
A Constrained Computational Model for Flexible Scheduling

Charles Gerard McElhone

Submitted for the Degree of Doctor of Philosophy

University of York

Department of Computer Science

November 1996

To my parents.

CONTENTS

ACKNOWLEDGEMENTS
... 1

DECLARATION ... 2

ABSTRACT ... 3

1 INTRODUCTION
... 4

1
.1

Background
...

4
1

.2
Motivation

...
5

1 .3 Incorporating Adaptivity
...

6
1.3.1 Application Example

..
8

1 .4 Flexible Scheduling Overheads
..

9
1.4.1 Scheduling Concepts

...
9

1.4.2 Cost-Effectiveness of Flexible Scheduling
.....................................

10
1
.5

Programming Language Support
...

11
1
.6

Thesis Statement
...

12
1.6.1 Assumptions

...
12

1.6.2 Thesis
..

13
1 .7

Approach
..

13
1
.8

Methods Used
..

15
1 .9

Thesis Organisation
... 15

2A REVIEW OF FLEXIBLE SCHEDULING .. 19
2.1 Introduction

...
19

2.2 Application Requirements for Optional Computations
....................................

19
2.2.1 Examples of Applications

..
19

2.2.2 Autonomous Vehicle Control Systems
.. 20

2.2.3 Radar Tracking .. 21
2.2.4 Summary

...
21

2.3 Existing Models for Optional Computations
... 22

2.3.1 Imprecise Computation
...

22
2.3.2 Computational Models for Real-Time Al Applications

............... 23
2.3.3 Locke's Value Functions and Utilities

.. 25
2.3.4 The Spring Model

.. 25
2.3.5 Summary

... 27
2.4 Existing Run-Time Support for Flexible Scheduling

.................................. 27
2.4.1 Methods for Optimising Response Time of Soft Tasks

................
27

2.4.2 Bandwidth Preserving Algorithms
..

28
2.4.3 Slack Stealing

... 29
2.4.4 Summary

... 29
2.5 The Spring Project ... 30

2.5.1 Spring Guarantee Algorithms
... 30

2.5.2 Complexity of the Algorithms
.. 31

2.5.3 Heuristics
.. 31

2.6 Distributed Scheduling in Spring
... 32

2.6.1 The Distributed Algorithms
... 32

2.6.2 Focused Addressing, Bidding and the Flexible Algorithm
............

32
2.6.3 Summary of Spring

..
34

2.7 Algorithms for Static Schedulability Testing ..
34

2.7.1 Sufficient and Not Necessary Tests
... 35

2.7.2 A Sufficient and Necessary Test ... 37
2.8 Language Support for Optional Computations

...
37

2.8.1 Flex
...

38
2.8.2 Real-Time Concurrent C

..
39

2.8.3 Pearl
..

43
2.8.4 Ada

..
44

2.8.5 Summary
...

44
2.9 Summary of Review

...
45

3A CONSTRAINED COMPUTATIONAL MODEL 46
3.1 Introduction

..
46

3.2 Complex Requirements
...

46
3.2.1 Value Functions

..
46

3.2.2 Interdependencies Between Tasks
...

47
3.2.3 Schedulability Testing

..
47

3.2.4 Summary
..

48
3.3 Attempts to Constrain Complex Requirements ..

48
3.3.1 Constraining Value Functions and Utilities

.................................
48

3.3.2 Categories of Tasks
...

48
3.3.3 Guarantee-worthiness

...
49

3.3.4 The Problems of Composite Utilities/Abortabilities
...................... 50

3.3.5 Dynamic Changes of Utility
...

51
3.3.6 Constraining Task Interdependence

.. 51
3.3.7 Accommodating Unbounded Computations

................................... 52
3.3.8 Supporting Alternative and Compound Computations

.................
52

3.3.9 Guaranteeing Sequences of Aperiodic Computations
.................. 53

3.4 The Constrained Model ... 54
3.4.1 Introduction

..
54

3.4.2 Utility Levels .. 55
3.4.3 Mandatory Tasks .. 55
3.4.4 High Utility Tasks ... 55
3.4.5 Medium Utility Tasks

... 56
3.4.6 Low Utility Tasks ... 56
3.4.7 Background Tasks

... 57
3.4.8 Dynamic Changes in Utility

...
57

3.4.9 Precedence
.. 58

3.5 Viability of the Constrained Computational Model
.................................... 58

3.5.1 Guarantee-worthiness
..

58
3.5.2 Simplistic Measures of Guarantee-worthiness

............................ 59
3.5.3 Evaluating Best Effort Admission Policy

......................................
59

3.6 Necessary Language Constructs
.. 60

3.6.1 Compound and Alternative Computations
..................................

60
3.6.2 Fulfilling Application Requirements

... 61
3.7 Summary of the Constrained Model

... 62
3.8 The Work which Follows

.. 63

4 VIABILITY OF ON-LINE ACCEPTANCE TESTING 64
4.1 Introduction

...
64

4.2 The Static Algorithms
..

64
4.3 Adapting the Static Algorithms

..
65

4.4 Variations on the Algorithms
...

67
4.5 Simulation Studies

...
68

4.5.1 Measuring the Scheduling Overheads
..

68
4.5.2 The Simulations

..
69

4.5.3 Task Generators
..

69
4.5.4 Measuring Performance

...
70

4.6 Comparing the Adapted Algorithms
..

70
4.6.1 Varying the Periodic Task Characteristics

...................................
71

4.6.2 Varying Sporadic Task Characteristics
.......................................

77
4.7 Parameters of the Optimum Bound

...
79

4.8 Different Proportions of Sporadic and Periodic Utilisation
..........................

84
4.9 Conclusions

..
85

5 ENHANCED ON-LINE GUARANTEES .. 87
5.1 Introduction

..
87

5.1.1 Approach
..

87
5.1.2 Enhancing the O(N2) Component

.....................
87

5.1.3 Enhancing the PP Component
..

88
5.1.4 Dynamic Placement of Sporadic Tasks

...
88

5.2 Simulation Studies
..

89
5.2.1 Introduction

...
89

5.2.2 Establishing an Upper Bound for each Schedulability Test
.............

89
5.2.3 Simulation Parameters

...
90

5.3 Comparing Tests 1 to 4
...

90
5.4 The Headstart Optimisation

..
93

5.5 Combining Headstart With the PP Algorithm
...

96
5.6 Using both Tests 1-4 and Headstart to Improve Hybrid

............................... 99
5.7 Optimal, Dynamic Placement of Sporadics Tasks ... 102
5.8 The Effect of Dynamic Placement on Hybrid Performances

.......................
106

5.9 Selecting the Best of the Hybrid Algorithms
.. 109

5.10 Conclusions
..

110

6 ALLOCATION METHODS FOR MULTIPROCESSOR SYSTEMS 112
6.1 Introduction

..
112

6.1.1 Approach
...

112
6.1.2 Targeting ...

112
6.1.3 Shuffle Schedulability Testing .. 113

6.2 Issues to be Investigated
...

113
6.2.1 Rationale for Targeting

..
113

6.2.2 Davis' Slack Stealing Algorithm
..

114
6.2.3 The Slack-based Pre-test used in Targeting

................................
115

6.2.4 Issues to be Investigated for Targeting
......................................

116
6.2.5 Issues for Shuffle Schedulability Testing

.................................... 117
6.3 Algorithms for Targeting ... 118

6.3.1 Introduction
...

118
6.3.2 Partial Targeting .. 118
6.3.3 Full Targeting

..
120

6.3.4 Ideal Targeting
..

122
6.4 Dummy Sporadic Requests

...
122

6.4.1 Rationale for the Use of Dummy Sporadics
................................

122
6.4.2 Ordering Sporadic Requests

..
123

6.5 Simulations of the Targeting Algorithms
.. 124

6.5.1 Introduction
...

124
6.5.2 Interpretation of the Results

..
126

6.5.3 Using Earliest Deadline Ordering of Sporadics
...........................

126
6.5.4 Summary

...
127

6.6 Use of Top-Down Schedulability Testing ...
128

6.6.1 Introduction
..

128
6.6.2 Results

..
128

6.6.3 Summary
...

130
6.7 Targeting without Dummy Sporadic Requests

...
130

6.7.1 Introduction
...

130
6.7.2 Interpretation of the Results

..
131

6.7.3 Summary
...

132
6.8 Overheads on the Targeting Processor

...
132

6.9 Updating Slack for Accepted Sporadic Tasks Only
...................................

133
6.10 Varying Periodic Utilisations Uniformly

..
134

6.11 Skewed Distributions of Periodic Utilisations
..

136
6.11.1 Introduction

..
136

6.11.2 The Skewed Distributions
..

137
6.11.3 Interpreting the Results

...
139

6.11.4 Summary
...

139
6.12 Generating Sporadic Requests Internally ... 140

6.12.1 Introduction
...

140
6.12.2 Adapted Targeting Algorithms

...
141

6.12.3 Results
.. 142

6.13 Shuffle Schedulability Testing
... 142

6.13.1 Introduction .. 142
6.13.2 The Effect of Phase Difference

...
143

6.13.3 Interpretation of the Results
...

144
6.13.4 Varying Periodic Utilisations

...
145

6.13.5 Summary
... 146

6.14 Summary of the Work Done
..

147
6.15 Conclusions

...
148

6.15.1 General Conclusions for Targeting
...

148
6.15.2 Conclusions for Shuffle Schedulability Testing

.......................... 149
6.15.3 Overall Conclusion

..
149

7 ADMISSION POLICIES .. 150
7.1 Introduction

... 150
7.1.1 Objective

... 150
7.1.2 The Simulation Studies

.. 151
7.2 Comparing Best Effort and FCFS Admission Policies

.................................
152

7.2.1 Simulating 2 Levels of Utility Only
...

152
7.2.2 Interpreting the Results

...
153

7.2.3 Overheads for Admission Policy ..
154

7.2.4 Average Sporadic Computation Times
..

155
7.3 Simulating High and Medium Utility Optional Computations

......................
155

7.4 Simulating 3 Levels of Utility
..

157
7.4.1 Introduction

...
157

7.4.2 Interpreting the Results
...

158
7.5 Varying the Resident Periodic Utilisation ...

159
7.5.1 Introduction

...
159

7.5.2 Interpretation of the Results
..

161
7.6 Changing the Relative Utilities

..
162

7.6.1 Setting the Parameters of the Simulation
....................................

162
7.6.2 Interpreting the Results

...
162

7.7 Summary of the Simulation Work Done
..

164
7.8 Conclusions

..
165

7.9 Viability of the Constrained Model
...

166
7.9.1 Windows of Operation

...
166

7.9.2 Recommendations for the Model ..
167

8 IMPLEMENTATION OF THE COMPUTATIONAL MODEL 168
8.1 Introduction

..
168

8.2 Ada 95 Constructs
..

168
8.2.1 Protected Objects .. 168
8.2.2 Requeue

...
169

8.2.3 The Asynchronous Select
..

170
8.2.4 Using Ada 95 Constructs for Optional Computations

.................... 170
8.3 An Ada 95 Implementation for Optional Computations

..............................
171

8.3.1 Overview
...

171
8.3.2 Specification of the Flexible Scheduler Object

............................... 172
8.3.3 Implementing the Public Interface of the Flexible Scheduler

...........
174

8.3.4 Handling Requests for Optional Computations
............................ 176

8.3.5 Best Effort Admission Policy .. 177
8.3.6 Auxiliary Procedures for Best Effort

...
178

8.4 Alternative Optional Computations
..

179
8.5 Replacement of Minimum Computations

... 180
8.6 Aborted Optional Computations

...
180

8.7 Low Utility Computations
..

181
8.8 Imprecise Computations

... 182
8.8.1 Bounded Computation Times ... 182
8.8.2 Unbounded Computation Times .. 184

8.9 Compound Computations
.. 184

8.10 Sieve Functions
...

185
8.11 Periodic Tasks with Cumulative Errors

...
187

8.11.1 With High Utility Optional Computations
.................................. 187

8.11.2 With Low Utility Optional Computations
....................................

188
8.12 Replicated Computations

.. 189
8.13 Conclusions ... 190

9 CONCLUSIONS
..

191
9.1 Review of the Work Done

..
191

9.2 General Conclusions from the Work Done
...

192
9.3 Contribution

..
193

9.4 Future Work
...

193
9.5 Final Thoughts

..
195

APPENDIX A: ADAPTATIONS OF STATIC ALGORITHMS 196

A. 1 The O(N2) Algorithm
..

196

A. 2 The Pseudo-Polynomial (PP) Algorithm
..

199

REFERENCES ... 202

ACKNOWLEDGEMENTS

Particular thanks are due to my supervisor Alan Burns for his help and encouragement over
the last five and a half years. I would also like to thank my assessor Andy Wellings for

some stimulating and fruitful discussions during the course of that time. Thanks are also
due to the University of Teesside, and in particular Dr Derek Simpson, for providing
financial support and teaching relief.

Finally, a special thanks to my wife, Jane, for much support and patience.

1

DECLARATION

I declare that the research described in this thesis is original work, which I

undertook between April 1991 and March 1996. Certain parts of this thesis have been

published previously as technical reports or conference proceedings.

Chapter 4 describes research previously published in "Adapting and Evaluating

Algorithms for Dynamic Schedulability Testing" YCS 225, Department of Computer

Science, University of York (March 1994).

Chapter 5 describes research previously published in "Hybrid Algorithms for

Dynamic Schedulability Testing", YCS 241, Department of Computer Science, University

of York (November 1994).

Chapters 4 and 5 also draw on research which was included in "Hybrid Algorithms

for Dynamic Schedulability Testing" Proceedings of the 7th Euromicro Workshop on Real-

Time Systems, Odense (June 1995).

2

ABSTRACT

Future real-time systems will require to be adaptive in response to their

environments and to system failures, as well as meeting their time constraints for mission

and safety-critical functions. Currently, the critical functions of real-time systems are

guaranteed before run-time by performing a worst-case analysis of the system's timing and

resource requirements. The result is that real-time systems are engineered to have spare

capacity, under normal operation. A challenge of current research is to make use of this

spare capacity, in order to satisfy the requirements for adaptivity in the system. Adaptivity

can be implemented by optional computations with firm deadlines. Optional computations,

can be scheduled, and even guaranteed at run-time, by methods of flexible scheduling.
This thesis starts by surveying the complex requirements for adaptivity within real-

time systems. There is evidence that the run-time support for a computational model which
incorporates all such complex requirements, would incur such large overheads that little

spare capacity would remain for the optional computations themselves. The solution
devised in previous research is to employ specialised hardware, or additional processors, in

order to facilitate the support of a complex computational model. This thesis provides an

alternative approach by developing a constrained computational model, which is

nevertheless general enough to support many of the requirements for adaptivity. The claim
is, that the relatively small overheads incurred by the run-time support for a constrained

model, will leave adequate capacity for the performance of optional computations.
In order to demonstrate the viability of the run-time support for the constrained

computational model, the thesis develops and evaluates (i) efficient algorithms for the on-
line acceptance testing of optional computations (ii) allocation methods which enhance the
throughput of optional computations within multiprocessor systems, and (iii) cost-effective
policies for the admission of optional computations which pass their acceptance tests. The

thesis also addresses programming issues by demonstrating that the constrained model can
be implemented in a standard programming language i. e. Ada 95.

A major conclusion of this work is that the constrained computational model is

viable, so long as acceptance tests, allocation methods and admission policies are chosen,

which are appropriate to the spare capacity which exists on the processor(s).

3

CHAPTER 1

INTRODUCTION

1.1 BAC KG RO UND

Real-time applications are characterised by their requirement to respond to their

environments within finite and specified time constraints. In soft real-time systems, a failure

to meet such a time constraint is merely inconvenient. In hard real-time systems such a
failure may have catastrophic results. Such hard real-time applications include medical

monitoring systems, process control systems, control systems for power stations, and flight

control systems for aircraft.
Real-time systems are often modelled and implemented as concurrent tasks. Each

task is a schedulable entity which delivers some of the functionality of the application

within its required time constraints. Tasks can be periodic in which case they run regularly

at intervals e. g. sampling a sensor. Alternatively tasks can be aperiodic in which case they

run irregularly e. g. in response to some change in the environment in which the real-time

system operates. Critical tasks are vital to the system, and usually have hard deadlines, in

line with the definition of 'hard' given above. Non-critical tasks may have soft deadlines.

Tasks have a worst-case execution time (WCET) which can be derived from their code and
is an estimate of the highest amount of processor time they will use in one execution. When

real-time tasks complete their computations within their deadlines, they provide some

service to the real-time system which may be quantified as having some utility or value to

the system. The characteristics and behaviour of the tasks in a real-time system can be

described in a computational model. Whether this model includes scheduling issues is a

matter for debate.

Hard real-time systems may often be safety-critical systems because certain failures

of the system may result in catastrophic consequences such as loss of human life. Hard real-
time systems may also have mission critical components whose correctness and reliability
is crucial to the key services delivered by the system. There may well be requirements for
fault-tolerance within such systems, and graceful degradation under failure. Hard real-time
systems are often embedded in larger systems e. g. a real-time control system for an aircraft.
Therefore the size and weight of hardware may be a constraint, along with the memory
available for software.

In order to guarantee the performance of hard real-time systems, predictability is
important. This ensures that time and resource constraints can be known to be satisfied
even under maximum loading of the system. Therefore safety or mission-critical tasks

4

within the real-time system are analysed before run-time to ensure that they can be

scheduled to meet their time constraints even under worst-case conditions. This results in

such systems being constructed with a processing capacity which meets the worst-case

requirement but is excessive for normal operation. One current area of research is into

making use of this spare capacity in order to enhance the total utility delivered by all the

tasks in the real-time system [8,27,35]. The work of this thesis is a contribution to this

research area.

1.2 MOTIVATION

Over the past few years there have been several keynote articles on the future of

real-time systems. According to Stankovic [51] the next generation of real-time systems

will be more complex and capable of exhibiting intelligence. They will have long lifetimes

and be required to exhibit a great deal of adaptability. They will function in distributed and
dynamic environments, and economic, human and ecological catastrophes will result if their
timing constraints are not met.

More recently Musliner et al. [38] write about future real-time systems combining
Artificial Intelligence with the requirements to perform within real-time constraints. Such
Real-time AI systems would have to:

" work continuously over extended periods of time

" interface with the external environment via sensors and actuators

" handle uncertain or missing data

" concentrate resources on the most critical events

" handle both periodic and aperiodic events in a predictable fashion with guaranteed
response times

0 degrade gracefully
An example given is that of the proposed Mars Rover for NASA. This must operate

at a distance of about 15 light-minutes from earth and therefore cannot be tele-operated. It

must operate continuously and autonomously in an incompletely specified environment. It

must react in real-time to unpredictable conditions such as navigation route blockages and
dangerous terrain such as sand pits. This requires "adaptability and intelligence beyond the
capability of current real-time technology" [38].

One of the aims of current research is to make use of the spare capacity of real-time
systems mentioned above, in order to incorporate Al techniques for such adaptability and
intelligence. Requirements for fault-tolerance and graceful degradation can also be met by

making use of spare capacity. A key problem with AT techniques is that they often have

very large bounds on their WCETs. This makes them difficult to integrate with

5

conventional real-time tasks whose worst-case performance can be more easily bound, and

guaranteed to meet hard deadlines.

The first steps in solving this difficulty is to distinguish between those tasks which

are critical and those which are non-critical. Critical tasks are necessary to achieve the

minimum standards of safety and reliability in the real-time system. Because a missed
deadline in a critical task could be catastrophic, all critical tasks must have their

computation times bound and their deadlines guaranteed by schedulability analysis. In

contrast, the non-critical tasks need not be guaranteed before run-time. However some

non-critical tasks may have firm deadlines which means that, although missing such a
deadline in not catastrophic, it does result in a significant loss of utility to the system. Tasks

which perform Al functions may well fit into this category. These tasks provide adaptivity,

and by their very nature may be required to run unpredictably. Therefore the issue arises as
to whether such tasks should be guaranteed at run-time, before they start, in order to

ensure that they can meet their firm deadlines.

1.3 INCORPORATING ADAPTIVITY

The Spring Project [52] models the tasks within a real-time system to be either

critical, essential or non-essential. Essential tasks have firm deadlines, as described above,

whereas non-essential tasks have soft deadlines. The project attempts to incorporate these

three types of task into a consistent scheduling scheme which satisfies the need to

guarantee critical tasks before run-time and the need to be flexible in guaranteeing essential
tasks at run-time. Non-essential tasks have soft deadlines and need not be guaranteed. The

project assumes a distributed real-time system with a number of nodes. Each node of the
distributed system has a resident set of critical tasks which have been tested for

schedulability before run-time. These tasks are assumed to be periodic whereas essential
tasks are assumed to arise aperiodically.

Spring provides dynamic or flexible scheduling for essential tasks in that they can

either be guaranteed on-line on the node on which they arise, or if this guarantee is not

possible, an attempt can be made to guarantee them on another node of the system. In the
Spring Project, the algorithms used to guarantee the schedulability of essential tasks are

called guarantee algorithms. These algorithms attempt to construct a schedule which

preserves the guarantees given to resident critical tasks and previously accepted essential
tasks, but also incorporates the new essential task. If an essential task cannot be guaranteed

at one node of the system, then a distributed scheduling algorithm is used to direct the task

to another node where it is likely to be guaranteed.

6

As has been said, tasks which provide adaptivity, are not only required to run

aperiodically, but may have execution times which are difficult, or impossible, to bound.

This makes it difficult to guarantee such tasks. Liu [33,34] has developed techniques for

modelling various requirements for the computation of such tasks.
According to Liu, tasks can be divided up into those components which are

mandatory and must be guaranteed, and those components which are optional. Mandatory

components are mission or safety-critical and must be guaranteed. They correspond to the

critical, periodic tasks on a Spring node. However, in some applications, mandatory tasks

can be improved upon by further execution, or can be replaced by longer tasks which

would provide more utility to the system if they could be scheduled at run-time. If such

additional computations have firm deadlines, then it may be possible to guarantee them at

run-time, provided that their WCETs can be bounded.

Various schemes have been developed for mandatory and optional computations, in

order to meet the different requirements for flexible computation. Four methods are:

" Imprecise Computations

" Sieve Functions

" Multiple Versions

" Approximate Processing

The methods are now described briefly. It is assumed that all of the components of

computation can in some way be bound, so that the only issue is whether or not to attempt
to guarantee each component (i) before run-time or (ii) at run-time. (Components of

computations whose WCETs are unbounded, cannot be guaranteed, and must simply be

executed in the hope that they will produce a useful result in whatever processing time is

currently available. How to optimise the execution of such components is not considered
here.)

Imprecise Computations model the requirements of tasks which provide some

result of minimum precision, reliability or confidence level, which may be improved by

further computation. It is an assumption of this method that the improvement in the result

will increase steadily or monotonically after each stage of further computation. The

minimal computation may be modelled as a mandatory task which must be guaranteed off-
line, and further computation(s) can be modelled as optional task(s) which may be

guaranteed at run-time. Often the extra computation takes the form of a sequence of
iterations, each iteration refining the results generated by the previous. An integer number

of iterations may therefore be included in the optional computation, depending on how

many can be guaranteed to meet the (firm) overall deadline of the Imprecise Computation.

Applications which require Imprecise Computation can include numerical computation,

statistical estimation and prediction, heuristic search activities, and sorting.

7

Sieve Functions model the requirements for adaptive processing where a

computation consists of alternating compulsory and optional components. At the end of a

compulsory component, it is possible to improve upon the result by further computation

which is assumed to monotonically improve the quality of the input for the next

compulsory stage. The compulsory components can be guaranteed off-line to meet the

overall deadline for the sieve function. Each optional part may be guaranteed dynamically

by the flexible scheduler. The overall deadline for the sieve function may be thought of as
being hard for the compulsory components but firm for the optional components. Should

the optional components fail to be guaranteed, then a minimum utility will be provided by

the compulsory components which will simply execute in sequence.
Multiple Versions can be applied widely where there are a number of versions of a

computation which provide different utilities to the system. In the simplest case of two

versions, the primary version is the preferred, more computationally expensive version,

which may be guaranteed dynamically by the flexible scheduler. If the guarantee is not

given, then a secondary version, which is cheaper, but has been guaranteed off-line, will

run instead. The secondary version will provide the minimum service required.
Multiple versions which can be bounded and guaranteed, may be extended to more

than one alternative version, so that the most expensive (most preferred) version which can
be guaranteed at run-time, is the one which is chosen.

Approximate Processing assumes that the value of the WCET of a task may be

defined by a set of parameters. Assuming that the mapping from parameter values to
WCET is available, then it is possible to select values for the parameters so as to provide

maximum utility, within a WCET which is known to be currently schedulable. The selection

of parameter values may be facilitated by a knowledge of the spare capacity which is

currently available on the processor.

1.3.1 Application Example

Future applications for real-time systems may have more complex requirements for

optional computations than can be satisfied by the simple methods described above. Take

as an example an autonomous vehicle control system [40]. Here, there may be a

requirement for a complex hierarchy of tasks and subtasks each of which may be

mandatory or optional. Tasks and subtasks may each have deadlines. There may be

complex precedence relationships between subtasks. At the top of the hierarchy may be

intelligent functionality such as route planning, whereas at the bottom there may be critical
functions such as collision avoidance. At run-time a choice is made as to which

computations should be scheduled in order to provide optimum utility to the system. Such

a system may have a requirement for fault-tolerance and graceful degradation which can be

8

achieved by the progressive abandonment of optional computations leaving the mandatory
computations to provide a safe level of service. For example, in town traffic where collision
avoidance takes a great deal of processing time, it may be necessary for the human operator
to instruct the route to be taken.

1.4 FLEXIBLE SCHEDULING OVERHEADS

1.4.1 Scheduling Concepts

As has been described above, flexible scheduling allows the on-line guarantee of

optional computations whilst safeguarding the guarantees which an off-line schedulability

analysis has already given to critical tasks. Flexible scheduling may be supported by a

variety of scheduling policies. It is the scheduling policy which determines, at any given
time, which task is dispatched to the processor for execution. Scheduling policies are pre-

emptive if the task which is currently running on the processor may be interrupted by a

more urgent task. The urgency or importance of tasks can be indicated by allocating them

priorities, and one of the main issues in scheduling is to decide upon what basis such

priorities should be allocated. Priorities may be static or dynamic according to whether
they are fixed off-line or can be varied at run-time. For example the Earliest Deadline

policy allocates priorities dynamically so that the tasks with the nearest deadlines have the
highest priority on the processor [32]. In contrast Deadline Monotonic scheduling policy
[3] has a static allocation of priorities which corresponds to the monotonic ordering of task
deadlines which have been specified off-line.

The scheduling policies used in hard real-time systems must allow schedulability
analysis of all tasks in the task set. Analysis is performed statically for the set of critical
tasks which are periodic. However it may be performed dynamically for optional tasks

which arise aperiodically. Acceptance tests for aperiodic tasks ensure that they are

schedulable alongside the resident set of critical tasks, and any aperiodic tasks which have

already been accepted. Acceptance tests often require to know the slack possessed by each

of the existing tasks on the processor. A task's slack is defined as the task's relative
deadline, minus the task's remaining computation time and any delay in the tasks execution

which may be caused by the execution of higher priority tasks.
When there are competing optional tasks, then admission policies may be used to

arbitrate between them. An example of an admission policy is Best Effort [35] in which an

aperiodic task of high utility may abort aperiodic tasks of lower utility, in order that it may

pass the acceptance test. (Utility provides some measure of the service which a task

provides for the system, when the task has completed its computation.)

9

The scheduling services described here are usually provided by a real-time kernel

or run-time support i. e. low-level software which runs in support of the application code.

1.4.2 Cost-effectiveness of Flexible Scheduling

A key issue in current research is whether the overheads incurred by flexible

scheduling are small enough for it to be cost-effective. In terms of the above discussion: are
the overheads incurred by admissions policy and acceptance testing outweighed by the
increase in total utility gained by the system? This is a crucial issue when the overheads
occur on the same processor which runs the applications tasks, because the overheads
reduce the processor time which is available for applications tasks. Some researchers [39]
have avoided this problem by going to the expense of developing specialist hardware which
carries the overheads for acceptance testing and scheduling.

Much of the evidence from recent research would indicate that the overheads for
flexible scheduling prohibit its use on the same processor that runs the applications tasks.
For example, it has been found by Wendorf [60] that the overheads for the original version
of Best Effort admission policy can drastically reduce the time available for applications
tasks on the processor.

In the Spring Project [56] Stankovic et al. investigate the acceptance testing of
general task sets with resources and precedence constraints between task executions. So
high are the overheads incurred that they develop heuristics in order to speed up
schedulability analysis. They go on to design a hardware co-processor [39] which will
remove the flexible scheduling overhead from the applications processor. The Spring

Project also develops methods of distributed scheduling [53,55] which can incur large

overheads in order to re-allocate rejected tasks to other nodes in a network where they may
be guaranteed.

Audsley [2] has shown that an algorithm which can provide an exact acceptance
test at run-time has a pseudo-polynomial complexity. Following the work of Audsley,

Davis [8] has found that the overheads incurred by the pseudo-polynomial algorithm can so

reduce performance, that a simpler but inexact algorithm can provide an equal, if not better,

throughput of aperiodic tasks.
This thesis will claim that, contrary to the above evidence, flexible scheduling can

be performed cost-effectively, on the same processor which runs the applications tasks.
Therefore, a major aim of this thesis will be to demonstrate that the overheads for

admission policy and acceptance testing can be reduced to such a level that greater utility

may be provided for the real-time system.

10

1.5 PROGRAMMING LANGUAGE SUPPORT

This thesis will also consider programming language support for flexible scheduling.
One approach to the provision of flexible scheduling in the next generation of real-time
systems, is to provide suitable constructs in the programming language(s) which will be

used to implement such systems. These constructs must have sufficient expressive power to

allow the programmer to request the dynamic guarantee of optional computations in

various forms e. g. imprecise computations, sieve functions or multiple versions. A major
language issue is whether optional computations should take the form of the tasks or
processes within a concurrent programming language, or whether they should be
formulated as sections of code within tasks.

At present there are few programming languages which offer constructs for the
flexible scheduling of optional computations with firm deadlines. Furthermore the ones
that do exist are experimental languages which have never been used for real-world
applications. For example, the languages Flex [26] and Real-time Concurrent C [19] have
been developed by researchers to provide support for flexible scheduling. However, neither
language has been sufficiently implemented to be of practical use in the engineering of real-
time systems.

The Flex language allows the specification of time and resource constraints for

Imprecise Computation and Multiple Versions using the concept of performance
polymorphism. This allows different real-time functions to be chosen at run-time, according
to the time and resources available. However, the Flex execution environment concentrates
on optimising the average performance of these real-time functions. Therefore Flex does

not emphasise the guarantee of firm deadlines.
Real-time Concurrent C [19] is an extension of Concurrent C [18]. This language

provides full facilities for the run-time guarantee of sections of code within processes/tasks,

and also provides for the execution of some alternative action if a guarantee is not given.
The language also allows time constraints to be placed on the time taken for the guarantee
itself. However, there has been little work on the necessary run-time support for this

language. As discussed previously, run-time support can incur excessive overheads. The

designers of Real-time Concurrent C fail to indicate [42] the likely overheads which would
be incurred by such a run-time system. Since Real-time Concurrent C is allied to the Spring

Project it may be that its designers envisage the use of computationally expensive heuristics

in order to guarantee time and resource constraints.
In contrast to such experimental languages, the programming language PEARL has

been used extensively in Europe for the programming of large real-time systems. The

existing PEARL standards [14,15,16] do not provide for flexible scheduling. However

Halang and Stoyenko [22] have proposed extensions for the language which would allow

11

(i) Multiple Version programming under system overload, and (ii) the selection of different

sections of code according to the residual execution time of tasks. However, these features
do not provide full flexible scheduling, and they are not yet embodied in a PEARL

standard.
A new standard has however been agreed for the programming language Ada which

has been widely used for the engineering of real-time systems. The new standard, Ada 95,
has advanced concurrency features in the core of the language, and an annex which
provides specific facilities for the programming of real-time systems. This Real-Time
Systems Annex does not explicitly address flexible scheduling as conceived here.
Nevertheless, a variety of new constructs are provided, and it may be possible to use these,

and some of the new concurrency features, in order to implement flexible scheduling in
Ada.

1.6. THESIS STATEMENT

1.6.1 Assumptions

Contrary to the difficulties outlined above, this thesis attempts to demonstrate that
flexible scheduling is practicable. The contention is that flexible scheduling can be

efficiently implemented using existing, conventional technology, without resort to specialist
hardware or experimental programming languages.

In regard to the hardware required, this thesis assumes that flexible scheduling is
implemented on the same processor that runs the application tasks. As stated earlier,
previous researchers have used specialised hardware to reduce the effect of the overheads
incurred by flexible scheduling. For example, the Spring project uses a specialised co-
processor to perform guarantees of aperiodic tasks. Alternatively performance could be

speeded up by implementing real-time kernel functions in hardware on the same processor.
Although such specialised hardware can always provide greater performance, its use has a

number of significant drawbacks. It is not general-purpose, or generally available, and it

incurs greater costs in verification. This thesis presents a different approach by arguing that
flexible scheduling can be made to perform efficiently on conventional processors.

In regard to programming languages, the thesis does not require a non-standard
language which may never be fully implemented. Instead, the claim is that flexible

scheduling may be implemented by using the existing constructs of a standard language,

with a wide user-base. Therefore an application which requires flexible scheduling, need

only include the appropriate library objects. (It may be necessary to assume that the run-

12

time support for the programming language has been extended to provide some support for
flexible scheduling.)

The thesis assumes that a computational model embraces both concurrency and
scheduling issues. Therefore a computational model is defined as a framework which
includes a definition of task characteristics, and also describes how the tasks are to be

scheduled. Task characteristics include: whether tasks are periodic, aperiodic or sporadic,
whether tasks have hard or soft deadlines, and whether tasks are independent, or share
resources and intercommunicate. Scheduling includes a definition of which scheduling
policy and which admission policy are used.

1.6.2 Thesis

The central thesis can be stated as follows:

"The application requirements for flexible scheduling can be embraced in a
constrained computational model for which cost-effective run-time support can be

provided. The model can be implemented in a standard programming language so
that applications written in this language can increase their utility. "

The key aims of the thesis are:

" to derive a constrained computational model which fulfils the set of application

requirements for the flexible scheduling of optional computations.

0 to provide cost-effective algorithms and implementations for the run-time support of
the model. It is assumed that the run-time support executes on the same processor as
the applications tasks. Therefore, the run-time support must be cost-effective i. e. its

overheads must be sufficiently small, that applications tasks achieve a net increase in

their utility.

" to develop methods of allocating optional computations to processors, such that the

throughput of optional computations is enhanced. Again the emphasis is on finding

computationally inexpensive methods, so that additional hardware is not needed to

support the allocation methods.

" to demonstrate that a standard programming language may be used to implement the

computational model, so that the model can be used in practice.

13

1.7 APPROACH

The above aims suggest three strands of enquiry throughout the work:

1. A survey of the requirements for optional computations in the next generation of real-
time systems and the derivation of a computational model which is general enough to
incorporate different forms of mandatory and optional computations, but sufficiently
constrained to be supported by run-time support which incurs low overheads.

2. A review of existing run-time support for flexible scheduling and the development of (i)

more efficient algorithms for the guarantee of optional computations, and (ii) efficient
methods of allocating optional computations to processors, such that the number of
computations being guaranteed are maximised.

The success of part (i) of this strand is vital to the thesis because, without cost-

effective run-time support, the computational model is not viable under the assumption

of conventional hardware, running applications tasks and run-time support, on the same

processors. Therefore part (i) will form a major portion of the work, and whatever

algorithms are developed, will have to be evaluated for their efficiency.

3. An investigation into programming language support for optional computations, and a
demonstration that optional computations may be implemented in a current

programming language for the engineering of real-time systems.

Strand 2 above can be elaborated further because of its central importance within the

thesis. The two-pronged attack on the development of cost-effective support for the

computational model will consist of :

(i) an investigation into efficient algorithms for the guarantee/rejection of requests for

optional computation. A particular concern is to find the algorithms which provide the

optimum trade-off between the overheads they incur, and the exactness of the

schedulability test which they provide. (It is assumed that less exact algorithms can be

pessimistic in that they sometimes reject optional computations which may in fact be

schedulable).

(ii) an investigation into methods of allocation of optional computations within a multi-

processor cluster. In (i) optional computations are considered to "arise" and can be

schedulability tested in the same way whether they have been released locally or have

originated from some remote client. Here the assumption is made that those optional

14

computations arriving from outside a processor cluster are subject to some allocation
policy within the local cluster. This can be considered as the dynamic analogue of the
problem of providing a static allocation of tasks within a multiprocessor system. The
aim here is to maximise the throughput of optional computations within the cluster. It is

assumed that full schedulability testing of the optional computations is still performed
on the target processors.

1.8 METHODS USED

Modelling and simulation studies are standard techniques for research in scheduling
[2,7,8,56]. In this work, simulation studies are used throughout strand 2 as described

above. In part (i) of strand 2, simulations are used to compare the relative performances of
guarantee algorithms and to measure their overheads. Task set generators are built in order
to provide task sets with a variety of characteristics. Different task sets are used to

establish performance profiles for the various algorithms under examination.
Further simulation studies are conducted during strand 2 (ii) of the work. Here the

objective is to enhance the performance of the computational model within a processor
cluster. Both targeted and random allocation of optional computations within the cluster
are simulated. Various configurations of processors within the cluster are modelled, and the

effects of optional computations which are generated both inside and outside the cluster are
investigated.

The most efficient of the guarantee algorithms from strand 2 (i) is used in

simulation studies which evaluate the admission policy used in the computational model of

strand 1. Performance parameters are varied in order to establish the windows of operation

within which the model and its admission policy, can be supported cost-effectively.
Strand 3 aims to demonstrate that optional computations can be implemented in a

standard language for the engineering of real-time systems. This requires verification by

reference to the requirements gathered at the review stage of strand 1.

1.9 THESIS ORGANISATION

This section outlines each chapter of the thesis.

Chapter 2: Review of Flexible Scheduling

This chapter reviews recent work relating to the three strands of the thesis which

are discussed above. Firstly, there is a survey of future application requirements for flexible

15

scheduling within real-time systems. This section goes on to consider existing
computational models and programming paradigms for optional computations.

Secondly, existing run-time support for flexible scheduling is reviewed, starting
with algorithms which optimise, but do not guarantee, the execution of optional
computations. Next, the Spring Project is considered in some detail, with special reference
to guarantee algorithms and methods of distributed scheduling. This section concludes by

reviewing Audsley's algorithms for static schedulability testing which are considered as a
promising basis for cost-effective dynamic schedulability testing.

Thirdly, the current provision of programming language support for flexible

scheduling is reviewed. The languages included are Flex, Real-Time Concurrent C, PEARL

and Ada. This leads to the choice of Ada 95 as a standard language in which to
demonstrate the implementation of optional computations.

Chapter 3: A Constrained Computational Model
This chapter develops a constrained computational model which fulfils many of the

application requirements for optional computations. The chapter starts by making the case
for simplicity in the model in order to reduce the overheads of run-time support. After

some discussion of the necessary constraints, the model is presented. It provides 3 levels of

utility for optional computations: high, medium and low. Each level is regarded as adding
value to a baseline utility provided by mandatory computations. Optional computations of
higher utility may abort those of lower utility, according to a version of Best Effort

admission policy. A key issue which determines the viability of the model is the relative

values of the utilities assigned to each level. Finally the model is 'verified' by a discussion of
how the various requirements for optional computations may be met within it.

Chapter 4: Viability of On-line Acceptance Testing
This chapter investigates efficient schedulability test algorithms which could

contribute to cost-effective run-time support for flexible scheduling. The chapter describes

how existing static schedulability tests may be adapted to make use of dynamic scheduling
data and thus provide schedulability tests for incoming optional computations. The adapted

algorithms trade off complexity with pessimism. Their performance may be improved by

combining them in a hybrid algorithm. Further performance improvements may be made in

all of the algorithms by inserting a timeout, in order to limit their worst-case execution
time. The hybrid algorithm is used in an investigation into the parameters which determine

the optimum value of this performance-enhancing timeout. Finally, this optimum value is

made use of, in an investigation into the effect of changing the proportions of mandatory
(periodic) and optional (aperiodic) utilisations.

16

Chapter 5: Enhanced On-Line Guarantees
This chapter describes attempts to enhance the performance of the hybrid algorithm

developed in Chapter 4. The first component of the algorithm has O(N2) complexity and
the second component has pseudo-polynomial complexity. The chapter describes the
development of a number of variations on the hybrid algorithm in an attempt to (i) make
the O(N2) component more exact and (ii) make the pseudo-polynomial component faster
by giving it a 'head start'. Both of these approaches trade off schedulability testing
overheads against the pessimism of the schedulability test. Depending on factors such as
the number of resident periodic tasks, both methods are found to be capable of enhancing
the number of optional computations guaranteed.

The chapter also investigates the effect of using an optimal, dynamic placement of
optional computations within the task list. Hitherto, static placement has been used,
according to the value of task deadlines at release time. The chapter concludes by
discussing performance profiles for a number of variations of the hybrid algorithm.

Chapter 6: Allocation Methods in Multiprocessor Systems
The aim of the work in this chapter is to enhance the throughput of optional

computations when they are allocated among a number of processors within a cluster. Each

processor can receive optional computations generated either externally or internally, to the

cluster. Performance is measured by the throughput of optional computation over the

whole the cluster. The first cluster configuration investigated is that of a targeting

processor and three target processors arranged in a four-processor cluster. The targeting

processor receives optional computations from outside the cluster and uses its knowledge

of the current slack on each of the targets in order to direct optional computations to the

targets most likely to guarantee them. (Target processors still perform schedulability tests

on the optional computations which are discarded if the tests fail.) It is assumed that

scheduling data are communicated between the targets and the targeting processor.
The main issues investigated are:

" how to minimise the overheads for monitoring slack on the target processors

" whether targeting provides higher throughput than simple 'round robin' allocation

" how the distribution of mandatory processor utilisation on the targets affects
throughput

The second cluster configuration which is investigated is that of a loop within which

optional computations are allocated 'round robin', but are shuffled to the next processor

along if they fail their schedulability test on their previous processor. This shuffling

17

continues until each optional computation has either been accepted, or has been rejected on
all of the processors. The technique is named Shuffle Schedulability Testing.

Chapter 7: Admission Policies
This chapter presents simulations studies which compare the performances of Best

Effort Admission Policy (as used in the computational model) with the use of FCFS
Admission Policy. The objective is to determine ranges of parameters of the simulations,
within which, the computational model with Best Effort, provides a superior performance
to that of the simple FCFS Admission Policy used hitherto. Performance is measured by the
total utility gained by optional computations throughout a simulation. The simulations use
one of the versions of the hybrid guarantee algorithm, developed in Chapter 5.

The simulation parameters which are varied include (i) the Total Processor
Utilisation (mandatory plus optional computations) (ii) the proportion of Periodic
Utilisation (mandatory computation) and (iii) the ratios of the utility values associated with
the three classes of optional computation. The results of the simulations indicate that the

computational model with Best Effort, provides superior performance for Periodic
Utilisations of less than 50%, and optional computation overloads of up to 100%.

Chapter 8: Implementation of the Computational Model
Firstly, the case is argued for implementing optional computations within Ada tasks,

rather than at the task level itself. The chapter goes on to review some of the Ada 95

constructs which may be useful in implementing optional computations. The asynchronous

select statement is chosen as a construct which can carry the code for an optional
computation, within an Ada task.

The chapter next presents the Ada code for a protected object which can be called
by requests for the guarantee of optional computations. This protected object handles all

concerns regarding the utilities of optional computations, and implements the algorithm for

Best Effort admission policy. However, the assumption is made that the protected object is

able to call the Ada RTS in order to (i) perform a schedulability test for each optional

computation (ii) withdraw a lower utility optional computation from the task list and (iii)

efficiently reinstate all withdrawn computations if a request is finally rejected.
The chapter ends with a case by case demonstration, that the asynchronous select

statement can be used in different ways, to fulfil many of the requirements for optional

computations which were discussed in the review of Chapter 2.

Chapter 9: Conclusions
This chapter discusses major conclusions, and the contribution which has been

made by this work. Future work in this area is also discussed.

18

CHAPTER 2

A REVIEW OF FLEXIBLE SCHEDULING

2.1 INTRODUCTION

Chapter 1 has outlined the three-stranded approach of this thesis. Each strand
begins with a review stage:

1. A survey of the requirements for optional computations.

2. A review of the existing run-time support for flexible scheduling.

3. An investigation into programming language support for optional computations.

This chapter is divided into three main parts corresponding to each strand. Sections 2.2 and
2.3 review examples of real-time applications which require flexible scheduling, and then

go on to consider the paradigms and models which have been developed so far by

researchers such as J. Liu, Garvey and Lesser, Locke, and those involved in the Spring

Project.
Sections 2.4 to 2.7 review existing run-time support for flexible scheduling. Section

2.4 considers methods which preserve bandwidth for aperiodic tasks but do not actually

guarantee them. Section 2.5 reviews the guarantee algorithms of the Spring Project, and
Section 2.6 considers the methods used in the Spring Project for distributed scheduling.
Section 2.7 reviews the off-line schedulability tests developed by Audsley et al. These tests

are included because they provide a promising basis for cheaper on-line guarantee

algorithms than those used in the Spring Project.

Section 2.8 surveys the current programming language support for optional

computations. The languages included are Flex, Real-Time Concurrent C, PEARL, and
Ada 95.

2.2 APPLICATION REQUIREMENTS FOR OPTIONAL COMPUTATIONS

2.2.1 Examples of Applications

As stated in Chapter 1, future real-time systems will need to exhibit adaptivity and
intelligence in response to the highly dynamic and unpredictable environments in which

19

they operate. They will also be required to provide a flexible and robust response in the
event of system overload or failure. Thirdly, they will often be embedded systems, where
constraints in size, weight, or cost, dictate that adaptive performance is required from a
system of limited capacity. There follow examples of systems which have these
requirements.

2.2.2 Autonomous Vehicle Control System

An Autonomous Vehicle Control System must be safe, reliable and adaptive.
Research detailed in [24] indicates that in order to automate the 'driving function' there is a
need for the following capabilities:

9 accurate and timely sensing of other vehicles and obstacles

" vision and scene interpretation

0 real-time decision making

0 route and path planning

" communication co-operation with other vehicles

Implicit in the above requirements are a range of real-time constraints. Within a
time frame of 10-100 seconds, the system must plan and update routes to reach the

assigned destination, whilst taking into account traffic conditions, and minimising fuel

consumption and journey time. Within a time frame of approximately 1 second, the system

must recognise scenes, assess other vehicles movements, and plan a path which ensures
that the vehicle can steer a safe course. Within a time frame of less than 1 second, the

system needs to sample sensors and detect, and avoid, possible collisions with obstructions

or other vehicles.
In addition, the Autonomous Vehicle Control System may be required to operate in

a variety of modes:

" fully autonomous mode

0 co-pilot mode: the human driver can intervene and take control

monitoring, display and alert mode: as an aid to the human driver

20

Furthermore, such a system must perform safely at all times, and must retain
reliability while under overload or failure. A method of achieving graceful degradation in

such a system is to distribute functionality throughout a number of nodes connected in a
common network architecture. Obviously the mission and safety critical tasks must be

guaranteed to execute on their host nodes, within their deadlines, and to provide results of
a minimum acceptable quality. In addition to this, optional computations may be used to
enhance system utility by increasing the frequency, timeliness, precision or confidence level

of the results which are produced.

