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ABSTRACT

The processing of information learned early in life is superior compared with that
learned later. Two aspects of this age of acquisition (AoA) effect in face
recognition were investigated. The first sought to explore the relationship between
AoA and distinctiveness in order to offer a refinement of the mechanisms
underpinning AoA and shed light on associated loci. The second recruited AoA as
a tool with which to assess the relationship between identity and gender processing
and constrain mechanisms purported to subserve this relationship. The mutual
investigation of AoA and face processing sought to derive implications for each

area of research.

The Pilot Experiment and Experiments 1 to 3 led to the conclusion that AoA and
distinctiveness have an additive relationship. Although the results of these
familianity decision tasks were not entirely consistent, inclinations towards
additivity were considered more persuasive than various interactions recovered
under suboptimal circumstances. The independence of the variables indicated that
they are subserved by different mechanisms which require no integration to derive
theories of AoA. Moreover, distinctiveness and AoA were tentatively ascribed to
serially-arranged processing stages, interpreted with reference to contemporary

models of face recognition.

On the basis of Experiments 4 to 10 it was concluded that mechanisms
underpinning identity and gender processing are not entirely independent. An
effect of distinctiveness on gender decisions, independent of gender typicality
effects, indicated that male and female faces systematically colonise
multidimensional face-space (MDS). As such, MDS may provide a locus for
interfacing identity and gender processing. Effects of AoA on gender decisions
emerged under conditions where it 1s hard to glean gender from a visual analysis of
gender cues alone. Coupled with an effect of gender typicality on familiarity
decisions it was concluded that the relationship between identity and gender

processing may be one of mutual influence, best described by parallel-route

mechanisms.
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CHAPTER 1 -INTRODUCTION AND REVIEW OF THE
LITERATURE

1.1 Introduction

Thus thesis 1s concerned with an exploration of cognitive operations associated with
age of acquisition (AoA) in the recognition of familiar faces. The AoA effect
refers to the superior processing of information learned early in life compared with
that learned later. Lewis (1999a) stated that whilst there may be an abundance of
evidence concerning the existence and size of AoA “mechanisms by which effects
of AoA are suggested to take place are few and lack a framework than can be
implemented in order to derive predictions” (p.25). Two aspects of the AoA effect
1n face recognition are pursued in this thesis. The first seeks to ascertain the nature
of the relationship between AoA and facial distinctiveness and concomitantly offer

a refinement of the mechanisms underpinning AoA (Section 1.1.1). The second
employs AoA as a tool to with which to assess the relationship between identity

and gender processing and constrain proposed explanations (Section 1.1.2).

1.1.1 Exploration of the Relationship Between AoA and Distinctiveness

The distinctiveness effect refers to the superior processing of distinctive or unusual
faces, compared with typical or more average faces. However, research has shown
that effects are attenuated in childhood emerging only as a function of experience
with faces. It is feasible that AoA effects are modified by variables, such as
distinctiveness, that are dynamic in their effect over time: the childhood attenuation
of distinctiveness might be duly imprinted in the representation of faces acquired

early, ensuning that effects of distinctiveness are restricted to the processing of

faces acquired later.

An interaction between AoA and distinctiveness would serve to elaborate existing

theories of AoA and distinctiveness: this thesis couches explanations in terms of A.
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Ellis and Lambon Ralph’s (2000) neural plasticity account of AoA and Valentine’s
(1991) multidimensional face-space (MDS).

Reviews of the seminal face recognition models are considered in Section 1.2.1.
Section 1.2.2 discusses models of face representation, more specifically,
Valentine’s (1991) MDS. These facilitate theoretical interpretations of the AoA
and distinctiveness literature in addition to the ensuing results. A selection of the
distinctiveness literature is reviewed in Section 1.3. The mnestic basis of the
variable is initially established, essential if it is to interact with AoA. A review of
the temporal dimensions of distinctiveness includes developmental accounts and
the relationship between distinctiveness and facial ageing: a positive relationship
between distinctiveness and perceived age sparked an investigation of the
interaction between AoA and distinctiveness with dated images in addition to
current images. Section 1.4 presents AoA literature, tracking its conception as a
stage-dependent process to a general by-product of the way in which information 1s
stored and accessed in the brain. Particular emphasis is placed on contemporary

theories, including A. Ellis and Lambon Ralph’s (2000) neural plasticity
hypothesis.

1.1.2  Exploration of the Relationship Between AoA and Gender

Processing

A0A is recruited as an investigative tool, facilitating exploration of the relationship
between identity and gender processing. Identity and gender were onginally
believed to be processed independently, reflected by their functional separation 1n
Bruce and Young’s (1986) model of face recognition. However, evidence that the
cognitive operations are not entirely independent has accumulated and various
degrees of integrality of processing proposed. Conditions under which AoA effects

emerge during gender processing tasks are manipulated to constrain interpretations

of this relationship.

A by-product of this exploration is the assessment of AoA effects in tasks which

measure the vanable indirectly. Gender processing tasks allow AoA effects to be
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monitored without tapping explicit recognition processes, and thus, performance is

less subject to error.

Literature investigating the relationship between identity and gender processing is
reviewed in Section 1.5. The various conceptualisations of the relationship and
theoretical interpretations open up options for the interpretation of findings. The
feasibility of Valentine’s (1991) MDS as an interface between identity and gender
processing stems from a consideration of studies which provide evidence that
gender is coded in MDS. Sections 1.2.1 (models of face recognition) and 1.2.2

(models of face representation) contextualise Section 1.5 and enhance theoretical

interpretations of the literature and present findings.

1.2 Models of Face Recognition and Representation

Research into face recognition, tackled from a cognitive stance, seeks to clanfy the
different operations involved in face processing and how they interact. Models of
face recognition, and the associated process of representation, are able to
accommodate a wide range of psychological phenomena which inform an
increasingly detailed understanding of mechanisms underpinning recognition and
representation. Models of recognition and representation are reviewed to

contextualise subsequent reviews of AoA, distinctiveness, and the relationship

between identity and gender processing.

1.2.1 Models of Face Recognition

Recognition is defined as the product of a match between a perceived stimulus and
a stored representation held in memory. Face recognition research has pursued
disparate routes of investigation with the cognitive processes following perception
of the stimulus modelled largely m isolation from the perceptual processing itself.
This section documents cognitive (Section 1.2.1.1) and perceptual (Section 1.2.1.2)
models of familiar face recognition, culminating in a review of a more

comprehensive model (Section 1.2.1.3).
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In addition to the behavioural studies which motivated their creation, evidence
supporting the architecture of face recognition models has converged from
neuropsychological research and brain 1maging studies.  Research with
implications for the hierarchic structure of the recognition route and the heterarchic

nature of 1dentity and gender processing routes 1s reviewed 1n Section 1.2.1.4.

1.2.1.1 Cognitive Models

Until the late 1970s, literature on face processing was eclectic and lacking the
coherence necessary for deriving theoretical models. With the advent of cognitive
approaches, theoretical models have since organized and fuelled research.
Developed from an earlier model presented by Hay and Young (1982), the Bruce
and Young (1986) model of face recognition (Figure 1.1) 1s perhaps the most well-
known product of this spate. Inspired by evidence from behavioural experiments,
studies of everyday recognition errors and neuropsychology, the model accounts
for the sequentially dependent cognitive operations involved in identification,
housed by the model’s hierarchic architecture. In addition, heterarchic architecture
accommodates the functionally distinct processes of identification, expression
analysis, facial speech analysis and directed visual processing; the latter refers to
the selective and strategic encoding of facial information. Whilst the model 1s
largely agnostic with respect to perceptual processing, a structural encoding stage
specifies the products of perceptual processing: viewer-centred descriptions
provide information for the analysis of facial expressions, facial speech and
directed visual processing; expression-independent descriptions also feed directed
visual processing in addition to providing information amenable for storage in face

recognition units (FRUs) which kick start the identification route.

