieve this would be to link the probability of a broadcast to the total 

size of the weight changes yet to be communicated. However, such an approach 

makes the overall bandwidth required more difficult to predict, making it harder to 
tune the algorithm to a particular domain and parallel computer. For this reason, 

variable-bandwidth scheduling is not considered in this thesis. 
Throughout the research for this thesis, we experimented with three mecha- 

nisms to determine when each agent should broadcast a message. 

Uniform Schedule 

The uniform schedule uses the simplest mechanism, which corresponds closely to 

the way broadcasts occur in the (synchronous) selective method of Chapter 5. 
Counting the total number of time steps t experienced by a single agent from the 

start of a parallel run, each agent broadcasts a message at t=p, t= 2p, t= 3p... 

etc. In other words, for every agent a broadcast occurs at t= k-p for all kEZ 

Ik>0. 
No communication is required between the agents. Each agent simply 

monitors how many local simulation steps have been observed, and broadcasts a 

message when the appropriate interval has elapsed. The mean period between 

broadcasts is clearly p simulation steps in this case. 
If all the agents took exactly the same time to run a simulation step and 

send/receive messages, the broadcasts would occur at exactly the same time for 

all the agents. In practice this is not the case. Complex simulations may require 

quite different amounts of computation on different time steps, and since the agents 

explore randomly to some degree it is likely they will differ in this regard. The 

agents will also observe different patterns of processor cache misses, page faults 

and other operating system interrupt events. Finally, network congestion and the 

underlying TCP transport mechanism may introduce significant variance in the 

time for a message to travel over the network. 
The end result of these variations is shown in Figure 6.5. This Figure de- 

picts timelines for 16 agents using the asynchronous merge method with a uniform 
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Figure 6.5: Uniform schedule. Message send events for 16 agents in the early stages 

of the Stochastic Grid World task (high difficulty). 
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Figure 6.6: Uniform schedule. Message send events for 16 agents in the later stages 

of the Stochastic Grid World task (high difficulty). 

202 

1.95 200 2.05 2.10 2.15 2.20 2 25 2.30 2.35 2.40 2AS 2.50 2.55 2.60 

- Time (seconds) - 



schedule, and was generated (using the JUMPSHOT program) from MPI logging 

information. The times at which a broadcast message was sent are shown on the 

timelines. The first four broadcasts in a single parallel run are shown. While the 

agents' first broadcasts all occur simultaneously, variations in processing time cause 
the individual broadcasts to begin to spread out. Figure 6.6 shows the timeline 

much later in the same experiment. By this point, the initial synchronization of 
the agents' broadcasts has been almost entirely lost, and overall the broadcasts 

exhibit a more unpredictable distribution. 

It is clear that the simultaneous broadcasts in the early stages of the parallel 

run are less than ideal. To what extent this affects the overall performance of the 

method is not obvious, and so it was decided that it would be valuable to compare 
the performance of this simple mechanism with the two mechanisms defined below. 

Staggered schedule 

The staggered schedule is closely related to the uniform schedule. In both cases, 

each agent completes a fixed period of p simulation steps between consecutive 
broadcasts. However, in the staggered schedule the very first broadcast takes 

place after a different number of steps for each agent. Each of the n agents has a 

rank which identifies it uniquely within the group. The ranks are integers which 

run from 0 to (n - 1). Counting the total number of time steps t experienced by 

a single agent from the start of a parallel run, the agent with rank r broadcasts a 

message at t= Lp(k + L±-')j for all kEZ, k >- 0. 
n 

Figure 6.7 shows the first few broadcast events for 16 agents using the staggered 

schedule. The first set of broadcasts occur in sequence, distributed quite uniformly 

over the time interval. As in the case of the uniform schedule, this initial uniformity 

is quickly affected by variance in the processing time, and the broadcasts soon tend 

towards a more random pattern. After some time the distribution of the agents' 

broadcasts reach a similar pattern to that reached using the uniform schedule in 

Figure 6.6. 

The staggered schedule avoids the simultaneous broadcasts that occur in the 

early stages using the uniform schedule, so it is reasonable to expect that the 

performance of the staggered schedule will be better. 

Exponential schedule 

In contrast to the previous two schedules, agents following the exponential schedule 
do not execute a fixed number of simulation steps between consecutive communi- 

cations. Instead, the occurrence of broadcast events is modelled using a Poisson 
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Figure 6.7: Staggered schedule. Message send events for 16 agents in the early 

stages of the Stochastic Grid World task (high difficulty). 

process. This means that the time between successive broadcasts can be modelled 

using an exponential distribution of mean p. In our implementation, the number 

of simulation steps which must be taken before the next broadcast is calculated at 
the start of a parallel run and after every subsequent broadcast. The number is 

sampled from a pseudo-random variable which draws numbers using a distribution 

defined by the following probability density function: 

. le-, p , if x> 02 
Ax) p 

0 if x<0. 

In essence, this results in significant variation in the period between consecutive 

communications, to the extent which there may be several communications by one 

agent in the time where another agent makes no communication at all. Unlike 

the previous two schedules, the pattern of the first few broadcasts does not differ 

significantly from the pattern achieved later in the experiment. Both exhibit quite a 
random pattern, such as that shown in Figure 6.8. The other major difference from 

the other two schedules is that here the variation in the period between broadcasts 

is dominated by the the variance of the exponential distribution, rather than the 

small variance introduced by the processor, operating system and interconnection 

network of the parallel system. 
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Figure 6.8: Exponential schedule. Message send events for 16 agents in the early 

stages of the Stochastic Grid World task (high difficulty). 

Comparing the scheduling mechanisms 

A full evaluation of the effect of the scheduling mechanism on performance is 

not included in this thesis, since the bulk of the experiments carried out for this 

chapter were focused on establishing a successful method to update the VIA asyn- 

chronously (discussed in Section 6.2.2). In a series of preliminary experiments, it 

was discovered that the staggered schedule consistently produced the best perfor- 

mance out of the three schedules across a variety of domains and update functions. 

A graph comparing the performance of the three schedules in one experiment is 

given in Figure 6.9. In this experiment, 16 agents using update function #1 were 

evaluated in the high-difficulty Stochastic Grid World task. The merge period was 

p= 100,000, and the number of tuples per message was = 1024. Reward 

function #1 was used, and parameters a and c were decayed linearly according to 

ao = 0.2, co = 0.1 and t1i.. = 0.9. The other parameters were -Y = 1.0, A=0.95, 

0j,, it = 0. The results were averaged over 10 runs, and episodes were terminated if 

they reached 10,000 steps. 
In Figure 6.9 we can see that the 16 agents using the staggered schedule ap- 

proach the optimal policy at the fastest rate. The exponential schedule is the next 
best option, converging slightly less quickly to the optimum. The agents using the 

uniform schedule initially converge at a similar rate, but ultimately the group only 
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Figure 6.9: Comparison of the performance of three scheduling mechanisms using 
16 agents in the Stochastic Grid World task (high difficulty). 

converged to a near optimal policy on about half the runs. This makes the uniform 

schedule seem greatly inferior, but the main reason for this poor performance is the 

pairing of the uniform schedule with update function #1. Recall from Section 6.2.2 

that update function #1 has no mechanism to eliminate overshooting as a result 

of two agents broadcasting an identical change simultaneously. Using the uniform 

schedule, the first few broadcasts are all simultaneous, and the overshooting has a 
seriously detrimental effect on convergence. 

When there is a mechanism to deal with this kind of overshooting (such as 
that of update functions #2 and #3) the performance of the uniform schedule is 

not nearly so bad, although it is still consistently outperformed by the staggered 

schedule. 
The exponential schedule performs worse than the staggered schedule in all the 

experiments we have carried out. The main reason for this seems to be the relatively 
high variance produced in the period between an agent's successive broadcasts. The 

nature of the exponential distribution is such that often a pattern can be observed 
in the MPI logs where an agent will broadcast several times quickly in succession, 
then wait for a time up to 2 or 3 times greater than p before the next broadcast 

takes place (this can be observed in Figure 6.8). As far as the asynchronous 

merge method is concerned, the resulting performance would be much better if 

these broadcasts occurred more uniformly. It is likely that a schedule based on a 
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random distribution with less variance than the exponential distribution (such as 

a Gamma distribution) could equal (or possibly exceed) the performance achieved 

with the staggered schedule. 
The remainder of the results reported in this chapter are based on the stag- 

gered schedule mechanism, since out of the proposed mechanisms this was found 

to consistently produce the best results. 

6.3 Evaluation of Asynchronous Merging 

In the previous section, a detailed description of the asynchronous merging method 

was given. Details were provided about how each of the agents schedules its broad- 

casts to the other agents. In addition, three candidate mechanisms (known here 

as update functions) for updating the local VIA in response to incoming messages 

were proposed. In this section, an evaluation of the asynchronous merging method 
is reported. The main purpose of this evaluation is to compare the performance 
that can be achieved using each of the three update functions. A secondary out- 

come of this evaluation is that the performance of the asynchronous merge method 
in general may be compared with the results previously obtained for the selective 

method of Chapter 5 and the merging method of Chapter 4. 

The relative performance of each of the update functions is shown in each 

graph in this section, as two key dimensions are varied. The first dimension is the 

number of agents n used in each experiment. Experiments were performed for 2, 

4,8 and 16 agents. The second dimension is the evaluation domain being used. 
Experiments were performed for each of the evaluation domains defined in Section 

4.3.1. Whenever possible this evaluation will use the same experimental settings 
that were used in the evaluation of the selective merge method (see Section 5.4) 

so that the results can be compared directly. 

Stochastic Grid World (low-difficulty) 

The first evaluation domain considered here is the low-difficulty Stochastic Grid 

World task. Each individual graph shown in Figures 6.10-6.13 shows the resulting 

performance of the asynchronous merge method with each of the three update 
functions. The different graphs correspond to different numbers of agents, as the 

number of agents is increased from 2 up to 16. 

In this series of experiments, reward function #2 was used, and results were 

averaged over 10 runs. Episodes were terminated if they reached 10,000 steps. RL 

parameters a and c decay linearly during each run, according to the parameters 

ao = 0.2, co = 0.1 and t1j,,, = 0.9. The remaining RL parameters were -y = 0.99, 
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Figure 6.10: Comparing asynchronous update functions with 2 agents in the low- 

difficulty Stochastic Grid World task. 
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Figure 6.11: Comparing asynchronous update functions with 4 agents in the low- 

difficulty Stochastic Grid World task. 
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Figure 6.12: Comparing asynchronous update functions with 8 agents in the low- 

difficulty Stochastic Grid World task. 
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Figure 6.13: Comparing asynchronous update functions with 16 agents in the low- 

difficulty Stochastic Grid World task. 
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A=0.9 and Oi,, it =1X 10-8 . The parameters used for the asynchronous merge 

method were p= 10000 and f,,,, = 256. These experimental settings are identical 

to those used in the evaluation of the selective merge method. The staggered 

schedule was used by the agents to time the asynchronous broadcasts. 

The graphs show that learning in this domain divides clearly into two distinct 

stages. There is an initial stage where the agents start from zero knowledge about 
the environment and rapidly improve the group's performance. Then there is a 

stage where the improvement in performance is much more gradual, as parameters 

a and e gradually decay towards zero, and the agents gradually settle into policies 

close to the optimum. 
Let us examine the initial stage first. Whichever update function is used there 

is a similarly rapid initial improvement in performance, the rate of which increases 

as the number of agents is increased. There are small differences between the 

update functions though. Generally update function #1 produces the most rapid 
improvements, and update function #2 is the least rapid, although the difference 

between them in this area is not great. 
In the latter, more gradual stage of improvement, we can observe markedly 

different behaviour using update function #1. As the number of agents is increased 

to 8 agents, and then to 16 agents, the performance of update function #1 becomes 

more noisy and erratic. With 16 agents in particular, there seems to be an increased 

probability that the learned policy will move away from the optimum after the 

initial phase of rapid convergence is over. The most likely explanation for this 

behaviour is that as the number of agents is increased, the likelihood of two or more 

agents broadcasting simultaneously increases. Since update function #1 does not 

eliminate overshooting caused by simultaneous transmission of identical changes, 

convergence towards the optimum is badly affected. In contrast, the agents using 

update functions #2 and #3 remain very close to the optimal policy during the 

latter phase of improvement. 

Stochastic Grid World (high-difficulty) 

Experiments ivere also carried out using the high-difficulty Stochastic Grid World 

task. Graphs showing the results for these experiments are given in Figures 6.14- 

6.17. 
In the high-difficulty grid world reward function #1 was used, and results 

were averaged over 10 runs. Episodes -were terminated if they reached 10,000 

steps. RL parameters a and e decay linearly during each run, according to the 

parameters ao 0.2, co = 0.1 and t1j,,, = 0.9. The remaining RL parameters 

were -y = 1.0, A 0.95 and Oi,, it = 0. The parameters used for the asynchronous 
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Figure 6.14: Comparing asynchronous update functions with 2 agents in the high- 

difficulty Stochastic Grid World task. 

0 
LLI 

:F 

Update function I 
Update function 2 
Update function 3 

0 10 20 30 40 50 60 
Learning Time (seconds) 

10000 

9000 

8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

n 

Figure 6.15: Comparing asynchronous update functions with 4 agents in the high- 

difficulty Stochastic Grid World task. 
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Figure 6.16: Comparing asynchronous update functions with 8 agents in the high- 

difficulty Stochastic Grid World task. 
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Figure 6.17: Comparing asynchronous update functions with 16 agents in the high- 

difficulty Stochastic Grid World task. 
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merging algorithm were p= 100,000 and = 1024. These experimental settings 

are identical to those used in the evaluation of the selective merge method. The 

staggered schedule was used by the agents to time the asynchronous broadcasts. 

The results for the high-difficulty grid world follow pattern which is similar 
to that observed for the low-difficulty grid world, but the size of the differences 

between the update functions are different in two key aspects. 
In terms of the initial, rapid improvement in performance, there are much 

larger differences between the update functions now, and the separation of the 

learning curves is much clearer than it was for the low-difficulty grid world. Update 

function #1 produces the most rapid improvement, with a performance that is 

clearly better than update function #3. Update function #2 produces the least 

rapid improvement, performing significantly worse than both of the others. The 

differences between the update functions are relatively small for 2 agents, but 

become much greater as the number of agents is increased. 

The increased variation during the latter stage of gradual improvement per- 
formance is now only clearly evident for update function #1 when 16 agents are 

used. Even so, the increased variation seems to have a much lesser effect, and does 

not appear to prevent a good policy being achieved after 50 seconds. It is unclear 

why the size of this effect is reduced. It could be simply that learning in the larger 

problem size is affected less by overshooting the expected weight values. Alterna- 

tively, it could be related to the fact that we used different reward functions in 

the two experiments (in the low-difficulty experiment, the only non-zero reward is 

given when the goal is reached. ) 

Pole Balancing 

The graphs in Figures 6.18-6.21 allow the results for the three update functions to 

be compared in the Pole-Balancing task. In contrast to the Stochastic Grid World 

experiments, the agents do not all reach the same near-optimal policy quality. 
Instead the available time is fixed at 1.0s, and the group of agents tries to learn 

the highest quality policy that can be achieved in the available time. In this series 

of experiments, reward function #1 was used, and results were averaged over 100 

runs. Episodes were terminated if they reached 20,000 steps. RL parameters a 

and c decay linearly during each run, according to the parameters ao = 0.25, 

co = 0.2 and t1i.. = 0.9. The remaining RL parameters were -y = 0.99, A=0.5 and 
Oinit = 0. The parameters used for the asynchronous merge method were p= 2000 

and = 128. These experimental settings are identical to those used in the 

evaluation of the selective merge method. The staggered schedule was used by the 

agents to time the asynchronous broadcasts. 
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Figure 6.18: Comparing asynchronous update functions with 2 agents in the Pole- 

Balancing task. 
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Figure 6.19: Comparing asynchronous update functions with 4 agents in the Pole- 

Balancing task. 
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Figure 6.20: Comparing asynchronous update functions with 8 agents in the Pole- 

Balancing task. 
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Figure 6.21: Comparing asynchronous update functions with 16 agents in the Pole- 

Balancing task. 
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The relative performances of the 3 update functions in the Pole-Balancing task 

exhibit a different pattern than that seen in the Stochastic Grid World tasks. Up- 

date function #3 is now consistently the worst out of the three functions, although 
the difference in the average quality achieved at the end of the run is not huge. 

It is difficult to determine which of the other update functions is the better per- 
former. It is only in the case of 8 agents (in Figure 6.20) that one of them, update 
function #2, clearly outperforms the other. For other numbers of agents, there is 

not a significant difference between them. No evidence of the increased variance 

produced by update function #1 in the previous experiments is observed here, but 

it is still possible that overshooting effects are affecting the overall performance of 

update function #1. 