2.2.3 Radar Tracking

Cheong [6] provides another example of an application which requires a mix of
mandatory and optional computations. In radar tracking, a sensor returns signals from a
tracked target and the system produces estimates of the target's position, velocity and
acceleration. When the periodic task providing the estimates is terminated prematurely, it

produces coarse estimates of the targets parameters. It is critical to the continuation of the
tracking that a precise measure of the targets position, velocity and acceleration is

generated at some longer interval. If this does not occur, then errors generated by coarse

estimates accumulate beyond a maximum threshold of acceptability.
Cheong points out that the requirements may be satisfied by a mixture of mandatory

and optional computations. Before accumulated errors exceed their threshold values, a

mandatory computation must execute in order to renew the precision of the estimates.
After the mandatory computation has executed, then optional computations may run. Each

optional computation will provide a coarse estimate if it is not allowed to complete.
However, if an optional computation does complete, and precise measurements are

produced, then a future mandatory computation can be postponed.

2.2.4 Summary

The above applications, and others such as robotics [40] and advanced avionics
[37], provide evidence for the requirement for a mixture of mandatory and optional

computations. There is also evidence that optional computations may require to change

their timing requirements at run-time. For example, unpredictable changes in the

environment of the system, or faults within the system itself, can cause optional

computations to change their execution time. Deadlines may change from one invocation to

the next. Optional computations may even vary their frequency of execution, according to

the rate of change of an input from the environment.

21

2.3 EXISTING MODELS FOR OPTIONAL COMPUTATIONS

The following sections review existing techniques for optional computations. These
include computational models, programming paradigms, and scheduling strategies.

2.3.1 Imprecise Computation

Imprecise computation is a paradigm for programming optional computations
which comes under the heading of techniques of iterative refinement. Sieve functions also
refine intermediate results. Alternative paradigms to these are provided by multiple
versions and approximate processing. All of these techniques are discussed in Section 1.3

above. However imprecise computation is now covered in more detail.
The model of imprecise computation is mainly due to Liu et al [34]. The technique

is based upon the assumption that a real-time task monotonically increases the quality of its

results as it is given more time to execute within its deadline. The imprecise computation

can be divided into a mandatory component, which is executed first, and produces results

of the minimum quality which is acceptable to the application. Subsequent iterations of the

algorithm can be implemented by optional computations which improve upon the minimum

quality. After each iteration a new (and higher quality) intermediate result is recorded.
Scheduling within the system will determine how many iterations are performed before the
deadline for the imprecise computation is reached.

Error indicators may be used as a measure of the quality of the result, and to

establish whether the result which is finally produced, is acceptable. Liu et al use various

measures of the errors produced by imprecise computations whose iterations are aborted.
For example Liu et al. [7] use the average error produced by computations and Shih [45]

uses the number of iterations which are discarded when they are aborted. Much of the

work of Liu et al concerns the development of heuristics which minimise the total error for

all imprecise computations across the system [7].

Imprecise computation can be used in a variety of applications including numerical

computation, statistical estimation and prediction, heuristic searches, and database query

processing.
An interesting extension to the model of imprecise computation is the concept of

conditional performance profiles which is due to Zilberstein [64]. Here the quality of the

result of an imprecise computation depends not only on the length of time it has run, but

also on the quality of the input data. This implies a trade-off between the computation time

allowed and the improvement on the quality of the input data which can be achieved. For

example, in a composite task whose components pass on data, one to the other, there may

22

be an optimal way in which the composite task's total budget can be distributed over the
components in order to optimise the improvement in the final output data.

2.3.2 Computational Models for Real-time Al Applications

Requirements

According to Yen and Natarajan [62] there are several important differences
between the requirements for real-time AI and those of conventional real-time systems:

" greater unpredictability in the timing of Al components e. g. the time taken for tree

searches can vary widely.

" very pessimistic worst-case performance which it is impractical to build into the system
e. g. depth of searches can be very great in the worst case.

" the time granularity of real-time AT techniques are typically larger than conventional
real-time systems e. g. the order of seconds rather than milliseconds.

This has led to the development of the anytime algorithm which is the counterpart of
imprecise computation in the Al community. An anytime algorithm iterates, and

monotonically increases the quality of its result as further iterations proceed. The algorithm

can be cut short at anytime, and still give a result of a certain quality. Quality can be

measured by extra precision, confidence in the result, completeness of the result, etc. With

anytime algorithms there is typically a trade-off between the time and resources used in the

computation and the quality of the result produced.

Task Hierarchies

Garvey and Lesser [17] describe the requirements for real-time Al computations in

terms of a complex task hierarchy and the Al methods which group tasks or subtasks
together. They use the concept of satisficing which involves finding a solution which is

acceptable, but not optimal, given the time and resources available. They broadly define

two techniques for satisficing: iterative refinement and multiple methods. These have much
in common with the definitions of iterative refinement and multiple versions given above.
However multiple methods is a more complex concept than multiple versions because

several methods may execute concurrently, and may share intermediate results. For

example, a computationally expensive method may be aborted, but the intermediate result

23

which it produced may be used by a less expensive method, which has also been executing.
A further complexity is that, in the real-time Al context, the techniques of iterative

refinement and multiple methods must often be represented in complex task hierarchies.
In the task hierarchies presented by Garvey and Lesser [17], task groups are

independent solutions with their own deadlines. Within task groups, tasks are
interdependent and can be subdivided into subtasks which themselves can be subdivided
etc. At the lowest level of the hierarchy are executable methods which are the smallest
schedulable units of work. For each task in the structure, there may be multiple sets of
subtasks which may be combined to "solve the task". Each of these sets is known as a
method for solving the task. Clearly the overheads in supporting flexible scheduling for

such a task model could be very high.

Utilities within Hierarchies

Yen and Natarajan [62] also describe the need for a task/subtask hierarchy, and
consider the problems of decomposing imprecise computation down to a subtask level.
However, these authors also develop a decision theoretic framework for computations.
Essentially, rules are applied in order to decide which combinations of tasks/subtasks

should be allocated processor time and other resources within the system. Tasks/subtasks

are allocated resources according to their utilities, and some overall rule about which
allocation is likely to gain maximum utility for the system.

Allocation proceeds according to decisions which are expressed formally and are

compiled into the implementation. This has the double benefit of allowing developers to

reason about the application, and also permitting analysis of the performance of the
implementation. Decisions can be complex and can involve the probabilities of tasks

producing results of acceptable quality, using the resources available e. g. the aggregation

of the individual probabilities that a set of subtasks may complete, with a certain quality of

result, within a certain time. In order to provide a consistent set of task/subtask utilities

within a hierarchy, the authors present a system of (de)composing utilities within a
hierarchy.

Yen and Natarajan's decision theoretic treatment provides a powerful framework

with great flexibility. According to the authors the decisions themselves take up few

resources. However this claim is not substantiated in the paper, and seems to need further

justification.

24

UNIVERSITY

2.3.3 Locke's Value Functions and Utilities OF YORK
LIBRARY

Locke [35] argues for the use of value functions by the real-time applications
programmer. A value function gives the curve obtained by plotting the value to the system
of the completion of a process, against a time axis which represents the possible completion
times of the process. Locke goes on to describe scheduling algorithms which use the value
functions of the process set, to construct a schedule which maximises the total value
obtained from all processes. Locke's value functions can be parameterised. Parameters

which could be relevant in a complex application might be the system state, the states of
the task itself, the input data to the task, or the state of other tasks within the system.
Dynamic parameters such as these can be useful in complex real-time systems, for example
those which incorporate Al into real-time applications. However, the run-time support for

such dynamic value functions could prove very costly.
A different approach to the characterisation of the value of each task is to use

utilities [62]. In contrast to Locke's value functions, utilities need not be associated with

particular completion times, but represent some numeric value which is gained by the

system when the task completes within its deadline. The utility associated with a task may
be fixed and statically allocated, or it may vary dynamically. For example, dynamic changes
in utility may be of use in a fault tolerant system where the utility of a replicated module

may decrease if a replicant module completes. Conversely, the utility of the replicated

module may increase if the replicant fails. A more sophisticated approach is to model a task

as a composition of subtasks each of which may have a different utility associated with it.

Hence the utility of the task varies according to the point it has reached in its execution.
It is possible to define either the utility or value function of a task in terms of those

already defined for other tasks. For example, Locke [35] shows how a (dynamic) definition

of the value function of task may be made by adding the value functions of two other tasks,

each weighted with coefficients.

2.3.4 The Spring Model

The requirements for real-time systems assumed by the Spring Project have been

outlined by Stankovic and Ramamritham [52]. They assume that the real-time system is a

distributed set of nodes which exists in a highly dynamic environment. Nodes are

multiprocessor clusters which primarily serve a particular location within the distributed

system.
The researchers define three types of tasks within a system. Critical tasks have their

hard deadlines and resource requirements guaranteed before run-time by worst-case

analysis. Essential tasks have firm deadlines, so that there is a loss of value, but no

25

catastrophic consequences, to the system if their deadlines are not met. There are assumed
to be many more essential tasks than critical tasks. Because it is too pessimistic to reserve
full resources for all essential tasks before run-time, these tasks are guaranteed at run-time
by a guarantee algorithm. If the guarantee algorithm rejects the essential task on one node,
then an attempt may be made to guarantee on another node of the system.

Non-essential tasks are the third category. They may have soft deadlines or no
deadlines at all, and they execute in such a way as to have no impact on the other
categories of tasks.

Spring considers many general requirements for tasks. Tasks may be preemptable or
non-preemptable, periodic or aperiodic, have a variety of resource constraints, and may
have precedence and communication constraints. Spring integrates the scheduling of tasks

with these various requirements by using sophisticated guarantee algorithms which attempt
to produce a feasible schedule for all the tasks on an applications processor. However, the

requirements for adaptivity within the distributed system are met by higher level

decentralised scheduling in which nodes can co-operate in order to guarantee essential
tasks.

Some work has been done [52] to extend the Spring project into support for real-

time AT applications. Spring workers envisage the following requirements being supported

by the Spring kernel:

" the ability to dynamically change the criticalness, timing requirements, resource needs,

precedence constraints, and even the structure, of a computation.

" the ability to plan future execution times of functions that may subsequently need to be

re-planned.

0 the ability to perform trade-off analyses (on-line).

0 the ability to respond to an application program with appropriate system information.

In order to do this, large extensions are needed to the data held in, and the algorithms used

by, the Spring kernel.

Sections 2.5 and 2.6 below present a detailed review of the existing run-time

support provided by the Spring kernel.

26

2.3.5 Summary

The material reviewed in this section suggests the need for a complex
computational model embracing complex interdependencies between tasks such as
task/subtask hierarchies, precedence relations and intercommunication dependencies.
Dynamic value functions or utilities would also be required, and would need to be
(de)composed within the task hierarchy. Such value functions would depend on parameters
such as the system state, the states of the task itself, the input data to the task, or the state
of other tasks within the system. Simple paradigms such as Imprecise Computations, Sieve
Functions, etc. would be subsumed under a more powerful, general model. Distribution of
tasks, and resource allocation, would also be supported within the model. The model
would also have to incorporate great flexibility, allowing dynamic changes in planned
schedules on the basis of known probabilities of task, or system, behaviour. All this would
be required, without adversely affecting the a priori guarantees given to mandatory
computations.

Clearly such a model would be extremely expensive in terms of run-time support.

2.4 EXISTING RUN-TIME SUPPORT FOR FLEXIBLE SCHEDULING

According to many of the models reviewed above, real-time systems consist of a set
of periodic, mandatory computations which are resident on a processor, plus aperiodic,
optional computations which may arise locally or via a request from a remote node. The

conventional approach is to schedulability test the set of mandatory computations before

run-time, while flexibly scheduling optional computations at run-time, and even

guaranteeing their firm deadlines. The following section reviews methods for flexible

scheduling which optimise response times, or throughput, of aperiodic computations with
soft deadlines, but fall short of guaranteeing deadlines.

2.4.1 Methods for Optimising Response Time of Soft Tasks

Background and Polling Server

The problem of scheduling soft tasks on a processor which runs its own set of

resident periodic tasks with hard deadlines, has been tackled at various levels of

sophistication. In background processing, soft tasks are assigned priority levels below those

of the hard tasks. This means that soft tasks may have very long response times when the

processing demands of hard tasks are high.

27

Soft task response times may be reduced by the use of a polling server [43]. This is

a periodic task with a fixed, high priority whose capacity is set, pre run-time, at a level

which allows all hard tasks to meet their deadlines. The polling server is released
periodically and during its execution, its capacity is available for aperiodic tasks. The

capacity is replenished at the server's next release.
The problem with the polling server is that it does not preserve its capacity. After

release, its capacity is spent whether or not there are aperiodic tasks pending. Aperiodic
tasks which arrive after the capacity is spent, must wait until the next release of the server
until they can execute. Nevertheless the polling server improves upon the response times
provided by background processing. However the server's inflexibility, leads to longer

response times than for the improved methods which are described below.

2.4.2 Bandwidth Preserving Algorithms

Deferrable Server

The deferrable server [30] also makes use of a high priority periodic server task.
However it is able to preserve its capacity when there are no aperiodic tasks pending. It

therefore preserves its bandwidth throughout its period. This reduces the average response
times of soft tasks to below that of the polling server.

The deferrable server discards any remaining capacity at the end of its period, and
then immediately replenishes its capacity for the next period. The fact that the deferrable

server preserves unused capacity at a high priority affects the static analysis of the

maximum capacity which the server may be allocated. Because the deferrable server can

produce back-to-back interference on lower priority hard tasks, its capacity must be smaller
than an equivalent polling server. Nevertheless the bandwidth preservation of the deferrable

server leads to smaller average response times than the polling server.

Priority Exchange Algorithm

The priority exchange algorithm [30] also uses a high priority periodic server to

provide capacity for aperiodic tasks. However the priority of the server is not fixed, but

decreases during its period. When no aperiodic tasks are pending the server exchanges its

higher priority with the highest priority runnable hard task. The servers capacity is then

converted to guaranteed execution time at the lower priority of the hard task. As priority

exchange proceeds, capacity may be accumulated at low priority levels. This capacity is not
discarded at the end of the servers period, but may be carried over into subsequent periods.
The high priority capacity is still replenished at the start of every period.

28

The priority exchange protocol has as high a capacity as the polling server but also
preserves bandwidth like the deferrable server. It does however suffer from the
disadvantage that, under overload conditions, soft deadlines are missed in an unpredictable
manner.

Sporadic Server

This algorithm attempts to combine the advantages of both the deferrable server
and the priority exchange algorithms. Like the deferrable server, it maintains capacity at the
original priority, but its capacity is equal to that of priority exchange or polling. A high

priority periodic task is used, but instead of being replenished every period, it can be

replenished at some earlier time, after higher priority tasks have executed. The capacity of
the sporadic server has been shown to be comparable to that of a polling server [44] while
early replenishment of capacity can allow a lower response time than the previous methods.
Because the server task keeps its high priority, the sporadic server misses deadlines

predictably under overload.

Extended Priority Exchange Algorithm

The Extended Priority Exchange Algorithm [49] is an extension to the Priority

Exchange algorithm. It has the advantage that it reclaims gain time i. e. time made available

when a hard task completes in less than its worst-case execution time (WCET). It

replenishes capacity at a particular priority level each time a hard task is released at that
level. Furthermore, if the hard task completes in less than its WCET, the gain time is added
to the capacity available at that priority level.

2.4.3 Slack Stealing

This algorithm is due to Lehoczky and Thuel [27] and it is optimal in that all spare

processing time is made available to soft tasks, as soon as possible, and at the highest

priority level. The algorithm depends on the availability of a statically derived schedule of
the hard periodic tasks over the complete LCM of their periods. At run-time, counters are

used to keep track of slack at each priority level. After the completion of a hard task, the

slack at that priority level is incremented according to data on slack time in the static

schedule. Slack counters are also decremented when hard or soft tasks run.
Slack stealing has the limitation that it cannot work for sporadic tasks, or tasks

which suffer release jitter. It also imposes the overhead of holding a schedule which is the

29

length of the LCM of the periods of the hard tasks. Further work on slack stealing due to
Davis [8] is reviewed in Section 6.2.2.

2.4.4 Summary

While the above methods preserve and allocate spare capacity for soft aperiodic
computations, they do not guarantee that there is sufficient capacity available in order to
meet an aperiodic task with a firm deadline. Static schedulability analyses can be applied to
the above methods in order to guarantee the deadlines of aperiodic tasks off-line. However,
this approach is pessimistic, in that run-time capacity has to be reserved on the processor,
regardless of whether the aperiodic task arrives at its maximum rate or not. What is really
required are on-line schedulability tests for aperiodic tasks with firm deadlines. These

would either guarantee that sufficient capacity is available within the specified deadline, or
reject the aperiodic task so that some alternative action may be taken. The following

section reviews such dynamic guarantee algorithms.

2.5 THE SPRING PROJECT

The Spring Project [52] considers real-time systems which are physically distributed

and consist of a network of nodes which are multiprocessors. Each node consist of one or
more applications processors, and one or more system processors. The Spring kernel
includes guarantee algorithms, and algorithms for co-operative scheduling between nodes.
It runs on the systems processor(s) which frees up the applications processor(s) to simply
dispatch applications tasks according to a schedule constructed by the system processor(s).
The following sections describe the guarantee algorithms and the distributed scheduling

algorithms which are used in Spring.

2.5.1 Spring Guarantee Algorithms

Spring guarantee algorithms [53] are aimed at guaranteeing newly arrived aperiodic
tasks alongside resident periodic tasks plus any aperiodic tasks which have already been

guaranteed. The algorithms take into account many task characteristics including the arrival
time of the aperiodic task, its WCET, and its deadline. Other characteristics which can be

included are: what resources are required by the task, whether these are required in shared

or exclusive mode, whether the task is pre-emptive, and whether there are precedence

constraints between tasks. To guarantee all such requirements is, in general, NP-hard [52].

30

Therefore Spring attempts to guarantee by using heuristics to facilitate a search for a
feasible schedule.

The Spring guarantee algorithm starts at the root of a search tree which represents
an empty schedule. It then tries to extend the schedule by moving to one of the vertices at
the next level of the search tree, and so on, until a full feasible schedule is determined. A
heuristic function is applied individually to some or all of the tasks which remain to be

scheduled at each level of the search. The task with the smallest value of the heuristic
function is chosen to extend the current schedule. As the (partial) schedule is extended, the

algorithm determines whether it is strongly feasible or not. A partial schedule is strongly
feasible if all of the schedules obtained by extending the schedule, with any of the

remaining tasks, are also feasible. Once a partial schedule is found not to be strongly
feasible (e. g. when it is extended and the added task misses its deadline) then the search is

aborted along that particular branch of the search tree. The algorithm then backtracks and
extends the partial schedule by a different task. The search continues until either a full

schedule is determined, or the number of evaluations of the heuristic function reach an

upper bound, set by the system. This upper bound ensures that the systems processor has

sufficient time to perform its other activities.

2.5.2 Complexity of the Algorithms.

A Spring guarantee algorithm is applied to a list of the tasks to be scheduled which
is sorted into order of increasing deadline. The insertion of the newly arrived aperiodic task
into this list carries O(N) complexity (where N is the size of the task set). Spring

researchers claim [53] that the complexity of the subsequent search for a full schedule is

also O(N) because the heuristic function need only be applied to a small subset, k, of the
full task list, N, each time a partial schedule is extended.

2.5.3 Heuristics

The heuristics investigated by the Spring researchers are divided into (i) simple and
(ii) integrated heuristics. They take into account not only the timing requirements of tasks,

such as their earliest start times, deadlines and WCETs, but also the earliest time that tasks

can execute, due to the availability of the resource(s) which they require. Simple heuristics

include minimum deadline first, minimum processing time first, and minimum earliest start

time first. (Minimum earliest start time first is the latest time, chosen between the

specified earliest start time for the task, and the earliest time at which its required

resource(s) are available.)

31

Simulations carried out by Spring researchers proved more successful when
integrated heuristics were used, with weightings applied to certain components. The most
successful of these heuristics was minimum deadline + minimum earliest start time, where
minimum earliest start time has a weighting applied to it. In general, this heuristic provided
the best guide to the task most likely to extend a feasible (partial) schedule.

2.6 DISTRIBUTED SCHEDULING IN SPRING

2.6.1 The Distributed Algorithms

In the Spring Project, when tasks are not guaranteed locally as described above,
methods of distributed scheduling are provided for the guarantee of tasks at other nodes in

the system. The distributed scheduling algorithms which are investigated by Spring are
focused addressing, bidding and the flexible algorithm [56]. In addition, two simpler
algorithms are used as benchmarks: the noncooperative algorithm and the random
scheduling algorithm.

In the noncooperative algorithm a task is rejected when it cannot be guaranteed
locally, and no attempt is made to request its execution at other nodes. In the random
scheduling algorithm, the local node which cannot guarantee the task, sends a request for

the tasks execution to some other randomly selected node. Obviously this cheap method

suffers from the disadvantage that there is only a random chance that the task will be

schedulable at a randomly selected node.

2.6.2 Focused Addressing, Bidding and the Flexible Algorithm

Focused addressing, bidding and the flexible algorithm, each use information

about the availability of time and resources on remote nodes, in order to decide where to

send requests for the guarantee of tasks which were failed locally. Each node in the system

periodically calculates its node surplus and sends this data to a subset of the nodes in the

system. A node surplus is a vector, with one entry per resource on the node. Each entry
indicates the total amount of time, within a recent window, during which the resource was

not used by local tasks. Each node also holds a list of remote nodes, ranked according to
how many requests from them have been guaranteed locally during the recent time

window. Each node sends its node surplus to a subset of the nodes held in its ranked list.

Obviously this targeting of information is intended to provide data only to those remote

nodes which have successfully forwarded aperiodic tasks in the recent past. This reduces
the exchange of information across the network.

32

The three algorithms differ in the way they use information from remote nodes, in
order to select a remote node for a request for guarantee. The focused addressing
algorithm determines the remote node with the highest surplus of time and resources
required by the aperiodic task which has failed the local guarantee. If this surplus is greater
than the focused addressing surplus (a tuneable system parameter) then the request is
immediately sent to the chosen remote node. If no node exists whose surplus exceeds the
focused addressing surplus, then the aperiodic task is rejected.

The bidding algorithm, is a more expensive algorithm which makes a more
sophisticated decision regarding which remote node to choose for a likely guarantee. The
local node which has failed to guarantee the aperiodic task, selects k nodes with sufficient
surplus in the resources needed to guarantee the aperiodic task. (The value of k is chosen
to maximise the chances of finding an appropriate node for the aperiodic task.) A request-
for-bid message is sent to each of the k nodes. When a node receives a request-for-bide
message, it calculates a bid, which indicates the likelihood that the aperiodic task can be

guaranteed by it. If the node's bid is higher than a pre-set minimum level, then the bid is

sent to the requesting node. After receiving the bids, the requesting node sends the

aperiodic task to the node which has offered the highest bid. If no acceptable bids are
forthcoming, then it is assumed that the aperiodic task cannot be guaranteed within the

system.
The flexible algorithm is a combination of focused addressing and bidding, intended

to achieve 'the best of both worlds' at the expense of more processing at nodes and more

communications over the network. First, focused addressing is used to select a focused

node, to which the aperiodic task is immediately sent. (This is done according to the same

proviso that the focused addressing surplus must be exceeded by the surplus on the
focused node.) The k -1 nodes remaining are then sent request-for-bid messages along

with the identity of the focused node. The k-1 nodes then calculate their bids and send
them to the focused node.

In parallel, the focused node, which has received the aperiodic task, attempts to

guarantee it. If the guarantee is successful then all the bids which are received from the k-

1 nodes are ignored. If not, then the focused node sends the task to the highest bidder. If

there are no acceptable bids then the task is rejected. (A message about whether and where
the task has been guaranteed is sent to the original node so that it can update its

information on other nodes.)

In the case where no nodes are eligible to be the focused node, then the flexible

algorithm defaults to bidding where bids are returned to the original node.

33

2.6.3 Summary of Spring

(i) The guarantee algorithms developed in the Spring Project enhance system
performance as measured by the guarantee ratio at each node. (Guarantee ratio is
defined as the proportion of the aperiodic tasks arrivals at a node which are
guaranteed by that node.) However, the guarantee algorithms were found to incur

considerable overheads, with the result that Spring researchers have designed a
hardware coprocessor specifically to perform guarantees [39]. The approach of this
thesis is to avoid the use of dedicated or specialist hardware and to implement

guarantee algorithms on the same processor which runs the applications tasks.
Therefore, less computationally intensive methods must be sought in order to provide
a schedulability test for aperiodic tasks, and also considers their resource usage. One
line of approach is to adapt for on-line use, the static schedulability testing algorithms
of Audsley et al. [2]. These algorithms assume that a concurrency control protocol
such as priority ceiling protocol allows upper bounds to be placed on blocking caused
by exclusive access to resources. The range of static schedulability tests developed
by Audsley et al. are reviewed in Section 2.7.

(ii) The Spring simulation results show that, in general, distributed scheduling improves

the throughput of aperiodic tasks with firm deadlines [56]. For example, the flexible

algorithm was found to outperform the noncooperative algorithm under all load
distributions. The flexible algorithm also outperformed both bidding and focused

addressing, under conditions of average communications delay across the network.
However, these algorithms incur such large overheads that extra general-purpose
system processors are required in order to support them [52]. This thesis will
investigate the development of less expensive but equally effective methods, which do

not require dedicated hardware, but nevertheless serve to direct aperiodic tasks to the

processor most likely to guarantee them.

2.7 ALGORITHMS FOR STATIC SCHEDULABILITY TESTING

In his thesis, Audsley [2] has reviewed the topic of Static Schedulability Testing.

He goes on to develop an extensive analysis of Deadline Monotonic scheduling which

generalises previous work on Rate Monotonic scheduling [32]. Using his analysis of
Deadline Monotonic, Audsley presents a set of static schedulability test algorithms with a

range of complexities. It is assumed that pre-emptive priority scheduling is used for a set of

34

N fixed priority tasks, which are listed in order of increasing, static deadline. The tasks are
considered to be periodic, such as a set of critical tasks which are resident upon a
processor, and must be guaranteed a priori. Audsley discusses four sufficient and not
necessary algorithms which he refers to as Tests 1 to 4. He also presents a sufficient and
necessary schedulability test which shall be referred to as PP on account of its pseudo-
polynomial complexity.

2.7.1 Sufficient and Not Necessary Tests

The tasks in the task list are assumed to be ranked in priority order according to the
deadline monotonic algorithm. The period (T), deadline (D) and WCET (C) of each task
are known. It is assumed that all tasks are released simultaneously (worst-case critical
instant). If B is the worst-case blocking time a task may experience, due to the operation of
some concurrency control protocol, and I is the worst-case interference a task may suffer
from higher priority tasks, then for any task to be schedulable:

D
_>

C+B+I (2.1)

Techniques for the determination of C and B are not given by Audsley except to say that C

may be estimated during compilation, and B may be upper bounded by, for example, the

use of the priority ceiling protocol. He presents four algorithms for the determination of I
for the duration of the deadline of whichever task is being schedulability tested (known as
the test task, i). This may include interference which does not occur during the lapsed

execution time of the test task. Hence these tests are sufficient but not necessary. In

general the list of higher priority tasks is scanned to provide the following sum which is the
total interference from all higher priority tasks j:

j(rDi - Tja Cj) (2.2)

Inequality (2.1) may then be used to test the schedulability of the test task.
Test 1 uses exactly the above procedure. Every task in the list takes a turn as the

test task so the complexity of Test 1 is O(N2). Note that this test is pessimistic (sufficient

and not necessary) since, depending where the deadline of the test task occurs, a final

interference by a higher priority task j within the deadline may not be the full value of that

task's computation time. Tests 2 to 4 use increasingly expensive methods in order to
decrease the pessimism of this aspect of Test 1.

35

Test 2 uses the fact that the maximum interference from the final hit of an
interfering task j with the test task i is given by:

min (Cj, DI -
LD1= Tj]Tj) (2.3)

Dj -
LDi = Tj]Tj is the interval between the release time of the final hit of an interfering task

and the test task's deadline. If this interval is less than the value of the WCET (CJ) for the
interfering task, then the worst-case final interference of the interfering task can be taken as
this interval, rather than the full WCET of the interfering task. Therefore, in some cases,
Test 2 is able to make a less pessimistic estimate of the final interference of the higher

priority task within the deadline of the test task. The complexity of Test 2 is still O(N2)

although the extra comparison above will impose a further overhead.
Test 3 also uses (2.3) in an attempt to find a lower bound on final interferences.

However, when considering interferences within the test task, i, by a jth higher priority
task, Test 3 uses the fact that, if Di -

LDi - TjJT - <_ Cj then Di -
LDi = Tj]Tj may be

subtracted from Di in order to reduce the deadline of the test task to an effective deadline.

The next task (j + 1th) which is considered for interference in the test task, now has its
interferences calculated as occurring within the effective deadline established by the jth

task. By definition, the interval by which the test task deadline has been reduced cannot

contain interferences form the j+1, j+2, etc tasks because the interference from the jth

task will cause j+1, j+2, etc to execute later. Therefore, by using the effective deadline,

concurrent (overlapping) interferences from j+1, j+2, etc are not included as
interferences within the test task deadline, and this reduces the pessimism of the

schedulability test. In turn the j+1, j+2, etc tasks may provide further reductions to the

effective deadline. However, Test 3 is still a sufficient but not necessary test because, in

general, concurrent interferences may still be counted when considering the final hits of
interfering tasks. For example, interfering tasks may have final hits which are released

slightly earlier than the interval of their WCET from the test task deadline. In this case no

reductions can be made to the effective deadline, and concurrent interferences will be

counted within the test task deadline.

Test 4 applies effective deadline reductions in the same way as Test 3, except that it

further reduces the possibility of overlap by reiterating through all interfering tasks in

deadline monotonic order until the effective deadline can be reduced no longer. This means

that if a jth task just misses a reduction in effective deadline at the first iteration, and the j

+1 tli task is subsequently able to reduce the effective deadline, then the next iteration

through the interfering tasks may allow a reduction in the effective deadline at the jth task.

However, it is still possible that concurrent interferences may be counted. For example,

overlapping interferences may fall just short of the best effective deadline established by

36

repeated iteration. Therefore Test 4 is also a sufficient and not necessary test. Audsley
gives its complexity as pseudo-polynomial [2].

2.7.2 A Sufficient and Necessary Test

Unlike the above algorithms, this algorithm is sufficient and necessary. It has a
pseudo-polynomial complexity and will therefore be referred to as PP. It accurately
calculates the total interference of all higher priority tasks during the course of the test
task's execution. In effect, it calculates the exact response time of the test task, under the
assumption that all higher priority tasks perform their worst-case executions. The algorithm
proceeds by repeatedly increasing the test task's window (wi) in which higher priority tasks
interfere. At each iteration the following sum over all higher priority tasks j is calculated:

zj(rwi - T11 Cj) (2.4)

The initial value of the window is the WCET of the test task. The window size at the next
iteration will be the value of sum (2.4) from the last iteration. And so on, until the window
size does not increase. Audsley [2] shows that the algorithm will converge if processor
utilisation is less than 100%. This convergence yields the total interference required. As
before, the algorithm is repeated for all tasks in the list. Because the tasks are tested in
deadline monotonic order, the algorithm can be speeded up by using the final I value

obtained for the ith test task as the initial value of w for the i+lth test task, etc. Audsley

shows that the algorithm is pseudo-polynomial and points out that any particular test task
deadline (assumed to be an integer number of ticks) will provide an upper bound on the

number of iterations required.

2.8 LANGUAGE SUPPORT FOR OPTIONAL COMPUTATIONS

Existing programming language support for optional computations and flexible

scheduling is confined to experimental languages, and non-standard extensions to existing
languages. Experimental languages may not be fully implemented and non-standard

extensions to existing languages may be ad hoc, and fail to provide full support. According

to this thesis, it is not sufficient for a programming language to merely support the

scheduling of optional computations but there should also be support for the on-line

guarantee of firm deadlines. In the following section, two experimental languages (Flex

and Real-time Concurrent C) and two standardised languages (PEARL and Ada) are

reviewed.

37

2.8.1 Flex

The experimental programming language Flex [25,26] is a derivative of C++, which is
designed to support optional computations in the form of imprecise computation and
multiple versions. The language uses RTL-type notation to specify task constraints, and
uses object-oriented concepts of polymorphism and late binding in order to program
flexible scheduling. Tools for the static and dynamic analysis of Flex programs have also
been developed.

In Flex, the constraints on the timing, and resources used by sections of code are
defined by a constraint block. Temporal constraints include the start and finish times for
the code, intervals for periodic tasks, and the earliest and latest times for events.
Exceptions are defined in the case of any constraint failing to be met. It is important to
realise that Flex does not provide an on-line guarantee of constraints, but rather optimises
the chances of constraints being met.

Flex supports imprecise computation, and also the maximising of the values gained
by imprecise computations within the application. Multiple version programming is also
supported in the form of performance polymorphism. This is the temporal counterpart of
polymorphism, as defined by the types of input parameters. Performance polymorphism
allows the dynamic choice of one of several versions of a function. According to the values
of the parameters passed in the call to the function, the resources which are available, and
the execution time which is available for the function, the version which has the highest

chance of generating the highest utility, is chosen. An example given by Kenny and Lin

[26] is that of a sort function where one of several sort algorithms may be chosen

according to the system resources available, or the data which needs to be sorted. The

authors acknowledge that the overheads for performance polymorphism can be large, and
that this requires the versions themselves to have relatively large execution times.

Flex programs can contain pragmas which allow the applications code to interact

with tools. These analytical tools can (i) measure on-line, and statistically analyse, the

performance of different versions (ii) determine the parameters which influence the

performance of each version (iii) provide a static analysis of different versions which can be

used to optimise future compilation.
The main advantage of the Flex programming system is that it provides tool

support for detailed analysis of the performance of optional computations which can aid in

optimising the performance of future runs of an application. However, Flex does not

provide the support for the dynamic guarantee of optional computations which is sought
by this thesis.

38

2.8.2 Real-Time Concurrent C

In contrast to Flex, Real-time Concurrent C [19] does provide support for the
guarantee of optional computations, and even for time constraints upon the guaranteeing
itself. Real-Time Concurrent C is based on Concurrent C [18] which supports processes
with synchronous and asynchronous communications. Real-Time Concurrent C extends
this by allowing processes to (i) execute sections of code with specified periodicity or
deadline constraints (ii) seek guarantees that such timing constraints will be met and (iii)

perform alternative actions when either the timing constraints cannot be met, or the
guarantees are not available.

The designers of Real-Time Concurrent C acknowledge their debt [19] to the
Spring Project which originated the model of attempted guarantee, followed by alternative
action when the guarantee is denied. They describe a section of code within a process as an
activity, and state that "an activity can be guaranteed to complete execution within its
deadline if a schedule can be created for the activity, and also for other activities that have
been previously guaranteed, such that all these activities will meet their timing constraints".
If such a schedule cannot be created, then the new activity is not guaranteed.

The following is a review of the Real-Time Concurrent C constructs associated
with the specification of time constraints for optional computations, and the guarantee of

optional computations.

Activities with Deadlines

Deadliness can be associated with any activity or statement using the within deadline

statement which has the form:

within deadline(d) statementl

[else statement2]

The semantics of the construct are, that if control reaches the within deadline statement at

time t, if statement] is not executed before t+d, then its execution is terminated, and

statement2, if supplied, is executed.

39

Periodic Activities

Periodic activities are reviewed here because, as shown later, they can be guaranteed in
Real-Time Concurrent C. Periodic activities are specified using the every statement which
has the form:

every (p) [until expression I until accept statement]

statementl

[else stsememt2]

expression is a boolean condition. statement] repeatedly executes at interval p. However,

at the start each period either (i) expression is evaluated or (ii) in the case of an until

accept statement, any outstanding transaction is accepted. The every statement terminates

when either (i) expression evaluates to true or (ii) a transaction has been accepted. Should

an outstanding transaction take the form of an interrupt, then statement] can be aborted

when the interrupt is raised, and statement2 executed instead, followed by the termination

of the every statement.

Guaranteed Activities

Real-Time Concurrent C provides the programmer with the facility to guarantee, before an

activity starts, that it will complete before its deadline. The guarantee statement takes the

form:

[within deadline (gd) J guarantee

t ime constrained statement

[else statement]

gd is a deadline for the guarantee itself, and time constrained statement is either an every

or a within deadline statement. The run-time system attempts to determine, within gd if

specified, whether or not time
_constrained

statement can be guaranteed to complete

within its time constraints. If the guarantee is not possible, or if it cannot be reached within

gd, then the else statement, if provided, is executed. Otherwise time constrained statement

is executed. There follow two examples of the use of the guarantee statement.

40

Example 1:

This is an example of the use of a guarantee statement which attempts to guarantee a

within deadline statement:

within deadline (gd) guarantee

within deadline (d) statementl

[else ;]

[else statement2]

statement2 is executed if it is not possible to give the guarantee by gd. If the guarantee is

given, then statement] will be executed within d.

Example 2:

This example shows the use of the guarantee statement with the every statement:

within deadline (gd) guarantee

every (p) [until condition] statementl

[else ;]

[else statement2]

The above attempts to guarantee that statement] will execute at every interval, p. The

guarantee is performed once, before the first iteration of the loop. As the description of

every semantics above would indicate, the every statement can still terminate if condition
becomes satisfied.

Flexible Time Constraints

It is planned to add to Real-Time Concurrent C constructs, the capability of using multiple

time constraints. This is useful, for example, in applications where there is still some value
in completing a computation after a first (preferred) deadline. To introduce such flexibility,

the designers of Real-Time Concurrent C plan to allow a slop to be associated with a

deadline. This provides an additional period of time, after the preferred deadline, during

which the activity should be allowed to continue because it may still provide value to the

system. After the expiry of this extra time, the activity should be terminated, if it has not

already completed.

41

within deadline (d) [(slop)] statementl

[else statement2]

The construct has the following semantics. Note that the semantics cater for negative
values for slops, which are an equivalent way of expressing a preference between two
deadlines:

" If statement] is not completed by max(d, d+ slop), the processing of statement] is
terminated and statement2, if provided, is executed.

0 If slop is not specified, it is assumed to be zero.
" If a guarantee is requested, the guarantee algorithm will first attempt to guarantee

statement] with respect to min(d, d+ slop) and if unsuccessful, will attempt to
guarantee with respect to max(d, d+ slop). If the latter attempt is also unsuccessful
then the else clause, if specified, is executed.

"A time-constrained component of statement] can also have a slop which can increase

the WCET if statement].

Run-Time Support for Real-Time Concurrent C

It is worth noting that there are five separate algorithms which are required to

support flexible scheduling in Real-Time Concurrent C. Time on the processor is

partitioned into slots, each of which is divided, in a fixed ratio, between time for periodic
activities and time for aperiodic activities. Within each slot 'fraction' (periodic and
aperiodic), the scheduler operates according to the following priorities:

0 time for guaranteed activities is allocated first

0 non-guaranteed activities with time constraints take preference in the remaining time

0 non-guaranteed activities without time constraints use what time is left.

According to the latest published work [19], the implementation of run-time

support for Real-Time Concurrent C is incomplete. No figures are given for the overheads

associated with the five algorithms above.
In conclusion, it seems that Real-Time Concurrent C provides many useful

constructs for optional computations, but that the language is not yet fully supported, and

may require specialised hardware support to make it viable. It has certainly not been

established as a standard.

42

2.8.3 PEARL

PEARL stands for "Process and Experiment Automation Real-time Language". The
language was developed under the West German Ministry of Research and Technology as a
real-time programming language for process control applications [61]. The language has
been widely used by German industry and several versions of it have been embodied in
German (DIN), and ISO standards.

Basic PEARL [14] provides a Pascal-like language with data types for clock and
duration. Full PEARL [15] provides separate compilation of modules which are split into
hardware-independent and hardware-dependent divisions. Multiprocessor PEARL [16] is a
version of the language which allows the programming of distributed applications in which
collections of modules may be configured and reconfigured within a network.

Halang and Stoyenko [21,22] propose extensions to Full PEARL which would
constitute a new standard called High Integrity PEARL. Their proposed standard would

make PEARL programs fully analysable for schedulability. They have developed a

schedulability analyser for High Integrity PEARL, which works in conjunction with their
High Integrity PEARL compiler. Their proposed features for High Integrity PEARL

include the ability to program the detection of events, parallel processing with precedence

relations within task sets, and greater programmer control of resources and tasks,

especially under transient overload.
Greater task control is achieved by the availability to the programmer (and to the

run-time system) of the deadline, accumulated execution time and (worst-case) residual
execution time of each task. An update statement is available should a programmer wish to

refine the estimate of the worst-case residual execution time of a task. This is possible

when it is known at run-time, which particular path has been taken through the task code:

update task_identifier. residual := duration_expression;

According to Halang and Stoyenko, process control applications seldom have the

monotone property required for imprecise computation [22]. They therefore restrict

support for optional computations to a form of multiple version programming. In High

Integrity PEARL, task declarations can include the attribute runtime selectable which

means that the programmer is providing alternative task bodies for a task. The compiler

calculates the WCETs of the alternatives and stores them in decreasing order of WCET, so

that, at run-time, the scheduler can chose the alternative with the greatest WCET to be

schedulable. The assumption is that alternatives with greater WCETs are preferable
because they produce results of greater quality.

43

In summary, High Integrity PEARL provides support for multiple versions
programming, but not for other paradigms for optional computation. The availability of
run-time data on tasks (e. g. residual execution times) allows the programmer more control
of scheduling and could, for example, facilitate scheduling according to best effort.
However, the scheduling code for this would have to be explicitly written by the
applications programmer. In short, High Integrity PEARL, provides only partial support for

optional computations, and at present exists only as a proposed standard [21].

2.8.4 Ada

Ada 83 was developed by the US Department of Defense [23]. It is a large
imperative language which includes strong type checking, limited object-orientation in the
form of derived types and generics, and features for concurrent programming using tasks.
Tasks can communicate by means of the Ada rendezvous in which one task makes a
synchronous call to an entry in another task.

Some of the criticisms of Ada 83 are that it has inadequate facilities for real-time
programming. It has limited provision for expressing timing constraints, tasks have static
priorities only, entry calls are always queued FIFO, and there are inadequate
implementation standards for scheduling.

Ada 95 is a new standard for Ada [1], which addresses many of the shortcomings of
Ada 83. Ada 95 has separate annexes for several application domains: Real-Time Systems,

Safety and Security, Distributed Systems, and Systems Programming. Ada 95 introduces

such features as protected objects for shared access to a resource, and the requeue of entry

calls from one entry to another.
For the programming of real-time systems, Ada 95 provides improved clock

facilities, dynamic priorities, and standardised scheduling of tasks which can be integrated

with the scheduling scheme used for inter-task communication. Other new features which

are useful for real-time applications include improved priority inheritance, and

asynchronous transfer of control.
Optional computation is not directly supported by Ada 95. However, dynamic

features such as asynchronous transfer of control may be able to be programmed to provide

optional computation. This is the subject of Chapter 8, where the relevant Ada 95 language

features are reviewed in more detail.

2.8.5 Summary

Current programming languages do not yet provide adequate support for optional

computations. Flex only optimises the chances of optional computations meeting their

44

deadlines. Real-time Concurrent C provides language constucts for optional computations,
but it is an experimental language, and is not yet fully implemented. PEARL is a widely
used language in which proposed extensions may provide limited support for some forms

of optional computation. Ada has no direct support for optional computations but the new
Ada 95 standard contains flexible constructs which may allow optional computations to be

programmed.

2.9 SUMMARY OF REVIEW

This review has surveyed previous work relating to the three strands of enquiry

outlined in Chapter 1 i. e. application requirements for optional computations, run-time

support for flexible scheduling, and programming language support for optional

computations.
Section 2.2 reviewed the requirements for complex real-time applications which

require adaptivity. Section 2.3 reviewed existing computational models, and programming
paradigms. To merge all of the requirements, and combine computational models, would
result in a large set of requirements supported by a complex computational model. This, in

turn, would require support from a complex, and computationally expensive, run-time

system. The motivation for Chapter 3, which follows, is to distil the requirements and
develop a constrained computational model.

Sections 2.4 and 2.5 reviewed existing run-time support for flexible scheduling, and
found that the Spring Project provides a high level of support, but at the expense of

complex software and specialised hardware. Section 2.7 reviewed static schedulability tests
due to Audsley et al. which Chapters 4 and 5 adapt, in an attempt to develop

computationally cheaper guarantee algorithms than those of Spring. Section 2.6 above

reviewed Spring support for distributed scheduling. This also requires complex algorithms,

and Chapter 6 focuses on attempts to develop simpler methods. The constrained

computational model of Chapter 3 uses Best Effort Admission Policy, which is evaluated
by the simulation studies reported in Chapter 7.

Section 2.8 found limited programming language support for optional computations

except for the language Real-Time Concurrent C. Unfortunately this language is

experimental and not yet fully supported. In contrast, Ada 95 is a new standard which does

not explicitly support optional computations, but does provide constructs which may be

used to do so. Chapter 8 investigates the use of these constructs in order to program

optional computations in Ada 95.

45

CHAPTER 3

A CONSTRAINED COMPUTATIONAL MODEL

3.1 INTRODUCTION

As stated in Chapter 1, this thesis assumes that the Run-Time System required to
support the application requirements for optional computations within adaptive real-time
systems, will run on the same processor as the applications tasks. This chapter begins by

citing evidence that the overheads incurred in the support of the complex application
requirements which are reviewed in Chapter 2, would prohibitively reduce the throughput
of optional computations. The chapter goes on to present a different approach by

simplifying the complex application requirements, and formulating a constrained
computational model, which, it is claimed, can be supported cost-effectively on the same
processor as applications tasks. The chapter concludes by discussing some programming
language constructs which optional computations may require, and which could be

supported by the constrained computational model.

3.2 COMPLEX REQUIREMENTS

Complex requirements and models for adaptive real-time systems have been
discussed in Sections 2.2 and 2.3. In the following sections, each of these requirements or
models is considered in turn, and evidence is cited which shows that the provision of
support for them would incur prohibitive overheads.

3.2.1 Value Functions

In his thesis [35] Locke used processes (tasks) with Value Functions. He found that
his Best Effort algorithm achieved consistently high total values for the system, but he did

not address the overheads which Best Effort scheduling incurs, except to suggest an

architecture in which scheduling is performed on a different processor from applications
tasks. Later work by Tokuda et al. [59] and Wendorf [60] investigated these overheads.
Wendorf showed that with Best Effort scheduling running on the same processor as the

applications tasks, the algorithm can incur very large overheads. For example, for a

potential load of 200%, up to 80% of processor time was spent in Best Effort scheduling.
This drastically reduced the time for application tasks to run, and therefore the total value

46

obtained for the system. A further criticism is that Locke's Best Effort scheduling only
increases the probability that tasks will meet their timing constraints, and this is insufficient
when critical tasks are required to be guaranteed.

Davis et al. [12] present the results of simulations in which Best Effort scheduling
has been adapted to guarantee tasks. In this algorithm, a task of a higher value density can
oust a task of lower density from the task list. (Here value density is a constant value,
associated with an aperiodic task upon its arrival. It is defined as the value to the system of
the task, divided by the task's worst-case computational requirement.) Davis et al. found
that a simple FCFS policy, which automatically rejects aperiodic tasks whose value-density
falls below a threshold, can provide better performance than Best Effort, under conditions
of system overload. This is because processing capacity is saved for later aperiodic tasks of
greater value-density. This is evidence that superior performance can be obtained by a
scheduling method which is simpler than the Best Effort algorithm.