17



Jescrintions ] o TRUCTURAL
4 ENCODING

EXPRESSION
ANALYSIS

FACIAL Xpression-
independent
g | L,

DIRECTED FACE
YISUAL RECOGNITION
PROCESSING UNITS

P

PERSON
IDENTITY
<>5—| NODES
—— NAME
GENERATION

Figure 1.1. Bruce and Young’s (1986) Functional Model of Face Recognition.

FRUs contain abstract structural codes, one of which exists to represent each
known face. Recognition occurs when there is a match between the structural
encoding unit input and the description stored in FRUs. Person identity nodes
(PINs) are accessed via FRUs and contain identity-specific semantic information.
They are modality-independent and thus mark “the point at which person
recognition as opposed to face recognition is achieved” (Bruce & Young, 1986, p.
312). PINs provide a gateway to the cognitive system, although the precise nature
of this relationship is unclear. Whilst Bruce and Young do not explicitly separate
semantic information from the PINS, it is not clear whether semantic information is
stored in the PINs themselves, or accessed via the PINs from associative memory

held in the cognitive system. Name retrieval is contingent upon identity-specific

semantic information.

The cognitive system receives input from each of the heterarchically arranged
processing routes and in turn, it can influence each of these functional components.

Using information from structural encoding, expression analysis, directed visual

processing and FRUs, the cognitive system generates visually-derived semantic
18



codes. These codes contain information that can be gleaned from familiar and
unfamihiar faces alike, for example, gender, age and personality attributions.
However “future studies may allow the separation of visually derived semantic
codes 1nto distinct types, produced by different routes” (Bruce & Young, 1986, p,
313). The authors remark that gender and age judgments may require different
processes from those involved in judging honesty for example. It is interesting to

note the nebulous basis of gender processing.

To provide a working implementation of Bruce and Young’s (1986) model of
familiar face recognition, Burton, Bruce and Johnston (1990) employed interactive
activation competition (IAC) architecture to ‘extend the microstructure’ of the
hierarchic identification route. This localist connectionist model (Figure 1.2)
comprises active units connected by modifiable links. Units receive activation
which 1s either provided extemally by the experimenter or internally from other
units in the net. They are organized into pools and connected within pools by
bidirectional inhibitory links. Associated units between pools are connected with
bidirectional excitatory links. The main thrust of Bruce and Young’s identification
route is preserved by three pools of units corresponding to FRUs, PINs and
semantic information units (SIUs). Note that Burton et al. (1990) explicitly
separate semantic information from the PINs, defining PINs as nodes which allow
access to SIUs. Another theoretical modification entailed relocating familianty
decisions from the FRUs to the PINs; a modality-independent locus. Hence,
removing the need for modality-dependent loci, each responsible for separate face,

name and voice familiarnty decisions.
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Figure 1.2. Burton, Bruce and Johnston’s (1990) IAC model of Familiar Face
Recognition.

The model successfully simulated empirical phenomena including semantic and
repetition priming. With the addition of a simple front-end to the model, loosely
analogous to feature-based structural encoding units, distinctiveness effects were
also simulated. However, the model does have its theoretical limitations. In
addition to elucidating cognitive operations involved in face processing, the
cognitive approach seeks to understand how these operations interact with one
another. The authors conceded that to explore the question of additivity and
interactions, the size of the main effects need to measured. However, the model is
not able to make claims regarding the mapping between its dependent variable (the
number of activation cycles required in order to reach an arbitrary threshold level

of activation) and reaction times.

1.2.1.2 A Perceptual Model

Hancock, Burton and Bruce (1996) examined the feasibility of principal
components analysis (PCA) of face images (Kirby & Sirovick, 1990; Turk &
Pentland, 1991) as a psychologically plausible front-end to face recognition
models. Unlike previous image coding schemes which nominated various

primitives as candidates, PCA codes image intensity information acknowledged for
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its role face recognition (e.g. Bruce et al., 1993a). This technique also compresses
data by reducing the number of dimensions which code variability between faces.
For any given set of faces, a one-dimensional array of pixel values is derived per
face. Correlations between these images are calculated and eigenfaces are
extracted; eigenfaces code deviation from the mean. Eigenfaces extracted early in
the process code maximum variance between the images, thus include information

carrying gender. Later eigenfaces carry finer detail, such as identity.

Hancock et al. (1996) reasoned that the use of PCA to derive a set of dimensions
along which faces vary, affords a neat implementation of psychological theories
such as distinctiveness, which are subserved by similar mechanisms. This
implementation was put to the test. Participants were asked to rate a set of images
for distinctiveness followed by a recognition memory task. Whilst distinctiveness
was correlated with false positives (misidentified faces) and hits (correctly
1dentified faces), these two performance measures were not correlated. The images
were subsequently subjected to PCA to establish whether or not this technique
could explain these orthogonal bases of distinctiveness. Through a variety of
measures, the authors found that early eigenfaces predicted false positives and late
eigenfaces predicted hit rate. Given that early components code general
information and later components code individual variation, the authors speculated
that hits are largely i1diosyncratic in origin and false positives, a product of the

similarity of a face to the general population.

Its ability to isolate independent statistical properties corresponding to hits and
false positives provides compelling evidence for the psychological plausibility of
PCA as a perceptual extension to cognitive models. However, the authors close
with the caveat that the present results may be a general consequence of any image-
based statistical technique.

1.2.1.3 A More Comprehensive Model

A model of familiar face recognition with integrated perceptual and cognitive

components was devised by Burton, Bruce and Hancock (1999), see Figure 1.3.

The perceptual front-end recruited PCA of face images and the cognitive back-end
21



was implemented as IAC architecture akin to that developed by Burton et al.
(1990). The model sought to promote understanding of psychological phenomena
outside the range of models which focused solely on cognitive or perceptual
components. To avoid repetition of sections 1.2.1.1 and 1.2.1.2, the description of

the architecture is restricted to the ‘join’ between the two components.

PCA Input
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L JoJel J 1ol Iol Jeo
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Figure 1.3. Burton, Bruce and Hancock’s (1999) Model of Familiar Face
Recognition.

The model was constructed to recognise 50 people, thus eigenfaces were derived
from 50 male full-face neutral expression photographs. The perceptual front-end
was tied to the cognitive component through FRUs, via PCA 1nput units which are
connected to FRUs according to the signature of each face. A signature refers to a
set of values corresponding to the eigenface dimensions for that face. The authors
describe the connection: “If a face has positive value on component 1, and negative
on component 2, a link of strength +1 is constructed between PCA unit 1 and that
FRU, and a strength of -1 1s constructed between PCA unit 2 and that FRU. This
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procedure is followed for all PCA units and all FRUs” (p. 14). To allow for
recognition in additional domains, the IAC architecture extends Burton et al.’s
(1990) implementation through the addition of name recognition units, word

recognition units and lexical output units.

The model simulated psychological phenomena arising from an interaction
between perceptual and cognitive aspects, such as cross-modal priming and
distinctiveness effects. In addition, effects emulated by previous models which had
unspecified perceptual inputs, such as cross-domain semantic priming and image-
dependent repetition priming effects, persisted with a PCA front-end. The model
also extended the predictive power of PCA. Research carried out by Hancock et al.
(1996) had been effectively restricted to investigating the psychological plausibility

of PCA as a front-end to unfamiliar face processing.