Mountain-Car 

Figures 6.22-6.25 show results for the three update functions for different numbers 

of agents in the Mountain-Car task. In this series of experiments, reward function 

#2 was used, and results were averaged over 100 runs. Episodes were terminated 

if they reached 500 steps. RL parameters a and c decay linearly during each run, 

according to the parameters ao = 0.5, co = 0.1 and t1j,,, = 0.9. The remaining RL 

parameters were -y = 0.99, A=0.9 and Oi,, it = 0.0001. The parameters used for 

the asynchronous merge method were p= 2000 and f ..... = 128. Since the policy 

quality over a given interval is strongly dependent on the exploration parameter 6, 
binary search was used to determine for each group of agents the shortest interval 

of real-time required to achieve an average quality under 145 over the set of 100 

runs. These experimental settings are identical to those used in the evaluation of 
the selective merge method. The staggered schedule was used by the agents to 

time the asynchronous broadcasts. 

In the results for the Mountain-Car task, we observe a pattern in the relative 

performance of the update functions that is closer to what was observed for the 

Stochastic Grid World task than what was observed in the Pole-Balancing task. 

Since the gradual improvement in performance is so strongly tied to the decay of 
the exploration parameter, it is difficult in some of these graphs to identify which of 
the update functions has performed the best. However, we can draw some general 

conclusions from the graphs. For all numbers of agents, the asynchronous method 

using update function #2 requires the most time to converge to a policy of the 

specified quality. Most often it is update function #1 which requires the least 

time, although in the 4-agent case it is update function #3 which produces the 
best performance. The performance of update function #3 seems relatively poor 
for small numbers of agents, but almost as good as update function #1 for larger 
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Figure 6.22: Comparing asynchronous update functions with 2 agents in the 

Mountain-Car task. 
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Figure 6.23: Comparing asynchronous update functions with 4 agents in the 

Mountain-Car task. 
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Figure 6.24: Comparing asynchronous update functions with 8 agents in the 
Mountain-Car task. 
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Figure 6.25: Comparing asynchronous update functions with 16 agents in the 
Mountain-Car task. 
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numbers of agents. In the 16-agent case, the learning curves are separated the 

most, with update functions #1 and #3 requiring only slightly more than half the 

time required by update function #2 to converge. 

Acrobot 

Graphs for the performance of the different update functions in the Acrobot task 

are shown in Figures 6.26-6.29. These experiments used reward function #1, with 
the results being averaged over 100 runs. Episodes were terminated if they reached 
600 steps. RL parameters a and e decay linearly during each run, according to the 

parameters ao = 0.1, co = 0.1 and t1i.. = 0.9. The remaining RL parameters were 

,y=1.0, A=0.9 and Oi,, it = 0. The parameters used for the asynchronous merge 

method were p= 1000 and f,,,,, = 128. Since the policy quality over a given inter- 

val is strongly dependent on the exploration parameter c, binary search was used 
to determine for each group of agents the shortest interval of real-time required 
to achieve an average quality under 140 over the set of 100 runs. These experi- 

mental settings are identical to those used in the evaluation of the selective merge 

method. The staggered schedule was used by the agents to time the asynchronous 
broadcasts. 

The performance of the three evaluation functions is essentially identical when 
there are only 2 agents. However, as the total number of agents is increased, a clear 

pattern emerges, and the differences between the update functions become more 

pronounced. Update function #1 now consistently produces the best performance, 

with update function #2 producing the worst performance, and update function 

#3 being somewhere between the two others. 

Summary of Evaluation 

A qualitative summary of the results presented in this section is shown in Table 

6.1, which lists the best performing update function from each of the graphs shown 
in Figures 6.10-6.29. Broadly speaking, the best performing update function is the 

one which makes the most rapid progress towards a high quality problem solution 

over the course of a parallel run. 
From Table 6.1 it is fairly clear that the asynchronous merge method using 

update function #1 has the greatest potential out of the methods proposed in this 

chapter. However, there are a number of effects that remain unexplained. The 

most significant unanswered question is "Why does update function #2 produce 

such good results in the Pole-Balancing domain, but such bad results in all the 

other domains? " The answer may be related to the fact that Pole-Balancing is the 
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Figure 6.26: Comparing asynchronous update functions with 2 agents in the Ac- 

robot task. 
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Figure 6.27: Comparing asynchronous update functions with 4 agents in the Ac- 

robot task. 
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Figure 6.28: Comparing asynchronous update functions with 8 agents in the Ac- 

robot task. 
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Figure 6.29: Comparing asynchronous update functions with 16 agents in the 
Acrobot task. 
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Domain Number of agents 
2 4 8 16 

Grid world (IoNv-difficulty) #1/#3 #1 #1 #1/#3 

Grid world (high-difficulty) #1 #1 #1 #1 

Pole-Balancing #1/#2 #1/#2 #2 #1/#2 

Mountain-Car #1 #3 #1 #1 

Acrobot #1 #1 #1 #1 

Table 6.1: Lists the best performing update function(s) for each combination of a 
domain and a number of agents. 

only domain considered here that is not goal-oriented In all the other domains, 

the agents want to reach a terminal state as quickly as possibly. In the Pole- 

Balancing task, terminal states must be avoided for as long as possible by keeping 

the pole balanced. This gives the Pole-Balancing task a different character from 

the other domains, which may produce a different distribution of weight changes 
in the agents' messages. 

Another effect which could be investigated further is the tendency of update 
function #1 to increase variance in the estimates of feature values. This effect can 
be observed most clearly in the 16-agent experiments in the Stochastic Grid World 
(see Figures 6.13 and 6.17). This increase in variance while the c and a parameters 

are decaying could result in the agents settling in a worse policy on average, but 

this evaluation has not clearly established that this is the case. What has been 

established is that in the case of a uniform schedule, where many agents broadcast 

their changes simultaneously, the asynchronous method based on update function 

#1 is likely not to converge (see Figure 6.9). This demonstrates the importance of 
keeping the agents' broadcasts well-distributed over time. 

To conclude, it appears that the cancel mechanism (used in update functions 

#1 and #3) is necessary for achieving fast convergence without overshooting in 

most of the domains evaluated here (Pole-Balancing being the exception). The 

filter mechanism (used in update functions #2 and #3) appears to slow conver- 

gence slightly by excluding some of the incoming weight changes, but is essential 
to ensure convergence when there is a high probability of agents broadcasting mes- 

sages simultaneously. There is the possibility that more complex update functions 

not considered in this work could approach the convergence rate of update func- 

tion #1 in most cases while retaining the safety of a filter-like mechanism. This 

remains a topic for future investigation. 
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6.4 Comparison with Synchronous Selective Method 

In Section 6.3 a comparison was presented of the performance achieved by three 

candidate mechanisms for updating the VIA in the asynchronous selective method. 
Now that there exists some empirical evidence as to the suitability of these update 

mechanisms to particular domains, this section proceeds to give a direct comparison 

of the asynchronous selective method with the original (synchronous) selective 

method presented in Chapter 5. The data used to generate the following graphs 

was drawn from the results already reported in the individual evaluations of the 

methods, in Sections 5.4 and 6.3. These results are reproduced together on new 

graphs to facilitate a detailed comparison of the two methods. For the full details 

of the experimental settings used to generate these results, the reader is referred 
to the earlier sections. 
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Figure 6.30: Comparing the performance of the synchronous and asynchronous 

selective methods in the low-difficulty Stochastic Grid World task. 

Results showing the performance of a single agent, the selective merge method 
(4 and 16 agent groups), and the asynchronous selective merge method (4 and 16 

agent groups) in the low-difficulty Stochastic Grid World task are shown in Figure 

6.30. To compare the most stable results for each approach, the selective method 

used combination function #3 and the asynchronous selective method used up- 
date function #3. With both the 4 and 16 agent groups the asynchronous selective 

method produces the best performance out of the two parallel approaches. The 
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improvement in the 4 agent case is fairly modest, although this performance is 

probably comparable to 8 agent group using the selective method. The improve- 

ment in the 16 agent case is much more significant, with the time required to learn 

a high-quality policy being almost halved. In this particular domain there is a 

major advantage in moving to an asynchronous approach when large numbers of 

parallel agents are available. 
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Figure 6.31: Comparing the performance of the synchronous and asynchronous 

selective methods in the high-difficulty Stochastic Grid World task. 

Results for the high-difficulty Stochastic Grid World task (shown in Figure 

6.31) exhibit a very similar pattern, although the difference in performance of 
the 16 agent group is not quite so large. Once again the selective method using 

combination function #3 was compared with the asynchronous selective method 

using update function #3. With both sizes of the agent group the asynchronous 

selective method produces the best performance out of the two parallel approaches. 
The improvement in performance of the 4 agent group is significant, but the largest 

improvement is shown by the 16 agent group, where moving to the asynchronous 

approach shaves off about a third of the time required to find a high-quality policy. 
There is again a major advantage in following the asynchronous approach. 

The results for the Pole-Balancing task (shown in Figure 6.32) were generated 

with the priority of achieving the best possible performance, since the stability of 
the update mechanisms seemed to be much less of a factor than in the Stochastic 

Grid World tasks. To this end, the selective method was used with combination 
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Figure 6.32: Comparing the performance of the synchronous and asynchronous 

selective methods in the Pole-Balancing task. 

function #1 and the asynchronous selective method was used with update func- 

tion #1. In the Pole-Balancing task the goal of the agents was to learn the highest 

quality policy in the available time of 1.0s. The use of the asynchronous approach 
seemed to have much less of an impact in this task. With 4 agents the asyn- 
chronous selective approach produced a slightly worse quality, and with 16 agents 
it produced a slightly better quality. From these results it may be observed that 
the asynchronous approach does not always produce an improvement in perfor- 
mance, and also that such an improvement is more likely when there is a fairly 
large number of parallel agents. 

The results for the Mountain-Car task (shown in Figure 6.33) were also gen- 
erated with the selective method using combination function #1 and the asyn- 
chronous selective method using update function #1. While both the selective and 
the asynchronous selective methods achieve good speedups in this domain, there is 

no significant advantage in using the asynchronous approach over the basic selective 
method. This is quite a different result than was achieved in domains considered 

above, where there has been a significant advantage in using the asynchronous 

approach when there are 16 agents available. 
The results for the Acrobot task are shown in Figure 6.34. As with the Pole- 

Balancing and Mountain-Car tasks, these results were generated with the selective 
method using combination function #1 and the asynchronous selective method 
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Figure 6.33: Comparing the performance of the synchronous and asynchronous 

selective methods in the Mountain-Car task. 
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Figure 6.34: Comparing the performance of the synchronous and asynchronous 

selective methods in the Acrobot task. 
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using update function #1. These results are similar in character to those achieved 
in the Stochastic Grid World tasks. When there are 4 agents there is a modest 

performance advantage to using the asynchronous approach. With 16 agents there 
is a huge advantage to the asynchronous selective method, reducing by about a 
third the time required to converge to a high-quality policy. 

The overall conclusion that can be drawn from this comparison is that there are 

significant benefits to adopting the asynchronous selective merge method over the 
(synchronous) selective merge method. While it does not always produce the best 

results of the two methods (such as the results from the Mountain-Car described 

above), its performance has only ever been worse by a small factor, and in some 

cases with large numbers of agents huge improvements in performance can be 

obtained (such as in the Acrobot and Stochastic Grid World tasks). 
Determining the particular factors which make the asynchronous method so 

successful in some domains is an important topic for future investigation. One 

particular line of enquiry would be to investigate the effect of the total number f 

of features used by the VFA. It may be significant that the asynchronous approach 

performs poorly in the Mountain-Car task, where f= 2430, but performs well in 

the Acrobot task, where f= 18432. In both of these experiments the message size 
fw,,, = 128, although in the Acrobot experiment messages are exchanges twice as 

often. This suggests that when there are a large number of features, the property 

of the asynchronous selective method to quickly eliminate identical weight changes 
has a major positive impact on performance. 

A limitation of the comparison given in this section is that in each exper- 
iment the asynchronous selective and the selective methods are compared with 
both methods using the same values for parameters p (the merge period) and f, 0" 
(the message size). The advantages of this approach are that both methods use up 

a similar network bandwidth and that comparison experiments are simple and fast 

to carry out. The disadvantage of this approach is that the optimum parameter 

choices for p and may be different depending on which method we are using. 
Using near-optimal parameters (which are difficult to find) in each case may change 
the relative performance of the two methods. A comprehensive comparison of the 

two approaches would therefore be aided by a suitable technique for calculating 

suitable values for p and fcom. 

6.5 Asynchronously exchanging absolute weight values 

The asynchronous selective method, as described in Section 6.2, uses the values of 
the weight change vector Aýfbr two distinct purposes: 
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1. Ranking the weight indices in order of the potential benefit of communicating 
information about each weight to the group. 

2. Communicating the weight value changes in the form of messages containing 
(i, AOj, Oj) tuples. 

The results presented in Sections 5.4 and 6.3 provide strong evidence that prior- 
itizing 'weight information according to the size of each JAOjj is an effective way 
to reduce the bandwidth necessary for parallel RL. However, it is not clear that 

the changes themselves are necessarily the best information to communicate to the 

other agents. In particular, adopting the asynchronous approach described in this 

chapter requires the use of some fairly complex mechanisms (see Section 6.2.2) for 

incorporating weight changes from remote agents whilst avoiding the overshooting 

problem. It is reasonable to ask at this point whether some of this complexity 

could be avoided by the agents exchanging only absolute weight values 10j} in the 

messages. 
The asynchronous communication model makes it difficult to use an averaging 

approach such as that used in the visit-count average method of Chapter 4. This is 

because messages from the other agents arrive at different times, and each message 

must be processed immediately. This means that local data structures must be 

updated using only one remote agent's weight value. While it would be possible to 

average these values over time by caching recently received values (using a sliding- 

window for example), it is likely that such an approach would slow convergence in 

the same manner as the mean-merge method (see Section 4.4.3). 

Given two estimates of a weight value, one local and one from a remote agent, 

we could consider taking the mean of these two estimates. However, bear in mind 
that with the selective approach a remote weight value is only likely to be received 
if a large change in the weight is observed by the remote agent. To reduce the VIA 

error quickly in the early stages of a parallel run, it is vital that large weight changes 

are quickly propagated to all the agents by prioritizing the remote agent's estimate. 
This leads to the definition of a relatively simple asynchronous algorithm (defined 

in Algorithm 12) based on messages containing (i, Oj) tuples (i. e. absolute weight 

values). When a remote -weight value is received, the local weight is overwritten 
by the remote value. In addition, the local weight change is reset to zero. Note 

that this means that some locally learned information is lost when updates occur 
in response to arriving messages. I will refer to this algorithm as Abs-Async (an 

asynchronous method based on exchanging absolute weight values. ) 

Using absolute weight values instead of weight changes essentially eliminates 
the problem of overshooting. The main disadvantage of the approach is that if 
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Algorithm 12 Agent pseudocode for the Abs-Async method. Messages sent ýy 

the agent contain only the absolute weight values, not the weight changes. 
fInitialization} 

for all i do 

Oi - Oi, it 
oref 

i +- Oinit 

end for 

IMain loop} 

while time elapsed < t, nd do 

f Learning quantum} 
for step =1 to q do 

Execute a simulation step and update weight vector 0. 

end for 

f Sclieduled Broadcastsj 

if sclieduled broadcast is due then 
Calculate AW= W- ý"f. 

Rank each index i according to the value of JAOj I. 

best +- I the f .... highest ranked indices 

m 4-- I(i, Oj) IiE best} 

Send message m to all other agents. 

end if 

IMessage Receive} 

for each new incoming message m do 

for all (i, Oý) Em do 
JAssign Oj' to both Oi and Oj"f 

Oi *-- 0i, 
Oref 4-- Oý 

it 

end for 

end for 

while 
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the number of weights per message is fairly large, the loss of local weight 

changes during updates could have a negative impact on the rate of convergence. 

Experimental Details 

To evaluate the potential of the Abs-Async method, its performance was compared 
to that of the best performing method developed so far: the asynchronous selective 

merge method using update function #1 and a staggered broadcast schedule. This 

method is labelled Async in the graphs which follow. 

The evaluation in this section was carried out at a later date than the other 

experimental work in this thesis. The particular Beowulf cluster used for previ- 

ous experiments was unavailable at this time, and so the results reported in this 

section were generated using a second, more powerful cluster (details below). Un- 

fortunately this means that the learning curves in this section cannot be directly 

compared with those in previous sections, since the underlying system properties 

are different. On the other hand, collecting data using a second parallel computing 

system will provide some indication of how the parallel methods developed in this 

thesis will perform on different parallel hardware. 