3.2.2 Interdependencies between Tasks

Interdependencies between tasks have been discussed in Section 2.3.2. These can
also greatly increase the overheads involved in scheduling. Communications between tasks,

complex task hierarchies, and resource and precedence constraints may all greatly

complicate the on-line schedulability analysis required to guarantee newly arrived optional

computations. In the Spring Project [52,56] Ramamritham et al. investigate the

complexities of constructing schedules for task sets which have resource, or precedence

constraints. Because the construction of such schedules is, in general, NP-hard,

Ramamritham et al. develop heuristics which are used to guide the search for a feasible

schedule. As explained in Section 2.6.3, such heuristics were found to incur large

overheads.

3.2.3 Schedulability Testing

A general concern with the facilities for optional computation discussed in Section

2.3 is that they may significantly increase the overheads incurred in scheduling and

schedulability testing. For example, it has been shown [60] that value functions can incur

unacceptable overheads. Audsley [2] has shown that algorithms which provide an exact

schedulability test at run-time have a pseudo-polynomial complexity. Davis [8] presents

results which show that the overheads incurred by pseudo-polynomial schedulability test

algorithms, so reduce the throughput of aperiodic tasks, that an inexact algorithm can

provide equal performance. If tasks are a composite of sections with different utilities, then

overheads can be further increased. When value functions or composite utilities are able to

47

be redefined at run-time, then overheads can be greater still. Concerns also exist regarding
unbounded computations. For optional computations whose computation times are
unbounded upon their arrival, guarantee is impossible. Further, an attempt to give them
preference could undermine guarantees already given to other tasks.

3.2.4 Summary

The complex requirements for optional computations which have been discussed in
Chapter 2 are likely to incur prohibitive overheads when implemented on the same
processor as the applications tasks. Therefore the next step is to simplify these
requirements, and to develop a constrained computational model which, on the one hand,
incurs acceptable run-time overheads, but on the other, supports programming language

constructs of adequate expressive power.

3.3 ATTEMPTS TO CONSTRAIN COMPLEX REQUIREMENTS

3.3.1 Constraining Value Functions and Utilities

As discussed above it is necessary to reduce the complexity of value functions, in

order to achieve an acceptable overhead for the schedulability testing and scheduling of
optional computations. In any case, it is arguable whether value functions as described by
Locke are the most useful measure of the value to the system, of a task's execution.
Locke's functions map the values obtained to the possible completion times of the task.
However the value of completing the task could be represented more simply by a constant
value or 'utility' which is set upon arrival of the aperiodic computation.

With a simple utility, the completion time of a task is still constrained, by the

guarantee that the computation meets its deadline. The exact completion time of the

aperiodic task may be immaterial, and the simple utility which has been allocated to the task
is all that is required for the scheduler to make decisions regarding the task's execution. A

task with an exact completion time which is critical, should not be an optional

computation, but instead should be implemented as a high priority task which is resident on
the processor and has been schedulability tested off-line.

3.3.2 Categories of Tasks

Having decided to use utilities and not value functions, there must be some way of
trying to limit the range of utilities required, in order to constrain the complexity of a

48

computational model, and to reduce the overheads for schedulability testing. For the
purposes of a constrained model, three categories of task may be defined, with a separate
utility level for each category. The first category (essential tasks) must complete, once
guaranteed, the second category (atomic actions) may be aborted at any time between

guarantee and the start of execution, and the third category (low utility) may be aborted at
any time after guarantee.

The three categories may be said to define different abortabilities (the extent to
which a guaranteed task may be aborted) and the question arises as to how these may be
integrated with different utility levels for the tasks. For example, should a newly arrived
aperiodic computation, of high utility, which would otherwise prove unschedulable, be able
to abort existing tasks which fall into the second and third categories of abortability? If
lower utility tasks may be aborted in this way, then how valid were their original
guarantees? Presumably the application will need to know that guarantees have been

rescinded, so that this may be handled. Obviously high-utility tasks cannot be aborted and
the constraints which they impose might still force a newly arrived request to be rejected.
In the case of the lowest utility tasks there may be no need to abort them if they are running
in background, and have not been guaranteed.

3.3.3 Guarantee-worthiness

Clearly the utility and abortability of a task are interrelated. For example a task of
high utility is more worthy of guarantee and should be less easy to abort. Conversely, there

may be little justification for incurring overheads in guaranteeing an aperiodic request
which has a low utility and may be aborted by higher utility requests. This raises the issue

of the guarantee-worthiness of a request for optional computation. In other words can

some measure be made of the trade-off between how much time is spent guaranteeing an
aperiodic task and how much utility the aperiodic task gains for the system.

Obviously, when a high utility task is guaranteed, and ousts a previously guaranteed
task of lower utility, then the utility of the ousted task is lost to the system. Not only that,
but the time spent in guaranteeing the ousted task has also been lost. The question arises as
to where the trade-off lies between time which is 'wasted' in this way and the higher utility

which is gained. This question will be discussed further in the Section 3.5.1.
An important observation is that utility and abortability are intimately related in a

scheme which guarantees aperiodic computations in a First-Come-First-Served order.
Within this kind of scheme there will be no change to the overall value obtained for the

system, unless aperiodic requests of different utilities also have different abortabilities. In

other words tasks of different utilities will merely be treated in FCFS order unless incoming

49

high-utility aperiodic tasks have the ability to cause previously accepted low-utility

aperiodic tasks to be aborted.

3.3.4 The Problems of Composite Utilities/Abortabilities

One possible requirement for a computational model is that aperiodic requests
might have different utilities or abortabilities associated with sections of their computations.
For example an imprecise computation can be coded as a sequence of iterative sections,
with each section having a lower utility and higher abortability. Another use for a change in

utility would be to give the final section of a task a higher utility. This might prevent the
task from being aborted just prior to completion, with the resulting loss of value to the

system.
From the standpoint of guaranteeing optional computations, there are objections to

variations of static utilities/abort abilities within the sequence of code of a single task.
Firstly, there are difficulties in the semantics of guaranteeing some utility/abortability
sequences within a task. For example, a low-utility section at the start of an optional
computation, followed by a non-abortable high-utility section. The non-abortable section
should be guaranteed to complete but does this mean that the earlier abortable section
should also be guaranteed as non-abortable, especially if there is a precedence relation
between the sections? Another example is the case of an optional computation whose
subsequent sections fall in utility and increase in abortability. In this case 'abortable until
started' cannot be used for a later section when 'must complete' has been used for an earlier
section. These problems could be solved by the use of 'must complete' with all utility levels
in a composite task. However, as stated earlier, there is no benefit to the system in using
different utilities for aperiodic requests unless utility levels also have different abortabilities.

A second objection is the additional complexity and overheads in the schedulability
testing of newly arrived aperiodic requests, when existing tasks have variable utilities/
abortabilities within their computations. This also creates problems for the schedulability
test algorithm when some sections of a task are schedulable but others not. For example,
the high utility sections of a composite task may be schedulable (because they have caused

existing low-utility task(s) to be aborted) but the low utility sections may not be

schedulable. The requirements of the application may dictate that all sections (high and low

utility) must be guaranteed, or the requirements may be that the composite task is still

viable when only the high utility sections are guaranteed to run (e. g. a sieve function).

A general conclusion here is that, for the purposes of guaranteeing, a constrained

computational model must combine the characteristics of utility and abortability in a

consistent manner. Any such model must have semantics which are clear to the applications

programmer. Using different utilities which are allocated to each section of a task at the

50

time of guarantee, can create sequences of utilities and abortabilities which have

contradictory meanings. Therefore the recommendation for the constrained computational
model is to allocate a single utility to each task for the purposes of guaranteeing. This will
provide clearer semantics and also simplify schedulability testing. As seen below, there are
no objections to changes in the utility of a task after guarantee, during the task's execution.

3.3.5 Dynamic Changes of Utility

The above section discussed the semantic difficulties in guaranteeing a composite
task which has utilities associated with each of its components. Therefore, for guarantee
purposes, it is preferable that a task has a single utility which is set upon the task's arrival.
However, there is no reason why dynamic changes of utility should not occur later, for

example by being programmed within the code of a task. Such utility changes could occur
at any time during a task's activation, without semantic complications, or further demands

on schedulability testing.
An example of an application where a dynamic change of utility is desirable is that

of tasks which are replicated for fault-tolerance. Once guaranteed, each replicated task

may have its utility either decreased or increased, depending on whether fellow replicants
have either completed before it, or failed prematurely. The utility of each replicated task

can be changed easily, without any further need for guarantee. Similarly, little extra

scheduling overhead is required if the application decides that a replicant should be killed

because its execution is no longer of any value.

3.3.6 Constraining Task Interdependence

The complex requirements described in Section 2.3 also include hierarchies of
interdependent tasks with complex precedence relations and resource sharing. Clearly these

requirements need to be simplified if scheduling and schedulability testing overheads are to

be reduced to an acceptable level. One obvious step is to flatten the hierarchy so that only
linear precedence relations between tasks are permissible.

In order to simplify the problem of resource allocation, Priority Ceiling Protocol

can be applied. This allows an upper bound to be placed on the worst-case blocking for

resource access. Priority Ceiling Protocol does not optimise the allocation of resources, but

at least means that true WCETs are used for schedulability testing.

51

3.3.7 Accommodating Unbounded Computations

Unbounded requests for computation cause difficulties within a scheme which
guarantees hard deadlines. If a task has an unbounded computation time then it cannot be

guaranteed but merely have its execution 'optimised' e. g. by allocating it available slack.
The task cannot be incorporated at a high priority level because it may invalidate

guarantees which have already been given to bounded tasks at a lower level. In any case, it

can be argued that unbounded computations should be given a low priority (e. g.
background) because their utility cannot be great. If it had been, the applications
programmer would have bound them, and required them to be schedulability tested in order
to meet some time constraint.

In the case of a task whose boundedness or unboundedness is known only at run-
time, it can be argued that such late knowledge does not justify the use of schedulability
testing and that the task should be placed in background. After all, a task which is allowed
such dynamic behaviour is unlikely to be critical. However, an interesting way of
accommodating such a request (especially if it is supplied with a deadline) is for the run-
time system to artificially bound the request. In this way the run-time system can guarantee
that the unbounded request receives a certain amount of computation while still retaining
the guarantees of existing aperiodic tasks.

3.3.8 Supporting Alternative and Compound Computations

A requirement for some applications may be that groups of optional computations

should be requested together. Such requests for the guarantee of several optional

computations may be characterised as alternative or compound. Alternative and compound

requests have semantics which correspond to OR, and to AND respectively. OR semantics

mean that the application wishes to know which of a list of several alternative optional

computations can be guaranteed. The application may prefer those requests which occur

earlier in the list, in which case it is sufficient for the application to know the first

alternative in the list which turns out to be schedulable. In contrast, AND semantics require
that all of the requests in the list be schedulable, otherwise the compound computation will
be rejected.

The above requirements for alternative or compound computations may seem to

add greatly to schedulability testing overheads. However, it is possible that schedulability
testing may be optimised so that the full schedulability test algorithm does not have to be

repeated for each computation in the group. For example, if the alternative or compound

computations share the same deadline, then the existing tasks beneath the request position
in the task list need not be fully re-tested for each alternative. Therefore it is recommended

52

that alternative and compound computations may be cost-effectively supported by a
constrained computational model.

3.3.9 Guaranteeing Sequences of Aperiodic Computations

Guaranteeing sequences of aperiodic computations which arrive simultaneously but
have a precedence order (e. g. iterations of an imprecise computation) can also add to
schedulability testing overheads. This is especially true if attempts are made to guarantee
some members of the sequence at remote nodes.

The issue arises as to whether members of the sequence which cannot be

guaranteed locally should be schedulability tested at other nodes in the system, to see
whether they can be accommodated there. The difficulty here is to retain the precedence of
sequence members. A remote node needs to be able to guarantee the sequence member
within a window which follows the execution of that members predecessor and comes
before the execution of the member's successor. In practice end-to-end timings would be
involved.

The issue can be resolved by comparing the deadline for the aperiodic request with
the overheads involved in guaranteeing iterations of the computation at remote nodes. If

the overall deadline for the sequence is sufficiently great, then each member of the

sequence can be schedulability tested after its predecessor has completed. In this way each
member of the sequence is treated as a separate aperiodic request. This has the advantage
of being the most dynamic way of handling the sequence and it can involve the forwarding

of a sequence member to some remote node, when the host node cannot guarantee it.

When the aperiodic sequence has a relatively short deadline, then complex time

constraints due to precedence make it unlikely that remotely guaranteeing some members

of the sequence is viable, in a loosely coupled set of processors. (However, in a closely

coupled processor cluster, perhaps with synchronised schedulability testing, such remote

guaranteeing of sequence members may be more feasible.) Accepting that the schedulability
testing for the sequence takes place entirely on the local node allows a simple schedulability
test which uses the total deadline for the sequence and determines how much of the

sequence can be guaranteed. This can be posed in the form of an alternative computation

where each alternative includes a different number of sequence members.

53

3.4 THE CONSTRAINED MODEL

3.4.1 Introduction

Table 3.1 summarises the Constrained Computational Model which is proposed.
Aperiodic requests for optional computations may have the characteristics shown in the
table. Each row of the table can be considered as a different task 'type', named Mandatory,
High Utility, Medium Utility, Low Utility, and Background.

Task type Utility Abortability Bounded or Guarantee Deadline
Unbounded

No abort
Mandatory Base but Bounded Off-line Hard

replaceable

High Utility H No abort Bounded On-line Firm

Medium M Abort before Bounded On-line Firm
Utility start

Low Utility L Abort Potentially On-line: Firm

anytime Unbounded Budget only
Budget

Background Null No need to Potentially Not Soft/

abort Unbounded guaranteed None

Table 3.1: The Constrained Computational Model

The implication of the model is that Mandatory tasks have a baseline utility and that

the other task types can add value to the baseline according to their utility. Obviously the

higher the utility of a task, the more value it adds to the application, upon the completion of

the task. In other words H>M>L in Table 3.1. Any optional computation must belong to

54

one of the High, Medium or Low categories and be allocated the utility which the
programmer has set for that category. (A more concise way of expressing the relative
utilities of these categories is to use two ratios, as is discussed in Section 3.5.3)

It seems, from the arguments above, that clearer semantics are achieved by
associating a single utility level with each aperiodic request, rather than have the
complication of guaranteeing a computation which is divided into sections, each with a
different utility level. Therefore the constrained model allows only a single utility level to be
associated with each request at its arrival. If different utility levels are needed, the
applications programmer must split the compound task into smaller tasks which have

precedence relations between them, according to their relative deadlines. The use of a
single utility per task, allocated at arrival, should also simplify schedulability analysis. Of

course, the utility of an optional computation may still be changed dynamically, at any time
after its guarantee, as is described in Section 3.3.5.

3.4.2 Utility Levels

It was decided that the constrained model should use five utility levels. This choice
is a compromise between providing adequate facilities for the applications programmer and
incurring greater overheads in schedulability testing if more than five utility levels are used.
The close interrelation between utility and abortability has been discussed above and it is

clear that these are not orthogonal characteristics. Therefore the constrained model
provides consistent semantics by integrating abortabilities with utility levels.

3.4.3 Mandatory Tasks

As can be seen in the Table 3.1, the first task type is Mandatory and is associated

with a baseline utility. All Mandatory tasks are considered to be critical tasks which are

resident on the processor. As indicated in the table, they have bounded WCETs and hard

deadlines. It is assumed that they have been guaranteed off-line before the system starts. No

abort in the table indicates that these tasks cannot be aborted. However it is possible to

replace a Mandatory task by a preferred High Utility task (see next section).

3.4.4 High Utility Tasks

The next utility level, H, is associated with High Utility tasks. These are optional

computations which arrive aperiodically at the processor and have firm deadlines. (Here, a
'firm' deadline indicates that instances of these optional computations can be missed

without critical failure, but that there is no value in executing these tasks if they do not

55

meet their deadlines.) Consequently these tasks require to be guaranteed dynamically and
they must have bounded WCETs in order that this may be possible. They cannot be aborted
once guaranteed (No abort).

It is possible that such a High Utility optional task could replace a Mandatory task
at run-time (e. g. where a preferred, expensive version of some computation is required). In
this case the utility of the High Utility task would be gained upon its completion and would
be added value over the baseline value which would have been gained by the Mandatory
task which was replaced. Note that in guaranteeing the High Utility task, the system must
take in account the processor time which would be freed, were the Mandatory task to be

replaced.

3.4.5 Medium Utility Tasks

Medium Utility tasks are also aperiodic, optional computations. As with High
Utility tasks, they have bounded computation times with firm deadlines and must be

guaranteed dynamically. However, they differ from High Utility tasks in that they are
allocated a lesser utility level, M, and can be aborted within the interval between their

guarantee and the start of their execution. An example of an application for this type of
task would be an atomic action which once guaranteed, may be aborted before it starts,
but may not be aborted during its execution without great loss of value to the system.

3.4.6 Low Utility Tasks

Low Utility tasks are similar to Medium Utility tasks except that they are allocated

an even lower utility, L, and can be aborted anytime after guarantee. As with Medium

Utility tasks, they have firm deadlines, but their computational requirements are potentially

unbounded. This can mean that they are either impossible to bound, or that their

computation times have such large variances that they can only be bound very

pessimistically. For example, only a minimum or average computation time may be

available. There is no value in executing such a task if it does not meet its deadline, and
therefore it is better if some way can be found to increase the chances of the deadline being

met. The system attempts to guarantee each low utility task a budget which may, for

example, cover its minimum or average computation time. This only guarantees that the

task has a certain probability of finishing in time, but it is preferable to allowing the task be

executed in background, without any guarantee.
Potentially unbounded indicates that such tasks need not necessarily have WCETs

which are difficult to bound. It may be that they have tightly bounded WCETs, but that

their low utilities require them be abort anytime tasks.

56

It should be noted that the system must monitor whether a low utility task has

consumed its budget. When a budget is exhausted, the task must be aborted, or another
budget guaranteed. The task must be prevented from using more processor time than it has
been allocated, because this could undermine the schedulability of other tasks in the system.

3.4.7 Background Tasks

The last task type, Background, are optional computations which also have

potentially unbounded execution times but have soft deadlines, or no deadlines at all. In

effect, they are not real-time tasks. They cannot be guaranteed and therefore must always
be executed at the lowest priority. At this priority, they may be ordered in FCFS or earliest
deadline order. (In any case, to guarantee such tasks is less appropriate because their soft
deadlines indicate that there may be some value in them executing after their deadlines have

expired.) Because they are executing in background, and are not guaranteed, these tasks

need not be considered when schedulability testing tasks of higher utility. Background tasks

may of course miss a soft deadline, in which case they may eventually be removed from the

task list. They carry Null utility because they are not guaranteed and need not be aborted by

higher utility tasks. Therefore the issue of which utility level they require, in order to make
it cost-effective to guarantee them, does not arise. It is acknowledged that Background

tasks still contribute to the system.

3.4.8 Dynamic Changes in Utility

The Constrained Computational Model requires the use of a single utility per

optional computation, which is set upon its arrival. As argued above, this clarifies the

semantics of the model and should also simplify schedulability testing. The utility which the

optional computation carries upon arrival determines how 'hard' the system will try to

guarantee it. However, as stated previously, there is no reason why the original utility level

of the optional computation cannot be changed as required, during its execution. No extra

schedulability testing overhead is incurred in order for the application to change the utility
level of a guaranteed task.

An example of utility change is when a low utility (L) optional computation may be

nearing completion, and may dynamically upgrade its utility to M in order to avoid the

possibility of abortion and a loss of value to the system. Such a change neither affects the

schedulability of the task concerned or any of the other tasks in the system. Obviously

some programmer-defined method of determining a task's progress is required in order to

determine when the utility should be upgraded.

57

Another interesting application of this facility is to dynamically change the utility of
an imprecise computation, at each of its iterations. For example, a task which implements
imprecise computation could be programmed to decrease its own utility at each iteration of
the computation. In effect, the ability to dynamically change utilities can allow composite
utilities without incurring any of the extra schedulability testing overheads associated with
guaranteeing a composite task.

3.4.9 Precedence

Precedence is not directly supported by the computational model. However, it is

assumed that the Run-Time Support for the model prioritises tasks according to deadline

monotonic ordering. Therefore, aperiodic requests which arrive simultaneously can have

their precedence indicated by their relative deadlines. If the precedence order in the

specification conflicts with deadline order, then a design tool may be used to adjust the
deadlines given, so that if the requests are guaranteed, they will be executed in precedence
order. This assumes that there are no internal delays in the task(s) which occur earlier in

precedence order. Such delays could result in the premature execution a task which should
have executed later in the ordering.

3.5 VIABILITY OF THE CONSTRAINED COMPUTATION MODEL

3.5.1 Guarantee-worthiness

One major issue which arises from the computational model is whether the aborting

of lower-utility tasks actually benefits the total utility gained by the system. Guarantee-

worthiness has been defined as a measure of how much the utility gained by the system in

guaranteeing new aperiodic requests, outweighs the overheads and aborted computations

which are incurred by those guarantees.
Whether a particular aperiodic request is guarantee-worthy depends on factors such

as its own utility and guarantee overhead, and the utilities and guarantee overheads of any

existing tasks which it aborts. (Another consideration is whether the aborted tasks are near

completion, since the full utility of an aborted task is lost, however small its residual

execution time.) The guarantee overheads incurred will depend upon computation times,

deadlines and the complexity of whichever guarantee algorithm is in use.
Clearly, if aperiodic requests are not guarantee-worthy, then guaranteeing may

provide less throughput of optional computations than merely accepting or rejecting them

according to whether they are schedulable without the abortion of lower utility tasks. (In

58

effect this is a FCFS system where all tasks are of the same utility.) Even more extreme is
to dispense with schedulability testing altogether and merely accept all aperiodic requests,
and attempt to optimise their executions. However, this loses the advantage of being able
to pursue some useful alternative, when the request for an optional computation has been

rejected, and it may result in a great loss of utility to the system.

3.5.2 Simplistic Measures of Guarantee-worthiness

There are two crude measures of how small a task's computational requirement can
be, before the overhead incurred in guaranteeing ceases to be justified. The measures
provide necessary but insufficient criteria because they do not take into account the loss of
utility due to the abortion of lower utility tasks.

The first measure is whether the deadline of the aperiodic request is considerably
larger than the overhead of the likely schedulability test overhead plus the computational
requirement of the request. If the deadline is of the same order as this sum, then clearly
there is no point in attempting a guarantee, and the request should be rejected outright.

Another comparison which may be useful is between the computational requirement
of the aperiodic request and the total overhead for schedulability testing and scheduling the

task. This may give some lower bound for the computational requirement of an aperiodic
request which is worthy of guarantee and scheduling.

The next section looks at how the full issue of guarantee-worthiness may be

addressed, including taking into account the effect of loss of utility due to the abortion of

previously guaranteed lower utility talks.

3.5.3 Evaluating Best Effort Admission Policy

In order to fully examine the issue of guarantee-worthiness in Best Effort

admission, some simulation studies are required. These require some means of expressing

and controlling the relative values of High Utility, Medium Utility and Low Utility tasks, in

order that the effect of aborting lower utility tasks may be investigated. Note that it is only

the relative values of these utilities which affects the issue of guarantee-worthiness, and

therefore the total utility gained by the system.
Two ratios are introduced. The first, R1, is the ratio of the utility of High Utility

tasks to the utility of Medium Utility tasks. The second, R2, is the ratio of the utility of

Medium Utility tasks to the utility of Low Utility tasks. (Mandatory and Background tasks

can be considered as different cases, with fixed utilities, and therefore no ratios are

needed.) Both R1 and R2 are system-wide parameters which can be set by the applications

programmer. For example, if R1 and R2 are each 10, then the utilities of High Utility,

59

Medium Utility and Low Utility tasks will be 100,10 and 1 respectively. The applications
programmer can set R1 and R2 and measure the efficiency of an implementation by

accumulating the total value of utilities over a system run. In short, R1 and R2 allow the
trade-off in guarantee-worthiness of the three intermediate task types to be investigated.

Chapter 7 presents the results of simulation studies in which Best Effort Admission
Policy is compared to FCFS. These results include the effect of varying R1 and R2

3.6 NECESSARY LANGUAGE CONSTRUCTS

3.6.1 Compound and Alternative Computations

Compound computations, as described in Section 3.3.8, support requests for

multiple optional computations. A compound computation can take the form of an 'AND

statement', where all of the ANDed computations must be guaranteed. In other

circumstances an application may require the guarantee of one of a selection of optional

computations. The language construct for such an alternative computation could take the
form of an 'OR statement'. The requests listed in the OR statement could be in order of

preference, and the run-time system would then attempt to guarantee them in that order

until the first schedulable request is found.

Compound computations should all be requests for high utility computations,
because it is inconsistent to require that all of the components be guaranteed, if some of

them are only guaranteed at low utility and are therefore abortable. If the components of

the compound computation have a common deadline, then it is more efficient to add their

computation requirements and make a single request for the summed computation times.

This prevents the schedulability test having to run for each component, but in no way

affects the accuracy of the schedulability test. If there is a precedence relationship between

the components of a compound computation, then this can be enforced by the programmer

allocating appropriate deadlines to the components of the computation (see Section 3.4.9).

The applications programmer may chose to associate a different utility/abortability

with each alternative within an alternative computation. This may be useful for example

when an early preferred alternative is computationally dearer, and a later alternative, which

is less-preferred, computationally cheaper. (A cheaper computation has a shorter

computation time and/or a longer deadline) Table 3.2 shows the possible alternative

computations which can be demanded. The alternative request which is made can have

either a different computational expense, or a different utility, or both. The 'Useful' column

of the table warns the applications programmer against some combinations which are

60

Computational Utility Is this a
Expense of of Useful Comment:

the Alternative the Alternative Alternative ?

Example:

cheaper same y a less-preferred

version
Example:

cheaper higher y a requirement for

graceful degradation.

Example:

cheaper lower y a less-preferred

version
Why not request

dearer higher ? this as a
first alternative?
Cannot be

dearer same n guaranteed if earlier
alternative rejected
Cannot be

dearer lower n guaranteed if earlier
alternative rejected
Why not request

same higher ? this as a
first alternative?

Cannot be

same lower n guaranteed if earlier

alternative rejected

Table 3.2: Possible Alternative Requests

nonsensical e. g. cases where later alternatives cannot be guaranteed, after an earlier

alternative is rejected.

3.6.2 Fulfilling Application Requirements

Alternative computations may capture some of the requirements of graceful
degradation, or multiple versions. Other requirements for these may be programmed by the

61

applications programmer. For example, when a low-utility task is aborted by a higher-utility

request, the application is informed of the rescinded guarantee, and the programmer may
design the application to request a cheaper task in place of the aborted task. This may allow
graceful degradation under system stress. Similarly, in the case of multiple versions
programming, the application may request a cheaper version in place of an aborted
preferred version.

Subsequences of imprecise computations can also be schedulability tested by

presenting them as alternative computations. In other words the OR construct can be used
with the first alternative being the maximum sequence of iterations of the imprecise

computation, the second (less-preferred) alternative being a shorter subsequence, and so
on. Alternatively, if the Imprecise Computation can run to a large number of iterations, and
if the iterations are of low utility, then a low utility request for a budget could be made.
This will require less schedulability testing than using the OR construct, but the iterations

of the Imprecise Computations will be abortable. Note that, should the Imprecise
Computation use up its budget before its deadline has expired, then there is no reason why
it should not make a further request for a budget.

Sieve Functions can be defined as a sequence of alternating bounded and

unbounded computations. These may be implemented by first using an AND request for the
bounded, minimum components of the sieve function. If this request is accepted, then the

sieve function is started, and a budget for each unbounded component is obtained by

making a low utility request at the point where each of the unbounded components is

released in the sequence of computations.
Admittedly, Al applications can require complex task hierarchies and the simple

linear form of precedence assumed in this model cannot capture such complex
dependencies. In these circumstances, tool support may be used to reduce the task

hierarchy to the constrained model used here.

3.7 SUMMARY OF THE CONSTRAINED MODEL

A complex computational model for optional computations would incorporate

value functions or utilities which depend upon many parameters. In addition it would model

complex interdependencies between tasks which may include a task hierarchy which

captures inter-task communications, precedence, and the sharing of resources and subtasks.
There exists considerable evidence that, were such a complex model to be

implemented, the run-time overheads incurred would drastically reduce the throughput of

optional computations. This leads to the development of a constrained computational

model which defines 5 task types, ranging from mandatory tasks to background tasks. In

62

between these extremes lie 3 types of optional computations which require to be

guaranteed upon arrival. Optional computations in the model, which are of lower utility,
can be more easily aborted. All optional computations which arrive at the processor are
allocated a single utility according to which task type they belong to. However, no extra
overhead is incurred if the task type (and utility) of an optional computation is changed
later, during its execution. The constrained model allows only simple linear precedence
between tasks. The model can support some useful programming language constructs
which would, for example, incorporate requests for multiple optional computations.

The differences in utility levels between the 3 intermediate types of optional
computation may be specified by the use of two system-wide ratios. The values of these

ratios crucially determines whether it is cost-effective to guarantee each type of optional
computation.

3.8 THE WORK WHICH FOLLOWS

The constrained model must now be shown to be viable by the development of
algorithms, for run-time support, which are efficient enough to run on the same processor

as applications tasks. Chapters 4 to 7 which follow, take a bottom-up approach to this
development. Chapters 4 and 5 first establish the viability, and then attempt to enhance, a

range of on-line schedulability tests for optional computations. Chapter 6 investigates

allocation methods for optional computations in a multiprocessor cluster. Chapter 7

compares admission policies for optional computations, which have passed their

schedulability tests. Finally, Chapter 8 implements the computational model in Ada, and

provides Ada code which can fulfil many of the application requirements discussed above.

63

CHAPTER 4

VIABILITY OF ON-LINE ACCEPTANCE TESTING

4.1 INTRODUCTION

Chapter 3 concluded that a constrained computational model for optional
computations can satisfy many of the requirements for future real-time systems, but that
such a model requires efficient algorithms for run-time support. This chapter develops a
range of algorithms for on-line or dynamic acceptance testing of optional computations.
The acceptance tests are developed by adapting some of Audsley's static schedulability
tests [2] which are reviewed in Section 2.7.

It is assumed that, as with the computational model of Chapter 3, each processor
has a resident set of mandatory computations which have been guaranteed off-line.
Mandatory computations may be periodic or aperiodic (e. g. interrupts). For the purposes of
off-line schedulability testing the aperiodic mandatory computations must be constrained to
be sporadic tasks i. e. they have a minimum interarrival time or, in other words, a maximum

arrival rate. Worst-case off-line analysis assumes that sporadic mandatory computations

continually arrive with a separation of their minimum interarrival time, and that they can
therefore be considered as periodic tasks. It follows that, in this analysis, all of the

mandatory computations which relate to the processor are considered as periodic tasks.
Optional computations are also considered as sporadic tasks. This allows the

overheads for acceptance testing, which occur on the same processor as application tasks,

to be upper bound and themselves guaranteed. In the following analysis, optional

computations are modelled as sporadic tasks which arrive, in the worst-case, at their

maximum arrival rate. Each sporadic task arrives with a specified WCET and deadline.

4.2 THE STATIC ALGORITHMS

The aim of dynamic acceptance testing is to guarantee the relative deadline, D, of

each sporadic task which arrives with a known WCET, C, at an arbitrary arrival time which
is constrained to be separated from other sporadic arrivals by at least the minimum
interarrival time. When a sporadic task arrives at the processor, it is inserted in its correct

position, in a deadline monotonically ordered task list, which includes resident periodic

tasks plus those sporadic tasks which have previously been accepted, and have not yet

64

completed. The sporadic arrival is then schedulability tested in order to determine whether
it can be guaranteed or must be rejected. Note that the acceptance test must also include
schedulability tests for all of the tasks which fall below the sporadic task in the task list, in
order to ensure that each of these can still meet its deadline.

Two static algorithms, due to Audsley [2], are now chosen as the first candidates
for adaptation. These are (i) Test 1, a sufficient but not necessary test, which has O(N2)
complexity and should incur the smallest overheads, and (ii) a sufficient and necessary test,
which has pseudo-polynomial complexity, and should incur the greatest overheads. (Both

of these static algorithms are described in Section 2.7) From now on Test I will be know

as O(N2), and the sufficient and necessary test will referred to as PP.
O(N2) requires a determination of the interference (1) for the duration of the

deadline of whichever task is being schedulability tested (known as the test task, i). In

order to determine I, the list of higher priority tasks is scanned to provide the following

sum which is the total interference from all higher priority tasks j:

- 1(FD1=Ti-1 Cj) (4.1)

In contrast, PP calculates the exact worst-case response time of the test task, by

calculating the interference from higher priority tasks within a time window, wl. This

window is increased at each iteration of the algorithm. Its initial value is the WCET of the
test task, and at each iteration the following sum over all higher priority tasks j is

calculated:

jj(rwi =Tj1 Cj) (4.2)

The value of wi at the next iteration is set to the value of (4.2) from the last iteration, and

so on, until wl converges at a maximum value, which is the response time of the test task.
The adaptation of these two static algorithms for dynamic use, is now described

briefly. A more rigorous explanation of the necessary changes may be seen in Appendix A.

4.3 ADAPTING THE STATIC ALGORITHMS

Both O(N2) and PP can be adapted for dynamic schedulability testing by similar

changes to the above equations. Both adapted algorithms avail themselves of the run-time
data which is updated by the scheduler for all tasks: R1, the current residual execution time

of each task, j, and NRj, the next release time of each task j. When a sporadic task arrives,

65

the schedulability tester uses the NRW for each task which has a higher priority than the test
task, in order to calculate the offset, Off, of the task's next release (Oý = NR1 - current
time). The changes required in expressions (4.1) and (4.2) above allow for the following
dynamic properties:

(i) A higher priority task cannot interfere with the test task until that higher

priority task has been released.
(ii) If the next release of the higher priority task is after the expiry of the

interference interval under consideration, we must ensure zero, not a
negative, interference value is produced.

(iii) Any residual execution of an interfering task must be added to that task's
total interference with the test task.

In line with the above, expressions (4.1) and (4.2) above are adapted to:

(i} Reduce by the offset Oj, the interval (DI and wi respectively) considered for
interference by a higher priority task j.

(ii) Ensure that the result (DI - Oj and wi - Oj respectively) is not negative
(iii) Add Rj.

Hence (4.1) becomes :

Y, j(r(Di - O1-Tj 10 Cj + Rj) (4.3)

where rXlo (i) returns 0 if X <_ 0
(ii) returns [X1 if X>0

and (4.2) becomes :

Y, j(r(wi-Oj)-Tj10Cj+Rj) (4.4)

Apart from this, the algorithms proceed as in the static case, except that there is no

need to schedulability test the tasks which are above the sporadic task in priority ordering.
When testing the sporadic task using the above equations, (4.3) will use the sporadic task's
deadline for Dl, and (4.4) will initialise wi to the sporadic task's WCET.

Because the sporadic task is a one-off, each lower task need only be tested against
its next deadline. If the lower test task is active (i. e. non-zero residual execution time),

then (4.3) will use the remainder of the task's relative deadline for Dl, and (4.4) will
initialise wj to the residual execution time (RI) of the test task. (Note that in the case of

66

using PP for dynamic testing, the remaining interference intervals do not necessarily
increase monotonically down the task list, and therefore a final ith window value cannot be
used to initialise the window for the i+ Ith test task.)

If the lower test task is inactive (i. e. completed its current execution and awaiting
its next release) then we must check against the deadline of the task's next activation.
Strictly, we should calculate interference in an interval starting at the test task's next
release. However, to calculate interferences in a future interval of time would incur

unacceptable overheads. These can be avoided by a sufficient test (see Appendix A) which
supposes that the next release of the test task is at the current time i. e. the deadline has

effectively been increased by the quantity: next release time - current time.

4.4 VARIATIONS ON THE ALGORITHMS

Both static and dynamic O(N2) and PP algorithms trade off complexity with
accuracy. In the dynamic case O(N2) will be pessimistic but quicker. Therefore, if the

schedulability testing is on the same processor as the resident periodic task set, then O(N2)

will allow more time for sporadic task processing, but may reject some sporadic tasks

which are schedulable. By contrast, the PP test takes longer, on average, to arrive at an

optimal result. On the same processor, PP would therefore leave less time for sporadic
tasks, but never pessimistically reject a schedulable sporadic task.

A more efficient algorithm may be to combine O(N2) and PP in a hybrid algorithm.
All schedulability testing is performed by O(N2) until a sporadic task is found to be

unschedulable. Then PP is used to make a finer judgement on schedulability. Such a hybrid

algorithm should be both optimal, and faster on average, than PP.

Another variation would be to reverse the order of schedulability testing by

schedulability testing the lowest priority task first and then working up the task list until the

sporadic task itself is schedulability tested. For a schedulable sporadic task this would take

the same time as the top-down order used previously. However it may be that

unschedulable sporadic tasks are found out earlier. This will depend on where in the task

list the unschedulable tasks are likely to occur. At one extreme (justifying top-down) only

the sporadic task may test as unschedulable, while lower tasks pass their tests. At the other

extreme (justifying bottom-up), all tasks (including the sporadic task) may be schedulable

except the lowest in the list. In other words, if the unschedulable tasks are more likely to be

found nearer the bottom of the task list, then bottom-up testing will be faster, on average.

67

The above discussion indicates that five dynamic schedulability tests should be
investigated:

(i) (Pure) O(N2)

(ii) (Pure) PP

(iii) Hybrid (O(N2)/PP)

(iv) Bottom-up PP
(v) Bottom-up Hybrid.

4.5 SIMULATION STUDIES

According to the above discussion, further investigation is required into the

statistical behaviour of five adapted algorithms. The most cost-effective way of doing this

was to build a simulation of a scheduler and schedulability tester which would input a large

variety of periodic task sets and sporadic requests. It was decided that the schedulability
testing part of the simulation would run in real time in order to measure exactly the

overheads incurred by each algorithm. The scheduler itself would run as a simulation.
However, in order to establish the scheduling overheads (context switching, etc.) which

would be used in the simulation, some initial real-time scheduling was carried out.

Measurements were made by timing the scheduling overheads of concurrent programs

written in Parallel C, and running on the target hardware, a T800 transputer.

4.5.1 Measuring the Scheduling Overheads

Fixed-priority pre-emptive scheduling was used in the concurrent programs which

measured scheduling overheads, as well as in the subsequent simulations. However, at the

fine grain level, it was decided that scheduler slots should be implemented by co-operative,

rather than interrupt-driven scheduling. This allowed more flexibility in the implementation,

and avoided the overheads of descheduling the currently executing task at the start of each

scheduler slot.
A small granularity (IOms) was chosen for the scheduler slot size in order to

minimise the delay in testing sporadic arrivals, and also to minimise release jitter. (An even

smaller slot size might have unreasonably increased the co-operative scheduling overhead.)

It was decided to allow only one sporadic arrival to be schedulability tested at the

beginning of every tenth slot, in order to permit a smaller upper bound for the overheads of

schedulability testing.

68

The co-operative scheduling overheads which were measured were (i) the minimum
co-operative scheduling overhead (0.15ms) and (ii) the extra overhead per task release
(0.06ms). Following this, five versions of the simulation were built, one for each of the
adapted algorithms listed in Section 4.4.

4.5.2 The Simulations

The average co-operative scheduling overheads which had been measured were
now used in the simulations. As explained above, the scheduling itself ran in simulation
time, but the algorithms for schedulability testing were measured in real-time so that
comparisons in their performance could be made. The following is an outline of the method
of scheduling and schedulability testing which occurred in each simulation.

At the start of every tenth slot, each simulation checks for the arrival of a sporadic
task and, if one is present, tests its schedulability in real time. If the sporadic task is

schedulable, it is inserted into the task list (dispatch queue) in deadline monotonic order. At

every slot, the simulation releases any periodic tasks whose reactivations are due, updates
next release times and residual execution times, and finally dispatches the topmost runnable
task. When a computation completes in mid-slot, each simulation allocates the remainder of
the slot to the next topmost runnable task. An indefinite number of sporadic tasks may

accumulate in the task list until each completes and is then deleted. The simulations also

verify that every guaranteed task actually completes within its deadline.

4.5.3 Task Generators

A task-set generator was constructed to produce large numbers of schedulable

sets of periodic tasks. All tasks were independent in order to simplify analysis. The co-

operative scheduler was modelled as the highest priority periodic task with a period of
lOms. The schedulability test was modelled separately as the second highest periodic task

with a period of 100ms which was equal to the inverse of the maximum sporadic arrival

rate. (As indicated earlier, the adoption of a maximum sporadic arrival rate is a pre-

requisite for finding an upper bound on schedulability testing.) The generator produced

random task sets with task periods, deadlines and WCETs all uniformly distributed.

Different numbers of periodic tasks and different periodic processor utilisations were

specified.
Sporadic task generators were constructed to produce random sporadic arrival

times, deadlines, and WCETs. In some simulation runs, these parameters were uniformly
distributed, whilst in other runs the arrival rates were Poisson distributed, with deadlines

69

and computation times normally distributed. The generator allowed the minimum
interarrival period for sporadic tasks to be specified.

4.5.4 Measuring Performance

The first aim of the simulation study was to compare the performance of the five
adapted algorithms. The best performance index seemed to be the guarantee ratio as used
in Spring [56]. This is a ratio obtained over a complete simulation run :

number of sporadics guaranteed by the algorithm = total number of sporadics sent

Before guarantee ratios can be measured by a simulation, an upper bound for the time
taken to run the schedulability test must be estimated. This will be the WCET for the high

priority periodic task which models schedulability testing. The task set generator uses this
value when performing its own (static) schedulability test of the task sets which it

generates. There is obviously a trade-off between the pessimism of this value and the time
left for other tasks. Some working value of this bound/computation time must be used to

generate the first schedulable task sets, which can then be used in a run to yield a better

value for the bound. In practice, the approximate maximum values from a feasibility study
were used to generate the first task sets. Simulation runs then allowed these values to be

refined.
It was found that schedulability testing algorithms based on PP are especially

difficult to upper bound. Obviously, a particular maximum value is peculiar to a particular
set of test data, and the question arises as to which maximum to use in practice. For

example is it overly pessimistic to use the highest value which has ever been obtained for a
particular algorithm? This problem will be addressed later (see Section 4.7). Meanwhile,

the general practice adopted is to use the maximum value for the particular set of test data

used.

4.6 COMPARING THE ADAPTED ALGORITHMS

There are a number of parameters which affect the performance of all of the

adapted algorithms. The most obvious is the number of periodic tasks in the periodic task

set (i. e. N above). Related to this is the ratio:

average periodic task deadline = average sporadic deadline (henceforth: PD/SD)

70

which determines the average position in the task list in which a sporadic task will be
placed. All tasks below the sporadic task must be schedulability tested, so this ratio is an
important factor in the actual time taken by the algorithms. Other parameters are the total
periodic processor utilisation, and the intrinsic difficulty of scheduling a particular set of
periodic tasks. This latter parameter is referred to by Lehoczky [27]. Task sets whose
periods are not harmonics have a relatively low breakdown utilisation i. e. their uneven
occurrence of slack time means that there are intervals of zero slack time during which no
sporadic tasks can be scheduled.

Further parameters which may affect performance are sporadic arrival rates, and the
average computation time per sporadic task. For example, the average sporadic
computation time may affect the number of iterations required to test individual tasks in the
PP algorithm. The approach taken in the following investigations is to keep all parameters
constant except one, and to measure the performance of the five algorithms whilst varying
the single chosen parameter.

4.6.1 Varying the Periodic Task Characteristics

Table 4.1, Graph 4.1 and Table 4.2, all below, show the comparative performance
of the five algorithms and two background scheduling methods, when characteristics of the

periodic task set only are varied. The performances of the five algorithms are measured by

Guarantee Ratio (GR) which has been defined in Section 4.5.4. The background scheduling

methods accept all sporadic tasks and execute them at the lowest priority in FIFO order.
Their performance can be measured by a Success Ratio (SR) i. e. the proportion of all the

sporadic tasks which are found to meet their deadlines. It should be noted that this
background scheduling does not schedulability test sporadic tasks and therefore does not

guarantee them. In that sense it is not strictly comparable with other five algorithms and

serves only as a benchmark.
All simulations results shown in these tables and graph use the same set of 420

sporadic tasks whose arrival rates are Poisson distributed (p. = 2.8, k= 10) over the total

simulation time of 100,000 ms. The sporadic deadlines and computation times are normally

distributed.

Changing the Number of Periodic Tasks

Table 4.1 shows the maximum schedulability test times (in ms) and guarantee

ratios obtained from each of the schedulability test algorithms as the number of periodic
tasks (N) in the task set is increased. The PD/SD ratio and the number of tasks below the

sporadic task position also increases with the number N. The table also shows the success

71

Ö 0 Cý N It VI)
a It 00 kf)

Iý N V] N '. O '. O kn In
O O O O

'O

N 1- 00 Cý kr)
N 00

O O
O O O o O

Ö
w 00
[Fý `O Vl ýO N N

Z
_/ O O O O O

0 m
, M I- 'O O O

M N O 00

O N d Cý

C14 0 O t-- 00 O
Vr 110

a ö ö ö ö C

ý° ° S oo C)

M 00 C) " oL o N ýD

N Oý '. o
N

110 I'D
N °

a s O O O O °

04

° O ýS T: r ° o
M N O Or C co

ý C4 'o

In Q4
P4 m -4 O\ kr) N

O O O O O

O O O öö öö
00 N N
M 01 -0 - -4

N

o N N O I'D I'D
w =

r N N 4 00 t--

 p N IO v1
i; O O O Ö Ö

V1
O O

00
Ö C)

Ö0
C)
Ö

M

M
00

O- OO

0 O M Iý

A o o 00 N M CID N (=> --ý Oý
A M ýO 00 O M

a
ýj O O O - -

L, CJ
V G.) . .i

O .ý - - N M

4 00,

ý4
Cl)
cd

u

0

4-ý
O

v

a)

bA

bA

Cd
U

4)

U

cd

N

bA

ß.

0
U

c)
CIS

F-

N
N

ratios (SR) obtained from two versions of background scheduling of the sporadic tasks in
FIFO order. (The difference between these versions is explained in the paragraph below.)

Each result in Table 4.1 is based on the output of 10 simulation runs each with 10
different sets of random periodic tasks. Maximum values are the maximum from all 10 runs
and guarantee ratios are the average for 10 runs. The periodic processor utilisation is

always 85% which includes scheduling overheads for the periodic tasks, but does not
include any utilisation by the periodic task which models schedulability testing.

As explained earlier, the maximum schedulability test time (upper bound) must first
be established before a simulation can produce a meaningful guarantee ratio. For high N the

maximum schedulability test time can be greater than the scheduler slot size (l Oms). It was
decided not to allow the schedulability test to overrun the slot size because this would

violate the scheduler's upper bound on release jitter. In any case, more than 10ms

constitutes an unacceptably high overhead for worst-case schedulability testing. Therefore,

a timeout was placed in the scheduler-tester which thus rejects sporadic requests taking

more than lOms to test. Obviously, this impacts on the guarantee ratios shown in Table 4.1,

but it is only significant when the maximum value (shown in brackets) is considerably more

than the slot size of l Oms.