1.2.1.4 Models of Face Recognition: Neuropsychological Support for Hierarchic and Heterarchic

Structures

Neuropsychological research has pinpointed selective deficits associated with each
recognition stage, strengthening the notion that each 1s sub-served by different
cognitive processes. To extend these findings, recent imaging studies sought to
clarify whether familiarity is signalled at FRUs, a modality-dependent locus (Bruce
& Young, 1986) or at PINs, a modality-independent locus (Burton et al., 1999;
Burton et al., 1990).

Whereas face processing is associated with activity in the lateral fusiform gyrus,
recognition of known faces is associated with additional activity in the anterior
temporal region. Using functional magnetic resonance imaging (fMRI), Leveroni
et al. (2000) found that famous faces were associated with anterior temporal gyrus
activity compared with newly familiarized and unfamiliar faces in an ‘old’ (seen
before) versus ‘new’ task. The authors inferred that these regions must be

associated with the representation of semantic knowledge.

The anterior temporal region could either be conceptually synonymous with the
~ PINs (Bruce & Young, 1986) or SIUs (Burton et al., 1990) depending on the
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functional interpretation of these stages. Shah et al. (2001) used the premise,
‘irrespective of function PINs are modality independent’, to explore the neural
substrates of familiarity decisions and identity-specific semantic information.
During a passive observation task interleaved with subsidiary tasks designed to
maintain attention, activity elicited by familiar and unfamiliar faces and voices was
measured by fMRI. Regardless of modality, the retrosplenial cortex was activated
by familiar items. Shah et al. concluded that because the region associated with
semantic knowledge (anterior temporal region) showed no activity, retrosplenial
activity corresponded to familiarity decisions. The modality-independent locus of
familiarity decisions renders Burton et al.’s (1990) definition of PINs the most
appropriate description of the data.

As far as the heterarchic structure of Bruce and Young’s (1986) model 1s
concerned, whereas neuropsychological double dissociations largely support the
functionally distinct processing routes, the separability of identity and gender
processing is sustained by a single-dissociation (Tranel, Damasio & Damasio,
1988). Whilst Bruce, H. Ellis, Gibling and Young (1987a) point out that patients
may judge gender on the basis of superficial characternistics, thus masking an
inability to judge gender, the afore-mentioned double dissociations are largely
underpinned by imaging studies (e.g. Calvert et al., 1997), but mixed research

underpins the single dissociation.

In a positron emission tomography (PET) study, Sergent, Otha and Macdonald

(1992) found that different anatomical regions were activated during gender

classification and familiarity decision tasks. However face familianity confounded
the tasks. In a subsequent PET study, where the confound was removed (Dubois et
al., 1999), identical brain activity, predominantly in the fusiform face area, was
triggered in response to gender and familianty judgments. This spurred the
conclusion that this region could provide a neat correlate to the structural encoding
stage of cognitive models. However, in a recent review Haxby, Hoffman and
Gobbini (2000) proposed that the fusiform gyrus mediated the processing of
invariant information. Hence, unique identification is processed in a package with

other invariant information, such as gender
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Dubois et al. (1999) also uncovered a processing difference between newly
familiarised and unfamiliar faces in their gender classification task. This finding
was replicated by Rossion, Schiltz, Robaye, Pirenne and Crommelinck (2001) who
carried out a gender classification task with morphed familiarised and
unfamiliarised faces: the resultant processing differences related to the dissociation
between faces perceived as familiar and those perceived as unfamiliar. Both
studies reported a decrease in brain activity associated with familiarised faces
compared with unfamiliar faces. As a result, Dubois et al. and Rossion et al.

(2001) deemed a strict independence of identity and gender processing untenable.

1.2.2 Models of Face Representation

Whilst there has been a degree of convergence in models of face recognition,
theories concerning the representations derived and stored to mediate this process
are less cohesive. Nevertheless, Valentine’s (1991) multidimensional face-space
(MDS) has emerged as a pivotal contender. Section 1.2.2.1 offers a review of the
structure of MDS, followed by an elaboration of this framework as the

dichotomous norm-based and exemplar-based interpretations mn Section 1.2.2.2.

Two major 1ssues associated with the operation of the model are also subject to
scrutiny. The accommodation of invariance is discussed in Section 1.2.2.3,
whereas Section 1.2.2.4 reviews the metric used to evaluate similarity between

percept and stored representation.

1.2.2.1 Basic Structure of MDS

Valentine (1991) proposed that a location in Euclidean space provides a metaphor
for the representation of a face. MDS (Figure 1.4) comprises sufficient dimensions
to represent any physiognomic feature used to discriminate faces, but the nature of
these remains unspecified. The origin of the space represents the average value of
the population on each dimension, thus it is assumed that representations form a
multivariate normal distribution. Consequently, the origin is assumed be the point

of highest density and density decreases as a monotonic function of the distance
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from the origin. The differential density manifests itself as effects of
distinctiveness: whereas typical faces are clustered in central densely populated
areas, distinctive faces colonise the sparsely populated periphery. Recognition of
distinctive faces, relative to their typical counterparts, 1s facilitated owing to the

reduced local density. Fewer competing exemplars negate competition.
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Figure 14. A two-dimensional representation of Valentine’s (1991)
multidimensional face-space.

Bruce, Burton and Dench (1994) investigated the physical correlates of
distinctiveness to elucidate the nature of the dimensions structuring MDS and
provide evidence that faces are normally distributed. Bruce et al. (1994) collected
anthropometric measures from 175 photographs of unfamihar full-faces and
complex measures, including 3D protuberance and ratios, measured from these
full-faces and their profiles. The sum of the modulus of the z-scores for each
measurement indexed physical deviation from the mean. Multiple linear regression
analysis regressed anthropometric and the complex measures, one at a time, and
together, on to distinctiveness ratings. Regressions which included eccentricity
measures derived from both sets of measurements accounted for more of the
variance than eccentricity denived from one set alone. Given that physical
measurements predicted distinctiveness at all, led the authors to conclude that the
encoding of faces along explicit dimensions is conceivable. Nevertheless, Bruce et
al. concede that facial attributes more complex than those measured may account
for the representation of faces. Indeed, they suggested that PCA may offer a

worthwhile interpretation of MDS dimensions. Significant correlations between
26



distinctiveness ratings and eccentricity led Bruce et al. to conclude that
distinctiveness reflects eccentricity from a mean. Consequently, the distribution of

faces 1n MDS was assumed to be consistent with a normal distribution or a

centrally-clustered distribution.

Despite the acknowledgement that the majority of faces are not typical (Vokey &
Read, 1995), MDS is characterised by its multivariate normal distribution. In an
attempt to resolve this paradox, Burton and Vokey (1998) explored the definition
of typicality and discrepancies which arise when MDS 1is depicted as a bivanate

space, rather than the multivariate space intended.

Typicality can be defined with regard to local density (the proximity between a
face and its immediate neighbours), which is highest at the centre of space.
Furthermore, it is commonly assumed that the majority of faces occupy the region
of highest density. However, as the majority of faces are not considered very
typical, it appears that the majority of points, rather counterintuitively, cannot fall
in this high density region of space. This notion makes more sense when MDS is
considered as a multivariate space, rather than the bivariate space in which it is
commonly depicted. Burton and Vokey demonstrated that when MDS 1is
conceptualised as a bivariate space, with values of each dimension varying
normally around the central tendency, the frequency of faces located at any given
point appears to be a monotonically decreasing function of squared distance from
the centre. However, this 1s not invariant as the number of dimensions increases.
The authors demonstrated that when dimensionality 1s greater than 2, the majority
of faces are no longer found at the centre of space. Moreover, the mode moves
progressively further away from the centre as dimensionality increases. This
observation can explain why local density is highest at the centre of a space with
normally distributed dimensions, and yet the majority of faces are not very typical.
For the sake of parsimony, a bivariate space 1is recruited to aid theoretical
Interpretation in this thesis. However, it is acknowledged that face space is

multivariate and as such properties of MDS vary accordingly.