The cluster used in these experiments consisted of 24 nodes, where each node 

was a machine based on two AMD Opteron 275 dual core 2.2GHz processors. Since 

there are 4 cores per node, up to four parallel RL agents can run on each node. Each 

node contained 8GB of registered DDR memory on a bus with 6.4GB/s throughput. 

The nodes were connected using a high performance InfiniBand interconnect with 
10Gb/s bandwidth and 2us latency. 

The values used for parameters p and in these experiments are different 

from those used in earlier evaluations. This is so that the best possible performance 

can be obtained given the particular system properties of this new cluster. In 

this context, the relative performance of the two methods considered here can be 

assessed as the potential speedup is pushed to the limit. 

Stochastic Grid World (low-difficulty) 

The graph in Figure 6.35 shows the performance of the two methods in the low- 

difficulty Stochastic Grid World task. The experimental settings used were as 
follows: the merge period p was set to 1000 steps, and the message size f, "" was 

set to 128. This meant that the overall network bandwidth used was 5 times as 

much as in the early evaluation on the old cluster. Reward function #2 was used, 

and results were averaged over 10 runs. Episodes were terminated if they reached 
10,000 steps. RL parameters a and e decayed linearly during each run, according 
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Figure 6.35: Using the low-difficulty Stochastic Grid World task to compare the 

asynchronous selective method with an alternative method based on absolute 
weight values. 

to the parameters ao = 0.2, co = 0.1 and tli,,, 0.9. The remaining RL parameters 
were -y = 0.99, A=0.9 and Oi,, it =1X 10-8 Learning curves were plotted for 4 

and 16 agents using the Async and Abs-Async methods. A single agent learning 

curve was also included for comparison. 
The results in Figure 6.35 show that the performance of the two parallel RL 

methods is identical when 4 agents are used. With 16 agents the Async method 
produces a small improvement in performance compared to the Abs-Async method. 
Note also that using the new (more powerful) cluster means that it is possible to get 
much closer to achieving a linear speedup using either of these methods (compare 

Figure 6.35 with Figure 6.30 on page 223). 

Stochastic Grid World (high-difficulty) 

Figure 6.36 shows learning curves for both of the methods in the high-difficulty 

Stochastic Grid World task. In this experiment, algorithm parameters p= 2500 

and fw.. = 512, using 20 times the network bandwidth compared to the old cluster. 
Reward function #1 was used, and results were averaged over 10 runs. Episodes 

were terminated if they reached 10,000 steps. RL parameters a and C decayed 
linearly during each run, according to the parameters ao = 0.2, Co = 0.1 and 
tjj,, ý = 0.9. The remaining RL parameters were -y = 1.0, A=0.95 and Oi,, it = 0. 
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Figure 6.36: Using the high-difficulty Stochastic Grid World task to compare 
the asynchronous selective method with an alternative method based on absolute 

weight values. 

The results in Figure 6.36 follow a similar pattern to those observed with the 
low-difficulty grid world in Figure 6.35. With 4 agents the performance of the 
Async and Abs-Async methods are practically identical. Increasing the number of 

agents to 16 means that the Async method converges slightly more quickly to an 

accurate value function approximation. 

Pole Balancing 

The results for the Pole Balancing task are shown in Figure 6.37. Parameter values 

p= 200 and f,,., = 64 were used, which meant that 5 times the network bandwidth 

was used compared to experiments on the old cluster. Reward function #1 was 

used, and results -were averaged over 100 runs. Episodes were terminated if they 

reached 20,000 steps. RL parameters a and e decayed linearly during each run, 

according to the parameters ao = 0.25, co = 0.2 and t1j,,, = 0.9. The remaining 
RL parameters were y=0.99, A=0.5 and Oi,, it = 0. 

In contrast to the experiments using the Stochastic Grid World tasks, the 4 

agents using the Async method clearly outperform the 4 agents using the Abs- 
Async method, producing (on average) a final policy of higher quality in the fixed 

learning time of 0.25s. With 16 agents the results are less conclusive. The Async 

and Abs-Async methods produce final policies of very similar quality. However, 

Single Agent 
Async (4 agents) 

Async (16 agents) 
Abs-Async(4 agents) 

Abs-Async (16 agents) 
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Figure 6.37: Using the Pole Balancing task to compare the asynchronous selective 

method with an alternative method based on absolute weight values. 

during the first 0.15s of the learning time the Async method appears to improve 

policy quality at a faster rate, reaching a plateau at a mean episode length of 
17000. There may be a side effect of update function #1 in this setting which 
degrades policy improvement in the later stages of learning. 

Mountain Car 

Results for the Mountain Car task are shown in Figure 6.38. Parameter values 

P= 100 and f,,,,, = 128 were used, which meant that 20 times the network 
bandwidth was used compared to experiments on the old cluster. Reward function 

#2 was used, and results were averaged over 100 runs. Episodes were terminated 

if they reached 500 steps. RL parameters a and e decayed linearly during each 

run, according to the parameters ao = 0.5, co = 0.1 and tlin = 0.9. The remaining 
RL parameters were y=0.99, A=0.9 and Oinit = 0.0001. Binary search was used 
to determine for each group of agents the shortest interval of real-time required to 

achieve an average episode length below 145 over the set of 100 runs. 
This set of results provides the clearest demonstration yet that in some cir- 

cumstances the Abs-Async method will perform significantly worse than the asyn- 

chronous methods based on exchanging changes in the weights. With 4 agents the 
Async method is a small amount faster. With 16 agents a policy of the same quality 

can be found by Async in about two-thirds of the time required by Abs-Async. 
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Figure 6.38: Using the Mountain Car task to compare the asynchronous selective 

method with an alternative method based on absolute weight values. 

Acrobot 

Results for the Acrobot task are shown in Figure 6.39. Parameter values p= 100 

and f,,,,, = 256 were used, which meant that 20 times the network bandwidth was 

used compared to experiments on the old cluster. Reward function #1 was used, 

and results were averaged over 100 runs. Episodes were terminated if they reached 
600 steps. RL parameters a and c decayed linearly during each run, according to 

the parameters ao = 0.1, co = 0.1 and t1im = 0.9. The remaining RL parameters 

were -y = 1.0, A=0.9 and Oi,, it = 0. Binary search was used to determine for each 

group of agents the shortest interval of real-time required to achieve an average 

episode length below 140 over the set of 100 runs. 
These results show an even greater difference in performance between Async 

and Abs-Async. Using 4 agents the Async method converges about 25% more 

quickly than the Abs-Async method. With 16 agents the difference is more pro- 

nounced, with the Async method converging in under half the time required the 
Abs-Async method. There is something about the character of this particular do- 

main which seems to heavily penalize methods which are not particularly efficient 
in their use of network bandwidth (consider both Figure 6.39 and Figure 6.34 on 

page 226). This may be related to the fact that while a large number of features 

are used (18432), the generalization of the approximator is very good, keeping the 
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Figure 6.39: Using the Acrobot task to compare the asynchronous selective method 

with an alternative method based on absolute weight values. 

required learning time small and making parallelization particularly difficult. 

Summary of Comparison 

The empirical results presented in this section examine the performance of a new 

method, A bs-Async, in which agents asynchronously exchange absolute weight val- 

ues. The results in this section were generated using a different (more powerful) 
Beowulf cluster, and so the graphs should not be compared directly to other graphs 
in the thesis. The performance of Abs-Async was compared to that of the best per- 
forming method developed so far in this chapter, the asynchronous merge method 

using update function #1 (abbreviated here as the Async method). 
The comparison showed that in some cases the two methods perform very sim- 

ilarly, but in other cases Abs-Async is greatly outperformed by the Async method. 
Two major factors were identified which affect the degree to which Abs-Async per- 
forms worse than Async. The first factor is the number of agents involved. The 

more agents that are used, the more likely it is that Async will produce the better 

performance. The second factor is the character of the particular learning task at 
hand. In some learning tasks (e. g. the Stochastic Grid World tasks) the two meth- 

ods perform very similarly. In other tasks (e. g. the Mountain Car and Acrobot 

tasks) there is a very large performance advantage in using the Async method. 
The most likely reason for the poor performance of Abs-Async in certain sit- 
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uations is the way that locally-learned weight changes can be lost when updates 

occur in response to messages arriving. The fact that messages only contain weights 
which have undergone large recent changes does mean that most of the time no 
significant information is lost. However, if a large number of agents are involved, 

or if there are a large number of approximator weights, the likelihood of losing 

important information in this way increases, and Abs-Async performs poorly. 
The poor performance of this method provides some evidence that parallel RL 

methods based on exchanging weight changes (i. e. most of the methods described 

in Chapters 5 and 6) are more likely to be successful than methods based on 

exchanging absolute weight values. Monitoring recent changes in the VFA makes 
it easier to combine information from several agents without destroying locally- 

learned information which has yet to be communicated. Methods based on weight 

changes do lead to the overshooting problem, adding to the complexity of some 

of the methods. However, based on the evidence presented here, a method based 

on weight changes which trades off accelerated convergence against the risk of 

overshooting seems to produce the best performance. 

6.6 Summary and Conclusions 

Tile following material has been presented in this chapter: 

Motivation for the use of asynchronous message passing to improve the per- 
formance of the selective merge method which was described in Chapter 5. 

The general form of the asynchronous merge method. This method uses 
the same mechanism (of ranking weights by the magnitude of the recent 

accumulated change) for message construction as the selective merge method, 
but removes the need for any synchronization step. 

o Several candidate procedures (known as update functions) for updating the 
local VFA in response to incoming messages from other agents. 

A number of mechanisms to schedule the message broadcasts of individ- 

ual agents without requiring explicit synchronization. The purpose of these 

mechanisms is to keep the times at which agents send messages distributed 
fairly evenly over time. 

An evaluation of the proposed update functions, where the performance with 
each update was tested with different numbers of agents in each of the evalu- 
ation domains defined in Section 4.3.1. The reported results were generated 

using the implementation on the cluster of -workstations. 
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A comparison of the performances of the asynchronous merge method and the 
(synchronous) selective merge method in each of the evaluation domains. This 

comparison was also based on results collected on the cluster of workstations. 

A comparison of the performances of the asynchronous merge method and 
an alternative asynchronous method which uses messages containing only 
absolute weight values, not the changes in the weights. This comparison was 
based on results collected at a later date using a different, more powerful 
cluster of workstations. 

From this material we can draw the following conclusions: 

The asynchronous merge method can produce parallel speedups that are bet- 

ter than those of the selective merge method of Chapter 5 by allowing the 

agents to distribute their broadcasts more evenly over time, and to update 
their local VFAs as and when messages arrive. 

On the cluster of workstations, the asynchronous merge method consistently 

outperforms both the visit-count merge method of Chapter 4 and the selective 

merge method of Chapter 5. In particular, the relatively small speedups 

obtained by the selective merge method in the Acrobot task (which has a 
large number of approximator weights but a small single-agent learning time) 

were greatly improved upon. Significant increases in the parallel speedup 

were obtained in all of the evaluation domains tested. 

e The staggered schedule for determining when agents broadcast their messages 

was found to be the most robust mechanism of those proposed, outperforming 
the uniform and exponential schedules in a set of preliminary experiments. 

Of the three update functions evaluated, update function #1 was shown 

to produce the greatest speedups in almost all situations. However using 

update function #1 when there is a high probability of two or more agents 

transmitting messages simultaneously may have an impact on performance, 

or prevent convergence in extreme cases. 

e The asynchronous merge method inherits the parameters p and f, ý.. from 

the selective merge method. As it was demonstrated in Chapter 5, selecting 
appropriate values for these parameters is vital for achieving good perfor- 
mance using either of these methods. Since there is not currently an analytic 
or heuristic method for determining the optimum values of p and it is 

necessary to use some degree of trial and error to select these parameters. 
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Parallel RL methods where agents communicate changes to the VFA weights 

are very effective in practice, allowing a trade-off to be made between an 
increased convergence rate and the risk of overshooting. While alternative 

methods based on the exchange of absolute weight values effectively eliminate 
the overshooting problem, the empirical evaluation of Section 6.5 suggests 
that such methods will result in degraded performance in many situations. 
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Chapter 7 

Combining RL with Symbolic 

Planning 

This chapter moves on from the topic of parallelization investigated in the preceding 

chapters, and proceeds to examine how symbolic planning can be used to constrain 

and accelerate learning in an RL problem. A hybrid method called PLANQ-learning 

is presented which integrates a planner based on the STRIPS representation with 

the well-known Q-learning algorithm. A high-level plan that achieves the goal of 

the Q-learner is computed and is then used to guide the learning process. This is 

achieved by shaping the reward function based on the preconditions and effects of 

the abstract plan operators. Using this approach allows a high quality policy to 

be learned more quickly. 
This chapter begins with a brief overview of planning using the STRIPS rep- 

resentation, followed by a description of the PLANQ learning method itself. A 

problem domain is then defined which will be used to evaluate the performance of 

PLANQ in problems of increasing difficulty. A comparison in this domain of the 

performance of a PLANQ-learner and a Q-learner produces encouraging results, 

but a much greater improvement in performance is achieved by incorporating a 

state- abstraction mechanism. The performance of this extended PLANQ-learner 
is compared with that of an agent using HSMQ-Iearning (Dietterich, 2000a), a 
hierarchical RL algorithm that is able to exploit the same state abstraction. The 

results show that PLANQ is superior in its scaling-up properties both in terms of 

environment time steps and in terms of computation time. It is also shown that 
PLANQ exhibits high variance in the computation time expended per time step. 
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7.1 The STRIPS Planning Representation 

The STRIPS representation (Fikes and Nilsson, 1971) and its descendants form the 
basis of many symbolic planning systems. It is based on first-order predicate logic, 
but has a number of restrictions which make it possible to search for plans without 
requiring a full theorem proving system. Despite these restrictions, STRIPS is suf- 
ficiently expressive to represent many interesting and difficult planning problems. 
Each individual state is represented by a set of positive ground literals. The set of 
goal states is described by a conjunction of positive literals. Each STRIPS operator 
is represented by three components: 

Preconditions The literals which must be true in a state for the operator to be 

applicable in that state. 

Add List The literals which become true in the state which results from applying 
the operator. 

Delete List The literals which become false in the state which results from ap- 
plying the operator. 

Two different planners based on the STRIPS representation were used during the 

course of the work reported in this chapter. Both of these planners were based 

on the influential GRAPHPLAN algorithm. GRAPHPLAN itself is based on a data 

structure called a planning graph, a graph structure annotated with STRIPS literals 

and operators. The planning graph encodes which literals can be made true after n 

operators have been applied, and which literals are mutually exclusive at that time 

step. The algorithm works by constructing the planning graph forwards from the 

initial state (time step 0) until a time step is reached where all the goal literals are 
true and not mutually exclusive. Then the planning graph is searched backwards 

for a valid plan. If no plan can be found the planning graph is extended by one 
time step and the backward search is repeated. GRAPHPLAN constructs plans very 

quickly in domains which do not have a large number of objects. 
The initial experiments reported in this chapter used the FASTFoRwARD or 

FF planner (Hoffmann, 2000), which uses the GRAPHPLAN algorithm on a relaxed 
version of the planning problem. The planning graph then forms the basis of a 
heuristic for forward search. In later experiments a custom implementation of 
the GRAPHPLAN algorithm was used, which eliminated expensive parsing and file 

access operations in order to minimize the time required to generate a plan. 
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7.2 The PlanQ Learning Method 

In this section a novel method for hierarchical learning in large-scale problems is 

presented. This hybrid method uses symbolic plans to explicitly represent prior 
knowledge of the internal structure of a (goal-oriented) MDP. By exploiting this 

knowledge the number of steps in the environment required to learn an adequate 

policy can be greatly reduced. I will call this approach PLANQ-1earning. 

The definition of an adequate policy will vary according to the application 
domain. The use of the word "adequate" emphasizes that the primary goal here is 

not to find a truly optimal policy, but to find an acceptable policy in a reasonable 

amount of time. The truly optimal policy may not be obtainable for a number of 

reasons: 

e The available knowledge of the problem structure may be incomplete, and 
learning can only be accelerated by this partial knowledge. 

The available knowledge of the problem structure may be inaccurate, arising 

either from an error in the design of the knowledge base, or as a result of 

sacrificing some accuracy to obtain a simpler abstract model of the problem. 

e Limited availability of experience in the environment and/or limited compu- 
tational resources. 

