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ABSTRACT 

Future real-time systems will require to be adaptive in response to their 

environments and to system failures, as well as meeting their time constraints for mission 

and safety-critical functions. Currently, the critical functions of real-time systems are 

guaranteed before run-time by performing a worst-case analysis of the system's timing and 

resource requirements. The result is that real-time systems are engineered to have spare 

capacity, under normal operation. A challenge of current research is to make use of this 

spare capacity, in order to satisfy the requirements for adaptivity in the system. Adaptivity 

can be implemented by optional computations with firm deadlines. Optional computations, 

can be scheduled, and even guaranteed at run-time, by methods of flexible scheduling. 
This thesis starts by surveying the complex requirements for adaptivity within real- 

time systems. There is evidence that the run-time support for a computational model which 
incorporates all such complex requirements, would incur such large overheads that little 

spare capacity would remain for the optional computations themselves. The solution 
devised in previous research is to employ specialised hardware, or additional processors, in 

order to facilitate the support of a complex computational model. This thesis provides an 

alternative approach by developing a constrained computational model, which is 

nevertheless general enough to support many of the requirements for adaptivity. The claim 
is, that the relatively small overheads incurred by the run-time support for a constrained 

model, will leave adequate capacity for the performance of optional computations. 
In order to demonstrate the viability of the run-time support for the constrained 

computational model, the thesis develops and evaluates (i) efficient algorithms for the on- 
line acceptance testing of optional computations (ii) allocation methods which enhance the 
throughput of optional computations within multiprocessor systems, and (iii) cost-effective 
policies for the admission of optional computations which pass their acceptance tests. The 

thesis also addresses programming issues by demonstrating that the constrained model can 
be implemented in a standard programming language i. e. Ada 95. 

A major conclusion of this work is that the constrained computational model is 

viable, so long as acceptance tests, allocation methods and admission policies are chosen, 

which are appropriate to the spare capacity which exists on the processor(s). 
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CHAPTER 1 

INTRODUCTION 

1.1 BAC KG RO UND 

Real-time applications are characterised by their requirement to respond to their 

environments within finite and specified time constraints. In soft real-time systems, a failure 

to meet such a time constraint is merely inconvenient. In hard real-time systems such a 
failure may have catastrophic results. Such hard real-time applications include medical 

monitoring systems, process control systems, control systems for power stations, and flight 

control systems for aircraft. 
Real-time systems are often modelled and implemented as concurrent tasks. Each 

task is a schedulable entity which delivers some of the functionality of the application 

within its required time constraints. Tasks can be periodic in which case they run regularly 

at intervals e. g. sampling a sensor. Alternatively tasks can be aperiodic in which case they 

run irregularly e. g. in response to some change in the environment in which the real-time 

system operates. Critical tasks are vital to the system, and usually have hard deadlines, in 

line with the definition of 'hard' given above. Non-critical tasks may have soft deadlines. 

Tasks have a worst-case execution time (WCET) which can be derived from their code and 
is an estimate of the highest amount of processor time they will use in one execution. When 

real-time tasks complete their computations within their deadlines, they provide some 

service to the real-time system which may be quantified as having some utility or value to 

the system. The characteristics and behaviour of the tasks in a real-time system can be 

described in a computational model. Whether this model includes scheduling issues is a 

matter for debate. 

Hard real-time systems may often be safety-critical systems because certain failures 

of the system may result in catastrophic consequences such as loss of human life. Hard real- 
time systems may also have mission critical components whose correctness and reliability 
is crucial to the key services delivered by the system. There may well be requirements for 
fault-tolerance within such systems, and graceful degradation under failure. Hard real-time 
systems are often embedded in larger systems e. g. a real-time control system for an aircraft. 
Therefore the size and weight of hardware may be a constraint, along with the memory 
available for software. 

In order to guarantee the performance of hard real-time systems, predictability is 
important. This ensures that time and resource constraints can be known to be satisfied 
even under maximum loading of the system. Therefore safety or mission-critical tasks 
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within the real-time system are analysed before run-time to ensure that they can be 

scheduled to meet their time constraints even under worst-case conditions. This results in 

such systems being constructed with a processing capacity which meets the worst-case 

requirement but is excessive for normal operation. One current area of research is into 

making use of this spare capacity in order to enhance the total utility delivered by all the 

tasks in the real-time system [8,27,35]. The work of this thesis is a contribution to this 

research area. 

1.2 MOTIVATION 

Over the past few years there have been several keynote articles on the future of 

real-time systems. According to Stankovic [51 ] the next generation of real-time systems 

will be more complex and capable of exhibiting intelligence. They will have long lifetimes 

and be required to exhibit a great deal of adaptability. They will function in distributed and 
dynamic environments, and economic, human and ecological catastrophes will result if their 
timing constraints are not met. 

More recently Musliner et al. [38] write about future real-time systems combining 
Artificial Intelligence with the requirements to perform within real-time constraints. Such 
Real-time AI systems would have to: 

" work continuously over extended periods of time 

" interface with the external environment via sensors and actuators 

" handle uncertain or missing data 

" concentrate resources on the most critical events 

" handle both periodic and aperiodic events in a predictable fashion with guaranteed 
response times 

0 degrade gracefully 
An example given is that of the proposed Mars Rover for NASA. This must operate 

at a distance of about 15 light-minutes from earth and therefore cannot be tele-operated. It 

must operate continuously and autonomously in an incompletely specified environment. It 

must react in real-time to unpredictable conditions such as navigation route blockages and 
dangerous terrain such as sand pits. This requires "adaptability and intelligence beyond the 
capability of current real-time technology" [38]. 

One of the aims of current research is to make use of the spare capacity of real-time 
systems mentioned above, in order to incorporate Al techniques for such adaptability and 
intelligence. Requirements for fault-tolerance and graceful degradation can also be met by 

making use of spare capacity. A key problem with AT techniques is that they often have 

very large bounds on their WCETs. This makes them difficult to integrate with 
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conventional real-time tasks whose worst-case performance can be more easily bound, and 

guaranteed to meet hard deadlines. 

The first steps in solving this difficulty is to distinguish between those tasks which 

are critical and those which are non-critical. Critical tasks are necessary to achieve the 

minimum standards of safety and reliability in the real-time system. Because a missed 
deadline in a critical task could be catastrophic, all critical tasks must have their 

computation times bound and their deadlines guaranteed by schedulability analysis. In 

contrast, the non-critical tasks need not be guaranteed before run-time. However some 

non-critical tasks may have firm deadlines which means that, although missing such a 
deadline in not catastrophic, it does result in a significant loss of utility to the system. Tasks 

which perform Al functions may well fit into this category. These tasks provide adaptivity, 

and by their very nature may be required to run unpredictably. Therefore the issue arises as 
to whether such tasks should be guaranteed at run-time, before they start, in order to 

ensure that they can meet their firm deadlines. 

1.3 INCORPORATING ADAPTIVITY 

The Spring Project [52] models the tasks within a real-time system to be either 

critical, essential or non-essential. Essential tasks have firm deadlines, as described above, 

whereas non-essential tasks have soft deadlines. The project attempts to incorporate these 

three types of task into a consistent scheduling scheme which satisfies the need to 

guarantee critical tasks before run-time and the need to be flexible in guaranteeing essential 
tasks at run-time. Non-essential tasks have soft deadlines and need not be guaranteed. The 

project assumes a distributed real-time system with a number of nodes. Each node of the 
distributed system has a resident set of critical tasks which have been tested for 

schedulability before run-time. These tasks are assumed to be periodic whereas essential 
tasks are assumed to arise aperiodically. 

Spring provides dynamic or flexible scheduling for essential tasks in that they can 

either be guaranteed on-line on the node on which they arise, or if this guarantee is not 

possible, an attempt can be made to guarantee them on another node of the system. In the 
Spring Project, the algorithms used to guarantee the schedulability of essential tasks are 

called guarantee algorithms. These algorithms attempt to construct a schedule which 

preserves the guarantees given to resident critical tasks and previously accepted essential 
tasks, but also incorporates the new essential task. If an essential task cannot be guaranteed 

at one node of the system, then a distributed scheduling algorithm is used to direct the task 

to another node where it is likely to be guaranteed. 
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As has been said, tasks which provide adaptivity, are not only required to run 

aperiodically, but may have execution times which are difficult, or impossible, to bound. 

This makes it difficult to guarantee such tasks. Liu [33,34] has developed techniques for 

modelling various requirements for the computation of such tasks. 
According to Liu, tasks can be divided up into those components which are 

mandatory and must be guaranteed, and those components which are optional. Mandatory 

components are mission or safety-critical and must be guaranteed. They correspond to the 

critical, periodic tasks on a Spring node. However, in some applications, mandatory tasks 

can be improved upon by further execution, or can be replaced by longer tasks which 

would provide more utility to the system if they could be scheduled at run-time. If such 

additional computations have firm deadlines, then it may be possible to guarantee them at 

run-time, provided that their WCETs can be bounded. 

Various schemes have been developed for mandatory and optional computations, in 

order to meet the different requirements for flexible computation. Four methods are: 

" Imprecise Computations 

" Sieve Functions 

" Multiple Versions 

" Approximate Processing 

The methods are now described briefly. It is assumed that all of the components of 

computation can in some way be bound, so that the only issue is whether or not to attempt 
to guarantee each component (i) before run-time or (ii) at run-time. (Components of 

computations whose WCETs are unbounded, cannot be guaranteed, and must simply be 

executed in the hope that they will produce a useful result in whatever processing time is 

currently available. How to optimise the execution of such components is not considered 
here. ) 

Imprecise Computations model the requirements of tasks which provide some 

result of minimum precision, reliability or confidence level, which may be improved by 

further computation. It is an assumption of this method that the improvement in the result 

will increase steadily or monotonically after each stage of further computation. The 

minimal computation may be modelled as a mandatory task which must be guaranteed off- 
line, and further computation(s) can be modelled as optional task(s) which may be 

guaranteed at run-time. Often the extra computation takes the form of a sequence of 
iterations, each iteration refining the results generated by the previous. An integer number 

of iterations may therefore be included in the optional computation, depending on how 

many can be guaranteed to meet the (firm) overall deadline of the Imprecise Computation. 

Applications which require Imprecise Computation can include numerical computation, 

statistical estimation and prediction, heuristic search activities, and sorting. 
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Sieve Functions model the requirements for adaptive processing where a 

computation consists of alternating compulsory and optional components. At the end of a 

compulsory component, it is possible to improve upon the result by further computation 

which is assumed to monotonically improve the quality of the input for the next 

compulsory stage. The compulsory components can be guaranteed off-line to meet the 

overall deadline for the sieve function. Each optional part may be guaranteed dynamically 

by the flexible scheduler. The overall deadline for the sieve function may be thought of as 
being hard for the compulsory components but firm for the optional components. Should 

the optional components fail to be guaranteed, then a minimum utility will be provided by 

the compulsory components which will simply execute in sequence. 
Multiple Versions can be applied widely where there are a number of versions of a 

computation which provide different utilities to the system. In the simplest case of two 

versions, the primary version is the preferred, more computationally expensive version, 

which may be guaranteed dynamically by the flexible scheduler. If the guarantee is not 

given, then a secondary version, which is cheaper, but has been guaranteed off-line, will 

run instead. The secondary version will provide the minimum service required. 
Multiple versions which can be bounded and guaranteed, may be extended to more 

than one alternative version, so that the most expensive (most preferred) version which can 
be guaranteed at run-time, is the one which is chosen. 

Approximate Processing assumes that the value of the WCET of a task may be 

defined by a set of parameters. Assuming that the mapping from parameter values to 
WCET is available, then it is possible to select values for the parameters so as to provide 

maximum utility, within a WCET which is known to be currently schedulable. The selection 

of parameter values may be facilitated by a knowledge of the spare capacity which is 

currently available on the processor. 

1.3.1 Application Example 

Future applications for real-time systems may have more complex requirements for 

optional computations than can be satisfied by the simple methods described above. Take 

as an example an autonomous vehicle control system [40]. Here, there may be a 

requirement for a complex hierarchy of tasks and subtasks each of which may be 

mandatory or optional. Tasks and subtasks may each have deadlines. There may be 

complex precedence relationships between subtasks. At the top of the hierarchy may be 

intelligent functionality such as route planning, whereas at the bottom there may be critical 
functions such as collision avoidance. At run-time a choice is made as to which 

computations should be scheduled in order to provide optimum utility to the system. Such 

a system may have a requirement for fault-tolerance and graceful degradation which can be 
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achieved by the progressive abandonment of optional computations leaving the mandatory 
computations to provide a safe level of service. For example, in town traffic where collision 
avoidance takes a great deal of processing time, it may be necessary for the human operator 
to instruct the route to be taken. 

1.4 FLEXIBLE SCHEDULING OVERHEADS 

1.4.1 Scheduling Concepts 

As has been described above, flexible scheduling allows the on-line guarantee of 

optional computations whilst safeguarding the guarantees which an off-line schedulability 

analysis has already given to critical tasks. Flexible scheduling may be supported by a 

variety of scheduling policies. It is the scheduling policy which determines, at any given 
time, which task is dispatched to the processor for execution. Scheduling policies are pre- 

emptive if the task which is currently running on the processor may be interrupted by a 

more urgent task. The urgency or importance of tasks can be indicated by allocating them 

priorities, and one of the main issues in scheduling is to decide upon what basis such 

priorities should be allocated. Priorities may be static or dynamic according to whether 
they are fixed off-line or can be varied at run-time. For example the Earliest Deadline 

policy allocates priorities dynamically so that the tasks with the nearest deadlines have the 
highest priority on the processor [32]. In contrast Deadline Monotonic scheduling policy 
[3] has a static allocation of priorities which corresponds to the monotonic ordering of task 
deadlines which have been specified off-line. 

The scheduling policies used in hard real-time systems must allow schedulability 
analysis of all tasks in the task set. Analysis is performed statically for the set of critical 
tasks which are periodic. However it may be performed dynamically for optional tasks 

which arise aperiodically. Acceptance tests for aperiodic tasks ensure that they are 

schedulable alongside the resident set of critical tasks, and any aperiodic tasks which have 

already been accepted. Acceptance tests often require to know the slack possessed by each 

of the existing tasks on the processor. A task's slack is defined as the task's relative 
deadline, minus the task's remaining computation time and any delay in the tasks execution 

which may be caused by the execution of higher priority tasks. 
When there are competing optional tasks, then admission policies may be used to 

arbitrate between them. An example of an admission policy is Best Effort [35] in which an 

aperiodic task of high utility may abort aperiodic tasks of lower utility, in order that it may 

pass the acceptance test. (Utility provides some measure of the service which a task 

provides for the system, when the task has completed its computation. ) 
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The scheduling services described here are usually provided by a real-time kernel 

or run-time support i. e. low-level software which runs in support of the application code. 

1.4.2 Cost-effectiveness of Flexible Scheduling 

A key issue in current research is whether the overheads incurred by flexible 

scheduling are small enough for it to be cost-effective. In terms of the above discussion: are 
the overheads incurred by admissions policy and acceptance testing outweighed by the 
increase in total utility gained by the system? This is a crucial issue when the overheads 
occur on the same processor which runs the applications tasks, because the overheads 
reduce the processor time which is available for applications tasks. Some researchers [39] 
have avoided this problem by going to the expense of developing specialist hardware which 
carries the overheads for acceptance testing and scheduling. 

Much of the evidence from recent research would indicate that the overheads for 
flexible scheduling prohibit its use on the same processor that runs the applications tasks. 
For example, it has been found by Wendorf [60] that the overheads for the original version 
of Best Effort admission policy can drastically reduce the time available for applications 
tasks on the processor. 

In the Spring Project [56] Stankovic et al. investigate the acceptance testing of 
general task sets with resources and precedence constraints between task executions. So 
high are the overheads incurred that they develop heuristics in order to speed up 
schedulability analysis. They go on to design a hardware co-processor [39] which will 
remove the flexible scheduling overhead from the applications processor. The Spring 

Project also develops methods of distributed scheduling [53,55] which can incur large 

overheads in order to re-allocate rejected tasks to other nodes in a network where they may 
be guaranteed. 

Audsley [2] has shown that an algorithm which can provide an exact acceptance 
test at run-time has a pseudo-polynomial complexity. Following the work of Audsley, 

Davis [8] has found that the overheads incurred by the pseudo-polynomial algorithm can so 

reduce performance, that a simpler but inexact algorithm can provide an equal, if not better, 

throughput of aperiodic tasks. 
This thesis will claim that, contrary to the above evidence, flexible scheduling can 

be performed cost-effectively, on the same processor which runs the applications tasks. 
Therefore, a major aim of this thesis will be to demonstrate that the overheads for 

admission policy and acceptance testing can be reduced to such a level that greater utility 

may be provided for the real-time system. 
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1.5 PROGRAMMING LANGUAGE SUPPORT 

This thesis will also consider programming language support for flexible scheduling. 
One approach to the provision of flexible scheduling in the next generation of real-time 
systems, is to provide suitable constructs in the programming language(s) which will be 

used to implement such systems. These constructs must have sufficient expressive power to 

allow the programmer to request the dynamic guarantee of optional computations in 

various forms e. g. imprecise computations, sieve functions or multiple versions. A major 
language issue is whether optional computations should take the form of the tasks or 
processes within a concurrent programming language, or whether they should be 
formulated as sections of code within tasks. 

At present there are few programming languages which offer constructs for the 
flexible scheduling of optional computations with firm deadlines. Furthermore the ones 
that do exist are experimental languages which have never been used for real-world 
applications. For example, the languages Flex [26] and Real-time Concurrent C [19] have 
been developed by researchers to provide support for flexible scheduling. However, neither 
language has been sufficiently implemented to be of practical use in the engineering of real- 
time systems. 

The Flex language allows the specification of time and resource constraints for 

Imprecise Computation and Multiple Versions using the concept of performance 
polymorphism. This allows different real-time functions to be chosen at run-time, according 
to the time and resources available. However, the Flex execution environment concentrates 
on optimising the average performance of these real-time functions. Therefore Flex does 

not emphasise the guarantee of firm deadlines. 
Real-time Concurrent C [19] is an extension of Concurrent C [18]. This language 

provides full facilities for the run-time guarantee of sections of code within processes/tasks, 

and also provides for the execution of some alternative action if a guarantee is not given. 
The language also allows time constraints to be placed on the time taken for the guarantee 
itself. However, there has been little work on the necessary run-time support for this 

language. As discussed previously, run-time support can incur excessive overheads. The 

designers of Real-time Concurrent C fail to indicate [42] the likely overheads which would 
be incurred by such a run-time system. Since Real-time Concurrent C is allied to the Spring 

Project it may be that its designers envisage the use of computationally expensive heuristics 

in order to guarantee time and resource constraints. 
In contrast to such experimental languages, the programming language PEARL has 

been used extensively in Europe for the programming of large real-time systems. The 

existing PEARL standards [14,15,16] do not provide for flexible scheduling. However 

Halang and Stoyenko [22] have proposed extensions for the language which would allow 
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(i) Multiple Version programming under system overload, and (ii) the selection of different 

sections of code according to the residual execution time of tasks. However, these features 
do not provide full flexible scheduling, and they are not yet embodied in a PEARL 

standard. 
A new standard has however been agreed for the programming language Ada which 

has been widely used for the engineering of real-time systems. The new standard, Ada 95, 
has advanced concurrency features in the core of the language, and an annex which 
provides specific facilities for the programming of real-time systems. This Real-Time 
Systems Annex does not explicitly address flexible scheduling as conceived here. 
Nevertheless, a variety of new constructs are provided, and it may be possible to use these, 

and some of the new concurrency features, in order to implement flexible scheduling in 
Ada. 

1.6. THESIS STATEMENT 

1.6.1 Assumptions 

Contrary to the difficulties outlined above, this thesis attempts to demonstrate that 
flexible scheduling is practicable. The contention is that flexible scheduling can be 

efficiently implemented using existing, conventional technology, without resort to specialist 
hardware or experimental programming languages. 

In regard to the hardware required, this thesis assumes that flexible scheduling is 
implemented on the same processor that runs the application tasks. As stated earlier, 
previous researchers have used specialised hardware to reduce the effect of the overheads 
incurred by flexible scheduling. For example, the Spring project uses a specialised co- 
processor to perform guarantees of aperiodic tasks. Alternatively performance could be 

speeded up by implementing real-time kernel functions in hardware on the same processor. 
Although such specialised hardware can always provide greater performance, its use has a 

number of significant drawbacks. It is not general-purpose, or generally available, and it 

incurs greater costs in verification. This thesis presents a different approach by arguing that 
flexible scheduling can be made to perform efficiently on conventional processors. 

In regard to programming languages, the thesis does not require a non-standard 
language which may never be fully implemented. Instead, the claim is that flexible 

scheduling may be implemented by using the existing constructs of a standard language, 

with a wide user-base. Therefore an application which requires flexible scheduling, need 

only include the appropriate library objects. (It may be necessary to assume that the run- 
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time support for the programming language has been extended to provide some support for 
flexible scheduling. ) 

The thesis assumes that a computational model embraces both concurrency and 
scheduling issues. Therefore a computational model is defined as a framework which 
includes a definition of task characteristics, and also describes how the tasks are to be 

scheduled. Task characteristics include: whether tasks are periodic, aperiodic or sporadic, 
whether tasks have hard or soft deadlines, and whether tasks are independent, or share 
resources and intercommunicate. Scheduling includes a definition of which scheduling 
policy and which admission policy are used. 

1.6.2 Thesis 

The central thesis can be stated as follows: 

"The application requirements for flexible scheduling can be embraced in a 
constrained computational model for which cost-effective run-time support can be 

provided. The model can be implemented in a standard programming language so 
that applications written in this language can increase their utility. " 

The key aims of the thesis are: 

" to derive a constrained computational model which fulfils the set of application 

requirements for the flexible scheduling of optional computations. 

0 to provide cost-effective algorithms and implementations for the run-time support of 
the model. It is assumed that the run-time support executes on the same processor as 
the applications tasks. Therefore, the run-time support must be cost-effective i. e. its 

overheads must be sufficiently small, that applications tasks achieve a net increase in 

their utility. 

" to develop methods of allocating optional computations to processors, such that the 

throughput of optional computations is enhanced. Again the emphasis is on finding 

computationally inexpensive methods, so that additional hardware is not needed to 

support the allocation methods. 

" to demonstrate that a standard programming language may be used to implement the 

computational model, so that the model can be used in practice. 
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1.7 APPROACH 

The above aims suggest three strands of enquiry throughout the work: 

1. A survey of the requirements for optional computations in the next generation of real- 
time systems and the derivation of a computational model which is general enough to 
incorporate different forms of mandatory and optional computations, but sufficiently 
constrained to be supported by run-time support which incurs low overheads. 

2. A review of existing run-time support for flexible scheduling and the development of (i) 

more efficient algorithms for the guarantee of optional computations, and (ii) efficient 
methods of allocating optional computations to processors, such that the number of 
computations being guaranteed are maximised. 

The success of part (i) of this strand is vital to the thesis because, without cost- 

effective run-time support, the computational model is not viable under the assumption 

of conventional hardware, running applications tasks and run-time support, on the same 

processors. Therefore part (i) will form a major portion of the work, and whatever 

algorithms are developed, will have to be evaluated for their efficiency. 

3. An investigation into programming language support for optional computations, and a 
demonstration that optional computations may be implemented in a current 

programming language for the engineering of real-time systems. 

Strand 2 above can be elaborated further because of its central importance within the 

thesis. The two-pronged attack on the development of cost-effective support for the 

computational model will consist of : 

(i) an investigation into efficient algorithms for the guarantee/rejection of requests for 

optional computation. A particular concern is to find the algorithms which provide the 

optimum trade-off between the overheads they incur, and the exactness of the 

schedulability test which they provide. (It is assumed that less exact algorithms can be 

pessimistic in that they sometimes reject optional computations which may in fact be 

schedulable). 

(ii) an investigation into methods of allocation of optional computations within a multi- 

processor cluster. In (i) optional computations are considered to "arise" and can be 

schedulability tested in the same way whether they have been released locally or have 

originated from some remote client. Here the assumption is made that those optional 
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computations arriving from outside a processor cluster are subject to some allocation 
policy within the local cluster. This can be considered as the dynamic analogue of the 
problem of providing a static allocation of tasks within a multiprocessor system. The 
aim here is to maximise the throughput of optional computations within the cluster. It is 

assumed that full schedulability testing of the optional computations is still performed 
on the target processors. 

1.8 METHODS USED 

Modelling and simulation studies are standard techniques for research in scheduling 
[2,7,8,56]. In this work, simulation studies are used throughout strand 2 as described 

above. In part (i) of strand 2, simulations are used to compare the relative performances of 
guarantee algorithms and to measure their overheads. Task set generators are built in order 
to provide task sets with a variety of characteristics. Different task sets are used to 

establish performance profiles for the various algorithms under examination. 
Further simulation studies are conducted during strand 2 (ii) of the work. Here the 

objective is to enhance the performance of the computational model within a processor 
cluster. Both targeted and random allocation of optional computations within the cluster 
are simulated. Various configurations of processors within the cluster are modelled, and the 

effects of optional computations which are generated both inside and outside the cluster are 
investigated. 

The most efficient of the guarantee algorithms from strand 2 (i) is used in 

simulation studies which evaluate the admission policy used in the computational model of 

strand 1. Performance parameters are varied in order to establish the windows of operation 

within which the model and its admission policy, can be supported cost-effectively. 
Strand 3 aims to demonstrate that optional computations can be implemented in a 

standard language for the engineering of real-time systems. This requires verification by 

reference to the requirements gathered at the review stage of strand 1. 

1.9 THESIS ORGANISATION 

This section outlines each chapter of the thesis. 

Chapter 2: Review of Flexible Scheduling 

This chapter reviews recent work relating to the three strands of the thesis which 

are discussed above. Firstly, there is a survey of future application requirements for flexible 
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scheduling within real-time systems. This section goes on to consider existing 
computational models and programming paradigms for optional computations. 

Secondly, existing run-time support for flexible scheduling is reviewed, starting 
with algorithms which optimise, but do not guarantee, the execution of optional 
computations. Next, the Spring Project is considered in some detail, with special reference 
to guarantee algorithms and methods of distributed scheduling. This section concludes by 

reviewing Audsley's algorithms for static schedulability testing which are considered as a 
promising basis for cost-effective dynamic schedulability testing. 

Thirdly, the current provision of programming language support for flexible 

scheduling is reviewed. The languages included are Flex, Real-Time Concurrent C, PEARL 

and Ada. This leads to the choice of Ada 95 as a standard language in which to 
demonstrate the implementation of optional computations. 

Chapter 3: A Constrained Computational Model 
This chapter develops a constrained computational model which fulfils many of the 

application requirements for optional computations. The chapter starts by making the case 
for simplicity in the model in order to reduce the overheads of run-time support. After 

some discussion of the necessary constraints, the model is presented. It provides 3 levels of 

utility for optional computations: high, medium and low. Each level is regarded as adding 
value to a baseline utility provided by mandatory computations. Optional computations of 
higher utility may abort those of lower utility, according to a version of Best Effort 

admission policy. A key issue which determines the viability of the model is the relative 

values of the utilities assigned to each level. Finally the model is 'verified' by a discussion of 
how the various requirements for optional computations may be met within it. 

Chapter 4: Viability of On-line Acceptance Testing 
This chapter investigates efficient schedulability test algorithms which could 

contribute to cost-effective run-time support for flexible scheduling. The chapter describes 

how existing static schedulability tests may be adapted to make use of dynamic scheduling 
data and thus provide schedulability tests for incoming optional computations. The adapted 

algorithms trade off complexity with pessimism. Their performance may be improved by 

combining them in a hybrid algorithm. Further performance improvements may be made in 

all of the algorithms by inserting a timeout, in order to limit their worst-case execution 
time. The hybrid algorithm is used in an investigation into the parameters which determine 

the optimum value of this performance-enhancing timeout. Finally, this optimum value is 

made use of, in an investigation into the effect of changing the proportions of mandatory 
(periodic) and optional (aperiodic) utilisations. 
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Chapter 5: Enhanced On-Line Guarantees 
This chapter describes attempts to enhance the performance of the hybrid algorithm 

developed in Chapter 4. The first component of the algorithm has O(N2) complexity and 
the second component has pseudo-polynomial complexity. The chapter describes the 
development of a number of variations on the hybrid algorithm in an attempt to (i) make 
the O(N2) component more exact and (ii) make the pseudo-polynomial component faster 
by giving it a 'head start'. Both of these approaches trade off schedulability testing 
overheads against the pessimism of the schedulability test. Depending on factors such as 
the number of resident periodic tasks, both methods are found to be capable of enhancing 
the number of optional computations guaranteed. 

The chapter also investigates the effect of using an optimal, dynamic placement of 
optional computations within the task list. Hitherto, static placement has been used, 
according to the value of task deadlines at release time. The chapter concludes by 
discussing performance profiles for a number of variations of the hybrid algorithm. 

Chapter 6: Allocation Methods in Multiprocessor Systems 
The aim of the work in this chapter is to enhance the throughput of optional 

computations when they are allocated among a number of processors within a cluster. Each 

processor can receive optional computations generated either externally or internally, to the 

cluster. Performance is measured by the throughput of optional computation over the 

whole the cluster. The first cluster configuration investigated is that of a targeting 

processor and three target processors arranged in a four-processor cluster. The targeting 

processor receives optional computations from outside the cluster and uses its knowledge 

of the current slack on each of the targets in order to direct optional computations to the 

targets most likely to guarantee them. (Target processors still perform schedulability tests 

on the optional computations which are discarded if the tests fail. ) It is assumed that 

scheduling data are communicated between the targets and the targeting processor. 
The main issues investigated are: 

" how to minimise the overheads for monitoring slack on the target processors 

" whether targeting provides higher throughput than simple 'round robin' allocation 

" how the distribution of mandatory processor utilisation on the targets affects 
throughput 

The second cluster configuration which is investigated is that of a loop within which 

optional computations are allocated 'round robin', but are shuffled to the next processor 

along if they fail their schedulability test on their previous processor. This shuffling 
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continues until each optional computation has either been accepted, or has been rejected on 
all of the processors. The technique is named Shuffle Schedulability Testing. 

Chapter 7: Admission Policies 
This chapter presents simulations studies which compare the performances of Best 

Effort Admission Policy (as used in the computational model) with the use of FCFS 
Admission Policy. The objective is to determine ranges of parameters of the simulations, 
within which, the computational model with Best Effort, provides a superior performance 
to that of the simple FCFS Admission Policy used hitherto. Performance is measured by the 
total utility gained by optional computations throughout a simulation. The simulations use 
one of the versions of the hybrid guarantee algorithm, developed in Chapter 5. 

The simulation parameters which are varied include (i) the Total Processor 
Utilisation (mandatory plus optional computations) (ii) the proportion of Periodic 
Utilisation (mandatory computation) and (iii) the ratios of the utility values associated with 
the three classes of optional computation. The results of the simulations indicate that the 

computational model with Best Effort, provides superior performance for Periodic 
Utilisations of less than 50%, and optional computation overloads of up to 100%. 

Chapter 8: Implementation of the Computational Model 
Firstly, the case is argued for implementing optional computations within Ada tasks, 

rather than at the task level itself. The chapter goes on to review some of the Ada 95 

constructs which may be useful in implementing optional computations. The asynchronous 

select statement is chosen as a construct which can carry the code for an optional 
computation, within an Ada task. 

The chapter next presents the Ada code for a protected object which can be called 
by requests for the guarantee of optional computations. This protected object handles all 

concerns regarding the utilities of optional computations, and implements the algorithm for 

Best Effort admission policy. However, the assumption is made that the protected object is 

able to call the Ada RTS in order to (i) perform a schedulability test for each optional 

computation (ii) withdraw a lower utility optional computation from the task list and (iii) 

efficiently reinstate all withdrawn computations if a request is finally rejected. 
The chapter ends with a case by case demonstration, that the asynchronous select 

statement can be used in different ways, to fulfil many of the requirements for optional 

computations which were discussed in the review of Chapter 2. 

Chapter 9: Conclusions 
This chapter discusses major conclusions, and the contribution which has been 

made by this work. Future work in this area is also discussed. 
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CHAPTER 2 

A REVIEW OF FLEXIBLE SCHEDULING 

2.1 INTRODUCTION 

Chapter 1 has outlined the three-stranded approach of this thesis. Each strand 
begins with a review stage: 

1. A survey of the requirements for optional computations. 

2. A review of the existing run-time support for flexible scheduling. 

3. An investigation into programming language support for optional computations. 

This chapter is divided into three main parts corresponding to each strand. Sections 2.2 and 
2.3 review examples of real-time applications which require flexible scheduling, and then 

go on to consider the paradigms and models which have been developed so far by 

researchers such as J. Liu, Garvey and Lesser, Locke, and those involved in the Spring 

Project. 
Sections 2.4 to 2.7 review existing run-time support for flexible scheduling. Section 

2.4 considers methods which preserve bandwidth for aperiodic tasks but do not actually 

guarantee them. Section 2.5 reviews the guarantee algorithms of the Spring Project, and 
Section 2.6 considers the methods used in the Spring Project for distributed scheduling. 
Section 2.7 reviews the off-line schedulability tests developed by Audsley et al. These tests 

are included because they provide a promising basis for cheaper on-line guarantee 

algorithms than those used in the Spring Project. 

Section 2.8 surveys the current programming language support for optional 

computations. The languages included are Flex, Real-Time Concurrent C, PEARL, and 
Ada 95. 

2.2 APPLICATION REQUIREMENTS FOR OPTIONAL COMPUTATIONS 

2.2.1 Examples of Applications 

As stated in Chapter 1, future real-time systems will need to exhibit adaptivity and 
intelligence in response to the highly dynamic and unpredictable environments in which 
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they operate. They will also be required to provide a flexible and robust response in the 
event of system overload or failure. Thirdly, they will often be embedded systems, where 
constraints in size, weight, or cost, dictate that adaptive performance is required from a 
system of limited capacity. There follow examples of systems which have these 
requirements. 

2.2.2 Autonomous Vehicle Control System 

An Autonomous Vehicle Control System must be safe, reliable and adaptive. 
Research detailed in [24] indicates that in order to automate the 'driving function' there is a 
need for the following capabilities: 

9 accurate and timely sensing of other vehicles and obstacles 

" vision and scene interpretation 

0 real-time decision making 

0 route and path planning 

" communication co-operation with other vehicles 

Implicit in the above requirements are a range of real-time constraints. Within a 
time frame of 10-100 seconds, the system must plan and update routes to reach the 

assigned destination, whilst taking into account traffic conditions, and minimising fuel 

consumption and journey time. Within a time frame of approximately 1 second, the system 

must recognise scenes, assess other vehicles movements, and plan a path which ensures 
that the vehicle can steer a safe course. Within a time frame of less than 1 second, the 

system needs to sample sensors and detect, and avoid, possible collisions with obstructions 

or other vehicles. 
In addition, the Autonomous Vehicle Control System may be required to operate in 

a variety of modes: 

" fully autonomous mode 

0 co-pilot mode: the human driver can intervene and take control 

monitoring, display and alert mode: as an aid to the human driver 
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Furthermore, such a system must perform safely at all times, and must retain 
reliability while under overload or failure. A method of achieving graceful degradation in 

such a system is to distribute functionality throughout a number of nodes connected in a 
common network architecture. Obviously the mission and safety critical tasks must be 

guaranteed to execute on their host nodes, within their deadlines, and to provide results of 
a minimum acceptable quality. In addition to this, optional computations may be used to 
enhance system utility by increasing the frequency, timeliness, precision or confidence level 

of the results which are produced. 

2.2.3 Radar Tracking 

Cheong [6] provides another example of an application which requires a mix of 
mandatory and optional computations. In radar tracking, a sensor returns signals from a 
tracked target and the system produces estimates of the target's position, velocity and 
acceleration. When the periodic task providing the estimates is terminated prematurely, it 

produces coarse estimates of the targets parameters. It is critical to the continuation of the 
tracking that a precise measure of the targets position, velocity and acceleration is 

generated at some longer interval. If this does not occur, then errors generated by coarse 

estimates accumulate beyond a maximum threshold of acceptability. 
Cheong points out that the requirements may be satisfied by a mixture of mandatory 

and optional computations. Before accumulated errors exceed their threshold values, a 

mandatory computation must execute in order to renew the precision of the estimates. 
After the mandatory computation has executed, then optional computations may run. Each 

optional computation will provide a coarse estimate if it is not allowed to complete. 
However, if an optional computation does complete, and precise measurements are 

produced, then a future mandatory computation can be postponed. 

2.2.4 Summary 

The above applications, and others such as robotics [40] and advanced avionics 
[37], provide evidence for the requirement for a mixture of mandatory and optional 

computations. There is also evidence that optional computations may require to change 

their timing requirements at run-time. For example, unpredictable changes in the 

environment of the system, or faults within the system itself, can cause optional 

computations to change their execution time. Deadlines may change from one invocation to 

the next. Optional computations may even vary their frequency of execution, according to 

the rate of change of an input from the environment. 
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2.3 EXISTING MODELS FOR OPTIONAL COMPUTATIONS 

The following sections review existing techniques for optional computations. These 
include computational models, programming paradigms, and scheduling strategies. 

2.3.1 Imprecise Computation 

Imprecise computation is a paradigm for programming optional computations 
which comes under the heading of techniques of iterative refinement. Sieve functions also 
refine intermediate results. Alternative paradigms to these are provided by multiple 
versions and approximate processing. All of these techniques are discussed in Section 1.3 

above. However imprecise computation is now covered in more detail. 
The model of imprecise computation is mainly due to Liu et al [34]. The technique 

is based upon the assumption that a real-time task monotonically increases the quality of its 

results as it is given more time to execute within its deadline. The imprecise computation 

can be divided into a mandatory component, which is executed first, and produces results 

of the minimum quality which is acceptable to the application. Subsequent iterations of the 

algorithm can be implemented by optional computations which improve upon the minimum 

quality. After each iteration a new (and higher quality) intermediate result is recorded. 
Scheduling within the system will determine how many iterations are performed before the 
deadline for the imprecise computation is reached. 

Error indicators may be used as a measure of the quality of the result, and to 

establish whether the result which is finally produced, is acceptable. Liu et al use various 

measures of the errors produced by imprecise computations whose iterations are aborted. 
For example Liu et al. [7] use the average error produced by computations and Shih [45] 

uses the number of iterations which are discarded when they are aborted. Much of the 

work of Liu et al concerns the development of heuristics which minimise the total error for 

all imprecise computations across the system [7]. 

Imprecise computation can be used in a variety of applications including numerical 

computation, statistical estimation and prediction, heuristic searches, and database query 

processing. 
An interesting extension to the model of imprecise computation is the concept of 

conditional performance profiles which is due to Zilberstein [64]. Here the quality of the 

result of an imprecise computation depends not only on the length of time it has run, but 

also on the quality of the input data. This implies a trade-off between the computation time 

allowed and the improvement on the quality of the input data which can be achieved. For 

example, in a composite task whose components pass on data, one to the other, there may 
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be an optimal way in which the composite task's total budget can be distributed over the 
components in order to optimise the improvement in the final output data. 

2.3.2 Computational Models for Real-time Al Applications 

Requirements 

According to Yen and Natarajan [62] there are several important differences 
between the requirements for real-time AI and those of conventional real-time systems: 

" greater unpredictability in the timing of Al components e. g. the time taken for tree 

searches can vary widely. 

" very pessimistic worst-case performance which it is impractical to build into the system 
e. g. depth of searches can be very great in the worst case. 

" the time granularity of real-time AT techniques are typically larger than conventional 
real-time systems e. g. the order of seconds rather than milliseconds. 

This has led to the development of the anytime algorithm which is the counterpart of 
imprecise computation in the Al community. An anytime algorithm iterates, and 

monotonically increases the quality of its result as further iterations proceed. The algorithm 

can be cut short at anytime, and still give a result of a certain quality. Quality can be 

measured by extra precision, confidence in the result, completeness of the result, etc. With 

anytime algorithms there is typically a trade-off between the time and resources used in the 

computation and the quality of the result produced. 

Task Hierarchies 

Garvey and Lesser [17] describe the requirements for real-time Al computations in 

terms of a complex task hierarchy and the Al methods which group tasks or subtasks 
together. They use the concept of satisficing which involves finding a solution which is 

acceptable, but not optimal, given the time and resources available. They broadly define 

two techniques for satisficing: iterative refinement and multiple methods. These have much 
in common with the definitions of iterative refinement and multiple versions given above. 
However multiple methods is a more complex concept than multiple versions because 

several methods may execute concurrently, and may share intermediate results. For 

example, a computationally expensive method may be aborted, but the intermediate result 
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which it produced may be used by a less expensive method, which has also been executing. 
A further complexity is that, in the real-time Al context, the techniques of iterative 

refinement and multiple methods must often be represented in complex task hierarchies. 
In the task hierarchies presented by Garvey and Lesser [17], task groups are 

independent solutions with their own deadlines. Within task groups, tasks are 
interdependent and can be subdivided into subtasks which themselves can be subdivided 
etc. At the lowest level of the hierarchy are executable methods which are the smallest 
schedulable units of work. For each task in the structure, there may be multiple sets of 
subtasks which may be combined to "solve the task". Each of these sets is known as a 
method for solving the task. Clearly the overheads in supporting flexible scheduling for 

such a task model could be very high. 

Utilities within Hierarchies 

Yen and Natarajan [62] also describe the need for a task/subtask hierarchy, and 
consider the problems of decomposing imprecise computation down to a subtask level. 
However, these authors also develop a decision theoretic framework for computations. 
Essentially, rules are applied in order to decide which combinations of tasks/subtasks 

should be allocated processor time and other resources within the system. Tasks/subtasks 

are allocated resources according to their utilities, and some overall rule about which 
allocation is likely to gain maximum utility for the system. 

Allocation proceeds according to decisions which are expressed formally and are 

compiled into the implementation. This has the double benefit of allowing developers to 

reason about the application, and also permitting analysis of the performance of the 
implementation. Decisions can be complex and can involve the probabilities of tasks 

producing results of acceptable quality, using the resources available e. g. the aggregation 

of the individual probabilities that a set of subtasks may complete, with a certain quality of 

result, within a certain time. In order to provide a consistent set of task/subtask utilities 

within a hierarchy, the authors present a system of (de)composing utilities within a 
hierarchy. 

Yen and Natarajan's decision theoretic treatment provides a powerful framework 

with great flexibility. According to the authors the decisions themselves take up few 

resources. However this claim is not substantiated in the paper, and seems to need further 

justification. 
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UNIVERSITY 

2.3.3 Locke's Value Functions and Utilities OF YORK 
LIBRARY 

Locke [35] argues for the use of value functions by the real-time applications 
programmer. A value function gives the curve obtained by plotting the value to the system 
of the completion of a process, against a time axis which represents the possible completion 
times of the process. Locke goes on to describe scheduling algorithms which use the value 
functions of the process set, to construct a schedule which maximises the total value 
obtained from all processes. Locke's value functions can be parameterised. Parameters 

which could be relevant in a complex application might be the system state, the states of 
the task itself, the input data to the task, or the state of other tasks within the system. 
Dynamic parameters such as these can be useful in complex real-time systems, for example 
those which incorporate Al into real-time applications. However, the run-time support for 

such dynamic value functions could prove very costly. 
A different approach to the characterisation of the value of each task is to use 

utilities [62]. In contrast to Locke's value functions, utilities need not be associated with 

particular completion times, but represent some numeric value which is gained by the 

system when the task completes within its deadline. The utility associated with a task may 
be fixed and statically allocated, or it may vary dynamically. For example, dynamic changes 
in utility may be of use in a fault tolerant system where the utility of a replicated module 

may decrease if a replicant module completes. Conversely, the utility of the replicated 

module may increase if the replicant fails. A more sophisticated approach is to model a task 

as a composition of subtasks each of which may have a different utility associated with it. 

Hence the utility of the task varies according to the point it has reached in its execution. 
It is possible to define either the utility or value function of a task in terms of those 

already defined for other tasks. For example, Locke [35] shows how a (dynamic) definition 

of the value function of task may be made by adding the value functions of two other tasks, 

each weighted with coefficients. 

2.3.4 The Spring Model 

The requirements for real-time systems assumed by the Spring Project have been 

outlined by Stankovic and Ramamritham [52]. They assume that the real-time system is a 

distributed set of nodes which exists in a highly dynamic environment. Nodes are 

multiprocessor clusters which primarily serve a particular location within the distributed 

system. 
The researchers define three types of tasks within a system. Critical tasks have their 

hard deadlines and resource requirements guaranteed before run-time by worst-case 

analysis. Essential tasks have firm deadlines, so that there is a loss of value, but no 
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catastrophic consequences, to the system if their deadlines are not met. There are assumed 
to be many more essential tasks than critical tasks. Because it is too pessimistic to reserve 
full resources for all essential tasks before run-time, these tasks are guaranteed at run-time 
by a guarantee algorithm. If the guarantee algorithm rejects the essential task on one node, 
then an attempt may be made to guarantee on another node of the system. 

Non-essential tasks are the third category. They may have soft deadlines or no 
deadlines at all, and they execute in such a way as to have no impact on the other 
categories of tasks. 

Spring considers many general requirements for tasks. Tasks may be preemptable or 
non-preemptable, periodic or aperiodic, have a variety of resource constraints, and may 
have precedence and communication constraints. Spring integrates the scheduling of tasks 

with these various requirements by using sophisticated guarantee algorithms which attempt 
to produce a feasible schedule for all the tasks on an applications processor. However, the 

requirements for adaptivity within the distributed system are met by higher level 

decentralised scheduling in which nodes can co-operate in order to guarantee essential 
tasks. 