Two versions of background scheduling of the sporadic tasks in FIFO order are
included at the end of the table. It should be emphasised that neither version guarantees the

sporadic tasks in advance. Instead, they accept all the sporadic tasks without the overhead

of testing their schedulability. Hence the performance measure is better described as a

success ratio which is the proportion of the sporadics which turn out to meet their

deadlines. The difference between the two versions of background scheduling is that

Background 1 is strictly FIFO. It continues to queue, and then execute, all sporadics, even

when their deadlines have expired. Background 2, however, deletes sporadics when their

deadlines are found to have expired.
Table 4.1 shows that bottom-up hybrid consistently performs best. Clearly the

guarantee ratios of the PP based algorithms are badly affected by the l Oms timeout when N

= 20 and N= 30. This explains why O(N2) produces the second best guarantee ratio when
N= 30.

Variations within the guarantee ratios obtained by O(N2) may be explained as

follows. The deterioration in guarantee ratio between N= 20 and N= 30 is as expected

due to the increased number of schedulability tests needed for a longer task list. The small

guarantee ratio for N=5 can be interpreted as the effect of the pessimism of the

algorithm. For N=5, all the periodic computation is above the sporadic task in priority

order. Therefore the pessimism of O(N2), due to the full extra hits of higher priority tasks,

is likely to be greater. The increase in the total laxity of the task set as N increases may also

account for a greater guarantee ratio when N= 30 than N=5. The shallow trough in

73

guarantee ratio at N= 15 may be due to statistical variations: it was observed that
guarantee ratios for O(N2) had a particularly wide standard deviation over the 10 task sets
(approximately 10% of guarantee ratio).

Table 4.1 also shows that the success ratios for the background methods. The low
success ratios for Background 1 show the effect of continuing to queue and execute
sporadic tasks even after their deadlines have expired. Both background versions show a
deterioration in success ratio as the number of periodic tasks in the task list increase. This
can be interpreted as the effect of the sporadic tasks occupying the lowest position in the
task list, as the periodic task list increases in length. For example, when N=5, sporadic
tasks with an average deadline of 550 ms are being queued beneath periodic tasks with a
maximum deadline of 500 ms. When N= 30, however, the same sporadic tasks queue
below periodic tasks with a maximum deadline of 3000 ms. It is clear that such a long
periodic task list displaces the sporadic tasks further downward from their static deadline
monotonic position in the task list.

The strictly FIFO Background 1 method gives such low success ratios, that it was
decided to omit it from the rest of the simulation studies. From now on only Background 2
is included in the results and it is simply referred to as 'Background'.

Increasing Periodic Task Utilisation

Graph 4.1 shows the comparative performance of the five algorithms and
background scheduling when the periodic task utilisation is varied from 65% up to 85%.

Lower utilisations were not used because they cause the performance of all of the

algorithms to converge at a guarantee ratio of 1.0. In this case N and PD/SD were kept

constant (N = 10 and PD/SD as near 0.6 as random task set generation would allow). The

set of sporadic tasks were the same as in Table 4.1, and 10 sets of periodic tasks were

randomly generated for each processor utilisation in the graph.
As for Table 4.1, the schedulability testing was not included in the total periodic

task utilisations. The task sets generated were all statically schedulability tested using a

worst-case figure of 1Oms for the computation time of the periodic task which models the
dynamic schedulability test. As before, a less pessimistic maximum schedulability test time

was found, for each set of test data, by repeating each simulation and revising the

maximum schedulability test time. Each guarantee ratio and success ratio produced is an

average over 10 periodic task sets.
Graph 4.1 also shows that the success ratio of background exceeds the guarantee

ratio of O(N2) at high periodic task utilisations. This can be interpreted as the effect of the

pessimism of O(N2) increasing as the interferences from higher priority periodic tasks grow
larger in size (though not in number).

74

1

0.95

G
u 0.9

a
r
a 0.85

n
t
e 0.8
e

R 0.75
a
t

0.7
0

0.65

0.6

Bottom-up Hybrid

Graph 4.1: Comparing performance with increasing periodic utilisation.

Using a Variety of Periodic Task Sets

Table 4.2 compares the performance of the algorithms across a variety of periodic
task sets. Periodic task set (1) is adapted from an avionics case study developed by Locke

et al. [36]. It consists of 15 periodic tasks with a wide range of periods from 250ms to

10000ms. Periodic task set (2) has a set of periodic tasks with a low breakdown utilisation
(80%), and task set (3) has a high breakdown utilisation (100%). Task sets (2) and (3)

evaluate the performance of the algorithms with task sets which are intrinsically difficult to

schedule (2), and easy to schedule (3).

All three task sets have a periodic utilisation of 80% and are sent the same sporadic

tasks as previously. Task set (1) has 10 tasks below the average sporadic position in the

task list while task set (2) has 3 tasks below and (3) has 2 tasks below. It is worth noting

that all the periodic tasks for Table 4.2 are rate monotonic (i. e. deadline = period) and have

relatively large amounts of slack time associated with them.

Clearly Bottom-up Hybrid consistently outperforms the other algorithms across the

variety of periodic task sets. Once again the maximum schedulability test time was not

allowed to exceed 10ms which badly affects the guarantee ratios for PP algorithms in the

first row of the Table 4.2.

75

65 70 75 80 85

Periodic Utilisation %

Sched Test Bottom-up Hybrid Bottom-up PP O(N2) Back-
A1 orithm: Hybrid PP ground

Max GR Max GR Max GR Max GR Max GR SR

ms ms ms ms) ms
1. Avionics (>) (>)
Case Study 8.80 0.798 9.50 0.786 10.00 0.414 10.00 0.369 2.76 0.762 0.667

Task Set

2. Low
Breakdown 3.53 0.824 3.80 0.824 3.41 0.824 3.80 0.824 0.53 0.783 0.652
Utilisation

Task Set

3. High
Breakdown 3.53 0.945 3.80 0.945 3.41 0.943 3.80 0.941 0.53 0.926 0.498

Utilisation

Task Set

Table 4.2: Comparing performances over a variety of periodic tasks sets.

The high guarantee ratios obtained for task sets (2) and (3) are due to the large

amount of slack associated with these tasks. In addition it is noticeable that O(N2)

performs better than previously. Again this may be due to greater slack, which means that

the pessimism of O(N2) will count less against it, while O(N2) retains the benefit of a small

upper bound on schedulability testing. The small number of tasks in sets (2) and (3),

together with the large amounts of slack, accounts for the closeness of the guarantee ratios

across all schedulability test algorithms.
It is interesting to note that Background runs against the trend by performing better

with low breakdown utilisation than with high. This can be interpreted as the effect, at low

breakdown utilisation, of concentrated intervals of high slack and intervals of zero slack.
This benefits background scheduling because this algorithm is penalised less for its

indiscriminate processing of sporadic tasks in FIFO order. During high slack, less time is

wasted processing sporadic tasks which will eventually fail to meet their deadlines. During

zero slack, none of the algorithms can perform sporadic processing in any case. With high

breakdown utilisation, and a more even distribution of slack over time, Background wastes

more time executing sporadic tasks which eventually fail to meet their deadlines.

76

4.6.2 Varying Sporadic Task Characteristics

The above results compare the performance of the algorithms while periodic task
set characteristics are changed. Now the results of varying sporadic task characteristics are
presented. Graphs 4.2 and 4.3 show the effect of varying (i) the sporadic arrival rate and
(ii) the average sporadic computation requirement. All parameters relating to the periodic
task sets remain constant. All results were obtained using the average guarantee ratio from
10 sets of 10 periodic tasks all of which were schedulable and randomly generated to give
85% periodic task utilisation.

Average sporadic arrival rates and average computation times were randomly
generated according to a uniform distribution. Realistic arrival rates may be more
accurately modelled by a Poisson distribution, however the objective here was to
differentiate the performance of the algorithms under different arrival rates. Graph 4.2 uses
sporadic tasks with a fixed average computational requirement of 25ms. Graph 4.3 uses a
fixed average arrival rate of 0.004 sporadics per ms.

1

0.95

G
0.9

u
a
r
a 0.85

n
t
e 0.8

e

R 0.75
a
t
i 0.7
0

0.65

0.6 }-
0.0004

Graph 4.2: Comparing performances over a range of sporadic arrival rates.

d

As before there is the problem of setting an upper bound on schedulability testing.

Here, a different approach is taken. Instead of assuming that the best guarantee ratio occurs

when the upper bound has its maximum value, a series of simulation runs were carried out

in which the upper bound was reduced in stages and the guarantee ratios measured. The

guarantee ratio for each algorithm was seen to peak at a value less than the maximum

77

0.002 0.004 0.006 0.008 0.01

Sporadic Arrival Rate (sporadics per ms)

schedulability test value. This was therefore the optimum trade-off between allowing time
for schedulability testing and leaving more time for scheduled tasks to run. The peak occurs
at what might be called the optimum upper bound or optimum timeout. The work involved
in establishing this bound for each arrival rate, for each schedulability testing algorithm,
was prohibitive, so the results in Graph 4.2 use the optimum upper bound established for

the maximum arrival rate of 0.01 sporadic per ms. This bound was also used for Graph

4.3. The bounds for each algorithm are presented in Table 4.3:

Algorithm: Bottom-up

Hybrid

Hybrid Bottom-up

PP

PP O(N2)

Bound(ms) 5.5 6.0 7.0 7.5 1.5

Table 4.3: Optimum upper bounds used for the schedulability test algorithms.

1

G 0.95
U

a 0.9
r
a
n

0.85

t

e 0.8
e

0.75
R

a 0.7

0 0.65

0.6

Bottom-up Hybrid

Average Sporadic Computation Time (ms)

Graph 4.3: Comparing performances over a range of average sporadic computation times.

The use of the above bounds for low sporadic loads may be pessimistic, but this

should not affect the comparison of the schedulability test algorithms. (An investigation

into parameters which determine the optimum bound follows in Section 4.7.) Again it is

clear that Bottom-up Hybrid consistently outperforms all other algorithms considered.

78

2.5 12.5 25 37.5 50

Furthermore, with some minor exceptions, the results so far are consistent with the
following list of algorithms in decreasing order of performance:

Bottom-up Hybrid

Hybrid
Bottom-up PP

PP

Background scheduling is omitted because it does not guarantee sporadic deadlines. The
question of where O(N2) comes in the ordering is unclear. Tables 4.1 and 4.2 show that
O(N2) can outperform the pure PP algorithms, and even the hybrid algorithm, when N is

sufficiently large. However, this may be due to the PP and hybrid algorithms operating
under the handicap of al Oms timeout. This seems especially likely to be the case for hybrid

algorithms because they are based on O(N2). At the other extreme, O(N2) gives
consistently poorest performance in Graphs 4.2 and 4.3. In summary, none of the results
shows O(N2) outperforming the bottom-up hybrid.

4.7 PARAMETERS OF THE OPTIMUM BOUND

The above investigations show that the optimum value of the upper bound for

each algorithm may depend upon a number of parameters: sporadic arrival rate, average
sporadic computation time, PD/SD, the number of periodic tasks (N), and the periodic task

utilisation. The ratio PD/SD is defined above and takes account of both the average
periodic task deadline and the average sporadic deadline. Together with N, this ratio
determines the average number of tasks below the sporadic task which must be

schedulability tested. Note that the average periodic computation time is not included as a

separate parameter because it is taken into account by the periodic task utilisation. The

investigations which follow are an attempt to determine how sensitive the optimum upper
bound is to each of these parameters. In other words is:

Optimum Upper Bound =f (ave sporadic arrival rate,
ave sporadic computation time,
PD/SD,

N,

periodic utilisation) ?

79

Investigation of all the schedulability test algorithms would be too time-consuming, so it
was decided to select the algorithm with the best overall performance i. e. Bottom-up
Hybrid. As before, the approach was to keep all parameters constant, except the one to be
varied. The constant values used were:

average sporadic arrival rate (of uniformly distributed times) = 0.004 sporadics/ms
average sporadic computation time (of uniformly distributed values) = 25ms
PD/SD = 0.6
N= 10

periodic utilisation = 85%

A uniform distribution of sporadic task arrival times was chosen in order to provide a
constant value and make clearer the effect of varying one other parameter.

Table 4.4 shows the complete set of guarantee ratios obtained when investigating
the effect of average sporadic arrival rate on optimum upper bound. All results are
guarantee ratios and the optimum upper bound values are emphasised in bold. All

guarantee ratios obtained were averages from 10 sets of 10 periodic tasks. Graph 4.4 is
derived from Table 4.4. Noteworthy, is the relatively large increase in bound as the

sporadic arrival rate reaches its maximum permissible 0.01 sporadics/ms. This shows that,

as sporadic tasks accumulate in a lengthening task list, it rapidly becomes necessary to

spend more time schedulability testing, in order to catch those incoming sporadic tasks

which are schedulable.
It should be noted in Table 4.4 that the sensitivity of guarantee ratio to the value of

the bound is higher at low sporadic arrival rates than at high arrival rates. Table 4.4 also

shows that the variation of guarantee ratio with upper bound is a Poisson-like curve. As

this curve is compressed by lower bound values, so its shape is emphasised. In other words

as the peaks occur at lower bound values, so they become sharper. This has implications

for the choice of best optimum bound across a range of sporadic arrival rates.
The increase in sensitivity at low peak values was also observed in the data used for

Graph 4.5. This graph shows a general decrease in optimum upper bound as the average

sporadic computation requirement increases. This can be interpreted as follows: as the

average computational requirement of sporadics increases, it becomes less beneficial to

spend a long time schedulability testing sporadic tasks which are now more likely to prove

unschedulable due to their large computation times. The exceptional result for an average

sporadic computation time of 2.5ms can be explained by the guarantee ratio value
'saturating'. The guarantee ratio values for this average sporadic computation time reach a

plateau of 1.0 at 3.5ms upper bound and above. In other words all the incoming sporadic

80

Upper

Bound

(Timeout

in ms)

Sporadic Arrival Rate

0.0004 0.002 0.004 0.006 0.008 0.01

(sporadics per ms)
2.0 0.968 0.933

2.5 0.988 0.962 0.912 0.820 0.704

3.0 0.994 0.968 0.920 0.830 0.714 0.626

3.5 0.993 0.968 0.921 0.832 0.717 0.630

4.0 0.992 0.965 0.919 0.832 0.718 0.633

4.5 0.989 0.962 0.915 0.829 0.717 0.634

5.0 0.985 0.957 0.909 0.825 0.716 0.635

5.5 0.981 0.953 0.903 0.820 0.713 0.636

6.0 0.635

6.5 0.635

7.0 0.634

7.5 0.632

Table 4.4: The effect of sporadic arrival rate on optimum upper bound.

5.5

5

4.5
E

ö4
m

3.5
E

d

03

2.5

2

0.0004 0.002 0.004 0.006 0.008 0.01

Sporadic Arrival Rate (sporadics per ms)

Graph 4.4: Variation in optimum upper bound with sporadic arrival rate.

81

4

3.8

3.6

N 3.4
E

3.2
0 M
t
c_

3

2.8
E
ö 2.6

2.4

2.2

2

2.5

Graph 4.5: Variation in optimum upper bound with average sporadic computation time.

10

9

8

7

E

0 C2
5

a

E
0 E

03

2

1

0 +-
5(0.340) 30(l. 393)

Graph 4.6: Variation in optimum upper bound with the number of periodic tasks.

82

12.5 25 37.5 50

Average Sporadic Computation Time (ms)

10 (0.627) 15 (0.808) 20 (1.017)

Number of Periodic Tasks (Ratio PD: SD)

3.5

3

2.5
E

C2 m

1.5
E
E
CL CD 1

0.5

0

Periodic Utilisation (%)

Graph 4.7: Variation in optimum upper bound with periodic utilisation.

tasks are being found schedulable even within a tight upper bound of 3.5ms. The algorithm
is no longer being stressed, and its upper bound drops.

Graph 4.6 shows the steady increase in the optimum upper bound as N and PD/SD
increase. This reflects the need to spend more time on schedulability testing as the number

of tasks below the average sporadic task position increases. Unless this is done, schedulable

sporadics will be rejected due to a premature timeout.
Graph 4.7 shows the rise in optimum upper bound as periodic task utilisation rises.

Obviously, more time is needed in schedulability testing sporadic tasks when the

computational demands of the periodic tasks are higher. Incidentally, the results from

which Graph 4.7 is derived, show the expected fall in best guarantee ratio obtained, for

each increase in periodic task utilisation.
From examination of the above graphs it appears that the optimum upper bound is

most sensitive to changes in N and PD/SD ratio. This is not surprising since it is these

parameters which determine the average number of periodic tasks below the sporadic task

position in the task list. This is obviously a major factor in the time taken by the

schedulability test algorithm. Periodic task utilisation has a smaller effect on the optimum
bound, and sporadic arrival rates, and computation times, have even less effect. Therefore,

in a practical choice of best optimum upper bound, Graph 4.6 is the most important. This

83

65 70 75 80 85

suggests an optimum bound of 3.5ms for the final investigation below, which uses PD/SD
ratios of around 0.6.

4.8 DIFFERENT PROPORTIONS OF SPORADIC AND PERIODIC UTILISATION

Table 4.5 records an investigation into the effect on total processor utilisation, of
varying the mix of periodic and sporadic processor utilisation. The constant parameter
values were the same as those used in Section 4.7. The table shows a periodic utilisation of
85% and one of 75%. Added to each are different numbers of sporadic tasks to bring the
total possible utilisations to 90,95 and 100%.

Each guarantee ratio obtained is an average result from 10 sets of 10 periodic tasks,

each set of the stated periodic task utilisation. The PD/SD ratio was again 0.6. All sporadic
arrival times were generated from a uniform distribution, and their average computation
time was again 25ms. The same optimum upper bound was used in all cases (3.5ms as
discussed above). Table 4.5 shows the actual total utilisation obtained which was
calculated from the number of sporadic tasks guaranteed, their average computation times,

plus the periodic utilisation. Also to be added, is an estimate of the utilisation used on
schedulability testing. This was based on the number of sporadic requests made and
measurements of the average schedulability test time for Bottom-up Hybrid. This estimate
came to 0.48% utilisation per 400 sporadics.

85% Periodic Utilisation 75% Periodic Utilisation
Maximum

Possible Number Actual Number Actual

Total of Guarantee Total of Guarantee Total

Utilisation Sporadics Ratio Utilisation Sporadics Ratio Utilisation
%

90 200 0.9645 89.823 600 0.9855 89.783

95 400 0.9153 94.153 800 0.9499 93.998

100 600 0.8232 97.348 1000 0.8981 97.453

Table 4.5: Increasing sporadic utilisation by sporadic arrival rate.

Table 4.6 shows the results of a similar investigation in which the sporadic

utilisation is increased by increasing the average sporadic computation time, while the

84

number of sporadics is kept constant at 400. (In this case, the utilisation for schedulability
testing was the same (about 0.48ms) for all guarantee ratios obtained.)

85% Periodic Utilisation 75% Periodic Utilisation
Maximum

Possible Average Actual Average Actual
Total Sporadic Guarantee Total Sporadic Guarantee Total

Utilisation Computation Ratio Utilisation Computation Ratio Utilisation

% (ms) % (ms) %

90 12.50 0.9965 89.983 37.50 0.9523 89.285

95 25.00 0.9153 94.153 50.00 0.8655 92.310

100 37.50 0.7610 96.415 62.50 0.7683 94.208

105 50.00 0.6310 97.620 75.00 0.6858 95.574

Table 4.6: Increasing sporadic utilisation by average sporadic computation time (ms).

The conclusions from these limited results are (1) a lower periodic utilisation, and a

correspondingly higher sporadic arrival rate, makes no clear difference to the actual total

utilisation, and (2) a lower periodic utilisation and a correspondingly higher average

sporadic computation time can give a reduction in the actual total utilisation obtained. This

second conclusion reflects the difficulty of scheduling sporadic tasks with large

computation requirements.

4.9 CONCLUSIONS

This work has investigated dynamic acceptance tests for sporadic tasks arriving at a

processor which also runs its own set of resident periodic tasks. Acceptance testing is

performed by schedulability tests which run on the target processor itself, and must

therefore be upper bound, in order that a worst-case analysis of the processor's load may be

made. Knowledge of the minimum interarrival time of the sporadic tasks is a pre-requisite

for establishing this upper bound.

The algorithms used for dynamic schedulability testing were developed by adapting

previously known algorithms for static schedulability testing. The adapted algorithms make

use of dynamically updated scheduling data. Enhancements were made in order to reduce

85

the run-time overheads incurred by the adapted algorithms. These involved combining two
algorithms into a single hybrid algorithm, and introducing timeouts into the algorithms in
order to enforce tight upper bounds on schedulability testing. Specific conclusions from the
simulation results are as follows:

(1) Dynamic schedulability testing of sporadic tasks on the same processor as the periodic
task set can incur acceptable overheads of less than 1 ms per test .

(2) Bottom-up Hybrid is the most efficient of the dynamic schedulability test algorithms
investigated.

(3) The performance of any of the dynamic schedulability test algorithms is sensitive to the
choice of upper bound for the worst-case schedulability test.

(4) Constraining the schedulability test algorithm to timeout before the worst-case test time

can improve performance. The value of the timeout which gives the best performance is

called the optimum upper bound.

(5) The optimum upper bound is most sensitive to N (number of periodic tasks) and PD/SD
(the ratio of average periodic task deadline to average sporadic task deadline). These

parameters determine the average number of tasks below a sporadic task position in static
deadline monotonic ordering.

(6) Increasing the sporadic proportion of the total possible processor utilisation, will, if

anything, decrease the actual total utilisation achieved.

Of all the adapted algorithms, Bottom-up Hybrid consistently performed best over a

range of test data which varied all the parameters discussed above. Introducing a timeout
improved the performance of all the algorithms, but Bottom-up Hybrid still led the field.

One of the aims of this thesis is to find the most cost-effective run-time support for

optional computations. A major part of the overhead incurred by such run-time support will
be the acceptance test which is used. Therefore it is important that the overheads of
Bottom-up Hybrid, and in particular the high bounds on its WCET, should be reduced.
Chapter 5, which follows, attempts to reduce overheads and bounds, by increasing the

efficiency of each component of Bottom-up Hybrid.

86

CHAPTER 5

ENHANCED ON-LINE GUARANTEES

5.1 INTRODUCTION

5.1.1 Approach

Chapter 4 developed and evaluated a set of on-line guarantee algorithms,
and found Bottom-up Hybrid to be the algorithm which consistently provided the greatest
guarantee ratios. The Bottom-up Hybrid algorithm first attempts a schedulability test by

using a pessimistic O(N2) test, and if this test fails, it then uses the exact pseudo-
polynomial (PP) schedulability test. The algorithm schedulability tests the tasks beneath the
sporadic task, in "bottom up" order, and finally tests the sporadic task itself. Schedulability
testing is abandoned as soon as a task is found to be unschedulable.

This chapter attempts to enhance the performance of the on-line guarantee provided
by Bottom-up Hybrid (henceforth be referred to as BUH). As in Chapter 4, performance
will be measured by guarantee ratio. Three approaches will be explored:

1. Enhancing the performance of the O(N2) component, by using other sufficient but not

necessary schedulability tests.
2. Enhancing the performance of the PP component, by giving the PP algorithm a

headstart.

3. Investigating the performance of BUH when dynamic placement, rather than static

placement, of sporadic tasks within the task list is used.

Each approach is now explained in more detail.

5.1.2 Enhancing the O(N2) Component

Chapter 4 showed that the performance of BUH degenerated with larger numbers

of periodic tasks in the task set. This was due to the large overheads and upper bounds on

schedulability testing imposed by the PP component of BUH. Therefore any enhancements
in the O(N2) component which can reduce the need to call upon the PP component, may

lead to improved performance. With this in mind, the work of this chapter attempts to

make the O(N2) component less pessimistic by using some of the more exact, sufficient but

not necessary schedulability tests, developed by Audsley[2].

87

Section 2.7 refers to the range of sufficient but not necessary schedulability tests,
developed by Audsley as Tests 1,2,3 and 4. All four tests are able to guarantee tasks, but
the tests are numbered in order of increasing schedulability testing overhead, and
decreasing pessimism. Test 1 has already been used in Bottom-up Hybrid, and has been
referred to as O(N2). However Tests 2 and 3 also have O(N2) complexity, and are more
exact. Test 4 is the most exact but it has pseudo-polynomial complexity, and therefore,
because it is still sufficient and not necessary, it is less promising as a candidate for
enhancing the first component of BUH.

The simulations which follow, first compare the performances of the full range of
Tests 1 to 4, and then concentrate on the use of Test 3 as an enhancement to the O(N2)

component of BUH.

5.1.3 Enhancing the PP Component

Enhancements to the PP component of BUH could also lower the overheads, and

upper bounds, required for schedulability testing. Attempts to enhance this component,

centre round the concept of initialising PP with a larger value (or headstart) for the

window wl within which higher priority task interfere. In the original PP algorithm, wi is

set to the WCET of the test task, i, which is being schedulability tested. Section 5.4 below

shows that initialising wl to a value which is greater than the WCET of the test task, can

result in PP becoming a sufficient but not necessary test. However, because the overheads

and upper bounds for PP can be so large, it may be the case that higher guarantee ratios

can be achieved with such an approximate version of PP. This may be especially true under
heavy loading. With this reasoning in mind, a range of headstart values were investigated,

as are explained in Section 5.4.

The work below goes on to perform further experiments by combining the

enhancements to O(N2) and PP simultaneously in the BUH algorithm. For example, Test 3

is used for the O(N2) component, while a headstart is also applied to the PP component.

5.1.4 Dynamic Placement of Sporadic Tasks

The third approach to enhancing BUH stems from recent work by Davis [9]. He has

proved that the method used so far, for the placement of sporadic requests within the

existing task list, is not optimal. Hitherto, sporadic requests have been placed in monotonic

order according to the static deadlines of existing tasks within the task list. The problem

with this method is that, the current dynamic deadlines of tasks, which are lower in the

task list by static ordering, may be less than the deadline of the sporadic task itself. This

means that static ordering can cause a sporadic task to be rejected, because the sporadic

88

task has been placed too high in the task list. Instead, the optimal position for the sporadic
task, is just below the lowest task which has a dynamic deadline less than the sporadic
deadline. Davis has proven that such placement of the sporadic request is optimal, in the

sense that, if the sporadic task is schedulable in any place in the task list, then this

placement will also find it to be schedulable.
Dynamic placement is optimal in theory, but this does not mean that it will

necessarily achieve greater performance in practice. This will depend on the particular
overheads which are incurred, and it may be that in some cases, the overheads of dynamic

placement outweigh the fact that it is an optimal positioning. One factor, is that a small

additional overhead must be incurred by dynamic placement when it performs a bottom-up

search for the optimal position, at the start of a guarantee algorithm.
In order to investigate the effect of dynamic placement on performance, Section 5.7

compares the result of static and dynamic placement for a variety of versions of the hybrid

algorithm.

5.2 SIMULATION STUDIES

5.2.1 Introduction
As in Chapter 4, simulation studies were performed, and it was decided that the

schedulability testing part of the simulation would run in real time in order to measure the

overheads incurred by each algorithm. The scheduler itself ran as a simulation according to

the scheduling model discussed in Section 4.5.1. As in Chapter 4, the simulations were

written in Parallel C, and run on a T800 transputer.

5.2.2 Establishing an Upper Bound for each Schedulability Test

As with the simulations of Chapter 4, it is essential to estimate an upper bound for

the execution time of each schedulability test, before performances can be measured. This

estimate is the WCET of the high priority periodic task which models schedulability testing.

As before, the task set generator uses this value when performing its own (static)

schedulability test of the task sets which it generates.

In practice, a WCET of lOms was used to generate the first task sets. Simulation

runs then allowed this value to be refined for each algorithm, and each number of periodic

tasks. Algorithms of pseudo-polynomial complexity have particularly large upper bounds.

Chapter 4 reported that setting a timeout on the schedulability test generally increases the

guarantee ratio obtained. Effectively, this causes the test to be inexact in some cases, but

89

the benefit is to be able to set a smaller upper bound on the schedulability test. For this
reason, all simulations were performed with al Oms timeout in the schedulability test.

5.2.3 Simulation Parameters

All simulation results shown in the following tables and graphs use sporadic tasks
whose arrival rates are Poisson distributed (µ = 2.8, k= 10) over the total simulation time
of 100,000ms. Sporadic deadlines and computation times are normally distributed. The
tables show the maximum schedulability test times (in ms), and guarantee ratios obtained,
from each of the schedulability test algorithms, as the number of periodic tasks (N) in the
task set is increased. The PD/SD ratio and the average number of tasks below the sporadic
task position, are also shown in the tables because, as discovered in Chapter 4, these

parameters are particularly significant factors in the overheads which schedulability testing
incurs.

Each guarantee ratio generated, is the overall average of 10 simulation runs, each

with 10 different sets of random periodic tasks. Maximum values are the maximum from all
10 runs. Periodic processor utilisations are 85%, which includes scheduling overheads for

the periodic tasks, but does not include any utilisation by the periodic task which models

schedulability testing.
As explained earlier, it was decided not to allow the schedulability tests to overrun

1Oms which is the slot size of the scheduler. This curbs the upper bounds required for

schedulability testing, and also prevents a violation of the scheduler's upper bound on

release jitter (i. e. lOms). For each simulation the maximum schedulability test time was
found. If this maximum was in excess of 10ms it was not used as an upper bound to

schedulability testing. However, the maximum is still included in the tables below for

information. (It is shown bracketed underneath the "10.00" ms which was actually the

maximum schedulability test time permitted). The abbreviation GR in the tables indicates

guarantee ratio obtained.

5.3 COMPARING TESTS 1 TO 4

Graph 5.1 and Table 5.1 show the comparative performance of the sufficient but

not necessary Tests 1 to 4 which are due to Audsley et al. Static, deadline monotonic

placement of the incoming sporadic tasks was used in each case. These algorithms were

investigated with a view to improving the performance of the first part of the hybrid

algorithm.

90

It can be seen from Graph 5.1 that, with small periodic task sets (small N), the
performance of Tests 1-4 increases with their complexity. This can be interpreted as a
result of the small task set which imposes a relatively small schedulability test overhead. In

other words, because of the small amount of schedulability testing required, there is

sufficient time to make it worthwhile to run the more complex of the Tests. Hence Test 4

achieves the highest guarantee ratio because it is the most exact, and despite the fact that it
imposes the greatest overheads.

0.8

G 0.7
U

a 0.6
r
a
n 0"E

t
e 0. ý
e

0.: R
a
t 0.

0 0.

4 e st

c3

Graph 5.1: Comparing performances of Tests 1-4 with various periodic task sets

Conversely, with high numbers of tasks in the periodic task set (high N), the

schedulability testing overheads for Test 4 increase beyond the 10.00ms timeout, and this

rapidly reduces the effectiveness of any extra time spent on testing. The guarantee ratios

obtained for Tests 2 and 3 drop off less dramatically. Even for N= 30, Test 2 and 3 rarely
impose an overhead which exceeds the 10.00ms timeout. (The highest maximum for Tests

2 and 3 is 11.90ms). Table 5.1 also shows that Test 3 consistently achieves a slightly better

performance than Test 2. This can be explained by the use of the effective deadline in Test

3 which makes it less pessimistic. This benefit is obtained with only a very slight increase in

overhead.
Test 1 performs worst at low N, because it is the least exact, and therefore most

pessimistic, of all these tests. However, at high N, where there are large schedulability
testing overheads, Test 1 overheads go up least. (For the test data used, they never exceed

91

Number of resident periodic tasks 30

10.00ms.) For this reason Test 1 gives the highest guarantee ratio when N= 30. It is worth
commenting that the profile for Test 1 has a different shape than that for Tests 2,3 and 4:
there is a shallow trough in guarantee ratio at N= 15 This can be explained by statistical
variations. (It was observed that the guarantee ratios for Test I had a particularly wide
standard deviation over the 10 task sets used with each simulation run. This standard
deviation was approximately 10% of guarantee ratio.)

Number Ave no 0

of PD/SD tasks Test 1 Test 2 Test 3 Test 4
Periodics Ratio below

(N) sporadic
Max GR Max GR Max GR Max GR
(ms) (ms) ms ms

5 0.340 1.0 0.53 0.424 0.95 0.662 1.02 0.697 1.75 0.716

10 0.627 3.0 1.34 0.606 2.19 0.662 2.15 0.678 4.05 0.671

15 0.808 5.1 2.76 0.585 3.61 0.639 3.54 0.652 6.93 0.602

20 1.017 8.0 4.00 0.633 6.09 0.630 5.95 0.639 10.00 0.506
(11.50)

30 1.393 13.9 9.80 0.547 10.00 0.494 10.00 0.501 10.00 0.014

11.90 11.90 23.00

Table 5.1: Comparing performances of Tests 1-4 with various periodic task sets

Tests 1,2,3 and 4 are compared here with a view to improving the O(N2)

component of BUH, which originally used Test 1. It seems that the likeliest improvements

might be gained by using Tests 2 or 3 instead. These increase the exactness of the

schedulability test whilst still retaining the O(N2) complexity.
By contrast, Test 4 seems unsuitable for the following reasons. Its complexity is

pseudo-polynomial, and therefore its maximum overhead rapidly increases with N. It is

therefore unlikely to benefit performance when it is combined in a hybrid algorithm with the

92

exact PP test. This is especially true because a lOms timeout is being used. (The only

possible benefit of using Test 4 in a hybrid algorithm might be at low N where it can give a
high guarantee ratio.)

5.4 THE HEADSTART OPTIMISATION

In order to reduce the number of iterations, and thus the overhead, of PP, a possible
optimisation to this algorithm is to initialise the interference window to some value which is
larger than the computational requirement of the test task, J. For example, it could be
initialised to the value of the following expression which can be regarded as a 'Headstart' :

Y, j(L(Di - Oý . Tel Cj + Rj) + Cl (5.1)

In other words the initial Headstart is the sum of the interferences of each higher priority
task, j (up to its floor value) plus the computational requirement of the test task itself.

Unfortunately, this turns PP into a sufficient but not necessary test. PP becomes pessimistic
because the initial window considered may be too large, and therefore may include more
interferences from higher priority tasks than is actually the case when a schedule is

constructed. The window may then increase in size until the deadline of the test task is

exceeded. An example of such a case is shown in Figure 5.1.

Current
Time

Extra hit
T1 =5

>

time
C2 .5

D2= 20

_>

C= 10 C2 = 10 time
s

>
D= 28

s
Figure 5.1: Counter example to the original Headstart idea

93

Figure 5.1 shows two resident periodic tasks and a sporadic task, s, which has

arrived with a deadline greater than the deadlines of either of the periodic tasks. If s is

schedulability tested with the Headstart optimisation then expression 5.1 above evaluates
to: (5 * Cl) + (0 * C2) + 10. Therefore the interference window will extend further than

the release of task 2, and the schedulability test will fail. The problem is that an unnecessary
interference (highlighted) of task 1 is included in the initial window. Hence the window
becomes pessimistically large. It is worth noting, however, that the test is still sufficient
because using the floor expression above to calculate interferences from higher priority
tasks can never be optimistic.

An attempt to make this optimisation to PP both necessary and sufficient was to
first cause the algorithm to calculate the lowest floor of all the interfering higher priority
tasks. This is then taken as the initial value of the window of interference for all higher

priority tasks. Therefore for a test task i this would be:

mini ((D1- Oý -- Tj]Tj + Off)

Current
Time

T1 =2
<>

T2 = 10

C1=1

ý
\\\
i

Vj: (i < i) A (Oj<Di)

Extra hits included

(5.2)

time

D= 20
Lowest FIooý 3

time
= C3 2

. 11 Cs =i

D= 30
s

Figure 5.2: Counter example to lowest floor correction to original Headstart idea

94

C2 =4
time

The idea is to avoid the inclusion of extra interferences which occur in the latter part of the
deadline interval of the test task. Note that it is left to the first iteration of PP to sum
the interferences of each higher priority task within the initial window, and then the
computational requirement of the test task is added on.

In the case of Figure 5.1, the initial window would be set to 20, the interferences
would be calculated within this interval, and the test task would be deemed schedulable. A
problem with this approach is that, in general, the lowest floor could be so low as to nullify
any optimising effect on PP. Figure 5.2 shows a counter-example which shows that even
this method can include pessimistic extra interferences. The early occurrence of sufficient
slack for the test task, sporadic task s, is missed at current time + 9. Instead superfluous
interferences (highlighted) are included. Hence this amendment to Headstart is also
sufficient but not necessary.

Current
Time

T2 = 10.5

i
C2 =4 time

D3 = 24

C3 =3 time

CS =1

DS = 30

Figure 5.3 :A headstart greater than the execution time of the test task can be pessimistic

A more extreme example is shown in Figure 5.3 which shows that, in general, the

slack required by the test task may occur at an arbitrarily early point. In this example the

95

necessary slack occurs only at the release of the test task, s. Therefore, to set the initial

window to more than the computational requirement of the test task, may lead to the test
task pessimistically failing the schedulability test.

The idea of giving PP a headstart to reduce its large overhead may still have some
worth, however. Although it provides a sufficient and not necessary test, a headstart may
still increase the guarantee ratio obtained, by cutting down time spent on schedulability
testing. Furthermore, a headstart may reduce the maximum bound for the schedulability
test and this itself may allow more tasks to be guaranteed. Whether these effects are a
benefit in practice requires statistical evidence from simulation studies. For example, it may
be that a particular choice of value for the initial window (e. g. half the test task deadline)

may provide the best trade-off between the time spent on schedulability testing and the

number of tasks which can be guaranteed. Such issues are now investigated.

5.5 COMBINING HEADSTART WITH THE PP ALGORITHM

Graph 5.2 and Table 5.2 show the results of investigations into improving the

performance of the PP part of the hybrid algorithm. Once again, static deadline monotonic
placement of the incoming sporadic tasks was used in each case. BUH is now referred to as
Pure BUH in order to distinguish it from its variants which are used below. (Note that the
lowest guarantee ratio shown on the vertical axis of Graph 5.2 is 0.5 as compared with 0.0
in Graph 5.1.)

The first column of results in Table 5.2 shows the effect of Headstart on pure PP

(non-hybrid) without any O(N2) component. PP with Headstart is the exact pseudo-

polynomial test with the original Headstart suggestion (i. e. the interference window
initialised to the sum of the interferences of higher priority tasks up to their floor values).
At small N this algorithm gives high guarantee ratios, but guarantee ratio rapidly declines

as N increases. This illustrates the large increase in overheads incurred when the PP test is

used without a preliminary O(N2) test.
Pure BUH is included in the graph for comparison purposes. Bottom-up Hybrid

with Headstart is the original Headstart optimisation, but this time incorporated into the

full Bottom-up Hybrid algorithm. As expected this gives better performance at high N than

PP with Headstart. It is worth comparing Pure BUH with BUH with Headstart. For

low N both algorithms give very similar results. However there are differences at N= 20

and N= 30. At N= 20 Pure BUH performs better, whereas at N= 30 it performs worse.

This can be interpreted as the effect of the pessimism of BUH with Headstart showing at

N= 20. However, at N= 30, the maximum (Max) obtained with BUH with Headstart is

96

more significant. (Because the maximum is lower, more sporadic tasks are likely to be

guaranteed.)

0.75

G

u
a 0.7
r
a
n 0.6E
t
e
e

0. (

R
a
t 0.5!

0

o.

Number of resident periodic tasks
30

BUH with average Headstart

JH with minimum Headstart

with original Headstart

JH

eadstart

Graph 5.2: Comparing performances of Headstart Hybrids with various periodic task sets.

The next variation in Graph 5.2 and Table 5.2 is BUH with minimum Headstart.

This is an attempt to correct the pessimism of the original headstart by taking an initial

window equal to the lowest floor of all interfering tasks. As shown in Section 5.4, this
"correction" is still pessimistic. However it is worth considering because, statistically, it

could yield higher guarantee ratios. As can be seen, its performance is close to that of Pure
BUH, except for a modest improvement at N= 10, and a deterioration at N= 30. The

deterioration at high N can be explained as follows.

For a large number of tasks, it is more likely that the lowest of the floors is near to

the current time at which schedulability testing is taking place. In this case minimum

Headstart algorithm degenerates to Pure BUH (i. e. it initialises the window to the

computational requirement of the test task). However, it must be remembered that

minimum Headstart still incurs the extra overhead of finding the lowest floor. Hence its

disadvantage relative to Pure BUH at N= 30. This is confirmed by the maximum

schedulability test times obtained for each algorithm at N= 30: minimum Headstart is

higher (28ms) than Pure BUH (20ms), as would be expected.

97

Number Ave. no. Pure Bottom-up Bottom-up Bottom-up

of of tasks PP with Bottom-up Hybrid with Hybrid with Hybrid with
Periodics below Headstart Hybrid original minimum average

(N) sporadic Headstart Headstart Headstart

Max GR Max GR Max GR Max GR Max GR

ms (ms) (ms) (ms) (ms)

5 1.0 2.50 0.747 3.40 0.743 2.65 0.747 3.11 0.746 2.26 0.718

10 3.0 4.77 0.697 7.42 0.717 4.61 0.715 6.27 0.724 3.90 0.714

15 5.1 8.96 0.638 9.70 0.702 7.75 0.707 10.00 0.695 8.80 0.689
(10.90)

20 8.0 10.00 0.545 10.00 0.686 10.00 0.667 10.00 0.683 10.00 0.674
(14.67) (11.80) (11.00) (15.25) (12.50)

30 13.9 10.00 0.063 10.00 0.566 10.00 0.598 10.00 0.559 10.00 0.592

(34.90) (20.00) (17.38) (28.00) (24.50)

Table 5.2: Comparing performances of Headstart Hybrids with various periodic task sets

A comparison of BUH with original headstart and BUH with minimum
headstart is not simple. In general the lower maxima (Max values) obtained for original
headstart could allow a higher guarantee ratio to be achieved. However, superimposed on
this performance trend, is the random effect introduced by headstart. As shown previously,
it is an algorithm which can produce pessimistic results. Statistically, it is more probable
that original headstart will produce a pessimistic decision. This is due to the larger initial

window (i. e. bigger assumption) generated for original headstart. Therefore the relative

performances of the two algorithms are subject to statistical fluctuations which impede

98

analysis. An additional effect is introduced by the extra overhead which minimum headstart
incurs due to its requirement to find the "minimum floor".

Only at N= 10 does BUH with minimum headstart perform better than both
Pure BUH and BUH with original Headstart. This can be explained as follows. It
performs better than Pure BUH because it still provides some headstart on the initial

window size. It performs better than original headstart because it is less pessimistic and this
outweighs the fact that it has a higher maximum.

The final variation, referred to in the table as BUH with average Headstart, is an
attempt to find the "best of both worlds " from original and minimum headstart. The initial
interference window is set to half the value of the test task's deadline. The hope is that this
might strike an optimum balance between the pessimism of original headstart and the larger

overhead of minimum headstart. However, Table 5.2 shows that this hope is only
marginally realised (only at N= 30).

It is interesting to consider why BUH with average Headstart does not perform
better. Note that it produces slightly lower guarantee ratios even though its maximum test

values are relatively low. Further, note that it incurs no overhead for a search through the
interfering tasks (e. g. for the lowest floor). Its puzzling failure can be explained by the fact

that half the test task's deadline is unlikely to be a floor value for any interfering task. This

means that the chances of being pessimistic are marginally increased. A floor value

excludes the possibility of pessimistically including the whole of a partial hit for the
interfering task whose floor it is. An arbitrary time (i. e. half the test task's deadline) does

not exclude the possibility. This is much the same reason that Test I is more pessimistic
than Test 2. Such a pessimistic "full extra hit" is more likely to have a greater effect at low

N (where the 85% utilisation is distributed between a smaller number of tasks). At high N

this effect is less important than the fact that average headstart is actually shortening the

time for schedulability testing without imposing any substantial overhead.

5.6 USING BOTH TESTS 1- 4 AND HEADSTART TO IMPROVE HYBRID

Finally investigations were made into the combined use of Tests 1-4 and Headstart

in the Pure BUH of Chapter 4. As before, static deadline monotonic placement of the

incoming sporadic tasks was used in each case.
The first component of Pure BUH used Test 1. It was decided to try only Test 3 as

an alternative to Test 1 for the following reasons. As shown in Table 5.1, Test 3 produces a
higher guarantee ratio, for most values of N, than either Test 1 or Test 2. However Test 3

still benefits from having a complexity of O(N2). In contrast, Test 4 is pseudo-polynomial

and imposes high overheads with rapidly decreasing performance at large N. Therefore

99

Test 4 has too large overheads to warrant consideration as a replacement for the first
component of a hybrid algorithm. It is also worth noting that, despite its complexity, Test 4
is still an inexact test.

Number Ave no o BUH with BUH

of PD/SD tasks Pure BUH with Test 3 and with
Periodics Ratio below BUH Test 3 effective Test 3

(N) sporadic deadline and Headstart

Max GR Max GR Max GR Max GR
(ms) (ms) (ms) (ms)

5 0.340 1.0 3.40 0.743 2.40 0.754 2.40 0.754 2.00 0.757

10 0.627 3.0 7.42 0.717 5.31 0.737 5.31 0.737 4.53 0.722

15 0.808 5.1 9.70 0.702 10.00 0.697 10.00 0.695 7.00 0.711

(10.80) (11.50)

20 1.017 8.0 10.00 0.686 10.00 0.682 10.00 0.681 10.00 0.664

(11.80) 12.13 (12.13) 10.80

30 1.393 13.9 10.00 0.566 10.00 0.514 10.00 0.511 10.00 0.536

(20.00 33.00 33.00 19.50

Table 5.3: Comparing performances of Test 3 and Headstart Hybrids with various periodic tasks.

Table 5.3 shows Pure BUH together with three variations involving Test 3. BUH

with Test 3 is a straight replacement of the O(N2) component of BLJIH with Test 3. BUH

with Test 3 and effective deadline goes further in that it takes advantage of the effective
deadline calculated by Test 3. It uses the effective deadline, and not the original test task

deadline, as an upper bound on the response window which is iteratively calculated by the

PP component. It is always true that effective deadline <_ test task deadline. Therefore this

100

method may shorten the computation time of the exact PP test while incurring no extra
overhead. The final combination in Table 5.3 uses BUH with Test 3 plus the original
Headstart for the PP component. The idea here is that the O(N2) component is made more
exact by Test 3, and that the pseudo-polynomial component is made faster, though
generally pessimistic, by Headstart.

It can be seen from the Table 5.3 and Graph 5.3 that BUH with Test 3 performs
better than Pure BUH for low values of N, but the situation is reversed for higher values of
N. This can be explained by the extra overhead incurred by Test 3. This overhead increases

with N, and becomes less cost-effective as it does so. At low N, the overhead is worthwhile
because it reduces the pessimism of the O(N2) component (consistent with the lower Max

value for BUH with Test 3 at N=5,10). At larger N, however, the reduction in

pessimism is a smaller benefit than the increase in the cost of the overhead. In addition the

reduction in pessimism which Test 3 brings is less likely to be significant at large N: the

greater slack which each task possesses will in any case reduce the likelihood of an O(N2)

test giving a pessimistic result. These effects have been seen before in Table 5.1 where pure
Test 3 performs worse than pure Test 1 at high values of N.

0.8

G 0.75

u
aR0.7
ra
at0.6E
ni
to0. (

e
e 0.5!

o.