The approach explored in this chapter uses a STRIPS knowledge base and planner 

to define the desired high-level behaviour of an agent, and reinforcement learning 

to learn the unspecified low-level behaviour. This can be viewed as an instance of 

a layered architecture (Gat, 1997; Stone, 1998), with high-level planning and low- 

level learning. One low-level behaviour must be learned for each STRIPS operator 
in the knowledge base. There is no need to separately specify a reward function 

for each of these operators - instead a reward function is derived directly from the 

logical preconditions and effects of each STRIPS operator. 
As well as a knowledge base describing the high-level operators to be learned, 

the agent has access to an interface which, given a low-level reinforcement learning 

state (representing low-level percepts), can construct a high-level set of STRIPS 

literals which describe the state. The STRIPS output of the interface must include 

the current goal of the agent. This limits the learning agent to domains where the 

only reward received is associated with reaching one of a set of goal states. 
Initially the agent has no plan, so it uses the above interface to turn the initial 

state into a STRIPS problem description. The STRIPS planner takes this problem 
description and returns a sequence of operators which solves the problem. The 
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agent has a subordinate Q-learning agent to learn each operator, so the Q-learner 

corresponding to the first operator in the plan is activated. 
The activated Q-1earner takes responsibility for choosing actions, while the 

primary agent monitors the high-level descriptions of subsequent states. When 

the high level description changes the primary agent performs one or more of the 
following operations: 

Goal Changed If the overall goal of the agent is detected to have changed a new 

plan is needed, so the agent must run the STRIPS planner again. 

Effects Satisfied If the changes specified by the Add and Delete Lists of the 

operator have taken place then the Q-learner has been successful and receives 

a reward of +1. The Q-learner for the next operator in the plan is then 

activated. 

Preconditions Violated If a precondition becomes false while the effects are 

still unsatisfied then the operator is assumed to have failed. The Q-learner 

receives a reward of -1 and the STRIPS planner is activated for re-planning. 

Operator In Progress If the effects are unsatisfied and the preconditions in- 

violate, either the effects are partially complete, or a irrelevant literal has 

changed truth value. The current Q-learner receives reward 0 and continues. 

The assumption that violating the preconditions indicates operator failure has 

some important consequences. It means that any operator which deletes some of 
its own preconditions must perform all these deletions together in the final action 

of the low-level behaviour. To relax this restriction the STRIPS representation 

could be extended by specifying an invariant for each operator. The invariant is a 
logical formula which must remain true during the lifetime of an operator. If the 

invariant ever becomes false an operator failure is deemed to have occurred. The 

experiments reported in this chapter did not require invariants, but they may be 

needed for other application domains. 

7.3 Evaluation Domain 

The evaluation domain used here is a grid world which consists of both smaller grid 

squares and larger region squares which contain groups of grid squares. The region 

squares represent target areas to which the mobile robot must navigate. Using 

region squares for the agent's goal rather than individual grid squares means that 

it will be possible to reason about goals at an abstract level which only considers 
the region squares, ignoring the detail provided by individual grid squares. There 
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Figure 7.1: An instance of the evaluation domain. 

is only ()it(, acthic (i. e. goal) region square at any time. Whenever the robot enters 

tlic active repion it receives a reward and a new goal region is chosen at random. n 1-1 n 
The robot is situated in ()]'('of the g-rid squares, and faces in one of the four compass 
directions: 'north. ca"St. south and '11yest. 

To evaluate performance as the state space is scaled-up, a class of these pro])- 

leins was defincd. where the regions are arranged in a square of side n,. (see Figure 

7.1). Each region contains a square set of grid squares, of side ii.. There are a 
22, total of I?! ]/?? nrid squares which the robot can occupy. Since the destination of the 

r possible destinations. Hence the size robot must be it region square, there are p. 2 

of the State space S. which encodes the position and direction of the robot, as well 

as the location of' the current destination region, is: 

21 4 Sl = 4ng Ir 

This doinain is intended to be representative of other goal-oriented doinains 

n addition, the siiiplicit. N which have a sip-nificant degree of high level structure. In 

of this domain makes it an ideal choice for illustration purposes. It is easy to 

partition the overall problem into parts where low-level learning is to be jised 
(within individual region squares) and parts where hitgh level planning is to be 

lised (wivigating, between the region squares using high level movement operators). 
Allowing itf, and ii, to be varied independently means that not only can we scale up 

to larger problems in a quantitative fashion. but we can also control the relative 
difficultv of the parts of the problein assigned to the planner and the low-level 

learners. 
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There are only three actions available to the robot: turn left, turn right and 
forward. Tum left turns the robot 90' anticlockwise to face a new compass direc- 

tion. Turn right causes the robot to make a 90' clockwise turn. Forward will move 
the robot one square forward in the direction it is currently facing. If the robot 
tries to move off the edge of the map of grid squares the forward action will have 

no effect. 
The robot receives a reward of 0 on every step, except on a step where the 

robot moves into the active region. When this happens the robot receives a reward 

of 1 and a new active region is picked at random from the remaining regions. This 

introduces a small element of stochasticity to the domain, but this is not significant 
for the PLANQ-learner, since it will re-plan each time the goal (the active region) 

changes. 
The high level STRIPS representation of the evaluation domain abstracts away 

the state variables corresponding to the orientation of the robot and the position of 
the grid square it occupies in the current region. Reasoning with this representation 
is limited to the level of regions. It allows a path to be planned between the current 

and target regions using a knowledge base which encodes an adjacency relation over 
the set of regions. 

Each region at a position (x, y) is represented as a constant r-x-y. The predicate 

adj (ri, r2, dir) encodes the fact that region r2 can be reached from region ri 
by travelling in the direction dir, which can be one of the compass points N, S, E or 
W. The at W predicate is used to encode the current location of the robot, and to 

define the goal region to be reached. 
The operators available are NORTH, SOUTH, EAST and WEST, which correspond to 

low-level behaviours to be learned for moving in each of the four compass directions. 

PDDL, the Planning Domain Definition Language (Ghallab et al., 1998), is 

used to pass problem descriptions and solutions between the agent and the FF 

planner. It forms the basis of a weakly-coupled interface between the agent and 
the planner, which allows any other external planner to be used if it can manipulate 
PDDL data. Examples of an operator definition and a problem description (from 

the evaluation domain) in PDDL format are shown in Figures 7.2 and 7.3. 

7.4 Experiment 1: Results 

In the first experiment the PLANQ-1earner was evaluated using a variety of values 

for n, and n.. For the purpose of comparison a standard Q-learning agent and an 

agent using a hand-coded version of the optimal policy were also evaluated in the 

domain. 
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(: action NORTH : parameters (? from ? to) 

: precondition (and (at ? from) 

(adj ? from ? to N)) 

: effect (and (at ? to) 
(not (at ? from))) 

) 

Figure 7.2: The operator NORTH from the evaluation domain. 

(define (problem regiongridl) 
(: domain regiongriddomain) 

(: objects r_0_0 

r-0-1 

r-1-0 

r-1-1 

(: init (adj r-0-0 r-1-0 E) 

(adj r-0-0 r-0-1 S) 

(adj r-0-1 r-1-1 E) 

(adj r-0-1 r-0-0 N) 

(adj r-1-0 r-0-0 W) 

(adj r-1-0 r-1-1 S) 

(adj r-1-1 r-0-1 W) 

(adj r-1-1 r-1-0 N) 

(at r-o-i) 

goal 
(at r-0-0) 

)) 
Figure 7.3: A PDDL problem description for n, = 2. 
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The standard Q-learner uses the full state space S as defined above, and chooses 
between the three low-level actions: turn left, turn Tight and forward. Like the 
PLANQ-learner, it receives a reward of I on a step where it enters a goal region, 
and a reward of 0 everywhere else. In all of these experiments the learning rate 
a is 0.1 and the discount factor -y is 0.9. An e-greedy exploration strategy is used 
(see Section 3.3), with the c parameter decaying linearly from 1.0 to 0.0 over the 

course of the experiment. The rate of decay for c was chosen so that the decay was 
as fast as possible without impacting on the final quality of the solution. 

Examples of the performance of the agents over time are shown in Figures 7.4 

and 7.5. The graphs in these Figures demonstrate that as larger values of nr are 
considered the performance advantage of PLANQ-learning over Q-learning becomes 

progressively smaller. The Q-1earning agent consistently learns the true optimal 
policy. The PLANQ-1earner learns a good policy, but not quite the optimum. This 
is because the planning model of the grid world does not model the cost of mak- 
ing turns - the plans INORTH, EAST, NORTH, EAST} and INORTH, NORTH, EAST, 
EAST} are considered equally suitable by the planner, but in reality the latter plan 
has a better reward rate. This results in slightly sub-optimal performance. 

In both of the experiments the PLANQ-1earner finds a good policy several times 

more quickly than the Q-1earner. This is to be expected: the Q-learner must learn 
both high and low-level behaviours, whereas the PLANQ-1earner need only learn 

the low-level behaviour. However it can be observed that the advantage of the 
PLANQ-1earner over the Q-1earner is less in the n, =5 experiment than in the 

n, =3 experiment. The general trend for the PLANQ-1earner to lose advantage as 
n, increases is discussed in the next section. 

7.5 Problems with Experiment]. 

The learning speed-up achieved by the PLANQ-learner over the Q-learner can be 

attributed to the temporal abstraction inherent in the STRIPS formulation of the 

problem domain. The temporal abstraction allows us to express the overall problem 

as a number of sequential sub-problems, each of which is easier to learn than the 

overall task. Because the PLANQ-1earner can learn the sub-tasks separately, it can 
finish learning more quickly than the Q-learner, which must tackle the problem as 

a whole. 
However, the advantage offered by temporal abstraction grows smaller as larger 

domains are considered since there is no state- abstraction available to the PLANQ- 

learner. A state abstraction allows state variables to be excluded from the learner's 

state space if they are not relevant to learning a particular task (or subtask). For 
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Figure 7.5: Results for experiment 1, where n, =5 and n., = 5. 

instance, to learn the behaviour for the NORTH operator, only the direction and the 

position of the agent within the current region are relevant. The identities of the 

current and destination regions are irrelevant. 

Without the state abstraction, the PLANQ-learner has no way of knowing that 

the experience learned for moving NORTH from roj to ro, o can be exploited when 

moving from r2,1 to r2,0 (where r.,, y is written to indicate the region at position 
(x, V) in the region grid). This leads to situations like the one in Figure 7.6, where 
the quality of a partially-learned operator can vary considerably in different regions 

of the grid world. 
The PLANQ-learner needs to perform enough exploration in the state space to 

learn the operator separately in all of the regions in which it is applicable. As n, 
is increased the time taken to perform this exploration approaches the time taken 

by the Q-learner to learn the entire problem from scratch. 
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Figure 7.6: Learning the NORTH operator without state abstraction. Blank squares 
indicate states which have not yet converged to the optimal action. Note that 
NORTH is never applied in a region rý, y when y=n, - 1. 

7.6 Adding State Abstraction 

To exploit the STRIPS representation of PLANQ effectively a state abstraction 
mechanism was added to the system. Each of the STRIPS operators was annotated 
with the names of the state variables which were relevant to the learning of that 

operator (see Figure 7.7). The Q-learner for that operator learns with a state space 
consisting only of these relevant variables. This speeds up learning by generalising 
the experience from one region to improve performance in another region. 

However, supplying this extra information to the PLANQ-learner gives it a 
significant advantage over the Q-learner, and comparing their learning times is 

unlikely to be useful. A more revealing comparison would be with a hierarchical 
Q-learner (Barto and Mahadevan, 2003) which can take advantage of the temporal 

and state abstractions already exploited by PLANQ. 

For the purposes of this comparison, the Hierarchical Semi-Markov Q-Learning 
(HSMQ) algorithm (Dietterich, 2000a) was selected. The HSMQ learning algo- 
rithm is a simplified version of the MAXQ-Q learning algorithm, which was re- 
viewed in Section 3.5.4. Like the MAXQ-Q algorithm the HSMQ algorithm can 
learn at multiple levels of a hierarchy simultaneously while using a different state 
abstraction at each node of the hierarchy. It also shares the property of MAXQ- 
Q that it can be theoretically guaranteed to converge to a recursively optimal' 
policy. The key difference between the two algorithms is that HSMQ does not 
use the MAXQ value function decomposition. This means that the more powerful 
state abstraction techniques made possible by the decomposition cannot be used 

'The definition of recursive optimality is given on page 63 of Section 3.5. 
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Temporal Abstraction State Abstraction 

High-level control I Relevant state variables 
Current region x-pos 

Policy for choosing Current region y-pos 
abstract actions Destination region x-pos 

Destination region y-pos 

....... ... .... ....... ............................................................... 

North West 1: Relevant state variables 
Robot direction L 

East I Robot x-offset within region 
Robot y-offset within region 

Abstract actions 

Figure 7.7: Temporal and state abstractions used by the PLANQ-learner and the 

HSMQ-Iearner. Note that of these two only the HSMQ-learner learns at the high- 

level as well as (simultaneously) at the low-level. 

with HSMQ. For the purposes of the comparison in this chapter a relatively simple 

state abstraction will be perfectly adequate. Pseudocode for the HSMQ-Iearning 

algorithm is given in Algorithm 13. 

The hierarchy used by the HSMQ learner (see Figure 7.7) is based on four 

abstract actions corresponding to the STRIPS operators of PLANQ- The desired 

behaviour of each abstract action is determined by an internal reward function 

supplied as part of the hierarchy. The high-level task in the hierarchy is to find 

a policy for executing the abstract actions which maximizes the reward accumu- 
lated in the environment. The hierarchy also encodes those state variables which 

are relevant to the learning of each operator, and those state variables which are 

relevant to the learning of the high-level policy for choosing abstract actions. 

7.7 Experiment 2: Results 

Figures 7.8-7.10 show the results obtained by the augmented PLANQ-learner and 

the HSMQ-learner for two instances of the evaluation domain. The HSMQ-Iearner 

requires an increasing number of time steps to learn a recursively optimal policy 

as n, is increased. In contrast the PLANQ-learner consistently achieves a policy of 

a similar quality within a constant number of steps (around 100,000). Once it has 

learned a good policy for achieving each of the operators in an arbitrary 5x5 region 

(thanks to the state abstraction) the PLANQ-learner has enough information to 

achieve a good rate of return in a region square of arbitrary size. In other words, 

the number of steps needed for the PLANQ-learner to achieve a good rate of return 

is dependent only on n., not on n,. 
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Algorithm 13 The Hierarchical Semi-Markov Q-learning (HSMQ) algorithm. 
jVn, s, a initialise Q(n, s, a) to 0. } 
lCall HSMQ (RO OTNODE (), STARTING STATE()) at the start of each episode. } 

function HSMQ(node n, state s) 
A4-- CIIILDREN(n) factions at the next hierarchy levell 

rt. tal 0 jaccuinulate discounted reward} 
kt. t,,, 0 Itime steps elapsed at this node} 

While not TERM I NATION CONDITION (n, s) do 

Choose action a from A according to the exploration strategy. 

if a is a primitive actioii then 

Execute a, and observe new state s' and reward r. 
k 4- 1 {k is the time taken by the action} 

else 
(s', r, k) +-- HSMQ(a, s) f recurse down the hierarchyl 

end if 

S ABSTRACTSTATE(n, s) 

S' ABSTRACTSTATE(n, s') 

R LOCALREWARD(n, a, S, S') 

Q(n, S, a) a)Q(n, S, a) +a (r + R) + -yk max Q (n, S', a') 
I 

a'EA 

I 

rtotal '4- ? 'total + ryktot. 1 

ktotal 4-- ktow +k 

S 4-- 51 
end while 

return (s, rt. t,, I, k7total) 

end function 
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Figure 7.8: Results for experiment 2, where n, =2 and ng = 5. 
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Figure 7.9: Results for experiment 2, where n, =4 and ng = 5. 
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Figure 7.10: Results for experiment 2, where n, =6 and ng = 5. 

251 



The HSMQ-Iearner on the other hand needs to learn both the low-level abstract 
actions and the high-level policy for choosing abstract actions. By exploiting both 
this temporal abstraction and the state abstraction information supplied with the 
hierarchy, the HSMQ-Iearner can achieve a recursively- optimal policy in orders of 
magnitude less time than the original Q-learner takes to achieve a good rate of 
return. However, the number of steps the HSMQ-Iearner needs to achieve this 

policy does increase with nr, since the high-level policy becomes more difficult 

to learn. So as the value of nr is increased, the PLANQ-learner outperforms the 
HSMQ-1carner to a greater degree. 

7.8 Computational Requirements 

Although PLANQ achieved a good policy after fewer actions in the environment 
than the other agents, it is important to consider the CPU time required to calcu- 
late each action choice. Tile original implementation used the FF planner and the 
STRIPS encoding shown in Figure 7.3. This scaled very poorly in terms of CPU 
time. Results could only be obtained in a feasible time for values of n, < 6. 