Some work has been done [52] to extend the Spring project into support for real- 

time AT applications. Spring workers envisage the following requirements being supported 

by the Spring kernel: 

" the ability to dynamically change the criticalness, timing requirements, resource needs, 

precedence constraints, and even the structure, of a computation. 

" the ability to plan future execution times of functions that may subsequently need to be 

re-planned. 

0 the ability to perform trade-off analyses (on-line). 

0 the ability to respond to an application program with appropriate system information. 

In order to do this, large extensions are needed to the data held in, and the algorithms used 

by, the Spring kernel. 

Sections 2.5 and 2.6 below present a detailed review of the existing run-time 

support provided by the Spring kernel. 
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2.3.5 Summary 

The material reviewed in this section suggests the need for a complex 
computational model embracing complex interdependencies between tasks such as 
task/subtask hierarchies, precedence relations and intercommunication dependencies. 
Dynamic value functions or utilities would also be required, and would need to be 
(de)composed within the task hierarchy. Such value functions would depend on parameters 
such as the system state, the states of the task itself, the input data to the task, or the state 
of other tasks within the system. Simple paradigms such as Imprecise Computations, Sieve 
Functions, etc. would be subsumed under a more powerful, general model. Distribution of 
tasks, and resource allocation, would also be supported within the model. The model 
would also have to incorporate great flexibility, allowing dynamic changes in planned 
schedules on the basis of known probabilities of task, or system, behaviour. All this would 
be required, without adversely affecting the a priori guarantees given to mandatory 
computations. 

Clearly such a model would be extremely expensive in terms of run-time support. 

2.4 EXISTING RUN-TIME SUPPORT FOR FLEXIBLE SCHEDULING 

According to many of the models reviewed above, real-time systems consist of a set 
of periodic, mandatory computations which are resident on a processor, plus aperiodic, 
optional computations which may arise locally or via a request from a remote node. The 

conventional approach is to schedulability test the set of mandatory computations before 

run-time, while flexibly scheduling optional computations at run-time, and even 

guaranteeing their firm deadlines. The following section reviews methods for flexible 

scheduling which optimise response times, or throughput, of aperiodic computations with 
soft deadlines, but fall short of guaranteeing deadlines. 

2.4.1 Methods for Optimising Response Time of Soft Tasks 

Background and Polling Server 

The problem of scheduling soft tasks on a processor which runs its own set of 

resident periodic tasks with hard deadlines, has been tackled at various levels of 

sophistication. In background processing, soft tasks are assigned priority levels below those 

of the hard tasks. This means that soft tasks may have very long response times when the 

processing demands of hard tasks are high. 
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Soft task response times may be reduced by the use of a polling server [43]. This is 

a periodic task with a fixed, high priority whose capacity is set, pre run-time, at a level 

which allows all hard tasks to meet their deadlines. The polling server is released 
periodically and during its execution, its capacity is available for aperiodic tasks. The 

capacity is replenished at the server's next release. 
The problem with the polling server is that it does not preserve its capacity. After 

release, its capacity is spent whether or not there are aperiodic tasks pending. Aperiodic 
tasks which arrive after the capacity is spent, must wait until the next release of the server 
until they can execute. Nevertheless the polling server improves upon the response times 
provided by background processing. However the server's inflexibility, leads to longer 

response times than for the improved methods which are described below. 

2.4.2 Bandwidth Preserving Algorithms 

Deferrable Server 

The deferrable server [30] also makes use of a high priority periodic server task. 
However it is able to preserve its capacity when there are no aperiodic tasks pending. It 

therefore preserves its bandwidth throughout its period. This reduces the average response 
times of soft tasks to below that of the polling server. 

The deferrable server discards any remaining capacity at the end of its period, and 
then immediately replenishes its capacity for the next period. The fact that the deferrable 

server preserves unused capacity at a high priority affects the static analysis of the 

maximum capacity which the server may be allocated. Because the deferrable server can 

produce back-to-back interference on lower priority hard tasks, its capacity must be smaller 
than an equivalent polling server. Nevertheless the bandwidth preservation of the deferrable 

server leads to smaller average response times than the polling server. 

Priority Exchange Algorithm 

The priority exchange algorithm [30] also uses a high priority periodic server to 

provide capacity for aperiodic tasks. However the priority of the server is not fixed, but 

decreases during its period. When no aperiodic tasks are pending the server exchanges its 

higher priority with the highest priority runnable hard task. The servers capacity is then 

converted to guaranteed execution time at the lower priority of the hard task. As priority 

exchange proceeds, capacity may be accumulated at low priority levels. This capacity is not 
discarded at the end of the servers period, but may be carried over into subsequent periods. 
The high priority capacity is still replenished at the start of every period. 
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The priority exchange protocol has as high a capacity as the polling server but also 
preserves bandwidth like the deferrable server. It does however suffer from the 
disadvantage that, under overload conditions, soft deadlines are missed in an unpredictable 
manner. 

Sporadic Server 

This algorithm attempts to combine the advantages of both the deferrable server 
and the priority exchange algorithms. Like the deferrable server, it maintains capacity at the 
original priority, but its capacity is equal to that of priority exchange or polling. A high 

priority periodic task is used, but instead of being replenished every period, it can be 

replenished at some earlier time, after higher priority tasks have executed. The capacity of 
the sporadic server has been shown to be comparable to that of a polling server [44] while 
early replenishment of capacity can allow a lower response time than the previous methods. 
Because the server task keeps its high priority, the sporadic server misses deadlines 

predictably under overload. 

Extended Priority Exchange Algorithm 

The Extended Priority Exchange Algorithm [49] is an extension to the Priority 

Exchange algorithm. It has the advantage that it reclaims gain time i. e. time made available 

when a hard task completes in less than its worst-case execution time (WCET). It 

replenishes capacity at a particular priority level each time a hard task is released at that 
level. Furthermore, if the hard task completes in less than its WCET, the gain time is added 
to the capacity available at that priority level. 

2.4.3 Slack Stealing 

This algorithm is due to Lehoczky and Thuel [27] and it is optimal in that all spare 

processing time is made available to soft tasks, as soon as possible, and at the highest 

priority level. The algorithm depends on the availability of a statically derived schedule of 
the hard periodic tasks over the complete LCM of their periods. At run-time, counters are 

used to keep track of slack at each priority level. After the completion of a hard task, the 

slack at that priority level is incremented according to data on slack time in the static 

schedule. Slack counters are also decremented when hard or soft tasks run. 
Slack stealing has the limitation that it cannot work for sporadic tasks, or tasks 

which suffer release jitter. It also imposes the overhead of holding a schedule which is the 
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length of the LCM of the periods of the hard tasks. Further work on slack stealing due to 
Davis [8] is reviewed in Section 6.2.2. 

2.4.4 Summary 

While the above methods preserve and allocate spare capacity for soft aperiodic 
computations, they do not guarantee that there is sufficient capacity available in order to 
meet an aperiodic task with a firm deadline. Static schedulability analyses can be applied to 
the above methods in order to guarantee the deadlines of aperiodic tasks off-line. However, 
this approach is pessimistic, in that run-time capacity has to be reserved on the processor, 
regardless of whether the aperiodic task arrives at its maximum rate or not. What is really 
required are on-line schedulability tests for aperiodic tasks with firm deadlines. These 

would either guarantee that sufficient capacity is available within the specified deadline, or 
reject the aperiodic task so that some alternative action may be taken. The following 

section reviews such dynamic guarantee algorithms. 

2.5 THE SPRING PROJECT 

The Spring Project [52] considers real-time systems which are physically distributed 

and consist of a network of nodes which are multiprocessors. Each node consist of one or 
more applications processors, and one or more system processors. The Spring kernel 
includes guarantee algorithms, and algorithms for co-operative scheduling between nodes. 
It runs on the systems processor(s) which frees up the applications processor(s) to simply 
dispatch applications tasks according to a schedule constructed by the system processor(s). 
The following sections describe the guarantee algorithms and the distributed scheduling 

algorithms which are used in Spring. 

2.5.1 Spring Guarantee Algorithms 

Spring guarantee algorithms [53] are aimed at guaranteeing newly arrived aperiodic 
tasks alongside resident periodic tasks plus any aperiodic tasks which have already been 

guaranteed. The algorithms take into account many task characteristics including the arrival 
time of the aperiodic task, its WCET, and its deadline. Other characteristics which can be 

included are: what resources are required by the task, whether these are required in shared 

or exclusive mode, whether the task is pre-emptive, and whether there are precedence 

constraints between tasks. To guarantee all such requirements is, in general, NP-hard [52]. 
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Therefore Spring attempts to guarantee by using heuristics to facilitate a search for a 
feasible schedule. 

The Spring guarantee algorithm starts at the root of a search tree which represents 
an empty schedule. It then tries to extend the schedule by moving to one of the vertices at 
the next level of the search tree, and so on, until a full feasible schedule is determined. A 
heuristic function is applied individually to some or all of the tasks which remain to be 

scheduled at each level of the search. The task with the smallest value of the heuristic 
function is chosen to extend the current schedule. As the (partial) schedule is extended, the 

algorithm determines whether it is strongly feasible or not. A partial schedule is strongly 
feasible if all of the schedules obtained by extending the schedule, with any of the 

remaining tasks, are also feasible. Once a partial schedule is found not to be strongly 
feasible (e. g. when it is extended and the added task misses its deadline) then the search is 

aborted along that particular branch of the search tree. The algorithm then backtracks and 
extends the partial schedule by a different task. The search continues until either a full 

schedule is determined, or the number of evaluations of the heuristic function reach an 

upper bound, set by the system. This upper bound ensures that the systems processor has 

sufficient time to perform its other activities. 

2.5.2 Complexity of the Algorithms. 

A Spring guarantee algorithm is applied to a list of the tasks to be scheduled which 
is sorted into order of increasing deadline. The insertion of the newly arrived aperiodic task 
into this list carries O(N) complexity (where N is the size of the task set). Spring 

researchers claim [53] that the complexity of the subsequent search for a full schedule is 

also O(N) because the heuristic function need only be applied to a small subset, k, of the 
full task list, N, each time a partial schedule is extended. 

2.5.3 Heuristics 

The heuristics investigated by the Spring researchers are divided into (i) simple and 
(ii) integrated heuristics. They take into account not only the timing requirements of tasks, 

such as their earliest start times, deadlines and WCETs, but also the earliest time that tasks 

can execute, due to the availability of the resource(s) which they require. Simple heuristics 

include minimum deadline first, minimum processing time first, and minimum earliest start 

time first. (Minimum earliest start time first is the latest time, chosen between the 

specified earliest start time for the task, and the earliest time at which its required 

resource(s) are available. ) 

31 



Simulations carried out by Spring researchers proved more successful when 
integrated heuristics were used, with weightings applied to certain components. The most 
successful of these heuristics was minimum deadline + minimum earliest start time, where 
minimum earliest start time has a weighting applied to it. In general, this heuristic provided 
the best guide to the task most likely to extend a feasible (partial) schedule. 

2.6 DISTRIBUTED SCHEDULING IN SPRING 

2.6.1 The Distributed Algorithms 

In the Spring Project, when tasks are not guaranteed locally as described above, 
methods of distributed scheduling are provided for the guarantee of tasks at other nodes in 

the system. The distributed scheduling algorithms which are investigated by Spring are 
focused addressing, bidding and the flexible algorithm [56]. In addition, two simpler 
algorithms are used as benchmarks: the noncooperative algorithm and the random 
scheduling algorithm. 

In the noncooperative algorithm a task is rejected when it cannot be guaranteed 
locally, and no attempt is made to request its execution at other nodes. In the random 
scheduling algorithm, the local node which cannot guarantee the task, sends a request for 

the tasks execution to some other randomly selected node. Obviously this cheap method 

suffers from the disadvantage that there is only a random chance that the task will be 

schedulable at a randomly selected node. 

2.6.2 Focused Addressing, Bidding and the Flexible Algorithm 

Focused addressing, bidding and the flexible algorithm, each use information 

about the availability of time and resources on remote nodes, in order to decide where to 

send requests for the guarantee of tasks which were failed locally. Each node in the system 

periodically calculates its node surplus and sends this data to a subset of the nodes in the 

system. A node surplus is a vector, with one entry per resource on the node. Each entry 
indicates the total amount of time, within a recent window, during which the resource was 

not used by local tasks. Each node also holds a list of remote nodes, ranked according to 
how many requests from them have been guaranteed locally during the recent time 

window. Each node sends its node surplus to a subset of the nodes held in its ranked list. 

Obviously this targeting of information is intended to provide data only to those remote 

nodes which have successfully forwarded aperiodic tasks in the recent past. This reduces 
the exchange of information across the network. 
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The three algorithms differ in the way they use information from remote nodes, in 
order to select a remote node for a request for guarantee. The focused addressing 
algorithm determines the remote node with the highest surplus of time and resources 
required by the aperiodic task which has failed the local guarantee. If this surplus is greater 
than the focused addressing surplus (a tuneable system parameter) then the request is 
immediately sent to the chosen remote node. If no node exists whose surplus exceeds the 
focused addressing surplus, then the aperiodic task is rejected. 

The bidding algorithm, is a more expensive algorithm which makes a more 
sophisticated decision regarding which remote node to choose for a likely guarantee. The 
local node which has failed to guarantee the aperiodic task, selects k nodes with sufficient 
surplus in the resources needed to guarantee the aperiodic task. (The value of k is chosen 
to maximise the chances of finding an appropriate node for the aperiodic task. ) A request- 
for-bid message is sent to each of the k nodes. When a node receives a request-for-bide 
message, it calculates a bid, which indicates the likelihood that the aperiodic task can be 

guaranteed by it. If the node's bid is higher than a pre-set minimum level, then the bid is 

sent to the requesting node. After receiving the bids, the requesting node sends the 

aperiodic task to the node which has offered the highest bid. If no acceptable bids are 
forthcoming, then it is assumed that the aperiodic task cannot be guaranteed within the 

system. 
The flexible algorithm is a combination of focused addressing and bidding, intended 

to achieve 'the best of both worlds' at the expense of more processing at nodes and more 

communications over the network. First, focused addressing is used to select a focused 

node, to which the aperiodic task is immediately sent. (This is done according to the same 

proviso that the focused addressing surplus must be exceeded by the surplus on the 
focused node. ) The k -1 nodes remaining are then sent request-for-bid messages along 

with the identity of the focused node. The k-1 nodes then calculate their bids and send 
them to the focused node. 

In parallel, the focused node, which has received the aperiodic task, attempts to 

guarantee it. If the guarantee is successful then all the bids which are received from the k- 

1 nodes are ignored. If not, then the focused node sends the task to the highest bidder. If 

there are no acceptable bids then the task is rejected. (A message about whether and where 
the task has been guaranteed is sent to the original node so that it can update its 

information on other nodes. ) 

In the case where no nodes are eligible to be the focused node, then the flexible 

algorithm defaults to bidding where bids are returned to the original node. 
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2.6.3 Summary of Spring 

(i) The guarantee algorithms developed in the Spring Project enhance system 
performance as measured by the guarantee ratio at each node. (Guarantee ratio is 
defined as the proportion of the aperiodic tasks arrivals at a node which are 
guaranteed by that node. ) However, the guarantee algorithms were found to incur 

considerable overheads, with the result that Spring researchers have designed a 
hardware coprocessor specifically to perform guarantees [39]. The approach of this 
thesis is to avoid the use of dedicated or specialist hardware and to implement 

guarantee algorithms on the same processor which runs the applications tasks. 
Therefore, less computationally intensive methods must be sought in order to provide 
a schedulability test for aperiodic tasks, and also considers their resource usage. One 
line of approach is to adapt for on-line use, the static schedulability testing algorithms 
of Audsley et al. [2]. These algorithms assume that a concurrency control protocol 
such as priority ceiling protocol allows upper bounds to be placed on blocking caused 
by exclusive access to resources. The range of static schedulability tests developed 
by Audsley et al. are reviewed in Section 2.7. 

(ii) The Spring simulation results show that, in general, distributed scheduling improves 

the throughput of aperiodic tasks with firm deadlines [56]. For example, the flexible 

algorithm was found to outperform the noncooperative algorithm under all load 
distributions. The flexible algorithm also outperformed both bidding and focused 

addressing, under conditions of average communications delay across the network. 
However, these algorithms incur such large overheads that extra general-purpose 
system processors are required in order to support them [52]. This thesis will 
investigate the development of less expensive but equally effective methods, which do 

not require dedicated hardware, but nevertheless serve to direct aperiodic tasks to the 

processor most likely to guarantee them. 

2.7 ALGORITHMS FOR STATIC SCHEDULABILITY TESTING 

In his thesis, Audsley [2] has reviewed the topic of Static Schedulability Testing. 

He goes on to develop an extensive analysis of Deadline Monotonic scheduling which 

generalises previous work on Rate Monotonic scheduling [32]. Using his analysis of 
Deadline Monotonic, Audsley presents a set of static schedulability test algorithms with a 

range of complexities. It is assumed that pre-emptive priority scheduling is used for a set of 
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N fixed priority tasks, which are listed in order of increasing, static deadline. The tasks are 
considered to be periodic, such as a set of critical tasks which are resident upon a 
processor, and must be guaranteed a priori. Audsley discusses four sufficient and not 
necessary algorithms which he refers to as Tests 1 to 4. He also presents a sufficient and 
necessary schedulability test which shall be referred to as PP on account of its pseudo- 
polynomial complexity. 

2.7.1 Sufficient and Not Necessary Tests 

The tasks in the task list are assumed to be ranked in priority order according to the 
deadline monotonic algorithm. The period (T), deadline (D) and WCET (C) of each task 
are known. It is assumed that all tasks are released simultaneously (worst-case critical 
instant). If B is the worst-case blocking time a task may experience, due to the operation of 
some concurrency control protocol, and I is the worst-case interference a task may suffer 
from higher priority tasks, then for any task to be schedulable: 

D 
_> 

C+B+I (2.1) 

Techniques for the determination of C and B are not given by Audsley except to say that C 

may be estimated during compilation, and B may be upper bounded by, for example, the 

use of the priority ceiling protocol. He presents four algorithms for the determination of I 
for the duration of the deadline of whichever task is being schedulability tested (known as 
the test task, i). This may include interference which does not occur during the lapsed 

execution time of the test task. Hence these tests are sufficient but not necessary. In 

general the list of higher priority tasks is scanned to provide the following sum which is the 
total interference from all higher priority tasks j: 

j(rDi - Tja Cj) (2.2) 

Inequality (2.1) may then be used to test the schedulability of the test task. 
Test 1 uses exactly the above procedure. Every task in the list takes a turn as the 

test task so the complexity of Test 1 is O(N2). Note that this test is pessimistic (sufficient 

and not necessary) since, depending where the deadline of the test task occurs, a final 

interference by a higher priority task j within the deadline may not be the full value of that 

task's computation time. Tests 2 to 4 use increasingly expensive methods in order to 
decrease the pessimism of this aspect of Test 1. 

35 



Test 2 uses the fact that the maximum interference from the final hit of an 
interfering task j with the test task i is given by: 

min (Cj, DI - 
LD1= Tj]Tj) (2.3) 

Dj - 
LDi = Tj]Tj is the interval between the release time of the final hit of an interfering task 

and the test task's deadline. If this interval is less than the value of the WCET (CJ) for the 
interfering task, then the worst-case final interference of the interfering task can be taken as 
this interval, rather than the full WCET of the interfering task. Therefore, in some cases, 
Test 2 is able to make a less pessimistic estimate of the final interference of the higher 

priority task within the deadline of the test task. The complexity of Test 2 is still O(N2) 

although the extra comparison above will impose a further overhead. 
Test 3 also uses (2.3) in an attempt to find a lower bound on final interferences. 

However, when considering interferences within the test task, i, by a jth higher priority 
task, Test 3 uses the fact that, if Di - 

LDi - TjJT - <_ Cj then Di - 
LDi = Tj]Tj may be 

subtracted from Di in order to reduce the deadline of the test task to an effective deadline. 

The next task (j + 1th) which is considered for interference in the test task, now has its 
interferences calculated as occurring within the effective deadline established by the jth 

task. By definition, the interval by which the test task deadline has been reduced cannot 

contain interferences form the j+1, j+2, etc tasks because the interference from the jth 

task will cause j+1, j+2, etc to execute later. Therefore, by using the effective deadline, 

concurrent (overlapping) interferences from j+1, j+2, etc are not included as 
interferences within the test task deadline, and this reduces the pessimism of the 

schedulability test. In turn the j+1, j+2, etc tasks may provide further reductions to the 

effective deadline. However, Test 3 is still a sufficient but not necessary test because, in 

general, concurrent interferences may still be counted when considering the final hits of 
interfering tasks. For example, interfering tasks may have final hits which are released 

slightly earlier than the interval of their WCET from the test task deadline. In this case no 

reductions can be made to the effective deadline, and concurrent interferences will be 

counted within the test task deadline. 

Test 4 applies effective deadline reductions in the same way as Test 3, except that it 

further reduces the possibility of overlap by reiterating through all interfering tasks in 

deadline monotonic order until the effective deadline can be reduced no longer. This means 

that if a jth task just misses a reduction in effective deadline at the first iteration, and the j 

+1 tli task is subsequently able to reduce the effective deadline, then the next iteration 

through the interfering tasks may allow a reduction in the effective deadline at the jth task. 

However, it is still possible that concurrent interferences may be counted. For example, 

overlapping interferences may fall just short of the best effective deadline established by 

36 



repeated iteration. Therefore Test 4 is also a sufficient and not necessary test. Audsley 
gives its complexity as pseudo-polynomial [2]. 

2.7.2 A Sufficient and Necessary Test 

Unlike the above algorithms, this algorithm is sufficient and necessary. It has a 
pseudo-polynomial complexity and will therefore be referred to as PP. It accurately 
calculates the total interference of all higher priority tasks during the course of the test 
task's execution. In effect, it calculates the exact response time of the test task, under the 
assumption that all higher priority tasks perform their worst-case executions. The algorithm 
proceeds by repeatedly increasing the test task's window (wi) in which higher priority tasks 
interfere. At each iteration the following sum over all higher priority tasks j is calculated: 

zj( rwi - T11 Cj) (2.4) 

The initial value of the window is the WCET of the test task. The window size at the next 
iteration will be the value of sum (2.4) from the last iteration. And so on, until the window 
size does not increase. Audsley [2] shows that the algorithm will converge if processor 
utilisation is less than 100%. This convergence yields the total interference required. As 
before, the algorithm is repeated for all tasks in the list. Because the tasks are tested in 
deadline monotonic order, the algorithm can be speeded up by using the final I value 

obtained for the ith test task as the initial value of w for the i+lth test task, etc. Audsley 

shows that the algorithm is pseudo-polynomial and points out that any particular test task 
deadline (assumed to be an integer number of ticks) will provide an upper bound on the 

number of iterations required. 

2.8 LANGUAGE SUPPORT FOR OPTIONAL COMPUTATIONS 

Existing programming language support for optional computations and flexible 

scheduling is confined to experimental languages, and non-standard extensions to existing 
languages. Experimental languages may not be fully implemented and non-standard 

extensions to existing languages may be ad hoc, and fail to provide full support. According 

to this thesis, it is not sufficient for a programming language to merely support the 

scheduling of optional computations but there should also be support for the on-line 

guarantee of firm deadlines. In the following section, two experimental languages (Flex 

and Real-time Concurrent C) and two standardised languages (PEARL and Ada) are 

reviewed. 
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2.8.1 Flex 

The experimental programming language Flex [25,26] is a derivative of C++, which is 
designed to support optional computations in the form of imprecise computation and 
multiple versions. The language uses RTL-type notation to specify task constraints, and 
uses object-oriented concepts of polymorphism and late binding in order to program 
flexible scheduling. Tools for the static and dynamic analysis of Flex programs have also 
been developed. 

In Flex, the constraints on the timing, and resources used by sections of code are 
defined by a constraint block. Temporal constraints include the start and finish times for 
the code, intervals for periodic tasks, and the earliest and latest times for events. 
Exceptions are defined in the case of any constraint failing to be met. It is important to 
realise that Flex does not provide an on-line guarantee of constraints, but rather optimises 
the chances of constraints being met. 

Flex supports imprecise computation, and also the maximising of the values gained 
by imprecise computations within the application. Multiple version programming is also 
supported in the form of performance polymorphism. This is the temporal counterpart of 
polymorphism, as defined by the types of input parameters. Performance polymorphism 
allows the dynamic choice of one of several versions of a function. According to the values 
of the parameters passed in the call to the function, the resources which are available, and 
the execution time which is available for the function, the version which has the highest 

chance of generating the highest utility, is chosen. An example given by Kenny and Lin 

[26] is that of a sort function where one of several sort algorithms may be chosen 

according to the system resources available, or the data which needs to be sorted. The 

authors acknowledge that the overheads for performance polymorphism can be large, and 
that this requires the versions themselves to have relatively large execution times. 

Flex programs can contain pragmas which allow the applications code to interact 

with tools. These analytical tools can (i) measure on-line, and statistically analyse, the 

performance of different versions (ii) determine the parameters which influence the 

performance of each version (iii) provide a static analysis of different versions which can be 

used to optimise future compilation. 
The main advantage of the Flex programming system is that it provides tool 

support for detailed analysis of the performance of optional computations which can aid in 

optimising the performance of future runs of an application. However, Flex does not 

provide the support for the dynamic guarantee of optional computations which is sought 
by this thesis. 
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2.8.2 Real-Time Concurrent C 

In contrast to Flex, Real-time Concurrent C [19] does provide support for the 
guarantee of optional computations, and even for time constraints upon the guaranteeing 
itself. Real-Time Concurrent C is based on Concurrent C [18] which supports processes 
with synchronous and asynchronous communications. Real-Time Concurrent C extends 
this by allowing processes to (i) execute sections of code with specified periodicity or 
deadline constraints (ii) seek guarantees that such timing constraints will be met and (iii) 

perform alternative actions when either the timing constraints cannot be met, or the 
guarantees are not available. 

The designers of Real-Time Concurrent C acknowledge their debt [ 19] to the 
Spring Project which originated the model of attempted guarantee, followed by alternative 
action when the guarantee is denied. They describe a section of code within a process as an 
activity, and state that "an activity can be guaranteed to complete execution within its 
deadline if a schedule can be created for the activity, and also for other activities that have 
been previously guaranteed, such that all these activities will meet their timing constraints". 
If such a schedule cannot be created, then the new activity is not guaranteed. 

The following is a review of the Real-Time Concurrent C constructs associated 
with the specification of time constraints for optional computations, and the guarantee of 

optional computations. 

Activities with Deadlines 

Deadliness can be associated with any activity or statement using the within deadline 

statement which has the form: 

within deadline(d) statementl 

[else statement2] 

The semantics of the construct are, that if control reaches the within deadline statement at 

time t, if statement] is not executed before t+d, then its execution is terminated, and 

statement2, if supplied, is executed. 

39 



Periodic Activities 

Periodic activities are reviewed here because, as shown later, they can be guaranteed in 
Real-Time Concurrent C. Periodic activities are specified using the every statement which 
has the form: 

every (p) [until expression I until accept statement] 

statementl 

[else stsememt2] 

expression is a boolean condition. statement] repeatedly executes at interval p. However, 

at the start each period either (i) expression is evaluated or (ii) in the case of an until 

accept statement, any outstanding transaction is accepted. The every statement terminates 

when either (i) expression evaluates to true or (ii) a transaction has been accepted. Should 

an outstanding transaction take the form of an interrupt, then statement] can be aborted 

when the interrupt is raised, and statement2 executed instead, followed by the termination 

of the every statement. 

Guaranteed Activities 

Real-Time Concurrent C provides the programmer with the facility to guarantee, before an 

activity starts, that it will complete before its deadline. The guarantee statement takes the 

form: 

[within deadline (gd) J guarantee 

t ime constrained statement 

[else statement] 

gd is a deadline for the guarantee itself, and time constrained statement is either an every 

or a within deadline statement. The run-time system attempts to determine, within gd if 

specified, whether or not time 
_constrained 

statement can be guaranteed to complete 

within its time constraints. If the guarantee is not possible, or if it cannot be reached within 

gd, then the else statement, if provided, is executed. Otherwise time constrained statement 

is executed. There follow two examples of the use of the guarantee statement. 
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Example 1: 

This is an example of the use of a guarantee statement which attempts to guarantee a 

within deadline statement: 

within deadline (gd) guarantee 

within deadline (d) statementl 

[else ;] 

[else statement2] 

statement2 is executed if it is not possible to give the guarantee by gd. If the guarantee is 

given, then statement] will be executed within d. 

Example 2: 

This example shows the use of the guarantee statement with the every statement: 

within deadline (gd) guarantee 

every (p) [until condition] statementl 

[else ;] 

[else statement2] 

The above attempts to guarantee that statement] will execute at every interval, p. The 

guarantee is performed once, before the first iteration of the loop. As the description of 

every semantics above would indicate, the every statement can still terminate if condition 
becomes satisfied. 

Flexible Time Constraints 

It is planned to add to Real-Time Concurrent C constructs, the capability of using multiple 

time constraints. This is useful, for example, in applications where there is still some value 
in completing a computation after a first (preferred) deadline. To introduce such flexibility, 

the designers of Real-Time Concurrent C plan to allow a slop to be associated with a 

deadline. This provides an additional period of time, after the preferred deadline, during 

which the activity should be allowed to continue because it may still provide value to the 

system. After the expiry of this extra time, the activity should be terminated, if it has not 

already completed. 
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within deadline (d) [(slop)] statementl 

[else statement2] 

The construct has the following semantics. Note that the semantics cater for negative 
values for slops, which are an equivalent way of expressing a preference between two 
deadlines: 

" If statement] is not completed by max(d, d+ slop), the processing of statement] is 
terminated and statement2, if provided, is executed. 

0 If slop is not specified, it is assumed to be zero. 
" If a guarantee is requested, the guarantee algorithm will first attempt to guarantee 

statement] with respect to min(d, d+ slop) and if unsuccessful, will attempt to 
guarantee with respect to max(d, d+ slop). If the latter attempt is also unsuccessful 
then the else clause, if specified, is executed. 

"A time-constrained component of statement] can also have a slop which can increase 

the WCET if statement]. 

Run-Time Support for Real-Time Concurrent C 

It is worth noting that there are five separate algorithms which are required to 

support flexible scheduling in Real-Time Concurrent C. Time on the processor is 

partitioned into slots, each of which is divided, in a fixed ratio, between time for periodic 
activities and time for aperiodic activities. Within each slot 'fraction' (periodic and 
aperiodic), the scheduler operates according to the following priorities: 

0 time for guaranteed activities is allocated first 

0 non-guaranteed activities with time constraints take preference in the remaining time 

0 non-guaranteed activities without time constraints use what time is left. 

According to the latest published work [19], the implementation of run-time 

support for Real-Time Concurrent C is incomplete. No figures are given for the overheads 

associated with the five algorithms above. 
In conclusion, it seems that Real-Time Concurrent C provides many useful 

constructs for optional computations, but that the language is not yet fully supported, and 

may require specialised hardware support to make it viable. It has certainly not been 

established as a standard. 
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2.8.3 PEARL 

PEARL stands for "Process and Experiment Automation Real-time Language". The 
language was developed under the West German Ministry of Research and Technology as a 
real-time programming language for process control applications [61]. The language has 
been widely used by German industry and several versions of it have been embodied in 
German (DIN), and ISO standards. 

Basic PEARL [14] provides a Pascal-like language with data types for clock and 
duration. Full PEARL [15] provides separate compilation of modules which are split into 
hardware-independent and hardware-dependent divisions. Multiprocessor PEARL [ 16] is a 
version of the language which allows the programming of distributed applications in which 
collections of modules may be configured and reconfigured within a network. 

Halang and Stoyenko [21,22] propose extensions to Full PEARL which would 
constitute a new standard called High Integrity PEARL. Their proposed standard would 

make PEARL programs fully analysable for schedulability. They have developed a 

schedulability analyser for High Integrity PEARL, which works in conjunction with their 
High Integrity PEARL compiler. Their proposed features for High Integrity PEARL 

include the ability to program the detection of events, parallel processing with precedence 

relations within task sets, and greater programmer control of resources and tasks, 

especially under transient overload. 
Greater task control is achieved by the availability to the programmer (and to the 

run-time system) of the deadline, accumulated execution time and (worst-case) residual 
execution time of each task. An update statement is available should a programmer wish to 

refine the estimate of the worst-case residual execution time of a task. This is possible 

when it is known at run-time, which particular path has been taken through the task code: 

update task_identifier. residual := duration_expression; 

According to Halang and Stoyenko, process control applications seldom have the 

monotone property required for imprecise computation [22]. They therefore restrict 

support for optional computations to a form of multiple version programming. In High 

Integrity PEARL, task declarations can include the attribute runtime selectable which 

means that the programmer is providing alternative task bodies for a task. The compiler 

calculates the WCETs of the alternatives and stores them in decreasing order of WCET, so 

that, at run-time, the scheduler can chose the alternative with the greatest WCET to be 

schedulable. The assumption is that alternatives with greater WCETs are preferable 
because they produce results of greater quality. 
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In summary, High Integrity PEARL provides support for multiple versions 
programming, but not for other paradigms for optional computation. The availability of 
run-time data on tasks (e. g. residual execution times) allows the programmer more control 
of scheduling and could, for example, facilitate scheduling according to best effort. 
However, the scheduling code for this would have to be explicitly written by the 
applications programmer. In short, High Integrity PEARL, provides only partial support for 

optional computations, and at present exists only as a proposed standard [21]. 

2.8.4 Ada 

Ada 83 was developed by the US Department of Defense [23]. It is a large 
imperative language which includes strong type checking, limited object-orientation in the 
form of derived types and generics, and features for concurrent programming using tasks. 
Tasks can communicate by means of the Ada rendezvous in which one task makes a 
synchronous call to an entry in another task. 

Some of the criticisms of Ada 83 are that it has inadequate facilities for real-time 
programming. It has limited provision for expressing timing constraints, tasks have static 
priorities only, entry calls are always queued FIFO, and there are inadequate 
implementation standards for scheduling. 

Ada 95 is a new standard for Ada [1], which addresses many of the shortcomings of 
Ada 83. Ada 95 has separate annexes for several application domains: Real-Time Systems, 

Safety and Security, Distributed Systems, and Systems Programming. Ada 95 introduces 

such features as protected objects for shared access to a resource, and the requeue of entry 

calls from one entry to another. 
For the programming of real-time systems, Ada 95 provides improved clock 

facilities, dynamic priorities, and standardised scheduling of tasks which can be integrated 

with the scheduling scheme used for inter-task communication. Other new features which 

are useful for real-time applications include improved priority inheritance, and 

asynchronous transfer of control. 
Optional computation is not directly supported by Ada 95. However, dynamic 

features such as asynchronous transfer of control may be able to be programmed to provide 

optional computation. This is the subject of Chapter 8, where the relevant Ada 95 language 

features are reviewed in more detail. 

2.8.5 Summary 

Current programming languages do not yet provide adequate support for optional 

computations. Flex only optimises the chances of optional computations meeting their 
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deadlines. Real-time Concurrent C provides language constucts for optional computations, 
but it is an experimental language, and is not yet fully implemented. PEARL is a widely 
used language in which proposed extensions may provide limited support for some forms 

of optional computation. Ada has no direct support for optional computations but the new 
Ada 95 standard contains flexible constructs which may allow optional computations to be 

programmed. 

2.9 SUMMARY OF REVIEW 

This review has surveyed previous work relating to the three strands of enquiry 

outlined in Chapter 1 i. e. application requirements for optional computations, run-time 

support for flexible scheduling, and programming language support for optional 

computations. 
Section 2.2 reviewed the requirements for complex real-time applications which 

require adaptivity. Section 2.3 reviewed existing computational models, and programming 
paradigms. To merge all of the requirements, and combine computational models, would 
result in a large set of requirements supported by a complex computational model. This, in 

turn, would require support from a complex, and computationally expensive, run-time 

system. The motivation for Chapter 3, which follows, is to distil the requirements and 
develop a constrained computational model. 

Sections 2.4 and 2.5 reviewed existing run-time support for flexible scheduling, and 
found that the Spring Project provides a high level of support, but at the expense of 

complex software and specialised hardware. Section 2.7 reviewed static schedulability tests 
due to Audsley et al. which Chapters 4 and 5 adapt, in an attempt to develop 

computationally cheaper guarantee algorithms than those of Spring. Section 2.6 above 

reviewed Spring support for distributed scheduling. This also requires complex algorithms, 

and Chapter 6 focuses on attempts to develop simpler methods. The constrained 

computational model of Chapter 3 uses Best Effort Admission Policy, which is evaluated 
by the simulation studies reported in Chapter 7. 

Section 2.8 found limited programming language support for optional computations 

except for the language Real-Time Concurrent C. Unfortunately this language is 

experimental and not yet fully supported. In contrast, Ada 95 is a new standard which does 

not explicitly support optional computations, but does provide constructs which may be 

used to do so. Chapter 8 investigates the use of these constructs in order to program 

optional computations in Ada 95. 
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CHAPTER 3 

A CONSTRAINED COMPUTATIONAL MODEL 

3.1 INTRODUCTION 

As stated in Chapter 1, this thesis assumes that the Run-Time System required to 
support the application requirements for optional computations within adaptive real-time 
systems, will run on the same processor as the applications tasks. This chapter begins by 

citing evidence that the overheads incurred in the support of the complex application 
requirements which are reviewed in Chapter 2, would prohibitively reduce the throughput 
of optional computations. The chapter goes on to present a different approach by 

simplifying the complex application requirements, and formulating a constrained 
computational model, which, it is claimed, can be supported cost-effectively on the same 
processor as applications tasks. The chapter concludes by discussing some programming 
language constructs which optional computations may require, and which could be 

supported by the constrained computational model. 

3.2 COMPLEX REQUIREMENTS 

Complex requirements and models for adaptive real-time systems have been 
discussed in Sections 2.2 and 2.3. In the following sections, each of these requirements or 
models is considered in turn, and evidence is cited which shows that the provision of 
support for them would incur prohibitive overheads. 

3.2.1 Value Functions 

In his thesis [35] Locke used processes (tasks) with Value Functions. He found that 
his Best Effort algorithm achieved consistently high total values for the system, but he did 

not address the overheads which Best Effort scheduling incurs, except to suggest an 

architecture in which scheduling is performed on a different processor from applications 
tasks. Later work by Tokuda et al. [59] and Wendorf [60] investigated these overheads. 
Wendorf showed that with Best Effort scheduling running on the same processor as the 

applications tasks, the algorithm can incur very large overheads. For example, for a 

potential load of 200%, up to 80% of processor time was spent in Best Effort scheduling. 
This drastically reduced the time for application tasks to run, and therefore the total value 
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obtained for the system. A further criticism is that Locke's Best Effort scheduling only 
increases the probability that tasks will meet their timing constraints, and this is insufficient 
when critical tasks are required to be guaranteed. 

Davis et al. [12] present the results of simulations in which Best Effort scheduling 
has been adapted to guarantee tasks. In this algorithm, a task of a higher value density can 
oust a task of lower density from the task list. (Here value density is a constant value, 
associated with an aperiodic task upon its arrival. It is defined as the value to the system of 
the task, divided by the task's worst-case computational requirement. ) Davis et al. found 
that a simple FCFS policy, which automatically rejects aperiodic tasks whose value-density 
falls below a threshold, can provide better performance than Best Effort, under conditions 
of system overload. This is because processing capacity is saved for later aperiodic tasks of 
greater value-density. This is evidence that superior performance can be obtained by a 
scheduling method which is simpler than the Best Effort algorithm. 

3.2.2 Interdependencies between Tasks 

Interdependencies between tasks have been discussed in Section 2.3.2. These can 
also greatly increase the overheads involved in scheduling. Communications between tasks, 

complex task hierarchies, and resource and precedence constraints may all greatly 

complicate the on-line schedulability analysis required to guarantee newly arrived optional 

computations. In the Spring Project [52,56] Ramamritham et al. investigate the 

complexities of constructing schedules for task sets which have resource, or precedence 

constraints. Because the construction of such schedules is, in general, NP-hard, 

Ramamritham et al. develop heuristics which are used to guide the search for a feasible 

schedule. As explained in Section 2.6.3, such heuristics were found to incur large 

overheads. 

3.2.3 Schedulability Testing 

A general concern with the facilities for optional computation discussed in Section 

2.3 is that they may significantly increase the overheads incurred in scheduling and 

schedulability testing. For example, it has been shown [60] that value functions can incur 

unacceptable overheads. Audsley [2] has shown that algorithms which provide an exact 

schedulability test at run-time have a pseudo-polynomial complexity. Davis [8] presents 

results which show that the overheads incurred by pseudo-polynomial schedulability test 

algorithms, so reduce the throughput of aperiodic tasks, that an inexact algorithm can 

provide equal performance. If tasks are a composite of sections with different utilities, then 

overheads can be further increased. When value functions or composite utilities are able to 
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be redefined at run-time, then overheads can be greater still. Concerns also exist regarding 
unbounded computations. For optional computations whose computation times are 
unbounded upon their arrival, guarantee is impossible. Further, an attempt to give them 
preference could undermine guarantees already given to other tasks. 

3.2.4 Summary 

The complex requirements for optional computations which have been discussed in 
Chapter 2 are likely to incur prohibitive overheads when implemented on the same 
processor as the applications tasks. Therefore the next step is to simplify these 
requirements, and to develop a constrained computational model which, on the one hand, 
incurs acceptable run-time overheads, but on the other, supports programming language 

constructs of adequate expressive power. 

3.3 ATTEMPTS TO CONSTRAIN COMPLEX REQUIREMENTS 

3.3.1 Constraining Value Functions and Utilities 

As discussed above it is necessary to reduce the complexity of value functions, in 

order to achieve an acceptable overhead for the schedulability testing and scheduling of 
optional computations. In any case, it is arguable whether value functions as described by 
Locke are the most useful measure of the value to the system, of a task's execution. 
Locke's functions map the values obtained to the possible completion times of the task. 
However the value of completing the task could be represented more simply by a constant 
value or 'utility' which is set upon arrival of the aperiodic computation. 

With a simple utility, the completion time of a task is still constrained, by the 

guarantee that the computation meets its deadline. The exact completion time of the 

aperiodic task may be immaterial, and the simple utility which has been allocated to the task 
is all that is required for the scheduler to make decisions regarding the task's execution. A 

task with an exact completion time which is critical, should not be an optional 

computation, but instead should be implemented as a high priority task which is resident on 
the processor and has been schedulability tested off-line. 

3.3.2 Categories of Tasks 

Having decided to use utilities and not value functions, there must be some way of 
trying to limit the range of utilities required, in order to constrain the complexity of a 
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computational model, and to reduce the overheads for schedulability testing. For the 
purposes of a constrained model, three categories of task may be defined, with a separate 
utility level for each category. The first category (essential tasks) must complete, once 
guaranteed, the second category (atomic actions) may be aborted at any time between 

guarantee and the start of execution, and the third category (low utility) may be aborted at 
any time after guarantee. 

The three categories may be said to define different abortabilities (the extent to 
which a guaranteed task may be aborted) and the question arises as to how these may be 
integrated with different utility levels for the tasks. For example, should a newly arrived 
aperiodic computation, of high utility, which would otherwise prove unschedulable, be able 
to abort existing tasks which fall into the second and third categories of abortability? If 
lower utility tasks may be aborted in this way, then how valid were their original 
guarantees? Presumably the application will need to know that guarantees have been 

rescinded, so that this may be handled. Obviously high-utility tasks cannot be aborted and 
the constraints which they impose might still force a newly arrived request to be rejected. 
In the case of the lowest utility tasks there may be no need to abort them if they are running 
in background, and have not been guaranteed. 

3.3.3 Guarantee-worthiness 

Clearly the utility and abortability of a task are interrelated. For example a task of 
high utility is more worthy of guarantee and should be less easy to abort. Conversely, there 

may be little justification for incurring overheads in guaranteeing an aperiodic request 
which has a low utility and may be aborted by higher utility requests. This raises the issue 

of the guarantee-worthiness of a request for optional computation. In other words can 

some measure be made of the trade-off between how much time is spent guaranteeing an 
aperiodic task and how much utility the aperiodic task gains for the system. 

Obviously, when a high utility task is guaranteed, and ousts a previously guaranteed 
task of lower utility, then the utility of the ousted task is lost to the system. Not only that, 
but the time spent in guaranteeing the ousted task has also been lost. The question arises as 
to where the trade-off lies between time which is 'wasted' in this way and the higher utility 

which is gained. This question will be discussed further in the Section 3.5.1. 
An important observation is that utility and abortability are intimately related in a 

scheme which guarantees aperiodic computations in a First-Come-First-Served order. 
Within this kind of scheme there will be no change to the overall value obtained for the 

system, unless aperiodic requests of different utilities also have different abortabilities. In 

other words tasks of different utilities will merely be treated in FCFS order unless incoming 
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high-utility aperiodic tasks have the ability to cause previously accepted low-utility 

aperiodic tasks to be aborted. 