Wickham, Morris & Fritz (2000) analysed the distribution of faces rated for

distinctiveness as a function of rating instructions. ‘Traditional’ rating scales
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asking participants to decide how distinctive a face is, and ‘deviation’ scales asking
participants to rate faces according to how difterent they are from an average face,
were administered. A normal distribution of ratings along the typical-distinctive
dimension was produced by the ‘traditional’ scale supporting Burton and Vokey’s
(1998) computation. However, the ‘deviation’ scale yielded a positive skew of
ratings towards the typical end of the dimension. Wickham et al. (2000) postulated
that the style of instructions is responsible for discrepancies between conventional
accounts and Burton and Vokey’s contention. In order to make the task easier,
participants had to make forced-choice distinctiveness judgments to pairs of faces.
A distribution akin to that proposed by Burton and Vokey emerged. As a
reconciliation, Wickham et al. suggested that participants may rate distinctiveness
for reasons other than the combined influence of all dimensions. However, the
universal reliability of distinctiveness ratings reported across studies suggests that

idiosyncratic use of dimensions is an unlikely source of judgments.

1.2.2.2 Norm-Based Versus Exemplar-Based Interpretations

Valentine (1991) distinguished norm-based and exemplar-based interpretations of
MDS. The norm-based conceptualization dictates that faces are encoded as vectors
which reference their deviation from a prototype. Similanty between two
exemplars is dependent on the distance separating them and the length of the vector
linking exemplar and prototype. Conversely, exemplar-based accounts provide no
role for an abstracted norm and consider faces to be represented as points. In this
case, similarity is determined solely by inter-point distance. Whereas exemplar-
based models explain distinctiveness effects seen in other-race faces more
parsimoniously than norm-based models (Valentine & Endo, 1992), norm-based
models are traditionally recruited to account for the recognition advantage imparted

by caricatured faces over their veridical counterparts (Rhodes, Brennan & Carey,
1987).

In order to derive a unified model, Lewis and Johnston (1999) reasoned that “it is
either necessary to show how a norm-based model can account for race effects, or
to demonstrate how an exemplar-based model can account for the caricature

advantage” (p.10). In pursuit of the latter, they devised their Voronoi model,
28



founded on the premise that encoded representations are bounded by identity
regions. The perimeter of these regions bisects inter-point distance. The authors
demonstrated that the caricature advantage is an emergent property of representing
faces by regions because the centre of the identity region (the point of optimum
activation) will be further from the centre of MDS, hence in a lower density area,
than the face which formed the region (the veridical image). Hence, caricatures
optimally activate the region, compared with the veridical representation. Unless
otherwise stated, forthcoming references to MDS assume an exemplar-based

conceptualisation, owing to its ability to account for a wide range of phenomena.

1.2.2.3 Nature of Representations

Faces can be identified despite changes in lighting, view, expression and
transformations due to age, therefore models must take into account demands
imposed by the requirement of invariance. Newell, Chiroro and Valentine (1999)
investigated view-based and individual-based interpretations of MDS 1in order to
explain view-point invariance. The view-based account hypothesises that different
views inhabit different subspaces and the location of a representation remains
Invariant across subspaces. Invariance is imposed by tagging together view-
specific representations of the same individual across the subspaces. This theory 1s
mechanistically analogous to Craw’s (1995) manifold model of object and face
recognition which posits that different views of a face are integrated across
subspaces in an ‘identity manifold’. Newell et al.’s individual-based account
hypothesised that different views of the same individual cluster in MDS, correlated
by close temporal proximity. This purely instance-based interpretation considers
representations to be points rather than manifolds, analogous to FRUs (Bruce &

Young, 1986) which “respond when any view of the appropriate person’s face is
seen” (p. 311-312).

In a series of experiments, Newell et al. (1999) reported that distinctiveness and
view did not interact. This afforded support for the view-based approach which
supposed that because generalisation to different views occurs across sub-spaces,
recognition should be affected in a similar way regardless of distinctiveness. The

individual-based account was not supported because it predicted that generalisation
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across views is affected by distinctiveness, with an increase in encoding error
affecting the densely populated typical faces most adversely. Although Lewis and
Johnston’s (1999) Voronoi model is an individual-based manifestation of MDS,
Valentine (2001) reconciled the Voronoi model and manifold accounts. He
hypothesised that dimensions coding identity partition the space into identity
regions, but dimensions coding transformations such as view, lighting, expression

and age may be captured across manifolds.

1.2.2.4 Nature of Simnlarity Metric

Recognition requires an evaluation of the similarity between a perceived face and
stored representations, but “how this similarity is calculated...... defines the
properties of face-space” (Lewis, 2004, p. 30). Valentine’s (1991) exemplar-based
face-space is grafted on to an Euclidean space, which characterizes similanty as a
monotonic decreasing function between inter-point distances In metric space.
Valentine theorized that an identity decision involves evaluating the following
similarity metric: 1) the distance between the location of the stimulus and the
nearest known face; 2) the distance between the stimulus and the next nearest
exemplar. Hence, ease of recognition is defined by a limited subset of exemplars.
This nearest neighbour algorithm pervades other incarnations of MDS, namely the

Voronoi (Lewis & Johnston, 1999) and manifold (Craw, 1995) models’.

Lewis (2004) devised a development of MDS entitled ‘face-space-R’. Whilst this
model utilizes Euclidean principles, ease of recognition depends on: 1) activation
of the exemplar most similar to the stimulus; 2) activation of all other exemplars
(proportional to exemplar density at the probe). Thus, the implementation
resembles the interactive activation account of FRUs (Burton et al., 1990; 1999).
A mathematical implementation of the space captured distinctiveness effects,
other-race effects and the caricature advantage. Its predictive power was further
bolstered by the inclusion of a ‘strength parameter’ which signalled familiarity.
This allowed each face encountered to be encoded in space, regardless of

familanty, thus preserving Valentine’s (1991) oniginal tenet that MDS houses

! Craw (1995) does not explicitly reference this algorithm but the local properties of the model associated with intra-
class discrimination are granted Euclidean characteristics consistent with face-space.
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faces that have been seen previously but are not necessanly familiar. This 1s an
important development since Lewis and Johnston’s (1999) Voronoi model: given
that identity regions saturate face-space, every encountered face could potentially
activate a representation leading to false recognition. Lewis and Johnston did
introduce a threshold of activation but “such an arbitrary threshold does not sit well
with the explicit nature of the Voronoi1 model” (Lewis, 2004, p. 56).

1.3 Distinctiveness

The study of distinctiveness in the domain of face recognition has attracted a lot of
attention since the early 1970s. Recognition memory tasks demonstrated that
previously unfamiliar distinctive faces are more accurately recognized and less
likely to be misidentified as having been seen before. A later wave of research
demonstrated distinctiveness affects the speed and accuracy with which familiar

faces are recognised, whether famous or personally familiar.

Section 1.3.1 reviewed the origin of distinctiveness, more specifically, whether or
not it should be cast as a perceptual or mnestic phenomenon. An appreciation of
the nature of this variable is an essential prerequisite to accepting Valentine’s
(1991) multidimensional face-space as a theoretical account of the vanable. The
manner in which MDS accommodates temporal dimensions of distinctiveness 1s a
particularly pertinent issue. The relationship between distinctiveness and facial
ageing (Section 1.3.2) and the developmental literature (Section 1.3.3) are

considered with particular reference to MDS.