To improve the scaling properties of PLANQ a custom GRAPHPLAN planner 

was written, which eliminated costly operations such as parsing and file-access, 

but still provided a fully functional domain-independent planner. This reduced 
the time required to generate each new plan, but overall the scaling performance 

remained poor (see Figure 7.11). 

Ail alternative STRIPS encoding of the evaluation domain was also adopted, 
as shown in Figures 7.12 and 7.13. This involves encoding a subset of the natural 
numbers with the successor relation s (a, b), and representing the x and y coordi- 
nates independently as x(n) and y(n). Replacing the adjacency relation with a 
successor relation means that the number of formulae in the initial conditions is 
0(n, ) instead of 0(n2), which makes a great improvement to the performance of r 
PLANQ. 

Figure 7.14 shows the amount of CPU time taken for PLANQ to learn a policy 
with 95% optimal performance. While the HSMQ learning method is infeasible for 

nr > 20, PLANQ can learn to make near-optimal action choices in under a minute 
if nr < 50. However, as nr approaches 70 PLANQ also starts to become infeasible. 
At this point the time required to learn a 95% optimal policy becomes completely 
dominated by the time required for symbolic planning in the abstract model of the 
domain, as shown by the measurements in Figure 7.15. 

A key limitation of the PLANQ algorithm in its current form is the large vari- 
ance in CPU time required per time step. On most steps an action choice can be 
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Figure 7.11: CPU time required to achieve 95% optimal performance when ng = 5. 

This experiment used the new GRAPHPLAN implementation for planning, and the 

first PDDL domain encoding (given in Figure 7.3). 

made in a few microseconds, but if the planner needs to be invoked the choice may 
be delayed for 50 or 100 milliseconds. For systems with real-time constraints this 
is clearly unacceptable. 

7.9 Discussion 

In this series of experiments it has been shown that a symbolic planning algorithm 
based on the STRIPS representation can be combined successfully with reinforce- 

ment learning techniques. This results in an agent which uses an explicit symbolic 
description of its prior knowledge of a learning problem to constrain the number 

of action steps required to learn a policy with a good (but not necessarily optimal) 

rate of return. 
PLANQ-learning has some similarities to methods used in the RACHEL System 

(Ryan, 2002a), which was surveyed in Section 3.6.1. The mechanism described in 

this chapter for generating a reward function from a symbolic operator is also used 
in the RACHEL system. The two systems differ in their use of planning techniques. 

RACHEL uses semi-universal plans, which require more memory than linear plans 
but result in less replanning when individual operators fail. In addition, Ryan 
(2002a) focuses primarily on the benefits that teleo-reactive behaviour can bring 

to an RL-based system. In contrast, this chapter focuses on performance issues as 
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(define (problem regiongrid2) 
(: domain regiongriddomain) 

(: objects no ni n2) 

(: init (s no n1) 
(S n1 n2) 
U no) 
ly no) 

(: goal U ni) 
(y n2) 

Figure 7.12: Alternative encoding of a PDDL problem description for n, = 3. 

(: action NORTH : parameters (? from ? to) 

: precondition (and (y Urom) 

(s ? to Urom)) 

: effect (and (y ? to) 
(not (y ? from))) 

) 

Figure 7.13: Alternative encoding in PDDL of operator NORTH. 
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Figure 7.14: CPU time required to achieve 95% optimal performance when ng = 5. 

This experiment used the new GRAPHPLAN implementation for planning, and the 

alternative PDDL domain encoding (given in Figure 7.12). 
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Figure 7.15: For each value of n, this graph shows the maximum time required for 

the construction of a single plan recorded during the time required to learn a 95% 

optimal policy. 
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the size of the state space is scaled-up exponentially, with particular attention paid 
to the benefits of using state abstraction in combination with symbolic planning. 

The STRIPS representation used in this work is limited to describing problems 

which are deterministic, fully observable, and goal oriented. To overcome some 

of these limitations, the PLANQ method could be adapted to use a more com- 

plex planner which can reason about stochastic action effects and plan quality. 
However, it is also possible that prior knowledge encoded in the limited STRIPS 

representation will still be useful for speeding up the learning of many problems, 

even if some aspects of those problems are inexpressible in this representation. 
One limitation of PLANQ-Learning is the rigid separation of planning and 

learning in the layered architecture. The high level structure must be known in 

full before learning begins, and learning has the quite limited scope of implementing 

the low-level actions. While some domains exhibit this kind of structure, it is more 

often the case that solving high level aspects of a problem by planning alone is 

infeasible, and that some learning at this level is also necessary. 

In an ideal system, a closer integration of planning and learning would enable 

a greater synergy to emerge from their combination. If new symbolic facts about 

the environment can be discovered from experience, it should be possible to add 

them to the knowledge base. Alternatively, the knowledge base could be used to 

generate likely hypotheses for the learner to evaluate in the environment. 

7.10 Summary and Conclusions 

The following material has been presented in this chapter: 

A novel hybrid method called PLANQ-learning, which combines high-level 

symbolic planning with low level reinforcement learning to implement be- 

haviours for abstract planning operators. 

A grid-world based evaluation domain which can be quantitatively scaled up 

to produce a series of more difficult problems by modifying the parameters 

n, and ng. 

* An evaluation in this domain comparing the performance of PLANQ-learning 

with that of a standard Q-1earning agent. 

* An analysis of the use of state abstraction in this domain. 

9 An evaluation in this domain comparing the performance of PLANQ-Iearning 

with state abstraction to a hierarchical reinforcement learner which can also 
exploit the specified state abstraction. 
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9A study of the computational resource requirements of PLANQ-learning. 

From this material we can draw the following conclusions: 

Witliout the use of state abstraction PLANQ can only accelerate learning for 

the simplest of problems. As progressively more difficult problems are con- 

sidered PLANQ-Iearning offers very little benefit over standard Q-learning. 

With the addition of state abstraction PLANQ-learning requires less time 

to learn a high-quality policy than either a standard Q-learning agent or a 
hierarchical RL agent using state abstraction. 

Using the well known FASTFORWARD planner with a naive STRIPS encoding 

of the domain, the computation time required to achieve a high-quality policy 
became rapidly infeasible as n, was increased. 

Using a GRAP11PLAN planner with a more streamlined interface, and an 
improved STRIPS encoding of the domain, a high quality policy could be 

feasibly achieved for much larger values of n,. 

Overall, these experiments show the potential of symbolic planning as a tech- 

nique for providing high level structure for RL agents, making complex learn- 

ing problems feasible by constraining learning to those areas where symbolic 

knowledge is inadequate or unavailable. 
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Chapter 8 

Conclusions 

This thesis has been concerned with developing methods for scaling-up reinforce- 

ment learning, so that high-quality policies can be learned for problems which are 
infeasible using standard RL algorithms. In this concluding chapter, a summary 
is presented of the material contained in this thesis on the two key topics of par- 

allelism and symbolic planning in RL. In addition, the limitations of the methods 

presented in this thesis are examined. Finally, the benefits for the wider RL field 

resulting from this research are assessed and several directions for future research 

are presented. 

8.1 Parallel Reinforcement Learning 

The first hypothesis of this Nvork, given on page 21, stated that: 

It is possible to exploit parallel hardware in reinforcement learning 

to achieve a speedup without sacrificing policy quality. 

To demonstrate the hypothesis, a series of novel methods for parallel RL were pre- 

sented in this work. These methods are based on the assumption that a simulated 

version of the target learning environment exists and that this simulation can be 

replicated on each node of a parallel computer. This means that an agent can be 

situated on each node, and that the group of agents can learn in parallel, each 
interacting with a local copy of the simulation. 

Across all of the proposed methods, each individual agent uses the SARSA(A) 

algorithm (Rummery and Niranjan, 1994) in combination with a linear value func- 

tion approximator. The features for the approximator are binary and are generated 

using tile coding (Sutton, 1996). All of the proposed methods are based on the 

periodic exchange of information about the weights of each agent's value function 

approximator. 
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The three methods proposed are: 

The Visit-Count Merge Method Each agent keeps a count of how many times 

each binary feature is active in the local simulation. This is known as a visit- 
count. Periodically the group of agents performs a distributed summation to 

calculate a weighted average of the agents' weight vectors. The weighted aver- 
age gives greater credence to feature-value estimates from agents with a large 

visit-count for a particular feature. After each periodic merging operation, 
each agent replaces its local weight vector with the weighted average. 

The Selective Merge Method Agents in this method exchange recent changes 
to the approximator weights instead of exchanging the absolute weight values 
themselves. In addition, the agents are selective about which weight changes 
are communicated. An agent sends a fixed number of weight changes with 
the largest magnitudes to the other agents during each merge operation. A 

merge operation consists of a simultaneous broadcast by all of the agents of 
a message containing the selection of weight change values. 

The Asynchronous Selective Merge Method An extension of the selective 

merge method described above. Asynchronous message passing is used to 

eliminate the requirement for the group of agents to synchronize during ev- 

ery merge operation. This means that the broadcasts of weight changes need 
not be simultaneous and can be distributed more evenly over time. In addi- 
tion, agents no longer need to wait for a message from every member of the 

group before their local weights can be updated. Individual messages can be 

processed and incorporated into the local value function as and when they 

arrive. 

The selective and asynchronous selective merge methods each have a number of 

variants, depending on the particular mechanism which is chosen for updating the 

local value function approximator in response to incoming messages. The relative 

performance of these variants was examined during the evaluation, in addition 
to a comparison of the best performance achieved by each of the three methods 

proposed above. 

8.1.1 Summary of Experimental Results 

The experimental evaluation of the parallel RL methods used two different settings, 
both based on a distributed memory model of parallel computation. The first 

of these settings was a simulation of parallel agents, which could be run on a 

uniprocessor computer. This simulation did not model the time delay incurred 
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when messages are transmitted between the agents, so the simulation was used 
primarily to show that the methods converged to good policies, ignoring whether 
the utilised communication bandwidth was realistic. The second setting was a 
cluster of workstations based on commodity hardware using a 10OMbs Ethernet 
interconnect. The limited bandwidth of this communication network means that 
the large parallel speedups that can be achieved in simulation cannot necessarily 
be achieved in the more realistic setting. 

Five example single-agent RL problems were chosen for the evaluation. Three 

of these are well known RL benchmark problems: the Mountain-Car task, the 
Pole-Balancing task and the Acrobot task. Tile other two problems are IoNv_ and 
high-difficulty instances of a stochastic grid world domain defined in Section 4.3.1. 
These five problems were chosen to exhibit a range of different characteristics, 
such as variations in the level of stochasticity, and whether the problem is goal- 
oriented or not. Successful performance over this whole set of problems should 
be a good indication that a given parallel RL method will perform well for many 
other problems than just the ones considered here. 

The evaluation showed that the visit-count merge method produced large speed- 
ups in all the evaluation domains using the simulation of parallel agents. The 

speedups fell short of the perfect case of a linear speedup, predominantly due to 
the fact that there is not a perfect division of labour between the agents (i. e. there 
is some duplication of effort. ) The success of the method using the simulation 
of parallel agents shows that combining approximator weights from several paral- 
lel agents is a valid mechanism for the agents to share intermediate results and 
progress more quickly towards a high-quality solution. 

However, such positive results for the visit-count merge method are not re- 
peated when the method is evaluated using the cluster of workstations. The limited 
bandwidth of the cluster interconnect proves to be a significant bottleneck. Even 

using ail efficient distributed summation algorithm, each agent must transmit a 
weight and a visit count over the network for every feature in this method. All of 
our example problems use thousands of features, so the time required to complete 
the distributed summation is significant. Since the agents wait for the complete 

summation before learning is resumed, they waste a lot of time waiting for mes- 
sages to arrive. Under these conditions, modest speedups can only be achieved in 

the two grid world problems. No speedup is possible in the other three problems. 
The selective merge method was motivated by the need to reduce the com- 

munication burden of the visit-count merge method. Changes to the weights are 
broadcast instead of absolute values, and only a fixed number of the largest changes 

are sent in each agent broadcast. Tile evaluation shows that this approach is suc- 
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cessful, allowing speedups to be obtained in all the domains using the cluster of 
workstations. However, some of the speedups are very small, especially in the Ac- 

robot task. This appears to be because the Acrobot task requires a large number 
of features for the approximator, but does not require many simulation steps to 
converge to a good policy. This means that the communication overhead is large 
in comparison to the relatively small amount of time required for a single agent to 
converge. 

The asynchronous selective merge method eliminates the requirement for each 
agent to wait for a message from each of its peers before a new period of learning 

can begin. This eliminates the synchronization penalty inherent in the two previous 
methods. The evaluation shows that the time saved by making this modification 
is significant, allowing much better speedups to be obtained in all the evaluation 
domains. The greatest improvement is shown in the Acrobat task, where previously 
only a very small speedup could be obtained using the selective merge method. This 

asynchronous method is the most effective algorithm for parallel RL developed in 
this work. 

With regards to the variants of the latter two methods, the asynchronous selec- 
tive merge method had one variant which produced the best performance in a wide 
variety of situations, so this is the one to prefer. The selective merge method on 

V. the other hand had no clear winner out of the proposed mechanisms for updating 
the approximator weights in response to messages received from the group. The 
best performing mechanism varied according to which particular RL problem was 
being considered. In spite of this, the performances of all the mechanisms were 
fairly similar, so there is not a large penalty for selecting one of these mechanisms 
and using it for all the problems. 

8.1.2 Research Benefits 

Tile immediate benefit of this research to the RL community is that tile time 

required to prepare and run RL experiments can be reduced, either by using dedi- 

cated parallel hardware or by utilising groups of idle workstations in a laboratory. 
Obviously empirical results for single-agent algorithms must still be generated for 

research purposes, so parallelism should not be used in every experiment. However, 

even setting up a single-agent experiment requires a number of steps beforehand 

such as determining a good set of approximator features, selecting good values for 
RL parameters such as tile learning rate and discount factor, and determining tile 

number (and length) of runs required to achieve a good policy with high proba- 
bility. Using a parallel approach for these preliminary stages could dramatically 

reduce tile turnaround time for a given experiment. 
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Another way to view the immediate benefit of this research is that if a fixed 

time is available for learning then a policy of higher quality can be learned in this 

time. This is particularly relevant for the case when offline learning is used to find 

a high quality stationary policy for deployment in some domain. In such cases it is 

not unreasonable to set aside hours or days of computation time to generate this 

policy. If parallel hardware can be made available, it is likely that the quality of 
the deployed policy will be increased if the same time is available for learning. 

In the longer term, this research is also potentially relevant to the problem 

of multi-agent learning. In this thesis I have focused on single-agent learning 

problems that can be simulated. This is a relatively simple way of ensuring that the 

parallel agents learn a value function corresponding to the same problem. In multi- 

agent learning, several agents are situated in the same environment. This means 
that their actions can potentially affect each other, introducing new challenges for 

machine learning researchers. However, suppose that two agents are in different 

locations of the environment, so that their actions do not directly affect each other. 
Suppose also that the agents are working on two similar subtasks of the overall 

problem. By using abstraction to ignore state variables which are irrelevant to the 

subtask, it may be possible to make the subtasks; look like two (almost) identical 
but separate learning problems. If the agents also have a communication channel, 
the methods described in this thesis become directly applicable. Thus the use of 
parallel RL in a multi-agent context is bound up with the problem of detecting 

and/or defining abstract hierarchies for planning, acting and learning in multi- 

agent domains. 

Parallel RL methods do not obviate the need for exploration, generalization, 

abstraction and relational representation in reinforcement learning. However, nei- 
ther are parallel methods incompatible with these other techniques. While the 

work in this thesis has focused on SARSA(A) and linear approximation, there is 

nothing which ties the approach of exchanging value function weights to either of 
these specific techniques. As long as there is some representation of a value func- 

tion, a variation of the methods in this work is likely to be applicable. Parallelism 

is best viewed as another technique in the RL "toolbox", to be deployed when ap- 

propriate in combination with one or more of these other techniques for scaling-up 
RL. 

8.1.3 Research Limitations 

The main limitation of the methods reported in this thesis is that values for pa- 

rameters p and f,, m, which are important for achieving good parallel performance, 

must currently be found by trial and error. Parameter p defines the (average) num- 
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ber of simulation time steps which elapses between successive message broadcasts. 