3.3.4 The Problems of Composite Utilities/Abortabilities 

One possible requirement for a computational model is that aperiodic requests 
might have different utilities or abortabilities associated with sections of their computations. 
For example an imprecise computation can be coded as a sequence of iterative sections, 
with each section having a lower utility and higher abortability. Another use for a change in 

utility would be to give the final section of a task a higher utility. This might prevent the 
task from being aborted just prior to completion, with the resulting loss of value to the 

system. 
From the standpoint of guaranteeing optional computations, there are objections to 

variations of static utilities/abort abilities within the sequence of code of a single task. 
Firstly, there are difficulties in the semantics of guaranteeing some utility/abortability 
sequences within a task. For example, a low-utility section at the start of an optional 
computation, followed by a non-abortable high-utility section. The non-abortable section 
should be guaranteed to complete but does this mean that the earlier abortable section 
should also be guaranteed as non-abortable, especially if there is a precedence relation 
between the sections? Another example is the case of an optional computation whose 
subsequent sections fall in utility and increase in abortability. In this case 'abortable until 
started' cannot be used for a later section when 'must complete' has been used for an earlier 
section. These problems could be solved by the use of 'must complete' with all utility levels 
in a composite task. However, as stated earlier, there is no benefit to the system in using 
different utilities for aperiodic requests unless utility levels also have different abortabilities. 

A second objection is the additional complexity and overheads in the schedulability 
testing of newly arrived aperiodic requests, when existing tasks have variable utilities/ 
abortabilities within their computations. This also creates problems for the schedulability 
test algorithm when some sections of a task are schedulable but others not. For example, 
the high utility sections of a composite task may be schedulable (because they have caused 

existing low-utility task(s) to be aborted) but the low utility sections may not be 

schedulable. The requirements of the application may dictate that all sections (high and low 

utility) must be guaranteed, or the requirements may be that the composite task is still 

viable when only the high utility sections are guaranteed to run (e. g. a sieve function). 

A general conclusion here is that, for the purposes of guaranteeing, a constrained 

computational model must combine the characteristics of utility and abortability in a 

consistent manner. Any such model must have semantics which are clear to the applications 

programmer. Using different utilities which are allocated to each section of a task at the 
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time of guarantee, can create sequences of utilities and abortabilities which have 

contradictory meanings. Therefore the recommendation for the constrained computational 
model is to allocate a single utility to each task for the purposes of guaranteeing. This will 
provide clearer semantics and also simplify schedulability testing. As seen below, there are 
no objections to changes in the utility of a task after guarantee, during the task's execution. 

3.3.5 Dynamic Changes of Utility 

The above section discussed the semantic difficulties in guaranteeing a composite 
task which has utilities associated with each of its components. Therefore, for guarantee 
purposes, it is preferable that a task has a single utility which is set upon the task's arrival. 
However, there is no reason why dynamic changes of utility should not occur later, for 

example by being programmed within the code of a task. Such utility changes could occur 
at any time during a task's activation, without semantic complications, or further demands 

on schedulability testing. 
An example of an application where a dynamic change of utility is desirable is that 

of tasks which are replicated for fault-tolerance. Once guaranteed, each replicated task 

may have its utility either decreased or increased, depending on whether fellow replicants 
have either completed before it, or failed prematurely. The utility of each replicated task 

can be changed easily, without any further need for guarantee. Similarly, little extra 

scheduling overhead is required if the application decides that a replicant should be killed 

because its execution is no longer of any value. 

3.3.6 Constraining Task Interdependence 

The complex requirements described in Section 2.3 also include hierarchies of 
interdependent tasks with complex precedence relations and resource sharing. Clearly these 

requirements need to be simplified if scheduling and schedulability testing overheads are to 

be reduced to an acceptable level. One obvious step is to flatten the hierarchy so that only 
linear precedence relations between tasks are permissible. 

In order to simplify the problem of resource allocation, Priority Ceiling Protocol 

can be applied. This allows an upper bound to be placed on the worst-case blocking for 

resource access. Priority Ceiling Protocol does not optimise the allocation of resources, but 

at least means that true WCETs are used for schedulability testing. 
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3.3.7 Accommodating Unbounded Computations 

Unbounded requests for computation cause difficulties within a scheme which 
guarantees hard deadlines. If a task has an unbounded computation time then it cannot be 

guaranteed but merely have its execution 'optimised' e. g. by allocating it available slack. 
The task cannot be incorporated at a high priority level because it may invalidate 

guarantees which have already been given to bounded tasks at a lower level. In any case, it 

can be argued that unbounded computations should be given a low priority (e. g. 
background) because their utility cannot be great. If it had been, the applications 
programmer would have bound them, and required them to be schedulability tested in order 
to meet some time constraint. 

In the case of a task whose boundedness or unboundedness is known only at run- 
time, it can be argued that such late knowledge does not justify the use of schedulability 
testing and that the task should be placed in background. After all, a task which is allowed 
such dynamic behaviour is unlikely to be critical. However, an interesting way of 
accommodating such a request (especially if it is supplied with a deadline) is for the run- 
time system to artificially bound the request. In this way the run-time system can guarantee 
that the unbounded request receives a certain amount of computation while still retaining 
the guarantees of existing aperiodic tasks. 

3.3.8 Supporting Alternative and Compound Computations 

A requirement for some applications may be that groups of optional computations 

should be requested together. Such requests for the guarantee of several optional 

computations may be characterised as alternative or compound. Alternative and compound 

requests have semantics which correspond to OR, and to AND respectively. OR semantics 

mean that the application wishes to know which of a list of several alternative optional 

computations can be guaranteed. The application may prefer those requests which occur 

earlier in the list, in which case it is sufficient for the application to know the first 

alternative in the list which turns out to be schedulable. In contrast, AND semantics require 
that all of the requests in the list be schedulable, otherwise the compound computation will 
be rejected. 

The above requirements for alternative or compound computations may seem to 

add greatly to schedulability testing overheads. However, it is possible that schedulability 
testing may be optimised so that the full schedulability test algorithm does not have to be 

repeated for each computation in the group. For example, if the alternative or compound 

computations share the same deadline, then the existing tasks beneath the request position 
in the task list need not be fully re-tested for each alternative. Therefore it is recommended 
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that alternative and compound computations may be cost-effectively supported by a 
constrained computational model. 

3.3.9 Guaranteeing Sequences of Aperiodic Computations 

Guaranteeing sequences of aperiodic computations which arrive simultaneously but 
have a precedence order (e. g. iterations of an imprecise computation) can also add to 
schedulability testing overheads. This is especially true if attempts are made to guarantee 
some members of the sequence at remote nodes. 

The issue arises as to whether members of the sequence which cannot be 

guaranteed locally should be schedulability tested at other nodes in the system, to see 
whether they can be accommodated there. The difficulty here is to retain the precedence of 
sequence members. A remote node needs to be able to guarantee the sequence member 
within a window which follows the execution of that members predecessor and comes 
before the execution of the member's successor. In practice end-to-end timings would be 
involved. 

The issue can be resolved by comparing the deadline for the aperiodic request with 
the overheads involved in guaranteeing iterations of the computation at remote nodes. If 

the overall deadline for the sequence is sufficiently great, then each member of the 

sequence can be schedulability tested after its predecessor has completed. In this way each 
member of the sequence is treated as a separate aperiodic request. This has the advantage 
of being the most dynamic way of handling the sequence and it can involve the forwarding 

of a sequence member to some remote node, when the host node cannot guarantee it. 

When the aperiodic sequence has a relatively short deadline, then complex time 

constraints due to precedence make it unlikely that remotely guaranteeing some members 

of the sequence is viable, in a loosely coupled set of processors. (However, in a closely 

coupled processor cluster, perhaps with synchronised schedulability testing, such remote 

guaranteeing of sequence members may be more feasible. ) Accepting that the schedulability 
testing for the sequence takes place entirely on the local node allows a simple schedulability 
test which uses the total deadline for the sequence and determines how much of the 

sequence can be guaranteed. This can be posed in the form of an alternative computation 

where each alternative includes a different number of sequence members. 
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3.4 THE CONSTRAINED MODEL 

3.4.1 Introduction 

Table 3.1 summarises the Constrained Computational Model which is proposed. 
Aperiodic requests for optional computations may have the characteristics shown in the 
table. Each row of the table can be considered as a different task 'type', named Mandatory, 
High Utility, Medium Utility, Low Utility, and Background. 

Task type Utility Abortability Bounded or Guarantee Deadline 
Unbounded 

No abort 
Mandatory Base but Bounded Off-line Hard 

replaceable 

High Utility H No abort Bounded On-line Firm 

Medium M Abort before Bounded On-line Firm 
Utility start 

Low Utility L Abort Potentially On-line: Firm 

anytime Unbounded Budget only 
Budget 

Background Null No need to Potentially Not Soft/ 

abort Unbounded guaranteed None 

Table 3.1: The Constrained Computational Model 

The implication of the model is that Mandatory tasks have a baseline utility and that 

the other task types can add value to the baseline according to their utility. Obviously the 

higher the utility of a task, the more value it adds to the application, upon the completion of 

the task. In other words H>M>L in Table 3.1. Any optional computation must belong to 
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one of the High, Medium or Low categories and be allocated the utility which the 
programmer has set for that category. (A more concise way of expressing the relative 
utilities of these categories is to use two ratios, as is discussed in Section 3.5.3 ) 

It seems, from the arguments above, that clearer semantics are achieved by 
associating a single utility level with each aperiodic request, rather than have the 
complication of guaranteeing a computation which is divided into sections, each with a 
different utility level. Therefore the constrained model allows only a single utility level to be 
associated with each request at its arrival. If different utility levels are needed, the 
applications programmer must split the compound task into smaller tasks which have 

precedence relations between them, according to their relative deadlines. The use of a 
single utility per task, allocated at arrival, should also simplify schedulability analysis. Of 

course, the utility of an optional computation may still be changed dynamically, at any time 
after its guarantee, as is described in Section 3.3.5. 

3.4.2 Utility Levels 

It was decided that the constrained model should use five utility levels. This choice 
is a compromise between providing adequate facilities for the applications programmer and 
incurring greater overheads in schedulability testing if more than five utility levels are used. 
The close interrelation between utility and abortability has been discussed above and it is 

clear that these are not orthogonal characteristics. Therefore the constrained model 
provides consistent semantics by integrating abortabilities with utility levels. 

3.4.3 Mandatory Tasks 

As can be seen in the Table 3.1, the first task type is Mandatory and is associated 

with a baseline utility. All Mandatory tasks are considered to be critical tasks which are 

resident on the processor. As indicated in the table, they have bounded WCETs and hard 

deadlines. It is assumed that they have been guaranteed off-line before the system starts. No 

abort in the table indicates that these tasks cannot be aborted. However it is possible to 

replace a Mandatory task by a preferred High Utility task (see next section). 

3.4.4 High Utility Tasks 

The next utility level, H, is associated with High Utility tasks. These are optional 

computations which arrive aperiodically at the processor and have firm deadlines. (Here, a 
'firm' deadline indicates that instances of these optional computations can be missed 

without critical failure, but that there is no value in executing these tasks if they do not 
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meet their deadlines. ) Consequently these tasks require to be guaranteed dynamically and 
they must have bounded WCETs in order that this may be possible. They cannot be aborted 
once guaranteed (No abort). 

It is possible that such a High Utility optional task could replace a Mandatory task 
at run-time (e. g. where a preferred, expensive version of some computation is required). In 
this case the utility of the High Utility task would be gained upon its completion and would 
be added value over the baseline value which would have been gained by the Mandatory 
task which was replaced. Note that in guaranteeing the High Utility task, the system must 
take in account the processor time which would be freed, were the Mandatory task to be 

replaced. 

3.4.5 Medium Utility Tasks 

Medium Utility tasks are also aperiodic, optional computations. As with High 
Utility tasks, they have bounded computation times with firm deadlines and must be 

guaranteed dynamically. However, they differ from High Utility tasks in that they are 
allocated a lesser utility level, M, and can be aborted within the interval between their 

guarantee and the start of their execution. An example of an application for this type of 
task would be an atomic action which once guaranteed, may be aborted before it starts, 
but may not be aborted during its execution without great loss of value to the system. 

3.4.6 Low Utility Tasks 

Low Utility tasks are similar to Medium Utility tasks except that they are allocated 

an even lower utility, L, and can be aborted anytime after guarantee. As with Medium 

Utility tasks, they have firm deadlines, but their computational requirements are potentially 

unbounded. This can mean that they are either impossible to bound, or that their 

computation times have such large variances that they can only be bound very 

pessimistically. For example, only a minimum or average computation time may be 

available. There is no value in executing such a task if it does not meet its deadline, and 
therefore it is better if some way can be found to increase the chances of the deadline being 

met. The system attempts to guarantee each low utility task a budget which may, for 

example, cover its minimum or average computation time. This only guarantees that the 

task has a certain probability of finishing in time, but it is preferable to allowing the task be 

executed in background, without any guarantee. 
Potentially unbounded indicates that such tasks need not necessarily have WCETs 

which are difficult to bound. It may be that they have tightly bounded WCETs, but that 

their low utilities require them be abort anytime tasks. 
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It should be noted that the system must monitor whether a low utility task has 

consumed its budget. When a budget is exhausted, the task must be aborted, or another 
budget guaranteed. The task must be prevented from using more processor time than it has 
been allocated, because this could undermine the schedulability of other tasks in the system. 

3.4.7 Background Tasks 

The last task type, Background, are optional computations which also have 

potentially unbounded execution times but have soft deadlines, or no deadlines at all. In 

effect, they are not real-time tasks. They cannot be guaranteed and therefore must always 
be executed at the lowest priority. At this priority, they may be ordered in FCFS or earliest 
deadline order. (In any case, to guarantee such tasks is less appropriate because their soft 
deadlines indicate that there may be some value in them executing after their deadlines have 

expired. ) Because they are executing in background, and are not guaranteed, these tasks 

need not be considered when schedulability testing tasks of higher utility. Background tasks 

may of course miss a soft deadline, in which case they may eventually be removed from the 

task list. They carry Null utility because they are not guaranteed and need not be aborted by 

higher utility tasks. Therefore the issue of which utility level they require, in order to make 
it cost-effective to guarantee them, does not arise. It is acknowledged that Background 

tasks still contribute to the system. 

3.4.8 Dynamic Changes in Utility 

The Constrained Computational Model requires the use of a single utility per 

optional computation, which is set upon its arrival. As argued above, this clarifies the 

semantics of the model and should also simplify schedulability testing. The utility which the 

optional computation carries upon arrival determines how 'hard' the system will try to 

guarantee it. However, as stated previously, there is no reason why the original utility level 

of the optional computation cannot be changed as required, during its execution. No extra 

schedulability testing overhead is incurred in order for the application to change the utility 
level of a guaranteed task. 

An example of utility change is when a low utility (L) optional computation may be 

nearing completion, and may dynamically upgrade its utility to M in order to avoid the 

possibility of abortion and a loss of value to the system. Such a change neither affects the 

schedulability of the task concerned or any of the other tasks in the system. Obviously 

some programmer-defined method of determining a task's progress is required in order to 

determine when the utility should be upgraded. 
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Another interesting application of this facility is to dynamically change the utility of 
an imprecise computation, at each of its iterations. For example, a task which implements 
imprecise computation could be programmed to decrease its own utility at each iteration of 
the computation. In effect, the ability to dynamically change utilities can allow composite 
utilities without incurring any of the extra schedulability testing overheads associated with 
guaranteeing a composite task. 

3.4.9 Precedence 

Precedence is not directly supported by the computational model. However, it is 

assumed that the Run-Time Support for the model prioritises tasks according to deadline 

monotonic ordering. Therefore, aperiodic requests which arrive simultaneously can have 

their precedence indicated by their relative deadlines. If the precedence order in the 

specification conflicts with deadline order, then a design tool may be used to adjust the 
deadlines given, so that if the requests are guaranteed, they will be executed in precedence 
order. This assumes that there are no internal delays in the task(s) which occur earlier in 

precedence order. Such delays could result in the premature execution a task which should 
have executed later in the ordering. 

3.5 VIABILITY OF THE CONSTRAINED COMPUTATION MODEL 

3.5.1 Guarantee-worthiness 

One major issue which arises from the computational model is whether the aborting 

of lower-utility tasks actually benefits the total utility gained by the system. Guarantee- 

worthiness has been defined as a measure of how much the utility gained by the system in 

guaranteeing new aperiodic requests, outweighs the overheads and aborted computations 

which are incurred by those guarantees. 
Whether a particular aperiodic request is guarantee-worthy depends on factors such 

as its own utility and guarantee overhead, and the utilities and guarantee overheads of any 

existing tasks which it aborts. (Another consideration is whether the aborted tasks are near 

completion, since the full utility of an aborted task is lost, however small its residual 

execution time. ) The guarantee overheads incurred will depend upon computation times, 

deadlines and the complexity of whichever guarantee algorithm is in use. 
Clearly, if aperiodic requests are not guarantee-worthy, then guaranteeing may 

provide less throughput of optional computations than merely accepting or rejecting them 

according to whether they are schedulable without the abortion of lower utility tasks. (In 
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effect this is a FCFS system where all tasks are of the same utility. ) Even more extreme is 
to dispense with schedulability testing altogether and merely accept all aperiodic requests, 
and attempt to optimise their executions. However, this loses the advantage of being able 
to pursue some useful alternative, when the request for an optional computation has been 

rejected, and it may result in a great loss of utility to the system. 

3.5.2 Simplistic Measures of Guarantee-worthiness 

There are two crude measures of how small a task's computational requirement can 
be, before the overhead incurred in guaranteeing ceases to be justified. The measures 
provide necessary but insufficient criteria because they do not take into account the loss of 
utility due to the abortion of lower utility tasks. 

The first measure is whether the deadline of the aperiodic request is considerably 
larger than the overhead of the likely schedulability test overhead plus the computational 
requirement of the request. If the deadline is of the same order as this sum, then clearly 
there is no point in attempting a guarantee, and the request should be rejected outright. 

Another comparison which may be useful is between the computational requirement 
of the aperiodic request and the total overhead for schedulability testing and scheduling the 

task. This may give some lower bound for the computational requirement of an aperiodic 
request which is worthy of guarantee and scheduling. 

The next section looks at how the full issue of guarantee-worthiness may be 

addressed, including taking into account the effect of loss of utility due to the abortion of 

previously guaranteed lower utility talks. 

3.5.3 Evaluating Best Effort Admission Policy 

In order to fully examine the issue of guarantee-worthiness in Best Effort 

admission, some simulation studies are required. These require some means of expressing 

and controlling the relative values of High Utility, Medium Utility and Low Utility tasks, in 

order that the effect of aborting lower utility tasks may be investigated. Note that it is only 

the relative values of these utilities which affects the issue of guarantee-worthiness, and 

therefore the total utility gained by the system. 
Two ratios are introduced. The first, R1, is the ratio of the utility of High Utility 

tasks to the utility of Medium Utility tasks. The second, R2, is the ratio of the utility of 

Medium Utility tasks to the utility of Low Utility tasks. (Mandatory and Background tasks 

can be considered as different cases, with fixed utilities, and therefore no ratios are 

needed. ) Both R1 and R2 are system-wide parameters which can be set by the applications 

programmer. For example, if R1 and R2 are each 10, then the utilities of High Utility, 
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Medium Utility and Low Utility tasks will be 100,10 and 1 respectively. The applications 
programmer can set R1 and R2 and measure the efficiency of an implementation by 

accumulating the total value of utilities over a system run. In short, R1 and R2 allow the 
trade-off in guarantee-worthiness of the three intermediate task types to be investigated. 

Chapter 7 presents the results of simulation studies in which Best Effort Admission 
Policy is compared to FCFS. These results include the effect of varying R1 and R2 

3.6 NECESSARY LANGUAGE CONSTRUCTS 

3.6.1 Compound and Alternative Computations 

Compound computations, as described in Section 3.3.8, support requests for 

multiple optional computations. A compound computation can take the form of an 'AND 

statement', where all of the ANDed computations must be guaranteed. In other 

circumstances an application may require the guarantee of one of a selection of optional 

computations. The language construct for such an alternative computation could take the 
form of an 'OR statement'. The requests listed in the OR statement could be in order of 

preference, and the run-time system would then attempt to guarantee them in that order 

until the first schedulable request is found. 

Compound computations should all be requests for high utility computations, 
because it is inconsistent to require that all of the components be guaranteed, if some of 

them are only guaranteed at low utility and are therefore abortable. If the components of 

the compound computation have a common deadline, then it is more efficient to add their 

computation requirements and make a single request for the summed computation times. 

This prevents the schedulability test having to run for each component, but in no way 

affects the accuracy of the schedulability test. If there is a precedence relationship between 

the components of a compound computation, then this can be enforced by the programmer 

allocating appropriate deadlines to the components of the computation (see Section 3.4.9). 

The applications programmer may chose to associate a different utility/abortability 

with each alternative within an alternative computation. This may be useful for example 

when an early preferred alternative is computationally dearer, and a later alternative, which 

is less-preferred, computationally cheaper. (A cheaper computation has a shorter 

computation time and/or a longer deadline) Table 3.2 shows the possible alternative 

computations which can be demanded. The alternative request which is made can have 

either a different computational expense, or a different utility, or both. The 'Useful' column 

of the table warns the applications programmer against some combinations which are 
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Computational Utility Is this a 
Expense of of Useful Comment: 

the Alternative the Alternative Alternative ? 

Example: 

cheaper same y a less-preferred 

version 
Example: 

cheaper higher y a requirement for 

graceful degradation. 

Example: 

cheaper lower y a less-preferred 

version 
Why not request 

dearer higher ? this as a 
first alternative? 
Cannot be 

dearer same n guaranteed if earlier 
alternative rejected 
Cannot be 

dearer lower n guaranteed if earlier 
alternative rejected 
Why not request 

same higher ? this as a 
first alternative? 

Cannot be 

same lower n guaranteed if earlier 

alternative rejected 

Table 3.2: Possible Alternative Requests 

nonsensical e. g. cases where later alternatives cannot be guaranteed, after an earlier 

alternative is rejected. 

3.6.2 Fulfilling Application Requirements 

Alternative computations may capture some of the requirements of graceful 
degradation, or multiple versions. Other requirements for these may be programmed by the 
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applications programmer. For example, when a low-utility task is aborted by a higher-utility 

request, the application is informed of the rescinded guarantee, and the programmer may 
design the application to request a cheaper task in place of the aborted task. This may allow 
graceful degradation under system stress. Similarly, in the case of multiple versions 
programming, the application may request a cheaper version in place of an aborted 
preferred version. 

Subsequences of imprecise computations can also be schedulability tested by 

presenting them as alternative computations. In other words the OR construct can be used 
with the first alternative being the maximum sequence of iterations of the imprecise 

computation, the second (less-preferred) alternative being a shorter subsequence, and so 
on. Alternatively, if the Imprecise Computation can run to a large number of iterations, and 
if the iterations are of low utility, then a low utility request for a budget could be made. 
This will require less schedulability testing than using the OR construct, but the iterations 

of the Imprecise Computations will be abortable. Note that, should the Imprecise 
Computation use up its budget before its deadline has expired, then there is no reason why 
it should not make a further request for a budget. 

Sieve Functions can be defined as a sequence of alternating bounded and 

unbounded computations. These may be implemented by first using an AND request for the 
bounded, minimum components of the sieve function. If this request is accepted, then the 

sieve function is started, and a budget for each unbounded component is obtained by 

making a low utility request at the point where each of the unbounded components is 

released in the sequence of computations. 
Admittedly, Al applications can require complex task hierarchies and the simple 

linear form of precedence assumed in this model cannot capture such complex 
dependencies. In these circumstances, tool support may be used to reduce the task 

hierarchy to the constrained model used here. 

3.7 SUMMARY OF THE CONSTRAINED MODEL 

A complex computational model for optional computations would incorporate 

value functions or utilities which depend upon many parameters. In addition it would model 

complex interdependencies between tasks which may include a task hierarchy which 

captures inter-task communications, precedence, and the sharing of resources and subtasks. 
There exists considerable evidence that, were such a complex model to be 

implemented, the run-time overheads incurred would drastically reduce the throughput of 

optional computations. This leads to the development of a constrained computational 

model which defines 5 task types, ranging from mandatory tasks to background tasks. In 
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between these extremes lie 3 types of optional computations which require to be 

guaranteed upon arrival. Optional computations in the model, which are of lower utility, 
can be more easily aborted. All optional computations which arrive at the processor are 
allocated a single utility according to which task type they belong to. However, no extra 
overhead is incurred if the task type (and utility) of an optional computation is changed 
later, during its execution. The constrained model allows only simple linear precedence 
between tasks. The model can support some useful programming language constructs 
which would, for example, incorporate requests for multiple optional computations. 

The differences in utility levels between the 3 intermediate types of optional 
computation may be specified by the use of two system-wide ratios. The values of these 

ratios crucially determines whether it is cost-effective to guarantee each type of optional 
computation. 

3.8 THE WORK WHICH FOLLOWS 

The constrained model must now be shown to be viable by the development of 
algorithms, for run-time support, which are efficient enough to run on the same processor 

as applications tasks. Chapters 4 to 7 which follow, take a bottom-up approach to this 
development. Chapters 4 and 5 first establish the viability, and then attempt to enhance, a 

range of on-line schedulability tests for optional computations. Chapter 6 investigates 

allocation methods for optional computations in a multiprocessor cluster. Chapter 7 

compares admission policies for optional computations, which have passed their 

schedulability tests. Finally, Chapter 8 implements the computational model in Ada, and 

provides Ada code which can fulfil many of the application requirements discussed above. 
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CHAPTER 4 

VIABILITY OF ON-LINE ACCEPTANCE TESTING 

4.1 INTRODUCTION 

Chapter 3 concluded that a constrained computational model for optional 
computations can satisfy many of the requirements for future real-time systems, but that 
such a model requires efficient algorithms for run-time support. This chapter develops a 
range of algorithms for on-line or dynamic acceptance testing of optional computations. 
The acceptance tests are developed by adapting some of Audsley's static schedulability 
tests [2] which are reviewed in Section 2.7. 

It is assumed that, as with the computational model of Chapter 3, each processor 
has a resident set of mandatory computations which have been guaranteed off-line. 
Mandatory computations may be periodic or aperiodic (e. g. interrupts). For the purposes of 
off-line schedulability testing the aperiodic mandatory computations must be constrained to 
be sporadic tasks i. e. they have a minimum interarrival time or, in other words, a maximum 

arrival rate. Worst-case off-line analysis assumes that sporadic mandatory computations 

continually arrive with a separation of their minimum interarrival time, and that they can 
therefore be considered as periodic tasks. It follows that, in this analysis, all of the 

mandatory computations which relate to the processor are considered as periodic tasks. 
Optional computations are also considered as sporadic tasks. This allows the 

overheads for acceptance testing, which occur on the same processor as application tasks, 

to be upper bound and themselves guaranteed. In the following analysis, optional 

computations are modelled as sporadic tasks which arrive, in the worst-case, at their 

maximum arrival rate. Each sporadic task arrives with a specified WCET and deadline. 

4.2 THE STATIC ALGORITHMS 

The aim of dynamic acceptance testing is to guarantee the relative deadline, D, of 

each sporadic task which arrives with a known WCET, C, at an arbitrary arrival time which 
is constrained to be separated from other sporadic arrivals by at least the minimum 
interarrival time. When a sporadic task arrives at the processor, it is inserted in its correct 

position, in a deadline monotonically ordered task list, which includes resident periodic 

tasks plus those sporadic tasks which have previously been accepted, and have not yet 
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completed. The sporadic arrival is then schedulability tested in order to determine whether 
it can be guaranteed or must be rejected. Note that the acceptance test must also include 
schedulability tests for all of the tasks which fall below the sporadic task in the task list, in 
order to ensure that each of these can still meet its deadline. 

Two static algorithms, due to Audsley [2], are now chosen as the first candidates 
for adaptation. These are (i) Test 1, a sufficient but not necessary test, which has O(N2) 
complexity and should incur the smallest overheads, and (ii) a sufficient and necessary test, 
which has pseudo-polynomial complexity, and should incur the greatest overheads. (Both 

of these static algorithms are described in Section 2.7) From now on Test I will be know 

as O(N2), and the sufficient and necessary test will referred to as PP. 
O(N2) requires a determination of the interference (1) for the duration of the 

deadline of whichever task is being schedulability tested (known as the test task, i). In 

order to determine I, the list of higher priority tasks is scanned to provide the following 

sum which is the total interference from all higher priority tasks j: 

- 1(FD1=Ti-1 Cj) (4.1) 

In contrast, PP calculates the exact worst-case response time of the test task, by 

calculating the interference from higher priority tasks within a time window, wl. This 

window is increased at each iteration of the algorithm. Its initial value is the WCET of the 
test task, and at each iteration the following sum over all higher priority tasks j is 

calculated: 

jj(rwi =Tj1 Cj ) (4.2) 

The value of wi at the next iteration is set to the value of (4.2) from the last iteration, and 

so on, until wl converges at a maximum value, which is the response time of the test task. 
The adaptation of these two static algorithms for dynamic use, is now described 

briefly. A more rigorous explanation of the necessary changes may be seen in Appendix A. 

4.3 ADAPTING THE STATIC ALGORITHMS 

Both O(N2) and PP can be adapted for dynamic schedulability testing by similar 

changes to the above equations. Both adapted algorithms avail themselves of the run-time 
data which is updated by the scheduler for all tasks: R1, the current residual execution time 

of each task, j, and NRj, the next release time of each task j. When a sporadic task arrives, 
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the schedulability tester uses the NRW for each task which has a higher priority than the test 
task, in order to calculate the offset, Off, of the task's next release (Oý = NR1 - current 
time). The changes required in expressions (4.1) and (4.2) above allow for the following 
dynamic properties: 

(i) A higher priority task cannot interfere with the test task until that higher 

priority task has been released. 
(ii) If the next release of the higher priority task is after the expiry of the 

interference interval under consideration, we must ensure zero, not a 
negative, interference value is produced. 

(iii) Any residual execution of an interfering task must be added to that task's 
total interference with the test task. 

In line with the above, expressions (4.1) and (4.2) above are adapted to: 

(i} Reduce by the offset Oj, the interval (DI and wi respectively) considered for 
interference by a higher priority task j. 

(ii) Ensure that the result (DI - Oj and wi - Oj respectively) is not negative 
(iii) Add Rj. 

Hence (4.1) becomes : 

Y, j(r(Di - O1-Tj 10 Cj + Rj) (4.3) 

where rXlo (i) returns 0 if X <_ 0 
(ii) returns [X1 if X>0 

and (4.2) becomes : 

Y, j(r(wi-Oj)-Tj10Cj+Rj) (4.4) 

Apart from this, the algorithms proceed as in the static case, except that there is no 

need to schedulability test the tasks which are above the sporadic task in priority ordering. 
When testing the sporadic task using the above equations, (4.3) will use the sporadic task's 
deadline for Dl, and (4.4) will initialise wi to the sporadic task's WCET. 

Because the sporadic task is a one-off, each lower task need only be tested against 
its next deadline. If the lower test task is active (i. e. non-zero residual execution time), 

then (4.3) will use the remainder of the task's relative deadline for Dl, and (4.4) will 
initialise wj to the residual execution time (RI) of the test task. (Note that in the case of 
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using PP for dynamic testing, the remaining interference intervals do not necessarily 
increase monotonically down the task list, and therefore a final ith window value cannot be 
used to initialise the window for the i+ Ith test task. ) 

If the lower test task is inactive (i. e. completed its current execution and awaiting 
its next release) then we must check against the deadline of the task's next activation. 
Strictly, we should calculate interference in an interval starting at the test task's next 
release. However, to calculate interferences in a future interval of time would incur 

unacceptable overheads. These can be avoided by a sufficient test (see Appendix A) which 
supposes that the next release of the test task is at the current time i. e. the deadline has 

effectively been increased by the quantity: next release time - current time. 

4.4 VARIATIONS ON THE ALGORITHMS 

Both static and dynamic O(N2) and PP algorithms trade off complexity with 
accuracy. In the dynamic case O(N2) will be pessimistic but quicker. Therefore, if the 

schedulability testing is on the same processor as the resident periodic task set, then O(N2) 

will allow more time for sporadic task processing, but may reject some sporadic tasks 

which are schedulable. By contrast, the PP test takes longer, on average, to arrive at an 

optimal result. On the same processor, PP would therefore leave less time for sporadic 
tasks, but never pessimistically reject a schedulable sporadic task. 

A more efficient algorithm may be to combine O(N2) and PP in a hybrid algorithm. 
All schedulability testing is performed by O(N2) until a sporadic task is found to be 

unschedulable. Then PP is used to make a finer judgement on schedulability. Such a hybrid 

algorithm should be both optimal, and faster on average, than PP. 

Another variation would be to reverse the order of schedulability testing by 

schedulability testing the lowest priority task first and then working up the task list until the 

sporadic task itself is schedulability tested. For a schedulable sporadic task this would take 

the same time as the top-down order used previously. However it may be that 

unschedulable sporadic tasks are found out earlier. This will depend on where in the task 

list the unschedulable tasks are likely to occur. At one extreme (justifying top-down) only 

the sporadic task may test as unschedulable, while lower tasks pass their tests. At the other 

extreme (justifying bottom-up), all tasks (including the sporadic task) may be schedulable 

except the lowest in the list. In other words, if the unschedulable tasks are more likely to be 

found nearer the bottom of the task list, then bottom-up testing will be faster, on average. 
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The above discussion indicates that five dynamic schedulability tests should be 
investigated: 

(i) (Pure) O(N2) 

(ii) (Pure) PP 

(iii) Hybrid ( O(N2)/PP) 

(iv) Bottom-up PP 
(v) Bottom-up Hybrid. 

4.5 SIMULATION STUDIES 

According to the above discussion, further investigation is required into the 

statistical behaviour of five adapted algorithms. The most cost-effective way of doing this 

was to build a simulation of a scheduler and schedulability tester which would input a large 

variety of periodic task sets and sporadic requests. It was decided that the schedulability 
testing part of the simulation would run in real time in order to measure exactly the 

overheads incurred by each algorithm. The scheduler itself would run as a simulation. 
However, in order to establish the scheduling overheads (context switching, etc. ) which 

would be used in the simulation, some initial real-time scheduling was carried out. 

Measurements were made by timing the scheduling overheads of concurrent programs 

written in Parallel C, and running on the target hardware, a T800 transputer. 

4.5.1 Measuring the Scheduling Overheads 

Fixed-priority pre-emptive scheduling was used in the concurrent programs which 

measured scheduling overheads, as well as in the subsequent simulations. However, at the 

fine grain level, it was decided that scheduler slots should be implemented by co-operative, 

rather than interrupt-driven scheduling. This allowed more flexibility in the implementation, 

and avoided the overheads of descheduling the currently executing task at the start of each 

scheduler slot. 
A small granularity (IOms) was chosen for the scheduler slot size in order to 

minimise the delay in testing sporadic arrivals, and also to minimise release jitter. (An even 

smaller slot size might have unreasonably increased the co-operative scheduling overhead. ) 

It was decided to allow only one sporadic arrival to be schedulability tested at the 

beginning of every tenth slot, in order to permit a smaller upper bound for the overheads of 

schedulability testing. 
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The co-operative scheduling overheads which were measured were (i) the minimum 
co-operative scheduling overhead (0.15ms) and (ii) the extra overhead per task release 
(0.06ms). Following this, five versions of the simulation were built, one for each of the 
adapted algorithms listed in Section 4.4. 

4.5.2 The Simulations 

The average co-operative scheduling overheads which had been measured were 
now used in the simulations. As explained above, the scheduling itself ran in simulation 
time, but the algorithms for schedulability testing were measured in real-time so that 
comparisons in their performance could be made. The following is an outline of the method 
of scheduling and schedulability testing which occurred in each simulation. 

At the start of every tenth slot, each simulation checks for the arrival of a sporadic 
task and, if one is present, tests its schedulability in real time. If the sporadic task is 

schedulable, it is inserted into the task list (dispatch queue) in deadline monotonic order. At 

every slot, the simulation releases any periodic tasks whose reactivations are due, updates 
next release times and residual execution times, and finally dispatches the topmost runnable 
task. When a computation completes in mid-slot, each simulation allocates the remainder of 
the slot to the next topmost runnable task. An indefinite number of sporadic tasks may 

accumulate in the task list until each completes and is then deleted. The simulations also 

verify that every guaranteed task actually completes within its deadline. 

4.5.3 Task Generators 

A task-set generator was constructed to produce large numbers of schedulable 

sets of periodic tasks. All tasks were independent in order to simplify analysis. The co- 

operative scheduler was modelled as the highest priority periodic task with a period of 
lOms. The schedulability test was modelled separately as the second highest periodic task 

with a period of 100ms which was equal to the inverse of the maximum sporadic arrival 

rate. (As indicated earlier, the adoption of a maximum sporadic arrival rate is a pre- 

requisite for finding an upper bound on schedulability testing. ) The generator produced 

random task sets with task periods, deadlines and WCETs all uniformly distributed. 

Different numbers of periodic tasks and different periodic processor utilisations were 

specified. 
Sporadic task generators were constructed to produce random sporadic arrival 

times, deadlines, and WCETs. In some simulation runs, these parameters were uniformly 
distributed, whilst in other runs the arrival rates were Poisson distributed, with deadlines 
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and computation times normally distributed. The generator allowed the minimum 
interarrival period for sporadic tasks to be specified. 

4.5.4 Measuring Performance 

The first aim of the simulation study was to compare the performance of the five 
adapted algorithms. The best performance index seemed to be the guarantee ratio as used 
in Spring [56]. This is a ratio obtained over a complete simulation run : 

number of sporadics guaranteed by the algorithm = total number of sporadics sent 

Before guarantee ratios can be measured by a simulation, an upper bound for the time 
taken to run the schedulability test must be estimated. This will be the WCET for the high 

priority periodic task which models schedulability testing. The task set generator uses this 
value when performing its own (static) schedulability test of the task sets which it 

generates. There is obviously a trade-off between the pessimism of this value and the time 
left for other tasks. Some working value of this bound/computation time must be used to 

generate the first schedulable task sets, which can then be used in a run to yield a better 

value for the bound. In practice, the approximate maximum values from a feasibility study 
were used to generate the first task sets. Simulation runs then allowed these values to be 

refined. 
It was found that schedulability testing algorithms based on PP are especially 

difficult to upper bound. Obviously, a particular maximum value is peculiar to a particular 
set of test data, and the question arises as to which maximum to use in practice. For 

example is it overly pessimistic to use the highest value which has ever been obtained for a 
particular algorithm? This problem will be addressed later (see Section 4.7). Meanwhile, 

the general practice adopted is to use the maximum value for the particular set of test data 

used. 

4.6 COMPARING THE ADAPTED ALGORITHMS 

There are a number of parameters which affect the performance of all of the 

adapted algorithms. The most obvious is the number of periodic tasks in the periodic task 

set (i. e. N above). Related to this is the ratio: 

average periodic task deadline = average sporadic deadline (henceforth: PD/SD) 
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which determines the average position in the task list in which a sporadic task will be 
placed. All tasks below the sporadic task must be schedulability tested, so this ratio is an 
important factor in the actual time taken by the algorithms. Other parameters are the total 
periodic processor utilisation, and the intrinsic difficulty of scheduling a particular set of 
periodic tasks. This latter parameter is referred to by Lehoczky [27]. Task sets whose 
periods are not harmonics have a relatively low breakdown utilisation i. e. their uneven 
occurrence of slack time means that there are intervals of zero slack time during which no 
sporadic tasks can be scheduled. 

Further parameters which may affect performance are sporadic arrival rates, and the 
average computation time per sporadic task. For example, the average sporadic 
computation time may affect the number of iterations required to test individual tasks in the 
PP algorithm. The approach taken in the following investigations is to keep all parameters 
constant except one, and to measure the performance of the five algorithms whilst varying 
the single chosen parameter. 

4.6.1 Varying the Periodic Task Characteristics 

Table 4.1, Graph 4.1 and Table 4.2, all below, show the comparative performance 
of the five algorithms and two background scheduling methods, when characteristics of the 

periodic task set only are varied. The performances of the five algorithms are measured by 

Guarantee Ratio (GR) which has been defined in Section 4.5.4. The background scheduling 

methods accept all sporadic tasks and execute them at the lowest priority in FIFO order. 
Their performance can be measured by a Success Ratio (SR) i. e. the proportion of all the 

sporadic tasks which are found to meet their deadlines. It should be noted that this 
background scheduling does not schedulability test sporadic tasks and therefore does not 

guarantee them. In that sense it is not strictly comparable with other five algorithms and 

serves only as a benchmark. 
All simulations results shown in these tables and graph use the same set of 420 

sporadic tasks whose arrival rates are Poisson distributed (p. = 2.8, k= 10) over the total 

simulation time of 100,000 ms. The sporadic deadlines and computation times are normally 

distributed. 

Changing the Number of Periodic Tasks 

Table 4.1 shows the maximum schedulability test times (in ms) and guarantee 

ratios obtained from each of the schedulability test algorithms as the number of periodic 
tasks (N) in the task set is increased. The PD/SD ratio and the number of tasks below the 

sporadic task position also increases with the number N. The table also shows the success 
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ratios (SR) obtained from two versions of background scheduling of the sporadic tasks in 
FIFO order. (The difference between these versions is explained in the paragraph below. ) 

Each result in Table 4.1 is based on the output of 10 simulation runs each with 10 
different sets of random periodic tasks. Maximum values are the maximum from all 10 runs 
and guarantee ratios are the average for 10 runs. The periodic processor utilisation is 

always 85% which includes scheduling overheads for the periodic tasks, but does not 
include any utilisation by the periodic task which models schedulability testing. 

As explained earlier, the maximum schedulability test time (upper bound) must first 
be established before a simulation can produce a meaningful guarantee ratio. For high N the 

maximum schedulability test time can be greater than the scheduler slot size (l Oms). It was 
decided not to allow the schedulability test to overrun the slot size because this would 

violate the scheduler's upper bound on release jitter. In any case, more than 10ms 

constitutes an unacceptably high overhead for worst-case schedulability testing. Therefore, 

a timeout was placed in the scheduler-tester which thus rejects sporadic requests taking 

more than lOms to test. Obviously, this impacts on the guarantee ratios shown in Table 4.1, 

but it is only significant when the maximum value (shown in brackets) is considerably more 

than the slot size of l Oms. 

Two versions of background scheduling of the sporadic tasks in FIFO order are 
included at the end of the table. It should be emphasised that neither version guarantees the 

sporadic tasks in advance. Instead, they accept all the sporadic tasks without the overhead 

of testing their schedulability. Hence the performance measure is better described as a 

success ratio which is the proportion of the sporadics which turn out to meet their 

deadlines. The difference between the two versions of background scheduling is that 

Background 1 is strictly FIFO. It continues to queue, and then execute, all sporadics, even 

when their deadlines have expired. Background 2, however, deletes sporadics when their 

deadlines are found to have expired. 
Table 4.1 shows that bottom-up hybrid consistently performs best. Clearly the 

guarantee ratios of the PP based algorithms are badly affected by the l Oms timeout when N 

= 20 and N= 30. This explains why O(N2) produces the second best guarantee ratio when 
N= 30. 

Variations within the guarantee ratios obtained by O(N2) may be explained as 

follows. The deterioration in guarantee ratio between N= 20 and N= 30 is as expected 

due to the increased number of schedulability tests needed for a longer task list. The small 

guarantee ratio for N=5 can be interpreted as the effect of the pessimism of the 

algorithm. For N=5, all the periodic computation is above the sporadic task in priority 

order. Therefore the pessimism of O(N2), due to the full extra hits of higher priority tasks, 

is likely to be greater. The increase in the total laxity of the task set as N increases may also 

account for a greater guarantee ratio when N= 30 than N=5. The shallow trough in 
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guarantee ratio at N= 15 may be due to statistical variations: it was observed that 
guarantee ratios for O(N2) had a particularly wide standard deviation over the 10 task sets 
(approximately 10% of guarantee ratio). 

Table 4.1 also shows that the success ratios for the background methods. The low 
success ratios for Background 1 show the effect of continuing to queue and execute 
sporadic tasks even after their deadlines have expired. Both background versions show a 
deterioration in success ratio as the number of periodic tasks in the task list increase. This 
can be interpreted as the effect of the sporadic tasks occupying the lowest position in the 
task list, as the periodic task list increases in length. For example, when N=5, sporadic 
tasks with an average deadline of 550 ms are being queued beneath periodic tasks with a 
maximum deadline of 500 ms. When N= 30, however, the same sporadic tasks queue 
below periodic tasks with a maximum deadline of 3000 ms. It is clear that such a long 
periodic task list displaces the sporadic tasks further downward from their static deadline 
monotonic position in the task list. 

The strictly FIFO Background 1 method gives such low success ratios, that it was 
decided to omit it from the rest of the simulation studies. From now on only Background 2 
is included in the results and it is simply referred to as 'Background'. 

Increasing Periodic Task Utilisation 

Graph 4.1 shows the comparative performance of the five algorithms and 
background scheduling when the periodic task utilisation is varied from 65% up to 85%. 

Lower utilisations were not used because they cause the performance of all of the 

algorithms to converge at a guarantee ratio of 1.0. In this case N and PD/SD were kept 

constant (N = 10 and PD/SD as near 0.6 as random task set generation would allow). The 

set of sporadic tasks were the same as in Table 4.1, and 10 sets of periodic tasks were 

randomly generated for each processor utilisation in the graph. 
As for Table 4.1, the schedulability testing was not included in the total periodic 

task utilisations. The task sets generated were all statically schedulability tested using a 

worst-case figure of 1Oms for the computation time of the periodic task which models the 
dynamic schedulability test. As before, a less pessimistic maximum schedulability test time 

was found, for each set of test data, by repeating each simulation and revising the 

maximum schedulability test time. Each guarantee ratio and success ratio produced is an 

average over 10 periodic task sets. 
Graph 4.1 also shows that the success ratio of background exceeds the guarantee 

ratio of O(N2) at high periodic task utilisations. This can be interpreted as the effect of the 

pessimism of O(N2) increasing as the interferences from higher priority periodic tasks grow 
larger in size (though not in number). 
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Graph 4.1: Comparing performance with increasing periodic utilisation. 