ýw 30
Number of resident periodic tasks

BUH with Test 3 and Headstart

UH with Test 3 eff deadline

with Test 3

UH

Graph 5.3: Comparing performances of Test 3 and Headstart Hybrids with various periodic tasks

BUH with Test 3 and effective deadline makes use of the effective deadline to

optimise the pseudo-polynomial component of the hybrid test. Because it incurs no extra

overhead one would expect it to produce, if anything, marginally better guarantee ratios

101

than BUH with Test 3. Indeed, Table 5.3 shows that for N=5 and N= 10 the same
guarantee ratio is obtained for both algorithms. However, slightly worse guarantee ratios
are obtained for N>= 15. Some of this can be explained by random fluctuations (0.001
difference in guarantee ratio represents only 4 sporadic tasks). A fuller explanation,
however, is required for N= 30 where a 0.003 decrease in guarantee ratio is observed for
the BUH with Test 3 and effective deadline algorithm. The following interpretation of
this may be surprising but 6.11.3 shows evidence for it.

The with effective deadline algorithm actually manages to guarantee, within the
lOms limit, some marginal sporadic tasks which can barely be scheduled, and which the
plain BUH with Test 3 algorithm does not have time to schedule. However, this feat does

not work to the long term advantage of the with effective deadline algorithm. Statistically,
these marginally schedulable sporadic tasks may have higher than average computational
requirements or some other "difficult" characteristics. This means that the with effective
deadline algorithm would have been better to reject each marginal sporadic task because it

would soon afterwards have been able to guarantee perhaps two more "easy" sporadic
tasks. This is what BUH with Test 3 does, and therefore it achieves a slightly higher

guarantee ratio than BUH with Test 3 and effective deadline.
The final combination to be tested was BUH with Test 3 and Headstart. The

hope here is to reduce the pessimism of the O(N2) component by the use of Test 3, but

also to speed up the PP component by the use of Headstart. This strategy seems to benefit

guarantee ratio at N=5. Once again, however, it appears that the Test 3 overhead ceases
to be cost-effective at high N. For example at N= 30, even though Headstart is reducing
Max, and tending to increase guarantee ratio, the effect of the Test 3 overhead is to make
guarantee ratio less than that for Pure BUH. (This interpretation is corroborated by Table
5.2 which shows that Headstart alone increases guarantee ratio at N= 30).

5.7 OPTIMAL, DYNAMIC PLACEMENT OF SPORADIC TASKS

Table 5.4 summarises the algorithms which give the highest guarantee ratios for at
least one value of N. Each highest value is shown in bold. None of the other algorithms
investigated produced the highest throughput for a particular number of periodic tasks.

Therefore the hybrid algorithms shown in Table 5.4 were the ones which were used in an
investigation into the effect of placing the incoming sporadic tasks in the task list according

to the dynamic deadlines of the existing tasks.

102

Number Ave no BUH with BUH

of of tasks Pure BUH BUH with BUH Test 3 and with
Periodic below Headstart with Test 3 effective Test 3 and

Tasks sporadic deadline Headstart

Max GR Max GR Max GR Max GR Max GR

ms (ms) ms ms (ms)

5 1.0 3.40 0.743 2.65 0.747 2.40 0.754 2.40 0.754 2.00 0.757

10 3.0 7.42 0.717 4.61 0.715 5.31 0.737 5.31 0.737 4.53 0.722

15 5.1 9.70 0.702 7.75 0.707 10.00 0.697 10.00 0.695 7.00 0.711

(10.80) (11.50)

20 8.0 10.00 0.686 10.00 0.667 10.00 0.682 10.00 0.681 10.00 0.664

(11.80) (11.00) (12.13) (12.13) (10.80)

30 13.9 10.00 0.566 10.00 0.598 10.00 0.514 10.00 0.511 10.00 0.536

(20.00) (17.38) (33.00) (33.00) (19.50)

Table 5.4: Hybrids with best performances for particular N for static placement of the sporadic.

As discussed in Section 5.1, recent work by Davis [9] has shown that inserting the

sporadic request in monotonic order according to the static deadlines of existing tasks is

not optimal. Instead dynamic placement must be used. As pointed out already, the question

is whether the run-time overheads of dynamic placement are actually justified by an

increase in guarantee ratio for sporadic requests. For example, there is an small extra

overhead incurred due to the fact that a bottom-up search for the optimal position of the

sporadic task must always be made at the start of a schedulability test. (This knowledge is

required before a schedulability test can be made.) As has been seen with Test 3 in Section

5.6, such increases in schedulability testing overhead can have a critical effect on guarantee

ratio when overall schedulability testing overheads are large.

103

0.8

0.75
G

u
a
r 0.7

a
n
t
e 0.65

e

R

a 0.6
t

0
0.55

0.5

Number of resident periodic tasks

Graph 5.4: Comparing the performances of Pure BUH with (i) static (ii) dynamic placement.

Graph 5.4 shows the results obtained for Pure BUH under the static, and then
dynamic, placement of sporadic requests. Clearly dynamic placement improves guarantee

ratio at low N, but as N increases the improvement becomes more marginal until, at N=

30, guarantee ratio is actually reduced. In the case of Pure BUH the maximum

schedulability testing overheads obtained for each N also confirm that dynamic placement
reduces overheads at low N but increases them at high N. At high N this factor will
obviously work against the improvement in performance which an optimal placement of

sporadic tasks would be expected to give.
Further investigations were carried out into the difference which dynamic placement

makes in the behaviour Pure BUH. Graph 5.5 shows the average number of tasks (per

sporadic request) below the sporadic position, as the number of resident periodic tasks
increases. The averages shown were obtained over simulation runs for both static and
dynamic placement as applied to Pure BUH.

Clearly dynamic placement causes fewer tasks below the sporadic at low N but

more tasks at high N. Around N= 15 both methods of placement cause approximately

equal numbers of tasks below the sporadic. The number of tasks below the sporadic

104

5 10 15 20 30

16

14
0
0

12

o 10

SO ý8
0

0
6

aý

4

aý
0 äý 2

a

o.
5

-- Static deadline
monotonic placement of
the incoming sporadic

-- Dynamic deadline
placement of the
incoming sporadic

10 15 20

Number of resident periodic tasks

30

Graph 5.5: Number of tasks below the sporadic for Pure BUH under (i) static and (ii) dynamic placement.

position closely governs the schedulability testing overheads because all tasks lower than

the sporadic task must also be schedulability tested. Hence Graph 5.5 shows why optimal,
dynamic placement is clearly beneficial at low N, but not beneficial at high N. At low N, the

benefit of optimal placement is combined with smaller schedulability testing overheads,

whereas at high N, the benefits of optimal placement are more than offset by the cost in

extra schedulability testing.

Possible explanations for the changes in the average number of tasks below the

sporadic task are as follows. Note that these explanations assume a constant processor

utilisation, while N, the number of periodic tasks, changes.
At low N each task has a relatively high computational requirement and is

therefore active (i. e. released but not yet completed) a relatively large proportion of the

time. Being active, the dynamic deadline of the task is probably less than its full static

value. Hence an incoming sporadic task will be placed relatively low in the task list,

beneath the shortened deadlines of active tasks. Contrast this with the likely sporadic

position for high N. At high N, each task has a relatively low computational requirement,

and is therefore inactive (i. e. completed and awaiting its next release) a relatively large

proportion of the time. Being inactive, the dynamic deadline of the task is effectively

extended to the deadline following the next release of the task. Hence an incoming sporadic

task will be placed relatively high in the task list, above the lengthened deadlines of inactive

tasks. This explains why dynamic placement of sporadic tasks places tasks lower than the

105

static deadline monotonic position when N is small, and places tasks higher than the static
position when N is large.

It is worth noting that, in addition to the above effect, there is also a small extra
overhead incurred by the bottom-up search for the dynamic position. This is always
performed at the start of a schedulability test, and its overhead is proportional to the
number of tasks below the sporadic.

5.8 THE EFFECT OF DYNAMIC PLACEMENT ON HYBRID PERFORMANCES

The following is a commentary on the effects of dynamic placement on the various
hybrid algorithms featured in Tables 5.5 and 5.6 below. Each algorithm is directly

compared for static and dynamic placement of incoming sporadic tasks. It is notable that
the relative performances of the algorithms remain largely the same whether considered
under static placement or dynamic.

BUH with Headstart shows the same overall pattern as Pure BUH. At low N

guarantee ratio is improved, at around N= 15 guarantee ratio is similar, and at high N

guarantee ratio drops. The maximum schedulability test values are also affected in the same
way as BUH. One difference between the algorithms is that the decline in improvement of
guarantee ratio seems to start at lower N (N = 15) in the case of BUH with Headstart.
This may be due to the pessimism of Headstart. As the number of tasks below the sporadic
task rises, so does the probability that the Headstart method will prove pessimistic for one
of the tasks beneath the sporadic position.

BUH with Test 3 shows similar changes in the pattern of guarantee ratio due to
dynamic placement. It is noteworthy that, compared to Pure BUH, guarantee ratio drops

dramatically at N= 30. This is not surprising when it is observed that the static placement

guarantee ratio for BUH with Test 3 also drops dramatically at N= 30. Section 5.6

explained that this was due to the large increase in Test 3 overhead combined with the fact

that, at large N, Test 3 is less likely to make the O(N2) component of the hybrid test less

pessimistic. When sporadic placement is dynamic this effect is further exaggerated by the

greater number of tasks which need to be schedulability tested (i. e. below the sporadic

position).
It is worth commenting on the fact that Table 5.5 shows the maximum

schedulability test value for BUH with Test 3 actually increases at low N. This can be

explained by the fact that, under dynamic placement of the sporadic task, the average

number of tasks below the sporadic is lower when N is low. Section 5.6 showed that the

small maximum values achieved by BUH with Test 3 are due to the fact that it can make
the O(N2) component of the hybrid schedulability test less pessimistic, and thus prevent a
time-consuming invocation of the PP component, and a large maximum test time being

106

Number Pure Pure BUH with BUH with BUH with BUH with

of BUH BUH Headstart Headstart Test 3 Test 3
Periodic (STATIC) (DYNAMIC) (STATIC) (DYNAMIC) (STATIC) (DYNAMIC)

Tasks
(N)

Max GR Max GR Max GR Max GR Max GR Max GR
(ms) (ms) (ms) (ms) (ms) ms

5 3.40 0.743 3.17 0.788 2.65 0.747 2.53 0.791 2.40 0.754 2.88 0.795

10 7.42 0.717 6.82 0.745 4.61 0.715 4.24 0.722 5.13 0.737 6.15 0.751

15 9.70 0.702 10.00 0.703 7.75 0.707 8.00 0.696 10.00 0.697 10.00 0.704

(13.00) 10.80 12.50

20 10.00 0.686 10.00 0.687 10.00 0.667 10.00 0.659 10.00 0.682 10.00 0.686

(11.80) (19.00) 11.00 12.00 12.13 (18.00)

30 10.00 0.566 10.00 0.540 10.00 0.598 10.00 0.572 10.00 0.514 10.00 0.439

20.00 35.00 (17.38) 18.00 33.00 34.50

Table 5.5: Comparing hybrid algorithms for static and dynamic deadline placement

of sporadic tasks.

reached. In the case of dynamic placement, there are fewer tasks below the sporadic task.
This, in turn, means that there is less chance for Test 3 to make the O(N2) component less

pessimistic, and thus prevent a higher maximum being reached.
BUH with Test 3 and effective deadline shows a slightly different performance

profile from BUH with Test 3. At low N, guarantee ratio is slightly more improved by

dynamic placement whereas, at high N, guarantee ratio is made slightly worse. This is

broadly in line with the differences shown between the two algorithms under static

placement. Investigations showed that the slight improvement at low N was largely due to

an approximately 1% drop in the average schedulability test time of the with effective
deadline algorithm compared to the without effective deadline. This is what might be

107

BUH BUH BUH BUH
Number with Test 3 with Test 3 with with

of and effective and effective Test 3 and Test 3 and
Periodics deadline deadline Headstart Headstart

(N) (STATIC) (DYNAMIC) (STATIC) (DYNAMIC)

Max GR Max GR Max GR Max GR
(ms) (ms) (ms) (ms)

5 2.40 0.745 2.87 0.796 2.00 0.757 1.89 0.807

10 5.31 0.737 6.05 0.755 4.53 0.722 4.12 0.730

15 10.00 0.695 10.00 0.705 7.00 0.711 7.00 0.710
11.50 (12.50)

20 10.00 0.681 10.00 0.687 10.00 0.664 10.00 0.658

(12.13) (18.00) 10.80 11.00

30 10.00 0.511 10.00 0.412 10.00 0.536 10.00 0.451

33.00 34.50 19.50 19.50

Table 5.6: Comparing hybrids for static and dynamic placement of sporadics.

expected when the effective deadline is used to limit the iterations of the PP component of

the hybrid algorithm. In contrast, the drop in guarantee ratio for with effective deadline at

N= 30 is counter-intuitive. However, it may be explained by the same argument as given in

Section 5.6 when comparing these algorithms under static placement. The argument is

supported by evidence from Section 6.11.3, and leads to the conclusion that a more

efficient algorithm for exact schedulability testing does not always improve the throughput

of sporadic tasks, especially when a time limit on schedulability testing is in force.

BUH with Test 3 and Headstart also shows the improvement in guarantee ratio at
low N, and deterioration in guarantee ratio at high N, which has been typical of the effect

of dynamic placement. The maximum schedulability test times shown for this algorithm are

generally low due to the effect of Headstart. This is particularly true at N=5 where the

108

effect of Headstart, plus that of Test 3 and that of dynamic placement, is to generate a
maximum of only 1.89 ms. Guarantee ratio is correspondingly high at 0.807. At N= 30,
however, the effect of both Test 3 and dynamic placement is to increase the maximum
schedulability test time, and to decrease the guarantee ratio obtained. Nevertheless the
effect of Headstart is still apparent in that the guarantee ratio for BUH with Test 3 and
Headstart is greater than that for BUH with Test 3 or that for BUH with Test 3 and
effective deadline.

5.9 SELECTING THE BEST OF THE HYBRID ALGORITHMS

0.8
G
u 0.75

a
r 0.7
a
n 0.6E
t
e O. (
e

0.5!
R

a 0.!
t

0.4
0

0.

Number of resident periodic tasks

cv
30

BUH with Test 3 and Headstart

JH with Test 3 and eff dead

with Test 3

ith Headstart (STATIC)

Graph 5.6: Performance profiles of the Hybrids which give maximum GR for some value of N.

The above results show that optimal, dynamic placement of the incoming sporadic

request has a favourable, or at least neutral, effect on guarantee ratio except when N= 30.

At such high N, the schedulability testing overheads are so large that pessimistic and

quicker schedulability test methods will, in general, provide a higher guarantee ratio. Such

pessimistic methods can include Headstart, or a schedulability test of purely O(N2)

complexity. Even static placement, though not optimal, can produce greater sporadic

throughput at high N.

109

Graph 5.6 summarises the algorithms which give the highest guarantee ratios for at
least one value of N. Dynamic placement is used except at N= 30. Generally BUH with
Test 3 and Headstart performs best for N <= 15. (Exceptions to this are at N= 10 where
BUH with Test 3 and BUH with Test 3 and effective deadline give the highest

guarantee ratios.) At high N, the extra overhead of Test 3 is no longer cost-effective, so
that at N= 20 Pure BUH performs best, and at N= 30 BUH with Headstart and static
placement gives the best performance. Comparison of Graph 5.6 (dynamic placement) with
Table 5.4 (static placement) shows that the same algorithms perform best for the same

values of N. In other words, the issue of whether static or dynamic placement is used, is

independent of the relative performances of the hybrid algorithms. Which schedulability test

algorithm is chosen in practice, must be decided by the amount and nature of the

schedulability testing which is required. Detailed conclusions are given in the following

section.

5.10 CONCLUSIONS

The work of this chapter was to enhance the efficiency of the on-line guarantees

given by the hybrid algorithm developed in Chapter 4. This was done firstly by using Test 3

(due to Audsley et al.) to reduce the pessimism of the O(N2) component of the

schedulability test. Secondly, a headstart was provided for the PP component of the

algorithm, by initialising the window of interference of the test task, to a value greater than

the WCET of the test task. Several methods of providing a headstart were investigated, all

of which turned PP into a sufficient but not necessary schedulability test.

Finally the chapter examined the effect on performance, of dynamic placement of

sporadic tasks, instead of static placement according to the monotonic ordering of

deadlines which are current at task release time. Davis has proven dynamic placement to be

optimal in theory, but this chapter has shown that such placement does not always perform

better in practice. General conclusions to this chapter are as follows, where performance is

measured by guarantee ratio:

(1) When used separately as schedulability tests, Audsley's sufficient but not necessary

Tests 1 to 4, and his exact pseudo-polynomial test (PP), give relatively poor

performances compared to the Pure BUH test.

(2) Headstart optimisations to the PP schedulability test can turn PP into a sufficient but

not necessary schedulability test.

110

(3) Headstarts which provide a sufficient but not necessary schedulability test can
nevertheless improve performance beyond that attainable with Pure BUH. (This is
particularly true when the overheads incurred by schedulability testing are high.) The
method used to determine a headstart value will, in general, affect the performance
obtained for a particular periodic task set.

(4) When the overheads incurred by schedulability testing are low, then Test 3 performs
better as the O(N2) component of the hybrid schedulability test algorithm.
Conversely, when the schedulability testing overheads are high, then Test 1 performs
better.

(5) The performance of the hybrid algorithms may be improved by the use of optimal,
dynamic placement of sporadic requests instead of static placement by deadline

monotonic ordering.

(6) Optimal, dynamic placement can improve performance when schedulability testing

overheads are low, but can also decrease performance when schedulability test

overheads are high. This can be due to dynamic placement giving the sporadic task a
higher average position in the task list than the average position for static placement.

(7) The relative performances of the hybrid algorithms are largely unchanged when all of
the algorithms are converted from static placement to dynamic placement of the
incoming sporadic tasks.

(8) No single one of the schedulability testing algorithms investigated will perform best

for all periodic task sets. In particular, different algorithms may have to be chosen for

different sizes of periodic task set.

Chapter 6, which follows, uses the BUH with Test 3 and Headstart algorithm as a

schedulability test running on each of the processors within a multiprocessor cluster. The

chapter investigates methods of allocating sporadic requests across the processors of the

cluster, in such a way as to maximise the total number of sporadic tasks which can be

guaranteed.

111

CHAPTER 6

ALLOCATION METHODS FOR MULTIPROCESSOR SYSTEMS

6.1 INTRODUCTION

6.1.1 Approach

Section 2.6 reviewed distributed scheduling in the Spring Project. Spring algorithms
allow the re-allocation of 'essential' computations which cannot be guaranteed at their node
of origin. However, the re-allocation methods which Spring uses, such as Focused
Addressing and Bidding, incur such large overheads, that one or more dedicated system
processors are required within Spring nodes.

The object of the work of this chapter is to adopt a similar multiprocessor
architecture to that of a Spring node, but to investigate computationally cheaper methods
of allocating optional computations to the processors within the node. It is assumed that

optional computations arise in the form of requests for the guarantee of aperiodic tasks

which may originate from inside or outside of the node or 'cluster'. Each request must be

allocated to a processor within the cluster, for acceptance testing. If the acceptance test
fails at the processor, then the aperiodic task is rejected by that processor. As before, it is

assumed that each processor within the cluster runs its own set of resident periodic tasks,

and performs its own acceptance testing.
This chapter reports on detailed investigations into two multiprocessor

configurations, each with its own allocation method. The first is Targeting, and the second
Shuffle Schedulability Testing. It is assumed that communications within each of these

configurations is sufficiently fast that its delays are negligible, in comparison to the intervals

between acceptance tests (slot width of the schedulability-tester) on each of the processors.

6.1.2 Targeting

The configuration for Targeting assumes a processor cluster which consists of a

targeting processor and three target processors. All processors are assumed to run a set of

resident periodic tasks. However the targeting processor also acts as a channel for

aperiodic requests which arrive from outside the cluster. Instead of attempting to

schedulability test, and run, aperiodic tasks, the targeting processor performs algorithms

which allow it to direct each aperiodic request it receives, to the target processor most

112

likely to guarantee it. The targeting processor may also run other kernel activities,
providing that all of its critical, periodic computations are still guaranteed.

The targeting methods used by the targeting processor may range from simple
Round Robin allocation of requests, to a relatively sophisticated pre-test which is based on
recent slack values for tasks, on each of the target processors. The actual guaranteeing of
aperiodic requests is performed by schedulability testing on the target processors
themselves. In the case of Targeting, if a schedulability test fails, then the aperiodic request
is given a final rejection by the cluster.

The choice of three target processors was made to reduce the complexity of the
simulation studies, whilst still providing sufficient choice of targets to demonstrate the

principles involved. In theory, the findings of this work can be generalised to a larger

number of target processors.

6.1.3 Shuffle Schedulability Testing

The second configuration which is considered in this chapter consists of only three

applications processors configured in a loop. Each applications processor can
independently receive aperiodic requests whether they arise internally, or from the external
system environment. Each processor attempts to guarantee the requests it receives, but,

should a request fail, it is passed on to the next applications processor in the loop for

further schedulability testing. In this way, aperiodic requests are shuffled around the

cluster. This method is therefore named shuffle schedulability testing.
A consideration which closely affects both the targeting and the shuffle

schedulability testing configurations, is the extent to which the processors within the cluster

are coupled or synchronised. Clearly targeting is an activity which is global to the cluster

and therefore benefits from some synchronisation across the processors within the cluster.
Similarly the process of shuffle schedulability testing can be speeded up if each of the

processors within the loop is performing its schedulability testing simultaneously. Therefore

the general assumption throughout the following work is that there is some means for the

processors within the cluster to synchronise. The next section discusses the issues which

are to be investigated (i) for targeting and (ii) for shuffle schedulability testing.

6.2 ISSUES TO BE INVESTIGATED

6.2.1 Rationale for Targeting

The first issue to be investigated in targeting is the algorithms which are used to

target the aperiodic requests onto the application processors. These algorithms will use a

113

slack-based pre-test and will incur various overheads in mapping requests to target
processors. The algorithms to be examined will range from Round Robin allocation with no
pre-test, through Targeting by the use of a slack-based pre-test, to 'clairvoyant' Targeting

where the slack-based pre-test is replaced by the full schedulability test which is later

performed on the target processors. This last algorithm acts as a control experiment which
is designed to measure the maximum benefit which targeting can produce.

The second issue in targeting is the frequency and methods with which slack is

updated. This determines the accuracy of the slack-based pre-test. Of course the update of
slack values will incur some overhead on the target processors and a key issue is the trade-
off between this overhead and the benefit to targeting of slack values which are more up-
to-date. In order to address this issue it is useful to review recent work by Davis on slack
stealing.

6.2.2 Davis' Slack Stealing Algorithm

Use with Soft Tasks

In [13] Davis et al. present an algorithm which performs exact on-line calculations
of the slack within a fixed priority task list. A task's slack is defined as: the task's current
deadline minus (the task's remaining WCET plus any interferences by higher priority tasks

within the current deadline). When the algorithm determines that slack is currently available
at all priority levels within the task list, then tasks with soft deadlines can be executed at the
highest priority level. This has the benefit of reducing the mean response time of the soft
tasks. This dynamic method of slack stealing is more general than the static equivalent due

to Lehovsky and Thuel (reviewed in Section 2.4.3). The method can accommodate hard

tasks which exhibit release jitter. It also reclaims, as extra slack, any gain time which

results form hard tasks performing better than their projected worst-case. Unfortunately

Davis' algorithm incurs large overheads, so that he proposes a less expensive method which

performs exact updates of slack only periodically. Therefore, in between updates, only

approximate values of slack are available.

Use with Hard Aperiodic Tasks

In [10] Davis uses his slack stealing algorithm in the acceptance testing of hard

aperiodic tasks whose deadlines must be guaranteed on-line. He uses Test 2 due to Audsley

(see Section 2.7) as a sufficient but not necessary schedulability test for the hard aperiodic
task itself, followed by the use of the approximate slack stealer to determine the

schedulability of all lower priority tasks. The advantage of incorporating the slack stealer

114

into the scheme, is that soft tasks can be scheduled within the same framework, in the way
described in the previous paragraph.

If soft tasks are not required, or can satisfactorily be executed in background, then
the use of slack stealing imposes an unnecessarily high and continuous overhead. As has
been seen in Chapters 4 and 5, all that is required for the guarantee of a hard aperiodic
task, is a single execution of an algorithm such as BUH, when the task arrives. A further
disadvantage of Davis' scheme is that it uses Audsley's Test 2 which is a pessimistic test
(see Section 2.7). In contrast to this, BUH uses a less pessimistic test initially (Audsley
Test 3) followed by an exact test (PP) if the aperiodic task fails to be guaranteed by Test 3.

6.2.3 The Slack-based Pre-test used in Targeting

In discussion of his slack stealing algorithms, Davis [10,13] has pointed to the
prohibitive overheads of performing very frequent updates of the exact slack which is

available at each level within a task list. In contrast to this, this thesis provides a method of
guaranteeing hard aperiodic tasks by incurring the overhead of a single execution of one of
the hybrid algorithms discussed in Chapters 4 and 5. The slack-based pre-test which is used
in targeting, takes advantage of a by-product of these hybrid algorithms. Although the by-

product provides only approximate data on slack, this data is 'free' in the sense that it

comes, at virtually no extra overhead, from schedulability tests which already run on the
target processors. The following paragraph explains how the slack data is derived.

In effect, the hybrid algorithms commence with an approximate calculation of the

slack possessed by the aperiodic task which has arrived, and all the tasks which lie below it
in the task list. This is because the first stage of a hybrid algorithm applies an O(N2)

schedulability test to the aperiodic arrival, and to all the tasks which lie below it. The
O(N2) algorithm performs a pessimistic calculation of the total interference from higher

priority tasks, within the remaining deadline of the test task (see Appendix A. 1). The
interference is added to the (residual) WCET of the test task, and the resulting sum is

compared to the test task's remaining deadline. The difference between the sum and the

remaining deadline is actually a lower bound on the slack which is available for the test

task. Therefore, if the O(N2) component of the hybrid algorithm is amended to record this
difference whenever a task is schedulability tested, then approximate slack values are

available, at little extra overhead, for the aperiodic tasks and all tasks lying below them.
The proposal is to use the approximate slack values dating from the most recent

schedulability tests, in order to guide the allocation of the current set of aperiodic arrivals
to the three target processors within the cluster. Allocation will be guided by a

schedulability pre-test which compares the WCET of the aperiodic arrival with the
(approximate) slack values for all tasks lying below the position of the aperiodic task within

115

the task list. As with slack stealing, a condition of acceptance of an aperiodic task will be
that the slack available at all lower priority levels is greater than, or equal to, the WCET of
the aperiodic. This is the only condition for schedulability which is considered by the pre-
test which allocates aperiodic arrivals to target processors.

The pre-test is also approximate because the slack values on which it is based are
one schedulability testing cycle, or more, out-of-date. How outdated a slack value is, will
depend on how recently the task was schedulability tested. The issue of whether to
introduce more frequent slack updates is investigated by the introduction of dummy

aperiodic requests which incur extra schedulability tests, and force the update of all slack
values.

6.2.4 Issues to be investigated for Targeting

1. Targeting Algorithms: in particular the mapping of aperiodic requests to the most
suitable target processors.

2. The Slack-based Pre-test: how often is slack updated, what overheads are incurred,

and how can these overheads be reduced?

3. Ordering of Aperiodic Requests: should aperiodic requests be presented to the

targeting algorithm in FCFS order or earliest deadline order? This may make a
difference in the case of sets of aperiodic tasks for which the pre-test cannot provide a

preferred mapping onto target processors.

4. Bottom-up versus Top-down order of schedulability testing: in Chapter 4 Bottom-

up was been found to be most efficient order of schedulability testing the tasks in the

task list. However, the pre-test only estimates the schedulability of those tasks below

the aperiodic position. Therefore it may be more efficient for the full schedulability test

to start by schedulability testing the aperiodic request (i. e. top-down order).

5. Overheads on the Targeting Processor: more sophisticated targeting methods may
incur larger overheads on the targeting processor. This will reduce the utilisation

available on the targeting processor for other systems or applications tasks.

6. Updating slack values for rejected Aperiodic Requests: the full schedulability test

calculates slack values which include the effect of the aperiodic request. If the request is

then rejected, the slack values which have been calculated are more pessimistic. The

116

issue arises as to whether to update with these pessimistic values, or to revert to the
more outdated previous values.

7. Uniform variation in Periodic Utilisation: targeting should be investigated for
different, periodic utilisations across the target processors. The first stage should be to
investigate different, uniform periodic utilisations across the targets.

8. Skewed Periodic Utilisations: targeting should also be investigated for a skewed
distribution of processor utilisations across the target processors.

9. Internally and Externally generated Aperiodic Tasks: so far consideration has been

restricted to aperiodic tasks which are generated outside the cluster and can therefore
be directed to the most suitable target. Consideration should also be given to aperiodic
tasks which are generated on the target processors themselves. Such a mixture of
internal and external requests could occur in a real application.

6.2.5 Issues for Shuffle Schedulability Testing

1. Internally and Externally generated Aperiodic Tasks: a mixture of these should also
be considered for shuffle schedulability testing.

2. Synchronisation: the synchronisation of schedulability testing for different processors

within the loop may affect the performance of shuffle schedulability testing.

3. Variation of Periodic Utilisation: the effect on shuffle schedulability testing of
different periodic utilisations on the processors within the loop should also be

investigated.

The following sections now consider the above issues in turn, presenting the results of the
investigations which were performed. As before, it is assumed that aperiodic requests have

a minimum inter-arrival time so that an upper bound may be placed on schedulability
testing. They are in fact sporadic requests. In the case of Targeting, it is assumed, in all

cases, that there are three target processors, and one targeting processor, in a

multiprocessor cluster.

117

6.3 ALGORITHMS FOR TARGETING

6.3.1 Introduction

A range of targeting algorithms were developed from simple Round Robin to a
'clairvoyant' method which actually performs the full schedulability test in advance of
allocating the sporadic request to a processor where the schedulability test is repeated. This
latter acts as a benchmark for the maximum performance enhancement which can be
achieved by targeting. The purpose in developing a range of targeting techniques, each with
increasing overhead, was to investigate the benefits gained from executing the targeting
algorithms on the targeting processor. As usual there was a trade-off between the time
spent on these overheads, and the increase in the chances of guaranteeing the sporadic
tasks. The targeting methods developed were as follows:

(i) Round Robin

(ii) Partial Targeting

(iii) Full Targeting

(iv) Ideal Targeting

As has been explained already, Round Robin merely performs a cyclic allocation of
sporadic requests onto the three target processors. It is the simplest algorithm, and involves

virtually no overhead. Both Partial Targeting and Full Targeting allocate sporadic requests
on the basis of slack values calculated at the previous full schedulability test on each target

processor. Hence the slack values used by the pre-test are always somewhat out-of-date.
Furthermore, these algorithms use slack values which are updated regardless of whether
the sporadic requests are accepted or not. Therefore the slack values can be pessimistic.
However, this method has the advantages that slack values are as fresh as possible, and that

overheads incurred by the pre-test are slightly smaller. (An investigation is carried out in

Section 6.9 as to the effectiveness of updating slack values only when the sporadic requests

are accepted.)

In order to bound schedulability testing there is a constraint of a maximum of one

sporadic request to be schedulability tested, at any processor, in any one schedulability test

slot.

6.3.2 Partial Targeting

Partial Targeting is partial in the sense that the mapping of sporadic requests to

processors which pass the pre-test is performed in an approximate FCFS manner. The

118

Partial Targeting algorithm is specified by the pseudo-code in Figure 6.1. The algorithm is

also described in the following paragraphs.
Firstly, Partial Targeting performs a default pre-allocation of requests to targets

using Round Robin (RR). Then each request is taken in turn and is pre-tested against
targets until it passes a pre-test, or there are no more remaining targets which have not
already been allocated by the pre-test in this way. If the request passes its pre-test on the
target to which it was originally allocated by RR, then that allocation holds good. If the

request passes a pre-test on a target which is different from its RR allocation, then the

request is re-allocated to the new target. If the request fails its pre-tests on all of the

remaining targets, then it retains its default allocation. Obviously the first request has the

chance of being pre-tested against three targets, a second request against only two targets,

and a third request is simply allocated to the remaining target.

perform default pre-allocation of requests to targets by Round Robin (RR).

for each request in turn

set the current target to be the first of the remaining targets which have not been

allocated a request by the pre-test

while (this request has not passed the pre-test on any target) and (there are

unconsidered targets which have not already been allocated according to the

pre-test)
pre-test this request on the current target
if this request passes the pre-test on a target different from its RR allocation

then swap targets between this request and the request which was

allocated by RR to the different target
/*no reallocation of targets is required if this request passes the

pre-test on the target to which it was pre-allocated by RR*/

else

end if

end while

end_for

set current target to next target not already allocated by the pre-test

Figure 6.1: Pseudo-code definition of Partial Targeting.

The algorithm uses swapping in order to speed up the allocation of targets which

have passed a request by the use of the pre-test. When a request passes the pre-test for a

target other than its default target, then the default target and the new target are swapped.

119

This transposition places the new target in an indexed position which is regarded as finally
allocated, whereas the default target is now in a position of higher index value which is
regarded as unallocated by the pre-test. An alternative method of searching all targets for
each request may look simpler on paper. However, such a method would require a final
stage of sorting the targets which is avoided by the use of swapping.

The starting position for the default Round Robin pre-allocation among the three
targets is adjusted at every schedulability test slot in order to spread more evenly the
allocation of requests. The position is determined by a random choice between the targets
which were not allocated a sporadic request at the last schedulability test slot. If three
sporadic requests were allocated in the last allocation cycle, then the new starting position
will be the same target as before.

Partial Targeting is simple and incurs relatively low overheads on the targeting
processor. However, it provides a far from optimal mapping between sporadic requests and
target processors. It suffers from the major disadvantage that second and third sporadic
requests have a reduced choice of targets. For example, this may be particularly inefficient

when the first sporadic request has failed the schedulability pre-test on all targets but has
been (arbitrarily) allocated to the first target.

6.3.3 Full Targeting

Full Targeting constructs a matrix in order to achieve a more optimal mapping of
sporadic requests to targets. The matrix contains the results of the schedulability pre-test
for each sporadic request tested against each target.

Target 0 Target 1 Target 2

Request 0

Request 1

Request 2

1 0 1

0 0 1

1 1 1

Figure 6.2: Example of a Pre-Test Matrix.

Figure 6.2 shows an example of the pre-test matrix. A'I' indicates that the sporadic request
has passed the pre-test for the target, a '0' indicates that it failed the pre-test. Full Targeting

is specified by the pseudo-code in Figure 6.3. The algorithm is also described in the

following paragraph.
Full Targeting proceeds as follows. Firstly, any outstanding requests which are the

only ones which have passed the pre-test for a particular target, are allocated to targets in

column order. Secondly, those targets which have passed two requests are allocated

outstanding requests in row order, within column order. Finally, all remaining outstanding

120

requests are allocated FCFS to unallocated targets. (In this case, FCFS means row order,
within column order.) This last stage can include targets which have passed no requests,
targets which have passed three requests, and also requests which failed to be allocated at
the previous "attempt to allocate requests for targets which pass 2 requests" stage. All of
these allocations are held until last because targeting cannot be applied to them, and hence

they may as well be made arbitrarily. As with Partial Targeting, the starting position for

request allocation is adjusted according to the previous cycle of allocations at the last

schedulability test slot.

construct the pre-test matrix
/* allocate the requests which are the only ones to pass the pre-test on particular targets*/
for each target in column index order

if the target has only 1 request which has passed the pre-test then
if the request has not already been allocated then

allocate it to the target

end if

end if

end_for
/*attempt to allocate requests for targets which pass 2 requests*/
for each target in column index order

if the target has 2 requests which have passed the pre-test on it then

allocate the target the first unallocated request in row index order

end if

end for

/*perform FCFS allocation of all remaining requests, on all remaining targets*/

for each target in column index order
for each request in row index order

if (the target is unallocated) and (the request is unallocated) then

allocate the request to the target

end if

end for

end_for

Figure 6.3: Pseudo-code definition of Full Targeting.

Obviously Full Targeting is a more expensive algorithm which will provide a more

optimal mapping of requests to targets. However the algorithm does not provide

'backtracking' which would be optimal, but even more expensive. Figure 6.4 shows an

121

example of a pre-test matrix in which 'backtracking' would improve allocation. Full
Targeting would allocate sporadic request 0 to target 0, request 1 to target 1, but would
not have foreseen the problem that request 2 remains to be allocated to target 2 on which it
failed its pre-test. In contrast, Full Targeting with Backtracking would be able to deduce

that sporadic request 2 should be allocated to target 1, in order that request 1 can be

allocated to target 2.

Target 0 Target 1 Target 2

Request 0

Request 1

Request 2

1 0 1

0 1 1

1 1 0

Figure 6.4: Example of a Pre-Test Matrix which requires backtracking.

6.3.4 Ideal Targeting

Ideal Targeting is an algorithm provided as a 'control experiment'. Here the pre-test

matrix contains the results of the full schedulability tests of the requests on each target. In

other words this algorithm is clairvoyant in that it knows in advance the results of trying to

guarantee each request at each of the targets. This provides 'ideal' knowledge of

schedulability, which, combined with a near-optimal allocation of requests to targets,

provides a benchmark of the maximum improvement which targeting can achieve. In

practical terms this algorithm is obviously not cost-effective.

6.4 DUMMY SPORADIC REQUESTS

6.4.1 Rationale for the use of Dummy Sporadics

When performing targeting which is primarily based on somewhat outdated slack

values, the issue arises as to whether to introduce methods of updating the slack values

more frequently. This may improve upon the targeting, but, because slack calculations are

performed on the targets themselves, the extra overhead incurred may actually decrease

overall throughput of sporadic tasks. A compromise is to ensure that the slack values of the

tasks in the task lists associated with each target, are each updated at every schedulability

test slot. This will not occur automatically because, unless requests are flowing in at the

maximum rate, there will be slots when targets are not allocated requests. Even when a

122

request is schedulability tested upon a target, not all the tasks in the task list will have their

slack values updated. This is because only the tasks below the position of the sporadic
request are schedulability tested.

The method of using dummy sporadic requests allows slack values to be updated
whether a target has been allocated a sporadic request or not. Effectively, targets which are
not allocated a true sporadic request are allocated a dummy request instead. This causes a
schedulability test to take place and therefore slack values to be updated. However,
because the request is marked as a dummy no sporadic task is inserted into the task list. By

setting both the deadline of the dummy request to be the shortest in the task list, and by

setting the computational requirement of the dummy task to be a token 1 tick, we can force

all of the tasks in the task list to have their slack values updated. This is because all the

tasks below the dummy will need to be schedulability tested in order to show that the 1-tick

computation is schedulable.
Obviously the use of dummy sporadic requests will add to the schedulability test

burden on each target processor and the key question is whether this is outweighed by the
improved targeting as a result of more up-to-date slack values. As stated earlier, it is hoped

that the use of dummy requests to ensure a schedulability test at each schedulability test

slot, will incur lower overheads than those experienced by Davis et al. in [13].

6.4.2 Ordering Sporadic Requests

A lesser issue concerns the ordering of sporadic requests which are presented to

Partial, Full or Ideal Targeting. As explained above, all of these algorithms have a degree of
FCFS in their allocation of requests to targets. Partial Targeting gives the first sporadic

request in the list the maximum choice of targets whereas the second request has restricted

choice, etc. Full and Ideal Targeting can provide no preferred mapping of requests to

targets which have passed three requests or zero requests, and in these cases requests are

allocated (arbitrarily) in request index order.
These FCFS or arbitrary orderings raise the question of whether sporadic requests

can be systematically ordered in such a way as to enhance sporadic throughput. One such

ordering may be to rank the requests in order of increasing relative deadline from the time

at which schedulability testing is performed. This would have the effect of giving

preference to shorter deadline (and on average smaller computation) requests.

Alternatively, the sporadic requests could simply be kept in the random ordering in which

they arrived at the targeting processor.

123

6.5 SIMULATIONS OF THE TARGETING ALGORITHMS

6.5.1 Introduction

Simulations were performed using three resident periodic task sets on each of the
three (simulated) target processors. The slight extra overhead of retaining slack values after
the schedulability test on each target was included in the simulations. The overhead of
targeting itself was measured but was deemed to take place on the targeting processor and
had no effect on the target processors. The simulations include no overheads for the
communications of targeting information between the targeting processor and the target
processors. Fast hardware and a closely coupled cluster can make such overheads
negligible, and in any case they do not affect the principle of targeting.

Targeting Method: Round Partial Full Ideal
Robin Targeting Targeting Targeting

Guarantee Ratio 0 0.883 0.846 0.852 0.849

Guarantee Ratio 1 0.882 0.863 0.878 0.886

Guarantee Ratio 2 0.870 0.870 0.865 0.856
Ave Test Time 0 (ms) - 2.546 2.598 2.632

Ave Test Time 1 (ms) - 2.330 2.353 2.354

Ave Test Time 2 (ms) - 2.372 2.355 2.381

Total Computation
Time ms : 317,450 306,135 308,790 310,210
Sporadic Utilisation

achieved (%) 84.65 81.64 82.34 82.72
Total number of

sporadics guaranteed: 13,377 13,095 13,176 13,157

Total Schedulability

Test Time for Real 32,315 31,812 31,486 32,809

Tasks ms :
Total Schedulability
Test Time for Dummy - 40,683 41,578 40,883

Tasks ms

Table 6.1: Bottom-up Hybrid (Test 3, Headstart) with sporadics targeted
in random order.

124

The number of periodic tasks on each target (N) was fixed at 15 because this was in
the middle of the range of N values used in previous simulations. The schedulability test
algorithm used on each of the target processors was Bottom-up Hybrid with Test 3 and
Headstart because this performed best for N= 15 (see Section 5.9). Dummy sporadic
requests were used as discussed above, in order to ensure the update of slack values at
every 100ms schedulability test slot. As in previous simulations the results presented are
either accumulated totals or averages over 10 simulations. Each of the 10 simulations used
a different periodic task set for each processor, for each simulation. Each of the periodic
task sets was randomly generated to be unique, schedulable and give a periodic utilisation
of 85%. Sets of randomly generated sporadic requests were used which added a maximum
attainable 12.5 % sporadic utilisation to each of the targets.

Table 6.1 shows full results for each of the targeting algorithms when sporadic
requests are ordered randomly rather than in order of remaining deadline as discussed

above. The Guarantee Ratios over 10 simulations, for each of the three targets (0,1 and 2)

are included in the table in order to demonstrate the difficulty of using Guarantee Ratio as a
measure of the performance of targeting. As they stand they do not give a clear indication

of the performance of each of the algorithms. The average schedulability test time (Ave
Test Time) on each of the targets is also included to give an idea of the typical times taken

to guarantee (or reject) a request at a target. These averages include the times taken for
dummy tasks. Round Robin does not use dummy tasks, so its column contains no entry for

Ave Test Time.

The Total number of sporadics guaranteed is the total of all sporadic tasks

guaranteed by all three targets over a run of 10 simulations. It gives a fairly accurate
measure of the relative performances of the targeting algorithms. A more accurate measure

still, is given by Total Computation Time. This is the total sporadic computation time over
10 simulations, achieved on the three targets, and is the best measure of the effectiveness of

each targeting method. Sporadic Utilisation achieved expresses Total Computation Time

as a percentage of the total possible sporadic computation.
Total Schedulability Test Time for Real Tasks is the accumulated schedulability

test time for the actual sporadic requests sent to all three targets over the 10 simulations.
Total Schedulability Test Time for Dummy Tasks gives a comparable figure for time spent

on the schedulability testing of dummy tasks. Again, because Round Robin does not use
dummy tasks, this figure is omitted in the Round Robin column. Not included in the table

are the maximum schedulability test times recorded over all of the three targets. These

were in the region of 5 ms, and therefore this was the worst-case computation time used
for the top-priority periodic task which models schedulability testing within the task lists of

all three targets.

125

6.5.2 Interpretation of the Results

A discussion of the results in Table 6.1 is as follows. Clearly Total Computation
Times for the targeting methods are disappointing in that they are less than that achieved by
Round Robin allocation. However, as expected, the more sophisticated forms of targeting
perform better than the cruder forms. (Again note that targeting overheads are not included

within the overheads of the target processors).
Total No of Sporadics Guaranteed show a similar ordering of performance

between the methods, with the notable exception of Ideal Targeting which guarantees
fewer sporadic requests than Full Targeting but still provides a greater Total Computation
Time. This marginal effect can be explained by the slightly greater ability of Ideal Targeting

to guarantee, on average, greater computation times for sporadic tasks than Full Targeting.
This conclusion is confirmed by comparing the results for Total Schedulability Test Time
for Real Tasks with Total Schedulability Test Time for Dummy Task for the two methods.
Ideal Targeting incurs greater Total Schedulability Test Time for Real Tasks but a lesser
Total Schedulability Test Time for Dummy Tasks. This can be explained by the larger Total
Computation Time guaranteed by Ideal Targeting giving a small general increase in Total
Schedulability Test Time for Real Tasks due to the presence of slightly more persistent
tasks within the task list. However, dummy schedulability testing requires all the tasks in

the task list (beneath a high-priority dummy of negligible computation time) to be

schedulability tested. Hence it is more sensitive to the number of tasks in the task list. Ideal

Targeting may have, on average, shorter task lists which would explain the lower overhead
for Total Schedulability Test Time for Dummy Tasks.

The larger Total Schedulability Test Time for Real Tasks for Partial Targeting as

compared to Full Targeting may be due to the larger schedulability test overheads incurred

with a more poorly targeted allocation of requests to targets such as occurs in Partial

Targeting. For example, schedulability tests which fail can incur large overheads, on

average.

6.5.3 Using Earliest Deadline ordering of Sporadics

The next simulations performed repeated the use of Bottom-up Hybrid with Test

3 and Headstart as in Table 6.1, but attempted to improve the performance of the

targeting methods by presenting the pre-test with requests in order of their earliest

remaining deadline. Table 6.2 shows the results. The rows for Guarantee Ratios and
Average Test Times have been omitted because these are not clear indicators of

performance.

126

Table 6.2 shows that giving preference to the requests with the shortest remaining
deadline benefits the performances of all of the targeting algorithms, although of course it

makes no difference to Round Robin which is in effect a random allocation. The
improvement in performance can be explained by shorter deadline tasks being less likely to
be guaranteed when they are allocated to remaining processors which have less slack
available. Other requests, because of their longer relative deadlines, stand a greater chance
of being guaranteed when they are allocated to the remaining targets. Again the relative
performances of the targeting methods show similar improvements when greater overheads
are incurred in order to increase the accuracy of the targeting. The slightly higher values for
Total Schedulability Test Time for Real Tasks as compared to Table 6.1 can be explained
by the greater number of sporadic requests which are being guaranteed and therefore the
'added computation time' within the task list.

Targeting Method: Round Partial Full Ideal
Robin Targeting Targeting Targeting

Total Computation
Time ms : 317,450 307,172 309,250 310,513

Sporadic Utilisation

achieved % 84.65 81.91 82.47 82.80

Total number of

sporadics guaranteed: 13,377 13,111 13,182 13,148

Total Schedulability
Test Time for Real 32,315 32,020 31,614 32,852

Tasks ms :
Total Schedulability

Test Time for Dummy - 40,671 41,514 41,019

Tasks ms

Table 6.2: Bottom-up Hybrid (Test 3, Headstart) with sporadics targeted in earliest deadline order.