1.3.1 Distinctiveness: A Perceptual or Mnestic Variable?

A common concern uniting early studies of distinctiveness was whether or not the
variable be best cast in perceptual or mnestic terms. Light, Kayra-Stuart and
Hollander (1979) examined the hypothesis that distinctiveness effects arise as a
result of the differential depth of processing of distinctive and typical faces with
distinctive faces more attention-grabbing than typical faces. Prior to taking part in

a recognition memory task, participants viewed 40 distinctive and 40 typical
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unfamiliar faces under incidental or intentional leamning conditions (only in the
latter were participants informed that their memory was going to be tested), 3

second or 8 second presentation times and likeableness or gaze direction judgment

tasks.

It was supposed that the 3 second exposure, intentional learning conditions, and the
gaze direction orienting task, would attenuate the distinctiveness effect by
encouraging equal distribution of attention across both face types. Recognition
memory performance was consistently better for distinctive faces compared with
typical faces negating Light et al.’s (1979) depth of processing hypothesis.
However, in another study, Hosie and Milne (1995) demonstrated that distinctive
faces are maximally encoded after a very short exposure. Thus, regardless of the
conceptualisation of distinctiveness as a perceptual or mnestic variable, Hosie and
Milne concluded that encoding distinctive information does not require processing

time.

Valentine and Bruce (1986) offered a mnestic interpretation and provided some of
the first evidence that faces may be coded relative to a prototypical face, or norm.
Famous faces and unfamiliar faces were rated on a 7-point scale for distinctiveness,
where 1 corresponds to a ‘very typical’ face (famous face) or a ‘very typical’ face
which would be ‘very hard to spot in a crowd’ (unfamiliar face), and 7 denotes a
‘very distinctive’ face (famous face) or ‘very distinctive’ and so ‘would be
relatively easy to pick out in a crowd’ (unfamiliar face). Ten famous faces and 10
unfamiliar faces (half distinctive and half typical) were presented to participants in
a familiarity decision task, and also in a facedness decision task (face or nonface)
combined with 20 jumbled faces. In the familiarity decisions task, distinctive faces
were classified faster than typical faces but 1n the facedness decisions task, the
etfect reversed. The authors hypothesised that because typical faces are relatively
similar to the prototype they are classified as a face more quickly than distinctive

faces, but less well recognised owing to confusion with other typical exemplars.

Whilst Valentine and Bruce (1986) concluded that distinctiveness can be accounted
for “in terms of the manner in which memory traces are stored rather than the

encoding processes involved in recognising faces™ (p. 534), H. Ellis, Shepherd,
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Gibling and Shepherd (1988) subscribed to a perceptual interpretation of the
facedness task. They speculated that distinctive features may trigger a face
schema, regardless of the legitimacy of the stimulus, rendering classification of
jumbled distinctive faces particularly difficult. Furthermore, the authors reasoned
that 1t 1s untenable to couch an effect, obtained for both famous and unfamiliar
faces, in mnestic terms. However, mnestic mechanisms fuelled creation of
Valentine’s (1991) multidimensional face-space. Moreover, recent incarnations of
face-space, for example, the Voronoi model (Lewis & Johnston, 1999) and Face-

space-R (Lewis, 2004) also explain distinctiveness as a mnestic variable.

1.3.2 Distinctiveness and the Ageing Face

The effects of ageing on facial appearance are wide ranging and dramatic. They
include changing cephalic morphology, loss of adipose tissue, increasing wrinkles,
changes in hair distribution and colour, and disproportionately large ear and nose
cartilage (Alley, 1988). Yet, relatively little is known about the impact on
encoding and storage of faces for recognition purposes. George and Hole (1998)
demonstrated that faces are recognized despite age transformations. Participants
were familiarised with six faces (with a mean age of 8.33 years old) which then had
to be identified amongst a series of distractors. Photographs of the to-be-
recognised faces were either identical to those leamed, differed in pose and
expression, or differed by age, pose and expression. Age changes comprised a 2 to
4 year increase or decrease. Recognition performance latency and accuracy for
older faces resembled performance for faces differing only in pose and expression.
This finding held for younger faces in the latency analysis, but performance
accuracy dropped significantly below that of older faces. George and Hole
concluded that representations of faces are not ageless, hence the consistently
impaired performance associated with age-transformed faces. Yet neither does
recognition require a perfect match of age characteristics, hence the similar
consequences associated with age transformations and pose and expression
changes. George and Hole entertained several possibilities for the way in which
age 1s stored, including the suggestion that “age information is utilised in a broad

way within a representation, perhaps from some kind of prototypical age face”
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(p-1132). Thus, it is quite conceivable that age could be coded as a dimension in

face-space.

O’Toole, Vetter, Volz and Salter (1997) discovered that the application of a
caricature algorithm to 3D laser-scanned heads aged the faces in addition to
caricaturing them. Thus in addition to exploring an additional perceptual
dimension of distinctiveness, an exploration of this relationship mandates an
understanding of the way in which age information is represented. Fifty male and
50 female heads (with a mean age of 26.9 years old) were subjected to PCA
represented as points located in a 99 dimensional space. The mean distance of
heads from the average was 9.9. Caricature levels were set to distances from the
average of 6.5 (anticaricature), 10 (estimate of veridical), 13.5 and 17 (caricatures).
A subset of 60 of these faces were presented to participants at each level of
caricature. Perceived face age increased linearly as a function of caricature level,
to the extent that all participants perceived faces presented with the level-17

distortion as at least 50 years old.

The authors observed that caricaturing does not invoke head shape changes.
Rather, facial wrinkling 1s amplified, and loss of adipose tissue, and skin elasticity
and muscle tone under the jaw is extrapolated. O’Toole et al. (1997) reasoned that
cues to ageing from the 3D representation must only have been based on the
distinctive aspects of individuals relative to the adult face because no normative
cues to ageing were exploited. Hence, the indirect claim that distinctiveness taps

age mformation.

Deftenbacher, Vetter, Johanson and O’Toole (1998) explicitly investigated rated
distinctiveness and memorability as a function of caricature, or perceived age,
using O’Toole et al.’s (1997) 3D stimuli. Participants rated 30 of these faces for
distinctiveness. Distinctiveness was related linearly to distance from the average
face 1n 3D-grounded space. Given that age had previously varied with caricature in
the same way (O’Toole et al., 1997), Deffenbacher et al. (1998) concluded that
faces become more distinctive with age. Indexed by accuracy and the number
tnals required to learn a face, memorability increased as a function of caricature

too. Thus, older distinctive faces are more memorable than younger faces located
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closer to the average face. That facial age taps a component of distinctiveness has
important implications for studies which investigate distinctiveness with a temporal
dimension. Regardless of whether or not age transformations extend vector lengths
(norm-based), cause shifts within Voronoi cells (Lewis & Johnston, 1999) or create
new manifolds (Craw, 1995), it is conceivable that representations change location
in MDS with age. Hence, present experiments investigating distinctiveness with

A0A as a temporal dimension may need to take account of ageing.