Using a Variety of Periodic Task Sets 

Table 4.2 compares the performance of the algorithms across a variety of periodic 
task sets. Periodic task set (1) is adapted from an avionics case study developed by Locke 

et al. [36]. It consists of 15 periodic tasks with a wide range of periods from 250ms to 

10000ms. Periodic task set (2) has a set of periodic tasks with a low breakdown utilisation 
(80%), and task set (3) has a high breakdown utilisation (100%). Task sets (2) and (3) 

evaluate the performance of the algorithms with task sets which are intrinsically difficult to 

schedule (2), and easy to schedule (3). 

All three task sets have a periodic utilisation of 80% and are sent the same sporadic 

tasks as previously. Task set (1) has 10 tasks below the average sporadic position in the 

task list while task set (2) has 3 tasks below and (3) has 2 tasks below. It is worth noting 

that all the periodic tasks for Table 4.2 are rate monotonic (i. e. deadline = period) and have 

relatively large amounts of slack time associated with them. 

Clearly Bottom-up Hybrid consistently outperforms the other algorithms across the 

variety of periodic task sets. Once again the maximum schedulability test time was not 

allowed to exceed 10ms which badly affects the guarantee ratios for PP algorithms in the 

first row of the Table 4.2. 
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Sched Test Bottom-up Hybrid Bottom-up PP O(N2) Back- 
A1 orithm: Hybrid PP ground 

Max GR Max GR Max GR Max GR Max GR SR 

ms ms ms ms) ms 
1. Avionics (>) (>) 
Case Study 8.80 0.798 9.50 0.786 10.00 0.414 10.00 0.369 2.76 0.762 0.667 

Task Set 

2. Low 
Breakdown 3.53 0.824 3.80 0.824 3.41 0.824 3.80 0.824 0.53 0.783 0.652 
Utilisation 

Task Set 

3. High 
Breakdown 3.53 0.945 3.80 0.945 3.41 0.943 3.80 0.941 0.53 0.926 0.498 

Utilisation 

Task Set 

Table 4.2: Comparing performances over a variety of periodic tasks sets. 

The high guarantee ratios obtained for task sets (2) and (3) are due to the large 

amount of slack associated with these tasks. In addition it is noticeable that O(N2) 

performs better than previously. Again this may be due to greater slack, which means that 

the pessimism of O(N2) will count less against it, while O(N2) retains the benefit of a small 

upper bound on schedulability testing. The small number of tasks in sets (2) and (3), 

together with the large amounts of slack, accounts for the closeness of the guarantee ratios 

across all schedulability test algorithms. 
It is interesting to note that Background runs against the trend by performing better 

with low breakdown utilisation than with high. This can be interpreted as the effect, at low 

breakdown utilisation, of concentrated intervals of high slack and intervals of zero slack. 
This benefits background scheduling because this algorithm is penalised less for its 

indiscriminate processing of sporadic tasks in FIFO order. During high slack, less time is 

wasted processing sporadic tasks which will eventually fail to meet their deadlines. During 

zero slack, none of the algorithms can perform sporadic processing in any case. With high 

breakdown utilisation, and a more even distribution of slack over time, Background wastes 

more time executing sporadic tasks which eventually fail to meet their deadlines. 
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4.6.2 Varying Sporadic Task Characteristics 

The above results compare the performance of the algorithms while periodic task 
set characteristics are changed. Now the results of varying sporadic task characteristics are 
presented. Graphs 4.2 and 4.3 show the effect of varying (i) the sporadic arrival rate and 
(ii) the average sporadic computation requirement. All parameters relating to the periodic 
task sets remain constant. All results were obtained using the average guarantee ratio from 
10 sets of 10 periodic tasks all of which were schedulable and randomly generated to give 
85% periodic task utilisation. 

Average sporadic arrival rates and average computation times were randomly 
generated according to a uniform distribution. Realistic arrival rates may be more 
accurately modelled by a Poisson distribution, however the objective here was to 
differentiate the performance of the algorithms under different arrival rates. Graph 4.2 uses 
sporadic tasks with a fixed average computational requirement of 25ms. Graph 4.3 uses a 
fixed average arrival rate of 0.004 sporadics per ms. 
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Graph 4.2: Comparing performances over a range of sporadic arrival rates. 

d 

As before there is the problem of setting an upper bound on schedulability testing. 

Here, a different approach is taken. Instead of assuming that the best guarantee ratio occurs 

when the upper bound has its maximum value, a series of simulation runs were carried out 

in which the upper bound was reduced in stages and the guarantee ratios measured. The 

guarantee ratio for each algorithm was seen to peak at a value less than the maximum 
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schedulability test value. This was therefore the optimum trade-off between allowing time 
for schedulability testing and leaving more time for scheduled tasks to run. The peak occurs 
at what might be called the optimum upper bound or optimum timeout. The work involved 
in establishing this bound for each arrival rate, for each schedulability testing algorithm, 
was prohibitive, so the results in Graph 4.2 use the optimum upper bound established for 

the maximum arrival rate of 0.01 sporadic per ms. This bound was also used for Graph 

4.3. The bounds for each algorithm are presented in Table 4.3: 

Algorithm: Bottom-up 

Hybrid 

Hybrid Bottom-up 

PP 

PP O(N2) 

Bound(ms) 5.5 6.0 7.0 7.5 1.5 

Table 4.3: Optimum upper bounds used for the schedulability test algorithms. 
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Graph 4.3: Comparing performances over a range of average sporadic computation times. 

The use of the above bounds for low sporadic loads may be pessimistic, but this 

should not affect the comparison of the schedulability test algorithms. (An investigation 

into parameters which determine the optimum bound follows in Section 4.7. ) Again it is 

clear that Bottom-up Hybrid consistently outperforms all other algorithms considered. 
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Furthermore, with some minor exceptions, the results so far are consistent with the 
following list of algorithms in decreasing order of performance: 

Bottom-up Hybrid 

Hybrid 
Bottom-up PP 

PP 

Background scheduling is omitted because it does not guarantee sporadic deadlines. The 
question of where O(N2) comes in the ordering is unclear. Tables 4.1 and 4.2 show that 
O(N2) can outperform the pure PP algorithms, and even the hybrid algorithm, when N is 

sufficiently large. However, this may be due to the PP and hybrid algorithms operating 
under the handicap of al Oms timeout. This seems especially likely to be the case for hybrid 

algorithms because they are based on O(N2). At the other extreme, O(N2) gives 
consistently poorest performance in Graphs 4.2 and 4.3. In summary, none of the results 
shows O(N2) outperforming the bottom-up hybrid. 

4.7 PARAMETERS OF THE OPTIMUM BOUND 

The above investigations show that the optimum value of the upper bound for 

each algorithm may depend upon a number of parameters: sporadic arrival rate, average 
sporadic computation time, PD/SD, the number of periodic tasks (N), and the periodic task 

utilisation. The ratio PD/SD is defined above and takes account of both the average 
periodic task deadline and the average sporadic deadline. Together with N, this ratio 
determines the average number of tasks below the sporadic task which must be 

schedulability tested. Note that the average periodic computation time is not included as a 

separate parameter because it is taken into account by the periodic task utilisation. The 

investigations which follow are an attempt to determine how sensitive the optimum upper 
bound is to each of these parameters. In other words is: 

Optimum Upper Bound =f (ave sporadic arrival rate, 
ave sporadic computation time, 
PD/SD, 

N, 

periodic utilisation) ? 
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Investigation of all the schedulability test algorithms would be too time-consuming, so it 
was decided to select the algorithm with the best overall performance i. e. Bottom-up 
Hybrid. As before, the approach was to keep all parameters constant, except the one to be 
varied. The constant values used were: 

average sporadic arrival rate (of uniformly distributed times) = 0.004 sporadics/ms 
average sporadic computation time (of uniformly distributed values) = 25ms 
PD/SD = 0.6 
N= 10 

periodic utilisation = 85% 

A uniform distribution of sporadic task arrival times was chosen in order to provide a 
constant value and make clearer the effect of varying one other parameter. 

Table 4.4 shows the complete set of guarantee ratios obtained when investigating 
the effect of average sporadic arrival rate on optimum upper bound. All results are 
guarantee ratios and the optimum upper bound values are emphasised in bold. All 

guarantee ratios obtained were averages from 10 sets of 10 periodic tasks. Graph 4.4 is 
derived from Table 4.4. Noteworthy, is the relatively large increase in bound as the 

sporadic arrival rate reaches its maximum permissible 0.01 sporadics/ms. This shows that, 

as sporadic tasks accumulate in a lengthening task list, it rapidly becomes necessary to 

spend more time schedulability testing, in order to catch those incoming sporadic tasks 

which are schedulable. 
It should be noted in Table 4.4 that the sensitivity of guarantee ratio to the value of 

the bound is higher at low sporadic arrival rates than at high arrival rates. Table 4.4 also 

shows that the variation of guarantee ratio with upper bound is a Poisson-like curve. As 

this curve is compressed by lower bound values, so its shape is emphasised. In other words 

as the peaks occur at lower bound values, so they become sharper. This has implications 

for the choice of best optimum bound across a range of sporadic arrival rates. 
The increase in sensitivity at low peak values was also observed in the data used for 

Graph 4.5. This graph shows a general decrease in optimum upper bound as the average 

sporadic computation requirement increases. This can be interpreted as follows: as the 

average computational requirement of sporadics increases, it becomes less beneficial to 

spend a long time schedulability testing sporadic tasks which are now more likely to prove 

unschedulable due to their large computation times. The exceptional result for an average 

sporadic computation time of 2.5ms can be explained by the guarantee ratio value 
'saturating'. The guarantee ratio values for this average sporadic computation time reach a 

plateau of 1.0 at 3.5ms upper bound and above. In other words all the incoming sporadic 
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Upper 

Bound 

(Timeout 

in ms) 

Sporadic Arrival Rate 

0.0004 0.002 0.004 0.006 0.008 0.01 

(sporadics per ms) 
2.0 0.968 0.933 

2.5 0.988 0.962 0.912 0.820 0.704 

3.0 0.994 0.968 0.920 0.830 0.714 0.626 

3.5 0.993 0.968 0.921 0.832 0.717 0.630 

4.0 0.992 0.965 0.919 0.832 0.718 0.633 

4.5 0.989 0.962 0.915 0.829 0.717 0.634 

5.0 0.985 0.957 0.909 0.825 0.716 0.635 

5.5 0.981 0.953 0.903 0.820 0.713 0.636 

6.0 0.635 

6.5 0.635 

7.0 0.634 

7.5 0.632 

Table 4.4: The effect of sporadic arrival rate on optimum upper bound. 
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Graph 4.4: Variation in optimum upper bound with sporadic arrival rate. 
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Graph 4.7: Variation in optimum upper bound with periodic utilisation. 

tasks are being found schedulable even within a tight upper bound of 3.5ms. The algorithm 
is no longer being stressed, and its upper bound drops. 

Graph 4.6 shows the steady increase in the optimum upper bound as N and PD/SD 
increase. This reflects the need to spend more time on schedulability testing as the number 

of tasks below the average sporadic task position increases. Unless this is done, schedulable 

sporadics will be rejected due to a premature timeout. 
Graph 4.7 shows the rise in optimum upper bound as periodic task utilisation rises. 

Obviously, more time is needed in schedulability testing sporadic tasks when the 

computational demands of the periodic tasks are higher. Incidentally, the results from 

which Graph 4.7 is derived, show the expected fall in best guarantee ratio obtained, for 

each increase in periodic task utilisation. 
From examination of the above graphs it appears that the optimum upper bound is 

most sensitive to changes in N and PD/SD ratio. This is not surprising since it is these 

parameters which determine the average number of periodic tasks below the sporadic task 

position in the task list. This is obviously a major factor in the time taken by the 

schedulability test algorithm. Periodic task utilisation has a smaller effect on the optimum 
bound, and sporadic arrival rates, and computation times, have even less effect. Therefore, 

in a practical choice of best optimum upper bound, Graph 4.6 is the most important. This 
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suggests an optimum bound of 3.5ms for the final investigation below, which uses PD/SD 
ratios of around 0.6. 

4.8 DIFFERENT PROPORTIONS OF SPORADIC AND PERIODIC UTILISATION 

Table 4.5 records an investigation into the effect on total processor utilisation, of 
varying the mix of periodic and sporadic processor utilisation. The constant parameter 
values were the same as those used in Section 4.7. The table shows a periodic utilisation of 
85% and one of 75%. Added to each are different numbers of sporadic tasks to bring the 
total possible utilisations to 90,95 and 100%. 

Each guarantee ratio obtained is an average result from 10 sets of 10 periodic tasks, 

each set of the stated periodic task utilisation. The PD/SD ratio was again 0.6. All sporadic 
arrival times were generated from a uniform distribution, and their average computation 
time was again 25ms. The same optimum upper bound was used in all cases (3.5ms as 
discussed above). Table 4.5 shows the actual total utilisation obtained which was 
calculated from the number of sporadic tasks guaranteed, their average computation times, 

plus the periodic utilisation. Also to be added, is an estimate of the utilisation used on 
schedulability testing. This was based on the number of sporadic requests made and 
measurements of the average schedulability test time for Bottom-up Hybrid. This estimate 
came to 0.48% utilisation per 400 sporadics. 

85% Periodic Utilisation 75% Periodic Utilisation 
Maximum 

Possible Number Actual Number Actual 

Total of Guarantee Total of Guarantee Total 

Utilisation Sporadics Ratio Utilisation Sporadics Ratio Utilisation 
% 

90 200 0.9645 89.823 600 0.9855 89.783 

95 400 0.9153 94.153 800 0.9499 93.998 

100 600 0.8232 97.348 1000 0.8981 97.453 

Table 4.5: Increasing sporadic utilisation by sporadic arrival rate. 

Table 4.6 shows the results of a similar investigation in which the sporadic 

utilisation is increased by increasing the average sporadic computation time, while the 
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number of sporadics is kept constant at 400. (In this case, the utilisation for schedulability 
testing was the same (about 0.48ms) for all guarantee ratios obtained. ) 

85% Periodic Utilisation 75% Periodic Utilisation 
Maximum 

Possible Average Actual Average Actual 
Total Sporadic Guarantee Total Sporadic Guarantee Total 

Utilisation Computation Ratio Utilisation Computation Ratio Utilisation 

% (ms) % (ms) % 

90 12.50 0.9965 89.983 37.50 0.9523 89.285 

95 25.00 0.9153 94.153 50.00 0.8655 92.310 

100 37.50 0.7610 96.415 62.50 0.7683 94.208 

105 50.00 0.6310 97.620 75.00 0.6858 95.574 

Table 4.6: Increasing sporadic utilisation by average sporadic computation time (ms). 

The conclusions from these limited results are (1) a lower periodic utilisation, and a 

correspondingly higher sporadic arrival rate, makes no clear difference to the actual total 

utilisation, and (2) a lower periodic utilisation and a correspondingly higher average 

sporadic computation time can give a reduction in the actual total utilisation obtained. This 

second conclusion reflects the difficulty of scheduling sporadic tasks with large 

computation requirements. 

4.9 CONCLUSIONS 

This work has investigated dynamic acceptance tests for sporadic tasks arriving at a 

processor which also runs its own set of resident periodic tasks. Acceptance testing is 

performed by schedulability tests which run on the target processor itself, and must 

therefore be upper bound, in order that a worst-case analysis of the processor's load may be 

made. Knowledge of the minimum interarrival time of the sporadic tasks is a pre-requisite 

for establishing this upper bound. 

The algorithms used for dynamic schedulability testing were developed by adapting 

previously known algorithms for static schedulability testing. The adapted algorithms make 

use of dynamically updated scheduling data. Enhancements were made in order to reduce 
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the run-time overheads incurred by the adapted algorithms. These involved combining two 
algorithms into a single hybrid algorithm, and introducing timeouts into the algorithms in 
order to enforce tight upper bounds on schedulability testing. Specific conclusions from the 
simulation results are as follows: 

(1) Dynamic schedulability testing of sporadic tasks on the same processor as the periodic 
task set can incur acceptable overheads of less than 1 ms per test . 

(2) Bottom-up Hybrid is the most efficient of the dynamic schedulability test algorithms 
investigated. 

(3) The performance of any of the dynamic schedulability test algorithms is sensitive to the 
choice of upper bound for the worst-case schedulability test. 

(4) Constraining the schedulability test algorithm to timeout before the worst-case test time 

can improve performance. The value of the timeout which gives the best performance is 

called the optimum upper bound. 

(5) The optimum upper bound is most sensitive to N (number of periodic tasks) and PD/SD 
(the ratio of average periodic task deadline to average sporadic task deadline). These 

parameters determine the average number of tasks below a sporadic task position in static 
deadline monotonic ordering. 

(6) Increasing the sporadic proportion of the total possible processor utilisation, will, if 

anything, decrease the actual total utilisation achieved. 

Of all the adapted algorithms, Bottom-up Hybrid consistently performed best over a 

range of test data which varied all the parameters discussed above. Introducing a timeout 
improved the performance of all the algorithms, but Bottom-up Hybrid still led the field. 

One of the aims of this thesis is to find the most cost-effective run-time support for 

optional computations. A major part of the overhead incurred by such run-time support will 
be the acceptance test which is used. Therefore it is important that the overheads of 
Bottom-up Hybrid, and in particular the high bounds on its WCET, should be reduced. 
Chapter 5, which follows, attempts to reduce overheads and bounds, by increasing the 

efficiency of each component of Bottom-up Hybrid. 
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CHAPTER 5 

ENHANCED ON-LINE GUARANTEES 

5.1 INTRODUCTION 

5.1.1 Approach 

Chapter 4 developed and evaluated a set of on-line guarantee algorithms, 
and found Bottom-up Hybrid to be the algorithm which consistently provided the greatest 
guarantee ratios. The Bottom-up Hybrid algorithm first attempts a schedulability test by 

using a pessimistic O(N2) test, and if this test fails, it then uses the exact pseudo- 
polynomial (PP) schedulability test. The algorithm schedulability tests the tasks beneath the 
sporadic task, in "bottom up" order, and finally tests the sporadic task itself. Schedulability 
testing is abandoned as soon as a task is found to be unschedulable. 

This chapter attempts to enhance the performance of the on-line guarantee provided 
by Bottom-up Hybrid (henceforth be referred to as BUH). As in Chapter 4, performance 
will be measured by guarantee ratio. Three approaches will be explored: 

1. Enhancing the performance of the O(N2) component, by using other sufficient but not 

necessary schedulability tests. 
2. Enhancing the performance of the PP component, by giving the PP algorithm a 

headstart. 

3. Investigating the performance of BUH when dynamic placement, rather than static 

placement, of sporadic tasks within the task list is used. 

Each approach is now explained in more detail. 

5.1.2 Enhancing the O(N2) Component 

Chapter 4 showed that the performance of BUH degenerated with larger numbers 

of periodic tasks in the task set. This was due to the large overheads and upper bounds on 

schedulability testing imposed by the PP component of BUH. Therefore any enhancements 
in the O(N2) component which can reduce the need to call upon the PP component, may 

lead to improved performance. With this in mind, the work of this chapter attempts to 

make the O(N2) component less pessimistic by using some of the more exact, sufficient but 

not necessary schedulability tests, developed by Audsley[2]. 
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Section 2.7 refers to the range of sufficient but not necessary schedulability tests, 
developed by Audsley as Tests 1,2,3 and 4. All four tests are able to guarantee tasks, but 
the tests are numbered in order of increasing schedulability testing overhead, and 
decreasing pessimism. Test 1 has already been used in Bottom-up Hybrid, and has been 
referred to as O(N2). However Tests 2 and 3 also have O(N2) complexity, and are more 
exact. Test 4 is the most exact but it has pseudo-polynomial complexity, and therefore, 
because it is still sufficient and not necessary, it is less promising as a candidate for 
enhancing the first component of BUH. 

The simulations which follow, first compare the performances of the full range of 
Tests 1 to 4, and then concentrate on the use of Test 3 as an enhancement to the O(N2) 

component of BUH. 

5.1.3 Enhancing the PP Component 

Enhancements to the PP component of BUH could also lower the overheads, and 

upper bounds, required for schedulability testing. Attempts to enhance this component, 

centre round the concept of initialising PP with a larger value (or headstart) for the 

window wl within which higher priority task interfere. In the original PP algorithm, wi is 

set to the WCET of the test task, i, which is being schedulability tested. Section 5.4 below 

shows that initialising wl to a value which is greater than the WCET of the test task, can 

result in PP becoming a sufficient but not necessary test. However, because the overheads 

and upper bounds for PP can be so large, it may be the case that higher guarantee ratios 

can be achieved with such an approximate version of PP. This may be especially true under 
heavy loading. With this reasoning in mind, a range of headstart values were investigated, 

as are explained in Section 5.4. 

The work below goes on to perform further experiments by combining the 

enhancements to O(N2) and PP simultaneously in the BUH algorithm. For example, Test 3 

is used for the O(N2) component, while a headstart is also applied to the PP component. 

5.1.4 Dynamic Placement of Sporadic Tasks 

The third approach to enhancing BUH stems from recent work by Davis [9]. He has 

proved that the method used so far, for the placement of sporadic requests within the 

existing task list, is not optimal. Hitherto, sporadic requests have been placed in monotonic 

order according to the static deadlines of existing tasks within the task list. The problem 

with this method is that, the current dynamic deadlines of tasks, which are lower in the 

task list by static ordering, may be less than the deadline of the sporadic task itself. This 

means that static ordering can cause a sporadic task to be rejected, because the sporadic 
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task has been placed too high in the task list. Instead, the optimal position for the sporadic 
task, is just below the lowest task which has a dynamic deadline less than the sporadic 
deadline. Davis has proven that such placement of the sporadic request is optimal, in the 

sense that, if the sporadic task is schedulable in any place in the task list, then this 

placement will also find it to be schedulable. 
Dynamic placement is optimal in theory, but this does not mean that it will 

necessarily achieve greater performance in practice. This will depend on the particular 
overheads which are incurred, and it may be that in some cases, the overheads of dynamic 

placement outweigh the fact that it is an optimal positioning. One factor, is that a small 

additional overhead must be incurred by dynamic placement when it performs a bottom-up 

search for the optimal position, at the start of a guarantee algorithm. 
In order to investigate the effect of dynamic placement on performance, Section 5.7 

compares the result of static and dynamic placement for a variety of versions of the hybrid 

algorithm. 

5.2 SIMULATION STUDIES 

5.2.1 Introduction 
As in Chapter 4, simulation studies were performed, and it was decided that the 

schedulability testing part of the simulation would run in real time in order to measure the 

overheads incurred by each algorithm. The scheduler itself ran as a simulation according to 

the scheduling model discussed in Section 4.5.1. As in Chapter 4, the simulations were 

written in Parallel C, and run on a T800 transputer. 

5.2.2 Establishing an Upper Bound for each Schedulability Test 

As with the simulations of Chapter 4, it is essential to estimate an upper bound for 

the execution time of each schedulability test, before performances can be measured. This 

estimate is the WCET of the high priority periodic task which models schedulability testing. 

As before, the task set generator uses this value when performing its own (static) 

schedulability test of the task sets which it generates. 

In practice, a WCET of lOms was used to generate the first task sets. Simulation 

runs then allowed this value to be refined for each algorithm, and each number of periodic 

tasks. Algorithms of pseudo-polynomial complexity have particularly large upper bounds. 

Chapter 4 reported that setting a timeout on the schedulability test generally increases the 

guarantee ratio obtained. Effectively, this causes the test to be inexact in some cases, but 
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the benefit is to be able to set a smaller upper bound on the schedulability test. For this 
reason, all simulations were performed with al Oms timeout in the schedulability test. 

5.2.3 Simulation Parameters 

All simulation results shown in the following tables and graphs use sporadic tasks 
whose arrival rates are Poisson distributed (µ = 2.8, k= 10) over the total simulation time 
of 100,000ms. Sporadic deadlines and computation times are normally distributed. The 
tables show the maximum schedulability test times (in ms), and guarantee ratios obtained, 
from each of the schedulability test algorithms, as the number of periodic tasks (N) in the 
task set is increased. The PD/SD ratio and the average number of tasks below the sporadic 
task position, are also shown in the tables because, as discovered in Chapter 4, these 

parameters are particularly significant factors in the overheads which schedulability testing 
incurs. 

Each guarantee ratio generated, is the overall average of 10 simulation runs, each 

with 10 different sets of random periodic tasks. Maximum values are the maximum from all 
10 runs. Periodic processor utilisations are 85%, which includes scheduling overheads for 

the periodic tasks, but does not include any utilisation by the periodic task which models 

schedulability testing. 
As explained earlier, it was decided not to allow the schedulability tests to overrun 

1Oms which is the slot size of the scheduler. This curbs the upper bounds required for 

schedulability testing, and also prevents a violation of the scheduler's upper bound on 

release jitter (i. e. lOms). For each simulation the maximum schedulability test time was 
found. If this maximum was in excess of 10ms it was not used as an upper bound to 

schedulability testing. However, the maximum is still included in the tables below for 

information. (It is shown bracketed underneath the "10.00" ms which was actually the 

maximum schedulability test time permitted). The abbreviation GR in the tables indicates 

guarantee ratio obtained. 

5.3 COMPARING TESTS 1 TO 4 

Graph 5.1 and Table 5.1 show the comparative performance of the sufficient but 

not necessary Tests 1 to 4 which are due to Audsley et al. Static, deadline monotonic 

placement of the incoming sporadic tasks was used in each case. These algorithms were 

investigated with a view to improving the performance of the first part of the hybrid 

algorithm. 
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It can be seen from Graph 5.1 that, with small periodic task sets (small N), the 
performance of Tests 1-4 increases with their complexity. This can be interpreted as a 
result of the small task set which imposes a relatively small schedulability test overhead. In 

other words, because of the small amount of schedulability testing required, there is 

sufficient time to make it worthwhile to run the more complex of the Tests. Hence Test 4 

achieves the highest guarantee ratio because it is the most exact, and despite the fact that it 
imposes the greatest overheads. 
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Graph 5.1: Comparing performances of Tests 1-4 with various periodic task sets 

Conversely, with high numbers of tasks in the periodic task set (high N), the 

schedulability testing overheads for Test 4 increase beyond the 10.00ms timeout, and this 

rapidly reduces the effectiveness of any extra time spent on testing. The guarantee ratios 

obtained for Tests 2 and 3 drop off less dramatically. Even for N= 30, Test 2 and 3 rarely 
impose an overhead which exceeds the 10.00ms timeout. (The highest maximum for Tests 

2 and 3 is 11.90ms). Table 5.1 also shows that Test 3 consistently achieves a slightly better 

performance than Test 2. This can be explained by the use of the effective deadline in Test 

3 which makes it less pessimistic. This benefit is obtained with only a very slight increase in 

overhead. 
Test 1 performs worst at low N, because it is the least exact, and therefore most 

pessimistic, of all these tests. However, at high N, where there are large schedulability 
testing overheads, Test 1 overheads go up least. (For the test data used, they never exceed 
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10.00ms. ) For this reason Test 1 gives the highest guarantee ratio when N= 30. It is worth 
commenting that the profile for Test 1 has a different shape than that for Tests 2,3 and 4: 
there is a shallow trough in guarantee ratio at N= 15 This can be explained by statistical 
variations. (It was observed that the guarantee ratios for Test I had a particularly wide 
standard deviation over the 10 task sets used with each simulation run. This standard 
deviation was approximately 10% of guarantee ratio. ) 

Number Ave no 0 

of PD/SD tasks Test 1 Test 2 Test 3 Test 4 
Periodics Ratio below 

(N) sporadic 
Max GR Max GR Max GR Max GR 
(ms) (ms) ms ms 

5 0.340 1.0 0.53 0.424 0.95 0.662 1.02 0.697 1.75 0.716 

10 0.627 3.0 1.34 0.606 2.19 0.662 2.15 0.678 4.05 0.671 

15 0.808 5.1 2.76 0.585 3.61 0.639 3.54 0.652 6.93 0.602 

20 1.017 8.0 4.00 0.633 6.09 0.630 5.95 0.639 10.00 0.506 
(11.50) 

30 1.393 13.9 9.80 0.547 10.00 0.494 10.00 0.501 10.00 0.014 

11.90 11.90 23.00 

Table 5.1: Comparing performances of Tests 1-4 with various periodic task sets 

Tests 1,2,3 and 4 are compared here with a view to improving the O(N2) 

component of BUH, which originally used Test 1. It seems that the likeliest improvements 

might be gained by using Tests 2 or 3 instead. These increase the exactness of the 

schedulability test whilst still retaining the O(N2) complexity. 
By contrast, Test 4 seems unsuitable for the following reasons. Its complexity is 

pseudo-polynomial, and therefore its maximum overhead rapidly increases with N. It is 

therefore unlikely to benefit performance when it is combined in a hybrid algorithm with the 
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exact PP test. This is especially true because a lOms timeout is being used. (The only 

possible benefit of using Test 4 in a hybrid algorithm might be at low N where it can give a 
high guarantee ratio. ) 

5.4 THE HEADSTART OPTIMISATION 

In order to reduce the number of iterations, and thus the overhead, of PP, a possible 
optimisation to this algorithm is to initialise the interference window to some value which is 
larger than the computational requirement of the test task, J. For example, it could be 
initialised to the value of the following expression which can be regarded as a 'Headstart' : 

Y, j(L(Di - Oý . Tel Cj + Rj) + Cl (5.1) 

In other words the initial Headstart is the sum of the interferences of each higher priority 
task, j (up to its floor value) plus the computational requirement of the test task itself. 

Unfortunately, this turns PP into a sufficient but not necessary test. PP becomes pessimistic 
because the initial window considered may be too large, and therefore may include more 
interferences from higher priority tasks than is actually the case when a schedule is 

constructed. The window may then increase in size until the deadline of the test task is 

exceeded. An example of such a case is shown in Figure 5.1. 
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Figure 5.1: Counter example to the original Headstart idea 
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Figure 5.1 shows two resident periodic tasks and a sporadic task, s, which has 

arrived with a deadline greater than the deadlines of either of the periodic tasks. If s is 

schedulability tested with the Headstart optimisation then expression 5.1 above evaluates 
to: (5 * Cl) + (0 * C2) + 10. Therefore the interference window will extend further than 

the release of task 2, and the schedulability test will fail. The problem is that an unnecessary 
interference (highlighted) of task 1 is included in the initial window. Hence the window 
becomes pessimistically large. It is worth noting, however, that the test is still sufficient 
because using the floor expression above to calculate interferences from higher priority 
tasks can never be optimistic. 

An attempt to make this optimisation to PP both necessary and sufficient was to 
first cause the algorithm to calculate the lowest floor of all the interfering higher priority 
tasks. This is then taken as the initial value of the window of interference for all higher 

priority tasks. Therefore for a test task i this would be: 

mini ((D1- Oý -- Tj]Tj + Off) 

Current 
Time 

T1 =2 
<> 

T2 = 10 

C1=1 

ý 
\\\ 
i 

Vj: (i < i) A (Oj<Di) 

Extra hits included 

(5.2) 

time 

D= 20 
Lowest FIooý 3 

time 
= C3 2 

. 11 Cs =i 

D= 30 
s 

Figure 5.2: Counter example to lowest floor correction to original Headstart idea 
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The idea is to avoid the inclusion of extra interferences which occur in the latter part of the 
deadline interval of the test task. Note that it is left to the first iteration of PP to sum 
the interferences of each higher priority task within the initial window, and then the 
computational requirement of the test task is added on. 

In the case of Figure 5.1, the initial window would be set to 20, the interferences 
would be calculated within this interval, and the test task would be deemed schedulable. A 
problem with this approach is that, in general, the lowest floor could be so low as to nullify 
any optimising effect on PP. Figure 5.2 shows a counter-example which shows that even 
this method can include pessimistic extra interferences. The early occurrence of sufficient 
slack for the test task, sporadic task s, is missed at current time + 9. Instead superfluous 
interferences (highlighted) are included. Hence this amendment to Headstart is also 
sufficient but not necessary. 
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Figure 5.3 :A headstart greater than the execution time of the test task can be pessimistic 

A more extreme example is shown in Figure 5.3 which shows that, in general, the 

slack required by the test task may occur at an arbitrarily early point. In this example the 
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necessary slack occurs only at the release of the test task, s. Therefore, to set the initial 

window to more than the computational requirement of the test task, may lead to the test 
task pessimistically failing the schedulability test. 

The idea of giving PP a headstart to reduce its large overhead may still have some 
worth, however. Although it provides a sufficient and not necessary test, a headstart may 
still increase the guarantee ratio obtained, by cutting down time spent on schedulability 
testing. Furthermore, a headstart may reduce the maximum bound for the schedulability 
test and this itself may allow more tasks to be guaranteed. Whether these effects are a 
benefit in practice requires statistical evidence from simulation studies. For example, it may 
be that a particular choice of value for the initial window (e. g. half the test task deadline) 

may provide the best trade-off between the time spent on schedulability testing and the 

number of tasks which can be guaranteed. Such issues are now investigated. 

5.5 COMBINING HEADSTART WITH THE PP ALGORITHM 

Graph 5.2 and Table 5.2 show the results of investigations into improving the 

performance of the PP part of the hybrid algorithm. Once again, static deadline monotonic 
placement of the incoming sporadic tasks was used in each case. BUH is now referred to as 
Pure BUH in order to distinguish it from its variants which are used below. (Note that the 
lowest guarantee ratio shown on the vertical axis of Graph 5.2 is 0.5 as compared with 0.0 
in Graph 5.1. ) 

The first column of results in Table 5.2 shows the effect of Headstart on pure PP 

(non-hybrid) without any O(N2) component. PP with Headstart is the exact pseudo- 

polynomial test with the original Headstart suggestion (i. e. the interference window 
initialised to the sum of the interferences of higher priority tasks up to their floor values). 
At small N this algorithm gives high guarantee ratios, but guarantee ratio rapidly declines 

as N increases. This illustrates the large increase in overheads incurred when the PP test is 

used without a preliminary O(N2) test. 
Pure BUH is included in the graph for comparison purposes. Bottom-up Hybrid 

with Headstart is the original Headstart optimisation, but this time incorporated into the 

full Bottom-up Hybrid algorithm. As expected this gives better performance at high N than 

PP with Headstart. It is worth comparing Pure BUH with BUH with Headstart. For 

low N both algorithms give very similar results. However there are differences at N= 20 

and N= 30. At N= 20 Pure BUH performs better, whereas at N= 30 it performs worse. 

This can be interpreted as the effect of the pessimism of BUH with Headstart showing at 

N= 20. However, at N= 30, the maximum (Max) obtained with BUH with Headstart is 
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more significant. (Because the maximum is lower, more sporadic tasks are likely to be 

guaranteed. ) 

0.75 

G 

u 
a 0.7 
r 
a 
n 0.6E 
t 
e 
e 

0. ( 

R 
a 
t 0.5! 

0 

o. 

Number of resident periodic tasks 
30 

BUH with average Headstart 

JH with minimum Headstart 

with original Headstart 

JH 

eadstart 

Graph 5.2: Comparing performances of Headstart Hybrids with various periodic task sets. 

The next variation in Graph 5.2 and Table 5.2 is BUH with minimum Headstart. 

This is an attempt to correct the pessimism of the original headstart by taking an initial 

window equal to the lowest floor of all interfering tasks. As shown in Section 5.4, this 
"correction" is still pessimistic. However it is worth considering because, statistically, it 

could yield higher guarantee ratios. As can be seen, its performance is close to that of Pure 
BUH, except for a modest improvement at N= 10, and a deterioration at N= 30. The 

deterioration at high N can be explained as follows. 

For a large number of tasks, it is more likely that the lowest of the floors is near to 

the current time at which schedulability testing is taking place. In this case minimum 

Headstart algorithm degenerates to Pure BUH (i. e. it initialises the window to the 

computational requirement of the test task). However, it must be remembered that 

minimum Headstart still incurs the extra overhead of finding the lowest floor. Hence its 

disadvantage relative to Pure BUH at N= 30. This is confirmed by the maximum 

schedulability test times obtained for each algorithm at N= 30: minimum Headstart is 

higher (28ms) than Pure BUH (20ms), as would be expected. 
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Number Ave. no. Pure Bottom-up Bottom-up Bottom-up 

of of tasks PP with Bottom-up Hybrid with Hybrid with Hybrid with 
Periodics below Headstart Hybrid original minimum average 

(N) sporadic Headstart Headstart Headstart 

Max GR Max GR Max GR Max GR Max GR 

ms (ms) (ms) (ms) (ms) 

5 1.0 2.50 0.747 3.40 0.743 2.65 0.747 3.11 0.746 2.26 0.718 

10 3.0 4.77 0.697 7.42 0.717 4.61 0.715 6.27 0.724 3.90 0.714 

15 5.1 8.96 0.638 9.70 0.702 7.75 0.707 10.00 0.695 8.80 0.689 
(10.90) 

20 8.0 10.00 0.545 10.00 0.686 10.00 0.667 10.00 0.683 10.00 0.674 
(14.67) (11.80) (11.00) (15.25) (12.50) 

30 13.9 10.00 0.063 10.00 0.566 10.00 0.598 10.00 0.559 10.00 0.592 

(34.90) (20.00) (17.38) (28.00) (24.50) 

Table 5.2: Comparing performances of Headstart Hybrids with various periodic task sets 

A comparison of BUH with original headstart and BUH with minimum 
headstart is not simple. In general the lower maxima (Max values) obtained for original 
headstart could allow a higher guarantee ratio to be achieved. However, superimposed on 
this performance trend, is the random effect introduced by headstart. As shown previously, 
it is an algorithm which can produce pessimistic results. Statistically, it is more probable 
that original headstart will produce a pessimistic decision. This is due to the larger initial 

window (i. e. bigger assumption) generated for original headstart. Therefore the relative 

performances of the two algorithms are subject to statistical fluctuations which impede 
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analysis. An additional effect is introduced by the extra overhead which minimum headstart 
incurs due to its requirement to find the "minimum floor". 

Only at N= 10 does BUH with minimum headstart perform better than both 
Pure BUH and BUH with original Headstart. This can be explained as follows. It 
performs better than Pure BUH because it still provides some headstart on the initial 

window size. It performs better than original headstart because it is less pessimistic and this 
outweighs the fact that it has a higher maximum. 

The final variation, referred to in the table as BUH with average Headstart, is an 
attempt to find the "best of both worlds " from original and minimum headstart. The initial 
interference window is set to half the value of the test task's deadline. The hope is that this 
might strike an optimum balance between the pessimism of original headstart and the larger 

overhead of minimum headstart. However, Table 5.2 shows that this hope is only 
marginally realised (only at N= 30). 

It is interesting to consider why BUH with average Headstart does not perform 
better. Note that it produces slightly lower guarantee ratios even though its maximum test 

values are relatively low. Further, note that it incurs no overhead for a search through the 
interfering tasks (e. g. for the lowest floor). Its puzzling failure can be explained by the fact 

that half the test task's deadline is unlikely to be a floor value for any interfering task. This 

means that the chances of being pessimistic are marginally increased. A floor value 

excludes the possibility of pessimistically including the whole of a partial hit for the 
interfering task whose floor it is. An arbitrary time (i. e. half the test task's deadline) does 

not exclude the possibility. This is much the same reason that Test I is more pessimistic 
than Test 2. Such a pessimistic "full extra hit" is more likely to have a greater effect at low 

N (where the 85% utilisation is distributed between a smaller number of tasks). At high N 

this effect is less important than the fact that average headstart is actually shortening the 

time for schedulability testing without imposing any substantial overhead. 

5.6 USING BOTH TESTS 1- 4 AND HEADSTART TO IMPROVE HYBRID 

Finally investigations were made into the combined use of Tests 1-4 and Headstart 

in the Pure BUH of Chapter 4. As before, static deadline monotonic placement of the 

incoming sporadic tasks was used in each case. 
The first component of Pure BUH used Test 1. It was decided to try only Test 3 as 

an alternative to Test 1 for the following reasons. As shown in Table 5.1, Test 3 produces a 
higher guarantee ratio, for most values of N, than either Test 1 or Test 2. However Test 3 

still benefits from having a complexity of O(N2). In contrast, Test 4 is pseudo-polynomial 

and imposes high overheads with rapidly decreasing performance at large N. Therefore 
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Test 4 has too large overheads to warrant consideration as a replacement for the first 
component of a hybrid algorithm. It is also worth noting that, despite its complexity, Test 4 
is still an inexact test. 

Number Ave no o BUH with BUH 

of PD/SD tasks Pure BUH with Test 3 and with 
Periodics Ratio below BUH Test 3 effective Test 3 

(N) sporadic deadline and Headstart 

Max GR Max GR Max GR Max GR 
(ms) (ms) (ms) (ms) 

5 0.340 1.0 3.40 0.743 2.40 0.754 2.40 0.754 2.00 0.757 

10 0.627 3.0 7.42 0.717 5.31 0.737 5.31 0.737 4.53 0.722 

15 0.808 5.1 9.70 0.702 10.00 0.697 10.00 0.695 7.00 0.711 

(10.80) (11.50) 

20 1.017 8.0 10.00 0.686 10.00 0.682 10.00 0.681 10.00 0.664 

(11.80) 12.13 (12.13) 10.80 

30 1.393 13.9 10.00 0.566 10.00 0.514 10.00 0.511 10.00 0.536 

(20.00 33.00 33.00 19.50 

Table 5.3: Comparing performances of Test 3 and Headstart Hybrids with various periodic tasks. 

Table 5.3 shows Pure BUH together with three variations involving Test 3. BUH 

with Test 3 is a straight replacement of the O(N2) component of BLJIH with Test 3. BUH 

with Test 3 and effective deadline goes further in that it takes advantage of the effective 
deadline calculated by Test 3. It uses the effective deadline, and not the original test task 

deadline, as an upper bound on the response window which is iteratively calculated by the 

PP component. It is always true that effective deadline <_ test task deadline. Therefore this 
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method may shorten the computation time of the exact PP test while incurring no extra 
overhead. The final combination in Table 5.3 uses BUH with Test 3 plus the original 
Headstart for the PP component. The idea here is that the O(N2) component is made more 
exact by Test 3, and that the pseudo-polynomial component is made faster, though 
generally pessimistic, by Headstart. 

It can be seen from the Table 5.3 and Graph 5.3 that BUH with Test 3 performs 
better than Pure BUH for low values of N, but the situation is reversed for higher values of 
N. This can be explained by the extra overhead incurred by Test 3. This overhead increases 

with N, and becomes less cost-effective as it does so. At low N, the overhead is worthwhile 
because it reduces the pessimism of the O(N2) component (consistent with the lower Max 

value for BUH with Test 3 at N=5,10). At larger N, however, the reduction in 

pessimism is a smaller benefit than the increase in the cost of the overhead. In addition the 

reduction in pessimism which Test 3 brings is less likely to be significant at large N: the 

greater slack which each task possesses will in any case reduce the likelihood of an O(N2) 

test giving a pessimistic result. These effects have been seen before in Table 5.1 where pure 
Test 3 performs worse than pure Test 1 at high values of N. 
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Graph 5.3: Comparing performances of Test 3 and Headstart Hybrids with various periodic tasks 

BUH with Test 3 and effective deadline makes use of the effective deadline to 

optimise the pseudo-polynomial component of the hybrid test. Because it incurs no extra 

overhead one would expect it to produce, if anything, marginally better guarantee ratios 
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than BUH with Test 3. Indeed, Table 5.3 shows that for N=5 and N= 10 the same 
guarantee ratio is obtained for both algorithms. However, slightly worse guarantee ratios 
are obtained for N>= 15. Some of this can be explained by random fluctuations (0.001 
difference in guarantee ratio represents only 4 sporadic tasks). A fuller explanation, 
however, is required for N= 30 where a 0.003 decrease in guarantee ratio is observed for 
the BUH with Test 3 and effective deadline algorithm. The following interpretation of 
this may be surprising but 6.11.3 shows evidence for it. 

The with effective deadline algorithm actually manages to guarantee, within the 
lOms limit, some marginal sporadic tasks which can barely be scheduled, and which the 
plain BUH with Test 3 algorithm does not have time to schedule. However, this feat does 

not work to the long term advantage of the with effective deadline algorithm. Statistically, 
these marginally schedulable sporadic tasks may have higher than average computational 
requirements or some other "difficult" characteristics. This means that the with effective 
deadline algorithm would have been better to reject each marginal sporadic task because it 

would soon afterwards have been able to guarantee perhaps two more "easy" sporadic 
tasks. This is what BUH with Test 3 does, and therefore it achieves a slightly higher 

guarantee ratio than BUH with Test 3 and effective deadline. 
The final combination to be tested was BUH with Test 3 and Headstart. The 

hope here is to reduce the pessimism of the O(N2) component by the use of Test 3, but 

also to speed up the PP component by the use of Headstart. This strategy seems to benefit 

guarantee ratio at N=5. Once again, however, it appears that the Test 3 overhead ceases 
to be cost-effective at high N. For example at N= 30, even though Headstart is reducing 
Max, and tending to increase guarantee ratio, the effect of the Test 3 overhead is to make 
guarantee ratio less than that for Pure BUH. (This interpretation is corroborated by Table 
5.2 which shows that Headstart alone increases guarantee ratio at N= 30). 