6.5.4 Summary

The results in Tables 6.1 and 6.2 show that Targeting performs disappointingly as

compared to Round Robin. Closer investigation of the pattern of acceptance and rejection

of sporadic requests within the simulations indicated that targeting sometimes results in the

acceptance of a difficult-to-schedule sporadic which is rejected under Round Robin.

However, shortly afterwards Round Robin may cause the acceptance of two 'easier'

127

sporadics which Targeting rejects. Hence targeting can be counter-productive because it is
not clairvoyant. Similar phenomena have been described by Liu et al [58] in the context of
maximising the response time of random aperiodic requests with soft deadlines. Their
conclusion is that there is no optimal method for maximising response time, unless it is
possible to predict the characteristics of future aperiodic requests.

6.6 USE OF TOP-DOWN SCHEDULABILITY TESTING

6.6.1 Introduction

Targeting is currently performed purely on the basis of slack values of tasks which
lie below the sporadic request within the task list. In other words the pre-test gives no
indication of whether the sporadic task itself will be schedulable when interferences from
higher priority tasks in the task list are taken into account. This means that a request which
is allocated by the targeting pre-test is relatively likely to allow the existing tasks within the
task list to remain schedulable, but less likely to be schedulable itself If this is the case then
the bottom-up order of schedulability testing may no longer be the most efficient method of
finding any unschedulable tasks within a task list which will cause the request to be

rejected.
The question arises as to whether a Top-down order of schedulability testing would

be more efficient than Bottom-up. Top-down starts by testing the sporadic request and
then traverses the task list downwards, testing all the existing tasks below the request. If

this method is more efficient at rejecting unschedulable sporadic tasks, then it should cut
schedulability testing overheads overall and increase the effectiveness of targeting.
Therefore the next simulations which were performed used the Top-down Hybrid

schedulability test algorithm, with the improvements referred to as Test 3 and Headstart as
described in Chapter 5.

6.6.2 Results

Table 6.3 shows that the effect of using Top-down Hybrid is to cause a marginal
drop in Total Computation Time across all the allocation methods. This is in accordance

with the pervious results for Top-down Hybrid (see Section 4.6). Table 6.3 shows the

results when sporadic requests are placed in order of arrival (randomly) and it is therefore

comparable to Table 6.1. The performances of the targeting algorithms relative to Round

Robin are similar to Bottom-up Hybrid.

128

Targeting Method: Round Partial Full Ideal
Robin Targeting Tar etin Targeting

Total Computation

Time ms : 316,364 304,384 307,044 308,131

Sporadic Utilisation

achieved % 84.36 81.17 81.88 82.17

Total number of

sporadics guaranteed: 13,335 13,017 13,106 13,070

Total Schedulability

Test Time for Real 33,780 33,967 33,437 34,657
Tasks (ms):

Total Schedulability

Test Time for Dummy - 43,410 43,960 43,529
Tasks ms :

Table 6.3: Top-down Hybrid (Test 3, Headstart) with sporadics targeted in random order.

Targeting Method: Round Partial Full Ideal
Robin Targeting Targeting Targeting

Total Computation
Time: 316,364 305,368 306,432 308,208

Sporadic Utilisation

achieved % 84.36 81.43 81.72 82.19

Total number of
sporadics guaranteed: 13,335 13,058 13,092 13,063

Total Schedulability

Test Time for Real 33,780 33,852 33,448 34,744

Tasks ms :
Total Schedulability

Test Time for Dummy - 43,349 43,938 43,558

Tasks ms :

Table 6.4: Top-down Hybrid (Test 3, Headstart) with sporadics targeted in earliest deadline order.

Table 6.4 shows a similar set of results for sporadic requests ranked in order of

earliest remaining deadline. With one exception, Total Computation Times for targeting are
improved over Table 6.3 which confirms that this ordering of sporadic requests is again

129

beneficial. The exception is the result for Full Targeting which is less in Table 6.4 than
Table 6.3. This anomaly indicates how marginal the effect of sporadic request ordering can
be, especially for Full Targeting. Comparing similar figures for Full Targeting with Bottom-
up Hybrid (Table 6.1 with Table 6.2) it can be seen that the Total Computation Time for
earliest deadline ordering of requests it only slightly greater than for random ordering. The
anomalous result in Table 6.4 may also show that giving preference to shorter deadline
tasks shows up more the inefficiency of the top-down schedulability test algorithm. Earlier
deadlines correspond to higher positions in the task list, and therefore more top-down
schedulability testing before a discovery that a lower, previously-guaranteed task is

unschedulable.

6.6.3 Summary

These results tend to dispel the concern that Bottom-up testing might be
disadvantageous to targeting. On the contrary, the increased values for Total
Schedulability Test Time for Real Tasks and Total Schedulability Test Time for Dummy
Tasks confirm that Top-down is a less efficient order for the schedulability test algorithm.

6.7. TARGETING WITHOUT DUMMY SPORADIC REQUESTS

6.7.1 Introduction

Another issue which may impinge upon the performance of Targeting as compared
to Round Robin is the extra overhead imposed on targeting by the use of dummy sporadic
requests. The following simulations use Bottom-up Hybrid schedulability test algorithm but

without dummy sporadic requests. While this lowers the overhead on the target processors
it also means that the slack values used by the pre-test are likely to be more out-of-date.

Tables 6.5 and 6.6 show results which are comparable to Tables 6.1 and 6.2, this

time without dummy requests. Total Schedulability Test Time refers to the total time spent
in scheduling real sporadic requests only, since dummies are no longer used. The Tables

also include measurements of the targeting overhead (due to allocation, matrix

construction, etc.) on the targeting processor. Total Targeting Time on the Targeting

Processor is the accumulated overhead due to targeting over the 10 simulations. As before

the tables contrast the performance when not ordering sporadic requests and when ordering
them.

130

Targeting Method: Round Partial Full Ideal
Robin Targeting Targeting Targeting

Total Computation
Time ms : 317,450 320,970 322,110 327,001
Sporadic Utilisation

achieved % 84.65 85.59 85.90 87.20

Total number of
sporadics guaranteed: 13,377 13,543 13,575 13,639

Total Schedulability
Test Time ms : 32,315 32,091 31,853 32,953

Total Targeting Time

(ms) on the Targeting - 2,518 5,545 88,246
Processor:

Table 6.5: Bottom-up Hybrid (Test 3, Headstart) with sporadics targeted in random deadline order.

Targeting Method: Round Partial Full Ideal
Robin Targeting Targeting Targeting

Total Computation
Time ms : 317,450 321,049 322,940 327,096

Sporadic Utilisation

achieved % 84.65 85.61 86.12 87.23

Total number of
sporadics guaranteed: 13,377 13,543 13,609 13,667

Total Schedulability

Test Time ms : 32,315 32,107 32,052 33,067

Total Targeting Time

(ms) on the Targeting - 2,886 6,085 88,578

Processor:

Table 6.6: Bottom-up Hybrid (Test 3, Headstart) with sporadics targeted in earliest deadline order.

6.7.2 Interpretation of the Results

Obviously the removal of the dummy testing overheads on the target processors
improves the performance of Targeting so that it now exceeds Round Robin. Full

Targeting improves the performance by up to 2% which shows that even the more out-of-

131

date slack values are of some benefit in mapping requests to likely targets. Ideal Targeting
provides an improvement in performance of over 3%. It is not surprising that there is now a
clearer difference between the performance of Ideal Targeting as compared to Full
Targeting. This now reflects the benefit of using the full schedulability test instead of out-
of-date slack values as a basis for targeting.

Both Tables 6.5 and 6.6 show a slight increase in Schedulability Test Time
compared to Schedulability Test Time for Real Tasks in Tables 6.1 and 6.2. This is
attributable to the increase in the loading of guaranteed sporadic tasks when dummy testing
is removed.

6.7.3 Summary

Clearly Tables 6.5 and 6.6 indicate that the overheads incurred by dummy requests
are not justified in terms of improvements in the performance of targeting. The results for
Ideal Targeting provide some measure of the maximum improvement in performance which
targeting can provide.

6.8 OVERHEADS ON THE TARGETING PROCESSOR

A further issue is the overheads which are actually incurred by targeting on the
Targeting Processor itself. Total Targeting Time in Tables 6.5 and 6.6 shows that these

overheads rapidly increase with the sophistication of the targeting methods used.
Table 6.7 contrasts the Total Targeting overheads from Table 6.6 with the increase

in Total Computation Time over Round Robin. In the case of these simulations, the

overheads for Partial Targeting are outweighed by the performance improvement, Full

targeting almost 'breaks even' but, as expected, Ideal Targeting incurs a far greater

overhead than is justified.

Targeting Method: Partial Full Ideal

Targeting Targeting Targeting

Total Gain in Computation Time

over Round Robin ms : 3,599 5,490 9,646

Total Targeting Time

(ms) on the Targeting Processor: 2,886 6,085 88,578

Table 6.7: Comparing gain in computation time against targeting overheads incurred in Table 6.6

132

The results in Table 6.7 support the case for Shuffle Schedulability Testing which is
discussed below in Section 6.13.

6.9 UPDATING SLACK FOR ACCEPTED SPORADIC TASKS ONLY

Issue 6 in the introduction concerns less frequent, but sometimes more accurate,
updating of the slack values of tasks in the task list of the target processors. The issue is

whether (i) slack values in the task lists should be updated every time a request is

schedulability tested or (ii) whether slack values should be updated only when a
schedulability test has succeeded and a sporadic task is accepted.

Simulations so far have used (i) above. The advantage of (ii) is that, in the case of a
request which fails, the sporadic's computation time has not been used pessimistically in the

calculation of the new slack values. The disadvantages of (ii) are twofold. One, when a
request fails the old slack values are retained, and these will be even more out-of-date.
Two, a slightly larger overhead is incurred due to the need to temporarily store slack values
and then perform the updating only when a schedulability test succeeds. In contrast (i)

above updates the slack values every time schedulability testing is performed, regardless of

whether the sporadic request is accepted or rejected.

Version of Full (i) Update slack every (ii) Update slack only if

Targeting: schedulability test request accepted
Total Computation

Time ms : 324,098 323,597

Sporadic Utilisation

achieved (%) 86.43 86.29

Total number of
sporadics guaranteed: 13,628 13,614

Total Schedulability

Test Time ms : 32,337 32,310

Table 6.8: Two versions of Full Targeting both using Bottom-up Hybrid (Test 3, Headstart) with

sporadics targeted in earliest deadline order.

Table 6.8 shows the results of two sets of simulation for Full Targeting with (i) and
(ii) above. As before, the periodic utilisation is 85% but different sets of randomly

133

generated periodic tasks were used so that the results in column (i) are slightly different
from the simulations in Table 6.6. However, the same periodic task sets were used for both
(i) and (ii) in Table 6.8, so that these results are directly comparable. As can be seen from
Table 6.8, the original method of updating the slack values, at every schedulability test
gives a slightly better Total Computation Time. No doubt method (ii) suffers from the fact
that slack values become even more outdated plus the effect of a slightly greater overhead.

6.10 VARYING PERIODIC UTILISATIONS UNIFORMLY

The next issue to explore is the effect of varying periodic utilisations uniformly
across all targets. As mentioned in Chapter 4, sporadic utilisation can be varied either by

changing the average computation times of sporadic requests or by changing the arrival
rate of requests. Tables 6.9 and 6.10 below show the results of using each of these methods
to vary periodic utilisations uniformly across the cluster. Table 6.9 shows periodic
utilisations varying from 85% down to 50% while the average computation time for

sporadic requests varies from 25ms to 95ms. The arrival rate of sporadic requests is

constant at 0.015 requests per ms. The total possible utilisation (periodic plus sporadic) is
97.5% in every case. The performances of Round Robin and Full Targeting are compared
by measuring the percentage of the possible sporadic utilisation which is achieved by each.
Full Targeting was chosen for comparison because it was the targeting method which
provided the best performance with reasonable overheads in the previous simulations.

Table 6.9 shows that Full Targeting clearly outperforms Round Robin at low

average sporadic computation time, but the performances are very similar at high average
sporadic computation times. This may illustrate the problems of guaranteeing a sporadic
task with a large average sporadic computation time. A targeting method may make it more
likely for such a computation time to be accepted. However, as remarked above, this may
prove disadvantageous in the long run because using up most of the available slack on a
single sporadic may forfeit the chance of accepting subsequent sporadics which may be

easier to guarantee. Hence for high average sporadic computation times the relative
advantages of Full Targeting are lost.

Table 6.10 shows the results of varying periodic utilisation by changing the arrival

rate of sporadic requests. Here the average computation time of sporadic request is fixed at
50ms. Arrival rates vary from 0.01 to 0.03 per ms while periodic utilisations vary from

80.8% down to 47.5%. Again the total possible utilisation (periodic plus sporadic) is

constant at 97.5%. As before, the table compares the performances of Round Robin and
Full Targeting.

134

Ave Sporadic
Comp Time 25 50 75 95

(ms)

Resident
Periodic 85.0 72.5 60.0 50.0

Utilisation

Sporadic

Utilisation 12.5 25.0 37.5 47.5
Possible

% of Sporadic
Utilisation

Achieved by 84.65 83.31 85.86 85.11

Round Robin

% of Sporadic
Utilisation

Achieved by 86.13 85.04 85.91 85.04

Full Targeting

Table 6.9: Varying sporadic utilisation by changing the average sporadic computation time.

Sporadic arrival rate constant at 0.015 per ms.

The results in Table 6.10 show that both Round Robin and Full Targeting increase

their % of Sporadic Utilisation Achieved as the rate of sporadic arrivals increases. This is

because sporadic tasks make up a relatively larger proportion of the total possible

utilisation. The performances of both methods are very similar at the lowest arrival rate of
0.01 per ms. This is because there is little difference between Round Robin and Targeting

under a low loading of sporadic requests (an average of 1 sporadic arrival at the cluster, at

every schedulability test slot). Larger differences between Round Robin and Full Targeting

are observed at intermediate arrival rates such as 0.02 per ms. However, at the highest

arrival rate of 0.03 per ms the cluster is saturated with a sporadic request for every target

at every schedulability test slot. This means that, again, there is less difference between the

performances of Round Robin and Full Targeting.

135

Ave Arrival
Rate (per 0.01 0.015 0.02 0.025 0.03

ms
Resident
Periodic 80.8 72.5 64.2 55.8 47.5

Utilisation

Sporadic
Utilisation 16.7 25.0 33.3 41.7 50.0

Possible

% of

Sporadic
Utilisation 77.06 83.31 85.65 87.73 89.49

Achieved by
Round

Robin

% of
Sporadic

Utilisation 77.02 85.04 87.62 89.99 91.32

Achieved by
Full

Targeting

Table 6.10: Varying sporadic utilisation by changing the sporadic arrival rate.
Average sporadic computation time constant at 50 ms.

6.11 SKEWED DISTRIBUTIONS OF PERIODIC UTILISATIONS

6.11.1 Introduction

The above results show that targeting can generate only marginal improvements

across a range of periodic utilisations which are distributed uniformly across the target

processors. The next issue to investigate is whether targeting may produce clearer benefits

when applied to a skewed (uneven) distribution of periodic utilisations across the target

processors. There are obvious advantages in targeting a request at a processor with a low

periodic utilisation instead of other targets with higher periodic utilisations.

136

Two sets of simulations were performed in order to explore skewed periodic
utilisations. The first (shown in Table 6.11) has a constant, average sporadic utilisation of
45ms and a constant sporadic arrival rate of 0.02 per ms. The second (shown in Table
6.12) has a constant, average sporadic utilisation of 60ms and a constant sporadic arrival
rate of 0.015 per ms. Each table shows the % of the total possible sporadic utilisation
achieved across the whole cluster by the various targeting methods under consideration.
For all results the total possible periodic utilisation, summed across the three target
processors in the cluster, is 202.5%. The total possible sporadic utilisation added to this is
90% for all results. Hence the overall, total possible utilisation per target processor is:
(202.5 + 90)/3 in other words 97.5% per processor. This is in line with total possible
utilisations for all previous results in this chapter.

6.11.2 The Skewed Distributions

The various distributions of the 202.5% periodic utilisation across the three targets

are as follows. No-skew has a uniform periodic distribution of 67.5% on each of the three

targets and it acts as a 'control experiment'. Uniform Skew (in Table 6.11) has a uniform

gradient of periodic distribution across the targets i. e. 85% : 67.5% : 50%. Heavy skew
(Table 6.12) has a 85% : 85% : 32.5% periodic distribution. This concentrates most, but

not all, of the spare capacity for sporadic tasks in the third processor. However the

constraint of a maximum of one request per target per schedulability test slot of 100ms still

applies. This constraint is relaxed for Single Target (Tables 6.11 and 6.12) which has a
90% : 90% : 22.5% periodic distribution.

In Single Target all of the spare capacity for sporadic tasks is concentrated in the

third target. This releases the first two targets from schedulability testing altogether which

allows the periodic task set aside for schedulability testing to be included as part of the

general periodic utilisation. This task has a WCET of 5ms and a period of 100ms, so that

the effect is to add 5% to the periodic utilisation for these processors, which brings their

total utilisation (periodic only) up to 90%. In contrast, the third target processor may now
have to schedulability test up to three requests per 100ms slot. Hence its top-priority

periodic task, which represents schedulability testing, must have a WCET of 15ms and a

period of 100ms. Single Target obviously has is own unique 'targeting method' which is

simply to allocate all sporadic requests to the third target processor.
An additional targeting method is Skewed Round Robin which is the skewed

analog of Round Robin. Here Round Robin is modified so that the number of allocations

made are in inverse proportion to the ratio of periodic utilisations on the targets. In other

words Round Robin is simply upgraded to adapt rotational allocation so that targets with
lower utilisations are given correspondingly more frequent 'turns'. The ratios of the

137

frequency of allocation 'turns' for the set of target processors is equal to the ratios of their
spare capacities. Here 'spare capacity' is defined as: (97.5 - Periodic Utilisation)% for each
target.

Round Partial Full Ideal Skewed Single
Robin targeting Targeting Targeting Round Target

Robin
No Skew:

% Sporadic 85.99 86.89 87.92 88.33
Utilisation
achieved
Uniform

Skew:
% Sporadic 73.26 82.42 83.66 81.32 83.56 _
Utilisation

achieved
Single

Target:
% Sporadic 76.76
Utilisation
achieved

Table 6.11: Skewing the distribution of periodic utilisation.
Constant ave sporadic computation time of 45ms and constant sporadic arrival rate of 0.02 per ms.

Round Partial Full Ideal Skewed Single
Robin targeting Targeting Targeting Round Target

Robin
No Skew:

% Sporadic 87.82 86.11 87.57 88.88
Utilisation

achieved
Heavy Skew:

_ % Sporadic 60.01 78.81 83.51 78.11 86.11
Utilisation

achieved
SingleTarget:

- - - - - % Sporadic 79.56
Utilisation

achieved

Table 6.12: Varying the distribution of periodic utilisation (skew).
Constant ave sporadic computation time of 60ms and constant sporadic arrival rate of 0.015 per ms.

138

6.11.3 Interpreting the Results

Table 6.11 shows the following results for different degrees of 'skewedness', No
Skew shows a steady increase in the sporadic utilisation achieved from Round Robin
through to Ideal Targeting (Skewed Round Robin is not applicable for No Skew).
Uniform Skew shows generally poorer performance, especially for Round Robin which is
performing simple rotational allocation despite the inequality of periodic utilisation on each
of the targets. Targeting methods improve the sporadic utilisation achieved but it is
noteworthy that Skewed Round Robin performs almost as well as Full Targeting. Also
notable is that Ideal Targeting performs less well than Full targeting. This may be a
reoccurrence of the counter-intuitive effect where the greater ability of Ideal Targeting to
facilitate the guarantee of 'difficult' sporadic tasks, actually causes later sporadics to be

rejected.
In Table 6.11 Single Target achieves a poor sporadic utilisation. No doubt this is

partly due to the high upper bound for schedulability testing (15ms) which is used in the
schedulability testing of a newly arrived request. Also, the high request loading placed on
the single target when, for example, three outstanding sporadic requests have to be

schedulability tested must have an effect on the sporadic utilisation which is attainable.
Table 6.12 shows similar results to that of Table 6.11. Again No Skew shows the

best sporadic utilisations achieved with an increase in sporadic utilisation achieved as
targeting methods become more sophisticated. However Round Robin performs slightly
better than Full Targeting which is echoed by the results for high average computation
times and low sporadic arrival rates in Tables 6.9 and 6.10 above. Heavy Skew has most of
the spare capacity on one of the target processors with relatively little on the others (85% :
85% : 32.5%). It is not surprising that Round Robin performs so badly when using simple

rotational allocation among such a biased allocation of periodic utilisation. Steady

improvements are made when Partial Targeting and Full Targeting are used. However Ideal

Targeting results in a drop in sporadic utilisation achieved. This may be explained by the

same observations as for Table 6.11. Under Heavy Skew distribution Skewed Round

Robin actually performs best of all. Again the relatively high average computation time

(60ms) and the low sporadic arrival rate (0.015 per ms) is best served by a Round Robin

method. Finally, Single Target performs badly as in Table 6.11.

6.11.4 Summary

The results for skewed distributions of periodic utilisations can be summarised as
follows. The No Skew distribution of periodic utilisation provides the best sporadic

utilisations overall. Under a skewed distribution of periodic utilisation Skewed Round

139

Robin performs as well as the targeting methods, without the disadvantage of their
overheads on the targeting processor. Ideal Targeting can be counter-productive when
periodic distribution is skewed, and finally the method of targeting all sporadic request onto
a Single Target, in order to enhance the periodic utilisation on the remaining targets, does

not actually increase the overall utilisation across the cluster.

6.12 GENERATING SPORADIC REQUESTS INTERNALLY

6.12.1 Introduction

The final issue to be considered under the heading of Targeting is the inclusion of
sporadic requests which arise internally on the target processors themselves. Hitherto the

simulations have assumed that requests arrive only from sources external to the cluster and
are allocated by a targeting processor. However to fulfil the requirements of the
Constrained Computational Model described of Chapter 3, it is necessary to consider the
incorporation of those sporadic requests which may also arise internally at each of the
target processors.

A major issue which arises here is how the arrival of a stream of internal and
external sporadic requests can be constrained and interleaved in such a way that

schedulability testing can be bound. It is assumed that internal sporadic requests arise

randomly at target processors and that they must be either guaranteed or rejected on their
'home' processor. Furthermore, it is assumed that only one request (internal or external)

may arrive at a target processor in any one schedulability test slot. These assumptions

enforce the constraint of a maximum of one sporadic request per schedulability test slot and
therefore allow schedulability testing to be bounded.

Clearly the targeting of external sporadic requests will be undermined by the
(random) arrival of internal sporadic requests at target processors. Therefore in order to

retain some value in targeting, it is better to separate external and internal requests. In

order to achieve this, and to enable schedulability testing to be bound, it was decided that

all methods used should generate, at each 100ms schedulability test slot, either a set of
internal or a set of external sporadic requests, but never a mixture of both. As usual a set

may consist of up to three sporadic requests. A further issue concerns the use of slack

values which are recalculated when an internal sporadic request is schedulability tested. It is

argued that these values should be available to the targeting processor by exactly the same

mechanism as is used to communicate slack values generated by the schedulability testing

of external requests.

140

6.12.2 Adapted Targeting Algorithms

Random Alternating Full Adapted Adapted
Round Round Targeting Full Round
Robin Robin Tar etin Robin

% of
Sporadic 84.55 84.58 85.74 86.04 85.06

Utilisation

achieved

Table 6.13: Randomly allocated internal sporadics and systematically allocated external sporadics.

Table 6.13 shows the range of methods which were developed to deal with a

mixture of internally and externally arising sporadic requests. In Random Round Robin a

random choice is made at each schedulability test slot to decide whether sporadics requests

are (i) internal or (ii) external, for that slot. However, this can lead to an effect where

sequences of schedulability test slots are composed of 'runs' of internal or external sporadic

requests. In contrast, the method used by Alternating Round Robin (and also by Full

Targeting and Adapted Round Robin) enforces separate upper bounds on the arrival

rates of both internal and external sporadic requests. This may be closer to the

requirements of a realistic application. In Alternating Round Robin, alternating

schedulability test slots are chosen for (i) internal or (ii) external sporadic requests. This has

the effect of fixing the maximum arrival rate for either internals or externals to be 3

sporadics per 200ms. Internal sporadics are allocated randomly at each of the target

processors with the constraint that each target may take a maximum of one internal

sporadic per 200ms slot.
As previously, external sporadic requests may be allocated Round Robin, or

Targeted according to some knowledge of the slack available on each of the target

processors. In Random Round Robin and Alternating Round Robin, external sporadic

requests are allocated in round robin rotation without taking into account the allocation of

internal sporadic requests at the last 100ms slot. In contrast, Full targeting, Adapted Full

Targeting, and Adapted Round Robin make use of some of the knowledge gained at the

last 100ms allocation of internal sporadics. Full Targeting makes use of the most recently

calculated slack values (which includes any values calculated when schedulability testing

internal sporadics at a previous 100ms slot). However Full Targeting makes no use of the

knowledge of which target processors were allocated internal sporadics 100ms previously.

141

In contrast to Full Targeting, Adapted Full Targeting avoids the target positions
of the last internal sporadic request allocation, when, as described previously, it is
necessary to make FCFS allocation of external sporadics. Similarly, Adapted Round
Robin restarts its rotational allocation of external sporadics at a target where it is known
that no internal sporadic request was allocated 100ms previously. (This is slightly less than
optimal, since it would be even better to ensure that Round Robin restarts at the first

previously unallocated target if any 'runs' of two unallocated targets exist from the last
internal request allocation cycle.) In the event of all targets being allocated internal

sporadics at the last cycle, Adapted Round Robin continues where it left off at the last

external allocation, 200ms previously.

6.12.3 Results

Table 6.13 shows the percentage sporadic utilisation achieved by simulations using
this range of allocation algorithms. For all simulations there is a flat distribution of 67.5 %

periodic utilisations across all three processors, an average sporadic computation time of
45ms, and an average sporadic arrival rate of 0.02 sporadics per ms. Hence the results in

Table 6.13 are directly comparable to the results in Table 6.11, where all sporadic requests

are external.
Clearly the sporadic utilisations achieved in Table 6.13 are down on the No-Skew

results in Table 6.11. Obviously the random allocation of internal sporadic requests is

working against a balanced loading of sporadic computation on each of the target

processors. Table 6.13 shows that small improvements in performance can be made by the

use of targeting methods which take into account information gained at the last cycle of
internal sporadic allocation. Full Targeting takes advantage of slack values which are

updated by any internal sporadic in the last cycle. Adapted Full Targeting enhances

performance slightly more by taking into account the allocations of internal sporadics to

targets at the last cycle. However, a similar adaptation to Round Robin, (Adapted Round

Robin) can bring its performance closer to that of the targeting methods.

6.13 SHUFFLE SCHEDULABILITY TESTING

6.13.1 Introduction

Shuffle Schedulability Testing is a different configuration from a targeting cluster.

The targeting processor is dispensed with, and the three target processors are configured in

a 'loop'. Sporadic requests which arise (either internally or externally) at each processor are

142

first schedulability tested at the 'home' processor and, if they fail their test, are 'shuffled' to
the next processor along the loop. At the second processor the test is repeated, and, if it
fails, the request is shuffled to the third processor where a final test is performed. In this
way each processor in the cluster has an equal status, and each processor behaves

symmetrically. As with targeting, it is assumed that communications within the cluster are
sufficiently fast that communication delays are negligible, in comparison to the intervals
between acceptance testing.

In Shuffle Schedulability Testing, the issue of separating internal and external
sporadic requests no longer causes a problem. Neither type of request need be
distinguished from each other and each type can be considered as arising at random on any
of the three processors in the cluster. (Whether there is actually a targeting processor
which is allocating the external requests is not relevant.)

It is assumed that the system constrains the arrival rate of new requests, whether
internal or external, at each processor, to be a maximum of one 'home' request per
schedulability test slot. However, in order to speed up the 'shuffling', the constraint of one
schedulability test per processor per 100ms is relaxed, and processors may now perform up
to three tests per slot. This allows a processor to schedulability test up to two sporadic
requests which have been 'passed on' from other processors which rejected them. The

upper bound for schedulability testing (which is itself used when performing the

schedulability test) must therefore be trebled to 15ms.
As previously, the simulations make the idealised assumption of zero

communication overheads incurred when a request is passed on from one processor to the

next. This assumption must not be confused with the effect of phase differences between

the start of schedulability test slots at each of the processors. The effect of such phase
differences is now discussed.

6.13.2 The Effect of the Phase Difference

A key performance parameter in Shuffle Schedulability Testing may be the size of

any delays before follow-up schedulability tests at processors along the loop can be

performed. Loosely coupled processors may have large phase differences between their

schedulability test slots and the delays incurred by these differences may degrade the

performance of Shuffle Schedulability Testing.

The simulations of Table 6.14 investigate the effect of such phase differences

between schedulability test slots. For each simulation in the table, the delays between

processor schedulability slots are set to a different, fixed value. Fully Unsynchronised

carries a set delay of 100ms between processors, Semi-synchronised has a delay of 50ms

and Fully Synchronised has zero delay. Regarding the order of schedulability testing at the

143

start of a 100ms slot, it was decided that sporadic requests which have newly arrived at a
processor should be given preference over requests shuffled from other processors. '

Fully Semi- Fully
Unsy nchronised Synchronised Synchronised

% of Sporadic
Utilisation 87.34 87.73 88.36

achieved

Table 6.14: Shuffle Schedulability Testing with varying degrees of synchronisation between the

processors.

6.13.3 Interpretation of the Results

The simulations in Table 6.14 carry a flat distribution of 67.5% periodic utilisations

across all three processors, an average sporadic computation time of 45ms, and an average

sporadic arrival rate of 0.02 sporadics per ms. Therefore these results are directly

comparable to the No Skew results in Table 6.11. Fully Synchronised in Table 6.14

shows around 2% higher Sporadic Utilisation achieved than Round Robin in Table 6.11.

This is the appropriate comparison to make because Shuffling, like Round Robin, incurs no

overheads for targeting. In fact, Table 6.11 shows that Full Targeting, by incurring

considerable targeting overheads, achieves only similar sporadic utilisations to those of

Shuffle Schedulability Testing in Table 6.14.

Results not shown in the Tables indicate that Shuffling makes a small but consistent
improvement over Full Targeting, in the total number of sporadics tasks guaranteed. For

example, Fully Synchronised in Table 6.14 manages to guarantee a total of 18,501

sporadic tasks compared to a total of 18,310 sporadic tasks for Full Targeting in Table

6.11. This indicates a slight tendency for Shuffling to favour sporadics with shorter

computation times. This could be because a second or third schedulability test within a

schedulability test slot at a processor may stand a slightly greater chance of succeeding for

requests with smaller computation requirements.
Looking at the delays introduced into Shuffle Schedulability Testing in Table 6.14,

it is not surprising that greater performance can be achieved when follow-up schedulability

testing can be performed immediately. However, performance deteriorates only slightly

when the maximum possible delay of 100ms is introduced at each processor. This can be

explained by the fact that delaying can, in some circumstances, reduce schedulability test

overheads. The explanation is as follows.

144

Shuffling with delays is programmed to reduce the current deadline of any request
by the amount of any delay which has elapsed in receiving that request from another
processor. Furthermore shuffling with delays is judged to be unlikely to result in an
eventual guarantee of a request once the deadline of the request has been reduced below a
certain threshold. (This is implemented by no longer passing on requests once their current
deadlines have been reduced to 100ms or less.) In contrast, Fully Synchronised Shuffling.
experiences no delays between processors and therefore current deadlines are never
reduced. In this case, requests with short deadlines (e. g. less than 200ms) may well incur an
expensive schedulability test at each processor before being rejected anyway.

It is interesting to note that the total schedulability test overheads for Shuffle
Schedulability Testing are considerably greater than those for Full Targeting. Typical
figures (not shown in Tables 6.14 or 6.11) for Total Sched Test Time are 54,164ms for
Shuffle Schedulability Testing as compared to 39,670ms for Full Targeting. Obviously this
is due to some requests being passed on to the second or third processor.

Summary: These results show that Shuffle Schedulability Testing can provide a
comparable performance to targeting methods without incurring their overheads. Therefore
the final issue is to investigate the performance profile of Shuffle Schedulability Testing

under varying sporadic and periodic utilisations.

6.13.4 Varying Periodic Utilisations

Of the different forms of Shuffle Schedulability Testing which were simulated,
Fully Synchronised performed best, and therefore it was adopted for the simulations in

Table 6.15, where periodic utilisation was varied uniformly across all processors. Variation

of sporadic utilisation by changing the sporadic arrival rate was chosen because this

produced the greatest variation in the performances obtained for original Round Robin and
Full Targeting (see Table 6.10). These original results for Round Robin and Full Targeting

are included in Table 6.15 for the convenience of comparing them to results obtained for

Fully Synchronised Shuffle Schedulability Testing. The 0.01 sporadics per ms column
is missing because it was not possible to generate the necessary Periodic Utilisation

(80.8%) for Shuffle Schedulability Testing when the upper bound for schedulability testing

had been raised to 15ms.

The results in Table 6.15 show that Fully Synchronised Shuffle Schedulability

Testing performs 2% to 3% better than original Round Robin and performs marginally
better than Full Targeting. Note that the performance improvement due to Fully

Synchronised Shuffle Schedulability Testing increases slightly with increasing sporadic

arrival rate, and decreasing periodic utilisation. Again, more detailed results (not shown)

145

indicate that Fully Synchronised Shuffle Schedulability Testing slightly favours sporadics
with smaller computation times.

Ave Arrival Rate
(per ms) 0.015 0.02 0.025 0.03
Resident

Periodic Utilisation 72.5 64.2 55.8 47.5

Sporadic Utilisation
Possible 25.0 33.3 41.7 50.0

% of Sporadic
Utilisation 83.31 85.65 87.73 89.49

Achieved by
Round Robin

% of Sporadic
Utilisation 85.04 87.62 89.99 91.32

Achieved by

Full Targeting

% of Sporadic
Utilisation

Achieved by 85.16 87.76 90.36 92.66

Fully Synchro
Shuffle Sched

Testing

Table 6.15: Varying sporadic utilisation by changing the sporadic arrival rate.
Average sporadic computation time constant at 50 ms.

6.13.5 Summary

Shuffle Schedulability Testing is more efficient than targeting methods because it

achieves similar performance while incurring no overheads on a targeting processor. It does

this despite the greater burden of schedulability testing, and the adverse effect of the higher

upper bound on schedulability testing.

146

6.14 SUMMARY OF WORK DONE

This chapter has reported on the results of extensive investigations into the
operational use of schedulability testing within a processor cluster. In general, sporadic
requests can arise internally within the cluster or externally from some other part of the
system. The cluster may be configured for 'targeting' in which a fourth processor directs
requests to three target processors. Alternatively, the three targets may be configured as a
'loop' with each processor receiving its sporadic requests separately.

In targeting, each target processor attempts to guarantee a sporadic request which
it receives from the targeting processor. If the attempt fails then the request is rejected. In
'shuffle schedulability testing' the originating processor first attempts to guarantee, but a
failed request is passed round the loop for further schedulability testing.

A variety of targeting algorithms were developed which would allow the targeting
processor to allocate each sporadic request to the target it judges most likely to guarantee
it. These ranged from simple Round Robin allocation of requests, to allocation based on a
slack-based pre-test. An examination was made of the trade-off between the value to
targeting of more up-to-date slack values on the target processors, and the extra overhead
incurred on the targets in order to achieve this.

The behaviour of Targeting was investigated when the distribution of periodic
utilisation within the cluster was varied. Firstly, a range of uniform periodic distributions

were investigated. Secondly, skewed distributions of periodic utilisations across each of the
target processors were simulated. The work on Targeting concluded by investigating the

effect of the generation of internal sporadic requests at the target processors within the

cluster. It was found that the targeting algorithms could be adapted to allow for the recent

allocation of such internal sporadic requests.
Finally, simulations of 'Shuffle Schedulability Testing' were performed using similar

test data as for targeting. It was found that the performance of Shuffle Schedulability

Testing deteriorated only slightly when failed requests were delayed in their shuffle from

one processor to another. The performance of Shuffle Schedulability Testing was also
investigated for a range of uniform, periodic utilisations.

147

6.15 CONCLUSIONS

In the following conclusions, 'performance' is measured by the sporadic utilisation achieved.

6.15.1 General Conclusions for Targeting :

1. Targeting performs marginally better than Round Robin Allocation for a uniform
distribution of periodic utilisation upon the processors within the cluster.

2. The performance of targeting can be improved by constructing a more optimal
mapping of sporadic requests to target processors. However this can incur large

overheads on the targeting processor, which are not justified in terms of the gains in

performance across the target processors.

3. The use of extra schedulability testing on the target processors in order to permit a
more frequent updating of slack, is not cost-effective and can decrease the

performance of the targeting methods investigated to below the level achieved by

Round Robin.

4. Allowing targeting algorithms to give preference to sporadic requests with the earliest

relative deadlines can enhance the performance of targeting.

Conclusions for Targeting in a Cluster with various Periodic Utilisations:

5. A uniform distribution of periodic utilisation on the target processors achieves the

highest overall performance.

6. If there is a skewed distribution of periodic utilisations over the target processors,

then targeting provides a better performance than simple Round Robin. However,

adapting Round Robin to provide a skewed allocation of sporadic requests can

achieve comparable performance to that of targeting.

7. Distributing periodic utilisation such that a single target carries all of the spare

capacity of the system leads to poorer overall performance across the cluster.

148

Conclusion for a mixture of Internally and Externally Generated Sporadic Requests:

8. The introduction of random, internally generated sporadic requests into a cluster
generally decreases performance. However, some performance can be restored to the
targeting methods, and to Round Robin, by adapting them to take into account the
recent allocation of internal requests.

6.15.2 Conclusions for Shuffle Schedulability Testing:

9. Shuffle Schedulability Testing incurs no overheads on a targeting processor and can
provide gains in sporadic utilisation which are greater than those provided by

targeting methods.

10. Shuffle Schedulability Testing is not adversely affected by the random generation of
internal sporadic requests and allows both internal and external requests to be
integrated for the purposes of schedulability testing.

11. The performance of Shuffle Schedulability Testing deteriorates only marginally when
schedulability testing on the processors within the cluster is not synchronised.

12. Shuffle Schedulability Testing cannot be applied at high periodic utilisations, because

of the relatively high upper bounds which it requires for schedulability testing.

6.15.3 Overall Conclusion

Targeting provides only marginal benefits over Round Robin methods of allocating

sporadic requests within a cluster of processors.
Shuffle Schedulability Testing is a preferable configuration to Targeting because:

0 it incurs no Targeting overheads and dispenses with the need for a Targeting

Processor.

" it provides greater, or equal performance to that of Targeting.

" it integrates the schedulability testing of sporadics requests which arise both

internally within the cluster, and externally from the surrounding system.

" its performance is not degraded by the random occurrence of internal sporadic

requests upon its processors.

149

CHAPTER 7

ADMISSION POLICIES

7.1 INTRODUCTION

7.1.1 Objective

Admission policies arbitrate between optional computations which have passed
their schedulability tests, and are competing for admission to the schedule on a processor.
In previous chapters FCFS Admission Policy has been assumed, for the admission of

requests for the execution of sporadic tasks, which have passed their schedulability tests.
However the constrained computational model presented in Section 3.4, requires that Best

Effort Admission Policy be used in order to support the semantics required by different

utility levels of optional computation.
The purpose of this chapter is to compare the performances of Best Effort and

FCFS Admission Policies, under a wide range of simulation parameters, such as Periodic

Utilisation and Sporadic Arrival Rate. This should establish ranges of values of these

parameters within which the constrained model, using Best Effort Admission Policy,

provides a higher total utility for the system. Under other parameter values, FCFS may

provide higher performance.

schedulability test the request with the full task list
if the schedulability test succeeds then

accept the request
else

remove all abortable, lower utility tasks from the task list

schedulability test the request within the reduced task list
if the schedulability test succeeds then accept the request

for each lower utility task which has been removed, taken in order of (i) the
highest utility category remaining (ii) lowest residual computation time

within that category :
schedulability test the removed task
if the task passes the test then re-instate it in the task list

end for
else

end if

end if

reject the request
reinstate all removed tasks

Figure 7.1: Pseudo-code definition of Best Effort Admission Policy.

150

The algorithm for Best Effort Admission Policy which is used in this work, is
specified by the pseudo-code in Figure 7.1. The algorithm was adapted from Best Effort as
presented by Locke [35] and modified by Davis et al. [12]. Locke's original Best Effort
algorithm admits tasks according to their value densities (value or utility upon completion,
divided by computational requirement) removing tasks from the run queue if the
probability of overload is greater than some threshold. In Locke's scheme, tasks are
scheduled according to earliest deadline first policy.

In [12] Davis presents a Best Effort Admission Policy which also admits tasks
according to value density, but ensures that all admitted or re-admitted tasks are
guaranteed to meet their deadlines. Davis' algorithm is similar to the one used in this work
(given in Figure 7.1). The difference between them is that Davis' algorithm uses many
utility levels, while the algorithm in Figure 7.1 restricts utility to three levels as per the
computational model of Chapter 3. Both the algorithm above, and Davis' version, apply
Best Effort Admission to task lists which are ordered, and scheduled, according to fixed

priority.

7.1.2 The Simulation Studies

The main objective of the simulations performed in this chapter, was to compare the
performance of Best Effort Admission Policy (BE) with that of FCFS. In the simulations of
Sections 7.2 through to 7.4, the processor utilisation of the resident periodic tasks was
fixed at 25%, and the possible utilisation due to optional computations was increased in

order to build up a profile of the total utilities gained by BE and FCFS. Requests for

optional computations were set to arrive with a minimum interarrival time (defined by the
'sporadic arrival rate' in the tables below).

The admission policy itself, whether BE or FCFS, was modelled as the highest

priority periodic task in the task list. The period of this task was assumed to be the

minimum interarrival time of sporadic requests. The simulations had to be run repeatedly in

order to find the required upper bound for the WCET of the task modelling the admission

policy. The tables below show the actual admission policy overheads incurred in the

simulations, and also the upper bounds for admission policy WCET. The upper bounds

were first measured, and then used in the simulations for the schedulability testing of newly

arrived requests.
It was decided to simulate 10 resident periodic tasks upon the processor because

this number seems to reflect the needs of a realistic application, and to be large enough to

show the effect of a sizeable number of mandatory tasks. The schedulability test algorithm

which was used was Bottom-up Hybrid with Test 3 and Headstart, which has been shown

151

in Chapter 5 to be the algorithm with the best overall performance for task lists which
consist of 15 or less resident periodic tasks.

As in previous chapters, all simulation results show totals or averages over 10
simulation runs, with randomly generated tasks sets. Background tasks were not included
in the simulations because, as explained in Section 3.4, they have no effect on the optional
computations in the constrained computational model.

7.2 COMPARING BEST EFFORT AND FCFS ADMISSIONS POLICIES

7.2.1 Simulating 2 Levels of Utility Only

In order to prototype the simulations, and to establish some trends in the

simulation results, the first simulations performed used only two utility levels. These

corresponded to optional computations of High and Low Utility.
Tables 7.1 and 7.2 below show the results of the first set of simulations. For both

tables, Periodic Utilisation is fixed at 25% and the Possible Sporadic Utilisation is

increased by raising the Sporadic Arrival Rate. The Possible Sporadic Utilisation was
increased up to 600% in order to allow BE a greater choice of optional computations, and
to examine the trends in the effect of the overheads for admission policy. Table 7.1

compares the total utility gained by BE and FCFS when the average sporadic computation

time was 75ms. Table 7.2 shows similar results for an average sporadic computation time

of 37.5ms.

Because only two utility levels were used, only one ratio of relative utilities (R) was

required. For Tables 7.1 and 7.2, R (the ratio of the utility of High Utility to Low Utility

tasks) is 2.

The Maximum Total Sporadic Utility Obtainable does not include overheads for

admission policy, but assumes that the 75% remaining utilisation is made up of sporadic

utilisation with sporadic tasks of the highest possible utilities. An example of how

Maximum Total Sporadic Utility Obtainable was calculated is given in the following

paragraph.
In Table 7.1, the remaining utilisation after subtracting 25% periodic utilisation is

75%. This corresponds to 75,000ms of simulation time. Ideally this should allow 75,000 /

75 = 1000 sporadic tasks to be scheduled. Take as an example the column of Table 7.1

which provides 150% Possible Sporadic Utilisation. This is equivalent to 2000 sporadic

tasks of average sporadic computation time 75ms. It is assumed that on average half the

sporadic tasks are of higher utility, so that the theoretical maximum Sporadic Utility

Obtainable here, is when the 75% remaining utilisation is made up of 1000 optional

152

computations at the higher utility of 2. Over 10 simulations, this gives a Maximum Total
Sporadic Utility Obtainable of 10 * 1000 *2= 20,000. The point to note here is that the
'maximum utility obtainable' is idealised and could not be scheduled in practice.
Furthermore it does not take into account the overheads for admission policy.

7.2.2 Interpreting the Results

It can be seen from Tables 7.1 and 7.2 that the results for both BE and FCFS show
that, in general, the Total Sporadic Utility Obtained increases with the Possible
Sporadic Utilisation. The Maximum Total Sporadic Utility Obtainable also increases,

and then levels out. However admission policy overheads and upper bounds continue to
steadily increase with Possible Sporadic Utilisation and Sporadic Arrival Rate. This is

why the % of Maximum Utility Obtained decreases despite the increase in Total
Sporadic Utility Obtained.

Possible Sporadic Utilisation (%) 75 150 300 600

Sporadic Arrival Rate (per ms) 0.01 0.02 0.04 0.08

Total Sporadic BEST EFFORT 14,295 16,056 17,264 204

Utility Obtained FCFS 14,237 14,825 15,392 15,290

Maximum Total
Sporadic Utility
Obtainable

BEST EFFORT
&
FCFS

15,000 20,000 20,000 20,000

% of Maximum BEST EFFORT 95.30 80.28 86.32 1.02

Utility Obtained FCFS 94.91 74.13 76.96 76.45

Admission Policy BEST EFFORT 0.96 3.29 6.64 8.29

Overheads (% of
Total Utilisation)

FCFS 0.93 2.27 4.46 8.59

Upper Bound for

Admission Policy

BEST EFFORT 6.0 24.0 40.0 76.0

(% of Total

Utilisation

FCFS 3.0 10.0 24.0 48.0

Table 7.1: Constant Periodic Utilisation of 25% with an Average Sporadic Computation Time of 75ms.

The tables show that generally BE accrues more sporadic utility than FCFS.

However, at the lowest Possible Sporadic Utilisation, the gains in sporadic utility

between BE and FCFS are comparable. This is because most optional computations are

153

accepted at this relatively low processor loading. Therefore there are few cases where BE
can gain over FCFS by scheduling a high utility computation and aborting low utility
computations. The tables show that, as Possible Sporadic Utilisation increases, the gain in
performance of BE over FCFS increases. However, at the highest Possible Sporadic
Utilisation, the performance of BE falls off rapidly. This is due to the large Sporadic
Arrival Rate which requires such a large upper bound for BE that few optional
computations can actually be accepted.