1.3.3 Distinctiveness from a Developmental Perspective

H. Ellis (1992) was the first to document the finding that distinctiveness effects
only emerge beyond a certain age. Participants aged 6 to 8 years, 9 to 11 years and
12 to 14 years, took part in a recognition memory test with men’s faces.
Distinctiveness did not modulate performance in the youngest group. Conversely,
the older groups demonstrated the customary advantage in recognising distinctive
faces. From a visual inspection of the graph, however, it appears that the full
advantage was not necessarily reached until 12 to 14 years of age. H. Ellis also
found that for all age groups, distinctive and typical faces were equally likely to be
1dentified erroneously as distractors (cf adult data, e.g. Bartlett, Hurry & Thorley,
1984). H. Ellis (1992) reasoned that children may fail to encode those
physiognomic aspects which render a face distinctive and store typical and
distinctive faces in a similar fashion to one another. Consequently, he proposed
two alternative versions of face-space to accommodate these findings (see Figure
1.5). The uniform model is characterised by parameters akin to those structuring

adult face-space. However, it is populated less densely and as such has an
attenuated density gradient. The alternative differential model 1s smaller than adult

face-space but preserves the differential distribution of typical and distinctive faces.
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Figure 1.5. H. Ellis’s (1992) uniform model (left) and differential model (right).

Johnston and H. Ellis (1995) sought to delineate these models and, moreover,
establish whether norm-based or exemplar-based conceptualisations would provide
a better account of child face-space. A recognition memory task and facedness
task were administered in pursuit of this differentiation. The authors reasoned that
whilst both norm and exemplar versions posit similar mechanisms to explain
recognition memory performance (the distance or vector angle between target and
neighbour), mechanisms dictating classification performance differ between
versions. The advantage imparted to typical faces in a classification task stem from
a decreased vector length between the target and prototypical face or the high
exemplar density around the typical face, for norm and exemplar versions,
respectively. Whereas vector length and exemplar density happen to be negatively
correlated in adult space, this is not necessarily the case for child space. Hence,

concomitant analyses of the two tasks could shed light upon the most apt model.

The tasks were presented to groups of participants aged 5,7, 9, 11, 13 and 20 years
old. In the recognition memory task, participants had to make old or new decisions
to 18 previously studied unfamiliar males (half distinctive, half typical) intermixed
with 18 distractors. Recognition performance, indexed by reaction times and d’ (an
Integrated measure of hits and false positives) was unaffected by distinctiveness for
the 5 and 7 year old groups, whereas older children and adults demonstrated the

customary distinctiveness advantage. Interestingly, a visual inspection of the graph
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presenting d’ data revealed that 9 year olds are still marginally less affected by
distinctiveness than older age groups. Analyses of hits and false positives yielded
distinctiveness effects across all ages and mixed results, respectively. Conversely,
the classification task carried out with intact and jumbled versions of a subset of
the stimuli revealed that decision latencies across all ages were affected by

distinctiveness. This was mirrored by a trend 1n the accuracy analysis.

Johnston and H. Ellis (1995) deduced that the uniform norm-based model or
differential exemplar-based model was most suitable. They reasoned that a norm-
based conceptualisation must preserve the parameters and hence vector lengths of
an adult model. After all, the compressed parameters and shorter vectors
associated with the differential model would results in an attenuated effect of
distinctiveness on classification performance. The strength of this model resides in
the parsimonious way in which it can explain performance across the tasks by
appealing to different mechanisms. Alternatively, the authors pointed out that an
exemplar-based conceptualisation must maintain the differential density of typical
and distinctive faces to cause effects of distinctiveness on classification: the
attenuated density gradient of the uniform model would result in an elimination or
at least attenuation of distinctiveness effects on classification. However, to allow a
differential exemplar-based model to explain recognition memory performance,
Johnston and H. Ellis commented that a “disentanglement of distance from target
face to neighbour and the local exemplar density of target face” (p. 466) is
required. Consequently, they theorized that recognition becomes impaired when
the nearest neighbour is within a certain distance from the target. This way, both
typical and distinctive representations have neighbours within that radius rendering
recognition memory performance impaired across all representations. Further,
Johnston and H. Ellis noted that if all faces are coded as ‘typical’ representations,
this explains the poorer recognition performance associated with young children.
On the other hand, the norm-based uniform model treats each face as ‘distinctive’

which does not sit so comfortably with performance.

Chang, Levine and Benson (2002) hypothesised that children encode faces relative
to a prototypical face. Therefore, any model of child face-space should be norm-

based. Applying caricature algorithms as a proxy for distinctiveness, groups of
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participants aged 6, 8, 10 and 27 years took part in a speeded naming and likeness
judgment task. Stimuli included personally familiar faces, presented at 5 different
canicature levels: -36% and -18% (anticaricatures); 0% (vendicals); 18% and 36%
(cancatures). A linear relationship between naming latency and caricature level
was reported with caricatured faces responded to fastest. This did not vary with
participant age. In the likeness task, adults preferred vendical depictions as the
best likeness of the original, whereas 6 to 10 year olds most frequently selected
positive caricatures. The authors concluded that adult-like expertise is not
necessary in order to make use of distinctiveness information emphasized in
caricatures. Based on this premise, children as young as 6 can code whatever is
distinctive about a face. Further, their susceptibility to caricature effects suggested
that children are able to employ norm-based coding. Hence, the favoured

encapsulation of childhood distinctiveness effects, a norm-based interpretation.

Chang et al.’s (2002) results are not necessarily in mutual exclusion with those of
Johnston and H. Ellis (1995). Both face classification and caricature tasks are
united insofar as they tap the facility to encode faces relative to a norm. Johnston
and H. Ellis’s uniform norm-based model could feasibly account for Chang et al.’s
results whilst also being consistent with the lack of distinctiveness effects in their
recognition memory task. It is possible that Johnston and H. Ellis’s differential
exemplar model could also provide a reconciliation between the two studies given
that the postulated mechanisms underlying recognition memory tasks are
independent to those causing classification and caricature effects. As different
means of indexing distinctiveness effects subscribe to different mechanisms, i1t 1s
not logical to conclude that the emergence of distinctiveness effects in one task

implies the emergence of this effect in tasks which recruit different mechanisms.

Before closing this section, it is worth mentioning Valentine’s (2001) observation
that Lewis and Johnston’s (1999) exemplar-based Voronoi model, in conjunction
with Johnston and H. Ellis’s (1995) uniform model, provides an alternative
conceptualisation of child face-space. Given that the Voronoi model codes
1dentities as regions which consume the entire space, the sparsely populated nature
of the uniform model would result in large identity regions per face, thus providing

a neat explanation for category inclusion errors, characteristic of childhood face
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recognition. Although Johnston and H. Ellis did not nominate the exemplar
uniform model as a likely candidate, the nomination process 1s highly speculative
without future research. However for present purposes, it is sufficient to
acknowledge that mechanisms subserving recognition are not affected by

distinctiveness in children.

1.4 Age of Acquisition

A persistent interest in AoA was sparked 15 to 20 years ago mn the domain of word
recognition. This section charts the status of AoA as a stage-dependent process to
a ubiquitous by-product of the way in which information is stored and accessed n

the brain.

Early studies sought to delineate effects attributable to AoA from those which
arose as a result of frequency. Many studies found task dissociations between AoA
and frequency, or additive effects, and following Sternberg’s (1969) theory of
additive logic?, interpreted this as evidence that the variables are rooted in different
origins. Section 1.4.1 reviews separate-stage accounts in the domains of word,
object and face recognition. More recent single-stage accounts were less
preoccupied with uncovering task dissociations, stemming from the prediction that

AoA and frequency effects co-occur. These accounts are documented in Section

1.4.2 and compared in Section 1.4.3.