5.7 OPTIMAL, DYNAMIC PLACEMENT OF SPORADIC TASKS 

Table 5.4 summarises the algorithms which give the highest guarantee ratios for at 
least one value of N. Each highest value is shown in bold. None of the other algorithms 
investigated produced the highest throughput for a particular number of periodic tasks. 

Therefore the hybrid algorithms shown in Table 5.4 were the ones which were used in an 
investigation into the effect of placing the incoming sporadic tasks in the task list according 

to the dynamic deadlines of the existing tasks. 
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Number Ave no BUH with BUH 

of of tasks Pure BUH BUH with BUH Test 3 and with 
Periodic below Headstart with Test 3 effective Test 3 and 

Tasks sporadic deadline Headstart 

Max GR Max GR Max GR Max GR Max GR 

ms (ms) ms ms (ms) 

5 1.0 3.40 0.743 2.65 0.747 2.40 0.754 2.40 0.754 2.00 0.757 

10 3.0 7.42 0.717 4.61 0.715 5.31 0.737 5.31 0.737 4.53 0.722 

15 5.1 9.70 0.702 7.75 0.707 10.00 0.697 10.00 0.695 7.00 0.711 

(10.80) (11.50) 

20 8.0 10.00 0.686 10.00 0.667 10.00 0.682 10.00 0.681 10.00 0.664 

(11.80) (11.00) (12.13) (12.13) (10.80) 

30 13.9 10.00 0.566 10.00 0.598 10.00 0.514 10.00 0.511 10.00 0.536 

(20.00) (17.38) (33.00) (33.00) (19.50) 

Table 5.4: Hybrids with best performances for particular N for static placement of the sporadic. 

As discussed in Section 5.1, recent work by Davis [9] has shown that inserting the 

sporadic request in monotonic order according to the static deadlines of existing tasks is 

not optimal. Instead dynamic placement must be used. As pointed out already, the question 

is whether the run-time overheads of dynamic placement are actually justified by an 

increase in guarantee ratio for sporadic requests. For example, there is an small extra 

overhead incurred due to the fact that a bottom-up search for the optimal position of the 

sporadic task must always be made at the start of a schedulability test. (This knowledge is 

required before a schedulability test can be made. ) As has been seen with Test 3 in Section 

5.6, such increases in schedulability testing overhead can have a critical effect on guarantee 

ratio when overall schedulability testing overheads are large. 
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Graph 5.4: Comparing the performances of Pure BUH with (i) static (ii) dynamic placement. 

Graph 5.4 shows the results obtained for Pure BUH under the static, and then 
dynamic, placement of sporadic requests. Clearly dynamic placement improves guarantee 

ratio at low N, but as N increases the improvement becomes more marginal until, at N= 

30, guarantee ratio is actually reduced. In the case of Pure BUH the maximum 

schedulability testing overheads obtained for each N also confirm that dynamic placement 
reduces overheads at low N but increases them at high N. At high N this factor will 
obviously work against the improvement in performance which an optimal placement of 

sporadic tasks would be expected to give. 
Further investigations were carried out into the difference which dynamic placement 

makes in the behaviour Pure BUH. Graph 5.5 shows the average number of tasks (per 

sporadic request) below the sporadic position, as the number of resident periodic tasks 
increases. The averages shown were obtained over simulation runs for both static and 
dynamic placement as applied to Pure BUH. 

Clearly dynamic placement causes fewer tasks below the sporadic at low N but 

more tasks at high N. Around N= 15 both methods of placement cause approximately 

equal numbers of tasks below the sporadic. The number of tasks below the sporadic 
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Graph 5.5: Number of tasks below the sporadic for Pure BUH under (i) static and (ii) dynamic placement. 

position closely governs the schedulability testing overheads because all tasks lower than 

the sporadic task must also be schedulability tested. Hence Graph 5.5 shows why optimal, 
dynamic placement is clearly beneficial at low N, but not beneficial at high N. At low N, the 

benefit of optimal placement is combined with smaller schedulability testing overheads, 

whereas at high N, the benefits of optimal placement are more than offset by the cost in 

extra schedulability testing. 

Possible explanations for the changes in the average number of tasks below the 

sporadic task are as follows. Note that these explanations assume a constant processor 

utilisation, while N, the number of periodic tasks, changes. 
At low N each task has a relatively high computational requirement and is 

therefore active (i. e. released but not yet completed) a relatively large proportion of the 

time. Being active, the dynamic deadline of the task is probably less than its full static 

value. Hence an incoming sporadic task will be placed relatively low in the task list, 

beneath the shortened deadlines of active tasks. Contrast this with the likely sporadic 

position for high N. At high N, each task has a relatively low computational requirement, 

and is therefore inactive (i. e. completed and awaiting its next release) a relatively large 

proportion of the time. Being inactive, the dynamic deadline of the task is effectively 

extended to the deadline following the next release of the task. Hence an incoming sporadic 

task will be placed relatively high in the task list, above the lengthened deadlines of inactive 

tasks. This explains why dynamic placement of sporadic tasks places tasks lower than the 
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static deadline monotonic position when N is small, and places tasks higher than the static 
position when N is large. 

It is worth noting that, in addition to the above effect, there is also a small extra 
overhead incurred by the bottom-up search for the dynamic position. This is always 
performed at the start of a schedulability test, and its overhead is proportional to the 
number of tasks below the sporadic. 

5.8 THE EFFECT OF DYNAMIC PLACEMENT ON HYBRID PERFORMANCES 

The following is a commentary on the effects of dynamic placement on the various 
hybrid algorithms featured in Tables 5.5 and 5.6 below. Each algorithm is directly 

compared for static and dynamic placement of incoming sporadic tasks. It is notable that 
the relative performances of the algorithms remain largely the same whether considered 
under static placement or dynamic. 

BUH with Headstart shows the same overall pattern as Pure BUH. At low N 

guarantee ratio is improved, at around N= 15 guarantee ratio is similar, and at high N 

guarantee ratio drops. The maximum schedulability test values are also affected in the same 
way as BUH. One difference between the algorithms is that the decline in improvement of 
guarantee ratio seems to start at lower N (N = 15) in the case of BUH with Headstart. 
This may be due to the pessimism of Headstart. As the number of tasks below the sporadic 
task rises, so does the probability that the Headstart method will prove pessimistic for one 
of the tasks beneath the sporadic position. 

BUH with Test 3 shows similar changes in the pattern of guarantee ratio due to 
dynamic placement. It is noteworthy that, compared to Pure BUH, guarantee ratio drops 

dramatically at N= 30. This is not surprising when it is observed that the static placement 

guarantee ratio for BUH with Test 3 also drops dramatically at N= 30. Section 5.6 

explained that this was due to the large increase in Test 3 overhead combined with the fact 

that, at large N, Test 3 is less likely to make the O(N2) component of the hybrid test less 

pessimistic. When sporadic placement is dynamic this effect is further exaggerated by the 

greater number of tasks which need to be schedulability tested (i. e. below the sporadic 

position). 
It is worth commenting on the fact that Table 5.5 shows the maximum 

schedulability test value for BUH with Test 3 actually increases at low N. This can be 

explained by the fact that, under dynamic placement of the sporadic task, the average 

number of tasks below the sporadic is lower when N is low. Section 5.6 showed that the 

small maximum values achieved by BUH with Test 3 are due to the fact that it can make 
the O(N2) component of the hybrid schedulability test less pessimistic, and thus prevent a 
time-consuming invocation of the PP component, and a large maximum test time being 
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Number Pure Pure BUH with BUH with BUH with BUH with 

of BUH BUH Headstart Headstart Test 3 Test 3 
Periodic (STATIC) (DYNAMIC) (STATIC) (DYNAMIC) (STATIC) (DYNAMIC) 

Tasks 
(N) 

Max GR Max GR Max GR Max GR Max GR Max GR 
(ms) (ms) (ms) (ms) (ms) ms 

5 3.40 0.743 3.17 0.788 2.65 0.747 2.53 0.791 2.40 0.754 2.88 0.795 

10 7.42 0.717 6.82 0.745 4.61 0.715 4.24 0.722 5.13 0.737 6.15 0.751 

15 9.70 0.702 10.00 0.703 7.75 0.707 8.00 0.696 10.00 0.697 10.00 0.704 

(13.00) 10.80 12.50 

20 10.00 0.686 10.00 0.687 10.00 0.667 10.00 0.659 10.00 0.682 10.00 0.686 

(11.80) (19.00) 11.00 12.00 12.13 (18.00) 

30 10.00 0.566 10.00 0.540 10.00 0.598 10.00 0.572 10.00 0.514 10.00 0.439 

20.00 35.00 (17.38) 18.00 33.00 34.50 

Table 5.5: Comparing hybrid algorithms for static and dynamic deadline placement 

of sporadic tasks. 

reached. In the case of dynamic placement, there are fewer tasks below the sporadic task. 
This, in turn, means that there is less chance for Test 3 to make the O(N2) component less 

pessimistic, and thus prevent a higher maximum being reached. 
BUH with Test 3 and effective deadline shows a slightly different performance 

profile from BUH with Test 3. At low N, guarantee ratio is slightly more improved by 

dynamic placement whereas, at high N, guarantee ratio is made slightly worse. This is 

broadly in line with the differences shown between the two algorithms under static 

placement. Investigations showed that the slight improvement at low N was largely due to 

an approximately 1% drop in the average schedulability test time of the with effective 
deadline algorithm compared to the without effective deadline. This is what might be 
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BUH BUH BUH BUH 
Number with Test 3 with Test 3 with with 

of and effective and effective Test 3 and Test 3 and 
Periodics deadline deadline Headstart Headstart 

(N) (STATIC) (DYNAMIC) (STATIC) (DYNAMIC) 

Max GR Max GR Max GR Max GR 
(ms) (ms) (ms) (ms) 

5 2.40 0.745 2.87 0.796 2.00 0.757 1.89 0.807 

10 5.31 0.737 6.05 0.755 4.53 0.722 4.12 0.730 

15 10.00 0.695 10.00 0.705 7.00 0.711 7.00 0.710 
11.50 (12.50) 

20 10.00 0.681 10.00 0.687 10.00 0.664 10.00 0.658 

(12.13) (18.00) 10.80 11.00 

30 10.00 0.511 10.00 0.412 10.00 0.536 10.00 0.451 

33.00 34.50 19.50 19.50 

Table 5.6: Comparing hybrids for static and dynamic placement of sporadics. 

expected when the effective deadline is used to limit the iterations of the PP component of 

the hybrid algorithm. In contrast, the drop in guarantee ratio for with effective deadline at 

N= 30 is counter-intuitive. However, it may be explained by the same argument as given in 

Section 5.6 when comparing these algorithms under static placement. The argument is 

supported by evidence from Section 6.11.3, and leads to the conclusion that a more 

efficient algorithm for exact schedulability testing does not always improve the throughput 

of sporadic tasks, especially when a time limit on schedulability testing is in force. 

BUH with Test 3 and Headstart also shows the improvement in guarantee ratio at 
low N, and deterioration in guarantee ratio at high N, which has been typical of the effect 

of dynamic placement. The maximum schedulability test times shown for this algorithm are 

generally low due to the effect of Headstart. This is particularly true at N=5 where the 
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effect of Headstart, plus that of Test 3 and that of dynamic placement, is to generate a 
maximum of only 1.89 ms. Guarantee ratio is correspondingly high at 0.807. At N= 30, 
however, the effect of both Test 3 and dynamic placement is to increase the maximum 
schedulability test time, and to decrease the guarantee ratio obtained. Nevertheless the 
effect of Headstart is still apparent in that the guarantee ratio for BUH with Test 3 and 
Headstart is greater than that for BUH with Test 3 or that for BUH with Test 3 and 
effective deadline. 

5.9 SELECTING THE BEST OF THE HYBRID ALGORITHMS 
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Graph 5.6: Performance profiles of the Hybrids which give maximum GR for some value of N. 

The above results show that optimal, dynamic placement of the incoming sporadic 

request has a favourable, or at least neutral, effect on guarantee ratio except when N= 30. 

At such high N, the schedulability testing overheads are so large that pessimistic and 

quicker schedulability test methods will, in general, provide a higher guarantee ratio. Such 

pessimistic methods can include Headstart, or a schedulability test of purely O(N2) 

complexity. Even static placement, though not optimal, can produce greater sporadic 

throughput at high N. 
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Graph 5.6 summarises the algorithms which give the highest guarantee ratios for at 
least one value of N. Dynamic placement is used except at N= 30. Generally BUH with 
Test 3 and Headstart performs best for N <= 15. (Exceptions to this are at N= 10 where 
BUH with Test 3 and BUH with Test 3 and effective deadline give the highest 

guarantee ratios. ) At high N, the extra overhead of Test 3 is no longer cost-effective, so 
that at N= 20 Pure BUH performs best, and at N= 30 BUH with Headstart and static 
placement gives the best performance. Comparison of Graph 5.6 (dynamic placement) with 
Table 5.4 (static placement) shows that the same algorithms perform best for the same 

values of N. In other words, the issue of whether static or dynamic placement is used, is 

independent of the relative performances of the hybrid algorithms. Which schedulability test 

algorithm is chosen in practice, must be decided by the amount and nature of the 

schedulability testing which is required. Detailed conclusions are given in the following 

section. 

5.10 CONCLUSIONS 

The work of this chapter was to enhance the efficiency of the on-line guarantees 

given by the hybrid algorithm developed in Chapter 4. This was done firstly by using Test 3 

(due to Audsley et al. ) to reduce the pessimism of the O(N2) component of the 

schedulability test. Secondly, a headstart was provided for the PP component of the 

algorithm, by initialising the window of interference of the test task, to a value greater than 

the WCET of the test task. Several methods of providing a headstart were investigated, all 

of which turned PP into a sufficient but not necessary schedulability test. 

Finally the chapter examined the effect on performance, of dynamic placement of 

sporadic tasks, instead of static placement according to the monotonic ordering of 

deadlines which are current at task release time. Davis has proven dynamic placement to be 

optimal in theory, but this chapter has shown that such placement does not always perform 

better in practice. General conclusions to this chapter are as follows, where performance is 

measured by guarantee ratio: 

(1) When used separately as schedulability tests, Audsley's sufficient but not necessary 

Tests 1 to 4, and his exact pseudo-polynomial test (PP), give relatively poor 

performances compared to the Pure BUH test. 

(2) Headstart optimisations to the PP schedulability test can turn PP into a sufficient but 

not necessary schedulability test. 
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(3) Headstarts which provide a sufficient but not necessary schedulability test can 
nevertheless improve performance beyond that attainable with Pure BUH. (This is 
particularly true when the overheads incurred by schedulability testing are high. ) The 
method used to determine a headstart value will, in general, affect the performance 
obtained for a particular periodic task set. 

(4) When the overheads incurred by schedulability testing are low, then Test 3 performs 
better as the O(N2) component of the hybrid schedulability test algorithm. 
Conversely, when the schedulability testing overheads are high, then Test 1 performs 
better. 

(5) The performance of the hybrid algorithms may be improved by the use of optimal, 
dynamic placement of sporadic requests instead of static placement by deadline 

monotonic ordering. 

(6) Optimal, dynamic placement can improve performance when schedulability testing 

overheads are low, but can also decrease performance when schedulability test 

overheads are high. This can be due to dynamic placement giving the sporadic task a 
higher average position in the task list than the average position for static placement. 

(7) The relative performances of the hybrid algorithms are largely unchanged when all of 
the algorithms are converted from static placement to dynamic placement of the 
incoming sporadic tasks. 

(8) No single one of the schedulability testing algorithms investigated will perform best 

for all periodic task sets. In particular, different algorithms may have to be chosen for 

different sizes of periodic task set. 

Chapter 6, which follows, uses the BUH with Test 3 and Headstart algorithm as a 

schedulability test running on each of the processors within a multiprocessor cluster. The 

chapter investigates methods of allocating sporadic requests across the processors of the 

cluster, in such a way as to maximise the total number of sporadic tasks which can be 

guaranteed. 
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CHAPTER 6 

ALLOCATION METHODS FOR MULTIPROCESSOR SYSTEMS 

6.1 INTRODUCTION 

6.1.1 Approach 

Section 2.6 reviewed distributed scheduling in the Spring Project. Spring algorithms 
allow the re-allocation of 'essential' computations which cannot be guaranteed at their node 
of origin. However, the re-allocation methods which Spring uses, such as Focused 
Addressing and Bidding, incur such large overheads, that one or more dedicated system 
processors are required within Spring nodes. 

The object of the work of this chapter is to adopt a similar multiprocessor 
architecture to that of a Spring node, but to investigate computationally cheaper methods 
of allocating optional computations to the processors within the node. It is assumed that 

optional computations arise in the form of requests for the guarantee of aperiodic tasks 

which may originate from inside or outside of the node or 'cluster'. Each request must be 

allocated to a processor within the cluster, for acceptance testing. If the acceptance test 
fails at the processor, then the aperiodic task is rejected by that processor. As before, it is 

assumed that each processor within the cluster runs its own set of resident periodic tasks, 

and performs its own acceptance testing. 
This chapter reports on detailed investigations into two multiprocessor 

configurations, each with its own allocation method. The first is Targeting, and the second 
Shuffle Schedulability Testing. It is assumed that communications within each of these 

configurations is sufficiently fast that its delays are negligible, in comparison to the intervals 

between acceptance tests (slot width of the schedulability-tester) on each of the processors. 

6.1.2 Targeting 

The configuration for Targeting assumes a processor cluster which consists of a 

targeting processor and three target processors. All processors are assumed to run a set of 

resident periodic tasks. However the targeting processor also acts as a channel for 

aperiodic requests which arrive from outside the cluster. Instead of attempting to 

schedulability test, and run, aperiodic tasks, the targeting processor performs algorithms 

which allow it to direct each aperiodic request it receives, to the target processor most 
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likely to guarantee it. The targeting processor may also run other kernel activities, 
providing that all of its critical, periodic computations are still guaranteed. 

The targeting methods used by the targeting processor may range from simple 
Round Robin allocation of requests, to a relatively sophisticated pre-test which is based on 
recent slack values for tasks, on each of the target processors. The actual guaranteeing of 
aperiodic requests is performed by schedulability testing on the target processors 
themselves. In the case of Targeting, if a schedulability test fails, then the aperiodic request 
is given a final rejection by the cluster. 

The choice of three target processors was made to reduce the complexity of the 
simulation studies, whilst still providing sufficient choice of targets to demonstrate the 

principles involved. In theory, the findings of this work can be generalised to a larger 

number of target processors. 

6.1.3 Shuffle Schedulability Testing 

The second configuration which is considered in this chapter consists of only three 

applications processors configured in a loop. Each applications processor can 
independently receive aperiodic requests whether they arise internally, or from the external 
system environment. Each processor attempts to guarantee the requests it receives, but, 

should a request fail, it is passed on to the next applications processor in the loop for 

further schedulability testing. In this way, aperiodic requests are shuffled around the 

cluster. This method is therefore named shuffle schedulability testing. 
A consideration which closely affects both the targeting and the shuffle 

schedulability testing configurations, is the extent to which the processors within the cluster 

are coupled or synchronised. Clearly targeting is an activity which is global to the cluster 

and therefore benefits from some synchronisation across the processors within the cluster. 
Similarly the process of shuffle schedulability testing can be speeded up if each of the 

processors within the loop is performing its schedulability testing simultaneously. Therefore 

the general assumption throughout the following work is that there is some means for the 

processors within the cluster to synchronise. The next section discusses the issues which 

are to be investigated (i) for targeting and (ii) for shuffle schedulability testing. 

6.2 ISSUES TO BE INVESTIGATED 

6.2.1 Rationale for Targeting 

The first issue to be investigated in targeting is the algorithms which are used to 

target the aperiodic requests onto the application processors. These algorithms will use a 
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slack-based pre-test and will incur various overheads in mapping requests to target 
processors. The algorithms to be examined will range from Round Robin allocation with no 
pre-test, through Targeting by the use of a slack-based pre-test, to 'clairvoyant' Targeting 

where the slack-based pre-test is replaced by the full schedulability test which is later 

performed on the target processors. This last algorithm acts as a control experiment which 
is designed to measure the maximum benefit which targeting can produce. 

The second issue in targeting is the frequency and methods with which slack is 

updated. This determines the accuracy of the slack-based pre-test. Of course the update of 
slack values will incur some overhead on the target processors and a key issue is the trade- 
off between this overhead and the benefit to targeting of slack values which are more up- 
to-date. In order to address this issue it is useful to review recent work by Davis on slack 
stealing. 

6.2.2 Davis' Slack Stealing Algorithm 

Use with Soft Tasks 

In [13] Davis et al. present an algorithm which performs exact on-line calculations 
of the slack within a fixed priority task list. A task's slack is defined as: the task's current 
deadline minus (the task's remaining WCET plus any interferences by higher priority tasks 

within the current deadline). When the algorithm determines that slack is currently available 
at all priority levels within the task list, then tasks with soft deadlines can be executed at the 
highest priority level. This has the benefit of reducing the mean response time of the soft 
tasks. This dynamic method of slack stealing is more general than the static equivalent due 

to Lehovsky and Thuel (reviewed in Section 2.4.3). The method can accommodate hard 

tasks which exhibit release jitter. It also reclaims, as extra slack, any gain time which 

results form hard tasks performing better than their projected worst-case. Unfortunately 

Davis' algorithm incurs large overheads, so that he proposes a less expensive method which 

performs exact updates of slack only periodically. Therefore, in between updates, only 

approximate values of slack are available. 

Use with Hard Aperiodic Tasks 

In [10] Davis uses his slack stealing algorithm in the acceptance testing of hard 

aperiodic tasks whose deadlines must be guaranteed on-line. He uses Test 2 due to Audsley 

(see Section 2.7) as a sufficient but not necessary schedulability test for the hard aperiodic 
task itself, followed by the use of the approximate slack stealer to determine the 

schedulability of all lower priority tasks. The advantage of incorporating the slack stealer 
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into the scheme, is that soft tasks can be scheduled within the same framework, in the way 
described in the previous paragraph. 

If soft tasks are not required, or can satisfactorily be executed in background, then 
the use of slack stealing imposes an unnecessarily high and continuous overhead. As has 
been seen in Chapters 4 and 5, all that is required for the guarantee of a hard aperiodic 
task, is a single execution of an algorithm such as BUH, when the task arrives. A further 
disadvantage of Davis' scheme is that it uses Audsley's Test 2 which is a pessimistic test 
(see Section 2.7). In contrast to this, BUH uses a less pessimistic test initially (Audsley 
Test 3) followed by an exact test (PP) if the aperiodic task fails to be guaranteed by Test 3. 

6.2.3 The Slack-based Pre-test used in Targeting 

In discussion of his slack stealing algorithms, Davis [10,13] has pointed to the 
prohibitive overheads of performing very frequent updates of the exact slack which is 

available at each level within a task list. In contrast to this, this thesis provides a method of 
guaranteeing hard aperiodic tasks by incurring the overhead of a single execution of one of 
the hybrid algorithms discussed in Chapters 4 and 5. The slack-based pre-test which is used 
in targeting, takes advantage of a by-product of these hybrid algorithms. Although the by- 

product provides only approximate data on slack, this data is 'free' in the sense that it 

comes, at virtually no extra overhead, from schedulability tests which already run on the 
target processors. The following paragraph explains how the slack data is derived. 

In effect, the hybrid algorithms commence with an approximate calculation of the 

slack possessed by the aperiodic task which has arrived, and all the tasks which lie below it 
in the task list. This is because the first stage of a hybrid algorithm applies an O(N2) 

schedulability test to the aperiodic arrival, and to all the tasks which lie below it. The 
O(N2) algorithm performs a pessimistic calculation of the total interference from higher 

priority tasks, within the remaining deadline of the test task (see Appendix A. 1). The 
interference is added to the (residual) WCET of the test task, and the resulting sum is 

compared to the test task's remaining deadline. The difference between the sum and the 

remaining deadline is actually a lower bound on the slack which is available for the test 

task. Therefore, if the O(N2) component of the hybrid algorithm is amended to record this 
difference whenever a task is schedulability tested, then approximate slack values are 

available, at little extra overhead, for the aperiodic tasks and all tasks lying below them. 
The proposal is to use the approximate slack values dating from the most recent 

schedulability tests, in order to guide the allocation of the current set of aperiodic arrivals 
to the three target processors within the cluster. Allocation will be guided by a 

schedulability pre-test which compares the WCET of the aperiodic arrival with the 
(approximate) slack values for all tasks lying below the position of the aperiodic task within 
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the task list. As with slack stealing, a condition of acceptance of an aperiodic task will be 
that the slack available at all lower priority levels is greater than, or equal to, the WCET of 
the aperiodic. This is the only condition for schedulability which is considered by the pre- 
test which allocates aperiodic arrivals to target processors. 

The pre-test is also approximate because the slack values on which it is based are 
one schedulability testing cycle, or more, out-of-date. How outdated a slack value is, will 
depend on how recently the task was schedulability tested. The issue of whether to 
introduce more frequent slack updates is investigated by the introduction of dummy 

aperiodic requests which incur extra schedulability tests, and force the update of all slack 
values. 

6.2.4 Issues to be investigated for Targeting 

1. Targeting Algorithms: in particular the mapping of aperiodic requests to the most 
suitable target processors. 

2. The Slack-based Pre-test: how often is slack updated, what overheads are incurred, 

and how can these overheads be reduced? 

3. Ordering of Aperiodic Requests: should aperiodic requests be presented to the 

targeting algorithm in FCFS order or earliest deadline order? This may make a 
difference in the case of sets of aperiodic tasks for which the pre-test cannot provide a 

preferred mapping onto target processors. 

4. Bottom-up versus Top-down order of schedulability testing: in Chapter 4 Bottom- 

up was been found to be most efficient order of schedulability testing the tasks in the 

task list. However, the pre-test only estimates the schedulability of those tasks below 

the aperiodic position. Therefore it may be more efficient for the full schedulability test 

to start by schedulability testing the aperiodic request (i. e. top-down order). 

5. Overheads on the Targeting Processor: more sophisticated targeting methods may 
incur larger overheads on the targeting processor. This will reduce the utilisation 

available on the targeting processor for other systems or applications tasks. 

6. Updating slack values for rejected Aperiodic Requests: the full schedulability test 

calculates slack values which include the effect of the aperiodic request. If the request is 

then rejected, the slack values which have been calculated are more pessimistic. The 
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issue arises as to whether to update with these pessimistic values, or to revert to the 
more outdated previous values. 

7. Uniform variation in Periodic Utilisation: targeting should be investigated for 
different, periodic utilisations across the target processors. The first stage should be to 
investigate different, uniform periodic utilisations across the targets. 

8. Skewed Periodic Utilisations: targeting should also be investigated for a skewed 
distribution of processor utilisations across the target processors. 

9. Internally and Externally generated Aperiodic Tasks: so far consideration has been 

restricted to aperiodic tasks which are generated outside the cluster and can therefore 
be directed to the most suitable target. Consideration should also be given to aperiodic 
tasks which are generated on the target processors themselves. Such a mixture of 
internal and external requests could occur in a real application. 

6.2.5 Issues for Shuffle Schedulability Testing 

1. Internally and Externally generated Aperiodic Tasks: a mixture of these should also 
be considered for shuffle schedulability testing. 

2. Synchronisation: the synchronisation of schedulability testing for different processors 

within the loop may affect the performance of shuffle schedulability testing. 

3. Variation of Periodic Utilisation: the effect on shuffle schedulability testing of 
different periodic utilisations on the processors within the loop should also be 

investigated. 

The following sections now consider the above issues in turn, presenting the results of the 
investigations which were performed. As before, it is assumed that aperiodic requests have 

a minimum inter-arrival time so that an upper bound may be placed on schedulability 
testing. They are in fact sporadic requests. In the case of Targeting, it is assumed, in all 

cases, that there are three target processors, and one targeting processor, in a 

multiprocessor cluster. 
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6.3 ALGORITHMS FOR TARGETING 

6.3.1 Introduction 

A range of targeting algorithms were developed from simple Round Robin to a 
'clairvoyant' method which actually performs the full schedulability test in advance of 
allocating the sporadic request to a processor where the schedulability test is repeated. This 
latter acts as a benchmark for the maximum performance enhancement which can be 
achieved by targeting. The purpose in developing a range of targeting techniques, each with 
increasing overhead, was to investigate the benefits gained from executing the targeting 
algorithms on the targeting processor. As usual there was a trade-off between the time 
spent on these overheads, and the increase in the chances of guaranteeing the sporadic 
tasks. The targeting methods developed were as follows: 

(i) Round Robin 

(ii) Partial Targeting 

(iii) Full Targeting 

(iv) Ideal Targeting 

As has been explained already, Round Robin merely performs a cyclic allocation of 
sporadic requests onto the three target processors. It is the simplest algorithm, and involves 

virtually no overhead. Both Partial Targeting and Full Targeting allocate sporadic requests 
on the basis of slack values calculated at the previous full schedulability test on each target 

processor. Hence the slack values used by the pre-test are always somewhat out-of-date. 
Furthermore, these algorithms use slack values which are updated regardless of whether 
the sporadic requests are accepted or not. Therefore the slack values can be pessimistic. 
However, this method has the advantages that slack values are as fresh as possible, and that 

overheads incurred by the pre-test are slightly smaller. (An investigation is carried out in 

Section 6.9 as to the effectiveness of updating slack values only when the sporadic requests 

are accepted. ) 

In order to bound schedulability testing there is a constraint of a maximum of one 

sporadic request to be schedulability tested, at any processor, in any one schedulability test 

slot. 

6.3.2 Partial Targeting 

Partial Targeting is partial in the sense that the mapping of sporadic requests to 

processors which pass the pre-test is performed in an approximate FCFS manner. The 
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Partial Targeting algorithm is specified by the pseudo-code in Figure 6.1. The algorithm is 

also described in the following paragraphs. 
Firstly, Partial Targeting performs a default pre-allocation of requests to targets 

using Round Robin (RR). Then each request is taken in turn and is pre-tested against 
targets until it passes a pre-test, or there are no more remaining targets which have not 
already been allocated by the pre-test in this way. If the request passes its pre-test on the 
target to which it was originally allocated by RR, then that allocation holds good. If the 

request passes a pre-test on a target which is different from its RR allocation, then the 

request is re-allocated to the new target. If the request fails its pre-tests on all of the 

remaining targets, then it retains its default allocation. Obviously the first request has the 

chance of being pre-tested against three targets, a second request against only two targets, 

and a third request is simply allocated to the remaining target. 

perform default pre-allocation of requests to targets by Round Robin (RR). 

for each request in turn 

set the current target to be the first of the remaining targets which have not been 

allocated a request by the pre-test 

while (this request has not passed the pre-test on any target) and (there are 

unconsidered targets which have not already been allocated according to the 

pre-test) 
pre-test this request on the current target 
if this request passes the pre-test on a target different from its RR allocation 

then swap targets between this request and the request which was 

allocated by RR to the different target 
/*no reallocation of targets is required if this request passes the 

pre-test on the target to which it was pre-allocated by RR*/ 

else 

end if 

end while 

end_for 

set current target to next target not already allocated by the pre-test 

Figure 6.1: Pseudo-code definition of Partial Targeting. 

The algorithm uses swapping in order to speed up the allocation of targets which 

have passed a request by the use of the pre-test. When a request passes the pre-test for a 

target other than its default target, then the default target and the new target are swapped. 
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This transposition places the new target in an indexed position which is regarded as finally 
allocated, whereas the default target is now in a position of higher index value which is 
regarded as unallocated by the pre-test. An alternative method of searching all targets for 
each request may look simpler on paper. However, such a method would require a final 
stage of sorting the targets which is avoided by the use of swapping. 

The starting position for the default Round Robin pre-allocation among the three 
targets is adjusted at every schedulability test slot in order to spread more evenly the 
allocation of requests. The position is determined by a random choice between the targets 
which were not allocated a sporadic request at the last schedulability test slot. If three 
sporadic requests were allocated in the last allocation cycle, then the new starting position 
will be the same target as before. 

Partial Targeting is simple and incurs relatively low overheads on the targeting 
processor. However, it provides a far from optimal mapping between sporadic requests and 
target processors. It suffers from the major disadvantage that second and third sporadic 
requests have a reduced choice of targets. For example, this may be particularly inefficient 

when the first sporadic request has failed the schedulability pre-test on all targets but has 
been (arbitrarily) allocated to the first target. 

6.3.3 Full Targeting 

Full Targeting constructs a matrix in order to achieve a more optimal mapping of 
sporadic requests to targets. The matrix contains the results of the schedulability pre-test 
for each sporadic request tested against each target. 

Target 0 Target 1 Target 2 

Request 0 

Request 1 

Request 2 

1 0 1 

0 0 1 

1 1 1 

Figure 6.2: Example of a Pre-Test Matrix. 

Figure 6.2 shows an example of the pre-test matrix. A'I' indicates that the sporadic request 
has passed the pre-test for the target, a '0' indicates that it failed the pre-test. Full Targeting 

is specified by the pseudo-code in Figure 6.3. The algorithm is also described in the 

following paragraph. 
Full Targeting proceeds as follows. Firstly, any outstanding requests which are the 

only ones which have passed the pre-test for a particular target, are allocated to targets in 

column order. Secondly, those targets which have passed two requests are allocated 

outstanding requests in row order, within column order. Finally, all remaining outstanding 
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requests are allocated FCFS to unallocated targets. (In this case, FCFS means row order, 
within column order. ) This last stage can include targets which have passed no requests, 
targets which have passed three requests, and also requests which failed to be allocated at 
the previous "attempt to allocate requests for targets which pass 2 requests" stage. All of 
these allocations are held until last because targeting cannot be applied to them, and hence 

they may as well be made arbitrarily. As with Partial Targeting, the starting position for 

request allocation is adjusted according to the previous cycle of allocations at the last 

schedulability test slot. 

construct the pre-test matrix 
/* allocate the requests which are the only ones to pass the pre-test on particular targets*/ 
for each target in column index order 

if the target has only 1 request which has passed the pre-test then 
if the request has not already been allocated then 

allocate it to the target 

end if 

end if 

end_for 
/*attempt to allocate requests for targets which pass 2 requests*/ 
for each target in column index order 

if the target has 2 requests which have passed the pre-test on it then 

allocate the target the first unallocated request in row index order 

end if 

end for 

/*perform FCFS allocation of all remaining requests, on all remaining targets*/ 

for each target in column index order 
for each request in row index order 

if (the target is unallocated) and (the request is unallocated) then 

allocate the request to the target 

end if 

end for 

end_for 

Figure 6.3: Pseudo-code definition of Full Targeting. 

Obviously Full Targeting is a more expensive algorithm which will provide a more 

optimal mapping of requests to targets. However the algorithm does not provide 

'backtracking' which would be optimal, but even more expensive. Figure 6.4 shows an 
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example of a pre-test matrix in which 'backtracking' would improve allocation. Full 
Targeting would allocate sporadic request 0 to target 0, request 1 to target 1, but would 
not have foreseen the problem that request 2 remains to be allocated to target 2 on which it 
failed its pre-test. In contrast, Full Targeting with Backtracking would be able to deduce 

that sporadic request 2 should be allocated to target 1, in order that request 1 can be 

allocated to target 2. 

Target 0 Target 1 Target 2 

Request 0 

Request 1 

Request 2 

1 0 1 

0 1 1 

1 1 0 

Figure 6.4: Example of a Pre-Test Matrix which requires backtracking. 

6.3.4 Ideal Targeting 

Ideal Targeting is an algorithm provided as a 'control experiment'. Here the pre-test 

matrix contains the results of the full schedulability tests of the requests on each target. In 

other words this algorithm is clairvoyant in that it knows in advance the results of trying to 

guarantee each request at each of the targets. This provides 'ideal' knowledge of 

schedulability, which, combined with a near-optimal allocation of requests to targets, 

provides a benchmark of the maximum improvement which targeting can achieve. In 

practical terms this algorithm is obviously not cost-effective. 

6.4 DUMMY SPORADIC REQUESTS 

6.4.1 Rationale for the use of Dummy Sporadics 

When performing targeting which is primarily based on somewhat outdated slack 

values, the issue arises as to whether to introduce methods of updating the slack values 

more frequently. This may improve upon the targeting, but, because slack calculations are 

performed on the targets themselves, the extra overhead incurred may actually decrease 

overall throughput of sporadic tasks. A compromise is to ensure that the slack values of the 

tasks in the task lists associated with each target, are each updated at every schedulability 

test slot. This will not occur automatically because, unless requests are flowing in at the 

maximum rate, there will be slots when targets are not allocated requests. Even when a 
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request is schedulability tested upon a target, not all the tasks in the task list will have their 

slack values updated. This is because only the tasks below the position of the sporadic 
request are schedulability tested. 

The method of using dummy sporadic requests allows slack values to be updated 
whether a target has been allocated a sporadic request or not. Effectively, targets which are 
not allocated a true sporadic request are allocated a dummy request instead. This causes a 
schedulability test to take place and therefore slack values to be updated. However, 
because the request is marked as a dummy no sporadic task is inserted into the task list. By 

setting both the deadline of the dummy request to be the shortest in the task list, and by 

setting the computational requirement of the dummy task to be a token 1 tick, we can force 

all of the tasks in the task list to have their slack values updated. This is because all the 

tasks below the dummy will need to be schedulability tested in order to show that the 1-tick 

computation is schedulable. 
Obviously the use of dummy sporadic requests will add to the schedulability test 

burden on each target processor and the key question is whether this is outweighed by the 
improved targeting as a result of more up-to-date slack values. As stated earlier, it is hoped 

that the use of dummy requests to ensure a schedulability test at each schedulability test 

slot, will incur lower overheads than those experienced by Davis et al. in [13]. 

6.4.2 Ordering Sporadic Requests 

A lesser issue concerns the ordering of sporadic requests which are presented to 

Partial, Full or Ideal Targeting. As explained above, all of these algorithms have a degree of 
FCFS in their allocation of requests to targets. Partial Targeting gives the first sporadic 

request in the list the maximum choice of targets whereas the second request has restricted 

choice, etc. Full and Ideal Targeting can provide no preferred mapping of requests to 

targets which have passed three requests or zero requests, and in these cases requests are 

allocated (arbitrarily) in request index order. 
These FCFS or arbitrary orderings raise the question of whether sporadic requests 

can be systematically ordered in such a way as to enhance sporadic throughput. One such 

ordering may be to rank the requests in order of increasing relative deadline from the time 

at which schedulability testing is performed. This would have the effect of giving 

preference to shorter deadline (and on average smaller computation) requests. 

Alternatively, the sporadic requests could simply be kept in the random ordering in which 

they arrived at the targeting processor. 
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6.5 SIMULATIONS OF THE TARGETING ALGORITHMS 

6.5.1 Introduction 

Simulations were performed using three resident periodic task sets on each of the 
three (simulated) target processors. The slight extra overhead of retaining slack values after 
the schedulability test on each target was included in the simulations. The overhead of 
targeting itself was measured but was deemed to take place on the targeting processor and 
had no effect on the target processors. The simulations include no overheads for the 
communications of targeting information between the targeting processor and the target 
processors. Fast hardware and a closely coupled cluster can make such overheads 
negligible, and in any case they do not affect the principle of targeting. 

Targeting Method: Round Partial Full Ideal 
Robin Targeting Targeting Targeting 

Guarantee Ratio 0 0.883 0.846 0.852 0.849 

Guarantee Ratio 1 0.882 0.863 0.878 0.886 

Guarantee Ratio 2 0.870 0.870 0.865 0.856 
Ave Test Time 0 (ms) - 2.546 2.598 2.632 

Ave Test Time 1 (ms) - 2.330 2.353 2.354 

Ave Test Time 2 (ms) - 2.372 2.355 2.381 

Total Computation 
Time ms : 317,450 306,135 308,790 310,210 
Sporadic Utilisation 

achieved (%) 84.65 81.64 82.34 82.72 
Total number of 

sporadics guaranteed: 13,377 13,095 13,176 13,157 

Total Schedulability 

Test Time for Real 32,315 31,812 31,486 32,809 

Tasks ms : 
Total Schedulability 
Test Time for Dummy - 40,683 41,578 40,883 

Tasks ms 

Table 6.1: Bottom-up Hybrid (Test 3, Headstart) with sporadics targeted 
in random order. 
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The number of periodic tasks on each target (N) was fixed at 15 because this was in 
the middle of the range of N values used in previous simulations. The schedulability test 
algorithm used on each of the target processors was Bottom-up Hybrid with Test 3 and 
Headstart because this performed best for N= 15 (see Section 5.9). Dummy sporadic 
requests were used as discussed above, in order to ensure the update of slack values at 
every 100ms schedulability test slot. As in previous simulations the results presented are 
either accumulated totals or averages over 10 simulations. Each of the 10 simulations used 
a different periodic task set for each processor, for each simulation. Each of the periodic 
task sets was randomly generated to be unique, schedulable and give a periodic utilisation 
of 85%. Sets of randomly generated sporadic requests were used which added a maximum 
attainable 12.5 % sporadic utilisation to each of the targets. 

Table 6.1 shows full results for each of the targeting algorithms when sporadic 
requests are ordered randomly rather than in order of remaining deadline as discussed 

above. The Guarantee Ratios over 10 simulations, for each of the three targets (0,1 and 2) 

are included in the table in order to demonstrate the difficulty of using Guarantee Ratio as a 
measure of the performance of targeting. As they stand they do not give a clear indication 

of the performance of each of the algorithms. The average schedulability test time (Ave 
Test Time) on each of the targets is also included to give an idea of the typical times taken 

to guarantee (or reject) a request at a target. These averages include the times taken for 
dummy tasks. Round Robin does not use dummy tasks, so its column contains no entry for 

Ave Test Time. 

The Total number of sporadics guaranteed is the total of all sporadic tasks 

guaranteed by all three targets over a run of 10 simulations. It gives a fairly accurate 
measure of the relative performances of the targeting algorithms. A more accurate measure 

still, is given by Total Computation Time. This is the total sporadic computation time over 
10 simulations, achieved on the three targets, and is the best measure of the effectiveness of 

each targeting method. Sporadic Utilisation achieved expresses Total Computation Time 

as a percentage of the total possible sporadic computation. 
Total Schedulability Test Time for Real Tasks is the accumulated schedulability 

test time for the actual sporadic requests sent to all three targets over the 10 simulations. 
Total Schedulability Test Time for Dummy Tasks gives a comparable figure for time spent 

on the schedulability testing of dummy tasks. Again, because Round Robin does not use 
dummy tasks, this figure is omitted in the Round Robin column. Not included in the table 

are the maximum schedulability test times recorded over all of the three targets. These 

were in the region of 5 ms, and therefore this was the worst-case computation time used 
for the top-priority periodic task which models schedulability testing within the task lists of 

all three targets. 
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6.5.2 Interpretation of the Results 

A discussion of the results in Table 6.1 is as follows. Clearly Total Computation 
Times for the targeting methods are disappointing in that they are less than that achieved by 
Round Robin allocation. However, as expected, the more sophisticated forms of targeting 
perform better than the cruder forms. (Again note that targeting overheads are not included 

within the overheads of the target processors). 
Total No of Sporadics Guaranteed show a similar ordering of performance 

between the methods, with the notable exception of Ideal Targeting which guarantees 
fewer sporadic requests than Full Targeting but still provides a greater Total Computation 
Time. This marginal effect can be explained by the slightly greater ability of Ideal Targeting 

to guarantee, on average, greater computation times for sporadic tasks than Full Targeting. 
This conclusion is confirmed by comparing the results for Total Schedulability Test Time 
for Real Tasks with Total Schedulability Test Time for Dummy Task for the two methods. 
Ideal Targeting incurs greater Total Schedulability Test Time for Real Tasks but a lesser 
Total Schedulability Test Time for Dummy Tasks. This can be explained by the larger Total 
Computation Time guaranteed by Ideal Targeting giving a small general increase in Total 
Schedulability Test Time for Real Tasks due to the presence of slightly more persistent 
tasks within the task list. However, dummy schedulability testing requires all the tasks in 

the task list (beneath a high-priority dummy of negligible computation time) to be 

schedulability tested. Hence it is more sensitive to the number of tasks in the task list. Ideal 

Targeting may have, on average, shorter task lists which would explain the lower overhead 
for Total Schedulability Test Time for Dummy Tasks. 

The larger Total Schedulability Test Time for Real Tasks for Partial Targeting as 

compared to Full Targeting may be due to the larger schedulability test overheads incurred 

with a more poorly targeted allocation of requests to targets such as occurs in Partial 

Targeting. For example, schedulability tests which fail can incur large overheads, on 

average. 

6.5.3 Using Earliest Deadline ordering of Sporadics 

The next simulations performed repeated the use of Bottom-up Hybrid with Test 

3 and Headstart as in Table 6.1, but attempted to improve the performance of the 

targeting methods by presenting the pre-test with requests in order of their earliest 

remaining deadline. Table 6.2 shows the results. The rows for Guarantee Ratios and 
Average Test Times have been omitted because these are not clear indicators of 

performance. 
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Table 6.2 shows that giving preference to the requests with the shortest remaining 
deadline benefits the performances of all of the targeting algorithms, although of course it 

makes no difference to Round Robin which is in effect a random allocation. The 
improvement in performance can be explained by shorter deadline tasks being less likely to 
be guaranteed when they are allocated to remaining processors which have less slack 
available. Other requests, because of their longer relative deadlines, stand a greater chance 
of being guaranteed when they are allocated to the remaining targets. Again the relative 
performances of the targeting methods show similar improvements when greater overheads 
are incurred in order to increase the accuracy of the targeting. The slightly higher values for 
Total Schedulability Test Time for Real Tasks as compared to Table 6.1 can be explained 
by the greater number of sporadic requests which are being guaranteed and therefore the 
'added computation time' within the task list. 