Possible Sporadic Utilisation (%) 75 150 300

_Sporadic
Arrival Rate (per ms) 0.02 0.04 0.08

Total Sporadic BEST EFFORT 28,583 31,319 332

Utility Obtained FCFS 28,401 30,646 32,936

Maximum Total

Sporadic Utility

Obtainable

BEST EFFORT &

FCFS 30,000 40,000 40,000

% of Maximum BEST EFFORT 95.27 78.30 0.83

Utility Obtained FCFS 94.67 76.62 82.34

Admission Policy BEST EFFORT 2.32 7.77 8.55

Overheads (% of
Total Utilisation)

FCFS 2.22 6.15 11.50

Upper Bound for

Admission Policy

BEST EFFORT 16.0 60.0 80.0

(% of Total

Utilisation

FCFS 8.0 32.0 60.0

Table 7.2: Constant Periodic Utilisation of 25% with an Average Sporadic Computation Time 37.5ms.

7.2.3 Overheads for Admission Policy

It is clear from the tables that admission policy overheads for BE increase more

rapidly than for FCFS. This is not surprising because BE is the more complex algorithm. In

particular the overheads due to BE will increase at higher sporadic arrival rates because

there are more chances of an high utility optional computation being schedulable, only

when lower utility computations are aborted.
The upper bound for admission policy is expressed as a percentage of Total

Utilisation by taking into account (i) the maximum time found by repeated simulation runs

and (ii) the sporadic arrival rate. The percentage of Total Utilisation increases more

154

steeply, as sporadic arrival rate increases. This to be expected, because the upper bound is
the worst case time for admission policy over 10 simulation runs. Therefore the rate of
increase of the upper bound is determined by the complexity of the policy.

In the case of BE, the complexity is O(N), where N is the number of optional tasks
which have been previously accepted and are still current in the task list. In turn, the
schedulability test algorithm which BE calls for each pending task, has a complexity based
on (M + N), where M is the number of mandatory, periodic tasks in the task list.

7.2.4 Average Sporadic Computation Times

Comparison of Tables 7.1 and 7.2 shows that a lower average computation time for

sporadic tasks (e. g. 37.5ms) means that a higher rate of sporadic arrivals (and therefore of
schedulability testing) is required in order to achieve the same Possible Sporadic

Utilisations. Therefore, for 37.5ms average computation time, schedulability test

overheads and bounds become prohibitive at lower Possible Sporadic Utilisations (i. e.
300% Possible Sporadic Utilisation as compared to 600% Possible Sporadic Utilisation for

75ms average computation time).
This effect of larger admission policy overheads can also explain why the

differences between the % of Maximum Utility Obtained for BE and FCFS are smaller at
lower Possible Sporadic Utilisations for 37.5ms average computation time than for 75ms.

(For example compare the differences in the performances of BE and FCFS at 150%

Possible Sporadic Utilisations in Tables 7.1 and 7.2.) In general one can conclude that,

because large Possible Sporadic Utilisations are necessary for large utility gains, BE

performs relatively badly for smaller average computation times.

7.3 SIMULATING HIGH AND MEDIUM UTILITY OPTIONAL COMPUTATIONS

The previous two-level simulations used optional computations of High and Low

Utility, so that a High Utility request might be scheduled by aborting a Low Utility

computation which had previously been accepted. The two-level simulation was next

modified to compare BE and FCFS admission policies when High and Medium Utility

optional computations were used. The difference here is that a High Utility request can

only be scheduled by aborting a previously accepted Medium Utility computation before it

has started.
Table 7.3 shows results for BE and FCFS which are directly comparable to Table

7.1. Periodic Utilisation is 25%, and Average Sporadic Computation time is 75ms. Note

155

that the results for FCFS are identical to the 150% Possible Sporadic Utilisation column
of Table 7.1.

Comparing the results for BE in Table 7.3 with the relevant result in Table 7.1, it
can be see that BE does not gain such a large additional sporadic utility over FCFS in Table
7.3 as in Table 7.1. This makes sense because the simulations recreate identical conditions
except that the lower utility computations in Table 7.3 are actually Medium Utility optional
computations in the constrained model and are only abortable before they start their
computations. Therefore there are, on average, fewer abortable tasks within the task list
and correspondingly less chance that BE can schedule a High Utility request by aborting
Lower Utility task(s) within the list.

Possible Sporadic Utilisation (%) 150

Sporadic Arrival Rate (per ms) 0.02

Total Sporadic BEST EFFORT 15,642

Utility Obtained FCFS 14,825

Maximum Total

Sporadic Utility

Obtainable

BEST EFFORT

&

FCFS

20,000

% of Maximum BEST EFFORT 78.21
Utility Obtained FCFS 74.13

Admission Policy BEST EFFORT 2.93

Overheads (% of
100% Utilisation)

FCFS 2.27

Upper Bound for

Admission Policy

BEST EFFORT 20.0

(% of 100%

Utilisation

FCFS 10.0

Table 7.3: High and Medium Utility Computations.

Constant Periodic Utilisation of 25% with an Average Sporadic Computation Time of 75ms.

Data from the simulations which are not shown indicate that BE in Table 7.3

guarantees, by the abortion of lower utility tasks, around half the number of high utility

tasks as are guaranteed by abortion in Table 7.1. Another way of looking at this is to

consider Medium Utility computations as Low Utility between the time of guarantee and

start of computation, and High Utility for the rest of their execution. Considered in this

way, the simulation of Table 7.3 can be viewed as having considerably fewer Low Utility

tasks in the task list as compared to the simulation of Table 7.1.

156

7.4 SIMULATING 3 LEVELS OF UTILITY

7.4.1 Introduction

The next set of simulations include mandatory tasks, as before, but now three types
of optional computations with High, Medium and Low utilities, as set out in the
constrained computational model.

Table 7.4 shows the results of running the new simulations with exactly the same
sets of sporadic requests and resident periodic tasks as for the preceding two-level
simulations. The only difference was that sporadic requests were randomly allocated three,
instead of two, utility levels. In order to define the three levels, two ratios, R1 and R2, were
introduced into the constrained computational model (see Section 3.5.3). R1 was defined as
the ratio of the utility of a High Utility task completion to that of a Medium Utility task
completion. Similarly R2 was defined as the ratio of the utility of a Medium Utility task
completion to that of a Low Utility task completion. For the simulations in Table 7.4, R1

and R2 are each set to 2. Hence the utilities gained by optional computations of each task
type are 4,2 and 1.

Possible Sporadic Utilisation (%) 75 150 300 600

_Sporadic
Arrival Rate (per ms) 0.01 0.02 0.04 0.08

Total Sporadic BEST EFFORT 22,535 26,761 29,988 321

Utility Obtained FCFS 22,363 23,117 23,996 23,806

Maximum Total
Sporadic Utility
Obtainable

BEST EFFORT
&

FCFS
23,333 33,333 40,000 40,000

% of Maximum BEST EFFORT 96.58 80.28 74.97 0.80

Utility Obtained FCFS 95.84 69.35 59.99 59.52

Admission Policy BEST EFFORT 0.98 3.74 7.45 9.18

Overheads (% of
100% Utilisation)

FCFS 0.93 2.27 4.46 8.58

Upper Bound for

Admission Policy

BEST EFFORT 9.0 24.0 48.0 76.0

(% of 100%

Utilisation

FCFS 3.0 10.0 24.0 48.0

Table 7.4: Three levels of utility with Constant Periodic Utilisation of 25% and an Average Sporadic

Computation Time of 75ms.

157

As with the two-level simulations, the Maximum Sporadic Utility Obtainable
does not include the overheads for admission policy, but assumes that 75% remaining
utilisation is made up of sporadic utilisation with sporadic tasks of the highest possible
utilities.

7.4.2 Interpreting the Results

Obviously both the Sporadic Utilities Obtained and the Maximum Sporadic
Utility Obtainable are greater than those of Table 7.1 because of the wider range of
utilities between the three levels. However, the same trends are observed in Table 7.4.
These include the breakdown in BE around 600% Possible Sporadic Utilisation, and the
increasing difference in utility obtained between BE and FCFS as Possible Sporadic

Utilisation increases up to 600%.
As before, at 75% Possible Sporadic Utilisation, the difference in utility obtained

between BE and FCFS, is small due to the limited choice of higher utility sporadic tasks.
Simulation data not shown indicates that, at 75% Possible Sporadic Utilisation, only

about 0.03% of High Utility tasks and 0.01% of Medium Utility tasks are schedulable by

the abortion of lower utility tasks from the task list. The total possible processor utilisation
in this case is 100%. It can therefore be concluded that for total possible processor

utilisations of less than 100%, BE degenerates into FCFS.

Table 7.4 shows that, at 150% Possible Sporadic Utilisation, there is

approximately 11% difference between Sporadic Utility Obtained by FCFS and BE. This

is a promising result because total possible processor utilisation is 175% which is a

moderate overload and is an area of genuine interest for applications. For processor

overloads much in excess of this, the question arises as to whether the system was designed

with too small a processing capacity.
Data for the 300% Possible Sporadic Utilisation in Table 7.4 illustrate the point

that serious under-capacity undermines the application. The guarantee ratio (not shown)

which was measured for FCFS was only around 0.25. This indicates that, due to the

overload of sporadic requests, there is only about 25% chance of a request being accepted.

(Guarantee ratios for BE cannot be compared in this way because they are 'exaggerated',

due to some guarantees being later rescinded.)

Note that the FCFS overheads for admission policy are exactly same as with 2

utility levels except for a slightly greater overhead at 600% Possible Sporadic Utilisation.

This result is correct and is simply due to the rounding up of an average schedulability test

time which was 1 tick greater because of random variations.

158

7.5 VARYING THE RESIDENT PERIODIC UTILISATION

7.5.1 Introduction

The next characteristic which the simulations evaluated was the comparative
performances of BE and FCFS when the resident periodic utilisation on the processor was
varied. The extent of the resident periodic utilisation on the processor makes fundamental

changes to the sporadic utilisation which is obtainable. Three sets of simulations were
performed with 10%, 25% and 50% resident periodic utilisation respectively. Possible
Sporadic Utilisations were provided in order to make up the Possible Total Utilisations
for each simulation to be 100% 150% and 200%. This range of total utilisations was
chosen because it represents a reasonable overload on the processor and is therefore of
genuine interest for applications.

Tables 7.5-7.7 show the results with columns headed by the Possible Total
Utilisations. The average sporadic computation time was set to 50ms for each of the
Tables. (The average sporadic computation time has been reduced from the 75ms used in

previous simulations in order to counter the criticism that a higher average sporadic
computation might favour the performance of BE in comparison to FCFS.)

Possible Total Utilisation (%) 100 150 200
Possible Sporadic Utilisation (%) 90 140 190
Sporadic Arrival Rate (per ms) 0.018 0.028 0.038
Total Sporadic BEST EFFORT 39,757 50,122 57,860
Utility Obtained FCFS 39,179 45,524 50,492
Maximum Total
Sporadic Utility
Obtainable

BEST EFFORT &
FCFS 42,000 76,496 116,432

% of Maximum BEST EFFORT 94.66 65.52 49.69
Utility Obtained FCFS 93.28 59.51 43.37

_ Admission Policy BEST EFFORT 2.11 5.17 7.15
Overheads (% of
100% Utilisation)

FCFS 1.92 3.88 5.58

Upper Bound for
Admission Policy

BEST EFFORT 18.0 42.0 57.0

(% of 100%
Utilisation

FCFS 7.2 14.0 22.8

Table 7.5: Constant Periodic Utilisation of 10% with an Average Sporadic Computation Time 50 ms.

Again R1 and R2 are each 2 and therefore the utilities gained upon the completion

of each task type are 4,2 and I respectively. It is notable that the Maximum Total

159

Sporadic Utility Obtainable varies between Tables 7.5-7-7. This is because the resident
Periodic Utilisations are different, and the Maximum Total Sporadic Utility Obtainable
is calculated from the remaining processor utilisation after Periodic Utilisation has been
subtracted.

Possible Total Utilisation (%) 100 150 200
Possible Sporadic Utilisation (%) 75 125 175
Sporadic Arrival Rate (per ms) 0.015 0.025 0.035
Total Sporadic BEST EFFORT 33,262 42,969 50,333
Utility Obtained FCFS 32,680 38,537 44,045
Maximum Total
Sporadic Utility
Obtainable

BEST EFFORT &
FCFS 35,000 58,333 93,333

% of Maximum BEST EFFORT 95.03 73.66 53.93
Utility Obtained FCFS 93.37 66.06 47.19
Admission Policy BEST EFFORT 1.69 4.38 6.65
Overheads (% of
100% Utilisation)

FCFS 1.55 3.29 4.89

Upper Bound for
Admission Policy

BEST EFFORT 12.0 42.5 52.5

(% of 100%
Utilisation

FCFS 6.0 15.0 21.0

Table 7.6: Constant Periodic Utilisation of 25% with an Average Sporadic Computation Time 50 ms.

Possible Total Utilisation (%) 100 150 200
Possible Sporadic Utilisation (%) 50 100 150
Sporadic Arrival Rate (per ms) 0.01 0.02 0.03

Total Sporadic BEST EFFORT 21,815 30,611 31,631
Utility Obtained FCFS 21,560 27,197 32,671

Maximum Total
Sporadic Utility
Obtainable

BEST EFFORT &
FCFS 23,333 33,333 40,000

% of Maximum BEST EFFORT 93.49 91.83 79.08
Utility Obtained FCFS 92.40 81.59 81.68

Admission Policy BEST EFFORT 1.09 3.50 5.30
Overheads (% of
100% Utilisation)

FCFS 1.00 2.48 3.96

Upper Bound for
Admission Policy

BEST EFFORT 10.0 30.0 45.0

(%of100%
Utilisation

FCFS 4.0 10.0 21.0

Table 7.7: Constant Periodic Utilisation of 50% with an Average Sporadic Computation Time 50 ms.

160

7.5.2 Interpretation of the Results

Tables 7.5,7.6 and 7.7 cannot be compared like-for-like because different Periodic
Utilisations alter the sporadic utility which can be gained when the remaining capacity on
the processor is used by sporadics of different utilities. However, each of the tables is given
the same Possible Total Utilisations in order that some comparisons can be made.

As with previous simulations, it is generally true that BE obtains a higher % of
Maximum Sporadic Utility than does FCFS. As before this difference in performance
generally increases as Possible Sporadic Utilisation takes the Possible Total Utilisation
beyond 100%. As Possible Sporadic Utilisation increases, the % of Maximum Sporadic
Utility Obtained decreases. As before, this is due to the rapidly rising admission policy
overheads and bounds, which decrease the Sporadic Utility Obtained. Accentuating this

effect is the fact that admission policy overheads are not allowed for, in the Maximum
Total Sporadic Utility Obtainable, so that this maximum is an over-estimate. What is

more, this over-estimate becomes larger as Possible Sporadic Utilisation increases.

Tables 7.5 and 7.7 show the extremes in the effect of different Sporadic Arrival
Rates. Table 7.5 has the lowest Periodic Utilisation, and therefore requires higher Sporadic
Arrival Rates in order to achieve the Possible Total Utilisations which are common to all
three tables. Table 7.7 has the highest Periodic Utilisation and therefore requires lower

Sporadic Arrival Rates in order to achieve the same Possible Total Utilisations. Therefore

the overheads for admission policy are greater in Table 7.5 which as a result shows a more

rapid decline in % of Maximum Utility Obtained.

Table 7.7 confirms that, when the upper bounds for admission policy become high
(e. g. greater than 50% of Total Utilisation) then the performance improvement of BE can
tail off. For example, at 200% Possible Total Utilisation, Table 7.7 shows the % of
Maximum Utility Obtained is less for BE than for FCFS. This occurs even though the
Sporadic Arrival Rate (and therefore the admission policy overhead) is less than in Tables

7.5 and 7.6. The conclusion must be that, due to the comparatively high Periodic

Utilisation of 50%, the Sporadic Utility Obtained is very sensitive to an increase in

admission policy overheads and bounds. In fact a Sporadic Utility of only 31,631 is

obtained at 150% Possible Sporadic Utilisation. Tables 7.5 and 7.6 show that, at lower

Periodic Utilisations, similar admission policy overheads and upper bounds can be tolerated

without reducing the performance of BE below that of FCFS. The dip in the performance

of BE in Table 7.7 is probably the beginning of the breakdown observed in Table 7.1 at a
Possible Sporadic Utilisation of 600%.

The results in Tables 7.5-7.7 show that there is a trade off between the % of
Maximum Sporadic Utility Obtained and the absolute Sporadic Utility Obtained.

Table 7.5 shows that at low resident periodic utilisation, a low % of Max Sporadic

161

Utility, but high absolute Sporadic Utility can be obtained due to relatively high sporadic
arrival rates. Conversely, at high resident periodic utilisation in Table 7.7, a higher % of
Maximum Sporadic Utility, but lower absolute Sporadic Utilisations are obtained at
lower sporadic arrival rates. Table 7.6 has an intermediate periodic utilisation, and
therefore its results may be regarded as a trade off between these two extremes.

7.6 CHANGING THE RELATIVE UTILITIES

7.6.1 Setting the Parameters of the Simulation

The final stage in the comparison of the performances of BE and FCFS Admission

Policies was to vary the ratios of the utilities gained by High, Medium and Low optional

computations. In other words the ratios R1 and R2 were varied in order to examine the

comparative effects on BE and FCFS.

A single set of simulation parameters (Periodic Utilisation, Average Sporadic
Computation Time, etc.) were adopted for both BE and FCFS so that BE and FCFS could
be compared when only the ratios R1 and R2 were changed. Parameters were set at average

values in an attempt to obtain typical results: Periodic Utilisation was fixed at 25%,

Possible Sporadic Utilisation was 125% and Average Sporadic Computation Time was
50ms.

Table 7.8 shows that simulations were performed for equal values of R1 and R2

which increase from 2 to 100. In addition, unequal values were used: R1 = 100 and R2 =
10, and vice versa. The Total Sporadic Utility Obtained is given, as is the Maximum

Total Sporadic Utility Obtainable. The Maximum Total Sporadic Utility Obtainable

increases rapidly with R1 and R2, mainly because the utility gained by High Utility

computations is the product of R1 and R2. For convenience, the final column of Table 7.8

shows the Total Sporadic Utility obtained by BE divided by the Total Sporadic Utility

obtained by FCFS.

7.6.2 Interpreting the Results

Table 7.8 shows the expected result that, for both BE and FCFS, the Total

Sporadic Utility Obtained increases with R1 and R2. However, for all values of R1 and

R2 which were used, BE obtained a higher Total Sporadic Utility than FCFS.

A less obvious finding from Table 7.8 is that the % of Max Sporadic Utility

Obtained stays fairly constant as R1 and R2 increase. The exception is at low values (e. g.

R1= R2 = 2) where a higher % of Max Sporadic Utility is obtained.

162

Clearly, when Periodic Utilisation, Sporadic Utilisation and Average Sporadic
Computation Time are all constant, then each BE or FCFS simulation will produce an
identical number of High Utility, Medium Utility, and Low Utility task completions.
Therefore the only variation in % of Max Sporadic Utility Obtained is brought about by
changing the relative utilities given to each of the different task completions. Hence an
expression for the total utility obtained from a single simulation is:

(Nl*R1*R2)+(2*R2)

where N1 is the number of High Utility task completions, N2 the number of Medium Utility
task completions, and N3 is the number of Low Utility completions. The maximum
sporadic utility obtainable in a simulation is calculated according to:

(K1 *R1 *R2)+(K2 *R2)+(K3 * 1) (7.2)

where K1, K2, and K3 are the optimum number of High Utility, Medium Utility and Low
Utility task completions respectively, as calculated according to the example given in
Section 7.2.1. (In the case of the Periodic Utilisation and Possible Sporadic Utilisation in
Table 7.8, K3 is zero.)

Ratio of
Total Sporadic Maximum % of Max BE Utility
Utility Total Sporadic Obtained :

Rl R2 Obtained Sporadic Utility FCFS
Utility Obtained Utility

Obtainable Obtained
BE FCFS BE FCFS

2 2 42,969 38,537 58,333 73.66 66.06 1.115

10 10 757,205 600,885 1,125,000 67.31 53.41 1.260

100 100 70,416,475 54,415,503 105,000,000 67.06 51.82 1.294

100 10 7,046,424 5,445,585 10,500,000 67.12 51.86 1.294

10 100 7,534,674 5,958,405 11,250,000 66.97 52.96 1.265

Table 7.8: Varying R1 and R2 .
(A constant Periodic Utilisation of 25%, Possible Sporadic Utilisation of

125% and Ave Sporadic Computation Time 50 ms.)

It can be seen that for a particular simulation, if the value of expression (7.1) is

divided by the value of (7.2), the result tends to a constant value as R1 becomes very large

163

compared to R2. Also, (7.1) = (7.2) will be approximately constant when both R2 and R1

are large. However, when both R1 and R2 decrease towards 1, there is less benefit in the
greater number of High and Medium Utility task completions obtained by (7.2), and
therefore the utility obtained by (7.1) approaches the maximum of (7.2). This explains why,
at R1 = R2 = 2, both BE and FCFS have higher % of Max Sporadic Utility Obtained

than at higher values of R1 and R2.
Table 7.8 shows that, at R1 = R2 = 2, FCFS has approximately 13% higher gain in

% of Max Sporadic Utility Obtained compared to the % of Max Sporadic Utility

gained at R1 = R2 = 10 (i. e. 66.06 - 53.41). In contrast BE has an approximately 6% gain.
This can be explained by the fact that FCFS, being a random selection of sporadic tasks,

contains a higher proportion of Low Utility tasks and so the effect of the (N3 * 1) factor is

greater.
The final results in Table 7.8 compare the performances of BE and FCFS when Rl

and R2 are unequal. BE still outperforms FCFS, but some shifts in performance can be

observed. It can be seen that the effect of R1 > R2, is to increase the performance gap
between BE and FCFS, whereas the effect of R1 < R2, is to decrease the gap. This is

explained by FCFS having proportionally more Medium Utility task completions than BE.

Therefore a higher R2 provides a relative benefit for FCFS as compared to BE, whereas a
lower R2 relatively disadvantages FCFS.

7.7 SUMMARY OF THE SIMULATION WORK DONE

The above work reports on a comparison of BE and FCFS admission policies in

order to evaluate this aspect of the constrained computational model. The first simulations

used only two levels of utility (High and Low) in order to compare the admission policies.

In these simulations, Possible Sporadic Utilisation was increased from 75% to 600%

processor utilisation. BE outperformed FCFS except at very high Possible Sporadic

Utilisations where the upper bounds required to guarantee BE were so large that its

performance broke down. Two-level simulations were also used to investigate the

performances of BE and FCFS when High and Medium utility computations were used. As

expected, the result was that the performance gain by BE over FCFS was reduced.

The next set of simulations used the constrained model with three levels of utility,

and similar results were obtained. However, when these simulations were performed with

different resident periodic utilisations on the processor, it was found that the breakdown in

BE began at Lower Total Utilisation, when the resident periodic utilisation on the

processor was high. A high resident periodic utilisation also obtained a lower absolute

Sporadic Utility than lower periodic utilisations. However, high resident periodic utilisation

164

incurred lower admission policy overheads, and therefore obtained a relatively high
percentage of the Possible Sporadic Utility.

The final simulations which were performed allowed the ratios of the utilities of
High : Medium (R1), and Medium : Low (R2) optional computations to be varied. As
expected, the Total Sporadic Utility Obtained increased with R1 and R2, for both admission
policies. However, BE always obtained greater Total Sporadic Utility than FCFS. For both
BE and FCFS (for a fixed set of simulation parameters) it was found that, as the values of
R1 and R2 became high, the % of Maximum Sporadic Utility obtained became constant.
However, as the values of R1 and R2 decrease towards unity, the % of Maximum Sporadic
Utility obtained became higher.

7.8 CONCLUSIONS

In the following conclusions 'performance' is measured by the % of Maximum Sporadic
Utility Obtained.

1. Best Effort admission policy can achieve a higher performance than FCFS admission
policy, when the resident Periodic Utilisation on the processor is low, and the processor
is overloaded with Sporadic Arrivals.

2. Under the conditions in 1 above, the performance gain in BE over FCFS increases with
Possible Sporadic Utilisation and Sporadic Arrival Rate.

3. The overheads for BE are greater than those for FCFS. The consequence is that, as
Sporadic Arrival Rate increases, the upper bounds on the WCET for BE increase more
rapidly than those for FCFS. This causes BE to break down at lower Possible Sporadic

Utilisations than FCFS.

4. For BE and FCFS, at a given Possible Total Processor Utilisation : as the resident
Periodic Utilisation increases, the absolute Sporadic Utility which is obtained,
decreases. However, the % of the Maximum Sporadic Utility which is obtained
increases.

5. Larger Periodic Utilisations cause BE to break down at lower Possible Total Processor

Utilisations.

165

6. Lower Average Computation Times cause BE to break down at lower Possible
Sporadic Utilisations. This is because, for a given Possible Sporadic Utilisation, lower
Average Computation Times require a higher Sporadic Arrival Rate, and therefore
higher upper bounds for admission policy.

7. As the ratios between the utilities of High, Medium, and Low Utility computations
increase, the % of the maximum possible Sporadic Utility which is obtained becomes
constant. (It is assumed that Periodic Utilisation and Possible Sporadic Utilisation are
fixed).

8. When the ratios between the utilities assigned to High, Medium and Low utility
computations are small, the % of the maximum possible Sporadic Utility obtained
increases.

9. When the ratio between the utilities assigned to Medium and Low utility computations,
increases, relative to the ratio between the utilities assigned to High and Medium utility
computations, the gain in performance of BE over FCFS is reduced.

7.9 VIABILITY OF THE CONSTRAINED MODEL

7.9.1 Windows of Operation

The simulations carried out indicate several windows in the values of performance

parameters, within which the Constrained Computational Model using Best Effort

Admission Policy, can provide considerably improved performance over FCFS. For

example, between 100-200% Total Processor Utilisation the constrained model with BE

admission, can gain 10% performance over the use of FCFS. However, either side of this

range, the benefits of the model decline. At Total Processor Utilisations which are less than

100%, BE admission degenerates into FCFS. At the other extreme, when the processor is

overloaded beyond a Total Processor Utilisation of 200%, the performance of FCFS

eventually overtakes that of BE.

Resident Periodic Utilisation also enforces a window on the use of the model. Only

between 10-50% Periodic Utilisation does BE gain in performance over FCFS. Below 10%

Periodic Utilisation, the upper bounds on BE, required in order to generate a sufficient

sporadic overload, become too great to allow BE to outperform FCFS. At greater than

50% Periodic Utilisation, the performance of BE drops below that of FCFS, even when the

upper bounds for admission policy would otherwise be tolerable.

166

The average sporadic computation time also affects the viability of the model. If
computation times are too small, then high sporadic arrival rates are required in order to
generate reasonable processor overload. The result is that high upper bounds for admission
policy cause an early breakdown in the performance of BE.

Increasing the utility ratios of the High, Medium and Low utility computations can
augment the performance of BE compared to FCFS, but make little difference to the
performance of BE compared to its ideal maximum performance. However, the
applications programmer may still wish to set these ratios to reflect the relative importance

of each category of optional computation.

7.9.2 Recommendations for the Model

Within the above windows of operation, the Constrained Computation Model with
Best Effort Admission, can provide improved performance for optional computations.
Furthermore, the parameter ranges which have been established (10-50% Periodic
Utilisation, and 100-200% Total Processor Utilisation) are useful for a variety of
applications.

Even in the cases where the model with BE provides only comparable performance
to that of FCFS, there are still the benefits in being able to (i) distinguish between the

utilities of optional computations, and (ii) increase the likelihood of a higher utility
computation being performed in preference to a low utility computation. The use of FCFS

alone, effectively removes utility as a meaningful concept within the application.

167

CHAPTER 8

IMPLEMENTATION OF THE COMPUTATIONAL MODEL

8.1 INTRODUCTION

The Constrained Computational Model described in Chapter 3 is not directly

supported by any of the real-time programming languages which have been reviewed in
Chapter 2. The aim of this Chapter is to show how the Computational Model may
nevertheless be implemented in a language which is used for the engineering of real-time
systems. The language chosen is Ada 95 [1]. As described in Section 2.8.4, Ada is a large

programming language with many features for the implementation of real-time systems
(especially in the Real-Time Systems Annex).

Ada allows concurrent programming using tasks. Tasks are scheduled according to

static or dynamic priorities. When considering how to implement optional computations in
Ada 95, one obvious approach is to implement each optional computation as an Ada task

which could be guaranteed by the Ada RTS, and could, if necessary, be aborted before it

completes. However, this would give the real-time programmer little control over the

optional computations, and would require considerable extensions to the existing Ada RTS.
An alternative is to implement optional computations by using Ada 95 constructs

inside Ada tasks. This would (i) allow the programmer more ability to tailor the optional

computations, (ii) provide a more efficient, lighter-weight implementation, and (iii) require
less change to the Ada RTS. With this approach in mind, several Ada 95 constructs which

may be of use, are now reviewed.

8.2 ADA 95 CONSTRUCTS

8.2.1 Protected Objects

Protected objects allow mutually exclusive access to data via protected entries and

procedures, which give exclusive read/write access to the encapsulated data. Protected

objects may also include protected functions which provide concurrent read-only access to

the data. Entries to a protected object may be guarded by a barrier. Entry calls are

enqueued if the barrier evaluates to false. In this way, entries in a protected object may be

used to implement condition synchronisation. In common with Ada packages and tasks,

168

protected objects have a specification and a body as is shown by the following example of
the Ada syntax:

protected Specification_Example is

entry ...;
procedure ...;
function

...;
private

-- hidden subprograms, data etc.
end Specification_Example;

protected body Body_Example is

-- full bodies of entries, procedures, functions, etc.
end Body_Example;

The Real-Time Systems Annex to Ada 95 defines a locking protocol (Immediate Ceiling
Priority Protocol) which applies a ceiling priority to each protected object in order to
ensure mutual exclusion by tasks which are concurrently accessing any object. The locking

protocol also limits the effects of priority inversion.

8.2.2 Requeue

The requeue statement can be executed by a server task or protected object which
has accepted an entry call. The effect is to queue the call on another entry which may be
internal or external to the original task or object which has been called. This target entry is

named in the requeue statement:

requeue target_entry_name [with abort];

The original entry is not returned to after the target entry call has completed. The target

entry must have a parameter profile which is conformant to the original entry statement.
Because of this, it is forbidden to give parameters within the requeue statement itself, in

case the programmer should erroneously supply a non-conformant parameter profile.
The optional with abort clause allows the original client task, which made the call to

the server task or protected object to timeout on, or abort, the requeued call, during the

period that the call is queued on the target entry. If with abort is not present, then a timeout

or abort from the original client has no effect on the requeued entry call. Of course, once

the requeued call has been accepted at the target, the rendezvous is allowed to complete,

regardless of timeouts or aborts from the original client.

169

8.2.3 The Asynchronous Select

The asynchronous select statement has the following form:

select

-- triggering alternative:

-- a triggering statement

-- [optional code]

then abort

-- abortable code

end select;

The execution of the asynchronous select begins with the issuing of the triggering
alternative which may be (i) an entry call or (ii) a delay statement. If (i) the entry call is

queued, or (ii) a delay is issued, then the abortable code is executed. If the abortable code
completes before the completion of the triggering alternative then if the trigger is (i) an
entry call, an attempt is made to cancel it or (ii) a delay, then the delay is cancelled. After

cancellation the asynchronous select is completed. If the entry call cannot be cancelled (e. g.
because a rendezvous is in progress) then the call is allowed to complete, followed by any
statements which have been included after the triggering statement.

If the triggering statement completes before the abortable code, then the abortable
code is aborted, and any optional statements following the triggering statement are

executed.

8.2.4 Using Ada 95 constructs for Optional Computations

Having decided in Section 8.1 that optional computations are to be implemented

within Ada tasks, rather than at the task level, the asynchronous select statement seems a

particularly suitable construct for optional computations. The triggering statement can be a

call, for the guarantee of an optional computation, to a protected object which implements

flexible scheduling. The abortable code within the asynchronous select can be the actual

code of the optional computation.
Best Effort Admission Policy can be applied within the protected object which is

called, and if the optional computation is guaranteed, then the call can be requeued on

another entry within the object. This entry can have a barrier to allow the requeued call

never to complete, and therefore the abortable code to run to completion. If required, the

code of the optional computation can be aborted by lowering the barrier on the requeued

170

entry call. This causes the requeued entry call to complete and the triggering statement of
the asynchronous select to finish, thus aborting the code of the optional computation.

The following sections describe an Ada protected object which can handle requests
for the admission of optional computations, and in doing so, interfaces with the Ada RTS.
After this, the final part of the chapter considers a number of different application
requirements for optional computations, together with examples of how each may be
implemented in Ada 95.

8.3 AN ADA 95 IMPLEMENTATION FOR OPTIONAL COMPUTATIONS

8.3.1 Overview

Chapter 3 outlined the computational model which is now to be implemented in
Ada 95. The model specifies that optional computations are first schedulability tested, and
if possible admitted, at the utility level with which they arrive. Furthermore, optional
computations can have their utility changed dynamically, during their execution. Such

utility changes can be instigated by the tasks containing the optional computations
themselves, or by other tasks within the application.

The Ada 95 code which is given below, implements the requirements of the

computational model. Optional computations are implemented using asynchronous select
statements, as in the following example:

-- an optional computation within an applications task

select
Flex_Sched. Request(C, D, Utility, I);

then abort

-- Assume ALL optional computations call Flex_Sched. Make_Started before

-- starting the code for the optional computation.

-- Optional computation code can call Flex_Sched. Make_High, Make_Medium,

-- or Make_Low Utility as required.

-- Assume ALL optional computations call Flex_Sched. Make_Completed when

-- finished.

end select;

In the above code, the applications task requests the admission and guarantee of an

optional computation by calling a Request entry in a protected object Flex
_Sched.

This

object implements a flexible scheduler in Ada, and interfaces with the Ada RTS.

Appropriate parameters are passed to Flex_Sched when a call to Request is made. These

are the WCET (C) of the optional computation, its deadline (D), its Utility, and its index

171

value, I. The index, I, is used as a means of identifying each optional computation with the
component of the data structure used to record its status (see Section 8.3.2).

Several assumptions are made about extra facilities provided by the Ada RTS. It is
assumed that the Ada RTS can answer a call from Flex

_Sched,
to schedulability test C,

within a given D. Should the test succeed, then the Ada RTS is assumed to return to
Flex

_Sched,
the priority at which the optional computation should run. If the test fails then

the RTS returns a negative priority. The Ada RTS need have no concern with utilities,
which are entirely handled by the Flex Sched object. It is also assumed that the RTS can
answer a call to withdraw an optional computation from the task list, and in returning, can
pass back the accumulated execution time of the computation.

If the request is guaranteed by Flex
_Sched,

then the original call to the Request
entry is requeued so that it does not return. In this case the code of the optional
computation which follows then abort is executed. (Note that this code must make
procedure calls to Flex

_Sched
in order to register its starting and completion). If the call to

Request fails to guarantee the optional computation, or the optional computation is aborted
during its execution, then the original call to Request returns, and the optional computation
code following then abort is aborted.

8.3.2 Specification of the Flexible Scheduler Object

The Ada code below shows the declarations required for, and the specification of,
the protected object Flex

_Sched.
The data for each optional computation is held in an array

(of type Opt Comps) of records which is indexed by integer values which identify each
optional computation. The protected object Flex Sched is assumed to have the highest

priority associated with it. It exports a Request entry and a number of procedures to

applications tasks. The procedures allow applications tasks to register the start or
completion of optional computations, and also permits changes in the utility of optional

computations as required by the computational model.
The private part of the Flex_Sched specification defines two entries which

implement entry families to support the holding of optional computations in (i) the

abortable or (ii) the non-abortable state. The procedures Make Abortable and Make

Non Abortable are used by Flex_Sched to move optional computations from one state to

another. Procedure Best Effort implements the admission policy which attempts to

guarantee a request by, if necessary, aborting current optional computations of lower

utility. Best Effort calls the auxiliary procedures Withdraw and Reguarantee which
interface with the RTS. Also declared are arrays of flags which are needed to (i) control the

changes of state (Abortable <_> Non_Abortable) of optional computations and (ii) control

the abortion of optional computations which are in the abortable state.

172

type Utility is (High, Medium, Low);

Max : constant ._....;

type Opt_Comp_Index is new Integer range 1.. Max;

subtype Computation_Time is Ada. Real_Time. Time_Span;

subtype Deadline is Ada. Real_Time. Time;

Priority_Reject_Value: constant :=...;

type Flags is array(Opt_Comp_Index) of Boolean;

type Optional_Computation is

record
Util: Utility;
Comp: Computation_Time

Dead: Deadline;

Accum: Computation_Time

Name: Task_Id;

Old_Prior: Priority;

Started: Boolean;

Abortable: Boolean;

Released: Boolean;

end record;

type Opt_Comps is array (1.. Max) of Optional_Computation;

-- Flexible Scheduler Specification

protected Flex_Sched is
entry Request (C : Computation_Time; D: Deadline; U: Utility;

I: Opt_Comp_Index);

procedure Make_High (I : Opt_Comp_Index);

procedure Make_Medium (I : Opt_Comp_Index);

procedure Make_Low (I : Opt_Comp_Index);

procedure Make_Started (I : Opt_Comp_Index);

procedure Make_Completed (I : Opt_Comp_Index);

procedure Make_Aborted (I : Opt_Comp_Index);

private

entry Abortable (Opt_Comp_Index)

(C : Computation_Time; D: Deadline; U: Utility; I: Opt_Comp_Index);

entry Non_Abortable (Opt_Comp_Index)

(C : Computation_Time; D: Deadline; U: Utility; I: Opt_Comp_Index);

procedure Make_Abortable (I : Opt_Comp_Index);

procedure Make_Non_Abortable (I : Opt_Comp_Index);

procedure Best_Effort (C : Computation_Time; D: Deadline; U: Utility;

I: Opt_Comp_Index; P: out Priority);

procedure Withdraw (U: Utility);

procedure Reguarantee(U: Utility);

Opt-Comp : Opt-Comps;

Trans_Abort: Flags := (others => False);

Trans_Non_Abort: Flags :_ (others => False);

Abort Flags: Flags :_ (others => False);

end Flex Sched;

173

8.3.3 Implementing the Public Interface of the Flexible Scheduler

As indicated above a call to Request which is guaranteed, is requeued within
whichever entry family (see Non Abortable and Abortable below) is appropriate for the
utility of the computation. Each entry family is guarded by an array of flags which controls
the transition of optional computations from one entry queue to another. The procedures
Make High, Make Medium, and Make Low, each call Make Abortable or
Make Non Abortable in order to make a required transition when the utility of an optional
computation is changed. Make Abortable and Make Non Abortable manipulate arrays of
flags (Trans Abort and Trans Non Abort) in order to perform transitions. In addition, the

entry A bortable is guarded by an array of flags (Abort Flags) which allow calls to Request

to return, and therefore abort optional computations within the applications tasks.
By calling Make_Started, a medium utility optional computation ensures that it

becomes non-abortable when it starts execution. For the sake of consistency, all optional
computations should likewise register that they have started, even though there may be no

change in their abortabilities. Calls to Make_Completed allow all applications tasks to be

set to their previous priority, once their optional computations have finished.

protected body Flex_Sched is

procedure Make_High (I : Opt_Comp_Index) is
begin
Opt_Comp(I). Util := High;
if Opt_Comp(I). Abortable then

Make_Non_Abortable (1);

end if;

end Make_High;

procedure Make_Medium (I : Opt_Comp_Index) is

begin
Opt_Comp(I). Util := Medium;
if Started then

if Opt_Comp(I). Abortable then

Make Non Abortable (I);

end if;

else -- not Started
if not Opt_Comp(I). Abortable then

Make Abortable(I);

end if;

end if;

end Make Medium;

procedure Make_Low (I : Opt_Comp_Index) is

begin
Opt_Comp(I). Util := Low;

if not Opt_Comp(I). abortable then

Make Abortable(I);

end if;

end Make Low;

174

procedure Make_Non_Abortable (I : Opt_Comp_Index) is
begin

-- reset flag in Non_Abortable entry in case optional computation

-- was previously made non_abortable.
Trans Abort(I) := False;
-- set flag in Abortable entry so as to enable requeue on Non Abortable
Trans_Non_Abort(I) := True;

end Make_Non_Abortable;

procedure Make_Abortable(I : Opt_Comp_Index) is
begin

-- reset flag in Abortable entry, in case computation previously made abortable
Trans_Non_Abort(I) := False;

-- set flag in Non_Abortable entry so as to enable requeue on Abortable

Trans_Abort(I) := True;

end Make_Non_Abortable;

entry Abortable (for I in Opt_Comp_Index) when (Trans_Non_Abort(I)
or Abort Ftags(I)) is

begin
if Trans Non Abort(I) = True then

Opt Comp(I). Abortable := False;

requeue Non_Abortable(I) with abort;
else -- must be aborted

null;
end if;

end Abortable;

entry Non_Abortabte (for I in Opt_Comp_Index) when Trans-Abort(l) is

begin

Opt_Comp(I). Abortable := True;

requeue Abortable(I) with abort;

end Non Abortable;

procedure Make_Started(I : Opt_Comp_lndex) is

begin

Opt_Comp(I). Started := True;

if Opt_Comp(I). Util = Medium then

Make Non Abortable(I);

end if;

end Make_Started;

procedure Make_Completed (I : Opt_Comp_Index) is

begin

Set_Priority (Opt_Comp(I). Old_Prior, Opt_Comp(I). Name);

Opt_Comp(I). Released := False;

-- perform housekeeping on array member opt_Comp(I)

end Make_Completed;

procedure Make_Aborted (I : Opt_Comp_Index) is

begin

Set_Priority (opt_Comp(I). Old_Prior, Opt_Comp(I). Name);

Opt_Comp(I). Released := False;

Abort-Flags(I) := True;

-- perform housekeeping on array member Opt_Comp(I)

end Make Aborted;

end Flex Sched;

175

8.3.4 Handling Requests for Optional Computations

The code for the Request entry below shows that it calls Best Effort and is passed
back a priority value which is used to determine whether the request has been accepted or
not. If the request is accepted, then the appropriate record within the array of optional
computations is updated with the necessary data on the optional computation, the

applications task is set its new priority, and the call is requeued on whichever entry
(Abortable or Non Abortable) is appropriate. If the request is denied by Best Effort then

the call to Request returns, and the asynchronous select within the applications task is

triggered thus aborting the code for the optional computation.

entry Request (C : Computation_Time; D: Deadline; U: Utility;

I: Opt_Comp_Index) is

Prior : Priority;
begin

--call admission policy
Best_Effort(C, D, Utility, I, Prior);

if Priority_Indicates_Accepted then

-- initialise the flags for this optional computation's index value

Trans_Non Abort(I) := False;

Trans Abort(I) False;

Abort_Flags(I) False;

-- assign record in array of optional computations

Opt_Comp(I). UtiL Utility;

Opt_Comp(I). Comp C;

Opt_Comp(I). Dead D;

Opt_Comp(I). Accum Zero_Computation_Time;

Opt_Comp(I). Name Request'Caller;

Opt_Comp(I). Started := False;

Opt_Comp(I). Released True;

Opt_Comp(I). Old_Prior := Get_Priority(Opt_Comp(I). Name);

Set Priority (Prior, Opt_Comp(I). Name);

case Utility is

when High =>
Opt_Comp(I). Util := High;

Opt_Comp(I). Abortable := False;

requeue Non_Abortable(I) with abort;

when Medium =>
Opt_Comp(I). Util := Medium;

Opt_Comp(I). Abortable := True;

requeue Abortable(I) with abort;

when Low =>
Opt_Comp(I). Util := Low;

Opt_Comp(I). Abortable := True;

requeue Abortable(I) with abort;

end case;

end if;

-- request rejected : return to trigger asynchronous select

-- in the applications task.

end Request;

176

8.3.5 Best Effort Admission Policy

Procedure Best Effort is shown below. It takes the parameters passed to it by
Request and applies the Best Effort algorithm, with the help of two auxiliary procedures
Withdraw and Reguarantee. (These auxiliary procedures are described in detail in the next
section.) Withdraw rescinds all optional computations which have lower utility than that of
the request. If the request is subsequently accepted, then Reguarantee attempts to
guarantee each withdrawn request in order of decreasing value density.

Procedure Best Effort interfaces with the RTS by the use of two procedure calls
GU and REIN. GU calls the RTS to perform a single schedulability test of a WCET, C,

within an absolute deadline, D. The index value, I, of the optional computation is also
passed to the RTS, and the RTS passes back a priority, P, which indicates whether the
guarantee was given and the optional computation has been accepted within the task list. A

positive priority value indicates that the optional computation has been accepted, and that
its applications task should be set at that priority. A predefined negative priority value
indicates that the optional computation has been rejected.

The RTS procedure REIN efficiently reinstates all the withdrawn optional
computations when a request has been rejected, even after lower utility computations have
been removed. REIN provides an optimisation which is more efficient than calling GU

again, for each withdrawn computation.

procedure Best_Effort (C : Computation_Time; D: Deadline; U: Utility;

I: Opt_Comp_Index; P: out Priority) is

begin

GU(C, D, I, P);

if Priorty_Indicates_Rejected then

if U /= Low then

-- remove all lower utility, abortable optional computations,

-- and repeat attempt to guarantee.
Withdraw(U);

GU(C, D, I, P);

if Priority_Indicates_Accepted then

-- attempt to re-guarantee all withdrawn optional computations, in

-- smallest residual computation time, within utility order.

Reguarantee(U)

else -- optional computation still refused

REIN; -- optimised reinstatement of all withdrawn optional computations

end if;

end if;

end if;

end Best Effort;

177

8.3.6 Auxiliary Procedures for Best Effort

The procedures Withdraw and Reguarantee are given below. (Repetitive code has
been replaced by comments.) Withdraw calls the RTS procedure UNGU(I, Acc) which
removes the optional computation of index I from the task list and returns, in Acc, the
accumulated execution time of the optional computation. This allows Reguarantee to call
the RTS procedure GU, passing it the residual computation time of the optional
computation.

procedure Withdraw (U: Utility) is

J: Opt_Comp_Index;

Acc : Computation_Time;

begin

case U is

when High =>

-- withdraw unstarted medium, and all low utility, optional computations

-- which are current.
for J in 1 .. Max loop

if (Opt_Comp(J). Util = Medium) and (not Opt_Comp(J). Started) and
(Opt_Comp(J). Released) then

UNGU(J, Acc);

Opt_Comp(J). Accum := Acc;

elseif Opt_Comp(J). Util = Low and (Opt_Comp(J). ReLeased) then

UNGU(J, Acc);

Opt_Comp(J). Accum := Acc;

end if;

end loop;

when Medium =>

-- withdraw all low utility optional computations

-- similar code to above
end case;

end Withdraw;

procedure Reguarantee(U: Utility) is

J, K: Opt_Comp_lndex;

Minimum : Computation_Time;

Prio : Priority;

begin

case U is

when High =>

-- attempt to re-guarantee all Medium utility optional computations

while Stitl_Medium
_Utility_Opt

Comps Unconsidered loop

-- find the Medium utility optional computation with the

-- lowest residual computation time : first initialise Minimum

for J in 1 .. Max loop
if (Opt_Comp(J). Util = Medium) and (not Opt_Comp(J). Started)

and (Opt_Comp(J). Released) then

if (Opt_Comp(J). C - Opt_Comp(J). Accum) < Minimum then

K: =J;
Minimum := Opt_Comp(J). C - Opt_Comp(J). Accum;

end if;

end if;

end loop;

178

-- mark as considered the optional computation with the minimum
-- residual computation time :
-- re-attempt to guarantee this minimum optional computation
GU(Minimum, Opt_Comp(K). D, K, Prio);
if Priority_Indicates_Accepted then

Set_Priority (Prio, Opt_Comp(K). Name);

else

-- abort optional computation in the Ada task
Abort_Flags(K): = True;
Opt_Comp(K). Released := False;

end if;

end loop;

-- attempt to re-guarantee all Low utility optional computations
while Still_Low_Utility_Opt_Comps_Unconsidered loop

-- process the low utility computations as above
end loop;

when Medium =>

-- attempt to re-guarantee all Low utility optional computations
while Still_Low_Utility_Opt_Comps_Unconsidered loop

-- process the low utility computations as above
end loop;

end case;

end Reguarantee;

8.4 ALTERNATIVE OPTIONAL COMPUTATIONS

The first requirement to be considered is for optional computations which take the
form of alternative computations arriving simultaneously. The first alternative requested is

the most preferred one, while subsequent alternatives are less preferred and may be

computationally cheaper. Therefore the less-preferred alternatives may be guaranteed when
preferred versions are not. It is assumed that the preferred version is of high utility (i. e.

non-abortable) so that there is no possibility of it being aborted and the less-preferred

version being executed as well.
The following fragment of Ada shows alternative versions (v1, v2 , ...