2 Stemberg’s (1969) additive-factors logic theorizes that additivity arising from RT data in factorial designs implies
that the underying mechanisms can be divided into serially-arranged operations, or stages. This model has been
recently affirmed (Roberts & Stemberg, 1993; Stemberg, 1998). Bruce, Dench and Burton (1993b) provide an
objective review of this method. They note that an interaction does not necessarily indicate that two variables
affect the same stage of processing. However, additivity of two vartables results from “independent influences
on information processing” (p. 42). Moreovet, as 2 consequence of additivity in their results, Bruce et al. (1993b)
conclude that two variables act in different stages in processing,
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1.4.1 Separate-Stage Accounts

1.4.1.1 Effect of AaA on Word and Object Recognition

Frequency has long been considered the prime candidate for determining lexical
processing speed and accuracy. An oft cited study by Oldfield and Wingfield
(1964) reported that objects with high frequency labels are named more quickly
than those with low frequency labels. A development of this study was carrnied out
by Carroll and White (1973). It considered a broader host of variables related to
frequency, including AoA, and submitted results generated from 94 object
drawings to a multiple regression analysis, compared with the meagre 26 m the
Oldfield and Wingfield study. AoA emerged as the only significant predictor of
naming latency. Carroll and White also investigated whether naming latency could
be affected by cumulative frequency; a multiplicative function of AoA and
frequency. However, this investigation was not fruitful. The subsequent “rejection
of the original single-stage account necessitated an explanation for separate effects
of frequency and AoA” (Lewis, Chadwick & H. Ellis, 2002, p. 1228). Indeed,
Lachman (1973) managed to record independent effects of both AoA and

frequency on object naming latency.

There are problems with the measures used in these studies. Carroll and White
(1973) employed objective and rated measures of AoA. The objective measure
was derived from tabulations of frequencies of words used in children’s writing,
thus 1t may have incorporated frequency. Nevertheless, Carroll and White reported
a correlation of .85 between the objective and rated measures, supporting the
validity of each’. Unfortunately the authors observed that AoA measures were

significant predictors provided that they were entered into the multiple regression

analysis in combination. As a result they concluded that “each is to the same

degree not completely valid as a measure of age of acquisition” {p. 91). Lachman

3 Ratings of AoA are reputed to be valid measures of the age at which words are acquired. Barry, Morrison and A.
Ellis (1997) dted the following as evidence: Gilhooly and Gilhooly (1980) found a correlation of .93 between
rated AoA and the rank order of words in the norms from the ‘Mill Hill” vocabulary test; Mortison, Chappell and
A. Ellis (1997) found a correlation of .80 between rated AoA and children’s naming performance of 297 objects.
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(1973) used Carroll and White’s objective measure of AoA rendering the validity
of their results questionable also. Moreover, rated measures of AoA and frequency
were gathered from the same participants with only 24 hours between ratings. As a
result, Lachman conceded that the frequency ratings used in this study may have

tapped a chronological dimension.

Even with improved measures of AoA and frequency, the nature of their etfect on
object naming remains inconsistent. In a reanalysis of the Oldfield and Wingfield
(1964) data, with frequency, AoA and word length as predictors, Morrison, A. Ellis
and Quinlan (1992) found AoA to be the sole determinant of naming latency. In
their own study, which included rated imageability and rated prototypicality of
items as members of ‘natural’ and ‘man-made’ categories, as additional variables,
only AoA and word length emerged as significant predictors in the multiple
regression. In a more comprehensive study, Barry, Morrison and A. Ellis (1997)
inserted the following factors into a multiple regression: Celex printed and written
word frequency; AoA; imageability; name agreement; familiarity; 1mage
agreement; visual complexity and word length. Data derived from 195 images
were entered into the analysis, compared with just 48 from the Morrison et al.
(1992) study. Object naming latency was predicted by spoken frequency, name
agreement and multiplicative term comprising AoA and spoken frequency: AoA
effects emerged for low frequency words only. Despite the interaction, Barry et al.
(1997) were not tempted to view AoA and frequency as operating at a single stage
of processing. Whilst they concluded that both variables affect the process of
activating a word’s phonological form for its spoken production, they specified the
locus of frequency to be at the ‘lemma-to-lexeme connection’ and the locus of

AOA at the level of the ‘lexeme’ 1tself.

A wide variety of separate-stage accounts have been proposed, with Brown and
Watson’s (1987) ‘phonological completeness hypothesis’ one of the most
influential. Brown and Watson argued that AoA effects are a symptom of the way
in which phonological representations are developed. As vocabulary increases and
storage space decreases, words have to be stored in an increasingly fragmented
fashion. Whereas early acquired words can be stored 1n a holistic form, later

acquired words are subject to fragmentation and require more processing time for
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reassembly prior to production. Monaghan and A. Ellis (2002) recovered
damaging evidence against the hypothesis. They reasoned that early acquired
words should be harder to dissect in a phonological segmentation task than late
acquired words. On the contrary, segmentation speed was not found to be a
function of AoA. Furthermore, Yamazaki, A. Ellis, Morrison and Lambon Ralph
(1997) found that the age at which Japanese Kanji letters entered both spoken and
written vocabularies predicted reading speed. They reasoned that there must be at
least two loci for AoA effects because AoA must surely affect the quality of lexical

representations in the speech output and visual input lexicons.

Morrison et al. (1992) found that the time taken to categorise objects into ‘man-
made’ versus ‘natural’ categories was not predicted by AoA. In conjunction with
their afore-mentioned finding (p. 41), the authors deduced that AoA affects name
production rather than object recognition or comprehension. However, Brysbaert,
Van Wijnendaele and De Deyne (2002) criticized the semantic task used. They
asserted that it is ‘suboptimal’ to distribute stimuli over two different categones
and then report aggregated RTs irrespective of the category. It 1s possible that
participants may have re-defined the ‘man-made’ versus ‘natural’ task as a “yes-no’
decision task. The authors stated that stimuli in a positive category are processed
differently from those in a negative category. In a more robust semantic
classification task, participants had to classify words as belonging to the category
‘words with definable meanings’ or a category corresponding to proper nouns.
Brysbaert et al. (2002) recovered AoA effects in this task concluding that the locus
of AoA had been interpreted too narrowly and should be extended to encompass

the semantic system".

1.4.1.2 Effect of AoA on Face Recognition

The a priori advantages of investigating AoA 1n the domain of face recognition are
two-fold. Firstly, it is hard to disentangle mechanisms rooted in age of acquisition

and order of acquisition as the two are *“perfect correlates for words learnt in the

4 Brysbaert et al. (2000) cite the work of Taft and van Graan (1998) as evidence that a word / first-name semantic
classification task does not recruit phonology. Though regular definable words and irregular definable words
exhibited a reliable difference in naming latencies, semantic classification latencies did not differ.
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participant’s first language” (Lewis, Chadwick & H. Ellis, 2002, p. 1230). Moore
and Valentine (1999) point out that the phonological completeness hypothesis 1s
consistent with effects arising from a critical period of language development and
the proposed phonological output locus of AoA. Studies addressing effects of AoA
on face processing provide a means of delineating age from order effects: the early
faces used by Moore and Valentine (1998; 1999) are encountered between 6 and 12
years of age whereas early acquired words are typically encountered between the
ages of 2 and 6 years. Thus, face recognition studies are a necessary prerequisite to
hypothesizing mechanisms free from maturational constraints. Secondly, face
recognition studies provide an important vehicle for by-passing problems
associated with the high inter-correlations between AoA and other variables, such
as frequency, which are more pronounced in other domains, for example word
naming. Inter-correlations pose problems for interpretation of multiple regression

analyses and have adverse practical implications for factorial designs.