Targeting Method: Round Partial Full Ideal 
Robin Targeting Targeting Targeting 

Total Computation 
Time ms : 317,450 307,172 309,250 310,513 

Sporadic Utilisation 

achieved % 84.65 81.91 82.47 82.80 

Total number of 

sporadics guaranteed: 13,377 13,111 13,182 13,148 

Total Schedulability 
Test Time for Real 32,315 32,020 31,614 32,852 

Tasks ms : 
Total Schedulability 

Test Time for Dummy - 40,671 41,514 41,019 

Tasks ms 

Table 6.2: Bottom-up Hybrid (Test 3, Headstart) with sporadics targeted in earliest deadline order. 

6.5.4 Summary 

The results in Tables 6.1 and 6.2 show that Targeting performs disappointingly as 

compared to Round Robin. Closer investigation of the pattern of acceptance and rejection 

of sporadic requests within the simulations indicated that targeting sometimes results in the 

acceptance of a difficult-to-schedule sporadic which is rejected under Round Robin. 

However, shortly afterwards Round Robin may cause the acceptance of two 'easier' 
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sporadics which Targeting rejects. Hence targeting can be counter-productive because it is 
not clairvoyant. Similar phenomena have been described by Liu et al [58] in the context of 
maximising the response time of random aperiodic requests with soft deadlines. Their 
conclusion is that there is no optimal method for maximising response time, unless it is 
possible to predict the characteristics of future aperiodic requests. 

6.6 USE OF TOP-DOWN SCHEDULABILITY TESTING 

6.6.1 Introduction 

Targeting is currently performed purely on the basis of slack values of tasks which 
lie below the sporadic request within the task list. In other words the pre-test gives no 
indication of whether the sporadic task itself will be schedulable when interferences from 
higher priority tasks in the task list are taken into account. This means that a request which 
is allocated by the targeting pre-test is relatively likely to allow the existing tasks within the 
task list to remain schedulable, but less likely to be schedulable itself If this is the case then 
the bottom-up order of schedulability testing may no longer be the most efficient method of 
finding any unschedulable tasks within a task list which will cause the request to be 

rejected. 
The question arises as to whether a Top-down order of schedulability testing would 

be more efficient than Bottom-up. Top-down starts by testing the sporadic request and 
then traverses the task list downwards, testing all the existing tasks below the request. If 

this method is more efficient at rejecting unschedulable sporadic tasks, then it should cut 
schedulability testing overheads overall and increase the effectiveness of targeting. 
Therefore the next simulations which were performed used the Top-down Hybrid 

schedulability test algorithm, with the improvements referred to as Test 3 and Headstart as 
described in Chapter 5. 

6.6.2 Results 

Table 6.3 shows that the effect of using Top-down Hybrid is to cause a marginal 
drop in Total Computation Time across all the allocation methods. This is in accordance 

with the pervious results for Top-down Hybrid (see Section 4.6). Table 6.3 shows the 

results when sporadic requests are placed in order of arrival (randomly) and it is therefore 

comparable to Table 6.1. The performances of the targeting algorithms relative to Round 

Robin are similar to Bottom-up Hybrid. 
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Targeting Method: Round Partial Full Ideal 
Robin Targeting Tar etin Targeting 

Total Computation 

Time ms : 316,364 304,384 307,044 308,131 

Sporadic Utilisation 

achieved % 84.36 81.17 81.88 82.17 

Total number of 

sporadics guaranteed: 13,335 13,017 13,106 13,070 

Total Schedulability 

Test Time for Real 33,780 33,967 33,437 34,657 
Tasks (ms): 

Total Schedulability 

Test Time for Dummy - 43,410 43,960 43,529 
Tasks ms : 

Table 6.3: Top-down Hybrid (Test 3, Headstart) with sporadics targeted in random order. 

Targeting Method: Round Partial Full Ideal 
Robin Targeting Targeting Targeting 

Total Computation 
Time: 316,364 305,368 306,432 308,208 

Sporadic Utilisation 

achieved % 84.36 81.43 81.72 82.19 

Total number of 
sporadics guaranteed: 13,335 13,058 13,092 13,063 

Total Schedulability 

Test Time for Real 33,780 33,852 33,448 34,744 

Tasks ms : 
Total Schedulability 

Test Time for Dummy - 43,349 43,938 43,558 

Tasks ms : 

Table 6.4: Top-down Hybrid (Test 3, Headstart) with sporadics targeted in earliest deadline order. 

Table 6.4 shows a similar set of results for sporadic requests ranked in order of 

earliest remaining deadline. With one exception, Total Computation Times for targeting are 
improved over Table 6.3 which confirms that this ordering of sporadic requests is again 
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beneficial. The exception is the result for Full Targeting which is less in Table 6.4 than 
Table 6.3. This anomaly indicates how marginal the effect of sporadic request ordering can 
be, especially for Full Targeting. Comparing similar figures for Full Targeting with Bottom- 
up Hybrid (Table 6.1 with Table 6.2) it can be seen that the Total Computation Time for 
earliest deadline ordering of requests it only slightly greater than for random ordering. The 
anomalous result in Table 6.4 may also show that giving preference to shorter deadline 
tasks shows up more the inefficiency of the top-down schedulability test algorithm. Earlier 
deadlines correspond to higher positions in the task list, and therefore more top-down 
schedulability testing before a discovery that a lower, previously-guaranteed task is 

unschedulable. 

6.6.3 Summary 

These results tend to dispel the concern that Bottom-up testing might be 
disadvantageous to targeting. On the contrary, the increased values for Total 
Schedulability Test Time for Real Tasks and Total Schedulability Test Time for Dummy 
Tasks confirm that Top-down is a less efficient order for the schedulability test algorithm. 

6.7. TARGETING WITHOUT DUMMY SPORADIC REQUESTS 

6.7.1 Introduction 

Another issue which may impinge upon the performance of Targeting as compared 
to Round Robin is the extra overhead imposed on targeting by the use of dummy sporadic 
requests. The following simulations use Bottom-up Hybrid schedulability test algorithm but 

without dummy sporadic requests. While this lowers the overhead on the target processors 
it also means that the slack values used by the pre-test are likely to be more out-of-date. 

Tables 6.5 and 6.6 show results which are comparable to Tables 6.1 and 6.2, this 

time without dummy requests. Total Schedulability Test Time refers to the total time spent 
in scheduling real sporadic requests only, since dummies are no longer used. The Tables 

also include measurements of the targeting overhead (due to allocation, matrix 

construction, etc. ) on the targeting processor. Total Targeting Time on the Targeting 

Processor is the accumulated overhead due to targeting over the 10 simulations. As before 

the tables contrast the performance when not ordering sporadic requests and when ordering 
them. 

130 



Targeting Method: Round Partial Full Ideal 
Robin Targeting Targeting Targeting 

Total Computation 
Time ms : 317,450 320,970 322,110 327,001 
Sporadic Utilisation 

achieved % 84.65 85.59 85.90 87.20 

Total number of 
sporadics guaranteed: 13,377 13,543 13,575 13,639 

Total Schedulability 
Test Time ms : 32,315 32,091 31,853 32,953 

Total Targeting Time 

(ms) on the Targeting - 2,518 5,545 88,246 
Processor: 

Table 6.5: Bottom-up Hybrid (Test 3, Headstart) with sporadics targeted in random deadline order. 

Targeting Method: Round Partial Full Ideal 
Robin Targeting Targeting Targeting 

Total Computation 
Time ms : 317,450 321,049 322,940 327,096 

Sporadic Utilisation 

achieved % 84.65 85.61 86.12 87.23 

Total number of 
sporadics guaranteed: 13,377 13,543 13,609 13,667 

Total Schedulability 

Test Time ms : 32,315 32,107 32,052 33,067 

Total Targeting Time 

(ms) on the Targeting - 2,886 6,085 88,578 

Processor: 

Table 6.6: Bottom-up Hybrid (Test 3, Headstart) with sporadics targeted in earliest deadline order. 

6.7.2 Interpretation of the Results 

Obviously the removal of the dummy testing overheads on the target processors 
improves the performance of Targeting so that it now exceeds Round Robin. Full 

Targeting improves the performance by up to 2% which shows that even the more out-of- 
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date slack values are of some benefit in mapping requests to likely targets. Ideal Targeting 
provides an improvement in performance of over 3%. It is not surprising that there is now a 
clearer difference between the performance of Ideal Targeting as compared to Full 
Targeting. This now reflects the benefit of using the full schedulability test instead of out- 
of-date slack values as a basis for targeting. 

Both Tables 6.5 and 6.6 show a slight increase in Schedulability Test Time 
compared to Schedulability Test Time for Real Tasks in Tables 6.1 and 6.2. This is 
attributable to the increase in the loading of guaranteed sporadic tasks when dummy testing 
is removed. 

6.7.3 Summary 

Clearly Tables 6.5 and 6.6 indicate that the overheads incurred by dummy requests 
are not justified in terms of improvements in the performance of targeting. The results for 
Ideal Targeting provide some measure of the maximum improvement in performance which 
targeting can provide. 

6.8 OVERHEADS ON THE TARGETING PROCESSOR 

A further issue is the overheads which are actually incurred by targeting on the 
Targeting Processor itself. Total Targeting Time in Tables 6.5 and 6.6 shows that these 

overheads rapidly increase with the sophistication of the targeting methods used. 
Table 6.7 contrasts the Total Targeting overheads from Table 6.6 with the increase 

in Total Computation Time over Round Robin. In the case of these simulations, the 

overheads for Partial Targeting are outweighed by the performance improvement, Full 

targeting almost 'breaks even' but, as expected, Ideal Targeting incurs a far greater 

overhead than is justified. 

Targeting Method: Partial Full Ideal 

Targeting Targeting Targeting 

Total Gain in Computation Time 

over Round Robin ms : 3,599 5,490 9,646 

Total Targeting Time 

(ms) on the Targeting Processor: 2,886 6,085 88,578 

Table 6.7: Comparing gain in computation time against targeting overheads incurred in Table 6.6 
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The results in Table 6.7 support the case for Shuffle Schedulability Testing which is 
discussed below in Section 6.13. 

6.9 UPDATING SLACK FOR ACCEPTED SPORADIC TASKS ONLY 

Issue 6 in the introduction concerns less frequent, but sometimes more accurate, 
updating of the slack values of tasks in the task list of the target processors. The issue is 

whether (i) slack values in the task lists should be updated every time a request is 

schedulability tested or (ii) whether slack values should be updated only when a 
schedulability test has succeeded and a sporadic task is accepted. 

Simulations so far have used (i) above. The advantage of (ii) is that, in the case of a 
request which fails, the sporadic's computation time has not been used pessimistically in the 

calculation of the new slack values. The disadvantages of (ii) are twofold. One, when a 
request fails the old slack values are retained, and these will be even more out-of-date. 
Two, a slightly larger overhead is incurred due to the need to temporarily store slack values 
and then perform the updating only when a schedulability test succeeds. In contrast (i) 

above updates the slack values every time schedulability testing is performed, regardless of 

whether the sporadic request is accepted or rejected. 

Version of Full (i) Update slack every (ii) Update slack only if 

Targeting: schedulability test request accepted 
Total Computation 

Time ms : 324,098 323,597 

Sporadic Utilisation 

achieved (%) 86.43 86.29 

Total number of 
sporadics guaranteed: 13,628 13,614 

Total Schedulability 

Test Time ms : 32,337 32,310 

Table 6.8: Two versions of Full Targeting both using Bottom-up Hybrid (Test 3, Headstart) with 

sporadics targeted in earliest deadline order. 

Table 6.8 shows the results of two sets of simulation for Full Targeting with (i) and 
(ii) above. As before, the periodic utilisation is 85% but different sets of randomly 
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generated periodic tasks were used so that the results in column (i) are slightly different 
from the simulations in Table 6.6. However, the same periodic task sets were used for both 
(i) and (ii) in Table 6.8, so that these results are directly comparable. As can be seen from 
Table 6.8, the original method of updating the slack values, at every schedulability test 
gives a slightly better Total Computation Time. No doubt method (ii) suffers from the fact 
that slack values become even more outdated plus the effect of a slightly greater overhead. 

6.10 VARYING PERIODIC UTILISATIONS UNIFORMLY 

The next issue to explore is the effect of varying periodic utilisations uniformly 
across all targets. As mentioned in Chapter 4, sporadic utilisation can be varied either by 

changing the average computation times of sporadic requests or by changing the arrival 
rate of requests. Tables 6.9 and 6.10 below show the results of using each of these methods 
to vary periodic utilisations uniformly across the cluster. Table 6.9 shows periodic 
utilisations varying from 85% down to 50% while the average computation time for 

sporadic requests varies from 25ms to 95ms. The arrival rate of sporadic requests is 

constant at 0.015 requests per ms. The total possible utilisation (periodic plus sporadic) is 
97.5% in every case. The performances of Round Robin and Full Targeting are compared 
by measuring the percentage of the possible sporadic utilisation which is achieved by each. 
Full Targeting was chosen for comparison because it was the targeting method which 
provided the best performance with reasonable overheads in the previous simulations. 

Table 6.9 shows that Full Targeting clearly outperforms Round Robin at low 

average sporadic computation time, but the performances are very similar at high average 
sporadic computation times. This may illustrate the problems of guaranteeing a sporadic 
task with a large average sporadic computation time. A targeting method may make it more 
likely for such a computation time to be accepted. However, as remarked above, this may 
prove disadvantageous in the long run because using up most of the available slack on a 
single sporadic may forfeit the chance of accepting subsequent sporadics which may be 

easier to guarantee. Hence for high average sporadic computation times the relative 
advantages of Full Targeting are lost. 

Table 6.10 shows the results of varying periodic utilisation by changing the arrival 

rate of sporadic requests. Here the average computation time of sporadic request is fixed at 
50ms. Arrival rates vary from 0.01 to 0.03 per ms while periodic utilisations vary from 

80.8% down to 47.5%. Again the total possible utilisation (periodic plus sporadic) is 

constant at 97.5%. As before, the table compares the performances of Round Robin and 
Full Targeting. 
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Ave Sporadic 
Comp Time 25 50 75 95 

(ms) 

Resident 
Periodic 85.0 72.5 60.0 50.0 

Utilisation 

Sporadic 

Utilisation 12.5 25.0 37.5 47.5 
Possible 

% of Sporadic 
Utilisation 

Achieved by 84.65 83.31 85.86 85.11 

Round Robin 

% of Sporadic 
Utilisation 

Achieved by 86.13 85.04 85.91 85.04 

Full Targeting 

Table 6.9: Varying sporadic utilisation by changing the average sporadic computation time. 

Sporadic arrival rate constant at 0.015 per ms. 

The results in Table 6.10 show that both Round Robin and Full Targeting increase 

their % of Sporadic Utilisation Achieved as the rate of sporadic arrivals increases. This is 

because sporadic tasks make up a relatively larger proportion of the total possible 

utilisation. The performances of both methods are very similar at the lowest arrival rate of 
0.01 per ms. This is because there is little difference between Round Robin and Targeting 

under a low loading of sporadic requests (an average of 1 sporadic arrival at the cluster, at 

every schedulability test slot). Larger differences between Round Robin and Full Targeting 

are observed at intermediate arrival rates such as 0.02 per ms. However, at the highest 

arrival rate of 0.03 per ms the cluster is saturated with a sporadic request for every target 

at every schedulability test slot. This means that, again, there is less difference between the 

performances of Round Robin and Full Targeting. 
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Ave Arrival 
Rate (per 0.01 0.015 0.02 0.025 0.03 

ms 
Resident 
Periodic 80.8 72.5 64.2 55.8 47.5 

Utilisation 

Sporadic 
Utilisation 16.7 25.0 33.3 41.7 50.0 

Possible 

% of 

Sporadic 
Utilisation 77.06 83.31 85.65 87.73 89.49 

Achieved by 
Round 

Robin 

% of 
Sporadic 

Utilisation 77.02 85.04 87.62 89.99 91.32 

Achieved by 
Full 

Targeting 

Table 6.10: Varying sporadic utilisation by changing the sporadic arrival rate. 
Average sporadic computation time constant at 50 ms. 

6.11 SKEWED DISTRIBUTIONS OF PERIODIC UTILISATIONS 

6.11.1 Introduction 

The above results show that targeting can generate only marginal improvements 

across a range of periodic utilisations which are distributed uniformly across the target 

processors. The next issue to investigate is whether targeting may produce clearer benefits 

when applied to a skewed (uneven) distribution of periodic utilisations across the target 

processors. There are obvious advantages in targeting a request at a processor with a low 

periodic utilisation instead of other targets with higher periodic utilisations. 
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Two sets of simulations were performed in order to explore skewed periodic 
utilisations. The first (shown in Table 6.11) has a constant, average sporadic utilisation of 
45ms and a constant sporadic arrival rate of 0.02 per ms. The second (shown in Table 
6.12) has a constant, average sporadic utilisation of 60ms and a constant sporadic arrival 
rate of 0.015 per ms. Each table shows the % of the total possible sporadic utilisation 
achieved across the whole cluster by the various targeting methods under consideration. 
For all results the total possible periodic utilisation, summed across the three target 
processors in the cluster, is 202.5%. The total possible sporadic utilisation added to this is 
90% for all results. Hence the overall, total possible utilisation per target processor is: 
(202.5 + 90)/3 in other words 97.5% per processor. This is in line with total possible 
utilisations for all previous results in this chapter. 

6.11.2 The Skewed Distributions 

The various distributions of the 202.5% periodic utilisation across the three targets 

are as follows. No-skew has a uniform periodic distribution of 67.5% on each of the three 

targets and it acts as a 'control experiment'. Uniform Skew (in Table 6.11) has a uniform 

gradient of periodic distribution across the targets i. e. 85% : 67.5% : 50%. Heavy skew 
(Table 6.12) has a 85% : 85% : 32.5% periodic distribution. This concentrates most, but 

not all, of the spare capacity for sporadic tasks in the third processor. However the 

constraint of a maximum of one request per target per schedulability test slot of 100ms still 

applies. This constraint is relaxed for Single Target (Tables 6.11 and 6.12) which has a 
90% : 90% : 22.5% periodic distribution. 

In Single Target all of the spare capacity for sporadic tasks is concentrated in the 

third target. This releases the first two targets from schedulability testing altogether which 

allows the periodic task set aside for schedulability testing to be included as part of the 

general periodic utilisation. This task has a WCET of 5ms and a period of 100ms, so that 

the effect is to add 5% to the periodic utilisation for these processors, which brings their 

total utilisation (periodic only) up to 90%. In contrast, the third target processor may now 
have to schedulability test up to three requests per 100ms slot. Hence its top-priority 

periodic task, which represents schedulability testing, must have a WCET of 15ms and a 

period of 100ms. Single Target obviously has is own unique 'targeting method' which is 

simply to allocate all sporadic requests to the third target processor. 
An additional targeting method is Skewed Round Robin which is the skewed 

analog of Round Robin. Here Round Robin is modified so that the number of allocations 

made are in inverse proportion to the ratio of periodic utilisations on the targets. In other 

words Round Robin is simply upgraded to adapt rotational allocation so that targets with 
lower utilisations are given correspondingly more frequent 'turns'. The ratios of the 
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frequency of allocation 'turns' for the set of target processors is equal to the ratios of their 
spare capacities. Here 'spare capacity' is defined as: (97.5 - Periodic Utilisation)% for each 
target. 

Round Partial Full Ideal Skewed Single 
Robin targeting Targeting Targeting Round Target 

Robin 
No Skew: 

% Sporadic 85.99 86.89 87.92 88.33 
Utilisation 
achieved 
Uniform 

Skew: 
% Sporadic 73.26 82.42 83.66 81.32 83.56 _ 
Utilisation 

achieved 
Single 

Target: 
% Sporadic 76.76 
Utilisation 
achieved 

Table 6.11: Skewing the distribution of periodic utilisation. 
Constant ave sporadic computation time of 45ms and constant sporadic arrival rate of 0.02 per ms. 

Round Partial Full Ideal Skewed Single 
Robin targeting Targeting Targeting Round Target 

Robin 
No Skew: 

% Sporadic 87.82 86.11 87.57 88.88 
Utilisation 

achieved 
Heavy Skew: 

_ % Sporadic 60.01 78.81 83.51 78.11 86.11 
Utilisation 

achieved 
SingleTarget: 

- - - - - % Sporadic 79.56 
Utilisation 

achieved 

Table 6.12: Varying the distribution of periodic utilisation (skew). 
Constant ave sporadic computation time of 60ms and constant sporadic arrival rate of 0.015 per ms. 
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6.11.3 Interpreting the Results 

Table 6.11 shows the following results for different degrees of 'skewedness', No 
Skew shows a steady increase in the sporadic utilisation achieved from Round Robin 
through to Ideal Targeting (Skewed Round Robin is not applicable for No Skew). 
Uniform Skew shows generally poorer performance, especially for Round Robin which is 
performing simple rotational allocation despite the inequality of periodic utilisation on each 
of the targets. Targeting methods improve the sporadic utilisation achieved but it is 
noteworthy that Skewed Round Robin performs almost as well as Full Targeting. Also 
notable is that Ideal Targeting performs less well than Full targeting. This may be a 
reoccurrence of the counter-intuitive effect where the greater ability of Ideal Targeting to 
facilitate the guarantee of 'difficult' sporadic tasks, actually causes later sporadics to be 

rejected. 
In Table 6.11 Single Target achieves a poor sporadic utilisation. No doubt this is 

partly due to the high upper bound for schedulability testing (15ms) which is used in the 
schedulability testing of a newly arrived request. Also, the high request loading placed on 
the single target when, for example, three outstanding sporadic requests have to be 

schedulability tested must have an effect on the sporadic utilisation which is attainable. 
Table 6.12 shows similar results to that of Table 6.11. Again No Skew shows the 

best sporadic utilisations achieved with an increase in sporadic utilisation achieved as 
targeting methods become more sophisticated. However Round Robin performs slightly 
better than Full Targeting which is echoed by the results for high average computation 
times and low sporadic arrival rates in Tables 6.9 and 6.10 above. Heavy Skew has most of 
the spare capacity on one of the target processors with relatively little on the others (85% : 
85% : 32.5%). It is not surprising that Round Robin performs so badly when using simple 

rotational allocation among such a biased allocation of periodic utilisation. Steady 

improvements are made when Partial Targeting and Full Targeting are used. However Ideal 

Targeting results in a drop in sporadic utilisation achieved. This may be explained by the 

same observations as for Table 6.11. Under Heavy Skew distribution Skewed Round 

Robin actually performs best of all. Again the relatively high average computation time 

(60ms) and the low sporadic arrival rate (0.015 per ms) is best served by a Round Robin 

method. Finally, Single Target performs badly as in Table 6.11. 

6.11.4 Summary 

The results for skewed distributions of periodic utilisations can be summarised as 
follows. The No Skew distribution of periodic utilisation provides the best sporadic 

utilisations overall. Under a skewed distribution of periodic utilisation Skewed Round 
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Robin performs as well as the targeting methods, without the disadvantage of their 
overheads on the targeting processor. Ideal Targeting can be counter-productive when 
periodic distribution is skewed, and finally the method of targeting all sporadic request onto 
a Single Target, in order to enhance the periodic utilisation on the remaining targets, does 

not actually increase the overall utilisation across the cluster. 

6.12 GENERATING SPORADIC REQUESTS INTERNALLY 

6.12.1 Introduction 

The final issue to be considered under the heading of Targeting is the inclusion of 
sporadic requests which arise internally on the target processors themselves. Hitherto the 

simulations have assumed that requests arrive only from sources external to the cluster and 
are allocated by a targeting processor. However to fulfil the requirements of the 
Constrained Computational Model described of Chapter 3, it is necessary to consider the 
incorporation of those sporadic requests which may also arise internally at each of the 
target processors. 

A major issue which arises here is how the arrival of a stream of internal and 
external sporadic requests can be constrained and interleaved in such a way that 

schedulability testing can be bound. It is assumed that internal sporadic requests arise 

randomly at target processors and that they must be either guaranteed or rejected on their 
'home' processor. Furthermore, it is assumed that only one request (internal or external) 

may arrive at a target processor in any one schedulability test slot. These assumptions 

enforce the constraint of a maximum of one sporadic request per schedulability test slot and 
therefore allow schedulability testing to be bounded. 

Clearly the targeting of external sporadic requests will be undermined by the 
(random) arrival of internal sporadic requests at target processors. Therefore in order to 

retain some value in targeting, it is better to separate external and internal requests. In 

order to achieve this, and to enable schedulability testing to be bound, it was decided that 

all methods used should generate, at each 100ms schedulability test slot, either a set of 
internal or a set of external sporadic requests, but never a mixture of both. As usual a set 

may consist of up to three sporadic requests. A further issue concerns the use of slack 

values which are recalculated when an internal sporadic request is schedulability tested. It is 

argued that these values should be available to the targeting processor by exactly the same 

mechanism as is used to communicate slack values generated by the schedulability testing 

of external requests. 
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6.12.2 Adapted Targeting Algorithms 

Random Alternating Full Adapted Adapted 
Round Round Targeting Full Round 
Robin Robin Tar etin Robin 

% of 
Sporadic 84.55 84.58 85.74 86.04 85.06 

Utilisation 

achieved 

Table 6.13: Randomly allocated internal sporadics and systematically allocated external sporadics. 

Table 6.13 shows the range of methods which were developed to deal with a 

mixture of internally and externally arising sporadic requests. In Random Round Robin a 

random choice is made at each schedulability test slot to decide whether sporadics requests 

are (i) internal or (ii) external, for that slot. However, this can lead to an effect where 

sequences of schedulability test slots are composed of 'runs' of internal or external sporadic 

requests. In contrast, the method used by Alternating Round Robin (and also by Full 

Targeting and Adapted Round Robin) enforces separate upper bounds on the arrival 

rates of both internal and external sporadic requests. This may be closer to the 

requirements of a realistic application. In Alternating Round Robin, alternating 

schedulability test slots are chosen for (i) internal or (ii) external sporadic requests. This has 

the effect of fixing the maximum arrival rate for either internals or externals to be 3 

sporadics per 200ms. Internal sporadics are allocated randomly at each of the target 

processors with the constraint that each target may take a maximum of one internal 

sporadic per 200ms slot. 
As previously, external sporadic requests may be allocated Round Robin, or 

Targeted according to some knowledge of the slack available on each of the target 

processors. In Random Round Robin and Alternating Round Robin, external sporadic 

requests are allocated in round robin rotation without taking into account the allocation of 

internal sporadic requests at the last 100ms slot. In contrast, Full targeting, Adapted Full 

Targeting, and Adapted Round Robin make use of some of the knowledge gained at the 

last 100ms allocation of internal sporadics. Full Targeting makes use of the most recently 

calculated slack values (which includes any values calculated when schedulability testing 

internal sporadics at a previous 100ms slot). However Full Targeting makes no use of the 

knowledge of which target processors were allocated internal sporadics 100ms previously. 
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In contrast to Full Targeting, Adapted Full Targeting avoids the target positions 
of the last internal sporadic request allocation, when, as described previously, it is 
necessary to make FCFS allocation of external sporadics. Similarly, Adapted Round 
Robin restarts its rotational allocation of external sporadics at a target where it is known 
that no internal sporadic request was allocated 100ms previously. (This is slightly less than 
optimal, since it would be even better to ensure that Round Robin restarts at the first 

previously unallocated target if any 'runs' of two unallocated targets exist from the last 
internal request allocation cycle. ) In the event of all targets being allocated internal 

sporadics at the last cycle, Adapted Round Robin continues where it left off at the last 

external allocation, 200ms previously. 

6.12.3 Results 

Table 6.13 shows the percentage sporadic utilisation achieved by simulations using 
this range of allocation algorithms. For all simulations there is a flat distribution of 67.5 % 

periodic utilisations across all three processors, an average sporadic computation time of 
45ms, and an average sporadic arrival rate of 0.02 sporadics per ms. Hence the results in 

Table 6.13 are directly comparable to the results in Table 6.11, where all sporadic requests 

are external. 
Clearly the sporadic utilisations achieved in Table 6.13 are down on the No-Skew 

results in Table 6.11. Obviously the random allocation of internal sporadic requests is 

working against a balanced loading of sporadic computation on each of the target 

processors. Table 6.13 shows that small improvements in performance can be made by the 

use of targeting methods which take into account information gained at the last cycle of 
internal sporadic allocation. Full Targeting takes advantage of slack values which are 

updated by any internal sporadic in the last cycle. Adapted Full Targeting enhances 

performance slightly more by taking into account the allocations of internal sporadics to 

targets at the last cycle. However, a similar adaptation to Round Robin, (Adapted Round 

Robin) can bring its performance closer to that of the targeting methods. 

6.13 SHUFFLE SCHEDULABILITY TESTING 

6.13.1 Introduction 

Shuffle Schedulability Testing is a different configuration from a targeting cluster. 

The targeting processor is dispensed with, and the three target processors are configured in 

a 'loop'. Sporadic requests which arise (either internally or externally) at each processor are 
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first schedulability tested at the 'home' processor and, if they fail their test, are 'shuffled' to 
the next processor along the loop. At the second processor the test is repeated, and, if it 
fails, the request is shuffled to the third processor where a final test is performed. In this 
way each processor in the cluster has an equal status, and each processor behaves 

symmetrically. As with targeting, it is assumed that communications within the cluster are 
sufficiently fast that communication delays are negligible, in comparison to the intervals 
between acceptance testing. 

In Shuffle Schedulability Testing, the issue of separating internal and external 
sporadic requests no longer causes a problem. Neither type of request need be 
distinguished from each other and each type can be considered as arising at random on any 
of the three processors in the cluster. (Whether there is actually a targeting processor 
which is allocating the external requests is not relevant. ) 

It is assumed that the system constrains the arrival rate of new requests, whether 
internal or external, at each processor, to be a maximum of one 'home' request per 
schedulability test slot. However, in order to speed up the 'shuffling', the constraint of one 
schedulability test per processor per 100ms is relaxed, and processors may now perform up 
to three tests per slot. This allows a processor to schedulability test up to two sporadic 
requests which have been 'passed on' from other processors which rejected them. The 

upper bound for schedulability testing (which is itself used when performing the 

schedulability test) must therefore be trebled to 15ms. 
As previously, the simulations make the idealised assumption of zero 

communication overheads incurred when a request is passed on from one processor to the 

next. This assumption must not be confused with the effect of phase differences between 

the start of schedulability test slots at each of the processors. The effect of such phase 
differences is now discussed. 

6.13.2 The Effect of the Phase Difference 

A key performance parameter in Shuffle Schedulability Testing may be the size of 

any delays before follow-up schedulability tests at processors along the loop can be 

performed. Loosely coupled processors may have large phase differences between their 

schedulability test slots and the delays incurred by these differences may degrade the 

performance of Shuffle Schedulability Testing. 

The simulations of Table 6.14 investigate the effect of such phase differences 

between schedulability test slots. For each simulation in the table, the delays between 

processor schedulability slots are set to a different, fixed value. Fully Unsynchronised 

carries a set delay of 100ms between processors, Semi-synchronised has a delay of 50ms 

and Fully Synchronised has zero delay. Regarding the order of schedulability testing at the 
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start of a 100ms slot, it was decided that sporadic requests which have newly arrived at a 
processor should be given preference over requests shuffled from other processors. ' 

Fully Semi- Fully 
Unsy nchronised Synchronised Synchronised 

% of Sporadic 
Utilisation 87.34 87.73 88.36 

achieved 

Table 6.14: Shuffle Schedulability Testing with varying degrees of synchronisation between the 

processors. 

6.13.3 Interpretation of the Results 

The simulations in Table 6.14 carry a flat distribution of 67.5% periodic utilisations 

across all three processors, an average sporadic computation time of 45ms, and an average 

sporadic arrival rate of 0.02 sporadics per ms. Therefore these results are directly 

comparable to the No Skew results in Table 6.11. Fully Synchronised in Table 6.14 

shows around 2% higher Sporadic Utilisation achieved than Round Robin in Table 6.11. 

This is the appropriate comparison to make because Shuffling, like Round Robin, incurs no 

overheads for targeting. In fact, Table 6.11 shows that Full Targeting, by incurring 

considerable targeting overheads, achieves only similar sporadic utilisations to those of 

Shuffle Schedulability Testing in Table 6.14. 

Results not shown in the Tables indicate that Shuffling makes a small but consistent 
improvement over Full Targeting, in the total number of sporadics tasks guaranteed. For 

example, Fully Synchronised in Table 6.14 manages to guarantee a total of 18,501 

sporadic tasks compared to a total of 18,310 sporadic tasks for Full Targeting in Table 

6.11. This indicates a slight tendency for Shuffling to favour sporadics with shorter 

computation times. This could be because a second or third schedulability test within a 

schedulability test slot at a processor may stand a slightly greater chance of succeeding for 

requests with smaller computation requirements. 
Looking at the delays introduced into Shuffle Schedulability Testing in Table 6.14, 

it is not surprising that greater performance can be achieved when follow-up schedulability 

testing can be performed immediately. However, performance deteriorates only slightly 

when the maximum possible delay of 100ms is introduced at each processor. This can be 

explained by the fact that delaying can, in some circumstances, reduce schedulability test 

overheads. The explanation is as follows. 
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Shuffling with delays is programmed to reduce the current deadline of any request 
by the amount of any delay which has elapsed in receiving that request from another 
processor. Furthermore shuffling with delays is judged to be unlikely to result in an 
eventual guarantee of a request once the deadline of the request has been reduced below a 
certain threshold. (This is implemented by no longer passing on requests once their current 
deadlines have been reduced to 100ms or less. ) In contrast, Fully Synchronised Shuffling. 
experiences no delays between processors and therefore current deadlines are never 
reduced. In this case, requests with short deadlines (e. g. less than 200ms) may well incur an 
expensive schedulability test at each processor before being rejected anyway. 

It is interesting to note that the total schedulability test overheads for Shuffle 
Schedulability Testing are considerably greater than those for Full Targeting. Typical 
figures (not shown in Tables 6.14 or 6.11) for Total Sched Test Time are 54,164ms for 
Shuffle Schedulability Testing as compared to 39,670ms for Full Targeting. Obviously this 
is due to some requests being passed on to the second or third processor. 

Summary: These results show that Shuffle Schedulability Testing can provide a 
comparable performance to targeting methods without incurring their overheads. Therefore 
the final issue is to investigate the performance profile of Shuffle Schedulability Testing 

under varying sporadic and periodic utilisations. 

6.13.4 Varying Periodic Utilisations 

Of the different forms of Shuffle Schedulability Testing which were simulated, 
Fully Synchronised performed best, and therefore it was adopted for the simulations in 

Table 6.15, where periodic utilisation was varied uniformly across all processors. Variation 

of sporadic utilisation by changing the sporadic arrival rate was chosen because this 

produced the greatest variation in the performances obtained for original Round Robin and 
Full Targeting (see Table 6.10). These original results for Round Robin and Full Targeting 

are included in Table 6.15 for the convenience of comparing them to results obtained for 

Fully Synchronised Shuffle Schedulability Testing. The 0.01 sporadics per ms column 
is missing because it was not possible to generate the necessary Periodic Utilisation 

(80.8%) for Shuffle Schedulability Testing when the upper bound for schedulability testing 

had been raised to 15ms. 

The results in Table 6.15 show that Fully Synchronised Shuffle Schedulability 

Testing performs 2% to 3% better than original Round Robin and performs marginally 
better than Full Targeting. Note that the performance improvement due to Fully 

Synchronised Shuffle Schedulability Testing increases slightly with increasing sporadic 

arrival rate, and decreasing periodic utilisation. Again, more detailed results (not shown) 
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indicate that Fully Synchronised Shuffle Schedulability Testing slightly favours sporadics 
with smaller computation times. 

Ave Arrival Rate 
(per ms) 0.015 0.02 0.025 0.03 
Resident 

Periodic Utilisation 72.5 64.2 55.8 47.5 

Sporadic Utilisation 
Possible 25.0 33.3 41.7 50.0 

% of Sporadic 
Utilisation 83.31 85.65 87.73 89.49 

Achieved by 
Round Robin 

% of Sporadic 
Utilisation 85.04 87.62 89.99 91.32 

Achieved by 

Full Targeting 

% of Sporadic 
Utilisation 

Achieved by 85.16 87.76 90.36 92.66 

Fully Synchro 
Shuffle Sched 

Testing 

Table 6.15: Varying sporadic utilisation by changing the sporadic arrival rate. 
Average sporadic computation time constant at 50 ms. 

6.13.5 Summary 

Shuffle Schedulability Testing is more efficient than targeting methods because it 

achieves similar performance while incurring no overheads on a targeting processor. It does 

this despite the greater burden of schedulability testing, and the adverse effect of the higher 

upper bound on schedulability testing. 
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6.14 SUMMARY OF WORK DONE 

This chapter has reported on the results of extensive investigations into the 
operational use of schedulability testing within a processor cluster. In general, sporadic 
requests can arise internally within the cluster or externally from some other part of the 
system. The cluster may be configured for 'targeting' in which a fourth processor directs 
requests to three target processors. Alternatively, the three targets may be configured as a 
'loop' with each processor receiving its sporadic requests separately. 

In targeting, each target processor attempts to guarantee a sporadic request which 
it receives from the targeting processor. If the attempt fails then the request is rejected. In 
'shuffle schedulability testing' the originating processor first attempts to guarantee, but a 
failed request is passed round the loop for further schedulability testing. 

A variety of targeting algorithms were developed which would allow the targeting 
processor to allocate each sporadic request to the target it judges most likely to guarantee 
it. These ranged from simple Round Robin allocation of requests, to allocation based on a 
slack-based pre-test. An examination was made of the trade-off between the value to 
targeting of more up-to-date slack values on the target processors, and the extra overhead 
incurred on the targets in order to achieve this. 

The behaviour of Targeting was investigated when the distribution of periodic 
utilisation within the cluster was varied. Firstly, a range of uniform periodic distributions 

were investigated. Secondly, skewed distributions of periodic utilisations across each of the 
target processors were simulated. The work on Targeting concluded by investigating the 

effect of the generation of internal sporadic requests at the target processors within the 

cluster. It was found that the targeting algorithms could be adapted to allow for the recent 

allocation of such internal sporadic requests. 
Finally, simulations of 'Shuffle Schedulability Testing' were performed using similar 

test data as for targeting. It was found that the performance of Shuffle Schedulability 

Testing deteriorated only slightly when failed requests were delayed in their shuffle from 

one processor to another. The performance of Shuffle Schedulability Testing was also 
investigated for a range of uniform, periodic utilisations. 
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6.15 CONCLUSIONS 

In the following conclusions, 'performance' is measured by the sporadic utilisation achieved. 

6.15.1 General Conclusions for Targeting : 

1. Targeting performs marginally better than Round Robin Allocation for a uniform 
distribution of periodic utilisation upon the processors within the cluster. 

2. The performance of targeting can be improved by constructing a more optimal 
mapping of sporadic requests to target processors. However this can incur large 

overheads on the targeting processor, which are not justified in terms of the gains in 

performance across the target processors. 

3. The use of extra schedulability testing on the target processors in order to permit a 
more frequent updating of slack, is not cost-effective and can decrease the 

performance of the targeting methods investigated to below the level achieved by 

Round Robin. 

4. Allowing targeting algorithms to give preference to sporadic requests with the earliest 

relative deadlines can enhance the performance of targeting. 

Conclusions for Targeting in a Cluster with various Periodic Utilisations: 

5. A uniform distribution of periodic utilisation on the target processors achieves the 

highest overall performance. 

6. If there is a skewed distribution of periodic utilisations over the target processors, 

then targeting provides a better performance than simple Round Robin. However, 

adapting Round Robin to provide a skewed allocation of sporadic requests can 

achieve comparable performance to that of targeting. 

7. Distributing periodic utilisation such that a single target carries all of the spare 

capacity of the system leads to poorer overall performance across the cluster. 
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Conclusion for a mixture of Internally and Externally Generated Sporadic Requests: 

8. The introduction of random, internally generated sporadic requests into a cluster 
generally decreases performance. However, some performance can be restored to the 
targeting methods, and to Round Robin, by adapting them to take into account the 
recent allocation of internal requests. 

6.15.2 Conclusions for Shuffle Schedulability Testing: 

9. Shuffle Schedulability Testing incurs no overheads on a targeting processor and can 
provide gains in sporadic utilisation which are greater than those provided by 

targeting methods. 

10. Shuffle Schedulability Testing is not adversely affected by the random generation of 
internal sporadic requests and allows both internal and external requests to be 
integrated for the purposes of schedulability testing. 

11. The performance of Shuffle Schedulability Testing deteriorates only marginally when 
schedulability testing on the processors within the cluster is not synchronised. 

12. Shuffle Schedulability Testing cannot be applied at high periodic utilisations, because 

of the relatively high upper bounds which it requires for schedulability testing. 

6.15.3 Overall Conclusion 

Targeting provides only marginal benefits over Round Robin methods of allocating 

sporadic requests within a cluster of processors. 
Shuffle Schedulability Testing is a preferable configuration to Targeting because: 

0 it incurs no Targeting overheads and dispenses with the need for a Targeting 

Processor. 

" it provides greater, or equal performance to that of Targeting. 

" it integrates the schedulability testing of sporadics requests which arise both 

internally within the cluster, and externally from the surrounding system. 

" its performance is not degraded by the random occurrence of internal sporadic 

requests upon its processors. 
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CHAPTER 7 

ADMISSION POLICIES 

7.1 INTRODUCTION 

7.1.1 Objective 

Admission policies arbitrate between optional computations which have passed 
their schedulability tests, and are competing for admission to the schedule on a processor. 
In previous chapters FCFS Admission Policy has been assumed, for the admission of 

requests for the execution of sporadic tasks, which have passed their schedulability tests. 
However the constrained computational model presented in Section 3.4, requires that Best 

Effort Admission Policy be used in order to support the semantics required by different 

utility levels of optional computation. 
The purpose of this chapter is to compare the performances of Best Effort and 

FCFS Admission Policies, under a wide range of simulation parameters, such as Periodic 

Utilisation and Sporadic Arrival Rate. This should establish ranges of values of these 

parameters within which the constrained model, using Best Effort Admission Policy, 

provides a higher total utility for the system. Under other parameter values, FCFS may 

provide higher performance. 

schedulability test the request with the full task list 
if the schedulability test succeeds then 

accept the request 
else 

remove all abortable, lower utility tasks from the task list 

schedulability test the request within the reduced task list 
if the schedulability test succeeds then accept the request 

for each lower utility task which has been removed, taken in order of (i) the 
highest utility category remaining (ii) lowest residual computation time 

within that category : 
schedulability test the removed task 
if the task passes the test then re-instate it in the task list 

end for 
else 

end if 

end if 

reject the request 
reinstate all removed tasks 

Figure 7.1: Pseudo-code definition of Best Effort Admission Policy. 
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The algorithm for Best Effort Admission Policy which is used in this work, is 
specified by the pseudo-code in Figure 7.1. The algorithm was adapted from Best Effort as 
presented by Locke [35] and modified by Davis et al. [12]. Locke's original Best Effort 
algorithm admits tasks according to their value densities (value or utility upon completion, 
divided by computational requirement) removing tasks from the run queue if the 
probability of overload is greater than some threshold. In Locke's scheme, tasks are 
scheduled according to earliest deadline first policy. 

In [12] Davis presents a Best Effort Admission Policy which also admits tasks 
according to value density, but ensures that all admitted or re-admitted tasks are 
guaranteed to meet their deadlines. Davis' algorithm is similar to the one used in this work 
(given in Figure 7.1). The difference between them is that Davis' algorithm uses many 
utility levels, while the algorithm in Figure 7.1 restricts utility to three levels as per the 
computational model of Chapter 3. Both the algorithm above, and Davis' version, apply 
Best Effort Admission to task lists which are ordered, and scheduled, according to fixed 

priority. 

7.1.2 The Simulation Studies 

The main objective of the simulations performed in this chapter, was to compare the 
performance of Best Effort Admission Policy (BE) with that of FCFS. In the simulations of 
Sections 7.2 through to 7.4, the processor utilisation of the resident periodic tasks was 
fixed at 25%, and the possible utilisation due to optional computations was increased in 

order to build up a profile of the total utilities gained by BE and FCFS. Requests for 

optional computations were set to arrive with a minimum interarrival time (defined by the 
'sporadic arrival rate' in the tables below). 

The admission policy itself, whether BE or FCFS, was modelled as the highest 

priority periodic task in the task list. The period of this task was assumed to be the 

minimum interarrival time of sporadic requests. The simulations had to be run repeatedly in 

order to find the required upper bound for the WCET of the task modelling the admission 

policy. The tables below show the actual admission policy overheads incurred in the 

simulations, and also the upper bounds for admission policy WCET. The upper bounds 

were first measured, and then used in the simulations for the schedulability testing of newly 

arrived requests. 
It was decided to simulate 10 resident periodic tasks upon the processor because 

this number seems to reflect the needs of a realistic application, and to be large enough to 

show the effect of a sizeable number of mandatory tasks. The schedulability test algorithm 

which was used was Bottom-up Hybrid with Test 3 and Headstart, which has been shown 
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in Chapter 5 to be the algorithm with the best overall performance for task lists which 
consist of 15 or less resident periodic tasks. 

As in previous chapters, all simulation results show totals or averages over 10 
simulation runs, with randomly generated tasks sets. Background tasks were not included 
in the simulations because, as explained in Section 3.4, they have no effect on the optional 
computations in the constrained computational model. 