For the selective methods, parameter f,,,,, controls the number of weight changes 

which can be included in a single broadcast. Together, these parameters are used 
to strike a balance between communicating often enough to converge quickly to 

a good policy, but not communicating so often that most of each agent's time is 

spent sending, receiving and processing messages. Although the overall perfor- 

mance is insensitive to small variations in these parameters, it is a prerequisite for 

good performance that the parameter values are not many times smaller or larger 

than tile optimum values. There are already several RL parameters (such as a, \ 

and c) which require a trial and error approach to tailor an algorithm to a spe- 
cific domain, so it is unfortunate that these parallel methods introduce additional 

parameter choices. However, there is still the possibility that a heuristic method 
for selecting p and f,,, n could be defined, based on system- and domain-specific 

properties that can be measured very quickly: the time required for an agent to 

send a message containing tile entire set of value function weights to another agent, 
and the time required for ail agent to execute a single simulation step and update 
the local value function in response to this step. 

In this work I have focused on a distributed-memory model of parallel compu- 
tation, which maps well to clusters of workstations. An advantage of focusing on 
this model is that the methods presented in this work (which are based on message 
passing) should also work well on a shared-memory computer such as a symmetric 

multiprocessor (SMP) computer. This is because agents can easily exchange mes- 
sages by copying data into shared memory. These methods will therefore perform 

well on a wide variety of parallel architectures. However, alternative approaches 
to parallel RL which specifically target a shared memory model may perform even 
better on SMP computers. Determining the form of these alternative approaches 

and tile size of the performance improvement that can be achieved is a possible 
direction for future research in this area. 

A further limitation of this work is that the empirical analysis of the parallel RL 

methods and the resulting conclusions about which of the methods perform best 

are, to a certain degree, tied to the specific properties of the cluster of workstations 

used in the evaluation. The ratio of the bandwidth of the cluster interconnect to 

the processing speed of the CPU at each node is an important indicator of tile 

overall performance that can be achieved. If we took the cluster used in this work 

and replaced the interconnect with a faster 1 Gbs Ethernet interconnect, larger par- 

allel speedups would be reported than those in this thesis. In all cluster systems 
however, the efficient use of whatever bandwidth is available remains extremely 
important, and with appropriate choices for tile p, and f,,,, n parameters, the meth- 
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ods reported in this thesis can be adapted to get good performance out of any 

cluster of workstations. 

8.1.4 Future Research Directions 

There are a number of directions in which this work on parallel RL could be 

extended in the future. 

Selection and Update Mechanisms 

In this thesis, only one mechanism was used to select which weight changes were 

most important to communicate, namely those weight changes with the largest 

magnitudes. This approach is quite effective, prioritizing those weights in the lo- 

cal value function with the most pronounced differences from the group's existing 
knowledge of the environment. However, there remains the potential for improve- 

ment in this area. One flaw of the current approach is that information about 

the f, ý,,, largest weight changes is always sent in every broadcast, no matter how 

small these changes are. Towards the end of the experiment, when the VIA has 

all but converged, many of these changes could be zero, or very close to zero. 
Communicating these tiny changes is unlikely to have any benefit, so all additional 

mechanism to exclude insignificant changes may improve performance. One alter- 

native selection mechanism is to track the range of values observed for a particular 

weight and communicate a weight change only when the value of the weight moves 

outside the previously observed range. Another alternative is to track the mean 

and standard deviation of each weight value over time, prioritizing communication 

of weights which undergo large changes relative to the standard deviation. This 

may improve performance in situations a number of state-action pairs have a very 

similar mean reward but very different levels of variance. 

Other Approximation Architectures 

The evaluation of the parallel RL methods in this thesis used tile-coded linear 

approximators based on binary features to represent the value functions of the 

agents. The visit-count merge method described in Chapter 4 makes use of a 

count of the number of times each binary feature is active (i. e. has value = 1), so 
this method is strongly tied to the use of binary features. On the other hand, the 

selective and asynchronous selective merge methods do not use visit counts, and 
are therefore applicable to any linear function approximation architecture, such as 
using radial basis functions to generate learning features. A further empirical study 
using a variety of approximation architectures would provide stronger evidence of 
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the potential of these methods for accelerating RL with linear approximation. 
The parallel RL methods described here could also be applied to non-linear 

neural network approximation architectures, although the combination of neural 

networks and RL has proved unreliable in previous research (see Section 3.4.6). 
A more interesting question is whether these methods can be applied to memory 

based (also known as instance based) approximators, which have been shown to be 

stable and successful approximators for RL (see Section 3.4.4). An assumption of 
this thesis has been that all agents use an identical set of learning features which 

are ordered. It is important that the features are ordered, since it means that 

each feature (and lience each linear approximator weight) can be identified by an 
index. To specify a sparse set of changes to the set of weights, a message can be 

constructed efficiently from a set of pairs, where each pair consists of an index and 

a weight change. With a memory-based approximator, there is no longer a fixed 

set of features. Each agent simply stores in memory all the different states that 
it has visited. The agents therefore no longer have a common frame of reference 
for value estimates, which means that some number of exemplar states must be 

exchanged over the communication network to establish a basis for communication. 
In domains which require many state variables to describe the environment, the 

exchange of such exemplars will be expensive in terms of network bandwidth. 

The development of parallel RL methods which use memory-based approximation 

represents a major challenge for future research. 

Theoretical Analysis 

In this thesis, I have presented strong empirical evidence (using a wide range of 

evaluation domains) that parallel RL based on merging approximator weights can 

speed up learning without compromising the final quality of the learned policy. 
While theoretical proofs of convergence have not been provided for the methods 
described in this thesis, previous research in RL has shown that methods without 

a proof may still be of great practical importance (Sutton, 1996). However, to 

increase our confidence in these methods, it would be good to prove that they 

converge to policies which are at least as good as those learned by (single-agent) 

SARSA(A). A major difficulty here is the fact that there is not currently a proof of 

convergence for the single-agent SARSA(A) algorithm if both linear approximation 

and a GLIE policyl are used, as they are in this thesis. 
In the short term, until a convergence proof is found (or shown not to exist) for 

the single-agent algorithm, the best that we could do is to show that convergence 
'GLIE stands for "Greedy in the Limit with Infinite Exploration. " See Singh et al. (2000) for 

further details. 
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proofs exist for two specific situations: 

1. Each of the parallel agents does not explore, but follows a fixed, stationanj 
policy for its entire lifetime. 

2. The parallel agents do explore, but A=0 and each agent's value function is 

represented with a table (i. e. no function approximation). 

In each of these cases a convergence proof exists for the restricted single-agent 

algorithm. For case 1, a modified version of the proof of Tsitsiklis and van Roy 
(1997) can be used to guarantee convergence. For case 2, the proof of Singh et al. 
(2000) applies. Extending these results to the parallel case would provide a degree 

of confidence that the mechanisms of parallel merging do not interfere with the 
long term convergence of SARSA(A), even if we cannot show that the result still 
holds in the most general case. 

Sliared-Memory Parallel Systems 

This thesis has focused on a distributed-memory model of parallel computing, under 

which the parallel RL agents must use message passing to communicate interme- 

diate results between themselves. This model maps well to an implementation 

on a cluster of workstations using commodity hardware. An alternative approach 

would be to use a shared-memory model of parallel computing, with an associated 
implementation on a symmetric multiprocessor (SMP) computer. One advantage 

of the methods described in this thesis is that they can easily be deployed on an 
SMP computer. This would be accomplished with a message-passing implementa- 

tion in which agents write message data into shared memory rather than using an 
interconnection network. 

In addition, a shared-memory model allows the possibility of other parallel RL 

methods where the parallel agents use and update a shared value function rep- 

resentation. This idea was investigated in the context of multi-agent learning by 

Tan (1993), though to my knowledge there has not been an implementation us- 
ing this concept on real parallel computing hardware rather than in simulation. 
This approach raises the question of how the integrity of the shared value func- 

tion data structure can be maintained while still allowing fast efficient read/write 

access for the agents. The cost of communication in the shared-memory model 
arises from locking areas of shared memory rather than delays in message trans- 

mission. A study which compared the effectiveness of both the shared-memory and 
distributed-memory approaches to parallel RL would also provide new insights. 
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8.2 Symbolic Planning and RL 

The second hypothesis of this work, given on page 23, stated that: 

A hybrid planning-learning system based on a high-level STRIPS- 

based planner and low-level reinforcement learning will exhibit better 

scaling properties than both standard and hierarchical RL algorithms 
for goal-oriented learning problems. 

To demonstrate this hypothesis the novel PLANQ-learning algorithm was presented 
in this work. PLANQ-1earning is applicable to RL problems where the only non- 

zero reward is received when the agent reaches one of a set of goal states (i. e. 

goal-oriented problems. ) A high-level STRIPS plan is used to guide the agent 
towards the goal states, providing the high-level structure for the agent's policy. 
Tile agent has access to an interface which, given a low-level state, will return a 
high-level symbolic description of that state and the current goal. The agent also 
has symbolic descriptions of a number of abstract operators, which initially have 

no implementation in terms of the available low-level actions. 
An efficient STRIPS planner based on the GRAPHPLAN algorithm (Blum and 

Furst, 1997) constructs a high-level plan to achieve the current goal using the ab- 

stract operators. Tile implementation of each operator is provided by learning a 

policy at the low-level using RL. Tile reward function used to learn each low-level 

policy is derived directly from the preconditions and effects of each abstract op- 

erator. Tile symbolic description of the current state is monitored as the agent 
interacts with the environment. The agent only receives a positive reward if the 

postcondition of the current operator is achieved without violating the precondi- 
tions. 

8.2.1 Summary of Experimental Results 

To evaluate the scaling properties of the PLANQ-learning algorithm, a determin- 

istic grid-world domain was selected. Instances of this domain could be scaled up 

in quantitative steps to create more difficult problems by modifying the defining 

parameters of a problem instance. 

The PLANQ-learning algorithm was compared with the standard Q-learning 

algorithm (Watkins, 1989) in a series of increasingly difficult instances. In all 

of these instances, PLANQ-learning produced the best performance out of the two 

algorithms. However, the trend was observed that the difference in performance be- 

tween the two algorithms became smaller as the problem instances became larger. 

This trend arose because the PLANQ learner was not able to effectively generalize 
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experience gained in different areas of the state space. This result suggests that for 

larger problems, high-level planning is essentially useless without state-abstraction. 
Introducing a state-abstraction mechanism meant that the PLANQ-learner was 

able to vastly outperform the Q-1earning agent. However, this comparison was 

unfair since the Q-learning agent was not able to exploit the state abstraction 

mechanism available to the PLANQ-learner. A more balanced comparison was 

possible with an agent using the HSMQ-algorithm (Dietterich, 2000a), since this 

algorithm is hierarchical and can make use of the state abstraction. This com- 

parison showed that as the number of regions was increased, the PLANQ-learner 

required a constant number of environment time steps to converge to a near-optimal 

policy, whereas the number of time steps required by the HSMQ-Iearner continued 
to increase. This is because the PLANQ-1earner only needs to learn low-level poli- 

cies, whereas the HSMQ-Iearner needs to learn both high- and low-level policies 

simultaneously. 
In terms of computation time rather than environmental time steps, learning 

a high-quality policy using the PLANQ-learner remained feasible for much larger 

numbers of regions than either the Q-1earning or HSMQ-1earning algorithms. How- 

ever, this property comes with the disadvantage of an extremely high variance in 

the computation time expended per time step, since on time steps where replan- 

ning is required the time delay to generate a new STRIPS plan can be significant. 
Where no replanning is required, the agent's responses are almost instantaneous 

by comparison. 

8.2.2 Research Benefits 

The PLANQ-learning algorithm demonstrates how concepts of hierarchy (see Sec- 

tion 3.5) and symbolic planning (see Section 3.6) can be combined with reinforce- 

ment learning to create a hybrid planning-learning method. This type of hybrid 

approach is most appropriate for learning problems which can be described at a 
high level as a number of distinct sequential stages. If a large-scale learning prob- 
lem has this kind of structure, the results presented in this thesis have shown that 
PLANQ-learning is likely to perform much better than standard flat or hierarchical 

RL algorithms. 
The results of the experiments reported in Chapter 7 indicate a number of im- 

portant guidelines for researchers wishing to implement a hybrid learning method 

of this kind. The use of state-abstraction was shown to be vital for generalization 
in large, regular domains. Using a symbolic plan to structure a problem solution 

without state-abstraction is not going to scale well in such domains. Optimization 

of the interface between the agent and the planner was also shown to be impor- 
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taut for controlling the computational requirements of the hybrid method. This is 

especially important in simulated learning environments, where it is very cheap to 

generate new experiences. Finally, encoding the STRIPS domain theory to facili- 

tate efficient planning is also vital for controlling computational complexity. As is 

often the case with AI methods, selecting the wrong problem representation will 
significantly degrade the effectiveness of the method. 

8.2.3 Research Limitations 

The main limitation on the applicability of PLANQ-learning to RL problems is that 

an appropriate STRIPS domain theory must be found which describes a high-level 

solution for a given problem. This requirement for a domain theory places a number 
of restrictions on the type of problems which can be solved. The problems must 
be goal-oriented (i. e. the only non-zero reward is received when a goal state is 

reached) and low-level stochastic effects must be hidden by the policies learned for 

the STRIPS operators. In addition, each problem must have a suitable internal 

structure such that high-level planning is advantageous for achieving a good return 
in the domain. 

PLANQ-learning also has limitations which are exhibited by hierarchical RL 

methods in general, such as the fact that a hierarchical policy will be sub-optimal 
if the high level abstract operators used cannot express the true optimal policy. It 

would be extremely useful if the hierarchical policy could be used as an intermediate 

step towards learning the optimal policy. However, this is generally not possible 

without giving up the use of state-abstraction and the major improvements in 

performance which are made possible by it. 

The requirement for a STRIPS domain theory and goal to describe an RL 

problem can be viewed as a kind of prior problem knowledge. The requirement for 

this knowledge can be seen as a limitation, since the knowledge base must generally 
be created by hand before learning begins, but it can also be seen as an advantage 

of the approach, since if prior knowledge of the problem does already exist it can 
be exploited effectively by the PLANQ-learning algorithm. 

8.2.4 Future Research Directions 

There are a number of directions in which the work on PLANQ-learning could be 

extended in the future. 
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Advanced Symbolic Planning 

In this thesis a planner based on the GRAPHPLAN algorithm was used, which is 
based on the STRIPS representation of states, goals and actions. One restriction 
this places on the problems we can solve with PLANQ-learning is that only a 
deterministic set of effects can be specified for each high-level operator. If the RL 

policies which implement the operators have any stochastic side-effects, the agent 
will expend a great deal of effort on replanning. A more advanced planner based on 
probabilistic STRIPS operators (Kushmerick et al., 1995) would be able to avoid 
some (or all) of the replanning, although typically algorithms for probabilistic 
planning are more computationally expensive than deterministic planning. 

A second restriction the STRIPS representation imposes on the problems we 
can solve is the fact that operators have no cost. This will produce good results 
only in domains which are purely goal-oriented, i. e. where the only objective is to 

reach a goal state in as short a sequence of actions as possible. A more general 
representation would allow for the fact that the various STRIPS operators accu- 
inulate different levels of reward while executing in the environment. A planning 

algorithm using such a representation could favour where appropriate those opera- 
tors with a better return. However, in combination with probabilistic actions, this 
level of generality quickly approaches the complexity of planning in a Relational 

MDP (van Otterlo, 2005). Adapting the PLANQ-learning algorithm to such a gen- 

eral case is likely to be extremely expensive in terms of computation time. There 

is definitely an argument in favour of using as simple a planning representation 

as possible to keep computation costs feasible, even if this representation is not a 
perfect match to the domain in some circumstances. 

Multi-Level Hierarchies 

The PLANQ method described in this thesis uses a two-level hierarchy, where 

symbolic planning is used for the high-level component and reinforcement learning 

is used for the low-level component. While a symbolic plan can often be used to 

model the high level structure of a policy, this rigidly defined hierarchy does not 
have much flexibility, and cannot be applied to problems with a more complex 

solution structure. A more general method would allow hierarchies with multiple 
levels, where each node of the hierarchy at any of the levels can be either a symbolic 

planning or a reinforcement learning node. Which type of node is used would 
depend on which method was most appropriate for that part of the problem and 
on which domain knowledge was already available or easy to add. It is also worth 

recognising that, in some situations, a hand-coded program for selecting actions 
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would be more appropriate than either planning or RL. Allowing nodes to contain 

programs as well would further broaden the number of domains for which policies 

can be feasibly learned, although obviously it is impossible to guarantee that the 

quality of such a policy would be near that of an (infeasible to generate) optimal 

policy. Note that this approach would be quite similar to the layered learning 

method of Stone (1998). 

8.3 Concluding Remarks 

Reinforcement learning in large-scale domains remains an extremely challenging 

area of research. Auspicious theoretical guarantees of convergence (already shown 
for most of the standard algorithms) belie a host of practical problems in the 

application of these techniques. These include managing the scope and depth 

of exploration in a domain, generalizing between states in a stable manner and 

using relational representations of state to combat the curse of dimensionality. 