In the late 1990s, researchers were still entrenched in the notion that AoA and
frequency stem from different origins and hence, reside in different loci. Moore
and Valentine (1998) investigated the effect of AoA on famous face naming
latency in a multiple regression analyses based on responses to 106 faces and 1n a
factorial analysis based on 50 critical items (25 early acquired and 25 late
acquired). Participants were asked to rate when they “first became aware of each
celebrity” on a 7 point scale (1 = unknown; 7 = celebrity acquired over 18 years of
age). Rated distinctiveness, degree of rated familiarity with the celebnty, log
surname frequency (derived from a count of surnames in the telephone directory)
and number of phonemes in the full-name were entered into the regression, or
controlled in the factorial analyses. The multiple regression recovered significant
effects of AoA and familiarity on naming speed latency and accuracy. In the
factorial analyses, early acquired faces were named faster and more accurately than
late acquired faces. Consistent with the literature from other domains, AoA effects
were attnbuted to the phonological output lexicon, the final stage in face

processing (Bruce & Young, 1986; Burton et al., 1999).

There are a number of criticisms regarding the nature of the variables employed in

this study. Lewis (1999a) noted that the AoA ratings may reflect a non-linear
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mapping of the age at which a face is acquired. He noticed that whilst points 2 to 5
on the rating scale are separated by 3 year increments, points 5 to 7 are separated
by increments greater than 3 years. Although potentially problematic for a
multiple regression analysis, factorial analyses should be sufficiently insensitive to
this non-linear transformation of AoA ratings. Ratings of familiarity were obtamned
by asking participants to recall how many times the celebrity had been
encountered. Moore and Valentine (1998) considered this a proxy for cumulative
frequency. However, Lewis warned that recent occurrences were more likely to
contribute to the estimate than earlier occurrences, hence this estimate may be
distorted by current frequency. Also, the measure of surname frequency seems
inappropriate on several counts: 1) experimental stimuli are full-names and full-
names tend to be unique; 2) Moore and Valentine concede that “surname frequency
is not analogous to word frequency” (p. 490), the frequency with which surnames
are encountered has an idiosyncratic component; 3) celebrity surnames are often
more distinctive, and encountered more frequently, than surnames which would
appear frequently in the telephone directory. Finally, familiarity, distinctiveness
and AoA were rated by all participants. However, given the overlap evinced by

familiarity and AoA, the collection of ratings from a single population is dubious.

A shift towards a single-stage school of thought is largely documented by Moore
and Valentine (1999). The same 50 critical items for which an effect of AoA
occurred in face naming were subject to tasks involving reading aloud printed
names, and face and name familiarity decision tasks. AoA was manipulated
factorially and experimental sets matched for familianty, distinctiveness, surname
frequency, initial phonemic power, name letter and phoneme length. All tasks
revealed AoA effects. Assuming that phonology is automatically activated by
printed proper names, the reading aloud task and name familianty decision are
united in their support for a locus of AoA at the phonological output lexicon.
However, phonology is not automatically activated by the presentation of a face’,
leading to the conclusion that AoA effects would have to operate at the level of the
PINs (Bruce & Young, 1986) or at earlier stages, in order to influence familiarity

decisions. Moore and Valentine hypothesised that multiple locit were necessary to

5 Valentine, Hollis and Moore (1998) established that whist face naming could prime a subsequent name familiarity
decision, face familiarity decisions did not prime a name familiarity deasion.
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account for the diversity of AoA effects or alternatively AoA reflected a “general
property of the mental representation of perceptual and lexical information” (p.
420). Furthermore, they hypothesised that whilst AocA may affect the
representations themselves, frequency may affect the strength of connections
between representations. Still convinced by a separate-stage school of thought, the
authors postulated that the challenge for future cognitive models 1s to account for
both AoA and frequency effects.

1.4.2 Single-Stage Accounts

1.4.2.1 Caumulative Freguency Hypothesis

The cumulative frequency hypothesis, the first of the single-stage accounts, regards
AoA and frequency effects to stem from the way in which information 1s stored
and accessed in the brain. Lewis (1999a) argued that AoA 1s reducible to
cumulative frequency, or the total number of instances of a stimulus, where this 1s
determined by frequency of encounters per unit time (estimated by frequency) and
the total time that the stimulus has been known (estimated by AoA). Whilst
Carroll and White (1973) rejected a cumulative frequency explanation on account
of their additive results, Lewis’ revision of the hypothesis states that data needs to
be log-transformed prior to analysis. Any resulting additive effects would be

indicative of multiplicative terms in the instance-based model.

Lewis (1999a) tested his reformulation with a semantic classification task
involving the classification of 185 famous faces as belonging to one of two soap
operas. After the task, participants rated characters according to frequency of
appearance on the show. Objective calculations determined how long the character
appeared in the show and, in appropriate, low long since they left. A multiple
regression analysis revealed that categorisation latency was significantly predicted
by all three log-transformed variables. Lewis concluded that in absence of any
parsimonious accounts of AoA, effects across all domains may be best explained as

a simple accumulation of instances.
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The task suffered from a number of short-comings predominantly highlighted by
Moore, Valentine and Tumer (1999). As far as stimulus selection 1s concemed,
Lewis (1999a) included actors even 1if famous for other roles, provided that their
role in the soap opera was their most famous. He reasoned that a semantic
classification task requires forging associations between a face and its category,
however, 1t 1s a priori likely that an actor famous for a role prior to the soap opera
will be classified faster than a later acquired face, regardless of the importance of
‘forged associations’. After all, Moore and Valentine (1998; 1999) demonstrated
that AoA affects the processing of famous faces generally. To compound this,
Moore et al. (1999) noted that Lewis included actors famous prior to therr role n
the soap opera. Owing to the close semantic associations between characters,
Moore et al. also noted that RTs could be affected by associative priming and an
accumulating semantic activation which occurs as a result of presenting a large
number of celebrities from the same category. However 1n response to this, Lewis
(1999b) stressed that stimuli were randomized, thus eliminating systematic bias
conferred through priming. Another criticism regarding the design of the task
stems from Brysbaert et al.’s (2000) notion that it is ‘suboptimal’ to distribute
experimental stimuli over two categories (see p. 42). Further, Moore et al. believe
that Lewis (1999a) should have controlled for familiarity and distinctiveness. In
defence, Lewis (1999b) denounced familiarity as ‘ill-defined’ and a composite of
other vanables. Also, given that Moore and Valentine (1998; 1999) viewed
familianty as a proxy for cumulative frequency, it is counter-intuitive to control for
a variable synonymous with the experimental variable itself. Lewis (1999b) argued
that distinctiveness should be treated as a random factor and that there are no
reasons to suppose that a “character’s distinctiveness will influence their frequency
or length of time on a TV show” (p. 312). However, Moore and Valentine (1998)
did recover a correlation between AoA and distinctiveness. This correlation could
reflect the inadequacy of their own rating: if early acquired faces are rated as more
distinctive than late acquired faces, then the ratings may be tapping the
distinctiveness of the person rather than their face. In exploring the effect of AcA

on face-space, it is possible that this thesis may shed light on this dispute.

One of the most common sources of criticism of the cumulative frequency

hypothesis comes from research which has found an additive relationship between
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AoA and frequency. According to Sternberg’s (1969) additive factors logic,
additivity implies that AoA and frequency are rooted in different origins.
However, Lewis, Gerhand and H. Ellis (2001) asserted that evidence against the
hypothesis is flawed as a result of inappropriate analyses. Data from two
influential studies, which proclaimed an independence of the two variables were re-
analysed: Gerhand and Barry (1998) explored word naming latencies in a factorial
design, and Carroll and White (1973), object naming latencies using multiple
regression analyses. Both st<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>