7.2 COMPARING BEST EFFORT AND FCFS ADMISSIONS POLICIES 

7.2.1 Simulating 2 Levels of Utility Only 

In order to prototype the simulations, and to establish some trends in the 

simulation results, the first simulations performed used only two utility levels. These 

corresponded to optional computations of High and Low Utility. 
Tables 7.1 and 7.2 below show the results of the first set of simulations. For both 

tables, Periodic Utilisation is fixed at 25% and the Possible Sporadic Utilisation is 

increased by raising the Sporadic Arrival Rate. The Possible Sporadic Utilisation was 
increased up to 600% in order to allow BE a greater choice of optional computations, and 
to examine the trends in the effect of the overheads for admission policy. Table 7.1 

compares the total utility gained by BE and FCFS when the average sporadic computation 

time was 75ms. Table 7.2 shows similar results for an average sporadic computation time 

of 37.5ms. 

Because only two utility levels were used, only one ratio of relative utilities (R) was 

required. For Tables 7.1 and 7.2, R (the ratio of the utility of High Utility to Low Utility 

tasks) is 2. 

The Maximum Total Sporadic Utility Obtainable does not include overheads for 

admission policy, but assumes that the 75% remaining utilisation is made up of sporadic 

utilisation with sporadic tasks of the highest possible utilities. An example of how 

Maximum Total Sporadic Utility Obtainable was calculated is given in the following 

paragraph. 
In Table 7.1, the remaining utilisation after subtracting 25% periodic utilisation is 

75%. This corresponds to 75,000ms of simulation time. Ideally this should allow 75,000 / 

75 = 1000 sporadic tasks to be scheduled. Take as an example the column of Table 7.1 

which provides 150% Possible Sporadic Utilisation. This is equivalent to 2000 sporadic 

tasks of average sporadic computation time 75ms. It is assumed that on average half the 

sporadic tasks are of higher utility, so that the theoretical maximum Sporadic Utility 

Obtainable here, is when the 75% remaining utilisation is made up of 1000 optional 
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computations at the higher utility of 2. Over 10 simulations, this gives a Maximum Total 
Sporadic Utility Obtainable of 10 * 1000 *2= 20,000. The point to note here is that the 
'maximum utility obtainable' is idealised and could not be scheduled in practice. 
Furthermore it does not take into account the overheads for admission policy. 

7.2.2 Interpreting the Results 

It can be seen from Tables 7.1 and 7.2 that the results for both BE and FCFS show 
that, in general, the Total Sporadic Utility Obtained increases with the Possible 
Sporadic Utilisation. The Maximum Total Sporadic Utility Obtainable also increases, 

and then levels out. However admission policy overheads and upper bounds continue to 
steadily increase with Possible Sporadic Utilisation and Sporadic Arrival Rate. This is 

why the % of Maximum Utility Obtained decreases despite the increase in Total 
Sporadic Utility Obtained. 

Possible Sporadic Utilisation (%) 75 150 300 600 

Sporadic Arrival Rate (per ms) 0.01 0.02 0.04 0.08 

Total Sporadic BEST EFFORT 14,295 16,056 17,264 204 

Utility Obtained FCFS 14,237 14,825 15,392 15,290 

Maximum Total 
Sporadic Utility 
Obtainable 

BEST EFFORT 
& 
FCFS 

15,000 20,000 20,000 20,000 

% of Maximum BEST EFFORT 95.30 80.28 86.32 1.02 

Utility Obtained FCFS 94.91 74.13 76.96 76.45 

Admission Policy BEST EFFORT 0.96 3.29 6.64 8.29 

Overheads (% of 
Total Utilisation) 

FCFS 0.93 2.27 4.46 8.59 

Upper Bound for 

Admission Policy 

BEST EFFORT 6.0 24.0 40.0 76.0 

(% of Total 

Utilisation 

FCFS 3.0 10.0 24.0 48.0 

Table 7.1: Constant Periodic Utilisation of 25% with an Average Sporadic Computation Time of 75ms. 

The tables show that generally BE accrues more sporadic utility than FCFS. 

However, at the lowest Possible Sporadic Utilisation, the gains in sporadic utility 

between BE and FCFS are comparable. This is because most optional computations are 
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accepted at this relatively low processor loading. Therefore there are few cases where BE 
can gain over FCFS by scheduling a high utility computation and aborting low utility 
computations. The tables show that, as Possible Sporadic Utilisation increases, the gain in 
performance of BE over FCFS increases. However, at the highest Possible Sporadic 
Utilisation, the performance of BE falls off rapidly. This is due to the large Sporadic 
Arrival Rate which requires such a large upper bound for BE that few optional 
computations can actually be accepted. 

Possible Sporadic Utilisation (%) 75 150 300 

_Sporadic 
Arrival Rate (per ms) 0.02 0.04 0.08 

Total Sporadic BEST EFFORT 28,583 31,319 332 

Utility Obtained FCFS 28,401 30,646 32,936 

Maximum Total 

Sporadic Utility 

Obtainable 

BEST EFFORT & 

FCFS 30,000 40,000 40,000 

% of Maximum BEST EFFORT 95.27 78.30 0.83 

Utility Obtained FCFS 94.67 76.62 82.34 

Admission Policy BEST EFFORT 2.32 7.77 8.55 

Overheads (% of 
Total Utilisation) 

FCFS 2.22 6.15 11.50 

Upper Bound for 

Admission Policy 

BEST EFFORT 16.0 60.0 80.0 

(% of Total 

Utilisation 

FCFS 8.0 32.0 60.0 

Table 7.2: Constant Periodic Utilisation of 25% with an Average Sporadic Computation Time 37.5ms. 

7.2.3 Overheads for Admission Policy 

It is clear from the tables that admission policy overheads for BE increase more 

rapidly than for FCFS. This is not surprising because BE is the more complex algorithm. In 

particular the overheads due to BE will increase at higher sporadic arrival rates because 

there are more chances of an high utility optional computation being schedulable, only 

when lower utility computations are aborted. 
The upper bound for admission policy is expressed as a percentage of Total 

Utilisation by taking into account (i) the maximum time found by repeated simulation runs 

and (ii) the sporadic arrival rate. The percentage of Total Utilisation increases more 
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steeply, as sporadic arrival rate increases. This to be expected, because the upper bound is 
the worst case time for admission policy over 10 simulation runs. Therefore the rate of 
increase of the upper bound is determined by the complexity of the policy. 

In the case of BE, the complexity is O(N), where N is the number of optional tasks 
which have been previously accepted and are still current in the task list. In turn, the 
schedulability test algorithm which BE calls for each pending task, has a complexity based 
on (M + N), where M is the number of mandatory, periodic tasks in the task list. 

7.2.4 Average Sporadic Computation Times 

Comparison of Tables 7.1 and 7.2 shows that a lower average computation time for 

sporadic tasks (e. g. 37.5ms) means that a higher rate of sporadic arrivals (and therefore of 
schedulability testing) is required in order to achieve the same Possible Sporadic 

Utilisations. Therefore, for 37.5ms average computation time, schedulability test 

overheads and bounds become prohibitive at lower Possible Sporadic Utilisations (i. e. 
300% Possible Sporadic Utilisation as compared to 600% Possible Sporadic Utilisation for 

75ms average computation time). 
This effect of larger admission policy overheads can also explain why the 

differences between the % of Maximum Utility Obtained for BE and FCFS are smaller at 
lower Possible Sporadic Utilisations for 37.5ms average computation time than for 75ms. 

(For example compare the differences in the performances of BE and FCFS at 150% 

Possible Sporadic Utilisations in Tables 7.1 and 7.2. ) In general one can conclude that, 

because large Possible Sporadic Utilisations are necessary for large utility gains, BE 

performs relatively badly for smaller average computation times. 

7.3 SIMULATING HIGH AND MEDIUM UTILITY OPTIONAL COMPUTATIONS 

The previous two-level simulations used optional computations of High and Low 

Utility, so that a High Utility request might be scheduled by aborting a Low Utility 

computation which had previously been accepted. The two-level simulation was next 

modified to compare BE and FCFS admission policies when High and Medium Utility 

optional computations were used. The difference here is that a High Utility request can 

only be scheduled by aborting a previously accepted Medium Utility computation before it 

has started. 
Table 7.3 shows results for BE and FCFS which are directly comparable to Table 

7.1. Periodic Utilisation is 25%, and Average Sporadic Computation time is 75ms. Note 
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that the results for FCFS are identical to the 150% Possible Sporadic Utilisation column 
of Table 7.1. 

Comparing the results for BE in Table 7.3 with the relevant result in Table 7.1, it 
can be see that BE does not gain such a large additional sporadic utility over FCFS in Table 
7.3 as in Table 7.1. This makes sense because the simulations recreate identical conditions 
except that the lower utility computations in Table 7.3 are actually Medium Utility optional 
computations in the constrained model and are only abortable before they start their 
computations. Therefore there are, on average, fewer abortable tasks within the task list 
and correspondingly less chance that BE can schedule a High Utility request by aborting 
Lower Utility task(s) within the list. 

Possible Sporadic Utilisation (%) 150 

Sporadic Arrival Rate (per ms) 0.02 

Total Sporadic BEST EFFORT 15,642 

Utility Obtained FCFS 14,825 

Maximum Total 

Sporadic Utility 

Obtainable 

BEST EFFORT 

& 

FCFS 

20,000 

% of Maximum BEST EFFORT 78.21 
Utility Obtained FCFS 74.13 

Admission Policy BEST EFFORT 2.93 

Overheads (% of 
100% Utilisation) 

FCFS 2.27 

Upper Bound for 

Admission Policy 

BEST EFFORT 20.0 

(% of 100% 

Utilisation 

FCFS 10.0 

Table 7.3: High and Medium Utility Computations. 

Constant Periodic Utilisation of 25% with an Average Sporadic Computation Time of 75ms. 

Data from the simulations which are not shown indicate that BE in Table 7.3 

guarantees, by the abortion of lower utility tasks, around half the number of high utility 

tasks as are guaranteed by abortion in Table 7.1. Another way of looking at this is to 

consider Medium Utility computations as Low Utility between the time of guarantee and 

start of computation, and High Utility for the rest of their execution. Considered in this 

way, the simulation of Table 7.3 can be viewed as having considerably fewer Low Utility 

tasks in the task list as compared to the simulation of Table 7.1. 
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7.4 SIMULATING 3 LEVELS OF UTILITY 

7.4.1 Introduction 

The next set of simulations include mandatory tasks, as before, but now three types 
of optional computations with High, Medium and Low utilities, as set out in the 
constrained computational model. 

Table 7.4 shows the results of running the new simulations with exactly the same 
sets of sporadic requests and resident periodic tasks as for the preceding two-level 
simulations. The only difference was that sporadic requests were randomly allocated three, 
instead of two, utility levels. In order to define the three levels, two ratios, R1 and R2, were 
introduced into the constrained computational model (see Section 3.5.3). R1 was defined as 
the ratio of the utility of a High Utility task completion to that of a Medium Utility task 
completion. Similarly R2 was defined as the ratio of the utility of a Medium Utility task 
completion to that of a Low Utility task completion. For the simulations in Table 7.4, R1 

and R2 are each set to 2. Hence the utilities gained by optional computations of each task 
type are 4,2 and 1. 

Possible Sporadic Utilisation (%) 75 150 300 600 

_Sporadic 
Arrival Rate (per ms) 0.01 0.02 0.04 0.08 

Total Sporadic BEST EFFORT 22,535 26,761 29,988 321 

Utility Obtained FCFS 22,363 23,117 23,996 23,806 

Maximum Total 
Sporadic Utility 
Obtainable 

BEST EFFORT 
& 

FCFS 
23,333 33,333 40,000 40,000 

% of Maximum BEST EFFORT 96.58 80.28 74.97 0.80 

Utility Obtained FCFS 95.84 69.35 59.99 59.52 

Admission Policy BEST EFFORT 0.98 3.74 7.45 9.18 

Overheads (% of 
100% Utilisation) 

FCFS 0.93 2.27 4.46 8.58 

Upper Bound for 

Admission Policy 

BEST EFFORT 9.0 24.0 48.0 76.0 

(% of 100% 

Utilisation 

FCFS 3.0 10.0 24.0 48.0 

Table 7.4: Three levels of utility with Constant Periodic Utilisation of 25% and an Average Sporadic 

Computation Time of 75ms. 

157 



As with the two-level simulations, the Maximum Sporadic Utility Obtainable 
does not include the overheads for admission policy, but assumes that 75% remaining 
utilisation is made up of sporadic utilisation with sporadic tasks of the highest possible 
utilities. 

7.4.2 Interpreting the Results 

Obviously both the Sporadic Utilities Obtained and the Maximum Sporadic 
Utility Obtainable are greater than those of Table 7.1 because of the wider range of 
utilities between the three levels. However, the same trends are observed in Table 7.4. 
These include the breakdown in BE around 600% Possible Sporadic Utilisation, and the 
increasing difference in utility obtained between BE and FCFS as Possible Sporadic 

Utilisation increases up to 600%. 
As before, at 75% Possible Sporadic Utilisation, the difference in utility obtained 

between BE and FCFS, is small due to the limited choice of higher utility sporadic tasks. 
Simulation data not shown indicates that, at 75% Possible Sporadic Utilisation, only 

about 0.03% of High Utility tasks and 0.01% of Medium Utility tasks are schedulable by 

the abortion of lower utility tasks from the task list. The total possible processor utilisation 
in this case is 100%. It can therefore be concluded that for total possible processor 

utilisations of less than 100%, BE degenerates into FCFS. 

Table 7.4 shows that, at 150% Possible Sporadic Utilisation, there is 

approximately 11% difference between Sporadic Utility Obtained by FCFS and BE. This 

is a promising result because total possible processor utilisation is 175% which is a 

moderate overload and is an area of genuine interest for applications. For processor 

overloads much in excess of this, the question arises as to whether the system was designed 

with too small a processing capacity. 
Data for the 300% Possible Sporadic Utilisation in Table 7.4 illustrate the point 

that serious under-capacity undermines the application. The guarantee ratio (not shown) 

which was measured for FCFS was only around 0.25. This indicates that, due to the 

overload of sporadic requests, there is only about 25% chance of a request being accepted. 

(Guarantee ratios for BE cannot be compared in this way because they are 'exaggerated', 

due to some guarantees being later rescinded. ) 

Note that the FCFS overheads for admission policy are exactly same as with 2 

utility levels except for a slightly greater overhead at 600% Possible Sporadic Utilisation. 

This result is correct and is simply due to the rounding up of an average schedulability test 

time which was 1 tick greater because of random variations. 
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7.5 VARYING THE RESIDENT PERIODIC UTILISATION 

7.5.1 Introduction 

The next characteristic which the simulations evaluated was the comparative 
performances of BE and FCFS when the resident periodic utilisation on the processor was 
varied. The extent of the resident periodic utilisation on the processor makes fundamental 

changes to the sporadic utilisation which is obtainable. Three sets of simulations were 
performed with 10%, 25% and 50% resident periodic utilisation respectively. Possible 
Sporadic Utilisations were provided in order to make up the Possible Total Utilisations 
for each simulation to be 100% 150% and 200%. This range of total utilisations was 
chosen because it represents a reasonable overload on the processor and is therefore of 
genuine interest for applications. 

Tables 7.5-7.7 show the results with columns headed by the Possible Total 
Utilisations. The average sporadic computation time was set to 50ms for each of the 
Tables. (The average sporadic computation time has been reduced from the 75ms used in 

previous simulations in order to counter the criticism that a higher average sporadic 
computation might favour the performance of BE in comparison to FCFS. ) 

Possible Total Utilisation (%) 100 150 200 
Possible Sporadic Utilisation (%) 90 140 190 
Sporadic Arrival Rate (per ms) 0.018 0.028 0.038 
Total Sporadic BEST EFFORT 39,757 50,122 57,860 
Utility Obtained FCFS 39,179 45,524 50,492 
Maximum Total 
Sporadic Utility 
Obtainable 

BEST EFFORT & 
FCFS 42,000 76,496 116,432 

% of Maximum BEST EFFORT 94.66 65.52 49.69 
Utility Obtained FCFS 93.28 59.51 43.37 

_ Admission Policy BEST EFFORT 2.11 5.17 7.15 
Overheads (% of 
100% Utilisation) 

FCFS 1.92 3.88 5.58 

Upper Bound for 
Admission Policy 

BEST EFFORT 18.0 42.0 57.0 

(% of 100% 
Utilisation 

FCFS 7.2 14.0 22.8 

Table 7.5: Constant Periodic Utilisation of 10% with an Average Sporadic Computation Time 50 ms. 

Again R1 and R2 are each 2 and therefore the utilities gained upon the completion 

of each task type are 4,2 and I respectively. It is notable that the Maximum Total 
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Sporadic Utility Obtainable varies between Tables 7.5-7-7. This is because the resident 
Periodic Utilisations are different, and the Maximum Total Sporadic Utility Obtainable 
is calculated from the remaining processor utilisation after Periodic Utilisation has been 
subtracted. 

Possible Total Utilisation (%) 100 150 200 
Possible Sporadic Utilisation (%) 75 125 175 
Sporadic Arrival Rate (per ms) 0.015 0.025 0.035 
Total Sporadic BEST EFFORT 33,262 42,969 50,333 
Utility Obtained FCFS 32,680 38,537 44,045 
Maximum Total 
Sporadic Utility 
Obtainable 

BEST EFFORT & 
FCFS 35,000 58,333 93,333 

% of Maximum BEST EFFORT 95.03 73.66 53.93 
Utility Obtained FCFS 93.37 66.06 47.19 
Admission Policy BEST EFFORT 1.69 4.38 6.65 
Overheads (% of 
100% Utilisation) 

FCFS 1.55 3.29 4.89 

Upper Bound for 
Admission Policy 

BEST EFFORT 12.0 42.5 52.5 

(% of 100% 
Utilisation 

FCFS 6.0 15.0 21.0 

Table 7.6: Constant Periodic Utilisation of 25% with an Average Sporadic Computation Time 50 ms. 

Possible Total Utilisation (%) 100 150 200 
Possible Sporadic Utilisation (%) 50 100 150 
Sporadic Arrival Rate (per ms) 0.01 0.02 0.03 

Total Sporadic BEST EFFORT 21,815 30,611 31,631 
Utility Obtained FCFS 21,560 27,197 32,671 

Maximum Total 
Sporadic Utility 
Obtainable 

BEST EFFORT & 
FCFS 23,333 33,333 40,000 

% of Maximum BEST EFFORT 93.49 91.83 79.08 
Utility Obtained FCFS 92.40 81.59 81.68 

Admission Policy BEST EFFORT 1.09 3.50 5.30 
Overheads (% of 
100% Utilisation) 

FCFS 1.00 2.48 3.96 

Upper Bound for 
Admission Policy 

BEST EFFORT 10.0 30.0 45.0 

(%of100% 
Utilisation 

FCFS 4.0 10.0 21.0 

Table 7.7: Constant Periodic Utilisation of 50% with an Average Sporadic Computation Time 50 ms. 
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7.5.2 Interpretation of the Results 

Tables 7.5,7.6 and 7.7 cannot be compared like-for-like because different Periodic 
Utilisations alter the sporadic utility which can be gained when the remaining capacity on 
the processor is used by sporadics of different utilities. However, each of the tables is given 
the same Possible Total Utilisations in order that some comparisons can be made. 

As with previous simulations, it is generally true that BE obtains a higher % of 
Maximum Sporadic Utility than does FCFS. As before this difference in performance 
generally increases as Possible Sporadic Utilisation takes the Possible Total Utilisation 
beyond 100%. As Possible Sporadic Utilisation increases, the % of Maximum Sporadic 
Utility Obtained decreases. As before, this is due to the rapidly rising admission policy 
overheads and bounds, which decrease the Sporadic Utility Obtained. Accentuating this 

effect is the fact that admission policy overheads are not allowed for, in the Maximum 
Total Sporadic Utility Obtainable, so that this maximum is an over-estimate. What is 

more, this over-estimate becomes larger as Possible Sporadic Utilisation increases. 

Tables 7.5 and 7.7 show the extremes in the effect of different Sporadic Arrival 
Rates. Table 7.5 has the lowest Periodic Utilisation, and therefore requires higher Sporadic 
Arrival Rates in order to achieve the Possible Total Utilisations which are common to all 
three tables. Table 7.7 has the highest Periodic Utilisation and therefore requires lower 

Sporadic Arrival Rates in order to achieve the same Possible Total Utilisations. Therefore 

the overheads for admission policy are greater in Table 7.5 which as a result shows a more 

rapid decline in % of Maximum Utility Obtained. 

Table 7.7 confirms that, when the upper bounds for admission policy become high 
(e. g. greater than 50% of Total Utilisation) then the performance improvement of BE can 
tail off. For example, at 200% Possible Total Utilisation, Table 7.7 shows the % of 
Maximum Utility Obtained is less for BE than for FCFS. This occurs even though the 
Sporadic Arrival Rate (and therefore the admission policy overhead) is less than in Tables 

7.5 and 7.6. The conclusion must be that, due to the comparatively high Periodic 

Utilisation of 50%, the Sporadic Utility Obtained is very sensitive to an increase in 

admission policy overheads and bounds. In fact a Sporadic Utility of only 31,631 is 

obtained at 150% Possible Sporadic Utilisation. Tables 7.5 and 7.6 show that, at lower 

Periodic Utilisations, similar admission policy overheads and upper bounds can be tolerated 

without reducing the performance of BE below that of FCFS. The dip in the performance 

of BE in Table 7.7 is probably the beginning of the breakdown observed in Table 7.1 at a 
Possible Sporadic Utilisation of 600%. 

The results in Tables 7.5-7.7 show that there is a trade off between the % of 
Maximum Sporadic Utility Obtained and the absolute Sporadic Utility Obtained. 

Table 7.5 shows that at low resident periodic utilisation, a low % of Max Sporadic 
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Utility, but high absolute Sporadic Utility can be obtained due to relatively high sporadic 
arrival rates. Conversely, at high resident periodic utilisation in Table 7.7, a higher % of 
Maximum Sporadic Utility, but lower absolute Sporadic Utilisations are obtained at 
lower sporadic arrival rates. Table 7.6 has an intermediate periodic utilisation, and 
therefore its results may be regarded as a trade off between these two extremes. 

7.6 CHANGING THE RELATIVE UTILITIES 

7.6.1 Setting the Parameters of the Simulation 

The final stage in the comparison of the performances of BE and FCFS Admission 

Policies was to vary the ratios of the utilities gained by High, Medium and Low optional 

computations. In other words the ratios R1 and R2 were varied in order to examine the 

comparative effects on BE and FCFS. 

A single set of simulation parameters (Periodic Utilisation, Average Sporadic 
Computation Time, etc. ) were adopted for both BE and FCFS so that BE and FCFS could 
be compared when only the ratios R1 and R2 were changed. Parameters were set at average 

values in an attempt to obtain typical results: Periodic Utilisation was fixed at 25%, 

Possible Sporadic Utilisation was 125% and Average Sporadic Computation Time was 
50ms. 

Table 7.8 shows that simulations were performed for equal values of R1 and R2 

which increase from 2 to 100. In addition, unequal values were used: R1 = 100 and R2 = 
10, and vice versa. The Total Sporadic Utility Obtained is given, as is the Maximum 

Total Sporadic Utility Obtainable. The Maximum Total Sporadic Utility Obtainable 

increases rapidly with R1 and R2, mainly because the utility gained by High Utility 

computations is the product of R1 and R2. For convenience, the final column of Table 7.8 

shows the Total Sporadic Utility obtained by BE divided by the Total Sporadic Utility 

obtained by FCFS. 

7.6.2 Interpreting the Results 

Table 7.8 shows the expected result that, for both BE and FCFS, the Total 

Sporadic Utility Obtained increases with R1 and R2. However, for all values of R1 and 

R2 which were used, BE obtained a higher Total Sporadic Utility than FCFS. 

A less obvious finding from Table 7.8 is that the % of Max Sporadic Utility 

Obtained stays fairly constant as R1 and R2 increase. The exception is at low values (e. g. 

R1= R2 = 2) where a higher % of Max Sporadic Utility is obtained. 
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Clearly, when Periodic Utilisation, Sporadic Utilisation and Average Sporadic 
Computation Time are all constant, then each BE or FCFS simulation will produce an 
identical number of High Utility, Medium Utility, and Low Utility task completions. 
Therefore the only variation in % of Max Sporadic Utility Obtained is brought about by 
changing the relative utilities given to each of the different task completions. Hence an 
expression for the total utility obtained from a single simulation is: 

(Nl*R1*R2)+(2*R2) 

where N1 is the number of High Utility task completions, N2 the number of Medium Utility 
task completions, and N3 is the number of Low Utility completions. The maximum 
sporadic utility obtainable in a simulation is calculated according to: 

(K1 *R1 *R2)+(K2 *R2)+(K3 * 1) (7.2) 

where K1, K2, and K3 are the optimum number of High Utility, Medium Utility and Low 
Utility task completions respectively, as calculated according to the example given in 
Section 7.2.1. (In the case of the Periodic Utilisation and Possible Sporadic Utilisation in 
Table 7.8, K3 is zero. ) 

Ratio of 
Total Sporadic Maximum % of Max BE Utility 
Utility Total Sporadic Obtained : 

Rl R2 Obtained Sporadic Utility FCFS 
Utility Obtained Utility 

Obtainable Obtained 
BE FCFS BE FCFS 

2 2 42,969 38,537 58,333 73.66 66.06 1.115 

10 10 757,205 600,885 1,125,000 67.31 53.41 1.260 

100 100 70,416,475 54,415,503 105,000,000 67.06 51.82 1.294 

100 10 7,046,424 5,445,585 10,500,000 67.12 51.86 1.294 

10 100 7,534,674 5,958,405 11,250,000 66.97 52.96 1.265 

Table 7.8: Varying R1 and R2 . 
(A constant Periodic Utilisation of 25%, Possible Sporadic Utilisation of 

125% and Ave Sporadic Computation Time 50 ms. ) 

It can be seen that for a particular simulation, if the value of expression (7.1) is 

divided by the value of (7.2), the result tends to a constant value as R1 becomes very large 
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compared to R2. Also, (7.1) = (7.2) will be approximately constant when both R2 and R1 

are large. However, when both R1 and R2 decrease towards 1, there is less benefit in the 
greater number of High and Medium Utility task completions obtained by (7.2), and 
therefore the utility obtained by (7.1) approaches the maximum of (7.2). This explains why, 
at R1 = R2 = 2, both BE and FCFS have higher % of Max Sporadic Utility Obtained 

than at higher values of R1 and R2. 
Table 7.8 shows that, at R1 = R2 = 2, FCFS has approximately 13% higher gain in 

% of Max Sporadic Utility Obtained compared to the % of Max Sporadic Utility 

gained at R1 = R2 = 10 (i. e. 66.06 - 53.41). In contrast BE has an approximately 6% gain. 
This can be explained by the fact that FCFS, being a random selection of sporadic tasks, 

contains a higher proportion of Low Utility tasks and so the effect of the (N3 * 1) factor is 

greater. 
The final results in Table 7.8 compare the performances of BE and FCFS when Rl 

and R2 are unequal. BE still outperforms FCFS, but some shifts in performance can be 

observed. It can be seen that the effect of R1 > R2, is to increase the performance gap 
between BE and FCFS, whereas the effect of R1 < R2, is to decrease the gap. This is 

explained by FCFS having proportionally more Medium Utility task completions than BE. 

Therefore a higher R2 provides a relative benefit for FCFS as compared to BE, whereas a 
lower R2 relatively disadvantages FCFS. 

7.7 SUMMARY OF THE SIMULATION WORK DONE 

The above work reports on a comparison of BE and FCFS admission policies in 

order to evaluate this aspect of the constrained computational model. The first simulations 

used only two levels of utility (High and Low) in order to compare the admission policies. 

In these simulations, Possible Sporadic Utilisation was increased from 75% to 600% 

processor utilisation. BE outperformed FCFS except at very high Possible Sporadic 

Utilisations where the upper bounds required to guarantee BE were so large that its 

performance broke down. Two-level simulations were also used to investigate the 

performances of BE and FCFS when High and Medium utility computations were used. As 

expected, the result was that the performance gain by BE over FCFS was reduced. 

The next set of simulations used the constrained model with three levels of utility, 

and similar results were obtained. However, when these simulations were performed with 

different resident periodic utilisations on the processor, it was found that the breakdown in 

BE began at Lower Total Utilisation, when the resident periodic utilisation on the 

processor was high. A high resident periodic utilisation also obtained a lower absolute 

Sporadic Utility than lower periodic utilisations. However, high resident periodic utilisation 
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incurred lower admission policy overheads, and therefore obtained a relatively high 
percentage of the Possible Sporadic Utility. 

The final simulations which were performed allowed the ratios of the utilities of 
High : Medium (R1), and Medium : Low (R2) optional computations to be varied. As 
expected, the Total Sporadic Utility Obtained increased with R1 and R2, for both admission 
policies. However, BE always obtained greater Total Sporadic Utility than FCFS. For both 
BE and FCFS (for a fixed set of simulation parameters) it was found that, as the values of 
R1 and R2 became high, the % of Maximum Sporadic Utility obtained became constant. 
However, as the values of R1 and R2 decrease towards unity, the % of Maximum Sporadic 
Utility obtained became higher. 

7.8 CONCLUSIONS 

In the following conclusions 'performance' is measured by the % of Maximum Sporadic 
Utility Obtained. 

1. Best Effort admission policy can achieve a higher performance than FCFS admission 
policy, when the resident Periodic Utilisation on the processor is low, and the processor 
is overloaded with Sporadic Arrivals. 

2. Under the conditions in 1 above, the performance gain in BE over FCFS increases with 
Possible Sporadic Utilisation and Sporadic Arrival Rate. 

3. The overheads for BE are greater than those for FCFS. The consequence is that, as 
Sporadic Arrival Rate increases, the upper bounds on the WCET for BE increase more 
rapidly than those for FCFS. This causes BE to break down at lower Possible Sporadic 

Utilisations than FCFS. 

4. For BE and FCFS, at a given Possible Total Processor Utilisation : as the resident 
Periodic Utilisation increases, the absolute Sporadic Utility which is obtained, 
decreases. However, the % of the Maximum Sporadic Utility which is obtained 
increases. 

5. Larger Periodic Utilisations cause BE to break down at lower Possible Total Processor 

Utilisations. 
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6. Lower Average Computation Times cause BE to break down at lower Possible 
Sporadic Utilisations. This is because, for a given Possible Sporadic Utilisation, lower 
Average Computation Times require a higher Sporadic Arrival Rate, and therefore 
higher upper bounds for admission policy. 

7. As the ratios between the utilities of High, Medium, and Low Utility computations 
increase, the % of the maximum possible Sporadic Utility which is obtained becomes 
constant. (It is assumed that Periodic Utilisation and Possible Sporadic Utilisation are 
fixed). 

8. When the ratios between the utilities assigned to High, Medium and Low utility 
computations are small, the % of the maximum possible Sporadic Utility obtained 
increases. 

9. When the ratio between the utilities assigned to Medium and Low utility computations, 
increases, relative to the ratio between the utilities assigned to High and Medium utility 
computations, the gain in performance of BE over FCFS is reduced. 

7.9 VIABILITY OF THE CONSTRAINED MODEL 

7.9.1 Windows of Operation 

The simulations carried out indicate several windows in the values of performance 

parameters, within which the Constrained Computational Model using Best Effort 

Admission Policy, can provide considerably improved performance over FCFS. For 

example, between 100-200% Total Processor Utilisation the constrained model with BE 

admission, can gain 10% performance over the use of FCFS. However, either side of this 

range, the benefits of the model decline. At Total Processor Utilisations which are less than 

100%, BE admission degenerates into FCFS. At the other extreme, when the processor is 

overloaded beyond a Total Processor Utilisation of 200%, the performance of FCFS 

eventually overtakes that of BE. 

Resident Periodic Utilisation also enforces a window on the use of the model. Only 

between 10-50% Periodic Utilisation does BE gain in performance over FCFS. Below 10% 

Periodic Utilisation, the upper bounds on BE, required in order to generate a sufficient 

sporadic overload, become too great to allow BE to outperform FCFS. At greater than 

50% Periodic Utilisation, the performance of BE drops below that of FCFS, even when the 

upper bounds for admission policy would otherwise be tolerable. 
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The average sporadic computation time also affects the viability of the model. If 
computation times are too small, then high sporadic arrival rates are required in order to 
generate reasonable processor overload. The result is that high upper bounds for admission 
policy cause an early breakdown in the performance of BE. 

Increasing the utility ratios of the High, Medium and Low utility computations can 
augment the performance of BE compared to FCFS, but make little difference to the 
performance of BE compared to its ideal maximum performance. However, the 
applications programmer may still wish to set these ratios to reflect the relative importance 

of each category of optional computation. 

7.9.2 Recommendations for the Model 

Within the above windows of operation, the Constrained Computation Model with 
Best Effort Admission, can provide improved performance for optional computations. 
Furthermore, the parameter ranges which have been established (10-50% Periodic 
Utilisation, and 100-200% Total Processor Utilisation) are useful for a variety of 
applications. 

Even in the cases where the model with BE provides only comparable performance 
to that of FCFS, there are still the benefits in being able to (i) distinguish between the 

utilities of optional computations, and (ii) increase the likelihood of a higher utility 
computation being performed in preference to a low utility computation. The use of FCFS 

alone, effectively removes utility as a meaningful concept within the application. 
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CHAPTER 8 

IMPLEMENTATION OF THE COMPUTATIONAL MODEL 

8.1 INTRODUCTION 

The Constrained Computational Model described in Chapter 3 is not directly 

supported by any of the real-time programming languages which have been reviewed in 
Chapter 2. The aim of this Chapter is to show how the Computational Model may 
nevertheless be implemented in a language which is used for the engineering of real-time 
systems. The language chosen is Ada 95 [1]. As described in Section 2.8.4, Ada is a large 

programming language with many features for the implementation of real-time systems 
(especially in the Real-Time Systems Annex). 

Ada allows concurrent programming using tasks. Tasks are scheduled according to 

static or dynamic priorities. When considering how to implement optional computations in 
Ada 95, one obvious approach is to implement each optional computation as an Ada task 

which could be guaranteed by the Ada RTS, and could, if necessary, be aborted before it 

completes. However, this would give the real-time programmer little control over the 

optional computations, and would require considerable extensions to the existing Ada RTS. 
An alternative is to implement optional computations by using Ada 95 constructs 

inside Ada tasks. This would (i) allow the programmer more ability to tailor the optional 

computations, (ii) provide a more efficient, lighter-weight implementation, and (iii) require 
less change to the Ada RTS. With this approach in mind, several Ada 95 constructs which 

may be of use, are now reviewed. 

8.2 ADA 95 CONSTRUCTS 

8.2.1 Protected Objects 

Protected objects allow mutually exclusive access to data via protected entries and 

procedures, which give exclusive read/write access to the encapsulated data. Protected 

objects may also include protected functions which provide concurrent read-only access to 

the data. Entries to a protected object may be guarded by a barrier. Entry calls are 

enqueued if the barrier evaluates to false. In this way, entries in a protected object may be 

used to implement condition synchronisation. In common with Ada packages and tasks, 
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protected objects have a specification and a body as is shown by the following example of 
the Ada syntax: 

protected Specification_Example is 

entry ...; 
procedure ...; 
function 

...; 
private 

-- hidden subprograms, data etc. 
end Specification_Example; 

protected body Body_Example is 

-- full bodies of entries, procedures, functions, etc. 
end Body_Example; 

The Real-Time Systems Annex to Ada 95 defines a locking protocol (Immediate Ceiling 
Priority Protocol) which applies a ceiling priority to each protected object in order to 
ensure mutual exclusion by tasks which are concurrently accessing any object. The locking 

protocol also limits the effects of priority inversion. 

8.2.2 Requeue 

The requeue statement can be executed by a server task or protected object which 
has accepted an entry call. The effect is to queue the call on another entry which may be 
internal or external to the original task or object which has been called. This target entry is 

named in the requeue statement: 

requeue target_entry_name [with abort]; 

The original entry is not returned to after the target entry call has completed. The target 

entry must have a parameter profile which is conformant to the original entry statement. 
Because of this, it is forbidden to give parameters within the requeue statement itself, in 

case the programmer should erroneously supply a non-conformant parameter profile. 
The optional with abort clause allows the original client task, which made the call to 

the server task or protected object to timeout on, or abort, the requeued call, during the 

period that the call is queued on the target entry. If with abort is not present, then a timeout 

or abort from the original client has no effect on the requeued entry call. Of course, once 

the requeued call has been accepted at the target, the rendezvous is allowed to complete, 

regardless of timeouts or aborts from the original client. 
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8.2.3 The Asynchronous Select 

The asynchronous select statement has the following form: 

select 

-- triggering alternative: 

-- a triggering statement 

-- [optional code] 

then abort 

-- abortable code 

end select; 

The execution of the asynchronous select begins with the issuing of the triggering 
alternative which may be (i) an entry call or (ii) a delay statement. If (i) the entry call is 

queued, or (ii) a delay is issued, then the abortable code is executed. If the abortable code 
completes before the completion of the triggering alternative then if the trigger is (i) an 
entry call, an attempt is made to cancel it or (ii) a delay, then the delay is cancelled. After 

cancellation the asynchronous select is completed. If the entry call cannot be cancelled (e. g. 
because a rendezvous is in progress) then the call is allowed to complete, followed by any 
statements which have been included after the triggering statement. 

If the triggering statement completes before the abortable code, then the abortable 
code is aborted, and any optional statements following the triggering statement are 

executed. 

8.2.4 Using Ada 95 constructs for Optional Computations 

Having decided in Section 8.1 that optional computations are to be implemented 

within Ada tasks, rather than at the task level, the asynchronous select statement seems a 

particularly suitable construct for optional computations. The triggering statement can be a 

call, for the guarantee of an optional computation, to a protected object which implements 

flexible scheduling. The abortable code within the asynchronous select can be the actual 

code of the optional computation. 
Best Effort Admission Policy can be applied within the protected object which is 

called, and if the optional computation is guaranteed, then the call can be requeued on 

another entry within the object. This entry can have a barrier to allow the requeued call 

never to complete, and therefore the abortable code to run to completion. If required, the 

code of the optional computation can be aborted by lowering the barrier on the requeued 
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entry call. This causes the requeued entry call to complete and the triggering statement of 
the asynchronous select to finish, thus aborting the code of the optional computation. 

The following sections describe an Ada protected object which can handle requests 
for the admission of optional computations, and in doing so, interfaces with the Ada RTS. 
After this, the final part of the chapter considers a number of different application 
requirements for optional computations, together with examples of how each may be 
implemented in Ada 95. 

8.3 AN ADA 95 IMPLEMENTATION FOR OPTIONAL COMPUTATIONS 

8.3.1 Overview 

Chapter 3 outlined the computational model which is now to be implemented in 
Ada 95. The model specifies that optional computations are first schedulability tested, and 
if possible admitted, at the utility level with which they arrive. Furthermore, optional 
computations can have their utility changed dynamically, during their execution. Such 

utility changes can be instigated by the tasks containing the optional computations 
themselves, or by other tasks within the application. 

The Ada 95 code which is given below, implements the requirements of the 

computational model. Optional computations are implemented using asynchronous select 
statements, as in the following example: 

-- an optional computation within an applications task 

select 
Flex_Sched. Request(C, D, Utility, I); 

then abort 

-- Assume ALL optional computations call Flex_Sched. Make_Started before 

-- starting the code for the optional computation. 

-- Optional computation code can call Flex_Sched. Make_High, Make_Medium, 

-- or Make_Low Utility as required. 

-- Assume ALL optional computations call Flex_Sched. Make_Completed when 

-- finished. 

end select; 

In the above code, the applications task requests the admission and guarantee of an 

optional computation by calling a Request entry in a protected object Flex 
_Sched. 

This 

object implements a flexible scheduler in Ada, and interfaces with the Ada RTS. 

Appropriate parameters are passed to Flex_Sched when a call to Request is made. These 

are the WCET (C) of the optional computation, its deadline (D), its Utility, and its index 
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value, I. The index, I, is used as a means of identifying each optional computation with the 
component of the data structure used to record its status (see Section 8.3.2). 

Several assumptions are made about extra facilities provided by the Ada RTS. It is 
assumed that the Ada RTS can answer a call from Flex 

_Sched, 
to schedulability test C, 

within a given D. Should the test succeed, then the Ada RTS is assumed to return to 
Flex 

_Sched, 
the priority at which the optional computation should run. If the test fails then 

the RTS returns a negative priority. The Ada RTS need have no concern with utilities, 
which are entirely handled by the Flex Sched object. It is also assumed that the RTS can 
answer a call to withdraw an optional computation from the task list, and in returning, can 
pass back the accumulated execution time of the computation. 

If the request is guaranteed by Flex 
_Sched, 

then the original call to the Request 
entry is requeued so that it does not return. In this case the code of the optional 
computation which follows then abort is executed. (Note that this code must make 
procedure calls to Flex 

_Sched 
in order to register its starting and completion). If the call to 

Request fails to guarantee the optional computation, or the optional computation is aborted 
during its execution, then the original call to Request returns, and the optional computation 
code following then abort is aborted. 