Active research continues in each of these areas, gradually broadening the range 

of problems to which RL can be applied effectively. 
This thesis provides two main contributions to the overall goal of large-scale 

reinforcement learning. Tile algorithms for parallel RL presented here allow parallel 

computing hardware to be used for RL. This means that high-quality policies can 
be found more quickly for domains which can be simulated. The significance of this 

for the broader field is that problems of borderline feasibility can potentially now 
be solved in minutes rather than hours, or hours rather than days. In the area of 

relational representations, the hybrid PLANQ-learning algorithm presented in this 

thesis shows how a symbolic plan can be used as the overall structure for an RL 

policy. It has also been demonstrated that the combination of symbolic reasoning, 

state-abstraction and low-level RL can feasibly generate high-quality policies for 

much larger learning problems than hierarchical RL alone. 
Despite the large body of existing work on scaling-up RL, fundamental prob- 

lems such as the curse of dimensionality and the explorationlexploitation dilemma 

continue to challenge researchers in this area. It may also be observed that as 

RL researchers continue to enlarge the set of feasible application domains, a range 

of techniques from other areas of Artificial Intelligence research are increasingly 

incorporated. As surveyed in Chapter 3, this includes work in Bayesian statis- 

tics, heuristic search, regression, classification, classical planning, decision-theoretic 

planning, hierarchical task networks and inductive-logic programming. In its broad- 

est sense therefore, RL encapsulates several of the most important goals in Al 

research, namely planning effective action in the world whilst learning from ex- 
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perience in an interactive, agent-oriented setting. While the scope of these goals 

makes a completely general RL approach seem pretty distant, the overall relevance 

of RL to the "Al problem" suggests that future progress in RL may allow us to 

make significant progress in the design of intelligent agents. 
Increasing the number of successful practical applications of RL seems to re- 

quire progress in two separate directions. The first direction involves "cleaning 

up" various aspects of low-level RL. The number of ad-hoc parameter choices that 

are required for many algorithms needs to be reduced. The theoretical basis for 

RL in the presence of generalization requires further work. There is also a need 
for standard mechanisms to address fundamental trade-offs such as exploration vs. 

exploitation, or sample-complexity vs. computational complexity. These low-level 

problems currently receive a great deal of attention in the research community. 
The second direction is addressing the problem of scale, which may involve the 

use of hierarchy, abstraction, relational representations, symbolic reasoning, or per- 
haps other mechanisms for learning, organizing and applying an agent's knowledge. 

While research is progressing well along a number of fronts in this direction, there 

remains little understanding about how RL should be integrated with symbolic 

planning, hand-coded policies, or even high-level cognitive approaches to experi- 

mentation and discovery. A unifying framework is obviously unlikely, given the 

overall diversity of the techniques available for scaling-up RL, but there remains 
the opportunity to develop a new family of methods for reinforcement learning in 

the large. By maintaining the goal of an interactive agent which receives rewards 

and improves in performance with experience, but relaxing various aspects of low- 

level RL which are less appropriate at a high level, a new front of RL research could 
be established. This could enable the development of a whole new generation of 

agents which learn from direct interaction and rewards. 
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List of Mathematical Symbols 

Symbol Description 

An action. 
A 'set of, actions. 

cA visit-count, which indicates the number of times a binary 

feature is active during a given period. 
J, 'Flic total wimber of features, used by a particular function 

approxi II lat or. 

The number of feature weights communicated by a selective 

parallel RL agent in a single merge period. 
An ob. servation in a partially observable environment. 
An observation function, which defines the probability of 

observing o after taking action a in state s. 

P The inciyc pcriod, which is the period between consecutive 

communications for parallcl RL methods in this thesis. 
QA value function which maps each state-action pair to a value. 

(2, A state-action value function corresponding to the expected 

I'0111*11 Of 7T. 

Q* A state-action value function corresponding to the expected 

return of the optimal policy 7r*. 

I' A rewird. 
RA reward function, which defines the expected reward for a 

transition (s, a, s'). 

.SA state. 

SA set of states. 

tA discrete thne step. 
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Symbol Description 

t1im The proportion of the time for a single parallel run which is used 
to decay the a and e parameters linearly towards zero. 

TA transition function, which defines the probability of each 
transition (s. a. s')- 

VA value function which maps each state to a value. 
I' 7T A value function corresponding to the expected return of 

I)Oli(*. V 7T. 

V* A value function corresponding to the expected return of the 

optimal policy7r*. 

0T he initial value of o before a period of linear decay begins. 

(t The learning rate, which determines how quickly a value function 
is adjusted towards new estimates of state values. 
The discount factor, which determines the relative worth of short- 
terni rewards and long-term rewards. 
The probability of choosing a random action at each time step 
when using the F-greedy exploration strategy. 

(0 The initial value of F before a period of linear decay begins. 
0 An adjustable weight of a function approximator. 

011111 The initial value given to all the weights of the function 

approxiinator. 
A Tile eligibility trace parameter, determining the extent to which 

new value estimates affect the values of states visited in the past. 
7r A policy which maps each state-action pair to the probability of 

choosing that action in that state. 
7r* The optimal policy. 

A learning feature (or alternatively, a basis function) for a 
finicti0ii approxiniator. 

Q Set of possible observations in a partially observable environment. 
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List of Abbreviations 

Abbreviation Description Further Details 

AHC Adaptive Heuristic Critic Section 3.4.6 
AI Artificial lutelligence 

BSP Bulk Synchronous Parallel Section 3.7.1 

(111U Cclitral Processill" Unit 
FF "Fast Forward" (planning algoritlini) Section 7.1 

I IS NIQ Hicnirchical Sciiii-Markov Q-1carning Section 7.6 

MDP Markov Decision Process Section 2.2 

\11%11) Nhiltiplc Iiistruction Multiple Data Section 3.7.1 

NIPI Message Passing Interface Section 3.7.1 

NINCH Message PiLssing, hiterface CHauieleon Section 4.3 

(opeu source implementation of NIPI) 

NISE Mean Squared Error Section 3.4.2 

111)1)11 Pliiiiiiiii- Doinaiii Definitioii Language Section 7.1 

POMDP Partially Observable Section 2.6 

Markov Decision Process 

I)NANI Pýirallel Randoin Access Machine Section 3.7.1 

RL Reinforcement Learning Section 2.1 

SABSA -Stýitc Actioii Rewird State Action" Section 2.4 

(the iiaine of au RL ýilgorithiii) 
SMDP Semi-Markov Decision Process Section 3.5.3 

SNII, SY111111etric NI lilt i-Processol, Section 3.7.1 

SPI Structured Policy Iteration Section 3.6.2 

SNAA) Stochastic Planning Using Section 3.6.2 

Decision Diagrains 

STRIPS STanford Research Institute Section 3.6.1 

Problem Solver 

Tciiiporal Differeiwe learning, Section 2.4 

VFA Value Function Approximation Section 3.4 

275 



List of References 

M. N. Allmadabadi and M. Asadpour. Expertness based cooperative q-learning. 
IEEE Transactions on Systems, Man and Cybernetics, 32(l): 66-76,2002. 

J. S. Albus. Brain, Behavior and Robotics. Byte Books, Peterborough, NH, 1981. 

E. Alonso, D. Kudenko, and D. Kazakov, editors. Adaptive Agents and Multi-Agent 
Systems: Adaptation and Multi-Agent Learning, volume 2636 of Lecture Notes 

in Computer Science, 2003. Springer. 

C. W. Anderson. Strategy learning with multilayer connectionist representations. 
In Proceedings of the A International Workshop on Machine Learning, pages 
103-114,1987. 

C. W. Anderson. Learning and Problem Solving with Multilayer Connectionist 

SyStems. PhD thesis, University of Massachusetts, Amherst, MA, 1986. 

D. Andre. Programmable Reinforcement Learning Agents. PhD thesis, University 

of California, Berkeley, 2003. 

T. Archibald. Parallel dynamic programming. In L. Kronsj6 and D. Shumsherud- 

din, editors, Advances in Parallel Algorithms. Blackwell Scientific, 1992. 

T. W. Archibald, K. I. M. McKinnon, and L. C. Thomas. Serial and parallel value 
iteration algorithms for discounted markov decision processes. European Journal 

of Operational Research, 67(2): 188-203,1993. 

L. C. Baird. Residual algorithms: Reinforcement learning with function approxima- 
tion. In Proceedings of the 12th International Conference on Machine Learning, 

1995. 

M. Barreno and D. Liccardo. Reinforcement learning for RARS. Technical report, 
EECS Department, University of California, Berkeley, May 2003. 

A. Barto and S. Malladevan. Recent advances in hierarchical reinforcement learn- 

ing. Discrete Event Systems, 13: 41-77,2003. 

276 



A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike elements that can solve 
difficult learning control problems. In IEEE Transactions on Systems, Man, and 
Cybernetics, volume 13, pages 835-846,1983. 

J. Baxter and P. L. Bartlett. Direct gradient-based reinforcement learning. In 

IEEE International Symposium on Circuits and Systems, 2000. 

R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, 

NJ, 1957. 

R. E. Bellman and S. E. Dreyfus. Functional approximations and dynamic pro- 

gramming. Math Tables and Other Aides to Computation, 13: 247-251,1959. 

G. D. Benson, C. -W. Chu, Q. Huang, and S. G. Caglar. A comparison of MPICH 

Allgather algorithms on switched networks. In 10th European PVMIMPI Users' 

Group Conference (EuroPVMIMPP03), 2003. 

D. C. Bentivegna, C. G. Atkeson, and G. Cheng. Learning tasks from observation 

and practice. Robotics and Autonomous Systems, 47(2-3): 163-169,2004. 

D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experi- 

ments. Chapman and Hall, London, UK, 1985. 

D. P. Bertsekas. Distributed dynamic programming. IEEE Transactions on Auto- 

matic Control, 27: 610-616,1982. 

D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 

second edition, 2001. 

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Nu- 

meTical Methods. Prentice-Hall International, 1989. 

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scien- 

tific, 1996. 

H. Blockeel and L. De Raedt. Top-down induction of first-order logical decision 

trees. A71ificial Intelligence, 101: 285-297,1998. 

A. L. Blum and M. L. Furst. Fast planning through planning graph analysis. 
Artificial Intelligence, 90: 281-300,1997. 

C. Boutilier, R. I. Brafman, and C. Geib. Prioritized goal decomposition of Markov 

decision processes: Towards a synthesis of classical and decision theoretic plan- 

ning. In International Joint Conference on Artificial Intelligence, 1997. 

277 



C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural as- 
sumptions and computational leverage. Journal of Artificial Intelligence Re- 

search, 11: 1-94,1999. 

C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming 

with factored representations. Artificial Intelligence, 121(1-2): 49-107,2000. 

C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic programming for first- 

order XIDPs. In International Joint Conference on Artificial Intelligence, pages 
690-700,2001. 

J. A. Boyan and A. W. Moore. Generalisation in reinforcement learning: Safely 

approximating the value function. In G. Tesauro, S. Touretzky, and T. Leen, 

editors, Advances in Neural Information Processing Systems 7. MIT Press, 1995. 

S. J. Bradtke. Reinforcement learning applied to linear quadratic regulation. In 
Advances in Neural Information Processing Systems, volume 5, pages 295-302, 

1993. 

T. Bylander. The computational complexity of propositional STRIPS planning. 
Artificial Intelligence, 69(1-2): 165-204,1994. 

A. Cassandra, M. L. Littman, and N. L. Zliang. Incremental Pruning: A simple, 
fast, exact method for partially observable Markov decision processes. In Pro- 

ceedings of the 13th Conference on Uncertainty in Artificial Intelligence, pages 
54-61,1997. 

D. Chapman and L. P. Kaelbling. Input generalization in delayed reinforcement 
learning: An algoritlim and performance comparisons. In International Joint 
Conference on Artificial Intelligence, pages 726-731,1991. 

H. -T. Chong. A Igorithms for Partially Observable Markov Decision Processes. PhD 

thesis, University of British Columbia, Vancouver, 1988. 

L. Chrisman. Reinforcement learning with perceptual aliasing: The perceptual dis- 

tinctions approach. In Proceedings of the Tenth National Conference on Artificial 

Intelligence, 1992. 

C. Claus and C. Boutilier. The dynamics of reinforcement learning in cooperative 
multiagent systems. In Proceedings of the Fifteenth National Conference on 
Artificial Intelligence, pages 746-752,1998. 

D. Cliff and S. Ross. Adding temporary memory to zcs. Adaptive Behavior, 3: 

101-150,1994. 

278 



R. Cole and 0. Zajicek. The APRAM: Incorporating asynchrony into the pram. 
model. In Proceedings of the 1st annual A CM symposium on Parallel Algorithms 

and Architectures, pages 169-178,1989. 

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions 

on Information Theory, 13: 21-27,1967. 

J. W. Daniel. Splines and efficiency in dynamic programming. Journal of Mathe- 

matical Analysis and Applications, 54: 402-407,1976. 

P. D. Dayan and G. E. Hinton. Feudal reinforcement learning. In Advances in 
Neural Information Processing Systems, volume 5, pages 271-278. Morgan Kauf- 

mann, 1993. 

T. Dean and R. Givan. Model minimization in Markov decision processes. In Pro- 

ceedings of the Fourteenth National Conference on Artificial Intelligence, pages 
106-111,1997. 

T. Dean and X. Kanazawa. A model for reasoning about persistence and causation. 
Computational Intelligence, 5(3): 142-150,1989. 

R. Dearden and C. Boutilier. Abstraction and approximate decision theoretic 

planning. Artificial Intelligence, 89(1-2): 219-283,1997. 

R. Dearden, N. Friedman, and S. J. Russell. Bayesian Q-1earning. In AAA111AAI, 

pages 761-768,1998. 

R. Dearden, N. Friedman, and D. Andre. Model based bayesian exploration. In 
Proc. of Fifteenth Conf. on Uncertainty in Artificial Intelligence, pages 150-159. 
Morgan Kaufmann, 1999. 

T. G. Dietterich. An overview of MAXQ hierarchical reinforcement learning. In 
Proceedings of the 4th International Symposium on Abstraction, Reformulation 

and Approximation (SARA'2000), pages 26-44,2000a. 

T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value func- 

tion decomposition. Journal of Artificial Intelligence Research, 13: 227-303, 
2000b. 

T. G. Dietterich and N. S. Flann. Explanation-based learning and reinforcement 
learning: a unified view. Machine Learning, 28: 169-210,1997. 

T. G. Dietterich and X. Wang. Batch value function approximation via support 
vectors. In Advances in Neural Information Processing Systems, volume 14, 

pages 1491-1498, Cambridge, MA, 2002. MIT Press. 

279 



K. Driessens and S. Meroski. Integrating experimentation and guidance in rela- 
tional reinforcement learning. In Proceedings of the 19th International Confer- 

ence on Machine Learning, pages 115-122,2002. 

K. Driessens and J. Ramon. Relational instance based regression for relational 

reinforcement learning. In Proceedings of the 20th International Conference on 
Machine Learning, 2003. 

S. D2eroski, L. De Raedt, and K. Driessens. Relational reinforcement learning. 

Machine Learning, 43(l): 7-52,2001. 

R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem 

proving to problem solving. Artificial Intelligence, 2: 189-208,1971. 

M. J. Flynn. Some computer organizations and their effectiveness. IEEE Trans- 

actions on Computers, C-21: 948-960,1972. 

S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings 

of A CAI Symposium on Theory of Computing, pages 114-118,1978. 

T. GRrtner, K. Driessens, and J. Ramon. Graph kernels and gaussian processes 
for relational reinforcement learning. In Proceedings of 13th International Con- 

ference on Inductive Logic Programming, pages 146-163,2003. 

E. Gat. Three-layer architectures. In D. Kortenkamp, R. P. Bonasso, and R. Mur- 

phy, editors, Artificial Intelligence and Mobile Robots: Case Studies of Successful 

Robot Systems, chapter 8. MIT/AAAI Press, 1997. 

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance 

dilemina. Neural Computation, 4(l): 1-58,1992. 

M. Gliallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, 

and D. Wikins. PDDL-the planning domain definition language. Technical 

Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision 

and Control, 1998. 

J. C. Gittins. Multi-armed Bandit Allocation Indices. Wiley, Chichester, NY, 1989. 

G. J. Gordon. Reinforcement learning with function approximation converges to a 

region. In Advances in Neural Information Processing Systems 13, pages 1040- 

1046,2001. 

G. J. Gordon. Stable function approximation in dynamic programming. Technical 

Report CMU-CS-95-103, Carnegie Mellon University, 1995. 