) of an

optional computation which arrive simultaneously and can be implemented by the following

asynchronous select statements:

select

-- request the first preferred version, v1

-- if this call returns then request an

-- alternative version using another

-- asynchronous select.
select

-- request alternative version, v2

-- etc.
then abort

-- code for v2

end select;
then abort

-- code for v1

end select;

179

8.5 REPLACEMENT OF MINIMUM COMPUTATIONS

In this case the requirement is that there is a mandatory minimum computation
which has been guaranteed before run-time and that this should, if possible, be replaced by
a preferred version at run-time. Here vl is the minimum computation while v2 is the
version which is preferred at run-time and must be guaranteed dynamically. v2 must be a
high utility computation (non-abortable) because it replaces vl which is mandatory and was
guaranteed statically. Therefore, once the request for v2 has been accepted, the call to
request will never return and there is no possibility of vl being performed as well as Q.

select

-- request the version, v2 which is preferable at run-time
-- code for v1 is here to be executed if request for v2 is denied

then abort
-- code for v2

end select;

8.6 ABORTED OPTIONAL COMPUTATIONS

In this case we are considering Medium or Low Utility computations which if

aborted will require some minimum computation to be executed instead. This can occur

when there is a requirement for 'graceful degradation', or in the case of multiple versions

where a preferred but unbounded computation may have to be aborted when time is left

only for the execution of some less-preferred minimum computation. The following is the

general form of Ada 95 code which can implement this:

select

-- request the preferred optional computation.

-- code for minimum computation or recovery is here if preferred

-- optional computation is aborted or rejected.

then abort
-- code for preferred computation

end select;

In a case of graceful degradation it may be that the abortion of the preferred

computation is to be followed by a request for some alternative computation. Then the

Ada code below can be used.
In the case of multiple versions it may be that the preferred version is a Low utility

computation which is allocated a budget. The implementation must therefore ensure that

the preferred version does not overrun its budget and thereby make lower priority

computations unschedulable. The Ada 95 code in Section 8.7 can implement this.

180

select

-- request the preferred optional computation.
-- if this is aborted (or rejected) then request an
-- alternative computation using another
-- asynchronous select:
select

-- request alternative computation
-- etc.

then abort
-- code for alternative computation

end select;
then abort

-- code for preferred computation
end select;

8.7 LOW UTILITY COMPUTATIONS

The computational model of Chapter 3 considers optional computations of Low
Utility to be those computations whose WCET cannot be determined or whose WCET is

very pessimistic. These computations may nevertheless be guaranteed a budget which, for

example, may cover their minimum or average computation time. Because they may exceed
their budgets, such computations must have their accumulated execution times monitored.
The assumption is that the Ada RTS can be extended in order to detect that the

accumulated execution time of an optional computation has reached the allocated budget.

The Ada RTS then triggers the abortion of the computation. The following code shows an

example of Multiple Versions where an unbounded preferred version has been allocated a
budget. If the preferred version is rejected, aborted due to Best Effort Admission Policy, or

aborted due to the expiry of its budget, then a minimum version is executed:

select

-- request the budget for preferred version

-- code for minimum version here is executed if

-- preferred version is rejected or aborted due to Best Effort.

then abort

select

-- a trigger from the RTS when the accumulated execution time has

-- reached the budget allocated

-- code for minimum computation version here is executed if

-- preferred version uses its budget.

then abort

-- preferred version code which takes indeterminate length of time

end select;

end select;

The question arises as to whether low utility computations such as the above could

be granted an additional budget if they consume their original budget before they complete.

The problem here, is that the expiry of the original budget triggers an asynchronous event

181

which would interrupt the flow of control of the optional computation, and therefore make
it difficult to resume.

8.8 IMPRECISE COMPUTATIONS

Imprecise Computations consist of a minimum computation which may be

mandatory followed by iterations which improve upon the minimum precision (see Section
2.3.1). If the deadline of the Imprecise Computation is relatively small, then it may be most
efficient to pose the request in the form of a request for alternative computations in which
the alternatives are decreasing numbers of iterations of the imprecise computation.
Obviously a higher number of iterations is preferable to a lower number and would be

requested earlier in the sequence of alternative computations. See Section 8.4 for an
implementation of alternative computations in Ada 95.

In the case of an Imprecise Computation whose deadline is relatively long, it is

more flexible to request each new iteration after the previous iteration has completed. This

then takes advantage of the dynamic occurrence of slack. In general, iterations of an
Imprecise Computation may have bounded or unbounded computation times.

Implementations for each case are now presented.

8.8.1 Bounded Computation Times

The server below provides the necessary implementation for the case of iterations

of Imprecise Computation with bounded computation times. Each iteration can be

guaranteed at High Utility (i. e. non-abortable). With this method, the client can actually

specify the deadline by which the imprecise computation must complete. This provides the

absolute deadline in the above code, which is 'delayed until' in the outer asynchronous

select. Within the inner loop, the Imprecise Server repeatedly requests iterations of the

Imprecise Computation with bounded computation times. The server exits the inner loop

when a sufficiently precise result has been calculated.
This server can be contrasted with a more asynchronous Imprecise Server given by

Burns and Wellings [5]. Their server incorporates a wait upon a persistent signal from a

client task which indicates that the client wishes to read the result. The advantage of the

method given here is that iterations of the Imprecise Computation can be requested for

guarantee at High Utility against the overall deadline for the Imprecise Computation which

has been specified by the client. Therefore, once guaranteed, these iterations will never be

aborted as they may be in the case of the Burns and Wellings server [5]. The inner loop can

182

still be aborted in between the executions of guaranteed High Utility computations, or if the
exit when statement evaluates to true.

-- declare protected object Shared_Data which Client task can read and
-- Imprecise Server can write

task body Imprecise
-

Server is

-- declarations

begin

loop

-- initialise absolute deadline to that specified by client
-- produce result with minimum required precision
Shared_Data. Write(Result);

select
delay until overall deadline;

then abort
loop

select

-- request next iteration with bounded WCET

-- request rejected: set flag for delay to avoid 'busy wait'
then abort

-- perform next iteration

-- and compute refined Result
Shared

_Data.
Write(Result);

exit when Best-Result-Obtained;

end select;
if flag_ set then

-- delay against busy wait

-- reset flag

end if;

end loop;

end select;

end loop;
end Imprecise_Server;

The purpose of the delay within the inner loop is to ensure that processor time is

not wasted by 'busy waiting', if repeated requests for further iterations are rejected by
Flex Sched. (This inner delay is obviously subordinate to the delay until outside the
loop.) The flag ensures that the inner delay is not incurred when requests for iterations of
the imprecise computation are accepted. (It could be argued that if such busy waiting is

carried out at a low priority, then it will not interfere with tasks of higher utility. However,

even if this is true, 'busy waiting' might still waste computation time which could be used
for the imprecise computation itself.)

Ideally the problem of 'busy waiting' for a request to be accepted, could be solved
by the ability to wait upon an asynchronous signal from the RTS when new slack is

available. Again this would require extensions to the Ada 95 RTS.

183

8.8.2 Unbounded Computation Times

If each of the iterations are unbounded it may only be possible to guarantee a
budget which will cover their average or minimum computation times. In this case the
server can be coded exactly as above except that nested asynchronous select statements are
required within the inner loop (see code below). The outer of these may now be triggered
by the rejection or abortion of the optional computation. The innermost asynchronous
select ensures that the budget which has been allocated for the current iteration is not
exceeded.

Note that the same method can be used to avoid wasting processor time on 'busy

wait'. In this case the delay to avoid busy wait, placed within the inner loop, will occur in

the case of the optional computation being rejected or aborted. This may be appropriate,
because an aborted request may indicate that the system is heavily loaded with higher utility
computation, and therefore the delay is unlikely to waste slack which could have been used
by the imprecise computation.

loop

select

-- request budget for next iteration

-- request rejected, or low utility computation aborted:

-- set flag for delay and avoid 'busy wait'
then abort

select

-- a trigger from the RTS when the accumulated execution time has

-- reached the budget allocated

then abort

-- perform next iteration

-- and compute refined Result

Shared_Data. Write(Result);

exit when Best_Result Obtained;

end select;

end select;

end loop;

8.9 COMPOUND COMPUTATIONS

The computational model of Chapter 3 describes a compound computation as one

in which multiple requests are 'anded' together. In other words, two or more optional

computations, which arrive simultaneously, must all be guaranteed, or none can be

accepted. All the computations should be of High utility because allowing them to be

abortable (Medium or Low utility) would be inconsistent with requiring all of them to be

guaranteed.

184

The requirement for compound computations can be implemented in Ada 95 by
nested asynchronous selects. In the following code fragment, C1, C2, etc. represent the
optional computations, both of which must be guaranteed. Because C1 and C2 are
guaranteed sequentially, there is a possibility that C1 could be guaranteed, followed by a
failure to guarantee C2. In this case C1 must be aborted even though it has been
guaranteed as a High utility computation. In order to allow this abortion, C1 must first be
relegated to a Medium utility computation, and then aborted, as is shown in the following
code :

select

-- request C1, the first of the computations.
-- If C1 cannot be guaranteed then the compound request is abandoned here.

then abort

select

-- request C2, the second of the computations. If C2 cannot be guaranteed
-- then the compound request is abandoned here, but must abort Cl:
Make_Medium(Cl_Index);

Make_Aborted(Cl_Index);

then abort

-- in-line code for C1 and C2.

end select;

end select;

It can be seen from the above code that the computations for C1 and C2 are placed
in-line. This could, for example, satisfy the requirements for a control system in which a
sequence of operations must be carried out, in order, and to consecutive deadlines. The

requirement may be that all of the operations must be carried out within their time

constraints, or the sequence should not be embarked upon at all. In terms of the above
code fragment, C1 would be required to execute first within a deadline D1, followed by the

execution of C2 within a longer deadline, D2.
If required, concurrency could be introduced into compound computations within

the framework of the asynchronous select statements above. This could be achieved by the

use of entry calls which activate code located in other tasks. Another possibility would be

to elaborate child tasks, each containing a component of the compound computation, at the

point where the in-line code would otherwise be placed. The abortion of such dependent

tasks would be an abort-deferred operation, and therefore these tasks could not be

immediately aborted if the asynchronous select was triggered. However, this is not a

problem in the case of compound computations which are, by definition, non-abortable.

8.10 SIEVE FUNCTIONS

According to Audsley et al. [4] Sieve Functions can be divided into a sequence of
bounded and unbounded computations. For example C1, XI, C2, X2, C3 can represent the

185

computational components of a sieve function. C1, C2 and C3 are the bounded

computations which are essential to the completion of the function. In contrast, X1 and X2

are unbounded components which are desirable but not essential to the completion of the
sieve function. It may be possible only to derive an average or minimum computation time
for the unbounded components. Therefore the best guarantee that they can be given, is for

a budget of time which covers the average or minimum computation time. In other words,
according to the computational model of Chapter 3, these components would be classed as
low utility computations.

A method for implementing such a sieve function in Ada 95 is firstly to attempt to

guarantee the sum of the computation times of the bounded components as a single high

utility computations to be carried out within the overall deadline for the sieve function. If

the guarantee is given, and the function executes, guarantees for each of the unbounded
components can be requested at the points where each of them occur in the sequence of

computations. If a request for an unbounded component is rejected, then the component is

omitted and the next bounded component is executed.

select
-- request Cl + C2 + C3, the high utility, bounded computations

-- if rejected then the sieve function is abandoned here.

then abort

-- perform Cl

select
-- request a budget for X1, the first of the low utility, unbounded

-- computations : if X1 budget cannot be guaranteed then abandon X1.

then abort

select

-- a trigger from the RTS when the accumulated execution time has

-- reached the X1 budget allocated

then abort

-- code for X1.

end select;
end select;

-- perform C2

select

-- request a budget for X2, the 2nd of the low utility, unbounded,

-- computations : if X2 budget cannot be guaranteed then abandon X2.

then abort

select

-- a trigger from the RTS when the accumulated execution time has

-- reached the X2 budget allocated

then abort

-- code for X2

end select;
end select;

-- perform C3

end select;

It is worth noting that the bounded components have been guaranteed first as high

utility, non-abortable computations, and therefore they cannot subsequently be made

186

unschedulable by the guarantee of low-utility components. As usual, provision has be made
to prevent the unbounded computations exceeding their budgets.

8.11 PERIODIC TASKS WITH CUMULATIVE ERRORS

8.11.1 With High Utility Optional Computations

-- initialise Next Period
-- set Reject_Count to N -1 to force initial performance of
- minimum + optional computation
loop

if Reject Count < (N -1) then
-- perform minimum computation (guaranteed before run-time)
select

-- request optional computation

-- request rejected therefore increment Reject_Count
then abort

-- code for optional computation

-- set Reject Count to zero
end select;

else

- code for minimum + optional computation

-- set Reject Count to zero

end if;
delay until Next

-
Period;

Next_Period := Next Period + Period;

end loop;

In [7] Chung et al. discuss the requirements for periodic tasks with cumulative
errors. In applications such as radar tracking, periodic computations may be divided into a

minimum and an optional component. The minimum component must run every period but

the optional computation component may be terminated early, with the result that an error

will be accumulated. The requirement is that the optional component must complete at
least every Nth period in order that the error is prevented from exceeding a level which

cannot be tolerated by the application. (It is assumed that static schedulability analysis

ensures that there is at least sufficient computation time for the 'optional' component to

execute every Nth period, when it is in effect mandatory.)

Such periodic computations could be implemented by the Ada 95 code shown

above. In this case optional computations of High Utility are used. They provide a simpler
implementation than using Low Utility optional computations (compare 10.2 below).

However, High Utility optional computations suffer the disadvantage that are less flexible

because they cannot be aborted. Reject Count accumulates the number of consecutive

rejections of requests for the guarantee of optional computations. N-1 is the number of

consecutive periods for which the accumulation of the error can be tolerated.

187

8.11.2 With Low Utility Optional Computations

The requirements for periodic tasks with cumulative errors are better met by the use
of Low Utility optional computations. The disadvantage is that the Ada implementation is

more complex due to the fact that Low Utility computations are guaranteed a budget, and
the implementation must ensure that the budget is not exceeded. As before, this can be
done by including a trigger from the RTS which will abort an overrunning computation. In

the following Ada, Fail Count plays a similar role to Reject_Count above. Fail Count is a

counter which represents the current number of consecutive occasions on which the

optional computation has been rejected, or aborted. Abortion can occur either because the

computation has failed to complete within its budget, or because Best Effort has

guaranteed a higher utility computation.

-- initialise Next_Period

-- set Fail Count to N -1 to force initial performance of

-- minimum + optional computation.
loop

if Fail_Count < (N -1) then

-- perform minimum computation (guaranteed before run-time)

select
-- request budget for optional computation

-- request rejected, or the computation is

-- aborted due to Best Effort : increment Fail_Count

then abort

select

-- a trigger from the RTS when the accumulated execution time has

-- reached the budget allocated

-- budget inadequate : increment Fail_Count

then abort
-- code for optional computation

-- set Fail Count to zero

end select;
end select;

else
-- code for minimum + optional computation

-- set Fail Count to zero

end if;

delay until Next
-

Period;
Next Period := Next_Period + Period;

end loop;

In the above code, race conditions can occur around the setting of Fail Count to

zero. Such race conditions will not break the constraint that the optional computation must

execute at least every N periods. Race conditions could be caused by the abortion of the

second part of the inner asynchronous select statement, after the code for the optional

computation has completed, but just before the inner 'end select', or just before the 'set

Fail Count to zero'. In either case 'increment Fail_Count' will execute after the abort has

188

been triggered. If the RTS interrupts just before the inner end select, then Fail_Count will
be incremented to one. If the RTS interrupts just before 'set Fail_Count to zero', then
Fail Count will be incremented from its last value. In either case, the worst that can
happen is the forcing of an early execution of the full computation after the else.

8.12 REPLICATED COMPUTATIONS

Applications may arise where it is necessary for a computation within one task to
either change the utility of, or abort a computation in another task. Such a requirement can
arise in the case of optional computations which are replicated to enhance fault tolerance. If
one of the replicants completes before the other it may be required to lower the utility of its
fellow or even abort its fellow altogether. Conversely if one of the replicants fails it may be

necessary to raise the utility of its fellow. Two capabilities are required:

(i) the ability to change the utility of another replicated computation.
(ii) the ability to abort another replicated computation.

It is assumed that, to enhance fault tolerance, the replicated code would be guaranteed
initially as a High-Utility (i. e. non_abortable) computation. (i) above may be implemented
by allowing a replicated computation to make a call to the appropriate procedure in the

protected object Flex
_Sched,

in order to change the utility of a fellow replicant. (ii) may be

implemented by placing the replicated computation within an outer asynchronous select

which can be triggered by a persistent signal from another replicant. The code for each of
the replicated computations could take the following form:

select

-- wait upon persistent signal from a fellow replicant

then abort

select

-- request the high utility replicated computation

then abort

-- replicated code

-- send signal to fellow replicant to abort

end select;
end select;

Note that the use of a persistent signal means that the signalling replicant not only

aborts other replicants, but also aborts itself Obviously, race conditions may occur in the

signalling to abort, of each replicant to its fellow(s). However this should not undermine

the requirement for at least one completed execution of the replicated code.

189

8.13 CONCLUSIONS

Ada 95 does not provide direct support for optional computations. To implement
optional computations at the level of Ada tasks would give the real-time programmer little
ability to tailor optional computations, and would require considerable extensions to the
Ada RTS. However, the asynchronous select statement is a construct which can be used to
program optional computations within Ada tasks. It has sufficient expressive power to
implement many different applications application requirements for optional computations.

The Constrained Computational Model of Chapter 3 may be supported by a flexible

scheduler implemented in Ada 95. The flexible scheduler has sole responsibility for handling

utilities. The scheduler implements Best Effort Admission Policy by making appropriate
calls to the Ada RTS, which need only provide functions to (i) schedulability test a single
optional computation (ii) withdraw lower utility optional computations from the task list

and (iii) efficiently reinstate lower utility computations when a higher utility request has
been rejected. Within the flexible scheduler, the Ada 95 requeue statement can be used to

queue requests for optional computations, which arise from asynchronous select statements
within the applications tasks. Requests are requeued on an entry with a barrier which can
be manipulated to allow the completion or abortion of optional computation code, within
the asynchronous selects. Requeue statements are also used to change the state of optional

computations form abortable to non-abortable and vice versa.
Fundamental problems occur unless the Ada RTS can be extended to support

accumulated execution times. The Best Effort algorithm, as implemented in the protected

object Flex Sched, requires accumulated execution times to be passed back from the RTS

in order to attempt the re-admission of withdrawn optional computations, in order of
decreasing value density. Lack of availability of accumulated execution times also affects

the Ada support for Low Utility Computations which have unbounded WCETs. According

to the Constrained Computational Model, these computations should be guaranteed a time

budget, which may turn out to be insufficient. In order to avoid these computations

exceeding their budgets, their accumulated execution times must be available to be

monitored. Computation should be aborted when an accumulated execution time equals the

guaranteed budget.

In general, the above work could be extended to provide an Ada implementation

which supports the use of optional computations within multiprocessor clusters such as

those of Chapter 6. For example the Request call for the guarantee of an optional

computation could be extended to allow Shuffle Schedulability Testing. (If Request at

processor i fails, then attempt to guarantee at processor i+1, etc.).

190

CHAPTER 9

CONCLUSIONS

9.1 REVIEW OF THE WORK DONE

Chapter 1 outlined the assumptions of this thesis that standard hardware and
programming languages can be used in support of flexible scheduling. The thesis
proposition was given as:

"The application requirements for flexible scheduling can be embraced in a
constrained computational model for which cost-effective run-time support can be

provided. The model can be implemented in a standard programming language so
that applications written in this language can increase their utility. "

This proposition led to the adoption of three broad objectives or strands:

1. To investigate the requirements for optional computations in the next generation of

real-time systems, and to derive a computational model which is sufficiently constrained
to be supported by a RTS executing on the same processor as the application tasks.

2. To develop more cost-effective support for flexible scheduling than that which

currently exists. This is to be done by the development of (i) computationally cheaper

guarantee algorithms for optional computations and (ii) methods of allocating optional

computations within a multiprocessor cluster, such that throughput of optional

computations is maximised.

3. To demonstrate that optional computations may be implemented in a standard

programming language.

The preceding 7 chapters have reported on the work done within each strand.

Chapters 2 and 3 relate to strand 1. Chapter 2 reviewed, amongst other topics, the

complex application requirements for optional computations. Chapter 3 presented a

constrained computational model which can support many of these requirements.
Chapters 4,5 and 6 support strand 2, by investigating the use of guarantee

algorithms with FCFS Admission policy. Chapters 4 and 5 developed and evaluated the

performance of a suite of on-line schedulability test algorithms. Chapter 6 investigated

191

allocation methods which optimise the throughput of optional computations within a
multiprocessor cluster.

Chapter 7 evaluated, by simulation studies, the use of a newly developed guarantee
algorithm within the computation model of Chapter 3. The model used Best Effort
admission policy instead of FCFS.

Finally, Chapter 8 supported strand 3 by showing that the constrained
computational model can be implemented in the standard programming language Ada 95.

Each strand of the work of this thesis addresses one aspect of the provision of
optional computations within real-time systems. These aspects are inevitably interrelated.
Therefore this thesis provides an integrated approach to optional computation which
embraces requirements, programming language, run-time support, tasking model and
multiprocessor configuration.

9.2 GENERAL CONCLUSIONS FROM THE WORK DONE

The following are a list of the main conclusions from the foregoing chapters:

"A constrained computational model for optional computations can satisfy many of the

relevant application requirements, and can be supported cost-effectively.

" Guaranteeing optional computations can provide greater throughput of computations

which meet their deadlines, than simply executing them in background.

" Exact schedulability test algorithms are not always the most cost-effective. There is

always a trade-off between the overheads incurred by schedulability testing, and the

total throughput of optional computations.

0

0

FCFS admission of guaranteed optional computations improves performance

generally over background processing. However, Best Effort admission policy can
improve performance even further, under certain ranges of operating parameters.

In a multiprocessor cluster, simple methods of allocating optional computations (such

as adapted Round Robin, or Shuffle Schedulability Testing) can provide greater

throughput than more complex methods.

A constrained computational model for optional computations can be implemented in

a standard programming language such as Ada 95.

192

9.3 CONTRIBUTION

This thesis complements and extends previous work in the area of flexible

scheduling research. The Spring Project (reviewed in Chapter 2) provides computationally
expensive guarantee algorithms and decentralised scheduling. These require the support of
a specialised co-processor, and a systems processor respectively. This thesis avoids the

need for specialised or dedicated hardware, by developing computationally cheaper
methods of (i) guaranteeing optional computations and (ii) directing them to the processor
most likely to guarantee them. In devising these methods, the work of Audsley [2] on static
schedulability testing is extended into the domain of dynamic schedulability testing.

Elements of the work of this thesis also complement and extend the recent work of
Davis. In [10] Davis makes use of schedulability Test 2 (given in Chapter 5) in conjunction

with his slack stealing algorithm, in order to provide a sufficient but not necessary

acceptance test. Conversely, Chapter 5 adopts and evaluates Davis' method [9] for optimal

placement of aperiodic tasks within a task list. Finally, the work of Davis et al. [12] on Best

Effort is extended in Chapter 7, where detailed investigations of the overheads incurred by

the policy are made, within the context of a complete computational model.

9.4 FUTURE WORK

The work of this thesis indicates a number of avenues for further research:

" Work on setting the implementation techniques developed here, into the larger

software engineering context. For example, the mapping of complex requirements for

Real-Time Al onto the constrained computational model outlined in Chapter 3.

" Further development of the computational model, and its interface with Run-Time

Support. For example, approximate processing could be supported within the model.

The application could demand, from the RTS, the amount of slack available at a

particular priority level, for an optional computation which is to perform approximate

processing at that priority level. The application could then set the execution

parameters of the optional computation in such a way that its WCET conforms to the

slack available.

The algorithm for Best Effort Admission Policy could be refined. As it is, Best Effort

admits higher utility optional computations by, if necessary, aborting lower utility

optional computations. No judgement is made as to whether the utility lost by aborted

193

computations is outweighed by the utility gained in the new arrival. Some measure of
the utility loss could form a criterion for the admission of the newly arrived optional
computation. Such improvements in Best Effort Admission Policy might extend the
windows of operation within which Best Effort provides higher utility than FCFS.

" Abortable, low-utility optional computations could be guaranteed more cheaply than
non-abortable high-utility computations. The constrained computational model
presented in Chapter 3 allows low utility optional computations to be abortable at any
time. Even if they are not aborted, their budgets may turn out to be inadequate for
their computation to complete. However, such low utility computations still incur the
overhead of Best Effort Admission, the most expensive component of which is the

schedulability test algorithm itself. There is a case for saying that abortable
computations should be given cheaper (pessimistic) guarantees, because their utility
may, in any case, be lost.
This area of the computational model overlaps with the work of Liu et at. [33,34].
These researchers do not guarantee optional computations, but optimise the chances
of them meeting their deadlines, thereby gaining greater total utility for the system.

" The Ada RTS could be extended to support flexible scheduling. This would require
the implementation of support for the calls to the RTS which are assumed in Section

8.3. These are GU, UNGU, and REIN, which perform the guarantee of an optional

computation, the withdrawal of an optional computation from the task list, and the

efficient reinstatement of all withdrawn computations, respectively. The

implementation of this run-time support would allow the overheads incurred by these

calls to be measured, and would provide further evaluation of the computational

model. Further extensions to the Ada RTS, for example in support of approximate

processing, could also be considered.

" The Ada 95 implementation of the computational model (Chapter 8) could be

extended to support the use of optional computations within multiprocessor clusters

(Chapter 6). For example a call for the guarantee of an optional computation could be

extended to allow Shuffle Schedulability Testing : if the call for guarantee at

processor i fails, then attempt to guarantee at processor i+1, etc.

194

9.5 FINAL THOUGHTS

Flexible scheduling was introduced to support adaptivity within real-time
applications. However, its overheads can be great, and therefore the schemes for flexible
scheduling themselves should be adaptable. The foregoing chapters demonstrate :

(i) the large bounds required to guarantee the guarantee algorithms themselves
(ii) the varying overheads of the guarantee algorithms
(iii) the difficulty in bounding some forms of optional computation

In the work of this thesis the above demands are accommodated by static schemes,
such as guaranteeing that a fixed, maximum arrival rate of sporadic tasks can be

schedulability tested, or, in the case of a multiprocessor, rigid allocation according to
Shuffle Schedulability Testing. Such fixed schemes may prove inadequate for intelligent

real-time systems which require adaptivity within the flexible scheduling itself. One

approach would be to progressively drop the optional computation overheads listed above,
as the loading of critical tasks on the system increases. For example, under the highest
loading of critical computation, schedulability testing may be abandoned altogether, and
optional computations rejected out-of-hand. On the other hand, under light loading of
critical tasks, exact schedulability tests may be performed, and may be guaranteed to

execute at a maximum rate.
Such adaptivity within the flexible scheduling itself, can be partially satisfied within

the framework of the constrained computational model presented in Chapter 3. The model

allows dynamic changes in the utility and abortability of optional computations. Wider

changes within an application may be accommodated by global changes to the parameters

of the model such as:

(i) altering the utility ratios R1 and R2

(ii) changing the schedulability test algorithm which is provided by the RTS.

More drastic changes within an application may require the constrained model to be

amended. For example, an increased periodic utilisation by critical tasks may require

admission policy to be changed from Best Effort to FCFS. Adaptivity may also be required
in regard to the allocation strategy for optional computations within multiprocessors. For

example, if Shuffle Schedulability Testing is employed, it may be beneficial to limit

schedulability testing to a single test per optional computation under conditions of high

loading.

195

APPENDIX A

ADAPTATIONS OF STATIC ALGORITHMS

A. 1 THE O(N2) ALGORITHM

In the O(N2) algorithm, the interference from all higher priority tasks, is calculated
for the duration of the deadline (Di) of the test task, i. The number of interferences by a
higher priority task is calculated by taking the ceiling of Di = Tj where Tj is the period of a
higher priority task, j. A dynamic refinement is to first subtract from Di the offset (Od) of
the next release of the interfering task, j. Also, any residual execution time (Rj) of the
interfering task must be added to the total interference of task j. Finally, schedulability is
tested by comparing the test task's deadline (Di) with the sum of interferences over all
higher priority tasks plus the current computational requirement of the test task itself. If the
test task is currently active, its computational requirement will be its residual execution
time Ri, otherwise its WCET (Ci) will have to be considered against Di, the deadline of the
test task's next activation. In the case of the test task being the sporadic task itself (see
Figure A. 1), then the total interference over all higher tasks, j, is calculated by:

Is = ýý(r(DS-Oý =Tj 10Cj +Rj) (A. 1)

where:
DS is the sporadic deadline

R- is the current residual execution time of the interfering task
07 is the offset of the interfering task
Ti - is the period of the interfering task
Ci is the WCET of the interfering task

and [X1o (i) returns 0 if X<0
(ii) returns [Xl if X> 0

Figure A. 1 shows that the interference, I2, of task 2 in the sporadic task will be

pessimistically assumed to include all of the computation time, C2, of the final hit of task 2,

despite the expiry of the sporadic deadline before that final hit finishes.

196

Current
Time

T1

C 1>
01 T2

DS

time

time

Figure A. 1: Computation times (C) for periodic tasks above the sporadic task.

Current Time

Cs

Ck time

time Ck+
1

Figure A. 2: Computation times (C) for periodic tasks below the sporadic task.

197

For a task, i, lower than the sporadic task, the interference over all higher tasks, j,
is calculated by:

Ii = Ej(r(DI-Oý=Tj 10Cj +Rj) (A. 2)

Note that Ts is set to infinity, as are the periods of any other sporadic tasks which are
currently in the task list.

The sporadic task, s, is a one-off release, so that the accumulated interference time
in a lower task need only be tested against either (a) the current deadline of the lower task
if it is active or (b) the deadline of the next activation of the lower task if it is inactive.
Respective examples from Figure A. 2 are task k+ I and task k. The following are more
detailed explanations of the different tests for (a) and (b).

(a) If the lower task being schedulability tested is active (in other words Rl > 0) then test

whether DI >_ Ii + Rl.

(b) If the lower task is inactive, then the total interference in the lower task's next

activation, plus the lower task's WCET, must be tested against its next deadline. A

sufficient condition is to suppose that the next activation of the task starts at the

current time, and to test whether Di >_ Ii + Ci
, where Di is the deadline of the next

activation. The supposition that the next release of the task being tested is at the

current time is made in order to make use of dynamic scheduling data, to greatly

simplify calculation and to thereby reduce schedulability testing overheads. The

following is a proof that the supposition provides a sufficient schedulability test.

Proof: The interval between the current time and the actual next release of test task i

is either (i) filled by interferences from higher priority tasks or (ii) there are 'gaps' in

which task i could execute if it were released. If (i) then this degenerates into the

same condition as allowing task i to execute only after its next release. If (ii) then all

higher priority tasks, including the sporadic task, are satisfied i. e. the interference of

the sporadic task itself, and its knock-on effects on the lower priority tasks, which are

above the test task i, have ended. In other words the supposition is never falsely

optimistic. Therefore the supposition is a valid basis for a sufficient schedulability test.

198

A. 2 THE PSEUDO-POLYNOMIAL (PP) ALGORITHM

Current
Time

T1

Figure A. 3: Response times (w) for periodic tasks above the sporadic task.

The PP algorithm calculates the interference from higher priority tasks during the

elapsed execution time of the test task. The algorithm therefore generates response times

(wi) for each test task, i. Figure A. 3 shows the case of the sporadic task itself as the test

task. (Incidentally, note that wl = C1.) The interference over all tasks, j, above the

sporadic task is found by:

Is = ij(r(ws-Oj)=Tj 10Cj +Rj)

where:
ws is the response time of the sporadic
Rj - is the current residual execution time of the interfering task

07 is the offset of the interfering task
Ti . is the period of the interfering task
Ci is the WCET of the interfering task

(A. 3)

Hence the recursive equation which determines the final value of ws:

n+1 n

ws = Cs + 1-(r(ws-Oj)=Tj10Cj+Rj) (A. 4)

199

Wk time

wk +1 time

Figure A. 4: Response times (w) for periodic tasks below the sporadic task
(before the sporadic arrives).

Figure A. 4 shows response time for tasks below the sporadic task in priority order.
As with the O(N2) algorithm, the response times of lower tasks need only be tested against
either (a) their current deadline if they are active or (b) the deadline of their next activation
if they are inactive. The following are more detailed explanations of the different tests for
(a) and (b).

(a) If the lower task being schedulability tested is active (in other words RI > 0) then test

whether DI >_ wi where wl is found when the following recursive equation converges:

n+1 n

ti''i = Ri + Ej(r(wi-Oý=Tj10Cj+Rj) (A. 5)

This is the same as (A. 4) except that wi is the response time for the residual

computation time of the task, i, being schedulability tested. As before TS is set to
infinity, as are the periods of any other sporadic tasks which are currently in the task
list.

200

(b) If the lower task is inactive, then the response time of the task's next activation must
be tested against the task's next deadline. Here wl is calculated recursively in a similar

way to (A. 5):

n+l n

wi = Ci + Ej(r(wi - Oj) -- Tj 10 Cj + Rj) (A. 6)

Again TS is set to infinity.

As with the O(N2) algorithm, the supposition that the next release of the test task, i, is

at the current time is made in order to reduce schedulability testing overheads. The

proof that this supposition provides a valid basis for a sufficient schedulability test is

the same as for the O(N2) algorithm above.

201

REFERENCES

[1] Ada 95 Reference Manual, Intermetrics, ANSI / ISO / IEC - 8652: 1995 (January
1995).

[2] Audsley, N. C., DPhil Thesis, Computer Science Department, University of York,
(September 1993).

[3] Audsley, N. C., Burns A., Richardson M. F., and Wellings A. J., "Hard Real-Time
Scheduling: the Deadline Monotonic Approach", Proceedings 8th IEEE Workshop on
Real- Time Operating Systems and Software, Atlanta, USA (15-17 May 1991).

[4] Audsley, N. C., Burns A., Richardson M. F., and Wellings A. J., "Incorporating
Unbounded Algorithms into Predictable Real-Time Systems", Computer Systems
Science and Engineering, Vol. 8 No 3, pp 80-89 (April 1993).

[5] Burns, A. and Wellings, A, "Concurrency in Ada", Cambridge University Press,
(1995).

[6] Cheong, I. K., "Scheduling Imprecise Hard Real-Time Jobs with Cumulative Error",
Technical Report UIUCDCS-R-92-1758 (PhD Thesis), Computer Science
Department, University of Illinois at Urbana-Champaign (June 1992).

[7] Chung, J. Y., Liu, J. W. S., Lin, K. J., "Scheduling Periodic Jobs that Allow Imprecise
Results", IEEE Transactions on Computers, Vol. 39, No 9 (September 1990).

[8] Davis R. I., DPhil Thesis, Computer Science Department, University of York (July
1995).

[9] Davis R. I., and Burns A., "Optimal Priority Assignment for Aperiodic Tasks with
Firm Deadlines, in Fixed Priority Pre-emptive Systems", Information Processing
Letters 53(5), pp 249-254 (March 1995).

[10] Davis R. I., "Guaranteeing X in Y: On-line Acceptance Tests for Hard Aperiodic

Tasks Scheduled by the Slack Stealing Algorithm", YCS 231, Department of
Computer Science, University of York, (June 1994).

[11] Davis R. I., "Scheduling Slack Time in Fixed Priority Pre-emptive Systems", YCS

216, Department of Computer Science, University of York, (November 1993).

[12] Davis, R., Punnekkat, S., Audsley, N., Burns, A., "Flexible Scheduling for Adaptive
Real-Time Systems", Proceedings IEEE Real-Time Technology and Applications
Symposium, Chicago (May 1995).

[13] Davis, R., Tindell, K. W., Burns, A., "Scheduling Slack Time in Fixed Priority Pre-

emptive Systems", Proceedings 14th IEEE Real-Time Systems Symposium, Durham,
N. Carolina (December 1993).

202

[14] DIN, "DIN 66253 Programmiersprache PEARL, Tiel 1 Basic PEARL ", Beuth-
Verlag, Berlin-Cologne (July 1981).

[15] DIN, "DIN 66253 Programmiersprache PEARL, Tiel 2 Full PEARL ", Beuth- Verlag,
Berlin-Cologne (October 1982).

[16] DIN, "DIN 66253 Programmiersprache PEARL, Tiel 3 Mehrrechner-PEARL ",
Beuth-Verlag, Berlin-Cologne (January 1989).

[17] Garvey, A. and Lesser, V., "Representing and Scheduling Satisficing Tasks",
Imprecise and Approximate Computation, Ed. Natarajan, S., Kluwer (1995).

[18] Gehani, N. H. and Roome, W. D., "Concurrent C", Summit, NJ : Silicon Press
(1989).

[19] Gehani, N., and Ramamritham, K., "Real-Time Concurrent C: a Language for
Programming Dynamic Real-Time Systems", Journal of Real-time Systems, vol. 3,
Kluwer (1991).

[20] Halang, W. A., "A Proposal for Extensions of PEARL to Facilitate the Formulation of
Hard Real-Time Applications", 4. GI/GMR/KfK-Fachtagung Prozessrechner 1984,
pp 573-582, Informatik-Fachberichte, Springer-Verlag, (September 1984).

[21] Halang, W. A. and Stoyenko, A. D., "Extending PEARL for Industrial Real-Time
Applications", IEEE Software (July 1993).

[22] Halang, W. A. and Stoyenko, A. D., "Constructing Predictable Real-Time Systems, "
Kluwer (September 1991).

[23] Ichbiah, J. D., et al., "Ada Programming Language", ANSI/MIL-STD 1815A, vol. U&
Department of Defense (January 1983).

[24] IEEE Industrial Electronics Society, Proceedings of the Intelligent Vehicles '92
Symposium (June 1992).

[25] Kenny K. B., "Structuring Real-Time Systems Using Performance Polymorphism",
Technical Report UIUCDCS-R-90-1641 (PhD Thesis), Computer Science
Department, University of Illinois at Urbana-Champaign (November 1990).

[26] Kenny K. B. and Lin, K. J., "Building Flexible Real-Time Systems Using the Flex
Language", IEEE Computer (May 1991).

[27] Lehoczky, J. P. and Ramos-Thuel, S, "An Optimal Algorithm for Scheduling Soft-

aperiodic Tasks in Fixed-Priority Pre-emptive Systems", Proceedings 13th IEEE
Real-Time Systems Symposium, Tucson, Arizona (December 1992).

[28] Lehoczky, J. P., and Ramos-Thuel, S., "On-line Scheduling of Hard Deadline
Aperiodic Tasks in Fixed-Priority Systems", Proceedings 14th IEEE Real-Time
Systems Symposium, Durham, N. Carolina (December 1993).

203

[29] Lehoczky, J. P., "Fixed-Priority Scheduling of Periodic Task Sets with Arbitrary
Deadlines", Proceedings 11th IEEE Real-Time Systems Symposium, Lake Buena
Vista, Florida, pp 201-209 (December 1990).

[30] Lehoczky, J. P., Sha, L., Strosnider, J. K., "Enhanced Aperiodic Responsiveness in
Hard Real-Time Environments", Proceedings IEEE Real-Time Systems Symposium,
San Jose, California, pp 261-270 (1987).

[31] Leung, J. Y. T. and Whitehead, J., "On the Complexity of Fixed-Priority Scheduling
of Periodic Real-Time Tasks", Performance Evaluation, pp. 237-250, Vol. 2, Part 4
(December 1982).

[32] Liu, C. L. and Layland, J. W., "Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment", Journal of the ACM 20(1), pp. 46-61 (1973).

[33] Liu, J. W. S., Lin K. J. and Natarajan S., "Scheduling Real-Time, Periodic Jobs Using
Imprecise Results", Proceedings 8th IEEE Real-Time Systems Symposium, Fairmont
Hotel, San Hose, California, pp252-260 (December 1987).

[34] Liu, J. W. S., Lin K. J., Shih, W. K.,
"Algorithms for Scheduling Imprecise
(May 1991).

Yu, A. C. S., Chung, J. Y. and Zhao, W.,
Computations", IEEE Computer, pp58-68

[35] Locke, C. D., "Best-Effort Decision Making for Real-Time Scheduling", Technical
Report CMU-CS-86-134 (PhD Thesis), Computer Science Department, Carnegie-
Mellon University (May 1986).

[36] Locke, C. D., Vogel D. R., Mesler, T. J., "Building a Predictable Avionics Platform in
Ada: A Case Study", Proceedings 12th IEEE Real-Time Systems Symposium,
(December 1991).

[37] Lovesay, E. J., and Davis, R. I., "Integrating Machine Intelligence into the Cockpit to
Aid the Pilot", Proceedings AGARD Conference on Machine Intelligence for
Aerospace Electronic Systems (1991).

[38] Musliner, D. J., Hendler, J. A., Agrawala, A. K., et al, "The Challenges of Real-Time
AI", IEEE Computer (January 1995).

[39] Niehaus, D., Ramamritham K., Stankovic, J. A., Wallace, G., Weems, C., Burleson,
W., Ko, J., "The Spring Scheduling Co-Processor : Design, Use and Performance",
Proceedings 14th IEEE Real-Time Systems Symposium, Durham, N. Carolina
(December 1993).

[40] Payton, D. W., and Bihari, T. E., "Intelligent Real-Time Control of Robotic
Vehicles", CACM 34(8), pp 48-63 (August 1991).

[41] "Proceedings of the Fourth International Workshop on Real-Time Ada Issues, July
1990", Ada Letters, vol. X, Number 9, ACM, Pitlochry (Fall 1990).

204

[42] Ramamritham, K., "Dynamic Priority Scheduling" in "Real-Time Systems :
Specification Verification and Analysis", pp 66-95, Prentice Hall (1996).

[43] Sha, L., Lehoczky, J. P., Rajkumar, R., "Solutions for some Practical Problems in
Prioritised Preemptive Scheduling", Proceedings IEEE Real-Time Systems
Symposium, pp 181-191 (1986).

[44] Sha, L., Sprunt, B., Lehoczky, J. P., "Aperiodic Task Scheduling for Hard Real-Time
Systems", Real-Time Systems 1(1), pp 27-69 (1989).

[45] Shih, W. K., "Scheduling in Real-Time Systems to Ensure Graceful Degradation: the
Imprecise Computation and the Deferred-Deadline Approaches", Technical Report
UIUCDCS-R-92-1765 (PhD Thesis), Computer Science Department, University of
Illinois at Urbana-Champaign (December 1992).

[46] Shih, W. K., Liu, J. W. S., Chung, J. Y., "Algorithms for Scheduling Imprecise
Computations with Timing Constraints", Proceedings 10th IEEE Real-Time Systems
Symposium, Santa Monica, California (December 1989).

[47] Song, X., and Liu, J. W. S., "Performance of Multi-Version Concurrency Control
Algorithms in Maintaining Temporal Consistency", Department of Computer Science,
University of Illinois at Urbana-Champaign (February 1990).

[48] Sprunt, B., "Aperiodic Task Scheduling for Real-Time Systems", PhD Thesis,
Carnegie Mellon University (1990).

[49] Sprunt, B., Lehoczky, J. P., Sha, L., "Exploiting Unused Periodic Time for Aperiodic
Service using the Extended Priority Exchange Algorithm", Proceedings IEEE Real-
Time Systems Symposium, pp 251-258 (December 1988).

[50] Sprunt, B., Sha, L., Lehoczky, J. P., "Aperiodic Task Scheduling for Hard Real-Time
Systems", Journal of Real-Time Systems, 1: 27-60 (1989).

[51] Stankovic, J. A., "Misconceptions about Real-Time Computing", IEEE Computer
(October 1988).

[52] Stankovic, J. A., Ramamritham K., "Overview of the Spring Project", COINS
Technical Report 89-03, University of Massachusetts, Amherst (January 1989).

[53] Stankovic, J. A., Ramamritham K., "The Spring Kernel: a New Paradigm for Real-
Time Systems", IEEE Software (May 1991).

[54] Stankovic, J. A., Ramamritham K., "The Design of the Spring Kernel", Proceedings
IEEE Real-Time Systems Symposium, San Jose, California, pp146-157 (1987).

[55] Stankovic, J. A., Ramamritham K., Cheng, S., "Evaluation of Flexible Task
Scheduling Algorithms for Distributed Hard Real-Time Systems", IEEE Transactions
on Computers, pp 1,130-1,143 (Decmeber 1985).

205

[56] Stankovic, J. A., Ramamritham K., and Zhao, W. "Distributed Scheduling of Tasks
with Deadlines and Resource Requirements", IEEE Transactions on Computers, pp
1,110-1,123 (August 1989).

[57] Strosnider, J. K., "Highly Responsive Real-Time Token Rings", PhD Thesis, Carnegie
Mellon University (1988).

[58] Tia T. S., Liu, J. W. S., Mallikarjun, S., "Algorithms and Optimality of Scheduling
Aperiodic Requests in Fixed-Priority Pre-emptive Systems", Department of Computer
Science, University of Illinois at Urbana-Champaign (April 1994).

[59] Tokuda, H., Wendorf, J. W., Wang, H. J., "Implementation of a Time-Driven
Scheduler for Real-Time Operating Systems", Proceedings IEEE Real-Time Systems
Symposium, pp271-280 (December 1987).

[60] Wendorf, J. W., "Implementation and Evaluation of a Time-Driven Scheduling
Processor", Proceedings IEEE Real-Time Systems Symposium, pp172-180 (1988).

[61] Werum, W., and Windauer, H., "Introduction to PEARL", Friedr. Vieweg & Sohn,
(1985).

[62] Yen, J. and Natarajan, S. "A Decision-Theoretic Treatment of Imprecise
Computation", Imprecise and Approximate Computation, Ed. Natarajan, S, Kluwer
(1995).

[63] Zhao, W., Ramamritham, K., Stankovic, J. A. "Scheduling Tasks with Resource
Requirements in Hard Real-Time Systems", IEEE Transactions on Software
Engineering, Vol. SE-13, No 5 (May 1987).

[64] Zilberstein, S., "Operational Rationality through Compilation of Anytime Algorithms",
PhD Thesis, Department of Computer Science, University of California at Berkeley
(1993).

206