8.3.2 Specification of the Flexible Scheduler Object 

The Ada code below shows the declarations required for, and the specification of, 
the protected object Flex 

_Sched. 
The data for each optional computation is held in an array 

(of type Opt Comps) of records which is indexed by integer values which identify each 
optional computation. The protected object Flex Sched is assumed to have the highest 

priority associated with it. It exports a Request entry and a number of procedures to 

applications tasks. The procedures allow applications tasks to register the start or 
completion of optional computations, and also permits changes in the utility of optional 

computations as required by the computational model. 
The private part of the Flex_Sched specification defines two entries which 

implement entry families to support the holding of optional computations in (i) the 

abortable or (ii) the non-abortable state. The procedures Make Abortable and Make 

Non Abortable are used by Flex_Sched to move optional computations from one state to 

another. Procedure Best Effort implements the admission policy which attempts to 

guarantee a request by, if necessary, aborting current optional computations of lower 

utility. Best Effort calls the auxiliary procedures Withdraw and Reguarantee which 
interface with the RTS. Also declared are arrays of flags which are needed to (i) control the 

changes of state (Abortable <_> Non_Abortable) of optional computations and (ii) control 

the abortion of optional computations which are in the abortable state. 
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type Utility is (High, Medium, Low); 

Max : constant ._....; 

type Opt_Comp_Index is new Integer range 1.. Max; 

subtype Computation_Time is Ada. Real_Time. Time_Span; 

subtype Deadline is Ada. Real_Time. Time; 

Priority_Reject_Value: constant :=...; 

type Flags is array(Opt_Comp_Index) of Boolean; 

type Optional_Computation is 

record 
Util: Utility; 
Comp: Computation_Time 

Dead: Deadline; 

Accum: Computation_Time 

Name: Task_Id; 

Old_Prior: Priority; 

Started: Boolean; 

Abortable: Boolean; 

Released: Boolean; 

end record; 

type Opt_Comps is array (1.. Max) of Optional_Computation; 

-- Flexible Scheduler Specification 

protected Flex_Sched is 
entry Request (C : Computation_Time; D: Deadline; U: Utility; 

I: Opt_Comp_Index); 

procedure Make_High (I : Opt_Comp_Index); 

procedure Make_Medium (I : Opt_Comp_Index); 

procedure Make_Low (I : Opt_Comp_Index); 

procedure Make_Started (I : Opt_Comp_Index); 

procedure Make_Completed (I : Opt_Comp_Index); 

procedure Make_Aborted (I : Opt_Comp_Index); 

private 

entry Abortable (Opt_Comp_Index) 

(C : Computation_Time; D: Deadline; U: Utility; I: Opt_Comp_Index); 

entry Non_Abortable (Opt_Comp_Index) 

(C : Computation_Time; D: Deadline; U: Utility; I: Opt_Comp_Index); 

procedure Make_Abortable (I : Opt_Comp_Index); 

procedure Make_Non_Abortable (I : Opt_Comp_Index); 

procedure Best_Effort (C : Computation_Time; D: Deadline; U: Utility; 

I: Opt_Comp_Index; P: out Priority); 

procedure Withdraw (U: Utility); 

procedure Reguarantee(U: Utility); 

Opt-Comp : Opt-Comps; 

Trans_Abort: Flags := (others => False); 

Trans_Non_Abort: Flags :_ (others => False); 

Abort Flags: Flags :_ (others => False); 

end Flex Sched; 
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8.3.3 Implementing the Public Interface of the Flexible Scheduler 

As indicated above a call to Request which is guaranteed, is requeued within 
whichever entry family (see Non Abortable and Abortable below) is appropriate for the 
utility of the computation. Each entry family is guarded by an array of flags which controls 
the transition of optional computations from one entry queue to another. The procedures 
Make High, Make Medium, and Make Low, each call Make Abortable or 
Make Non Abortable in order to make a required transition when the utility of an optional 
computation is changed. Make Abortable and Make Non Abortable manipulate arrays of 
flags (Trans Abort and Trans Non Abort) in order to perform transitions. In addition, the 

entry A bortable is guarded by an array of flags (Abort Flags) which allow calls to Request 

to return, and therefore abort optional computations within the applications tasks. 
By calling Make_Started, a medium utility optional computation ensures that it 

becomes non-abortable when it starts execution. For the sake of consistency, all optional 
computations should likewise register that they have started, even though there may be no 

change in their abortabilities. Calls to Make_Completed allow all applications tasks to be 

set to their previous priority, once their optional computations have finished. 

protected body Flex_Sched is 

procedure Make_High (I : Opt_Comp_Index) is 
begin 
Opt_Comp(I). Util := High; 
if Opt_Comp(I). Abortable then 

Make_Non_Abortable (1); 

end if; 

end Make_High; 

procedure Make_Medium (I : Opt_Comp_Index) is 

begin 
Opt_Comp(I). Util := Medium; 
if Started then 

if Opt_Comp(I). Abortable then 

Make Non Abortable (I); 

end if; 

else -- not Started 
if not Opt_Comp(I). Abortable then 

Make Abortable(I); 

end if; 

end if; 

end Make Medium; 

procedure Make_Low (I : Opt_Comp_Index) is 

begin 
Opt_Comp(I). Util := Low; 

if not Opt_Comp(I). abortable then 

Make Abortable(I); 

end if; 

end Make Low; 
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procedure Make_Non_Abortable (I : Opt_Comp_Index) is 
begin 

-- reset flag in Non_Abortable entry in case optional computation 

-- was previously made non_abortable. 
Trans Abort(I) := False; 
-- set flag in Abortable entry so as to enable requeue on Non Abortable 
Trans_Non_Abort(I) := True; 

end Make_Non_Abortable; 

procedure Make_Abortable(I : Opt_Comp_Index) is 
begin 

-- reset flag in Abortable entry, in case computation previously made abortable 
Trans_Non_Abort(I) := False; 

-- set flag in Non_Abortable entry so as to enable requeue on Abortable 

Trans_Abort(I) := True; 

end Make_Non_Abortable; 

entry Abortable (for I in Opt_Comp_Index) when (Trans_Non_Abort(I) 
or Abort Ftags(I)) is 

begin 
if Trans Non Abort(I) = True then 

Opt Comp(I). Abortable := False; 

requeue Non_Abortable(I) with abort; 
else -- must be aborted 

null; 
end if; 

end Abortable; 

entry Non_Abortabte (for I in Opt_Comp_Index) when Trans-Abort(l) is 

begin 

Opt_Comp(I). Abortable := True; 

requeue Abortable(I) with abort; 

end Non Abortable; 

procedure Make_Started(I : Opt_Comp_lndex) is 

begin 

Opt_Comp(I). Started := True; 

if Opt_Comp(I). Util = Medium then 

Make Non Abortable(I); 

end if; 

end Make_Started; 

procedure Make_Completed (I : Opt_Comp_Index) is 

begin 

Set_Priority (Opt_Comp(I). Old_Prior, Opt_Comp(I). Name); 

Opt_Comp(I). Released := False; 

-- perform housekeeping on array member opt_Comp(I) 

end Make_Completed; 

procedure Make_Aborted (I : Opt_Comp_Index) is 

begin 

Set_Priority (opt_Comp(I). Old_Prior, Opt_Comp(I). Name); 

Opt_Comp(I). Released := False; 

Abort-Flags(I) := True; 

-- perform housekeeping on array member Opt_Comp(I) 

end Make Aborted; 

end Flex Sched; 

175 



8.3.4 Handling Requests for Optional Computations 

The code for the Request entry below shows that it calls Best Effort and is passed 
back a priority value which is used to determine whether the request has been accepted or 
not. If the request is accepted, then the appropriate record within the array of optional 
computations is updated with the necessary data on the optional computation, the 

applications task is set its new priority, and the call is requeued on whichever entry 
(Abortable or Non Abortable) is appropriate. If the request is denied by Best Effort then 

the call to Request returns, and the asynchronous select within the applications task is 

triggered thus aborting the code for the optional computation. 

entry Request (C : Computation_Time; D: Deadline; U: Utility; 

I: Opt_Comp_Index) is 

Prior : Priority; 
begin 

--call admission policy 
Best_Effort(C, D, Utility, I, Prior); 

if Priority_Indicates_Accepted then 

-- initialise the flags for this optional computation's index value 

Trans_Non Abort(I) := False; 

Trans Abort(I) False; 

Abort_Flags(I) False; 

-- assign record in array of optional computations 

Opt_Comp(I). UtiL Utility; 

Opt_Comp(I). Comp C; 

Opt_Comp(I). Dead D; 

Opt_Comp(I). Accum Zero_Computation_Time; 

Opt_Comp(I). Name Request'Caller; 

Opt_Comp(I). Started := False; 

Opt_Comp(I). Released True; 

Opt_Comp(I). Old_Prior := Get_Priority(Opt_Comp(I). Name); 

Set Priority (Prior, Opt_Comp(I). Name); 

case Utility is 

when High => 
Opt_Comp(I). Util := High; 

Opt_Comp(I). Abortable := False; 

requeue Non_Abortable(I) with abort; 

when Medium => 
Opt_Comp(I). Util := Medium; 

Opt_Comp(I). Abortable := True; 

requeue Abortable(I) with abort; 

when Low => 
Opt_Comp(I). Util := Low; 

Opt_Comp(I). Abortable := True; 

requeue Abortable(I) with abort; 

end case; 

end if; 

-- request rejected : return to trigger asynchronous select 

-- in the applications task. 

end Request; 
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8.3.5 Best Effort Admission Policy 

Procedure Best Effort is shown below. It takes the parameters passed to it by 
Request and applies the Best Effort algorithm, with the help of two auxiliary procedures 
Withdraw and Reguarantee. (These auxiliary procedures are described in detail in the next 
section. ) Withdraw rescinds all optional computations which have lower utility than that of 
the request. If the request is subsequently accepted, then Reguarantee attempts to 
guarantee each withdrawn request in order of decreasing value density. 

Procedure Best Effort interfaces with the RTS by the use of two procedure calls 
GU and REIN. GU calls the RTS to perform a single schedulability test of a WCET, C, 

within an absolute deadline, D. The index value, I, of the optional computation is also 
passed to the RTS, and the RTS passes back a priority, P, which indicates whether the 
guarantee was given and the optional computation has been accepted within the task list. A 

positive priority value indicates that the optional computation has been accepted, and that 
its applications task should be set at that priority. A predefined negative priority value 
indicates that the optional computation has been rejected. 

The RTS procedure REIN efficiently reinstates all the withdrawn optional 
computations when a request has been rejected, even after lower utility computations have 
been removed. REIN provides an optimisation which is more efficient than calling GU 

again, for each withdrawn computation. 

procedure Best_Effort (C : Computation_Time; D: Deadline; U: Utility; 

I: Opt_Comp_Index; P: out Priority) is 

begin 

GU(C, D, I, P); 

if Priorty_Indicates_Rejected then 

if U /= Low then 

-- remove all lower utility, abortable optional computations, 

-- and repeat attempt to guarantee. 
Withdraw(U); 

GU(C, D, I, P); 

if Priority_Indicates_Accepted then 

-- attempt to re-guarantee all withdrawn optional computations, in 

-- smallest residual computation time, within utility order. 

Reguarantee(U) 

else -- optional computation still refused 

REIN; -- optimised reinstatement of all withdrawn optional computations 

end if; 

end if; 

end if; 

end Best Effort; 
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8.3.6 Auxiliary Procedures for Best Effort 

The procedures Withdraw and Reguarantee are given below. (Repetitive code has 
been replaced by comments. ) Withdraw calls the RTS procedure UNGU(I, Acc) which 
removes the optional computation of index I from the task list and returns, in Acc, the 
accumulated execution time of the optional computation. This allows Reguarantee to call 
the RTS procedure GU, passing it the residual computation time of the optional 
computation. 

procedure Withdraw (U: Utility) is 

J: Opt_Comp_Index; 

Acc : Computation_Time; 

begin 

case U is 

when High => 

-- withdraw unstarted medium, and all low utility, optional computations 

-- which are current. 
for J in 1 .. Max loop 

if (Opt_Comp(J). Util = Medium) and (not Opt_Comp(J). Started) and 
(Opt_Comp(J). Released) then 

UNGU(J, Acc); 

Opt_Comp(J). Accum := Acc; 

elseif Opt_Comp(J). Util = Low and (Opt_Comp(J). ReLeased) then 

UNGU(J, Acc); 

Opt_Comp(J). Accum := Acc; 

end if; 

end loop; 

when Medium => 

-- withdraw all low utility optional computations 

-- similar code to above 
end case; 

end Withdraw; 

procedure Reguarantee(U: Utility) is 

J, K: Opt_Comp_lndex; 

Minimum : Computation_Time; 

Prio : Priority; 

begin 

case U is 

when High => 

-- attempt to re-guarantee all Medium utility optional computations 

while Stitl_Medium 
_Utility_Opt 

Comps Unconsidered loop 

-- find the Medium utility optional computation with the 

-- lowest residual computation time : first initialise Minimum 

for J in 1 .. Max loop 
if (Opt_Comp(J). Util = Medium) and (not Opt_Comp(J). Started) 

and (Opt_Comp(J). Released) then 

if (Opt_Comp(J). C - Opt_Comp(J). Accum) < Minimum then 

K: =J; 
Minimum := Opt_Comp(J). C - Opt_Comp(J). Accum; 

end if; 

end if; 

end loop; 
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-- mark as considered the optional computation with the minimum 
-- residual computation time : 
-- re-attempt to guarantee this minimum optional computation 
GU(Minimum, Opt_Comp(K). D, K, Prio); 
if Priority_Indicates_Accepted then 

Set_Priority (Prio, Opt_Comp(K). Name); 

else 

-- abort optional computation in the Ada task 
Abort_Flags(K): = True; 
Opt_Comp(K). Released := False; 

end if; 

end loop; 

-- attempt to re-guarantee all Low utility optional computations 
while Still_Low_Utility_Opt_Comps_Unconsidered loop 

-- process the low utility computations as above 
end loop; 

when Medium => 

-- attempt to re-guarantee all Low utility optional computations 
while Still_Low_Utility_Opt_Comps_Unconsidered loop 

-- process the low utility computations as above 
end loop; 

end case; 

end Reguarantee; 

8.4 ALTERNATIVE OPTIONAL COMPUTATIONS 

The first requirement to be considered is for optional computations which take the 
form of alternative computations arriving simultaneously. The first alternative requested is 

the most preferred one, while subsequent alternatives are less preferred and may be 

computationally cheaper. Therefore the less-preferred alternatives may be guaranteed when 
preferred versions are not. It is assumed that the preferred version is of high utility (i. e. 

non-abortable) so that there is no possibility of it being aborted and the less-preferred 

version being executed as well. 
The following fragment of Ada shows alternative versions ( v1, v2 , ... 

) of an 

optional computation which arrive simultaneously and can be implemented by the following 

asynchronous select statements: 

select 

-- request the first preferred version, v1 

-- if this call returns then request an 

-- alternative version using another 

-- asynchronous select. 
select 

-- request alternative version, v2 

-- etc. 
then abort 

-- code for v2 

end select; 
then abort 

-- code for v1 

end select; 
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8.5 REPLACEMENT OF MINIMUM COMPUTATIONS 

In this case the requirement is that there is a mandatory minimum computation 
which has been guaranteed before run-time and that this should, if possible, be replaced by 
a preferred version at run-time. Here vl is the minimum computation while v2 is the 
version which is preferred at run-time and must be guaranteed dynamically. v2 must be a 
high utility computation (non-abortable) because it replaces vl which is mandatory and was 
guaranteed statically. Therefore, once the request for v2 has been accepted, the call to 
request will never return and there is no possibility of vl being performed as well as Q. 

select 

-- request the version, v2 which is preferable at run-time 
-- code for v1 is here to be executed if request for v2 is denied 

then abort 
-- code for v2 

end select; 

8.6 ABORTED OPTIONAL COMPUTATIONS 

In this case we are considering Medium or Low Utility computations which if 

aborted will require some minimum computation to be executed instead. This can occur 

when there is a requirement for 'graceful degradation', or in the case of multiple versions 

where a preferred but unbounded computation may have to be aborted when time is left 

only for the execution of some less-preferred minimum computation. The following is the 

general form of Ada 95 code which can implement this: 

select 

-- request the preferred optional computation. 

-- code for minimum computation or recovery is here if preferred 

-- optional computation is aborted or rejected. 

then abort 
-- code for preferred computation 

end select; 

In a case of graceful degradation it may be that the abortion of the preferred 

computation is to be followed by a request for some alternative computation. Then the 

Ada code below can be used. 
In the case of multiple versions it may be that the preferred version is a Low utility 

computation which is allocated a budget. The implementation must therefore ensure that 

the preferred version does not overrun its budget and thereby make lower priority 

computations unschedulable. The Ada 95 code in Section 8.7 can implement this. 
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select 

-- request the preferred optional computation. 
-- if this is aborted (or rejected) then request an 
-- alternative computation using another 
-- asynchronous select: 
select 

-- request alternative computation 
-- etc. 

then abort 
-- code for alternative computation 

end select; 
then abort 

-- code for preferred computation 
end select; 

8.7 LOW UTILITY COMPUTATIONS 

The computational model of Chapter 3 considers optional computations of Low 
Utility to be those computations whose WCET cannot be determined or whose WCET is 

very pessimistic. These computations may nevertheless be guaranteed a budget which, for 

example, may cover their minimum or average computation time. Because they may exceed 
their budgets, such computations must have their accumulated execution times monitored. 
The assumption is that the Ada RTS can be extended in order to detect that the 

accumulated execution time of an optional computation has reached the allocated budget. 

The Ada RTS then triggers the abortion of the computation. The following code shows an 

example of Multiple Versions where an unbounded preferred version has been allocated a 
budget. If the preferred version is rejected, aborted due to Best Effort Admission Policy, or 

aborted due to the expiry of its budget, then a minimum version is executed: 

select 

-- request the budget for preferred version 

-- code for minimum version here is executed if 

-- preferred version is rejected or aborted due to Best Effort. 

then abort 

select 

-- a trigger from the RTS when the accumulated execution time has 

-- reached the budget allocated 

-- code for minimum computation version here is executed if 

-- preferred version uses its budget. 

then abort 

-- preferred version code which takes indeterminate length of time 

end select; 

end select; 

The question arises as to whether low utility computations such as the above could 

be granted an additional budget if they consume their original budget before they complete. 

The problem here, is that the expiry of the original budget triggers an asynchronous event 
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which would interrupt the flow of control of the optional computation, and therefore make 
it difficult to resume. 

8.8 IMPRECISE COMPUTATIONS 

Imprecise Computations consist of a minimum computation which may be 

mandatory followed by iterations which improve upon the minimum precision (see Section 
2.3.1). If the deadline of the Imprecise Computation is relatively small, then it may be most 
efficient to pose the request in the form of a request for alternative computations in which 
the alternatives are decreasing numbers of iterations of the imprecise computation. 
Obviously a higher number of iterations is preferable to a lower number and would be 

requested earlier in the sequence of alternative computations. See Section 8.4 for an 
implementation of alternative computations in Ada 95. 

In the case of an Imprecise Computation whose deadline is relatively long, it is 

more flexible to request each new iteration after the previous iteration has completed. This 

then takes advantage of the dynamic occurrence of slack. In general, iterations of an 
Imprecise Computation may have bounded or unbounded computation times. 

Implementations for each case are now presented. 

8.8.1 Bounded Computation Times 

The server below provides the necessary implementation for the case of iterations 

of Imprecise Computation with bounded computation times. Each iteration can be 

guaranteed at High Utility (i. e. non-abortable). With this method, the client can actually 

specify the deadline by which the imprecise computation must complete. This provides the 

absolute deadline in the above code, which is 'delayed until' in the outer asynchronous 

select. Within the inner loop, the Imprecise Server repeatedly requests iterations of the 

Imprecise Computation with bounded computation times. The server exits the inner loop 

when a sufficiently precise result has been calculated. 
This server can be contrasted with a more asynchronous Imprecise Server given by 

Burns and Wellings [5]. Their server incorporates a wait upon a persistent signal from a 

client task which indicates that the client wishes to read the result. The advantage of the 

method given here is that iterations of the Imprecise Computation can be requested for 

guarantee at High Utility against the overall deadline for the Imprecise Computation which 

has been specified by the client. Therefore, once guaranteed, these iterations will never be 

aborted as they may be in the case of the Burns and Wellings server [5]. The inner loop can 
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still be aborted in between the executions of guaranteed High Utility computations, or if the 
exit when statement evaluates to true. 

-- declare protected object Shared_Data which Client task can read and 
-- Imprecise Server can write 

task body Imprecise 
- 

Server is 

-- declarations 

begin 

loop 

-- initialise absolute deadline to that specified by client 
-- produce result with minimum required precision 
Shared_Data. Write(Result); 

select 
delay until overall deadline; 

then abort 
loop 

select 

-- request next iteration with bounded WCET 

-- request rejected: set flag for delay to avoid 'busy wait' 
then abort 

-- perform next iteration 

-- and compute refined Result 
Shared 

_Data. 
Write(Result); 

exit when Best-Result-Obtained; 

end select; 
if flag_ set then 

-- delay against busy wait 

-- reset flag 

end if; 

end loop; 

end select; 

end loop; 
end Imprecise_Server; 

The purpose of the delay within the inner loop is to ensure that processor time is 

not wasted by 'busy waiting', if repeated requests for further iterations are rejected by 
Flex Sched. (This inner delay is obviously subordinate to the delay until outside the 
loop. ) The flag ensures that the inner delay is not incurred when requests for iterations of 
the imprecise computation are accepted. (It could be argued that if such busy waiting is 

carried out at a low priority, then it will not interfere with tasks of higher utility. However, 

even if this is true, 'busy waiting' might still waste computation time which could be used 
for the imprecise computation itself. ) 

Ideally the problem of 'busy waiting' for a request to be accepted, could be solved 
by the ability to wait upon an asynchronous signal from the RTS when new slack is 

available. Again this would require extensions to the Ada 95 RTS. 
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8.8.2 Unbounded Computation Times 

If each of the iterations are unbounded it may only be possible to guarantee a 
budget which will cover their average or minimum computation times. In this case the 
server can be coded exactly as above except that nested asynchronous select statements are 
required within the inner loop (see code below). The outer of these may now be triggered 
by the rejection or abortion of the optional computation. The innermost asynchronous 
select ensures that the budget which has been allocated for the current iteration is not 
exceeded. 

Note that the same method can be used to avoid wasting processor time on 'busy 

wait'. In this case the delay to avoid busy wait, placed within the inner loop, will occur in 

the case of the optional computation being rejected or aborted. This may be appropriate, 
because an aborted request may indicate that the system is heavily loaded with higher utility 
computation, and therefore the delay is unlikely to waste slack which could have been used 
by the imprecise computation. 

loop 

select 

-- request budget for next iteration 

-- request rejected, or low utility computation aborted: 

-- set flag for delay and avoid 'busy wait' 
then abort 

select 

-- a trigger from the RTS when the accumulated execution time has 

-- reached the budget allocated 

then abort 

-- perform next iteration 

-- and compute refined Result 

Shared_Data. Write(Result); 

exit when Best_Result Obtained; 

end select; 

end select; 

end loop; 

8.9 COMPOUND COMPUTATIONS 

The computational model of Chapter 3 describes a compound computation as one 

in which multiple requests are 'anded' together. In other words, two or more optional 

computations, which arrive simultaneously, must all be guaranteed, or none can be 

accepted. All the computations should be of High utility because allowing them to be 

abortable (Medium or Low utility) would be inconsistent with requiring all of them to be 

guaranteed. 
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The requirement for compound computations can be implemented in Ada 95 by 
nested asynchronous selects. In the following code fragment, C1, C2, etc. represent the 
optional computations, both of which must be guaranteed. Because C1 and C2 are 
guaranteed sequentially, there is a possibility that C1 could be guaranteed, followed by a 
failure to guarantee C2. In this case C1 must be aborted even though it has been 
guaranteed as a High utility computation. In order to allow this abortion, C1 must first be 
relegated to a Medium utility computation, and then aborted, as is shown in the following 
code : 

select 

-- request C1, the first of the computations. 
-- If C1 cannot be guaranteed then the compound request is abandoned here. 

then abort 

select 

-- request C2, the second of the computations. If C2 cannot be guaranteed 
-- then the compound request is abandoned here, but must abort Cl: 
Make_Medium(Cl_Index); 

Make_Aborted(Cl_Index); 

then abort 

-- in-line code for C1 and C2. 

end select; 

end select; 

It can be seen from the above code that the computations for C1 and C2 are placed 
in-line. This could, for example, satisfy the requirements for a control system in which a 
sequence of operations must be carried out, in order, and to consecutive deadlines. The 

requirement may be that all of the operations must be carried out within their time 

constraints, or the sequence should not be embarked upon at all. In terms of the above 
code fragment, C1 would be required to execute first within a deadline D1, followed by the 

execution of C2 within a longer deadline, D2. 
If required, concurrency could be introduced into compound computations within 

the framework of the asynchronous select statements above. This could be achieved by the 

use of entry calls which activate code located in other tasks. Another possibility would be 

to elaborate child tasks, each containing a component of the compound computation, at the 

point where the in-line code would otherwise be placed. The abortion of such dependent 

tasks would be an abort-deferred operation, and therefore these tasks could not be 

immediately aborted if the asynchronous select was triggered. However, this is not a 

problem in the case of compound computations which are, by definition, non-abortable. 

8.10 SIEVE FUNCTIONS 

According to Audsley et al. [4] Sieve Functions can be divided into a sequence of 
bounded and unbounded computations. For example C1, XI, C2, X2, C3 can represent the 
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computational components of a sieve function. C1, C2 and C3 are the bounded 

computations which are essential to the completion of the function. In contrast, X1 and X2 

are unbounded components which are desirable but not essential to the completion of the 
sieve function. It may be possible only to derive an average or minimum computation time 
for the unbounded components. Therefore the best guarantee that they can be given, is for 

a budget of time which covers the average or minimum computation time. In other words, 
according to the computational model of Chapter 3, these components would be classed as 
low utility computations. 

A method for implementing such a sieve function in Ada 95 is firstly to attempt to 

guarantee the sum of the computation times of the bounded components as a single high 

utility computations to be carried out within the overall deadline for the sieve function. If 

the guarantee is given, and the function executes, guarantees for each of the unbounded 
components can be requested at the points where each of them occur in the sequence of 

computations. If a request for an unbounded component is rejected, then the component is 

omitted and the next bounded component is executed. 

select 
-- request Cl + C2 + C3, the high utility, bounded computations 

-- if rejected then the sieve function is abandoned here. 

then abort 

-- perform Cl 

select 
-- request a budget for X1, the first of the low utility, unbounded 

-- computations : if X1 budget cannot be guaranteed then abandon X1. 

then abort 

select 

-- a trigger from the RTS when the accumulated execution time has 

-- reached the X1 budget allocated 

then abort 

-- code for X1. 

end select; 
end select; 

-- perform C2 

select 

-- request a budget for X2, the 2nd of the low utility, unbounded, 

-- computations : if X2 budget cannot be guaranteed then abandon X2. 

then abort 

select 

-- a trigger from the RTS when the accumulated execution time has 

-- reached the X2 budget allocated 

then abort 

-- code for X2 

end select; 
end select; 

-- perform C3 

end select; 

It is worth noting that the bounded components have been guaranteed first as high 

utility, non-abortable computations, and therefore they cannot subsequently be made 
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unschedulable by the guarantee of low-utility components. As usual, provision has be made 
to prevent the unbounded computations exceeding their budgets. 

8.11 PERIODIC TASKS WITH CUMULATIVE ERRORS 

8.11.1 With High Utility Optional Computations 

-- initialise Next Period 
-- set Reject_Count to N -1 to force initial performance of 
- minimum + optional computation 
loop 

if Reject Count < (N -1) then 
-- perform minimum computation (guaranteed before run-time) 
select 

-- request optional computation 

-- request rejected therefore increment Reject_Count 
then abort 

-- code for optional computation 

-- set Reject Count to zero 
end select; 

else 

- code for minimum + optional computation 

-- set Reject Count to zero 

end if; 
delay until Next 

- 
Period; 

Next_Period := Next Period + Period; 

end loop; 

In [7] Chung et al. discuss the requirements for periodic tasks with cumulative 
errors. In applications such as radar tracking, periodic computations may be divided into a 

minimum and an optional component. The minimum component must run every period but 

the optional computation component may be terminated early, with the result that an error 

will be accumulated. The requirement is that the optional component must complete at 
least every Nth period in order that the error is prevented from exceeding a level which 

cannot be tolerated by the application. (It is assumed that static schedulability analysis 

ensures that there is at least sufficient computation time for the 'optional' component to 

execute every Nth period, when it is in effect mandatory. ) 

Such periodic computations could be implemented by the Ada 95 code shown 

above. In this case optional computations of High Utility are used. They provide a simpler 
implementation than using Low Utility optional computations (compare 10.2 below). 

However, High Utility optional computations suffer the disadvantage that are less flexible 

because they cannot be aborted. Reject Count accumulates the number of consecutive 

rejections of requests for the guarantee of optional computations. N-1 is the number of 

consecutive periods for which the accumulation of the error can be tolerated. 

187 



8.11.2 With Low Utility Optional Computations 

The requirements for periodic tasks with cumulative errors are better met by the use 
of Low Utility optional computations. The disadvantage is that the Ada implementation is 

more complex due to the fact that Low Utility computations are guaranteed a budget, and 
the implementation must ensure that the budget is not exceeded. As before, this can be 
done by including a trigger from the RTS which will abort an overrunning computation. In 

the following Ada, Fail Count plays a similar role to Reject_Count above. Fail Count is a 

counter which represents the current number of consecutive occasions on which the 

optional computation has been rejected, or aborted. Abortion can occur either because the 

computation has failed to complete within its budget, or because Best Effort has 

guaranteed a higher utility computation. 

-- initialise Next_Period 

-- set Fail Count to N -1 to force initial performance of 

-- minimum + optional computation. 
loop 

if Fail_Count < (N -1) then 

-- perform minimum computation (guaranteed before run-time) 

select 
-- request budget for optional computation 

-- request rejected, or the computation is 

-- aborted due to Best Effort : increment Fail_Count 

then abort 

select 

-- a trigger from the RTS when the accumulated execution time has 

-- reached the budget allocated 

-- budget inadequate : increment Fail_Count 

then abort 
-- code for optional computation 

-- set Fail Count to zero 

end select; 
end select; 

else 
-- code for minimum + optional computation 

-- set Fail Count to zero 

end if; 

delay until Next 
- 

Period; 
Next Period := Next_Period + Period; 

end loop; 

In the above code, race conditions can occur around the setting of Fail Count to 

zero. Such race conditions will not break the constraint that the optional computation must 

execute at least every N periods. Race conditions could be caused by the abortion of the 

second part of the inner asynchronous select statement, after the code for the optional 

computation has completed, but just before the inner 'end select', or just before the 'set 

Fail Count to zero'. In either case 'increment Fail_Count' will execute after the abort has 
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been triggered. If the RTS interrupts just before the inner end select, then Fail_Count will 
be incremented to one. If the RTS interrupts just before 'set Fail_Count to zero', then 
Fail Count will be incremented from its last value. In either case, the worst that can 
happen is the forcing of an early execution of the full computation after the else. 

8.12 REPLICATED COMPUTATIONS 

Applications may arise where it is necessary for a computation within one task to 
either change the utility of, or abort a computation in another task. Such a requirement can 
arise in the case of optional computations which are replicated to enhance fault tolerance. If 
one of the replicants completes before the other it may be required to lower the utility of its 
fellow or even abort its fellow altogether. Conversely if one of the replicants fails it may be 

necessary to raise the utility of its fellow. Two capabilities are required: 

(i) the ability to change the utility of another replicated computation. 
(ii) the ability to abort another replicated computation. 

It is assumed that, to enhance fault tolerance, the replicated code would be guaranteed 
initially as a High-Utility (i. e. non_abortable) computation. (i) above may be implemented 
by allowing a replicated computation to make a call to the appropriate procedure in the 

protected object Flex 
_Sched, 

in order to change the utility of a fellow replicant. (ii) may be 

implemented by placing the replicated computation within an outer asynchronous select 

which can be triggered by a persistent signal from another replicant. The code for each of 
the replicated computations could take the following form: 

select 

-- wait upon persistent signal from a fellow replicant 

then abort 

select 

-- request the high utility replicated computation 

then abort 

-- replicated code 

-- send signal to fellow replicant to abort 

end select; 
end select; 

Note that the use of a persistent signal means that the signalling replicant not only 

aborts other replicants, but also aborts itself Obviously, race conditions may occur in the 

signalling to abort, of each replicant to its fellow(s). However this should not undermine 

the requirement for at least one completed execution of the replicated code. 
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8.13 CONCLUSIONS 

Ada 95 does not provide direct support for optional computations. To implement 
optional computations at the level of Ada tasks would give the real-time programmer little 
ability to tailor optional computations, and would require considerable extensions to the 
Ada RTS. However, the asynchronous select statement is a construct which can be used to 
program optional computations within Ada tasks. It has sufficient expressive power to 
implement many different applications application requirements for optional computations. 

The Constrained Computational Model of Chapter 3 may be supported by a flexible 

scheduler implemented in Ada 95. The flexible scheduler has sole responsibility for handling 

utilities. The scheduler implements Best Effort Admission Policy by making appropriate 
calls to the Ada RTS, which need only provide functions to (i) schedulability test a single 
optional computation (ii) withdraw lower utility optional computations from the task list 

and (iii) efficiently reinstate lower utility computations when a higher utility request has 
been rejected. Within the flexible scheduler, the Ada 95 requeue statement can be used to 

queue requests for optional computations, which arise from asynchronous select statements 
within the applications tasks. Requests are requeued on an entry with a barrier which can 
be manipulated to allow the completion or abortion of optional computation code, within 
the asynchronous selects. Requeue statements are also used to change the state of optional 

computations form abortable to non-abortable and vice versa. 
Fundamental problems occur unless the Ada RTS can be extended to support 

accumulated execution times. The Best Effort algorithm, as implemented in the protected 

object Flex Sched, requires accumulated execution times to be passed back from the RTS 

in order to attempt the re-admission of withdrawn optional computations, in order of 
decreasing value density. Lack of availability of accumulated execution times also affects 

the Ada support for Low Utility Computations which have unbounded WCETs. According 

to the Constrained Computational Model, these computations should be guaranteed a time 

budget, which may turn out to be insufficient. In order to avoid these computations 

exceeding their budgets, their accumulated execution times must be available to be 

monitored. Computation should be aborted when an accumulated execution time equals the 

guaranteed budget. 

In general, the above work could be extended to provide an Ada implementation 

which supports the use of optional computations within multiprocessor clusters such as 

those of Chapter 6. For example the Request call for the guarantee of an optional 

computation could be extended to allow Shuffle Schedulability Testing. (If Request at 

processor i fails, then attempt to guarantee at processor i+1, etc. ). 
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CHAPTER 9 

CONCLUSIONS 

9.1 REVIEW OF THE WORK DONE 

Chapter 1 outlined the assumptions of this thesis that standard hardware and 
programming languages can be used in support of flexible scheduling. The thesis 
proposition was given as: 

"The application requirements for flexible scheduling can be embraced in a 
constrained computational model for which cost-effective run-time support can be 

provided. The model can be implemented in a standard programming language so 
that applications written in this language can increase their utility. " 

This proposition led to the adoption of three broad objectives or strands: 

1. To investigate the requirements for optional computations in the next generation of 

real-time systems, and to derive a computational model which is sufficiently constrained 
to be supported by a RTS executing on the same processor as the application tasks. 

2. To develop more cost-effective support for flexible scheduling than that which 

currently exists. This is to be done by the development of (i) computationally cheaper 

guarantee algorithms for optional computations and (ii) methods of allocating optional 

computations within a multiprocessor cluster, such that throughput of optional 

computations is maximised. 

3. To demonstrate that optional computations may be implemented in a standard 

programming language. 

The preceding 7 chapters have reported on the work done within each strand. 

Chapters 2 and 3 relate to strand 1. Chapter 2 reviewed, amongst other topics, the 

complex application requirements for optional computations. Chapter 3 presented a 

constrained computational model which can support many of these requirements. 
Chapters 4,5 and 6 support strand 2, by investigating the use of guarantee 

algorithms with FCFS Admission policy. Chapters 4 and 5 developed and evaluated the 

performance of a suite of on-line schedulability test algorithms. Chapter 6 investigated 
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allocation methods which optimise the throughput of optional computations within a 
multiprocessor cluster. 

Chapter 7 evaluated, by simulation studies, the use of a newly developed guarantee 
algorithm within the computation model of Chapter 3. The model used Best Effort 
admission policy instead of FCFS. 

Finally, Chapter 8 supported strand 3 by showing that the constrained 
computational model can be implemented in the standard programming language Ada 95. 

Each strand of the work of this thesis addresses one aspect of the provision of 
optional computations within real-time systems. These aspects are inevitably interrelated. 
Therefore this thesis provides an integrated approach to optional computation which 
embraces requirements, programming language, run-time support, tasking model and 
multiprocessor configuration. 

9.2 GENERAL CONCLUSIONS FROM THE WORK DONE 

The following are a list of the main conclusions from the foregoing chapters: 

"A constrained computational model for optional computations can satisfy many of the 

relevant application requirements, and can be supported cost-effectively. 

" Guaranteeing optional computations can provide greater throughput of computations 

which meet their deadlines, than simply executing them in background. 

" Exact schedulability test algorithms are not always the most cost-effective. There is 

always a trade-off between the overheads incurred by schedulability testing, and the 

total throughput of optional computations. 

0 

0 

FCFS admission of guaranteed optional computations improves performance 

generally over background processing. However, Best Effort admission policy can 
improve performance even further, under certain ranges of operating parameters. 

In a multiprocessor cluster, simple methods of allocating optional computations (such 

as adapted Round Robin, or Shuffle Schedulability Testing) can provide greater 

throughput than more complex methods. 

A constrained computational model for optional computations can be implemented in 

a standard programming language such as Ada 95. 
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9.3 CONTRIBUTION 

This thesis complements and extends previous work in the area of flexible 

scheduling research. The Spring Project (reviewed in Chapter 2) provides computationally 
expensive guarantee algorithms and decentralised scheduling. These require the support of 
a specialised co-processor, and a systems processor respectively. This thesis avoids the 

need for specialised or dedicated hardware, by developing computationally cheaper 
methods of (i) guaranteeing optional computations and (ii) directing them to the processor 
most likely to guarantee them. In devising these methods, the work of Audsley [2] on static 
schedulability testing is extended into the domain of dynamic schedulability testing. 

Elements of the work of this thesis also complement and extend the recent work of 
Davis. In [10] Davis makes use of schedulability Test 2 (given in Chapter 5) in conjunction 

with his slack stealing algorithm, in order to provide a sufficient but not necessary 

acceptance test. Conversely, Chapter 5 adopts and evaluates Davis' method [9] for optimal 

placement of aperiodic tasks within a task list. Finally, the work of Davis et al. [ 12] on Best 

Effort is extended in Chapter 7, where detailed investigations of the overheads incurred by 

the policy are made, within the context of a complete computational model. 

9.4 FUTURE WORK 

The work of this thesis indicates a number of avenues for further research: 

" Work on setting the implementation techniques developed here, into the larger 

software engineering context. For example, the mapping of complex requirements for 

Real-Time Al onto the constrained computational model outlined in Chapter 3. 

" Further development of the computational model, and its interface with Run-Time 

Support. For example, approximate processing could be supported within the model. 

The application could demand, from the RTS, the amount of slack available at a 

particular priority level, for an optional computation which is to perform approximate 

processing at that priority level. The application could then set the execution 

parameters of the optional computation in such a way that its WCET conforms to the 

slack available. 

The algorithm for Best Effort Admission Policy could be refined. As it is, Best Effort 

admits higher utility optional computations by, if necessary, aborting lower utility 

optional computations. No judgement is made as to whether the utility lost by aborted 
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computations is outweighed by the utility gained in the new arrival. Some measure of 
the utility loss could form a criterion for the admission of the newly arrived optional 
computation. Such improvements in Best Effort Admission Policy might extend the 
windows of operation within which Best Effort provides higher utility than FCFS. 

" Abortable, low-utility optional computations could be guaranteed more cheaply than 
non-abortable high-utility computations. The constrained computational model 
presented in Chapter 3 allows low utility optional computations to be abortable at any 
time. Even if they are not aborted, their budgets may turn out to be inadequate for 
their computation to complete. However, such low utility computations still incur the 
overhead of Best Effort Admission, the most expensive component of which is the 

schedulability test algorithm itself. There is a case for saying that abortable 
computations should be given cheaper (pessimistic) guarantees, because their utility 
may, in any case, be lost. 
This area of the computational model overlaps with the work of Liu et at. [33,34]. 
These researchers do not guarantee optional computations, but optimise the chances 
of them meeting their deadlines, thereby gaining greater total utility for the system. 

" The Ada RTS could be extended to support flexible scheduling. This would require 
the implementation of support for the calls to the RTS which are assumed in Section 

8.3. These are GU, UNGU, and REIN, which perform the guarantee of an optional 

computation, the withdrawal of an optional computation from the task list, and the 

efficient reinstatement of all withdrawn computations, respectively. The 

implementation of this run-time support would allow the overheads incurred by these 

calls to be measured, and would provide further evaluation of the computational 

model. Further extensions to the Ada RTS, for example in support of approximate 

processing, could also be considered. 

" The Ada 95 implementation of the computational model (Chapter 8) could be 

extended to support the use of optional computations within multiprocessor clusters 

(Chapter 6). For example a call for the guarantee of an optional computation could be 

extended to allow Shuffle Schedulability Testing : if the call for guarantee at 

processor i fails, then attempt to guarantee at processor i+1, etc. 
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9.5 FINAL THOUGHTS 

Flexible scheduling was introduced to support adaptivity within real-time 
applications. However, its overheads can be great, and therefore the schemes for flexible 
scheduling themselves should be adaptable. The foregoing chapters demonstrate : 

(i) the large bounds required to guarantee the guarantee algorithms themselves 
(ii) the varying overheads of the guarantee algorithms 
(iii) the difficulty in bounding some forms of optional computation 

In the work of this thesis the above demands are accommodated by static schemes, 
such as guaranteeing that a fixed, maximum arrival rate of sporadic tasks can be 

schedulability tested, or, in the case of a multiprocessor, rigid allocation according to 
Shuffle Schedulability Testing. Such fixed schemes may prove inadequate for intelligent 

real-time systems which require adaptivity within the flexible scheduling itself. One 

approach would be to progressively drop the optional computation overheads listed above, 
as the loading of critical tasks on the system increases. For example, under the highest 
loading of critical computation, schedulability testing may be abandoned altogether, and 
optional computations rejected out-of-hand. On the other hand, under light loading of 
critical tasks, exact schedulability tests may be performed, and may be guaranteed to 

execute at a maximum rate. 
Such adaptivity within the flexible scheduling itself, can be partially satisfied within 

the framework of the constrained computational model presented in Chapter 3. The model 

allows dynamic changes in the utility and abortability of optional computations. Wider 

changes within an application may be accommodated by global changes to the parameters 

of the model such as: 

(i) altering the utility ratios R1 and R2 

(ii) changing the schedulability test algorithm which is provided by the RTS. 

More drastic changes within an application may require the constrained model to be 

amended. For example, an increased periodic utilisation by critical tasks may require 

admission policy to be changed from Best Effort to FCFS. Adaptivity may also be required 
in regard to the allocation strategy for optional computations within multiprocessors. For 

example, if Shuffle Schedulability Testing is employed, it may be beneficial to limit 

schedulability testing to a single test per optional computation under conditions of high 

loading. 
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APPENDIX A 

ADAPTATIONS OF STATIC ALGORITHMS 

A. 1 THE O(N2) ALGORITHM 

In the O(N2) algorithm, the interference from all higher priority tasks, is calculated 
for the duration of the deadline (Di) of the test task, i. The number of interferences by a 
higher priority task is calculated by taking the ceiling of Di = Tj where Tj is the period of a 
higher priority task, j. A dynamic refinement is to first subtract from Di the offset (Od) of 
the next release of the interfering task, j. Also, any residual execution time (Rj) of the 
interfering task must be added to the total interference of task j. Finally, schedulability is 
tested by comparing the test task's deadline (Di) with the sum of interferences over all 
higher priority tasks plus the current computational requirement of the test task itself. If the 
test task is currently active, its computational requirement will be its residual execution 
time Ri, otherwise its WCET (Ci) will have to be considered against Di, the deadline of the 
test task's next activation. In the case of the test task being the sporadic task itself (see 
Figure A. 1), then the total interference over all higher tasks, j, is calculated by: 

Is = ýý(r(DS-Oý =Tj 10Cj +Rj) (A. 1) 

where: 
DS is the sporadic deadline 

R- is the current residual execution time of the interfering task 
07 is the offset of the interfering task 
Ti - is the period of the interfering task 
Ci is the WCET of the interfering task 

and [X1o (i) returns 0 if X<0 
(ii) returns [Xl if X> 0 

Figure A. 1 shows that the interference, I2, of task 2 in the sporadic task will be 

pessimistically assumed to include all of the computation time, C2, of the final hit of task 2, 

despite the expiry of the sporadic deadline before that final hit finishes. 

196 



Current 
Time 

T1 

C 1> 
01 T2 

DS 

time 

time 

Figure A. 1: Computation times (C) for periodic tasks above the sporadic task. 
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Figure A. 2: Computation times (C) for periodic tasks below the sporadic task. 
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For a task, i, lower than the sporadic task, the interference over all higher tasks, j, 
is calculated by: 

Ii = Ej(r(DI-Oý=Tj 10Cj +Rj) (A. 2) 

Note that Ts is set to infinity, as are the periods of any other sporadic tasks which are 
currently in the task list. 

The sporadic task, s, is a one-off release, so that the accumulated interference time 
in a lower task need only be tested against either (a) the current deadline of the lower task 
if it is active or (b) the deadline of the next activation of the lower task if it is inactive. 
Respective examples from Figure A. 2 are task k+ I and task k. The following are more 
detailed explanations of the different tests for (a) and (b). 

(a) If the lower task being schedulability tested is active (in other words Rl > 0) then test 

whether DI >_ Ii + Rl. 

(b) If the lower task is inactive, then the total interference in the lower task's next 

activation, plus the lower task's WCET, must be tested against its next deadline. A 

sufficient condition is to suppose that the next activation of the task starts at the 

current time, and to test whether Di >_ Ii + Ci 
, where Di is the deadline of the next 

activation. The supposition that the next release of the task being tested is at the 

current time is made in order to make use of dynamic scheduling data, to greatly 

simplify calculation and to thereby reduce schedulability testing overheads. The 

following is a proof that the supposition provides a sufficient schedulability test. 

Proof: The interval between the current time and the actual next release of test task i 

is either (i) filled by interferences from higher priority tasks or (ii) there are 'gaps' in 

which task i could execute if it were released. If (i) then this degenerates into the 

same condition as allowing task i to execute only after its next release. If (ii) then all 

higher priority tasks, including the sporadic task, are satisfied i. e. the interference of 

the sporadic task itself, and its knock-on effects on the lower priority tasks, which are 

above the test task i, have ended. In other words the supposition is never falsely 

optimistic. Therefore the supposition is a valid basis for a sufficient schedulability test. 
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A. 2 THE PSEUDO-POLYNOMIAL (PP) ALGORITHM 

Current 
Time 

T1 

Figure A. 3: Response times (w) for periodic tasks above the sporadic task. 

The PP algorithm calculates the interference from higher priority tasks during the 

elapsed execution time of the test task. The algorithm therefore generates response times 

(wi) for each test task, i. Figure A. 3 shows the case of the sporadic task itself as the test 

task. (Incidentally, note that wl = C1. ) The interference over all tasks, j, above the 

sporadic task is found by: 

Is = ij(r(ws-Oj)=Tj 10Cj +Rj) 

where: 
ws is the response time of the sporadic 
Rj - is the current residual execution time of the interfering task 

07 is the offset of the interfering task 
Ti . is the period of the interfering task 
Ci is the WCET of the interfering task 

(A. 3) 

Hence the recursive equation which determines the final value of ws: 

n+1 n 

ws = Cs + 1-(r(ws-Oj)=Tj10Cj+Rj) (A. 4) 
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Wk time 

wk +1 time 

Figure A. 4: Response times (w) for periodic tasks below the sporadic task 
(before the sporadic arrives). 

Figure A. 4 shows response time for tasks below the sporadic task in priority order. 
As with the O(N2) algorithm, the response times of lower tasks need only be tested against 
either (a) their current deadline if they are active or (b) the deadline of their next activation 
if they are inactive. The following are more detailed explanations of the different tests for 
(a) and (b). 

(a) If the lower task being schedulability tested is active (in other words RI > 0) then test 

whether DI >_ wi where wl is found when the following recursive equation converges: 

n+1 n 

ti''i = Ri + Ej(r(wi-Oý=Tj10Cj+Rj) (A. 5) 

This is the same as (A. 4) except that wi is the response time for the residual 

computation time of the task, i, being schedulability tested. As before TS is set to 
infinity, as are the periods of any other sporadic tasks which are currently in the task 
list. 
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(b) If the lower task is inactive, then the response time of the task's next activation must 
be tested against the task's next deadline. Here wl is calculated recursively in a similar 

way to (A. 5): 

n+l n 

wi = Ci + Ej(r(wi - Oj) -- Tj 10 Cj + Rj) (A. 6) 

Again TS is set to infinity. 

As with the O(N2) algorithm, the supposition that the next release of the test task, i, is 

at the current time is made in order to reduce schedulability testing overheads. The 

proof that this supposition provides a valid basis for a sufficient schedulability test is 

the same as for the O(N2) algorithm above. 
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