280 



C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans to new 
environments in relational MDPs. In International Joint Conference on Artificial 
Intelligence, 2003. 

P. HaddaNvy and M. Suwandi. Decision-theoretic refinement planning using inher- 
itance abstraction. In Proceedings of the Second International Conference on 
Artificial Intelligence Planning Systems, pages 266-271. AAAI Press, 1994. 

G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. Distributed representations. 
In D. E. Rumelliart and J. L. McClelland, editors, Parallel Distributed Process- 
ing: Explorations in the Microstructure of Cognition. Volume 1: Foundations. 
MIT Press, 1986. 

J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning using 
decision diagrams. In Proceedings of the 15th Conference on Uncertainty in 
Artificial Intelligence, pages 279-288,1999. 

J. Hoffmann. A heuristic for domain independent planning and its use in an 
enforced hill-climbing algoritlim. In Proceedings of the 12th International Sym- 

posium on Methodologies for Intelligent Systems, pages 216-227,2000. 

R. A. Howard. Dynamic Frobabilistic Systems: Semi-Markov and Decision Pro- 

cesses. Wiley, New York, 1971. 

K. Hwang and Z. Xu. Scalable Parallel Computing. WCB/McGraw-Hill, 1998. 

T. Jaakkola, M. I. Jordan, and S. Singh. On the convergence of stochastic iterative 
dynamic programming algorithms. Neural Computation, 6(6): 1185-1201,1994. 

L. P. Kaelbling. Hierarchical learning in stochastic domains: Preliminary results. 
In Proceedings of the 10th International Conference on Machine Learning, pages 
167-173,1993a. 

L. P. Kaelbling. Learning in Embedded Systems. MIT Press, Cambridge MA, 
1993b. 

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A 

survey. Journal of Artificial Intelligence Research, 4: 237-285,1996. 

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in 

partially observable stochastic domains. Artificial Intelligence, 101 (1-2): 99-134, 
1998. 

281 



S. Kapetanakis and D. Kudenko. Reinforcement learning of coordination in liet- 

erogeneous cooperative multi-agent systems. In D. Kudenko, D. Kazakov, and 
E. Alonso, editors, Adaptive Agents and Multi-Agent Systems H. Springer, 2005. 

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. 
Machine Learning, 49: 209-232,2002. 

K. Kersting, M. Van Otterlo, and L. De Raedt. Bellman goes relational. In 
Proceedings of the 21st International Conference on Machine Learning, 2004. 

F. Kirchner. Q-learning of complex behaviours on a six-legged walking machine. 
Journal of Robotics and Autonomous Systems, 25: 256-263,1998. 

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal- 
ing. Science, 220(4598): 671-680,1983. 

H. Kitano, editor. RoboCup-97. - Robot Soccer World Cup L Springer Verlag, Berlin, 

1998. 

R. E. Korf. Planning as search: A quantitative approach. Artificial Intelligence, 

33: 65-88,1987. 

R. M. Kretchmar. Parallel reinforcement learning. In Proceedings of the 6th World 
Conference on Systemics, Cybernetics, and Infonnatics (SC12002), 2002. 

N. Kushmerick, S. Hanks, and D. S. Weld. An algorithm for probabilistic planning. 
Artificial Intelligence, 76(1-2): 239-286,1995. 

C. -S. Lin and H. Kim. CMAC-based adaptive critic self-learning control. IEEE 
Ransactions on Neural Networks, 2: 530-533,1991. 

L. -J. Lin. Self-improving reactive agents based on reinforcement learning, planning 

and teaching. Machine Learning, 8: 293-321,1992. 

L. -J. Lin and T. M. Mitchell. Reinforcement learning with hidden states. In 

Proceedings of the Second International Conference on Simulation of Adaptive 

Behavior. From Animals to Animats, pages 271-280,1992. 

M. Littman. Memoryless policies: Theoretical limitations and practical results. In 

Proceedings of the International Conference on Simulation of Adaptive Behavior. 

From Animals to Animats 3, pages 297-305,1994. 

M. L. Littman. Friend-or-foe q-learning in general-sum games. In Proceedings of 
the 18th International Conference on Machine Learning, pages 322-328,2001. 

282 



J. Loch and S. Singh. Using eligibility traces to find the best memoryless policy 
in partially observable markov decision processes. In Proceedings of the 15th 
International Conference on Machine Learning, pages 323-331,1998. 

D. Luce. Individual Choice Behavior. Wiley, New York, 1959. 

0. Madani. Complexity Results for Infinite-Horizon Markov Decision Processes. 

PhD thesis, University of Washington, 2000. 

O. -A. Maillard, R. Coulom, and P. Preux. Parallelization of the TD(A) algorithm. 
In European Workshop on Reinforcement Learning, 2005. 

S. Mannor, I. Menaclie, A. Hoze, and U. Klein. Dynamic abstraction in reinforce- 

inent learning via clustering. In Proceedings of the 21st International Conference 

on Machine Learning, 2004. 

A. K. McCallum. Reinforcement Learning with Selective Perception and Hidden 
State. Phl) thesis, University of Rochester, Rochester, NY, 1996. 

J. McCarthy. Situations, actions and causal laws. Technical report, Stanford 

University, 1963. 

A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforcement 
learning using diverse density. In Proc. 18th International Conf. on Machine 
Learning, pages 361-368,2001. 

N. Meuleau and P. Bourgine. Exploration of multi-state environments: Local 

measures and back-propagation of uncertainty. Machine Learning, 35(2): 117- 
154,1999. 

N. Meuleau, M. Hauskreclit, K. -E. Kim, L. Peshkin, L. P. Kaelbling, T. Dean, and 
C. Boutilier. Solving very large weakly coupled Markov decision processes. In 
AAAIIIAAI, pages 165-172,1998. 

A. W. Moore. Efficient Memomj-based Learning for Robot Control. PhD thesis, 
University of Cambridge, 1990. 

A. W. Moore and C. G. Atkeson. The parti-game algorithm for variable resolution 
reinforcement learning in multidimensional state spaces. Machine Learning, 21 
(3): 199-233,1995. 

A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning 

with less data and less time. Machine Learning, 13: 103-130,1993. 

283 



A. W. Moore, L. C. Baird, and L. P. Kaelbling. Multi-value-functions: Efficient 

automatic action hierarchies for multiple goal MDPs. In International Joint 
Conference on Artificial Intelligence, pages 1316-1323,1999. 

R. Munos and A. Moore. Variable resolution discretization in optimal control. 
Machine Leaming, 49(2-3): 291-323,2002. 

N. Nilsson. Teleo-reactive programs for agent control. Journal of Artificial Intel- 

ligence Research, 1: 139-158,1994. 

L. Nunes and E. Oliveira. Cooperative learning using advice exchange. In Adaptive 

Agents and Multi-Agent Systems, LNCS vol. 2636,2003. 

D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning, 

49(2-3): 161-178,2002. 

P. S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, San Francisco, 

CA, 1997. 

R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. In 

Advances in Neural Information Processing Systems, volume 10. The MIT Press, 

1997. 

E. Pednault. ADL: Exploring the middle ground between STRIPS and the situation 

calculus. In Proceedings of the 1st International Conference on Principles of 
Knowledge Representation and Reasoning, pages 324-332,1989. 

J. Peng and R. J. Williams. Incremental multi-step Q-learning. Machine Learning, 

22: 283-290,1996. 

T. J. Perkins and D. Precup. A convergent form of approximate policy iteration. In 
Advances in Neural Information Processing Systems 15, pages 1595-1602,2002. 

L. Peshkin. Reinforcement Learning by Policy Search. PhD thesis, Massachusetts 

Institute of Technology, 2001. 

J. Pineau, G. J. Gordon, and S. B. Thrun. Point-based value iteration: An any- 
time algoritlim for POMI)Ps. In International Joint Conference on Artificial 

Intelligence, 2003. 

L. D. Pyeatt and A. E. HoNve. Decision tree function approximation in reinforce- 
ment learning. Technical Report TR-CS-98-112, Colorado State University, 1998. 

D. V. Pynadath and M. Tambe. The communicative multiagent decision prob- 
lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence 
Research, 16: 389-423,2002. 

284 



J. R. Quinlan. Induction of decision trees. Machine Learning, l(l): 81-106,1986. 

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in 

speech recognition. Proceedings of the IEEE, 77(2), 1989. 

C. E. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning. 

In Advances in Neural Information Processing Systems, volume 16, Cambridge, 

MA, 2004. MIT Press. 

H. Robbins and S. Monro. A stochastic approximation method. Annals of Math- 

ematical Statistics, 22(3): 400-407,1951. 

M. T. Rosenstein and A. G. Barto. Robot weightlifting by direct policy search. In 

International Joint Conference on Ailificial Intelligence, pages 839-846,2001. 

N. Roy and G. J. Gordon. Exponential family PCA for belief compression in 

POMDPs. In Advances in Neural Information Processing Systems, volume 15, 

2002. 

D. E. Rumelliart, G. E. Hinton, and R. J. Williams. Learning internal representa- 
tions by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, 
Parallel Distributed Processing: Explorations in the Microstructure of Cognition. 

Volume 1: Foundations. MIT Press, Cambridge, MA, 1986. 

G. A. Rummery. Problem Solving with Reinforcement Learning. PhD thesis, Uni- 

versity of Cambridge, Engineering Dept., 1995. 

G. A. Rummery and M. Niranjan. On-line Q-1earning using connectionist systems. 
Technical Report CUED/F-lNFENG/TR166, Cambridge University Engineer- 

ing Dept., 1994. 

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice 

Hall, second edition, 2003. 

M. R. K. Ryan. Hierarchical Reinforcement Learning: A Hybrid Approach. PhD 

thesis, University of New South Wales, School of Computer Science and Engi- 

necring, Sydney, Australia, 2002a. 

M. R. K. Ryan. Using abstract models of behaviours to automatically generate 

reinforcement learning hierarchies. In Proceedings of the 19th International Con- 

ference on Machine Learning, 2002b. 

E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelli- 

gence, 5: 115-135,1974. 

285 



C. Sammut. Automatic construction of reactive control systems using symbolic 

machine learning. Knowledge Engineering Review, 11: 27-42,1996. 

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM 

Journal of Research and Development, 3: 210-229,1959. 

M. Sato, K. Abe, and H. Takeda. Learning control of finite Markov chains with 

an explicit trade-off between estimation and control. IEEE Transactions on 
Systems, Man and Cybernetics, 18: 677-684,1988. 

C. E. Shannon. Programming a computer for playing chess. Philosophical Maga- 

zinc, 41(314), 1950. 

I SliaNve-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam- 

bridge University Press, 2004. 

J. F. Shepanski and S. A. Macy. Manual training techniques of autonomous systems 
based on artificial neural networks. In IEEE 1st International Conference on 
Neural Networks, pages 697-704,1987. 

J. W. Sheppard and S. L. Salzberg. A teaching strategy for memory-based control. 
Artificial Intelligence Review, ll(I-5): 343-370,1997. 

R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable 

environments. In Proceedings of the International Joint Conference on Artificial 

Intelligence, pages 1080-1087,1995. 

(5zgiir. ýim§ek and A. G. Barto. Using relative novelty to identify useful temporal 

abstractions in reinforcement learning. In Proceedings of the 21st International 

Conference on Machine Learning, 2004. 

6zgfir. $m§ek, A. P. Wolfe, and A. G. Barto. Identifying useful subgoals in re- 
inforcement learning by local graph partitioning. In Proceedings of the 22nd 

International Conference on Machine Learning, 2005. 

S. Singh and D. Bertsekas. Reinforcement learning for dynamic channel allocation 
in cellular telephone systems. In Advances in Neural Information Processing 
SyStems, volume 9, pages 974-980. The MIT Press, 1996. 

S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari. Convergence results for 

single-step on-policy reinforcement learning algorithms. Machine Learning, 38 
(3): 287-308,2000. 

S. P. Singh. Reinforcement learning with a hierarchy of abstract models. In Pro- 

ceedings of the AAAI, pages 202-207,1992. 

286 



W. D. Smart and L. P. Kaelbling. Practical reinforcement learning in continu- 

ous spaces. In Proceedings of the 17th International Conference on Machine 

Learning, pages 903-910,2000. 

P. Stone. Layered Learning in Multi-Agent Systems. PhD thesis, Carnegie Mellon 

University, December 1998. 

A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. PAC model-free 

reinforcement learning. In Proceedings of the 23rd International Conference on 
Machine Learning, 2006. 

M. Strens. A bayesian framework for reinforcement learning. In Proceedings of the 
Seventeenth International Conference on Machine Learning, 2000. 

R. Sun and C. Simmons. Self segmentation of sequences. In Proc of International 

Joint Conf, on Neural Networks. IEEE Press, 1999. 

R. S. Sutton. Integrated architectures for learning, planning, and reacting based on 

approximating dynamic programming. In Proceedings of the 7th International 

Conference on Machine Learning, pages 216-224,1990. 

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine 

Learning, 3: 9-44,1988. 

R. S. Sutton. Generalization in reinforcement learning: Successful examples using 

sparse coarse coding. In Advances in Neural Information Processing Systems, 

volume 8. The MIT Press, 1996. 

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT 

Press, Cambridge, MA, 1998. 

R. S. Sutton, D. Precup, and S. P. Singh. Between MI)Ps and semi-MDPs: A 

framework for temporal abstraction in reinforcement learning. Artificial Intelli- 

gence, 112(1-2): 181-211,1999. 

M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. 
In Proceedings of the Tenth International Conference on Machine Learning 
(10ML-1993), pages 330-337,1993. 

B. Tanner and R. S. Sutton. TD(A) Networks: TemPoral-difference networks 
with eligibility traces. In Proceedings of the 22nd International Conference on 
Mac/tine Learning, 2005. 

G. Tesauro. Temporal difference learning and TD-Gammon. Communications of 
the ACM, 38(3): 58-67,1995. 

287 



S. B. Thrun. The role of exploration in learning control. In D. A. White and 
D. A. Sofge, editors, Handbook of Intelligent Control: Neural, Fuzzy and Adaptive 

Approaches. Van Nostrand Reinhold, 1992. 

S. B. Thrun and K. M61ler. Active exploration in dynamic environments. In 

Advances in Neural Information Processing Systems, pages 531-538,1991. 

S. B. Thrun and A. Schwartz. Finding structure in reinforcement learning. In 

Advances in Neural Information Processing Systems, volume 7, pages 385-392. 

The MIT Press, 1995. 

S. B. Thrun and A. Schwartz. Issues in using function approximation for re- 
inforcement learning. In M. Mozer, P. Smolensky, D. Touretzky, J. Elman, 

and A. Weigend, editors, Proceedings of the 1993 Connectionist Models Summer 

School, 1993. 

J. N. Tsitsiklis and B. van Roy. Feature-based methods for large scale dynamic 

programming. Machine Learning, 22: 59-94,1996. 

J. N. Tsitsiklis and B. van Roy. An analysis of temporal-difference learning with 
function approximation. IEEE Transactions on Automatic Control, 42: 674-690, 

1997. 

L. G. Valiant. A bridging model for parallel computation. Communications of the 

ACM, 33(8): 103-111,1990. 

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11): 

1134-1142,1984. 

M. van Otterlo. A survey of reinforcement learning in relational domains. Technical 

Report TR-CTIT-05-31, University of Twente, The Netherlands, 2005. 

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge 

University, U. K., 1989. 

C. J. C. H. Watkins and P. D. Dayan. Q-1earning. Machine Learning, 8: 279-292, 

1992. 

S. D. Whitehead. A complexity analysis of cooperative mechanisms in reinforce- 

ment learning. In Proceedings of the 9th National Conference on Artificial In- 

telligence (AAAI-91), pages 607-613,1991. 

M. Wiering and J. Schmidhuber. HQ-Iearning. Adaptive Behavior, 6(2): 219-246, 

1997. 

288 



R. J. Williams. Simple statistical gradient-following algorithms for connectionist 

reinforcement learning. Machine Learning, 8(3): 229-256,1992. 

D. Wingate and K. Seppi. P3VI: A partitioned, prioritized, parallel value iterator. 

In Proceedings of the 21st International Conference on Machine Learning, 2004. 

B. Wolfe, M. R. James, and S. Singh. Learning predictive state representations 
in dynamical systems without reset. In Proceedings of the 22nd International 

Conference on Machine Learning, 2005. 

J. Wyatt. Exploration and Inference in Learning from Reinforcement. PhD thesis, 

University of Edinburgh, 1997. 

W. Zhang and T. G. Dietterich. A reinforcement learning approach to job-shop 

scheduling. In International Joint Conference on Artificial Intelligence, pages 
1114-1120,1995. 

289 


